|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- ZakyF/PRDECT-ID |
|
language: |
|
- id |
|
metrics: |
|
- accuracy |
|
evaluation: |
|
- task: |
|
type: text-classification |
|
name: Sentiment Analysis |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 1.0 |
|
- name: Cross-Validation Accuracy |
|
type: accuracy |
|
value: 0.99981 |
|
pipeline_tag: text-classification |
|
library_name: sklearn |
|
tags: |
|
- sentiment-analysis |
|
- nlp |
|
- naive-bayes |
|
- e-commerce |
|
- indonesian |
|
--- |
|
# Sentiment Analysis |
|
Model SVM dan Naive Bayes untuk mengklasifikasikan ulasan ke dalam kategori Bagus, Normal, atau Buruk menggunakan PRDECT-ID Dataset. |
|
## Deskripsi |
|
Model ini menganalisis ulasan pelanggan Tokopedia untuk menghasilkan insight seperti rekomendasi perbaikan pengiriman atau kualitas produk. |
|
## Penggunaan |
|
```python |
|
import pickle |
|
from sklearn.preprocessing import LabelEncoder, StandardScaler |
|
|
|
# Load model dan preprocessing |
|
svm_model = pickle.load(open('svm_model.pkl', 'rb')) |
|
scaler = pickle.load(open('scaler.pkl', 'rb')) |
|
le_sentiment = pickle.load(open('le_sentiment.pkl', 'rb')) |
|
le_emotion = pickle.load(open('le_emotion.pkl', 'rb')) |
|
|
|
# Contoh prediksi |
|
data = [[5, 'Positive', 'Happy']] # Rating, Sentiment, Emotion |
|
data_scaled = scaler.transform(data) |
|
prediksi = svm_model.predict(data_scaled) |
|
print(prediksi) # Output: ['Bagus'] |