|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: answerdotai/ModernBERT-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: my_awesome_wnut_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# my_awesome_wnut_model |
|
|
|
This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5795 |
|
- Precision: 0.2438 |
|
- Recall: 0.6759 |
|
- F1: 0.3583 |
|
- Accuracy: 0.8634 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 1.5943 | 1.0 | 38 | 0.3653 | 0.1156 | 0.6069 | 0.1943 | 0.8489 | |
|
| 1.5943 | 2.0 | 76 | 0.3859 | 0.2032 | 0.7034 | 0.3153 | 0.8691 | |
|
| 0.2445 | 3.0 | 114 | 0.4085 | 0.2422 | 0.8069 | 0.3726 | 0.8679 | |
|
| 0.2445 | 4.0 | 152 | 0.3778 | 0.2013 | 0.6345 | 0.3056 | 0.8733 | |
|
| 0.2445 | 5.0 | 190 | 0.4417 | 0.2010 | 0.5448 | 0.2937 | 0.8755 | |
|
| 0.0861 | 6.0 | 228 | 0.5795 | 0.2438 | 0.6759 | 0.3583 | 0.8634 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.53.2 |
|
- Pytorch 2.7.1+cu126 |
|
- Datasets 4.0.0 |
|
- Tokenizers 0.21.2 |
|
|