csanz91's picture
Add new SentenceTransformer model
8d8df3e verified
---
language:
- es
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:14907
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: jinaai/jina-embeddings-v3
widget:
- source_sentence: ¿Qué característica especial tenía la escultura del 'Torico' creada
por Pedro Blesa?
sentences:
- 'Después de dorar el conejo en la receta de Conejo escabechado, en la misma sartén
se rehogan los ajos, con el laurel y la pimienta.
'
- Rafael Barcelón se encargaba del servicio de electricidad en Valdeconejos en 1951.
- La escultura del 'Torico' creada por Pedro Blesa era un anaglifo, visible en 3D
con gafas especiales.
- source_sentence: ¿Por qué cantidad adquirió Francisco Santacruz la mina Escuadra
en la subasta pública?
sentences:
- Después de la temporada 1986-87, el equipo descendió, lo que provocó su desaparición
del campeonato en la temporada 1987-88.
- '''Al bies'' significa en diagonal.'
- Francisco Santacruz adquirió la mina Escuadra por la cantidad de 931 pesetas.
- source_sentence: ¿Quién se desempeñaba como fiscal en el ayuntamiento de Escucha
en el año 1916?
sentences:
- El autor mencionado para la receta Sopas de ajo es Teo Martin Lafuente.
- En Escucha en 1916, D. Joaquín Latorre del Río se desempeñaba como fiscal.
- Felipe Mallén era el farmacéutico en Valdeconejos en 1928.
- source_sentence: ¿Qué información transmiten los 'toques' en la caña de un pozo
durante las operaciones mineras?
sentences:
- Juan Pedro Martín encontró fragmentos de carbón de piedra en el paraje de El Horcajo.
- Se publicó en 1970 por Ediciones Cultura y Acción. CNT.
- 'Los ''toques'' son señales que se hacen en la caña del pozo para las distintas
operaciones 1: alto 2: arriba 3: abajo 1+2: despacio arriba 1+3: despacio abajo
4+2: personal arriba 4+3: personal abajo 4+1+2: señalista en jaula arriba 4+1+3:
señalista en jaula abajo 5: jaula libre 6: maniobra'
- source_sentence: ¿En qué año se demarcó y reconoció la mina 'El Pilar'?
sentences:
- Según la quinta demanda del SOMM, todas compañías mineras debían entregar a todos
sus obreros un libramiento de liquidación mensual
- '''Tontiar'' significa cuando dos jóvenes empiezan con un noviazgo.'
- La mina 'El Pilar' se demarcó y reconoció en 1857.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Lampistero
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.7700663850331925
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8925769462884732
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9155099577549789
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9330114665057333
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7700663850331925
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2975256487628244
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18310199155099577
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09330114665057333
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7700663850331925
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8925769462884732
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9155099577549789
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9330114665057333
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8578914781807897
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8330619976817926
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8343424106284848
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7694628847314424
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8889559444779722
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9124924562462281
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9330114665057333
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7694628847314424
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29631864815932407
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1824984912492456
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09330114665057332
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7694628847314424
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8889559444779722
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9124924562462281
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9330114665057333
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8571049923900239
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8320899311243306
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8333457816447034
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7682558841279421
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8865419432709717
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9112854556427278
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9305974652987327
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7682558841279421
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2955139810903239
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18225709112854557
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09305974652987326
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7682558841279421
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8865419432709717
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9112854556427278
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9305974652987327
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8555277012951626
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8307227155597702
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8321030396467847
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.764031382015691
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8901629450814725
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9082679541339771
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9299939649969825
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.764031382015691
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2967209816938242
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1816535908267954
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09299939649969825
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.764031382015691
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8901629450814725
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9082679541339771
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9299939649969825
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8535167149096011
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8282907530342651
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8296119986031772
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7447193723596862
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8768859384429692
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9028364514182257
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9215449607724804
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7447193723596862
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2922953128143231
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1805672902836451
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09215449607724803
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7447193723596862
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8768859384429692
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9028364514182257
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9215449607724804
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8402664516336745
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8133905221714518
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8148588407289652
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.7103198551599276
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8491249245624622
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8780929390464696
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.899818949909475
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7103198551599276
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2830416415208208
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1756185878092939
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08998189499094747
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7103198551599276
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8491249245624622
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8780929390464696
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.899818949909475
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8119294706592789
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7829293234091058
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7850878407159746
name: Cosine Map@100
---
# Lampistero
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) <!-- at revision f1944de8402dcd5f2b03f822a4bc22a7f2de2eb9 -->
- **Maximum Sequence Length:** 8194 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** es
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(transformer): Transformer(
(auto_model): XLMRobertaLoRA(
(roberta): XLMRobertaModel(
(embeddings): XLMRobertaEmbeddings(
(word_embeddings): ParametrizedEmbedding(
250002, 1024, padding_idx=1
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(token_type_embeddings): ParametrizedEmbedding(
1, 1024
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(emb_drop): Dropout(p=0.1, inplace=False)
(emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(encoder): XLMRobertaEncoder(
(layers): ModuleList(
(0-23): 24 x Block(
(mixer): MHA(
(rotary_emb): RotaryEmbedding()
(Wqkv): ParametrizedLinearResidual(
in_features=1024, out_features=3072, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(inner_attn): FlashSelfAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(inner_cross_attn): FlashCrossAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(out_proj): ParametrizedLinear(
in_features=1024, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout1): Dropout(p=0.1, inplace=False)
(drop_path1): StochasticDepth(p=0.0, mode=row)
(norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): ParametrizedLinear(
in_features=1024, out_features=4096, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(fc2): ParametrizedLinear(
in_features=4096, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout2): Dropout(p=0.1, inplace=False)
(drop_path2): StochasticDepth(p=0.0, mode=row)
(norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
)
(pooler): XLMRobertaPooler(
(dense): ParametrizedLinear(
in_features=1024, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(activation): Tanh()
)
)
)
)
(pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(normalizer): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("csanz91/lampistero_rag_embeddings_2")
# Run inference
sentences = [
"¿En qué año se demarcó y reconoció la mina 'El Pilar'?",
"La mina 'El Pilar' se demarcó y reconoció en 1857.",
'Según la quinta demanda del SOMM, todas compañías mineras debían entregar a todos sus obreros un libramiento de liquidación mensual',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 1024
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7701 |
| cosine_accuracy@3 | 0.8926 |
| cosine_accuracy@5 | 0.9155 |
| cosine_accuracy@10 | 0.933 |
| cosine_precision@1 | 0.7701 |
| cosine_precision@3 | 0.2975 |
| cosine_precision@5 | 0.1831 |
| cosine_precision@10 | 0.0933 |
| cosine_recall@1 | 0.7701 |
| cosine_recall@3 | 0.8926 |
| cosine_recall@5 | 0.9155 |
| cosine_recall@10 | 0.933 |
| **cosine_ndcg@10** | **0.8579** |
| cosine_mrr@10 | 0.8331 |
| cosine_map@100 | 0.8343 |
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 768
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7695 |
| cosine_accuracy@3 | 0.889 |
| cosine_accuracy@5 | 0.9125 |
| cosine_accuracy@10 | 0.933 |
| cosine_precision@1 | 0.7695 |
| cosine_precision@3 | 0.2963 |
| cosine_precision@5 | 0.1825 |
| cosine_precision@10 | 0.0933 |
| cosine_recall@1 | 0.7695 |
| cosine_recall@3 | 0.889 |
| cosine_recall@5 | 0.9125 |
| cosine_recall@10 | 0.933 |
| **cosine_ndcg@10** | **0.8571** |
| cosine_mrr@10 | 0.8321 |
| cosine_map@100 | 0.8333 |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 512
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7683 |
| cosine_accuracy@3 | 0.8865 |
| cosine_accuracy@5 | 0.9113 |
| cosine_accuracy@10 | 0.9306 |
| cosine_precision@1 | 0.7683 |
| cosine_precision@3 | 0.2955 |
| cosine_precision@5 | 0.1823 |
| cosine_precision@10 | 0.0931 |
| cosine_recall@1 | 0.7683 |
| cosine_recall@3 | 0.8865 |
| cosine_recall@5 | 0.9113 |
| cosine_recall@10 | 0.9306 |
| **cosine_ndcg@10** | **0.8555** |
| cosine_mrr@10 | 0.8307 |
| cosine_map@100 | 0.8321 |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 256
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.764 |
| cosine_accuracy@3 | 0.8902 |
| cosine_accuracy@5 | 0.9083 |
| cosine_accuracy@10 | 0.93 |
| cosine_precision@1 | 0.764 |
| cosine_precision@3 | 0.2967 |
| cosine_precision@5 | 0.1817 |
| cosine_precision@10 | 0.093 |
| cosine_recall@1 | 0.764 |
| cosine_recall@3 | 0.8902 |
| cosine_recall@5 | 0.9083 |
| cosine_recall@10 | 0.93 |
| **cosine_ndcg@10** | **0.8535** |
| cosine_mrr@10 | 0.8283 |
| cosine_map@100 | 0.8296 |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 128
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7447 |
| cosine_accuracy@3 | 0.8769 |
| cosine_accuracy@5 | 0.9028 |
| cosine_accuracy@10 | 0.9215 |
| cosine_precision@1 | 0.7447 |
| cosine_precision@3 | 0.2923 |
| cosine_precision@5 | 0.1806 |
| cosine_precision@10 | 0.0922 |
| cosine_recall@1 | 0.7447 |
| cosine_recall@3 | 0.8769 |
| cosine_recall@5 | 0.9028 |
| cosine_recall@10 | 0.9215 |
| **cosine_ndcg@10** | **0.8403** |
| cosine_mrr@10 | 0.8134 |
| cosine_map@100 | 0.8149 |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 64
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7103 |
| cosine_accuracy@3 | 0.8491 |
| cosine_accuracy@5 | 0.8781 |
| cosine_accuracy@10 | 0.8998 |
| cosine_precision@1 | 0.7103 |
| cosine_precision@3 | 0.283 |
| cosine_precision@5 | 0.1756 |
| cosine_precision@10 | 0.09 |
| cosine_recall@1 | 0.7103 |
| cosine_recall@3 | 0.8491 |
| cosine_recall@5 | 0.8781 |
| cosine_recall@10 | 0.8998 |
| **cosine_ndcg@10** | **0.8119** |
| cosine_mrr@10 | 0.7829 |
| cosine_map@100 | 0.7851 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 14,907 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 26.09 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 34.02 tokens</li><li>max: 405 tokens</li></ul> |
* Samples:
| query | answer |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>¿Qué tipos de palas se utilizan para cargar el carbón y el mineral?</code> | <code>Se utiliza una pala convencional y una pala hidráulica, esta última descarga sobre un páncer, puede hacerlo lateralmente y se desplaza sobre ruedas u oruga.</code> |
| <code>Tras el cierre de la tejería de Florencio Salvador, ¿de dónde procedieron finalmente los ladrillos para las doscientas diez viviendas construidas en Utrillas?</code> | <code>Los ladrillos y material para las doscientas diez viviendas construidas en Utrillas procedieron finalmente de Letux, Zaragoza .</code> |
| <code>¿Cuál es el formato de los juegos infantiles que se están preparando para el verano en Escucha en 2021?</code> | <code>Los juegos infantiles que se están preparando para el verano en Escucha en 2021 están en formato revista.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 8
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 32
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 8
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 1.0 | 8 | - | 0.7841 | 0.7835 | 0.7836 | 0.7791 | 0.7665 | 0.7226 |
| 1.2747 | 10 | 58.1187 | - | - | - | - | - | - |
| 2.0 | 16 | - | 0.8348 | 0.8366 | 0.8345 | 0.8301 | 0.8184 | 0.7861 |
| 2.5494 | 20 | 24.4181 | - | - | - | - | - | - |
| 3.0 | 24 | - | 0.8521 | 0.8504 | 0.8503 | 0.8457 | 0.8319 | 0.8007 |
| 3.8240 | 30 | 16.1488 | - | - | - | - | - | - |
| 4.0 | 32 | - | 0.8561 | 0.8548 | 0.8555 | 0.8509 | 0.8387 | 0.8073 |
| 5.0 | 40 | 13.4897 | 0.8585 | 0.8556 | 0.8545 | 0.8528 | 0.8397 | 0.8111 |
| 6.0 | 48 | - | 0.8578 | 0.8563 | 0.8550 | 0.8535 | 0.8410 | 0.8110 |
| 6.2747 | 50 | 13.7469 | - | - | - | - | - | - |
| 7.0 | 56 | - | 0.8579 | 0.8571 | 0.8555 | 0.8535 | 0.8403 | 0.8119 |
### Framework Versions
- Python: 3.12.10
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->