Files changed (1) hide show
  1. README.md +76 -3
README.md CHANGED
@@ -1,3 +1,76 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Pothole Detection using YOLOv8
2
+
3
+ Overview
4
+
5
+ This project implements a pothole detection system using the YOLOv8 object detection model. The system is designed to identify potholes in road images or video streams, providing an efficient solution for road maintenance and safety monitoring.
6
+
7
+ Features
8
+
9
+ Uses YOLOv8 for real-time pothole detection.
10
+
11
+ Can process both images and video streams.
12
+
13
+ Provides bounding box annotations for detected potholes.
14
+
15
+ Supports model fine-tuning with custom datasets.
16
+
17
+ Dataset
18
+
19
+ The dataset consists of images containing potholes along with labeled annotations in YOLO format. The dataset is structured as follows:
20
+
21
+ Dataset/
22
+ β”œβ”€β”€ images/
23
+ β”‚ β”œβ”€β”€ train/
24
+ β”‚ β”œβ”€β”€ val/
25
+ β”‚ β”œβ”€β”€ test/
26
+ β”œβ”€β”€ labels/
27
+ β”‚ β”œβ”€β”€ train/
28
+ β”‚ β”œβ”€β”€ val/
29
+ β”‚ β”œβ”€β”€ test/
30
+ β”œβ”€β”€ data.yaml
31
+
32
+ Installation
33
+
34
+ Clone the repository:
35
+
36
+ git clone https://github.com/yourusername/pothole-detection-yolov8.git
37
+ cd pothole-detection-yolov8
38
+
39
+ Install dependencies:
40
+
41
+ pip install ultralytics opencv-python numpy torch torchvision
42
+
43
+ Download or prepare your dataset and place it in the Dataset/ folder.
44
+
45
+ Training the Model
46
+
47
+ To train YOLOv8 on the custom pothole dataset:
48
+
49
+ !yolo task=detect mode=train model=yolov8n.pt data=Dataset/data.yaml epochs=50 imgsz=640
50
+
51
+ Running Inference
52
+
53
+ For image inference:
54
+
55
+ !yolo task=detect mode=predict model=best.pt source=images/test.jpg
56
+
57
+ For video inference:
58
+
59
+ !yolo task=detect mode=predict model=best.pt source=video.mp4
60
+
61
+ Results
62
+
63
+ The trained model will generate detection results with bounding boxes around potholes. The inference images and videos will be saved in the runs/detect/ directory.
64
+
65
+ Future Improvements
66
+
67
+ Improve model accuracy with additional training data.
68
+
69
+ Deploy the model on an edge device for real-time detection.
70
+
71
+ Integrate a reporting system for detected potholes.
72
+
73
+ License
74
+
75
+ This project is licensed under the apache 2.0 License.
76
+