elselse's picture
CIRCL/cwe-parent-vulnerability-classification-microsoft-graphcodebert-base
5e4ff2d verified
metadata
library_name: transformers
base_model: microsoft/graphcodebert-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: cwe-parent-vulnerability-classification-microsoft-graphcodebert-base
    results: []

cwe-parent-vulnerability-classification-microsoft-graphcodebert-base

This model is a fine-tuned version of microsoft/graphcodebert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8233
  • Accuracy: 0.6517
  • F1 Macro: 0.3050

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro
3.255 1.0 25 3.2962 0.0225 0.0083
3.1345 2.0 50 3.3120 0.2697 0.0544
3.0539 3.0 75 3.3627 0.3820 0.0582
2.9349 4.0 100 3.3122 0.3596 0.0921
2.9555 5.0 125 3.2926 0.4045 0.1695
2.7748 6.0 150 3.3514 0.4607 0.1757
2.803 7.0 175 3.3219 0.5169 0.1884
2.67 8.0 200 3.2696 0.4831 0.2198
2.5684 9.0 225 3.2657 0.4944 0.2445
2.4226 10.0 250 3.1999 0.3371 0.1697
2.4615 11.0 275 3.1954 0.4270 0.1996
2.2738 12.0 300 3.1108 0.4157 0.1954
2.2423 13.0 325 3.0714 0.3933 0.1862
2.2066 14.0 350 3.0598 0.3820 0.1975
1.9919 15.0 375 3.0252 0.4382 0.1992
1.9622 16.0 400 2.9873 0.3708 0.1981
1.9415 17.0 425 2.9783 0.4494 0.2166
1.8459 18.0 450 2.9570 0.4831 0.2304
1.7008 19.0 475 2.9116 0.4607 0.2104
1.6705 20.0 500 2.9134 0.4607 0.2152
1.6422 21.0 525 2.9341 0.4607 0.2554
1.4982 22.0 550 2.8852 0.5056 0.2604
1.5523 23.0 575 2.9029 0.5056 0.2555
1.3784 24.0 600 2.8782 0.5393 0.2840
1.4479 25.0 625 2.8525 0.5730 0.2558
1.2508 26.0 650 2.9039 0.5730 0.2563
1.3662 27.0 675 2.8784 0.6067 0.3081
1.2199 28.0 700 2.8704 0.6180 0.2729
1.1903 29.0 725 2.8577 0.6404 0.2811
1.1881 30.0 750 2.8612 0.6404 0.2890
1.1572 31.0 775 2.8371 0.6292 0.2968
1.0623 32.0 800 2.8413 0.6404 0.2969
1.0405 33.0 825 2.8233 0.6517 0.3050
1.1084 34.0 850 2.8323 0.6404 0.3012
1.0211 35.0 875 2.8341 0.6404 0.3042
1.0215 36.0 900 2.8391 0.6404 0.3006
0.9438 37.0 925 2.8321 0.6404 0.3006
0.9383 38.0 950 2.8266 0.6404 0.3012
1.017 39.0 975 2.8236 0.6404 0.3037
0.9262 40.0 1000 2.8264 0.6404 0.3037

Framework versions

  • Transformers 4.55.4
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.2