all-MiniLM-L6-v8-pair_score
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the pairs_three_scores_v5 dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'activated charcoal shampoo',
'belgian chocolate with cranberries',
'saw palmetto oil conditioner',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
pairs_three_scores_v5
- Dataset: pairs_three_scores_v5 at 3d8c457
- Size: 80,000,003 training samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 6.06 tokens
- max: 12 tokens
- min: 3 tokens
- mean: 5.71 tokens
- max: 13 tokens
- min: 0.0
- mean: 0.11
- max: 1.0
- Samples:
sentence1 sentence2 score vanilla hair creamfree of paraben hair mask0.5nourishing shampoocumin lemon tea0.0safe materials pacifierfacial serum0.5 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
pairs_three_scores_v5
- Dataset: pairs_three_scores_v5 at 3d8c457
- Size: 20,000,001 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 6.21 tokens
- max: 12 tokens
- min: 3 tokens
- mean: 5.75 tokens
- max: 12 tokens
- min: 0.0
- mean: 0.11
- max: 1.0
- Samples:
sentence1 sentence2 score teddy bear toylong lasting cat food0.0eva hair treatmentfresh pineapple0.0soft wave hair conditionerhybrid seat bike0.0 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss | loss |
|---|---|---|---|
| 0.8682 | 542600 | 0.9424 | - |
| 0.8683 | 542700 | 0.968 | - |
| 0.8685 | 542800 | 0.9711 | - |
| 0.8686 | 542900 | 0.8668 | - |
| 0.8688 | 543000 | 0.7776 | - |
| 0.8690 | 543100 | 0.5938 | - |
| 0.8691 | 543200 | 0.7416 | - |
| 0.8693 | 543300 | 1.2082 | - |
| 0.8694 | 543400 | 0.5481 | - |
| 0.8696 | 543500 | 0.9383 | - |
| 0.8698 | 543600 | 0.699 | - |
| 0.8699 | 543700 | 0.6582 | - |
| 0.8701 | 543800 | 0.9237 | - |
| 0.8702 | 543900 | 0.5977 | - |
| 0.8704 | 544000 | 0.632 | - |
| 0.8706 | 544100 | 0.819 | - |
| 0.8707 | 544200 | 0.5877 | - |
| 0.8709 | 544300 | 0.725 | - |
| 0.8710 | 544400 | 0.6097 | - |
| 0.8712 | 544500 | 0.4883 | - |
| 0.8714 | 544600 | 0.7353 | - |
| 0.8715 | 544700 | 0.8596 | - |
| 0.8717 | 544800 | 0.4478 | - |
| 0.8718 | 544900 | 0.49 | - |
| 0.8720 | 545000 | 0.6203 | - |
| 0.8722 | 545100 | 0.6758 | - |
| 0.8723 | 545200 | 0.959 | - |
| 0.8725 | 545300 | 1.4645 | - |
| 0.8726 | 545400 | 0.7873 | - |
| 0.8728 | 545500 | 0.6609 | - |
| 0.8730 | 545600 | 0.8173 | - |
| 0.8731 | 545700 | 1.1416 | - |
| 0.8733 | 545800 | 0.8406 | - |
| 0.8734 | 545900 | 0.8781 | - |
| 0.8736 | 546000 | 0.6507 | - |
| 0.8738 | 546100 | 1.0332 | - |
| 0.8739 | 546200 | 0.9044 | - |
| 0.8741 | 546300 | 0.8617 | - |
| 0.8742 | 546400 | 0.7377 | - |
| 0.8744 | 546500 | 0.7668 | - |
| 0.8746 | 546600 | 0.6856 | - |
| 0.8747 | 546700 | 1.0069 | - |
| 0.8749 | 546800 | 0.5628 | - |
| 0.8750 | 546900 | 0.6661 | - |
| 0.8752 | 547000 | 0.8508 | - |
| 0.8754 | 547100 | 1.0595 | - |
| 0.8755 | 547200 | 0.8156 | - |
| 0.8757 | 547300 | 0.4535 | - |
| 0.8758 | 547400 | 0.7963 | - |
| 0.8760 | 547500 | 0.8964 | - |
| 0.8762 | 547600 | 0.6343 | - |
| 0.8763 | 547700 | 0.9795 | - |
| 0.8765 | 547800 | 1.0885 | - |
| 0.8766 | 547900 | 0.6333 | - |
| 0.8768 | 548000 | 1.0065 | - |
| 0.8770 | 548100 | 0.8155 | - |
| 0.8771 | 548200 | 0.8595 | - |
| 0.8773 | 548300 | 1.2973 | - |
| 0.8774 | 548400 | 0.9477 | - |
| 0.8776 | 548500 | 1.092 | - |
| 0.8778 | 548600 | 0.9252 | - |
| 0.8779 | 548700 | 0.6214 | - |
| 0.8781 | 548800 | 0.6302 | - |
| 0.8782 | 548900 | 0.4542 | - |
| 0.8784 | 549000 | 0.6626 | - |
| 0.8786 | 549100 | 0.6616 | - |
| 0.8787 | 549200 | 0.5897 | - |
| 0.8789 | 549300 | 0.5641 | - |
| 0.8790 | 549400 | 0.8449 | - |
| 0.8792 | 549500 | 0.7743 | - |
| 0.8794 | 549600 | 0.8134 | - |
| 0.8795 | 549700 | 1.0455 | - |
| 0.8797 | 549800 | 0.6805 | - |
| 0.8798 | 549900 | 0.6526 | - |
| 0.8800 | 550000 | 0.5727 | - |
| 0.8802 | 550100 | 0.5923 | - |
| 0.8803 | 550200 | 0.565 | - |
| 0.8805 | 550300 | 0.7745 | - |
| 0.8806 | 550400 | 0.757 | - |
| 0.8808 | 550500 | 0.624 | - |
| 0.8810 | 550600 | 0.9387 | - |
| 0.8811 | 550700 | 0.9718 | - |
| 0.8813 | 550800 | 0.9184 | - |
| 0.8814 | 550900 | 1.166 | - |
| 0.8816 | 551000 | 0.6725 | - |
| 0.8818 | 551100 | 0.9767 | - |
| 0.8819 | 551200 | 0.517 | - |
| 0.8821 | 551300 | 0.9126 | - |
| 0.8822 | 551400 | 1.3649 | - |
| 0.8824 | 551500 | 0.7633 | - |
| 0.8826 | 551600 | 0.6029 | - |
| 0.8827 | 551700 | 0.4923 | - |
| 0.8829 | 551800 | 0.7787 | - |
| 0.8830 | 551900 | 0.7437 | - |
| 0.8832 | 552000 | 0.7627 | - |
| 0.8834 | 552100 | 0.5648 | - |
| 0.8835 | 552200 | 0.5564 | - |
| 0.8837 | 552300 | 0.7376 | - |
| 0.8838 | 552400 | 0.8405 | - |
| 0.8840 | 552500 | 1.062 | - |
| 0.8842 | 552600 | 0.7844 | - |
| 0.8843 | 552700 | 0.6866 | - |
| 0.8845 | 552800 | 0.8532 | - |
| 0.8846 | 552900 | 0.4204 | - |
| 0.8848 | 553000 | 0.7487 | - |
| 0.8850 | 553100 | 0.5511 | - |
| 0.8851 | 553200 | 0.8468 | - |
| 0.8853 | 553300 | 0.9251 | - |
| 0.8854 | 553400 | 1.0542 | - |
| 0.8856 | 553500 | 0.9342 | - |
| 0.8858 | 553600 | 1.0533 | - |
| 0.8859 | 553700 | 0.7185 | - |
| 0.8861 | 553800 | 0.5811 | - |
| 0.8862 | 553900 | 0.8484 | - |
| 0.8864 | 554000 | 0.5215 | - |
| 0.8866 | 554100 | 0.4963 | - |
| 0.8867 | 554200 | 0.6594 | - |
| 0.8869 | 554300 | 0.5277 | - |
| 0.8870 | 554400 | 0.5139 | - |
| 0.8872 | 554500 | 0.9343 | - |
| 0.8874 | 554600 | 0.9857 | - |
| 0.8875 | 554700 | 0.7193 | - |
| 0.8877 | 554800 | 0.9394 | - |
| 0.8878 | 554900 | 0.91 | - |
| 0.8880 | 555000 | 0.601 | - |
| 0.8882 | 555100 | 0.4681 | - |
| 0.8883 | 555200 | 0.7671 | - |
| 0.8885 | 555300 | 0.4485 | - |
| 0.8886 | 555400 | 0.8482 | - |
| 0.8888 | 555500 | 0.8826 | - |
| 0.8890 | 555600 | 0.3257 | - |
| 0.8891 | 555700 | 0.6727 | - |
| 0.8893 | 555800 | 0.7098 | - |
| 0.8894 | 555900 | 0.7871 | - |
| 0.8896 | 556000 | 0.843 | - |
| 0.8898 | 556100 | 1.0637 | - |
| 0.8899 | 556200 | 0.4367 | - |
| 0.8901 | 556300 | 0.8833 | - |
| 0.8902 | 556400 | 0.6529 | - |
| 0.8904 | 556500 | 1.0443 | - |
| 0.8906 | 556600 | 1.1076 | - |
| 0.8907 | 556700 | 0.7762 | - |
| 0.8909 | 556800 | 0.5598 | - |
| 0.8910 | 556900 | 1.127 | - |
| 0.8912 | 557000 | 0.5471 | - |
| 0.8914 | 557100 | 0.869 | - |
| 0.8915 | 557200 | 0.8392 | - |
| 0.8917 | 557300 | 0.7547 | - |
| 0.8918 | 557400 | 0.5796 | - |
| 0.8920 | 557500 | 0.7446 | - |
| 0.8922 | 557600 | 0.9913 | - |
| 0.8923 | 557700 | 0.6937 | - |
| 0.8925 | 557800 | 0.5643 | - |
| 0.8926 | 557900 | 0.8484 | - |
| 0.8928 | 558000 | 0.8971 | - |
| 0.8930 | 558100 | 1.1094 | - |
| 0.8931 | 558200 | 0.6835 | - |
| 0.8933 | 558300 | 0.8818 | - |
| 0.8934 | 558400 | 1.1366 | - |
| 0.8936 | 558500 | 0.8887 | - |
| 0.8938 | 558600 | 0.5754 | - |
| 0.8939 | 558700 | 0.7777 | - |
| 0.8941 | 558800 | 0.9033 | - |
| 0.8942 | 558900 | 0.5612 | - |
| 0.8944 | 559000 | 0.7949 | - |
| 0.8946 | 559100 | 1.1081 | - |
| 0.8947 | 559200 | 0.6708 | - |
| 0.8949 | 559300 | 0.7044 | - |
| 0.8950 | 559400 | 0.6862 | - |
| 0.8952 | 559500 | 0.8251 | - |
| 0.8954 | 559600 | 0.7551 | - |
| 0.8955 | 559700 | 1.0697 | - |
| 0.8957 | 559800 | 0.9638 | - |
| 0.8958 | 559900 | 0.9433 | - |
| 0.8960 | 560000 | 0.7142 | - |
| 0.8962 | 560100 | 0.6868 | - |
| 0.8963 | 560200 | 1.0483 | - |
| 0.8965 | 560300 | 0.9234 | - |
| 0.8966 | 560400 | 1.0903 | - |
| 0.8968 | 560500 | 0.8217 | - |
| 0.8970 | 560600 | 0.6451 | - |
| 0.8971 | 560700 | 0.7644 | - |
| 0.8973 | 560800 | 0.518 | - |
| 0.8974 | 560900 | 0.6178 | - |
| 0.8976 | 561000 | 0.6031 | - |
| 0.8978 | 561100 | 0.7723 | - |
| 0.8979 | 561200 | 0.3514 | - |
| 0.8981 | 561300 | 0.8751 | - |
| 0.8982 | 561400 | 0.7787 | - |
| 0.8984 | 561500 | 0.7343 | - |
| 0.8986 | 561600 | 0.674 | - |
| 0.8987 | 561700 | 0.8175 | - |
| 0.8989 | 561800 | 0.7348 | - |
| 0.8990 | 561900 | 0.8423 | - |
| 0.8992 | 562000 | 1.004 | - |
| 0.8994 | 562100 | 0.9213 | - |
| 0.8995 | 562200 | 1.0421 | - |
| 0.8997 | 562300 | 0.658 | - |
| 0.8998 | 562400 | 0.8207 | - |
| 0.9000 | 562500 | 0.5178 | - |
| 0.9002 | 562600 | 0.7567 | - |
| 0.9003 | 562700 | 0.8287 | - |
| 0.9005 | 562800 | 0.5924 | - |
| 0.9006 | 562900 | 0.9151 | - |
| 0.9008 | 563000 | 0.9069 | - |
| 0.9010 | 563100 | 0.7985 | - |
| 0.9011 | 563200 | 0.7565 | - |
| 0.9013 | 563300 | 0.823 | - |
| 0.9014 | 563400 | 0.5373 | - |
| 0.9016 | 563500 | 0.5473 | - |
| 0.9018 | 563600 | 0.7323 | - |
| 0.9019 | 563700 | 0.691 | - |
| 0.9021 | 563800 | 0.8818 | - |
| 0.9022 | 563900 | 0.7351 | - |
| 0.9024 | 564000 | 1.0715 | - |
| 0.9026 | 564100 | 0.722 | - |
| 0.9027 | 564200 | 0.6988 | - |
| 0.9029 | 564300 | 1.1843 | - |
| 0.9030 | 564400 | 1.0299 | - |
| 0.9032 | 564500 | 1.119 | - |
| 0.9034 | 564600 | 0.6954 | - |
| 0.9035 | 564700 | 0.8773 | - |
| 0.9037 | 564800 | 0.7873 | - |
| 0.9038 | 564900 | 0.7503 | - |
| 0.9040 | 565000 | 1.1296 | - |
| 0.9042 | 565100 | 0.777 | - |
| 0.9043 | 565200 | 0.8982 | - |
| 0.9045 | 565300 | 0.9224 | - |
| 0.9046 | 565400 | 0.8596 | - |
| 0.9048 | 565500 | 0.5435 | - |
| 0.9050 | 565600 | 0.8324 | - |
| 0.9051 | 565700 | 0.4121 | - |
| 0.9053 | 565800 | 0.9148 | - |
| 0.9054 | 565900 | 0.4525 | - |
| 0.9056 | 566000 | 0.7476 | - |
| 0.9058 | 566100 | 0.8766 | - |
| 0.9059 | 566200 | 1.1123 | - |
| 0.9061 | 566300 | 0.8109 | - |
| 0.9062 | 566400 | 0.8251 | - |
| 0.9064 | 566500 | 0.9638 | - |
| 0.9066 | 566600 | 0.7842 | - |
| 0.9067 | 566700 | 0.8727 | - |
| 0.9069 | 566800 | 1.1777 | - |
| 0.9070 | 566900 | 1.435 | - |
| 0.9072 | 567000 | 0.7354 | - |
| 0.9074 | 567100 | 0.796 | - |
| 0.9075 | 567200 | 0.8451 | - |
| 0.9077 | 567300 | 0.479 | - |
| 0.9078 | 567400 | 0.5299 | - |
| 0.9080 | 567500 | 0.7735 | - |
| 0.9082 | 567600 | 1.1211 | - |
| 0.9083 | 567700 | 0.9364 | - |
| 0.9085 | 567800 | 0.5533 | - |
| 0.9086 | 567900 | 0.9091 | - |
| 0.9088 | 568000 | 0.7493 | - |
| 0.9090 | 568100 | 1.0247 | - |
| 0.9091 | 568200 | 0.4836 | - |
| 0.9093 | 568300 | 0.9966 | - |
| 0.9094 | 568400 | 0.8997 | - |
| 0.9096 | 568500 | 0.7764 | - |
| 0.9098 | 568600 | 0.7193 | - |
| 0.9099 | 568700 | 0.6184 | - |
| 0.9101 | 568800 | 0.9031 | - |
| 0.9102 | 568900 | 0.7061 | - |
| 0.9104 | 569000 | 1.0852 | - |
| 0.9106 | 569100 | 1.0778 | - |
| 0.9107 | 569200 | 0.6463 | - |
| 0.9109 | 569300 | 0.5569 | - |
| 0.9110 | 569400 | 0.5566 | - |
| 0.9112 | 569500 | 0.6489 | - |
| 0.9114 | 569600 | 0.8065 | - |
| 0.9115 | 569700 | 0.8123 | - |
| 0.9117 | 569800 | 0.5946 | - |
| 0.9118 | 569900 | 0.8424 | - |
| 0.9120 | 570000 | 0.8987 | - |
| 0.9122 | 570100 | 0.7266 | - |
| 0.9123 | 570200 | 0.7386 | - |
| 0.9125 | 570300 | 0.7266 | - |
| 0.9126 | 570400 | 0.8668 | - |
| 0.9128 | 570500 | 0.7228 | - |
| 0.9130 | 570600 | 0.6914 | - |
| 0.9131 | 570700 | 0.8578 | - |
| 0.9133 | 570800 | 0.7019 | - |
| 0.9134 | 570900 | 0.5146 | - |
| 0.9136 | 571000 | 0.8236 | - |
| 0.9138 | 571100 | 0.8977 | - |
| 0.9139 | 571200 | 0.6571 | - |
| 0.9141 | 571300 | 0.6818 | - |
| 0.9142 | 571400 | 0.6226 | - |
| 0.9144 | 571500 | 1.034 | - |
| 0.9146 | 571600 | 0.7306 | - |
| 0.9147 | 571700 | 1.4244 | - |
| 0.9149 | 571800 | 0.8388 | - |
| 0.9150 | 571900 | 0.5627 | - |
| 0.9152 | 572000 | 0.8637 | - |
| 0.9154 | 572100 | 1.0419 | - |
| 0.9155 | 572200 | 1.3043 | - |
| 0.9157 | 572300 | 0.4563 | - |
| 0.9158 | 572400 | 0.6826 | - |
| 0.9160 | 572500 | 0.801 | - |
| 0.9162 | 572600 | 0.82 | - |
| 0.9163 | 572700 | 0.4677 | - |
| 0.9165 | 572800 | 0.6236 | - |
| 0.9166 | 572900 | 0.7783 | - |
| 0.9168 | 573000 | 0.8284 | - |
| 0.9170 | 573100 | 0.8253 | - |
| 0.9171 | 573200 | 1.039 | - |
| 0.9173 | 573300 | 0.9098 | - |
| 0.9174 | 573400 | 1.068 | - |
| 0.9176 | 573500 | 0.6172 | - |
| 0.9178 | 573600 | 0.6679 | - |
| 0.9179 | 573700 | 0.8135 | - |
| 0.9181 | 573800 | 1.1141 | - |
| 0.9182 | 573900 | 0.8077 | - |
| 0.9184 | 574000 | 0.7952 | - |
| 0.9186 | 574100 | 0.8684 | - |
| 0.9187 | 574200 | 0.518 | - |
| 0.9189 | 574300 | 0.6675 | - |
| 0.9190 | 574400 | 0.9315 | - |
| 0.9192 | 574500 | 0.6984 | - |
| 0.9194 | 574600 | 0.7571 | - |
| 0.9195 | 574700 | 0.9037 | - |
| 0.9197 | 574800 | 0.5965 | - |
| 0.9198 | 574900 | 0.8542 | - |
| 0.9200 | 575000 | 0.8226 | - |
| 0.9202 | 575100 | 0.6057 | - |
| 0.9203 | 575200 | 0.7658 | - |
| 0.9205 | 575300 | 0.9765 | - |
| 0.9206 | 575400 | 0.9145 | - |
| 0.9208 | 575500 | 0.3843 | - |
| 0.9210 | 575600 | 0.8603 | - |
| 0.9211 | 575700 | 0.9048 | - |
| 0.9213 | 575800 | 0.7786 | - |
| 0.9214 | 575900 | 0.8639 | - |
| 0.9216 | 576000 | 0.8909 | - |
| 0.9218 | 576100 | 0.6091 | - |
| 0.9219 | 576200 | 0.4416 | - |
| 0.9221 | 576300 | 0.4569 | - |
| 0.9222 | 576400 | 0.6638 | - |
| 0.9224 | 576500 | 0.9033 | - |
| 0.9226 | 576600 | 0.5351 | - |
| 0.9227 | 576700 | 0.8799 | - |
| 0.9229 | 576800 | 1.212 | - |
| 0.9230 | 576900 | 0.7717 | - |
| 0.9232 | 577000 | 0.9058 | - |
| 0.9234 | 577100 | 0.9647 | - |
| 0.9235 | 577200 | 0.7648 | - |
| 0.9237 | 577300 | 0.8776 | - |
| 0.9238 | 577400 | 0.4155 | - |
| 0.9240 | 577500 | 0.5997 | - |
| 0.9242 | 577600 | 0.9836 | - |
| 0.9243 | 577700 | 0.7584 | - |
| 0.9245 | 577800 | 0.7656 | - |
| 0.9246 | 577900 | 0.7135 | - |
| 0.9248 | 578000 | 0.8408 | - |
| 0.9250 | 578100 | 0.9118 | - |
| 0.9251 | 578200 | 0.587 | - |
| 0.9253 | 578300 | 0.9372 | - |
| 0.9254 | 578400 | 0.674 | - |
| 0.9256 | 578500 | 0.7524 | - |
| 0.9258 | 578600 | 0.7039 | - |
| 0.9259 | 578700 | 0.7397 | - |
| 0.9261 | 578800 | 0.739 | - |
| 0.9262 | 578900 | 0.6249 | - |
| 0.9264 | 579000 | 0.7223 | - |
| 0.9266 | 579100 | 0.8787 | - |
| 0.9267 | 579200 | 0.6817 | - |
| 0.9269 | 579300 | 0.4517 | - |
| 0.9270 | 579400 | 0.9203 | - |
| 0.9272 | 579500 | 1.0586 | - |
| 0.9274 | 579600 | 0.4509 | - |
| 0.9275 | 579700 | 0.6122 | - |
| 0.9277 | 579800 | 0.8044 | - |
| 0.9278 | 579900 | 0.4963 | - |
| 0.9280 | 580000 | 0.5926 | - |
| 0.9282 | 580100 | 0.8616 | - |
| 0.9283 | 580200 | 0.79 | - |
| 0.9285 | 580300 | 1.1544 | - |
| 0.9286 | 580400 | 0.6989 | - |
| 0.9288 | 580500 | 1.3349 | - |
| 0.9290 | 580600 | 1.2488 | - |
| 0.9291 | 580700 | 1.171 | - |
| 0.9293 | 580800 | 0.5529 | - |
| 0.9294 | 580900 | 0.7977 | - |
| 0.9296 | 581000 | 0.6397 | - |
| 0.9298 | 581100 | 1.2556 | - |
| 0.9299 | 581200 | 0.8389 | - |
| 0.9301 | 581300 | 0.967 | - |
| 0.9302 | 581400 | 0.9108 | - |
| 0.9304 | 581500 | 0.927 | - |
| 0.9306 | 581600 | 0.8314 | - |
| 0.9307 | 581700 | 0.8189 | - |
| 0.9309 | 581800 | 0.5584 | - |
| 0.9310 | 581900 | 0.8506 | - |
| 0.9312 | 582000 | 0.9845 | - |
| 0.9314 | 582100 | 0.8159 | - |
| 0.9315 | 582200 | 0.6512 | - |
| 0.9317 | 582300 | 0.7216 | - |
| 0.9318 | 582400 | 0.7841 | - |
| 0.9320 | 582500 | 0.852 | - |
| 0.9322 | 582600 | 0.7754 | - |
| 0.9323 | 582700 | 0.6775 | - |
| 0.9325 | 582800 | 0.4598 | - |
| 0.9326 | 582900 | 0.625 | - |
| 0.9328 | 583000 | 1.1821 | - |
| 0.9330 | 583100 | 0.6845 | - |
| 0.9331 | 583200 | 0.8293 | - |
| 0.9333 | 583300 | 0.7485 | - |
| 0.9334 | 583400 | 1.0008 | - |
| 0.9336 | 583500 | 0.7762 | - |
| 0.9338 | 583600 | 0.5416 | - |
| 0.9339 | 583700 | 1.2784 | - |
| 0.9341 | 583800 | 0.9202 | - |
| 0.9342 | 583900 | 0.7189 | - |
| 0.9344 | 584000 | 1.0549 | - |
| 0.9346 | 584100 | 0.9661 | - |
| 0.9347 | 584200 | 0.5341 | - |
| 0.9349 | 584300 | 1.4547 | - |
| 0.9350 | 584400 | 1.0324 | - |
| 0.9352 | 584500 | 0.8276 | - |
| 0.9354 | 584600 | 0.3868 | - |
| 0.9355 | 584700 | 1.0488 | - |
| 0.9357 | 584800 | 0.9561 | - |
| 0.9358 | 584900 | 0.9193 | - |
| 0.9360 | 585000 | 0.9144 | - |
| 0.9362 | 585100 | 0.7702 | - |
| 0.9363 | 585200 | 0.798 | - |
| 0.9365 | 585300 | 0.5793 | - |
| 0.9366 | 585400 | 0.7867 | - |
| 0.9368 | 585500 | 0.8352 | - |
| 0.9370 | 585600 | 0.6128 | - |
| 0.9371 | 585700 | 0.734 | - |
| 0.9373 | 585800 | 0.5431 | - |
| 0.9374 | 585900 | 0.8416 | - |
| 0.9376 | 586000 | 0.8711 | - |
| 0.9378 | 586100 | 0.9059 | - |
| 0.9379 | 586200 | 0.5545 | - |
| 0.9381 | 586300 | 0.9609 | - |
| 0.9382 | 586400 | 0.579 | - |
| 0.9384 | 586500 | 1.1916 | - |
| 0.9386 | 586600 | 0.6305 | - |
| 0.9387 | 586700 | 0.9855 | - |
| 0.9389 | 586800 | 0.774 | - |
| 0.9390 | 586900 | 0.6012 | - |
| 0.9392 | 587000 | 0.7495 | - |
| 0.9394 | 587100 | 0.6666 | - |
| 0.9395 | 587200 | 0.8473 | - |
| 0.9397 | 587300 | 1.0324 | - |
| 0.9398 | 587400 | 0.6129 | - |
| 0.9400 | 587500 | 0.8905 | - |
| 0.9402 | 587600 | 0.6067 | - |
| 0.9403 | 587700 | 1.0607 | - |
| 0.9405 | 587800 | 0.6369 | - |
| 0.9406 | 587900 | 0.6892 | - |
| 0.9408 | 588000 | 0.6671 | - |
| 0.9410 | 588100 | 0.7971 | - |
| 0.9411 | 588200 | 0.7133 | - |
| 0.9413 | 588300 | 0.46 | - |
| 0.9414 | 588400 | 0.9073 | - |
| 0.9416 | 588500 | 0.9276 | - |
| 0.9418 | 588600 | 1.0273 | - |
| 0.9419 | 588700 | 0.6709 | - |
| 0.9421 | 588800 | 0.4284 | - |
| 0.9422 | 588900 | 0.8745 | - |
| 0.9424 | 589000 | 0.8677 | - |
| 0.9426 | 589100 | 0.867 | - |
| 0.9427 | 589200 | 0.6087 | - |
| 0.9429 | 589300 | 0.6777 | - |
| 0.9430 | 589400 | 0.6672 | - |
| 0.9432 | 589500 | 0.9492 | - |
| 0.9434 | 589600 | 0.6848 | - |
| 0.9435 | 589700 | 0.8975 | - |
| 0.9437 | 589800 | 0.3949 | - |
| 0.9438 | 589900 | 0.7469 | - |
| 0.9440 | 590000 | 0.7412 | - |
| 0.9442 | 590100 | 0.526 | - |
| 0.9443 | 590200 | 0.4228 | - |
| 0.9445 | 590300 | 0.9338 | - |
| 0.9446 | 590400 | 0.6516 | - |
| 0.9448 | 590500 | 0.9419 | - |
| 0.9450 | 590600 | 0.755 | - |
| 0.9451 | 590700 | 0.7699 | - |
| 0.9453 | 590800 | 0.8904 | - |
| 0.9454 | 590900 | 0.5596 | - |
| 0.9456 | 591000 | 0.9401 | - |
| 0.9458 | 591100 | 0.9583 | - |
| 0.9459 | 591200 | 0.6807 | - |
| 0.9461 | 591300 | 0.6972 | - |
| 0.9462 | 591400 | 0.7217 | - |
| 0.9464 | 591500 | 0.7406 | - |
| 0.9466 | 591600 | 0.5819 | - |
| 0.9467 | 591700 | 0.8508 | - |
| 0.9469 | 591800 | 0.5315 | - |
| 0.9470 | 591900 | 0.606 | - |
| 0.9472 | 592000 | 0.7971 | - |
| 0.9474 | 592100 | 1.0728 | - |
| 0.9475 | 592200 | 0.7283 | - |
| 0.9477 | 592300 | 0.5131 | - |
| 0.9478 | 592400 | 0.4695 | - |
| 0.9480 | 592500 | 0.2959 | - |
| 0.9482 | 592600 | 0.858 | - |
| 0.9483 | 592700 | 0.5761 | - |
| 0.9485 | 592800 | 0.9089 | - |
| 0.9486 | 592900 | 0.6238 | - |
| 0.9488 | 593000 | 0.5633 | - |
| 0.9490 | 593100 | 1.0323 | - |
| 0.9491 | 593200 | 0.6684 | - |
| 0.9493 | 593300 | 0.8563 | - |
| 0.9494 | 593400 | 0.7163 | - |
| 0.9496 | 593500 | 0.7814 | - |
| 0.9498 | 593600 | 0.4761 | - |
| 0.9499 | 593700 | 0.5203 | - |
| 0.9501 | 593800 | 0.9119 | - |
| 0.9502 | 593900 | 0.8535 | - |
| 0.9504 | 594000 | 1.0054 | - |
| 0.9506 | 594100 | 0.8794 | - |
| 0.9507 | 594200 | 0.6925 | - |
| 0.9509 | 594300 | 1.0048 | - |
| 0.9510 | 594400 | 0.7008 | - |
| 0.9512 | 594500 | 0.7092 | - |
| 0.9514 | 594600 | 0.803 | - |
| 0.9515 | 594700 | 0.7868 | - |
| 0.9517 | 594800 | 0.6047 | - |
| 0.9518 | 594900 | 0.6654 | - |
| 0.9520 | 595000 | 0.7418 | - |
| 0.9522 | 595100 | 1.0645 | - |
| 0.9523 | 595200 | 0.6193 | - |
| 0.9525 | 595300 | 0.7615 | - |
| 0.9526 | 595400 | 0.8291 | - |
| 0.9528 | 595500 | 0.8298 | - |
| 0.9530 | 595600 | 0.9187 | - |
| 0.9531 | 595700 | 0.6942 | - |
| 0.9533 | 595800 | 0.912 | - |
| 0.9534 | 595900 | 1.0213 | - |
| 0.9536 | 596000 | 0.9347 | - |
| 0.9538 | 596100 | 1.1183 | - |
| 0.9539 | 596200 | 0.78 | - |
| 0.9541 | 596300 | 0.8976 | - |
| 0.9542 | 596400 | 1.0957 | - |
| 0.9544 | 596500 | 0.8133 | - |
| 0.9546 | 596600 | 0.6568 | - |
| 0.9547 | 596700 | 0.8911 | - |
| 0.9549 | 596800 | 0.5183 | - |
| 0.9550 | 596900 | 0.7212 | - |
| 0.9552 | 597000 | 0.888 | - |
| 0.9554 | 597100 | 0.7661 | - |
| 0.9555 | 597200 | 0.6028 | - |
| 0.9557 | 597300 | 1.0602 | - |
| 0.9558 | 597400 | 0.7299 | - |
| 0.9560 | 597500 | 0.9885 | - |
| 0.9562 | 597600 | 0.8964 | - |
| 0.9563 | 597700 | 0.6961 | - |
| 0.9565 | 597800 | 0.6989 | - |
| 0.9566 | 597900 | 1.1453 | - |
| 0.9568 | 598000 | 0.4009 | - |
| 0.9570 | 598100 | 0.7645 | - |
| 0.9571 | 598200 | 0.9124 | - |
| 0.9573 | 598300 | 0.7354 | - |
| 0.9574 | 598400 | 0.803 | - |
| 0.9576 | 598500 | 1.2859 | - |
| 0.9578 | 598600 | 0.9726 | - |
| 0.9579 | 598700 | 0.5849 | - |
| 0.9581 | 598800 | 1.1357 | - |
| 0.9582 | 598900 | 0.904 | - |
| 0.9584 | 599000 | 0.6113 | - |
| 0.9586 | 599100 | 1.0399 | - |
| 0.9587 | 599200 | 0.8404 | - |
| 0.9589 | 599300 | 0.945 | - |
| 0.9590 | 599400 | 0.6225 | - |
| 0.9592 | 599500 | 0.8617 | - |
| 0.9594 | 599600 | 0.8782 | - |
| 0.9595 | 599700 | 0.9332 | - |
| 0.9597 | 599800 | 0.9949 | - |
| 0.9598 | 599900 | 0.7016 | - |
| 0.9600 | 600000 | 0.5833 | 0.7694 |
| 0.9602 | 600100 | 0.5462 | - |
| 0.9603 | 600200 | 0.8458 | - |
| 0.9605 | 600300 | 0.8256 | - |
| 0.9606 | 600400 | 0.8134 | - |
| 0.9608 | 600500 | 0.7465 | - |
| 0.9610 | 600600 | 1.0022 | - |
| 0.9611 | 600700 | 0.7794 | - |
| 0.9613 | 600800 | 0.8742 | - |
| 0.9614 | 600900 | 0.6161 | - |
| 0.9616 | 601000 | 1.1433 | - |
| 0.9618 | 601100 | 0.6988 | - |
| 0.9619 | 601200 | 0.8715 | - |
| 0.9621 | 601300 | 0.6198 | - |
| 0.9622 | 601400 | 0.896 | - |
| 0.9624 | 601500 | 0.5527 | - |
| 0.9626 | 601600 | 1.1485 | - |
| 0.9627 | 601700 | 0.8266 | - |
| 0.9629 | 601800 | 0.6972 | - |
| 0.9630 | 601900 | 0.5653 | - |
| 0.9632 | 602000 | 0.6448 | - |
| 0.9634 | 602100 | 0.9891 | - |
| 0.9635 | 602200 | 0.8991 | - |
| 0.9637 | 602300 | 0.8615 | - |
| 0.9638 | 602400 | 0.8568 | - |
| 0.9640 | 602500 | 0.7636 | - |
| 0.9642 | 602600 | 0.714 | - |
| 0.9643 | 602700 | 0.5237 | - |
| 0.9645 | 602800 | 1.1789 | - |
| 0.9646 | 602900 | 0.5586 | - |
| 0.9648 | 603000 | 0.5008 | - |
| 0.9650 | 603100 | 0.8864 | - |
| 0.9651 | 603200 | 0.8781 | - |
| 0.9653 | 603300 | 1.0112 | - |
| 0.9654 | 603400 | 0.9674 | - |
| 0.9656 | 603500 | 0.5763 | - |
| 0.9658 | 603600 | 0.4001 | - |
| 0.9659 | 603700 | 0.69 | - |
| 0.9661 | 603800 | 0.8321 | - |
| 0.9662 | 603900 | 0.8196 | - |
| 0.9664 | 604000 | 0.7085 | - |
| 0.9666 | 604100 | 0.8921 | - |
| 0.9667 | 604200 | 0.8983 | - |
| 0.9669 | 604300 | 1.0145 | - |
| 0.9670 | 604400 | 1.1885 | - |
| 0.9672 | 604500 | 0.7833 | - |
| 0.9674 | 604600 | 1.033 | - |
| 0.9675 | 604700 | 1.0585 | - |
| 0.9677 | 604800 | 0.856 | - |
| 0.9678 | 604900 | 0.4847 | - |
| 0.9680 | 605000 | 0.7013 | - |
| 0.9682 | 605100 | 0.7934 | - |
| 0.9683 | 605200 | 1.1386 | - |
| 0.9685 | 605300 | 0.6487 | - |
| 0.9686 | 605400 | 1.0657 | - |
| 0.9688 | 605500 | 0.432 | - |
| 0.9690 | 605600 | 0.822 | - |
| 0.9691 | 605700 | 1.0284 | - |
| 0.9693 | 605800 | 0.4082 | - |
| 0.9694 | 605900 | 0.9734 | - |
| 0.9696 | 606000 | 0.733 | - |
| 0.9698 | 606100 | 0.608 | - |
| 0.9699 | 606200 | 0.9526 | - |
| 0.9701 | 606300 | 0.837 | - |
| 0.9702 | 606400 | 0.8188 | - |
| 0.9704 | 606500 | 0.9309 | - |
| 0.9706 | 606600 | 0.7929 | - |
| 0.9707 | 606700 | 0.5051 | - |
| 0.9709 | 606800 | 0.9299 | - |
| 0.9710 | 606900 | 0.8015 | - |
| 0.9712 | 607000 | 0.6867 | - |
| 0.9714 | 607100 | 1.1677 | - |
| 0.9715 | 607200 | 0.7181 | - |
| 0.9717 | 607300 | 0.9442 | - |
| 0.9718 | 607400 | 0.663 | - |
| 0.9720 | 607500 | 0.7396 | - |
| 0.9722 | 607600 | 0.8251 | - |
| 0.9723 | 607700 | 0.6575 | - |
| 0.9725 | 607800 | 0.6674 | - |
| 0.9726 | 607900 | 0.7778 | - |
| 0.9728 | 608000 | 0.6021 | - |
| 0.9730 | 608100 | 0.9309 | - |
| 0.9731 | 608200 | 0.8329 | - |
| 0.9733 | 608300 | 0.9359 | - |
| 0.9734 | 608400 | 0.7212 | - |
| 0.9736 | 608500 | 1.0956 | - |
| 0.9738 | 608600 | 0.6235 | - |
| 0.9739 | 608700 | 0.6951 | - |
| 0.9741 | 608800 | 0.7357 | - |
| 0.9742 | 608900 | 0.427 | - |
| 0.9744 | 609000 | 1.3058 | - |
| 0.9746 | 609100 | 0.6824 | - |
| 0.9747 | 609200 | 0.7743 | - |
| 0.9749 | 609300 | 0.6551 | - |
| 0.9750 | 609400 | 0.5327 | - |
| 0.9752 | 609500 | 0.7648 | - |
| 0.9754 | 609600 | 0.6966 | - |
| 0.9755 | 609700 | 0.9422 | - |
| 0.9757 | 609800 | 1.1221 | - |
| 0.9758 | 609900 | 0.8919 | - |
| 0.9760 | 610000 | 0.5507 | - |
| 0.9762 | 610100 | 0.7228 | - |
| 0.9763 | 610200 | 0.7117 | - |
| 0.9765 | 610300 | 0.5439 | - |
| 0.9766 | 610400 | 1.0969 | - |
| 0.9768 | 610500 | 0.8394 | - |
| 0.9770 | 610600 | 1.4258 | - |
| 0.9771 | 610700 | 0.7213 | - |
| 0.9773 | 610800 | 0.8785 | - |
| 0.9774 | 610900 | 0.7981 | - |
| 0.9776 | 611000 | 0.526 | - |
| 0.9778 | 611100 | 0.6145 | - |
| 0.9779 | 611200 | 0.626 | - |
| 0.9781 | 611300 | 0.6958 | - |
| 0.9782 | 611400 | 0.7504 | - |
| 0.9784 | 611500 | 0.7285 | - |
| 0.9786 | 611600 | 1.0159 | - |
| 0.9787 | 611700 | 0.5826 | - |
| 0.9789 | 611800 | 0.7113 | - |
| 0.9790 | 611900 | 1.166 | - |
| 0.9792 | 612000 | 1.1578 | - |
| 0.9794 | 612100 | 0.7783 | - |
| 0.9795 | 612200 | 0.5356 | - |
| 0.9797 | 612300 | 0.9754 | - |
| 0.9798 | 612400 | 0.6884 | - |
| 0.9800 | 612500 | 0.6951 | - |
| 0.9802 | 612600 | 0.6126 | - |
| 0.9803 | 612700 | 0.5493 | - |
| 0.9805 | 612800 | 0.6776 | - |
| 0.9806 | 612900 | 0.5393 | - |
| 0.9808 | 613000 | 0.5629 | - |
| 0.9810 | 613100 | 0.7929 | - |
| 0.9811 | 613200 | 0.8572 | - |
| 0.9813 | 613300 | 1.056 | - |
| 0.9814 | 613400 | 0.6643 | - |
| 0.9816 | 613500 | 0.6809 | - |
| 0.9818 | 613600 | 0.8654 | - |
| 0.9819 | 613700 | 0.9761 | - |
| 0.9821 | 613800 | 1.0267 | - |
| 0.9822 | 613900 | 0.6882 | - |
| 0.9824 | 614000 | 0.6095 | - |
| 0.9826 | 614100 | 0.6508 | - |
| 0.9827 | 614200 | 0.8784 | - |
| 0.9829 | 614300 | 0.6203 | - |
| 0.9830 | 614400 | 1.0917 | - |
| 0.9832 | 614500 | 0.6585 | - |
| 0.9834 | 614600 | 0.5119 | - |
| 0.9835 | 614700 | 0.9765 | - |
| 0.9837 | 614800 | 0.84 | - |
| 0.9838 | 614900 | 0.6817 | - |
| 0.9840 | 615000 | 0.8435 | - |
| 0.9842 | 615100 | 0.6928 | - |
| 0.9843 | 615200 | 0.6534 | - |
| 0.9845 | 615300 | 0.5802 | - |
| 0.9846 | 615400 | 0.8526 | - |
| 0.9848 | 615500 | 0.841 | - |
| 0.9850 | 615600 | 0.8053 | - |
| 0.9851 | 615700 | 0.631 | - |
| 0.9853 | 615800 | 0.6311 | - |
| 0.9854 | 615900 | 0.9212 | - |
| 0.9856 | 616000 | 0.6748 | - |
| 0.9858 | 616100 | 0.6688 | - |
| 0.9859 | 616200 | 0.5771 | - |
| 0.9861 | 616300 | 0.753 | - |
| 0.9862 | 616400 | 0.7481 | - |
| 0.9864 | 616500 | 0.842 | - |
| 0.9866 | 616600 | 0.7109 | - |
| 0.9867 | 616700 | 0.9474 | - |
| 0.9869 | 616800 | 0.6522 | - |
| 0.9870 | 616900 | 0.5251 | - |
| 0.9872 | 617000 | 0.6909 | - |
| 0.9874 | 617100 | 0.8574 | - |
| 0.9875 | 617200 | 0.5703 | - |
| 0.9877 | 617300 | 0.9685 | - |
| 0.9878 | 617400 | 0.8947 | - |
| 0.9880 | 617500 | 0.5895 | - |
| 0.9882 | 617600 | 1.0236 | - |
| 0.9883 | 617700 | 0.5926 | - |
| 0.9885 | 617800 | 0.7436 | - |
| 0.9886 | 617900 | 0.6056 | - |
| 0.9888 | 618000 | 0.7208 | - |
| 0.9890 | 618100 | 0.9684 | - |
| 0.9891 | 618200 | 0.6403 | - |
| 0.9893 | 618300 | 0.8872 | - |
| 0.9894 | 618400 | 0.7158 | - |
| 0.9896 | 618500 | 0.6708 | - |
| 0.9898 | 618600 | 0.8817 | - |
| 0.9899 | 618700 | 0.8722 | - |
| 0.9901 | 618800 | 0.6972 | - |
| 0.9902 | 618900 | 0.752 | - |
| 0.9904 | 619000 | 1.6841 | - |
| 0.9906 | 619100 | 1.0315 | - |
| 0.9907 | 619200 | 0.5925 | - |
| 0.9909 | 619300 | 1.2046 | - |
| 0.9910 | 619400 | 0.9529 | - |
| 0.9912 | 619500 | 0.512 | - |
| 0.9914 | 619600 | 0.9372 | - |
| 0.9915 | 619700 | 0.8461 | - |
| 0.9917 | 619800 | 1.0018 | - |
| 0.9918 | 619900 | 0.8104 | - |
| 0.9920 | 620000 | 0.9701 | - |
| 0.9922 | 620100 | 0.9382 | - |
| 0.9923 | 620200 | 0.7666 | - |
| 0.9925 | 620300 | 0.5209 | - |
| 0.9926 | 620400 | 0.5529 | - |
| 0.9928 | 620500 | 0.8119 | - |
| 0.9930 | 620600 | 0.7313 | - |
| 0.9931 | 620700 | 0.7657 | - |
| 0.9933 | 620800 | 0.7837 | - |
| 0.9934 | 620900 | 0.7026 | - |
| 0.9936 | 621000 | 0.7149 | - |
| 0.9938 | 621100 | 0.6568 | - |
| 0.9939 | 621200 | 0.7321 | - |
| 0.9941 | 621300 | 0.7595 | - |
| 0.9942 | 621400 | 0.6011 | - |
| 0.9944 | 621500 | 1.2311 | - |
| 0.9946 | 621600 | 0.4925 | - |
| 0.9947 | 621700 | 0.8688 | - |
| 0.9949 | 621800 | 0.4481 | - |
| 0.9950 | 621900 | 1.0283 | - |
| 0.9952 | 622000 | 1.2286 | - |
| 0.9954 | 622100 | 0.873 | - |
| 0.9955 | 622200 | 0.7679 | - |
| 0.9957 | 622300 | 0.8617 | - |
| 0.9958 | 622400 | 0.6354 | - |
| 0.9960 | 622500 | 0.5432 | - |
| 0.9962 | 622600 | 1.113 | - |
| 0.9963 | 622700 | 0.8108 | - |
| 0.9965 | 622800 | 0.9604 | - |
| 0.9966 | 622900 | 0.6366 | - |
| 0.9968 | 623000 | 0.7617 | - |
| 0.9970 | 623100 | 0.7081 | - |
| 0.9971 | 623200 | 0.7325 | - |
| 0.9973 | 623300 | 0.6241 | - |
| 0.9974 | 623400 | 0.4382 | - |
| 0.9976 | 623500 | 0.3651 | - |
| 0.9978 | 623600 | 0.6324 | - |
| 0.9979 | 623700 | 0.5758 | - |
| 0.9981 | 623800 | 0.7779 | - |
| 0.9982 | 623900 | 0.7489 | - |
| 0.9984 | 624000 | 0.6391 | - |
| 0.9986 | 624100 | 0.673 | - |
| 0.9987 | 624200 | 0.7025 | - |
| 0.9989 | 624300 | 0.871 | - |
| 0.9990 | 624400 | 1.0238 | - |
| 0.9992 | 624500 | 0.5088 | - |
| 0.9994 | 624600 | 0.7578 | - |
| 0.9995 | 624700 | 0.8879 | - |
| 0.9997 | 624800 | 1.1698 | - |
| 0.9998 | 624900 | 1.0531 | - |
| 1.0000 | 625000 | 0.838 | - |
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
Model tree for youssefkhalil320/all-MiniLM-L6-v8-pair_score
Base model
sentence-transformers/all-MiniLM-L6-v2