blob_id
stringlengths
40
40
repo_name
stringlengths
5
127
path
stringlengths
2
523
length_bytes
int64
22
3.06M
score
float64
3.5
5.34
int_score
int64
4
5
text
stringlengths
22
3.06M
7bd54a47b0950d29f681a2819a18fa7fe7a084a3
ChrisMcK1/shutTheBox
/shutTheBox.py
6,061
4.09375
4
#! /usr/bin/python3 import random import sys #to trigger game over for incorrect input import time import itertools #to calculate all possible play comibinations based on available board integers #setting up the Board to show which number slot we're in, which will have an integer #until it is selected by the user to be removed from the board, then it will be 'X' theBoard = [1, 2, 3, 4,\ 5, 6, 7, 8, 9, \ 10] ## Need to add """ """ notation to functions #defining function for the visual of the board, starts with showing each integer 1 thru 10 def printBoard(board): print(str(board[0]) + '|' + str(board[1]) + '|' + str(board[2]) + '|' \ + str(board[3]) + '|' + str(board[4]) + '|' + str(board[5]) + '|' \ + str(board[6]) + '|' + str(board[7]) + '|' + str(board[8]) + '|' \ + str(board[9]) + '|') #function to check if game has been won, need to expand on this to give the option to start a new game def winCon(): winTotal = 0 if theBoard == ['X', 'X', 'X','X',\ 'X', 'X', 'X', 'X', 'X', \ 'X']: print('Congratulations, you\'ve won!') winTotal += 1 print('You\'ve won ' + str(winTotal) + ' games.') def newGame(): while True: print('Would you like to start a new game? y/n?') response = input() if response == 'n': print('Goodbye!') sys.exit() if response == 'y': diceRollFunc() else: continue #function to show all available plays, using itertools module #def combos(): def diceRollFunc(): theBoard = [1, 2, 3, 4,\ 5, 6, 7, 8, 9, \ 10] while theBoard != ['X', 'X', 'X','X',\ 'X', 'X', 'X', 'X', 'X', \ 'X']: diceRoll = random.randint(1, 6) + random.randint(1,6) while True: print('Roll the pair of dice by typing \'r\'.') roll = input() if roll == ('r'): print('You rolled a ' + str(diceRoll) + '. Now choose which \ numbers to remove from the board.') print('Here\'s the board again, enter one number \ at a time to remove it from the board.') printBoard(theBoard) print('Here are your available plays.') availablePlay = [] #empty list that will then populate with current integers on the board for i in theBoard[:10]: #iterate through the board, creating a new list to remove all "X' and keep only integers try: if i == 'X': continue else: availablePlay.append(i) except ValueError: continue except TypeError: continue result = [seq for i in range(len(availablePlay), 0 , -1) for seq in itertools.combinations(availablePlay, i) if sum(seq) == diceRoll] #itertools sequence to create list variable containing all available plays if result == []: print('You have none. Game over.') newGame() else: print(result) newBoard = input() newBoard1 = 0 newBoard2 = 0 newBoard3 = 0 try: if int(newBoard) != int(theBoard[int(newBoard)-1]): #test to check if input is an available space on board and not already an 'X' continue except ValueError: print('That is an invalid input, start over.') newGame() except IndexError: print('That is an invalid input, start over.') newGame() if int(newBoard) > 0 and int(newBoard) < 11 and int(newBoard) <= diceRoll: theBoard[int(newBoard)-1] = 'X' if (int(diceRoll) - int(newBoard)) == 0: break if int(newBoard) > int(diceRoll): print('That is an invalid input, start over.') newGame() if (int(diceRoll) - int(newBoard)) != 0: print('Please enter another number to remove') newBoard1 = input() theBoard[int(newBoard1)-1] = 'X' if (int(newBoard1) + int(newBoard)) > diceRoll: print('That is an invalid input, start over.') newGame() if (int(diceRoll) - int(newBoard) - int(newBoard1)) == 0: break if (int(diceRoll) - int(newBoard) - int(newBoard1)) != 0: print('Please enter another number to remove') newBoard2 = input() theBoard[int(newBoard2)-1] = 'X' if (int(newBoard1) + int(newBoard2) + int(newBoard)) > diceRoll: print('That is an invalid input, start over.') newGame() if (int(diceRoll) - int(newBoard) - int(newBoard1) - int(newBoard2)) == 0: break if (int(diceRoll) - int(newBoard) - int(newBoard1) - int(newBoard2)) != 0: print('Please enter another number to remove') newBoard3 = input() theBoard[int(newBoard3)-1] = 'X' if (int(newBoard1) + int(newBoard2) + int(newBoard3) + int(newBoard)) > diceRoll: print('That is an invalid input, start over.') newGame() if (int(diceRoll) - int(newBoard) - int(newBoard1) - int(newBoard2) - int(newBoard3)) == 0: break #Need to define function or statement that will check if current dice roll is playable on the available board integer spaces in the list, if not, the game needs to end. printBoard(theBoard) print('Welcome to Shut the Box! Here is your board, let\'s get started.') printBoard(theBoard) diceRollFunc() winCon()
4c1571e0eb11d604f630c2ef8627165b73db14a5
SinigribovS/Rezolvarea-problemelor-IF-WHILE-FOR
/3.py
434
3.703125
4
#Se dau numerele naturale m şi n, unde m <n. Să se verifice dacă n este o putere a lui m. m=int(input('Dati numarul natural m (baza): ')) n=int(input('Dati numarul natural n (puterea): ')) if (n<m): print('Eroare: n<m') else: a=True for i in range(1,n+1): if(m**i==n): print('Da,',n,' este putere a lui ',m) a=False if a: print('Nu,',n,' nu este putere a lui ',m)
5aea25fbfc44841612b271c36b61f15b6c52d552
s4yhii/jesus-repo-clase
/jes.py
637
3.75
4
#ejercicio7 antiguedad=5 sueldo=300 if antiguedad>5: print(sueldo*1.2) if antiguedad<=5 and antiguedad>1: print(sueldo*1.1) else: print(sueldo) #ejercicio9 control1=int(input("ingrese el primer peso")) control2=int(input("ingrese el segundo peso")) control3=int(input("ingrese el tercer peso")) if control2-control1<300 : print("el incremento del control 2 y 1 es menor que 300g") elif (control3-control2<300): print("el incremento del control 3 y 2 es menor que 300g") #ejercicio de la sumatoria tot=0 numero=4 for i in range(0,numero+1): tot=tot+(i**5+4*i**3+3*(i**2)+5) print(tot)
dd6b8c830ace6f94415534cdc3e650c1911537bd
s4yhii/jesus-repo-clase
/ejercicio8.py
425
3.9375
4
#ejercicio8 num1=int(input("ingrese un numero menor que 1000: ")) num2=int(input("ingrese otro numero menor que 1000:")) if num1<1000 and num2<1000 : a=int((num1/10)%10) b=int((num2)%10) c=int((num2/100)%10) suma=a+b+c union=(f"{a}{b}{c}") print(f"el numero formado es: {union}") print(f"la suma de los digitos es: {suma}") else: print("los numeros ingresados son incorrectos")
ad353b9d60b68942de19669b70c19147b59ba6ba
c3drive/my_scraping
/python_scraper.py
3,543
3.671875
4
import csv import re import sqlite3 from typing import List import requests import lxml.html def main(): """ メインの処理。fetch(), scrape(), save()の3つの関数を呼び出す。 """ url = 'https://gihyo.jp/dp' html = fetch(url) books = scrape(html, url) save('books.db', books) save_file('books.csv', books) def fetch(url: str)-> str: """ 引数urlで与えられたURLのWebページを取得する。 WebページのエンコーディングはConetnt-Typeヘッダーから取得する。 戻り値:str型のHTML """ r = requests.get(url) return r.text #HTTPヘッダーから取得したエンコーディングでデコードした文字列を返す def scrape(html: str, base_url: str)-> List[dict]: """ 引数htmlで与えらえたHTMLから正規表現で書籍の情報を抜き出す。 引数base_urlは絶対URLに変換する際の基準となるURLを指定する。 戻り値:書籍(dict)のリスト """ books =[] html = lxml.html.fromstring(html) html.make_links_absolute(base_url) #すべてのa要素のhref属性を絶対URLに変換する。 #cssselect()メソッドで、セレクターに該当するa要素のリストを取得して、ここのa要素に対して処理を行う。 #セレクターの意味:id="listBook"である要素 の直接の子であるli要素 の直接の子であるitemprop="url"という属性を持つa要素 for a in html.cssselect('#listBook > li > a[itemprop="url"]'): #a要素のhref属性から書籍のurlを取得する。 url = a.get('href') #書籍のタイトルはitemprop="name"という属性を持つp要素から取得する。 p = a.cssselect('p[itemprop="name"]')[0] title = p.text_content() #wbr要素などが含まれているのでtextではなくtext_contentを使う books.append({'url':url, 'title':title}) return books def save(db_path: str, books: List[dict]): """ 引数booksで与えたれた書籍のリストをSQLiteデータベースに保存する。 データベースのパスは引数db_pathで与えられる。 戻り値:無し """ conn = sqlite3.connect(db_path) c = conn.cursor() c.execute('DROP TABLE IF EXISTS books') c.execute(''' CREATE TABLE books( title text, url text ) ''') c.executemany('INSERT INTO books VALUES(:title, :url)', books) conn.commit() conn.close() def save_file(file_path: str, books: List[dict]): """ 引数booksで与えたれた書籍のリストをCSV形式のファイルに保存する。 ファイルのパスは引数file_pathで与えられる。 戻り値:無し """ with open(file_path, 'w', newline='') as f: #第1引数にファイルオブジェクトを、第2引数にフィールド名のリストを指定する。 writer = csv.DictWriter(f, ['url', 'title']) writer.writeheader() #1行目のヘッダーを出力する #writerows()で複数の行を1度に出力する。引数は辞書のリスト。 writer.writerows(books) #pythonコマンドで実行された場合にmain()関数を呼び出す。これはモジュールとして他のファイルから #インポートされたときに、mail()関数が実行されないようにするための、pythonにおける一般的なイディオム。 if __name__ == '__main__': main()
17f0ed42a9f3b1bb9d7ec6fa25aa6fb1915e08d1
dev2404/Babber_List
/heap4.py
347
3.515625
4
import heapq as hp def kLargest(arr, n, k): # code here q = [] for i in range(n): hp.heappush(q, arr[i]) if len(q) > k: hp.heappop(q) q.sort(reverse=True) return q[-1] #[hp._heappop_max(q) for i in range(len(q))] N = 7 K = 3 Arr = [1, 23, 12, 9, 30, 2, 50, 89] print(kLargest(Arr, N, K))
f136808d4f9f2e6bc029dd6034841761557a10cb
dev2404/Babber_List
/three_sum.py
824
3.578125
4
# solution-1 def triplet(arr, n, k): count = 0 for i in range(0, n-2): for j in range(i+1, n-1): for x in range(j+1, n): if arr[i]+arr[j]+arr[x] == k: return 1 return 0 # Solution-2 def triplet(arr, n, k): count = 0 arr.sort() for i in range(0, n-2): left = i+1 right = n-1 while left < right: if arr[i]+arr[left]+arr[right] == k: return 1 elif arr[i]+arr[left]+arr[right] < k: left += 1 else: right -= 1 return 0 T = int(input()) for i in range(T): n, k = list(map(int, input().split())) arr = list(map(int, input().split())) print(triplet(arr, n, k))
dff4a52d4660596cf585512cf527b27ea21a686f
dev2404/Babber_List
/heap.py
671
3.734375
4
def heapify(arr, i): largest = i left = (2 * i) + 1 right = (2 * i) + 2 if left < len(arr) and arr[left] > arr[largest]: largest = left if right < len(arr) and arr[right] > arr[largest]: largest = right if largest != i: arr[largest], arr[i] = arr[i], arr[largest] heapify(arr, largest) def buildHeap(arr, n): startind = n//2 - 1 for i in range(startind, -1, -1): heapify(arr, i) def printHeap(arr, n): for i in range(n): print(arr[i], end=" ") print() arr = [ 1, 3, 5, 4, 6, 13,10, 9, 8, 15, 17 ]; n = len(arr); buildHeap(arr, n); printHeap(arr, n);
51ae8c3f304209e5d867be6d3fbf13a6d9fa4778
dev2404/Babber_List
/dublicate.py
422
3.53125
4
def findDuplicate(self, nums: List[int]) -> int: # X = set(nums) # for i in X: # if nums.count(i) > 1: # return i # for i in range(len(nums)): # x = nums.pop(0) # if x in nums: # return x while nums[nums[0]] != nums[0]: nums[nums[0]], nums[0] = nums[0], nums[nums[0]] return nums[0]
d00e37f34de2103a220f1fc5f15009c1a5ed2013
wlsanders/dsp
/python/advanced_python_regex.py
2,022
4.09375
4
# Q1. Find how many different degrees there are, and their frequencies: Ex: PhD, ScD, MD, MPH, BSEd, MS, JD, etcimport csv # import csv facultyFile = open('faculty.csv') facultyReader = csv.reader(facultyFile) facultyData = list(facultyReader) def differentDegrees(facultyData): degreeType = [] count = 0 for row in facultyData: # print row if row[1] not in degreeType and count > 0: degreeType.append(row[1]) count += 1 return degreeType degreeTypes = differentDegrees(facultyData) # print degreeTypes def cleaningDegreeTypes(degreeTypes): degreeList = dict() # print degreeTypes for degree in degreeTypes: a = degree.replace('.', "") if " " not in a: if a not in degreeList: degreeList[a] = 1 else: degreeList[a] += 1 # print degreeList, "list" else: delimiter = ' ' b = a.split(delimiter) for degree in b: if degree not in degreeList: degreeList[degree] = 1 else: degreeList[degree] += 1 return degreeList cleaningDegreeTypes(degreeTypes) """ QUESTION 2: FIND HOW MANY DIFFERENT TITLES THERE ARE, AND THEIR FREQUENCIES """ def differentTitles(facultyData): count = 0 titleDict = dict() for row in facultyData: # print row title = row[2] if count > 0: if title not in titleDict: titleDict[title] = 1 else: titleDict[title] += 1 count += 1 return titleDict # print differentTitles(facultyData) """ QUESTION 3 """ def differentEmails(facultyData): differentEmails = [] count = 0 for row in facultyData: # print row if row[3] not in differentEmails and count > 0: differentEmails.append(row[3]) count += 1 return differentEmails emails = differentEmails(facultyData) """ Question 4""" def differentDomains(emailList): emailDict = dict() for email in emailList: print email addr = email uname, domain = addr.split('@') if domain not in emailDict: emailDict[domain] = 1 else: emailDict[domain] += 1 print len(emailDict) return emailDict print differentDomains(emails)
cfdd6598e2c3adcfea9b5e9a9a4e7cff38ababdb
commutatif/ctf_2019
/challs/123-anticaptcha-et-vernam/guess.py
1,449
3.609375
4
#!/usr/bin/env python3 from random import choice from string import ascii_lowercase # on peut deviner KEY_LENGTH en chiffrant plein de fois la même minuscule KEY_LENGTH = 6 TXT = "aaaaaaaaaaaaaaaaaaaaaaaaaaaa" C = [ "g:ydkzunydkzunydkzunydkzunydkz", "h:zunydkzunydkzunydkzunydkzuny", "f:xmhalqxmhalqxmhalqxmhalqxmha" ] def gen_random_str(n): return "".join(choice(ascii_lowercase) for _ in range(n)) def keep_lower_only(str): return "".join([c for c in str if ord("a") <= ord(c) <= ord("z")]) def shift_char(c, n): if ord("a") <= ord(c) <= ord("z"): return to_char((from_char(c) + n) % 26) else: return c def from_char(c): return ord(c) - ord("a") def to_char(i): return chr(i + ord("a")) def xor(str1, str2): if len(str1) != len(str2): raise Exception("str length") return "".join([to_char((from_char(str1[i]) ^ from_char(str2[i])) % 26) for i in range(len(str1))]) def xor2(str1, str2): if len(str1) != len(str2): raise Exception("str length") return "".join([to_char((from_char(str1[i]) - from_char(str2[i])) % 26) for i in range(len(str1))]) def shift_str(str, n): return "".join([shift_char(c, n) for c in str]) def remove_nonce(m): v = from_char(m[0]) * (-1) return "".join([shift_char(c, v) for c in m[2:]]) if __name__ == "__main__": if len(TXT) < KEY_LENGTH: raise Exception("txt length") for j in range(len(C)): if len(C[j]) - 2 != len(TXT): raise Exception("C{} length".format(j))
7f37652057d62733f72c52572916954f098693e6
lupetimayaraturbiani/EstudoPython
/Ex_EstruturaSequencial/ex6.py
166
3.828125
4
# -*- coding: utf-8 -*- l = int(input("Informe a medida do lado do quadrado: ")) area = l * l print("O dobro da medida da área do quadrado é de " + str(area * 2))
66daf6e7b080b52000fb5b7c5056bf89cd6d7891
lupetimayaraturbiani/EstudoPython
/Ex_EstruturaSequencial/ex5.py
169
4
4
# -*- coding: utf-8 -*- r = float(input("Digite o valor do raio do círculo: ")) area_c = 2 * 3.14 * r print("A área do círculo corresponde a: " + str(area_c) + ".")
f9de5ebacd27919f7966554c3597d56f2c0e2e05
chaminnk/Project-Euler
/20)sum of digits of 100!.py
231
3.65625
4
import time start = time.time() total = 1 for num in range(1,100): total*=num #getting 100! total2 = 0 for digit in str(total): total2+=int(digit) #getting sum of digits in 100! print total2 print (time.time() - start),'s'
5c94921ebb2ef33abac1c369670d5f878cbd2aa2
hscannell/MHW-tableau
/code/LSTM/marineHeatWaves.py
44,481
3.53125
4
''' A set of functions which implement the Marine Heat Wave (MHW) definition of Hobday et al. (2016) ''' import numpy as np import scipy as sp from scipy import linalg from scipy import stats import scipy.ndimage as ndimage from datetime import date def detect(t, temp, climatologyPeriod=[None,None], pctile=90, windowHalfWidth=5, smoothPercentile=True, smoothPercentileWidth=31, minDuration=5, joinAcrossGaps=True, maxGap=2, maxPadLength=False, coldSpells=False, alternateClimatology=False): ''' Applies the Hobday et al. (2016) marine heat wave definition to an input time series of temp ('temp') along with a time vector ('t'). Outputs properties of all detected marine heat waves. Inputs: t Time vector, in datetime format (e.g., date(1982,1,1).toordinal()) [1D numpy array of length T] temp Temperature vector [1D numpy array of length T] Outputs: mhw Detected marine heat waves (MHWs). Each key (following list) is a list of length N where N is the number of detected MHWs: 'time_start' Start time of MHW [datetime format] 'time_end' End time of MHW [datetime format] 'time_peak' Time of MHW peak [datetime format] 'date_start' Start date of MHW [datetime format] 'date_end' End date of MHW [datetime format] 'date_peak' Date of MHW peak [datetime format] 'index_start' Start index of MHW 'index_end' End index of MHW 'index_peak' Index of MHW peak 'duration' Duration of MHW [days] 'intensity_max' Maximum (peak) intensity [deg. C] 'intensity_mean' Mean intensity [deg. C] 'intensity_var' Intensity variability [deg. C] 'intensity_cumulative' Cumulative intensity [deg. C x days] 'rate_onset' Onset rate of MHW [deg. C / days] 'rate_decline' Decline rate of MHW [deg. C / days] 'intensity_max_relThresh', 'intensity_mean_relThresh', 'intensity_var_relThresh', and 'intensity_cumulative_relThresh' are as above except relative to the threshold (e.g., 90th percentile) rather than the seasonal climatology 'intensity_max_abs', 'intensity_mean_abs', 'intensity_var_abs', and 'intensity_cumulative_abs' are as above except as absolute magnitudes rather than relative to the seasonal climatology or threshold 'category' is an integer category system (1, 2, 3, 4) based on the maximum intensity in multiples of threshold exceedances, i.e., a value of 1 indicates the MHW intensity (relative to the climatology) was >=1 times the value of the threshold (but less than 2 times; relative to climatology, i.e., threshold - climatology). Category types are defined as 1=strong, 2=moderate, 3=severe, 4=extreme. More details in Hobday et al. (in prep., Oceanography). Also supplied are the duration of each of these categories for each event. 'n_events' A scalar integer (not a list) indicating the total number of detected MHW events clim Climatology of SST. Each key (following list) is a seasonally-varying time series [1D numpy array of length T] of a particular measure: 'thresh' Seasonally varying threshold (e.g., 90th percentile) 'seas' Climatological seasonal cycle 'missing' A vector of TRUE/FALSE indicating which elements in temp were missing values for the MHWs detection Options: climatologyPeriod Period over which climatology is calculated, specified as list of start and end years. Default is to calculate over the full range of years in the supplied time series. Alternate periods suppled as a list e.g. [1983,2012]. pctile Threshold percentile (%) for detection of extreme values (DEFAULT = 90) windowHalfWidth Width of window (one sided) about day-of-year used for the pooling of values and calculation of threshold percentile (DEFAULT = 5 [days]) smoothPercentile Boolean switch indicating whether to smooth the threshold percentile timeseries with a moving average (DEFAULT = True) smoothPercentileWidth Width of moving average window for smoothing threshold (DEFAULT = 31 [days]) minDuration Minimum duration for acceptance detected MHWs (DEFAULT = 5 [days]) joinAcrossGaps Boolean switch indicating whether to join MHWs which occur before/after a short gap (DEFAULT = True) maxGap Maximum length of gap allowed for the joining of MHWs (DEFAULT = 2 [days]) maxPadLength Specifies the maximum length [days] over which to interpolate (pad) missing data (specified as nans) in input temp time series. i.e., any consecutive blocks of NaNs with length greater than maxPadLength will be left as NaN. Set as an integer. (DEFAULT = False, interpolates over all missing values). coldSpells Specifies if the code should detect cold events instead of heat events. (DEFAULT = False) alternateClimatology Specifies an alternate temperature time series to use for the calculation of the climatology. Format is as a list of numpy arrays: (1) the first element of the list is a time vector, in datetime format (e.g., date(1982,1,1).toordinal()) [1D numpy array of length TClim] and (2) the second element of the list is a temperature vector [1D numpy array of length TClim]. (DEFAULT = False) Notes: 1. This function assumes that the input time series consist of continuous daily values with few missing values. Time ranges which start and end part-way through the calendar year are supported. 2. This function supports leap years. This is done by ignoring Feb 29s for the initial calculation of the climatology and threshold. The value of these for Feb 29 is then linearly interpolated from the values for Feb 28 and Mar 1. 3. The calculation of onset and decline rates assumes that the heat wave started a half-day before the start day and ended a half-day after the end-day. (This is consistent with the duration definition as implemented, which assumes duration = end day - start day + 1.) 4. For the purposes of MHW detection, any missing temp values not interpolated over (through optional maxPadLLength) will be set equal to the seasonal climatology. This means they will trigger the end/start of any adjacent temp values which satisfy the MHW criteria. 5. If the code is used to detect cold events (coldSpells = True), then it works just as for heat waves except that events are detected as deviations below the (100 - pctile)th percentile (e.g., the 10th instead of 90th) for at least 5 days. Intensities are reported as negative values and represent the temperature anomaly below climatology. Written by Eric Oliver, Institue for Marine and Antarctic Studies, University of Tasmania, Feb 2015 ''' # # Initialize MHW output variable # mhw = {} mhw['time_start'] = [] # datetime format mhw['time_end'] = [] # datetime format mhw['time_peak'] = [] # datetime format mhw['date_start'] = [] # datetime format mhw['date_end'] = [] # datetime format mhw['date_peak'] = [] # datetime format mhw['index_start'] = [] mhw['index_end'] = [] mhw['index_peak'] = [] mhw['duration'] = [] # [days] mhw['duration_moderate'] = [] # [days] mhw['duration_strong'] = [] # [days] mhw['duration_severe'] = [] # [days] mhw['duration_extreme'] = [] # [days] mhw['intensity_max'] = [] # [deg C] mhw['intensity_mean'] = [] # [deg C] mhw['intensity_var'] = [] # [deg C] mhw['intensity_cumulative'] = [] # [deg C] mhw['intensity_max_relThresh'] = [] # [deg C] mhw['intensity_mean_relThresh'] = [] # [deg C] mhw['intensity_var_relThresh'] = [] # [deg C] mhw['intensity_cumulative_relThresh'] = [] # [deg C] mhw['intensity_max_abs'] = [] # [deg C] mhw['intensity_mean_abs'] = [] # [deg C] mhw['intensity_var_abs'] = [] # [deg C] mhw['intensity_cumulative_abs'] = [] # [deg C] mhw['category'] = [] mhw['rate_onset'] = [] # [deg C / day] mhw['rate_decline'] = [] # [deg C / day] # # Time and dates vectors # # Generate vectors for year, month, day-of-month, and day-of-year T = len(t) year = np.zeros((T)) month = np.zeros((T)) day = np.zeros((T)) doy = np.zeros((T)) for i in range(len(t)): year[i] = date.fromordinal(t[i]).year month[i] = date.fromordinal(t[i]).month day[i] = date.fromordinal(t[i]).day # Leap-year baseline for defining day-of-year values year_leapYear = 2012 # This year was a leap-year and therefore doy in range of 1 to 366 t_leapYear = np.arange(date(year_leapYear, 1, 1).toordinal(),date(year_leapYear, 12, 31).toordinal()+1) dates_leapYear = [date.fromordinal(tt.astype(int)) for tt in t_leapYear] month_leapYear = np.zeros((len(t_leapYear))) day_leapYear = np.zeros((len(t_leapYear))) doy_leapYear = np.zeros((len(t_leapYear))) for tt in range(len(t_leapYear)): month_leapYear[tt] = date.fromordinal(t_leapYear[tt]).month day_leapYear[tt] = date.fromordinal(t_leapYear[tt]).day doy_leapYear[tt] = t_leapYear[tt] - date(date.fromordinal(t_leapYear[tt]).year,1,1).toordinal() + 1 # Calculate day-of-year values for tt in range(T): doy[tt] = doy_leapYear[(month_leapYear == month[tt]) * (day_leapYear == day[tt])] # Constants (doy values for Feb-28 and Feb-29) for handling leap-years feb28 = 59 feb29 = 60 # Set climatology period, if unset use full range of available data if (climatologyPeriod[0] is None) or (climatologyPeriod[1] is None): climatologyPeriod[0] = year[0] climatologyPeriod[1] = year[-1] # # Calculate threshold and seasonal climatology (varying with day-of-year) # # if alternate temperature time series is supplied for the calculation of the climatology if alternateClimatology: tClim = alternateClimatology[0] tempClim = alternateClimatology[1] TClim = len(tClim) yearClim = np.zeros((TClim)) monthClim = np.zeros((TClim)) dayClim = np.zeros((TClim)) doyClim = np.zeros((TClim)) for i in range(TClim): yearClim[i] = date.fromordinal(tClim[i]).year monthClim[i] = date.fromordinal(tClim[i]).month dayClim[i] = date.fromordinal(tClim[i]).day doyClim[i] = doy_leapYear[(month_leapYear == monthClim[i]) * (day_leapYear == dayClim[i])] else: tempClim = temp.copy() TClim = np.array([T]).copy()[0] yearClim = year.copy() monthClim = month.copy() dayClim = day.copy() doyClim = doy.copy() # Flip temp time series if detecting cold spells if coldSpells: temp = -1.*temp tempClim = -1.*tempClim # Pad missing values for all consecutive missing blocks of length <= maxPadLength if maxPadLength: temp = pad(temp, maxPadLength=maxPadLength) tempClim = pad(tempClim, maxPadLength=maxPadLength) # Length of climatological year lenClimYear = 366 # Start and end indices clim_start = np.where(yearClim == climatologyPeriod[0])[0][0] clim_end = np.where(yearClim == climatologyPeriod[1])[0][-1] # Inialize arrays thresh_climYear = np.NaN*np.zeros(lenClimYear) seas_climYear = np.NaN*np.zeros(lenClimYear) clim = {} clim['thresh'] = np.NaN*np.zeros(TClim) clim['seas'] = np.NaN*np.zeros(TClim) # Loop over all day-of-year values, and calculate threshold and seasonal climatology across years for d in range(1,lenClimYear+1): # Special case for Feb 29 if d == feb29: continue # find all indices for each day of the year +/- windowHalfWidth and from them calculate the threshold tt0 = np.where(doyClim[clim_start:clim_end+1] == d)[0] # If this doy value does not exist (i.e. in 360-day calendars) then skip it if len(tt0) == 0: continue tt = np.array([]) for w in range(-windowHalfWidth, windowHalfWidth+1): tt = np.append(tt, clim_start+tt0 + w) tt = tt[tt>=0] # Reject indices "before" the first element tt = tt[tt<TClim] # Reject indices "after" the last element thresh_climYear[d-1] = np.percentile(nonans(tempClim[tt.astype(int)]), pctile) seas_climYear[d-1] = np.mean(nonans(tempClim[tt.astype(int)])) # Special case for Feb 29 thresh_climYear[feb29-1] = 0.5*thresh_climYear[feb29-2] + 0.5*thresh_climYear[feb29] seas_climYear[feb29-1] = 0.5*seas_climYear[feb29-2] + 0.5*seas_climYear[feb29] # Smooth if desired if smoothPercentile: # If the climatology contains NaNs, then assume it is a <365-day year and deal accordingly if np.sum(np.isnan(seas_climYear)) + np.sum(np.isnan(thresh_climYear)): valid = ~np.isnan(thresh_climYear) thresh_climYear[valid] = runavg(thresh_climYear[valid], smoothPercentileWidth) valid = ~np.isnan(seas_climYear) seas_climYear[valid] = runavg(seas_climYear[valid], smoothPercentileWidth) # >= 365-day year else: thresh_climYear = runavg(thresh_climYear, smoothPercentileWidth) seas_climYear = runavg(seas_climYear, smoothPercentileWidth) # Generate threshold for full time series clim['thresh'] = thresh_climYear[doy.astype(int)-1] clim['seas'] = seas_climYear[doy.astype(int)-1] # Save vector indicating which points in temp are missing values clim['missing'] = np.isnan(temp) # Set all remaining missing temp values equal to the climatology temp[np.isnan(temp)] = clim['seas'][np.isnan(temp)] # # Find MHWs as exceedances above the threshold # # Time series of "True" when threshold is exceeded, "False" otherwise exceed_bool = temp - clim['thresh'] exceed_bool[exceed_bool<=0] = False exceed_bool[exceed_bool>0] = True # Find contiguous regions of exceed_bool = True events, n_events = ndimage.label(exceed_bool) # Find all MHW events of duration >= minDuration for ev in range(1,n_events+1): event_duration = (events == ev).sum() if event_duration < minDuration: continue mhw['time_start'].append(t[np.where(events == ev)[0][0]]) mhw['time_end'].append(t[np.where(events == ev)[0][-1]]) # Link heat waves that occur before and after a short gap (gap must be no longer than maxGap) if joinAcrossGaps: # Calculate gap length for each consecutive pair of events gaps = np.array(mhw['time_start'][1:]) - np.array(mhw['time_end'][0:-1]) - 1 if len(gaps) > 0: while gaps.min() <= maxGap: # Find first short gap ev = np.where(gaps <= maxGap)[0][0] # Extend first MHW to encompass second MHW (including gap) mhw['time_end'][ev] = mhw['time_end'][ev+1] # Remove second event from record del mhw['time_start'][ev+1] del mhw['time_end'][ev+1] # Calculate gap length for each consecutive pair of events gaps = np.array(mhw['time_start'][1:]) - np.array(mhw['time_end'][0:-1]) - 1 if len(gaps) == 0: break # Calculate marine heat wave properties mhw['n_events'] = len(mhw['time_start']) categories = np.array(['Moderate', 'Strong', 'Severe', 'Extreme']) for ev in range(mhw['n_events']): mhw['date_start'].append(date.fromordinal(int(mhw['time_start'][ev]))) mhw['date_end'].append(date.fromordinal(int(mhw['time_end'][ev]))) # Get SST series during MHW event, relative to both threshold and to seasonal climatology tt_start = np.where(t==mhw['time_start'][ev])[0][0] tt_end = np.where(t==mhw['time_end'][ev])[0][0] mhw['index_start'].append(tt_start) mhw['index_end'].append(tt_end) temp_mhw = temp[tt_start:tt_end+1] thresh_mhw = clim['thresh'][tt_start:tt_end+1] seas_mhw = clim['seas'][tt_start:tt_end+1] mhw_relSeas = temp_mhw - seas_mhw mhw_relThresh = temp_mhw - thresh_mhw mhw_relThreshNorm = (temp_mhw - thresh_mhw) / (thresh_mhw - seas_mhw) mhw_abs = temp_mhw # Find peak tt_peak = np.argmax(mhw_relSeas) mhw['time_peak'].append(mhw['time_start'][ev] + tt_peak) mhw['date_peak'].append(date.fromordinal(int(mhw['time_start'][ev] + tt_peak))) mhw['index_peak'].append(tt_start + tt_peak) # MHW Duration mhw['duration'].append(len(mhw_relSeas)) # MHW Intensity metrics mhw['intensity_max'].append(mhw_relSeas[tt_peak]) mhw['intensity_mean'].append(mhw_relSeas.mean()) mhw['intensity_var'].append(np.sqrt(mhw_relSeas.var())) mhw['intensity_cumulative'].append(mhw_relSeas.sum()) mhw['intensity_max_relThresh'].append(mhw_relThresh[tt_peak]) mhw['intensity_mean_relThresh'].append(mhw_relThresh.mean()) mhw['intensity_var_relThresh'].append(np.sqrt(mhw_relThresh.var())) mhw['intensity_cumulative_relThresh'].append(mhw_relThresh.sum()) mhw['intensity_max_abs'].append(mhw_abs[tt_peak]) mhw['intensity_mean_abs'].append(mhw_abs.mean()) mhw['intensity_var_abs'].append(np.sqrt(mhw_abs.var())) mhw['intensity_cumulative_abs'].append(mhw_abs.sum()) # Fix categories tt_peakCat = np.argmax(mhw_relThreshNorm) cats = np.floor(1. + mhw_relThreshNorm) mhw['category'].append(categories[np.min([cats[tt_peakCat], 4]).astype(int) - 1]) mhw['duration_moderate'].append(np.sum(cats == 1.)) mhw['duration_strong'].append(np.sum(cats == 2.)) mhw['duration_severe'].append(np.sum(cats == 3.)) mhw['duration_extreme'].append(np.sum(cats >= 4.)) # Rates of onset and decline # Requires getting MHW strength at "start" and "end" of event (continuous: assume start/end half-day before/after first/last point) if tt_start > 0: mhw_relSeas_start = 0.5*(mhw_relSeas[0] + temp[tt_start-1] - clim['seas'][tt_start-1]) mhw['rate_onset'].append((mhw_relSeas[tt_peak] - mhw_relSeas_start) / (tt_peak+0.5)) else: # MHW starts at beginning of time series if tt_peak == 0: # Peak is also at begining of time series, assume onset time = 1 day mhw['rate_onset'].append((mhw_relSeas[tt_peak] - mhw_relSeas[0]) / 1.) else: mhw['rate_onset'].append((mhw_relSeas[tt_peak] - mhw_relSeas[0]) / tt_peak) if tt_end < T-1: mhw_relSeas_end = 0.5*(mhw_relSeas[-1] + temp[tt_end+1] - clim['seas'][tt_end+1]) mhw['rate_decline'].append((mhw_relSeas[tt_peak] - mhw_relSeas_end) / (tt_end-tt_start-tt_peak+0.5)) else: # MHW finishes at end of time series if tt_peak == T-1: # Peak is also at end of time series, assume decline time = 1 day mhw['rate_decline'].append((mhw_relSeas[tt_peak] - mhw_relSeas[-1]) / 1.) else: mhw['rate_decline'].append((mhw_relSeas[tt_peak] - mhw_relSeas[-1]) / (tt_end-tt_start-tt_peak)) # Flip climatology and intensties in case of cold spell detection if coldSpells: clim['seas'] = -1.*clim['seas'] clim['thresh'] = -1.*clim['thresh'] for ev in range(len(mhw['intensity_max'])): mhw['intensity_max'][ev] = -1.*mhw['intensity_max'][ev] mhw['intensity_mean'][ev] = -1.*mhw['intensity_mean'][ev] mhw['intensity_cumulative'][ev] = -1.*mhw['intensity_cumulative'][ev] mhw['intensity_max_relThresh'][ev] = -1.*mhw['intensity_max_relThresh'][ev] mhw['intensity_mean_relThresh'][ev] = -1.*mhw['intensity_mean_relThresh'][ev] mhw['intensity_cumulative_relThresh'][ev] = -1.*mhw['intensity_cumulative_relThresh'][ev] mhw['intensity_max_abs'][ev] = -1.*mhw['intensity_max_abs'][ev] mhw['intensity_mean_abs'][ev] = -1.*mhw['intensity_mean_abs'][ev] mhw['intensity_cumulative_abs'][ev] = -1.*mhw['intensity_cumulative_abs'][ev] return mhw, clim def blockAverage(t, mhw, clim=None, blockLength=1, removeMissing=False, temp=None): ''' Calculate statistics of marine heatwave (MHW) properties averaged over blocks of a specified length of time. Takes as input a collection of detected MHWs (using the marineHeatWaves.detect function) and a time vector for the source SST series. Inputs: t Time vector, in datetime format (e.g., date(1982,1,1).toordinal()) mhw Marine heat waves (MHWs) detected using marineHeatWaves.detect Outputs: mhwBlock Time series of block-averaged MHW properties. Each key (following list) is a list of length N where N is the number of blocks: 'years_start' Start year blocks (inclusive) 'years_end' End year of blocks (inclusive) 'years_centre' Decimal year at centre of blocks 'count' Total MHW count in each block 'duration' Average MHW duration in each block [days] 'intensity_max' Average MHW "maximum (peak) intensity" in each block [deg. C] 'intensity_max_max' Maximum MHW "maximum (peak) intensity" in each block [deg. C] 'intensity_mean' Average MHW "mean intensity" in each block [deg. C] 'intensity_var' Average MHW "intensity variability" in each block [deg. C] 'intensity_cumulative' Average MHW "cumulative intensity" in each block [deg. C x days] 'rate_onset' Average MHW onset rate in each block [deg. C / days] 'rate_decline' Average MHW decline rate in each block [deg. C / days] 'total_days' Total number of MHW days in each block [days] 'total_icum' Total cumulative intensity over all MHWs in each block [deg. C x days] 'intensity_max_relThresh', 'intensity_mean_relThresh', 'intensity_var_relThresh', and 'intensity_cumulative_relThresh' are as above except relative to the threshold (e.g., 90th percentile) rather than the seasonal climatology 'intensity_max_abs', 'intensity_mean_abs', 'intensity_var_abs', and 'intensity_cumulative_abs' are as above except as absolute magnitudes rather than relative to the seasonal climatology or threshold Options: blockLength Size of block (in years) over which to calculate the averaged MHW properties. Must be an integer greater than or equal to 1 (DEFAULT = 1 [year]) removeMissing Boolean switch indicating whether to remove (set = NaN) statistics for any blocks in which there were missing temperature values (DEFAULT = FALSE) clim The temperature climatology (including missing value information) as output by marineHeatWaves.detect (required if removeMissing = TRUE) temp Temperature time series. If included mhwBlock will output block averages of mean, max, and min temperature (DEFAULT = NONE) If both clim and temp are provided, this will output annual counts of moderate, strong, severe, and extreme days. Notes: This function assumes that the input time vector consists of continuous daily values. Note that in the case of time ranges which start and end part-way through the calendar year, the block averages at the endpoints, for which there is less than a block length of data, will need to be interpreted with care. Written by Eric Oliver, Institue for Marine and Antarctic Studies, University of Tasmania, Feb-Mar 2015 ''' # # Time and dates vectors, and calculate block timing # # Generate vectors for year, month, day-of-month, and day-of-year T = len(t) year = np.zeros((T)) month = np.zeros((T)) day = np.zeros((T)) for i in range(T): year[i] = date.fromordinal(t[i]).year month[i] = date.fromordinal(t[i]).month day[i] = date.fromordinal(t[i]).day # Number of blocks, round up to include partial blocks at end years = np.unique(year) nBlocks = np.ceil((years.max() - years.min() + 1) / blockLength).astype(int) # # Temperature time series included? # sw_temp = None sw_cats = None if temp is not None: sw_temp = True if clim is not None: sw_cats = True else: sw_cats = False else: sw_temp = False # # Initialize MHW output variable # mhwBlock = {} mhwBlock['count'] = np.zeros(nBlocks) mhwBlock['count'] = np.zeros(nBlocks) mhwBlock['duration'] = np.zeros(nBlocks) mhwBlock['intensity_max'] = np.zeros(nBlocks) mhwBlock['intensity_max_max'] = np.zeros(nBlocks) mhwBlock['intensity_mean'] = np.zeros(nBlocks) mhwBlock['intensity_cumulative'] = np.zeros(nBlocks) mhwBlock['intensity_var'] = np.zeros(nBlocks) mhwBlock['intensity_max_relThresh'] = np.zeros(nBlocks) mhwBlock['intensity_mean_relThresh'] = np.zeros(nBlocks) mhwBlock['intensity_cumulative_relThresh'] = np.zeros(nBlocks) mhwBlock['intensity_var_relThresh'] = np.zeros(nBlocks) mhwBlock['intensity_max_abs'] = np.zeros(nBlocks) mhwBlock['intensity_mean_abs'] = np.zeros(nBlocks) mhwBlock['intensity_cumulative_abs'] = np.zeros(nBlocks) mhwBlock['intensity_var_abs'] = np.zeros(nBlocks) mhwBlock['rate_onset'] = np.zeros(nBlocks) mhwBlock['rate_decline'] = np.zeros(nBlocks) mhwBlock['total_days'] = np.zeros(nBlocks) mhwBlock['total_icum'] = np.zeros(nBlocks) if sw_temp: mhwBlock['temp_mean'] = np.zeros(nBlocks) mhwBlock['temp_max'] = np.zeros(nBlocks) mhwBlock['temp_min'] = np.zeros(nBlocks) # Calculate category days if sw_cats: mhwBlock['moderate_days'] = np.zeros(nBlocks) mhwBlock['strong_days'] = np.zeros(nBlocks) mhwBlock['severe_days'] = np.zeros(nBlocks) mhwBlock['extreme_days'] = np.zeros(nBlocks) cats = np.floor(1 + (temp - clim['thresh']) / (clim['thresh'] - clim['seas'])) mhwIndex = np.zeros(t.shape) for ev in range(mhw['n_events']): mhwIndex[mhw['index_start'][ev]:mhw['index_end'][ev]+1] = 1. # Start, end, and centre years for all blocks mhwBlock['years_start'] = years[range(0, len(years), blockLength)] mhwBlock['years_end'] = mhwBlock['years_start'] + blockLength - 1 mhwBlock['years_centre'] = 0.5*(mhwBlock['years_start'] + mhwBlock['years_end']) # # Calculate block averages # for i in range(mhw['n_events']): # Block index for year of each MHW (MHW year defined by start year) iBlock = np.where((mhwBlock['years_start'] <= mhw['date_start'][i].year) * (mhwBlock['years_end'] >= mhw['date_start'][i].year))[0][0] # Add MHW properties to block count mhwBlock['count'][iBlock] += 1 mhwBlock['duration'][iBlock] += mhw['duration'][i] mhwBlock['intensity_max'][iBlock] += mhw['intensity_max'][i] mhwBlock['intensity_max_max'][iBlock] = np.max([mhwBlock['intensity_max_max'][iBlock], mhw['intensity_max'][i]]) mhwBlock['intensity_mean'][iBlock] += mhw['intensity_mean'][i] mhwBlock['intensity_cumulative'][iBlock] += mhw['intensity_cumulative'][i] mhwBlock['intensity_var'][iBlock] += mhw['intensity_var'][i] mhwBlock['intensity_max_relThresh'][iBlock] += mhw['intensity_max_relThresh'][i] mhwBlock['intensity_mean_relThresh'][iBlock] += mhw['intensity_mean_relThresh'][i] mhwBlock['intensity_cumulative_relThresh'][iBlock] += mhw['intensity_cumulative_relThresh'][i] mhwBlock['intensity_var_relThresh'][iBlock] += mhw['intensity_var_relThresh'][i] mhwBlock['intensity_max_abs'][iBlock] += mhw['intensity_max_abs'][i] mhwBlock['intensity_mean_abs'][iBlock] += mhw['intensity_mean_abs'][i] mhwBlock['intensity_cumulative_abs'][iBlock] += mhw['intensity_cumulative_abs'][i] mhwBlock['intensity_var_abs'][iBlock] += mhw['intensity_var_abs'][i] mhwBlock['rate_onset'][iBlock] += mhw['rate_onset'][i] mhwBlock['rate_decline'][iBlock] += mhw['rate_decline'][i] if mhw['date_start'][i].year == mhw['date_end'][i].year: # MHW in single year mhwBlock['total_days'][iBlock] += mhw['duration'][i] else: # MHW spans multiple years year_mhw = year[mhw['index_start'][i]:mhw['index_end'][i]+1] for yr_mhw in np.unique(year_mhw): iBlock = np.where((mhwBlock['years_start'] <= yr_mhw) * (mhwBlock['years_end'] >= yr_mhw))[0][0] mhwBlock['total_days'][iBlock] += np.sum(year_mhw == yr_mhw) # NOTE: icum for a MHW is assigned to its start year, even if it spans mult. years mhwBlock['total_icum'][iBlock] += mhw['intensity_cumulative'][i] # Calculation of category days if sw_cats: for i in range(int(nBlocks)): mhwBlock['moderate_days'][i] = ((year >= mhwBlock['years_start'][i]) * (year <= mhwBlock['years_end'][i]) * mhwIndex * (cats == 1)).astype(int).sum() mhwBlock['strong_days'][i] = ((year >= mhwBlock['years_start'][i]) * (year <= mhwBlock['years_end'][i]) * mhwIndex * (cats == 2)).astype(int).sum() mhwBlock['severe_days'][i] = ((year >= mhwBlock['years_start'][i]) * (year <= mhwBlock['years_end'][i]) * mhwIndex * (cats == 3)).astype(int).sum() mhwBlock['extreme_days'][i] = ((year >= mhwBlock['years_start'][i]) * (year <= mhwBlock['years_end'][i]) * mhwIndex * (cats >= 4)).astype(int).sum() # Calculate averages count = 1.*mhwBlock['count'] count[count==0] = np.nan mhwBlock['duration'] = mhwBlock['duration'] / count mhwBlock['intensity_max'] = mhwBlock['intensity_max'] / count mhwBlock['intensity_mean'] = mhwBlock['intensity_mean'] / count mhwBlock['intensity_cumulative'] = mhwBlock['intensity_cumulative'] / count mhwBlock['intensity_var'] = mhwBlock['intensity_var'] / count mhwBlock['intensity_max_relThresh'] = mhwBlock['intensity_max_relThresh'] / count mhwBlock['intensity_mean_relThresh'] = mhwBlock['intensity_mean_relThresh'] / count mhwBlock['intensity_cumulative_relThresh'] = mhwBlock['intensity_cumulative_relThresh'] / count mhwBlock['intensity_var_relThresh'] = mhwBlock['intensity_var_relThresh'] / count mhwBlock['intensity_max_abs'] = mhwBlock['intensity_max_abs'] / count mhwBlock['intensity_mean_abs'] = mhwBlock['intensity_mean_abs'] / count mhwBlock['intensity_cumulative_abs'] = mhwBlock['intensity_cumulative_abs'] / count mhwBlock['intensity_var_abs'] = mhwBlock['intensity_var_abs'] / count mhwBlock['rate_onset'] = mhwBlock['rate_onset'] / count mhwBlock['rate_decline'] = mhwBlock['rate_decline'] / count # Replace empty years in intensity_max_max mhwBlock['intensity_max_max'][np.isnan(mhwBlock['intensity_max'])] = np.nan # Temperature series if sw_temp: for i in range(int(nBlocks)): tt = (year >= mhwBlock['years_start'][i]) * (year <= mhwBlock['years_end'][i]) mhwBlock['temp_mean'][i] = np.nanmean(temp[tt]) mhwBlock['temp_max'][i] = np.nanmax(temp[tt]) mhwBlock['temp_min'][i] = np.nanmin(temp[tt]) # # Remove years with missing values # if removeMissing: missingYears = np.unique(year[np.where(clim['missing'])[0]]) for y in range(len(missingYears)): iMissing = np.where((mhwBlock['years_start'] <= missingYears[y]) * (mhwBlock['years_end'] >= missingYears[y]))[0][0] mhwBlock['count'][iMissing] = np.nan mhwBlock['duration'][iMissing] = np.nan mhwBlock['intensity_max'][iMissing] = np.nan mhwBlock['intensity_max_max'][iMissing] = np.nan mhwBlock['intensity_mean'][iMissing] = np.nan mhwBlock['intensity_cumulative'][iMissing] = np.nan mhwBlock['intensity_var'][iMissing] = np.nan mhwBlock['intensity_max_relThresh'][iMissing] = np.nan mhwBlock['intensity_mean_relThresh'][iMissing] = np.nan mhwBlock['intensity_cumulative_relThresh'][iMissing] = np.nan mhwBlock['intensity_var_relThresh'][iMissing] = np.nan mhwBlock['intensity_max_abs'][iMissing] = np.nan mhwBlock['intensity_mean_abs'][iMissing] = np.nan mhwBlock['intensity_cumulative_abs'][iMissing] = np.nan mhwBlock['intensity_var_abs'][iMissing] = np.nan mhwBlock['rate_onset'][iMissing] = np.nan mhwBlock['rate_decline'][iMissing] = np.nan mhwBlock['total_days'][iMissing] = np.nan if sw_cats: mhwBlock['moderate_days'][iMissing] = np.nan mhwBlock['strong_days'][iMissing] = np.nan mhwBlock['severe_days'][iMissing] = np.nan mhwBlock['extreme_days'][iMissing] = np.nan mhwBlock['total_icum'][iMissing] = np.nan return mhwBlock def meanTrend(mhwBlock, alpha=0.05): ''' Calculates the mean and trend of marine heatwave (MHW) properties. Takes as input a collection of block-averaged MHW properties (using the marineHeatWaves.blockAverage function). Handles missing values (which should be specified by NaNs). Inputs: mhwBlock Time series of block-averaged MHW statistics calculated using the marineHeatWaves.blockAverage function alpha Significance level for estimate of confidence limits on trend, e.g., alpha = 0.05 for 5% significance (or 95% confidence) (DEFAULT = 0.05) Outputs: mean Mean of all MHW properties over all block-averaged values trend Linear trend of all MHW properties over all block-averaged values dtrend One-sided width of (1-alpha)% confidence intevfal on linear trend, i.e., trend lies within (trend-dtrend, trend+dtrend) with specified level of confidence. Both mean and trend have the following keys, the units the trend are the units of the property of interest per year: 'duration' Duration of MHW [days] 'intensity_max' Maximum (peak) intensity [deg. C] 'intensity_mean' Mean intensity [deg. C] 'intensity_var' Intensity variability [deg. C] 'intensity_cumulative' Cumulative intensity [deg. C x days] 'rate_onset' Onset rate of MHW [deg. C / days] 'rate_decline' Decline rate of MHW [deg. C / days] 'intensity_max_relThresh', 'intensity_mean_relThresh', 'intensity_var_relThresh', and 'intensity_cumulative_relThresh' are as above except relative to the threshold (e.g., 90th percentile) rather than the seasonal climatology 'intensity_max_abs', 'intensity_mean_abs', 'intensity_var_abs', and 'intensity_cumulative_abs' are as above except as absolute magnitudes rather than relative to the seasonal climatology or threshold Notes: This calculation performs a multiple linear regression of the form y ~ beta * X + eps where y is the MHW property of interest and X is a matrix of predictors. The first column of X is all ones to estimate the mean, the second column is the time vector which is taken as mhwBlock['years_centre'] and offset to be equal to zero at its mid-point. Written by Eric Oliver, Institue for Marine and Antarctic Studies, University of Tasmania, Feb-Mar 2015 ''' # Initialize mean and trend dictionaries mean = {} trend = {} dtrend = {} # Construct matrix of predictors, first column is all ones to estimate the mean, # second column is the time vector, equal to zero at mid-point. t = mhwBlock['years_centre'] X = np.array([np.ones(t.shape), t-t.mean()]).T # Loop over all keys in mhwBlock for key in mhwBlock.keys(): # Skip time-vector keys of mhwBlock if (key == 'years_centre') + (key == 'years_end') + (key == 'years_start'): continue # Predictand (MHW property of interest) y = mhwBlock[key] valid = ~np.isnan(y) # non-NaN indices # Perform linear regression over valid indices if np.isinf(nonans(y).sum()): # If contains Inf values beta = [np.nan, np.nan] elif np.sum(~np.isnan(y)) > 0: # If at least one non-NaN value beta = linalg.lstsq(X[valid,:], y[valid])[0] else: beta = [np.nan, np.nan] # Insert regression coefficients into mean and trend dictionaries mean[key] = beta[0] trend[key] = beta[1] # Confidence limits on trend yhat = np.sum(beta*X, axis=1) t_stat = stats.t.isf(alpha/2, len(t[valid])-2) s = np.sqrt(np.sum((y[valid] - yhat[valid])**2) / (len(t[valid])-2)) Sxx = np.sum(X[valid,1]**2) - (np.sum(X[valid,1])**2)/len(t[valid]) # np.var(X, axis=1)[1] dbeta1 = t_stat * s / np.sqrt(Sxx) dtrend[key] = dbeta1 # Return mean, trend return mean, trend, dtrend def rank(t, mhw): ''' Calculate the rank and return periods of marine heatwaves (MHWs) according to each metric. Takes as input a collection of detected MHWs (using the marineHeatWaves.detect function) and a time vector for the source SST series. Inputs: t Time vector, in datetime format (e.g., date(1982,1,1).toordinal()) mhw Marine heat waves (MHWs) detected using marineHeatWaves.detect Outputs: rank The rank of each MHW according to each MHW property. A rank of 1 is the largest, 2 is the 2nd largest, etc. Each key (listed below) is a list of length N where N is the number of MHWs. returnPeriod The return period (in years) of each MHW according to each MHW property. The return period signifies, statistically, the recurrence interval for an event at least as large/long as the event in quetion. Each key (listed below) is a list of length N where N is the number of MHWs. 'duration' Average MHW duration in each block [days] 'intensity_max' Average MHW "maximum (peak) intensity" in each block [deg. C] 'intensity_mean' Average MHW "mean intensity" in each block [deg. C] 'intensity_var' Average MHW "intensity variability" in each block [deg. C] 'intensity_cumulative' Average MHW "cumulative intensity" in each block [deg. C x days] 'rate_onset' Average MHW onset rate in each block [deg. C / days] 'rate_decline' Average MHW decline rate in each block [deg. C / days] 'total_days' Total number of MHW days in each block [days] 'total_icum' Total cumulative intensity over all MHWs in each block [deg. C x days] 'intensity_max_relThresh', 'intensity_mean_relThresh', 'intensity_var_relThresh', and 'intensity_cumulative_relThresh' are as above except relative to the threshold (e.g., 90th percentile) rather than the seasonal climatology 'intensity_max_abs', 'intensity_mean_abs', 'intensity_var_abs', and 'intensity_cumulative_abs' are as above except as absolute magnitudes rather than relative to the seasonal climatology or threshold Notes: This function assumes that the MHWs were calculated over a suitably long record that return periods make sense. If the record length is a few years or less than this becomes meaningless. Written by Eric Oliver, Institue for Marine and Antarctic Studies, University of Tasmania, Sep 2015 ''' # Initialize rank and return period dictionaries rank = {} returnPeriod = {} # Number of years on record nYears = len(t)/365.25 # Loop over all keys in mhw for key in mhw.keys(): # Skip irrelevant keys of mhw, only calculate rank/returns for MHW properties if (key == 'date_end') + (key == 'date_peak') + (key == 'date_start') + (key == 'date_end') + (key == 'date_peak') + (key == 'date_start') + (key == 'index_end') + (key == 'index_peak') + (key == 'index_start') + (key == 'n_events'): continue # Calculate ranks rank[key] = mhw['n_events'] - np.array(mhw[key]).argsort().argsort() # Calculate return period as (# years on record + 1) / (# of occurrences of event) # Return period is for events of at least the event magnitude/duration returnPeriod[key] = (nYears + 1) / rank[key] # Return rank, return return rank, returnPeriod def runavg(ts, w): ''' Performs a running average of an input time series using uniform window of width w. This function assumes that the input time series is periodic. Inputs: ts Time series [1D numpy array] w Integer length (must be odd) of running average window Outputs: ts_smooth Smoothed time series Written by Eric Oliver, Institue for Marine and Antarctic Studies, University of Tasmania, Feb-Mar 2015 ''' # Original length of ts N = len(ts) # make ts three-fold periodic ts = np.append(ts, np.append(ts, ts)) # smooth by convolution with a window of equal weights ts_smooth = np.convolve(ts, np.ones(w)/w, mode='same') # Only output central section, of length equal to the original length of ts ts = ts_smooth[N:2*N] return ts def pad(data, maxPadLength=False): ''' Linearly interpolate over missing data (NaNs) in a time series. Inputs: data Time series [1D numpy array] maxPadLength Specifies the maximum length over which to interpolate, i.e., any consecutive blocks of NaNs with length greater than maxPadLength will be left as NaN. Set as an integer. maxPadLength=False (default) interpolates over all NaNs. Written by Eric Oliver, Institue for Marine and Antarctic Studies, University of Tasmania, Jun 2015 ''' data_padded = data.copy() bad_indexes = np.isnan(data) good_indexes = np.logical_not(bad_indexes) good_data = data[good_indexes] interpolated = np.interp(bad_indexes.nonzero()[0], good_indexes.nonzero()[0], good_data) data_padded[bad_indexes] = interpolated if maxPadLength: blocks, n_blocks = ndimage.label(np.isnan(data)) for bl in range(1, n_blocks+1): if (blocks==bl).sum() > maxPadLength: data_padded[blocks==bl] = np.nan return data_padded def nonans(array): ''' Return input array [1D numpy array] with all nan values removed ''' return array[~np.isnan(array)]
bca49786c266839dc0da317a76d6af24b20816e5
mtahaakhan/Intro-in-python
/Python Practice/input_date.py
708
4.28125
4
# ! Here we have imported datetime and timedelta functions from datetime library from datetime import datetime,timedelta # ! Here we are receiving input from user, when is your birthday? birthday = input('When is your birthday (dd/mm/yyyy)? ') # ! Here we are converting input into birthday_date birthday_date = datetime.strptime(birthday, '%d/%m/%Y') # ! Here we are printing birthday date print('Birthday: ' + str(birthday_date)) # ! Here we are again just asking one day before from timedelta one_day = timedelta(days=1) birthday_eve = birthday_date - one_day print('Day before birthday: ' + str(birthday_eve)) # ! Now we will see Error Handling if we receive birthday date in spaces or ashes.
2937f2007681af5aede2a10485491f8d2b5092cf
mtahaakhan/Intro-in-python
/Python Practice/date_function.py
649
4.34375
4
# Here we are asking datetime library to import datetime function in our code :) from datetime import datetime, timedelta # Now the datetime.now() will return current date and time as a datetime object today = datetime.now() # We have done this in last example. print('Today is: ' + str(today)) # Now we will use timedelta # Here, from timedelta we are getting yesterdays date time one_day = timedelta(days=1) yesterday = today - one_day print('Yesterday was: ' + str(yesterday)) # Here, from timedelta we are getting last weeks date time one_week = timedelta(weeks=1) last_week = today - one_week print('Last week was: ' + str(last_week))
e797aa24ce9fbd9354c04fbbf853ca63e967c827
xtdoggx2003/CTI110
/P4T2_BugCollector_AnthonyBarnhart.py
657
4.3125
4
# Bug Collector using Loops # 29MAR2020 # CTI-110 P4T2 - Bug Collector # Anthony Barnhart # Initialize the accumlator. total = 0 # Get the number of bugs collected for each day. for day in range (1, 6): # Prompt the user. print("Enter number of bugs collected on day", day) # Input the number of bugs. bugs = int (input()) # Add bugs to toal. total = total + bugs # Display the total bugs. print("You have collected a total of", total, "bugs") # Psuedo Code # Set total = 0 # For 5 days: # Input number of bugs collected for a day # Add bugs collected to total number of bugs # Display the total bugs
6e7401d2ed0a82b75f1eaec51448f7f20476d46e
xtdoggx2003/CTI110
/P3HW1_ColorMix_AnthonyBarnhart.py
1,039
4.40625
4
# CTI-110 # P3HW1 - Color Mixer # Antony Barnhart # 15MAR2020 # Get user input for primary color 1. Prime1 = input("Enter first primary color of red, yellow or blue:") # Get user input for primary color 2. Prime2 = input("Enter second different primary color of red, yellow or blue:") # Determine secondary color and error if not one of three listed colors if Prime1 == "red" and Prime2 == "yellow" or Prime1 == "yellow" and Prime2 == "red": print("orange") elif Prime1 == "blue" and Prime2 == "yellow" or Prime1 == "yellow" and Prime2 == "blue": print("green") elif Prime1 == "blue" and Prime2 == "red" or Prime1 == "red" and Prime2 == "blue": print("purple") else: print("error") # Pseudocode # Ask user to input prime color one # Ask user to imput prime color two # Only allow input of three colors Red, Yellow, Blue # Determine the secondary color based off of user input # Display secondary color # Display error if any color outside of given perameters is input
fb64f35e7947840cb7bd32c847fdfb17b45a022e
Near-River/robot_spider
/spider/url_manager.py
734
3.71875
4
# 管理待爬取和已爬取的URL集合 class UrlManager(object): def __init__(self): self.urls = set() # 待爬取的URL集合 self.over_urls = set() # 已爬取的URL集合 def add_url(self, root_url): if root_url is None: return if root_url not in self.over_urls and root_url not in self.urls: self.urls.add(root_url) def has_more_url(self): return len(self.urls) > 0 def get_url(self): new_url = self.urls.pop() self.over_urls.add(new_url) return new_url def add_urls(self, new_urls): if new_urls is None or len(new_urls) <= 0: return for url in new_urls: self.add_url(url)
d8e20c074639e3a4a224cf67640e9c54d2a666bb
wasi-9274/DL_Directory
/DL_Projects/ETL_scripts/Load_excercise_script_important.py
10,623
3.515625
4
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from pycountry import countries from collections import defaultdict import sqlite3 sns.set() # read in the projects data set and do basic wrangling gdp = pd.read_csv('/home/wasi/ML_FOLDER/DSND_Term2-master/lessons/ETLPipelines/data/gdp_data.csv', skiprows=4) gdp.drop(['Unnamed: 62', 'Indicator Name', 'Indicator Code'], inplace=True, axis=1) population = pd.read_csv('/home/wasi/ML_FOLDER/DSND_Term2-master/lessons/ETLPipelines/data/population_data.csv', skiprows=4) population.drop(['Unnamed: 62', 'Indicator Name', 'Indicator Code'], inplace=True, axis=1) # Reshape the data sets so that they are in long format gdp_melt = gdp.melt(id_vars=['Country Name', 'Country Code'], var_name='year', value_name='gdp') # Use back fill and forward fill to fill in missing gdp values gdp_melt['gdp'] = gdp_melt.sort_values('year').groupby(['Country Name', 'Country Code'])['gdp'].fillna(method='ffill').fillna(method='bfill') population_melt = population.melt(id_vars=['Country Name', 'Country Code'], var_name='year', value_name='population') # Use back fill and forward fill to fill in missing population values population_melt['population'] = population_melt.sort_values('year').groupby('Country Name')['population'].fillna(method='ffill').fillna(method='bfill') # merge the population and gdp data together into one data frame df_indicator = gdp_melt.merge(population_melt, on=('Country Name', 'Country Code', 'year')) # filter out values that are not countries non_countries = ['World', 'High income', 'OECD members', 'Post-demographic dividend', 'IDA & IBRD total', 'Low & middle income', 'Middle income', 'IBRD only', 'East Asia & Pacific', 'Europe & Central Asia', 'North America', 'Upper middle income', 'Late-demographic dividend', 'European Union', 'East Asia & Pacific (excluding high income)', 'East Asia & Pacific (IDA & IBRD countries)', 'Euro area', 'Early-demographic dividend', 'Lower middle income', 'Latin America & Caribbean', 'Latin America & the Caribbean (IDA & IBRD countries)', 'Latin America & Caribbean (excluding high income)', 'Europe & Central Asia (IDA & IBRD countries)', 'Middle East & North Africa', 'Europe & Central Asia (excluding high income)', 'South Asia (IDA & IBRD)', 'South Asia', 'Arab World', 'IDA total', 'Sub-Saharan Africa', 'Sub-Saharan Africa (IDA & IBRD countries)', 'Sub-Saharan Africa (excluding high income)', 'Middle East & North Africa (excluding high income)', 'Middle East & North Africa (IDA & IBRD countries)', 'Central Europe and the Baltics', 'Pre-demographic dividend', 'IDA only', 'Least developed countries: UN classification', 'IDA blend', 'Fragile and conflict affected situations', 'Heavily indebted poor countries (HIPC)', 'Low income', 'Small states', 'Other small states', 'Not classified', 'Caribbean small states', 'Pacific island small states'] # remove non countries from the data df_indicator = df_indicator[~df_indicator['Country Name'].isin(non_countries)] df_indicator.reset_index(inplace=True, drop=True) df_indicator.columns = ['countryname', 'countrycode', 'year', 'gdp', 'population'] # output the first few rows of the data frame print(df_indicator.head()) ################################### END OF THE PART OF CODE NEXT STARTS NEW CODE ###################################### # read in the projects data set with all columns type string df_projects = pd.read_csv('/home/wasi/ML_FOLDER/DSND_Term2-master/lessons/ETLPipelines/data/projects_data.csv', dtype=str) df_projects.drop(['Unnamed: 56'], axis=1, inplace=True) df_projects['countryname'] = df_projects['countryname'].str.split(';').str.get(0) # set up the libraries and variables country_not_found = [] # stores countries not found in the pycountry library project_country_abbrev_dict = defaultdict(str) # set up an empty dictionary of string values # TODO: iterate through the country names in df_projects. # Create a dictionary mapping the country name to the alpha_3 ISO code for country in df_projects['countryname'].drop_duplicates().sort_values(): try: # TODO: look up the country name in the pycountry library # store the country name as the dictionary key and the ISO-3 code as the value project_country_abbrev_dict[country] = countries.lookup(country).alpha_3 except: # If the country name is not in the pycountry library, then print out the country name # And store the results in the country_not_found list country_not_found.append(country) # run this code cell to load the dictionary country_not_found_mapping = {'Co-operative Republic of Guyana': 'GUY', 'Commonwealth of Australia':'AUS', 'Democratic Republic of Sao Tome and Prin':'STP', 'Democratic Republic of the Congo':'COD', 'Democratic Socialist Republic of Sri Lan':'LKA', 'East Asia and Pacific':'EAS', 'Europe and Central Asia': 'ECS', 'Islamic Republic of Afghanistan':'AFG', 'Latin America':'LCN', 'Caribbean':'LCN', 'Macedonia':'MKD', 'Middle East and North Africa':'MEA', 'Oriental Republic of Uruguay':'URY', 'Republic of Congo':'COG', "Republic of Cote d'Ivoire":'CIV', 'Republic of Korea':'KOR', 'Republic of Niger':'NER', 'Republic of Kosovo':'XKX', 'Republic of Rwanda':'RWA', 'Republic of The Gambia':'GMB', 'Republic of Togo':'TGO', 'Republic of the Union of Myanmar':'MMR', 'Republica Bolivariana de Venezuela':'VEN', 'Sint Maarten':'SXM', "Socialist People's Libyan Arab Jamahiriy":'LBY', 'Socialist Republic of Vietnam':'VNM', 'Somali Democratic Republic':'SOM', 'South Asia':'SAS', 'St. Kitts and Nevis':'KNA', 'St. Lucia':'LCA', 'St. Vincent and the Grenadines':'VCT', 'State of Eritrea':'ERI', 'The Independent State of Papua New Guine':'PNG', 'West Bank and Gaza':'PSE', 'World':'WLD'} project_country_abbrev_dict.update(country_not_found_mapping) df_projects['countrycode'] = df_projects['countryname'].apply(lambda x: project_country_abbrev_dict[x]) df_projects['boardapprovaldate'] = pd.to_datetime(df_projects['boardapprovaldate']) df_projects['year'] = df_projects['boardapprovaldate'].dt.year.astype(str).str.slice(stop=4) df_projects['totalamt'] = pd.to_numeric(df_projects['totalamt'].str.replace(',', "")) df_projects = df_projects[['id', 'countryname', 'countrycode', 'totalamt', 'year']] print(df_projects.head()) ################################### END OF THE PART OF CODE NEXT STARTS NEW CODE ###################################### # TODO: merge the projects and indicator data frames together using countrycode and year as common keys # Use a left join so that all projects are returned even if the country/year combination does not have # indicator data df_merged = df_projects.merge(df_indicator, how='left', on=['countrycode', 'year']) print(df_merged.head(30)) ################################### END OF THE PART OF CODE NEXT STARTS NEW CODE ###################################### # Run this code to check your work print(df_merged[(df_merged['year'] == '2017') & (df_merged['countryname_y'] == 'Jordan')]) ################################### END OF THE PART OF CODE NEXT STARTS NEW CODE ###################################### # TODO: Output the df_merged data frame as a json file # HINT: Pandas has a to_json() method # HINT: use orient='records' to get one of the more common json formats # HINT: be sure to specify the name of the json file you want to create as the first input into to_json df_merged.to_json('/home/wasi/Desktop/junk/countrydata.json', orient='records') ################################### END OF THE PART OF CODE NEXT STARTS NEW CODE ###################################### # TODO: Output the df_merged data frame as a csv file # HINT: The to_csv() method is similar to the to_json() method. # HINT: If you do not want the data frame indices in your result, use index=False df_merged.to_csv('/home/wasi/Desktop/junk/countrydata.csv', index=False) ################################### END OF THE PART OF CODE NEXT STARTS NEW CODE ###################################### # # # connect to the database # # the database file will be worldbank.db # # note that sqlite3 will create this database file if it does not exist already # conn = sqlite3.connect('worldbank.db') # # # TODO: output the df_merged dataframe to a SQL table called 'merged'. # # HINT: Use the to_sql() method # # HINT: Use the conn variable for the connection parameter # # HINT: You can use the if_exists parameter like if_exists='replace' to replace a table if it already exists # # df_merged.to_sql('merged', con=conn, if_exists='replace', index=False) ################################### END OF THE PART OF CODE NEXT STARTS NEW CODE ######################################
4172fba04d1af39171f32cdaabbda8bdf3618556
wasi-9274/DL_Directory
/DL_Projects/dummy_data_storage/recommendations_script_2.py
4,468
3.640625
4
import pandas as pd import numpy as np import matplotlib.pyplot as plt # read in the datasets movies = pd.read_csv("/home/wasi/ML_FOLDER/Udacity-DSND-master/Experimental Design & Recommandations/Recommendations/" "1_Intro_to_Recommendations/movies_clean.csv") reviews = pd.read_csv("/home/wasi/ML_FOLDER/Udacity-DSND-master/Experimental Design & Recommandations/Recommendations/" "1_Intro_to_Recommendations/reviews_clean.csv") # del movies['Unnamed: 0'] # del reviews['Unnamed: 0'] def create_ranked_df(movies, reviews): ''' INPUT movies - the movies dataframe reviews - the reviews dataframe OUTPUT ranked_movies - a dataframe with movies that are sorted by highest avg rating, more reviews, then time, and must have more than 4 ratings ''' # Pull the average ratings and number of ratings for each movie movie_ratings = reviews.groupby('movie_id')['rating'] avg_ratings = movie_ratings.mean() num_ratings = movie_ratings.count() last_rating = pd.DataFrame(reviews.groupby('movie_id').max()['date']) last_rating.columns = ['last_rating'] # Add Dates rating_count_df = pd.DataFrame({'avg_rating': avg_ratings, 'num_ratings': num_ratings}) rating_count_df = rating_count_df.join(last_rating) # merge with the movies dataset movie_recs = movies.set_index('movie_id').join(rating_count_df) # sort by top avg rating and number of ratings ranked_movies = movie_recs.sort_values(['avg_rating', 'num_ratings', 'last_rating'], ascending=False) # for edge cases - subset the movie list to those with only 5 or more reviews ranked_movies = ranked_movies[ranked_movies['num_ratings'] > 4] return ranked_movies def popular_recommendations(user_id, n_top, ranked_movies): ''' INPUT: user_id - the user_id (str) of the individual you are making recommendations for n_top - an integer of the number recommendations you want back ranked_movies - a pandas dataframe of the already ranked movies based on avg rating, count, and time OUTPUT: top_movies - a list of the n_top recommended movies by movie title in order best to worst ''' top_movies = list(ranked_movies['movie'][:n_top]) return top_movies # Top 20 movies recommended for id 1 ranked_movies = create_ranked_df(movies, reviews) # only run this once - it is not fast recs_20_for_1 = popular_recommendations('1', 20, ranked_movies) # Top 5 movies recommended for id 53968 recs_5_for_53968 = popular_recommendations('53968', 5, ranked_movies) # Top 100 movies recommended for id 70000 recs_100_for_70000 = popular_recommendations('70000', 100, ranked_movies) # Top 35 movies recommended for id 43 recs_35_for_43 = popular_recommendations('43', 35, ranked_movies) def popular_recs_filtered(user_id, n_top, ranked_movies, years=None, genres=None): ''' INPUT: user_id - the user_id (str) of the individual you are making recommendations for n_top - an integer of the number recommendations you want back ranked_movies - a pandas dataframe of the already ranked movies based on avg rating, count, and time years - a list of strings with years of movies genres - a list of strings with genres of movies OUTPUT: top_movies - a list of the n_top recommended movies by movie title in order best to worst ''' # Filter movies based on year and genre if years is not None: ranked_movies = ranked_movies[ranked_movies['date'].isin(years)] if genres is not None: num_genre_match = ranked_movies[genres].sum(axis=1) ranked_movies = ranked_movies.loc[num_genre_match > 0, :] # create top movies list top_movies = list(ranked_movies['movie'][:n_top]) return top_movies # Top 20 movies recommended for id 1 with years=['2015', '2016', '2017', '2018'], genres=['History'] recs_20_for_1_filtered = popular_recs_filtered('1', 20, ranked_movies, years=['2015', '2016', '2017', '2018'], genres=['History']) # Top 5 movies recommended for id 53968 with no genre filter but years=['2015', '2016', '2017', '2018'] recs_5_for_53968_filtered = popular_recs_filtered('53968', 5, ranked_movies, years=['2015', '2016', '2017', '2018']) # Top 100 movies recommended for id 70000 with no year filter but genres=['History', 'News'] recs_100_for_70000_filtered = popular_recs_filtered('70000', 100, ranked_movies, genres=['History', 'News'])
453748851a21420a9d7aa3851a803e2294b2feea
SandeshKulung/User_Interface
/user_interface.py
3,031
3.734375
4
from tkinter import* from tkinter import messagebox def cancel(): messagebox.showinfo("Cancelled") def display(): messagebox.showinfo("Registered") window=Tk() window.geometry("760x550") window.resizable(width=0,height=0) window.title("ADMISSION") name=StringVar() l1=Label(window, text="Student Admission form",font=('Helvetica',20,'bold')) l1.place(x=250,y=30) l2=Label(window,text="Sunway Int'l Business School",font=10) l2.place(x=310,y=70) l3=Label(window,text="Full Name",width=15,font=10) l3.place(x=15,y=130) e3=Entry(window,textvariable=name,width=30, font=20) e3.place(x=150,y=130) sex=StringVar() number=StringVar() number1=StringVar() name1=StringVar() name2=StringVar() day=StringVar() month=StringVar() year=StringVar() mobile=StringVar() email=StringVar() updat=Label(window,text="Gender",width=15,font=10) updat.place(x=450,y=125) sex.set("Select gender") box=OptionMenu(window,sex,"male","female","other") box.place(x=570,y=125) l4=Label(window,text="Father's Name",width=15,font=10) l4.place(x=15,y=170) e4=Entry(window,textvariable=name1,width=30, font=20) e4.place(x=150,y=170) l5=Label(window,text="Mother's Name",width=15,font=10) l5.place(x=15,y=210) e5=Entry(window,textvariable=name2,width=30, font=20) e5.place(x=150,y=210) c1=Label(window,text="contact number",font=10) c1.place(x=450,y=170) ec1=Entry(window,textvariable="number",width=15,font=15) ec1.place(x=570,y=170) c2=Label(window,text="contact number",font=10) c2.place(x=450,y=210) ec2=Entry(window,textvariable=number1,width=15,font=15) ec2.place(x=570,y=210) l6=Label(window,text="Date of birth",width=15,font=10) l6.place(x=15,y=250) e6=Entry(window,textvariable=day,width=3,font=10) e6.place(x=150,y=250) l61=Label(window,text="Day",width=3) l61.place(x=150,y=275) e61=Entry(window,textvariable=month,width=3,font=10) e61.place(x=190,y=250) l62=Label(window,text="month",width=4) l62.place(x=188,y=275) e62=Entry(window,textvariable=year,width=5,font=10) e62.place(x=230,y=250) l63=Label(window,text="year",width=3) l63.place(x=240,y=275) n1=Label(window,text="Mobile number",width=15,font=10) n1.place(x=15,y=300) ne1=Entry(window,textvariable=mobile,width=20,font=20) ne1.place(x=150,y=300) n2=Label(window,text="Email-Id",width=15,font=10) n2.place(x=15,y=340) ne2=Entry(window,textvariable=email,width=30,font=20) ne2.place(x=150,y=340) n3=Label(window,text="Qualification",width=15,font=10) n3.place(x=15,y=380) qual=StringVar() qual.set("select the level") ne3=OptionMenu(window,qual,"+2 level","A-level","Bachelor's completed") ne3.place(x=150,y=380) t=Label(window,text="choose Level",width=15,font=10) t.place(x=15,y=420) level=StringVar() level.set("choose level to study") t1=OptionMenu(window,level,"BCS-Hons","MBA") t1.place(x=150,y=420) b1=Button(window,text="Register",fg='red',width=15,command=display) b1.place(x=380,y=490) b2=Button(window,text="Cancel",width=15,fg='red',command=cancel) b2.place(x=250,y=490) window.mainloop()
816ede0c29039d73385b94472d973fbc1c10424a
waynegakuo/nlp2018_waynegakuo
/lab_2/med.py
1,125
3.5
4
# coding: utf-8 # In[1]: import sys def medistance(source, target): #length of the source and target assigned to n and m respecitvely n= len(source) m= len(target) #initializing the costs of insertion, substitution and deletion ins_cost=1 sub_cost=2 del_cost=1 #creation of the distance matrix using a 2-D array D=[[0 for a in range(m+1)] for a in range(n+1)] #initializing the zeroth row for i in range (0, n+1): D[i][0]=i #initializing the zeroth column for j in range (0, m+1): D[0][j]=j #Recurrence relation for i in range (1, n+1): for j in range (1, m+1): if source[i-1]==target[j-1]: D[i][j]=D[i-1][j-1] else: D[i][j]=min(D[i-1][j]+del_cost, D[i-1][j-1]+sub_cost, D[i][j-1]+ins_cost) #Termination return D [n][m] medistance(sys.argv[1], sys.argv[2]) s=sys.argv[1] t=sys.argv[2] print ("Minimum edit distance between", s, "and", t, "is", medistance(s,t))
c81f6eb1684183e44bae7c816777c73231c365ea
btalahmb/.PyFiles
/tablePrinter.py
1,341
3.78125
4
#tablePrinter.py tableData = [['apples', 'oranges', 'cherries', 'banana'], ['Alicia', 'Bert', 'Czech', 'David'], ['Dogs', 'chicken', 'moose', 'goose']] def printTable(): colWidths = [0] * len(tableData) #Solve for longest string in each column and store values in a list for i in range(len(tableData)): for j in range(len(colWidths)): curr = len(tableData[j][i]) nex = len(tableData[j][i+1]) if(curr < nex): temp = curr curr = nex nex = temp else: pass colWidths[j] = curr #Find longest string value in list of string values for i in range(len(colWidths)): curr1 = colWidths[i] nex1 = colWidths[i+1] if((curr1 > len(colWidths)) or (nex1 > len(colWidths))): break if(curr1 < nex1): temp1 = curr1 curr1 = nex1 nex1 = temp1 else: pass newTable = [] #Transpose list of lists for i in range(len(tableData[0])): row = [] for item in tableData: row.append(item[i]) newTable.append(row) #Print list as table print() for i in (newTable): value = ' '.join(i) print(value.rjust(curr1)) printTable()
c3ffa8b82e2818647adda6c69245bbc9841ffd76
tsuganoki/practice_exercises
/strval.py
951
4.125
4
"""In the first line, print True if has any alphanumeric characters. Otherwise, print False. In the second line, print True if has any alphabetical characters. Otherwise, print False. In the third line, print True if has any digits. Otherwise, print False. In the fourth line, print True if has any lowercase characters. Otherwise, print False. In the fifth line, print True if has any uppercase characters. Otherwise, print False.""" s = "6$%^#" alph = False alphanumeric = False digits = False lowercase = False uppercase = False if len(s) < 1000: for l in s: if l.isalpha(): alph = True if l.isdigit(): digits = True if l.isalnum(): alphanumeric = True if l.islower(): lowercase = True if l.isupper(): uppercase = True print(alphanumeric) print(alph) print(digits) print(lowercase) print(uppercase)
c8e30738d8f5ec2f26a5ff285890983a6a1c9c16
tsuganoki/practice_exercises
/ProjectEuler/024.py
524
3.796875
4
""" A permutation is an ordered arrangement of objects. For example, 3124 is one possible permutation of the digits 1, 2, 3 and 4. If all of the permutations are listed numerically or alphabetically, we call it lexicographic order. The lexicographic permutations of 0, 1 and 2 are: 012 021 102 120 201 210 What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9? the first n start with 0 the second n start with 1 """ def get_permutations(n): perms = [] return perms
7bdca56dc7a7e86e3a94977552da4b739b98949f
tsuganoki/practice_exercises
/yahtzee.py
12,116
3.875
4
from random import randint import pdb #import numpy as np """import pandas as pd import json""" # with open("somefi") """ import logging logging.basicConfig( filename="yahtzeelog.txt", level = logging.DEBUG) logging.disable(logging.CRITICAL) """ # rolls all 5 dice and returns a dictionary def roll_all(): rolls = {} dice = "ABCDE" for i in range(5): rolls[(dice[i])] = randint(1,6) return rolls # takes a user input and outputs a list containing only the letters ABCDE def convert_to_list(us_sel): us_sel_list = [] for i in us_sel: if ord(i.lower()) > 96 and ord(i.lower()) <102: us_sel_list.append(i.upper()) return us_sel_list #function which sanitizes any input and returns a lowercase string def sanit(input): input = input.lower() output = "" for i in input: if ord(i) > 96 and ord(i) <102: output = output + i return i # rerolls specified dice from a list of user inputs def reroll(l,rolls): for i in l: rolls[i] = randint(1,6) return rolls # function for displaying the dice results to the user def display_roll(rolls): for key in sorted(rolls.iterkeys()): print "%s: %s" % (key, rolls[key]) print(" ") # This function gets the user's reroll choice and returns a list with [choice, round] def reroll_choice(): #pdb.set_trace() rerollyn = raw_input("Reroll? (Y / N) ") print(" ") try: choice = sanit(rerollyn[0]) except: print("I didn't understand that input. Please Try again.") return reroll_choice() if choice == "n": #if the user inputs a string starting with "n", no re-roll happens return True elif choice == "y": #if the user inputs a string starting with "y" return False else: #if the user does a keyboard smash, it will start over print("I didn't understand that input. Please Try again.") return reroll_choice() """def get_reroll_choice(rolls): #this section asks the user for a reroll choice output = [] rerollyn = "" rerollyn = raw_input("Reroll? (Y / N) ") print(" ") if sanit(rerollyn[0]) == "n": #if the user inputs a string starting with "n", no re-roll happens return True elif sanit(rerollyn[0]) == "y": #if the user inputs a string starting with "y" it will ask for which dice to reroll user_selection = raw_input("Reroll? (A, B, C, D, E?) ") print(" ") print("Rerolling....") reroll(convert_to_list(user_selection),rolls) print("Your new rolls are: ") display_roll(rolls) return False else: #if the user does a keyboard smash, it will start over print("I didn't understand that input. Please Try again.") get_reroll_choice(rolls) """ def select_dice(rolls): user_selection = raw_input("Enter which die or dice to reroll: A, B, C, D, E ") print(" ") user_selection_list = convert_to_list(user_selection) if len(user_selection_list) < 1: print("Your input was not understod. Please try again (not case sensitive)") return select_dice(rolls) print("Rerolling....") rolls = reroll(user_selection_list,rolls) return rolls def stringify_key_value_cat(key,value): return value + "(" + str(key) + ")" def display_categories(categories): string_list_up = [] string_list_low = [] for key in filter(lambda key: categories[key][0],categories): if key < 7: string_list_up.append(stringify_key_value_cat(key,categories[key][1])) else: string_list_low.append(stringify_key_value_cat(key,categories[key][1])) print("Remaining options: ") if string_list_up == []: print("Upper: None") else: print("Upper: "+ ", ".join(string_list_up)) if string_list_low == []: print("Lower: None.") else: print("Lower: " + ", ".join(string_list_low)) def select_category_fun(categories): display_categories(categories) cat_selection = raw_input("Select a category to score this round: ") try: cat_selection = int(cat_selection) except: print("Response not understood. Please try again.\n") return select_category_fun(categories) if cat_selection > 0 and cat_selection < 14: if categories[cat_selection][0] == False: print("That category is no longer available. Please try again. ") return select_category_fun(categories) else: return int(cat_selection) else: print("Response not understood. Please try again.\n") return select_category_fun(categories) #This function takes in a user selection and a set of rolls, and returns a list of points for that roll def score_fun(rolls_dict,cat_selection,game_score): score_upper = 0 score_lower = 0 yahtzee = 0 is_yahtzee = False score_list = [0,0,0] #Changes rolls to a simple ordered list rolls = [] for key in rolls_dict: rolls.append(rolls_dict[key]) rolls.sort() rolls_string = "" for i in rolls: rolls_string += str(i) #checks if yahtzee if all(x==rolls[0] for x in rolls): is_yahtzee = True if cat_selection < 7: for i in rolls: if i == cat_selection: score_upper += i elif cat_selection == 7: #three of a Kind rolls1 = rolls[:3] rolls2 = rolls[1:4] rolls3 = rolls[2:] if all(x==rolls1[0] for x in rolls1) or all(x==rolls2[0] for x in rolls2) or all(x==rolls3[0] for x in rolls3): score_lower = 17 elif cat_selection == 8:#four of a kind if rolls[0] == rolls [3] or rolls[1] == rolls[4]: score_lower = 24 elif cat_selection == 9: #Full House (two of a kind and three of a kind) rolls1=rolls[:3] rolls2 = rolls[3:] rolls3 = rolls[:2] rolls4 = rolls[2:] if all(x==rolls1[0] for x in rolls1) and all(x==rolls2[0] for x in rolls2): score_lower = 25 elif all(x==rolls3[0] for x in rolls3) and all(x==rolls4[0] for x in rolls4): score_lower = 25 elif cat_selection == 10: #large Straight (5) if rolls == [1,2,3,4,5] or rolls == [2,3,4,5,6]: score_lower = 40 print("i am a potato") elif cat_selection == 11:#Small Straight (4) if "1234" in rolls_string or "2345" in rolls_string or "3456" in rolls_string: score_lower = 30 elif cat_selection == 12: #Chance(sum of all dice) for i in rolls: score_lower += i elif cat_selection == 13: #yahtzee if is_yahtzee == True: yahtzee = 1 score_lower = 50 if is_yahtzee == True and game_score[2] > 0: score_lower +=100 score_list[0] = score_upper score_list[1] = score_lower score_list[2] = yahtzee return score_list # Function for Displaying Score: def display_score(score_list): u_bonus = "" y_bonus = "" if score_list[0] > 63: u_bonus = "Upper Section Bonus: +35 Points for hitting 63!" if score_list[2] == 0: yahtzee_score = 0 elif score_list[2] > 1: y_bonus = "Yahtzee Bonus: +100 points!" total = score_list[0] + score_list[1] print("Score Upper: %s %s" % (score_list[0],u_bonus)) print("Score Lower: %s" % (score_list[1])) print("Yahtzees: %s %s" % (score_list[2],y_bonus)) print("Score Total: %s" % (total)) print(" ") def add_round_score(score,points): sum = [] for i,k in zip(score,points): sum.append(i+k) return sum # Function for running a single round def new_round(categories,game_score): round_output = {} round_score = [0,0,0] #this section gives the initial roll rolls = roll_all() print("Your initial rolls are: ") display_roll(rolls) #sets the roll count for the round to 2 remaining round_roll_count = 2 #asks the user for a reroll up to two times print("You have %s rolls remaining." % (round_roll_count)) while round_roll_count >0: reroll_choice_var = reroll_choice() if reroll_choice_var == False: rolls = select_dice(rolls) round_roll_count += -1 print("Your new rolls are: ") display_roll(rolls) else: print("Keeping rolls. ") print(" ") round_roll_count += -3 cat_selection = select_category_fun(categories) #this line sets the selected category to False, so it can't be used again categories[cat_selection][0]= False #round is scored here #this function takes in your rolls, and your selection, and returns a list of round points round_score = score_fun(rolls,cat_selection,game_score) print(" ") print("Your score for this round was: %s" %(round_score[0]+round_score[1])) #display_score(round_score) #round info is added to a dictionary round_output["round_score"] = round_score round_output["categories"] = categories # returns a dictionary with all the round info in it return round_output def play_yahtzee(): round_count = 1 upper_bonus = False yahtzee_bonus = 0 game_score = [0,0,0] number_of_rounds = 13 game = {} #This is how scoring categories are tracked categories = {1:[True,"Aces"],2:[True,"Twos"],3:[True,"Threes"],4:[True,"Fours"],5:[True,"Fives"],6:[True,"Sixes"], 7:[True,"Three of a Kind",7],8:[True,"Four of a Kind",8],9:[True,"Full House",9],10:[True,"Small Straight",10], 11:[True,"Large Straight"],12:[True,"Chance"],13:[True,"Yahtzee"]} # this is the section where the game happens while round_count < (number_of_rounds+1): #this section lists the round number print("Round "+ str(round_count)), print(" ") #runs 1 round and stores the rolls, score, and categories in round_output, also adds it to a dictionary round_output = new_round(categories,game_score) categories = round_output["categories"] #stores the round in a master game dictionary game[round_count] = round_output #add round_pounds to game_points game_score = add_round_score(game_score,round_output["round_score"]) #checks for Upper Bonus and Yahtzee Bonus if game_score[0] > 63 and upper_bonus == False: game_score[0] += 35 upper_bonus = True if game_score[2] > 1: game_score[1] += 100 display_score(game_score) if round_count < number_of_rounds: pause = raw_input("Hit any key to start next round...") #uh? #print("upper score from round output:", round_output["score_upper"]) #incriments the round number round_count +=1 restart = raw_input("Good Game! You scored a total of %s Points! Play again?" % (game_score[0] + game_score[1])) if sanit(restart)[0] == "y": play_yahtzee() if __name__ == '__main__': play_yahtzee() pass categories = {1:[True,"Aces",1],2:[True,"Twos",2],3:[True,"Threes",3],4:[True,"Fours",4],5:[True,"Fives",5],6:[True,"Sixes",6], 7:[True,"Three of a Kind",7],8:[True,"Four of a Kind",8],9:[True,"Full House",9],10:[True,"Small Straight",10], 11:[True,"Large Straight",11],12:[True,"Chance",12],13:[True,"Yahtzee",13]} """ game_score = [0,0,0] rolls = { 'A': 1, 'B': 1, 'C': 1, 'D': 1, 'E': 1, } #score_fun(rolls,cat_selection,game_score): #n = int(raw_input(" : ")) round_score = score_fun(rolls,12,game_score) display_score(round_score) """
653a376baa3e3f30164ba6f4b9bdf6006b572a34
verepcode/Computer-Vision-Projects
/Put a glass on a face.py
3,103
3.515625
4
#The aim is to put any size of glasses on any size of frontal face image. The code has already been developing, #and for future, I want to help people choose their glasses by just looking a front facing camera at the end of the work. import cv2 import numpy as np face_cascade = cv2.CascadeClassifier('Haarcascades/haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier('Haarcascades/haarcascade_eye.xml') # read both the images of the face and the glasses image = cv2.imread('images/putin.jpg') glass_img = cv2.imread('images/glasses2.png') #show the frontal face image and glasses cv2.imshow('image',image) cv2.waitKey(0) cv2.imshow('glasses',glass_img) cv2.waitKey(0) #Convert the color scale BGR to GRAY gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) centers=[] faces = face_cascade.detectMultiScale(gray,1.3,5) #Iterating over the face detected for (x,y,w,h) in faces: #Create two Regions of Interest. roi_gray = gray[y:y+h, x:x+w] roi_color = image[y:y+h, x:x+w] eyes = eye_cascade.detectMultiScale(roi_gray) # Store the cordinates of eyes in the image to the 'center' array for (ex,ey,ew,eh) in eyes: centers.append((x+int(ex+0.5*ew), y+int(ey+0.5*eh))) if len(centers)>0: #Change the given value of 2.15 according to the size of the detected face glasses_width = 2.16*abs(centers[1][0]-centers[0][0]) #Construct a weigth image which have the same size of the frontal face image overlay_img = np.ones(image.shape,np.uint8)*255 #Resize the glasses image in proportion to face h,w = glass_img.shape[:2] scaling_factor = glasses_width/w overlay_glasses = cv2.resize(glass_img,None,fx=scaling_factor,fy=scaling_factor,interpolation=cv2.INTER_AREA) x = centers[0][0] if centers[0][0]<centers[1][0] else centers[1][0] # The x and y variables below depend upon the size of the detected face. x -= 0.26*overlay_glasses.shape[1] y += 0.85*overlay_glasses.shape[0] #Slice the height, width of the overlay image. h, w = overlay_glasses.shape[:2] #Decide a ratio which means distance between eye center and top of glass over the glass heigth. #This helps the glass locate better RoG = 0.34 overlay_img[int(centers[0][1] - (y + h/2) + y + RoG * h ):int(centers[0][1] + h/2 + RoG * h),int(x):int(x+w)] = overlay_glasses #Create a mask and generate it's inverse. gray_glasses = cv2.cvtColor(overlay_img, cv2.COLOR_BGR2GRAY) ret, mask = cv2.threshold(gray_glasses, 110, 255, cv2.THRESH_BINARY) mask_inv = cv2.bitwise_not(mask) temp = cv2.bitwise_and(image, image, mask=mask) temp2 = cv2.bitwise_and(overlay_img, overlay_img, mask=mask_inv) final_img = cv2.add(temp, temp2) cv2.imshow('Lets wear Glasses', final_img) cv2.waitKey() cv2.destroyAllWindows()
ae99131ca37b4c71f72cd387438590cafac01423
rgvsiva/learn
/func_arguments.py
469
3.875
4
def update(a): print(id(a)) a=10 print(id(a)) print ('a',a) def update1(a): print(id(a)) a[1]=10 print(id(a)) print ('lst',a) x=8 print(id(x)) update(x) print ('x',x) #id's of variables are changing inside and outside of function. #pass by value, pass by reference---not applicable in python---none of these lst=[1,4,2,3] print (id(lst)) update1(lst) print('ls:',lst) #list immutable but id doesn't change
3feecc6c94f430f3c15ded3290fe00e67387c72a
rgvsiva/learn
/fibonacci assign.py
417
3.984375
4
x=int(input("upto which fibonacci no's u want: ")) def fib(x): a=0 b=1 if x<=0: print('not possible') elif x==1: print(a) elif x>=2: print(a) print(b) for i in range(2,x): c=a+b if c<=x: print(c) else: break a=b b=c fib(x)
864cd59a002cd981a74c84813d6ba9837c1d8b10
rgvsiva/learn
/break,cont,pass.py
367
3.875
4
 x=int(input('how many u want: ')) i = 1 av=5 while i<=x: if i>=av: print ('out of stock') break print ('biryani') i+=1 print ('bye') print () for i in range(1,31): if i%3==0 or i%5==0: continue print (i) print() for i in range(1,16): if i%2!=0: pass else: print(i)
bcfa60b524376285629d2208c7e9ee29dfccc339
rgvsiva/learn
/global keyword.py
345
3.875
4
#scope a=10 #global variable print(id(a)) def some(): # global a # to access global variable a = 23 #local variable x = globals()['a'] print(id(x)) print('inside:',x) print('ins:',a) globals()['a']=45 #to change the global variable without effecting local variable some() print('outside:',a)
a652cc7c4fb44c7da3cdb40bf62729709a7fc170
Dennisdoug/trandangdung-fundamental-c4e15
/Session 1/Homework 1/temperatureconverter.py
148
3.890625
4
def Temperature(): F = input('Enter temperature in Fahrenheit') C = ((5.0/9.0)*(F - 32)) print "Temperature in degree Celsius is %f" %C
ff83fb8d53ed313c4887468e722c753454890782
Dennisdoug/trandangdung-fundamental-c4e15
/Session 2/session02/maze.py
142
4.03125
4
from turtle import * shape('turtle') speed(0) length = 10 for i in range (100): forward(length) length += 5 left(90) mainloop()
36822cf538431e720fb90e7bc07dd4b0e4e41985
Dennisdoug/trandangdung-fundamental-c4e15
/Session 3/Session 3/randoom.py
284
3.921875
4
from random import randint x = randint(1, 100) loop = True while loop: num = int(input("Enter a number 1 - 100: ")) if num == x: print("Bingo") loop = False elif num < x: print("A little too small") else: print("A little too large")
33599a05c8a0eb38df5c56e430582ac5b77e786d
Dennisdoug/trandangdung-fundamental-c4e15
/Session 5/Homework/count.py
227
4.03125
4
numbers = [1, 6, 8, 1, 2, 1, 5, 6, 1, 4, 5, 2, 7, 8, 4, 5, 9, 2, 1, 6, 8, 0, 0, 5, 6] x = int(input("Enter a number? ")) count = numbers.count(x) print(x, "appears " + str(count) + " times in the list") #With count() function
03d426f76941366bdf75cae2ff1cbed5fad9b0ef
PLJTZS/AI
/DeepLearning/1-ImprovingNeuralNetworks/Initialization.py
6,720
4.28125
4
#coding:utf8 import numpy as np """ - Understand that different regularization methods that could help your model. - Implement dropout and see it work on data. - Recognize that a model without regularization gives you a better accuracy on the training set but nor necessarily on the test set. - Understand that you could use both dropout and regularization on your model. """ """ A well chosen initialization can: Speed up the convergence of gradient descent Increase the odds of gradient descent converging to a lower training (and generalization) error """ """ 一、Zero initialization n general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with n[l]=1n[l]=1 for every layer, and the network is no more powerful than a linear classifier such as logistic regression. What you should remember: The weights W[l]W[l] should be initialized randomly to break symmetry. It is however okay to initialize the biases b[l]b[l] to zeros. Symmetry is still broken so long as W[l]W[l] is initialized randomly. """ # GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ parameters = {} L = len(layers_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.zeros((layers_dims[l], layers_dims[l - 1])) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters """ 二、Random initialization To break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. """ def initialize_parameters_random(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) # This seed makes sure your "random" numbers will be the as ours parameters = {} L = len(layers_dims) # integer representing the number of layers for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * 10 parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters """ 三、He initialization Finally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights W[l]W[l] of sqrt(1./layers_dims[l-1]) where He initialization would use sqrt(2./layers_dims[l-1]).) Exercise: Implement the following function to initialize your parameters with He initialization. Hint: This function is similar to the previous initialize_parameters_random(...). The only difference is that instead of multiplying np.random.randn(..,..) by 10, you will multiply it by 2dimension of the previous layer⎯⎯⎯⎯⎯√2dimension of the previous layer , which is what He initialization recommends for layers with a ReLU activation. """ # GRADED FUNCTION: initialize_parameters_he def initialize_parameters_he(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) parameters = {} L = len(layers_dims) - 1 # integer representing the number of layers for l in range(1, L + 1): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.multiply(np.random.randn(layers_dims[l], layers_dims[l - 1]), np.sqrt(2 / layers_dims[l - 1])) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters """ You have seen three different types of initializations. For the same number of iterations and same hyper parameters the comparison is: Model Train accuracy Problem/Comment 3-layer NN with zeros initialization 50% fails to break symmetry 3-layer NN with large random initialization 83% too large weights 3-layer NN with He initialization 99% recommended method What you should remember from this notebook: Different initializations lead to different results Random initialization is used to break symmetry and make sure different hidden units can learn different things Don't intialize to values that are too large He initialization works well for networks with ReLU activations. """
4d1605f77acdf29ee15295ba9077d47bc3f62607
zakwan93/python_basic
/python_set/courses.py
1,678
4.125
4
# write a function named covers that accepts a single parameter, a set of topics. # Have the function return a list of courses from COURSES # where the supplied set and the course's value (also a set) overlap. # For example, covers({"Python"}) would return ["Python Basics"]. COURSES = { "Python Basics": {"Python", "functions", "variables", "booleans", "integers", "floats", "arrays", "strings", "exceptions", "conditions", "input", "loops"}, "Java Basics": {"Java", "strings", "variables", "input", "exceptions", "integers", "booleans", "loops"}, "PHP Basics": {"PHP", "variables", "conditions", "integers", "floats", "strings", "booleans", "HTML"}, "Ruby Basics": {"Ruby", "strings", "floats", "integers", "conditions", "functions", "input"} } def covers(courses): answer = [] for key,value in COURSES.items(): if value.intersections(courses): answer.append(key) return answer # Create a new function named covers_all that takes a single set as an argument. # Return the names of all of the courses, in a list, where all of the topics # in the supplied set are covered. # For example, covers_all({"conditions", "input"}) would return # ["Python Basics", "Ruby Basics"]. Java Basics and PHP Basics would be excluded # because they don't include both of those topics. def covers_all(topics): answer = [] for course,value in COURSES.items(): if (value & topics) == topics: answer.append(course) return answer
b9feb110f9df7260309a94d18bd3994aa18f8037
zakwan93/python_basic
/python_collection/slices_in_python.py
681
3.890625
4
favorite_things = ['raindrops on roses', 'whiskers on kittens', 'bright copper kettles','warm woolen mittens', 'bright paper packages tied up with string', 'cream colored ponies', 'crisp apple strudels'] # Question 1. Create a new variable named slice1 that has the # second, third, and fourth items from favorite_things. slice1 = favorite_things[1:4] # Question 2. Get the last two items from favorite_things and put them into slice2. slice2 = favorite_things[5:] # Question 3. Make a copy of favorite_things and name it sorted_things. # Then use .sort() to sort sorted_things. sorted_things = favorite_things[:] sorted_things.sort()
2e183f4fe20f994cdde4f50993b5ea410a39966b
cliefsengkey/text_preprocessing
/elongated.py
2,300
3.59375
4
#!/usr/bin/env python """Remove consecutive duplicate characters unless inside a known word. """ import fileinput import re import sys from itertools import groupby, product import enchant # $ pip install pyenchant tripled_words = set(['ballless', 'belllike', 'crosssection', 'crosssubsidize', 'jossstick', 'shellless','aaadonta', 'flying','jibbboom', 'peeent', 'freeer', 'freeest', 'ishiii', 'frillless', 'wallless', 'laparohysterosalpingooophorectomy', 'goddessship', 'countessship', 'duchessship', 'governessship', 'hostessship', 'vertuuus','crossselling','crossshaped','crossstitch','fulllength','illlooking','massspectrometry','missstay','offform','palllike','pressstud','smallleaved','shellless','shelllike','stilllife','threeedged']) def remove_consecutive_dups(s): # return number of letter >= 1 # return re.sub(r'(?i)(.)\1+', r'\1', s) # return number of letter >= 2 return re.sub(r'(?i)(.)\1+', r'\1\1', s) def all_consecutive_duplicates_edits(word, max_repeat=float('inf')): chars = [[c*i for i in range(min(len(list(dups)), max_repeat), 0, -1)] for c, dups in groupby(word)] return map(''.join, product(*chars)) def has_long(sentence): elong = re.compile("([a-zA-Z])\\1{2,}") return bool(elong.search(sentence)) if __name__ == '__main__': words = enchant.Dict("en") is_known_word = words.check sentence = "that's good if you keep the bees safe. happy life. cooooll. let's play fooooootballll" # print has_long(sentence) input_w = "fooooootballll" if has_long(sentence): if not any(input_w in x for x in tripled_words): print remove_consecutive_dups(input_w),is_known_word(remove_consecutive_dups(input_w)), words.suggest(remove_consecutive_dups(input_w)) words_map = all_consecutive_duplicates_edits(input_w) print "-----------------------------------------\n" for word in words_map: print word, is_known_word(word) if is_known_word(word): print words.suggest(word) # for line in fileinput.input(inplace=False): # #NOTE: unnecessary work, optimize if needed # output = [next((e for e in all_consecutive_duplicates_edits(s) # if e and is_known_word(e)), remove_consecutive_dups(s)) # for s in re.split(r'(\W+)', line)] # sys.stdout.write(''.join(output))
55abc569fa46bcce6c6f4220398cabeaa1b208d2
Jeevan1351/Python_Bootcamp
/Activity_05.py
110
3.890625
4
string = input().split() numbers = [int(num) for num in string] print(f"Sum of all numbers is {sum(numbers)}")
ba18b9f9762a1ba1508498c9477a70231f0b0551
Jeevan1351/Python_Bootcamp
/Activity_16.py
404
3.53125
4
def get_cs(): return input() def cs_to_lot(string): separated = string.split(';') listOt = [tuple(i.split('=')) for i in separated] return listOt def lot_to_cs(listOfTuples): string = "" for (a, b) in listOfTuples: string += a+"="+b+";" return string def display(l): print(l) def main(): cs = get_cs() lot = cs_to_lot(cs) display(lot) main()
a3758742978f5c16ff5458b081d608ffbf94f3b9
mayukhpankaj/python-course
/variables.py
431
4
4
print("hello world") # x = 1 # int y = 2.5 # float # name = 'john' #string # is_cool = True # bool #multiple assignment x,y, name, is_cool = (1,2.5,'john',True) # print(x+y) # x= str(x) ''' type casting ''' # y = int(y); # z = float(y) # print(y,z) """ arguments by position """ name = 'may' age=20 print('My name is {nm} & Im {yr} years old'.format(nm=name,yr=age))
8864c656c917602b6add9f62aa7ae489c9513e8d
N8Brooks/lcs_hash_search
/lcs_finder.py
1,458
3.875
4
# -*- coding: utf-8 -*- """ Created on Sat Nov 23 13:50:03 2019 @author: Nathan """ import sys import serial_hash_search import parallel_hash_search PARALLEL = False # function to read in utf-8 txt file def read_text(file_name): with open(file_name, 'r', encoding='utf-8') as file: return file.read() if __name__ == '__main__': """ Command line arguments: str: the path to the text file to compute the lcs of str: the path to the second text file to compute the lcs of Prints: int: the length of the lcs list: a list of all longest common substrings """ # read in command line arguments if len(sys.argv) is 3: # read in text files a = read_text(str(sys.argv[1])) b = read_text(str(sys.argv[2])) else: print('Please enter to txt file arguments to read.') exit() # grab parallel version if indicated lcs = parallel_hash_search.lcs if PARALLEL else serial_hash_search.lcs # get the length of lcs and list of longest common substrings length, substrings = lcs(a, b) if len(substrings) is 1: multiple = ['is', len(substrings), ''] else: multiple = ['are', len(substrings), 's'] # print print(f'The length of the longest common substring is: {length}') print('There {} {} longest common substring{}:'.format(*multiple)) print('\n'.join(f'"{s}"' for s in substrings), end='')
c994d133c51deeeaa55531bb945cde1661e6be87
sleumas2000/FF2-Code
/ff2 encode.py
5,428
3.953125
4
version = "v. 0.1.0" #Error #01 textinput() - Invalid Input (empty) #Error #02 keyinput() - Invalid input (02.1: Invalid Length ;02.2: Char1 Bad ;02.3: Char2 Bad) #Error #03 keygen() - Unspecified Error import string import time import random from datetime import datetime alphabet = list(map(chr, range(ord('a'), ord('z')+1))) alphabet = alphabet + ['0','1','2','3','4','5','6','7','8','9'] errorlog = [] debuglog = "" def logerror(errorNo): global errorlog errorlog += [[errorNo,datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")]] def keygen(): a = alphabet[random.randint(0,35)]+alphabet[random.randint(0,35)] return a def FF2textinput(): input = "" input = raw_input(">") input = input.lower() input = input.replace(" ","") input = str("" if input is None else input) for c in input if c in alphabet: # input2 += c # input = input2 if not (input == ""): return input else: logerror("01") return False def keyinput(): key = raw_input("\n\nIf you want to use a random key (recommended) press ENTER, else type the two characters. you wish to use as the key. Only type standard Letters or Numbers. Type help for more info.\n\n>") key = str("" if key is None else key) key = key.lower() if (key == "help" or key == "h" or key == "?"): FF2help(keyinput) elif key == "": key = keygen() if ((len(key) == 2) and (key[0] in alphabet) and (key[1] in alphabet)): return key else: print("Sorry, something went wrong with the random key generator. Please enter a key manually:") logerror("03") return False elif ((len(key) == 2) and (key[0] in alphabet) and (key[1] in alphabet)): print("A Custom key of \""+key+"\" will be used to encode your message") return key else: if not (len(key) == 2): print("Sorry, your input was not a valid key. Your input should be two characters long. (#02.1)\n") logerror("02.1") elif not (key[0] in alphabet): print("Sorry, your input was not a valid key. Please type two standard letters or numbers. The first character is not a legal character. (#02.2)\n") logerror("02.2") elif not (key[0] in alphabet): print("Sorry, your input was not a valid key. Please type two standard letters or numbers. The second character is not a legal character. (#02.3)\n") logerror("02.3") else: print("Sorry, your input was not a valid key. Please type two standard letters or numbers. Symbols are not supported. (#02)\n") logerror("02") return False def tonum(char): i=0 for c in alphabet: if c == char: return i i += 1 logerror("04") return False def NumCat(grid): output = 0 for i in grid: output = output*36 output += i return output def debugadd(debugData): global debuglog debuglog += debugData debuglog += "\n" ############################## # REAL ENCODER STARTS HERE # ############################## def obtainxy(char,grid): y = 0 for r in grid: x=0 for c in r: if c == char: return (x,y) x +=1 y += 1 def encode3(char1,char2,gridItems): # print gridItems grid=[gridItems[0:6],gridItems[6:12],gridItems[12:18],gridItems[18:24],gridItems[24:30],gridItems[30: ]] # print 1,char1 # print "g",grid y = 0 char1x,char1y = obtainxy(char1,grid) char2x,char2y = obtainxy(char2,grid) if char1x == char2x: return alphabet[grid[(char1y+1)%6][(char2x+1)%6]] + alphabet[grid[(char2y+1)%6][(char1x+1)%6]] if char1y == char2y: return alphabet[grid[(char1y+1)%6][(char2x+1)%6]] + alphabet[grid[(char2y+1)%6][(char1x+1)%6]] # print char1x # print char1y # print char2x # print char2y # print grid # print grid[char2x][char1y] # print grid[char1x][char2y] # print alphabet[grid[char2x][char1y]] # print alphabet[grid[char1x][char2y]] return alphabet[grid[char1y][char2x]] + alphabet[grid[char2y][char1x]] def encode2(char1,char2,key): grid = [] diff = (tonum(key[1])-tonum(key[0]))%36 letter = tonum(key[0]) for i in range(0,36): if letter in grid: letter += 1 grid += [letter] letter = (letter+diff)%36 if not alphabet[letter] == key[0]: logerror("05") debugadd(char1+key[0]+"."+str(tonum(char2))+","+str(tonum(char1))+"."+str(NumCat(grid))+"\\"+char2+key[1]) return encode3(tonum(char1),tonum(char2),grid) def encode(inputText,key): #TODO if not len(key) == 2: print "THIS SHOULD NOT HAPPEN. PYTHON IS BROKEN!" i = 0 encoded = "" activekey = key output = "" while i < ((len(inputText)+1)/2): char1 = inputText[(2*i)] if ((len(inputText))%2) == 0 or len(inputText) > i*2+1: char2 = inputText[(2*i)+1] else: char2 = 'x' output += encode2(char1,char2,activekey) activekey = output[-2:] i += 1 output = output[0]+key[0]+output[1:]+key[1] return output #################### # START OF PROGRAM # #################### print("FF2 Cipher encoder: "+version+"\n\n\n Type the text you wish to encode. Press enter when finished\n") text = False while text == False: text = FF2textinput() key = False while key == False: #loop if keyinput() returns False (if it encounters an error) key = keyinput() output = encode(text,key) print "\n\nEncoded message:\n "+output+"\n\n\nPress enter to quit" finalcommand=raw_input() if finalcommand.lower() == "e": print errorlog elif finalcommand.lower() == "d": print debuglog elif finalcommand.lower() == "b": print str(errorlog)+"\n\n"+str(debuglog) elif finalcommand.lower() == "r": restart() elif finalcommand.lower() == "br": print errorlog
d633cbd6250f0bc4db56d073cc59c7ecb9eb3b51
krvavizmaj/codechallenges
/src/codesignal/areSimilar.py
283
3.734375
4
def areSimilar(a, b): da = [] db = [] for i,n in enumerate(a): if a[i] != b[i]: da.append(a[i]) db.append(b[i]) return len(da) <= 2 and len(db) <= 2 and sorted(da) == sorted(db) a = [1, 1, 4] b = [1, 2, 3] print(areSimilar(a,b))
728d2995b0d5d34a4a71e85f8050e50d784e2047
krvavizmaj/codechallenges
/src/codesignal/naturalNumbers.py
230
3.859375
4
def naturalNumbersListing(n): s = 0 i = 1 t = 2 while i <= n: s += i if i < n: s += i + 1 i += t t += 1 i += t t += 1 return s print(naturalNumbersListing(3))
6119f7a769b58aeae30c9f31e7f4bbcbf945da0a
IrfanChairurrachman/CS50x-2020
/pset7/houses/roster.py
713
3.734375
4
# TODO import sys, cs50 # check argv if len(sys.argv) != 2 or sys.argv[1] not in ['Gryffindor', 'Hufflepuff', 'Ravenclaw', 'Slytherin']: sys.exit("Usage: python roster.py [house name] or there's no house name") sys.exit(1) # connect to db db = cs50.SQL("sqlite:///students.db") # execute SQL command and store to students list students = db.execute("SELECT * FROM students WHERE house = (?) order by last, first", sys.argv[1]) for student in students: if student['middle'] == None: print("{} {}, born {}".format(student['first'], student['last'], student['birth'])) else: print("{} {} {}, born {}".format(student['first'], student['middle'], student['last'], student['birth']))
8b3133a4c9d25ef07b543e50c9e870c5c8d624f3
Helyosis/ChessBot
/utils.py
2,562
3.6875
4
import random alphabet = "abcdefghijklmnopqrstuvwxyz1234567890" VIDE, PION_BLANC, PION_NOIR, TOUR_BLANC, TOUR_NOIR, CAVALIER_BLANC, CAVALIER_NOIR, FOU_BLANC, FOU_NOIR, REINE_BLANC, REINE_NOIR, ROI_BLANC, ROI_NOIR = \ 'O', 'P', 'p', 'T', 't', 'C', 'c', 'F', 'f', 'R', 'r', 'K', 'k' def generate_random_name(): name = ['c-'] for i in range(10): name.append(random.choice(alphabet)) return "".join(name) def create_blank_game(): """ Sens de lecture de haut en bas puis de gauche à droite :return text version of blank game """ tableau = [ TOUR_NOIR, CAVALIER_NOIR, FOU_NOIR, REINE_NOIR, ROI_NOIR, FOU_NOIR, CAVALIER_NOIR, TOUR_NOIR, PION_NOIR * 8, VIDE * 8 * 4, PION_BLANC * 8, TOUR_BLANC, CAVALIER_BLANC, FOU_BLANC, REINE_BLANC, ROI_BLANC, FOU_BLANC, CAVALIER_BLANC, TOUR_BLANC ] tableau = "".join(tableau) return tableau def place_to_coordinates(place): """ Return a number indicating the coordinate in single-dimension array containing the description of the chess game using the place in chess :param place: str matching the regex [abcdefgh][12345678] :return: coordinate of corresponding place """ letter, num = list(place) y = 8 - int(num) x = ord(letter) - ord('a') return 8 * y + x def coordinates_to_place(index): """ Return the matching place on the board on a certain index. Index go from up to bottom and then from left to right :param index: int :return: Char[2] """ y, x = index // 8, index % 8 row = str(8 - y) column = chr(x + ord('a')) return column + row def can_go_to(piece1, piece2): """ Returns True if one piece is black (lowercase) and the other is white (uppercase) and vice-versa Used to determine if one piece can eat the other. Return False otherwise :param piece1: Char :param piece2: Char :return: Bool """ return ((piece1.isupper() and piece2.islower()) or (piece1.islower() and piece2.isupper())) or 'O' in {piece1, piece2} def are_differents(piece1, piece2): """ Same as can_go_to but return False if p1 or p2 == 'O' :param piece1: Char :param piece2: Char :return: Bool """ return ((piece1.isupper() and piece2.islower()) or (piece1.islower() and piece2.isupper())) and 'O' not in {piece1, piece2}
be7cfbeedb0c2a6df04bb57e4bf7539fe0438ce0
ligb1023561601/CodeOfLigb
/OOP.py
3,875
4.1875
4
# Author:Ligb # 1.定义一个类,规定类名的首字母大写,括号是空的,所以是从空白创建了这个类 # _init_()方法在创建类的新实例的时候就会自动运行,两个下划线是用来与普通方法进行区分 # self是一个自动传递的形参,指向实例本身的引用,在调用方法时,不必去给它传递实参 # 以self作前缀的变量称之为属性 # 命名规则 # object() 共有方法 public # __object()__ 系统方法,用户不这样定义 # __object() 全私有,全保护方法 private protected,无法继承调用 # _object() private 常用这个来定义私有方法,不能通过import导入,可被继承调用 # 两种私有元素会被转换成长格式(公有的),称之为私有变量矫直,如类A有一私有变量__private,将会被转换成 # _A__private作为其公有变量,可以被继承下去 class Dog(object): def __init__(self, name, age): """初始化属性name与age""" self.name = name self.age = age def sit(self): """类中的函数称为方法""" print(self.name.title() + " is now sitting!.") def roll_over(self): print(self.name.title() + " rolled over!") my_dog = Dog("he", 2) my_dog.sit() my_dog.roll_over() class Car(object): """创建一个汽车类""" def __init__(self, make, model, year): self.make = make self.model = model self.year = year self.odometer_reading = 0 # 属性具有默认值 def _get_information(self): long_name = str(self.year) + " " + self.make + " " + self.model return long_name.title() def update_info(self,date): """通过方法修改属性""" self.year = date def increment_info(self,miles): """通过方法进行属性递增""" self.odometer_reading += miles def fill_gas_tank(self): print("This car's gas tank is full!") my_car = Car("audi", "big", "1993") my_car_info = my_car._get_information() print(my_car_info) # 2.给属性指定默认值 # 3.三种方法进行修改:通过实例修改,通过方法进行设置,通过方法进行递增(类似于方法进行设置) my_car.model = "small" # 4.继承 # 在括号中的类称为父类,super()函数可以令子类包含父类的所有实例 # 在Python2.7中,继承语法为 # super(Electric_Car,self)._init_(make,model,year) # 5.重写父类中的方法,可实现多态,父类中的方法将被忽略,包括init方法,若子类不写,则用父类的init方法 class Battery(object): """将电动车的电池相关属性提取出来""" def __init__(self,battery_size=70): self.battery_size = battery_size def describe_battery(self): print("This car has a " + str(self.battery_size) + "-kwh battery.") def get_mileage(self): """显示行驶里程""" if self.battery_size == 70: mileage = 240 elif self.battery_size == 85: mileage = 270 message = "This car can go approxiamately " + str(mileage) message += "miles on a full charge." print(message) class ElectricCar(Car): def __init__(self,make,model,year): """初始化父类属性,并定义电动车独有的属性""" super().__init__(make, model, year) self.battery_size = Battery() def fill_gas_tank(self): print("Electric Cars do not have a gas tank!") my_tesla = ElectricCar("Tesla", "medium","2017") print(my_tesla._get_information()) my_tesla.battery_size.describe_battery() my_tesla.battery_size.get_mileage() # 6.将实例用作属性,将类中某些相近的属性再疯封装成小类,然后将这些小类实例化后作为大类的属性,以达到更清晰的结构 # 7.导入类:实现代码的简洁原则,内容在my_car.py中
f67f4de0d26bc09bf7e9aed47455b94f222d8417
otterchurchill/CircleCITest
/scopeChecker.py
1,358
3.625
4
def isOpener(chara, openers): return (chara in openers) def isCloser(chara, closers): return(chara in closers) def scopeCheck(scopeSequence, scopeMatch): s = [] for x,chara in enumerate(scopeSequence): print(chara) if isOpener(chara, scopeMatch.values()): print(chara, "was appended") s.append(chara) if isCloser(chara, scopeMatch.keys()): if s == []: print("got to closer but empty stack") return False else: if s[-1] == scopeMatch[chara]: print("popped because", chara, "is paired to the top:", s[-1]) s.pop() if s == [] and x == (len(scopeSequence)-1): return True else: continue else: print("failed because", chara, "is not equal to the top:", s[-1]) return False if s != []: print("failed because something left on the stack") return False def main(): scopeMatch = { ')':'(', ']':'[', '}':'{' } scopeSeqs = ["{()[]}", "{([)]}", "{[()][]}", "{}]", "[{}"] for seq in scopeSeqs: print(seq, scopeCheck(seq, scopeMatch)) if __name__ == '__main__': main()
cba1b0b5f23f3f4044813a11a1dd4c973856ee84
kawsing/mypython
/radom-learn.py
638
3.765625
4
import random #從列表隨機取一個資料 data=random.choice([1,4,6,9]) print(data) #從列表中隨機取n個資料,n < 列表數量 data=random.sample([1,2,3,4,5,6], 5) print(data) #隨機調換資料(修改原列表) ,就地修改data列表 data=[1,2,3,4] random.shuffle(data) print(data) #取0~1中的隨機數字,每個數字出現機率『相同』,random.random()=random.uniform(0.0,1.0) print(random.random()) print(random.uniform(0.0, 1.0)) #指定範圍,uniform指機率相同 print(random.uniform(60, 100)) #常態分配 #取平均數100,標準差10 #常態分配亂數 print(random.normalvariate(100,10))
f99b66ba14100c318077afb9c03dbdddbbda55f6
kawsing/mypython
/function.py
273
3.546875
4
#-*- coding: utf-8 -*- #範例 def sayHello(): print("Hello") #使用parameter def sayIt(msg): print(msg) #two parameter def add(n1, n2): result=n1+n2 print(result) sayHello() sayIt("你好,python") sayIt("第二次呼叫python") add(3,5) add(1000,18090)
86a0653f30732b468566eb5dc9758a88bfddca8d
luciano00filho/python-homeworks
/questao4.py
980
3.71875
4
#/usr/bin/python3.6 import sys def montaMatriz(linhas,colunas): matriz = [0.0] * linhas for i in range(linhas): matriz[i] = [0.0] * colunas return matriz def geraNumeros(vmin,vmax,linhas,colunas): for x in range(vmin,(linhas * colunas),1): print("x1 =",x) def main(): dimension, interval, matrix, rows, cols, vmin, vmax, listaNum, cont = '','',[[]],0,0,0,0,[],0 dimension = input("Qual o tamanho da matriz? ").split() rows = int(dimension[0]) # linhas cols = int(dimension[1]) # colunas interval = input("Qual o intervalo de valores? ").split() vmin = int(interval[0]) # mínimo vmax = int(interval[1]) # máximo # crio a matriz zerada matrix = montaMatriz(rows,cols) print("matrix =",matrix) # gero os números geraNumeros(vmin,vmax,rows,cols) sys.exit() # modifico a matriz for i in range(rows): for j in range(cols): print("cont =",cont) matrix[i][j] = listaNum[cont] cont += 1 print(matrix) if __name__ == '__main__': main()
5019da761a24822a02a49ac8a7abca2e5d12b28c
aryan2412/sample
/evenoroddinlist.py
272
3.984375
4
even=0 odd=0 a=[] b=int(input("Enter no. of elements=")) #User Input for list size for i in range(0,b): t=int(input("Enter in list=")) #User Input for elements of List a.append(t) for i in a: if(i%2==0): even+=1 else: odd+=1
ecb83cf2aaf43a4610880ade0ec6d222f9eb6fef
jswojcik/Py4e
/Assignment 7.2.py
361
3.765625
4
# Use the file name mbox-short.txt as the file name fname = input("Enter file name: ") fh = open(fname) count = 0 tot = 0 for line in fh: if not line.startswith("X-DSPAM-Confidence:"): continue pos = line.find(' ') num = line[pos:] num = float(num) count = count + 1 tot = num + tot print(tot) ans = tot / count print("Average spam confidence:", ans)
ceb571472cd16c49dc15cb002126dff8e2b50da9
imn00133/PythonSeminar19
/Users/softwareMaestro/convert_fahrenheit_celsisus/convert_fahrenheit_celsisus.py
611
3.75
4
#-*- coding: utf-8 -*- inputNumber=float(input("변환할 화씨온도(℉를) 입력하십시오: ")) print("%0.2f℉는 %0.2f℃입니다." %(inputNumber, (inputNumber-32)*5/9)) # 1. #-*- coding: utf-8 -*-은 python2.x버전에서 인코딩을 알려주는 규약입니다. # python3에서는 사용하지 않으셔되 됩니다. # 2. 1번 줄에서의 빨간 줄은 # 뒤에 공백이 없어서 발생합니다. # 3. 2번 줄에서의 빨간 줄은 '=' 연산자 주변에 공백이 없어서 그렇습니다. # 4. 3번 줄에서의 빨간 줄은 '%' 뒤에 공백이 없어서 그렇습니다. # 김재형
0cb3637b005033512e14949647e04b08a78d4f5a
imn00133/PythonSeminar19
/Users/Miya/times_table/times_table.py
170
3.640625
4
for i in range(1, 10): for j in range(2, 10): print("%d * %d = %2d" % (j, i, j*i), end=' ') print("") # 잘 해결하셨습니다. # 주강사 김재형
82912fd6df868d125842abaf22b4fc50b60073ea
imn00133/PythonSeminar19
/Users/Miya/BMI_calculator/BMI_calculator.py
625
3.921875
4
height = float(input("본인의 키를 입력하세요.(m): ")) weight = int(input("본인의 몸무게를 입력하세요.(kg): ")) calc = float("%.1f" % (weight / pow(height, 2))) if calc < 18.5: print("저체중") elif calc < 23: print("정상") elif calc < 25: print("과체중") elif calc < 30: print("경도비만") elif calc < 35: print("중증도 비만") elif calc >= 35: print("고도 비만") else: print("안알랴줌") # 마지막에 cal >=35와 else를 따로 넣은 이유가 궁금합니다? # 그 이외에는 잘 해결했습니다. 수고하셨습니다. # 주강사 김재형
28cc003d0526bb94d79c3e77f0d4c3dbbec6d880
ReviewEdge/Text-Based-Operating-System
/main.py
18,535
3.78125
4
# -*- coding: utf-8 -*- import time import requests import datetime import smtplib import imapclient import imaplib imaplib._MAXLINE = 10000000 import pprint import pyzmail # Declares globals global logged_in logged_in = False global has_email has_email = False # creates date and time variables now = datetime.datetime.now() date_and_time_data = now.strftime("%b %d, %Y %I:%M %p") date_data = now.strftime("%b %d, %Y") time_data = now.strftime("%I:%M %p") # for email email_search_date = now.strftime("%Y/%m/%d") def new_file(): new_file_name = input("Enter a name for your file:\n") + ".txt" file_1 = open(new_file_name, "w") new_file_text = input("Enter text for your new file. Press ENTER when you are finnished:\n") + "\n\n" file_1.write(new_file_text) file_1.close() print("File created. Closing file creator...\n") time.sleep(1) def open_file_func(): file_name_op = input("Enter the name of the file you would like to access (without .txt):\n") + ".txt" try: open_file = open(file_name_op, "r+") except IOError: print("\nFile not found.\n") time.sleep(.8) open_file_func() else: #open_file.read() print("\n\n" + open_file.read() + "\n\n") ans = input("Would you like to edit this file? (Y/n)\n").lower() if ans == "y": print("Enter text to add to the file.\nPress ENTER when you are finnished:\n") text_to_add = input() + "\n\n" open_file.write(text_to_add) print("Closing editor...\n") open_file.close() time.sleep(1) # runs the files app def files(): x = "on" while x != "off": print("\tFILES\n") print("\t\t'create' 'open' 'off'") x = input() if x == "create": new_file() if x == "open": open_file_func() def weather(): city_id = "5122534" url = "http://api.openweathermap.org/data/2.5/weather?id=" + city_id + "&units=imperial&APPID=c3e072c5029f60ac53dac3d1c7d9b06f" json_data = requests.get(url).json() temp_val = str(json_data["main"]["temp"]) description = str(json_data["weather"][0]["description"]) description = description.capitalize() format_add = description + "\n" + "Temperature: " + temp_val + " " + "°F" # prints what is being returned #print("Current weather in Jamesown, NY: \n\n" + format_add) return "Current weather in Jamesown, NY: \n" + format_add def save_email_know(email_ad,password): # ADD ABILITY TO CHECK IF NUMBER HAS BEEN USED account_num = input("Enter a user number for your account:") new_file_name = "email_account_" + account_num + ".txt" file_1 = open(new_file_name, "w") new_file_text = "A" + email_ad + "P" + password file_1.write(new_file_text) file_1.close() print("Your email account information has been saved as account #" + account_num + "\n\n") time.sleep(2) def send_email(): if logged_in and has_email: email = global_email_address password = global_email_password if logged_in and (has_email == False): print("\nYou have not saved an email to your account. You can do this in the 'account' app.\n") time.sleep(1) if has_email == False: email = input("Enter your email adress: ") password = input("Enter password: ") #save_it = input("\nWould you like to save your information? (Y/n):\n").lower() #if save_it == "y": # save_email_know(email,password) # starts connection smtpObj = smtplib.SMTP('smtp.gmail.com', 587) smtpObj.ehlo() smtpObj.starttls() ''' saved = input("Do you have a saved account (Y/n)?\n").lower() if saved == "y": account_num = input("Enter you account #:\n") open_file = open("email_account_" + account_num + ".txt", "r+") info = open_file.read() pas_idx = info.index("P") email = info[1:pas_idx] password = info[pas_idx+1:] ''' time.sleep(.4) print("\nSending email as " + email + "\n") time.sleep(1) # creates variables sendaddress = input("Enter the recipient's email address:\n") subject = input("Enter the email's subject:\n") message = input("Enter the email's message:\n") full_message = "Subject: " + subject + " " + " \n" + message # sends email smtpObj.login(email, password) smtpObj.sendmail(email, sendaddress, full_message) # quits connection smtpObj.quit() print("\nEmail sent.\n") time.sleep(1.5) #add ability to search for emails -google search? #ability to show only beginning of email then ask to see more def read_email(): global has_email if logged_in and has_email: email = global_email_address password = global_email_password if logged_in and (has_email == False): print("\nYou have not saved an email to your account. You can do this in the 'account' app.\n") time.sleep(1) if has_email == False: email = input("Enter your email address: ") password = input("Enter password: ") #save_it = input("\nWould you like to save your information? (Y/n):\n").lower() #if save_it == "y": # save_email_know(email, password) ''' saved = input("Do you have a saved account (Y/n)?\n").lower() if saved == "y": account_num = input("Enter you account #:\n") open_file = open("email_account_" + account_num + ".txt", "r+") info = open_file.read() pas_idx = info.index("P") email = info[1:pas_idx] password = info[pas_idx + 1:] ''' print("\nViewing email as " + email + "\n") imapObj = imapclient.IMAPClient("imap.gmail.com", ssl=True) imapObj.login(email, password) imapObj.select_folder("INBOX", readonly=True) #print(email_search_date) #choses search terms: UIDs = imapObj.gmail_search("after:" + email_search_date) #UIDs = imapObj.search(['SINCE '+ email_search_date]) #print(UIDs) print("You have " + str(len(UIDs)) + " recent emails.\n") time.sleep(1) def fetch_email(pos,email_num): rawMessages = imapObj.fetch(UIDs, ["BODY[]"]) message = pyzmail.PyzMessage.factory(rawMessages[UIDs[pos]][b'BODY[]']) readable_text = "" if message.text_part != None: readable_text += str(message.text_part.get_payload().decode()) # this is code for handling HTML: # if message.html_part != None: # readable_text += "\n" + str(message.html_part.get_payload().decode(message.html_part.charset)) print("\t" + "Email " + str(email_num) + "\n") time.sleep(.6) print("\nEmail from: " + str(message.get_address('from')[1]) + "\n\n\"" + str( message.get_subject()) + "\"\n\n" + readable_text) if pos > 0: email_num += 1 pos -= 1 next_ask = input("\n\n\t'n' for next email, 'off' to stop: \n").lower() print("\n") if next_ask == "n": fetch_email(pos,email_num) fetch_email(len(UIDs)-1,1) # This is now obsolete: def save_email(): x = input("\n'save' allows you to enter and store your email account information.\nWould you like to proceed (Y/n)?\n").lower() if x == "y": email_ad = input("Enter your email adress: ").lower() password = input("Enter password: ") # ADD ABILITY TO CHECK IF NUMBER HAS BEEN USED account_num = input("Enter a user number for your account:") new_file_name = "email_account_" + account_num + ".txt" file_1 = open(new_file_name, "w") new_file_text = "A" + email_ad + "P" + password file_1.write(new_file_text) file_1.close() print("Your email account information has been saved as account #" + account_num + "\n\n") time.sleep(2) # runs the email app def email(): x = "on" while x != "off": print("\tEMAIL\n") print("\t\t'send' 'read' 'save' 'off'") x = input() if x == "send": send_email() if x == "read": read_email() if x == "save": save_email() def phys(): print("\nEnter knowns. Enter unknowns as \".0\"\n") time.sleep(.5) try: v_i = float(input("Initial Velocity (m/s): ")) v_f = float(input("Final Velocity (m/s): ")) a = float(input("Acceleration (m/s^2): ")) t = float(input("Time (s): ")) d = float(input("Distance (d): ")) except(ValueError): time.sleep(.5) print("\nInvalid Input") time.sleep(1) phys() print("\n") # finds final velocity def find_v_f(v_i, a, t): return v_i + a * t # finds initial velocity def find_v_i(v_f, a, t): return v_f - (a * t) # finds acceleration def find_a(v_f, v_i, t): return (v_f - v_i) / t # finds time def find_t(v_f, v_i, a): return (v_f - v_i) / a # finds v_i (with distance) def find_v_i_with_d(a, t, d): return (-0.5 * a * t * t + d) / t time.sleep(.5) # decides what function to run # runs if doesn't have v_f, and fines v_i if v_f == .0 and v_i != .0 and a != .0 and t != .0: print("Final Velocity: " + str(find_v_f(v_i, a, t))) # runs if doensn't have v_i, and finds v_i elif v_i == .0 and v_f != .0 and a != .0 and t != .0: print("Initial Velocity: " + str(find_v_i(v_f, a, t))) # runs if doensn't have a, and finds a elif a == .0 and v_f != .0 and v_i != .0 and t != .0: print("Acceleration: " + str(find_a(v_f, v_i, t))) # runs if doensn't have t, and finds t elif t == .0 and v_f != .0 and v_i != .0 and a != .0: t = find_t(v_f, v_i, a) if t >= 0: print("Time: " + str(t)) else: print("Invalid Knowns (would result in negative time)") print("Time: " + str(t)) # runs if doesn't have v_i or v_f but has d, t, and a elif v_f == .0 and v_i == .0 and t != .0 and a != .0 and d != .0: v_i = find_v_i_with_d(a, t, d) print("Initial Velocity: " + str(v_i)) # now finds v_f v_f = find_v_f(v_i, a, t) print("Final Velocity: " + (str(v_f))) else: print("Knowns are invalid, or calculator does not yet have this ability.") # finds distance if d == .0: d = (v_i * t) + 0.5 * a * t * t print("Distance: " + str(d)) print("\n") time.sleep(1) #FINNISH THIS def calc_nums(): calculate = input("Enter math problem:\n") print("\n" + str(calculate) + " = " + str(eval(calculate)) + "\n\n") time.sleep(1.2) def calc(): x = "on" while x != "off": print("\tCALCULATOR\t") print("\t\t'calc' 'phys' 'off'") x = input() if x == "calc": calc_nums() if x == "phys": phys() user = "***" def log_in(): saved = input("Do you have a login account (Y/n)?\n").lower() if saved == "y": username = input("Enter your username:\n").lower() def password_check(username_param): file_name_op = ("user_" + username_param + ".txt") try: open_file = open(file_name_op, "r+") except IOError: print("\nThat username doesn't exist.\n") time.sleep(1) log_in() return else: open_file = open(file_name_op, "r+") info = open_file.read() pas_attempt = input("Enter your password:\n") pas_idx_start = info.index(";2P;") pas_idx_end = info.index("#2P#") password = info[pas_idx_start + 4:pas_idx_end] if pas_attempt == password: open_file.close() global logged_in logged_in = True global user user = username time.sleep(.4) print("\nYou are now logged in as " + username + ".\n\n") time.sleep(1.5) else: time.sleep(.5) print("Incorrect Password\n") continue_pascheck = input("Do you know your password? (Y/n)\n") if continue_pascheck != "Y" or "y": log_in() return time.sleep(.5) open_file.close() password_check(username) return password_check(username) else: def revert(entering): print("\nInvalid " + entering + "\n") time.sleep(.5) print("Please restart.\n") time.sleep(.8) log_in() save_it = input("\nWould you like to create a login account? (Y/n):\n").lower() if save_it == "y": username = input("Enter a username (do not use special characters):\n").lower() if "#" in username: revert("username") elif ";" in username: revert("username") else: new_file_name = ("user_" + username + ".txt") """ file_1 = open(new_file_name, "w") new_file_text = ";1U;" + username + "#1U#" + ";2P;" + password + "#2P#" file_1.write(new_file_text) file_1.close() print("Your login, " + username + ", has been saved\n\n") time.sleep(2) log_in() """ password = input("Enter password (case sensitive, do not use special characters): \n") if "#" in password: revert("password") elif ";" in password: revert("password") else: new_file_name = ("user_" + username + ".txt") file_1 = open(new_file_name, "w") new_file_text = ";1U;" + username + "#1U#" + ";2P;" + password + "#2P#" + "#" file_1.write(new_file_text) file_1.close() print("Your login, " + username + ", has been saved\n\n") time.sleep(2) log_in() # allows user to save email to account def email_account(): file_name_op = ("user_" + user + ".txt") open_file = open(file_name_op, "r+") info = open_file.read() pas_idx_end = info.index("#2P#") if info[pas_idx_end + 4:] == "#": email_address = input("Enter your email address:\n") email_password = input("Enter your email password:\n") new_file_text = ";3A;" + email_address + "#3A#" + ";4E;" + email_password + "#4E#" + "#" open_file.write(new_file_text) #set_email_info_vari() time.sleep(1.8) print("Your email, " + email_address + ", has been saved.\n\n") else: try: info[pas_idx_end + 8] == None except IndexError: yes = input("\nYou have an outdated account. Would you like to update your account? (Y/n)\n").lower() if yes == "y": open_file.write("#") time.sleep(1.2) print("Your account has been updated.\n\n") open_file.close() time.sleep(1) email_account() return else: return print("You have already saved an email to your account.\n") time.sleep(1) open_file.close() # runs the account app def account(): x = "on" while x != "off": print("\tACCOUNT\t") print("\t\t'email' 'view' 'off'") x = input() if x == "email": email_account() if x == "view": print("still in progress...") # checks if account has email, sets email info as global variables def set_email_info_vari(): if logged_in: file_name_op = ("user_" + user + ".txt") open_file = open(file_name_op, "r+") info = open_file.read() try: pas_idx_end = info.index("#2P#") info[pas_idx_end + 6] == "3" except IndexError: return pas_idx_end = info.index("#2P#") if info[pas_idx_end + 6] == "3": global has_email has_email = True global global_email_address global global_email_password email_ad_idx_start = info.index(";3A;") email_ad_idx_end = info.index("#3A#") global_email_address = info[email_ad_idx_start + 4:email_ad_idx_end] email_pas_idx_start = info.index(";4E;") email_pas_idx_end = info.index("#4E#") global_email_password = info[email_pas_idx_start + 4:email_pas_idx_end] open_file.close() # runs the program x = "on" print("Hello!\n") time.sleep(.5) log_in() set_email_info_vari() while x != "off": if logged_in == True: print("\n" + date_and_time_data + "\nLogged in as: " + user + "\n") else: print("\n" + date_and_time_data + "\nUsing as guest." + "\n") x = input("Enter: 'files' 'weather' 'email' 'calc' 'login' 'account' 'off' '?'\n").lower() if x == "files": files() if x == "weather": print("\n" + weather()+ "\n") if x == "email": email() if x == "calc": calc() if x == "login": if logged_in == True: print("\nYou are already logged in.\n") else: print("\n") log_in() if x == "account": if logged_in == True: account() else: print("You are not logged in.") if x == "?": print("Enter: \n'files' to open the files app and work with files \n'weather' to get a weather report \n'email' to send an email \n'calc' to use the calculator app \n'login' to login with an account, or to create an account \n'account' to edit your user account \n'off' to close the program") print("Ending Program...") time.sleep(1) #tag files with profile, only let you open if tagged with your profile #list users files #check if username is taken (look for file) -handle no file found erorr #make profile as a class (save email info, files, etc.) #create activity log (times, apps opened)
51a566cd2d6025d7bc557df0ba0a29f4087a7f17
Bsq-collab/k05
/util/Occ.py
2,304
3.8125
4
''' Team B2-4ac- Bayan Berri, Alessandro Cartegni SoftDev1 pd7 HW03: StI/O: Divine your Destiny! 2017-09-14 ''' import random def makedict(filename): """ makes a dictionary from csv file param arg: string filename csv file ret: dictionary d keys: jobs values: percents """ d = dict() for line in open(filename): newline= line[line.rfind("n")] d[line[0:line.rfind(',')]] = line[line.rfind(',')+1:len(line)-1]#deals with the categories that include commas by searching from the end. #rfind returns index of last comma. if "Job Class" in d: del d["Job Class"] return d def make_float(d): """ makes string numbers into floats (first line of csv value is a string) arg: dictionary d whose values are to be typecasted into floats ret: dictionary with values changed into floats """ for k in d: try: d[k]=float(d[k]) except: d[k]=d[k] return d def make_arr(d): """ makes an array of 998 based on dictionary values to then select a random choice for each key in the dictionary it adds it to an array as many times as ten times the value. If the key is x and the value is 6.1 then x would be added to the array 61 times. arg: dictionary d of keys type string and values type float ret: array of compiled jobs based on percentages """ jobs=[] for k in d: if type(d[k])!= str and k!="Total": ctr= int(d[k]*10) #adds every job 10 times the percentage. while ctr!=0: jobs.append(k) ctr-=1 return jobs #final selectio def get_random(arr): """ Uses an array to randomly choose a job using python builtin function random.choice(arr) arg: array arr compilation of jobs of type string from make_arr ret: string from array parameter which will be the name of the job """ return random.choice(arr)#random.choice picks a random item from the array def getRandom(f): """ wrapper function to make executing it easier arg: string f will be the file name used in makedict ret: string randomly generated from choosing a job from the array randomly """ return get_random(make_arr(make_float(makedict(f))))
2221806a1f358e55afa5692220f4586f03872c96
firewebteam/main-repository
/figury.py
901
3.828125
4
class Figury(): def __init__(self, kolor, x, y): self.kolor = kolor self.x = x self.y = y def prostokat(self): print("Pole prostokata to", self.x*self.y) print("Kolor prostokąta to", self.kolor) def trojkat(self): print("Pole trójkąta to", (self.x*self.y)/2) print("Kolor trójkąta to", self.kolor) def trapez(self): print("Pole trapezu to", ((self.x*self.y)/2)*10) print("Kolor trapezu to", self.kolor) def romb(self): print("Pole rombu to", self.x*self.y) #y w tym przypadku to wysokość print("Kolor rombu to", self.kolor) prostokat=Figury("żółty", 5, 11) prostokat.prostokat() trojkat=Figury("niebieski", 12, 8) trojkat.trojkat() trapez=Figury("zielony", 6, 16) trapez.trapez() romb=Figury("brązowy", 4, 6) romb.romb()
ae91e9d855546eb8121f06b75df88f41b8e337d4
firewebteam/main-repository
/J.Karasek/Zadanie_6_Jasiek.py
156
3.703125
4
t = float(input("Czas:")) v = 3.8 s = v*t if t <= 100: print("Jasiek przeszedł %s metrów" %s) else: print("Jasiek przeszedł całą drogę")
8cc66caa916630c06f511596bf7c55f5d9c9314d
firewebteam/main-repository
/Kamil Ko-odziej/6_Jasiek - 2.py
293
3.640625
4
v = ((3 ** 2) + (2 ** 2)) ** (1 / 2) t = int(input('Podaj sekundę ruchu Jaśka:')) if t > 100: print('Jasiek przeszedł już całe %.3f metrów' % (100*v)) elif t < 0: print('Jasiek jeszcze nie zaczął się poruszać') else: print('Jasiek przeszedł %.3f metrów' % (t*v))
59a32850a0e162a0085c334b200747d300e5e9c0
firewebteam/main-repository
/J.Karasek/Zadanie_3_konto_bankowe.py
878
3.859375
4
x = input("Imię: ") y = input("Hasło: ") z = 2130 while True: if x == "Arnold" and y == "icra2013": print ("Saldo:", z) print("Jaką czynność chcesz wykonać?\nA - wpłata\nB - wypłata") czynnosc = input("Czynność: ") if czynnosc == "A": wplata = int(input("Podaj kwotę: ")) if wplata > 0: z += wplata print("Twoje saldo wynosi teraz:", z) break else: print("Błędna kwota") break elif czynnosc == "B": wyplata = int(input("Podaj kwotę: ")) if wyplata < z: z -= wyplata print("Twoje saldo wynosi teraz:", z) break else: print("Idź do pracy!") break else: print("Błędne dane") break
6ce838e30b83b79bd57c65231de2656f63945486
prashant2109/django_login_tas_practice
/python/Python/oops/polymorphism_info.py
2,144
4.40625
4
# Method Overriding # Same method in 2 classes but gives the different output, this is known as polymorphism. class Bank: def rateOfInterest(self): return 0 class ICICI(Bank): def rateOfInterest(self): return 10.5 if __name__ == '__main__': b_Obj = Bank() print(b_Obj.rateOfInterest()) ##############################################################################################33 # Polymorphism with class class Cat: def __init__(self, name): self.name = name def info(self): print(f'My name is {self.name}. I belong to cat family.') def make_sound(self): print('meow') class Dog: def __init__(self, name): self.name = name def info(self): print(f'My name is {self.name}. I belong to Dog family.') def make_sound(self): print('Bark') cat = Cat('kitty') dog = Dog('tommy') # Here we are calling methods of 2 different class types with common variable 'animal' for animal in (cat, dog): print(animal.info()) print(animal.make_sound()) ############################################################################################################# class India(): def capital(self): print("New Delhi") def language(self): print("Hindi and English") class USA(): def capital(self): print("Washington, D.C.") def language(self): print("English") obj_ind = India() obj_usa = USA() for country in (obj_ind, obj_usa): country.capital() country.language() ######################################################################################################## class Bird: def intro(self): print("There are different types of birds") def flight(self): print("Most of the birds can fly but some cannot") class parrot(Bird): def flight(self): print("Parrots can fly") class penguin(Bird): def flight(self): print("Penguins do not fly") obj_bird = Bird() obj_parr = parrot() obj_peng = penguin() obj_bird.intro() obj_bird.flight() obj_parr.intro() obj_parr.flight() obj_peng.intro() obj_peng.flight()
5cb6c9094fd1d69972f5369331082a8af7892156
o0Marianne0o/cp1404practicals
/prac_02/files.py
921
4.09375
4
# program 1 - Enter a name and save to text file username = input("Enter your name: ") output_file = open("name.txt", 'w') print("{}".format(username), file=output_file) output_file.close() # program 2 - open file and print the stored name open_file = open("name.txt", 'r') print("Your name is {}".format(open_file.read())) open_file.close() # program 3 - adding stored value in the text file number_file = open("numbers.txt", 'r') first_number = int(number_file.readline()) second_number = int(number_file.readline()) sum_of_two_numbers = first_number + second_number print("the sum of the two number is {}".format(sum_of_two_numbers)) # program 4 - sum of all numbers in numbers.txt all_numbers = (number_file.readlines()) sum_of_numbers = 0 for numbers in all_numbers: all_number = int(numbers) sum_of_numbers += all_number number_file.close() print("The sum of all numbers is {}".format(sum_of_numbers))
1ce7099585cf1f42ae66519907fdf2b5d720afb2
KrisCheng/HackerPractice
/Python/oop/hello.py
483
3.75
4
# OOP basic class Student(object): def __init__(self, __name, score): self.__name = __name self.score = score def print_score(self): print('%s %s' % (self.__name, self.score)) def get_name(self): return self.__name def set_name(self,name): self.__name = name bart = Student('Kris Chan', 100) bart.print_score() print(bart.get_name()) bart.name = "Devils" print(bart.name) print(bart.get_name()) print(bart) print(Student)
390ebfe44b76ebfcebe368a92c3a6002c1f077c7
KrisCheng/HackerPractice
/Python/module/itertools.py
135
3.859375
4
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import itertools cs = itertools.cycle('ABC') for c in cs: print(c) #无限重复
710b2baa4bd86c79b91492c061f4ebb183ad5688
WeihanSun/python_sample
/standard/zip.py
2,070
3.703125
4
# zip and unzip file and folder # zip is to loop list meanwhile (see container) import zipfile import os import shutil # zip folder def zip_directory(path): zip_targets = [] # pathからディレクトリ名を取り出す base = os.path.basename(path) # 作成するzipファイルのフルパス zipfilepath = os.path.abspath('%s.zip' % base) # walkでファイルを探す for dirpath, dirnames, filenames in os.walk(path): for filename in filenames: filepath = os.path.join(dirpath, filename) # 作成するzipファイルのパスと同じファイルは除外する if filepath == zipfilepath: continue arc_name = os.path.relpath(filepath, os.path.dirname(path)) print(filepath, arc_name) zip_targets.append((filepath, arc_name)) for dirname in dirnames: filepath = os.path.join(dirpath, dirname) arc_name = os.path.relpath(filepath, os.path.dirname(path)) + os.path.sep print(filepath, arc_name) zip_targets.append((filepath, arc_name)) # zipファイルの作成 zip = zipfile.ZipFile(zipfilepath, 'w') for filepath, name in zip_targets: zip.write(filepath, name) zip.close() if __name__ == '__main__': file1 = './new.zip' file2 = './packages.zip' if os.path.exists(file1): os.remove(file1) if os.path.exists(file2): os.remove(file2) # ZIP_STORED: no compression # ZIP_DEFLATED: compression zFile = zipfile.ZipFile(file1, 'w', zipfile.ZIP_STORED) zFile.write('class_compare.py') zFile.write('class_inherit.py') zFile.close() # zip dir zip_directory('./packages') # unzip file or folder unzip_dir = 'unzip_folder' if os.path.exists(unzip_dir): shutil.rmtree(unzip_dir) os.mkdir(unzip_dir) with zipfile.ZipFile(file1, 'r') as zip_ref: zip_ref.extractall(unzip_dir) with zipfile.ZipFile(file2, 'r') as zip_ref: zip_ref.extractall(unzip_dir)
9aa02643ad00c618f323b127bdb01fb076c86e0e
redoctoberbluechristmas/100DaysOfCodePython
/Day27 - TKInter, Args, Kwars/main.py
309
4
4
import tkinter # Create a window window = tkinter.Tk() window.title("My First GUI Program") window.minsize(width=500, height=300) # Create a label my_label = tkinter.Label() #mainloop is what keeps window on-screen and listening; has to be at very end of program. window.mainloop()
f7b7853e9332ef9fd2a5c16733f1908c00ea2a04
redoctoberbluechristmas/100DaysOfCodePython
/Day03 - Control Flow and Logical Operators/Day3Exercise3_LeapYearCalculator.py
826
4.375
4
#Every year divisible by 4 is a leap year. #Unless it is divisible by 100, and not divisible by 400. #Conditional with multiple branches year = int(input("Which year do you want to check? ")) if(year % 4 == 0): if(year % 100 == 0): if(year % 400 == 0): print("Leap year.") else: print("Not leap year.") else: print("Leap year.") else: print("Not leap year.") #Refactored using more condense conditional statement. #"If a year is divisible by 4, and it is either not divisible by 100, or is not not divisible by 100 but is # divisible by 400, then it is a leap year. Otherwise, it is not a leap year." if(year % 4 == 0) and ((not year % 100 == 0) or (year % 400 == 0)): #if(year % 4 == 0) and ((year % 100 != 0) or (year % 400 == 0)): print("Leap year.") else: print("Not leap year.")
d167ac2865745d4e015ac1c8565dd07fba06ef4d
redoctoberbluechristmas/100DaysOfCodePython
/Day21 - Class Inheritance/main.py
777
4.625
5
# Inheriting and modifying existing classes allows us to modify without reinventing the wheel.add class Animal: def __init__(self): self.num_eyes = 2 def breathe(self): print("Inhale, exhale.") class Fish(Animal): def __init__(self): super().__init__() # The call to super() in the initializer is recommended, but not strictly required. def breathe(self): # Extend an inherited method. Running this will produce "Inhale, exhale" \n "doing this underwater." Wont' totally override the method. super().breathe() print("doing this underwater.") def swim(self): print("moving in water.") nemo = Fish() nemo.swim() # Inherit methods. nemo.breathe() # Inherit attributes. print(nemo.num_eyes)
d999a0fd4f5a5516a6b810e76852594257174245
redoctoberbluechristmas/100DaysOfCodePython
/Day08 - Functions with Parameters/cipherfunctions.py
846
4.125
4
alphabet = [ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z' ] def caesar(start_text, shift_amount, cipher_direction): output_text = "" # Will divide the shift amount to fit into length of alphabet. shift_amount = shift_amount % 26 if cipher_direction == "decode": shift_amount *= -1 for char in start_text: if char in alphabet: start_index = alphabet.index(char) end_index = start_index + shift_amount output_text += alphabet[end_index] else: output_text += char print(f"The {cipher_direction}d text is {output_text}.")
cd9d2b973f33c724e9b85ebb00acb12ba5dbd2b8
redoctoberbluechristmas/100DaysOfCodePython
/Day08 - Functions with Parameters/Day8_CaesarCipher.py
676
3.90625
4
from cipherfunctions import caesar #from roughcipherfunctions import caesar from art import logo print(logo) should_continue = True while should_continue: direction = input("Type 'encode' to encrypt, type 'decode' to decrypt:\n") text = input("Type your message:\n").lower() shift = int(input("Type the shift number:\n")) caesar(start_text=text, shift_amount=shift, cipher_direction=direction) #caesar(input_text=text, shift_amount=shift, code_direction=direction) will_continue = input("Type 'yes' if you want to go again. Otherwise type 'no'. ") if will_continue != "yes": print("Goodbye") should_continue = False
d47a13ae0fe6c8de5c90852efe91435be06dafca
redoctoberbluechristmas/100DaysOfCodePython
/Day14 - Higher Lower Game/Day14Exercise1_HigherLowerGame.py
1,390
3.9375
4
import random import art from os import system from game_data import data # Need to select two celebrities def choose_accounts(): return random.choice(data) def format_entry(choice): return f'{choice["name"]}, a {choice["description"]}, from {choice["country"]}' def compare_accounts(player_choice, not_choice): if player_choice["follower_count"] > not_choice["follower_count"]: return -1 else: return 1 score = 0 choice_a = choose_accounts() # Start Loop Here correct_choice = True while correct_choice: print(art.logo) choice_b = choose_accounts() # Make it so you can't compare same things while choice_a == choice_b: choice_b = choose_accounts() print(f"Compare A: {format_entry(choice_a)}") print(art.vs) print(f"Against B: {format_entry(choice_b)}") player_choice = input("Who has more followers? Type 'A' or 'B': ").lower() if player_choice == 'a': player_choice = choice_a not_choice = choice_b elif player_choice == 'b': player_choice = choice_b not_choice = choice_a system("clear") if compare_accounts(player_choice, not_choice) == 1: print(f"Sorry, that's wrong. Final score = {score}") correct_choice = False break else: score += 1 print(f"Correct! Your score is {score}") choice_a = choice_b
d9d6d4b6b6e623aaa2d8c9a6c11424d8ee2454c8
tommasopierazzini/projectAI
/DecisionTreeLearning.py
5,191
3.546875
4
import DecisionTree import math def DecisionTreeLearner(dataset): def decisionTreeLearning(examples, attributes, parents_examples=()): if len(examples) == 0: return pluralityValue(parents_examples) #returns the most frequent classification among the examples elif allSameClass(examples): return DecisionTree.Leaf(examples[0][dataset.target]) #if they all have the same class, I return the class of the first example elif len(attributes) == 0: return pluralityValue(examples) #returns the most frequent classification among the examples else: mostImpAtt, threshold = chooseAttribute(attributes, examples) tree = DecisionTree.DecisionTree(mostImpAtt, threshold, dataset.attrnames[mostImpAtt]) ExampleMinor, ExampleMajor = splittingOnThreshold(mostImpAtt, threshold, examples)#separate based on threshold #do recursion and add to the tree branchesLeft = decisionTreeLearning(ExampleMinor, removeAttr(mostImpAtt, attributes), examples)#recursion branchesRight = decisionTreeLearning(ExampleMajor, removeAttr(mostImpAtt, attributes), examples)#recursion tree.addLeft(threshold, branchesLeft) tree.addRight(threshold, branchesRight) return tree def chooseAttribute(attributes, examples): # found the most important attribute, ande threshold, according to information gain maxgainAttr = 0 thresholdAttr = 0 listValuesForAttribute = getListValuesForAttribute(dataset.examples, dataset.target) # prepare a list of values for each attribute to find the most important global mostImportanceA for attr in attributes: maxgainValue = 0 threshValue = 0 for i in listValuesForAttribute[attr]: # for each attribute of each "column" (values) in the dataset gain = float(informationGain(attr, float(i), examples)) # calcolate his gain if gain > maxgainValue : # if gain greater assign it maxgainValue = gain threshValue = float(i) if maxgainValue >= maxgainAttr: maxgainAttr = maxgainValue mostImportanceA = attr thresholdAttr = threshValue return mostImportanceA, thresholdAttr def pluralityValue(examples): i = 0 global popular for v in dataset.values: #for each classification count the occurrences. Then choose the most popular count = counting(dataset.target, v, examples) if count > i: i = count popular = v return DecisionTree.Leaf(popular) def allSameClass(examples): # return True if all examples have the same class sameClass = examples[0][dataset.target] #take that of the first example as a reference for e in examples: if e[dataset.target] != sameClass: return False return True def informationGain(attribute, threshold, examples): def entropy(examples): entr = 0 if len(examples) != 0: for v in dataset.values: p = float(counting(dataset.target, v, examples)) / len(examples) if p != 0: entr += (-p) * math.log(p, 2.0) return float(entr) def remainder(examples): N = float(len(examples)) ExampleMinor, ExampleMajor = splittingOnThreshold(attribute, threshold, examples) remainderExampleMinor = (float((len(ExampleMinor))) / N) * entropy(ExampleMinor) remainderExampleMajor = (float((len(ExampleMajor))) / N) * entropy(ExampleMajor) return (remainderExampleMinor + remainderExampleMajor) # formula to calculate information gain return entropy(examples) - remainder(examples) def counting(attribute, value, example): #count the number of examples that have attribute = value return sum(e[attribute] == value for e in example) def removeAttr(delAttr, attributes): #delAttr is the attribute to remove result=list(attributes) result.remove(delAttr) return result def splittingOnThreshold(attribute, threshold, examples): ExampleMinor, ExampleMajor = [], [] for e in examples: if float(e[attribute]) <= threshold: # divide the examples based on the threshold with respect to a given attribute ExampleMinor.append(e) else: ExampleMajor.append(e) return ExampleMinor, ExampleMajor return decisionTreeLearning(dataset.examples, dataset.inputs) def getListValuesForAttribute(exemples, nA): #create a list of list with singles values of attributes valuesList = [] for n in range(nA): l = [] for i in range(0,len(exemples)): l.append(exemples[i][n])#values for each attribute l = list(set(l))#remove duplicates valuesList.append(l) #attributes without duplicate (to improve speed) return valuesList
2406a145b15c23937ed8f3887e907f552794a6b5
Yeahp/nebula
/acrobatic_demo/email_service.py
1,095
3.578125
4
import smtplib from email.mime.text import MIMEText from email.header import Header """ We send email via SMTP(Simple Mail Transfer Protocol) and MIME(Multipurpose Internet Mail Extensions), which require that both the sender and receiver should open his SMTP service. Otherwise, the request for sending email will fail. """ if __name__ == "__main__": sender = "yeerxi@163.com" receivers = ['yeerxi@163.com'] # three parameters: text content, text format and encoding message = MIMEText("test for sending email ", "plain", "utf-8") message["From"] = Header("yeerxi <yeerxi@163.com>", "utf-8") message["To"] = "qierpeng <qierpeng@163.com>" subject = "Python SMTP email test" message["Subject"] = Header(subject, "utf-8").encode() try: smtp = smtplib.SMTP() smtp.connect('smtp.163.com', 25) smtp.set_debuglevel(1) smtp.login('yeerxi', 'qierpeng') smtp.sendmail(sender, receivers, message.as_string()) print("Success: finish sending email!") smtp.quit() except smtplib.SMTPException: print("Error: cannot send email!")
c42e1c0f609302b069f8818fd33412d2e0a4ecd8
kasra28/emialspammer
/spammer.py
5,077
3.515625
4
# email spammer # imports import smtplib import sys import time # start class bcolors: PURPLE = '\033[95m' CYAN = '\033[96m' DARKCYAN = '\033[36m' BLUE = '\033[94m' GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' BOLD = '\033[1m' UNDERLINE = '\033[4m' END = '\033[0m' def banner(): a = "welcom to my first email spammer its feel good to f**k some one whit spam try it...." b = "made by <kasra akhavan> <IRANIAN HACKER>" c = "big tnx to you for using my tool..." d = ''' you can tell me if you like this tool by like it in git hub ...... .. .. ;;;;;;;;;; . .. . ;;; ;;; . . ;;; ;;; ;;; ;;; . . ;;;; ;;; ;;;; ------> this is you :) . . ;;;;; ; ; ;;;;; . . ;;;;; ;; ;; ;;;;; . ;;;;; ;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; LOVE YOU MEN ''' print(bcolors.RED + a) time.sleep(2) print(bcolors.GREEN + b) print(bcolors.DARKCYAN + c) print(bcolors.BLUE + d) class Email_Bomber: count = 0 def __init__(self): try: print(bcolors.GREEN + "\n starting program...") self.target = str(input(bcolors.RED + "please enter target email \nexample:(kasra@kasra.com)\n<box>: ")) self.mode =int(input(bcolors.RED + 'enter Bomb count (1,2,3,4) || 1:(1000) 2:(500) 3:(250) 4:(custom)\n<box>: ')) if int(self.mode) > int(4) or int(self.mode) < int(1): print("that number is suck <FUCK YOU>") time.sleep(2) print("oh sorry men i was wronge but at less your math is suck...\nbye bye") sys.exit(1) except Exception as e: print(f'ERROR: {e}') def bomb(self): try: print(bcolors.BLUE + 'set up bomb to fuck they mother') self.amount = None if self.mode == int(1): self.amount = int(1000) elif self.mode == int(2): self.amount = int(500) elif self.mode == int(3): self.amount = int(250) else: self.amount = int(input(bcolors.BLUE + 'choose a custom amount\n<box>: ')) print( bcolors.GREEN + f"\n you select bomb at mode {self.mode} and {self.amount} amount ") except Exception as e: print(f"ERROR: {e}") def email(self): try: print(bcolors.RED + "setup the email to fuck them...........") self.server = str(input(bcolors.GREEN + 'Enter email server || or choose one of the options 1)Gmail 2)Yahoo 3)Outlook \n <box>:')) premade = ['1', '2', '3'] default_port = True if self.server not in premade: default_port = False self.port = int(input(bcolors.GREEN + "enter your port number\n<box>: ")) if default_port == True: self.port = int(587) if self.server == '1': self.server = 'smtp.google.com' elif self.server == '2': self.server = 'smtp.mail.yahoo.com' elif self.server == '3': self.server = 'smtp.mail.outlook.com' self.fromAddr = str(input(bcolors.GREEN + 'Enter from address\n<box>:')) self.fromPwd = str(input(bcolors.GREEN + 'Enter from password\n<box>:')) self.subject = str(input(bcolors.GREEN + 'Enter from subject of email\n<box>:')) self.message = str(input(bcolors.GREEN + 'Enter message\n<box>:')) self.msg = '''From: %s\nTo: %s\nSubject %s\n%s\n ''' % (self.fromAddr, self.target, self.subject, self.message) self.s = smtplib.SMTP(self.server, self.port) self.s.ehlo() self.s.starttls() self.s.ehlo() self.login(self.fromAddr, self.fromPwd) except Exception as e: print(f"ERROR: {e}") def send(self): try: self.s.send_message(self.fromAddr, self.target, self.msg) self.count +=1 print(bcolors.YELLOW + f'BOMB: {self.count}') except Exception as e: print(f"ERROR: {e}") def attack(self): for email in range(20): print(bcolors.GREEN + '\n Attempting secure account login') self.s.login(self.fromAddr, self.fromPwd) print(bcolors.RED + '\n ATTACK IS START B!TCH') for email in range(50): self.send() time.sleep(0.5) time.sleep(60) self.s.close() print(bcolors.RED + '---Attack finished---') if __name__ =='__main__': banner() bomb = Email_Bomber() bomb.bomb() bomb.email() bomb.attack()
223bc3092d41737c75c588f9fdb6fcc9a82b062f
MaryTalvistu/prog_alused
/1/yl6.py
426
3.671875
4
inimeste_arv = input("Sisestage inimeste arv: ") kohtade_arv_bussis = input("Sisestage kohtade arv bussis: ") busside_arv = int(int(inimeste_arv) / int(kohtade_arv_bussis)) j22k = int(inimeste_arv) - int(busside_arv) * int(kohtade_arv_bussis) print("Inimeste arv " + str(inimeste_arv) + ", kohtade arv bussis " + str(kohtade_arv_bussis) + ", busside arv " + str(busside_arv) + ", mahajäänud inimeste arv " + str(j22k) + ".")
55e07398df2ade057dd922bcc853d4c9014094be
MaryTalvistu/prog_alused
/2/2.2.py
276
3.859375
4
perekonnanimi = input("Sisestage oma perekonnanimi: ") if perekonnanimi[-2:] == "ne": print("Abielus") elif perekonnanimi[-2:] == "te": print("Vallaline") elif perekonnanimi[-1] == "e": print("Määramata") else: print("Pole ilmselt leedulanna perekonnanimi")
19ea81db06a5ca5ab5b6af1bdd37f803c9a54b79
Joftus/CS-474
/hw3/P3.py
291
3.625
4
import numpy as np import matplotlib.pyplot as plt fig = plt.figure(figsize=(10, 5)) x = np.linspace(-50, 50, 1000) # Problem 3A plt.plot(x, (1+3*x), color='black') # Problem 3B plt.plot(x, (2-x)/2, color='blue') plt.xlabel('x1') plt.ylabel('x2') plt.title('Problem 3 A / B') plt.show()
b3d7ab36cba905360151af3ab3be233dd2e2de9b
Cangozler/PythonHomeWorks
/vebek.py
355
3.6875
4
def enbuyuk(liste1): sayi = max(liste1) return sayi def enkucuk(liste1): sayi = min(liste1) return sayi liste=[] adet=int(input("kaç adet sayı girmek istiyon :")) for n in range(adet): sayi = int(input('Sayıyı Gir: ')) liste.append(sayi) print("en buyuk sayi",enbuyuk(liste) , "en küçük sayı",enkucuk(liste))
d1ac4626ab6b2531788696aa29a9732f65c8e0e0
Cangozler/PythonHomeWorks
/çarpim.py
135
3.75
4
for i in range(1,10): print("*************************") for k in range(1,10): print("{} x {} = {}".format(k,i,i*k))
9f6da873b18a0c733c92f6b929c7c4d5ca3d898a
guihunkun/LearnPythonCrashCourse
/solution_02/changeString-finished.py
267
3.90625
4
''' 定义一个变量sentence,赋值为"I Love you!",然后分别用title(), upper(), lower()函数对变量sentence执行操作后输出。 ''' print("\n") sentence="I Love you!" print(sentence.title()) print(sentence.upper()) print(sentence.lower())
6cf08fa094cdef5c940c2094d7cc0234c7b02101
brianwesterman/computer-science-projects
/data_analysis_and_visualization_system/knn_test2.py
2,589
3.59375
4
# Bruce Maxwell # Spring 2015 # CS 251 Project 8 # # KNN class test # import sys import data import classifiers def main(argv): '''Reads in a training set and a test set and builds two KNN classifiers. One uses all of the data, one uses 10 exemplars. Then it classifies the test data and prints out the results. ''' # usage if len(argv) < 3: print('Usage: python %s <training data file> <test data file> <optional training category file> <optional test category file>' % (argv[0])) exit(-1) # read the training and test sets dtrain = data.Data(argv[1]) dtest = data.Data(argv[2]) # get the categories and the training data A and the test data B if len(argv) > 4: traincatdata = data.Data(argv[3]) testcatdata = data.Data(argv[4]) traincats = traincatdata.get_data( [traincatdata.get_headers()[0]] ) testcats = testcatdata.get_data( [testcatdata.get_headers()[0]] ) A = dtrain.get_data( dtrain.get_headers() ) B = dtest.get_data( dtest.get_headers() ) else: # assume the categories are the last column traincats = dtrain.get_data( [dtrain.get_headers()[-1]] ) testcats = dtest.get_data( [dtest.get_headers()[-1]] ) A = dtrain.get_data( dtrain.get_headers()[:-1] ) B = dtest.get_data( dtest.get_headers()[:-1] ) # create two classifiers, one using 10 exemplars per class knncall = classifiers.KNN() knnc10 = classifiers.KNN() # build the classifiers knncall.build( A, traincats ) knnc10.build(A, traincats, 10) # use the classifiers on the test data allcats, alllabels = knncall.classify(B) tencats, tenlabels = knnc10.classify(B) # print the results print('Results using All Exemplars:') print(' True Est') for i in range(allcats.shape[0]): if int(testcats[i,0]) == int(allcats[i,0]): print("%03d: %4d %4d" % (i, int(testcats[i,0]), int(allcats[i,0]) )) else: print("%03d: %4d %4d **" % (i, int(testcats[i,0]), int(allcats[i,0]) )) print(knnc10) print('Results using 10 Exemplars:') print(' True Est') for i in range(tencats.shape[0]): if int(testcats[i,0]) == int(tencats[i,0]): print("%03d: %4d %4d" % (i, int(testcats[i,0]), int(tencats[i,0]) )) else: print("%03d: %4d %4d **" % (i, int(testcats[i,0]), int(tencats[i,0]) )) print(knnc10.confusion_matrix_str(knnc10.confusion_matrix(testcats, tencats))) return if __name__ == "__main__": main(sys.argv)
d763736bc38eae023d9d17a1ab8fb3c853ab40b0
Alexsimulation/pulsar-classifier
/main.py
20,318
3.921875
4
# Machine learning - Pulsar detector # Ref (we all learn somewhere) https://machinelearningmastery.com/implement-backpropagation-algorithm-scratch-python/ # Implements a simple 'multi layer perceptron' neural network (fully connected), with variable number and size of layers # Datset: https://www.kaggle.com/charitarth/pulsar-dataset-htru2 # By Alexis Angers [https://github.com/Alexsimulation] import random import math import pickle import csv # Single hidden neuron in a network class neuron: def __init__(self, size): # Class variables self.v = 0 # value, zero by default self.vp = 0 # derivative value, zero by default self.w = [] # weights, empty by default self.wu = [] # weights update, used for batch gradient descent self.b = 0 # bias, zero by default self.bu = 0 # bias update, used for batch gradient descent self.e = 0 # error signal, used for backpropagation self.b = random.uniform(-1, 1) for i in range(size): self.w.append( random.uniform(-1, 1) ) self.wu.append( 0 ) def get(self, x): self.v = self.b for i in range(len(self.w)): self.v += self.w[i]*x[i] # Activation try: self.v = 1/(1 + math.exp(-1*self.v)) except OverflowError: self.v = float('inf') # Derivative of activation self.vp = self.v * (1 - self.v) return self.v # Fully connected hidden/output layer class layer: def __init__(self, num_neurons, input_size): # Class variables self.ns = [] # Array of neurons, start empty for i in range(num_neurons): ni = neuron(input_size) self.ns.append( ni ) def get(self, x): v = [] for i in range(len(self.ns)): v.append( self.ns[i].get(x) ) return v # Neural network class class network: def __init__(self, layers_size ): # Class variables self.la = [] # Array of layers self.x = [] # last input values self.z = [] # value of the network output self.ls = [] # Network loss value self.lr = 0.5 # network learning rate num_layers = len(layers_size) # Num layers includes the input and output layers, but the network will actually have num_layers-1 layers for i in range(num_layers-1): # Input layer of hidden/output layers is always the output of the last layer lai = layer(layers_size[i+1], layers_size[i]) self.la.append( lai ) def get(self, x): self.x = x[:] self.z = x[:] z2 = x[:] # For each layer, compute the value of the layer output, and pass it to the next layer for i in range(len(self.la)): z2 = self.la[i].get(z2) self.z.append(z2) return self.z def loss(self, answ): # Make sure the answ is in a list object if not isinstance(answ, list): answ = [answ] self.ls = [] for i in range(len(answ)): zi = self.z[len(self.z)-1][i] ai = answ[i] self.ls.append( -1*(ai*math.log(zi) + (1-ai)*math.log(1-zi)) ) # Log loss return self.ls def reset_error(self): endlay = len(self.la)-1 # Work backward through all layers for i in range(endlay, -1, -1): # Loop over all layers, in reverse for j in range(len(self.la[i].ns)): # Loop over layer i's neurons self.la[i].ns[j].e = 0 def backprop_error(self, answ): endlay = len(self.la)-1 # Make sure the answ is in a list object if not isinstance(answ, list): answ = [answ] self.reset_error() # Resets error values to zero # Work backward through all layers for i in range(endlay, -1, -1): # Loop over all layers, in reverse if i == endlay: for j in range(len(self.la[i].ns)): # Loop over layer i's neurons dLdv = ( self.la[i].ns[j].v - answ[j] ) / ( self.la[i].ns[j].v - self.la[i].ns[j].v**2 ) # Derivative of the loss function self.la[i].ns[j].e = dLdv * self.la[i].ns[j].vp else: for j in range(len(self.la[i].ns)): # Loop over layer i's neurons for k in range(len(self.la[i+1].ns)): # Loop over layer i+1's neuron self.la[i].ns[j].e += self.la[i+1].ns[k].w[j] * self.la[i+1].ns[k].e * self.la[i].ns[j].vp def update_weights_stochastic(self): endlay = len(self.la)-1 # Work backward through all layers for i in range(endlay, -1, -1): # Loop over all layers, in reverse if i != 0: for j in range(len(self.la[i].ns)): # Loop over layer i's neurons self.la[i].ns[j].b -= self.lr * self.la[i].ns[j].e for k in range(len(self.la[i].ns[j].w)): # Loop over layer i's neuron j's weights self.la[i].ns[j].w[k] -= self.lr * self.la[i].ns[j].e * self.la[i].ns[j].v else: for j in range(len(self.la[i].ns)): # Loop over layer i's neurons self.la[i].ns[j].b -= self.lr * self.la[i].ns[j].e for k in range(len(self.la[i].ns[j].w)): # Loop over layer i's neuron j's weights self.la[i].ns[j].w[k] -= self.lr * self.la[i].ns[j].e * self.x[i] def save_weight_updates_batch(self, batch_size): endlay = len(self.la)-1 # Work backward through all layers for i in range(endlay, -1, -1): # Loop over all layers, in reverse if i != 0: for j in range(len(self.la[i].ns)): # Loop over layer i's neurons self.la[i].ns[j].bu += (self.lr * self.la[i].ns[j].e) / batch_size for k in range(len(self.la[i].ns[j].w)): # Loop over layer i's neuron j's weights self.la[i].ns[j].wu[k] += (self.lr * self.la[i].ns[j].e * self.la[i].ns[j].v) / batch_size else: for j in range(len(self.la[i].ns)): # Loop over layer i's neurons self.la[i].ns[j].bu += (self.lr * self.la[i].ns[j].e) / batch_size for k in range(len(self.la[i].ns[j].w)): # Loop over layer i's neuron j's weights self.la[i].ns[j].wu[k] += (self.lr * self.la[i].ns[j].e * self.x[i]) / batch_size def update_weights_batch(self): endlay = len(self.la)-1 # Work backward through all layers for i in range(endlay, -1, -1): # Loop over all layers, in reverse for j in range(len(self.la[i].ns)): # Loop over layer i's neurons self.la[i].ns[j].b -= self.la[i].ns[j].bu # Update it's bias self.la[i].ns[j].bu = 0 # Reset bias update for k in range(len(self.la[i].ns[j].w)): # Loop over layer i's neuron j's weights self.la[i].ns[j].w[k] -= self.la[i].ns[j].wu[k] # Update it's weight self.la[i].ns[j].wu[k] = 0 # Reset weight update def train_step_stochastic(self, x, a): self.get(x) self.backprop_error(a) self.update_weights_stochastic() def train_step_batch(self, x, a, batch_size, step): if step == (batch_size-1): # If current step is the last one (batch size-1), update the weights self.update_weights_batch() else: # If current step is not a batch size multiple, compute and save the weights updates self.get(x) self.backprop_error(a) self.save_weight_updates_batch(batch_size) def disp(self): for i in range(len(self.la)): print(' - Layer',i) for j in range(len(self.la[i].ns)): print(' - Neuron',j) print(' - w:',self.la[i].ns[j].w) print(' - b:',self.la[i].ns[j].b) print('') def save(self, outfile): with open(outfile, 'wb') as output: pickle.dump(self, output, pickle.HIGHEST_PROTOCOL) print('Network saved to output file',outfile) def load(self, infile): with open(infile, 'rb') as input: new_n = pickle.load(input) print('Newtork loaded from file',infile) return new_n # Utility functions def meanc(x): # Check if member is a list if isinstance(x[0], list): y = [] for i in range(len(x[0])): y.append(0) for i in range(len(x)): for j in range(len(y)): y[j] += x[i][j]/len(x) else: y = 0 for i in range(len(x)): y += x[i]/len(x) return y def sumc(x): # Check if member is a list if isinstance(x[0], list): y = [] for i in range(len(x[0])): y.append(0) for i in range(len(x)): for j in range(len(y)): y[j] += x[i][j] else: y = 0 for i in range(len(x)): y += x[i] return y def sigmoid(x): return 1/(1 + math.exp(-1*x)) def create_train(n_in, n_out): # Create a training array of values to fit a function x = [] a = [] for v in range(10): # Loop over all the batches xb = [] ab = [] for i in range(50): # Loop over all the sets in the batch i xi = [] ai = [] for j in range(n_out): ai.append(0) for j in range(n_in): xi.append(random.uniform(0,1)) for k in range(n_out): ai[k] += xi[j]/n_in for k in range(n_out): if k == 0: ai[k] = (1/math.pi * math.atan(-1*ai[k]) + 0.5)**2 else: ai[k] = 1/( 1 + math.exp(-1*ai[k]) ) xb.append( xi ) ab.append( ai ) x.append(xb) a.append(ab) return x, a def create_test(n_in, n_out): # Create a test array xt = [] at = [] for i in range(2000): xti = [] ati = [] for j in range(n_out): ati.append(0) for j in range(n_in): xti.append(random.uniform(0,1)) for k in range(n_out): ati[k] += xti[j]/n_in for k in range(n_out): if k == 0: ati[k] = (1/math.pi * math.atan(-1*ati[k]) + 0.5)**2 else: ati[k] = 1/( 1 + math.exp(-1*ati[k]) ) xt.append( xti ) at.append( ati ) return xt, at def load_data_train(): print('Loading training data...') with open('data/pulsar_train.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 x = [] xb = [] a = [] ab = [] n0 = 0 n1 = 1 batch_size = 100 for row in csv_reader: # Read each row as a list arow = float(row[len(row)-1]) # Read the answer in the last line if arow == 1: if n0 >= n1: # If the answer is 1, just add it al = [ arow ] ab.append(al) xl = [] # Read the input in first line for i in range(0, len(row)-2): xl.append( float(row[i]) ) xb.append(xl) n1 += 1 else: if n1 >= n0: # To unbias database, only add the 0 data is there's the same amount or more of 1s al = [ arow ] ab.append(al) xl = [] # Read the input in first line for i in range(0, len(row)-2): xl.append( float(row[i]) ) xb.append(xl) n0 += 1 # If batch is full, save and reset batch variables if len(xb) == batch_size: x.append(xb) a.append(ab) xb = [] ab = [] line_count += 1 # Add last batch that isn't full if not len(xb) == 0: x.append(xb) a.append(ab) return x, a def load_data_test(): print('Loading testing data...') with open('data/pulsar_test.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 x = [] a = [] for row in csv_reader: # Read each row as a list al = [ float(row[len(row)-1]) ] # Read the answer in the last line a.append(al) xl = [] # Read the input in first line for i in range(0, len(row)-2): xl.append( float(row[i]) ) x.append(xl) line_count += 1 return x, a # Run function, handles the command line interface logic def run(x, a, xt, at, n): run = 0 while run != -1: choice = input('Enter a command: ') print('') if choice[:5] == 'train': # Get number of runs from input numvalid = 1 try: num2run = int(choice[5:]) except: numvalid = 0 print('Invalid run number. Please enter an integer.') if numvalid == 1: # Loop over runs number for k in range(num2run): loss = [] # Check if training data is separated in batches or if it's just a stochastic run if isinstance(x[0], list): if isinstance(x[0][0], list): # This means x[0] is a set of data sets -> do a batch run batch_size = len(x[0]) for i in range(len(x)): # Loop over all training batches for j in range(len(x[i])): # Loop over all the sets in the batch i n.train_step_batch(x[i][j], a[i][j], batch_size, j) loss.append(n.loss(a[i][j])) print('Batch',i+1,'/',len(x),'done ',end="\r") else: # This means x[0] is a set of values -> stochastic run for i in range(len(x)): # Loop over training values n.train_step_stochastic(x[i], a[i]) loss.append(n.loss(a[i])) if k%1 == 0: # Each 1 run if (k > 0)|(run == 0): print(run,' : ',meanc(loss)) # After a run, end run += 1 print(run,' : ',meanc(loss)) elif choice[:4] == 'test': # Loop over the test batches dev = [] dev0 = [] dev1 = [] c0 = 0 c0r = 0 c1 = 0 c1r = 0 for i in range(len(at[0])): dev.append(0) dev0.append(0) dev1.append(0) for i in range(len(xt)): z = n.get(xt[i]) # Get network output for xt[i] z = z[len(z)-1] for j in range(len(z)): # Loop over output dev[j] += abs(z[j] - at[i][j])/len(xt) if at[i][j] < 0.5: dev0[j] += abs(z[j] - at[i][j]) c0 += 1 if round(z[j]) == at[i][j]: c0r += 1 else: dev1[j] += abs(z[j] - at[i][j]) c1 += 1 if round(z[j]) == at[i][j]: c1r += 1 if i%50 == 0: print('Progress:',100*i/(len(xt)-1),'% ',end="\r") for i in range(len(dev0)): dev0[i] = dev0[i]/c0 for i in range(len(dev1)): dev1[i] = dev1[i]/c1 print('Average overall deviation:',dev) print('Average dev. on negatives:',dev0) print('Average dev. on positives:',dev1) print('Right overall --- :',100*(c0r+c1r)/(c0+c1),'%') print('Right on negatives:',100*c0r/c0,'%') print('Right on positives:',100*c1r/c1,'%') elif choice[:3] == 'try': xstrtest = choice[4:].split() if len(xstrtest) == len(x[0]): xtest = [] for i in range(len(xstrtest)): xtest.append(float(xstrtest[i])) ztest = n.get(xtest) print('Answer: ',ztest[len(ztest)-1]) else: print('Invalid input values length.') elif choice[:7] == 'example': try: totest = int(choice[7:]) except: totest = random.randint(0, len(xt)) print('No test index provided, using random integer ',totest) print('') print('Input:',xt[totest]) print('Dataset answer:',at[totest]) zc = n.get(xt[totest]) print('Network answer:',zc[len(zc)-1]) elif choice[:4] == 'edit': toedit = choice[4:] if toedit == ' learning rate': print('Current learning rate:',n.lr) lrin = input('Enter new learning rate: ') try: lrin = float(lrin) n.lr = lrin except: print('Invalid learning rate.') elif choice[:5] == 'print': n.disp() elif choice[:4] == 'save': try: outfile = choice[4:] out_valid = 1 except: out_valid = 0 print('Invalid file string.') if out_valid == 1: n.save(outfile) elif choice[:4] == 'load': try: infile = choice[4:] in_valid = 1 except: in_valid = 0 print('Invalid file string.') if in_valid == 1: try: n = n.load(infile) except: print('Failed to load file',infile) elif choice[:4] == 'exit': run = -1 else: print('Invalid command') if not run == -1: print('') # Main function if __name__ == '__main__': random.seed(10) # Print generic program info print('') print('A Machine Learning Project [version xx - public release]') print('(c) 2021 Alexis Angers [https://github.com/Alexsimulation]. Private and educational use only.') print('') x, a = load_data_train() # Load training data xt, at = load_data_test() # Load testing data print('') n_in = len(xt[0]) # Number of data inputs n_out = len(at[0]) # Number of data outputs n = network([n_in, 16, 8, n_out]) # Create new network sized for MNIST uses run(x, a, xt, at, n) # Main run print('End training')
71e8cdbc1f94ae156674d5f53814fe971b87fb52
ysymi/leetcode
/algorithms/basic/36.valid-sudoku.py
785
3.59375
4
class Solution(object): def isValidSudoku(self, board): """ :type board: List[List[str]] :rtype: bool """ def has_equal_num(s): s = ''.join(sorted(s)).strip('.') for i in range(len(s) - 1): if s[i] == s[i + 1]: return True return False for i in range(9): row = board[i] line = ''.join([r[i] for r in board]) if has_equal_num(row) or has_equal_num(line): return False for i in [0, 3, 6]: for j in [0, 3, 6]: sq = board[j][i:i + 3] + board[j + 1][i:i + 3] + board[j + 2][i:i + 3] if has_equal_num(sq): return False return True
3d8c5feb11438fa9bc7adf5a137d9d8bb285d7cf
yngtodd/hacker_rank
/python/ave_distint_elems.py
533
3.78125
4
from __future__ import division, print_function def average(array): """ Compute the average of distinct items in an array. Parameters ---------- * `array` [list] array of potentially non-unique numbers. Returns ------- Mean of the unique elements in the array. [float] """ my_set = set(array) return sum(my_set) / len(my_set) def main(): n = int(input()) arr = map(int, input().split()) result = average(arr) print(result) if __name__ == main(): main()
61e11b2986a28391be97631a82b7a81caf71496a
nephidei2/python
/3.py
623
3.734375
4
#!/usr/bin/python def counting(string): words_freq = dict() letters = [str(symbol).lower() for symbol in list(string) if symbol.isalpha()] for l in letters: if l in words_freq: words_freq[l] += 1 else: words_freq[l] = 1 return words_freq def main(): with open('input.txt') as f: text = ' '.join(f.readlines()) freq = counting(text) if len(freq) > 0: for w in [w[0] for w in sorted(freq.iteritems(), key=lambda(k, v): (-v, k))]: print w + ': ' + str(freq[w]) else: print '' if __name__ == '__main__': main()
9fc0c60e681cd14adb34e100fcd07a85932c672e
behry/hello-world
/Assignment6_Kosar.py
329
3.6875
4
#Exercise_1 Week = ('Monday', 'Tuesday', 'Wednesday', 'Thursday','Friday','Saturday','Sunday') #Exercise_2 fruits = set(['apple', 'mango', 'orange']) #Exercise_3 new_fruits = {'chery', 'peach','apple', 'mango'} #Exercise_4 print(new_fruits.difference(fruits)) #Exercise_5 print(new_fruits.intersection(fruits))
e50c1045677d6a8df58caa2e9a16963c4c961093
Dudo-z/FIrst-Github-Repository
/python_ex1.py
143
3.890625
4
list1 = list(range(5)) list2 = list1 list3 = list1[:] list1.append(8) list2.append(11) list3.append(10) print(list1) print(list2) print(list3)
9006fe1d04ceee567b8ced73bddd2562d0239fb8
zhartole/my-first-django-blog
/python_intro.py
1,313
4.21875
4
from time import gmtime, strftime def workWithString(name): upper = name.upper() length = len(name) print("- WORK WITH STRING - " + name * 3) print(upper) print(length) def workWithNumber(numbers): print('- WORK WITH NUMBERS') for number in numbers: print(number) if number >= 0: print("--positive val") else: print("--negative val") def addItemToDictionary(key,value): dictionaryExample = {'name': 'Olia', 'country': 'Ukraine', 'favorite_numbers': [90, 60, 90]} dictionaryExample[key] = value print('- WORK WITH DICTIONARY') print(dictionaryExample) def workWithFor(): for x in range(0, 3): print("We're in for ") def workWithWhile(): x = 1 while (x < 4): print("Were in while") x += 1 def showBasicType(): text = "Its a text" number = 3 bool = True date = strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()) print(text) print(number) print(bool) print(date) def hi(name): print('Hi ' + name + '!' + ' Lets show you a few example of Python code') def init(): hi('Victor') workWithString("Igor") workWithNumber([1, 5, 4, -3]) addItemToDictionary('new', 'child') workWithFor() workWithWhile() showBasicType() init()
bdfb8412a2af6e326cacb239345afac5d6caf79e
Elsamaxl/Learn_Python
/inherit.py
992
3.921875
4
#Filename:inherit.py class SchoolMenmber(): '''Represents any school member.''' def __init__(self,name,age): self.name=name self.age=age print '(Initialized SchoolMenmber: %s)' %self.name def tell(self): '''Tell my details.''' print 'Name: %s,Age: %d'%(self.name,self.age) class Teacher(SchoolMenmber): '''Represents a teacher.''' def __init__(self,name,age,salary): SchoolMenmber.__init__(self,name,age) self.salary=salary print '(Initialized Teacher: %s)'%self.name def tell(self): SchoolMenmber.tell(self) print 'Salary: %d' %self.salary class Student(SchoolMenmber): '''Represents a student.''' def __init__(self,name,age,marks): SchoolMenmber.__init__(self,name,age) self.marks=marks def tell(self): SchoolMenmber.tell(self) print 'Maeks: %d' %self.marks t=Teacher('Mrs.Shrividya',40,30000) s=Student('Swaroop',22,75) print #prints a blank line members=[t,s] for member in members: member.tell() #works for both Teacher and Students
af6f78db36a02d7f48b0254839a8012ff0a44b43
Elsamaxl/Learn_Python
/func_doc.py
242
3.921875
4
#Filename:func_doc.py def printMax(x,y): '''Print the maximum of two numbers. The two values must be integer.''' x=int(x) y=int(y) if x>y: print x,'is maximum.' else : print y,'is maximum.' printMax(3,5) print printMax.__doc__
e68276092cd593674fb19fa5319fac86c02fb87a
Elsamaxl/Learn_Python
/using_dict.py
521
3.578125
4
#Filename:using_dict.py #'ab' is short for 'a'ddress'b'ook ab={'Swaroop':'swaroop@byteopython.info', 'Lary':'larry@wall.org', 'Matsumoto':'matsumoto@ruby-lang.org', 'Spammer':'spammer@hotmail.com' } print "Swaroop's address is %s." %ab['Swaroop'] #Adding a key/value pair ab['Guido']='guido@python.org' #Deleting a key/value pair del ab['Spammer'] print '\nThere are %d contacts in the address-book\n' %len(ab) for name,address in ab.items(): print 'Contact %s at %s ' %(name,address) if 'Guido' in ab:#OR ab.has_key('Guido') print "\nGuido's address is %s" %ab['Guido']
fe5f9eb6a1548706c990cca435649116dbc3945a
ganesh-rk/Python-Assignment-Basic
/String_Ops.py
267
3.875
4
def main(): str1="Chennai" str2="city" for i in str1: print "\nCurrent letter is ",i str3=str1[2:5] print "\nSubstring is ",str3 print "\nRepeated string is ",str1*100 print "\nConcatenated string is ",str1+str2 main()
6944c502687c85549642f8ec67cc69d35f923ff7
ganesh-rk/Python-Assignment-Basic
/Even or Odd.py
144
3.796875
4
def main(): a=10 b=a%2 if b==0: print "Given number is even" else: print "Given number is odd" main()
b5b8ad763c493b7e79cd419bdc08170b1a11dd58
TranshumanSoft/quotient-and-rest
/modulexercises.py
268
4.15625
4
fstnumber = float(input("Introduce a number:")) scndnumber = float(input("Introduce another number:")) quotient = fstnumber//scndnumber rest = fstnumber%scndnumber print(f"Between {fstnumber} and {scndnumber} there's a quotient of {quotient} and a rest of {rest}")