|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:23478 |
|
- loss:ContrastiveLoss |
|
base_model: denaya/indoSBERT-large |
|
widget: |
|
- source_sentence: 'Pekerja anak Indonesia: Buku panduan 2022 (pr & pasca pandemi)' |
|
sentences: |
|
- Statistik Perusahaan Hak Pengusahaan Hutan 2010 |
|
- Statistik Kriminal 2016 |
|
- ' Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok Komoditi dan |
|
Negara, November 2020' |
|
- source_sentence: Jumlah pascr tradisional, pusat perbelanjaan, dan toko modern tahun |
|
2019 |
|
sentences: |
|
- Profil Pasar Tradisional, Pusat Perbelanjaan, dan Toko Modern 2019 |
|
- Laporan Perekonomian Indonesia 2008 |
|
- Profil Industri Mikro dan Kecil 2006 |
|
- source_sentence: Survei biay ahidup (SBH) di Ternate tahun 2012 |
|
sentences: |
|
- Laporan Bulanan Data Sosial Ekonomi Januari 2016 |
|
- Keadaan Angkatan kerja di Indonesia Agustus 2009 |
|
- Statistik Perdagangan Luar Negeri Indonesia Impor 2023 Buku I |
|
- source_sentence: Direktori perwsahaan air minum, listrik, dan gas di kota tahun |
|
2009 |
|
sentences: |
|
- Statistik Indonesia 1991 |
|
- Direktori Perusahaan Air Minum Listrik dan Gas Kota 2009 |
|
- Direktori Eksportir Indonesia 2015 |
|
- source_sentence: Studi efisiensi industri manufaktr |
|
sentences: |
|
- Statistik Indonesia 2019 |
|
- Statistik Potensi Desa Provinsi Maluku 2011 |
|
- Klasifikasi Baku Komoditas Indonesia (KBKI) 2012 Buku 4 |
|
datasets: |
|
- yahyaabd/bps-publication-pos-neg-pairs |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on denaya/indoSBERT-large |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: allstats semantic base v1 eval |
|
type: allstats-semantic-base-v1-eval |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9658815836712943 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7841756166101173 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: allstat semantic base v1 test |
|
type: allstat-semantic-base-v1-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9592021090962591 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7818288777895762 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# SentenceTransformer based on denaya/indoSBERT-large |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large) on the [bps-publication-pos-neg-pairs](https://huggingface.co/datasets/yahyaabd/bps-publication-pos-neg-pairs) dataset. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large) <!-- at revision 5c64d43f07f7054dfbf33d226b3066414b6ebc4a --> |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Output Dimensionality:** 256 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [bps-publication-pos-neg-pairs](https://huggingface.co/datasets/yahyaabd/bps-publication-pos-neg-pairs) |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("yahyaabd/allstats-semantic-base-v1-3") |
|
# Run inference |
|
sentences = [ |
|
'Studi efisiensi industri manufaktr', |
|
'Statistik Potensi Desa Provinsi Maluku 2011', |
|
'Klasifikasi Baku Komoditas Indonesia (KBKI) 2012 Buku 4', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 256] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Datasets: `allstats-semantic-base-v1-eval` and `allstat-semantic-base-v1-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | allstats-semantic-base-v1-eval | allstat-semantic-base-v1-test | |
|
|:--------------------|:-------------------------------|:------------------------------| |
|
| pearson_cosine | 0.9659 | 0.9592 | |
|
| **spearman_cosine** | **0.7842** | **0.7818** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### bps-publication-pos-neg-pairs |
|
|
|
* Dataset: [bps-publication-pos-neg-pairs](https://huggingface.co/datasets/yahyaabd/bps-publication-pos-neg-pairs) at [46a5cb7](https://huggingface.co/datasets/yahyaabd/bps-publication-pos-neg-pairs/tree/46a5cb7b0d6b00e9ef6bb1bf0ab6b6628ab66a9b) |
|
* Size: 23,478 training samples |
|
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | doc | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 11.84 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.77 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>0: ~72.40%</li><li>1: ~27.60%</li></ul> | |
|
* Samples: |
|
| query | doc | label | |
|
|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------| |
|
| <code>Direktori perusahaan perantara keuangan bukan koperasi tahun 2006 (SE)</code> | <code>Tinjauan Regional Berdasarkan PDRB Kabupaten/Kota 2018-2022, Buku 2 Pulau Jawa-Bali</code> | <code>0</code> | |
|
| <code>Informasi lengkap tentang PPLS 2011</code> | <code>Indeks Harga Perdagangan Besar Indonesia tahun 2005</code> | <code>0</code> | |
|
| <code>Data konversi GKG ke beras tahun 2012</code> | <code>Indikator Ekonomi Juli 2023</code> | <code>0</code> | |
|
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", |
|
"margin": 0.5, |
|
"size_average": true |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### bps-publication-pos-neg-pairs |
|
|
|
* Dataset: [bps-publication-pos-neg-pairs](https://huggingface.co/datasets/yahyaabd/bps-publication-pos-neg-pairs) at [46a5cb7](https://huggingface.co/datasets/yahyaabd/bps-publication-pos-neg-pairs/tree/46a5cb7b0d6b00e9ef6bb1bf0ab6b6628ab66a9b) |
|
* Size: 5,031 evaluation samples |
|
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | doc | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 11.97 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.76 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>0: ~72.70%</li><li>1: ~27.30%</li></ul> | |
|
* Samples: |
|
| query | doc | label | |
|
|:-------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------| |
|
| <code>Informasi angka tanaman berkhasiat ogbat dan tanaman hias di tahun 2005</code> | <code>Tinjauan Regional Berdasarkan PDRB Kabupaten/Kota 2010-2013 - Buku 2 Pulau Jawa-Bali</code> | <code>0</code> | |
|
| <code>Informasi lengkap statistik horsikultura tahun 2020</code> | <code>NERACA ENERGI INDONESIA 2017-2021</code> | <code>0</code> | |
|
| <code>Statistik air bersih Indonesia periode 2014-2019</code> | <code>Profil Usaha Konstruksi Perorangan Provinsi Kalimantan Utara, 2022</code> | <code>0</code> | |
|
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", |
|
"margin": 0.5, |
|
"size_average": true |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `num_train_epochs`: 8 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `load_best_model_at_end`: True |
|
- `eval_on_start`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 8 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: True |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-base-v1-eval_spearman_cosine | allstat-semantic-base-v1-test_spearman_cosine | |
|
|:----------:|:--------:|:-------------:|:---------------:|:----------------------------------------------:|:---------------------------------------------:| |
|
| 0 | 0 | - | 0.0053 | 0.7770 | - | |
|
| 0.5450 | 200 | 0.0023 | 0.0005 | 0.7842 | - | |
|
| 1.0899 | 400 | 0.0005 | 0.0002 | 0.7842 | - | |
|
| 1.6349 | 600 | 0.0002 | 0.0002 | 0.7842 | - | |
|
| 2.1798 | 800 | 0.0001 | 0.0001 | 0.7842 | - | |
|
| 2.7248 | 1000 | 0.0001 | 0.0001 | 0.7842 | - | |
|
| 3.2698 | 1200 | 0.0 | 0.0001 | 0.7842 | - | |
|
| 3.8147 | 1400 | 0.0 | 0.0001 | 0.7842 | - | |
|
| 4.3597 | 1600 | 0.0 | 0.0001 | 0.7842 | - | |
|
| **4.9046** | **1800** | **0.0** | **0.0001** | **0.7842** | **-** | |
|
| 5.4496 | 2000 | 0.0 | 0.0001 | 0.7842 | - | |
|
| 5.9946 | 2200 | 0.0 | 0.0001 | 0.7842 | - | |
|
| 6.5395 | 2400 | 0.0 | 0.0001 | 0.7842 | - | |
|
| 7.0845 | 2600 | 0.0 | 0.0001 | 0.7842 | - | |
|
| 7.6294 | 2800 | 0.0 | 0.0001 | 0.7842 | - | |
|
| -1 | -1 | - | - | - | 0.7818 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.4.0 |
|
- Transformers: 4.48.1 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.3.0 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### ContrastiveLoss |
|
```bibtex |
|
@inproceedings{hadsell2006dimensionality, |
|
author={Hadsell, R. and Chopra, S. and LeCun, Y.}, |
|
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, |
|
title={Dimensionality Reduction by Learning an Invariant Mapping}, |
|
year={2006}, |
|
volume={2}, |
|
number={}, |
|
pages={1735-1742}, |
|
doi={10.1109/CVPR.2006.100} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |