metadata
			base_model: sentence-transformers/all-mpnet-base-v2
language:
  - en
library_name: sentence-transformers
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1363306
  - loss:AnglELoss
widget:
  - source_sentence: labneh
    sentences:
      - iftar
      - bathing suit
      - coffee cup
  - source_sentence: Velvet flock Veil
    sentences:
      - mermaid purse
      - veil
      - mobile bag
  - source_sentence: Red lipstick
    sentences:
      - chemise dress
      - tote
      - rouge
  - source_sentence: Unisex Travel bag
    sentences:
      - spf
      - basic vega ring
      - travel backpack
  - source_sentence: jeremy hush book
    sentences:
      - chinese jumper
      - perfume
      - home automation device
all-mpnet-base-v3-pair_score
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'jeremy hush book',
    'chinese jumper',
    'perfume',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
- eval_strategy: steps
- per_device_train_batch_size: 128
- per_device_eval_batch_size: 128
- learning_rate: 2e-05
- num_train_epochs: 2
- warmup_ratio: 0.1
- fp16: True
All Hyperparameters
Click to expand
- overwrite_output_dir: False
- do_predict: False
- eval_strategy: steps
- prediction_loss_only: True
- per_device_train_batch_size: 128
- per_device_eval_batch_size: 128
- per_gpu_train_batch_size: None
- per_gpu_eval_batch_size: None
- gradient_accumulation_steps: 1
- eval_accumulation_steps: None
- torch_empty_cache_steps: None
- learning_rate: 2e-05
- weight_decay: 0.0
- adam_beta1: 0.9
- adam_beta2: 0.999
- adam_epsilon: 1e-08
- max_grad_norm: 1.0
- num_train_epochs: 2
- max_steps: -1
- lr_scheduler_type: linear
- lr_scheduler_kwargs: {}
- warmup_ratio: 0.1
- warmup_steps: 0
- log_level: passive
- log_level_replica: warning
- log_on_each_node: True
- logging_nan_inf_filter: True
- save_safetensors: True
- save_on_each_node: False
- save_only_model: False
- restore_callback_states_from_checkpoint: False
- no_cuda: False
- use_cpu: False
- use_mps_device: False
- seed: 42
- data_seed: None
- jit_mode_eval: False
- use_ipex: False
- bf16: False
- fp16: True
- fp16_opt_level: O1
- half_precision_backend: auto
- bf16_full_eval: False
- fp16_full_eval: False
- tf32: None
- local_rank: 0
- ddp_backend: None
- tpu_num_cores: None
- tpu_metrics_debug: False
- debug: []
- dataloader_drop_last: False
- dataloader_num_workers: 0
- dataloader_prefetch_factor: None
- past_index: -1
- disable_tqdm: False
- remove_unused_columns: True
- label_names: None
- load_best_model_at_end: False
- ignore_data_skip: False
- fsdp: []
- fsdp_min_num_params: 0
- fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- fsdp_transformer_layer_cls_to_wrap: None
- accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- deepspeed: None
- label_smoothing_factor: 0.0
- optim: adamw_torch
- optim_args: None
- adafactor: False
- group_by_length: False
- length_column_name: length
- ddp_find_unused_parameters: None
- ddp_bucket_cap_mb: None
- ddp_broadcast_buffers: False
- dataloader_pin_memory: True
- dataloader_persistent_workers: False
- skip_memory_metrics: True
- use_legacy_prediction_loop: False
- push_to_hub: False
- resume_from_checkpoint: None
- hub_model_id: None
- hub_strategy: every_save
- hub_private_repo: False
- hub_always_push: False
- gradient_checkpointing: False
- gradient_checkpointing_kwargs: None
- include_inputs_for_metrics: False
- eval_do_concat_batches: True
- fp16_backend: auto
- push_to_hub_model_id: None
- push_to_hub_organization: None
- mp_parameters:
- auto_find_batch_size: False
- full_determinism: False
- torchdynamo: None
- ray_scope: last
- ddp_timeout: 1800
- torch_compile: False
- torch_compile_backend: None
- torch_compile_mode: None
- dispatch_batches: None
- split_batches: None
- include_tokens_per_second: False
- include_num_input_tokens_seen: False
- neftune_noise_alpha: None
- optim_target_modules: None
- batch_eval_metrics: False
- eval_on_start: False
- use_liger_kernel: False
- eval_use_gather_object: False
- batch_sampler: batch_sampler
- multi_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | 
|---|---|---|---|
| 0.0094 | 100 | 16.2337 | - | 
| 0.0188 | 200 | 13.5901 | - | 
| 0.0282 | 300 | 9.8565 | - | 
| 0.0376 | 400 | 8.3332 | - | 
| 0.0469 | 500 | 8.1261 | - | 
| 0.0563 | 600 | 8.0697 | - | 
| 0.0657 | 700 | 8.0298 | - | 
| 0.0751 | 800 | 8.033 | - | 
| 0.0845 | 900 | 7.9858 | - | 
| 0.0939 | 1000 | 8.012 | - | 
| 0.1033 | 1100 | 7.9745 | - | 
| 0.1127 | 1200 | 8.0091 | - | 
| 0.1221 | 1300 | 8.0221 | - | 
| 0.1314 | 1400 | 7.9583 | - | 
| 0.1408 | 1500 | 8.0031 | - | 
| 0.1502 | 1600 | 7.9985 | - | 
| 0.1596 | 1700 | 7.9647 | - | 
| 0.1690 | 1800 | 7.9857 | - | 
| 0.1784 | 1900 | 7.9806 | - | 
| 0.1878 | 2000 | 7.9761 | - | 
| 0.1972 | 2100 | 7.9696 | - | 
| 0.2066 | 2200 | 8.0014 | - | 
| 0.2159 | 2300 | 7.9546 | - | 
| 0.2253 | 2400 | 7.9874 | - | 
| 0.2347 | 2500 | 7.9846 | - | 
| 0.2441 | 2600 | 7.9664 | - | 
| 0.2535 | 2700 | 7.9725 | - | 
| 0.2629 | 2800 | 7.9419 | - | 
| 0.2723 | 2900 | 7.9786 | - | 
| 0.2817 | 3000 | 7.9479 | - | 
| 0.2911 | 3100 | 7.9526 | - | 
| 0.3004 | 3200 | 7.9613 | - | 
| 0.3098 | 3300 | 7.9994 | - | 
| 0.3192 | 3400 | 7.9464 | - | 
| 0.3286 | 3500 | 7.9429 | - | 
| 0.3380 | 3600 | 7.9539 | - | 
| 0.3474 | 3700 | 7.9699 | - | 
| 0.3568 | 3800 | 7.9144 | - | 
| 0.3662 | 3900 | 7.9424 | - | 
| 0.3756 | 4000 | 7.9361 | - | 
| 0.3849 | 4100 | 7.9144 | - | 
| 0.3943 | 4200 | 7.907 | - | 
| 0.4037 | 4300 | 7.9049 | - | 
| 0.4131 | 4400 | 7.939 | - | 
| 0.4225 | 4500 | 7.9067 | - | 
| 0.4319 | 4600 | 7.9149 | - | 
| 0.4413 | 4700 | 7.9705 | - | 
| 0.4507 | 4800 | 7.8992 | - | 
| 0.4601 | 4900 | 7.9077 | - | 
| 0.4694 | 5000 | 7.8992 | 7.9167 | 
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
AnglELoss
@misc{li2023angleoptimized,
    title={AnglE-optimized Text Embeddings},
    author={Xianming Li and Jing Li},
    year={2023},
    eprint={2309.12871},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}