File size: 3,063 Bytes
8542345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02a9686
8542345
38aa4ce
8542345
 
 
38aa4ce
8542345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38aa4ce
 
 
 
 
 
dd30e1e
8542345
38aa4ce
8542345
38aa4ce
dd30e1e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
language:
- en
- zh
library_name: transformers
license: mit
pipeline_tag: text-generation
---

# GLM-4.6-FP8

<div align="center">
<img src=https://raw.githubusercontent.com/zai-org/GLM-4.5/refs/heads/main/resources/logo.svg width="15%"/>
</div>
<p align="center">
    👋 Join our <a href="https://discord.gg/QR7SARHRxK" target="_blank">Discord</a> community.
    <br>
    📖 Check out the GLM-4.6 <a href="https://z.ai/blog/glm-4.6" target="_blank">technical blog</a>, <a href="https://arxiv.org/abs/2508.06471" target="_blank">technical report(GLM-4.5)</a>, and <a href="https://zhipu-ai.feishu.cn/wiki/Gv3swM0Yci7w7Zke9E0crhU7n7D" target="_blank">Zhipu AI technical documentation</a>.
    <br>
    📍 Use GLM-4.6 API services on <a href="https://docs.z.ai/guides/llm/glm-4.6">Z.ai API Platform. </a>
    <br>
    👉 One click to <a href="https://chat.z.ai">GLM-4.6</a>.
</p>

## Model Introduction

Compared with GLM-4.5, **GLM-4.6**  brings several key improvements:

* **Longer context window:** The context window has been expanded from 128K to 200K tokens, enabling the model to handle more complex agentic tasks.
* **Superior coding performance:** The model achieves higher scores on code benchmarks and demonstrates better real-world performance in applications such as Claude Code、Cline、Roo Code and Kilo Code, including improvements in generating visually polished front-end pages.
* **Advanced reasoning:** GLM-4.6 shows a clear improvement in reasoning performance and supports tool use during inference, leading to stronger overall capability.
* **More capable agents:** GLM-4.6 exhibits stronger performance in tool using and search-based agents, and integrates more effectively within agent frameworks.
* **Refined writing:** Better aligns with human preferences in style and readability, and performs more naturally in role-playing scenarios.

We evaluated GLM-4.6 across eight public benchmarks covering agents, reasoning, and coding. Results show clear gains over GLM-4.5, with GLM-4.6 also holding competitive advantages over leading domestic and international models such as **DeepSeek-V3.1-Terminus** and **Claude Sonnet 4**.

![bench](https://raw.githubusercontent.com/zai-org/GLM-4.5/refs/heads/main/resources/bench_glm46.png)

## Inference

**Both GLM-4.5 and GLM-4.6 use the same inference method.**

you can check our [github](https://github.com/zai-org/GLM-4.5) for more detail.

## Recommended Evaluation Parameters

For general evaluations, we recommend using a **sampling temperature of 1.0**.

For **code-related evaluation tasks** (such as LCB), it is further recommended to set:

- `top_p = 0.95`
- `top_k = 40`

## Evaluation

- For tool-integrated reasoning, please refer to [this doc](https://github.com/zai-org/GLM-4.5/blob/main/resources/glm_4.6_tir_guide.md).
- For search benchmark, we design a specific format for searching toolcall in thinking mode to support search agent, please refer to [this](https://github.com/zai-org/GLM-4.5/blob/main/resources/trajectory_search.json). for the detailed template.