metadata
language:
- es
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:14907
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: jinaai/jina-embeddings-v3
widget:
- source_sentence: >-
Describe la tradición del 'rosario de candiles' en el contexto de la
minería.
sentences:
- >-
Un mechazo es la combustión de la mecha sin que se llegue a inflamar el
barreno.
- >-
La siega tradicional en Escucha comenzaba antes de San Juan con las
cebadas.
- >-
El 'rosario de candiles' es una tradición religiosa celebrada en la
festividad de San Juan, en la que los mineros escuchan y acompañan con
sus candiles de carburo, rezando a dos coros y cantando en parte.
- source_sentence: ¿Qué significa la expresión 'pillar una mojadina'?
sentences:
- >-
En el campeonato provincial de atletismo en Alcorisa en mayo, Pilar
Brumos de Escucha logró la 3ª posición en 600 metros y el subcampeonato
en peso.
- >-
Los empresarios de Escucha se habían unido para poder participar en las
elecciones a CC.PP. ya que era necesario que la plantilla de la empresa
superase el número de 50 trabajadores..
- '''Pillar una mojadina'' significa empaparse, quedar empapado.'
- source_sentence: ¿En qué año Carbones de Teruel registra la mina 'pablo' en Escucha?
sentences:
- Puede referirse a un calcetín para bebés o a un calcetín gordo.
- Carbones de Teruel registra la mina 'pablo' en Escucha en 1900.
- >-
Jesús Conesa explicó a la Junta de Espectáculos que el anterior
propietario, Sr. Latorre Galindo, tenía otro cine en Utrillas, lo que
causaba continuos equívocos en envíos de material y pagos, al creerse
que ambos cines le pertenecían o eran la misma empresa.
- source_sentence: ¿Quién regentaba el Cine Avenida de Escucha en el momento de su cierre?
sentences:
- Se usa con el significado de 'cuando'.
- >-
El CD Escucha alineó a Castillo, Romero, Bobadilla, Moraleda, Luis,
González, Higinio, Torres, Calomarde I, Calomarde II y Navarro en el
partido de Copa contra el Alcorisa.
- >-
Antonio Malpica regentaba el Cine Avenida de Escucha en el momento de su
cierre.
- source_sentence: >-
¿Qué porcentaje de aumento salarial reclamaba el Sindicato Minero en el
conflicto de Utrillas que llevó a plantear la huelga del 12 de octubre de
1930?
sentences:
- Antonio Gargallo.
- >-
Una publicación con una fotografía para el recuerdo de la locomotora
llamada 'Escucha'.
- >-
El Sindicato Minero reclamaba un aumento del 20% los sueldos en el
conflicto de Utrillas.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Lampistero
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.7803258901629451
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8883524441762221
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.904043452021726
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9233554616777309
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7803258901629451
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29611748139207406
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18080869040434522
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09233554616777308
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7803258901629451
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8883524441762221
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.904043452021726
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9233554616777309
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8576141434466037
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8359425142014155
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8374344979701236
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7827398913699457
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8877489438744719
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9034399517199758
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9245624622812312
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7827398913699457
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.295916314624824
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18068799034399516
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09245624622812311
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7827398913699457
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8877489438744719
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9034399517199758
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9245624622812312
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.858770916125463
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8371705894186279
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8385437636605255
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7797223898611949
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8859384429692215
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9010259505129753
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9227519613759807
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7797223898611949
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2953128143230738
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18020519010259503
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09227519613759806
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7797223898611949
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8859384429692215
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9010259505129753
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9227519613759807
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8564496755344808
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8346785163471941
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8361853082918266
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7706698853349426
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8823174411587206
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9016294508147255
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9191309595654797
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7706698853349426
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2941058137195735
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18032589016294506
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09191309595654798
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7706698853349426
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8823174411587206
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9016294508147255
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9191309595654797
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.851155539622205
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8286940445057519
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8302805177061129
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7604103802051901
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8690404345202173
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8901629450814725
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9130959565479783
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7604103802051901
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28968014484007243
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1780325890162945
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09130959565479783
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7604103802051901
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8690404345202173
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8901629450814725
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9130959565479783
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8415141158022221
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8181217729497756
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8199539602494803
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.7248038624019312
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.852142426071213
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8750754375377188
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8974049487024743
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7248038624019312
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28404747535707103
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17501508750754374
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08974049487024743
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7248038624019312
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.852142426071213
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8750754375377188
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8974049487024743
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8181789750224895
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7920167926353802
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.793825252598125
name: Cosine Map@100
Lampistero
This is a sentence-transformers model finetuned from jinaai/jina-embeddings-v3 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: jinaai/jina-embeddings-v3
- Maximum Sequence Length: 8194 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: es
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(transformer): Transformer(
(auto_model): XLMRobertaLoRA(
(roberta): XLMRobertaModel(
(embeddings): XLMRobertaEmbeddings(
(word_embeddings): ParametrizedEmbedding(
250002, 1024, padding_idx=1
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(token_type_embeddings): ParametrizedEmbedding(
1, 1024
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(emb_drop): Dropout(p=0.1, inplace=False)
(emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(encoder): XLMRobertaEncoder(
(layers): ModuleList(
(0-23): 24 x Block(
(mixer): MHA(
(rotary_emb): RotaryEmbedding()
(Wqkv): ParametrizedLinearResidual(
in_features=1024, out_features=3072, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(inner_attn): FlashSelfAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(inner_cross_attn): FlashCrossAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(out_proj): ParametrizedLinear(
in_features=1024, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout1): Dropout(p=0.1, inplace=False)
(drop_path1): StochasticDepth(p=0.0, mode=row)
(norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): ParametrizedLinear(
in_features=1024, out_features=4096, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(fc2): ParametrizedLinear(
in_features=4096, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout2): Dropout(p=0.1, inplace=False)
(drop_path2): StochasticDepth(p=0.0, mode=row)
(norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
)
(pooler): XLMRobertaPooler(
(dense): ParametrizedLinear(
in_features=1024, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(activation): Tanh()
)
)
)
)
(pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(normalizer): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("csanz91/lampistero_rag_embeddings")
sentences = [
'¿Qué porcentaje de aumento salarial reclamaba el Sindicato Minero en el conflicto de Utrillas que llevó a plantear la huelga del 12 de octubre de 1930?',
'El Sindicato Minero reclamaba un aumento del 20% los sueldos en el conflicto de Utrillas.',
'Antonio Gargallo.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7803 |
cosine_accuracy@3 |
0.8884 |
cosine_accuracy@5 |
0.904 |
cosine_accuracy@10 |
0.9234 |
cosine_precision@1 |
0.7803 |
cosine_precision@3 |
0.2961 |
cosine_precision@5 |
0.1808 |
cosine_precision@10 |
0.0923 |
cosine_recall@1 |
0.7803 |
cosine_recall@3 |
0.8884 |
cosine_recall@5 |
0.904 |
cosine_recall@10 |
0.9234 |
cosine_ndcg@10 |
0.8576 |
cosine_mrr@10 |
0.8359 |
cosine_map@100 |
0.8374 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7827 |
cosine_accuracy@3 |
0.8877 |
cosine_accuracy@5 |
0.9034 |
cosine_accuracy@10 |
0.9246 |
cosine_precision@1 |
0.7827 |
cosine_precision@3 |
0.2959 |
cosine_precision@5 |
0.1807 |
cosine_precision@10 |
0.0925 |
cosine_recall@1 |
0.7827 |
cosine_recall@3 |
0.8877 |
cosine_recall@5 |
0.9034 |
cosine_recall@10 |
0.9246 |
cosine_ndcg@10 |
0.8588 |
cosine_mrr@10 |
0.8372 |
cosine_map@100 |
0.8385 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7797 |
cosine_accuracy@3 |
0.8859 |
cosine_accuracy@5 |
0.901 |
cosine_accuracy@10 |
0.9228 |
cosine_precision@1 |
0.7797 |
cosine_precision@3 |
0.2953 |
cosine_precision@5 |
0.1802 |
cosine_precision@10 |
0.0923 |
cosine_recall@1 |
0.7797 |
cosine_recall@3 |
0.8859 |
cosine_recall@5 |
0.901 |
cosine_recall@10 |
0.9228 |
cosine_ndcg@10 |
0.8564 |
cosine_mrr@10 |
0.8347 |
cosine_map@100 |
0.8362 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7707 |
cosine_accuracy@3 |
0.8823 |
cosine_accuracy@5 |
0.9016 |
cosine_accuracy@10 |
0.9191 |
cosine_precision@1 |
0.7707 |
cosine_precision@3 |
0.2941 |
cosine_precision@5 |
0.1803 |
cosine_precision@10 |
0.0919 |
cosine_recall@1 |
0.7707 |
cosine_recall@3 |
0.8823 |
cosine_recall@5 |
0.9016 |
cosine_recall@10 |
0.9191 |
cosine_ndcg@10 |
0.8512 |
cosine_mrr@10 |
0.8287 |
cosine_map@100 |
0.8303 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7604 |
cosine_accuracy@3 |
0.869 |
cosine_accuracy@5 |
0.8902 |
cosine_accuracy@10 |
0.9131 |
cosine_precision@1 |
0.7604 |
cosine_precision@3 |
0.2897 |
cosine_precision@5 |
0.178 |
cosine_precision@10 |
0.0913 |
cosine_recall@1 |
0.7604 |
cosine_recall@3 |
0.869 |
cosine_recall@5 |
0.8902 |
cosine_recall@10 |
0.9131 |
cosine_ndcg@10 |
0.8415 |
cosine_mrr@10 |
0.8181 |
cosine_map@100 |
0.82 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7248 |
cosine_accuracy@3 |
0.8521 |
cosine_accuracy@5 |
0.8751 |
cosine_accuracy@10 |
0.8974 |
cosine_precision@1 |
0.7248 |
cosine_precision@3 |
0.284 |
cosine_precision@5 |
0.175 |
cosine_precision@10 |
0.0897 |
cosine_recall@1 |
0.7248 |
cosine_recall@3 |
0.8521 |
cosine_recall@5 |
0.8751 |
cosine_recall@10 |
0.8974 |
cosine_ndcg@10 |
0.8182 |
cosine_mrr@10 |
0.792 |
cosine_map@100 |
0.7938 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 14,907 training samples
- Columns:
query
and answer
- Approximate statistics based on the first 1000 samples:
|
query |
answer |
type |
string |
string |
details |
- min: 9 tokens
- mean: 25.88 tokens
- max: 63 tokens
|
- min: 3 tokens
- mean: 34.09 tokens
- max: 340 tokens
|
- Samples:
query |
answer |
En Valdeconejos, ¿cuál era la sociedad de agricultores en 1952? |
En Valdeconejos, la sociedad de agricultores en 1952 era el Pósito de Agricultores. |
¿Qué nombres de capataces se registran en el pueblo de Escucha en el año 1952? |
En Escucha, en 1952, los capataces registrados son Peralta (Manuel) y Rodriguez (Gonzalo). |
En el contexto de la minería, ¿qué implica 'despajar'? |
'Despajar' se refiere a cribar a mano material y desechos para obtener las partes de carbón que hay en ellos. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 64
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 32
learning_rate
: 2e-05
num_train_epochs
: 12
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 64
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 32
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 12
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size
: 0
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_1024_cosine_ndcg@10 |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
1.0 |
8 |
- |
0.7663 |
0.7676 |
0.7656 |
0.7626 |
0.7393 |
0.6969 |
1.2747 |
10 |
127.0406 |
- |
- |
- |
- |
- |
- |
2.0 |
16 |
- |
0.8244 |
0.8240 |
0.8226 |
0.8172 |
0.8060 |
0.7775 |
2.5494 |
20 |
38.8995 |
- |
- |
- |
- |
- |
- |
3.0 |
24 |
- |
0.8425 |
0.8426 |
0.8444 |
0.8373 |
0.8252 |
0.7996 |
3.8240 |
30 |
20.1528 |
- |
- |
- |
- |
- |
- |
4.0 |
32 |
- |
0.8526 |
0.8520 |
0.8498 |
0.8456 |
0.8289 |
0.8037 |
5.0 |
40 |
14.0513 |
0.8550 |
0.8543 |
0.8517 |
0.8490 |
0.8368 |
0.8139 |
6.0 |
48 |
- |
0.8572 |
0.8565 |
0.8557 |
0.8520 |
0.8404 |
0.8170 |
6.2747 |
50 |
13.364 |
- |
- |
- |
- |
- |
- |
7.0 |
56 |
- |
0.8579 |
0.8576 |
0.8553 |
0.8514 |
0.8422 |
0.8180 |
7.5494 |
60 |
12.7986 |
- |
- |
- |
- |
- |
- |
8.0 |
64 |
- |
0.8573 |
0.8580 |
0.8560 |
0.8523 |
0.8414 |
0.8178 |
8.8240 |
70 |
12.0091 |
- |
- |
- |
- |
- |
- |
9.0 |
72 |
- |
0.8578 |
0.8586 |
0.8562 |
0.8519 |
0.8423 |
0.8184 |
10.0 |
80 |
10.9468 |
0.8583 |
0.8589 |
0.8565 |
0.8530 |
0.8413 |
0.8191 |
10.5494 |
84 |
- |
0.8576 |
0.8588 |
0.8564 |
0.8512 |
0.8415 |
0.8182 |
Framework Versions
- Python: 3.12.10
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}