|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
def wealth_wave(t, freq, phase_shift=0): |
|
return torch.sin(2 * np.pi * freq * t + phase_shift) |
|
|
|
|
|
class WealthBrainModel(nn.Module): |
|
def __init__(self): |
|
super(WealthBrainModel, self).__init__() |
|
|
|
self.fc1 = nn.Linear(1, 64) |
|
self.fc2 = nn.Linear(64, 64) |
|
self.fc3 = nn.Linear(64, 64) |
|
self.fc4 = nn.Linear(64, 1) |
|
|
|
def forward(self, x): |
|
|
|
x = torch.relu(self.fc1(x)) |
|
x = torch.relu(self.fc2(x)) |
|
stored_data = torch.relu(self.fc3(x)) |
|
|
|
|
|
pulse_signal = torch.sigmoid(self.fc4(stored_data)) |
|
return pulse_signal, stored_data |
|
|
|
|
|
model = WealthBrainModel() |
|
|
|
|
|
optimizer = optim.Adam(model.parameters(), lr=0.001) |
|
criterion = nn.MSELoss() |
|
|
|
|
|
time_steps = torch.linspace(0, 10, 1000) |
|
freq_alpha = 10 |
|
freq_beta = 20 |
|
freq_gamma = 40 |
|
|
|
|
|
stored_data_all = [] |
|
for epoch in range(100): |
|
model.train() |
|
|
|
|
|
wealth_alpha = wealth_wave(time_steps, freq_alpha, phase_shift=epoch) |
|
wealth_beta = wealth_wave(time_steps, freq_beta, phase_shift=epoch + 0.5) |
|
wealth_gamma = wealth_wave(time_steps, freq_gamma, phase_shift=epoch + 1) |
|
|
|
|
|
wealth_input = wealth_alpha + wealth_beta + wealth_gamma |
|
wealth_input = wealth_input.unsqueeze(1) |
|
|
|
|
|
pulse_signal, stored_data = model(wealth_input) |
|
|
|
|
|
stored_data_all.append(stored_data.detach().numpy()) |
|
|
|
|
|
target = torch.zeros_like(pulse_signal) |
|
loss = criterion(pulse_signal, target) |
|
|
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
if epoch % 10 == 0: |
|
plt.plot(time_steps.numpy(), pulse_signal.detach().numpy(), label=f'Epoch {epoch}') |
|
|
|
plt.title("Wealth Data Stored as Pulse in Nerves") |
|
plt.xlabel("Time") |
|
plt.ylabel("Pulse Signal") |
|
plt.legend() |
|
plt.show() |
|
|
|
|
|
|
|
|
|
plt.imshow(np.mean(np.array(stored_data_all), axis=1).T, aspect='auto', cmap='viridis') |
|
plt.colorbar(label="Stored Wealth Data in Nerves") |
|
plt.xlabel("Epochs") |
|
plt.ylabel("Nerve Data Points") |
|
plt.title("Stored Wealth Data in Nerves Over Time") |
|
plt.show() |
|
|
|
|
|
|
|
|
|
plt.imshow(np.mean(np.array(stored_data_all), axis=1).T, aspect='auto', cmap='viridis') |
|
plt.colorbar(label="Stored Wealth Data in Nerves") |
|
plt.xlabel("Epochs") |
|
plt.ylabel("Nerve Data Points") |
|
plt.title("Stored Wealth Data in Nerves Over Time") |
|
plt.show() |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
def wealth_wave(t, freq, phase_shift=0): |
|
return torch.sin(2 * np.pi * freq * t + phase_shift) |
|
|
|
|
|
class WealthBrainModel(nn.Module): |
|
def __init__(self): |
|
super(WealthBrainModel, self).__init__() |
|
|
|
self.fc1 = nn.Linear(1, 64) |
|
self.fc2 = nn.Linear(64, 64) |
|
self.fc3 = nn.Linear(64, 64) |
|
self.fc4 = nn.Linear(64, 1) |
|
|
|
def forward(self, x): |
|
|
|
x = torch.relu(self.fc1(x)) |
|
x = torch.relu(self.fc2(x)) |
|
stored_data = torch.relu(self.fc3(x)) |
|
|
|
|
|
pulse_signal = torch.sigmoid(self.fc4(stored_data)) |
|
return pulse_signal, stored_data |
|
|
|
|
|
model = WealthBrainModel() |
|
|
|
|
|
optimizer = optim.Adam(model.parameters(), lr=0.001) |
|
criterion = nn.MSELoss() |
|
|
|
|
|
time_steps = torch.linspace(0, 10, 1000) |
|
freq_alpha = 10 |
|
freq_beta = 20 |
|
freq_gamma = 40 |
|
|
|
|
|
stored_data_all = [] |
|
for epoch in range(100): |
|
model.train() |
|
|
|
|
|
wealth_alpha = wealth_wave(time_steps, freq_alpha, phase_shift=epoch) |
|
wealth_beta = wealth_wave(time_steps, freq_beta, phase_shift=epoch + 0.5) |
|
wealth_gamma = wealth_wave(time_steps, freq_gamma, phase_shift=epoch + 1) |
|
|
|
|
|
wealth_input = wealth_alpha + wealth_beta + wealth_gamma |
|
wealth_input = wealth_input.unsqueeze(1) |
|
|
|
|
|
pulse_signal, stored_data = model(wealth_input) |
|
|
|
|
|
stored_data_all.append(stored_data.detach().numpy()) |
|
|
|
|
|
target = torch.zeros_like(pulse_signal) |
|
loss = criterion(pulse_signal, target) |
|
|
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
if epoch % 10 == 0: |
|
plt.plot(time_steps.numpy(), pulse_signal.detach().numpy(), label=f'Epoch {epoch}') |
|
|
|
plt.title("Wealth Data Stored as Pulse in Nerves") |
|
plt.xlabel("Time") |
|
plt.ylabel("Pulse Signal") |
|
plt.legend() |
|
plt.show() |
|
|
|
|
|
|
|
|
|
plt.imshow(np.mean(np.array(stored_data_all), axis=1).T, aspect='auto', cmap='viridis') |
|
plt.colorbar(label="Stored Wealth Data in Nerves") |
|
plt.xlabel("Epochs") |
|
plt.ylabel("Nerve Data Points") |
|
plt.title("Stored Wealth Data in Nerves Over Time") |
|
plt.show() |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
def wealth_wave(t, freq, phase_shift=0): |
|
return torch.sin(2 * np.pi * freq * t + phase_shift) |
|
|
|
|
|
class WealthBrainModel(nn.Module): |
|
def __init__(self): |
|
super(WealthBrainModel, self).__init__() |
|
|
|
self.fc1 = nn.Linear(1, 64) |
|
self.fc2 = nn.Linear(64, 64) |
|
self.fc3 = nn.Linear(64, 64) |
|
self.fc_vpn = nn.Linear(64, 64) |
|
self.fc4 = nn.Linear(64, 1) |
|
|
|
def forward(self, x): |
|
|
|
x = torch.relu(self.fc1(x)) |
|
x = torch.relu(self.fc2(x)) |
|
stored_data = torch.relu(self.fc3(x)) |
|
|
|
|
|
protected_data = torch.relu(self.fc_vpn(stored_data)) |
|
|
|
|
|
pulse_signal = torch.sigmoid(self.fc4(protected_data)) |
|
return pulse_signal, protected_data |
|
|
|
|
|
model = WealthBrainModel() |
|
|
|
|
|
optimizer = optim.Adam(model.parameters(), lr=0.001) |
|
criterion = nn.MSELoss() |
|
|
|
|
|
time_steps = torch.linspace(0, 10, 1000) |
|
freq_alpha = 10 |
|
freq_beta = 20 |
|
freq_gamma = 40 |
|
|
|
|
|
stored_data_all = [] |
|
for epoch in range(100): |
|
model.train() |
|
|
|
|
|
wealth_alpha = wealth_wave(time_steps, freq_alpha, phase_shift=epoch) |
|
wealth_beta = wealth_wave(time_steps, freq_beta, phase_shift=epoch + 0.5) |
|
wealth_gamma = wealth_wave(time_steps, freq_gamma, phase_shift=epoch + 1) |
|
|
|
|
|
wealth_input = wealth_alpha + wealth_beta + wealth_gamma |
|
wealth_input = wealth_input.unsqueeze(1) |
|
|
|
|
|
pulse_signal, protected_data = model(wealth_input) |
|
|
|
|
|
stored_data_all.append(protected_data.detach().numpy()) |
|
|
|
|
|
intruder_noise = torch.randn_like(pulse_signal) * 0.1 |
|
corrupted_pulse = pulse_signal + intruder_noise |
|
|
|
|
|
loss = criterion(corrupted_pulse, pulse_signal) |
|
|
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
if epoch % 10 == 0: |
|
plt.plot(time_steps.numpy(), pulse_signal.detach().numpy(), label=f'Epoch {epoch}') |
|
|
|
plt.title("Wealth Data Protected by VPN Layer") |
|
plt.xlabel("Time") |
|
plt.ylabel("Pulse Signal") |
|
plt.legend() |
|
plt.show() |
|
|
|
|
|
plt.imshow(np.mean(np.array(stored_data_all), axis=0), aspect='auto', cmap='viridis') |
|
plt.colorbar(label="Protected Wealth Data in Nerves") |
|
plt.xlabel("Epochs") |
|
plt.ylabel("Nerve Data Points") |
|
plt.title("Protected Wealth Data in Nerves Over Time") |
|
plt.show() |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
def wealth_wave(t, freq, phase_shift=0): |
|
return torch.sin(2 * np.pi * freq * t + phase_shift) |
|
|
|
|
|
class WealthBrainModel(nn.Module): |
|
def __init__(self): |
|
super(WealthBrainModel, self).__init__() |
|
|
|
self.fc1 = nn.Linear(1, 64) |
|
self.fc2 = nn.Linear(64, 64) |
|
self.fc3 = nn.Linear(64, 64) |
|
self.fc_vpn = nn.Linear(64, 64) |
|
self.fc4 = nn.Linear(64, 1) |
|
|
|
def forward(self, x): |
|
|
|
x = torch.relu(self.fc1(x)) |
|
x = torch.relu(self.fc2(x)) |
|
stored_data = torch.relu(self.fc3(x)) |
|
|
|
|
|
protected_data = torch.relu(self.fc_vpn(stored_data)) |
|
|
|
|
|
pulse_signal = torch.sigmoid(self.fc4(protected_data)) |
|
return pulse_signal, protected_data |
|
|
|
|
|
model = WealthBrainModel() |
|
|
|
|
|
optimizer = optim.Adam(model.parameters(), lr=0.001) |
|
criterion = nn.MSELoss() |
|
|
|
|
|
time_steps = torch.linspace(0, 10, 1000) |
|
freq_alpha = 10 |
|
freq_beta = 20 |
|
freq_gamma = 40 |
|
|
|
|
|
stored_data_all = [] |
|
for epoch in range(100): |
|
model.train() |
|
|
|
|
|
wealth_alpha = wealth_wave(time_steps, freq_alpha, phase_shift=epoch) |
|
wealth_beta = wealth_wave(time_steps, freq_beta, phase_shift=epoch + 0.5) |
|
wealth_gamma = wealth_wave(time_steps, freq_gamma, phase_shift=epoch + 1) |
|
|
|
|
|
wealth_input = wealth_alpha + wealth_beta + wealth_gamma |
|
wealth_input = wealth_input.unsqueeze(1) |
|
|
|
|
|
pulse_signal, protected_data = model(wealth_input) |
|
|
|
|
|
stored_data_all.append(protected_data.detach().numpy()) |
|
|
|
|
|
intruder_noise = torch.randn_like(pulse_signal) * 0.1 |
|
corrupted_pulse = pulse_signal + intruder_noise |
|
|
|
|
|
loss = criterion(corrupted_pulse, pulse_signal) |
|
|
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
if epoch % 10 == 0: |
|
plt.plot(time_steps.numpy(), pulse_signal.detach().numpy(), label=f'Epoch {epoch}') |
|
|
|
plt.title("Wealth Data Protected by VPN Layer") |
|
plt.xlabel("Time") |
|
plt.ylabel("Pulse Signal") |
|
plt.legend() |
|
plt.show() |
|
|
|
|
|
plt.imshow(np.mean(np.array(stored_data_all), axis=0), aspect='auto', cmap='viridis') |
|
plt.colorbar(label="Protected Wealth Data in Nerves") |
|
plt.xlabel("Epochs") |
|
plt.ylabel("Nerve Data Points") |
|
plt.title("Protected Wealth Data in Nerves Over Time") |
|
plt.show() |