Playdate SmolLM2-135M: 5k Samples
This is a proof of concept model, not to be used in production. Script example below.
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
MODEL_PATH = "x5tne/playdate-smollm2-135m-5k"
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH)
model.eval()
# Example prompt
prompt = """<system shy>
<summary>none</summary>
<user>Hi [namehere]! How are you today?</user>
<assistant>"""
# Encode input
inputs = tokenizer(prompt, return_tensors="pt")
# Generate output
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=100,
do_sample=True,
temperature=0.9,
top_p=0.9,
repetition_penalty=1.15
)
# Decode generated tokens
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
print("Assistant response:")
print(response)
- Downloads last month
- 28
Model tree for x5tne/playdate-smollm2-135m-5k
Base model
HuggingFaceTB/SmolLM2-135M