music_ent_classification
This model is a fine-tuned version of hfl/chinese-roberta-wwm-ext on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1230
- Accuracy: 0.9662
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 0.4408 | 1.0 | 54 | 0.1763 | 0.9459 |
| 0.1407 | 2.0 | 108 | 0.1221 | 0.9628 |
| 0.0762 | 3.0 | 162 | 0.1123 | 0.9640 |
| 0.0563 | 4.0 | 216 | 0.1226 | 0.9718 |
| 0.0423 | 5.0 | 270 | 0.1230 | 0.9662 |
Framework versions
- Transformers 4.57.5
- Pytorch 2.6.0+cu124
- Datasets 2.19.0
- Tokenizers 0.22.2
训练
export WANDB_MODE=disabled # 禁用交互式登录
export CUDA_VISIBLE_DEVICES=0,1,2,3 # 确保识别 4 张 V100
# 变量定义
model="hfl/chinese-roberta-wwm-ext"
transformers_root="transformers"
output_dir="./models/music_ent_classification"
mkdir ${output_dir} -p
# 使用 torchrun 启动
torchrun --nproc_per_node=4 \
${transformers_root}/examples/pytorch/text-classification/run_classification.py \
--model_name_or_path ${model} \
--train_file "./data/*.train.json" \
--validation_file "./data/*.test.json" \
--trust_remote_code True \
--do_train \
--do_eval \
--shuffle_train_dataset \
--metric_name accuracy \
--text_column_name sentence1 \
--label_column_name label \
--max_seq_length 256 \
--per_device_train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 5 \
--logging_steps 50 \
--save_strategy epoch \
--eval_strategy epoch \
--fp16 True \
--output_dir ${output_dir} \
--overwrite_output_dir
推理
# 启动分布式推理
torchrun --nproc_per_node=$(echo $CUDA_DEVICES | tr ',' '\n' | wc -l) \
transformers/examples/pytorch/text-classification/run_classification.py \
--model_name_or_path "${MODEL_PATH}" \
--train_file "${TRAIN_DATA}" \
--validation_file "${TRAIN_DATA}" \
--test_file "${INPUT_FILE}" \
--text_column_name "sentence1" \
--label_column_name "label" \
--do_predict \
--max_seq_length 128 \
--per_device_eval_batch_size 256 \
--output_dir "${OUTPUT_DIR}" \
--fp16 True \
--trust_remote_code True \
--overwrite_output_dir
if [ $? -eq 0 ]; then
echo "✅ [Infer] 推理完成。"
else
echo "❌ [Infer] 推理失败。"
exit 1
fi
- Downloads last month
- 7
Model tree for yugh/music_ent_classification
Base model
hfl/chinese-roberta-wwm-ext