|
--- |
|
library_name: transformers |
|
license: bsd-3-clause |
|
base_model: MIT/ast-finetuned-audioset-10-10-0.4593 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- recall |
|
- precision |
|
- f1 |
|
model-index: |
|
- name: AST_EmoRecog_Model_v4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# AST_EmoRecog_Model_v4 |
|
|
|
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the [IEMOCAP](https://sail.usc.edu/iemocap/) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4615 |
|
- Accuracy: 0.5159 |
|
- Recall: 0.4007 |
|
- Precision: 0.4956 |
|
- F1: 0.4090 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 1.4443 | 1.0 | 377 | 1.3359 | 0.4695 | 0.3408 | 0.4793 | 0.3099 | |
|
| 1.1556 | 2.0 | 754 | 1.2506 | 0.5266 | 0.3877 | 0.6026 | 0.3970 | |
|
| 0.8988 | 3.0 | 1131 | 1.2633 | 0.5279 | 0.4175 | 0.5148 | 0.4208 | |
|
| 0.6187 | 4.0 | 1508 | 1.3426 | 0.5279 | 0.4031 | 0.5425 | 0.4153 | |
|
| 0.3944 | 5.0 | 1885 | 1.4266 | 0.5206 | 0.4021 | 0.5256 | 0.4152 | |
|
| 0.2555 | 6.0 | 2262 | 1.4615 | 0.5159 | 0.4007 | 0.4956 | 0.4090 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|