BayesTensor's picture
Upload folder using huggingface_hub
9d5b280 verified
# TemplateAPI Usage Guide
The `TemplateAPI` class is a versatile superclass designed to facilitate the integration of various API-based language models into the lm-evaluation-harness framework. This guide will explain how to use and extend the `TemplateAPI` class to implement your own API models. If your API implements the OpenAI API you can use the `local-completions` or the `local-chat-completions` (defined [here](https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/models/openai_completions.py)) model types, which can also serve as examples of how to effectively subclass this template.
## Overview
The `TemplateAPI` class provides a template for creating API-based model implementations. It handles common functionalities such as:
- Tokenization (optional)
- Batch processing
- Caching
- Retrying failed requests
- Parsing API responses
To use this class, you typically need to subclass it and implement specific methods for your API.
## Key Methods to Implement
When subclassing `TemplateAPI`, you need to implement the following methods:
1. `_create_payload`: Creates the JSON payload for API requests.
2. `parse_logprobs`: Parses log probabilities from API responses.
3. `parse_generations`: Parses generated text from API responses.
4. `headers`: Returns the headers for the API request.
You may also need to override other methods or properties depending on your API's specific requirements.
> [!NOTE]
> Currently loglikelihood and MCQ based tasks (such as MMLU) are only supported for completion endpoints. Not for chat-completion — those that expect a list of dicts — endpoints! Completion APIs which support instruct tuned models can be evaluated with the `--apply_chat_template` option in order to simultaneously evaluate models using a chat template format while still being able to access the model logits needed for loglikelihood-based tasks.
# TemplateAPI Usage Guide
## TemplateAPI Arguments
When initializing a `TemplateAPI` instance or a subclass, you can provide several arguments to customize its behavior. Here's a detailed explanation of some important arguments:
- `model` or `pretrained` (str):
- The name or identifier of the model to use.
- `model` takes precedence over `pretrained` when both are provided.
- `base_url` (str):
- The base URL for the API endpoint.
- `tokenizer` (str, optional):
- The name or path of the tokenizer to use.
- If not provided, it defaults to using the same tokenizer name as the model.
- `num_concurrent` (int):
- Number of concurrent requests to make to the API.
- Useful for APIs that support parallel processing.
- Default is 1 (sequential processing).
- `timeout` (int, optional):
- Timeout for API requests in seconds.
- Default is 30.
- `tokenized_requests` (bool):
- Determines whether the input is pre-tokenized. Defaults to `True`.
- Requests can be sent in either tokenized form (`list[list[int]]`) or as text (`list[str]`, or `str` for batch_size=1).
- For loglikelihood-based tasks, prompts require tokenization to calculate the context length. If `False` prompts are decoded back to text before being sent to the API.
- Not as important for `generate_until` tasks.
- Ignored for chat formatted inputs (list[dict...]) or if tokenizer_backend is None.
- `tokenizer_backend` (str, optional):
- Required for loglikelihood-based or MCQ tasks.
- Specifies the tokenizer library to use. Options are "tiktoken", "huggingface", or None.
- Default is "huggingface".
- `max_length` (int, optional):
- Maximum length of input + output.
- Default is 2048.
- `max_retries` (int, optional):
- Maximum number of retries for failed API requests.
- Default is 3.
- `max_gen_toks` (int, optional):
- Maximum number of tokens to generate in completion tasks.
- Default is 256 or set in task yaml.
- `batch_size` (int or str, optional):
- Number of requests to batch together (if the API supports batching).
- Can be an integer or "auto" (which defaults to 1 for API models).
- Default is 1.
- `seed` (int, optional):
- Random seed for reproducibility.
- Default is 1234.
- `add_bos_token` (bool, optional):
- Whether to add the beginning-of-sequence token to inputs (when tokenizing).
- Default is False.
- `custom_prefix_token_id` (int, optional):
- Custom token ID to use as a prefix for inputs.
- If not provided, uses the model's default BOS or EOS token (if `add_bos_token` is True).
- `verify_certificate` (bool, optional):
- Whether to validate the certificate of the API endpoint (if HTTPS).
- Default is True.
Example usage:
```python
class MyAPIModel(TemplateAPI):
def __init__(self, **kwargs):
super().__init__(
model="my-model",
base_url="https://api.mymodel.com/v1/completions",
tokenizer_backend="huggingface",
num_concurrent=5,
max_retries=5,
batch_size=10,
**kwargs
)
# Implement other required methods...
```
When subclassing `TemplateAPI`, you can override these arguments in your `__init__` method to set default values specific to your API. You can also add additional (potentially user-specified) arguments as needed for your specific implementation.
## Example Implementation: OpenAI API
The `OpenAICompletionsAPI` and `OpenAIChatCompletion` ([here](https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/models/openai_completions.py) classes demonstrate how to implement API models using the `TemplateAPI` class. Here's a breakdown of the key components:
### 1. Subclassing and Initialization
```python
@register_model("openai-completions")
class OpenAICompletionsAPI(LocalCompletionsAPI):
def __init__(
self,
base_url="https://api.openai.com/v1/completions",
tokenizer_backend="tiktoken",
**kwargs,
):
super().__init__(
base_url=base_url, tokenizer_backend=tokenizer_backend, **kwargs
)
```
### 2. Implementing API Key Retrieval
```python
@cached_property
def api_key(self):
key = os.environ.get("OPENAI_API_KEY", None)
if key is None:
raise ValueError(
"API key not found. Please set the OPENAI_API_KEY environment variable."
)
return key
```
### 3. Creating the Payload
```python
def _create_payload(
self,
messages: Union[List[List[int]], List[dict], List[str], str],
generate=False,
gen_kwargs: Optional[dict] = None,
**kwargs,
) -> dict:
if generate:
# ... (implementation for generation)
else:
# ... (implementation for log likelihood)
```
### 4. Parsing API Responses
```python
@staticmethod
def parse_logprobs(
outputs: Union[Dict, List[Dict]],
tokens: List[List[int]] = None,
ctxlens: List[int] = None,
**kwargs,
) -> List[Tuple[float, bool]]:
# ... (implementation)
@staticmethod
def parse_generations(outputs: Union[Dict, List[Dict]], **kwargs) -> List[str]:
# ... (implementation)
```
The requests are initiated in the `model_call` or the `amodel_call` methods.
## Implementing Your Own API Model
To implement your own API model:
1. Subclass `TemplateAPI` or one of its subclasses (e.g., `LocalCompletionsAPI`).
2. Override the `__init__` method if you need to set specific parameters.
3. Implement the `_create_payload` and `header` methods to create the appropriate payload for your API.
4. Implement the `parse_logprobs` and `parse_generations` methods to parse your API's responses.
5. Override the `api_key` property if your API requires authentication.
6. Override any other methods as necessary to match your API's behavior.
## Best Practices
1. Use the `@register_model` decorator to register your model with the framework (and import it in `lm_eval/models/__init__.py`!).
3. Use environment variables for sensitive information like API keys.
4. Properly handle batching and concurrent requests if supported by your API.