168sir's picture
Update README.md
fd8bc79 verified
---
license: cc-by-nc-4.0
task_categories:
- image-classification
language:
- en
tags:
- lithology
- geology
- rock
- drill core
- core images
- lithology identification
- lithology classification
- DCID
pretty_name: Drill Core Image Dataset (DCID)
size_categories:
- 10K<n<100K
---
# Dataset Card for Drill Core Image Dataset (DCID)
## Dataset Details
### Dataset Description
The Drill Core Image Dataset (DCID) is a large-scale benchmark designed for lithology classification based on RGB core images. It provides two primary versions:
- **DCID-7**: 7 lithology categories with 5,000 images per class.
- **DCID-35**: 35 lithology categories with 1,000 images per class.
All original images are 512×512 pixels in resolution. Each category is split into training and testing subsets in an 8:2 ratio. Additional variants are generated by resizing to smaller resolutions (32, 64, 128, 256) and applying real-world data augmentation (RWDA) to simulate image imperfections.
- **Curated by:** Jia-Yu Li, Ji-Zhou Tang, et al.
- **Shared by:** Jia-Yu Li (lijiayu1120@tongji.edu.cn), Ji-Zhou Tang (jeremytang@tongji.edu.cn)
- **License:** CC BY-NC 4.0 (Creative Commons Attribution-NonCommercial 4.0)
---
### Visual Overview
#### DCID Naming Convention
The dataset naming follows the **DCID-R-C-L-I** format:
- `R`: resolution (32, 64, 128, 256, 512)
- `C`: number of categories (7 or 35)
- `L`: RWDA level (0.0 – 0.4)
- `I`: injection scope (`N`, `T`, `E`, `A`)
![DCID Naming Convention](./DCID-R-C-L-I.jpg)
---
#### DCID-7 Dataset
The **DCID-7** dataset contains 35,000 images (5,000 per category).
Each class has 4,000 training and 1,000 testing images (8:2 ratio).
This version is suitable for evaluating model upper-bound performance.
![DCID-7 Dataset Overview](./DCID-7.jpg)
---
#### DCID-35 Dataset
The **DCID-35** dataset contains 35,000 images (1,000 per category).
Each class has 800 training and 200 testing images.
This fine-grained version is designed to assess model generalization under complex conditions.
![DCID-35 Dataset Overview](./DCID-35.jpg)
---
### Dataset Sources
- **GitHub Repository:** [https://github.com/JiayuLi1120/drill-core-image-dataset](https://github.com/JiayuLi1120/drill-core-image-dataset)
- **Hugging Face Dataset:** [https://huggingface.co/datasets/168sir/drill-core-image-dataset](https://huggingface.co/datasets/168sir/drill-core-image-dataset)
- **Paper:** [https://doi.org/10.1016/j.petsci.2025.04.013](https://doi.org/10.1016/j.petsci.2025.04.013)
---
## Usage
### Step 1: Download and extract
Download the `DCID.zip` archive from [Hugging Face](https://huggingface.co/datasets/168sir/drill-core-image-dataset) and extract it:
```bash
unzip DCID.zip -d ./DCID
````
This will give you the following folders:
* `DCID-512-7/` and `noise-512-7/`
* `DCID-512-35/` and `noise-512-35/`
---
### Step 2: Build custom dataset versions
We provide a script **`build_dcid_dataset.py`** to generate different dataset variants.
Example: Create a **32×32 resolution, 7 classes, 40% RWDA (train set only)** dataset:
```bash
python build_dcid_dataset.py \
--root ./DCID \
--R 32 \
--C 7 \
--L 0.4 \
--I T \
--out_dir ./output
```
This generates a new dataset at:
```
./output/DCID-32-7-0.4-T/
```
---
### Script Parameters
* **`R`**: target resolution (32, 64, 128, 256)
* **`C`**: number of categories (7 or 35)
* **`L`**: RWDA level (0.0–0.4)
* **`I`**: injection scope:
* `N`: none
* `T`: train set only
* `E`: test set only
* `A`: all (train + test)
---
## Citation
If you use this dataset in your work, please cite:
```bibtex
@article{Li2025DCID,
title = {A large-scale, high-quality dataset for lithology identification: Construction and applications},
author = {Jia-Yu Li and Ji-Zhou Tang and Xian-Zheng Zhao and Bo Fan and Wen-Ya Jiang and Shun-Yao Song and Jian-Bing Li and Kai-Da Chen and Zheng-Guang Zhao},
journal = {Petroleum Science},
year = {2025},
issn = {1995-8226},
doi = {10.1016/j.petsci.2025.04.013}
}