metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:268861
- loss:MultipleNegativesRankingLoss
base_model: Qwen/Qwen3-0.6B-Base
widget:
- source_sentence: >-
There are seven thieves. They stole diamonds from a diamond merchant and
ran away. While running, night sets in and they decide to rest in the
jungle.
When everybody was sleeping, two of them woke up and decided to divide the
diamonds equally among themselves. But when they divided the diamonds
equally, one diamond is left.
So they woke up the 3rd thief and tried to divide the diamonds equally
again but still one diamond was left. Then they woke up the 4th thief to
divide the diamonds equally again, and again one diamond was left. This
happened with the 5th and 6th thief – one diamond was still left.
Finally, they woke up the 7th thief and this time the diamonds were
divided equally.
How many diamonds did they steal in total?
sentences:
- ''''
- ''''
- e
- source_sentence: >-
praveen starts business with rs . 3220 and after 5 months , hari joins
with praveen as his partner . after a year , the profit is divided in the
ratio 2 : 3 . what is hari ’ s contribution in the capital ?
sentences:
- s
- '5'
- '['
- source_sentence: |-
Which of the following is material of choice in class V
cavity with abfraction?
sentences:
- '['
- t
- G
- source_sentence: >-
A right circular cylinder has a height of 25 and a radius of 5. A
rectangular solid with a height of 15 and a square base, is placed in the
cylinder such that each of the corners of the solid is tangent to the
cylinder wall. Liquid is then poured into the cylinder such that it
reaches the rim. What is the volume of the liquid?
sentences:
- '5'
- '['
- '2'
- source_sentence: Cerebral angiography was performed by -
sentences:
- S
- t
- '2'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on Qwen/Qwen3-0.6B-Base
This is a sentence-transformers model finetuned from Qwen/Qwen3-0.6B-Base. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Qwen/Qwen3-0.6B-Base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: Qwen3Model
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Cerebral angiography was performed by -',
'S',
'2',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 268,861 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 5 tokens
- mean: 48.3 tokens
- max: 128 tokens
- min: 0 tokens
- mean: 0.97 tokens
- max: 1 tokens
- Samples:
sentence_0 sentence_1 A 1200 m long train crosses a tree in 120 sec, how much time will I take to pass a platform 1100 m long?
'
What is the opposite of rarefaction zones, where air molecules in waves are loosely packed?
[
if w is 40 percent less than e , e is 40 percent less than y , and z is 46 percent less than y , then z is greater than w by what percent of w ?
%
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 4fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.1190 | 500 | 4.0939 |
0.2380 | 1000 | 3.7716 |
0.3571 | 1500 | 0.0 |
0.4761 | 2000 | 0.0 |
0.5951 | 2500 | 0.0 |
0.7141 | 3000 | 0.0 |
0.8331 | 3500 | 0.0 |
0.9522 | 4000 | 0.0 |
1.0712 | 4500 | 0.0 |
1.1902 | 5000 | 0.0 |
1.3092 | 5500 | 0.0 |
1.4282 | 6000 | 0.0 |
1.5473 | 6500 | 0.0 |
1.6663 | 7000 | 0.0 |
1.7853 | 7500 | 0.0 |
1.9043 | 8000 | 0.0 |
2.0233 | 8500 | 0.0 |
2.1423 | 9000 | 0.0 |
2.2614 | 9500 | 0.0 |
2.3804 | 10000 | 0.0 |
2.4994 | 10500 | 0.0 |
2.6184 | 11000 | 0.0 |
2.7374 | 11500 | 0.0 |
2.8565 | 12000 | 0.0 |
2.9755 | 12500 | 0.0 |
3.0945 | 13000 | 0.0 |
3.2135 | 13500 | 0.0 |
3.3325 | 14000 | 0.0 |
3.4516 | 14500 | 0.0 |
3.5706 | 15000 | 0.0 |
3.6896 | 15500 | 0.0 |
3.8086 | 16000 | 0.0 |
3.9276 | 16500 | 0.0 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}