yahyaabd's picture
Add new SentenceTransformer model
c4b55cc verified
---
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets:
- yahyaabd/allstats-semantic-search-synthetic-dataset-v2-mini
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:70280
- loss:CosineSimilarityLoss
widget:
- source_sentence: Data SBH tahun 2012 di Mamuju
sentences:
- Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Harmonized System November
2013
- SBH 2012 - Mamuju
- IHK di 66 Kota di Indonesia 2013
- source_sentence: Statistik konstruksi tahun 2020
sentences:
- Indeks Ketimpangan Gender 2022
- Angka Kematian Bayi/AKB (Infant Mortality Rate/IMR) Menurut Provinsi, 1971-2020
- Perkembangan Beberapa Indikator Utama sosial-Ekonomi Indonesia Edisi Februari
2016
- source_sentence: Berapa besar inflasi pada bulan Oktober 2008?
sentences:
- Tinjauan Ekonomi Regional Indonesia Berdasarkan Data PDRB 2004-2008 Buku 2
- Statistik Sumber Daya Laut dan Pesisir 2020
- Inflasi September 2008 sebesar 0,97 persen.
- source_sentence: 'Sektor konstruksi Indonesia: data statistik 1990-2013'
sentences:
- Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Provinsi dan
Lapangan Pekerjaan Utama, 2023
- Direktori Perusahaan Kehutanan 2019
- Sensus Ekonomi 2006 Hasil Pendaftaran Perusahaan Sumatera Selatan
- source_sentence: Perdagangan luar negeri, impor, Oktober 2020
sentences:
- Indikator Ekonomi September 2005
- Statistik Potensi Desa Provinsi DI Yogyakarta 2005
- Indikator Ekonomi November 1999
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic search mini v2 eval
type: allstats-semantic-search-mini-v2-eval
metrics:
- type: pearson_cosine
value: 0.9617082550278393
name: Pearson Cosine
- type: spearman_cosine
value: 0.8518022238549516
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstat semantic search mini v2 test
type: allstat-semantic-search-mini-v2-test
metrics:
- type: pearson_cosine
value: 0.9604638064122318
name: Pearson Cosine
- type: spearman_cosine
value: 0.8480797444308495
name: Spearman Cosine
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [allstats-semantic-search-synthetic-dataset-v2-mini](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2-mini) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [allstats-semantic-search-synthetic-dataset-v2-mini](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2-mini)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-search-mini-model-v2-2")
# Run inference
sentences = [
'Perdagangan luar negeri, impor, Oktober 2020',
'Indikator Ekonomi November 1999',
'Indikator Ekonomi September 2005',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `allstats-semantic-search-mini-v2-eval` and `allstat-semantic-search-mini-v2-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | allstats-semantic-search-mini-v2-eval | allstat-semantic-search-mini-v2-test |
|:--------------------|:--------------------------------------|:-------------------------------------|
| pearson_cosine | 0.9617 | 0.9605 |
| **spearman_cosine** | **0.8518** | **0.8481** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### allstats-semantic-search-synthetic-dataset-v2-mini
* Dataset: [allstats-semantic-search-synthetic-dataset-v2-mini](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2-mini) at [8222b01](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2-mini/tree/8222b01e37490603bc838a6368bc2946a6455a7c)
* Size: 70,280 training samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 3 tokens</li><li>mean: 10.92 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.68 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.52</li><li>max: 1.0</li></ul> |
* Samples:
| query | doc | label |
|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------|:------------------|
| <code>Statistik perusahaan pembudidaya tanaman kehutanan 2018</code> | <code>Statistik Perusahaan Pembudidaya Tanaman Kehutanan 2018</code> | <code>0.97</code> |
| <code>Berapa persen pertumbuhan PDB Indonesia pada Triwulan III Tahun 2002?</code> | <code>Inflasi Bulan November 2002 Sebesar 1,85 %</code> | <code>0.0</code> |
| <code>Perdagangan luar negeri Indonesia, impor 2019, jilid 2</code> | <code>Pendataan Sapi Potong Sapi Perah (PSPK 2011) Sulawesi Barat</code> | <code>0.06</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### allstats-semantic-search-synthetic-dataset-v2-mini
* Dataset: [allstats-semantic-search-synthetic-dataset-v2-mini](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2-mini) at [8222b01](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2-mini/tree/8222b01e37490603bc838a6368bc2946a6455a7c)
* Size: 15,060 evaluation samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 4 tokens</li><li>mean: 10.96 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.74 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
* Samples:
| query | doc | label |
|:----------------------------------------------------------------|:-----------------------------------------------------------------|:------------------|
| <code>Review PDRB daerah di Pulau Sumatera 2010-2013</code> | <code>Statistik Pendidikan 2006</code> | <code>0.12</code> |
| <code>Analisis data angkatan kerja Agustus 2021</code> | <code>Booklet Survei Angkatan Kerja Nasional Agustus 2021</code> | <code>0.9</code> |
| <code>Berapa persen inflasi yang terjadi pada Juli 2015?</code> | <code>Inflasi pada bulan lain tidak disebutkan</code> | <code>0.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 24
- `warmup_ratio`: 0.1
- `bf16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 24
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-search-mini-v2-eval_spearman_cosine | allstat-semantic-search-mini-v2-test_spearman_cosine |
|:-------:|:-----:|:-------------:|:---------------:|:-----------------------------------------------------:|:----------------------------------------------------:|
| 0.4550 | 500 | 0.0643 | 0.0413 | 0.6996 | - |
| 0.9099 | 1000 | 0.0348 | 0.0280 | 0.7533 | - |
| 1.3649 | 1500 | 0.0254 | 0.0238 | 0.7737 | - |
| 1.8198 | 2000 | 0.0223 | 0.0205 | 0.7831 | - |
| 2.2748 | 2500 | 0.0181 | 0.0197 | 0.7894 | - |
| 2.7298 | 3000 | 0.0173 | 0.0184 | 0.7876 | - |
| 3.1847 | 3500 | 0.0152 | 0.0170 | 0.7954 | - |
| 3.6397 | 4000 | 0.0123 | 0.0175 | 0.7970 | - |
| 4.0946 | 4500 | 0.0125 | 0.0163 | 0.8118 | - |
| 4.5496 | 5000 | 0.01 | 0.0161 | 0.8047 | - |
| 5.0045 | 5500 | 0.0103 | 0.0157 | 0.8126 | - |
| 5.4595 | 6000 | 0.0079 | 0.0150 | 0.8224 | - |
| 5.9145 | 6500 | 0.0087 | 0.0156 | 0.8219 | - |
| 6.3694 | 7000 | 0.0071 | 0.0152 | 0.8145 | - |
| 6.8244 | 7500 | 0.0068 | 0.0153 | 0.8172 | - |
| 7.2793 | 8000 | 0.0061 | 0.0147 | 0.8216 | - |
| 7.7343 | 8500 | 0.0062 | 0.0146 | 0.8267 | - |
| 8.1893 | 9000 | 0.0055 | 0.0145 | 0.8325 | - |
| 8.6442 | 9500 | 0.005 | 0.0146 | 0.8335 | - |
| 9.0992 | 10000 | 0.0052 | 0.0143 | 0.8356 | - |
| 9.5541 | 10500 | 0.0043 | 0.0144 | 0.8313 | - |
| 10.0091 | 11000 | 0.0051 | 0.0144 | 0.8362 | - |
| 10.4641 | 11500 | 0.004 | 0.0145 | 0.8376 | - |
| 10.9190 | 12000 | 0.0039 | 0.0142 | 0.8331 | - |
| 11.3740 | 12500 | 0.0034 | 0.0141 | 0.8397 | - |
| 11.8289 | 13000 | 0.0033 | 0.0140 | 0.8398 | - |
| 12.2839 | 13500 | 0.0032 | 0.0143 | 0.8411 | - |
| 12.7389 | 14000 | 0.003 | 0.0141 | 0.8407 | - |
| 13.1938 | 14500 | 0.0031 | 0.0141 | 0.8379 | - |
| 13.6488 | 15000 | 0.0026 | 0.0141 | 0.8419 | - |
| 14.1037 | 15500 | 0.0028 | 0.0141 | 0.8442 | - |
| 14.5587 | 16000 | 0.0023 | 0.0138 | 0.8455 | - |
| 15.0136 | 16500 | 0.0025 | 0.0147 | 0.8359 | - |
| 15.4686 | 17000 | 0.0021 | 0.0141 | 0.8459 | - |
| 15.9236 | 17500 | 0.0023 | 0.0140 | 0.8433 | - |
| 16.3785 | 18000 | 0.002 | 0.0139 | 0.8465 | - |
| 16.8335 | 18500 | 0.002 | 0.0139 | 0.8461 | - |
| 17.2884 | 19000 | 0.0018 | 0.0139 | 0.8482 | - |
| 17.7434 | 19500 | 0.0018 | 0.0138 | 0.8477 | - |
| 18.1984 | 20000 | 0.0017 | 0.0138 | 0.8503 | - |
| 18.6533 | 20500 | 0.0016 | 0.0136 | 0.8493 | - |
| 19.1083 | 21000 | 0.0016 | 0.0139 | 0.8501 | - |
| 19.5632 | 21500 | 0.0015 | 0.0138 | 0.8478 | - |
| 20.0182 | 22000 | 0.0015 | 0.0139 | 0.8501 | - |
| 20.4732 | 22500 | 0.0013 | 0.0139 | 0.8508 | - |
| 20.9281 | 23000 | 0.0015 | 0.0139 | 0.8511 | - |
| 21.3831 | 23500 | 0.0013 | 0.0139 | 0.8517 | - |
| 21.8380 | 24000 | 0.0013 | 0.0139 | 0.8512 | - |
| 22.2930 | 24500 | 0.0012 | 0.0139 | 0.8512 | - |
| 22.7480 | 25000 | 0.0012 | 0.0138 | 0.8520 | - |
| 23.2029 | 25500 | 0.0012 | 0.0139 | 0.8520 | - |
| 23.6579 | 26000 | 0.0011 | 0.0139 | 0.8518 | - |
| 24.0 | 26376 | - | - | - | 0.8481 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->