|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: indolem/indobert-base-uncased |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: Labira/LabiraPJOK_2_50 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# Labira/LabiraPJOK_2_50 |
|
|
|
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0612 |
|
- Validation Loss: 5.0368 |
|
- Epoch: 49 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 250, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Epoch | |
|
|:----------:|:---------------:|:-----:| |
|
| 5.8505 | 5.6669 | 0 | |
|
| 5.2925 | 5.1030 | 1 | |
|
| 4.5442 | 4.7484 | 2 | |
|
| 4.0958 | 4.7040 | 3 | |
|
| 3.7810 | 4.5713 | 4 | |
|
| 3.5676 | 4.4824 | 5 | |
|
| 3.1885 | 4.3205 | 6 | |
|
| 2.7673 | 4.2241 | 7 | |
|
| 2.5267 | 4.2636 | 8 | |
|
| 2.1790 | 4.3948 | 9 | |
|
| 1.8900 | 4.4249 | 10 | |
|
| 1.6497 | 4.3953 | 11 | |
|
| 1.4075 | 4.6399 | 12 | |
|
| 1.1854 | 4.7024 | 13 | |
|
| 0.9754 | 4.9350 | 14 | |
|
| 0.9994 | 5.3112 | 15 | |
|
| 0.7262 | 5.0277 | 16 | |
|
| 0.5385 | 5.6396 | 17 | |
|
| 0.5031 | 5.0280 | 18 | |
|
| 0.4707 | 5.4408 | 19 | |
|
| 0.3623 | 5.2230 | 20 | |
|
| 0.3844 | 5.0132 | 21 | |
|
| 0.3438 | 5.1672 | 22 | |
|
| 0.2012 | 5.2035 | 23 | |
|
| 0.2089 | 5.1718 | 24 | |
|
| 0.1978 | 5.0590 | 25 | |
|
| 0.2140 | 5.1029 | 26 | |
|
| 0.1903 | 4.9778 | 27 | |
|
| 0.1750 | 4.9790 | 28 | |
|
| 0.1228 | 5.0673 | 29 | |
|
| 0.0892 | 5.0525 | 30 | |
|
| 0.1576 | 4.9680 | 31 | |
|
| 0.1337 | 4.9172 | 32 | |
|
| 0.0976 | 4.8575 | 33 | |
|
| 0.0649 | 4.7732 | 34 | |
|
| 0.1050 | 4.8566 | 35 | |
|
| 0.0885 | 5.0122 | 36 | |
|
| 0.0725 | 5.0716 | 37 | |
|
| 0.1004 | 5.0808 | 38 | |
|
| 0.0443 | 5.0632 | 39 | |
|
| 0.0514 | 5.0632 | 40 | |
|
| 0.0632 | 5.0526 | 41 | |
|
| 0.1997 | 5.0193 | 42 | |
|
| 0.0600 | 5.0489 | 43 | |
|
| 0.0482 | 5.0666 | 44 | |
|
| 0.0862 | 5.0719 | 45 | |
|
| 0.1512 | 5.0631 | 46 | |
|
| 0.0815 | 5.0498 | 47 | |
|
| 0.0462 | 5.0410 | 48 | |
|
| 0.0612 | 5.0368 | 49 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- TensorFlow 2.17.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |
|
|