blob_id
stringlengths
40
40
repo_name
stringlengths
5
127
path
stringlengths
2
523
length_bytes
int64
22
3.06M
score
float64
3.5
5.34
int_score
int64
4
5
text
stringlengths
22
3.06M
be0b86721d4ad58b52d6bf23c81a13b07231d359
nkhuyu/python
/projectEuler/ProjectEuler1.py
261
3.828125
4
def mutliplesof3and5(n): if(n%3==0 or n%5==0): return 1 else: return 0 def sum(n): temp=0 for i in range(3,n):# 3:n-1 if(mutliplesof3and5(i)): temp=temp+i return temp ## n=5 sum(n)
44b110dcaf1902cc607db2b51cf9dbad11b484d0
gnayuy/taocp
/python/linkedlists.py
5,885
4.09375
4
"""Implementation of the linked list and circular lists algorithms (chapter 2.2.3 and 2.2.4). """ import itertools def topological_sort(relations): """Implement algorithm T of chapter 2.2.3. In this implementation the linked lists are actually replaced by lists. This does not depart significantly from the spirit of the original as we only use the `pop` and `append` methods. :param relations: a list of pairs representing the relations between objects :return: the list of objects in sorted order :raises: """ # step T1 : initialize N, count and top # as usual, we will keep the 1-indexing from Knuth and ignore the first value of the lists. n = max([max(e) for e in relations]) N = n count = [0]*(n+1) top = [] # Can't use top = [[]]*(n+1) or we would modify all elements every time we push to one of them (shallow copy) for i in range(n+1): top.append([]) # step T2 / T3 : ingest relations for (j,k) in relations: count[k] += 1 top[j].append(k) # step T4 qlink = [] for k in range(1, n+1): if count[k] == 0: qlink.append(k) result = [] # loop on queue while len(qlink) > 0: # Step T5 + T7 f = qlink.pop() result.append(f) N -= 1 # T6 : erase relations while len(top[f]) > 0: suc = top[f].pop() count[suc] -= 1 if count[suc] == 0: qlink.append(suc) # step T8 if N == 0: return result else: raise ValueError("Loop in input relations") def polynomial_addition(p, q): """Implement algorithm A of chapter 2.2.4. This algorithm does not actually make use of circular lists, as each list is traversed only once. Nonetheless, the implementation uses the `cycle` method from itertools lists to emulate a circular list (this frees us from the temptation to test for the end of the list to terminate the algorithm, and prepares us for the multiplication algorithm). Each polynomial is described as a list of nested tuples of the form (coef, (a, b, c)). The last element of each polynomial is always (0, (0, 0, -1)). :param p: the first polynomial to add :param q: the second polynomial to add :return: the sum of p and q as a new list (note that this is different from the original algorithm which adds to q in place.) """ result = [] circular_p = itertools.cycle(p) circular_q = itertools.cycle(q) # step A1. P and Q are used to denote the value of the current element of p and q P = next(circular_p) Q = next(circular_q) special = (0, 0, -1) def coef(X): return X[0] def abc(X): return X[1] # loop over p and q while the special node hasn't been reached (exit case of step A3) while abc(P) != special or abc(Q) != special : if abc(P) == abc(Q): # step A3 c = coef(P) + coef(Q) if c != 0: result.append((c, abc(P))) P = next(circular_p) Q = next(circular_q) while abc(P) < abc(Q): # step A2 result.append(Q) Q = next(circular_q) while abc(P) > abc(Q): # step A5 result.append(P) P = next(circular_p) return result + [Q] def polynomial_multiplication(p, m): """Implement algorithm M of chapter 2.2.4. As for addition, each polynomial is described as a list of nested tuples of the form (coef, (a, b, c)). The last element of each polynomial is always (0, (0, 0, -1)). :param p: first polynomial to multiply :param m: second polynomial to multiply :return: p*m as a new list (note that this is different from the original algorithm) """ special = (0, 0, -1) result = [] circular_p = itertools.cycle(p) def coef(X): return X[0] def abc(X): return X[1] def add_abc(X, Y): a = abc(X) b = abc(Y) return tuple([e1 + e2 for (e1, e2) in zip(a, b)]) # loop for step M1/M2 for M in m: if abc(M) == (0, 0, -1): return result + [(0, special)] # initialize P and Q. P = next(circular_p) # poor man's version of circular lists : take the previous iteration's result, use it as a new list and store circular_q = iter(result.copy() + [(0, special)]) Q = next(circular_q) result = [] # same algorithm as for addition with a few changes while abc(P) != special or abc(Q) != special: if add_abc(P, M) == abc(Q): # step A3/M2. No need to check that abc(P) > -1 as this is always true in this branch c = coef(P)*coef(M) + coef(Q) if c != 0: result.append((c, abc(Q))) P = next(circular_p) Q = next(circular_q) if abc(P) > special: while add_abc(P, M) < abc(Q): # step A2. # The while condition is probably not enough to cover the M2 check result.append(Q) Q = next(circular_q) else: while abc(Q) > special: result.append(Q) Q = next(circular_q) while abc(P) > special and add_abc(P, M) > abc(Q): # step A5 X = (coef(P)*coef(M), add_abc(P, M)) result.append(X) P = next(circular_p) #result.append((0, special)) if __name__ == '__main__': relations = [(9, 2), (3, 7), (7, 5), (5, 8), (8, 6), (4, 6), (1, 3), (7, 4), (9, 5), (2, 8)] #print(topological_sort(relations)) zero = [(0, (0, 0, -1))] p = [(1, (1, 0, 0)), (1, (0, 1, 0)), (1, (0, 0, 1))] + zero print(polynomial_addition(p, zero))
9e160c2e16ffbaeff98c0d4b96f7f0094af5e86e
ivanshukaushik/OpenCV_Projects
/drawing_functions_in_python.py
685
3.609375
4
import numpy as np import cv2 img = cv2.imread('lena.jpg', 1) # img = np.zeros([512, 512, 3], np.uint8) # To make the entire image black img = cv2.line(img, (0, 0), (255, 255), (255, 0, 0), 5) # BGR img = cv2.arrowedLine(img, (255, 255), (400, 400), (255, 0, 0), 5) # Arrowed Line img = cv2.rectangle(img, (50, 50), (200, 200), (100, 100, 100), 5) # Draw Rectangle, Give -1 for filled rectangle img = cv2.circle(img, (200, 200), 20, (120, 120, 120), 5) # Draw a circle font = cv2.FONT_HERSHEY_COMPLEX img = cv2.putText(img, 'Hello world', (10, 500), font, 2, (255, 255, 255), 5, cv2.LINE_AA) cv2.imshow('image', img) cv2.waitKey(0) cv2.destroyAllWindows()
0321662cfde748244a93de8a0b14f1763b7bf261
XaserAcheron/damnums
/damfont.py
1,070
3.796875
4
import sys MAX_DIGITS = 5 # [TODO] document this silly thing: def genfonts(prefix, width, height): yoffset = height - 2 for charindex in range(10): char = chr(65 + charindex); for numdigits in range(2, MAX_DIGITS+1): spritewidth = width * numdigits xoffset = int(spritewidth / 2) for digit in range(1, numdigits+1): patchwidth = spritewidth - (width * digit) print ('Sprite "{}{}{}{}0", {}, {} {{ Offset {}, {} Patch "{}11{}0", {}, 0 }}'.format( prefix , numdigits , digit , char , spritewidth , height , xoffset , yoffset , prefix , char , patchwidth )) print ('') if __name__ == "__main__": if len(sys.argv) > 3: try: prefix = sys.argv[1] width = int(sys.argv[2]) height = int(sys.argv[3]) if len(prefix) == 2: genfonts(prefix, width, height) else: print ("error: [prefix] must be exactly two characters") except ValueError: print ("error: [width] and [height] must be integers") else: print ("usage: python damfont.py [prefix] [width] [height]")
30a67482cc0693be0074d22cc8672e1b2debf5dc
stasvf2278/Rename_Files
/Renames_Files.py
783
3.609375
4
import os, shutil def main(): print('Enter input directory path') ## Enter first folder file path here folder1 = input() print('Enter New File Prefix') prefix = input() print('Enter output directory path') ## Enter second folder file path here folder2 = input() os.chdir(folder1) i = 34 for root, dirs, files in os.walk(folder1): for file in files: if not os.path.exists(folder2): os.makedirs(folder2) shutil.copy(file, str(folder2+'\\'+prefix+'_'+str(i)+os.path.splitext(file)[1])) print(folder2+'\\'+prefix+'_'+str(i)+os.path.splitext(file)[1] + ' - Success') i = i + 1 name = 'main' if name == "main": main()
c579b12922eb92b1e4cc4f1b28c6c183923b6150
uuind/Average_Atomic_Mass-Calculator
/Calculator.py
359
4.03125
4
def Average_Atomic_Mass(): isotopes = input("How many isotopes?") average = 0 for x in range(1,int(isotopes) + 1): mass = input("What is the isotope %s's mass in amu?" % x) percent = input("How abundant is it in %?") average += (float(mass)*(float(percent)/100)) print("%s amu" %average) Average_Atomic_Mass()
98b9c79b89cca09f9159031ed04c1a19e71eecea
andy12290/Python-Essential-Training--1
/Exercise Files/11 Functions/generator.py
452
3.53125
4
#!/usr/bin/python3 # generator.py by Bill Weinman [http://bw.org/] # This is an exercise file from Python 3 Essential Training on lynda.com # Copyright 2010 The BearHeart Group, LLC def main(): print("This is the functions.py file.") for i in inclusive_range(0,25,1): print(i, end = ' ') def inclusive_range (start,stop,step): i = start while(i < stop): yield i i += step if __name__ == "__main__": main()
93640b1d7b6e00f7a02321e8868723ba2315fb55
Tim810306/junyi_test
/1.py
254
3.890625
4
#第一題a用python: def reverse(s): return s[::-1] #第一題b用python: def reverse5(s): s1 = '' length = len(s) - 1 while length >= 0: s1 = s1 + s[length] length = length - 1 #還沒完成順序調整 return s1
4f619614442506f1567eb9ecc0de6c989f0c2c21
ashburnere/data-science-with-python
/python-for-data-science/1-2-Strings.py
2,344
4.28125
4
'''Table of Contents What are Strings? Indexing Negative Indexing Slicing Stride Concatenate Strings Escape Sequences String Operations ''' # Use quotation marks for defining string "Michael Jackson" # Use single quotation marks for defining string 'Michael Jackson' # Digitals and spaces in string '1 2 3 4 5 6 ' # Special characters in string '@#2_#]&*^%$' # Assign string to variable name = "Michael Jackson" print(name, "length:", len(name)) # Print the first element in the string --> M print(name[0]) # Print the last element in the string --> n print(name[len(name)-1]) # Print the element on index 6 in the string --> l print(name[6]) # Print the element on the 13th index in the string --> o print(name[13]) # Print the last element in the string by using negativ indexing --> n print(name[-1]) # Print the first element in the string by using negativ indexing --> M print(name[-len(name)]) # Take the slice on variable name with only index 0 to index 3 --> Mich print(name[0:4]) # Take the slice on variable name with only index 8 to index 11 --> Jack print(name[8:12]) # Stride: Get every second element. The elments on index 0, 2, 4 ... print(name[::2]) # Stride: Get every second element in the range from index 0 to index 4 --> Mca print(name[0:5:2]) # Concatenate two strings statement = name + " is the best" print(statement) # Print the string for 3 times print(3*statement) # New line escape sequence print(" Michael Jackson \n is the best" ) # Tab escape sequence print(" Michael Jackson \t is the best" ) # Include back slash in string print(" Michael Jackson \\ is the best" ) # r will tell python that string will be display as raw string print(r" Michael Jackson \ is the best" ) ''' String operations ''' # Convert all the characters in string to upper case A = "Thriller is the sixth studio album" print("before upper:", A) B = A.upper() print("After upper:", B) # Replace the old substring with the new target substring is the segment has been found in the string A = "Michael Jackson is the best" B = A.replace('Michael', 'Janet') # Find the substring in the string. Only the index of the first elment of substring in string will be the output name = "Michael Jackson" # --> 5 print(name.find('el')) # If cannot find the substring in the string -> result is -1 print(name.find('Jasdfasdasdf'))
d86edccc25b0e5e6aebddb9f876afd3219c58a65
ashburnere/data-science-with-python
/python-for-data-science/4-3-Loading_Data_and_Viewing_Data_with_Pandas.py
2,038
4.25
4
'''Table of Contents About the Dataset Viewing Data and Accessing Data with pandas ''' '''About the Dataset The table has one row for each album and several columns artist - Name of the artist album - Name of the album released_year - Year the album was released length_min_sec - Length of the album (hours,minutes,seconds) genre - Genre of the album music_recording_sales_millions - Music recording sales (millions in USD) on SONG://DATABASE claimed_sales_millions - Album's claimed sales (millions in USD) on SONG://DATABASE date_released - Date on which the album was released soundtrack - Indicates if the album is the movie soundtrack (Y) or (N) rating_of_friends - Indicates the rating from your friends from 1 to 10 ''' import pandas as pd # read from file csv_path='D:/WORKSPACES/data-science-with-python/resources/data/top_selling_albums.csv' # read from url #csv_path='https://ibm.box.com/shared/static/keo2qz0bvh4iu6gf5qjq4vdrkt67bvvb.csv' df = pd.read_csv(csv_path) # We can use the method head() to examine the first five rows of a dataframe: print("top 5 rows\n", df.head()) #We use the path of the excel file and the function read_excel. The result is a data frame as before: # xlsx_path='https://ibm.box.com/shared/static/mzd4exo31la6m7neva2w45dstxfg5s86.xlsx' # df = pd.read_excel(xlsx_path) #df.head() # We can access the column "Length" and assign it a new dataframe 'x': x=df[['Length']] print(x) ''' Viewing Data and Accessing Data ''' # You can also assign the value to a series, you can think of a Pandas series as a 1-D dataframe. Just use one bracket: x=df['Length'] print(type(x)) # You can also assign different columns, for example, we can assign the column 'Artist': x=df[['Artist']] print(type(x)) y=df[['Artist','Length','Genre']] print(type(y)) # print value of first row first column print(df.iloc[0,0]) # --> Michael Jackson print(df.loc[0,'Artist']) # --> Michael Jackson # slicing print(df.iloc[0:2, 0:3]) print(df.loc[0:2, 'Artist':'Released'])
7e13a68d223d69c45253189c3de073873d14ae04
zlzlzl002/Python
/Hello/test/2월20일DataType.py
723
3.796875
4
#-*- coding:utf-8 -*- # Dict type mem1={"num":1,"name":"gura","addr":"hong"} # 삭제하기 del mem1["num"] # 수정하기 mem1["num"]=2 # tuple type 수정/삭제 불가 list type 속도 빠름 a=(1,2,3,4) # 여러값 넣기 a,b=10,20 # 1개 생성할때는 , 를 붙여 줘야한다 a=(1,) # 두변수 상호 교환 isMan="guzn" isGirl="sang" isMan, isGirl=isGirl, isMan print "isMan:",isMan, "isGirl:",isGirl # list type int1=[1,2,3,4,5] # 한개방 참조하기 a=int1[0] # 삭제하기 del int1[1] # 추가하기 int1.append(6) # 정렬 # int1.sort() 오름차순 int1.sort(reverse=True) # 배열의 방의 갯수 print "len(int1) 갯수:", len(int1)
fff0dfba6e768aff3d24c520512ea80566372ff4
anucoder/Python-Codes
/01_numbers.py
203
4.09375
4
#using paranthesis to prioritise print((2*9)+(10*5)) #reassignment #dynamic assignment---> no need to declare the type. a = 5 print(a) a = a*5 print(a) #snake casing two_dogs = 2 #2_dogs is invalid
29383e08c12d57b53c61ae628026cb065957f9b7
anucoder/Python-Codes
/04_dictionaries.py
513
4.34375
4
my_stuff = {"key1" : "value1", "key2" : "value2"} print(my_stuff["key2"]) print(my_stuff) #maintains no order #multiple datatype with nested dictionaries and lists my_dict = {"key1" : 123, "key2" : "value2", "key3" : {'123' : [1,2,"grabme"]}} print(my_dict["key3"]['123'][2]) #accessing grabme print((my_dict["key3"]['123'][2]).upper()) #reassigning dictionaries my_diet = {'bfast' : "milk" , "lunch" : "oats"} my_diet['lunch'] = 'pizza' print(my_diet) #appending my_diet["dinner"] = "salad" print(my_diet)
fee9d9373e1e0f209244e0a6913555313c8bd7ef
chiranjibKonwar/intron_dataset
/CORRECT_tetra_frequency_calculator_v2.py
1,979
3.640625
4
from optparse import OptionParser import sys, re from itertools import product usage= sys.argv[0] + """ -f FASTA_intron_sequence_file""" parser = None def createParser(): global parser epilog = """ This code takes input a FASTA intron sequence and computes overall tetranucleotide frequency for the input intron sequences""" epilog = re.sub(r'[ \t\f\v]+',' ', epilog) parser = OptionParser(usage=usage, epilog=epilog) parser.add_option("-f", "--input_file_intron_sequences", dest="input_file", help='the input intron sequence fasta file [REQUIRED]') def main(argv, errorlogger = None, runstatslogger = None): global parser (opts, args) = parser.parse_args(argv) filename=opts.input_file fh=open(filename,'r') FASTA=fh.readlines() count_dict = {} count =1 for possible_word in product('ATCG', repeat=4): count_dict["".join(possible_word)] = 0 count_sequences=0 for line in FASTA: if line.startswith('>'): count_sequences+=1 else: line = line.strip() while len(line)>=4: word=line[0:4] if not word in count_dict: count_dict[word]=count else: count_dict[word]+= 1 line=line[1:] print "total number of sequences = %d" %(count_sequences) #for key, value in sorted(count_dict.iteritems(), key=lambda (k,v): (v,k)): #print "%s: %s" % (key, value) top_scoring_tetra = sorted(count_dict, key=lambda key: count_dict[key], reverse=True)[:16] print top_scoring_tetra count_sequences=0 count_sequence_presence=0 dict_fraction = {} for tetra in top_scoring_tetra: dict_fraction[tetra]=count_sequence_presence for sequence in FASTA: if sequence.startswith('>'): pass else: sequence=sequence.strip() if tetra in sequence: dict_fraction[tetra]+=1 for key, value in dict_fraction.items(): print "%s occurs in %s number of sequences" %(key, value) if __name__=="__main__": createParser() main(sys.argv[1:])
a33d60ed9f9f9b024cf5304550812e7df316d230
BurntSushi/qcsv
/qcsv.py
15,785
3.609375
4
""" A small API to read and analyze CSV files by inferring types for each column of data. Currently, only int, float and string types are supported. from collections import namedtuple """ from __future__ import absolute_import, division, print_function from collections import namedtuple import csv import numpy as np __pdoc__ = {} Table = namedtuple('Table', ['types', 'names', 'rows']) __pdoc__['Table.types'] = ''' Contains inferred type information for each column in the table as a dictionary mapping type name to a Python type constructor. When a type cannot be inferred, it will have type `None`. ''' __pdoc__['Table.names'] = ''' A list of column names from the header row of the source data. ''' __pdoc__['Table.rows'] = ''' A list of rows, where each row is a list of data. Each datum is guaranteed to have type `float`, `int`, `str` or will be the `None` value. ''' Column = namedtuple('Column', ['type', 'name', 'cells']) __pdoc__['Column.type'] = ''' The type of this column as a Python type constructor, or `None` if the type could not be inferred. ''' __pdoc__['Column.name'] = ''' The name of this column. ''' __pdoc__['Column.cells'] = ''' A list of list of all data in this column. Each datum is guaranteed to have type `float`, `int`, `str` or will be the `None` value. ''' try: text_type = basestring except NameError: text_type = str def read(fname, delimiter=',', skip_header=False): """ `read` loads cell data, column headers and type information for each column given a file path to a CSV formatted file. A `qcsv.Table` namedtuple is returned with fields `qcsv.Table.types`, `qcsv.Table.names` and `qcsv.Table.rows`. All cells have left and right whitespace trimmed. All rows **must** be the same length. `delimiter` is the string the separates each field in a row. If `skip_header` is set, then no column headers are read, and column names are set to their corresponding indices (as strings). """ names, rows = _data(fname, delimiter, skip_header) types = _column_types(names, rows) return cast(Table(types=types, names=names, rows=rows)) def _data(fname, delimiter=',', skip_header=False): """ `_data` loads cell data and column headers, and returns the names and rows. All cells have left and right whitespace trimmed. All rows MUST be the same length. `delimiter` and `skip_header` are described in `qcsv.read`. """ names = [] rows = [] reader = csv.reader(open(fname), delimiter=delimiter) if not skip_header: names = list(map(str.strip, next(reader))) for i, row in enumerate(reader): # If we haven't discovered names from column headers, then name the # columns "0", "1", ..., "n-1" where "n" is the number of columns in # the first row. if len(names) == 0: names = list(map(str, range(0, len(row)))) assert len(row) == len(names), \ 'The length of row %d is %d, but others rows have length %d' \ % (i, len(row), len(names)) rows.append(list(map(str.strip, row))) return names, rows def _column_types(names, rows): """ `_column_types` infers type information from the columns in `rows`. Types are stored as either a Python type constructor (str, int or float) or as a `None` value. A dictionary of column names to types is returned. A column has type `None` if and only if all cells in the column are empty. (Cells are empty if the length of its value is zero after left and right whitespace has been trimmed.) A column has type `float` if and only if all cells in the column are empty, integers or floats AND at least one value is a float. A column has type `int` if and only if all cells in the column are empty or integers AND at least one value is an int. A column has type `str` in any other case. """ types = dict([(name, None) for name in names]) for c in range(len(names)): # prev_typ is what we believe the type of this column to be up # until this point. prev_typ = None # next_typ is the type of the current cell only. It is compared # with prev_typ to determine the type of the overall column as # per the conditions specified in this function's documentation. next_typ = None for row in rows: col = row[c] # A missing value always has type None. if len(col) == 0: next_typ = None # No need to inspect the type if we've already committed to str. # (We bail out because it's expensive to inspect types like this.) elif prev_typ is not str: # The trick here is to attempt type casting from a stirng to # an int or a string to a float, and if Python doesn't like it, # we try something else. try: # We try int first, since any integer can be successfully # converted to a float, but not all floats can converted # to integers. int(col) next_typ = int except ValueError: try: # If we can't convert to float, then we must scale back # to a string. float(col) next_typ = float except ValueError: next_typ = str # If a column contains a string, the column type is always a # string. if prev_typ is str or next_typ is str: prev_typ = str # A column with floats and ints has type float. elif next_typ is float and prev_typ is int: prev_typ = float # A column with missing values and X has type X. elif prev_typ is None and next_typ is not None: prev_typ = next_typ types[names[c]] = prev_typ return types def map_names(table, f): """ `map_names` executes `f` on every column header in `table`, with three arguments, in order: column type, column index, column name. The result of the function is placed in the corresponding header location. A new `qcsv.Table` is returned with the new column names. """ new_names = [] for i, name in enumerate(table.names): new_names.append(f(table.types[name], i, name)) return table._replace(names=new_names) def map_data(table, f): """ `map_data` executes `f` on every cell in `table` with five arguments, in order: column type, column name, row index, column index, contents. The result of the function is placed in the corresponding cell location. A new `qcsv.Table` is returned with the converted values. """ new_rows = [None] * len(table.rows) for r, row in enumerate(table.rows): new_row = [None] * len(row) for c, col in enumerate(row): name = table.names[c] typ = table.types[name] new_row[c] = f(typ, name, r, c, col) new_rows[r] = new_row return table._replace(rows=new_rows) def cast(table): """ `cast` type casts all of the values in `table` to their corresponding types in `qcsv.Table.types`. The only special case here is missing values or NULL columns. If a value is missing or a column has type NULL (i.e., all values are missing), then the value is replaced with `None`. N.B. cast is idempotent. i.e., `cast(x) = cast(cast(x))`. """ def f(typ, name, r, c, cell): if (isinstance(cell, text_type) and len(cell) == 0) \ or typ is None or cell is None: return None return typ(cell) return map_data(table, f) def convert_missing_cells(table, dstr="", dint=0, dfloat=0.0): """ `convert_missing_cells` changes the values of all NULL cells to the values specified by `dstr`, `dint` and `dfloat`. For example, all NULL cells in columns with type `str` will be replaced with the value given to `dstr`. """ def f(typ, name, r, c, cell): if cell is None and typ is not None: if typ == str: return dstr elif typ == int: return dint elif typ == float: return dfloat else: assert False, "Unknown type: %s" % typ return cell return map_data(table, f) def convert_columns(table, **kwargs): """ `convert_columns` executes converter functions on specific columns, where the parameter names for `kwargs` are the column names, and the parameter values are functions of one parameter that return a single value. For example convert_columns(names, rows, colname=lambda s: s.lower()) would convert all values in the column with name `colname` to lowercase. """ def f(typ, name, r, c, cell): if name in kwargs: return kwargs[name](cell) return cell return map_data(table, f) def convert_types(table, fstr=None, fint=None, ffloat=None): """ `convert_types` works just like `qcsv.convert_columns`, but on types instead of specific columns. """ def f(typ, name, r, c, cell): if typ == str and fstr is not None: return fstr(cell) elif typ == int and fint is not None: return fint(cell) elif typ == float and ffloat is not None: return ffloat(cell) return cell return map_data(table, f) def column(table, colname): """ `column` returns a named tuple `qcsv.Column` of the column in `table` with name `colname`. """ colcells = [] colname = colname.lower() colindex = -1 for i, name in enumerate(table.names): if name.lower() == colname.lower(): colindex = i break assert colindex > -1, 'Column name %s does not exist' % colname for row in table.rows: for i, col in enumerate(row): if i == colindex: colcells.append(col) return Column(type=table.types[table.names[colindex]], name=table.names[colindex], cells=np.array(colcells)) def columns(table): """ `columns` returns a list of all columns in the data set, where each column has type `qcsv.Column`. """ colcells = [] for _ in table.names: colcells.append([]) for row in table.rows: for i, col in enumerate(row): colcells[i].append(col) cols = [] for i, name in enumerate(table.names): col = Column(type=table.types[name], name=name, cells=np.array(colcells[i])) cols.append(col) return cols def frequencies(column): """ `frequencies` returns a dictionary where the keys are unique values in the column, and the values correspond to the frequency of each value in the column. """ ukeys = np.unique(column.cells) bins = np.searchsorted(ukeys, column.cells) return dict(zip(ukeys, np.bincount(bins))) def type_str(typ): """ `type_str` returns a string representation of a column type. """ if typ is None: return "None" elif typ is float: return "float" elif typ is int: return "int" elif typ is str: return "str" return "Unknown" def cell_str(cell_contents): """ `cell_str` is a convenience function for converting cell contents to a string when there are still NULL values. N.B. If you choose to work with data while keeping NULL values, you will likely need to write more functions similar to this one. """ if cell_contents is None: return "NULL" return str(cell_contents) def print_data_table(table): """ `print_data_table` is a convenience function for pretty-printing the data in tabular format, including header names and type annotations. """ padding = 2 headers = ['%s (%s)' % (n, type_str(table.types[n])) for n in table.names] maxlens = list(map(len, headers)) for row in table.rows: for i, col in enumerate(row): maxlens[i] = max(maxlens[i], len(cell_str(col))) def padded_cell(i, s): spaces = maxlens[i] - len(cell_str(s)) + padding return '%s%s' % (cell_str(s), ' ' * spaces) line = "" for i, name in enumerate(headers): line += padded_cell(i, name) print(line) print('-' * (sum(map(len, headers)) + len(headers) * padding)) for row in table.rows: line = "" for i, col in enumerate(row): line += padded_cell(i, cell_str(col)) print(line) if __name__ == '__main__': # File name. f = "sample.csv" table = read(f) # Print the table of raw data. print("# Raw data.") print_data_table(table) print('\n') # Print the table after converting missing values from NULL to concrete # values. The benefit here is that NULL values are inherently incomputable. # Whenever they get thrown into a computation on the data, they will always # provoke a runtime error. This is a Good Thing, because missing values # SHOULD be given explicit treatment. Inserting values into missing cells # is making an *assumption* about the data, and should never be implied. # # Thus, `convert_missing_cells` is an EXPLICIT way of throwing away NULL # cells. If you view the output from the previous table, and the output of # the next table, you'll notice that NULL values have been replaced. # (String columns get empty strings, integer columns get 0 and float # columns get 0.0.) # # If you want to change what the missing values are replaced with, you can # use the function's optional parameters: # # rows = convert_missing_cells(types, names, rows, # dstr="-9.99", dfloat=-9.99, dint=-9) table = convert_missing_cells(table) print("# Convert missing cells to arbitrary values") print_data_table(table) print('\n') # Now that all of the NULL cells have been removed, we are free to run data # sanitization functions on the columns of data without worrying about # seeing those nasty NULL values. For instance, we might want to make all # strings in the 'string1' column be lowercase. We need only to pass a # function as an argument, where the function we pass takes a single # argument (the cell contents) and returns the new cell contents. In this # case, we tell every cell in the `string1` column to be converted using # the `str.lower` function. table = convert_columns(table, string1=str.lower) print("# Sanitize just one column of data") print_data_table(table) print('\n') # The aforementioned function has limited use, since you typically # want to be more dynamic than having to give names of columns. Thus, the # `convert_types` function allows you to convert cells based on their # *type*. That is, instead of making only a selection of columns lowercase, # we can specify that *all* string columns should be lowercase. table = convert_types(table, fstr=str.lower) print("# Sanitize all cells that have type string") print_data_table(table) print('\n') # Finally, you can traverse your data set by columns like so: for col in columns(table): print('(%s, %s) [%s]' % (col.name, col.type, ', '.join(map(cell_str, col.cells)))) print('\n') # Or pick out one column in particular: print(column(table, "mixed"))
733046f20c403d8ad93489e1a29f4faf89939851
swest06/Hangman
/hang.py
2,246
3.953125
4
import random import time from os import system, name def clear(): # for windows if name == 'nt': _ = system('cls') # for mac and linux else: _ = system('clear') def game(): words = ["banana", "grape", "orange", "mango", "cherry", "apple", "pear", "peach"] strikes = int(7) play = True while play: secret = random.choice(words) g_guess = [] b_guess = [] while len(b_guess) < strikes and len(g_guess) != len(list(secret)): clear() print("A random fruit has been chosen.\n" "Try to guess what it is. \n") # Prints correct letters and empty spaces for i in secret: if i in g_guess: print(i, end=" ") else: print("_", end=" ") # Get guess print("strikes: " + str(len(b_guess)) + "/7") guess = input("Guess a letter: ").lower() if len(guess) != 1: print("you can only enter 1 letter") time.sleep(3) continue elif guess in b_guess or guess in g_guess: print("You've already guessed that letter") time.sleep(3) continue elif not guess.isalpha(): print("You can only guess letters") time.sleep(3) continue # Compare good guesses with word if guess in secret: [g_guess.append(guess) for i in secret if i == guess] if len(g_guess) == len(list(secret)): print("{}\n" "You win.".format(secret)) play = False break else: b_guess.append(guess) else: print("You lose. The word was {}.".format(secret)) play = False def main(): play = True while play: game() replay = input("Play again? y/n: ") if replay[0].lower() == "y": continue else: play = False print("Goodbye.") time.sleep(3) if __name__ == "__main__": main()
2c2f3c5f98ddf31330b03ae761ba95ec1f391778
uuind/2018-cc
/GCC3.py
1,136
3.59375
4
def beg(): b = int(input('how many integers?\n')) if b == 0: print("sorry not allowed") quit() a = [int(x) for x in input('Please enter the values now\n').split(' ')] if len(a) == b: return a else: print('incorrect amount of values within sequence') def groupby(lst): temp = list() pos = True for x in lst: if x > -1: if pos == False: yield temp pos = True temp = list() temp.append(x) else: if pos == True: yield temp pos = False temp = list() temp.append(x) yield temp bacon = beg() #Humor is important b = list(groupby(bacon)) max_seq = [str(x) for x in max(b, key=lambda x: len(x))] def search_for_pos(max_seq,lst): for x in max_seq: for n,y in enumerate(lst): if int(y)==int(x): yield str(n) print('maximal sequence: ' + ' '.join(max_seq),'at positions ' + ', '.join(list(search_for_pos(max_seq,bacon))))
f39a2be4092c5f94f3195f0abffa5b11adb45b33
kbenedetti9/Mision-TIC-Python
/Retos diarios/Reto día 8/reto_dia8.py
890
3.546875
4
def reto1(palabra): cantidad = len(palabra) i = 0 correcto = 0 num = cantidad while i<cantidad: num-=1 if palabra[num] == palabra[i]: correcto+=1 i+=1 if correcto == cantidad: result = True else: result = False print(result) # Modifica el codigo para imprimir cada valor reto1("ojo") def reto2(numero): num = str(numero) cantidad = len(num) while cantidad != 1: i = 0 suma = 0 while i<cantidad: suma += int(num[i]) i+=1 cantidad = len(str(suma)) num = str(suma) return suma reto2(347) def reto3(numero): i = 1 contador = 0 if numero <= 1: result = "Error en el numero" else: while i<=numero: if numero % i == 0: contador+=1 i+=1 if contador == 2: result = True else: result = False return result reto3(89)
eff50cbd0f7ee774a1d90db6832560189dbdd1fb
amaurirg/Tarefas-Macantes
/testes/fizzbuzz.py
1,127
3.765625
4
from sys import _getframe import unittest multiple_of = lambda base, num: num % base == 0 def robot(pos): say = str(pos) # mude essa linha de and para or para gerar um erro e ver a saída if multiple_of(3, pos) and multiple_of(5, pos): say = 'fizzbuzz' elif multiple_of(3, pos): say = 'fizz' elif multiple_of(5, pos): say = 'buzz' return say """ def assert_equal(result, expected): msg = 'Fail: Line {} got {} expecting {}' if not result == expected: current = _getframe() caller = current.f_back line_no = caller.f_lineno print(msg.format(line_no, result, expected)) if __name__=='__main__': assert_equal(robot(1), '1') assert_equal(robot(2), '2') assert_equal(robot(4), '4') assert_equal(robot(3), 'fizz') assert_equal(robot(6), 'fizz') assert_equal(robot(9), 'fizz') assert_equal(robot(5), 'buzz') assert_equal(robot(10), 'buzz') assert_equal(robot(20), 'buzz') assert_equal(robot(15), 'fizzbuzz') assert_equal(robot(30), 'fizzbuzz') assert_equal(robot(45), 'fizzbuzz') """
e027f52eed46b3390499dabf1c19386dcd1101af
amaurirg/Tarefas-Macantes
/Graficos/scatter_squares.py
1,133
3.59375
4
import matplotlib.pyplot as plt #plt.scatter(2, 4, s=200) # define um ponto específico x=2, y=4 e s=200 (tamanho do ponto) # x_values = [1, 2, 3, 4, 5] # y_values = [1, 4, 9, 16, 25] x_values = list(range(1, 1001)) y_values = [x**2 for x in x_values] # plt.scatter(x_values, y_values, c='red', edgecolor='none', s=40) # "edgecolor" tira o contorno preto # # dos pontos e "c" indica a cor da linha. # plt.scatter(x_values, y_values, c=(0, 0, 0.8), edgecolor='none', s=40) # c em formato RGB com valores de 0 a 1. plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues, edgecolor='none', s=40) # cmap para gradiente. # Define o título do gráfico e nomeia os eixos plt.title("Squares Numbers", fontsize=24) plt.xlabel("Value", fontsize=14) plt.ylabel("Square of Value", fontsize=14) # Define o tamanho dos rótulos das marcações # plt.tick_params(axis='both', which='major', labelsize=14) # Define o intervalo para cada eixo plt.axis([0, 1100, 0, 1100000]) plt.savefig('squares_plot.png', bbox_inches='tight') # salva o gráfico e tira os espaços em branco. plt.show() # exibe o gráfico.
f340ae17dd37811fc51fb2405c68c71d4fb8acec
amaurirg/Tarefas-Macantes
/excel(openpyxl)/teste_atualiza.py
796
3.640625
4
PRICE_UPDATES = {} resp = '' while resp != 'n': resp = input('\nAtualizar produto? (s para sim ou n para sair): ') try: if resp == 's': produto = input('Digite o produto: ') preco = input('Digite o valor: ') # if ',' or '.' not in preco: # preco = input('Digite um valor válido (ex.: 2,00): ') if ',' in preco: valor = preco.replace(',', '.') PRICE_UPDATES[produto] = float(valor) else: PRICE_UPDATES[produto] = float(preco) else: print('Digite s para alterar um produto e valor ou n para sair') except ValueError: preco = input('Digite um valor válido (ex.: 2,00): ') if not ValueError: pass else: print('O valor desse produto não será alterado devido ao valor inválido informado.') print(PRICE_UPDATES)
6345660779fa7e35d49ca37642ed793d0a40de4c
amaurirg/Tarefas-Macantes
/manipulando_arquivos/arquivos_HD/utilizando_pprint.py
1,307
3.953125
4
#! python3 #Utilizando o módulo pprint para salvar em um arquivo.py, gerando assim um módulo próprio chamado "myCats. #Esse trecho comentado cria o módulo que não será necessário ser criado novamente. ''' import pprint #importa o módulo para salvar de forma mais elegante. cats = [{'name': 'Zophie', 'desc': 'chubby'}, {'name':'Pooka', 'desc':'fluffy'}] #cria uma lista com os respectivos valores. fileObj = open('myCats.py', 'w') #abre o arquivo do tipo texto simples em modo escrita. fileObj.write('cats = ' + pprint.pformat(cats) + '\n') #salva a lista no arquivo. fileObj.close() #fecha o arquivo. ''' import myCats #importa o módulo criado anteriormente. print(myCats.cats) #exibe a lista completa. print(myCats.cats[0]) #exibe o índice 0 da lista. print(myCats.cats[1]) #exibe o índice 1 da lista. print(myCats.cats[0]['name']) #exibe o nome com índice 0 da lista. print(myCats.cats[1]['name']) #exibe o nome com índice 1 da lista. print(myCats.cats[0]['desc']) #exibe o desc com índice 0 da lista. print(myCats.cats[1]['desc']) #exibe o desc com índice 1 da lista.
3fcc4107b7bc8d14674675813d66c6ced891fdb3
amaurirg/Tarefas-Macantes
/tempo/stopwatch.py
718
3.859375
4
#! python3 #Simples cronômetro. import time #Exibe as instruções do programa. print('Pressione ENTER para começar. Depois, pressione ENTER para registrar o tempo no cronômetro. Pressione CTRL+C para sair.') input() print('Início da contagem de tempo.') startTime = time.time() lastTime = startTime lapNum = 1 try: while True: input() lapTime = round(time.time() - lastTime, 2) totalTime = round(time.time() - startTime, 2) print('Rodada %s: %s (%s) %s %s' %(lapNum, totalTime, lapTime, startTime, lastTime), end='') lapNum += 1 lastTime = time.time() except KeyboardInterrupt: #Trata a excessão de CTRL+C para evitar que sua mensagem de erro seja exibida. print('\nFIM')
7b87c1451cf718b0094d101c26c5d1c82f41efe3
amaurirg/Tarefas-Macantes
/web_scraping/lucky.py
1,736
3.703125
4
#! python 3 #Abre vários resultados de pesquisa no Google. import requests, sys, webbrowser, bs4 #importa o módulo requests para download da página. #importa o módulo sys para ler a linha de comando. #importa o módulo webbrowser para abrir o navegador. #importa o módulo bs4 para busca mais precisa com BeautifulSoup. print('Buscando...') #exibe uma mensagem enquanto faz download da página do Google. res = requests.get('http://google.com/search?q=' + ' '.join(sys.argv[1:])) #faz a pesquisa de acordo com a linha de comando, sem o nome do programa [0] res.raise_for_status() #verifica se ocorreu algum erro. soup = bs4.BeautifulSoup(res.text, "html.parser") #Obtém os links dos principais resultados da pesquisa. linkElems = soup.select('.r a') #seleciona os elementos <a> que estiverem na class="r". Através da inspeção de #elementos é possível verificar que antes de <a> existe uma class="r". numOpen = min(5, len(linkElems)) #verifica com a função min() qual valor é menor, ou seja, se encontrou 5 ou se #o total foi menor que 5. Então armazena em "numOpen" a menor quantidade de #buscas encontradas. A função max() faz o contrário, verifica qual é maior. for i in range(numOpen): #faz um loop de acordo com o número armazenado em "numOpen", 5 ou menos. webbrowser.open('http://google.com' + linkElems[i].get('href')) #abre uma aba do navegador para cada resultado. #print(linkElems[0].getText()) #exibe somente o texto do elemento 0 sem as tags. #print(linkElems) #print(res.text) #print(len(linkElems))
069e6443b63d7b1885a59bd2eaad877127b5cef9
amaurirg/Tarefas-Macantes
/Graficos/Matplotlib/colormap.py
696
3.828125
4
import matplotlib.pyplot as plt # Valores de x e y x_values = list(range(1, 1001)) y_values = [x**2 for x in x_values] # Plota uma linha gradiente azul, sem contorno, e expessura s=40 plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues, edgecolor='none', s=40) # Define o título do gráfico e nomeia os eixos plt.title("Square Numbers", fontsize=14) plt.xlabel("Value", fontsize=14) plt.ylabel("Square of Value", fontsize=14) # Define o intervalo para cada eixo plt.axis([0, 1100, 0, 1100000]) # Salva o gráfico em um arquivo # bbox_inches='tight' remove espaços extras em branco podendo ser omitido plt.savefig('squares_plot.png', bbox_inches='tight') plt.show()
6bf4f21da8abe83fb9749888a2a488a231cdf9a4
AlveinTeng/CSC311FinalProject
/starter_code/part_a/knn.py
4,736
3.78125
4
from sklearn.impute import KNNImputer from utils import * import matplotlib.pyplot as plt def knn_impute_by_user(matrix, valid_data, k): """ Fill in the missing values using k-Nearest Neighbors based on student similarity. Return the accuracy on valid_data. See https://scikit-learn.org/stable/modules/generated/sklearn. impute.KNNImputer.html for details. :param matrix: 2D sparse matrix :param valid_data: A dictionary {user_id: list, question_id: list, is_correct: list} :param k: int :return: float """ nbrs = KNNImputer(n_neighbors=k) # We use NaN-Euclidean distance measure. mat = nbrs.fit_transform(matrix) acc = sparse_matrix_evaluate(valid_data, mat) print("At k={}, Accuracy by student: {}".format(k, acc)) return acc def knn_impute_by_item(matrix, valid_data, k): """ Fill in the missing values using k-Nearest Neighbors based on question similarity. Return the accuracy on valid_data. :param matrix: 2D sparse matrix :param valid_data: A dictionary {user_id: list, question_id: list, is_correct: list} :param k: int :return: float """ ##################################################################### # TODO: # # Implement the function as described in the docstring. # ##################################################################### nbrs = KNNImputer(n_neighbors=k) # We use NaN-Euclidean distance measure. mat = nbrs.fit_transform(matrix.transpose()) acc = sparse_matrix_evaluate_item(valid_data, mat) print("At k={}, Accuracy by item: {}".format(k, acc)) ##################################################################### # END OF YOUR CODE # ##################################################################### return acc def sparse_matrix_evaluate_item(data, matrix, threshold=0.5): """ Given the sparse matrix represent, return the accuracy of the prediction on data. :param data: A dictionary {user_id: list, question_id: list, is_correct: list} :param matrix: 2D matrix :param threshold: float :return: float """ total_prediction = 0 total_accurate = 0 for i in range(len(data["is_correct"])): cur_user_id = data["user_id"][i] cur_question_id = data["question_id"][i] if matrix[cur_question_id, cur_user_id] >= threshold and data["is_correct"][i]: total_accurate += 1 if matrix[cur_question_id, cur_user_id] < threshold and not data["is_correct"][i]: total_accurate += 1 total_prediction += 1 return total_accurate / float(total_prediction) def main(): sparse_matrix = load_train_sparse("../data").toarray() val_data = load_valid_csv("../data") test_data = load_public_test_csv("../data") ##################################################################### # TODO: # # Compute the validation accuracy for each k. Then pick k* with # # the best performance and report the test accuracy with the # # chosen k*. # ##################################################################### k_value = [1, 6, 11, 16, 21, 26] # Validation data results_user = [] results_item = [] for k in k_value: results_user.append(knn_impute_by_user(sparse_matrix, val_data, k)) results_item.append(knn_impute_by_item(sparse_matrix, val_data, k)) plt.plot(k_value, results_user, color="red", label='student') plt.plot(k_value, results_item, color='blue', linestyle='--', label='item') plt.xlabel('k value') plt.ylabel('validation accuracy') plt.title('validation accuracy vs k value') plt.legend(loc='lower right') plt.show() # Test performance user_based = [] item_based = [] for k in k_value: user_based.append(knn_impute_by_user(sparse_matrix, test_data, k)) item_based.append(knn_impute_by_item(sparse_matrix, test_data, k)) plt.plot(k_value, user_based, color="red", label='student') plt.plot(k_value, item_based, color='blue', linestyle='--', label='item') plt.xlabel('k value') plt.ylabel('Test accuracy') plt.title('test accuracy vs k value') plt.legend(loc='lower right') plt.show() ##################################################################### # END OF YOUR CODE # ##################################################################### if __name__ == "__main__": main()
9f67be3ea93dcb4ab9f1d84391cecbb293f408e8
Mkath1423/Projects
/Projects/Mini Adventure/databaseTools.py
4,245
4.0625
4
import sqlite_manager as db def createNewDB(database, rooms): ''' This function initializes a new database. A new gameSave database will be created with the required tables. rooms number of stock rooms then get inserted into the database. The database name also gets added to the gameFilePaths.txt file. Parameters ---------- database : str This is the name of the database you want to create rooms : int this is the number of rooms you want in the new database Returns ------- None ''' # add the new gameSave path to the gameFilePaths.txt file gameFilePaths = open('GameFiles/gameFilePaths.txt', 'a') gameFilePaths.write(f',{database}') gameFilePaths.close() # set what columns should be in the rooms table and what datatype they contain rooms_columns = { 'room_name' : 'TEXT', 'room_description ': 'TEXT' } # create the rooms table db.createTable(f'GameFiles/{database}', 'rooms', rooms_columns) # set what columns should be in the connections table and what datatype they contain connections_colums = { 'N':'INTEGER', 'E':'INTEGER', 'S':'INTEGER', 'W':'INTEGER' } # create the connections table db.createTable(f'GameFiles/{database}', 'connections', connections_colums) # insert rooms amount of stock rooms into the tables for i in range(rooms): createNewRoom(database) def createNewRoom(database): ''' This function inserts a new room in a database. A new stock room gets made in the specified database. The values for the rooms are: room_name = newRoomName room_discripton = newRoomDescription N = 0 E = 0 S = 0 W = 0 Parameters ---------- database : str This is the name of the database you want to insert rooms into. Returns ------- None ''' # insert a new row into the rooms table with stock values db.insert(f'GameFiles/{database}', 'rooms', ['room_name', 'room_description '], [['"newRoomName"', '"newRoomDescription "']]) # insert a new row into the connections table with stock values db.insert(f'GameFiles/{database}', 'connections', ['N', 'E', 'S', 'W'], [[0, 0, 0, 0]]) def getLevelInfo(database): ''' This function gets and returns the names and ids of all the rooms in the database. A dictionary gets created and returned which contains the room ids as key and to room names as values. Parameters ---------- database : str This is the name of the database you want to get information from. Returns ------- dict<int, str> A dictionary of all the room ids and names in the database. The ids are keys and the names are values. ''' levelInfo = {} # query the database for the room name and id for every row roomsData = db.select(f'GameFiles/{database}', 'rooms', ['id', 'room_name'], None) # parse roomsData into a dictionary for room in roomsData: levelInfo[room[0]] = room[1] # add the amount of rooms to dictionary levelInfo['AmountOfRooms'] = len(levelInfo) # return the dictionary return levelInfo def getRoomData(database, room): ''' This function gets and returns the data stored for a given room. The room name, room description and all 4 connections will be returned. Parameters ---------- database : str This is the name of the database you want to get information from. room : int This is the id of the room you want to get the data of. Returns ------- list<list<str>> All the information for the given room. Index 0 contains the room_name and the room_description . Index 1 contains the 4 connections in order [North, East, South, West] ''' # query the database for the room id name and descripton room_data = db.select(f'GameFiles/{database}', 'rooms', ['id', 'room_name', 'room_description '], ('id', room))[0] # query the database for the rooms it connects to connections_data = db.select(f'GameFiles/{database}', 'connections', ['N', 'E', 'S', 'W'], ('id', room))[0] # return the collected data return (room_data, connections_data)
a016c597b8fc5f70e2ab5d861b756d347282289d
jourdy345/2016spring
/dataStructure/2016_03_08/fibonacci.py
686
4.125
4
def fib(n): if n <= 2: return 1 else: return fib(n - 1) + fib(n - 2) # In python, the start of a statement is marked by a colon along with an indentation in the next line. def fastFib(n): a, b = 0, 1 for k in range(n): a, b = b, a+b # the 'a' in the RHS is not the one in the RHS. Python distinguishes LHS from RHS and does not mix them up. return a # For n = 1, the slower version of fib function is actually faster than the faster one. # In small values of n, the comparison between two functions is actually not revealing as much as we would expect it to be. # Thus, we introduce a new concept O(n) ("Big oh"): asymptotic time complexity. print(fastFib(45))
5b4440484b062a79c73b005f2016ad3cd7c49ebf
YDrall/laboratory
/python/lpthw/loops_and_list.py
398
3.84375
4
the_count = [1,2,3,4,5] fruits = ['apples', 'oranges', 'pears', 'apricots'] change = [1,'pennis',2,'dimes',3,'quarters'] def sperator(): print '-'*20 for number in the_count: print number sperator() for fruit in fruits: print fruit sperator() for i in change: print i elements = [] for i in range(0,6): elements.append(i) sperator() for i in elements: print i
951eb2846feac19190916771176ad0621ddf4987
YDrall/laboratory
/python/lpthw/matrices_testdoc.py
454
3.609375
4
def make_matrix(rows, column): """ >>> make_matrix(3,5) [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] >>> make_matrix(4,2) [[0, 0], [0, 0], [0, 0], [0, 0]] >>> m = make_matrix(4,2) >>> m[1][1] = 7 >>> m [[0, 0], [0, 7], [0, 0], [0, 0]] """ matrix = [] for i in range(rows): matrix += [[0]*column] return matrix if __name__ == "__main__": import doctest doctest.testmod()
be9b1b682cc8b1f6190fead9c3441ce72f512cf4
Nathan-Dunne/Twitter-Data-Sentiment-Analysis
/DataFrameDisplayFormat.py
2,605
4.34375
4
""" Author: Nathan Dunne Date last modified: 16/11/2018 Purpose: Create a data frame from a data set, format and sort said data frame and display data frame as a table. """ import pandas # The pandas library is used to create, format and sort a data frame. # BSD 3-Clause License # Copyright (c) 2008-2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development from tabulate import tabulate # The tabulate library is used to better display the pandas data frame as a table. # MIT License Copyright (c) 2018 Sergey Astanin class DataFrameDisplayFormat: def __init__(self): pass # There is nothing to initialise so pass is called here. The pass statement is a null operation. @staticmethod # Method is static as it alters no values of the self object. def convertDataSetToDataFrame(data_set): """ Convert a data set to a pandas data frame. """ data_frame = pandas.DataFrame(data_set) # Convert the data set (List of dictionaries) to a pandas data frame. return data_frame @staticmethod # Method is static as it alters no values of the self object. def formatDataFrame(data_frame): """ Format and sort a data frame. """ data_frame = data_frame[['favorite_count', # Order and display only these three columns. 'retweet_count', 'text', ]] print("\nSorting data by 'favorite_count', 'retweet_count', descending.") # Sort the rows first by favorite count and then by retweet count in descending order. data_frame = data_frame.sort_values(by=['favorite_count', 'retweet_count'], ascending=False) return data_frame @staticmethod # Method is static as it neither accesses nor alters any values or behaviour of the self object. def displayDataFrame(data_frame, amount_of_rows, show_index): """ Display a data frame in table format using tabulate. """ # Print out an amount of rows from the data frame, possibly with showing the index, with the headers as the # data frame headers using the table format of PostgreSQL. # Tabulate can't display the word "Index" in the index column so it is printed out right before the table. print("\nIndex") print(tabulate(data_frame.head(amount_of_rows), showindex=show_index, headers=data_frame.columns, tablefmt="psql"))
0d3797cc77e5934de5fae55da24a79d27154ec0f
cjp0116/ML
/multiple_linear.py
4,000
3.640625
4
# Importing the Libaries import numpy as np import matplotlib.pyplot as plt import pandas as pd """Out of the R&D Spends and Marketing spends, which yields better profit? With the assumption that the location of the startup hold now significance. A Caveat to Linear Regressions: 1. Linearity 2. Homoscedasticity 3. Multivariate normality 4. Independence of errors 5. Lack of multi-collinearity multiple linear equation is.. {y = b0 + x1*b1(R&D) + b2*x2(Admin) + b3+x3(Marketing) + b4*D1 (state)} as for the state variables, we need to create Dummy Variables 5 methods of building models: 1.) All-in - Throw in all the cases i. Prior knowledge; OR ii. You have to; OR iii. Preparing for Backward Elimination. 2.) Backward Elimination (Stepwise Regression) i. Select a significance level to stay in the model (e.g. SL(significance level) =0.05) ii. Fit the full model with all possible predictors. iii. Consider the predictor with the highest P-value. If P > Significance Level, go to step 4, otherwise go to FIN ix. Remove the predictor. X. Fit model without this variable*. 3.) Forward Selection (Stepwise Regression) i. Select a significance level to enter the model (eg. SL = 0.05) ii. Fit all simple regression models y + Xn. Select the one with the lowest P-value. iii. Keep this variable and fit all possible models with one extra predictor added to the one(s) you already have. Xi. Consider the predictor with the LOWEST P-value. If P < SL, go to STEP3, otherwise go to FIN. 4.) Bidirectional Elimination (Stepwise Regression) i. Select a significance level to enter and to stay in the model e.g: SLENTER = 0.05, SLSTAY = 0.05 ii. Perform the next step of Forward Selection (new variables must have: P < SLENTER to enter) iii. Perform ALL steps of Backward Elimination (old variables must have: P < SLSTAY to stay) iX. No new variables can enter and no old variables can exit. 5.) All Possible Models i. Select a criterion of goodness of fit (e.g. Akaike criterion). ii. Construct all possible Regression Models (2**n)-1 total combinations. iii. Select the one with best criterion. """ # Opening the csv to work with dataset = pd.read_csv('50_Startups.csv') X = dataset.iloc[:, :-1].values # Dependant variables aka profits y = dataset.iloc[:, 4].values # Independant variables aka: (R&D, Administration, Marketing, State) # Encoding the state variable (categorical data) from sklearn.preprocessing import OneHotEncoder, LabelEncoder labelencoder_y = LabelEncoder() X[:,3] = labelencoder_y.fit_transform(X[:, 3]) onehotencoder = OneHotEncoder(categorical_features= [3]) X = onehotencoder.fit_transform(X).toarray() # Avoiding the Dummy Variable Trap X = X[:, 1:] # Splitting Test Data and Training Data from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, train_size= 0.8, test_size= 0.2, random_state= 0) # Fitting the Mulitple Linear Regression into the Training set from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train) # Predicting the Test Set Results y_pred = regressor.predict(X_test) print(y_pred) ## Building Optimal Model using Backwards Elimination ## import statsmodels.formula.api as sm X = np.append(arr = np.ones((50,1)).astype(int), values= X, axis= 1) # Initialize the independant variable columns X_opt = X[:, [0,1,2,3,4,5]] # Fit the full model with possible predictors regressor_OLS = sm.OLS(endog= y, exog= X_opt).fit() print(regressor_OLS.summary()) # Remove the ones with the P value > 0.05 X_opt = X[:, [0,3,5]] regressor_OLS = sm.OLS(endog= y, exog= X_opt).fit() print(regressor_OLS.summary()) X_opt = X[:, [0,3]] regressor_OLS = sm.OLS(endog = y, exog= X_opt).fit() print(regressor_OLS.summary())
5fec285125210654cdc334d9d16bebf72c4be2c7
benjvdb9/RandNumGenerator
/test.py
267
3.515625
4
from time import time times = [] for i in range(10): times += [time()] delta = [] old = "" for elem in times: print("Time:", elem) if old == "": res = "No delta" else: res = elem - old print("Delta:", res) old = elem
8eba1f38d3e13306076467af0694dc65f7d6ed7f
englernicolas/ADS
/python/aula3-extra.py
1,934
4.1875
4
def pesquisar(nome) : if(nome in listaNome) : posicao = listaNome.index(nome) print("------------------------------") print("Nome: ", listaNome[posicao], listaSobrenome[posicao]) print("Teefone: ",listaFone[posicao]) print("-------------------------") else: print("-------------------------") print("Pessoa não encontrada") print("-------------------------") def excluir(nome): if(nome in listaNome) : posicao = listaNome.index(nome) listaNome.pop(posicao) listaSobrenome.pop(posicao) listaFone.pop(posicao) print("Exluido com sucesso!") else: print("-----------------------") print("Pessoa não encontrada") print("-----------------------") def listar(): for item in range(0, len(listaNome)): print("-----------------------") print( "Nome: ", listaNome[item, listaSobrenome[item]]) print("-----------------------") listaNome = [] listaSobrenome = [] listaFone = [] while True: print(" 1 - Cadastrar") print(" 2 - Pesquisar") print(" 3 - Excluir") print(" 4 - Listar todos") op = int(input("Digide a opção desejada: ")) if(op == 1): nome = input("Informe o Nome: ") sobrenome = input("Informe o Sobrenome: ") fone = input("Informe o Telefone: ") listaNome.append(nome) listaSobrenome.append(sobrenome) listaFone.append(fone) print("-----------------------") print("Cadastrado com Sucesso!") print("-----------------------") else: if(op == 2): pesquisa = input("Informe o nome a pesquisar: ") pesquisar(pesquisa) else: if(op == 3): pesquisa = input("Informe o nome a excluir: ") excluir(pesquisa) else: if(op == 4): listar()
796e17d9375a3eb2b6fb36232d6beb7cf73adda3
lgdelacruz92/LeetCode-Challenges
/path-in-grid/path-in-grid.py
1,334
3.5
4
def optimal_path(grid): n = len(grid) record = [] for i in range(n): row = [] for j in range(n): row.append(-1) record.append(row) record[0][0] = grid[0][0] def sum_path(i,j): if record[i][j] != -1: return record[i][j] if i < 0 or i >= n or j < 0 or j >= n: return 0 val = max(sum_path(i,j-1), sum_path(i-1,j)) + grid[i][j] record[i][j] = val return val return sum_path(n-1,n-1) def path_solve_dp(grid): n = len(grid) dp = [] for i in range(n): row = [] for j in range(n): row.append(-1) dp.append(row) dp[0][0] = grid[0][0] for i in range(n): for j in range(n): if i-1 < 0 or i >= n: if j - 1 >= 0: dp[i][j] = dp[i][j-1] + grid[i][j] continue if j-1 < 0 or j >= n: if i-1 >= 0: dp[i][j] = dp[i-1][j] + grid[i][j] continue dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + grid[i][j] return dp[n-1][n-1] grid = [ [3,7,9,2,7], [9,8,3,5,5], [1,7,9,8,5], [3,8,6,4,10], [6,3,9,7,8] ] import time start = time.time() print(path_solve_dp(grid)) print(time.time() - start)
3ed7723170138098f9cd9f5032ec00d851b2f7f1
lgdelacruz92/LeetCode-Challenges
/accounts-merge/disjoint-sets.py
1,675
3.5
4
from pprint import PrettyPrinter pp = PrettyPrinter() class DisjointSet: def __init__(self): self.universe = ['a','b','c','d','e'] self.PARENT = {} for item in self.universe: self.PARENT[item] = item self.PARENT[self.universe[3]] = self.universe[1] self.GRAPH = [] for item in self.universe: row = [] for item in self.universe: row.append(0) self.GRAPH.append(row) n = len(self.universe) for key in self.PARENT.keys(): value = self.PARENT[key] row_index = self.universe.index(key) col_index = self.universe.index(value) self.GRAPH[row_index][col_index] = 1 self.GRAPH[col_index][row_index] = 1 def find(self, item): if self.PARENT == item: return item else: return self.find(self.PARENT[item]) def union(self, item1, item2): self.PARENT[item1] = item2 row_index = self.universe.index(item1) col_index = self.universe.index(item2) self.GRAPH[row_index][col_index] = 1 self.GRAPH[col_index][row_index] = 1 def print(self, item): seen = set() def dfs(item): print(item) seen.add(item) row_index = self.universe.index(item) for i, col in enumerate(self.GRAPH[row_index]): if col == 1 and self.universe[i] not in seen: dfs(self.universe[i]) dfs(item) s = DisjointSet() s.union('a', 'b') s.union('c', 'a') s.print('d') s.print('e')
9a52ad177df52e01fa357cfc3f620df7e91f46d7
lgdelacruz92/LeetCode-Challenges
/create-sorted-array-through-instructions/create-sorted-array-through-instructions.py
1,088
3.875
4
def b_search(nums, search_item, start, end): if end < start: return -1 k = int((end-start)/2) + start y = search_item if nums[k] < y and k == end: return k elif nums[k] < y and y <= nums[k+1]: return k elif y < nums[k]: return b_search(nums, search_item, start, k-1) else: return b_search(nums, search_item, k+1, end) def binary_search(nums, search_item): ''' Given an array and search_item give index of where to insert search_item @nums: List[int] @search_item: int ''' return b_search(nums, search_item, start, end) a = [1,3,3,3,2,4,2,1,2] min_cost = 0 sorted_a = [] total_cost = 0 for num in a: index = b_search(sorted_a, num, 0, len(sorted_a)-1) if index == -1: sorted_a.append(num) min_cost = 0 else: j = index while j+1 < len(sorted_a) and sorted_a[j+1] == num: j+=1 sorted_a = sorted_a[:index+1] + [num] + sorted_a[index+1:] min_cost = min(len(sorted_a) - j, index+1) total_cost += min_cost print(total_cost)
c89ada8107f353998c9e5c569dbe7e51b5e9889f
lgdelacruz92/LeetCode-Challenges
/continous_max_subarray/sol1.py
905
3.828125
4
from queue import PriorityQueue def count_subarrays(arr): n = len(arr) result = [1] * n stack = [] for i, v in enumerate(arr): if not stack: result[i] += i else: while stack and stack[-1][0] < v: stack.pop() if stack: result[i] += i - stack[-1][1]-1 else: result[i] += i stack.append((v, i)) arr.reverse() result.reverse() stack = [] for i, v in enumerate(arr): if not stack: result[i] += i else: while stack and stack[-1][0] < v: stack.pop() if stack: result[i] += i - stack[-1][1]-1 else: result[i] += i stack.append((v, i)) result.reverse() return result if __name__ == '__main__': count_subarrays([3, 4, 1, 6, 2])
a79bbf5a8c8ed5992fe82f9d5409c6d7ad11648f
LionStudent/practice
/bfs.py
808
3.90625
4
class Graph: def __init__(self): self.nodes = {} def __repr__(self): return str(self.nodes) def addEdge(self, src, tgt): self.nodes.setdefault(src,[]).append(tgt) self.nodes.setdefault(tgt,[]) # add other node but not reverse edge def bfs(self, root): queue = [root] visited = [False] * len(self.nodes) while queue: node = queue.pop(0) if visited[node] == False: visited[node] = True print(node, end=" ") for child in self.nodes[node]: queue.append(child) print("") g = Graph() g.addEdge(0,1) g.addEdge(0,2) g.addEdge(1,2) g.addEdge(2,0) g.addEdge(2,3) g.addEdge(3,3) g.addEdge(3,4) print(g) g.bfs(2)
86422c92b3f66365832ee47decc1370b789393be
ReblochonMasque/spiralofsquares
/rectangle.py
1,057
3.828125
4
""" a Rectangle """ from anchor import Anchor class Rectangle: def __init__(self, width, height): self.width = width self.height = height self.bbox = None self.norm_bbox = None self.calc_bbox(Anchor()) self.normalize_bbox() def calc_bbox(self, anchor): x, y = anchor self.bbox = [Anchor(anchor.x, anchor.y), (x + self.width, y + self.height)] self.normalize_bbox() def normalize_bbox(self): """ set the anchor point to the top left corner of the bbox :return: """ p0, p1 = self.bbox x0, y0 = p0 x1, y1 = p1 self.norm_bbox = [Anchor(min(x0, x1), min(y0, y1)), Anchor(max(x0, x1), max(y0, y1))] def get_center(self): tl, br = self.bbox return tl.get_mid(br) def __str__(self): res = f'Rectangle of width= {self.width}, height= {self.height}, bbox at: ' \ f'{", ".join(str(elt) for elt in self.bbox)}' return res if __name__ == '__main__': pass
2c7d0939e16034bd7e8d9e7c0082ba31a4502042
natashahussain/webLnatasha
/CO1 pg7(a).py
362
4
4
#Enter 2 lists of integers.Check #(a) Whether list are of same length list1 = [2, 5, 4, 1, 6] list2 = [1, 6, 2, 3, 5] print ("The first list is : "+ str(list1)) print ("The second list is : "+ str(list2)) if len(list1) == len(list2): print ("Length of the lists are same") else : print ("Length of the lists are not same")
c6751016634ed6ef77a3be91342ddfd60af0fdae
natashahussain/webLnatasha
/CO1 Pg12.py
118
4.03125
4
#accept a file and print extension fn=input("enter filename") f=fn.split(".") print("extension of file is;"+ f[-1])
317bafca9aa622828b3cb835b10d02301372f4ca
DeetoMok/CS50
/(Pre-July) 3. Flask/sandbox.py
1,385
3.875
4
#Taking in an input #name = input() from pyclbr import Class name = "Daryl" #f is to print in format String. I this case, the variable "name" print(f"Hello, {name}!") # initiating a variable does not require u to specify the data type i = 28 f = 2.8 b = False n = None # Conditional statements x = 28 if x > 0: print("x is positive") elif x < 0: print("x is negative") else: print("x is zero") #Python Tuple coordinates = (10.0,20.0) #List # Note items in the list do not have to be of the same type names = ["Alice", "Bob", "Charlie"] #Loops for i in range(5): print(i) for name in names: print(name) # Set is unordered set s = set() s.add(1) s.add(3) s.add(5) s.add(3) print(s) # Dictionary is unordered hash map ages = {"Alice": 22, "Bob": 27} ages["Charlie"] = 30 ages["Alice"] += 1 print(ages) #defining a function def square(x): return x * x # older way of format for i in range(10): print("{} squared is {}".format(i, square(i))) print(f"{i}, {square(i)}") # modules # from (fileName) import (functionName) # Separating a main function from other functions so that importing of specific functions # is possible def main(): for i in range(10): print("{} squared is {}".format(i, square(i))) print(f"{i}, {square(i)}") if __name__ == "__main__": #if I am currently running this particular file... main()
2f42cd1195a17baddb6f223e470659906aa702cd
abdul-malik360/Python_Proj_Week_Prep
/numbers.py
770
3.6875
4
from tkinter import * import random from tkinter import messagebox root = Tk() root.geometry("500x500") root.title("Generate Your Numbers") numb_ans = StringVar() numb_ent = StringVar() mylist = [] mynewlist = [numb_ent] ent_numb = Entry(root, textvariable=numb_ent) ent_numb.place(x=50, y=25) Label(root, textvariable=numb_ans).place(x=50, y=50) def generate(): for x in range(1, 2): number = random.randint(1, 2) mylist.append(number) numb_ans.set(mylist) if numb_ans == numb_ent.get(): messagebox.showinfo("you win", "Weldone") elif numb_ans != numb_ent.get(): messagebox.showinfo("you loose", "try again") gen_btn = Button(root, text="Generate", command=generate) gen_btn.place(x=50, y=100) root.mainloop()
bb2c90429b029e33059fa667a3864eb1fdc60808
NatanBB/BSI-2_Classes
/classes_exec/bola.py
1,053
3.921875
4
# Classe Bola: Crie uma classe que modele uma bola: # Atributos: Cor, circunferência, material # Métodos: trocaCor e mostraCor class Ball: def __init__(self, color="unknown", circunf=0, material="unknown"): self.color = color self.circunf = circunf self.material = material def trocaCor(self): troca = input("Deseja mudar a cor atual {}? [sim/nao]".format(self.color)) troca = troca[0].lower() if troca == "sim": nova_cor = input("\n> Nova Cor: ") self.color = nova_cor else: print("A cor continua ser {}".format(self.color)) def mostraCor(self): print("\nA cor atual é {}".format(self.color)) def main(): bola01 = Ball("azul", 5, "metal") while True: bola01.mostraCor() bola01.trocaCor() continuar = input("Continuar? [sim/nao]") continuar = continuar[0].lower() if continuar == "nao": break bola01.mostraCor() main()
996998a8d1b2e956b635d0bae93cd0fe49cb454e
ambrishrawat/burrows-wheeler
/BurrowsWheelerTransform.py
1,228
4
4
class BurrowsWheelerTransform: """Transforming a string using Burrows-Wheeler Transform""" def __init__(self): pass def bwt(self,f): """Applies Burrows-Wheeler transform to input string. Args: f (File): The file object where each line is a '0' or '1'. Returns: string: transformed string """ s = "" for line in f: s+=line.strip() table = sorted(s[i:] + s[:i] for i in range(len(s))) last_column = [row[-1:] for row in table] return "".join(last_column) def invbwt(self,f): """Applies inverse Burrows-Wheeler transform. Args: r (File): The file object where each line is a '0' or '1'. Returns: string: transformed string """ r = "" for line in f: r+=line.strip() table = [""] * len(r) # Make empty table for i in range(len(r)): table = sorted(r[i] + table[i] for i in range(len(r))) # Add a column of r s = [row for row in table if row.endswith("\0")][0] # Find the correct row (ending in "\0") return s.rstrip("\0") # Get rid of trailing null character
f5dc8fd74e6bad8bb10b81b98e3ec711dfb9613a
lemonad/advent-of-code
/2015 (Python)/december03.py
2,167
3.5625
4
""" December 3, Advent of Code 2015 (Jonas Nockert / @lemonad) """ from common.puzzlesolver import PuzzleSolver class Solver(PuzzleSolver): @classmethod def make_move(cls, move, pos): if move == '^': pos = (pos[0], pos[1] + 1) elif move == 'v': pos = (pos[0], pos[1] - 1) elif move == '>': pos = (pos[0] + 1, pos[1]) elif move == '<': pos = (pos[0] - 1, pos[1]) else: raise RuntimeError('No such move') return pos @classmethod def santa_deliveries(cls, indata): pos = (0, 0) grid = {pos: 1} for move in indata: pos = cls.make_move(move, pos) if pos in grid: grid[pos] = grid[pos] + 1 else: grid[pos] = 1 return len(grid) @classmethod def robo_santa_deliveries(cls, indata): pos = [(0, 0), (0, 0)] grid = {pos[0]: 2} for index, move in enumerate(indata): p = cls.make_move(move, pos[index % 2]) if p in grid: grid[p] = grid[p] + 1 else: grid[p] = 1 pos[index % 2] = p return len(grid) def solve_part_one(self): """Solution for part one.""" return self.santa_deliveries(self.puzzle_input) def solve_part_two(self): """Solution for part two.""" return self.robo_santa_deliveries(self.puzzle_input) def solve(self): return (self.solve_part_one(), self.solve_part_two()) if __name__ == '__main__': assert(Solver.santa_deliveries('>') == 2) assert(Solver.santa_deliveries('^>v<') == 4) assert(Solver.santa_deliveries('^v^v^v^v^v') == 2) assert(Solver.robo_santa_deliveries('^v') == 3) assert(Solver.robo_santa_deliveries('^>v<') == 3) assert(Solver.robo_santa_deliveries('^v^v^v^v^v') == 11) s = Solver(from_file='input/dec03.in') (one, two) = s.solve() print("Houses that received at least one present: %d." % one) print("Houses that received at least one present: %d." % two) assert(one == 2081) assert(two == 2341)
a46c37325d7a3efdcf1a50a43dd943b69163a690
520Coder/Python-Programming-for-Beginners-Hands-on-Online-Lab-
/Section 14/Student Resources/Assignment Solution Scripts/01_file_io_phone_book.py
3,368
3.96875
4
# File IO - Append # File my_file = "my_phone_book.txt" # Add def add_entry(first_name, last_name, phone_number): entry = first_name + "," + last_name + "," + phone_number + "\n" with open(my_file, "a") as file_handler: file_handler.write(entry) # Get list def get_list_from_file(file_name): phone_book_list = [] with open(file_name, "r") as file_handler: for line in file_handler: phone_book_list.append(line.replace("\n", "")) return phone_book_list # Write list to phone book file def write_list_to_file(phone_book_list, file_name): phone_book_string = "" for entry in phone_book_list: phone_book_string += entry + "\n" with open(file_name, "w") as file_handler: file_handler.write(phone_book_string) # Remove def remove_entry(first_name, last_name): phone_book_list = [] entry = first_name + "," + last_name with open(my_file, "r") as file_handler: for line in file_handler: if entry not in line: phone_book_list.append(line.replace("\n", "")) write_list_to_file(phone_book_list, my_file) # Look up def look_up_name(first_name, last_name): entry = first_name + "," + last_name with open(my_file, "r") as file_handler: for line in file_handler: if entry in line: print("*" * 30) print("Found : ", line.replace("\n", "")) print("*" * 30) else: print("*" * 30) print("Not Found") print("*" * 30) # Update def update_name(): with open(my_file, "r") as file_handler: for line in file_handler: print(line, end="") # Update def update_phone_number(first_name, last_name, new_phone_number): phone_list = get_list_from_file(my_file) entry_to_search = first_name + "," + last_name remove_entry(first_name, last_name) add_entry(first_name, last_name, new_phone_number) # Main def main(): while True: print("-" * 30) print("Welcome To Phone_Book v1.0") print("-" * 30) print("Menu :") print("1. Add") print("2. Lookup") print("3. Update Phone Number") print("4. Delete") print("5. Exit") print() choice = int(input("Enter your selection : ")) if choice == 1: first_name = input("Enter First Name : ") last_name = input("Enter Last Name : ") phone_number = input("Enter Phone Number : ") add_entry(first_name, last_name, phone_number) if choice == 2: first_name = input("Enter First Name : ") last_name = input("Enter Last Name : ") look_up_name(first_name, last_name) if choice == 3: first_name = input("Enter First Name : ") last_name = input("Enter Last Name : ") new_phone_number = input("Enter New Phone Number : ") update_phone_number(first_name, last_name, new_phone_number) if choice == 4: first_name = input("Enter First Name : ") last_name = input("Enter Last Name : ") phone_number = input("Enter Phone Number : ") remove_entry(first_name, last_name) if choice == 5: exit() if __name__ == "__main__": main()
aa5511e07cc866babfcd2ee3c7f7d6149ba1b740
520Coder/Python-Programming-for-Beginners-Hands-on-Online-Lab-
/Section 6/Student Resources/Assignment Solution Scripts/assignment_lists_02_solution_min_max.py
308
4.21875
4
# Lists # Assignment 2 numbers = [10, 8, 4, 5, 6, 9, 2, 3, 0, 7, 2, 6, 6] min_item = numbers[0] max_item = numbers[0] for num in numbers: if min_item > num: min_item = num if max_item < num: max_item = num print("Minimum Number : ", min_item) print("Maximum Number : ", max_item)
e581134dca95d8b5b36dace6546333c01f61b8a7
eman19-meet/y2s18-python_review
/exercises/functions.py
165
3.671875
4
# Write your solution for 1.4 here! def is_prime(x): i=1 while i<x: if x%i==0: if i!=x and i!=1: return False i=i+1 return True print(is_prime(5191))
4de3b01cdf53acec3acf826e69f054234e5d022c
Abhinavjha07/Cloud-Computing
/Lab1/lab12.py
1,598
3.65625
4
import split import operator def readFile(fileIn): content="" for line in fileIn : content+=line return content def wordCount(contents): wordcount={} for word in split.tsplit(contents,(' ','.','!',',','"','\n','?')): if word != '': if word not in wordcount: wordcount[word] = 1 else: wordcount[word] += 1 return wordcount def topTenWords(wordcount): print('\n\nTop 10 words are : ') wordcountS = sorted(wordcount.items(), key=operator.itemgetter(1),reverse=True) for x in range(10): print(wordcountS[x][0],wordcountS[x][1]) def topTenExcept(wordcount): stop=list(('a','about','above','after','again','against','all','am','an','and','any','are','as','at','be','because','been','be','for','being','below','the','both','but','by','could','did','do','does','doing','down','during','each','few','for','from','further','had','has','have','having','he','she','her','here','of','in','was','to')) print('\n\nTop 10 words after removing stop words are : ') wordcountS = sorted(wordcount.items(), key=operator.itemgetter(1),reverse=True) x=0 c=0 while c < 10 : if wordcountS[x][0] not in stop: print(wordcountS[x][0],wordcountS[x][1]) c+=1 x+=1 def main(): fileIn= open("sample.txt", "r") contents= readFile(fileIn) wordcount= wordCount(contents) for key in wordcount : print(key,wordcount[key]) topTenWords(wordcount) topTenExcept(wordcount) if __name__== "__main__": main()
d0ef890c1a36d3daf597b6649dfc11c1ddf4891e
BerryRB/Leetcode
/leetcode-day3.py
999
3.78125
4
# -*- coding: utf-8 -*- """ Created on Thu Jan 10 14:57:21 2019 @author: 刘瑞 """ """ 题目描述: 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 示例: 输入: [0,1,0,3,12] 输出: [1,3,12,0,0] 说明: 必须在原数组上操作,不能拷贝额外的数组。 尽量减少操作次数。 思路:只要把数组中所有的非零元素,按顺序给数组的前段元素位赋值,剩下的全部直接赋值 0 """ class Solution: def moveZeroes(self, nums): """ :type nums: List[int] :rtype: void Do not return anything, modify nums in-place instead. """ count=nums.count(0) nums[:]=[i for i in nums if i != 0] nums+=[0]*count return nums """ 讨论区看到的一行解法 def moveZeroes(self, nums): nums.sort(key=lambda x: x == 0) """ nums=[1,2,3,0,5,0,0,6,0,7] test=Solution() test.moveZeroes(nums) print(nums)
7e16b4a55a95d817df09ae851dba7b797ce9a330
BerryRB/Leetcode
/leetcode-day13.py
1,178
3.5625
4
# -*- coding: utf-8 -*- """ Created on Tue Feb 26 16:19:46 2019 @author: 刘瑞 """ """ 题目描述:快乐数 编写一个算法来判断一个数是不是“快乐数”。 一个“快乐数”定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1,也可能是无限循环但始终变不到 1。如果可以变为 1,那么这个数就是快乐数。 示例: 输入: 19 输出: true 解释: 12 + 92 = 82 82 + 22 = 68 62 + 82 = 100 12 + 02 + 02 = 1 思路:重点是如何判断无限循环,若某一次求平方和的结果重复出现就说明陷入了无限循环。 注意set的添加元素用add函数,列表的添加用append函数 """ class Solution: def isHappy(self, n): """ :type n: int :rtype: bool """ ss = set() while True: if n == 1: return True total = 0 while n: total += (n % 10) * (n %10) n = n // 10 if total in ss: return False ss.add(total) n = total
325829efc0923bb02e79c044b190855d65baa16e
ggradias/real-python-test
/fibo.py
226
3.65625
4
#Leonardo de Pisa import sys def fib(n): #return the nth fibonacci number n = int(n) if n <= 1: return 1 return fib(n-1)+ fib(n-2) if __name__ == '__main__': import pdb; pdb.set_trace() print(fib(sys.argv[-1]))
bfd6a6a1ce1a215bd6e698e732194b26fd0ec7b4
tjnelson5/Learn-Python-The-Hard-Way
/ex15.py
666
4.1875
4
from sys import argv # Take input from command line and create two string variables script, filename = argv # Open the file and create a file object txt = open(filename) print "Here's your file %r:" % filename # read out the contents of the file to stdout. This will read the whole # file, because the command ends at the EOF character by default print txt.read() # always close the file - like gates in a field! txt.close() # create a new string variable from the prompt print "Type the filename again:" file_again = raw_input("> ") # Create a new file object for this new file txt_again = open(file_again) # Same as above print txt_again.read() txt.close()
ec8ba8655f455632af649f889421ab136b30bf1d
xy008areshsu/Leetcode_complete
/python_version/dp_word_break.py
1,080
4.0625
4
""" Given a string s and a dictionary of words dict, determine if s can be segmented into a space-separated sequence of one or more dictionary words. For example, given s = "leetcode", dict = ["leet", "code"]. Return true because "leetcode" can be segmented as "leet code". """ # idea: # function: f[i] if it can be break for first i+1 elements of s # update: if s[: i + 1] is in dict, then f[i] is True; else, for j in range(i), if f[j] is True and s[j + 1 : i + 1] is in dict, then is True # init: f[0] is True if s[0] in dict, else False # final solution: f[len(s) - 1] class Solution: # @param s, a string # @param dict, a set of string # @return a boolean def wordBreak(self, s, dict): f = len(s) * [False] f[0] = True if s[0] in dict else False for i in range(1, len(s)): if s[:i + 1] in dict: f[i] = True else: for j in range(i): if f[j] and s[j+1: i + 1] in dict: f[i] = True break return f[-1]
a3c1730239862bd1d138a800e38288af6e482c67
xy008areshsu/Leetcode_complete
/python_version/2_sum_3.py
991
3.96875
4
""" Design and implement a TwoSum class. It should support the following operations: add and find. add - Add the number to an internal data structure. find - Find if there exists any pair of numbers which sum is equal to the value. For example, add(1); add(3); add(5); find(4) -> true find(7) -> false """ class TwoSum: # initialize your data structure here def __init__(self): self.h_map = {} # @return nothing def add(self, number): if number in self.h_map: self.h_map[number] += 1 else: self.h_map[number] = 1 # @param value, an integer # @return a Boolean def find(self, value): for k in self.h_map.keys(): if value - k in self.h_map: if value - k != k: # must consider the case of value = 6, k = 3; if h_map[3] > 1 then it is True return True elif self.h_map[value - k] > 1: return True return False
95f95fdcee0ef4b94db756b9528c11a567e5f031
xy008areshsu/Leetcode_complete
/python_version/single_number.py
776
3.875
4
""" Given an array of integers, every element appears twice except for one. Find that single one. Note: Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory? """ class Solution: # @param A, a list of integer # @return an integer def singleNumber(self, A): res = 0 for n in A: res = res ^ n return res def using_hash_table(self, A): # applies to any kind of single number, with other elements appear any number of times hash_m = {} for n in A: if n in hash_m: hash_m[n] += 1 else: hash_m[n] = 1 for n in A: if hash_m[n] == 1: return n return None
6b9281109f10fd0d69dfc54ce0aa807f9592109a
xy008areshsu/Leetcode_complete
/python_version/intervals_insert.py
1,267
4.125
4
""" Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary). You may assume that the intervals were initially sorted according to their start times. Example 1: Given intervals [1,3],[6,9], insert and merge [2,5] in as [1,5],[6,9]. Example 2: Given [1,2],[3,5],[6,7],[8,10],[12,16], insert and merge [4,9] in as [1,2],[3,10],[12,16]. This is because the new interval [4,9] overlaps with [3,5],[6,7],[8,10]. """ # Definition for an interval. class Interval: def __init__(self, s=0, e=0): self.start = s self.end = e class Solution: # @param intervals, a list of Intervals # @param newInterval, a Interval # @return a list of Interval def insert(self, intervals, newInterval): if len(intervals) == 0: return [newInterval] intervals.append(newInterval) intervals.sort(key=lambda x: x.start) res = [intervals[0]] for i in range(1, len(intervals)): if intervals[i].start <= res[-1].end: # here needs <= instead of <, e.g. [1, 3], and [3, 5] should be merged into [1, 5] res[-1].end = max(res[-1].end, intervals[i].end) else: res.append(intervals[i]) return res
a200196530d1911796efd53079b094260a0576e5
xy008areshsu/Leetcode_complete
/python_version/min_stack.py
719
3.6875
4
class stack: def __init__(self): self.s = [] def push(self, val): self.s.append(val) def pop(self): return self.s.pop() def top(self): return self.s[-1] class MinStack: def __init__(self): self.s = stack() self.min_s = stack() def push(self, val): if len(self.min_s.s) == 0 or val <= self.min_s.top(): # BUG PRONE, Here must use <=, instead of < self.min_s.push(val) self.s.push(val) def pop(self): if self.s.top() == self.min_s.top(): self.min_s.pop() return self.s.pop() def getMin(self): return self.min_s.top() def top(self): return self.s.top()
8c4ef949fb0a7b32cd0556da41121ad5b3595054
xy008areshsu/Leetcode_complete
/python_version/graph_clone.py
853
3.671875
4
# Definition for a undirected graph node class UndirectedGraphNode: def __init__(self, x): self.label = x self.neighbors = [] class Solution: # @param node, a undirected graph node # @return a undirected graph node def cloneGraph(self, node): if node is None: return None new_nodes = {} parent = {node : None} self.dfs(node, new_nodes, parent) for k in parent.keys(): for n in k.neighbors: new_nodes[k.label].neighbors.append(new_nodes[n.label]) return new_nodes[node.label] def dfs(self, node, new_nodes, parent): new_nodes[node.label] = UndirectedGraphNode(node.label) for n in node.neighbors: if n not in parent: parent[n] = node self.dfs(n, new_nodes, parent)
cccd42643b9b7088915328edb06738e2270345e2
xy008areshsu/Leetcode_complete
/python_version/DFS_factors_of_number.py
688
3.796875
4
""" e.g. 12 : return [ [1, 12], [2, 2, 3], [2, 6], [3, 4] ] """ def factors_of_num(num): res = [] list_aux = [] helper(num, res, list_aux) return res def helper(num, res, list_aux): if num == 1: if len(list_aux) < 2: list_aux.append(num) res.append(list_aux[:]) list_aux.pop() else: res.append(list_aux[:]) return for i in range(2, num + 1): if num % i == 0: if (len(list_aux) > 0 and i >= list_aux[-1]) or len(list_aux) == 0: list_aux.append(i) helper(num / i, res, list_aux) list_aux.pop() print(factors_of_num(6))
466622f128194101691bb1a3d11623356560025c
xy008areshsu/Leetcode_complete
/python_version/longest_substring_with_at_most_two_distinct_chars.py
2,663
3.78125
4
""" Given a string, find the length of the longest substring T that contains at most 2 distinct characters. T is "ece" which its length is 3. """ #idea : maintain a h_map, keys are each char, and vals are lists of indices of each char, each val is a sorted list, since the index goes from 0 to len(s) - 1 # scan the string, if the char already in h_map, append the index of that char to the value list. # else, if len(h_map) still less than 2, add this char into the h_map # else, find the minimum index and remove it from the value list. If any value list is empty, then delete the corresponding key. Repeat this until the length of # h_map is less than 2. # update the longest length at each step of the for loop import collections class Solution: # @param s, a string # @return an integer def lengthOfLongestSubstringTwoDistinct(self, s): # More practice, if s is None: return 0 if len(s) == 0 or len(s) == 1 or len(s) == 2: return len(s) h_map = {} longest_len = 0 for i, c in enumerate(s): if c in h_map: h_map[c].append(i) else: if len(h_map) < 2: h_map[c] = collections.deque() h_map[c].append(i) else: while len(h_map) >= 2: c_min, indices = min(h_map.items(), key = lambda x:x[1][0]) # list of index are sorted lists h_map[c_min].popleft() if len(h_map[c_min]) == 0: del h_map[c_min] h_map[c] = collections.deque() h_map[c].append(i) c_min, i_min = min(h_map.items(), key = lambda x : x[1][0]) c_max, i_max = max(h_map.items(), key = lambda x : x[1][-1]) i_min = i_min[0] i_max = i_max[-1] if i_max - i_min + 1 > longest_len: longest_len = i_max - i_min + 1 c_min, i_min = min(h_map.items(), key = lambda x : x[1][0]) c_max, i_max = max(h_map.items(), key = lambda x : x[1][-1]) i_min = i_min[0] i_max = i_max[-1] if i_max - i_min + 1> longest_len: longest_len = i_max - i_min + 1 return longest_len if __name__ == '__main__': sol = Solution() print(sol.lengthOfLongestSubstringTwoDistinct('cdaba')) print(sol.lengthOfLongestSubstringTwoDistinct('ccaabbb')) print(sol.lengthOfLongestSubstringTwoDistinct('abadc')) print(sol.lengthOfLongestSubstringTwoDistinct('aac')) print(sol.lengthOfLongestSubstringTwoDistinct('abacd'))
7e3a1b29b321ff31e6e635d825ddcfb1668aeb5c
xy008areshsu/Leetcode_complete
/python_version/dp_unique_path.py
1,531
4.15625
4
""" A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below). How many possible unique paths are there? Above is a 3 x 7 grid. How many possible unique paths are there? Note: m and n will be at most 100. """ class Solution: # @return an integer def uniquePaths(self, m, n): unique_paths_number = {} unique_paths_number[(0, 0)] = 1 unique_paths_number.update({(0, i) : 1 for i in range(n)}) unique_paths_number.update({(i, 0) : 1 for i in range(m)}) return self.solve(unique_paths_number, m - 1, n - 1) def solve(self, unique_paths_number, m, n): if m == 0 or n == 0: unique_paths_number[(m, n)] = 1 return 1 if (m - 1, n) in unique_paths_number: unique_paths_number_m_1_n = unique_paths_number[(m-1, n)] else: unique_paths_number_m_1_n = self.solve(unique_paths_number, m - 1, n) if (m, n - 1) in unique_paths_number: unique_paths_number_m_n_1 = unique_paths_number[(m, n - 1)] else: unique_paths_number_m_n_1 = self.solve(unique_paths_number, m , n - 1) unique_paths_number_m_n = unique_paths_number_m_1_n + unique_paths_number_m_n_1 unique_paths_number[(m, n)] = unique_paths_number_m_n return unique_paths_number_m_n
cfbf373d21232629f021e68cee613b716deb32d8
xy008areshsu/Leetcode_complete
/python_version/dp_distinct_subsequence.py
1,225
3.796875
4
""" Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not). Here is an example: S = "rabbbit", T = "rabbit" Return 3. """ # function: f[i][j] number of distinct subsequence of first i characters of S S[: i + 1] in first j characters in T T[: j + 1] # update: f[i][j], f[i][j] must be at least f[i - 1][j]; then if S[i] == T[j], then f[i][j] += f[i-1][j-1] # init: f[i][0] = 0 # final solution: f[len(S)][len(T)] class Solution: # @return an integer def numDistinct(self, S, T): # more practice nums = [] for i in range(len(S) + 1): nums.append((len(T) + 1) * [0]) for i in range(len(S) + 1): nums[i][0] = 1 for i in range(1, len(S) + 1): for j in range(1, len(T) + 1): nums[i][j] = nums[i - 1][j] if S[i - 1] == T[j - 1]: nums[i][j] += nums[i - 1][j - 1] return nums[len(S)][len(T)]
5337ae5f30015e142b6b6916ca2b088bcd8d8e72
xy008areshsu/Leetcode_complete
/python_version/2_sum_2.py
906
3.90625
4
""" Given an array of integers that is already sorted in ascending order, find two numbers such that they add up to a specific target number. The function twoSum should return indices of the two numbers such that they add up to the target, where index1 must be less than index2. Please note that your returned answers (both index1 and index2) are not zero-based. You may assume that each input would have exactly one solution. Input: numbers={2, 7, 11, 15}, target=9 Output: index1=1, index2=2 """ class Solution: # @return a tuple, (index1, index2) def twoSum(self, num, target): if len(num) == 0 or len(num) == 1: raise Exception('No solution') hash_m = {} for i in range(len(num)): if (target - num[i]) in hash_m: return (hash_m[target-num[i]] + 1, i + 1) hash_m[num[i]] = i raise Exception('No solution')
13741847dbcaee5b10bdf8d23774f8af86a9418b
xy008areshsu/Leetcode_complete
/python_version/graph_topological_sort.py
1,385
3.5625
4
class Graph: def __init__(self, vertices = [], Adj = {}): self.vertices = vertices self.Adj = Adj def itervertices(self): return self.vertices def neighbors(self, v): return self.Adj[v] class DFSResult: # More practice def __init__(self): self.parent = {} self.start_time = {} self.finish_time = {} self.order = [] self.edges = {} self.t = 0 def dfs(g): results = DFSResult() for v in g.itervertices(): if v not in results.parent: dfs_visit(g, v, results) return results def dfs_visit(g, v, results, parent = None): results.parent[v] = parent results.t += 1 results.start_time[v] = results.t if parent is not None: results.edge[(parent, v)] = 'tree edge' for n in g.neighbors(v): if n not in results.parent: dfs_visit(g, n, results, v) elif n not in results.finish_time: results.edges[(v, n)] = 'back edge' elif results.start_time[n] < results.start_time[v]: results.edges[(v, n)] = 'forward edge' else: results.edges[(v, n)] = 'cross edge' results.t += 1 results.finish_time[v] = results.t results.order.append(v) def topological_sort(g): results = dfs(g) results.order.reverse() return results.order
9af95f8a72a43fb5ff1b9cf8ca24e33abcb83ec3
xy008areshsu/Leetcode_complete
/python_version/dp_stock_3.py
2,009
3.84375
4
""" Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit. You may complete at most two transactions. Note: You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again). """ # idea: # two functions: best_left[i] best profit scanning from left rto right; best_right[i] best profit scanning from right to left. Same as stock_1 to update the two functions # combine: best_right reverse, then for i in range(len(best_left) - 1) find an i that maximizes best_left[i] + best_right[i] class Solution: # @param prices, a list of integer # @return an integer def maxProfit(self, prices): # more practice if len(prices) == 0 or len(prices) == 1: return 0 best_left = [0] best_right = [0] #first scan from left to right min_price = prices[0] for i in range(1, len(prices)): if prices[i] < min_price: min_price = prices[i] if prices[i] - min_price > best_left[-1]: best_left.append(prices[i] - min_price) else: best_left.append(best_left[-1]) max_price = prices[-1] for i in range(len(prices) - 2, -1, -1): if prices[i] > max_price: max_price = prices[i] if max_price - prices[i] > best_right[-1]: best_right.append(max_price - prices[i]) else: best_right.append(best_right[-1]) max_profit = 0 best_right.reverse() for i in range(len(best_left) - 1): max_profit = max(max_profit, best_left[i] + best_right[i + 1]) # these are for exactly two transactions max_profit = max(max_profit, best_left[-1]) # this is for just one transaction return max_profit if __name__ == '__main__': prices = [3,2,6,5,0,3] sol = Solution() print(sol.maxProfit(prices))
e48702cf9debf012096411f0f631ca753990fb46
xy008areshsu/Leetcode_complete
/python_version/binary_search_find_peak_element.py
1,043
4.03125
4
""" A peak element is an element that is greater than its neighbors. For example, in array [1, 2, 3, 1], 3 is a peak element and your function should return the index number 2. """ class Solution: # @param num, a list of integer # @return an integer def findPeakElement(self, num): if len(num) == 0: return None if len(num) == 1: return 0 if len(num) == 2: if num[0] > num[1]: return 0 else: return 1 start = 0 end = len(num) - 1 while start + 1 < end: mid = start + (end - start) // 2 if num[mid] > num[mid - 1] and num[mid] > num[mid + 1]: return mid elif num[mid] > num[mid - 1]: start = mid else: end = mid if num[start] > num[end]: return start else: return end if __name__ == '__main__': sol = Solution() print(sol.findPeakElement([1, 2, 3]))
1c54bfc00aac0e3123c800d0e6dcfaad5a83790d
xy008areshsu/Leetcode_complete
/python_version/linkedlist_copy_with_random_pointers.py
1,038
3.921875
4
""" A linked list is given such that each node contains an additional random pointer which could point to any node in the list or null. Return a deep copy of the list. """ # Definition for singly-linked list with a random pointer. class RandomListNode: def __init__(self, x): self.label = x self.next = None self.random = None class Solution: # @param head, a RandomListNode # @return a RandomListNode def copyRandomList(self, head): if head is None: return None dummy = RandomListNode(0) new_cur = dummy cur = head h_map = {} while cur: new_cur.next = RandomListNode(cur.label) new_cur = new_cur.next h_map[cur] = new_cur cur = cur.next cur = head new_cur = h_map[head] while cur: if cur.random in h_map: new_cur.random = h_map[cur.random] cur = cur.next new_cur = new_cur.next return dummy.next
d54e443f757c74f225b32e46e24c7a403cf48cc3
volkovandr/Snakeee
/py/snake.py
8,911
3.71875
4
#!/usr/bin/python3 ''' Implementation of the Snake class responsible for movement of the Snake ''' from time import time from food import Food from random import randint from copy import deepcopy from exceptions import GameOver class Snake: dead = 0 default_speed = 3 default_length = 10 UP, DOWN, LEFT, RIGHT = 'UP', 'DOWN', 'LEFT', 'RIGHT' deltas = { UP: (0, -1), DOWN: (0, 1), LEFT: (-1, 0), RIGHT: (1, 0) } def random_snake(grid, color): if grid.borders_occupied(): raise GameOver("GAME OVER: There is no free space at borders " "to create a new snake") while True: side = [Snake.UP, Snake.DOWN, Snake.LEFT, Snake.RIGHT][ randint(0, 3)] rand_x = randint(0, grid.width - 1) rand_y = randint(0, grid.height - 1) if side == Snake.UP: if not grid.occupied(rand_x, 0): return Snake( rand_x, -1, Snake.DOWN, Snake.default_length, Snake.default_speed, grid, False, color) elif side == Snake.DOWN: if not grid.occupied(rand_x, grid.height - 1): return Snake( rand_x, grid.height, Snake.UP, Snake.default_length, Snake.default_speed, grid, False, color) elif side == Snake.LEFT: if not grid.occupied(0, rand_y): return Snake( -1, rand_y, Snake.RIGHT, Snake.default_length, Snake.default_speed, grid, False, color) else: if not grid.occupied(grid.width - 1, rand_y): return Snake( grid.width, rand_y, Snake.LEFT, Snake.default_length, Snake.default_speed, grid, False, color) def random_robot_snake(grid, color): snake = Snake.random_snake(grid, color) snake.robot = True return snake def __init__(self, x, y, direction, length, speed, grid, robot, color): self.segments = [] self.head_x, self.head_y = x, y self.direction = direction self.new_direction = direction self.speed = speed self.framestart = None for seg_no in range(length): self.segments.append((x - Snake.deltas[direction][0] * seg_no, y - Snake.deltas[direction][1] * seg_no, direction)) self.segments.reverse() self.direction_stack = [] if grid: grid.add_object(self) self.grid = grid self.dead = False self.frame_position = 0 self.extending = False self.robot = robot self.color = color def length(self): return len(self.segments) def set_direction(self, direction): if len(self.direction_stack) == 0: if ((self.direction == Snake.UP and direction == Snake.DOWN) or (self.direction == Snake.DOWN and direction == Snake.UP) or (self.direction == Snake.RIGHT and direction == Snake.LEFT) or (self.direction == Snake.LEFT and direction == Snake.RIGHT)): return self.direction_stack.append(direction) # print("Added new direction to the stack:", direction) def detect_direction(self): # print("Detecting new direction.") try: food = self.grid.find_food() except: print("No Food found. Continuing old direction") return self.direction_stack = [] path = self.build_path(self.head_x, self.head_y, food.x, food.y) if not len(path) > 1: return if self.head_x > path[1][0]: return self.set_direction(Snake.LEFT) if self.head_x < path[1][0]: return self.set_direction(Snake.RIGHT) if self.head_y > path[1][1]: return self.set_direction(Snake.UP) if self.head_y < path[1][1]: return self.set_direction(Snake.DOWN) def eat_food(self, food): food.eaten = True self.grid.remove_object(food) self.extending = True Food.Food_eaten += 1 print("{} food eaten!".format(Food.Food_eaten)) def move(self): if self.dead: return if not self.framestart: self.framestart = time() self.frame_position = (time() - self.framestart) * self.speed if self.frame_position < 1: return # print("Movind the Snake. Old position:") # self.print() if len(self.direction_stack): self.direction = self.direction_stack[0] del self.direction_stack[0] self.head_x += Snake.deltas[self.direction][0] self.head_y += Snake.deltas[self.direction][1] if not self.grid.within_grid(self.head_x, self.head_y): return self.die("Out of the grid") object_at_new_head = self.grid.occupied(self.head_x, self.head_y) if object_at_new_head: if type(object_at_new_head) is Food: self.eat_food(object_at_new_head) else: return self.die('Collision with an obstacle of type {}'.format( type(object_at_new_head).__name__)) self.segments.append((self.head_x, self.head_y, self.direction)) if self.extending: self.extending = False else: del self.segments[0] if self.robot: self.detect_direction() # print("Snake moved. New position:") # self.print() if self.frame_position > 1: self.framestart += 1 / self.speed self.move() def print(self): print([self.segments[i - 1] for i in range(len(self.segments), 0, -1)]) def die(self, reason=None): self.frame_position = 0 self.dead = True if reason: print("I'm dead for the reason: '{}'".format(reason)) Snake.dead += 1 print("{} snakes are dead so far".format(Snake.dead)) def occupied(self, x, y): for segment in self.segments: if x == segment[0] and y == segment[1]: return True return False def build_path(self, start_x, start_y, end_x, end_y): # print("Trying to find a path from ({}, {}) to ({}, {})".format( # start_x, start_y, end_x, end_y)) if start_x < 0 or start_y < 0 or start_x >= self.grid.width or \ start_y >= self.grid.height: # print("The start position is out of the grid. Exiting") return [] grid = deepcopy(self.grid.build2d()) def mark_cell(cell, step, next_search_cells): x, y = cell typ = type(grid[x][y]) if typ is Snake or typ is int: return False grid[x][y] = step next_search_cells.append((x, y)) return True def adjancent_cells(cell, grid): x, y = cell if x > 0: yield (x - 1, y) if y > 0: yield (x, y - 1) if x < len(grid) - 1: yield (x + 1, y) if y < len(grid[0]) - 1: yield (x, y + 1) search_cells = [(start_x, start_y)] grid[start_x][start_y] = 0 step = 1 while True: next_search_cells = [] for search_cell in search_cells: if search_cell[0] == end_x and search_cell[1] == end_y: break for check_cell in adjancent_cells(search_cell, grid): mark_cell(check_cell, step, next_search_cells) if not len(next_search_cells): break step += 1 search_cells = next_search_cells # for row in range(len(grid[0])): # print([column[row] for column in grid]) if type(grid[end_x][end_y]) is not int: # print("Could not find a path from ({}, {}) to ({}, {})".format( # start_x, start_y, end_x, end_y)) return [] path = [(end_x, end_y)] while True: cur_pos = path[len(path) - 1] if cur_pos[0] == start_x and cur_pos[1] == start_y: break for check_cell in adjancent_cells(cur_pos, grid): cell = grid[check_cell[0]][check_cell[1]] if type(cell) is int: if cell < grid[cur_pos[0]][cur_pos[1]]: path.append(check_cell) break path.reverse() # print("Found a path: {}".format(path)) return path
acf62110c3914a749821a025854092c3971a3e70
Cvtq/GridSearch
/main.py
1,482
3.734375
4
# Вариант 2 cuts = [[-5, 5], [-5, 5], [-5, 5]] f = "x**2 - 2*x + y**2 + 4*y + z**2 - 8*z + 21" def findExtr(f, c): cuts = c k = len(cuts) m = 5 d = cuts[0][1] - cuts[0][0] h = d / m min = None e = 0.0001 # Пока шаг сетки больше eps while (h > e): # Найдем координаты всех точек сетки grid = [] for i in range(m): x = cuts[0][0] + i * h for j in range(m): y = cuts[1][0] + j * h for k in range(m): z = cuts[2][0] + k * h grid.append([x, y, z]) # Предположим, что минимум в первых координатах x = grid[0][0] y = grid[0][1] z = grid[0][2] min = eval(f) pMinimum = [x, y, z] # Найдем минимум for i in range(len(grid) - 1): x = grid[i + 1][0] y = grid[i + 1][1] z = grid[i + 1][2] point = eval(f) if point < min: min = point pMinimum = [x, y, z] # Сузим поиск for i in range(len(cuts)): cuts[i] = [pMinimum[i] - h, pMinimum[i] + h] d = cuts[0][1] - cuts[0][0] h = d / m print("Min = {}".format(min)) print("At ({}, {}, {})".format(pMinimum[0], pMinimum[1], pMinimum[2])) findExtr(f, cuts)
5b577e98faf5fa8f139b2010122678df321f6436
giorgioGunawan/jenga-vs
/catkin_ws/src/baldor/src/baldor/transform.py
10,909
3.515625
4
#!/usr/bin/env python """ Homogeneous Transformation Matrices """ import math import numpy as np # Local modules import baldor as br def are_equal(T1, T2, rtol=1e-5, atol=1e-8): """ Returns True if two homogeneous transformation are equal within a tolerance. Parameters ---------- T1: array_like First input homogeneous transformation T2: array_like Second input homogeneous transformation rtol: float The relative tolerance parameter. atol: float The absolute tolerance parameter. Returns ------- equal : bool True if `T1` and `T2` are `almost` equal, False otherwise See Also -------- numpy.allclose: Contains the details about the tolerance parameters """ M1 = np.array(T1, dtype=np.float64, copy=True) M1 /= M1[3, 3] M2 = np.array(T2, dtype=np.float64, copy=True) M2 /= M2[3, 3] return np.allclose(M1, M2, rtol, atol) def between_axes(axis_a, axis_b): """ Compute the transformation that aligns two vectors/axes. Parameters ---------- axis_a: array_like The initial axis axis_b: array_like The goal axis Returns ------- transform: array_like The transformation that transforms `axis_a` into `axis_b` """ a_unit = br.vector.unit(axis_a) b_unit = br.vector.unit(axis_b) c = np.dot(a_unit, b_unit) angle = np.arccos(c) if np.isclose(c, -1.0) or np.allclose(a_unit, b_unit): axis = br.vector.perpendicular(b_unit) else: axis = br.vector.unit(np.cross(a_unit, b_unit)) transform = br.axis_angle.to_transform(axis, angle) return transform def inverse(transform): """ Compute the inverse of an homogeneous transformation. .. note:: This function is more efficient than :obj:`numpy.linalg.inv` given the special properties of homogeneous transformations. Parameters ---------- transform: array_like The input homogeneous transformation Returns ------- inv: array_like The inverse of the input homogeneous transformation """ R = transform[:3, :3].T p = transform[:3, 3] inv = np.eye(4) inv[:3, :3] = R inv[:3, 3] = np.dot(-R, p) return inv def random(max_position=1.): """ Generate a random homogeneous transformation. Parameters ---------- max_position: float, optional Maximum value for the position components of the transformation Returns ------- T: array_like The random homogeneous transformation Examples -------- >>> import numpy as np >>> import baldor as br >>> T = br.transform.random() >>> Tinv = br.transform.inverse(T) >>> np.allclose(np.dot(T, Tinv), np.eye(4)) True """ quat = br.quaternion.random() T = br.quaternion.to_transform(quat) T[:3, 3] = np.random.rand(3)*max_position return T def to_axis_angle(transform): """ Return rotation angle and axis from rotation matrix. Parameters ---------- transform: array_like The input homogeneous transformation Returns ------- axis: array_like axis around which rotation occurs angle: float angle of rotation point: array_like point around which the rotation is performed Examples -------- >>> import numpy as np >>> import baldor as br >>> axis = np.random.sample(3) - 0.5 >>> angle = (np.random.sample(1) - 0.5) * (2*np.pi) >>> point = np.random.sample(3) - 0.5 >>> T0 = br.axis_angle.to_transform(axis, angle, point) >>> axis, angle, point = br.transform.to_axis_angle(T0) >>> T1 = br.axis_angle.to_transform(axis, angle, point) >>> br.transform.are_equal(T0, T1) True """ R = np.array(transform, dtype=np.float64, copy=False) R33 = R[:3, :3] # direction: unit eigenvector of R33 corresponding to eigenvalue of 1 w, W = np.linalg.eig(R33.T) i = np.where(abs(np.real(w) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no unit eigenvector corresponding to eigenvalue 1") axis = np.real(W[:, i[-1]]).squeeze() # point: unit eigenvector of R corresponding to eigenvalue of 1 w, Q = np.linalg.eig(R) i = np.where(abs(np.real(w) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no unit eigenvector corresponding to eigenvalue 1") point = np.real(Q[:, i[-1]]).squeeze() point /= point[3] # rotation angle depending on axis cosa = (np.trace(R33) - 1.0) / 2.0 if abs(axis[2]) > 1e-8: sina = (R[1, 0] + (cosa-1.0)*axis[0]*axis[1]) / axis[2] elif abs(axis[1]) > 1e-8: sina = (R[0, 2] + (cosa-1.0)*axis[0]*axis[2]) / axis[1] else: sina = (R[2, 1] + (cosa-1.0)*axis[1]*axis[2]) / axis[0] angle = math.atan2(sina, cosa) return axis, angle, point def to_dual_quaternion(transform): """ Return quaternion from the rotation part of an homogeneous transformation. Parameters ---------- transform: array_like Rotation matrix. It can be (3x3) or (4x4) isprecise: bool If True, the input transform is assumed to be a precise rotation matrix and a faster algorithm is used. Returns ------- qr: array_like Quaternion in w, x, y z (real, then vector) for the rotation component qt: array_like Quaternion in w, x, y z (real, then vector) for the translation component Notes ----- Some literature prefers to use :math:`q` for the rotation component and :math:`q'` for the translation component """ def cot(x): return 1./np.tan(x) R = np.eye(4) R[:3, :3] = transform[:3, :3] l, theta, _ = to_axis_angle(R) t = transform[:3, 3] # Pitch d d = np.dot(l.reshape(1, 3), t.reshape(3, 1)) # Point c c = 0.5*(t-d*l) + cot(theta/2.)*np.cross(l, t) # Moment vector m = np.cross(c, l) # Rotation quaternion qr = np.zeros(4) qr[0] = np.cos(theta/2.) qr[1:] = np.sin(theta/2.)*l # Translation quaternion qt = np.zeros(4) qt[0] = -(1/2.)*np.dot(qr[1:], t) qt[1:] = (1/2.)*(qr[0]*t + np.cross(t, qr[1:])) return qr, qt def to_euler(transform, axes='sxyz'): """ Return Euler angles from transformation matrix with the specified axis sequence. Parameters ---------- transform: array_like Rotation matrix. It can be (3x3) or (4x4) axes: str, optional Axis specification; one of 24 axis sequences as string or encoded tuple Returns ------- ai: float First rotation angle (according to axes). aj: float Second rotation angle (according to axes). ak: float Third rotation angle (according to axes). Notes ----- Many Euler angle triplets can describe the same rotation matrix Examples -------- >>> import numpy as np >>> import baldor as br >>> T0 = br.euler.to_transform(1, 2, 3, 'syxz') >>> al, be, ga = br.transform.to_euler(T0, 'syxz') >>> T1 = br.euler.to_transform(al, be, ga, 'syxz') >>> np.allclose(T0, T1) True """ try: firstaxis, parity, repetition, frame = br._AXES2TUPLE[axes.lower()] except (AttributeError, KeyError): br._TUPLE2AXES[axes] # validation firstaxis, parity, repetition, frame = axes i = firstaxis j = br._NEXT_AXIS[i+parity] k = br._NEXT_AXIS[i-parity+1] M = np.array(transform, dtype=np.float64, copy=False)[:3, :3] if repetition: sy = math.sqrt(M[i, j]*M[i, j] + M[i, k]*M[i, k]) if sy > br._EPS: ax = math.atan2(M[i, j], M[i, k]) ay = math.atan2(sy, M[i, i]) az = math.atan2(M[j, i], -M[k, i]) else: ax = math.atan2(-M[j, k], M[j, j]) ay = math.atan2(sy, M[i, i]) az = 0.0 else: cy = math.sqrt(M[i, i]*M[i, i] + M[j, i]*M[j, i]) if cy > br._EPS: ax = math.atan2(M[k, j], M[k, k]) ay = math.atan2(-M[k, i], cy) az = math.atan2(M[j, i], M[i, i]) else: ax = math.atan2(-M[j, k], M[j, j]) ay = math.atan2(-M[k, i], cy) az = 0.0 if parity: ax, ay, az = -ax, -ay, -az if frame: ax, az = az, ax return ax, ay, az def to_quaternion(transform, isprecise=False): """ Return quaternion from the rotation part of an homogeneous transformation. Parameters ---------- transform: array_like Rotation matrix. It can be (3x3) or (4x4) isprecise: bool If True, the input transform is assumed to be a precise rotation matrix and a faster algorithm is used. Returns ------- q: array_like Quaternion in w, x, y z (real, then vector) format Notes ----- Quaternions :math:`w + ix + jy + kz` are represented as :math:`[w, x, y, z]`. Examples -------- >>> import numpy as np >>> import baldor as br >>> q = br.transform.to_quaternion(np.identity(4), isprecise=True) >>> np.allclose(q, [1, 0, 0, 0]) True >>> q = br.transform.to_quaternion(np.diag([1, -1, -1, 1])) >>> np.allclose(q, [0, 1, 0, 0]) or np.allclose(q, [0, -1, 0, 0]) True >>> T = br.axis_angle.to_transform((1, 2, 3), 0.123) >>> q = br.transform.to_quaternion(T, True) >>> np.allclose(q, [0.9981095, 0.0164262, 0.0328524, 0.0492786]) True """ M = np.array(transform, dtype=np.float64, copy=False)[:4, :4] if isprecise: q = np.empty((4, )) t = np.trace(M) if t > M[3, 3]: q[0] = t q[3] = M[1, 0] - M[0, 1] q[2] = M[0, 2] - M[2, 0] q[1] = M[2, 1] - M[1, 2] else: i, j, k = 0, 1, 2 if M[1, 1] > M[0, 0]: i, j, k = 1, 2, 0 if M[2, 2] > M[i, i]: i, j, k = 2, 0, 1 t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3] q[i] = t q[j] = M[i, j] + M[j, i] q[k] = M[k, i] + M[i, k] q[3] = M[k, j] - M[j, k] q = q[[3, 0, 1, 2]] q *= 0.5 / math.sqrt(t * M[3, 3]) else: m00 = M[0, 0] m01 = M[0, 1] m02 = M[0, 2] m10 = M[1, 0] m11 = M[1, 1] m12 = M[1, 2] m20 = M[2, 0] m21 = M[2, 1] m22 = M[2, 2] # symmetric matrix K K = np.array([[m00-m11-m22, 0.0, 0.0, 0.0], [m01+m10, m11-m00-m22, 0.0, 0.0], [m02+m20, m12+m21, m22-m00-m11, 0.0], [m21-m12, m02-m20, m10-m01, m00+m11+m22]]) K /= 3.0 # quaternion is eigenvector of K that corresponds to largest eigenvalue w, V = np.linalg.eigh(K) q = V[[3, 0, 1, 2], np.argmax(w)] if q[0] < 0.0: np.negative(q, q) return q
cc99f3cfb363936e9902969471bda245627e8a46
Isetnt2/dice-ploter
/main-dice.py
976
3.5625
4
import matplotlib.pyplot as plt from random import randint as rnd amountOfDice = int(input('Hur många tärningar vill du kasta?')) amount = int(input('Hur många gånger vill du kasta?')) amountOfSides = int(input('Hur många sidor ska tärningarna ha?')) sum = [] frequency = [] plt.plot(sum, frequency[amountOfDice:]) for i in range(amountOfSides*amountOfDice+1): frequency.append(int('0')) def throw(diceAmount, diceSides): sumOfThrow = 0 if len(sum) < amountOfSides*2 - amountOfDice: for i in range(amountOfDice, amountOfDice*amountOfSides+1): sum.append(i) for i in range(diceAmount): sumOfThrow = sumOfThrow + rnd(1, diceSides) return sumOfThrow for i in range(amount): throws = throw(amountOfDice, amountOfSides) frequency[throws] = frequency[throws] + 1 plt.clf() plt.plot(sum, frequency[amountOfDice:]) plt.pause(0.05) plt.plot(sum, frequency[amountOfDice:], 'g') plt.show()
23b9542d92eb82c369b68d10ff4550af25d33b6b
kwaper/iti0201-2018
/L2/robot.py
1,413
3.921875
4
"""Terminator.""" import rospy from PiBot import PiBot robot = PiBot() count = int() robot.get_leftmost_line_sensor() robot.get_rightmost_line_sensor() def counting(count): """Counting.""" if count == 3: print("Turning Right") robot.set_right_wheel_speed(-30) robot.set_left_wheel_speed(0) rospy.sleep(0.7) return count elif count == 2: print("Going Straight") robot.set_wheels_speed(-20) rospy.sleep(0.7) elif count == 1: print("Turning Left") robot.set_right_wheel_speed(0) robot.set_left_wheel_speed(-30) rospy.sleep(0.7) while True: color_from_left = robot.get_leftmost_line_sensor() color_from_right = robot.get_rightmost_line_sensor() if count == 3: count -= 3 if color_from_right == color_from_left: robot.set_wheels_speed(-13) elif color_from_left > color_from_right: robot.set_left_wheel_speed(-15) robot.set_right_wheel_speed(15) if color_from_right > 300: robot.set_right_wheel_speed(-15) elif color_from_left < color_from_right: robot.set_left_wheel_speed(15) robot.set_right_wheel_speed(-15) if color_from_left > 300: robot.set_left_wheel_speed(-15) if color_from_right < 300 and color_from_left < 300: count += 1 print(count) counting(count)
d9bfdddb7cdc8dc6ad7a1585f125edfd09ed871d
SpamAndEgg/jump_and_run_madness
/visualize_convolution.py
1,560
3.546875
4
# Here the convoluted frame is produced as output for further use by the neural network or for visualization. import threading import numpy as np import global_var from math import floor # This thread visualizes the convolution of the game screen. class VisualConvolutionThread(threading.Thread): def run(self): # Set up the animation window to show the convoluted frame which will be updated every "interval_time" # milliseconds. def start_animation(): # "this_conv_frame" is updated in the game loop regularly. import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation def update(frame): img.set_data(np.transpose(global_var.this_conv_frame)) plt.setp(title_obj, text='Game score: '+str(floor(global_var.game_score))) def init(): img.set_data(np.transpose(global_var.this_conv_frame)) fig, ax = plt.subplots(1, 1) title_obj = plt.title('Game score: 0') img = ax.imshow(np.transpose(global_var.this_conv_frame), cmap='gist_gray_r', vmin=0, vmax=1) # Start the animation of the convoluted frame (interval time in milliseconds). ani = FuncAnimation(fig, update, init_func=init, blit=False, interval=50) plt.show() return ani # Visualize the input convolution. animation = start_animation() # Start convolution thread. visual_convolution = VisualConvolutionThread() visual_convolution.start()
91b56df18751d0c24e4622b5556e95123eb6c68d
skimbrel/project-euler
/python/p9.py
363
3.9375
4
"""Find the 3-tuple (a, b, c) such that a < b < c, a**2 + b**2 == c**2, and sum(a,b,c) = 1000.""" def find_tuple(): for c in xrange(0, 1000): for b in xrange(0, c): for a in xrange(0, b): if a ** 2 + b ** 2 == c ** 2 and sum([a, b, c]) == 1000: print a * b * c return find_tuple()
c20802ed076df2adc4c4b430f6761742487d37a7
samluyk/Python
/GHP17.py
900
4.46875
4
# Step 1: Ask for weight in pounds # Step 2: Record user’s response weight = input('Enter your weight in pounds: ') # Step 3: Ask for height in inches # Step 4: Record user’s input height = input('Enter your height in inches: ') # Step 5: Change “string” inputs into a data type float weight_float = float(weight) height_float = float(height) # Step 6: Calculate BMI Imperial (formula: (5734 weight / (height*2.5)) BMI = (5734 * weight_float) / (height_float**2.5) # Step 7: Display BMI print("Your BMI is: ", BMI) # Step 8: Convert weight to kg (formula: pounds * .453592) weight_kg = weight_float * .453592 # Step 9: Convert height to meters (formula: inches * .0254) height_meters = height_float * .0254 # Step 10: Calculate BMI Metric (formula: 1.3 * weight / height** 2.5 BMI = 1.3 * weight_kg / height_meters**2.5 # Step 11: Display BMI print("Your BMI is: ", BMI) # Step 12: Terminate
4b02aaeaf5193eb6df74c199eb4fc563a01441dc
HarivigneshN/Harivignesh-N
/Converting uppercase to lowercase.py
104
3.859375
4
s=input() a='' for x in s: if x.islower(): a=a+x.upper() elif x.isupper(): a=a+x.lower() print(a)
b26697a86d2fc1058c709d53cb0abbace118653a
HarivigneshN/Harivignesh-N
/alphabets finder.py
196
4.1875
4
a=input() if((a>='a' and a<='z') or (a>='A' and a<='Z')): print ("Alphabet") else: print("No") #####Another method##### #if a.isalpha() == True: # print("Alphabets") #else: # print("No")
c4d747c1283007bfd70d81bf8686e448038d7c68
HarivigneshN/Harivignesh-N
/Encode string by adding 3 in char.py
61
3.609375
4
s=input() a='' for x in s: a = a + chr(ord(x) + 3) print(a)
020ba9167844284ef2608e37e6bcb10292330368
HarivigneshN/Harivignesh-N
/Armstrong number.py
111
3.625
4
a=int(input()) b=0 c=a while (a>0): d=a%10 b=b+(d**3) a=a//10 if (b==c): print ("yes") else: print ("no")
7c2b8b11f351400e56ea11ee016adadd9cbef2cf
HarivigneshN/Harivignesh-N
/duplicate remover.py
209
3.734375
4
mylist = ["a", "b", "a", "c", "c"] mylist = list(dict.fromkeys(mylist)) print(mylist) --------------------------------------------------------------------------- use set() ie., a=set(a) but cant sort again.
fcec737c20d89968234256445be103b61601a119
hed-standard/hed-python
/hed/tools/util/io_util.py
11,590
3.703125
4
"""Utilities for generating and handling file names.""" import os import re from datetime import datetime from hed.errors.exceptions import HedFileError TIME_FORMAT = '%Y_%m_%d_T_%H_%M_%S_%f' def check_filename(test_file, name_prefix=None, name_suffix=None, extensions=None): """ Return True if correct extension, suffix, and prefix. Parameters: test_file (str) : Path of filename to test. name_prefix (list, str, None): An optional name_prefix or list of prefixes to accept for the base filename. name_suffix (list, str, None): An optional name_suffix or list of suffixes to accept for the base file name. extensions (list, str, None): An optional extension or list of extensions to accept for the extensions. Returns: bool: True if file has the appropriate format. Notes: - Everything is converted to lower case prior to testing so this test should be case insensitive. - None indicates that all are accepted. """ basename = os.path.basename(test_file.lower()) if name_prefix and not get_allowed(basename, allowed_values=name_prefix, starts_with=True): return False if extensions: ext = get_allowed(basename, allowed_values=extensions, starts_with=False) if not ext: return False basename = basename[:-len(ext)] else: basename = os.path.splitext(basename)[0] if name_suffix and not get_allowed(basename, allowed_values=name_suffix, starts_with=False): return False return True def get_allowed(value, allowed_values=None, starts_with=True): """ Return the portion of the value that matches a value in allowed_values or None if no match. Parameters: value (str): value to be matched. allowed_values (list, str, or None): Values to match. starts_with (bool): If true match is done at beginning of string, otherwise the end. Notes: - match is done in lower case. """ if not allowed_values: return value elif not isinstance(allowed_values, list): allowed_values = [allowed_values] allowed_values = [item.lower() for item in allowed_values] lower_value = value.lower() if starts_with: result = list(filter(lower_value.startswith, allowed_values)) else: result = list(filter(lower_value.endswith, allowed_values)) if result: result = result[0] return result def extract_suffix_path(path, prefix_path): """ Return the suffix of path after prefix path has been removed. Parameters: path (str) path of the root directory. prefix_path (str) sub-path relative to the root directory. Returns: str: Suffix path. Notes: - This function is useful for creating files within BIDS datasets """ real_prefix = os.path.normpath(os.path.realpath(prefix_path).lower()) suffix_path = os.path.normpath(os.path.realpath(path).lower()) return_path = os.path.normpath(os.path.realpath(path)) if suffix_path.startswith(real_prefix): return_path = return_path[len(real_prefix):] return return_path def clean_filename(filename): """ Replaces invalid characters with under-bars Parameters: filename (str): source filename Returns: str: The filename with anything but alphanumeric, period, hyphens, and under-bars removed. """ if not filename: return "" out_name = re.sub(r'[^a-zA-Z0-9._-]+', '_', filename) return out_name def get_dir_dictionary(dir_path, name_prefix=None, name_suffix=None, extensions=None, skip_empty=True, exclude_dirs=None): """ Create dictionary directory paths keys. Parameters: dir_path (str): Full path of the directory tree to be traversed (no ending slash). name_prefix (str, None): An optional name_prefix for the base filename. name_suffix (str, None): An optional name_suffix for the base file name. extensions (list, None): An optional list of file extensions. skip_empty (bool): Do not put entry for directories that have no files. exclude_dirs (list): List of directories to skip Returns: dict: Dictionary with directories as keys and file lists values. """ if not exclude_dirs: exclude_dirs = [] dir_dict = {} for root, dirs, files in os.walk(dir_path, topdown=True): dirs[:] = [d for d in dirs if d not in exclude_dirs] file_list = [] for r_file in files: if check_filename(r_file, name_prefix, name_suffix, extensions): file_list.append(os.path.join(os.path.realpath(root), r_file)) if skip_empty and not file_list: continue dir_dict[os.path.realpath(root)] = file_list return dir_dict def get_filtered_by_element(file_list, elements): """ Filter a file list by whether the base names have a substring matching any of the members of elements. Parameters: file_list (list): List of file paths to be filtered. elements (list): List of strings to use as filename filters. Returns: list: The list only containing file paths whose filenames match a filter. """ new_list = [file for file in file_list if any(substring in os.path.basename(file) for substring in elements)] return new_list def get_filtered_list(file_list, name_prefix=None, name_suffix=None, extensions=None): """ Get list of filenames satisfying the criteria. Everything is converted to lower case prior to testing so this test should be case insensitive. Parameters: file_list (list): List of files to test. name_prefix (str): Optional name_prefix for the base filename. name_suffix (str): Optional name_suffix for the base filename. extensions (list): Optional list of file extensions (allows two periods (.tsv.gz) Returns: list: The filtered file names. """ filtered_files = [file for file in file_list if check_filename(file, name_prefix=name_prefix, name_suffix=name_suffix, extensions=extensions)] return filtered_files def get_file_list(root_path, name_prefix=None, name_suffix=None, extensions=None, exclude_dirs=None): """ Return paths satisfying various conditions. Parameters: root_path (str): Full path of the directory tree to be traversed (no ending slash). name_prefix (str, None): An optional name_prefix for the base filename. name_suffix (str, None): The name_suffix of the paths to be extracted. extensions (list, None): A list of extensions to be selected. exclude_dirs (list, None): A list of paths to be excluded. Returns: list: The full paths. """ file_list = [] if not exclude_dirs: exclude_dirs = [] for root, dirs, files in os.walk(root_path, topdown=True): dirs[:] = [d for d in dirs if d not in exclude_dirs] for r_file in files: if check_filename(r_file, name_prefix, name_suffix, extensions): file_list.append(os.path.realpath(os.path.join(root, r_file))) return file_list def get_path_components(root_path, this_path): """ Get a list of the remaining components after root path. Parameters: root_path (str): A path (no trailing separator) this_path (str): The path of a file or directory descendant of root_path Returns: list or None: A list with the remaining elements directory components to the file. Notes: this_path must be a descendant of root_path. """ base_path = os.path.normpath(os.path.realpath(root_path)) cur_path = os.path.normpath(os.path.realpath(this_path)) common_prefix = os.path.commonprefix([base_path, cur_path]) if not common_prefix: raise ValueError("NoPathInCommon", f"Paths {base_path} and {cur_path} must have items in common") common_path = os.path.commonpath([base_path, cur_path]) if common_path != base_path: return None rel_path = os.path.relpath(cur_path, base_path) the_dir = os.path.dirname(rel_path) if the_dir: return os.path.normpath(the_dir).split(os.sep) else: return [] def get_timestamp(): now = datetime.now() return now.strftime(TIME_FORMAT)[:-3] def make_path(root_path, sub_path, filename): """ Get path for a file, verifying all components exist. Parameters: root_path (str): path of the root directory. sub_path (str): sub-path relative to the root directory. filename (str): filename of the file. Returns: str: A valid realpath for the specified file. Notes: This function is useful for creating files within BIDS datasets """ dir_path = os.path.realpath(os.path.join(root_path, sub_path)) os.makedirs(dir_path, exist_ok=True) return os.path.realpath(os.path.join(dir_path, filename)) def parse_bids_filename(file_path): """ Split a filename into BIDS-relevant components. Parameters: file_path (str): Path to be parsed. Returns: str: BIDS suffix name. str: File extension (including the .). dict: Dictionary with key-value pair being (entity type, entity value). :raises HedFileError: - If filename does not conform to name-value_suffix format. Notes: - splits into BIDS suffix, extension, and a dictionary of entity name-value pairs. """ filename = os.path.splitext(os.path.basename(file_path)) ext = filename[1].lower() basename = filename[0].strip() entity_dict = {} if len(basename) == 0: raise HedFileError("BlankFileName", f"The basename for {file_path} is blank", "") entity_pieces = basename.split('_') split_dict = _split_entity(entity_pieces[-1]) if "bad" in split_dict: raise HedFileError("BadSuffixPiece", f"The basename for {entity_pieces[-1]} has bad {split_dict['bad']}", "") if "suffix" in split_dict: suffix = split_dict["suffix"] else: suffix = None entity_dict[split_dict["key"]] = split_dict["value"] for pos, entity in reversed(list(enumerate(entity_pieces[:-1]))): split_dict = _split_entity(entity) if "key" not in split_dict: raise HedFileError("BadKeyValue", f"The piece {entity} is not in key-value form", "") entity_dict[split_dict["key"]] = split_dict["value"] return suffix, ext, entity_dict def _split_entity(piece): """Splits an piece into an entity or suffix. Parameters: piece (str): A string to be parsed. Returns: dict: with entities as keys as well as the key "bad" and the key "suffix". """ piece = piece.strip() if not piece: return {"bad": ""} split_piece = piece.split('-') if len(split_piece) == 1: return {"suffix": piece} if len(split_piece) == 2: return {"key": split_piece[0].strip(), "value": split_piece[1].strip()} else: return {"bad": piece}
fe4e6bf449c1fe5dc2ba80f6102ab13fe10fbeaf
hed-standard/hed-python
/hed/tools/remodeling/operations/remove_rows_op.py
1,988
3.640625
4
""" Remove rows from a tabular file. """ from hed.tools.remodeling.operations.base_op import BaseOp class RemoveRowsOp(BaseOp): """ Remove rows from a tabular file. Required remodeling parameters: - **column_name** (*str*): The name of column to be tested. - **remove_values** (*list*): The values to test for row removal. """ PARAMS = { "operation": "remove_rows", "required_parameters": { "column_name": str, "remove_values": list }, "optional_parameters": {} } def __init__(self, parameters): """ Constructor for remove rows operation. Parameters: parameters (dict): Dictionary with the parameter values for required and optional parameters. :raises KeyError: - If a required parameter is missing. - If an unexpected parameter is provided. :raises TypeError: - If a parameter has the wrong type. """ super().__init__(self.PARAMS, parameters) self.column_name = parameters["column_name"] self.remove_values = parameters["remove_values"] def do_op(self, dispatcher, df, name, sidecar=None): """ Remove rows with the values indicated in the column. Parameters: dispatcher (Dispatcher): Manages the operation I/O. df (DataFrame): The DataFrame to be remodeled. name (str): Unique identifier for the dataframe -- often the original file path. sidecar (Sidecar or file-like): Not needed for this operation. Returns: Dataframe: A new dataframe after processing. """ df_new = df.copy() if self.column_name not in df_new.columns: return df_new for value in self.remove_values: df_new = df_new.loc[df_new[self.column_name] != value, :] return df_new
0d28d6b5f6a31a6201a1d728d6a54e40ee339635
caderache2014/data_structures
/queue.py
953
3.890625
4
class queue_item(): def __init__(self): self.data = None self.next = None class queue(): def __init__(self): self.head= None def enqueue(self, data): new_item = queue_item() new_item.data = data new_item.next = self.head self.head = new_item def dequeue(self): if self.size() == 0: raise Exception('Empty Queue!') remove_item = self.head if not remove_item.next: data = remove_item.data self.head = None return data while remove_item.next.next: remove_item = remove_item.next data = remove_item.next.data remove_item.next = None return data def size(self): size = 0 curr_item = self.head while curr_item: curr_item = curr_item.next size += 1 return size
2743bd4df557ccc89ab0f3961fa0ca8e2b31697b
LstChanceMadrid/digital-crafts-18
/tip_calculator.py
331
3.984375
4
total_amount = float(input("Enter the total amount: ")) tip_percentage_amount = float(input("Enter the tip percentage amount: ")) def tip_amount(total_amount, tip_percentage_amount): tip = total_amount * tip_percentage_amount / 100 print("$" + str(tip)) return tip tip_amount(total_amount, tip_percentage_amount)
0d8fbaba74f8471905facad5aa730ae95ba3fb57
Robin970822/Ada-IRL
/maze_env.py
5,705
3.5
4
""" Created on Tue April 24 21:07 2018 @author: hanxy """ import numpy as np import tkinter as tk import time UNIT = 40 # pixels SQUAR = UNIT * 3 / 8 # create points on canvas def create_points(point, canvas, fill): rect_center = UNIT / 2 + point * UNIT shape = np.shape(rect_center) assert shape[-1] == 2, 'only build 2d maze' if len(shape) == 1: rect = canvas.create_rectangle( rect_center[0] - SQUAR, rect_center[1] - SQUAR, rect_center[0] + SQUAR, rect_center[1] + SQUAR, fill=fill ) return rect # transfer rectangle on canvas to point def transfer_coordinate(rect): rect_center = np.array([(rect[0] + rect[2]) / 2, (rect[1] + rect[3]) / 2]) point = rect_center / UNIT - 0.5 point = np.array(point, dtype=int) return point class Maze(tk.Tk, object): def __init__(self, col=8, row=8, hell=np.array([[6, 1], [1, 6], [5, 6], [6, 5]]), origin=np.array([0, 0]), terminal=np.array([7, 7])): super(Maze, self).__init__() self.action_space = ['w', 's', 'a', 'd'] self.n_actions = len(self.action_space) self.n_features = 2 self.title('maze') # col and row for maze self.col = np.max([col, np.max(hell, axis=0)[1] + 1, origin[1] + 1, terminal[0] + 1]) self.row = np.max([row, np.max(hell, axis=0)[0] + 1, origin[0] + 1, terminal[0] + 1]) self.origin = origin # origin coordinate self.terminal = terminal # terminal coordinate self.hell = hell # hell coordinate self.n_hells = np.shape(self.hell)[0] # number of hells self.geometry('{0}x{1}'.format(self.row * UNIT, self.col * UNIT)) self.is_encode = True self._build_maze() def _build_maze(self): self.canvas = tk.Canvas(self, bg='white', height=self.row * UNIT, width=self.col * UNIT) # create grids for c in range(0, self.col * UNIT, UNIT): x0, y0, x1, y1 = c, 0, c, self.row * UNIT self.canvas.create_line(x0, y0, x1, y1) for r in range(0, self.row * UNIT, UNIT): x0, y0, x1, y1 = 0, r, self.col * UNIT, r self.canvas.create_line(x0, y0, x1, y1) # create origin (red) self.rect = create_points(self.origin, self.canvas, 'red') # create terminal (yellow) self.terminal_point = create_points(self.terminal, self.canvas, 'yellow') # create hell (black) self.hell_points = np.zeros(self.n_hells, dtype=int) for i in range(0, self.n_hells): self.hell_points[i] = create_points(self.hell[i], self.canvas, 'black') # self.bind("<Key>", self.on_key_pressed) # pack all self.canvas.pack() def reset(self): self.update() time.sleep(0.5) self.canvas.delete(self.rect) self.rect = create_points(self.origin, self.canvas, 'red') # return observation if self.is_encode: return self._encode(self.origin) else: return self.origin def step(self, action): s = self.canvas.coords(self.rect) base_action = np.array([0, 0]) if action == 0: # up 'w' if s[1] > UNIT: base_action[1] -= UNIT elif action == 1: # down 's' if s[1] < (self.row - 1) * UNIT: base_action[1] += UNIT elif action == 2: # left 'a' if s[0] > UNIT: base_action[0] -= UNIT elif action == 3: # right 'd' if s[0] < (self.col - 1) * UNIT: base_action[0] += UNIT # move agent self.canvas.move(self.rect, base_action[0], base_action[1]) # next state s_ = self.canvas.coords(self.rect) # reward function for Reinforcement Learning done = False # terminal if s_ == self.canvas.coords(self.terminal_point): reward = 1000 done = True s_ = self.terminal # s_ = 'terminal' if self.is_encode: return self._encode(s_), reward, done else: return s_, reward, done else: # hell hell_rects = np.zeros((self.n_hells, 4)) for i in range(0, self.n_hells): hell_rects[i] = self.canvas.coords(self.hell_points[i]) if (s_ == hell_rects[i]).all(): reward = -10 done = True # s_ = 'hell' if self.is_encode: return self._encode(transfer_coordinate(s_)), reward, done else: return transfer_coordinate(s_), reward, done # normal reward = 0 if self.is_encode: return self._encode(transfer_coordinate(s_)), reward, done else: return transfer_coordinate(s_), reward, done def render(self): time.sleep(0.01) self.update() # key pressed call back function def on_key_pressed(self, event): char = event.char self.render() if char in self.action_space: action = self.action_space.index(char) s, r, done = self.step(action) print s if done: self.reset() # encode state def _encode(self, state): return state[0] + state[1] * self.col if __name__ == '__main__': env = Maze() env.mainloop()
b43f3dc11cc4b367dc7148973fc7f5096d01704c
dlapochkin/project.6
/main.py
6,431
3.875
4
from string import * from random import * def main(): """ Main function :return: None """ board, stats = cleaner(preparation()) table(board, stats) turn(board, stats) def preparation(): """ Creates board pattern and dictionary, containing board values :return: Shuffled board """ pattern = '123456789' \ '456789123' \ '789123456' \ '234567891' \ '567891234' \ '891234567' \ '345678912' \ '678912345' \ '912345678' clear = dict(zip([(x, y) for x in 'abcdefghi' for y in range(1, 10)], [x for x in pattern])) return shuffler(clear) def shuffler(board): """ Shuffles board values using random rows and columns swaps and transposition of the board :param board: dictionary, containing board values :return: board with shuffled values """ shuffling = {0: rows_moving, 1: columns_moving, 2: transposition} for shuff in range(256): board = shuffling[randint(0, 2)](board) return board def transposition(board): """ Swaps rows and columns of the board :param board: dictionary, containing board values :return: transposed board """ transposed = {} for (x, y) in board: transposed[(x, y)] = board[(chr(y + 96), ord(x) - 96)] return transposed def rows_moving(board): """ Swaps two random rows in one sector :param board: dictionary, containing board values :return: board with moved rows """ sectors = {0: 'abc', 1: 'def', 2: 'ghi'} rows = sectors[randint(0, 2)] x = choice(rows) rows = rows[:rows.find(x)] + rows[rows.find(x) + 1:] y = choice(rows) for z in '123456789': temp = board[(x, int(z))] board[(x, int(z))] = board[(y, int(z))] board[(y, int(z))] = temp return board def columns_moving(board): """ Swaps two random columns in one sector :param board: dictionary, containing board values :return: board with moved columns """ sectors = {0: '123', 1: '456', 2: '789'} columns = sectors[randint(0, 2)] x = choice(columns) columns = columns[:columns.find(x)] + columns[columns.find(x) + 1:] y = choice(columns) for z in 'abcdefghi': temp = board[(z, int(x))] board[(z, int(x))] = board[(z, int(y))] board[(z, int(y))] = temp return board def cleaner(board): """ Hides random squares, leaves given amount of hints :param board: dictionary, containing board values :return: prepared board, start statistic """ stats = {'1': 0, '2': 0, '3': 0, '4': 0, '5': 0, '6': 0, '7': 0, '8': 0, '9': 0, 'turn': 0} i = 81 - int(input('Введите число подсказок (рекомендуется использовать числа в диапазоне от 30 до 35): ')) while i > 0: a, b = choice(list('abcdefghi')), randint(1, 9) if board[(a, b)] == '0': continue stats[board[(a, b)]] += 1 board[(a, b)] = '0' i -= 1 return board, stats def table(board, stats): """ Prints game board, statistics :param board: dictionary, containing board values :param stats: dictionary, containing game statistics :return: None """ tree = board.copy() for key in tree: if tree[key] == '0': tree[key] = ' ' simple = list(tree.values()) print('+---' * 9 + '+', '{: ^9s}'.format(''), '+{:-^7s}+'.format('Числа')) for x in range(9): print('|{:^3s}:{:^3s}:{:^3s}|{:^3s}:{:^3s}:{:^3s}|{:^3s}:{:^3s}:{:^3s}|'.format(*simple[x * 9:x * 9 + 9]), ascii_lowercase[x], '{:^7s}'.format(''), '|{:^7s}|'.format(str(x + 1) + ': ' + str(stats[str(x + 1)]))) if x in [2, 5, 8]: print('+---' * 9 + '+', '{:^9s}'.format(''), '+{:-^7s}+'.format('')) else: print('+...' * 9 + '+', '{:^9s}'.format(''), '+{:-^7s}+'.format('')) print(' {:^4d}{:^4d}{:^4d}{:^4d}{:^4d}{:^4d}{:^4d}{:^4d}{:^4d}'.format(*[x for x in range(1, 10)]), '{:^9s}'.format(''), '{:^9s}'.format('Ход: ' + str(stats['turn'])), '\n') def turn(board, stats): """ Recursive function representing a game move :param board: dictionary, containing board values :param stats: dictionary, containing game statistics :return: None """ try: move = input().split() key = list(move[0])[0], int(list(move[0])[1]) if len(move) == 1: if board[key] != '0': stats[board[key]] += 1 board[key] = '0' else: print('Клетка уже пуста. Попробуйте еще раз.') return turn(board, stats) else: value = move[1] if value not in '123456789': print('Ошибка ввода. Попробуйте еще раз.') return turn(board, stats) if stats[value] == 0 and board[key] != value: print('Ошибка. Данное число уже использовано 9 раз.') return turn(board, stats) if board[key] != '0': stats[board[key]] += 1 board[key] = value stats[value] -= 1 stats['turn'] += 1 table(board, stats) if sum(stats.values()) - stats['turn'] == 0 and checker(board): print('Поздравляем. Судоку решено за', stats['turn'], 'ходов.') exit() except KeyError: print('Ошибка ввода. Попробуйте еще раз.') return turn(board, stats) return turn(board, stats) def checker(board): """ Checks if board filled in correctly (with no repetitions) :param board: dictionary, containing board values :return: True or False """ lines = {} for x in 'abcdefghi': lines[x] = [board[(x, 1)]] for y in range(2, 10): lines[x].append(board[(x, y)]) for x in range(1, 10): lines[x] = [board[('a', x)]] for y in 'bcdefghi': lines[x].append(board[(y, x)]) for line in list(lines.values()): for z in range(1, 10): if line.count(str(z)) > 1: return False return True if __name__ == '__main__': main()
dd4e4883ebadb8a6623e09f1da4eaafefb75d15c
mariomendonca/Solving-problems-python
/fibRecursivo.py
158
3.59375
4
def fib(n): print(f'calculando fib de {n}') if n <= 1: return n else: return fib(n - 2) + fib(n - 1) print(fib(7)) # fib(10) # print(fib(100))
7d7df2aa2534244e01bc30880c5304bd0e98935a
mariomendonca/Solving-problems-python
/orientação_a_objetos/aula4.py
856
3.890625
4
class Mamifero(object): def __init__(self, cor_de_pelo, genero, andar): self.cor_de_pelo = cor_de_pelo self.genero = genero self.num_de_patas = andar def falar(self): print(f'ola sou um {self.genero} mamifero e sei falar') def andar(self): print(f'estou andando sobre {self.num_de_patas}') def amamentar(self): if self.genero.lower()[0] == 'm': print('Machos nao amamentam') return print('amamentando meu filhote') class Pessoa(Mamifero): def __init__(self, cor_de_pelo, genero, andar, cabelo): super(Pessoa, self).__init__(cor_de_pelo, genero, andar) self.cabelo = cabelo def falar(self): super().falar() print('ola sou um maifero sei falar') # rex = Mamifero('marrom', 'm', 4) # rex.amamentar() # rex.andar() # rex.falar() julia = Pessoa('preto', 'f', 2, 'loiro') julia.falar()
a68815a2b384a6cc5eff0b8879ce4688a48afd89
mariomendonca/Solving-problems-python
/expressoes_oo.py
1,748
3.6875
4
class No(object): def __init__(self, dado=None): self.dado = dado self._proximo = None self._anterior = None def __str__(self): return str(self.dado) class Pilha(object): def __init__(self): self._inicio = None self._fim = None def isVazia(self): if self._inicio == None: return True return False def buscar_primeiro(self): i = self._inicio return i def buscar(self, x): i = self._inicio while i != None: if x == i._dado: break else: i = i._proximo return i def push(self, dado=None): novo_no = No(dado) if self.isVazia(): self._fim = novo_no else: novo_no._proximo = self._inicio self._inicio._anterior = novo_no self._inicio = novo_no def pop(self): no = self._inicio if not self.isVazia(): if no._proximo == None: self._fim = None else: no._proximo._anterior = None self._inicio = no._proximo def __str__(self): s = '' i = self._inicio while i != None: s += f'{i}' i = i._proximo return s n = int(input()) for i in range(n): string = input() pilha = Pilha() for x in string: if x == '(' or x == '{' or x == '[': pilha.push(x) elif x == ')': if pilha.isVazia(): pilha.push(x) elif str(pilha.buscar_primeiro()) == '(': pilha.pop() elif x == '}': if pilha.isVazia(): pilha.push(x) elif str(pilha.buscar_primeiro()) == '{': pilha.pop() elif x == ']': if pilha.isVazia(): pilha.push(x) elif str(pilha.buscar_primeiro()) == '[': pilha.pop() if pilha.isVazia(): print('S') else: print('N')
d5e0ba6271759bb746c8bef131ba5c8d8c006f17
mariomendonca/Solving-problems-python
/fatorialRecursivo.py
162
3.671875
4
def fatorial(n): print(f'calculando fatorial de {n}') if n <= 1: return 1 else: return n * fatorial(n - 1) print(fatorial(1)) print(fatorial(7))
4a74596fba5738a6fc1ea4651c8b9b31527a7d99
mariomendonca/Solving-problems-python
/orientação_a_objetos/aula_professor.py
2,140
3.546875
4
class No(object): def __init__(self, dado=None): self.dado = dado self._proximo = None self._anterior = None def __str__(self): # return f'{self.dado}' return str(self.dado) class Lista(object): def __init__(self): self._inicio = None self._fim = None def isVazia(self): if self._inicio == None: return True return False def inserir_no_final(self, dado=None): novo_no = No(dado) if self.isVazia(): self._inicio = self._fim = novo_no else: novo_no._anterior = self._fim self._fim._proximo = novo_no self._fim = novo_no def buscar(self, x): i = self._inicio while i != None: if x == i.dado: break else: i = i._proximo return i def remover(self, x): no_encontrado = self.buscar(x) if no_encontrado != None: if no_encontrado._anterior != None: no_encontrado._anterior._proximo = no_encontrado._proximo else: self._inicio = no_encontrado._proximo if no_encontrado._proximo != None: no_encontrado._proximo._anterior = no_encontrado._anterior else: self._fim = no_encontrado._anterior return no_encontrado def __str__(self): s = '' i = self._inicio while i != None: s += f' | {i}' i = i._proximo return s class Pilha(Lista): def push(self, dado=None): novo_no = No(dado) if self.isVazia(): self._fim = novo_no else: novo_no._proximo = self._inicio self._inicio._anterior = novo_no self._inicio = novo_no def pop(self): no = self._inicio if not self.isVazia(): if no._proximo == None: self._fim = None else: no._proximo._anterior = None self._inicio = no._proximo entrada = [4, 7, 17, 89, 2, 10, 99999] pilha = Pilha() for i in entrada: pilha.push(i) pilha.pop() print(pilha) # if __name__ == '__main__': # minha_lista = Lista() # for i in entrada: # minha_lista.inserir_no_final(i) # print(minha_lista) # no = minha_lista.buscar(3) # print(no) # minha_lista.remover(99999) # print(minha_lista)
5bdcb416f92937e245bd6860d09c119d2eaa1ca1
wxhheian/hpip
/ch9/ex9_1.py
641
3.953125
4
class Dog(): #一般来说类的首字母大写 """一次模拟小狗的简单测试""" def __init__(self, name, age): """初始化属性name和age""" self.name = name self.age = age def sit(self): """模拟小狗被命令蹲下""" print(self.name.title() + " is now sitting.") def roll_over(self): """模拟小狗被命令打滚""" print(self.name.title() + " is rolled over") my_dog = Dog('willie',6) print("My dog's name is " + my_dog.name.title() + ".") print("My dog is " + str(my_dog.age) + " years old.") my_dog.sit() my_dog.roll_over()
e40b364e777e48fcd98e4bb30cfdeb4aa55c8641
wxhheian/hpip
/ch3/ex3_2.py
755
3.703125
4
# motorcycles = ['honda','yamaha','suzuki'] # print(motorcycles) # motorcycles[0] = 'ducati' # print(motorcycles) # motorcycles.append('ducati') # print(motorcycles) # motorcycles.insert(0,'ducati') #在索引0处插入元素‘ducati’ # print(motorcycles) # motorcycles.insert(1,'ducati') # print(motorcycles) # del motorcycles[0] # print(motorcycles) # poped_motorcycle = motorcycles.pop(2) #pop()默认弹出最后一个 pop(2)弹出第3个 # print(motorcycles) # print(poped_motorcycle) motorcycles = ['honda','yamaha','suzuki','ducati'] print(motorcycles) motorcycles.remove('ducati') #根据具体的值删除 remove只删除第一个指定的值,如果有多个‘ducati’,需要要循环来删除 print(motorcycles)
0448e9274de805b9dec8ae7689071327677a6abb
wxhheian/hpip
/ch7/ex7_1.py
641
4.25
4
# message = input("Tell me something, and I will repeat it back to you: ") # print(message) # # name = input("Please enter your name: ") # print("Hello, " + name + "!") # prompt = "If you tell us who you are,we can personalize the messages you see." # prompt += "\nWhat is your first name? " # # name = input(prompt) # print("\nHello, " + name + "!") # age = input("How old are you? ") # print(int(age)>= 18) number = input("Enter a number, and I'll tell you if it's even or odd:") number = int(number) if number % 2 == 0: print("\nThe number " + str(number) + " is even") else: print("\nThe number " + str(number) + " is odd.")
c017be82d19c5be167dc7d9dd51251756c3076bc
JapoDeveloper/think-python
/exercises/chapter7/exercise_7_3.py
1,405
3.9375
4
""" Think Python, 2nd Edition Chapter 7 Exercise 7.3 Description: The mathematician Srinivasa Ramanujan found an infinite series that can be used to generate a numerical approximation of 1/π: https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fi.pinimg.com%2Foriginals%2Fa1%2Ff5%2F81%2Fa1f581c7dc6c3c581a03902c15327ccb.jpg&f=1&nofb=1 Write a function called estimate_pi that uses this formula to compute and return an estimate of π. It should use a while loop to compute terms of the summation until the last term is smaller than 1e-15 (which is Python notation for 10**-15). You can check the result by comparing it to math.pi. """ import math def factorial(n): """calculate the factorial of a non-negative integer number""" if type(n) is not int or n < 0: print('Only non-negative integers are accepted.') return if n == 0: return 1 return n * factorial(n-1) def estimate_pi(): """compute an approximation of pi""" k = 0 total = 0 epsilon = 1e-15 factor = 2 * math.sqrt(2) / 9801 while True: num = factorial(4*k) * (1103 + 26390 * k) den = factorial(k)**4 * 396**(4*k) term = factor * num / den total += term if term < epsilon: break k += 1 return 1 / total print('Estimation of pi :', estimate_pi()) print('Math module pi value:', math.pi)
856461a845a16813718ace33b8d2d5782b0d7914
JapoDeveloper/think-python
/exercises/chapter6/exercise_6_3.py
1,891
4.40625
4
""" Think Python, 2nd Edition Chapter 6 Exercise 6.3 Description: A palindrome is a word that is spelled the same backward and forward, like “noon” and “redivider”. Recursively, a word is a palindrome if the first and last letters are the same and the middle is a palindrome. The following are functions that take a string argument and return the first, last, and middle letters: def first(word): return word[0] def last(word): return word[-1] def middle(word): return word[1:-1] We’ll see how they work in Chapter 8. 1) Type these functions into a file named palindrome.py and test them out. What happens if you call middle with a string with two letters? One letter? What about the empty string, which is written '' and contains no letters? 2) Write a function called is_palindrome that takes a string argument and returns True if it is a palindrome and False otherwise. Remember that you can use the built-in function len to check the length of a string. """ from palindrome import * def is_palindrome(word): if len(word) <= 1: return True elif first(word) == last(word): return is_palindrome(middle(word)) else: return False print(first('Hello')) # H print(middle('Hello')) # ell print(last('Hello')) # o # What happens if you call middle with a string with two letters? print(middle('ab')) # empty string is returned # One letter? print(middle('a')) # empty string is returned # What about the empty string, which is written '' and contains no letters? print(middle('')) # empty string is returned print('Are palindromes?:') print('noon', is_palindrome('noon')) # Yes print('redivider', is_palindrome('redivider')) # Yes print('a', is_palindrome('a')) # Yes print('empty string', is_palindrome('')) # Yes print('night', is_palindrome('night')) # No print('word', is_palindrome('word')) # No
12af2132a90d11fbe573827f34f16bfa675402b8
JapoDeveloper/think-python
/exercises/chapter1/exercise1_2.py
986
3.96875
4
""" Think Python, 2nd Edition Chapter 1 Exercise 1.2 Description: try math operations and answer the questions """ # 1) How many seconds are there in 42 minutes 42 seconds? print(42 * 60 + 42) # 2,562 seconds # 2) How many miles are there in 10 kilometers? # Hint: there are 1.61 kilometers in a mile. print(10 / 1.61) # 6.21 miles # 3) If you run a 10 kilometer race in 42 minutes 42 seconds, # what is your average pace (time per mile in minutes and seconds)? # What is your average speed in miles per hour? race_in_miles = 10 / 1.61 race_time_in_sec = (42 * 60 + 42) total_mile_time_in_sec = race_time_in_sec / race_in_miles time_per_mile_in_min = int(total_mile_time_in_sec // 60) time_per_mile_in_sec = total_mile_time_in_sec % 60 print('Average pace: {} minutes {:.2f} seconds' .format(time_per_mile_in_min, time_per_mile_in_sec)) race_time_in_hr = race_time_in_sec / 3600 speed = race_in_miles / race_time_in_hr print('Average speed: {:.2f} mi/h'.format(speed))