Matjac5's picture
Upload rag SentenceTransformer
765e39a verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:268861
  - loss:MultipleNegativesRankingLoss
base_model: Qwen/Qwen3-0.6B-Base
widget:
  - source_sentence: >-
      There are seven thieves. They stole diamonds from a diamond merchant and
      ran away. While running, night sets in and they decide to rest in the
      jungle.

      When everybody was sleeping, two of them woke up and decided to divide the
      diamonds equally among themselves. But when they divided the diamonds
      equally, one diamond is left.

      So they woke up the 3rd thief and tried to divide the diamonds equally
      again but still one diamond was left. Then they woke up the 4th thief to
      divide the diamonds equally again, and again one diamond was left. This
      happened with the 5th and 6th thief  one diamond was still left.

      Finally, they woke up the 7th thief and this time the diamonds were
      divided equally.

      How many diamonds did they steal in total?
    sentences:
      - ''''
      - ''''
      - e
  - source_sentence: >-
      praveen starts business with rs . 3220 and after 5 months , hari joins
      with praveen as his partner . after a year , the profit is divided in the
      ratio 2 : 3 . what is hari ’ s contribution in the capital ?
    sentences:
      - s
      - '5'
      - '['
  - source_sentence: |-
      Which of the following is material of choice in class V
      cavity with abfraction?
    sentences:
      - '['
      - t
      - G
  - source_sentence: >-
      A right circular cylinder has a height of 25 and a radius of 5. A
      rectangular solid with a height of 15 and a square base, is placed in the
      cylinder such that each of the corners of the solid is tangent to the
      cylinder wall. Liquid is then poured into the cylinder such that it
      reaches the rim. What is the volume of the liquid?
    sentences:
      - '5'
      - '['
      - '2'
  - source_sentence: Cerebral angiography was performed by -
    sentences:
      - S
      - t
      - '2'
pipeline_tag: sentence-similarity
library_name: sentence-transformers

SentenceTransformer based on Qwen/Qwen3-0.6B-Base

This is a sentence-transformers model finetuned from Qwen/Qwen3-0.6B-Base. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Qwen/Qwen3-0.6B-Base
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: Qwen3Model 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Cerebral angiography was performed by -',
    'S',
    '2',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 268,861 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 5 tokens
    • mean: 48.3 tokens
    • max: 128 tokens
    • min: 0 tokens
    • mean: 0.97 tokens
    • max: 1 tokens
  • Samples:
    sentence_0 sentence_1
    A 1200 m long train crosses a tree in 120 sec, how much time will I take to pass a platform 1100 m long? '
    What is the opposite of rarefaction zones, where air molecules in waves are loosely packed? [
    if w is 40 percent less than e , e is 40 percent less than y , and z is 46 percent less than y , then z is greater than w by what percent of w ? %
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • num_train_epochs: 4
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss
0.1190 500 4.0939
0.2380 1000 3.7716
0.3571 1500 0.0
0.4761 2000 0.0
0.5951 2500 0.0
0.7141 3000 0.0
0.8331 3500 0.0
0.9522 4000 0.0
1.0712 4500 0.0
1.1902 5000 0.0
1.3092 5500 0.0
1.4282 6000 0.0
1.5473 6500 0.0
1.6663 7000 0.0
1.7853 7500 0.0
1.9043 8000 0.0
2.0233 8500 0.0
2.1423 9000 0.0
2.2614 9500 0.0
2.3804 10000 0.0
2.4994 10500 0.0
2.6184 11000 0.0
2.7374 11500 0.0
2.8565 12000 0.0
2.9755 12500 0.0
3.0945 13000 0.0
3.2135 13500 0.0
3.3325 14000 0.0
3.4516 14500 0.0
3.5706 15000 0.0
3.6896 15500 0.0
3.8086 16000 0.0
3.9276 16500 0.0

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}