base_model: Qwen/Qwen3-0.6B | |
library_name: peft | |
# Sanity Check Model | |
This model is fine-tuned on the sanity check dataset for multiple choice question answering. | |
## Model Details | |
- Base model: Qwen/Qwen3-0.6B | |
- Fine-tuning method: LoRA | |
- Task: Multiple Choice Question Answering (MCQA) | |
## Usage | |
```python | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model = AutoModelForCausalLM.from_pretrained("RikoteMaster/sanity_check_model") | |
tokenizer = AutoTokenizer.from_pretrained("RikoteMaster/sanity_check_model") | |
# Example usage | |
question = "What is 2+2?" | |
choices = ["3", "4", "5", "6"] | |
messages = [{ | |
"role": "user", | |
"content": question + "\n" + "\n".join([f"{chr(65+i)}. {choice}" for i, choice in enumerate(choices)]) | |
}] | |
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = tokenizer(text, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=10) | |
print(tokenizer.decode(outputs[0])) | |
### Framework versions | |
- PEFT 0.15.2 |