π¦ Custom Pegasus Summarizer
This model is a custom-wrapped version of [google/pegasus-xsum
](https://huggingface.co/google/pegasus-xsum) built for summarization tasks. It's implemented using Hugging Face's `transformers` library and wrapped with a custom model class for educational and experimental flexibility.
β It supports:
- Easy fine-tuning and extension (e.g., adapters, prompt tuning)
- Drop-in replacement for the original model
- Hugging Face Hub compatibility
- Works with `AutoTokenizer` and `CustomSeq2SeqModel`
π§ Model Architecture
- Base: google/pegasus-xsum
- Wrapper: CustomSeq2SeqModel (inherits from PreTrainedModel)
- Tokenizer: AutoTokenizer from the same repo
- Configuration: CustomSeq2SeqConfig (inherits from PretrainedConfig)
π§ͺ Training Details
- Dataset: xsum (500-sample subset)
- Task: Abstractive Summarization
- Epochs: 1
- Batch Size: 4
- Learning Rate: 2e-5
- Training Framework: Hugging Face Trainer
π‘ Usage Example
```python from transformers import AutoTokenizer from model import CustomSeq2SeqModel # Your custom wrapper
tokenizer = AutoTokenizer.from_pretrained("your-username/custom-pegasus-summarizer") model = CustomSeq2SeqModel.from_pretrained("your-username/custom-pegasus-summarizer")
text = "summarize: The Apollo program was a major milestone in space exploration..." inputs = tokenizer(text, return_tensors="pt", truncation=True) summary_ids = model.generate(**inputs, max_length=60) print(tokenizer.decode(summary_ids[0], skip_special_tokens=True)) ```
π Live Demos
You can try this model interactively on Hugging Face Spaces:
- Gradio App: https://huggingface.co/spaces/your-username/custom-pegasus-gradio
- Streamlit App: https://huggingface.co/spaces/your-username/custom-pegasus-streamlit
π¦ Files Included
- `config.json` β Model configuration (used by `from_pretrained`)
- `pytorch_model.bin` β Fine-tuned model weights
- `tokenizer_config.json` β Tokenizer settings
- `vocab.json` / `merges.txt` β Tokenizer vocab (depends on tokenizer type)
- `special_tokens_map.json` β Special tokens for summarization
- `README.md` β This model card
- `model.py` β (if included) Your `CustomSeq2SeqModel` class
π License
Apache 2.0 β same license as the original `pegasus-xsum`.
π Acknowledgments
- Hugging Face for `transformers`, `datasets`, and `hub`
- Authors of PEGASUS
- Educational/Research communities building custom NLP models
- Downloads last month
- 15