input
stringlengths
33
5k
output
stringlengths
32
5k
import asyncio from typing import Any, List, Optional from zhipuai import ZhipuAI as ZhipuAIClient from llama_index.core.base.embeddings.base import BaseEmbedding from llama_index.core.bridge.pydantic import Field, PrivateAttr from llama_index.core.callbacks import CallbackManager class ZhipuAIEmbedding(BaseEmbedding): """ ZhipuAI LLM. Visit https://open.bigmodel.cn to get more information about ZhipuAI. Examples: `pip install llama-index-embeddings-zhipuai` ```python from llama_index.embeddings.zhipuai import ZhipuAIEmbedding embedding = ZhipuAIEmbedding(model="embedding-2", api_key="YOUR API KEY") response = embedding.get_general_text_embedding("who are you?") print(response) ``` """ model: str = Field(description="The ZhipuAI model to use.") api_key: Optional[str] = Field( default=None, description="The API key to use for the ZhipuAI API.", ) dimensions: Optional[int] = Field( default=1024, description=( "The number of dimensions the resulting output embeddings should have. " "Only supported in embedding-3 and later models. embedding-2 is fixed at 1024." ), ) timeout: Optional[float] = Field( default=None, description="The timeout to use for the ZhipuAI API.", ) _client: Optional[ZhipuAIClient] = PrivateAttr() def __init__( self, model: str, api_key: str, dimensions: Optional[int] = 1024, timeout: Optional[int] = None, callback_manager: Optional[CallbackManager] = None, **kwargs: Any, ) -> None: super().__init__( model=model, dimensions=dimensions, timeout=timeout, callback_manager=callback_manager, **kwargs, ) self._client = ZhipuAIClient(api_key=api_key) @classmethod def class_name(cls) -> str: return "ZhipuAIEmbedding" def _get_query_embedding(self, query: str) -> List[float]: """Get query embedding.""" return self.get_general_text_embedding(query) async def _aget_query_embedding(self, query: str) -> List[float]: """The asynchronous version of _get_query_embedding.""" return await self.aget_general_text_embedding(query) def _get_text_embedding(self, text: str) -> List[float]: """Get text embedding.""" return self.get_general_text_embedding(text) async def _aget_text_embedding(self, text: str) -> List[float]: """Asynchronously get text embedding.""" return await self.aget_general_text_embedding(text) def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]: """Get text embeddings.""" embeddings_list: List[List[float]] = [] for text in texts: embeddings = self.get_general_text_embedding(text) embeddings_list.append(embeddings) return embeddings_list async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]: """Asynchronously get text embeddings.""" return await asyncio.gather( *[self.aget_general_text_embedding(text) for text in texts] ) def get_general_text_embedding(self, text: str) -> List[float]: """Get ZhipuAI embeddings.""" response = self._client.embeddings.create( model=self.model, input=text, dimensions=self.dimensions, timeout=self.timeout, ) return response.data[0].embedding async def aget_general_text_embedding(self, text: str) -> List[float]: """Asynchronously get ZhipuAI embeddings.""" response = await asyncio.to_thread( self._client.embeddings.create, model=self.model, input=text, dimensions=self.dimensions, timeout=self.timeout, ) return response.data[0].embedding
import asyncio from typing import Any, List, Optional from zhipuai import ZhipuAI as ZhipuAIClient from llama_index.core.base.embeddings.base import BaseEmbedding from llama_index.core.bridge.pydantic import Field, PrivateAttr from llama_index.core.callbacks import CallbackManager class ZhipuAIEmbedding(BaseEmbedding): """ZhipuAI LLM. Visit https://open.bigmodel.cn to get more information about ZhipuAI. Examples: `pip install llama-index-embeddings-zhipuai` ```python from llama_index.embeddings.zhipuai import ZhipuAIEmbedding embedding = ZhipuAIEmbedding(model="embedding-2", api_key="YOUR API KEY") response = embedding.get_general_text_embedding("who are you?") print(response) ``` """ model: str = Field(description="The ZhipuAI model to use.") api_key: Optional[str] = Field( default=None, description="The API key to use for the ZhipuAI API.", ) dimensions: Optional[int] = Field( default=1024, description=( "The number of dimensions the resulting output embeddings should have. " "Only supported in embedding-3 and later models. embedding-2 is fixed at 1024." ), ) timeout: Optional[float] = Field( default=None, description="The timeout to use for the ZhipuAI API.", ) _client: Optional[ZhipuAIClient] = PrivateAttr() def __init__( self, model: str, api_key: str, dimensions: Optional[int] = 1024, timeout: Optional[int] = None, callback_manager: Optional[CallbackManager] = None, **kwargs: Any, ) -> None: super().__init__( model=model, dimensions=dimensions, timeout=timeout, callback_manager=callback_manager, **kwargs, ) self._client = ZhipuAIClient(api_key=api_key) @classmethod def class_name(cls) -> str: return "ZhipuAIEmbedding" def _get_query_embedding(self, query: str) -> List[float]: """Get query embedding.""" return self.get_general_text_embedding(query) async def _aget_query_embedding(self, query: str) -> List[float]: """The asynchronous version of _get_query_embedding.""" return await self.aget_general_text_embedding(query) def _get_text_embedding(self, text: str) -> List[float]: """Get text embedding.""" return self.get_general_text_embedding(text) async def _aget_text_embedding(self, text: str) -> List[float]: """Asynchronously get text embedding.""" return await self.aget_general_text_embedding(text) def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]: """Get text embeddings.""" embeddings_list: List[List[float]] = [] for text in texts: embeddings = self.get_general_text_embedding(text) embeddings_list.append(embeddings) return embeddings_list async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]: """Asynchronously get text embeddings.""" return await asyncio.gather( *[self.aget_general_text_embedding(text) for text in texts] ) def get_general_text_embedding(self, text: str) -> List[float]: """Get ZhipuAI embeddings.""" response = self._client.embeddings.create( model=self.model, input=text, dimensions=self.dimensions, timeout=self.timeout, ) return response.data[0].embedding async def aget_general_text_embedding(self, text: str) -> List[float]: """Asynchronously get ZhipuAI embeddings.""" response = await asyncio.to_thread( self._client.embeddings.create, model=self.model, input=text, dimensions=self.dimensions, timeout=self.timeout, ) return response.data[0].embedding
import logging from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") evaluator = SparseNanoBEIREvaluator( dataset_names=None, # None means evaluate on all datasets show_progress_bar=True, batch_size=16, ) # Run evaluation results = evaluator(model) """ Average Querie: num_rows: 49.92307692307692, num_cols: 30522.0, row_non_zero_mean: 74.91560451801007, row_sparsity_mean: 0.9975455219929035 Average Corpus: num_rows: 4334.7692307692305, num_cols: 30522.0, row_non_zero_mean: 174.81000049297626, row_sparsity_mean: 0.9942726905529315 Aggregated for Score Function: dot Accuracy@1: 58.72% Accuracy@3: 75.37% Accuracy@5: 80.76% Accuracy@10: 87.07% Precision@1: 58.72% Recall@1: 35.61% Precision@3: 36.31% Recall@3: 50.84% Precision@5: 27.75% Recall@5: 56.55% Precision@10: 19.18% Recall@10: 64.24% MRR@10: 0.6821 NDCG@10: 0.6204 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6204
import logging from sentence_transformers.sparse_encoder import ( SparseEncoder, SparseNanoBEIREvaluator, ) logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") evaluator = SparseNanoBEIREvaluator( dataset_names=None, # None means evaluate on all datasets show_progress_bar=True, batch_size=16, ) # Run evaluation results = evaluator(model) """ Average Querie: num_rows: 49.92307692307692, num_cols: 30522.0, row_non_zero_mean: 74.91560451801007, row_sparsity_mean: 0.9975455219929035 Average Corpus: num_rows: 4334.7692307692305, num_cols: 30522.0, row_non_zero_mean: 174.81000049297626, row_sparsity_mean: 0.9942726905529315 Aggregated for Score Function: dot Accuracy@1: 58.72% Accuracy@3: 75.37% Accuracy@5: 80.76% Accuracy@10: 87.07% Precision@1: 58.72% Recall@1: 35.61% Precision@3: 36.31% Recall@3: 50.84% Precision@5: 27.75% Recall@5: 56.55% Precision@10: 19.18% Recall@10: 64.24% MRR@10: 0.6821 NDCG@10: 0.6204 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6204
import json from jina.logging.logger import JinaLogger from jina.parsers import set_gateway_parser from jina.serve.runtimes.gateway.http.app import get_fastapi_app from jina.serve.runtimes.gateway.streamer import GatewayStreamer JINA_LOGO_URL = 'https://api.jina.ai/logo/logo-product/jina-core/horizontal-layout/colored/Product%20logo_Core_vertical_colorful%402x-margin.png' GATEWAY_SCHEMA_FILENAME = 'gateway.json' args = set_gateway_parser().parse_args([]) logger = JinaLogger('') graph_description = json.loads(args.graph_description) graph_conditions = json.loads(args.graph_conditions) deployments_addresses = json.loads(args.deployments_addresses) deployments_no_reduce = json.loads(args.deployments_no_reduce) streamer = GatewayStreamer( graph_representation=graph_description, executor_addresses=deployments_addresses, graph_conditions=graph_conditions, deployments_no_reduce=deployments_no_reduce, timeout_send=args.timeout_send, retries=args.retries, compression=args.compression, runtime_name=args.name, prefetch=args.prefetch, logger=logger, ) gateway_app = get_fastapi_app( streamer=streamer, title=args.title, description=args.description, no_debug_endpoints=args.no_debug_endpoints, no_crud_endpoints=args.no_crud_endpoints, expose_endpoints=args.expose_endpoints, expose_graphql_endpoint=args.expose_graphql_endpoint, cors=args.cors, logger=logger, ) gateway_schema = gateway_app.openapi() gateway_schema['info']['x-logo'] = {'url': JINA_LOGO_URL} gateway_schema['servers'] = [] gateway_schema['servers'].append( {'url': f'http://localhost:{args.port}', 'description': 'Local Jina gateway'} ) with open(GATEWAY_SCHEMA_FILENAME, 'w') as f: json.dump(gateway_schema, f)
import json from jina.logging.logger import JinaLogger from jina.parsers import set_gateway_parser from jina.serve.runtimes.gateway.http.app import get_fastapi_app from jina.serve.streamer import GatewayStreamer JINA_LOGO_URL = 'https://api.jina.ai/logo/logo-product/jina-core/horizontal-layout/colored/Product%20logo_Core_vertical_colorful%402x-margin.png' GATEWAY_SCHEMA_FILENAME = 'gateway.json' args = set_gateway_parser().parse_args([]) logger = JinaLogger('') graph_description = json.loads(args.graph_description) graph_conditions = json.loads(args.graph_conditions) deployments_addresses = json.loads(args.deployments_addresses) deployments_no_reduce = json.loads(args.deployments_no_reduce) streamer = GatewayStreamer( graph_representation=graph_description, executor_addresses=deployments_addresses, graph_conditions=graph_conditions, deployments_no_reduce=deployments_no_reduce, timeout_send=args.timeout_send, retries=args.retries, compression=args.compression, runtime_name=args.name, prefetch=args.prefetch, logger=logger, ) gateway_app = get_fastapi_app( streamer=streamer, title=args.title, description=args.description, no_debug_endpoints=args.no_debug_endpoints, no_crud_endpoints=args.no_crud_endpoints, expose_endpoints=args.expose_endpoints, expose_graphql_endpoint=args.expose_graphql_endpoint, cors=args.cors, logger=logger, ) gateway_schema = gateway_app.openapi() gateway_schema['info']['x-logo'] = {'url': JINA_LOGO_URL} gateway_schema['servers'] = [] gateway_schema['servers'].append( {'url': f'http://localhost:{args.port}', 'description': 'Local Jina gateway'} ) with open(GATEWAY_SCHEMA_FILENAME, 'w') as f: json.dump(gateway_schema, f)
from typing import Optional from llama_index.core.storage.index_store.keyval_index_store import KVIndexStore from llama_index.storage.kvstore.postgres import PostgresKVStore class PostgresIndexStore(KVIndexStore): """ Postgres Index store. Args: postgres_kvstore (PostgresKVStore): Postgres key-value store namespace (str): namespace for the index store """ def __init__( self, postgres_kvstore: PostgresKVStore, namespace: Optional[str] = None, collection_suffix: Optional[str] = None, ) -> None: """Init a PostgresIndexStore.""" super().__init__( postgres_kvstore, namespace=namespace, collection_suffix=collection_suffix ) @classmethod def from_uri( cls, uri: str, namespace: Optional[str] = None, table_name: str = "indexstore", schema_name: str = "public", perform_setup: bool = True, debug: bool = False, use_jsonb: bool = False, collection_suffix: Optional[str] = None, ) -> "PostgresIndexStore": """Load a PostgresIndexStore from a PostgresURI.""" postgres_kvstore = PostgresKVStore.from_uri( uri=uri, table_name=table_name, schema_name=schema_name, perform_setup=perform_setup, debug=debug, use_jsonb=use_jsonb, ) return cls(postgres_kvstore, namespace, collection_suffix) @classmethod def from_params( cls, host: Optional[str] = None, port: Optional[str] = None, database: Optional[str] = None, user: Optional[str] = None, password: Optional[str] = None, namespace: Optional[str] = None, table_name: str = "indexstore", schema_name: str = "public", perform_setup: bool = True, debug: bool = False, use_jsonb: bool = False, collection_suffix: Optional[str] = None, ) -> "PostgresIndexStore": """Load a PostgresIndexStore from a Postgres host and port.""" postgres_kvstore = PostgresKVStore.from_params( host=host, port=port, database=database, user=user, password=password, table_name=table_name, schema_name=schema_name, perform_setup=perform_setup, debug=debug, use_jsonb=use_jsonb, ) return cls(postgres_kvstore, namespace, collection_suffix)
from typing import Optional from llama_index.core.storage.index_store.keyval_index_store import KVIndexStore from llama_index.storage.kvstore.postgres import PostgresKVStore class PostgresIndexStore(KVIndexStore): """Postgres Index store. Args: postgres_kvstore (PostgresKVStore): Postgres key-value store namespace (str): namespace for the index store """ def __init__( self, postgres_kvstore: PostgresKVStore, namespace: Optional[str] = None, collection_suffix: Optional[str] = None, ) -> None: """Init a PostgresIndexStore.""" super().__init__( postgres_kvstore, namespace=namespace, collection_suffix=collection_suffix ) @classmethod def from_uri( cls, uri: str, namespace: Optional[str] = None, table_name: str = "indexstore", schema_name: str = "public", perform_setup: bool = True, debug: bool = False, use_jsonb: bool = False, collection_suffix: Optional[str] = None, ) -> "PostgresIndexStore": """Load a PostgresIndexStore from a PostgresURI.""" postgres_kvstore = PostgresKVStore.from_uri( uri=uri, table_name=table_name, schema_name=schema_name, perform_setup=perform_setup, debug=debug, use_jsonb=use_jsonb, ) return cls(postgres_kvstore, namespace, collection_suffix) @classmethod def from_params( cls, host: Optional[str] = None, port: Optional[str] = None, database: Optional[str] = None, user: Optional[str] = None, password: Optional[str] = None, namespace: Optional[str] = None, table_name: str = "indexstore", schema_name: str = "public", perform_setup: bool = True, debug: bool = False, use_jsonb: bool = False, collection_suffix: Optional[str] = None, ) -> "PostgresIndexStore": """Load a PostgresIndexStore from a Postgres host and port.""" postgres_kvstore = PostgresKVStore.from_params( host=host, port=port, database=database, user=user, password=password, table_name=table_name, schema_name=schema_name, perform_setup=perform_setup, debug=debug, use_jsonb=use_jsonb, ) return cls(postgres_kvstore, namespace, collection_suffix)
import pytest from llama_index.embeddings.modelscope.base import ModelScopeEmbedding @pytest.fixture() def modelscope_embedding(): return ModelScopeEmbedding() @pytest.fixture() def query(): return "吃完海鲜可以喝牛奶吗?" @pytest.fixture() def text(): return [ "不可以,早晨喝牛奶不科学", "吃了海鲜后是不能再喝牛奶的,因为牛奶中含得有维生素C,如果海鲜喝牛奶一起服用会对人体造成一定的伤害", "吃海鲜是不能同时喝牛奶吃水果,这个至少间隔6小时以上才可以。", "吃海鲜是不可以吃柠檬的因为其中的维生素C会和海鲜中的矿物质形成砷", ] @pytest.mark.single def test_modelscope_query(modelscope_embedding, query): sentence_embedding = modelscope_embedding.get_query_embedding(query) assert sentence_embedding is not None assert len(sentence_embedding) > 0 @pytest.mark.single def test_modelscope_text(modelscope_embedding, query): sentence_embedding = modelscope_embedding.get_text_embedding(query) assert sentence_embedding is not None assert len(sentence_embedding) > 0 @pytest.mark.batch def test_modelscope_text_embedding_batch(modelscope_embedding, text): sentence_embedding = modelscope_embedding.get_text_embedding_batch(text) assert sentence_embedding is not None assert len(sentence_embedding) == len(text) assert len(sentence_embedding[0]) > 0 @pytest.mark.asyncio async def test_modelscope_async_query(modelscope_embedding, query): sentence_embedding = await modelscope_embedding.aget_query_embedding(query) assert sentence_embedding is not None assert len(sentence_embedding) > 0
import pytest from llama_index.embeddings.modelscope.base import ModelScopeEmbedding @pytest.fixture() def modelscope_embedding(): return ModelScopeEmbedding() @pytest.fixture() def query(): return "吃完海鲜可以喝牛奶吗?" @pytest.fixture() def text(): return [ "不可以,早晨喝牛奶不科学", "吃了海鲜后是不能再喝牛奶的,因为牛奶中含得有维生素C,如果海鲜喝牛奶一起服用会对人体造成一定的伤害", "吃海鲜是不能同时喝牛奶吃水果,这个至少间隔6小时以上才可以。", "吃海鲜是不可以吃柠檬的因为其中的维生素C会和海鲜中的矿物质形成砷", ] @pytest.mark.single() def test_modelscope_query(modelscope_embedding, query): sentence_embedding = modelscope_embedding.get_query_embedding(query) assert sentence_embedding is not None assert len(sentence_embedding) > 0 @pytest.mark.single() def test_modelscope_text(modelscope_embedding, query): sentence_embedding = modelscope_embedding.get_text_embedding(query) assert sentence_embedding is not None assert len(sentence_embedding) > 0 @pytest.mark.batch() def test_modelscope_text_embedding_batch(modelscope_embedding, text): sentence_embedding = modelscope_embedding.get_text_embedding_batch(text) assert sentence_embedding is not None assert len(sentence_embedding) == len(text) assert len(sentence_embedding[0]) > 0 @pytest.mark.asyncio() async def test_modelscope_async_query(modelscope_embedding, query): sentence_embedding = await modelscope_embedding.aget_query_embedding(query) assert sentence_embedding is not None assert len(sentence_embedding) > 0
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' input_size = 300 train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=[123.675, 116.28, 103.53], to_rgb=True, ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=8, num_workers=2, batch_sampler=None, dataset=dict( _delete_=True, type='RepeatDataset', times=5, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=8, num_workers=2, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4)) custom_hooks = [ dict(type='NumClassCheckHook'), dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW') ] # TODO support auto_scale_lr # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) # auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' input_size = 300 train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=[123.675, 116.28, 103.53], to_rgb=True, ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=8, num_workers=2, batch_sampler=None, dataset=dict( _delete_=True, type='RepeatDataset', times=5, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=8, num_workers=2, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer optimizer = dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4) custom_hooks = [ dict(type='NumClassCheckHook'), dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW') ] # TODO support auto_scale_lr # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) # auto_scale_lr = dict(base_batch_size=64)
# Copyright (c) OpenMMLab. All rights reserved. import copy import inspect from typing import List, Union import torch import torch.nn as nn from mmengine.config import Config, ConfigDict from mmengine.registry import OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS from .optimizer_wrapper import OptimWrapper def register_torch_optimizers() -> List[str]: """Register optimizers in ``torch.optim`` to the ``OPTIMIZERS`` registry. Returns: List[str]: A list of registered optimizers' name. """ torch_optimizers = [] for module_name in dir(torch.optim): if module_name.startswith('__'): continue _optim = getattr(torch.optim, module_name) if inspect.isclass(_optim) and issubclass(_optim, torch.optim.Optimizer): OPTIMIZERS.register_module(module=_optim) torch_optimizers.append(module_name) return torch_optimizers TORCH_OPTIMIZERS = register_torch_optimizers() def build_optim_wrapper(model: nn.Module, cfg: Union[dict, Config, ConfigDict]) -> OptimWrapper: """Build function of OptimWrapper. If ``constructor`` is set in the ``cfg``, this method will build an optimizer wrapper constructor, and use optimizer wrapper constructor to build the optimizer wrapper. If ``constructor`` is not set, the ``DefaultOptimWrapperConstructor`` will be used by default. Args: model (nn.Module): Model to be optimized. cfg (dict): Config of optimizer wrapper, optimizer constructor and optimizer. Returns: OptimWrapper: The built optimizer wrapper. """ optim_wrapper_cfg = copy.deepcopy(cfg) constructor_type = optim_wrapper_cfg.pop('constructor', 'DefaultOptimWrapperConstructor') paramwise_cfg = optim_wrapper_cfg.pop('paramwise_cfg', None) optim_wrapper_constructor = OPTIM_WRAPPER_CONSTRUCTORS.build( dict( type=constructor_type, optim_wrapper_cfg=optim_wrapper_cfg, paramwise_cfg=paramwise_cfg)) optim_wrapper = optim_wrapper_constructor(model) return optim_wrapper
# Copyright (c) OpenMMLab. All rights reserved. import copy import inspect from typing import List import torch import torch.nn as nn from mmengine.registry import OPTIMIZER_CONSTRUCTORS, OPTIMIZERS def register_torch_optimizers() -> List[str]: """Register optimizers in ``torch.optim`` to the ``OPTIMIZERS`` registry. Returns: List[str]: A list of registered optimizers' name. """ torch_optimizers = [] for module_name in dir(torch.optim): if module_name.startswith('__'): continue _optim = getattr(torch.optim, module_name) if inspect.isclass(_optim) and issubclass(_optim, torch.optim.Optimizer): OPTIMIZERS.register_module(module=_optim) torch_optimizers.append(module_name) return torch_optimizers TORCH_OPTIMIZERS = register_torch_optimizers() def build_optimizer(model: nn.Module, cfg: dict) -> torch.optim.Optimizer: """Build function of optimizer. If ``constructor`` is set in the ``cfg``, this method will build an optimizer constructor, and use optimizer constructor to build the optimizer. If ``constructor`` is not set, the ``DefaultOptimizerConstructor`` will be used by default. Args: model (nn.Module): Model to be optimized. cfg (dict): Config of optimizer and optimizer constructor. default_scope (str, optional): The ``default_scope`` is used to reset the current registry. Defaults to None. Returns: torch.optim.Optimizer: The built optimizer. """ optimizer_cfg = copy.deepcopy(cfg) constructor_type = optimizer_cfg.pop('constructor', 'DefaultOptimizerConstructor') paramwise_cfg = optimizer_cfg.pop('paramwise_cfg', None) optim_constructor = OPTIMIZER_CONSTRUCTORS.build( dict( type=constructor_type, optimizer_cfg=optimizer_cfg, paramwise_cfg=paramwise_cfg)) optimizer = optim_constructor(model) return optimizer
""" This scripts demonstrates how to train a Sparse Encoder model for Information Retrieval. As dataset, we use sentence-transformers/msmarco-bm25, where we have triplets versions of MSMARCO mined thanks to BM25. As loss function, we use MultipleNegativesRankingLoss in the SpladeLoss. """ import logging import traceback from datasets import load_dataset from sentence_transformers import ( SparseEncoder, SparseEncoderModelCardData, SparseEncoderTrainer, SparseEncoderTrainingArguments, ) from sentence_transformers.sparse_encoder import evaluation, losses # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) def main(): model_name = "distilbert/distilbert-base-uncased" train_batch_size = 12 num_epochs = 1 lambda_query = 5e-5 lambda_corpus = 3e-5 learning_rate = 2e-5 # 1. Define our SparseEncoder model model = SparseEncoder( model_name, model_card_data=SparseEncoderModelCardData( language="en", license="apache-2.0", model_name="splade-distilbert-base-uncased trained on Quora Duplicates Questions", ), ) model.max_seq_length = 256 # Set the max sequence length to 256 for the training logging.info("Model max length: %s", model.max_seq_length) # 2. Load the MS MARCO dataset: https://huggingface.co/datasets/sentence-transformers/msmarco-bm25 logging.info("Read the MS MARCO training dataset") full_dataset = load_dataset("sentence-transformers/msmarco-bm25", "triplet", split="train").select(range(100000)) dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12) train_dataset = dataset_dict["train"] eval_dataset = dataset_dict["test"] logging.info(train_dataset) logging.info(eval_dataset) # 3. Define our training loss loss = losses.SpladeLoss( model=model, loss=losses.SparseMultipleNegativesRankingLoss(model=model), lambda_query=lambda_query, # Weight for query loss lambda_corpus=lambda_corpus, # Weight for document loss ) # 4. Define the evaluator. We use the SparseNanoBEIREvaluator, which is a light-weight evaluator for English evaluator = evaluation.SparseNanoBEIREvaluator( dataset_names=["msmarco", "nfcorpus", "nq"], batch_size=train_batch_size ) # 5. Define the training arguments short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1] run_name = f"splade-{short_model_name}-msmarco-mrl" args = SparseEncoderTrainingArguments( # Required parameter: output_dir=f"models/{run_name}", # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, learning_rate=learning_rate, load_best_model_at_end=True, metric_for_best_model="eval_NanoBEIR_mean_dot_ndcg@10", fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=1650, save_strategy="steps", save_steps=1650, save_total_limit=2, logging_steps=200, run_name=run_name, # Will be used in W&B if `wandb` is installed seed=42, ) # 6. Create the trainer & start training trainer = SparseEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=evaluator, ) trainer.train() # 7. Evaluate the final model, using the complete NanoBEIR dataset test_evaluator = evaluation.SparseNanoBEIREvaluator(show_progress_bar=True, batch_size=train_batch_size) test_evaluator(model) # 8. Save the final model final_output_dir = f"models/{run_name}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SparseEncoder({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." ) if __name__ == "__main__": main()
""" This scripts demonstrates how to train a Sparse Encoder model for Information Retrieval. As dataset, we use sentence-transformers/msmarco-bm25, where we have triplets versions of MSMARCO mined thanks to BM25. As loss function, we use MultipleNegativesRankingLoss in the SpladeLoss. """ import logging import traceback from datasets import load_dataset from sentence_transformers import ( SparseEncoder, SparseEncoderModelCardData, SparseEncoderTrainer, SparseEncoderTrainingArguments, ) from sentence_transformers.sparse_encoder import evaluation, losses # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) def main(): model_name = "distilbert/distilbert-base-uncased" train_batch_size = 12 num_epochs = 1 lambda_query = 5e-5 lambda_corpus = 3e-5 learning_rate = 2e-5 # 1. Define our SparseEncoder model model = SparseEncoder( model_name, model_card_data=SparseEncoderModelCardData( language="en", license="apache-2.0", model_name="splade-distilbert-base-uncased trained on Quora Duplicates Questions", ), ) model.max_seq_length = 256 # Set the max sequence length to 256 for the training logging.info("Model max length: %s", model.max_seq_length) # 2. Load the MS MARCO dataset: https://huggingface.co/datasets/sentence-transformers/msmarco-bm25 logging.info("Read the MS MARCO training dataset") full_dataset = load_dataset("sentence-transformers/quora-duplicates", "triplet", split="train").select( range(100000) ) dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12) train_dataset = dataset_dict["train"] eval_dataset = dataset_dict["test"] logging.info(train_dataset) logging.info(eval_dataset) # 3. Define our training loss loss = losses.SpladeLoss( model=model, loss=losses.SparseMultipleNegativesRankingLoss(model=model), lambda_query=lambda_query, # Weight for query loss lambda_corpus=lambda_corpus, # Weight for document loss ) # 4. Define the evaluator. We use the SparseNanoBEIREvaluator, which is a light-weight evaluator for English evaluator = evaluation.SparseNanoBEIREvaluator( dataset_names=["msmarco", "nfcorpus", "nq"], batch_size=train_batch_size ) # 5. Define the training arguments short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1] run_name = f"splade-{short_model_name}-msmarco-mrl" args = SparseEncoderTrainingArguments( # Required parameter: output_dir=f"models/{run_name}", # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, learning_rate=learning_rate, load_best_model_at_end=True, metric_for_best_model="eval_NanoBEIR_mean_dot_ndcg@10", fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=1650, save_strategy="steps", save_steps=1650, save_total_limit=2, logging_steps=200, run_name=run_name, # Will be used in W&B if `wandb` is installed seed=42, ) # 6. Create the trainer & start training trainer = SparseEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=evaluator, ) trainer.train() # 7. Evaluate the final model, using the complete NanoBEIR dataset test_evaluator = evaluation.SparseNanoBEIREvaluator(show_progress_bar=True, batch_size=train_batch_size) test_evaluator(model) # 8. Save the final model final_output_dir = f"models/{run_name}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SparseEncoder({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." ) if __name__ == "__main__": main()
model = dict( detector=dict( type='FasterRCNN', backbone=dict( type='ResNet', depth=18, base_channels=2, num_stages=4, out_indices=(3, ), strides=(1, 2, 2, 1), dilations=(1, 1, 1, 2), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), neck=dict( type='ChannelMapper', in_channels=[16], out_channels=16, kernel_size=3), rpn_head=dict( type='RPNHead', in_channels=16, feat_channels=16, anchor_generator=dict( type='AnchorGenerator', scales=[4, 8, 16, 32], ratios=[0.5, 1.0, 2.0], strides=[16]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict( type='RoIAlign', output_size=7, sampling_ratio=2), out_channels=16, featmap_strides=[16]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=16, fc_out_channels=32, roi_feat_size=7, num_classes=30, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.2, 0.2, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))), # detector training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=6000, max_per_img=600, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=6000, max_per_img=300, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.0001, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)) # soft-nms is also supported for rcnn testing # e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05) ))
model = dict( detector=dict( type='FasterRCNN', pretrained='torchvision://resnet50', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(3, ), strides=(1, 2, 2, 1), dilations=(1, 1, 1, 2), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), neck=dict( type='ChannelMapper', in_channels=[2048], out_channels=512, kernel_size=3), rpn_head=dict( type='RPNHead', in_channels=512, feat_channels=512, anchor_generator=dict( type='AnchorGenerator', scales=[4, 8, 16, 32], ratios=[0.5, 1.0, 2.0], strides=[16]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict( type='RoIAlign', output_size=7, sampling_ratio=2), out_channels=512, featmap_strides=[16]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=512, fc_out_channels=1024, roi_feat_size=7, num_classes=30, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.2, 0.2, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))), # detector training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=6000, max_per_img=600, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=6000, max_per_img=300, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.0001, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)) # soft-nms is also supported for rcnn testing # e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05) ))
from keras.src import backend from keras.src import ops from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.AlphaDropout") class AlphaDropout(Layer): """Applies Alpha Dropout to the input. Alpha Dropout is a `Dropout` that keeps mean and variance of inputs to their original values, in order to ensure the self-normalizing property even after this dropout. Alpha Dropout fits well to Scaled Exponential Linear Units (SELU) by randomly setting activations to the negative saturation value. Args: rate: Float between 0 and 1. The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate))`. noise_shape: 1D integer tensor representing the shape of the binary alpha dropout mask that will be multiplied with the input. For instance, if your inputs have shape `(batch_size, timesteps, features)` and you want the alpha dropout mask to be the same for all timesteps, you can use `noise_shape=(batch_size, 1, features)`. seed: A Python integer to use as random seed. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding alpha dropout) or in inference mode (doing nothing). """ def __init__(self, rate, noise_shape=None, seed=None, **kwargs): super().__init__(**kwargs) if not 0 <= rate <= 1: raise ValueError( f"Invalid value received for argument " "`rate`. Expected a float value between 0 and 1. " f"Received: rate={rate}" ) self.rate = rate self.seed = seed self.noise_shape = noise_shape if rate > 0: self.seed_generator = backend.random.SeedGenerator(seed) self.supports_masking = True self.built = True def call(self, inputs, training=False): if training and self.rate > 0: noise_shape = self._get_concrete_noise_shape( inputs, self.noise_shape ) alpha = 1.6732632423543772848170429916717 scale = 1.0507009873554804934193349852946 alpha_p = -alpha * scale kept_idx = ops.greater_equal( ops.random.uniform(noise_shape, seed=self.seed_generator), self.rate, ) kept_idx = ops.cast(kept_idx, inputs.dtype) # Compute affine transformation parameters a = ((1 - self.rate) * (1 + self.rate * alpha_p**2)) ** -0.5 b = -a * alpha_p * self.rate # Apply mask x = inputs * kept_idx + alpha_p * (1 - kept_idx) return a * x + b return inputs def compute_output_shape(self, input_shape): return input_shape def _get_concrete_noise_shape(self, inputs, noise_shape): if noise_shape is None: return ops.shape(inputs) concrete_inputs_shape = ops.shape(inputs) concrete_noise_shape = [] for i, value in enumerate(noise_shape): concrete_noise_shape.append( concrete_inputs_shape[i] if value is None else value ) return concrete_noise_shape def get_config(self): base_config = super().get_config() config = { "rate": self.rate, "seed": self.seed, "noise_shape": self.noise_shape, } return {**base_config, **config}
from keras.src import backend from keras.src import ops from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.AlphaDropout") class AlphaDropout(Layer): """Applies Alpha Dropout to the input. Alpha Dropout is a `Dropout` that keeps mean and variance of inputs to their original values, in order to ensure the self-normalizing property even after this dropout. Alpha Dropout fits well to Scaled Exponential Linear Units (SELU) by randomly setting activations to the negative saturation value. Args: rate: Float between 0 and 1. The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate))`. noise_shape: 1D integer tensor representing the shape of the binary alpha dropout mask that will be multiplied with the input. For instance, if your inputs have shape `(batch_size, timesteps, features)` and you want the alpha dropout mask to be the same for all timesteps, you can use `noise_shape=(batch_size, 1, features)`. seed: A Python integer to use as random seed. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding alpha dropout) or in inference mode (doing nothing). """ def __init__(self, rate, noise_shape=None, seed=None, **kwargs): super().__init__(**kwargs) if not 0 <= rate <= 1: raise ValueError( f"Invalid value received for argument " "`rate`. Expected a float value between 0 and 1. " f"Received: rate={rate}" ) self.rate = rate self.seed = seed self.noise_shape = noise_shape if rate > 0: self.seed_generator = backend.random.SeedGenerator(seed) self.supports_masking = True def call(self, inputs, training=False): if training and self.rate > 0: noise_shape = self._get_concrete_noise_shape( inputs, self.noise_shape ) alpha = 1.6732632423543772848170429916717 scale = 1.0507009873554804934193349852946 alpha_p = -alpha * scale kept_idx = ops.greater_equal( ops.random.uniform(noise_shape, seed=self.seed_generator), self.rate, ) kept_idx = ops.cast(kept_idx, inputs.dtype) # Compute affine transformation parameters a = ((1 - self.rate) * (1 + self.rate * alpha_p**2)) ** -0.5 b = -a * alpha_p * self.rate # Apply mask x = inputs * kept_idx + alpha_p * (1 - kept_idx) return a * x + b return inputs def compute_output_shape(self, input_shape): return input_shape def _get_concrete_noise_shape(self, inputs, noise_shape): if noise_shape is None: return ops.shape(inputs) concrete_inputs_shape = ops.shape(inputs) concrete_noise_shape = [] for i, value in enumerate(noise_shape): concrete_noise_shape.append( concrete_inputs_shape[i] if value is None else value ) return concrete_noise_shape def get_config(self): base_config = super().get_config() config = { "rate": self.rate, "seed": self.seed, "noise_shape": self.noise_shape, } return {**base_config, **config}
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', # 270k iterations with batch_size 64 is roughly equivalent to 144 epochs '../common/ssj_scp_270k_coco_instance.py' ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed. head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( backbone=dict(frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), # leads to 0.1+ mAP roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg)))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', # 270k iterations with batch_size 64 is roughly equivalent to 144 epochs '../common/ssj_scp_270k_coco_instance.py' ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed. head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # the model is trained from scratch, so init_cfg is None backbone=dict(frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), # leads to 0.1+ mAP roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg)))
# training schedule for 20e train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=20, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=20, by_epoch=True, milestones=[16, 19], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)
# training schedule for 20e train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=20, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=20, by_epoch=True, milestones=[16, 19], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
from typing import Any, Optional from langchain_core.callbacks.manager import CallbackManagerForLLMRun from langchain_core.language_models.chat_models import BaseChatModel from langchain_core.messages import AIMessage, BaseMessage from langchain_core.outputs import ChatGeneration, ChatResult from pytest_mock import MockerFixture from syrupy.assertion import SnapshotAssertion from langchain.runnables.openai_functions import OpenAIFunctionsRouter class FakeChatOpenAI(BaseChatModel): @property def _llm_type(self) -> str: return "fake-openai-chat-model" def _generate( self, messages: list[BaseMessage], stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: return ChatResult( generations=[ ChatGeneration( message=AIMessage( content="", additional_kwargs={ "function_call": { "name": "accept", "arguments": '{\n "draft": "turtles"\n}', } }, ) ) ] ) def test_openai_functions_router( snapshot: SnapshotAssertion, mocker: MockerFixture ) -> None: revise = mocker.Mock( side_effect=lambda kw: f"Revised draft: no more {kw['notes']}!" ) accept = mocker.Mock(side_effect=lambda kw: f"Accepted draft: {kw['draft']}!") router = OpenAIFunctionsRouter( { "revise": revise, "accept": accept, }, functions=[ { "name": "revise", "description": "Sends the draft for revision.", "parameters": { "type": "object", "properties": { "notes": { "type": "string", "description": "The editor's notes to guide the revision.", }, }, }, }, { "name": "accept", "description": "Accepts the draft.", "parameters": { "type": "object", "properties": { "draft": { "type": "string", "description": "The draft to accept.", }, }, }, }, ], ) model = FakeChatOpenAI() chain = model.bind(functions=router.functions) | router assert router.functions == snapshot assert chain.invoke("Something about turtles?") == "Accepted draft: turtles!" revise.assert_not_called() accept.assert_called_once_with({"draft": "turtles"})
from typing import Any, Optional from langchain_core.callbacks.manager import CallbackManagerForLLMRun from langchain_core.language_models.chat_models import BaseChatModel from langchain_core.messages import AIMessage, BaseMessage from langchain_core.outputs import ChatGeneration, ChatResult from pytest_mock import MockerFixture from syrupy import SnapshotAssertion from langchain.runnables.openai_functions import OpenAIFunctionsRouter class FakeChatOpenAI(BaseChatModel): @property def _llm_type(self) -> str: return "fake-openai-chat-model" def _generate( self, messages: list[BaseMessage], stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: return ChatResult( generations=[ ChatGeneration( message=AIMessage( content="", additional_kwargs={ "function_call": { "name": "accept", "arguments": '{\n "draft": "turtles"\n}', } }, ) ) ] ) def test_openai_functions_router( snapshot: SnapshotAssertion, mocker: MockerFixture ) -> None: revise = mocker.Mock( side_effect=lambda kw: f"Revised draft: no more {kw['notes']}!" ) accept = mocker.Mock(side_effect=lambda kw: f"Accepted draft: {kw['draft']}!") router = OpenAIFunctionsRouter( { "revise": revise, "accept": accept, }, functions=[ { "name": "revise", "description": "Sends the draft for revision.", "parameters": { "type": "object", "properties": { "notes": { "type": "string", "description": "The editor's notes to guide the revision.", }, }, }, }, { "name": "accept", "description": "Accepts the draft.", "parameters": { "type": "object", "properties": { "draft": { "type": "string", "description": "The draft to accept.", }, }, }, }, ], ) model = FakeChatOpenAI() chain = model.bind(functions=router.functions) | router assert router.functions == snapshot assert chain.invoke("Something about turtles?") == "Accepted draft: turtles!" revise.assert_not_called() accept.assert_called_once_with({"draft": "turtles"})
from setuptools import find_packages, setup with open("README.md", mode="r", encoding="utf-8") as readme_file: readme = readme_file.read() setup( name="sentence-transformers", version="3.0.0.dev0", author="Nils Reimers", author_email="info@nils-reimers.de", description="Multilingual text embeddings", long_description=readme, long_description_content_type="text/markdown", license="Apache License 2.0", url="https://www.SBERT.net", download_url="https://github.com/UKPLab/sentence-transformers/", packages=find_packages(), include_package_data=True, python_requires=">=3.8.0", install_requires=[ "transformers>=4.34.0,<5.0.0", "tqdm", "torch>=1.11.0", "numpy", "scikit-learn", "scipy", "huggingface-hub>=0.15.1", "Pillow", ], extras_require={ "train": [ "datasets", "accelerate>=0.20.3", ], "dev": [ "datasets", "accelerate>=0.20.3", "pre-commit", "pytest", "ruff>=0.3.0", ], }, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "Programming Language :: Python :: 3.12", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="Transformer Networks BERT XLNet sentence embedding PyTorch NLP deep learning", )
from setuptools import setup, find_packages with open("README.md", mode="r", encoding="utf-8") as readme_file: readme = readme_file.read() setup( name="sentence-transformers", version="2.8.0.dev0", author="Nils Reimers", author_email="info@nils-reimers.de", description="Multilingual text embeddings", long_description=readme, long_description_content_type="text/markdown", license="Apache License 2.0", url="https://www.SBERT.net", download_url="https://github.com/UKPLab/sentence-transformers/", packages=find_packages(), python_requires=">=3.8.0", install_requires=[ "transformers>=4.34.0,<5.0.0", "tqdm", "torch>=1.11.0", "numpy", "scikit-learn", "scipy", "huggingface-hub>=0.15.1", "Pillow", ], extras_require={ "dev": [ "pre-commit", "pytest", "ruff>=0.3.0", ], }, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.8", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="Transformer Networks BERT XLNet sentence embedding PyTorch NLP deep learning", )
import torch from torchaudio_unittest.common_utils import PytorchTestCase, skipIfNoCuda from torchaudio_unittest.prototype.conv_emformer_test_impl import ConvEmformerTestImpl @skipIfNoCuda class ConvEmformerFloat32GPUTest(ConvEmformerTestImpl, PytorchTestCase): dtype = torch.float32 device = torch.device("cuda") @skipIfNoCuda class ConvEmformerFloat64GPUTest(ConvEmformerTestImpl, PytorchTestCase): dtype = torch.float64 device = torch.device("cuda")
import torch from torchaudio_unittest.common_utils import skipIfNoCuda, PytorchTestCase from torchaudio_unittest.prototype.conv_emformer_test_impl import ConvEmformerTestImpl @skipIfNoCuda class ConvEmformerFloat32GPUTest(ConvEmformerTestImpl, PytorchTestCase): dtype = torch.float32 device = torch.device("cuda") @skipIfNoCuda class ConvEmformerFloat64GPUTest(ConvEmformerTestImpl, PytorchTestCase): dtype = torch.float64 device = torch.device("cuda")
# Copyright (c) OpenMMLab. All rights reserved. import importlib import os.path as osp from mmengine.config import Config from mmengine.config.utils import (_get_cfg_metainfo, _get_external_cfg_base_path, _get_package_and_cfg_path) from mmengine.registry import MODELS, DefaultScope from mmengine.runner import load_checkpoint from mmengine.utils import check_install_package, get_installed_path def get_config(cfg_path: str, pretrained: bool = False) -> Config: """Get config from external package. Args: cfg_path (str): External relative config path. pretrained (bool): Whether to save pretrained model path. If ``pretrained==True``, the url of pretrained model can be accessed by ``cfg.model_path``. Defaults to False. Examples: >>> cfg = get_config('mmdet::faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py', pretrained=True) >>> # Equivalent to >>> # cfg = Config.fromfile('/path/to/faster_rcnn_r50_fpn_1x_coco.py') >>> cfg.model_path https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth Returns: Config: A `Config` parsed from external package. """ # noqa E301 # Get package name and relative config path. package, cfg_path = _get_package_and_cfg_path(cfg_path) # Check package is installed. check_install_package(package) package_path = get_installed_path(package) try: # Use `cfg_path` to search target config file. cfg_meta = _get_cfg_metainfo(package_path, cfg_path) cfg_path = osp.join(package_path, '.mim', cfg_meta['Config']) cfg = Config.fromfile(cfg_path) if pretrained: assert 'Weights' in cfg_meta, ('Cannot find `Weights` in cfg_file' '.metafile.yml, please check the' 'metafile') cfg.model_path = cfg_meta['Weights'] except ValueError: # Since the base config does not contain a metafile, the absolute # config is `osp.join(package_path, cfg_path_prefix, cfg_name)` cfg_path = _get_external_cfg_base_path(package_path, cfg_path) cfg = Config.fromfile(cfg_path) except Exception as e: raise e return cfg def get_model(cfg_path: str, pretrained: bool = False, **kwargs): """Get built model from external package. Args: cfg_path (str): External relative config path with prefix 'package::' and without suffix. pretrained (bool): Whether to load pretrained model. Defaults to False. kwargs (dict): Default arguments to build model. Examples: >>> model = get_model('mmdet::faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py', pretrained=True) >>> type(model) <class 'mmdet.models.detectors.faster_rcnn.FasterRCNN'> Returns: nn.Module: Built model. """ # noqa E301 package = cfg_path.split('::')[0] with DefaultScope.overwrite_default_scope(package): # type: ignore cfg = get_config(cfg_path, pretrained) models_module = importlib.import_module(f'{package}.utils') models_module.register_all_modules() # type: ignore model = MODELS.build(cfg.model, default_args=kwargs) if pretrained: load_checkpoint(model, cfg.model_path) return model
# Copyright (c) OpenMMLab. All rights reserved. import importlib import os.path as osp from mmengine.config import Config from mmengine.config.utils import (_get_cfg_metainfo, _get_external_cfg_base_path, _get_package_and_cfg_path) from mmengine.registry import MODELS, DefaultScope from mmengine.runner import load_checkpoint from mmengine.utils import check_install_package, get_installed_path def get_config(cfg_path: str, pretrained: bool = False) -> Config: """Get config from external package. Args: cfg_path (str): External relative config path. pretrained (bool): Whether to save pretrained model path. If ``pretrained==True``, the url of pretrained model can be accessed by ``cfg.model_path``. Defaults to False. Examples: >>> cfg = get_config('mmdet::faster_rcnn/faster_rcnn_r50_fpn_1x_coco', >>> pretrained=True) >>> # Equivalent to >>> Config.fromfile('/path/to/faster_rcnn_r50_fpn_1x_coco.py') >>> cfg.model_path https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth Returns: Config: A `Config` parsed from external package. """ # noqa E301 # Get package name and relative config path. package, cfg_path = _get_package_and_cfg_path(cfg_path) # Check package is installed. check_install_package(package) package_path = get_installed_path(package) try: # Use `cfg_path` to search target config file. cfg_meta = _get_cfg_metainfo(package_path, cfg_path) cfg_path = osp.join(package_path, '.mim', cfg_meta['Config']) cfg = Config.fromfile(cfg_path) if pretrained: assert 'Weights' in cfg_meta, ('Cannot find `Weights` in cfg_file' '.metafile.yml, please check the' 'metafile') cfg.model_path = cfg_meta['Weights'] except ValueError: # Since the base config does not contain a metafile, the absolute # config is `osp.join(package_path, cfg_path_prefix, cfg_name)` cfg_path = _get_external_cfg_base_path(package_path, cfg_path) cfg = Config.fromfile(cfg_path) except Exception as e: raise e return cfg def get_model(cfg_path: str, pretrained: bool = False, **kwargs): """Get built model from external package. Args: cfg_path (str): External relative config path with prefix 'package::' and without suffix. pretrained (bool): Whether to load pretrained model. Defaults to False. kwargs (dict): Default arguments to build model. Returns: nn.Module: Built model. """ package = cfg_path.split('::')[0] with DefaultScope.overwrite_default_scope(package): # type: ignore cfg = get_config(cfg_path, pretrained) models_module = importlib.import_module(f'{package}.utils') models_module.register_all_modules() # type: ignore model = MODELS.build(cfg.model, default_args=kwargs) if pretrained: load_checkpoint(model, cfg.model_path) return model
import os from source_separation.utils.dataset import wsj0mix from torchaudio_unittest.common_utils import get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase _FILENAMES = [ "012c0207_1.9952_01cc0202_-1.9952.wav", "01co0302_1.63_014c020q_-1.63.wav", "01do0316_0.24011_205a0104_-0.24011.wav", "01lc020x_1.1301_027o030r_-1.1301.wav", "01mc0202_0.34056_205o0106_-0.34056.wav", "01nc020t_0.53821_018o030w_-0.53821.wav", "01po030f_2.2136_40ko031a_-2.2136.wav", "01ra010o_2.4098_403a010f_-2.4098.wav", "01xo030b_0.22377_016o031a_-0.22377.wav", "02ac020x_0.68566_01ec020b_-0.68566.wav", "20co010m_0.82801_019c0212_-0.82801.wav", "20da010u_1.2483_017c0211_-1.2483.wav", "20oo010d_1.0631_01ic020s_-1.0631.wav", "20sc0107_2.0222_20fo010h_-2.0222.wav", "20tc010f_0.051456_404a0110_-0.051456.wav", "407c0214_1.1712_02ca0113_-1.1712.wav", "40ao030w_2.4697_20vc010a_-2.4697.wav", "40pa0101_1.1087_40ea0107_-1.1087.wav", ] def _mock_dataset(root_dir, num_speaker): dirnames = ["mix"] + [f"s{i+1}" for i in range(num_speaker)] for dirname in dirnames: os.makedirs(os.path.join(root_dir, dirname), exist_ok=True) seed = 0 sample_rate = 8000 expected = [] for filename in _FILENAMES: mix = None src = [] for dirname in dirnames: waveform = get_whitenoise(sample_rate=8000, duration=1, n_channels=1, dtype="int16", seed=seed) seed += 1 path = os.path.join(root_dir, dirname, filename) save_wav(path, waveform, sample_rate) waveform = normalize_wav(waveform) if dirname == "mix": mix = waveform else: src.append(waveform) expected.append((sample_rate, mix, src)) return expected class TestWSJ0Mix2(TempDirMixin, TorchaudioTestCase): root_dir = None expected = None @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.expected = _mock_dataset(cls.root_dir, 2) def test_wsj0mix(self): dataset = wsj0mix.WSJ0Mix(self.root_dir, num_speakers=2, sample_rate=8000) n_ite = 0 for i, sample in enumerate(dataset): (_, sample_mix, sample_src) = sample (_, expected_mix, expected_src) = self.expected[i] self.assertEqual(sample_mix, expected_mix, atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[0], expected_src[0], atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[1], expected_src[1], atol=5e-5, rtol=1e-8) n_ite += 1 assert n_ite == len(self.expected) class TestWSJ0Mix3(TempDirMixin, TorchaudioTestCase): root_dir = None expected = None @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.expected = _mock_dataset(cls.root_dir, 3) def test_wsj0mix(self): dataset = wsj0mix.WSJ0Mix(self.root_dir, num_speakers=3, sample_rate=8000) n_ite = 0 for i, sample in enumerate(dataset): (_, sample_mix, sample_src) = sample (_, expected_mix, expected_src) = self.expected[i] self.assertEqual(sample_mix, expected_mix, atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[0], expected_src[0], atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[1], expected_src[1], atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[2], expected_src[2], atol=5e-5, rtol=1e-8) n_ite += 1 assert n_ite == len(self.expected)
import os from source_separation.utils.dataset import wsj0mix from torchaudio_unittest.common_utils import get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase _FILENAMES = [ "012c0207_1.9952_01cc0202_-1.9952.wav", "01co0302_1.63_014c020q_-1.63.wav", "01do0316_0.24011_205a0104_-0.24011.wav", "01lc020x_1.1301_027o030r_-1.1301.wav", "01mc0202_0.34056_205o0106_-0.34056.wav", "01nc020t_0.53821_018o030w_-0.53821.wav", "01po030f_2.2136_40ko031a_-2.2136.wav", "01ra010o_2.4098_403a010f_-2.4098.wav", "01xo030b_0.22377_016o031a_-0.22377.wav", "02ac020x_0.68566_01ec020b_-0.68566.wav", "20co010m_0.82801_019c0212_-0.82801.wav", "20da010u_1.2483_017c0211_-1.2483.wav", "20oo010d_1.0631_01ic020s_-1.0631.wav", "20sc0107_2.0222_20fo010h_-2.0222.wav", "20tc010f_0.051456_404a0110_-0.051456.wav", "407c0214_1.1712_02ca0113_-1.1712.wav", "40ao030w_2.4697_20vc010a_-2.4697.wav", "40pa0101_1.1087_40ea0107_-1.1087.wav", ] def _mock_dataset(root_dir, num_speaker): dirnames = ["mix"] + [f"s{i+1}" for i in range(num_speaker)] for dirname in dirnames: os.makedirs(os.path.join(root_dir, dirname), exist_ok=True) seed = 0 sample_rate = 8000 expected = [] for filename in _FILENAMES: mix = None src = [] for dirname in dirnames: waveform = get_whitenoise(sample_rate=8000, duration=1, n_channels=1, dtype="int16", seed=seed) seed += 1 path = os.path.join(root_dir, dirname, filename) save_wav(path, waveform, sample_rate) waveform = normalize_wav(waveform) if dirname == "mix": mix = waveform else: src.append(waveform) expected.append((sample_rate, mix, src)) return expected class TestWSJ0Mix2(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None expected = None @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.expected = _mock_dataset(cls.root_dir, 2) def test_wsj0mix(self): dataset = wsj0mix.WSJ0Mix(self.root_dir, num_speakers=2, sample_rate=8000) n_ite = 0 for i, sample in enumerate(dataset): (_, sample_mix, sample_src) = sample (_, expected_mix, expected_src) = self.expected[i] self.assertEqual(sample_mix, expected_mix, atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[0], expected_src[0], atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[1], expected_src[1], atol=5e-5, rtol=1e-8) n_ite += 1 assert n_ite == len(self.expected) class TestWSJ0Mix3(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None expected = None @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.expected = _mock_dataset(cls.root_dir, 3) def test_wsj0mix(self): dataset = wsj0mix.WSJ0Mix(self.root_dir, num_speakers=3, sample_rate=8000) n_ite = 0 for i, sample in enumerate(dataset): (_, sample_mix, sample_src) = sample (_, expected_mix, expected_src) = self.expected[i] self.assertEqual(sample_mix, expected_mix, atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[0], expected_src[0], atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[1], expected_src[1], atol=5e-5, rtol=1e-8) self.assertEqual(sample_src[2], expected_src[2], atol=5e-5, rtol=1e-8) n_ite += 1 assert n_ite == len(self.expected)
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.typing import AnyEmbedding, ImageBytes, ImageUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.image.image_tensor import ImageTensor from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: tf = import_library('tensorflow', raise_error=False) torch = import_library('torch', raise_error=False) T = TypeVar('T', bound='ImageDoc') class ImageDoc(BaseDoc): """ Document for handling images. It can contain: - an [`ImageUrl`][docarray.typing.url.ImageUrl] (`Image.url`) - an [`ImageTensor`](../../../api_references/typing/tensor/image) (`Image.tensor`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`Image.embedding`) - an [`ImageBytes`][docarray.typing.bytes.ImageBytes] object (`ImageDoc.bytes_`) You can use this Document directly: ```python from docarray.documents import ImageDoc # use it directly image = ImageDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ) image.tensor = image.url.load() # model = MyEmbeddingModel() # image.embedding = model(image.tensor) ``` You can extend this Document: ```python from docarray.documents import ImageDoc from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(ImageDoc): second_embedding: Optional[AnyEmbedding] image = MyImage( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ) image.tensor = image.url.load() # model = MyEmbeddingModel() # image.embedding = model(image.tensor) # image.second_embedding = model(image.tensor) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import ImageDoc, TextDoc # compose it class MultiModalDoc(BaseDoc): image: ImageDoc text: TextDoc mmdoc = MultiModalDoc( image=ImageDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.image.tensor = mmdoc.image.url.load() # or mmdoc.image.bytes_ = mmdoc.image.url.load_bytes() mmdoc.image.tensor = mmdoc.image.bytes_.load() ``` """ url: Optional[ImageUrl] = None tensor: Optional[ImageTensor] = None embedding: Optional[AnyEmbedding] = None bytes_: Optional[ImageBytes] = None @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif ( isinstance(value, (AbstractTensor, np.ndarray)) or (torch is not None and isinstance(value, torch.Tensor)) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) elif isinstance(value, bytes): value = cls(byte=value) return super().validate(value)
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.typing import AnyEmbedding, ImageBytes, ImageUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.image.image_tensor import ImageTensor from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: tf = import_library('tensorflow', raise_error=False) torch = import_library('torch', raise_error=False) T = TypeVar('T', bound='ImageDoc') class ImageDoc(BaseDoc): """ Document for handling images. It can contain: - an [`ImageUrl`][docarray.typing.url.ImageUrl] (`Image.url`) - an [`ImageTensor`](../../../api_references/typing/tensor/image) (`Image.tensor`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`Image.embedding`) - an [`ImageBytes`][docarray.typing.bytes.ImageBytes] object (`ImageDoc.bytes_`) You can use this Document directly: ```python from docarray.documents import ImageDoc # use it directly image = ImageDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ) image.tensor = image.url.load() # model = MyEmbeddingModel() # image.embedding = model(image.tensor) ``` You can extend this Document: ```python from docarray.documents import ImageDoc from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(ImageDoc): second_embedding: Optional[AnyEmbedding] image = MyImage( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ) image.tensor = image.url.load() # model = MyEmbeddingModel() # image.embedding = model(image.tensor) # image.second_embedding = model(image.tensor) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import ImageDoc, TextDoc # compose it class MultiModalDoc(BaseDoc): image: ImageDoc text: TextDoc mmdoc = MultiModalDoc( image=ImageDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.image.tensor = mmdoc.image.url.load() # or mmdoc.image.bytes_ = mmdoc.image.url.load_bytes() mmdoc.image.tensor = mmdoc.image.bytes_.load() ``` """ url: Optional[ImageUrl] tensor: Optional[ImageTensor] embedding: Optional[AnyEmbedding] bytes_: Optional[ImageBytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif ( isinstance(value, (AbstractTensor, np.ndarray)) or (torch is not None and isinstance(value, torch.Tensor)) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) elif isinstance(value, bytes): value = cls(byte=value) return super().validate(value)
import numpy as np from docarray.base_document import AnyDocument, BaseDocument from docarray.typing import NdArray def test_any_doc(): class InnerDocument(BaseDocument): text: str tensor: NdArray class CustomDoc(BaseDocument): inner: InnerDocument text: str doc = CustomDoc( text='bye', inner=InnerDocument(text='hello', tensor=np.zeros((3, 224, 224))) ) any_doc = AnyDocument(**doc.__dict__) assert any_doc.text == doc.text assert any_doc.inner.text == doc.inner.text assert (any_doc.inner.tensor == doc.inner.tensor).all()
import numpy as np from docarray.document import AnyDocument, BaseDocument from docarray.typing import NdArray def test_any_doc(): class InnerDocument(BaseDocument): text: str tensor: NdArray class CustomDoc(BaseDocument): inner: InnerDocument text: str doc = CustomDoc( text='bye', inner=InnerDocument(text='hello', tensor=np.zeros((3, 224, 224))) ) any_doc = AnyDocument(**doc.__dict__) assert any_doc.text == doc.text assert any_doc.inner.text == doc.inner.text assert (any_doc.inner.tensor == doc.inner.tensor).all()
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .autoassign_head import AutoAssignHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centernet_update_head import CenterNetUpdateHead from .centripetal_head import CentripetalHead from .corner_head import CornerHead from .ddod_head import DDODHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .mask2former_head import Mask2FormerHead from .maskformer_head import MaskFormerHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .rtmdet_head import RTMDetHead, RTMDetSepBNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .solov2_head import SOLOV2Head from .ssd_head import SSDHead from .tood_head import TOODHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'CenterNetHead', 'YOLOXHead', 'SOLOHead', 'DecoupledSOLOHead', 'DecoupledSOLOLightHead', 'SOLOV2Head', 'LADHead', 'TOODHead', 'MaskFormerHead', 'Mask2FormerHead', 'DDODHead', 'CenterNetUpdateHead', 'RTMDetHead', 'RTMDetSepBNHead' ]
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .autoassign_head import AutoAssignHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centernet_update_head import CenterNetUpdateHead from .centripetal_head import CentripetalHead from .corner_head import CornerHead from .ddod_head import DDODHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .mask2former_head import Mask2FormerHead from .maskformer_head import MaskFormerHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .solov2_head import SOLOV2Head from .ssd_head import SSDHead from .tood_head import TOODHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'CenterNetHead', 'YOLOXHead', 'SOLOHead', 'DecoupledSOLOHead', 'DecoupledSOLOLightHead', 'SOLOV2Head', 'LADHead', 'TOODHead', 'MaskFormerHead', 'Mask2FormerHead', 'DDODHead', 'CenterNetUpdateHead' ]
import json from typing import Any, Type, TypeVar, overload import jsonschema from fastapi.encoders import jsonable_encoder from .type import type_match def to_dict(data) -> dict: return jsonable_encoder(data) def dumps(data) -> str: return json.dumps(jsonable_encoder(data)) T = TypeVar("T") @overload def loads(data: str, *args, target_type: Type[T], **kwargs) -> T: ... @overload def loads(data: str, *args, **kwargs) -> Any: ... def loads(data: str, *args, target_type: Type[T] | None = None, **kwargs) -> Any: parsed = json.loads(data, *args, **kwargs) if target_type: return type_match(parsed, target_type) return parsed def validate_with_jsonschema( schema: dict[str, Any], data: dict[str, Any] ) -> str | None: """ Validate the data against the schema. Returns the validation error message if the data does not match the schema. """ try: jsonschema.validate(data, schema) return None except jsonschema.ValidationError as e: return str(e)
import json from typing import Any, Type, TypeVar, overload from fastapi.encoders import jsonable_encoder from .type import type_match def to_dict(data) -> dict: return jsonable_encoder(data) def dumps(data) -> str: return json.dumps(jsonable_encoder(data)) T = TypeVar("T") @overload def loads(data: str, *args, target_type: Type[T], **kwargs) -> T: ... @overload def loads(data: str, *args, **kwargs) -> Any: ... def loads(data: str, *args, target_type: Type[T] | None = None, **kwargs) -> Any: parsed = json.loads(data, *args, **kwargs) if target_type: return type_match(parsed, target_type) return parsed
"""String output parser.""" from langchain_core.output_parsers.transform import BaseTransformOutputParser class StrOutputParser(BaseTransformOutputParser[str]): """OutputParser that parses LLMResult into the top likely string.""" @classmethod def is_lc_serializable(cls) -> bool: """StrOutputParser is serializable. Returns: True """ return True @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "output_parser"]. """ return ["langchain", "schema", "output_parser"] @property def _type(self) -> str: """Return the output parser type for serialization.""" return "default" def parse(self, text: str) -> str: """Returns the input text with no changes.""" return text StrOutputParser.model_rebuild()
"""String output parser.""" from typing import Optional as Optional from langchain_core.output_parsers.transform import BaseTransformOutputParser class StrOutputParser(BaseTransformOutputParser[str]): """OutputParser that parses LLMResult into the top likely string.""" @classmethod def is_lc_serializable(cls) -> bool: """StrOutputParser is serializable. Returns: True """ return True @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "output_parser"]. """ return ["langchain", "schema", "output_parser"] @property def _type(self) -> str: """Return the output parser type for serialization.""" return "default" def parse(self, text: str) -> str: """Returns the input text with no changes.""" return text StrOutputParser.model_rebuild()
import inspect import re from typing import Dict, List, Tuple from huggingface_hub.utils import insecure_hashlib from .arrow import arrow from .audiofolder import audiofolder from .cache import cache from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql from .text import text from .webdataset import webdataset def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return insecure_hashlib.sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), "webdataset": (webdataset.__name__, _hash_python_lines(inspect.getsource(webdataset).splitlines())), } # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES_2_15_HASHES = { "csv": "eea64c71ca8b46dd3f537ed218fc9bf495d5707789152eb2764f5c78fa66d59d", "json": "8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96", "pandas": "3ac4ffc4563c796122ef66899b9485a3f1a977553e2d2a8a318c72b8cc6f2202", "parquet": "ca31c69184d9832faed373922c2acccec0b13a0bb5bbbe19371385c3ff26f1d1", "arrow": "74f69db2c14c2860059d39860b1f400a03d11bf7fb5a8258ca38c501c878c137", "text": "c4a140d10f020282918b5dd1b8a49f0104729c6177f60a6b49ec2a365ec69f34", "imagefolder": "7b7ce5247a942be131d49ad4f3de5866083399a0f250901bd8dc202f8c5f7ce5", "audiofolder": "d3c1655c66c8f72e4efb5c79e952975fa6e2ce538473a6890241ddbddee9071c", } # Used to infer the module to use based on the data files extensions _EXTENSION_TO_MODULE: Dict[str, Tuple[str, dict]] = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), # ndjson is no longer maintained (see: https://github.com/ndjson/ndjson-spec/issues/35#issuecomment-1285673417) ".ndjson": ("json", {}), ".parquet": ("parquet", {}), ".geoparquet": ("parquet", {}), ".gpq": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), ".tar": ("webdataset", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name _MODULE_TO_EXTENSIONS: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) for _module in _MODULE_TO_EXTENSIONS: _MODULE_TO_EXTENSIONS[_module].append(".zip")
import inspect import re from typing import Dict, List, Tuple from huggingface_hub.utils import insecure_hashlib from .arrow import arrow from .audiofolder import audiofolder from .cache import cache from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql from .text import text from .webdataset import webdataset def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return insecure_hashlib.sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), "webdataset": (webdataset.__name__, _hash_python_lines(inspect.getsource(webdataset).splitlines())), } # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES_2_15_HASHES = { "csv": "eea64c71ca8b46dd3f537ed218fc9bf495d5707789152eb2764f5c78fa66d59d", "json": "8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96", "pandas": "3ac4ffc4563c796122ef66899b9485a3f1a977553e2d2a8a318c72b8cc6f2202", "parquet": "ca31c69184d9832faed373922c2acccec0b13a0bb5bbbe19371385c3ff26f1d1", "arrow": "74f69db2c14c2860059d39860b1f400a03d11bf7fb5a8258ca38c501c878c137", "text": "c4a140d10f020282918b5dd1b8a49f0104729c6177f60a6b49ec2a365ec69f34", "imagefolder": "7b7ce5247a942be131d49ad4f3de5866083399a0f250901bd8dc202f8c5f7ce5", "audiofolder": "d3c1655c66c8f72e4efb5c79e952975fa6e2ce538473a6890241ddbddee9071c", } # Used to infer the module to use based on the data files extensions _EXTENSION_TO_MODULE: Dict[str, Tuple[str, dict]] = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".geoparquet": ("parquet", {}), ".gpq": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), ".tar": ("webdataset", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name _MODULE_TO_EXTENSIONS: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) for _module in _MODULE_TO_EXTENSIONS: _MODULE_TO_EXTENSIONS[_module].append(".zip")
import requests from packaging import version from typing import Sequence, Union, List, Optional from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, ) from text_generation.types import ( Message, ) def resolve_tgi_function_call(url: str) -> bool: url = f"{url}/info" model_info = dict(requests.get(url).json()) tgi_version = model_info.get("version", None) if version.parse(tgi_version) >= version.parse("2.0.1"): return True else: raise ValueError( "'text-generation-inference' version ", f"incompatible with function call: {tgi_version}. ", "Function call support was added in v2.0.1", ) def get_max_input_tokens(url: str) -> Union[int, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) tgi_version = model_info.get("version", None) if version.parse(tgi_version) >= version.parse("2.1.0"): return model_info.get("max_input_tokens", None) else: return model_info.get("max_input_length", None) def get_max_total_tokens(url: str) -> Union[int, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) return model_info.get("max_total_tokens", None) def get_model_name(url: str) -> Union[str, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) return model_info.get("model_id", None) def to_tgi_messages(messages: Sequence[ChatMessage]) -> Sequence[Message]: out_messages = [] for m in messages: tool_calls = m.additional_kwargs.get("tool_calls") out_messages.append( Message(role=m.role.value, content=m.content, tool_calls=tool_calls) ) return out_messages def force_single_tool_call(response: ChatResponse) -> None: tool_calls = response.message.additional_kwargs.get("tool_calls", []) if len(tool_calls) > 1: response.message.additional_kwargs["tool_calls"] = [tool_calls[0]] def resolve_tool_choice( tools: Optional[List[dict]] = None, tool_choice: str = "none" ) -> Union[str, dict]: """Resolve tool choice. Check if tool_name exists in tools. Note that unlike in OpenAI specification, 'auto' will ALWAYS choose the tool for you. Set to 'none' explicitly if do not wish to use tool. """ valid_tool_choices = ["none", "auto"] + [t["function"]["name"] for t in tools or []] if tool_choice not in valid_tool_choices: raise ValueError( f"{tool_choice} is not a valid tool_choice. Must be one of {valid_tool_choices}" ) return tool_choice
import requests from packaging import version from typing import Sequence, Union, List, Optional from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, ) from text_generation.types import ( Message, ) def resolve_tgi_function_call(url: str) -> bool: url = f"{url}/info" model_info = dict(requests.get(url).json()) tgi_version = model_info.get("version", None) if version.parse(tgi_version) >= version.parse("2.0.1"): return True else: raise ValueError( "'text-generation-inference' version ", f"incompatible with function call: {tgi_version}. ", "Function call support was added in v2.0.1", ) def get_max_input_tokens(url: str) -> Union[int, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) tgi_version = model_info.get("version", None) if version.parse(tgi_version) >= version.parse("2.1.0"): return model_info.get("max_input_tokens", None) else: return model_info.get("max_input_length", None) def get_max_total_tokens(url: str) -> Union[int, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) return model_info.get("max_total_tokens", None) def to_tgi_messages(messages: Sequence[ChatMessage]) -> Sequence[Message]: out_messages = [] for m in messages: tool_calls = m.additional_kwargs.get("tool_calls") out_messages.append( Message(role=m.role.value, content=m.content, tool_calls=tool_calls) ) return out_messages def force_single_tool_call(response: ChatResponse) -> None: tool_calls = response.message.additional_kwargs.get("tool_calls", []) if len(tool_calls) > 1: response.message.additional_kwargs["tool_calls"] = [tool_calls[0]] def resolve_tool_choice( tools: Optional[List[dict]] = None, tool_choice: str = "none" ) -> Union[str, dict]: """Resolve tool choice. Check if tool_name exists in tools. Note that unlike in OpenAI specification, 'auto' will ALWAYS choose the tool for you. Set to 'none' explicitly if do not wish to use tool. """ valid_tool_choices = ["none", "auto"] + [t["function"]["name"] for t in tools or []] if tool_choice not in valid_tool_choices: raise ValueError( f"{tool_choice} is not a valid tool_choice. Must be one of {valid_tool_choices}" ) return tool_choice
"""IndexStructType class.""" from enum import Enum class IndexStructType(str, Enum): """ Index struct type. Identifier for a "type" of index. Attributes: TREE ("tree"): Tree index. See :ref:`Ref-Indices-Tree` for tree indices. LIST ("list"): Summary index. See :ref:`Ref-Indices-List` for summary indices. KEYWORD_TABLE ("keyword_table"): Keyword table index. See :ref:`Ref-Indices-Table` for keyword table indices. DICT ("dict"): Faiss Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the faiss vector store index. SIMPLE_DICT ("simple_dict"): Simple Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the simple vector store index. WEAVIATE ("weaviate"): Weaviate Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Weaviate vector store index. PINECONE ("pinecone"): Pinecone Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Pinecone vector store index. DEEPLAKE ("deeplake"): DeepLake Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Pinecone vector store index. QDRANT ("qdrant"): Qdrant Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Qdrant vector store index. LANCEDB ("lancedb"): LanceDB Vector Store Index See :ref:`Ref-Indices-VectorStore` for more information on the LanceDB vector store index. MILVUS ("milvus"): Milvus Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Milvus vector store index. CHROMA ("chroma"): Chroma Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Chroma vector store index. OPENSEARCH ("opensearch"): Opensearch Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Opensearch vector store index. MYSCALE ("myscale"): MyScale Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the MyScale vector store index. CLICKHOUSE ("clickhouse"): ClickHouse Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the ClickHouse vector store index. EPSILLA ("epsilla"): Epsilla Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Epsilla vector store index. CHATGPT_RETRIEVAL_PLUGIN ("chatgpt_retrieval_plugin"): ChatGPT retrieval plugin index. SQL ("SQL"): SQL Structured Store Index. See :ref:`Ref-Indices-StructStore` for more information on the SQL vector store index. DASHVECTOR ("dashvector"): DashVector Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Dashvecotor vector store index. KG ("kg"): Knowledge Graph index. See :ref:`Ref-Indices-Knowledge-Graph` for KG indices. DOCUMENT_SUMMARY ("document_summary"): Document Summary Index. See :ref:`Ref-Indices-Document-Summary` for Summary Indices. """ # TODO: refactor so these are properties on the base class NODE = "node" TREE = "tree" LIST = "list" KEYWORD_TABLE = "keyword_table" # faiss DICT = "dict" # simple SIMPLE_DICT = "simple_dict" WEAVIATE = "weaviate" PINECONE = "pinecone" QDRANT = "qdrant" LANCEDB = "lancedb" MILVUS = "milvus" CHROMA = "chroma" MYSCALE = "myscale" CLICKHOUSE = "clickhouse" VECTOR_STORE = "vector_store" OPENSEARCH = "opensearch" DASHVECTOR = "dashvector" CHATGPT_RETRIEVAL_PLUGIN = "chatgpt_retrieval_plugin" DEEPLAKE = "deeplake" EPSILLA = "epsilla" # multimodal MULTIMODAL_VECTOR_STORE = "multimodal" # for SQL index SQL = "sql" # for KG index KG = "kg" SIMPLE_KG = "simple_kg" SIMPLE_LPG = "simple_lpg" NEBULAGRAPH = "nebulagraph" FALKORDB = "falkordb" # EMPTY EMPTY = "empty" COMPOSITE = "composite" PANDAS = "pandas" DOCUMENT_SUMMARY = "document_summary" # Managed VECTARA = "vectara" POSTGRESML = "postgresml"
"""IndexStructType class.""" from enum import Enum class IndexStructType(str, Enum): """Index struct type. Identifier for a "type" of index. Attributes: TREE ("tree"): Tree index. See :ref:`Ref-Indices-Tree` for tree indices. LIST ("list"): Summary index. See :ref:`Ref-Indices-List` for summary indices. KEYWORD_TABLE ("keyword_table"): Keyword table index. See :ref:`Ref-Indices-Table` for keyword table indices. DICT ("dict"): Faiss Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the faiss vector store index. SIMPLE_DICT ("simple_dict"): Simple Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the simple vector store index. WEAVIATE ("weaviate"): Weaviate Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Weaviate vector store index. PINECONE ("pinecone"): Pinecone Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Pinecone vector store index. DEEPLAKE ("deeplake"): DeepLake Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Pinecone vector store index. QDRANT ("qdrant"): Qdrant Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Qdrant vector store index. LANCEDB ("lancedb"): LanceDB Vector Store Index See :ref:`Ref-Indices-VectorStore` for more information on the LanceDB vector store index. MILVUS ("milvus"): Milvus Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Milvus vector store index. CHROMA ("chroma"): Chroma Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Chroma vector store index. OPENSEARCH ("opensearch"): Opensearch Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Opensearch vector store index. MYSCALE ("myscale"): MyScale Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the MyScale vector store index. CLICKHOUSE ("clickhouse"): ClickHouse Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the ClickHouse vector store index. EPSILLA ("epsilla"): Epsilla Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Epsilla vector store index. CHATGPT_RETRIEVAL_PLUGIN ("chatgpt_retrieval_plugin"): ChatGPT retrieval plugin index. SQL ("SQL"): SQL Structured Store Index. See :ref:`Ref-Indices-StructStore` for more information on the SQL vector store index. DASHVECTOR ("dashvector"): DashVector Vector Store Index. See :ref:`Ref-Indices-VectorStore` for more information on the Dashvecotor vector store index. KG ("kg"): Knowledge Graph index. See :ref:`Ref-Indices-Knowledge-Graph` for KG indices. DOCUMENT_SUMMARY ("document_summary"): Document Summary Index. See :ref:`Ref-Indices-Document-Summary` for Summary Indices. """ # TODO: refactor so these are properties on the base class NODE = "node" TREE = "tree" LIST = "list" KEYWORD_TABLE = "keyword_table" # faiss DICT = "dict" # simple SIMPLE_DICT = "simple_dict" WEAVIATE = "weaviate" PINECONE = "pinecone" QDRANT = "qdrant" LANCEDB = "lancedb" MILVUS = "milvus" CHROMA = "chroma" MYSCALE = "myscale" CLICKHOUSE = "clickhouse" VECTOR_STORE = "vector_store" OPENSEARCH = "opensearch" DASHVECTOR = "dashvector" CHATGPT_RETRIEVAL_PLUGIN = "chatgpt_retrieval_plugin" DEEPLAKE = "deeplake" EPSILLA = "epsilla" # multimodal MULTIMODAL_VECTOR_STORE = "multimodal" # for SQL index SQL = "sql" # for KG index KG = "kg" SIMPLE_KG = "simple_kg" SIMPLE_LPG = "simple_lpg" NEBULAGRAPH = "nebulagraph" FALKORDB = "falkordb" # EMPTY EMPTY = "empty" COMPOSITE = "composite" PANDAS = "pandas" DOCUMENT_SUMMARY = "document_summary" # Managed VECTARA = "vectara" POSTGRESML = "postgresml"
"""Run smoke tests""" import os from pathlib import Path import torch import torchvision from torchvision.io import read_image from torchvision.models import resnet50, ResNet50_Weights SCRIPT_DIR = Path(__file__).parent def smoke_test_torchvision() -> None: print( "Is torchvision usable?", all(x is not None for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]), ) def smoke_test_torchvision_read_decode() -> None: img_jpg = read_image(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) if img_jpg.ndim != 3 or img_jpg.numel() < 100: raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") img_png = read_image(str(SCRIPT_DIR / "assets" / "interlaced_png" / "wizard_low.png")) if img_png.ndim != 3 or img_png.numel() < 100: raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}") def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None: img = read_image(str(SCRIPT_DIR / ".." / "gallery" / "assets" / "dog2.jpg")).to(device) # Step 1: Initialize model with the best available weights weights = ResNet50_Weights.DEFAULT model = resnet50(weights=weights).to(device) model.eval() # Step 2: Initialize the inference transforms preprocess = weights.transforms() # Step 3: Apply inference preprocessing transforms batch = preprocess(img).unsqueeze(0) # Step 4: Use the model and print the predicted category prediction = model(batch).squeeze(0).softmax(0) class_id = prediction.argmax().item() score = prediction[class_id].item() category_name = weights.meta["categories"][class_id] expected_category = "German shepherd" print(f"{category_name} ({device}): {100 * score:.1f}%") if category_name != expected_category: raise RuntimeError(f"Failed ResNet50 classify {category_name} Expected: {expected_category}") def main() -> None: print(f"torchvision: {torchvision.__version__}") smoke_test_torchvision() smoke_test_torchvision_read_decode() smoke_test_torchvision_resnet50_classify() if torch.cuda.is_available(): smoke_test_torchvision_resnet50_classify("cuda") if __name__ == "__main__": main()
"""Run smoke tests""" import os from pathlib import Path import torch import torchvision from torchvision.io import read_image from torchvision.models import resnet50, ResNet50_Weights SCRIPT_DIR = Path(__file__).parent def smoke_test_torchvision() -> None: print( "Is torchvision useable?", all(x is not None for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]), ) def smoke_test_torchvision_read_decode() -> None: img_jpg = read_image(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) if img_jpg.ndim != 3 or img_jpg.numel() < 100: raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") img_png = read_image(str(SCRIPT_DIR / "assets" / "interlaced_png" / "wizard_low.png")) if img_png.ndim != 3 or img_png.numel() < 100: raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}") def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None: img = read_image(str(SCRIPT_DIR / ".." / "gallery" / "assets" / "dog2.jpg")).to(device) # Step 1: Initialize model with the best available weights weights = ResNet50_Weights.DEFAULT model = resnet50(weights=weights).to(device) model.eval() # Step 2: Initialize the inference transforms preprocess = weights.transforms() # Step 3: Apply inference preprocessing transforms batch = preprocess(img).unsqueeze(0) # Step 4: Use the model and print the predicted category prediction = model(batch).squeeze(0).softmax(0) class_id = prediction.argmax().item() score = prediction[class_id].item() category_name = weights.meta["categories"][class_id] expected_category = "German shepherd" print(f"{category_name} ({device}): {100 * score:.1f}%") if category_name != expected_category: raise RuntimeError(f"Failed ResNet50 classify {category_name} Expected: {expected_category}") def main() -> None: print(f"torchvision: {torchvision.__version__}") smoke_test_torchvision() smoke_test_torchvision_read_decode() smoke_test_torchvision_resnet50_classify() if torch.cuda.is_available(): smoke_test_torchvision_resnet50_classify("cuda") if __name__ == "__main__": main()
from typing import Any, Dict, Optional from llama_index.core.storage.kvstore.types import BaseKVStore from llama_index.storage.kvstore.azurecosmosnosql import AzureCosmosNoSqlKVStore DEFAULT_DOCUMENT_DATABASE = "DocumentStoreDB" DEFAULT_DOCUMENT_CONTAINER = "DocumentStoreContainer" class AzureCosmosNoSqlDocumentStore(BaseKVStore): """Creates an AzureCosmosNoSqlDocumentStore.""" def __init__( self, azure_cosmos_nosql_kvstore: AzureCosmosNoSqlKVStore, namespace: Optional[str] = None, collection_suffix: Optional[str] = None, ) -> None: """Initializes the AzureCosmosNoSqlDocumentStore.""" super().__init__(azure_cosmos_nosql_kvstore, namespace, collection_suffix) @classmethod def from_connection_string( cls, connection_string: str, document_db_name: str = DEFAULT_DOCUMENT_DATABASE, document_container_name: str = DEFAULT_DOCUMENT_CONTAINER, cosmos_container_properties: Dict[str, Any] = None, cosmos_database_properties: Dict[str, Any] = None, ) -> "AzureCosmosNoSqlDocumentStore": """Creates an instance of AzureCosmosNoSqlDocumentStore using a connection string.""" azure_cosmos_nosql_kvstore = AzureCosmosNoSqlKVStore.from_connection_string( connection_string, document_db_name, document_container_name, cosmos_container_properties, cosmos_database_properties, ) namespace = document_db_name + "." + document_container_name return cls(azure_cosmos_nosql_kvstore, namespace) @classmethod def from_account_and_key( cls, endpoint: str, key: str, document_db_name: str = DEFAULT_DOCUMENT_DATABASE, document_container_name: str = DEFAULT_DOCUMENT_CONTAINER, cosmos_container_properties: Dict[str, Any] = None, cosmos_database_properties: Dict[str, Any] = None, ) -> "AzureCosmosNoSqlDocumentStore": """Creates an instance of AzureCosmosNoSqlDocumentStore using an account endpoint and key.""" azure_cosmos_nosql_kvstore = AzureCosmosNoSqlKVStore.from_account_and_key( endpoint, key, document_db_name, document_container_name, cosmos_container_properties, cosmos_database_properties, ) namespace = document_db_name + "." + document_container_name return cls(azure_cosmos_nosql_kvstore, namespace) @classmethod def from_aad_token( cls, endpoint: str, document_db_name: str = DEFAULT_DOCUMENT_DATABASE, document_container_name: str = DEFAULT_DOCUMENT_CONTAINER, cosmos_container_properties: Dict[str, Any] = None, cosmos_database_properties: Dict[str, Any] = None, ) -> "AzureCosmosNoSqlDocumentStore": """Creates an instance of AzureCosmosNoSqlDocumentStore using an aad token.""" azure_cosmos_nosql_kvstore = AzureCosmosNoSqlKVStore.from_aad_token( endpoint, document_db_name, document_container_name, cosmos_container_properties, cosmos_database_properties, ) namespace = document_db_name + "." + document_container_name return cls(azure_cosmos_nosql_kvstore, namespace)
from typing import Any, Dict, Optional from llama_index.core.storage.docstore.keyval_docstore import KVDocumentStore from llama_index.storage.kvstore.azurecosmosnosql import AzureCosmosNoSqlKVStore DEFAULT_DOCUMENT_DATABASE = "DocumentStoreDB" DEFAULT_DOCUMENT_CONTAINER = "DocumentStoreContainer" class AzureCosmosNoSqlDocumentStore(KVDocumentStore): """Creates an AzureCosmosNoSqlDocumentStore.""" def __init__( self, azure_cosmos_nosql_kvstore: AzureCosmosNoSqlKVStore, namespace: Optional[str] = None, collection_suffix: Optional[str] = None, ) -> None: """Initializes the AzureCosmosNoSqlDocumentStore.""" super().__init__(azure_cosmos_nosql_kvstore, namespace, collection_suffix) @classmethod def from_connection_string( cls, connection_string: str, document_db_name: str = DEFAULT_DOCUMENT_DATABASE, document_container_name: str = DEFAULT_DOCUMENT_CONTAINER, cosmos_container_properties: Dict[str, Any] = None, cosmos_database_properties: Dict[str, Any] = None, ) -> "AzureCosmosNoSqlDocumentStore": """Creates an instance of AzureCosmosNoSqlDocumentStore using a connection string.""" azure_cosmos_nosql_kvstore = AzureCosmosNoSqlKVStore.from_connection_string( connection_string, document_db_name, document_container_name, cosmos_container_properties, cosmos_database_properties, ) namespace = document_db_name + "." + document_container_name return cls(azure_cosmos_nosql_kvstore, namespace) @classmethod def from_account_and_key( cls, endpoint: str, key: str, document_db_name: str = DEFAULT_DOCUMENT_DATABASE, document_container_name: str = DEFAULT_DOCUMENT_CONTAINER, cosmos_container_properties: Dict[str, Any] = None, cosmos_database_properties: Dict[str, Any] = None, ) -> "AzureCosmosNoSqlDocumentStore": """Creates an instance of AzureCosmosNoSqlDocumentStore using an account endpoint and key.""" azure_cosmos_nosql_kvstore = AzureCosmosNoSqlKVStore.from_account_and_key( endpoint, key, document_db_name, document_container_name, cosmos_container_properties, cosmos_database_properties, ) namespace = document_db_name + "." + document_container_name return cls(azure_cosmos_nosql_kvstore, namespace) @classmethod def from_aad_token( cls, endpoint: str, document_db_name: str = DEFAULT_DOCUMENT_DATABASE, document_container_name: str = DEFAULT_DOCUMENT_CONTAINER, cosmos_container_properties: Dict[str, Any] = None, cosmos_database_properties: Dict[str, Any] = None, ) -> "AzureCosmosNoSqlDocumentStore": """Creates an instance of AzureCosmosNoSqlDocumentStore using an aad token.""" azure_cosmos_nosql_kvstore = AzureCosmosNoSqlKVStore.from_aad_token( endpoint, document_db_name, document_container_name, cosmos_container_properties, cosmos_database_properties, ) namespace = document_db_name + "." + document_container_name return cls(azure_cosmos_nosql_kvstore, namespace)
from __future__ import annotations from sentence_transformers.training_args import SentenceTransformerTrainingArguments class CrossEncoderTrainingArguments(SentenceTransformerTrainingArguments): r""" CrossEncoderTrainingArguments extends :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. prompts (`Union[Dict[str, Dict[str, str]], Dict[str, str], str]`, *optional*): The prompts to use for each column in the training, evaluation and test datasets. Four formats are accepted: 1. `str`: A single prompt to use for all columns in the datasets, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 2. `Dict[str, str]`: A dictionary mapping column names to prompts, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 3. `Dict[str, str]`: A dictionary mapping dataset names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. 4. `Dict[str, Dict[str, str]]`: A dictionary mapping dataset names to dictionaries mapping column names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`, :class:`~sentence_transformers.sampler.DefaultBatchSampler`, Callable[[...], :class:`~sentence_transformers.sampler.DefaultBatchSampler`]], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`, :class:`~sentence_transformers.sampler.MultiDatasetDefaultBatchSampler`, Callable[[...], :class:`~sentence_transformers.sampler.MultiDatasetDefaultBatchSampler`]], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. learning_rate_mapping (`Optional[Dict[str, float]]`, *optional*): A mapping of parameter name regular expressions to learning rates. This allows you to set different learning rates for different parts of the model, e.g., `{'SparseStaticEmbedding\.*': 1e-3}` for the SparseStaticEmbedding module. This is useful when you want to fine-tune specific parts of the model with different learning rates. """
from __future__ import annotations from sentence_transformers.training_args import SentenceTransformerTrainingArguments class CrossEncoderTrainingArguments(SentenceTransformerTrainingArguments): r""" CrossEncoderTrainingArguments extends :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. prompts (`Union[Dict[str, Dict[str, str]], Dict[str, str], str]`, *optional*): The prompts to use for each column in the training, evaluation and test datasets. Four formats are accepted: 1. `str`: A single prompt to use for all columns in the datasets, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 2. `Dict[str, str]`: A dictionary mapping column names to prompts, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 3. `Dict[str, str]`: A dictionary mapping dataset names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. 4. `Dict[str, Dict[str, str]]`: A dictionary mapping dataset names to dictionaries mapping column names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`, :class:`~sentence_transformers.sampler.DefaultBatchSampler`, Callable[[...], :class:`~sentence_transformers.sampler.DefaultBatchSampler`]], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`, :class:`~sentence_transformers.sampler.MultiDatasetDefaultBatchSampler`, Callable[[...], :class:`~sentence_transformers.sampler.MultiDatasetDefaultBatchSampler`]], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. learning_rate_mapping (`Optional[Dict[str, float]]`, *optional*): A mapping of parameter name regular expressions to learning rates. This allows you to set different learning rates for different parts of the model, e.g., `{'IDF\.*': 1e-3}` for the IDF module. This is useful when you want to fine-tune specific parts of the model with different learning rates. """
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def hf_hub_url(repo_id: str, path: str, revision: Optional[str] = None) -> str: if version.parse(hfh.__version__).release < version.parse("0.11.0").release: # old versions of hfh don't url-encode the file path path = quote(path) return hfh.hf_hub_url(repo_id, path, repo_type="dataset", revision=revision)
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def hf_hub_url(repo_id: str, path: str, revision: Optional[str] = None) -> str: if version.parse(hfh.__version__) < version.parse("0.11.0"): # old versions of hfh don't url-encode the file path path = quote(path) return hfh.hf_hub_url(repo_id, path, repo_type="dataset", revision=revision)
import re from typing import TYPE_CHECKING, Any, Dict, Union if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SentenceEvaluator: """ Base class for all evaluators Extend this class and implement __call__ for custom evaluators. """ def __init__(self): """ Base class for all evaluators. Notably, this class introduces the ``greater_is_better`` and ``primary_metric`` attributes. The former is a boolean indicating whether a higher evaluation score is better, which is used for choosing the best checkpoint if ``load_best_model_at_end`` is set to ``True`` in the training arguments. The latter is a string indicating the primary metric for the evaluator. This has to be defined whenever the evaluator returns a dictionary of metrics, and the primary metric is the key pointing to the primary metric, i.e. the one that is used for model selection and/or logging. """ self.greater_is_better = True self.primary_metric = None def __call__( self, model: "SentenceTransformer", output_path: str = None, epoch: int = -1, steps: int = -1 ) -> Union[float, Dict[str, float]]: """ This is called during training to evaluate the model. It returns a score for the evaluation with a higher score indicating a better result. Args: model: the model to evaluate output_path: path where predictions and metrics are written to epoch: the epoch where the evaluation takes place. This is used for the file prefixes. If this is -1, then we assume evaluation on test data. steps: the steps in the current epoch at time of the evaluation. This is used for the file prefixes. If this is -1, then we assume evaluation at the end of the epoch. Returns: Either a score for the evaluation with a higher score indicating a better result, or a dictionary with scores. If the latter is chosen, then `evaluator.primary_metric` must be defined """ pass def prefix_name_to_metrics(self, metrics: Dict[str, float], name: str) -> Dict[str, float]: if not name: return metrics metrics = {name + "_" + key: value for key, value in metrics.items()} if hasattr(self, "primary_metric") and not self.primary_metric.startswith(name + "_"): self.primary_metric = name + "_" + self.primary_metric return metrics def store_metrics_in_model_card_data(self, model: "SentenceTransformer", metrics: Dict[str, Any]) -> None: model.model_card_data.set_evaluation_metrics(self, metrics) @property def description(self) -> str: """ Returns a human-readable description of the evaluator: BinaryClassificationEvaluator -> Binary Classification 1. Remove "Evaluator" from the class name 2. Add a space before every capital letter """ class_name = self.__class__.__name__ try: index = class_name.index("Evaluator") class_name = class_name[:index] except IndexError: pass return re.sub(r"([a-z])([A-Z])", "\g<1> \g<2>", class_name)
import re from typing import TYPE_CHECKING, Any, Dict, Union if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SentenceEvaluator: """ Base class for all evaluators Extend this class and implement __call__ for custom evaluators. """ def __init__(self): """ Base class for all evaluators. Notably, this class introduces the ``greater_is_better`` and ``primary_metric`` attributes. The former is a boolean indicating whether a higher evaluation score is better, which is used for choosing the best checkpoint if ``load_best_model_at_end`` is set to ``True`` in the training arguments. The latter is a string indicating the primary metric for the evaluator. This has to be defined whenever the evaluator returns a dictionary of metrics, and the primary metric is the key pointing to the primary metric, i.e. the one that is used for model selection and/or logging. """ self.greater_is_better = True self.primary_metric = None def __call__( self, model: "SentenceTransformer", output_path: str = None, epoch: int = -1, steps: int = -1 ) -> Union[float, Dict[str, float]]: """ This is called during training to evaluate the model. It returns a score for the evaluation with a higher score indicating a better result. Args: model: the model to evaluate output_path: path where predictions and metrics are written to epoch: the epoch where the evaluation takes place. This is used for the file prefixes. If this is -1, then we assume evaluation on test data. steps: the steps in the current epoch at time of the evaluation. This is used for the file prefixes. If this is -1, then we assume evaluation at the end of the epoch. Returns: Either a score for the evaluation with a higher score indicating a better result, or a dictionary with scores. If the latter is chosen, then `evaluator.primary_metric` must be defined """ pass def prefix_name_to_metrics(self, metrics: Dict[str, float], name: str): if not name: return metrics metrics = {name + "_" + key: value for key, value in metrics.items()} if hasattr(self, "primary_metric") and not self.primary_metric.startswith(name + "_"): self.primary_metric = name + "_" + self.primary_metric return metrics def store_metrics_in_model_card_data(self, model: "SentenceTransformer", metrics: Dict[str, Any]) -> None: model.model_card_data.set_evaluation_metrics(self, metrics) @property def description(self) -> str: """ Returns a human-readable description of the evaluator: BinaryClassificationEvaluator -> Binary Classification 1. Remove "Evaluator" from the class name 2. Add a space before every capital letter """ class_name = self.__class__.__name__ try: index = class_name.index("Evaluator") class_name = class_name[:index] except IndexError: pass return re.sub(r"([a-z])([A-Z])", "\g<1> \g<2>", class_name)
""" This examples trains a CrossEncoder for the NLI task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it learns to predict the labels: "contradiction": 0, "entailment": 1, "neutral": 2. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_nli.py """ import logging import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CrossEncoderClassificationEvaluator from sentence_transformers.cross_encoder.losses.CrossEntropyLoss import CrossEntropyLoss from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer from sentence_transformers.cross_encoder.training_args import CrossEncoderTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) train_batch_size = 64 num_epochs = 1 output_dir = "output/training_ce_allnli-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Define our CrossEncoder model. We use distilroberta-base as the base model and set it up to predict 3 labels # You can also use other base models, like bert-base-uncased, microsoft/mpnet-base, etc. model_name = "distilroberta-base" model = CrossEncoder(model_name, num_labels=3) # 2. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli # We'll start with 100k training samples, but you can increase this to get a stronger model logging.info("Read AllNLI train dataset") train_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="train").select(range(100_000)) eval_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="dev").select(range(1000)) test_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="test") logging.info(train_dataset) # 3. Define our training loss: loss = CrossEntropyLoss(model) # 4. Before and during training, we use CrossEncoderClassificationEvaluator to measure the performance on the dev set dev_cls_evaluator = CrossEncoderClassificationEvaluator( sentence_pairs=list(zip(eval_dataset["premise"], eval_dataset["hypothesis"])), labels=eval_dataset["label"], name="AllNLI-dev", ) dev_cls_evaluator(model) # 5. Define the training arguments short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1] run_name = f"reranker-{short_model_name}-nli" args = CrossEncoderTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=500, save_strategy="steps", save_steps=500, save_total_limit=2, logging_steps=100, run_name=run_name, # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = CrossEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_cls_evaluator, ) trainer.train() # 7. Evaluate the final model on test dataset test_cls_evaluator = CrossEncoderClassificationEvaluator( list(zip(test_dataset["premise"], test_dataset["hypothesis"])), test_dataset["label"], name="AllNLI-test", ) test_cls_evaluator(model) # 8. Save the final model final_output_dir = f"{output_dir}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." )
""" This examples trains a CrossEncoder for the NLI task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it learns to predict the labels: "contradiction": 0, "entailment": 1, "neutral": 2. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_nli.py """ import logging import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CEClassificationEvaluator from sentence_transformers.cross_encoder.losses.CrossEntropyLoss import CrossEntropyLoss from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer from sentence_transformers.cross_encoder.training_args import CrossEncoderTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) train_batch_size = 64 num_epochs = 1 output_dir = "output/training_ce_allnli-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Define our CrossEncoder model. We use distilroberta-base as the base model and set it up to predict 3 labels # You can also use other base models, like bert-base-uncased, microsoft/mpnet-base, etc. model_name = "distilroberta-base" model = CrossEncoder(model_name, num_labels=3) # 2. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli # We'll start with 100k training samples, but you can increase this to get a stronger model logging.info("Read AllNLI train dataset") train_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="train").select(range(100_000)) eval_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="dev").select(range(1000)) test_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="test") logging.info(train_dataset) # 3. Define our training loss: loss = CrossEntropyLoss(model) # 4. Before and during training, we use CEClassificationEvaluator to measure the performance on the dev set dev_cls_evaluator = CEClassificationEvaluator( sentence_pairs=list(zip(eval_dataset["premise"], eval_dataset["hypothesis"])), labels=eval_dataset["label"], name="AllNLI-dev", ) dev_cls_evaluator(model) # 5. Define the training arguments short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1] run_name = f"reranker-{short_model_name}-nli" args = CrossEncoderTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=500, save_strategy="steps", save_steps=500, save_total_limit=2, logging_steps=100, run_name=run_name, # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = CrossEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_cls_evaluator, ) trainer.train() # 7. Evaluate the final model on test dataset test_cls_evaluator = CEClassificationEvaluator( list(zip(test_dataset["premise"], test_dataset["hypothesis"])), test_dataset["label"], name="AllNLI-test", ) test_cls_evaluator(model) # 8. Save the final model final_output_dir = f"{output_dir}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." )
"""Chat Message.""" from typing import Any, Literal from typing_extensions import override from langchain_core.messages.base import ( BaseMessage, BaseMessageChunk, merge_content, ) from langchain_core.utils._merge import merge_dicts class ChatMessage(BaseMessage): """Message that can be assigned an arbitrary speaker (i.e. role).""" role: str """The speaker / role of the Message.""" type: Literal["chat"] = "chat" """The type of the message (used during serialization). Defaults to "chat".""" class ChatMessageChunk(ChatMessage, BaseMessageChunk): """Chat Message chunk.""" # Ignoring mypy re-assignment here since we're overriding the value # to make sure that the chunk variant can be discriminated from the # non-chunk variant. type: Literal["ChatMessageChunk"] = "ChatMessageChunk" # type: ignore[assignment] """The type of the message (used during serialization). Defaults to "ChatMessageChunk".""" @override def __add__(self, other: Any) -> BaseMessageChunk: # type: ignore[override] if isinstance(other, ChatMessageChunk): if self.role != other.role: msg = "Cannot concatenate ChatMessageChunks with different roles." raise ValueError(msg) return self.__class__( role=self.role, content=merge_content(self.content, other.content), additional_kwargs=merge_dicts( self.additional_kwargs, other.additional_kwargs ), response_metadata=merge_dicts( self.response_metadata, other.response_metadata ), id=self.id, ) if isinstance(other, BaseMessageChunk): return self.__class__( role=self.role, content=merge_content(self.content, other.content), additional_kwargs=merge_dicts( self.additional_kwargs, other.additional_kwargs ), response_metadata=merge_dicts( self.response_metadata, other.response_metadata ), id=self.id, ) return super().__add__(other)
"""Chat Message.""" from typing import Any, Literal from typing_extensions import override from langchain_core.messages.base import ( BaseMessage, BaseMessageChunk, merge_content, ) from langchain_core.utils._merge import merge_dicts class ChatMessage(BaseMessage): """Message that can be assigned an arbitrary speaker (i.e. role).""" role: str """The speaker / role of the Message.""" type: Literal["chat"] = "chat" """The type of the message (used during serialization). Defaults to "chat".""" ChatMessage.model_rebuild() class ChatMessageChunk(ChatMessage, BaseMessageChunk): """Chat Message chunk.""" # Ignoring mypy re-assignment here since we're overriding the value # to make sure that the chunk variant can be discriminated from the # non-chunk variant. type: Literal["ChatMessageChunk"] = "ChatMessageChunk" # type: ignore[assignment] """The type of the message (used during serialization). Defaults to "ChatMessageChunk".""" @override def __add__(self, other: Any) -> BaseMessageChunk: # type: ignore[override] if isinstance(other, ChatMessageChunk): if self.role != other.role: msg = "Cannot concatenate ChatMessageChunks with different roles." raise ValueError(msg) return self.__class__( role=self.role, content=merge_content(self.content, other.content), additional_kwargs=merge_dicts( self.additional_kwargs, other.additional_kwargs ), response_metadata=merge_dicts( self.response_metadata, other.response_metadata ), id=self.id, ) if isinstance(other, BaseMessageChunk): return self.__class__( role=self.role, content=merge_content(self.content, other.content), additional_kwargs=merge_dicts( self.additional_kwargs, other.additional_kwargs ), response_metadata=merge_dicts( self.response_metadata, other.response_metadata ), id=self.id, ) return super().__add__(other)
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import MochiTransformer3DModel from diffusers.utils.testing_utils import enable_full_determinism, torch_device from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class MochiTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = MochiTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True # Overriding it because of the transformer size. model_split_percents = [0.7, 0.6, 0.6] @property def dummy_input(self): batch_size = 2 num_channels = 4 num_frames = 2 height = 16 width = 16 embedding_dim = 16 sequence_length = 16 hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) encoder_attention_mask = torch.ones((batch_size, sequence_length)).bool().to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, "encoder_attention_mask": encoder_attention_mask, } @property def input_shape(self): return (4, 2, 16, 16) @property def output_shape(self): return (4, 2, 16, 16) def prepare_init_args_and_inputs_for_common(self): init_dict = { "patch_size": 2, "num_attention_heads": 2, "attention_head_dim": 8, "num_layers": 2, "pooled_projection_dim": 16, "in_channels": 4, "out_channels": None, "qk_norm": "rms_norm", "text_embed_dim": 16, "time_embed_dim": 4, "activation_fn": "swiglu", "max_sequence_length": 16, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"MochiTransformer3DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import MochiTransformer3DModel from diffusers.utils.testing_utils import enable_full_determinism, torch_device from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class MochiTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = MochiTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 2 num_channels = 4 num_frames = 2 height = 16 width = 16 embedding_dim = 16 sequence_length = 16 hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) encoder_attention_mask = torch.ones((batch_size, sequence_length)).bool().to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, "encoder_attention_mask": encoder_attention_mask, } @property def input_shape(self): return (4, 2, 16, 16) @property def output_shape(self): return (4, 2, 16, 16) def prepare_init_args_and_inputs_for_common(self): init_dict = { "patch_size": 2, "num_attention_heads": 2, "attention_head_dim": 8, "num_layers": 2, "pooled_projection_dim": 16, "in_channels": 4, "out_channels": None, "qk_norm": "rms_norm", "text_embed_dim": 16, "time_embed_dim": 4, "activation_fn": "swiglu", "max_sequence_length": 16, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"MochiTransformer3DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
# Copyright (c) OpenMMLab. All rights reserved. import os from unittest.mock import MagicMock import torch import torch.distributed as torch_dist import torch.nn as nn from mmengine.dist import all_gather from mmengine.hooks import SyncBuffersHook from mmengine.registry import MODELS from mmengine.testing._internal import MultiProcessTestCase from mmengine.testing.runner_test_case import RunnerTestCase, ToyModel class ToyModuleWithNorm(ToyModel): def __init__(self, data_preprocessor=None): super().__init__(data_preprocessor=data_preprocessor) bn = nn.BatchNorm1d(2) self.linear1 = nn.Sequential(self.linear1, bn) def init_weights(self): for buffer in self.buffers(): buffer.fill_( torch.tensor(int(os.environ['RANK']), dtype=torch.float32)) return super().init_weights() class TestSyncBuffersHook(MultiProcessTestCase, RunnerTestCase): def setUp(self) -> None: super().setUp() self._spawn_processes() def prepare_subprocess(self): MODELS.register_module(module=ToyModuleWithNorm, force=True) super(MultiProcessTestCase, self).setUp() def test_sync_buffers_hook(self): self.setup_dist_env() runner = MagicMock() runner.model = ToyModuleWithNorm() runner.model.init_weights() for buffer in runner.model.buffers(): buffer1, buffer2 = all_gather(buffer) self.assertFalse(torch.allclose(buffer1, buffer2)) hook = SyncBuffersHook() hook.after_train_epoch(runner) for buffer in runner.model.buffers(): buffer1, buffer2 = all_gather(buffer) self.assertTrue(torch.allclose(buffer1, buffer2)) def test_with_runner(self): self.setup_dist_env() cfg = self.epoch_based_cfg cfg.model = dict(type='ToyModuleWithNorm') cfg.launch = 'pytorch' cfg.custom_hooks = [dict(type='SyncBuffersHook')] runner = self.build_runner(cfg) runner.train() for buffer in runner.model.buffers(): buffer1, buffer2 = all_gather(buffer) self.assertTrue(torch.allclose(buffer1, buffer2)) def setup_dist_env(self): super().setup_dist_env() os.environ['RANK'] = str(self.rank) torch_dist.init_process_group( backend='gloo', rank=self.rank, world_size=self.world_size)
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import SyncBuffersHook class TestSyncBuffersHook: def test_sync_buffers_hook(self): runner = Mock() runner.model = Mock() hook = SyncBuffersHook() hook._after_epoch(runner)
import os import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.typing.tensor.audio.audio_ndarray import AudioNdArray from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor @pytest.mark.parametrize( 'tensor,cls_audio_tensor,cls_tensor', [ (torch.zeros(1000, 2), AudioTorchTensor, torch.Tensor), (np.zeros((1000, 2)), AudioNdArray, np.ndarray), ], ) def test_set_audio_tensor(tensor, cls_audio_tensor, cls_tensor): class MyAudioDoc(BaseDocument): tensor: cls_audio_tensor doc = MyAudioDoc(tensor=tensor) assert isinstance(doc.tensor, cls_audio_tensor) assert isinstance(doc.tensor, cls_tensor) assert (doc.tensor == tensor).all() @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioNdArray, np.zeros((1000, 2))), (AudioTorchTensor, torch.zeros(1000, 2)), (AudioTorchTensor, np.zeros((1000, 2))), ], ) def test_validation(cls_tensor, tensor): arr = parse_obj_as(cls_tensor, tensor) assert isinstance(arr, cls_tensor) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioNdArray, torch.zeros(1000, 2)), (AudioNdArray, 'hello'), (AudioTorchTensor, 'hello'), ], ) def test_illegal_validation(cls_tensor, tensor): match = str(cls_tensor).split('.')[-1][:-2] with pytest.raises(ValueError, match=match): parse_obj_as(cls_tensor, tensor) @pytest.mark.proto @pytest.mark.parametrize( 'cls_tensor,tensor,proto_key', [ (AudioTorchTensor, torch.zeros(1000, 2), AudioTorchTensor._proto_type_name), (AudioNdArray, np.zeros((1000, 2)), AudioNdArray._proto_type_name), ], ) def test_proto_tensor(cls_tensor, tensor, proto_key): tensor = parse_obj_as(cls_tensor, tensor) proto = tensor._to_node_protobuf() assert proto_key in str(proto) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioTorchTensor, torch.zeros(1000, 2)), (AudioNdArray, np.zeros((1000, 2))), ], ) def test_save_audio_tensor_to_wav_file(cls_tensor, tensor, tmpdir): tmp_file = str(tmpdir / 'tmp.wav') audio_tensor = parse_obj_as(cls_tensor, tensor) audio_tensor.save_to_wav_file(tmp_file) assert os.path.isfile(tmp_file)
import os import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.typing.tensor.audio.audio_ndarray import AudioNdArray from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor @pytest.mark.parametrize( 'tensor,cls_audio_tensor,cls_tensor', [ (torch.zeros(1000, 2), AudioTorchTensor, torch.Tensor), (np.zeros((1000, 2)), AudioNdArray, np.ndarray), ], ) def test_set_audio_tensor(tensor, cls_audio_tensor, cls_tensor): class MyAudioDoc(BaseDocument): tensor: cls_audio_tensor doc = MyAudioDoc(tensor=tensor) assert isinstance(doc.tensor, cls_audio_tensor) assert isinstance(doc.tensor, cls_tensor) assert (doc.tensor == tensor).all() @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioNdArray, np.zeros((1000, 2))), (AudioTorchTensor, torch.zeros(1000, 2)), (AudioTorchTensor, np.zeros((1000, 2))), ], ) def test_validation(cls_tensor, tensor): arr = parse_obj_as(cls_tensor, tensor) assert isinstance(arr, cls_tensor) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioNdArray, torch.zeros(1000, 2)), (AudioNdArray, 'hello'), (AudioTorchTensor, 'hello'), ], ) def test_illegal_validation(cls_tensor, tensor): match = str(cls_tensor).split('.')[-1][:-2] with pytest.raises(ValueError, match=match): parse_obj_as(cls_tensor, tensor) @pytest.mark.parametrize( 'cls_tensor,tensor,proto_key', [ (AudioTorchTensor, torch.zeros(1000, 2), AudioTorchTensor._proto_type_name), (AudioNdArray, np.zeros((1000, 2)), AudioNdArray._proto_type_name), ], ) def test_proto_tensor(cls_tensor, tensor, proto_key): tensor = parse_obj_as(cls_tensor, tensor) proto = tensor._to_node_protobuf() assert proto_key in str(proto) @pytest.mark.parametrize( 'cls_tensor,tensor', [ (AudioTorchTensor, torch.zeros(1000, 2)), (AudioNdArray, np.zeros((1000, 2))), ], ) def test_save_audio_tensor_to_wav_file(cls_tensor, tensor, tmpdir): tmp_file = str(tmpdir / 'tmp.wav') audio_tensor = parse_obj_as(cls_tensor, tensor) audio_tensor.save_to_wav_file(tmp_file) assert os.path.isfile(tmp_file)
from abc import ABC import pytest from docarray import DocumentArray from docarray.array.storage.memory import GetSetDelMixin, SequenceLikeMixin from docarray.array.storage.redis.backend import BackendMixin, RedisConfig class StorageMixins(BackendMixin, GetSetDelMixin, SequenceLikeMixin, ABC): ... class DocumentArrayDummy(StorageMixins, DocumentArray): def __new__(cls, *args, **kwargs): return super().__new__(cls) def _load_offset2ids(self): pass def _save_offset2ids(self): pass @pytest.mark.parametrize('distance', ['L2', 'IP', 'COSINE']) @pytest.mark.parametrize( 'method,initial_cap,ef_construction,block_size', [ ('HNSW', 10, 250, 1000000), ('FLAT', 10, 250, 1000000), ], ) @pytest.mark.parametrize( 'columns', [ {'attr1': 'str', 'attr2': 'bytes'}, {'attr1': 'int', 'attr2': 'float'}, {'attr1': 'double', 'attr2': 'long', 'attr3': 'geo'}, ], ) @pytest.mark.parametrize( 'redis_config', [ {'decode_responses': True}, {'decode_responses': False}, {'retry_on_timeout': True}, {'decode_responses': True, 'retry_on_timeout': True}, {}, ], ) def test_init_storage( distance, columns, method, initial_cap, ef_construction, block_size, redis_config, start_storage, ): cfg = RedisConfig( n_dim=128, distance=distance, columns=columns, method=method, initial_cap=initial_cap, ef_construction=ef_construction, block_size=block_size, redis_config=redis_config, ) redis_da = DocumentArrayDummy(storage='redis', config=cfg) assert redis_da._client.info()['tcp_port'] == redis_da._config.port assert ( redis_da._client.ft(index_name=redis_da._config.index_name).info()[ 'attributes' ][0][1] == b'embedding' ) assert ( redis_da._client.ft(index_name=redis_da._config.index_name).info()[ 'attributes' ][0][5] == b'VECTOR' ) def test_init_storage_update_schema(start_storage): cfg = RedisConfig(n_dim=128, columns={'attr1': 'str'}, index_name="idx") redis_da = DocumentArrayDummy(storage='redis', config=cfg) assert ( redis_da._client.ft(index_name=redis_da._config.index_name).info()[ 'attributes' ][1][1] == b'attr1' ) cfg = RedisConfig( n_dim=128, columns={'attr2': 'str'}, index_name="idx", update_schema=False ) redis_da = DocumentArrayDummy(storage='redis', config=cfg) assert ( redis_da._client.ft(index_name=redis_da._config.index_name).info()[ 'attributes' ][1][1] == b'attr1' ) cfg = RedisConfig( n_dim=128, columns={'attr2': 'str'}, index_name="idx", update_schema=True ) redis_da = DocumentArrayDummy(storage='redis', config=cfg) assert ( redis_da._client.ft(index_name=redis_da._config.index_name).info()[ 'attributes' ][1][1] == b'attr2' )
from abc import ABC import pytest from docarray import DocumentArray from docarray.array.storage.memory import GetSetDelMixin, SequenceLikeMixin from docarray.array.storage.redis.backend import BackendMixin, RedisConfig class StorageMixins(BackendMixin, GetSetDelMixin, SequenceLikeMixin, ABC): ... class DocumentArrayDummy(StorageMixins, DocumentArray): def __new__(cls, *args, **kwargs): return super().__new__(cls) def _load_offset2ids(self): pass def _save_offset2ids(self): pass type_convert = { 'int': b'NUMERIC', 'float': b'NUMERIC', 'double': b'NUMERIC', 'long': b'NUMERIC', 'str': b'TEXT', 'bytes': b'TEXT', 'bool': b'NUMERIC', } @pytest.mark.parametrize('distance', ['L2', 'IP', 'COSINE']) @pytest.mark.parametrize( 'method,initial_cap,ef_construction,block_size', [ ('HNSW', 10, 250, 1000000), ('FLAT', 10, 250, 1000000), ], ) @pytest.mark.parametrize( 'columns', [ [('attr1', 'str'), ('attr2', 'bytes')], [('attr1', 'int'), ('attr2', 'float')], [('attr1', 'double'), ('attr2', 'long'), ('attr3', 'int')], {'attr1': 'str', 'attr2': 'bytes'}, {'attr1': 'int', 'attr2': 'float'}, {'attr1': 'double', 'attr2': 'long', 'attr3': 'int'}, ], ) @pytest.mark.parametrize( 'redis_config', [ {'decode_responses': True}, {'decode_responses': False}, {'retry_on_timeout': True}, {'decode_responses': True, 'retry_on_timeout': True}, {}, ], ) def test_init_storage( distance, columns, method, initial_cap, ef_construction, block_size, redis_config, start_storage, ): cfg = RedisConfig( n_dim=128, distance=distance, columns=columns, method=method, initial_cap=initial_cap, ef_construction=ef_construction, block_size=block_size, redis_config=redis_config, ) redis_da = DocumentArrayDummy(storage='redis', config=cfg) assert redis_da._client.info()['tcp_port'] == redis_da._config.port assert ( redis_da._client.ft(index_name=redis_da._config.index_name).info()[ 'attributes' ][0][1] == b'embedding' ) assert ( redis_da._client.ft(index_name=redis_da._config.index_name).info()[ 'attributes' ][0][5] == b'VECTOR' ) def test_init_storage_update_schema(start_storage): cfg = RedisConfig(n_dim=128, columns={'attr1': 'str'}, index_name="idx") redis_da = DocumentArrayDummy(storage='redis', config=cfg) assert ( redis_da._client.ft(index_name=redis_da._config.index_name).info()[ 'attributes' ][1][1] == b'attr1' ) cfg = RedisConfig( n_dim=128, columns={'attr2': 'str'}, index_name="idx", update_schema=False ) redis_da = DocumentArrayDummy(storage='redis', config=cfg) assert ( redis_da._client.ft(index_name=redis_da._config.index_name).info()[ 'attributes' ][1][1] == b'attr1' ) cfg = RedisConfig( n_dim=128, columns={'attr2': 'str'}, index_name="idx", update_schema=True ) redis_da = DocumentArrayDummy(storage='redis', config=cfg) assert ( redis_da._client.ft(index_name=redis_da._config.index_name).info()[ 'attributes' ][1][1] == b'attr2' )
# Copyright (c) OpenMMLab. All rights reserved. # This script consists of several convert functions which # can modify the weights of model in original repo to be # pre-trained weights. from collections import OrderedDict def swin_converter(ckpt): new_ckpt = OrderedDict() def correct_unfold_reduction_order(x): out_channel, in_channel = x.shape x = x.reshape(out_channel, 4, in_channel // 4) x = x[:, [0, 2, 1, 3], :].transpose(1, 2).reshape(out_channel, in_channel) return x def correct_unfold_norm_order(x): in_channel = x.shape[0] x = x.reshape(4, in_channel // 4) x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel) return x for k, v in ckpt.items(): if k.startswith('head'): continue elif k.startswith('layers'): new_v = v if 'attn.' in k: new_k = k.replace('attn.', 'attn.w_msa.') elif 'mlp.' in k: if 'mlp.fc1.' in k: new_k = k.replace('mlp.fc1.', 'ffn.layers.0.0.') elif 'mlp.fc2.' in k: new_k = k.replace('mlp.fc2.', 'ffn.layers.1.') else: new_k = k.replace('mlp.', 'ffn.') elif 'downsample' in k: new_k = k if 'reduction.' in k: new_v = correct_unfold_reduction_order(v) elif 'norm.' in k: new_v = correct_unfold_norm_order(v) else: new_k = k new_k = new_k.replace('layers', 'stages', 1) elif k.startswith('patch_embed'): new_v = v if 'proj' in k: new_k = k.replace('proj', 'projection') else: new_k = k else: new_v = v new_k = k new_ckpt['backbone.' + new_k] = new_v return new_ckpt
# Copyright (c) OpenMMLab. All rights reserved. # This script consists of several convert functions which # can modify the weights of model in original repo to be # pre-trained weights. from collections import OrderedDict def swin_converter(ckpt): new_ckpt = OrderedDict() def correct_unfold_reduction_order(x): out_channel, in_channel = x.shape x = x.reshape(out_channel, 4, in_channel // 4) x = x[:, [0, 2, 1, 3], :].transpose(1, 2).reshape(out_channel, in_channel) return x def correct_unfold_norm_order(x): in_channel = x.shape[0] x = x.reshape(4, in_channel // 4) x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel) return x for k, v in ckpt.items(): if k.startswith('head'): continue elif k.startswith('layers'): new_v = v if 'attn.' in k: new_k = k.replace('attn.', 'attn.w_msa.') elif 'mlp.' in k: if 'mlp.fc1.' in k: new_k = k.replace('mlp.fc1.', 'ffn.layers.0.0.') elif 'mlp.fc2.' in k: new_k = k.replace('mlp.fc2.', 'ffn.layers.1.') else: new_k = k.replace('mlp.', 'ffn.') elif 'downsample' in k: new_k = k if 'reduction.' in k: new_v = correct_unfold_reduction_order(v) elif 'norm.' in k: new_v = correct_unfold_norm_order(v) else: new_k = k new_k = new_k.replace('layers', 'stages', 1) elif k.startswith('patch_embed'): new_v = v if 'proj' in k: new_k = k.replace('proj', 'projection') else: new_k = k else: new_v = v new_k = k new_ckpt[new_k] = new_v return new_ckpt
from __future__ import annotations from typing import TYPE_CHECKING from unittest.mock import MagicMock, patch import pytest from langchain_community.document_loaders import ArcGISLoader if TYPE_CHECKING: from collections.abc import Iterator from arcgis.features import FeatureLayer from arcgis.gis import GIS @pytest.fixture def arcgis_mocks(mock_feature_layer: FeatureLayer, mock_gis: GIS) -> Iterator[None]: sys_modules = { "arcgis": MagicMock(), "arcgis.features.FeatureLayer": mock_feature_layer, "arcgis.gis.GIS": mock_gis, } with patch.dict("sys.modules", sys_modules): yield @pytest.fixture def mock_feature_layer() -> FeatureLayer: feature_layer = MagicMock() feature_layer.query.return_value = [ MagicMock(as_dict={"attributes": {"field": "value"}}) ] feature_layer.url = "https://example.com/layer_url" feature_layer.properties = { "description": "<html><body>Some HTML content</body></html>", "name": "test", "serviceItemId": "testItemId", } return feature_layer @pytest.fixture def mock_gis() -> GIS: gis = MagicMock() gis.content.get.return_value = MagicMock(description="Item description") return gis @pytest.mark.usefixtures("arcgis_mocks") def test_lazy_load(mock_feature_layer: FeatureLayer, mock_gis: GIS) -> None: loader = ArcGISLoader(layer=mock_feature_layer, gis=mock_gis) loader.BEAUTIFULSOUP = None documents = list(loader.lazy_load()) assert len(documents) == 1 assert documents[0].metadata["url"] == "https://example.com/layer_url" # Add more assertions based on your expected behavior @pytest.mark.usefixtures("arcgis_mocks") def test_initialization_with_string_layer( mock_feature_layer: FeatureLayer, mock_gis: GIS ) -> None: layer_url = "https://example.com/layer_url" with patch("arcgis.features.FeatureLayer", return_value=mock_feature_layer): loader = ArcGISLoader(layer=layer_url, gis=mock_gis) assert loader.url == layer_url @pytest.mark.usefixtures("arcgis_mocks") def test_layer_description_provided_by_user( mock_feature_layer: FeatureLayer, mock_gis: GIS ) -> None: custom_description = "Custom Layer Description" loader = ArcGISLoader( layer=mock_feature_layer, gis=mock_gis, lyr_desc=custom_description ) layer_properties = loader._get_layer_properties(lyr_desc=custom_description) assert layer_properties["layer_description"] == custom_description def test_initialization_without_arcgis( mock_feature_layer: FeatureLayer, mock_gis: GIS ) -> None: with patch.dict("sys.modules", {"arcgis": None}): with pytest.raises( ImportError, match="arcgis is required to use the ArcGIS Loader" ): ArcGISLoader(layer=mock_feature_layer, gis=mock_gis) @pytest.mark.usefixtures("arcgis_mocks") def test_get_layer_properties_with_description( mock_feature_layer: FeatureLayer, mock_gis: GIS ) -> None: loader = ArcGISLoader( layer=mock_feature_layer, gis=mock_gis, lyr_desc="Custom Description" ) props = loader._get_layer_properties("Custom Description") assert props["layer_description"] == "Custom Description" @pytest.mark.usefixtures("arcgis_mocks") def test_load_method(mock_feature_layer: FeatureLayer, mock_gis: GIS) -> None: loader = ArcGISLoader(layer=mock_feature_layer, gis=mock_gis) documents = loader.load() assert len(documents) == 1 @pytest.mark.usefixtures("arcgis_mocks") def test_geometry_returned(mock_feature_layer: FeatureLayer, mock_gis: GIS) -> None: mock_feature_layer.query.return_value = [ MagicMock( as_dict={ "attributes": {"field": "value"}, "geometry": {"type": "point", "coordinates": [0, 0]}, } ) ] loader = ArcGISLoader(layer=mock_feature_layer, gis=mock_gis, return_geometry=True) documents = list(loader.lazy_load()) assert "geometry" in documents[0].metadata @pytest.mark.usefixtures("arcgis_mocks") def test_geometry_not_returned(mock_feature_layer: FeatureLayer, mock_gis: GIS) -> None: loader = ArcGISLoader(layer=mock_feature_layer, gis=mock_gis, return_geometry=False) documents = list(loader.lazy_load()) assert "geometry" not in documents[0].metadata
from unittest.mock import MagicMock, patch import pytest from langchain_community.document_loaders import ArcGISLoader @pytest.fixture def arcgis_mocks(mock_feature_layer, mock_gis): # type: ignore sys_modules = { "arcgis": MagicMock(), "arcgis.features.FeatureLayer": mock_feature_layer, "arcgis.gis.GIS": mock_gis, } with patch.dict("sys.modules", sys_modules): yield @pytest.fixture def mock_feature_layer(): # type: ignore feature_layer = MagicMock() feature_layer.query.return_value = [ MagicMock(as_dict={"attributes": {"field": "value"}}) ] feature_layer.url = "https://example.com/layer_url" feature_layer.properties = { "description": "<html><body>Some HTML content</body></html>", "name": "test", "serviceItemId": "testItemId", } return feature_layer @pytest.fixture def mock_gis(): # type: ignore gis = MagicMock() gis.content.get.return_value = MagicMock(description="Item description") return gis def test_lazy_load(arcgis_mocks, mock_feature_layer, mock_gis): # type: ignore loader = ArcGISLoader(layer=mock_feature_layer, gis=mock_gis) loader.BEAUTIFULSOUP = None documents = list(loader.lazy_load()) assert len(documents) == 1 assert documents[0].metadata["url"] == "https://example.com/layer_url" # Add more assertions based on your expected behavior def test_initialization_with_string_layer( # type: ignore arcgis_mocks, mock_feature_layer, mock_gis ): layer_url = "https://example.com/layer_url" with patch("arcgis.features.FeatureLayer", return_value=mock_feature_layer): loader = ArcGISLoader(layer=layer_url, gis=mock_gis) assert loader.url == layer_url def test_layer_description_provided_by_user( # type: ignore arcgis_mocks, mock_feature_layer, mock_gis ): custom_description = "Custom Layer Description" loader = ArcGISLoader( layer=mock_feature_layer, gis=mock_gis, lyr_desc=custom_description ) layer_properties = loader._get_layer_properties(lyr_desc=custom_description) assert layer_properties["layer_description"] == custom_description def test_initialization_without_arcgis(mock_feature_layer, mock_gis): # type: ignore with patch.dict("sys.modules", {"arcgis": None}): with pytest.raises( ImportError, match="arcgis is required to use the ArcGIS Loader" ): ArcGISLoader(layer=mock_feature_layer, gis=mock_gis) def test_get_layer_properties_with_description( # type: ignore arcgis_mocks, mock_feature_layer, mock_gis ): loader = ArcGISLoader( layer=mock_feature_layer, gis=mock_gis, lyr_desc="Custom Description" ) props = loader._get_layer_properties("Custom Description") assert props["layer_description"] == "Custom Description" def test_load_method(arcgis_mocks, mock_feature_layer, mock_gis): # type: ignore loader = ArcGISLoader(layer=mock_feature_layer, gis=mock_gis) documents = loader.load() assert len(documents) == 1 def test_geometry_returned(arcgis_mocks, mock_feature_layer, mock_gis): # type: ignore mock_feature_layer.query.return_value = [ MagicMock( as_dict={ "attributes": {"field": "value"}, "geometry": {"type": "point", "coordinates": [0, 0]}, } ) ] loader = ArcGISLoader(layer=mock_feature_layer, gis=mock_gis, return_geometry=True) documents = list(loader.lazy_load()) assert "geometry" in documents[0].metadata def test_geometry_not_returned( # type: ignore arcgis_mocks, mock_feature_layer, mock_gis ): loader = ArcGISLoader(layer=mock_feature_layer, gis=mock_gis, return_geometry=False) documents = list(loader.lazy_load()) assert "geometry" not in documents[0].metadata
# Copyright (c) OpenMMLab. All rights reserved. from .builder import DATASETS, PIPELINES, build_dataloader, build_dataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_panoptic import CocoPanopticDataset from .custom import CustomDataset from .dataset_wrappers import (ClassBalancedDataset, ConcatDataset, MultiImageMixDataset, RepeatDataset) from .deepfashion import DeepFashionDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .openimages import OpenImagesChallengeDataset, OpenImagesDataset from .samplers import DistributedGroupSampler, DistributedSampler, GroupSampler from .utils import (NumClassCheckHook, get_loading_pipeline, replace_ImageToTensor) from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset __all__ = [ 'CustomDataset', 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'GroupSampler', 'DistributedGroupSampler', 'DistributedSampler', 'build_dataloader', 'ConcatDataset', 'RepeatDataset', 'ClassBalancedDataset', 'WIDERFaceDataset', 'DATASETS', 'PIPELINES', 'build_dataset', 'replace_ImageToTensor', 'get_loading_pipeline', 'NumClassCheckHook', 'CocoPanopticDataset', 'MultiImageMixDataset', 'OpenImagesDataset', 'OpenImagesChallengeDataset' ]
# Copyright (c) OpenMMLab. All rights reserved. from .builder import DATASETS, PIPELINES, build_dataloader, build_dataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_panoptic import CocoPanopticDataset from .custom import CustomDataset from .dataset_wrappers import (ClassBalancedDataset, ConcatDataset, MultiImageMixDataset, RepeatDataset) from .deepfashion import DeepFashionDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .samplers import DistributedGroupSampler, DistributedSampler, GroupSampler from .utils import (NumClassCheckHook, get_loading_pipeline, replace_ImageToTensor) from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset __all__ = [ 'CustomDataset', 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'GroupSampler', 'DistributedGroupSampler', 'DistributedSampler', 'build_dataloader', 'ConcatDataset', 'RepeatDataset', 'ClassBalancedDataset', 'WIDERFaceDataset', 'DATASETS', 'PIPELINES', 'build_dataset', 'replace_ImageToTensor', 'get_loading_pipeline', 'NumClassCheckHook', 'CocoPanopticDataset', 'MultiImageMixDataset' ]
"""Callback Handler that writes to a file.""" from __future__ import annotations from pathlib import Path from typing import TYPE_CHECKING, Any, Optional, TextIO, cast from typing_extensions import override from langchain_core.callbacks import BaseCallbackHandler from langchain_core.utils.input import print_text if TYPE_CHECKING: from langchain_core.agents import AgentAction, AgentFinish class FileCallbackHandler(BaseCallbackHandler): """Callback Handler that writes to a file. Parameters: filename: The file to write to. mode: The mode to open the file in. Defaults to "a". color: The color to use for the text. """ def __init__( self, filename: str, mode: str = "a", color: Optional[str] = None ) -> None: """Initialize callback handler. Args: filename: The filename to write to. mode: The mode to open the file in. Defaults to "a". color: The color to use for the text. Defaults to None. """ self.file = cast("TextIO", Path(filename).open(mode, encoding="utf-8")) # noqa: SIM115 self.color = color def __del__(self) -> None: """Destructor to cleanup when done.""" self.file.close() @override def on_chain_start( self, serialized: dict[str, Any], inputs: dict[str, Any], **kwargs: Any ) -> None: """Print out that we are entering a chain. Args: serialized (dict[str, Any]): The serialized chain. inputs (dict[str, Any]): The inputs to the chain. **kwargs (Any): Additional keyword arguments. """ if "name" in kwargs: name = kwargs["name"] elif serialized: name = serialized.get("name", serialized.get("id", ["<unknown>"])[-1]) else: name = "<unknown>" print_text( f"\n\n\033[1m> Entering new {name} chain...\033[0m", end="\n", file=self.file, ) @override def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None: """Print out that we finished a chain. Args: outputs (dict[str, Any]): The outputs of the chain. **kwargs (Any): Additional keyword arguments. """ print_text("\n\033[1m> Finished chain.\033[0m", end="\n", file=self.file) @override def on_agent_action( self, action: AgentAction, color: Optional[str] = None, **kwargs: Any ) -> Any: """Run on agent action. Args: action (AgentAction): The agent action. color (Optional[str], optional): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(action.log, color=color or self.color, file=self.file) @override def on_tool_end( self, output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: """If not the final action, print out observation. Args: output (str): The output to print. color (Optional[str], optional): The color to use for the text. Defaults to None. observation_prefix (Optional[str], optional): The observation prefix. Defaults to None. llm_prefix (Optional[str], optional): The LLM prefix. Defaults to None. **kwargs (Any): Additional keyword arguments. """ if observation_prefix is not None: print_text(f"\n{observation_prefix}", file=self.file) print_text(output, color=color or self.color, file=self.file) if llm_prefix is not None: print_text(f"\n{llm_prefix}", file=self.file) @override def on_text( self, text: str, color: Optional[str] = None, end: str = "", **kwargs: Any ) -> None: """Run when the agent ends. Args: text (str): The text to print. color (Optional[str], optional): The color to use for the text. Defaults to None. end (str, optional): The end character. Defaults to "". **kwargs (Any): Additional keyword arguments. """ print_text(text, color=color or self.color, end=end, file=self.file) @override def on_agent_finish( self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any ) -> None: """Run on the agent end. Args: finish (AgentFinish): The agent finish. color (Optional[str], optional): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(finish.log, color=color or self.color, end="\n", file=self.file)
"""Callback Handler that writes to a file.""" from __future__ import annotations from pathlib import Path from typing import TYPE_CHECKING, Any, Optional, TextIO, cast from typing_extensions import override from langchain_core.callbacks import BaseCallbackHandler from langchain_core.utils.input import print_text if TYPE_CHECKING: from langchain_core.agents import AgentAction, AgentFinish class FileCallbackHandler(BaseCallbackHandler): """Callback Handler that writes to a file. Parameters: filename: The file to write to. mode: The mode to open the file in. Defaults to "a". color: The color to use for the text. """ def __init__( self, filename: str, mode: str = "a", color: Optional[str] = None ) -> None: """Initialize callback handler. Args: filename: The filename to write to. mode: The mode to open the file in. Defaults to "a". color: The color to use for the text. Defaults to None. """ self.file = cast("TextIO", Path(filename).open(mode, encoding="utf-8")) # noqa: SIM115 self.color = color def __del__(self) -> None: """Destructor to cleanup when done.""" self.file.close() @override def on_chain_start( self, serialized: dict[str, Any], inputs: dict[str, Any], **kwargs: Any ) -> None: """Print out that we are entering a chain. Args: serialized (Dict[str, Any]): The serialized chain. inputs (Dict[str, Any]): The inputs to the chain. **kwargs (Any): Additional keyword arguments. """ if "name" in kwargs: name = kwargs["name"] elif serialized: name = serialized.get("name", serialized.get("id", ["<unknown>"])[-1]) else: name = "<unknown>" print_text( f"\n\n\033[1m> Entering new {name} chain...\033[0m", end="\n", file=self.file, ) @override def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None: """Print out that we finished a chain. Args: outputs (Dict[str, Any]): The outputs of the chain. **kwargs (Any): Additional keyword arguments. """ print_text("\n\033[1m> Finished chain.\033[0m", end="\n", file=self.file) @override def on_agent_action( self, action: AgentAction, color: Optional[str] = None, **kwargs: Any ) -> Any: """Run on agent action. Args: action (AgentAction): The agent action. color (Optional[str], optional): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(action.log, color=color or self.color, file=self.file) @override def on_tool_end( self, output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any, ) -> None: """If not the final action, print out observation. Args: output (str): The output to print. color (Optional[str], optional): The color to use for the text. Defaults to None. observation_prefix (Optional[str], optional): The observation prefix. Defaults to None. llm_prefix (Optional[str], optional): The LLM prefix. Defaults to None. **kwargs (Any): Additional keyword arguments. """ if observation_prefix is not None: print_text(f"\n{observation_prefix}", file=self.file) print_text(output, color=color or self.color, file=self.file) if llm_prefix is not None: print_text(f"\n{llm_prefix}", file=self.file) @override def on_text( self, text: str, color: Optional[str] = None, end: str = "", **kwargs: Any ) -> None: """Run when the agent ends. Args: text (str): The text to print. color (Optional[str], optional): The color to use for the text. Defaults to None. end (str, optional): The end character. Defaults to "". **kwargs (Any): Additional keyword arguments. """ print_text(text, color=color or self.color, end=end, file=self.file) @override def on_agent_finish( self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any ) -> None: """Run on the agent end. Args: finish (AgentFinish): The agent finish. color (Optional[str], optional): The color to use for the text. Defaults to None. **kwargs (Any): Additional keyword arguments. """ print_text(finish.log, color=color or self.color, end="\n", file=self.file)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class FastRCNN(TwoStageDetector): """Implementation of `Fast R-CNN <https://arxiv.org/abs/1504.08083>`_""" def __init__(self, backbone, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(FastRCNN, self).__init__( backbone=backbone, neck=neck, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg) def forward_test(self, imgs, img_metas, proposals, **kwargs): """ Args: imgs (List[Tensor]): the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains all images in the batch. img_metas (List[List[dict]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. proposals (List[List[Tensor]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. The Tensor should have a shape Px4, where P is the number of proposals. """ for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]: if not isinstance(var, list): raise TypeError(f'{name} must be a list, but got {type(var)}') num_augs = len(imgs) if num_augs != len(img_metas): raise ValueError(f'num of augmentations ({len(imgs)}) ' f'!= num of image meta ({len(img_metas)})') if num_augs == 1: return self.simple_test(imgs[0], img_metas[0], proposals[0], **kwargs) else: # TODO: support test-time augmentation assert NotImplementedError
from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class FastRCNN(TwoStageDetector): """Implementation of `Fast R-CNN <https://arxiv.org/abs/1504.08083>`_""" def __init__(self, backbone, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(FastRCNN, self).__init__( backbone=backbone, neck=neck, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg) def forward_test(self, imgs, img_metas, proposals, **kwargs): """ Args: imgs (List[Tensor]): the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains all images in the batch. img_metas (List[List[dict]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. proposals (List[List[Tensor]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. The Tensor should have a shape Px4, where P is the number of proposals. """ for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]: if not isinstance(var, list): raise TypeError(f'{name} must be a list, but got {type(var)}') num_augs = len(imgs) if num_augs != len(img_metas): raise ValueError(f'num of augmentations ({len(imgs)}) ' f'!= num of image meta ({len(img_metas)})') if num_augs == 1: return self.simple_test(imgs[0], img_metas[0], proposals[0], **kwargs) else: # TODO: support test-time augmentation assert NotImplementedError
import importlib.machinery import os from torch.hub import _get_torch_home _HOME = os.path.join(_get_torch_home(), "datasets", "vision") _USE_SHARDED_DATASETS = False def _download_file_from_remote_location(fpath: str, url: str) -> None: pass def _is_remote_location_available() -> bool: return False try: from torch.hub import load_state_dict_from_url # noqa: 401 except ImportError: from torch.utils.model_zoo import load_url as load_state_dict_from_url # noqa: 401 def _get_extension_path(lib_name): lib_dir = os.path.dirname(__file__) if os.name == "nt": # Register the main torchvision library location on the default DLL path import ctypes kernel32 = ctypes.WinDLL("kernel32.dll", use_last_error=True) with_load_library_flags = hasattr(kernel32, "AddDllDirectory") prev_error_mode = kernel32.SetErrorMode(0x0001) if with_load_library_flags: kernel32.AddDllDirectory.restype = ctypes.c_void_p os.add_dll_directory(lib_dir) kernel32.SetErrorMode(prev_error_mode) loader_details = (importlib.machinery.ExtensionFileLoader, importlib.machinery.EXTENSION_SUFFIXES) extfinder = importlib.machinery.FileFinder(lib_dir, loader_details) ext_specs = extfinder.find_spec(lib_name) if ext_specs is None: raise ImportError return ext_specs.origin
import importlib.machinery import os from torch.hub import _get_torch_home _HOME = os.path.join(_get_torch_home(), "datasets", "vision") _USE_SHARDED_DATASETS = False def _download_file_from_remote_location(fpath: str, url: str) -> None: pass def _is_remote_location_available() -> bool: return False try: from torch.hub import load_state_dict_from_url # noqa: 401 except ImportError: from torch.utils.model_zoo import load_url as load_state_dict_from_url # noqa: 401 def _get_extension_path(lib_name): lib_dir = os.path.dirname(__file__) if os.name == "nt": # Register the main torchvision library location on the default DLL path import ctypes import sys kernel32 = ctypes.WinDLL("kernel32.dll", use_last_error=True) with_load_library_flags = hasattr(kernel32, "AddDllDirectory") prev_error_mode = kernel32.SetErrorMode(0x0001) if with_load_library_flags: kernel32.AddDllDirectory.restype = ctypes.c_void_p if sys.version_info >= (3, 8): os.add_dll_directory(lib_dir) elif with_load_library_flags: res = kernel32.AddDllDirectory(lib_dir) if res is None: err = ctypes.WinError(ctypes.get_last_error()) err.strerror += f' Error adding "{lib_dir}" to the DLL directories.' raise err kernel32.SetErrorMode(prev_error_mode) loader_details = (importlib.machinery.ExtensionFileLoader, importlib.machinery.EXTENSION_SUFFIXES) extfinder = importlib.machinery.FileFinder(lib_dir, loader_details) ext_specs = extfinder.find_spec(lib_name) if ext_specs is None: raise ImportError return ext_specs.origin
# Copyright (c) OpenMMLab. All rights reserved. from .activations import SiLU from .bbox_nms import fast_nms, multiclass_nms from .brick_wrappers import AdaptiveAvgPool2d, adaptive_avg_pool2d from .conv_upsample import ConvUpsample from .csp_layer import CSPLayer from .dropblock import DropBlock from .ema import ExpMomentumEMA from .inverted_residual import InvertedResidual from .matrix_nms import mask_matrix_nms from .msdeformattn_pixel_decoder import MSDeformAttnPixelDecoder from .normed_predictor import NormedConv2d, NormedLinear from .pixel_decoder import PixelDecoder, TransformerEncoderPixelDecoder from .positional_encoding import (LearnedPositionalEncoding, SinePositionalEncoding, SinePositionalEncoding3D) from .res_layer import ResLayer, SimplifiedBasicBlock from .se_layer import ChannelAttention, DyReLU, SELayer # yapf: disable from .transformer import (MLP, AdaptivePadding, CdnQueryGenerator, ConditionalAttention, ConditionalDetrTransformerDecoder, ConditionalDetrTransformerDecoderLayer, DABDetrTransformerDecoder, DABDetrTransformerDecoderLayer, DABDetrTransformerEncoder, DeformableDetrTransformerDecoder, DeformableDetrTransformerDecoderLayer, DeformableDetrTransformerEncoder, DeformableDetrTransformerEncoderLayer, DetrTransformerDecoder, DetrTransformerDecoderLayer, DetrTransformerEncoder, DetrTransformerEncoderLayer, DinoTransformerDecoder, DynamicConv, Mask2FormerTransformerDecoder, Mask2FormerTransformerDecoderLayer, Mask2FormerTransformerEncoder, PatchEmbed, PatchMerging, coordinate_to_encoding, inverse_sigmoid, nchw_to_nlc, nlc_to_nchw) # yapf: enable __all__ = [ 'fast_nms', 'multiclass_nms', 'mask_matrix_nms', 'DropBlock', 'PixelDecoder', 'TransformerEncoderPixelDecoder', 'MSDeformAttnPixelDecoder', 'ResLayer', 'PatchMerging', 'SinePositionalEncoding', 'LearnedPositionalEncoding', 'DynamicConv', 'SimplifiedBasicBlock', 'NormedLinear', 'NormedConv2d', 'InvertedResidual', 'SELayer', 'ConvUpsample', 'CSPLayer', 'adaptive_avg_pool2d', 'AdaptiveAvgPool2d', 'PatchEmbed', 'nchw_to_nlc', 'nlc_to_nchw', 'DyReLU', 'ExpMomentumEMA', 'inverse_sigmoid', 'ChannelAttention', 'SiLU', 'MLP', 'DetrTransformerEncoderLayer', 'DetrTransformerDecoderLayer', 'DetrTransformerEncoder', 'DetrTransformerDecoder', 'DeformableDetrTransformerEncoder', 'DeformableDetrTransformerDecoder', 'DeformableDetrTransformerEncoderLayer', 'DeformableDetrTransformerDecoderLayer', 'AdaptivePadding', 'coordinate_to_encoding', 'ConditionalAttention', 'DABDetrTransformerDecoderLayer', 'DABDetrTransformerDecoder', 'DABDetrTransformerEncoder', 'ConditionalDetrTransformerDecoder', 'ConditionalDetrTransformerDecoderLayer', 'DinoTransformerDecoder', 'CdnQueryGenerator', 'Mask2FormerTransformerEncoder', 'Mask2FormerTransformerDecoderLayer', 'Mask2FormerTransformerDecoder', 'SinePositionalEncoding3D' ]
# Copyright (c) OpenMMLab. All rights reserved. from .activations import SiLU from .bbox_nms import fast_nms, multiclass_nms from .brick_wrappers import AdaptiveAvgPool2d, adaptive_avg_pool2d from .conv_upsample import ConvUpsample from .csp_layer import CSPLayer from .dropblock import DropBlock from .ema import ExpMomentumEMA from .inverted_residual import InvertedResidual from .matrix_nms import mask_matrix_nms from .msdeformattn_pixel_decoder import MSDeformAttnPixelDecoder from .normed_predictor import NormedConv2d, NormedLinear from .pixel_decoder import PixelDecoder, TransformerEncoderPixelDecoder from .positional_encoding import (LearnedPositionalEncoding, SinePositionalEncoding) from .res_layer import ResLayer, SimplifiedBasicBlock from .se_layer import ChannelAttention, DyReLU, SELayer # yapf: disable from .transformer import (MLP, AdaptivePadding, CdnQueryGenerator, ConditionalAttention, ConditionalDetrTransformerDecoder, ConditionalDetrTransformerDecoderLayer, DABDetrTransformerDecoder, DABDetrTransformerDecoderLayer, DABDetrTransformerEncoder, DeformableDetrTransformerDecoder, DeformableDetrTransformerDecoderLayer, DeformableDetrTransformerEncoder, DeformableDetrTransformerEncoderLayer, DetrTransformerDecoder, DetrTransformerDecoderLayer, DetrTransformerEncoder, DetrTransformerEncoderLayer, DinoTransformerDecoder, DynamicConv, Mask2FormerTransformerDecoder, Mask2FormerTransformerDecoderLayer, Mask2FormerTransformerEncoder, PatchEmbed, PatchMerging, coordinate_to_encoding, inverse_sigmoid, nchw_to_nlc, nlc_to_nchw) # yapf: enable __all__ = [ 'fast_nms', 'multiclass_nms', 'mask_matrix_nms', 'DropBlock', 'PixelDecoder', 'TransformerEncoderPixelDecoder', 'MSDeformAttnPixelDecoder', 'ResLayer', 'PatchMerging', 'SinePositionalEncoding', 'LearnedPositionalEncoding', 'DynamicConv', 'SimplifiedBasicBlock', 'NormedLinear', 'NormedConv2d', 'InvertedResidual', 'SELayer', 'ConvUpsample', 'CSPLayer', 'adaptive_avg_pool2d', 'AdaptiveAvgPool2d', 'PatchEmbed', 'nchw_to_nlc', 'nlc_to_nchw', 'DyReLU', 'ExpMomentumEMA', 'inverse_sigmoid', 'ChannelAttention', 'SiLU', 'MLP', 'DetrTransformerEncoderLayer', 'DetrTransformerDecoderLayer', 'DetrTransformerEncoder', 'DetrTransformerDecoder', 'DeformableDetrTransformerEncoder', 'DeformableDetrTransformerDecoder', 'DeformableDetrTransformerEncoderLayer', 'DeformableDetrTransformerDecoderLayer', 'AdaptivePadding', 'coordinate_to_encoding', 'ConditionalAttention', 'DABDetrTransformerDecoderLayer', 'DABDetrTransformerDecoder', 'DABDetrTransformerEncoder', 'ConditionalDetrTransformerDecoder', 'ConditionalDetrTransformerDecoderLayer', 'DinoTransformerDecoder', 'CdnQueryGenerator', 'Mask2FormerTransformerEncoder', 'Mask2FormerTransformerDecoderLayer', 'Mask2FormerTransformerDecoder' ]
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from .generation import Llama, Dialog from .model import ModelArgs, Transformer from .tokenizer import Tokenizer
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from .generation import Llama from .model import ModelArgs, Transformer from .tokenizer import Tokenizer
from typing import Union, Dict, Any import google.ai.generativelanguage as glm import google.generativeai as genai from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, CompletionResponse, ImageBlock, TextBlock, ) from llama_index.core.multi_modal_llms.base import ChatMessage from llama_index.core.utilities.gemini_utils import ROLES_FROM_GEMINI, ROLES_TO_GEMINI def _error_if_finished_early(candidate: "glm.Candidate") -> None: # type: ignore[name-defined] # only until release if (finish_reason := candidate.finish_reason) > 1: # 1=STOP (normally) reason = finish_reason.name # Safety reasons have more detail, so include that if we can. if finish_reason == 3: # 3=Safety relevant_safety = list( filter( lambda sr: sr.probability > 1, # 1=Negligible candidate.safety_ratings, ) ) reason += f" {relevant_safety}" raise RuntimeError(f"Response was terminated early: {reason}") def completion_from_gemini_response( response: Union[ "genai.types.GenerateContentResponse", "genai.types.AsyncGenerateContentResponse", ], ) -> CompletionResponse: top_candidate = response.candidates[0] _error_if_finished_early(top_candidate) raw = { **(type(top_candidate).to_dict(top_candidate)), # type: ignore **(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore } if response.usage_metadata: raw["usage_metadata"] = type(response.usage_metadata).to_dict( response.usage_metadata ) return CompletionResponse(text=response.text, raw=raw) def chat_from_gemini_response( response: Union[ "genai.types.GenerateContentResponse", "genai.types.AsyncGenerateContentResponse", ], ) -> ChatResponse: top_candidate = response.candidates[0] _error_if_finished_early(top_candidate) raw = { **(type(top_candidate).to_dict(top_candidate)), # type: ignore **(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore } if response.usage_metadata: raw["usage_metadata"] = type(response.usage_metadata).to_dict( response.usage_metadata ) role = ROLES_FROM_GEMINI[top_candidate.content.role] try: # When the response contains only a function call, the library # raises an exception. # The easiest way to detect this is to try access the text attribute and # catch the exception. # https://github.com/google-gemini/generative-ai-python/issues/670 text = response.text except (ValueError, AttributeError): text = None additional_kwargs: Dict[str, Any] = {} for part in response.parts: if fn := part.function_call: if "tool_calls" not in additional_kwargs: additional_kwargs["tool_calls"] = [] additional_kwargs["tool_calls"].append(fn) return ChatResponse( message=ChatMessage( role=role, content=text, additional_kwargs=additional_kwargs ), raw=raw, additional_kwargs=additional_kwargs, ) def chat_message_to_gemini(message: ChatMessage) -> "genai.types.ContentDict": """Convert ChatMessages to Gemini-specific history, including ImageDocuments.""" parts = [] for block in message.blocks: if isinstance(block, TextBlock): if block.text: parts.append({"text": block.text}) elif isinstance(block, ImageBlock): base64_bytes = block.resolve_image(as_base64=False).read() parts.append( { "mime_type": block.image_mimetype, "data": base64_bytes, } ) else: msg = f"Unsupported content block type: {type(block).__name__}" raise ValueError(msg) for tool_call in message.additional_kwargs.get("tool_calls", []): parts.append(tool_call) return { "role": ROLES_TO_GEMINI[message.role], "parts": parts, }
from typing import Union, Dict, Any import google.ai.generativelanguage as glm import google.generativeai as genai from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, CompletionResponse, ImageBlock, TextBlock, ) from llama_index.core.multi_modal_llms.base import ChatMessage from llama_index.core.utilities.gemini_utils import ROLES_FROM_GEMINI, ROLES_TO_GEMINI def _error_if_finished_early(candidate: "glm.Candidate") -> None: # type: ignore[name-defined] # only until release if (finish_reason := candidate.finish_reason) > 1: # 1=STOP (normally) reason = finish_reason.name # Safety reasons have more detail, so include that if we can. if finish_reason == 3: # 3=Safety relevant_safety = list( filter( lambda sr: sr.probability > 1, # 1=Negligible candidate.safety_ratings, ) ) reason += f" {relevant_safety}" raise RuntimeError(f"Response was terminated early: {reason}") def completion_from_gemini_response( response: Union[ "genai.types.GenerateContentResponse", "genai.types.AsyncGenerateContentResponse", ], ) -> CompletionResponse: top_candidate = response.candidates[0] _error_if_finished_early(top_candidate) raw = { **(type(top_candidate).to_dict(top_candidate)), # type: ignore **(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore } if response.usage_metadata: raw["usage_metadata"] = type(response.usage_metadata).to_dict( response.usage_metadata ) return CompletionResponse(text=response.text, raw=raw) def chat_from_gemini_response( response: Union[ "genai.types.GenerateContentResponse", "genai.types.AsyncGenerateContentResponse", ], ) -> ChatResponse: top_candidate = response.candidates[0] _error_if_finished_early(top_candidate) raw = { **(type(top_candidate).to_dict(top_candidate)), # type: ignore **(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore } if response.usage_metadata: raw["usage_metadata"] = type(response.usage_metadata).to_dict( response.usage_metadata ) role = ROLES_FROM_GEMINI[top_candidate.content.role] try: # When the response contains only a function call, the library # raises an exception. # The easiest way to detect this is to try access the text attribute and # catch the exception. # https://github.com/google-gemini/generative-ai-python/issues/670 text = response.text except (ValueError, AttributeError): text = None additional_kwargs: Dict[str, Any] = {} for part in response.parts: if fn := part.function_call: if "tool_calls" not in additional_kwargs: additional_kwargs["tool_calls"] = [] additional_kwargs["tool_calls"].append(fn) return ChatResponse( message=ChatMessage( role=role, content=text, additional_kwargs=additional_kwargs ), raw=raw, additional_kwargs=additional_kwargs, ) def chat_message_to_gemini(message: ChatMessage) -> "genai.types.ContentDict": """Convert ChatMessages to Gemini-specific history, including ImageDocuments.""" parts = [] for block in message.blocks: if isinstance(block, TextBlock): parts.append(block.text) elif isinstance(block, ImageBlock): base64_bytes = block.resolve_image(as_base64=False).read() parts.append( { "mime_type": block.image_mimetype, "data": base64_bytes, } ) else: msg = f"Unsupported content block type: {type(block).__name__}" raise ValueError(msg) return { "role": ROLES_TO_GEMINI[message.role], "parts": parts, }
from __future__ import annotations from collections.abc import Iterable from typing import Any import torch from torch import Tensor, nn from sentence_transformers import util from sentence_transformers.SentenceTransformer import SentenceTransformer class CoSENTLoss(nn.Module): def __init__(self, model: SentenceTransformer, scale: float = 20.0, similarity_fct=util.pairwise_cos_sim) -> None: """ This class implements CoSENT (Cosine Sentence) loss. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(i,j)-s(k,l))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Anecdotal experiments show that this loss function produces a more powerful training signal than :class:`CosineSimilarityLoss`, resulting in faster convergence and a final model with superior performance. Consequently, CoSENTLoss may be used as a drop-in replacement for :class:`CosineSimilarityLoss` in any training script. Args: model: SentenceTransformerModel similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`AnglELoss` is CoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than CoSENTLoss. In our experiments, CoSENTLoss is recommended. Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.CoSENTLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.model = model self.similarity_fct = similarity_fct self.scale = scale def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] scores = self.similarity_fct(embeddings[0], embeddings[1]) scores = scores * self.scale scores = scores[:, None] - scores[None, :] # label matrix indicating which pairs are relevant labels = labels[:, None] < labels[None, :] labels = labels.float() # mask out irrelevant pairs so they are negligible after exp() scores = scores - (1 - labels) * 1e12 # append a zero as e^0 = 1 scores = torch.cat((torch.zeros(1).to(scores.device), scores.view(-1)), dim=0) loss = torch.logsumexp(scores, dim=0) return loss def get_config_dict(self) -> dict[str, Any]: return {"scale": self.scale, "similarity_fct": self.similarity_fct.__name__} @property def citation(self) -> str: return """ @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } """
from __future__ import annotations from collections.abc import Iterable from typing import Any import torch from torch import Tensor, nn from sentence_transformers import util from sentence_transformers.SentenceTransformer import SentenceTransformer class CoSENTLoss(nn.Module): def __init__(self, model: SentenceTransformer, scale: float = 20.0, similarity_fct=util.pairwise_cos_sim) -> None: """ This class implements CoSENT (Cosine Sentence) loss. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Anecdotal experiments show that this loss function produces a more powerful training signal than :class:`CosineSimilarityLoss`, resulting in faster convergence and a final model with superior performance. Consequently, CoSENTLoss may be used as a drop-in replacement for :class:`CosineSimilarityLoss` in any training script. Args: model: SentenceTransformerModel similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`AnglELoss` is CoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than CoSENTLoss. In our experiments, CoSENTLoss is recommended. Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.CoSENTLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.model = model self.similarity_fct = similarity_fct self.scale = scale def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] scores = self.similarity_fct(embeddings[0], embeddings[1]) scores = scores * self.scale scores = scores[:, None] - scores[None, :] # label matrix indicating which pairs are relevant labels = labels[:, None] < labels[None, :] labels = labels.float() # mask out irrelevant pairs so they are negligible after exp() scores = scores - (1 - labels) * 1e12 # append a zero as e^0 = 1 scores = torch.cat((torch.zeros(1).to(scores.device), scores.view(-1)), dim=0) loss = torch.logsumexp(scores, dim=0) return loss def get_config_dict(self) -> dict[str, Any]: return {"scale": self.scale, "similarity_fct": self.similarity_fct.__name__} @property def citation(self) -> str: return """ @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } """
import pytest from llama_index.core.sparse_embeddings.mock_sparse_embedding import MockSparseEmbedding text_embedding_map = { "hello": {0: 0.25}, "world": {1: 0.5}, "foo": {2: 0.75}, } @pytest.fixture() def mock_sparse_embedding(): return MockSparseEmbedding(text_to_embedding=text_embedding_map) def test_embedding_query(mock_sparse_embedding: MockSparseEmbedding): query = "hello" embedding = mock_sparse_embedding.get_text_embedding(query) assert embedding == text_embedding_map[query] def test_embedding_text(mock_sparse_embedding: MockSparseEmbedding): text = "hello" embedding = mock_sparse_embedding.get_text_embedding(text) assert embedding == text_embedding_map[text] def test_embedding_texts(mock_sparse_embedding: MockSparseEmbedding): texts = ["hello", "world", "foo"] embeddings = mock_sparse_embedding.get_text_embedding_batch(texts) assert embeddings == [text_embedding_map[text] for text in texts] def test_embedding_query_not_found(mock_sparse_embedding: MockSparseEmbedding): query = "not_found" embedding = mock_sparse_embedding.get_text_embedding(query) assert embedding == mock_sparse_embedding.default_embedding @pytest.mark.asyncio async def test_embedding_query_async(mock_sparse_embedding: MockSparseEmbedding): query = "hello" embedding = await mock_sparse_embedding.aget_text_embedding(query) assert embedding == text_embedding_map[query] @pytest.mark.asyncio async def test_embedding_text_async(mock_sparse_embedding: MockSparseEmbedding): text = "hello" embedding = await mock_sparse_embedding.aget_text_embedding(text) assert embedding == text_embedding_map[text] @pytest.mark.asyncio async def test_embedding_texts_async(mock_sparse_embedding: MockSparseEmbedding): texts = ["hello", "world", "foo"] embeddings = await mock_sparse_embedding.aget_text_embedding_batch(texts) assert embeddings == [text_embedding_map[text] for text in texts] def test_similarity_search(mock_sparse_embedding: MockSparseEmbedding): embedding1 = mock_sparse_embedding.get_text_embedding("hello") embedding2 = mock_sparse_embedding.get_text_embedding("world") similarity = mock_sparse_embedding.similarity(embedding1, embedding2) assert similarity == 0.0 def test_aggregate_embeddings(mock_sparse_embedding: MockSparseEmbedding): queries = ["hello", "world"] embedding = mock_sparse_embedding.get_agg_embedding_from_queries(queries) assert embedding == {0: 0.125, 1: 0.25} @pytest.mark.asyncio async def test_aggregate_embeddings_async(mock_sparse_embedding: MockSparseEmbedding): queries = ["hello", "world"] embedding = await mock_sparse_embedding.aget_agg_embedding_from_queries(queries) assert embedding == {0: 0.125, 1: 0.25}
import pytest from llama_index.core.sparse_embeddings.mock_sparse_embedding import MockSparseEmbedding text_embedding_map = { "hello": {0: 0.25}, "world": {1: 0.5}, "foo": {2: 0.75}, } @pytest.fixture() def mock_sparse_embedding(): return MockSparseEmbedding(text_to_embedding=text_embedding_map) def test_embedding_query(mock_sparse_embedding: MockSparseEmbedding): query = "hello" embedding = mock_sparse_embedding.get_text_embedding(query) assert embedding == text_embedding_map[query] def test_embedding_text(mock_sparse_embedding: MockSparseEmbedding): text = "hello" embedding = mock_sparse_embedding.get_text_embedding(text) assert embedding == text_embedding_map[text] def test_embedding_texts(mock_sparse_embedding: MockSparseEmbedding): texts = ["hello", "world", "foo"] embeddings = mock_sparse_embedding.get_text_embedding_batch(texts) assert embeddings == [text_embedding_map[text] for text in texts] def test_embedding_query_not_found(mock_sparse_embedding: MockSparseEmbedding): query = "not_found" embedding = mock_sparse_embedding.get_text_embedding(query) assert embedding == mock_sparse_embedding.default_embedding @pytest.mark.asyncio() async def test_embedding_query_async(mock_sparse_embedding: MockSparseEmbedding): query = "hello" embedding = await mock_sparse_embedding.aget_text_embedding(query) assert embedding == text_embedding_map[query] @pytest.mark.asyncio() async def test_embedding_text_async(mock_sparse_embedding: MockSparseEmbedding): text = "hello" embedding = await mock_sparse_embedding.aget_text_embedding(text) assert embedding == text_embedding_map[text] @pytest.mark.asyncio() async def test_embedding_texts_async(mock_sparse_embedding: MockSparseEmbedding): texts = ["hello", "world", "foo"] embeddings = await mock_sparse_embedding.aget_text_embedding_batch(texts) assert embeddings == [text_embedding_map[text] for text in texts] def test_similarity_search(mock_sparse_embedding: MockSparseEmbedding): embedding1 = mock_sparse_embedding.get_text_embedding("hello") embedding2 = mock_sparse_embedding.get_text_embedding("world") similarity = mock_sparse_embedding.similarity(embedding1, embedding2) assert similarity == 0.0 def test_aggregate_embeddings(mock_sparse_embedding: MockSparseEmbedding): queries = ["hello", "world"] embedding = mock_sparse_embedding.get_agg_embedding_from_queries(queries) assert embedding == {0: 0.125, 1: 0.25} @pytest.mark.asyncio() async def test_aggregate_embeddings_async(mock_sparse_embedding: MockSparseEmbedding): queries = ["hello", "world"] embedding = await mock_sparse_embedding.aget_agg_embedding_from_queries(queries) assert embedding == {0: 0.125, 1: 0.25}
import json from collections.abc import Sequence from langchain_core.agents import AgentAction, AgentActionMessageLog from langchain_core.messages import AIMessage, BaseMessage, FunctionMessage def _convert_agent_action_to_messages( agent_action: AgentAction, observation: str ) -> list[BaseMessage]: """Convert an agent action to a message. This code is used to reconstruct the original AI message from the agent action. Args: agent_action: Agent action to convert. Returns: AIMessage or the previous messages plus a FunctionMessage that corresponds to the original tool invocation """ if isinstance(agent_action, AgentActionMessageLog): return [ *list(agent_action.message_log), _create_function_message(agent_action, observation), ] return [AIMessage(content=agent_action.log)] def _create_function_message( agent_action: AgentAction, observation: str ) -> FunctionMessage: """Convert agent action and observation into a function message. Args: agent_action: the tool invocation request from the agent. observation: the result of the tool invocation. Returns: FunctionMessage that corresponds to the original tool invocation. Raises: ValueError: if the observation cannot be converted to a string. """ if not isinstance(observation, str): try: content = json.dumps(observation, ensure_ascii=False) except Exception: content = str(observation) else: content = observation return FunctionMessage( name=agent_action.tool, content=content, ) def format_to_openai_function_messages( intermediate_steps: Sequence[tuple[AgentAction, str]], ) -> list[BaseMessage]: """Convert (AgentAction, tool output) tuples into FunctionMessages. Args: intermediate_steps: Steps the LLM has taken to date, along with observations Returns: list of messages to send to the LLM for the next prediction Raises: ValueError: if the observation cannot be converted to a string. """ messages = [] for agent_action, observation in intermediate_steps: messages.extend(_convert_agent_action_to_messages(agent_action, observation)) return messages # Backwards compatibility format_to_openai_functions = format_to_openai_function_messages
import json from collections.abc import Sequence from langchain_core.agents import AgentAction, AgentActionMessageLog from langchain_core.messages import AIMessage, BaseMessage, FunctionMessage def _convert_agent_action_to_messages( agent_action: AgentAction, observation: str ) -> list[BaseMessage]: """Convert an agent action to a message. This code is used to reconstruct the original AI message from the agent action. Args: agent_action: Agent action to convert. Returns: AIMessage or the previous messages plus a FunctionMessage that corresponds to the original tool invocation """ if isinstance(agent_action, AgentActionMessageLog): return list(agent_action.message_log) + [ _create_function_message(agent_action, observation) ] return [AIMessage(content=agent_action.log)] def _create_function_message( agent_action: AgentAction, observation: str ) -> FunctionMessage: """Convert agent action and observation into a function message. Args: agent_action: the tool invocation request from the agent. observation: the result of the tool invocation. Returns: FunctionMessage that corresponds to the original tool invocation. Raises: ValueError: if the observation cannot be converted to a string. """ if not isinstance(observation, str): try: content = json.dumps(observation, ensure_ascii=False) except Exception: content = str(observation) else: content = observation return FunctionMessage( name=agent_action.tool, content=content, ) def format_to_openai_function_messages( intermediate_steps: Sequence[tuple[AgentAction, str]], ) -> list[BaseMessage]: """Convert (AgentAction, tool output) tuples into FunctionMessages. Args: intermediate_steps: Steps the LLM has taken to date, along with observations Returns: list of messages to send to the LLM for the next prediction Raises: ValueError: if the observation cannot be converted to a string. """ messages = [] for agent_action, observation in intermediate_steps: messages.extend(_convert_agent_action_to_messages(agent_action, observation)) return messages # Backwards compatibility format_to_openai_functions = format_to_openai_function_messages
""" This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It uses AdaptiveLayerLoss with the powerful CoSENTLoss to train models that perform well at output dimensions [768, 512, 256, 128, 64]. It generates sentence embeddings that can be compared using cosine-similarity to measure the similarity. Usage: python adaptive_layer_sts.py OR python adaptive_layer_sts.py pretrained_transformer_model_name """ from torch.utils.data import DataLoader import math from sentence_transformers import SentenceTransformer, LoggingHandler, losses, models, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import InputExample import logging from datetime import datetime import sys import os import gzip import csv #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "distilbert-base-uncased" # Read the dataset train_batch_size = 16 num_epochs = 4 model_save_path = ( "output/adaptive_layer_sts_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False, ) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) else: train_samples.append(inp_example) train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) train_loss = losses.CoSENTLoss(model=model) train_loss = losses.AdaptiveLayerLoss(model, train_loss) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training. We skip evaluation in this example warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=model_save_path, ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test") test_evaluator(model, output_path=model_save_path) # Optionally, save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.save_to_hub(f"{model_name}-sts-adaptive-layer") except Exception: logging.error( "Error uploading model to the Hugging Face Hub. To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({model_save_path!r})` " f"and saving it using `model.save_to_hub('{model_name}-sts-adaptive-layer')`." )
""" This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It uses AdaptiveLayerLoss with the powerful CoSENTLoss to train models that perform well at output dimensions [768, 512, 256, 128, 64]. It generates sentence embeddings that can be compared using cosine-similarity to measure the similarity. Usage: python adaptive_layer_sts.py OR python adaptive_layer_sts.py pretrained_transformer_model_name """ from torch.utils.data import DataLoader import math from sentence_transformers import SentenceTransformer, LoggingHandler, losses, models, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import InputExample import logging from datetime import datetime import sys import os import gzip import csv #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "distilbert-base-uncased" # Read the dataset train_batch_size = 16 num_epochs = 4 model_save_path = ( "output/adaptive_layer_sts_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False, ) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) else: train_samples.append(inp_example) train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) train_loss = losses.CoSENTLoss(model=model) train_loss = losses.AdaptiveLayerLoss(model, train_loss) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training. We skip evaluation in this example warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=model_save_path, ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test") test_evaluator(model, output_path=model_save_path) # Optionally, save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.save_to_hub(f"{model_name}-sts-adaptive-layer") except Exception: logging.error( "Error uploading model to the Hugging Face Hub. To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({model_save_path!r})` " f"and saving it using `model.save_to_hub('{model_name}-sts-adaptive-layer')`." )
# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Video processor class for Video-LLaVA.""" from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ) from ...processing_utils import Unpack, VideosKwargs from ...utils import is_vision_available from ...utils.import_utils import requires from ...video_processing_utils import ( BaseVideoProcessor, ) if is_vision_available(): from ...image_utils import PILImageResampling class VideoLlavaFastVideoProcessorInitKwargs(VideosKwargs): ... @requires(backends=("torchvision",)) class VideoLlavaVideoProcessor(BaseVideoProcessor): resample = PILImageResampling.BICUBIC image_mean = OPENAI_CLIP_MEAN image_std = OPENAI_CLIP_STD size = {"shortest_edge": 224} default_to_square = False crop_size = {"height": 224, "width": 224} do_resize = True do_center_crop = True do_rescale = True do_normalize = True do_convert_rgb = True do_sample_frames = False # Set to False for BC, recommended to set `True` in new models valid_kwargs = VideoLlavaFastVideoProcessorInitKwargs model_input_names = ["pixel_values_videos"] def __init__(self, **kwargs: Unpack[VideoLlavaFastVideoProcessorInitKwargs]): super().__init__(**kwargs) __all__ = ["VideoLlavaVideoProcessor"]
# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Video processor class for Video-LLaVA.""" from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ) from ...processing_utils import Unpack, VideosKwargs from ...utils import is_vision_available from ...utils.import_utils import requires from ...video_processing_utils import ( BaseVideoProcessor, ) if is_vision_available(): from ...image_utils import PILImageResampling class VideoLlavaFastVideoProcessorInitKwargs(VideosKwargs): ... @requires(backends=("torchvision",)) class VideoLlavaVideoProcessor(BaseVideoProcessor): resample = PILImageResampling.BICUBIC image_mean = OPENAI_CLIP_MEAN image_std = OPENAI_CLIP_STD size = {"shortest_edge": 224} default_to_square = False crop_size = {"height": 224, "width": 224} do_resize = True do_center_crop = True do_rescale = True do_normalize = True do_convert_rgb = True valid_kwargs = VideoLlavaFastVideoProcessorInitKwargs model_input_names = ["pixel_values_videos"] def __init__(self, **kwargs: Unpack[VideoLlavaFastVideoProcessorInitKwargs]): super().__init__(**kwargs) __all__ = ["VideoLlavaVideoProcessor"]
"""Init file of LlamaIndex.""" __version__ = "0.12.10" import logging from logging import NullHandler from typing import Callable, Optional try: # Force pants to install eval_type_backport on 3.9 import eval_type_backport # noqa # type: ignore except ImportError: pass # response from llama_index.core.base.response.schema import Response # import global eval handler from llama_index.core.callbacks.global_handlers import set_global_handler from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.embeddings.mock_embed_model import MockEmbedding # indices # loading from llama_index.core.indices import ( ComposableGraph, DocumentSummaryIndex, GPTDocumentSummaryIndex, GPTKeywordTableIndex, GPTListIndex, GPTRAKEKeywordTableIndex, GPTSimpleKeywordTableIndex, GPTTreeIndex, GPTVectorStoreIndex, KeywordTableIndex, KnowledgeGraphIndex, ListIndex, PropertyGraphIndex, RAKEKeywordTableIndex, SimpleKeywordTableIndex, SummaryIndex, TreeIndex, VectorStoreIndex, load_graph_from_storage, load_index_from_storage, load_indices_from_storage, ) # structured from llama_index.core.indices.common.struct_store.base import ( SQLDocumentContextBuilder, ) # prompt helper from llama_index.core.indices.prompt_helper import PromptHelper # prompts from llama_index.core.prompts import ( BasePromptTemplate, ChatPromptTemplate, # backwards compatibility Prompt, PromptTemplate, SelectorPromptTemplate, ) from llama_index.core.readers import SimpleDirectoryReader, download_loader # Response Synthesizer from llama_index.core.response_synthesizers.factory import get_response_synthesizer from llama_index.core.schema import Document, QueryBundle from llama_index.core.service_context import ( ServiceContext, set_global_service_context, ) # global settings from llama_index.core.settings import Settings # storage from llama_index.core.storage.storage_context import StorageContext # sql wrapper from llama_index.core.utilities.sql_wrapper import SQLDatabase # global tokenizer from llama_index.core.utils import get_tokenizer, set_global_tokenizer # best practices for library logging: # https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library logging.getLogger(__name__).addHandler(NullHandler()) __all__ = [ "StorageContext", "ServiceContext", "ComposableGraph", # indices "SummaryIndex", "VectorStoreIndex", "SimpleKeywordTableIndex", "KeywordTableIndex", "RAKEKeywordTableIndex", "TreeIndex", "DocumentSummaryIndex", "KnowledgeGraphIndex", "PropertyGraphIndex", # indices - legacy names "GPTKeywordTableIndex", "GPTKnowledgeGraphIndex", "GPTSimpleKeywordTableIndex", "GPTRAKEKeywordTableIndex", "GPTListIndex", "ListIndex", "GPTTreeIndex", "GPTVectorStoreIndex", "GPTDocumentSummaryIndex", "Prompt", "PromptTemplate", "BasePromptTemplate", "ChatPromptTemplate", "SelectorPromptTemplate", "SummaryPrompt", "TreeInsertPrompt", "TreeSelectPrompt", "TreeSelectMultiplePrompt", "RefinePrompt", "QuestionAnswerPrompt", "KeywordExtractPrompt", "QueryKeywordExtractPrompt", "Response", "Document", "SimpleDirectoryReader", "VellumPredictor", "VellumPromptRegistry", "MockEmbedding", "SQLDatabase", "SQLDocumentContextBuilder", "SQLContextBuilder", "PromptHelper", "IndexStructType", "download_loader", "load_graph_from_storage", "load_index_from_storage", "load_indices_from_storage", "QueryBundle", "get_response_synthesizer", "set_global_service_context", "set_global_handler", "set_global_tokenizer", "get_tokenizer", "Settings", ] # eval global toggle from llama_index.core.callbacks.base_handler import BaseCallbackHandler global_handler: Optional[BaseCallbackHandler] = None # NOTE: keep for backwards compatibility SQLContextBuilder = SQLDocumentContextBuilder # global tokenizer global_tokenizer: Optional[Callable[[str], list]] = None
"""Init file of LlamaIndex.""" __version__ = "0.12.9" import logging from logging import NullHandler from typing import Callable, Optional try: # Force pants to install eval_type_backport on 3.9 import eval_type_backport # noqa # type: ignore except ImportError: pass # response from llama_index.core.base.response.schema import Response # import global eval handler from llama_index.core.callbacks.global_handlers import set_global_handler from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.embeddings.mock_embed_model import MockEmbedding # indices # loading from llama_index.core.indices import ( ComposableGraph, DocumentSummaryIndex, GPTDocumentSummaryIndex, GPTKeywordTableIndex, GPTListIndex, GPTRAKEKeywordTableIndex, GPTSimpleKeywordTableIndex, GPTTreeIndex, GPTVectorStoreIndex, KeywordTableIndex, KnowledgeGraphIndex, ListIndex, PropertyGraphIndex, RAKEKeywordTableIndex, SimpleKeywordTableIndex, SummaryIndex, TreeIndex, VectorStoreIndex, load_graph_from_storage, load_index_from_storage, load_indices_from_storage, ) # structured from llama_index.core.indices.common.struct_store.base import ( SQLDocumentContextBuilder, ) # prompt helper from llama_index.core.indices.prompt_helper import PromptHelper # prompts from llama_index.core.prompts import ( BasePromptTemplate, ChatPromptTemplate, # backwards compatibility Prompt, PromptTemplate, SelectorPromptTemplate, ) from llama_index.core.readers import SimpleDirectoryReader, download_loader # Response Synthesizer from llama_index.core.response_synthesizers.factory import get_response_synthesizer from llama_index.core.schema import Document, QueryBundle from llama_index.core.service_context import ( ServiceContext, set_global_service_context, ) # global settings from llama_index.core.settings import Settings # storage from llama_index.core.storage.storage_context import StorageContext # sql wrapper from llama_index.core.utilities.sql_wrapper import SQLDatabase # global tokenizer from llama_index.core.utils import get_tokenizer, set_global_tokenizer # best practices for library logging: # https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library logging.getLogger(__name__).addHandler(NullHandler()) __all__ = [ "StorageContext", "ServiceContext", "ComposableGraph", # indices "SummaryIndex", "VectorStoreIndex", "SimpleKeywordTableIndex", "KeywordTableIndex", "RAKEKeywordTableIndex", "TreeIndex", "DocumentSummaryIndex", "KnowledgeGraphIndex", "PropertyGraphIndex", # indices - legacy names "GPTKeywordTableIndex", "GPTKnowledgeGraphIndex", "GPTSimpleKeywordTableIndex", "GPTRAKEKeywordTableIndex", "GPTListIndex", "ListIndex", "GPTTreeIndex", "GPTVectorStoreIndex", "GPTDocumentSummaryIndex", "Prompt", "PromptTemplate", "BasePromptTemplate", "ChatPromptTemplate", "SelectorPromptTemplate", "SummaryPrompt", "TreeInsertPrompt", "TreeSelectPrompt", "TreeSelectMultiplePrompt", "RefinePrompt", "QuestionAnswerPrompt", "KeywordExtractPrompt", "QueryKeywordExtractPrompt", "Response", "Document", "SimpleDirectoryReader", "VellumPredictor", "VellumPromptRegistry", "MockEmbedding", "SQLDatabase", "SQLDocumentContextBuilder", "SQLContextBuilder", "PromptHelper", "IndexStructType", "download_loader", "load_graph_from_storage", "load_index_from_storage", "load_indices_from_storage", "QueryBundle", "get_response_synthesizer", "set_global_service_context", "set_global_handler", "set_global_tokenizer", "get_tokenizer", "Settings", ] # eval global toggle from llama_index.core.callbacks.base_handler import BaseCallbackHandler global_handler: Optional[BaseCallbackHandler] = None # NOTE: keep for backwards compatibility SQLContextBuilder = SQLDocumentContextBuilder # global tokenizer global_tokenizer: Optional[Callable[[str], list]] = None
""" This examples trains a CrossEncoder for the Quora Duplicate Questions Detection task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continuous labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_quora_duplicate_questions.py """ import logging import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers.cross_encoder import CrossEncoder, CrossEncoderTrainingArguments from sentence_transformers.cross_encoder.evaluation import CrossEncoderClassificationEvaluator from sentence_transformers.cross_encoder.losses import BinaryCrossEntropyLoss from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) train_batch_size = 64 num_epochs = 1 output_dir = "output/training_ce_quora-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Define our CrossEncoder model. We use distilroberta-base as the base model and set it up to predict 1 label # You can also use other base models, like bert-base-uncased, microsoft/mpnet-base, or rerankers like Alibaba-NLP/gte-reranker-modernbert-base model_name = "distilroberta-base" model = CrossEncoder(model_name, num_labels=1) # 2. Load the Quora duplicates dataset: https://huggingface.co/datasets/sentence-transformers/quora-duplicates logging.info("Read quora-duplicates train dataset") dataset = load_dataset("sentence-transformers/quora-duplicates", "pair-class", split="train") eval_dataset = dataset.select(range(10_000)) test_dataset = dataset.select(range(10_000, 20_000)) train_dataset = dataset.select(range(20_000, len(dataset))) logging.info(train_dataset) logging.info(eval_dataset) logging.info(test_dataset) # 3. Define our training loss, we use one that accepts pairs with a binary label loss = BinaryCrossEntropyLoss(model) # 4. Before and during training, we use CrossEncoderClassificationEvaluator to measure the performance on the dev set dev_cls_evaluator = CrossEncoderClassificationEvaluator( sentence_pairs=list(zip(eval_dataset["sentence1"], eval_dataset["sentence2"])), labels=eval_dataset["label"], name="quora-duplicates-dev", ) dev_cls_evaluator(model) # 5. Define the training arguments short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1] run_name = f"reranker-{short_model_name}-quora-duplicates" args = CrossEncoderTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=500, save_strategy="steps", save_steps=500, save_total_limit=2, logging_steps=100, run_name=run_name, # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = CrossEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_cls_evaluator, ) trainer.train() # 7. Evaluate the final model on test dataset test_cls_evaluator = CrossEncoderClassificationEvaluator( sentence_pairs=list(zip(eval_dataset["sentence1"], eval_dataset["sentence2"])), labels=eval_dataset["label"], name="quora-duplicates-test", ) test_cls_evaluator(model) # 8. Save the final model final_output_dir = f"{output_dir}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." )
""" This examples trains a CrossEncoder for the Quora Duplicate Questions Detection task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continuous labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_quora_duplicate_questions.py """ import logging import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers.cross_encoder import CrossEncoder, CrossEncoderTrainingArguments from sentence_transformers.cross_encoder.evaluation import CEClassificationEvaluator from sentence_transformers.cross_encoder.losses import BinaryCrossEntropyLoss from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) train_batch_size = 64 num_epochs = 1 output_dir = "output/training_ce_quora-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Define our CrossEncoder model. We use distilroberta-base as the base model and set it up to predict 1 label # You can also use other base models, like bert-base-uncased, microsoft/mpnet-base, or rerankers like Alibaba-NLP/gte-reranker-modernbert-base model_name = "distilroberta-base" model = CrossEncoder(model_name, num_labels=1) # 2. Load the Quora duplicates dataset: https://huggingface.co/datasets/sentence-transformers/quora-duplicates logging.info("Read quora-duplicates train dataset") dataset = load_dataset("sentence-transformers/quora-duplicates", "pair-class", split="train") eval_dataset = dataset.select(range(10_000)) test_dataset = dataset.select(range(10_000, 20_000)) train_dataset = dataset.select(range(20_000, len(dataset))) logging.info(train_dataset) logging.info(eval_dataset) logging.info(test_dataset) # 3. Define our training loss, we use one that accepts pairs with a binary label loss = BinaryCrossEntropyLoss(model) # 4. Before and during training, we use CEClassificationEvaluator to measure the performance on the dev set dev_cls_evaluator = CEClassificationEvaluator( sentence_pairs=list(zip(eval_dataset["sentence1"], eval_dataset["sentence2"])), labels=eval_dataset["label"], name="quora-duplicates-dev", ) dev_cls_evaluator(model) # 5. Define the training arguments short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1] run_name = f"reranker-{short_model_name}-quora-duplicates" args = CrossEncoderTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=500, save_strategy="steps", save_steps=500, save_total_limit=2, logging_steps=100, run_name=run_name, # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = CrossEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_cls_evaluator, ) trainer.train() # 7. Evaluate the final model on test dataset test_cls_evaluator = CEClassificationEvaluator( sentence_pairs=list(zip(eval_dataset["sentence1"], eval_dataset["sentence2"])), labels=eval_dataset["label"], name="quora-duplicates-test", ) test_cls_evaluator(model) # 8. Save the final model final_output_dir = f"{output_dir}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." )
from abc import ABC from typing import Any, Optional, Tuple, Type, TypeVar, Union from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.torch_tensor import TorchTensor T = TypeVar('T', bound='Embedding') class EmbeddingMixin(AbstractTensor, ABC): alternative_type: Optional[Type] = None @classmethod def __docarray_validate_getitem__(cls, item: Any) -> Tuple[int]: shape = super().__docarray_validate_getitem__(item) if len(shape) > 1: error_msg = f'`{cls}` can only have a single dimension/axis.' if cls.alternative_type: error_msg += f' Consider using {cls.alternative_type} instead.' raise ValueError(error_msg) return shape class NdArrayEmbedding(NdArray, EmbeddingMixin): alternative_type = NdArray torch_base = type(TorchTensor) # type: Any embedding_base = type(EmbeddingMixin) # type: Any class metaTorchAndEmbedding(torch_base, embedding_base): pass class TorchEmbedding(TorchTensor, EmbeddingMixin, metaclass=metaTorchAndEmbedding): alternative_type = TorchTensor Embedding = Union[NdArrayEmbedding, TorchEmbedding]
from abc import ABC from typing import Any, Optional, Tuple, Type, TypeVar, Union from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.torch_tensor import TorchTensor T = TypeVar('T', bound='Embedding') class EmbeddingMixin(AbstractTensor, ABC): alternative_type: Optional[Type] = None @classmethod def __validate_getitem__(cls, item: Any) -> Tuple[int]: shape = super().__validate_getitem__(item) if len(shape) > 1: error_msg = f'`{cls}` can only have a single dimension/axis.' if cls.alternative_type: error_msg += f' Consider using {cls.alternative_type} instead.' raise ValueError(error_msg) return shape class NdArrayEmbedding(NdArray, EmbeddingMixin): alternative_type = NdArray torch_base = type(TorchTensor) # type: Any embedding_base = type(EmbeddingMixin) # type: Any class metaTorchAndEmbedding(torch_base, embedding_base): pass class TorchEmbedding(TorchTensor, EmbeddingMixin, metaclass=metaTorchAndEmbedding): alternative_type = TorchTensor Embedding = Union[NdArrayEmbedding, TorchEmbedding]
import zlib from typing import Iterator, TextIO def exact_div(x, y): assert x % y == 0 return x // y def str2bool(string): str2val = {"True": True, "False": False} if string in str2val: return str2val[string] else: raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}") def optional_int(string): return None if string == "None" else int(string) def optional_float(string): return None if string == "None" else float(string) def compression_ratio(text) -> float: return len(text) / len(zlib.compress(text.encode("utf-8"))) def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = '.'): assert seconds >= 0, "non-negative timestamp expected" milliseconds = round(seconds * 1000.0) hours = milliseconds // 3_600_000 milliseconds -= hours * 3_600_000 minutes = milliseconds // 60_000 milliseconds -= minutes * 60_000 seconds = milliseconds // 1_000 milliseconds -= seconds * 1_000 hours_marker = f"{hours}:" if always_include_hours or hours > 0 else "" return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" def write_txt(transcript: Iterator[dict], file: TextIO): for segment in transcript: print(segment['text'].strip(), file=file, flush=True) def write_vtt(transcript: Iterator[dict], file: TextIO): print("WEBVTT\n", file=file) for segment in transcript: print( f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n" f"{segment['text'].replace('-->', '->')}\n", file=file, flush=True, ) def write_srt(transcript: Iterator[dict], file: TextIO): """ Write a transcript to a file in SRT format. Example usage: from pathlib import Path from whisper.utils import write_srt result = transcribe(model, audio_path, temperature=temperature, **args) # save SRT audio_basename = Path(audio_path).stem with open(Path(output_dir) / (audio_basename + ".srt"), "w", encoding="utf-8") as srt: write_srt(result["segments"], file=srt) """ for i, segment in enumerate(transcript, start=1): # write srt lines print( f"{i}\n" f"{format_timestamp(segment['start'], always_include_hours=True, decimal_marker=',')} --> " f"{format_timestamp(segment['end'], always_include_hours=True, decimal_marker=',')}\n" f"{segment['text'].strip().replace('-->', '->')}\n", file=file, flush=True, )
import zlib from typing import Iterator, TextIO def exact_div(x, y): assert x % y == 0 return x // y def str2bool(string): str2val = {"True": True, "False": False} if string in str2val: return str2val[string] else: raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}") def optional_int(string): return None if string == "None" else int(string) def optional_float(string): return None if string == "None" else float(string) def compression_ratio(text) -> float: return len(text) / len(zlib.compress(text.encode("utf-8"))) def format_timestamp(seconds: float, always_include_hours: bool = False): assert seconds >= 0, "non-negative timestamp expected" milliseconds = round(seconds * 1000.0) hours = milliseconds // 3_600_000 milliseconds -= hours * 3_600_000 minutes = milliseconds // 60_000 milliseconds -= minutes * 60_000 seconds = milliseconds // 1_000 milliseconds -= seconds * 1_000 hours_marker = f"{hours}:" if always_include_hours or hours > 0 else "" return f"{hours_marker}{minutes:02d}:{seconds:02d}.{milliseconds:03d}" def write_txt(transcript: Iterator[dict], file: TextIO): for segment in transcript: print(segment['text'].strip(), file=file, flush=True) def write_vtt(transcript: Iterator[dict], file: TextIO): print("WEBVTT\n", file=file) for segment in transcript: print( f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n" f"{segment['text'].replace('-->', '->')}\n", file=file, flush=True, ) def write_srt(transcript: Iterator[dict], file: TextIO): """ Write a transcript to a file in SRT format. Example usage: from pathlib import Path from whisper.utils import write_srt result = transcribe(model, audio_path, temperature=temperature, **args) # save SRT audio_basename = Path(audio_path).stem with open(Path(output_dir) / (audio_basename + ".srt"), "w", encoding="utf-8") as srt: write_srt(result["segments"], file=srt) """ for i, segment in enumerate(transcript, start=1): # write srt lines print( f"{i}\n" f"{format_timestamp(segment['start'], always_include_hours=True)} --> " f"{format_timestamp(segment['end'], always_include_hours=True)}\n" f"{segment['text'].strip().replace('-->', '->')}\n", file=file, flush=True, )
"""LLM Compiler agent pack.""" from typing import Any, Dict, List, Optional from llama_index.core.agent import AgentRunner from llama_index.core.callbacks import CallbackManager from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.llms.llm import LLM from llama_index.core.tools.types import BaseTool from llama_index.llms.openai import OpenAI from .step import LLMCompilerAgentWorker class LLMCompilerAgentPack(BaseLlamaPack): """ LLMCompilerAgent pack. Args: tools (List[BaseTool]): List of tools to use. llm (Optional[LLM]): LLM to use. """ def __init__( self, tools: List[BaseTool], llm: Optional[LLM] = None, callback_manager: Optional[CallbackManager] = None, agent_worker_kwargs: Optional[Dict[str, Any]] = None, agent_runner_kwargs: Optional[Dict[str, Any]] = None, ) -> None: """Init params.""" self.llm = llm or OpenAI(model="gpt-4") self.callback_manager = callback_manager or self.llm.callback_manager self.agent_worker = LLMCompilerAgentWorker.from_tools( tools, llm=llm, verbose=True, callback_manager=self.callback_manager, **(agent_worker_kwargs or {}), ) self.agent = AgentRunner( self.agent_worker, callback_manager=self.callback_manager, **(agent_runner_kwargs or {}), ) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "llm": self.llm, "callback_manager": self.callback_manager, "agent_worker": self.agent_worker, "agent": self.agent, } def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.agent.chat(*args, **kwargs)
"""LLM Compiler agent pack.""" from typing import Any, Dict, List, Optional from llama_index.core.agent import AgentRunner from llama_index.core.callbacks import CallbackManager from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.llms.llm import LLM from llama_index.core.tools.types import BaseTool from llama_index.llms.openai import OpenAI from .step import LLMCompilerAgentWorker class LLMCompilerAgentPack(BaseLlamaPack): """ LLMCompilerAgent pack. Args: tools (List[BaseTool]): List of tools to use. llm (Optional[LLM]): LLM to use. """ def __init__( self, tools: List[BaseTool], llm: Optional[LLM] = None, callback_manager: Optional[CallbackManager] = None, agent_worker_kwargs: Optional[Dict[str, Any]] = None, agent_runner_kwargs: Optional[Dict[str, Any]] = None, ) -> None: """Init params.""" self.llm = llm or OpenAI(model="gpt-4") self.callback_manager = callback_manager or self.llm.callback_manager self.agent_worker = LLMCompilerAgentWorker.from_tools( tools, llm=llm, verbose=True, callback_manager=self.callback_manager, **(agent_worker_kwargs or {}) ) self.agent = AgentRunner( self.agent_worker, callback_manager=self.callback_manager, **(agent_runner_kwargs or {}) ) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "llm": self.llm, "callback_manager": self.callback_manager, "agent_worker": self.agent_worker, "agent": self.agent, } def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.agent.chat(*args, **kwargs)
from .gateway import HTTPGateway __all__ = ['HTTPGateway']
from .gateway import HTTPGateway
import importlib import pytest from fastapi import FastAPI from fastapi.testclient import TestClient from fastapi.websockets import WebSocketDisconnect from ...utils import needs_py39, needs_py310 @pytest.fixture( name="app", params=[ "tutorial002", pytest.param("tutorial002_py310", marks=needs_py310), "tutorial002_an", pytest.param("tutorial002_an_py39", marks=needs_py39), pytest.param("tutorial002_an_py310", marks=needs_py310), ], ) def get_app(request: pytest.FixtureRequest): mod = importlib.import_module(f"docs_src.websockets.{request.param}") return mod.app def test_main(app: FastAPI): client = TestClient(app) response = client.get("/") assert response.status_code == 200, response.text assert b"<!DOCTYPE html>" in response.content def test_websocket_with_cookie(app: FastAPI): client = TestClient(app, cookies={"session": "fakesession"}) with pytest.raises(WebSocketDisconnect): with client.websocket_connect("/items/foo/ws") as websocket: message = "Message one" websocket.send_text(message) data = websocket.receive_text() assert data == "Session cookie or query token value is: fakesession" data = websocket.receive_text() assert data == f"Message text was: {message}, for item ID: foo" message = "Message two" websocket.send_text(message) data = websocket.receive_text() assert data == "Session cookie or query token value is: fakesession" data = websocket.receive_text() assert data == f"Message text was: {message}, for item ID: foo" def test_websocket_with_header(app: FastAPI): client = TestClient(app) with pytest.raises(WebSocketDisconnect): with client.websocket_connect("/items/bar/ws?token=some-token") as websocket: message = "Message one" websocket.send_text(message) data = websocket.receive_text() assert data == "Session cookie or query token value is: some-token" data = websocket.receive_text() assert data == f"Message text was: {message}, for item ID: bar" message = "Message two" websocket.send_text(message) data = websocket.receive_text() assert data == "Session cookie or query token value is: some-token" data = websocket.receive_text() assert data == f"Message text was: {message}, for item ID: bar" def test_websocket_with_header_and_query(app: FastAPI): client = TestClient(app) with pytest.raises(WebSocketDisconnect): with client.websocket_connect("/items/2/ws?q=3&token=some-token") as websocket: message = "Message one" websocket.send_text(message) data = websocket.receive_text() assert data == "Session cookie or query token value is: some-token" data = websocket.receive_text() assert data == "Query parameter q is: 3" data = websocket.receive_text() assert data == f"Message text was: {message}, for item ID: 2" message = "Message two" websocket.send_text(message) data = websocket.receive_text() assert data == "Session cookie or query token value is: some-token" data = websocket.receive_text() assert data == "Query parameter q is: 3" data = websocket.receive_text() assert data == f"Message text was: {message}, for item ID: 2" def test_websocket_no_credentials(app: FastAPI): client = TestClient(app) with pytest.raises(WebSocketDisconnect): with client.websocket_connect("/items/foo/ws"): pytest.fail( "did not raise WebSocketDisconnect on __enter__" ) # pragma: no cover def test_websocket_invalid_data(app: FastAPI): client = TestClient(app) with pytest.raises(WebSocketDisconnect): with client.websocket_connect("/items/foo/ws?q=bar&token=some-token"): pytest.fail( "did not raise WebSocketDisconnect on __enter__" ) # pragma: no cover
import pytest from fastapi.testclient import TestClient from fastapi.websockets import WebSocketDisconnect from docs_src.websockets.tutorial002 import app def test_main(): client = TestClient(app) response = client.get("/") assert response.status_code == 200, response.text assert b"<!DOCTYPE html>" in response.content def test_websocket_with_cookie(): client = TestClient(app, cookies={"session": "fakesession"}) with pytest.raises(WebSocketDisconnect): with client.websocket_connect("/items/foo/ws") as websocket: message = "Message one" websocket.send_text(message) data = websocket.receive_text() assert data == "Session cookie or query token value is: fakesession" data = websocket.receive_text() assert data == f"Message text was: {message}, for item ID: foo" message = "Message two" websocket.send_text(message) data = websocket.receive_text() assert data == "Session cookie or query token value is: fakesession" data = websocket.receive_text() assert data == f"Message text was: {message}, for item ID: foo" def test_websocket_with_header(): client = TestClient(app) with pytest.raises(WebSocketDisconnect): with client.websocket_connect("/items/bar/ws?token=some-token") as websocket: message = "Message one" websocket.send_text(message) data = websocket.receive_text() assert data == "Session cookie or query token value is: some-token" data = websocket.receive_text() assert data == f"Message text was: {message}, for item ID: bar" message = "Message two" websocket.send_text(message) data = websocket.receive_text() assert data == "Session cookie or query token value is: some-token" data = websocket.receive_text() assert data == f"Message text was: {message}, for item ID: bar" def test_websocket_with_header_and_query(): client = TestClient(app) with pytest.raises(WebSocketDisconnect): with client.websocket_connect("/items/2/ws?q=3&token=some-token") as websocket: message = "Message one" websocket.send_text(message) data = websocket.receive_text() assert data == "Session cookie or query token value is: some-token" data = websocket.receive_text() assert data == "Query parameter q is: 3" data = websocket.receive_text() assert data == f"Message text was: {message}, for item ID: 2" message = "Message two" websocket.send_text(message) data = websocket.receive_text() assert data == "Session cookie or query token value is: some-token" data = websocket.receive_text() assert data == "Query parameter q is: 3" data = websocket.receive_text() assert data == f"Message text was: {message}, for item ID: 2" def test_websocket_no_credentials(): client = TestClient(app) with pytest.raises(WebSocketDisconnect): with client.websocket_connect("/items/foo/ws"): pytest.fail( "did not raise WebSocketDisconnect on __enter__" ) # pragma: no cover def test_websocket_invalid_data(): client = TestClient(app) with pytest.raises(WebSocketDisconnect): with client.websocket_connect("/items/foo/ws?q=bar&token=some-token"): pytest.fail( "did not raise WebSocketDisconnect on __enter__" ) # pragma: no cover
import torch from torchvision.transforms import autoaugment, transforms from torchvision.transforms.functional import InterpolationMode class ClassificationPresetTrain: def __init__( self, *, crop_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), interpolation=InterpolationMode.BILINEAR, hflip_prob=0.5, auto_augment_policy=None, ra_magnitude=9, augmix_severity=3, random_erase_prob=0.0, backend="pil", ): trans = [] backend = backend.lower() if backend == "tensor": trans.append(transforms.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}") trans.append(transforms.RandomResizedCrop(crop_size, interpolation=interpolation, antialias=True)) if hflip_prob > 0: trans.append(transforms.RandomHorizontalFlip(hflip_prob)) if auto_augment_policy is not None: if auto_augment_policy == "ra": trans.append(autoaugment.RandAugment(interpolation=interpolation, magnitude=ra_magnitude)) elif auto_augment_policy == "ta_wide": trans.append(autoaugment.TrivialAugmentWide(interpolation=interpolation)) elif auto_augment_policy == "augmix": trans.append(autoaugment.AugMix(interpolation=interpolation, severity=augmix_severity)) else: aa_policy = autoaugment.AutoAugmentPolicy(auto_augment_policy) trans.append(autoaugment.AutoAugment(policy=aa_policy, interpolation=interpolation)) if backend == "pil": trans.append(transforms.PILToTensor()) trans.extend( [ transforms.ConvertImageDtype(torch.float), transforms.Normalize(mean=mean, std=std), ] ) if random_erase_prob > 0: trans.append(transforms.RandomErasing(p=random_erase_prob)) self.transforms = transforms.Compose(trans) def __call__(self, img): return self.transforms(img) class ClassificationPresetEval: def __init__( self, *, crop_size, resize_size=256, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), interpolation=InterpolationMode.BILINEAR, backend="pil", ): trans = [] backend = backend.lower() if backend == "tensor": trans.append(transforms.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}") trans += [ transforms.Resize(resize_size, interpolation=interpolation, antialias=True), transforms.CenterCrop(crop_size), ] if backend == "pil": trans.append(transforms.PILToTensor()) trans += [ transforms.ConvertImageDtype(torch.float), transforms.Normalize(mean=mean, std=std), ] self.transforms = transforms.Compose(trans) def __call__(self, img): return self.transforms(img)
import torch from torchvision.transforms import autoaugment, transforms from torchvision.transforms.functional import InterpolationMode class ClassificationPresetTrain: def __init__( self, *, crop_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), interpolation=InterpolationMode.BILINEAR, hflip_prob=0.5, auto_augment_policy=None, ra_magnitude=9, augmix_severity=3, random_erase_prob=0.0, backend="pil", ): trans = [] backend = backend.lower() if backend == "tensor": trans.append(transforms.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}") trans.append(transforms.RandomResizedCrop(crop_size, interpolation=interpolation, antialias=True)) if hflip_prob > 0: trans.append(transforms.RandomHorizontalFlip(hflip_prob)) if auto_augment_policy is not None: if auto_augment_policy == "ra": trans.append(autoaugment.RandAugment(interpolation=interpolation, magnitude=ra_magnitude)) elif auto_augment_policy == "ta_wide": trans.append(autoaugment.TrivialAugmentWide(interpolation=interpolation)) elif auto_augment_policy == "augmix": trans.append(autoaugment.AugMix(interpolation=interpolation, severity=augmix_severity)) else: aa_policy = autoaugment.AutoAugmentPolicy(auto_augment_policy) trans.append(autoaugment.AutoAugment(policy=aa_policy, interpolation=interpolation)) if backend == "pil": trans.append(transforms.PILToTensor()) trans.extend( [ transforms.ConvertImageDtype(torch.float), transforms.Normalize(mean=mean, std=std), ] ) if random_erase_prob > 0: trans.append(transforms.RandomErasing(p=random_erase_prob)) self.transforms = transforms.Compose(trans) def __call__(self, img): return self.transforms(img) class ClassificationPresetEval: def __init__( self, *, crop_size, resize_size=256, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), interpolation=InterpolationMode.BILINEAR, backend="pil", ): trans = [] backend = backend.lower() if backend == "tensor": trans.append(transforms.PILToTensor()) else: raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}") trans += [ transforms.Resize(resize_size, interpolation=interpolation, antialias=True), transforms.CenterCrop(crop_size), ] if backend == "pil": trans.append(transforms.PILToTensor()) trans += [ transforms.ConvertImageDtype(torch.float), transforms.Normalize(mean=mean, std=std), ] self.transforms = transforms.Compose(trans) def __call__(self, img): return self.transforms(img)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.config import ConfigDict from mmengine.structures import InstanceData from mmdet.models.dense_heads import SABLRetinaHead class TestSABLRetinaHead(TestCase): def test_sabl_retina_head(self): """Tests sabl retina head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s), 'pad_shape': (s, s), 'scale_factor': [1, 1], }] train_cfg = ConfigDict( dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) sabl_retina_head = SABLRetinaHead( num_classes=4, in_channels=1, feat_channels=1, stacked_convs=1, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5), train_cfg=train_cfg) # Fcos head expects a multiple levels of features per image feats = ( torch.rand(1, 1, s // stride[1], s // stride[0]) for stride in sabl_retina_head.square_anchor_generator.strides) outs = sabl_retina_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = sabl_retina_head.loss_by_feat( *outs, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but # box loss and centerness loss should be zero empty_cls_loss = sum(empty_gt_losses['loss_cls']).item() empty_box_cls_loss = sum(empty_gt_losses['loss_bbox_cls']).item() empty_box_reg_loss = sum(empty_gt_losses['loss_bbox_reg']).item() self.assertGreater(empty_cls_loss, 0, 'cls loss should be non-zero') self.assertEqual( empty_box_cls_loss, 0, 'there should be no box loss when there are no true boxes') self.assertEqual( empty_box_reg_loss, 0, 'there should be no centerness loss when there are no true boxes') # When truth is non-empty then all cls, box loss and centerness loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = sabl_retina_head.loss_by_feat(*outs, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']).item() onegt_box_cls_loss = sum(one_gt_losses['loss_bbox_cls']).item() onegt_box_reg_loss = sum(one_gt_losses['loss_bbox_reg']).item() self.assertGreater(onegt_cls_loss, 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_cls_loss, 0, 'box loss should be non-zero') self.assertGreater(onegt_box_reg_loss, 0, 'centerness loss should be non-zero') test_cfg = ConfigDict( dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)) # test predict_by_feat sabl_retina_head.predict_by_feat( *outs, batch_img_metas=img_metas, cfg=test_cfg, rescale=True)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.config import ConfigDict from mmengine.data import InstanceData from mmdet.models.dense_heads import SABLRetinaHead class TestSABLRetinaHead(TestCase): def test_sabl_retina_head(self): """Tests sabl retina head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s), 'pad_shape': (s, s), 'scale_factor': [1, 1], }] train_cfg = ConfigDict( dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) sabl_retina_head = SABLRetinaHead( num_classes=4, in_channels=1, feat_channels=1, stacked_convs=1, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5), train_cfg=train_cfg) # Fcos head expects a multiple levels of features per image feats = ( torch.rand(1, 1, s // stride[1], s // stride[0]) for stride in sabl_retina_head.square_anchor_generator.strides) outs = sabl_retina_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = sabl_retina_head.loss_by_feat( *outs, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but # box loss and centerness loss should be zero empty_cls_loss = sum(empty_gt_losses['loss_cls']).item() empty_box_cls_loss = sum(empty_gt_losses['loss_bbox_cls']).item() empty_box_reg_loss = sum(empty_gt_losses['loss_bbox_reg']).item() self.assertGreater(empty_cls_loss, 0, 'cls loss should be non-zero') self.assertEqual( empty_box_cls_loss, 0, 'there should be no box loss when there are no true boxes') self.assertEqual( empty_box_reg_loss, 0, 'there should be no centerness loss when there are no true boxes') # When truth is non-empty then all cls, box loss and centerness loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = sabl_retina_head.loss_by_feat(*outs, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']).item() onegt_box_cls_loss = sum(one_gt_losses['loss_bbox_cls']).item() onegt_box_reg_loss = sum(one_gt_losses['loss_bbox_reg']).item() self.assertGreater(onegt_cls_loss, 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_cls_loss, 0, 'box loss should be non-zero') self.assertGreater(onegt_box_reg_loss, 0, 'centerness loss should be non-zero') test_cfg = ConfigDict( dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)) # test predict_by_feat sabl_retina_head.predict_by_feat( *outs, batch_img_metas=img_metas, cfg=test_cfg, rescale=True)
"""Simple reader that reads weather data from OpenWeatherMap API""" from __future__ import annotations from datetime import datetime from typing import Iterator, Optional, Sequence from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseLoader from langchain_community.utilities.openweathermap import OpenWeatherMapAPIWrapper class WeatherDataLoader(BaseLoader): """Load weather data with `Open Weather Map` API. Reads the forecast & current weather of any location using OpenWeatherMap's free API. Checkout 'https://openweathermap.org/appid' for more on how to generate a free OpenWeatherMap API. """ def __init__( self, client: OpenWeatherMapAPIWrapper, places: Sequence[str], ) -> None: """Initialize with parameters.""" super().__init__() self.client = client self.places = places @classmethod def from_params( cls, places: Sequence[str], *, openweathermap_api_key: Optional[str] = None ) -> WeatherDataLoader: client = OpenWeatherMapAPIWrapper(openweathermap_api_key=openweathermap_api_key) return cls(client, places) def lazy_load( self, ) -> Iterator[Document]: """Lazily load weather data for the given locations.""" for place in self.places: metadata = {"queried_at": datetime.now()} content = self.client.run(place) yield Document(page_content=content, metadata=metadata)
"""Simple reader that reads weather data from OpenWeatherMap API""" from __future__ import annotations from datetime import datetime from typing import Iterator, Optional, Sequence from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseLoader from langchain_community.utilities.openweathermap import OpenWeatherMapAPIWrapper class WeatherDataLoader(BaseLoader): """Load weather data with `Open Weather Map` API. Reads the forecast & current weather of any location using OpenWeatherMap's free API. Checkout 'https://openweathermap.org/appid' for more on how to generate a free OpenWeatherMap API. """ def __init__( self, client: OpenWeatherMapAPIWrapper, places: Sequence[str], ) -> None: """Initialize with parameters.""" super().__init__() self.client = client self.places = places @classmethod def from_params( cls, places: Sequence[str], *, openweathermap_api_key: Optional[str] = None ) -> WeatherDataLoader: client = OpenWeatherMapAPIWrapper(openweathermap_api_key=openweathermap_api_key) # type: ignore[call-arg] return cls(client, places) def lazy_load( self, ) -> Iterator[Document]: """Lazily load weather data for the given locations.""" for place in self.places: metadata = {"queried_at": datetime.now()} content = self.client.run(place) yield Document(page_content=content, metadata=metadata)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. "VPTQ (Vector Post-Training Quantization) integration file" import torch.nn as nn from accelerate import init_empty_weights from vptq import VQuantLinear def replace_with_vptq_linear( model, quantization_config=None, modules_to_not_convert=None, current_key_name=None, has_been_replaced=False, ): """ Public method that recursively replaces the Linear layers of the given model with VPTQ quantized layers. `accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the conversion has been successful or not. Args: model (`torch.nn.Module`): The model to convert, can be any `torch.nn.Module` instance. quantization_config (`VptqConfig`): The quantization config object that contains the quantization parameters. modules_to_not_convert (`list[`str`]`, *optional*, defaults to `["lm_head"]`): Names of the modules to not convert in `VQuantLinear`. In practice we keep the `lm_head` in full precision for numerical stability reasons. current_key_name (`list`, *optional*): A list that contains the current key name. This is used for recursion and should not be passed by the user. has_been_replaced (`bool`, *optional*): A boolean that indicates if the conversion has been successful or not. This is used for recursion and should not be passed by the user. """ modules_to_not_convert = ["lm_head"] if not modules_to_not_convert else modules_to_not_convert for name, module in model.named_children(): if current_key_name is None: current_key_name = [] current_key_name.append(name) layer_name = ".".join(current_key_name) shared_layer_config = quantization_config.shared_layer_config config_for_layers = quantization_config.config_for_layers if ( isinstance(module, nn.Linear) and layer_name not in modules_to_not_convert and ((layer_name in config_for_layers) or (current_key_name[-1] in shared_layer_config)) ): layer_params = config_for_layers.get(layer_name, None) or shared_layer_config.get( current_key_name[-1], None ) with init_empty_weights(): in_features = module.in_features out_features = module.out_features model._modules[name] = VQuantLinear( in_features, out_features, vector_lens=layer_params["vector_lens"], num_centroids=layer_params["num_centroids"], num_res_centroids=layer_params["num_res_centroids"], group_num=layer_params["group_num"], group_size=layer_params["group_size"], outlier_size=layer_params["outlier_size"], indices_as_float=layer_params["indices_as_float"], enable_norm=layer_params["enable_norm"], enable_perm=layer_params["enable_perm"], is_indice_packed=True, enable_proxy_error=False, bias=module.bias is not None, ) has_been_replaced = True # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(False) if len(list(module.children())) > 0: _, has_been_replaced = replace_with_vptq_linear( module, quantization_config=quantization_config, modules_to_not_convert=modules_to_not_convert, current_key_name=current_key_name, has_been_replaced=has_been_replaced, ) # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. "VPTQ (Vector Post-Training Quantization) integration file" import torch.nn as nn from accelerate import init_empty_weights from vptq import VQuantLinear def replace_with_vptq_linear( model, quantization_config=None, modules_to_not_convert=None, current_key_name=None, has_been_replaced=False, ): """ Public method that recursively replaces the Linear layers of the given model with VPTQ quantized layers. `accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the conversion has been successful or not. Args: model (`torch.nn.Module`): The model to convert, can be any `torch.nn.Module` instance. quantization_config (`VptqConfig`): The quantization config object that contains the quantization parameters. modules_to_not_convert (`List[`str`]`, *optional*, defaults to `["lm_head"]`): Names of the modules to not convert in `VQuantLinear`. In practice we keep the `lm_head` in full precision for numerical stability reasons. current_key_name (`list`, *optional*): A list that contains the current key name. This is used for recursion and should not be passed by the user. has_been_replaced (`bool`, *optional*): A boolean that indicates if the conversion has been successful or not. This is used for recursion and should not be passed by the user. """ modules_to_not_convert = ["lm_head"] if not modules_to_not_convert else modules_to_not_convert for name, module in model.named_children(): if current_key_name is None: current_key_name = [] current_key_name.append(name) layer_name = ".".join(current_key_name) shared_layer_config = quantization_config.shared_layer_config config_for_layers = quantization_config.config_for_layers if ( isinstance(module, nn.Linear) and layer_name not in modules_to_not_convert and ((layer_name in config_for_layers) or (current_key_name[-1] in shared_layer_config)) ): layer_params = config_for_layers.get(layer_name, None) or shared_layer_config.get( current_key_name[-1], None ) with init_empty_weights(): in_features = module.in_features out_features = module.out_features model._modules[name] = VQuantLinear( in_features, out_features, vector_lens=layer_params["vector_lens"], num_centroids=layer_params["num_centroids"], num_res_centroids=layer_params["num_res_centroids"], group_num=layer_params["group_num"], group_size=layer_params["group_size"], outlier_size=layer_params["outlier_size"], indices_as_float=layer_params["indices_as_float"], enable_norm=layer_params["enable_norm"], enable_perm=layer_params["enable_perm"], is_indice_packed=True, enable_proxy_error=False, bias=module.bias is not None, ) has_been_replaced = True # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(False) if len(list(module.children())) > 0: _, has_been_replaced = replace_with_vptq_linear( module, quantization_config=quantization_config, modules_to_not_convert=modules_to_not_convert, current_key_name=current_key_name, has_been_replaced=has_been_replaced, ) # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced
""" Feature agglomeration. Base classes and functions for performing feature agglomeration. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import numpy as np from scipy.sparse import issparse from ..base import TransformerMixin from ..utils.validation import check_is_fitted, validate_data ############################################################################### # Mixin class for feature agglomeration. class AgglomerationTransform(TransformerMixin): """ A class for feature agglomeration via the transform interface. """ def transform(self, X): """ Transform a new matrix using the built clustering. Parameters ---------- X : array-like of shape (n_samples, n_features) or \ (n_samples, n_samples) A M by N array of M observations in N dimensions or a length M array of M one-dimensional observations. Returns ------- Y : ndarray of shape (n_samples, n_clusters) or (n_clusters,) The pooled values for each feature cluster. """ check_is_fitted(self) X = validate_data(self, X, reset=False) if self.pooling_func == np.mean and not issparse(X): size = np.bincount(self.labels_) n_samples = X.shape[0] # a fast way to compute the mean of grouped features nX = np.array( [np.bincount(self.labels_, X[i, :]) / size for i in range(n_samples)] ) else: nX = [ self.pooling_func(X[:, self.labels_ == l], axis=1) for l in np.unique(self.labels_) ] nX = np.array(nX).T return nX def inverse_transform(self, X): """ Inverse the transformation and return a vector of size `n_features`. Parameters ---------- X : array-like of shape (n_samples, n_clusters) or (n_clusters,) The values to be assigned to each cluster of samples. Returns ------- X : ndarray of shape (n_samples, n_features) or (n_features,) A vector of size `n_samples` with the values of `Xred` assigned to each of the cluster of samples. """ check_is_fitted(self) unil, inverse = np.unique(self.labels_, return_inverse=True) return X[..., inverse]
""" Feature agglomeration. Base classes and functions for performing feature agglomeration. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import numpy as np from scipy.sparse import issparse from ..base import TransformerMixin from ..utils.validation import check_is_fitted, validate_data ############################################################################### # Mixin class for feature agglomeration. class AgglomerationTransform(TransformerMixin): """ A class for feature agglomeration via the transform interface. """ def transform(self, X): """ Transform a new matrix using the built clustering. Parameters ---------- X : array-like of shape (n_samples, n_features) or \ (n_samples, n_samples) A M by N array of M observations in N dimensions or a length M array of M one-dimensional observations. Returns ------- Y : ndarray of shape (n_samples, n_clusters) or (n_clusters,) The pooled values for each feature cluster. """ check_is_fitted(self) X = validate_data(self, X, reset=False) if self.pooling_func == np.mean and not issparse(X): size = np.bincount(self.labels_) n_samples = X.shape[0] # a fast way to compute the mean of grouped features nX = np.array( [np.bincount(self.labels_, X[i, :]) / size for i in range(n_samples)] ) else: nX = [ self.pooling_func(X[:, self.labels_ == l], axis=1) for l in np.unique(self.labels_) ] nX = np.array(nX).T return nX def inverse_transform(self, X): """ Inverse the transformation and return a vector of size `n_features`. Parameters ---------- X : array-like of shape (n_samples, n_clusters) or (n_clusters,) The values to be assigned to each cluster of samples. Returns ------- X : ndarray of shape (n_samples, n_features) or (n_features,) A vector of size `n_samples` with the values of `Xred` assigned to each of the cluster of samples. """ check_is_fitted(self) unil, inverse = np.unique(self.labels_, return_inverse=True) return X[..., inverse]
from typing import Any, Optional, Sequence from llama_index.core.evaluation.base import BaseEvaluator, EvaluationResult from llama_index.core.prompts.mixin import PromptDictType, PromptMixinType from tonic_validate.metrics.retrieval_precision_metric import ( RetrievalPrecisionMetric, ) from tonic_validate.services.openai_service import OpenAIService class RetrievalPrecisionEvaluator(BaseEvaluator): """ Tonic Validate's retrieval precision metric. The output score is a float between 0.0 and 1.0. See https://docs.tonic.ai/validate/ for more details. Args: openai_service(OpenAIService): The OpenAI service to use. Specifies the chat completion model to use as the LLM evaluator. Defaults to "gpt-4". """ def __init__(self, openai_service: Optional[Any] = None): if openai_service is None: openai_service = OpenAIService("gpt-4") self.openai_service = openai_service self.metric = RetrievalPrecisionMetric() async def aevaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, **kwargs: Any, ) -> EvaluationResult: from tonic_validate.classes.benchmark import BenchmarkItem from tonic_validate.classes.llm_response import LLMResponse benchmark_item = BenchmarkItem(question=query, answer=response) llm_response = LLMResponse( llm_answer=response, llm_context_list=contexts, benchmark_item=benchmark_item, ) score = self.metric.score(llm_response, self.openai_service) return EvaluationResult( query=query, contexts=contexts, response=response, score=score ) def _get_prompts(self) -> PromptDictType: return {} def _get_prompt_modules(self) -> PromptMixinType: return {} def _update_prompts(self, prompts_dict: PromptDictType) -> None: return
from typing import Any, Optional, Sequence from llama_index.core.evaluation.base import BaseEvaluator, EvaluationResult from llama_index.core.prompts.mixin import PromptDictType, PromptMixinType from tonic_validate.metrics.retrieval_precision_metric import ( RetrievalPrecisionMetric, ) from tonic_validate.services.openai_service import OpenAIService class RetrievalPrecisionEvaluator(BaseEvaluator): """ Tonic Validate's retrieval precision metric. The output score is a float between 0.0 and 1.0. See https://docs.tonic.ai/validate/ for more details. Args: openai_service(OpenAIService): The OpenAI service to use. Specifies the chat completion model to use as the LLM evaluator. Defaults to "gpt-4". """ def __init__(self, openai_service: Optional[Any] = None): if openai_service is None: openai_service = OpenAIService("gpt-4") self.openai_service = openai_service self.metric = RetrievalPrecisionMetric() async def aevaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, **kwargs: Any ) -> EvaluationResult: from tonic_validate.classes.benchmark import BenchmarkItem from tonic_validate.classes.llm_response import LLMResponse benchmark_item = BenchmarkItem(question=query, answer=response) llm_response = LLMResponse( llm_answer=response, llm_context_list=contexts, benchmark_item=benchmark_item, ) score = self.metric.score(llm_response, self.openai_service) return EvaluationResult( query=query, contexts=contexts, response=response, score=score ) def _get_prompts(self) -> PromptDictType: return {} def _get_prompt_modules(self) -> PromptMixinType: return {} def _update_prompts(self, prompts_dict: PromptDictType) -> None: return
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import pytest from jina import Document, DocumentArray, Flow from ...audioclip_text import AudioCLIPTextEncoder _EMBEDDING_DIM = 1024 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=AudioCLIPTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', '--volumes=.cache:/workspace/.cache', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from typing import Callable import pytest from jina import Flow from ...audioclip_text import AudioCLIPTextEncoder @pytest.mark.parametrize("request_size", [1, 10, 50, 100]) def test_integration(data_generator: Callable, request_size: int): with Flow(return_results=True).add(uses=AudioCLIPTextEncoder) as flow: resp = flow.post( on="/index", inputs=data_generator(), request_size=request_size, return_results=True, ) assert min(len(resp) * request_size, 50) == 50 for r in resp: for doc in r.docs: assert doc.embedding is not None assert doc.embedding.shape == (1024,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', '--volumes=.cache:/workspace/.cache', ], timeout=30, check=True, )
# Copyright (c) OpenMMLab. All rights reserved. from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, reduce_mean) from .misc import (center_of_mass, flip_tensor, generate_coordinate, mask2ndarray, multi_apply, select_single_mlvl, unmap) __all__ = [ 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply', 'unmap', 'mask2ndarray', 'flip_tensor', 'all_reduce_dict', 'center_of_mass', 'generate_coordinate', 'select_single_mlvl' ]
# Copyright (c) OpenMMLab. All rights reserved. from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, reduce_mean) from .misc import (center_of_mass, flip_tensor, generate_coordinate, mask2ndarray, multi_apply, unmap) __all__ = [ 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply', 'unmap', 'mask2ndarray', 'flip_tensor', 'all_reduce_dict', 'center_of_mass', 'generate_coordinate' ]
""" Opendal file and directory reader. A loader that fetches a file or iterates through a directory on AWS S3 or other compatible service. """ import asyncio import tempfile from pathlib import Path from typing import Any, Dict, List, Optional, Union, cast from llama_index.core.readers import SimpleDirectoryReader from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class OpendalReader(BaseReader): """General reader for any opendal operator.""" def __init__( self, scheme: str, path: str = "/", file_extractor: Optional[Dict[str, Union[str, BaseReader]]] = None, **kwargs, ) -> None: """ Initialize opendal operator, along with credentials if needed. Args: scheme (str): the scheme of the service path (str): the path of the data. If none is provided, this loader will iterate through the entire bucket. If path is endswith `/`, this loader will iterate through the entire dir. Otherwise, this loeader will load the file. file_extractor (Optional[Dict[str, BaseReader]]): A mapping of file extension to a BaseReader class that specifies how to convert that file to text. See `SimpleDirectoryReader` for more details. """ import opendal super().__init__() self.path = path self.file_extractor = file_extractor self.op = opendal.AsyncOperator(scheme, **kwargs) def load_data(self) -> List[Document]: """Load file(s) from OpenDAL.""" with tempfile.TemporaryDirectory() as temp_dir: if not self.path.endswith("/"): asyncio.run(download_file_from_opendal(self.op, temp_dir, self.path)) else: asyncio.run(download_dir_from_opendal(self.op, temp_dir, self.path)) loader = SimpleDirectoryReader(temp_dir, file_extractor=self.file_extractor) return loader.load_data() async def download_file_from_opendal(op: Any, temp_dir: str, path: str) -> str: """Download file from OpenDAL.""" import opendal op = cast(opendal.AsyncOperator, op) suffix = Path(path).suffix filepath = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}" async with op.open_reader(path) as r: with open(filepath, "wb") as w: w.write(await r.read()) return filepath async def download_dir_from_opendal(op: Any, temp_dir: str, dir: str) -> str: """Download directory from opendal.""" import opendal op = cast(opendal.AsyncOperator, op) async for obj in await op.scan(dir): await download_file_from_opendal(op, temp_dir, obj.path)
""" Opendal file and directory reader. A loader that fetches a file or iterates through a directory on AWS S3 or other compatible service. """ import asyncio import tempfile from pathlib import Path from typing import Any, Dict, List, Optional, Union, cast from llama_index.core.readers import SimpleDirectoryReader from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class OpendalReader(BaseReader): """General reader for any opendal operator.""" def __init__( self, scheme: str, path: str = "/", file_extractor: Optional[Dict[str, Union[str, BaseReader]]] = None, **kwargs, ) -> None: """ Initialize opendal operator, along with credentials if needed. Args: scheme (str): the scheme of the service path (str): the path of the data. If none is provided, this loader will iterate through the entire bucket. If path is endswith `/`, this loader will iterate through the entire dir. Otherwise, this loeader will load the file. file_extractor (Optional[Dict[str, BaseReader]]): A mapping of file extension to a BaseReader class that specifies how to convert that file to text. See `SimpleDirectoryReader` for more details. """ import opendal super().__init__() self.path = path self.file_extractor = file_extractor self.op = opendal.AsyncOperator(scheme, **kwargs) def load_data(self) -> List[Document]: """Load file(s) from OpenDAL.""" with tempfile.TemporaryDirectory() as temp_dir: if not self.path.endswith("/"): asyncio.run(download_file_from_opendal(self.op, temp_dir, self.path)) else: asyncio.run(download_dir_from_opendal(self.op, temp_dir, self.path)) loader = SimpleDirectoryReader(temp_dir, file_extractor=self.file_extractor) return loader.load_data() async def download_file_from_opendal(op: Any, temp_dir: str, path: str) -> str: """Download file from OpenDAL.""" import opendal op = cast(opendal.AsyncOperator, op) suffix = Path(path).suffix filepath = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}" async with op.open_reader(path) as r: with open(filepath, "wb") as w: w.write(await r.read()) return filepath async def download_dir_from_opendal(op: Any, temp_dir: str, dir: str) -> str: """Download directory from opendal.""" import opendal op = cast(opendal.AsyncOperator, op) async for obj in await op.scan(dir): await download_file_from_opendal(op, temp_dir, obj.path)
import functools import time from threading import Thread import numpy as np import pytest from jina import Client, Document, Flow from jina.helper import random_port @pytest.mark.slow @pytest.mark.parametrize('protocol', ['websocket', 'http']) def test_gateway_concurrency(protocol, reraise): port = random_port() CONCURRENCY = 2 def _validate(req, start, status_codes, durations, index): end = time.time() durations[index] = end - start status_codes[index] = req.status.code def _request(status_codes, durations, index): with reraise: start = time.time() on_done = functools.partial( _validate, start=start, status_codes=status_codes, durations=durations, index=index, ) results = Client(port=port, protocol=protocol).index( inputs=(Document() for _ in range(256)), _size=16, return_responses=True ) assert len(results) > 0 for result in results: on_done(result) f = Flow(protocol=protocol, port=port).add(replicas=2) with f: threads = [] status_codes = [None] * CONCURRENCY durations = [None] * CONCURRENCY for i in range(CONCURRENCY): t = Thread(target=_request, args=(status_codes, durations, i)) threads.append(t) t.start() for t in threads: t.join() success = status_codes.count(0) failed = len(status_codes) - success print( f'clients: {len(durations)}\n' f'min roundtrip time: {np.min(durations)}\n' f'max roundtrip time: {np.max(durations)}\n' f'mean roundtrip time: {np.mean(durations)}\n' ) assert success >= 1 # In some slow environments, a certain degree of failed # requests will occur. Here we limit the degree of failed # requests. rate = failed / success assert rate < 0.1 def test_grpc_custom_options(): f = Flow(grpc_server_options={'grpc.max_send_message_length': -1}) with f: pass
import functools import time from threading import Thread import numpy as np import pytest from jina import Client, Document, Flow from jina.helper import random_port @pytest.mark.slow @pytest.mark.parametrize('protocol', ['websocket', 'http']) def test_gateway_concurrency(protocol, reraise): port = random_port() CONCURRENCY = 2 def _validate(req, start, status_codes, durations, index): end = time.time() durations[index] = end - start status_codes[index] = req.status.code def _request(status_codes, durations, index): with reraise: start = time.time() on_done = functools.partial( _validate, start=start, status_codes=status_codes, durations=durations, index=index, ) results = Client(port=port, protocol=protocol).index( inputs=(Document() for _ in range(256)), _size=16, return_responses=True ) assert len(results) > 0 for result in results: on_done(result) f = Flow(protocol=protocol, port=port).add(replicas=2) with f: threads = [] status_codes = [None] * CONCURRENCY durations = [None] * CONCURRENCY for i in range(CONCURRENCY): t = Thread(target=_request, args=(status_codes, durations, i)) threads.append(t) t.start() for t in threads: t.join() success = status_codes.count(0) failed = len(status_codes) - success print( f'clients: {len(durations)}\n' f'min roundtrip time: {np.min(durations)}\n' f'max roundtrip time: {np.max(durations)}\n' f'mean roundtrip time: {np.mean(durations)}\n' ) assert success >= 1 # In some slow environments, a certain degree of failed # requests will occur. Here we limit the degree of failed # requests. rate = failed / success assert rate < 0.1 def test_grpc_custom_otpions(): f = Flow(grpc_server_options={'grpc.max_send_message_length': -1}) with f: pass
from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: import botocore def get_aws_service_client( service_name: Optional[str] = None, region_name: Optional[str] = None, aws_access_key_id: Optional[str] = None, aws_secret_access_key: Optional[str] = None, aws_session_token: Optional[str] = None, profile_name: Optional[str] = None, max_retries: Optional[int] = 3, timeout: Optional[float] = 60.0, ) -> "botocore.client.BaseClient": try: import boto3 import botocore except ImportError: raise ImportError( "Please run `pip install boto3 botocore` to use AWS services." ) config = botocore.config.Config( retries={"max_attempts": max_retries or 0, "mode": "standard"}, connect_timeout=timeout, ) try: if not profile_name and aws_access_key_id: session = boto3.Session( aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, aws_session_token=aws_session_token, region_name=region_name, ) client = session.client(service_name, config=config) # type: ignore else: session = boto3.Session(profile_name=profile_name) if region_name: client = session.client( service_name, region_name=region_name, config=config, # type: ignore ) else: client = session.client(service_name, config=config) # type: ignore except Exception as e: raise ValueError("Please verify the provided credentials.") from (e) return client
from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: import botocore def get_aws_service_client( service_name: Optional[str] = None, region_name: Optional[str] = None, aws_access_key_id: Optional[str] = None, aws_secret_access_key: Optional[str] = None, aws_session_token: Optional[str] = None, profile_name: Optional[str] = None, max_retries: Optional[int] = 3, timeout: Optional[float] = 60.0, ) -> "botocore.client.BaseClient": try: import boto3 import botocore except ImportError: raise ImportError( "Please run `pip install boto3 botocore` to use AWS services." ) config = botocore.config.Config( retries={"max_attempts": max_retries or 0, "mode": "standard"}, connect_timeout=timeout, ) try: if not profile_name and aws_access_key_id: session = boto3.Session( aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, aws_session_token=aws_session_token, region_name=region_name, ) client = session.client(service_name, config=config) # type: ignore else: session = boto3.Session(profile_name=profile_name) if region_name: client = session.client( service_name, region_name=region_name, config=config # type: ignore ) else: client = session.client(service_name, config=config) # type: ignore except Exception as e: raise ValueError("Please verify the provided credentials.") from (e) return client
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from typing import Tuple from mmengine.model import BaseModule from torch import Tensor from mmdet.core.utils import (InstanceList, OptConfigType, OptMultiConfig, SampleList) from mmdet.registry import MODELS class BaseRoIHead(BaseModule, metaclass=ABCMeta): """Base class for RoIHeads.""" def __init__(self, bbox_roi_extractor: OptMultiConfig = None, bbox_head: OptMultiConfig = None, mask_roi_extractor: OptMultiConfig = None, mask_head: OptMultiConfig = None, shared_head: OptConfigType = None, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__(init_cfg=init_cfg) self.train_cfg = train_cfg self.test_cfg = test_cfg if shared_head is not None: self.shared_head = MODELS.build(shared_head) if bbox_head is not None: self.init_bbox_head(bbox_roi_extractor, bbox_head) if mask_head is not None: self.init_mask_head(mask_roi_extractor, mask_head) self.init_assigner_sampler() @property def with_bbox(self) -> bool: """bool: whether the RoI head contains a `bbox_head`""" return hasattr(self, 'bbox_head') and self.bbox_head is not None @property def with_mask(self) -> bool: """bool: whether the RoI head contains a `mask_head`""" return hasattr(self, 'mask_head') and self.mask_head is not None @property def with_shared_head(self) -> bool: """bool: whether the RoI head contains a `shared_head`""" return hasattr(self, 'shared_head') and self.shared_head is not None @abstractmethod def init_bbox_head(self, *args, **kwargs): """Initialize ``bbox_head``""" pass @abstractmethod def init_mask_head(self, *args, **kwargs): """Initialize ``mask_head``""" pass @abstractmethod def init_assigner_sampler(self, *args, **kwargs): """Initialize assigner and sampler.""" pass @abstractmethod def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList, batch_data_samples: SampleList, **kwargs): """Perform forward propagation and loss calculation of the roi head on the features of the upstream network.""" def predict(self, x: Tuple[Tensor], rpn_results_list: InstanceList, batch_data_samples: SampleList, rescale: bool = False) -> InstanceList: """Perform forward propagation of the roi head and predict detection results on the features of the upstream network. Args: x (tuple[Tensor]): Features from upstream network. Each has shape (N, C, H, W). rpn_results_list (list[:obj:`InstanceData`]): list of region proposals. batch_data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. rescale (bool): Whether to rescale the results to the original image. Defaults to True. Returns: list[obj:`InstanceData`]: Detection results of each image. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). - masks (Tensor): Has a shape (num_instances, H, W). """ assert self.with_bbox, 'Bbox head must be implemented.' batch_img_metas = [ data_samples.metainfo for data_samples in batch_data_samples ] # TODO: nms_op in mmcv need be enhanced, the bbox result may get # difference when not rescale in bbox_head # If it has the mask branch, the bbox branch does not need # to be scaled to the original image scale, because the mask # branch will scale both bbox and mask at the same time. bbox_rescale = rescale if not self.with_mask else False results_list = self.predict_bbox( x, batch_img_metas, rpn_results_list, rcnn_test_cfg=self.test_cfg, rescale=bbox_rescale) if self.with_mask: results_list = self.predict_mask( x, batch_img_metas, results_list, rescale=rescale) return results_list
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from typing import Tuple from mmengine.model import BaseModule from torch import Tensor from mmdet.core.utils import (InstanceList, OptConfigType, OptMultiConfig, SampleList) from mmdet.registry import MODELS class BaseRoIHead(BaseModule, metaclass=ABCMeta): """Base class for RoIHeads.""" def __init__(self, bbox_roi_extractor: OptMultiConfig = None, bbox_head: OptMultiConfig = None, mask_roi_extractor: OptMultiConfig = None, mask_head: OptMultiConfig = None, shared_head: OptConfigType = None, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__(init_cfg=init_cfg) self.train_cfg = train_cfg self.test_cfg = test_cfg if shared_head is not None: self.shared_head = MODELS.build(shared_head) if bbox_head is not None: self.init_bbox_head(bbox_roi_extractor, bbox_head) if mask_head is not None: self.init_mask_head(mask_roi_extractor, mask_head) self.init_assigner_sampler() @property def with_bbox(self) -> bool: """bool: whether the RoI head contains a `bbox_head`""" return hasattr(self, 'bbox_head') and self.bbox_head is not None @property def with_mask(self) -> bool: """bool: whether the RoI head contains a `mask_head`""" return hasattr(self, 'mask_head') and self.mask_head is not None @property def with_shared_head(self) -> bool: """bool: whether the RoI head contains a `shared_head`""" return hasattr(self, 'shared_head') and self.shared_head is not None @abstractmethod def init_bbox_head(self, *args, **kwargs): """Initialize ``bbox_head``""" pass @abstractmethod def init_mask_head(self, *args, **kwargs): """Initialize ``mask_head``""" pass @abstractmethod def init_assigner_sampler(self, *args, **kwargs): """Initialize assigner and sampler.""" pass @abstractmethod def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList, batch_data_samples: SampleList, **kwargs): """Perform forward propagation and loss calculation of the roi head on the features of the upstream network.""" def predict(self, x: Tuple[Tensor], rpn_results_list: InstanceList, batch_data_samples: SampleList, rescale: bool = False, **kwargs): """Perform forward propagation of the roi head and predict detection results on the features of the upstream network.""" # TODO: Currently not supported def aug_test(self, x, proposal_list, img_metas, rescale=False, **kwargs): """Test function with test time augmentation. If rescale is False, then returned bboxes and masks will fit the scale of imgs[0]. """
from typing import Union from docarray.typing.tensor.embedding.ndarray import NdArrayEmbedding try: import torch # noqa: F401 except ImportError: AnyEmbedding = Union[NdArrayEmbedding] # type: ignore else: from docarray.typing.tensor.embedding.torch import TorchEmbedding # noqa: F401 AnyEmbedding = Union[NdArrayEmbedding, TorchEmbedding] # type: ignore __all__ = ['AnyEmbedding']
from typing import Union from docarray.typing.tensor.embedding.ndarray import NdArrayEmbedding try: import torch # noqa: F401 except ImportError: Embedding = Union[NdArrayEmbedding] # type: ignore else: from docarray.typing.tensor.embedding.torch import TorchEmbedding # noqa: F401 Embedding = Union[NdArrayEmbedding, TorchEmbedding] # type: ignore __all__ = ['Embedding']
import json import time import pytest from opentelemetry.sdk.metrics import MeterProvider from opentelemetry.sdk.metrics.export import InMemoryMetricReader from prometheus_client import Summary from jina.serve.instrumentation import MetricsTimer @pytest.fixture def metrics_setup(): metric_reader = InMemoryMetricReader() meter_provider = MeterProvider(metric_readers=[metric_reader]) meter_provider = meter_provider meter = meter_provider.get_meter('test') yield metric_reader, meter if hasattr(meter_provider, 'force_flush'): metric_reader.force_flush() if hasattr(meter_provider, 'shutdown'): meter_provider.shutdown() def test_timer_context(metrics_setup): def _do_something(): time.sleep(0.1) metric_reader, meter = metrics_setup summary = Summary('time_taken', 'measure something') histogram = meter.create_histogram( name='time_taken', description='measure something' ) with MetricsTimer(summary_metric=summary, histogram=histogram): _do_something() # Prometheus samples summary_count_sample = [ sample.value for sample in list(summary._samples()) if '_count' == sample.name ] assert 1.0 == summary_count_sample[0] # OpenTelemetry samples histogram_metric = json.loads( metric_reader.get_metrics_data() .resource_metrics[0] .scope_metrics[0] .metrics[0] .to_json() ) assert 'time_taken' == histogram_metric['name'] assert 1 == histogram_metric['data']['data_points'][0]['count'] def test_timer_decorator(metrics_setup): metric_reader, meter = metrics_setup summary = Summary('time_taken_decorator', 'measure something') histogram = meter.create_histogram( name='time_taken_decorator', description='measure something' ) @MetricsTimer(summary, histogram) def _sleep(): time.sleep(0.1) _sleep() # Prometheus samples summary_count_sample = [ sample.value for sample in list(summary._samples()) if '_count' == sample.name ] assert 1.0 == summary_count_sample[0] # OpenTelemetry samples histogram_metric = json.loads( metric_reader.get_metrics_data() .resource_metrics[0] .scope_metrics[0] .metrics[0] .to_json() ) assert 'time_taken_decorator' == histogram_metric['name'] assert 1 == histogram_metric['data']['data_points'][0]['count'] assert {} == histogram_metric['data']['data_points'][0]['attributes'] labels = { 'cat': 'meow', 'dog': 'woof', } @MetricsTimer(summary, histogram, labels) def _sleep(): time.sleep(0.1) _sleep() # Prometheus samples summary_count_sample = [ sample.value for sample in list(summary._samples()) if '_count' == sample.name ] assert 2.0 == summary_count_sample[0] # OpenTelemetry samples histogram_metric = json.loads( metric_reader.get_metrics_data() .resource_metrics[0] .scope_metrics[0] .metrics[0] .to_json() ) assert 'time_taken_decorator' == histogram_metric['name'] assert 1 == histogram_metric['data']['data_points'][0]['count'] assert labels == histogram_metric['data']['data_points'][0]['attributes']
import json import time import pytest from opentelemetry.sdk.metrics import MeterProvider from opentelemetry.sdk.metrics.export import InMemoryMetricReader from prometheus_client import Summary from jina.serve.instrumentation import MetricsTimer @pytest.fixture def metrics_setup(): metric_reader = InMemoryMetricReader() meter_provider = MeterProvider(metric_readers=[metric_reader]) meter_provider = meter_provider meter = meter_provider.get_meter('test') yield metric_reader, meter if hasattr(meter_provider, 'force_flush'): metric_reader.force_flush() if hasattr(meter_provider, 'shutdown'): meter_provider.shutdown() def test_timer_context(metrics_setup): def _do_something(): time.sleep(0.1) metric_reader, meter = metrics_setup summary = Summary('time_taken', 'measure something') histogram = meter.create_histogram( name='time_taken', description='measure something' ) with MetricsTimer(summary_metric=summary, histogram=histogram): _do_something() # Prometheus samples summary_count_sample = [ sample.value for sample in list(summary._samples()) if '_count' == sample.name ] assert 1.0 == summary_count_sample[0] # OpenTelemetry samples histogram_metric = json.loads( metric_reader.get_metrics_data() .resource_metrics[0] .scope_metrics[0] .metrics[0] .to_json() ) assert 'time_taken' == histogram_metric['name'] assert 1 == histogram_metric['data']['data_points'][0]['count'] def test_timer_decorator(metrics_setup): metric_reader, meter = metrics_setup summary = Summary('time_taken_decorator', 'measure something') histogram = meter.create_histogram( name='time_taken_decorator', description='measure something' ) @MetricsTimer(summary, histogram) def _sleep(): time.sleep(0.1) _sleep() # Prometheus samples summary_count_sample = [ sample.value for sample in list(summary._samples()) if '_count' == sample.name ] assert 1.0 == summary_count_sample[0] # OpenTelemetry samples histogram_metric = json.loads( metric_reader.get_metrics_data() .resource_metrics[0] .scope_metrics[0] .metrics[0] .to_json() ) assert 'time_taken_decorator' == histogram_metric['name'] assert 1 == histogram_metric['data']['data_points'][0]['count'] assert {} == histogram_metric['data']['data_points'][0]['attributes'] labels = { 'cat': 'meow', 'dog': 'woof', } @MetricsTimer(summary, histogram, labels) def _sleep(): time.sleep(0.1) _sleep() # Prometheus samples summary_count_sample = [ sample.value for sample in list(summary._samples()) if '_count' == sample.name ] assert 2.0 == summary_count_sample[0] # OpenTelemetry samples histogram_metric = json.loads( metric_reader.get_metrics_data() .resource_metrics[0] .scope_metrics[0] .metrics[0] .to_json() ) assert 'time_taken_decorator' == histogram_metric['name'] assert 1 == histogram_metric['data']['data_points'][0]['count'] assert labels == histogram_metric['data']['data_points'][0]['attributes']
from typing import Union from docarray.typing.tensor.ndarray import NdArray try: import torch # noqa: F401 except ImportError: AnyTensor = Union[NdArray] # type: ignore else: from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 AnyTensor = Union[NdArray, TorchTensor] # type: ignore
from typing import Union from docarray.typing.tensor.ndarray import NdArray try: import torch # noqa: F401 except ImportError: Tensor = Union[NdArray] # type: ignore else: from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 Tensor = Union[NdArray, TorchTensor] # type: ignore
# Copyright (c) OpenMMLab. All rights reserved. import warnings import mmcv from ..builder import PIPELINES from .compose import Compose @PIPELINES.register_module() class MultiScaleFlipAug: """Test-time augmentation with multiple scales and flipping. An example configuration is as followed: .. code-block:: img_scale=[(1333, 400), (1333, 800)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ] After MultiScaleFLipAug with above configuration, the results are wrapped into lists of the same length as followed: .. code-block:: dict( img=[...], img_shape=[...], scale=[(1333, 400), (1333, 400), (1333, 800), (1333, 800)] flip=[False, True, False, True] ... ) Args: transforms (list[dict]): Transforms to apply in each augmentation. img_scale (tuple | list[tuple] | None): Images scales for resizing. scale_factor (float | list[float] | None): Scale factors for resizing. flip (bool): Whether apply flip augmentation. Default: False. flip_direction (str | list[str]): Flip augmentation directions, options are "horizontal", "vertical" and "diagonal". If flip_direction is a list, multiple flip augmentations will be applied. It has no effect when flip == False. Default: "horizontal". """ def __init__(self, transforms, img_scale=None, scale_factor=None, flip=False, flip_direction='horizontal'): self.transforms = Compose(transforms) assert (img_scale is None) ^ (scale_factor is None), ( 'Must have but only one variable can be setted') if img_scale is not None: self.img_scale = img_scale if isinstance(img_scale, list) else [img_scale] self.scale_key = 'scale' assert mmcv.is_list_of(self.img_scale, tuple) else: self.img_scale = scale_factor if isinstance( scale_factor, list) else [scale_factor] self.scale_key = 'scale_factor' self.flip = flip self.flip_direction = flip_direction if isinstance( flip_direction, list) else [flip_direction] assert mmcv.is_list_of(self.flip_direction, str) if not self.flip and self.flip_direction != ['horizontal']: warnings.warn( 'flip_direction has no effect when flip is set to False') if (self.flip and not any([t['type'] == 'RandomFlip' for t in transforms])): warnings.warn( 'flip has no effect when RandomFlip is not in transforms') def __call__(self, results): """Call function to apply test time augment transforms on results. Args: results (dict): Result dict contains the data to transform. Returns: dict[str: list]: The augmented data, where each value is wrapped into a list. """ aug_data = [] flip_args = [(False, None)] if self.flip: flip_args += [(True, direction) for direction in self.flip_direction] for scale in self.img_scale: for flip, direction in flip_args: _results = results.copy() _results[self.scale_key] = scale _results['flip'] = flip _results['flip_direction'] = direction data = self.transforms(_results) aug_data.append(data) # list of dict to dict of list aug_data_dict = {key: [] for key in aug_data[0]} for data in aug_data: for key, val in data.items(): aug_data_dict[key].append(val) return aug_data_dict def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(transforms={self.transforms}, ' repr_str += f'img_scale={self.img_scale}, flip={self.flip}, ' repr_str += f'flip_direction={self.flip_direction})' return repr_str
import warnings import mmcv from ..builder import PIPELINES from .compose import Compose @PIPELINES.register_module() class MultiScaleFlipAug: """Test-time augmentation with multiple scales and flipping. An example configuration is as followed: .. code-block:: img_scale=[(1333, 400), (1333, 800)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ] After MultiScaleFLipAug with above configuration, the results are wrapped into lists of the same length as followed: .. code-block:: dict( img=[...], img_shape=[...], scale=[(1333, 400), (1333, 400), (1333, 800), (1333, 800)] flip=[False, True, False, True] ... ) Args: transforms (list[dict]): Transforms to apply in each augmentation. img_scale (tuple | list[tuple] | None): Images scales for resizing. scale_factor (float | list[float] | None): Scale factors for resizing. flip (bool): Whether apply flip augmentation. Default: False. flip_direction (str | list[str]): Flip augmentation directions, options are "horizontal", "vertical" and "diagonal". If flip_direction is a list, multiple flip augmentations will be applied. It has no effect when flip == False. Default: "horizontal". """ def __init__(self, transforms, img_scale=None, scale_factor=None, flip=False, flip_direction='horizontal'): self.transforms = Compose(transforms) assert (img_scale is None) ^ (scale_factor is None), ( 'Must have but only one variable can be setted') if img_scale is not None: self.img_scale = img_scale if isinstance(img_scale, list) else [img_scale] self.scale_key = 'scale' assert mmcv.is_list_of(self.img_scale, tuple) else: self.img_scale = scale_factor if isinstance( scale_factor, list) else [scale_factor] self.scale_key = 'scale_factor' self.flip = flip self.flip_direction = flip_direction if isinstance( flip_direction, list) else [flip_direction] assert mmcv.is_list_of(self.flip_direction, str) if not self.flip and self.flip_direction != ['horizontal']: warnings.warn( 'flip_direction has no effect when flip is set to False') if (self.flip and not any([t['type'] == 'RandomFlip' for t in transforms])): warnings.warn( 'flip has no effect when RandomFlip is not in transforms') def __call__(self, results): """Call function to apply test time augment transforms on results. Args: results (dict): Result dict contains the data to transform. Returns: dict[str: list]: The augmented data, where each value is wrapped into a list. """ aug_data = [] flip_args = [(False, None)] if self.flip: flip_args += [(True, direction) for direction in self.flip_direction] for scale in self.img_scale: for flip, direction in flip_args: _results = results.copy() _results[self.scale_key] = scale _results['flip'] = flip _results['flip_direction'] = direction data = self.transforms(_results) aug_data.append(data) # list of dict to dict of list aug_data_dict = {key: [] for key in aug_data[0]} for data in aug_data: for key, val in data.items(): aug_data_dict[key].append(val) return aug_data_dict def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(transforms={self.transforms}, ' repr_str += f'img_scale={self.img_scale}, flip={self.flip}, ' repr_str += f'flip_direction={self.flip_direction})' return repr_str
from typing import Generator, Optional import pytest from docarray import BaseDoc, DocArray from docarray.documents import ImageDoc from docarray.typing import ImageUrl, NdArray from docarray.utils.map import map_docs, map_docs_batch from tests.units.typing.test_bytes import IMAGE_PATHS N_DOCS = 2 def load_from_doc(d: ImageDoc) -> ImageDoc: if d.url is not None: d.tensor = d.url.load() return d @pytest.fixture() def da(): da = DocArray[ImageDoc]([ImageDoc(url=IMAGE_PATHS['png']) for _ in range(N_DOCS)]) return da @pytest.mark.parametrize('backend', ['thread', 'process']) def test_map(da, backend): for tensor in da.tensor: assert tensor is None docs = list(map_docs(da=da, func=load_from_doc, backend=backend)) assert len(docs) == N_DOCS for doc in docs: assert doc.tensor is not None def test_map_multiprocessing_lambda_func_raise_exception(da): with pytest.raises(ValueError, match='Multiprocessing does not allow'): list(map_docs(da=da, func=lambda x: x, backend='process')) def test_map_multiprocessing_local_func_raise_exception(da): def local_func(x): return x with pytest.raises(ValueError, match='Multiprocessing does not allow'): list(map_docs(da=da, func=local_func, backend='process')) @pytest.mark.parametrize('backend', ['thread', 'process']) def test_check_order(backend): da = DocArray[ImageDoc]([ImageDoc(id=i) for i in range(N_DOCS)]) docs = list(map_docs(da=da, func=load_from_doc, backend=backend)) assert len(docs) == N_DOCS for i, doc in enumerate(docs): assert doc.id == str(i) def load_from_da(da: DocArray) -> DocArray: for doc in da: doc.tensor = doc.url.load() return da class MyImage(BaseDoc): tensor: Optional[NdArray] url: ImageUrl @pytest.mark.slow @pytest.mark.parametrize('n_docs,batch_size', [(10, 5), (10, 8)]) @pytest.mark.parametrize('backend', ['thread', 'process']) def test_map_docs_batch(n_docs, batch_size, backend): da = DocArray[MyImage]([MyImage(url=IMAGE_PATHS['png']) for _ in range(n_docs)]) it = map_docs_batch( da=da, func=load_from_da, batch_size=batch_size, backend=backend ) assert isinstance(it, Generator) for batch in it: assert isinstance(batch, DocArray[MyImage])
from typing import Generator, Optional import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import ImageDoc from docarray.typing import ImageUrl, NdArray from docarray.utils.map import map_docs, map_docs_batch from tests.units.typing.test_bytes import IMAGE_PATHS N_DOCS = 2 def load_from_doc(d: ImageDoc) -> ImageDoc: if d.url is not None: d.tensor = d.url.load() return d @pytest.fixture() def da(): da = DocumentArray[ImageDoc]( [ImageDoc(url=IMAGE_PATHS['png']) for _ in range(N_DOCS)] ) return da @pytest.mark.parametrize('backend', ['thread', 'process']) def test_map(da, backend): for tensor in da.tensor: assert tensor is None docs = list(map_docs(da=da, func=load_from_doc, backend=backend)) assert len(docs) == N_DOCS for doc in docs: assert doc.tensor is not None def test_map_multiprocessing_lambda_func_raise_exception(da): with pytest.raises(ValueError, match='Multiprocessing does not allow'): list(map_docs(da=da, func=lambda x: x, backend='process')) def test_map_multiprocessing_local_func_raise_exception(da): def local_func(x): return x with pytest.raises(ValueError, match='Multiprocessing does not allow'): list(map_docs(da=da, func=local_func, backend='process')) @pytest.mark.parametrize('backend', ['thread', 'process']) def test_check_order(backend): da = DocumentArray[ImageDoc]([ImageDoc(id=i) for i in range(N_DOCS)]) docs = list(map_docs(da=da, func=load_from_doc, backend=backend)) assert len(docs) == N_DOCS for i, doc in enumerate(docs): assert doc.id == str(i) def load_from_da(da: DocumentArray) -> DocumentArray: for doc in da: doc.tensor = doc.url.load() return da class MyImage(BaseDocument): tensor: Optional[NdArray] url: ImageUrl @pytest.mark.slow @pytest.mark.parametrize('n_docs,batch_size', [(10, 5), (10, 8)]) @pytest.mark.parametrize('backend', ['thread', 'process']) def test_map_docs_batch(n_docs, batch_size, backend): da = DocumentArray[MyImage]( [MyImage(url=IMAGE_PATHS['png']) for _ in range(n_docs)] ) it = map_docs_batch( da=da, func=load_from_da, batch_size=batch_size, backend=backend ) assert isinstance(it, Generator) for batch in it: assert isinstance(batch, DocumentArray[MyImage])
import os from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal import xgboost as xgb from xgboost import callback class SupportedTasks(object): TRAIN = "train" class XGBoostTrainer(Executor): def __init__(self, server_address: str, world_size: int, server_cert_path: str, client_key_path: str, client_cert_path: str, use_gpus: bool): """Trainer for federated XGBoost. Args: server_address: address for the gRPC server to connect to. world_size: the number of sites. server_cert_path: the path to the server certificate file. client_key_path: the path to the client key file. client_cert_path: the path to the client certificate file. """ super().__init__() self._server_address = server_address self._world_size = world_size self._server_cert_path = server_cert_path self._client_key_path = client_key_path self._client_cert_path = client_cert_path self._use_gpus = use_gpus def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: self.log_info(fl_ctx, f"Executing {task_name}") try: if task_name == SupportedTasks.TRAIN: self._do_training(fl_ctx) return make_reply(ReturnCode.OK) else: self.log_error(fl_ctx, f"{task_name} is not a supported task.") return make_reply(ReturnCode.TASK_UNKNOWN) except BaseException as e: self.log_exception(fl_ctx, f"Task {task_name} failed. Exception: {e.__str__()}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) def _do_training(self, fl_ctx: FLContext): client_name = fl_ctx.get_prop(FLContextKey.CLIENT_NAME) rank = int(client_name.split('-')[1]) - 1 communicator_env = { 'xgboost_communicator': 'federated', 'federated_server_address': self._server_address, 'federated_world_size': self._world_size, 'federated_rank': rank, 'federated_server_cert': self._server_cert_path, 'federated_client_key': self._client_key_path, 'federated_client_cert': self._client_cert_path } with xgb.collective.CommunicatorContext(**communicator_env): # Load file, file will not be sharded in federated mode. if rank == 0: label = '&label_column=0' else: label = '' dtrain = xgb.DMatrix(f'higgs.train.csv?format=csv{label}', data_split_mode=1) dtest = xgb.DMatrix(f'higgs.test.csv?format=csv{label}', data_split_mode=1) # specify parameters via map param = { 'validate_parameters': True, 'eta': 0.1, 'gamma': 1.0, 'max_depth': 8, 'min_child_weight': 100, 'tree_method': 'approx', 'grow_policy': 'depthwise', 'objective': 'binary:logistic', 'eval_metric': 'auc', } if self._use_gpus: self.log_info(fl_ctx, 'GPUs are not currently supported by vertical federated XGBoost') # specify validations set to watch performance watchlist = [(dtest, "eval"), (dtrain, "train")] # number of boosting rounds num_round = 10 bst = xgb.train(param, dtrain, num_round, evals=watchlist, early_stopping_rounds=2) # Save the model. workspace = fl_ctx.get_prop(FLContextKey.WORKSPACE_OBJECT) run_number = fl_ctx.get_prop(FLContextKey.CURRENT_RUN) run_dir = workspace.get_run_dir(run_number) bst.save_model(os.path.join(run_dir, "higgs.model.federated.vertical.json")) xgb.collective.communicator_print("Finished training\n")
import os from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal import xgboost as xgb from xgboost import callback class SupportedTasks(object): TRAIN = "train" class XGBoostTrainer(Executor): def __init__(self, server_address: str, world_size: int, server_cert_path: str, client_key_path: str, client_cert_path: str): """Trainer for federated XGBoost. Args: server_address: address for the gRPC server to connect to. world_size: the number of sites. server_cert_path: the path to the server certificate file. client_key_path: the path to the client key file. client_cert_path: the path to the client certificate file. """ super().__init__() self._server_address = server_address self._world_size = world_size self._server_cert_path = server_cert_path self._client_key_path = client_key_path self._client_cert_path = client_cert_path def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: self.log_info(fl_ctx, f"Executing {task_name}") try: if task_name == SupportedTasks.TRAIN: self._do_training(fl_ctx) return make_reply(ReturnCode.OK) else: self.log_error(fl_ctx, f"{task_name} is not a supported task.") return make_reply(ReturnCode.TASK_UNKNOWN) except BaseException as e: self.log_exception(fl_ctx, f"Task {task_name} failed. Exception: {e.__str__()}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) def _do_training(self, fl_ctx: FLContext): client_name = fl_ctx.get_prop(FLContextKey.CLIENT_NAME) rank = int(client_name.split('-')[1]) - 1 communicator_env = { 'xgboost_communicator': 'federated', 'federated_server_address': self._server_address, 'federated_world_size': self._world_size, 'federated_rank': rank, 'federated_server_cert': self._server_cert_path, 'federated_client_key': self._client_key_path, 'federated_client_cert': self._client_cert_path } with xgb.collective.CommunicatorContext(**communicator_env): # Load file, file will not be sharded in federated mode. if rank == 0: label = '&label_column=0' else: label = '' dtrain = xgb.DMatrix(f'higgs.train.csv?format=csv{label}', data_split_mode=1) dtest = xgb.DMatrix(f'higgs.test.csv?format=csv{label}', data_split_mode=1) # specify parameters via map param = { 'validate_parameters': True, 'eta': 0.1, 'gamma': 1.0, 'max_depth': 8, 'min_child_weight': 100, 'tree_method': 'approx', 'grow_policy': 'depthwise', 'objective': 'binary:logistic', 'eval_metric': 'auc', } # specify validations set to watch performance watchlist = [(dtest, "eval"), (dtrain, "train")] # number of boosting rounds num_round = 10 bst = xgb.train(param, dtrain, num_round, evals=watchlist, early_stopping_rounds=2) # Save the model. workspace = fl_ctx.get_prop(FLContextKey.WORKSPACE_OBJECT) run_number = fl_ctx.get_prop(FLContextKey.CURRENT_RUN) run_dir = workspace.get_run_dir(run_number) bst.save_model(os.path.join(run_dir, "higgs.model.federated.vertical.json")) xgb.collective.communicator_print("Finished training\n")
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch import torch.nn as nn from mmdet.registry import MODELS from .utils import weighted_loss @mmcv.jit(derivate=True, coderize=True) @weighted_loss def smooth_l1_loss(pred, target, beta=1.0): """Smooth L1 loss. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. beta (float, optional): The threshold in the piecewise function. Defaults to 1.0. Returns: torch.Tensor: Calculated loss """ assert beta > 0 if target.numel() == 0: return pred.sum() * 0 assert pred.size() == target.size() diff = torch.abs(pred - target) loss = torch.where(diff < beta, 0.5 * diff * diff / beta, diff - 0.5 * beta) return loss @mmcv.jit(derivate=True, coderize=True) @weighted_loss def l1_loss(pred, target): """L1 loss. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. Returns: torch.Tensor: Calculated loss """ if target.numel() == 0: return pred.sum() * 0 assert pred.size() == target.size() loss = torch.abs(pred - target) return loss @MODELS.register_module() class SmoothL1Loss(nn.Module): """Smooth L1 loss. Args: beta (float, optional): The threshold in the piecewise function. Defaults to 1.0. reduction (str, optional): The method to reduce the loss. Options are "none", "mean" and "sum". Defaults to "mean". loss_weight (float, optional): The weight of loss. """ def __init__(self, beta=1.0, reduction='mean', loss_weight=1.0): super(SmoothL1Loss, self).__init__() self.beta = beta self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None, **kwargs): """Forward function. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. weight (torch.Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_bbox = self.loss_weight * smooth_l1_loss( pred, target, weight, beta=self.beta, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss_bbox @MODELS.register_module() class L1Loss(nn.Module): """L1 loss. Args: reduction (str, optional): The method to reduce the loss. Options are "none", "mean" and "sum". loss_weight (float, optional): The weight of loss. """ def __init__(self, reduction='mean', loss_weight=1.0): super(L1Loss, self).__init__() self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None): """Forward function. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. weight (torch.Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_bbox = self.loss_weight * l1_loss( pred, target, weight, reduction=reduction, avg_factor=avg_factor) return loss_bbox
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch import torch.nn as nn from ..builder import LOSSES from .utils import weighted_loss @mmcv.jit(derivate=True, coderize=True) @weighted_loss def smooth_l1_loss(pred, target, beta=1.0): """Smooth L1 loss. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. beta (float, optional): The threshold in the piecewise function. Defaults to 1.0. Returns: torch.Tensor: Calculated loss """ assert beta > 0 if target.numel() == 0: return pred.sum() * 0 assert pred.size() == target.size() diff = torch.abs(pred - target) loss = torch.where(diff < beta, 0.5 * diff * diff / beta, diff - 0.5 * beta) return loss @mmcv.jit(derivate=True, coderize=True) @weighted_loss def l1_loss(pred, target): """L1 loss. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. Returns: torch.Tensor: Calculated loss """ if target.numel() == 0: return pred.sum() * 0 assert pred.size() == target.size() loss = torch.abs(pred - target) return loss @LOSSES.register_module() class SmoothL1Loss(nn.Module): """Smooth L1 loss. Args: beta (float, optional): The threshold in the piecewise function. Defaults to 1.0. reduction (str, optional): The method to reduce the loss. Options are "none", "mean" and "sum". Defaults to "mean". loss_weight (float, optional): The weight of loss. """ def __init__(self, beta=1.0, reduction='mean', loss_weight=1.0): super(SmoothL1Loss, self).__init__() self.beta = beta self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None, **kwargs): """Forward function. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. weight (torch.Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_bbox = self.loss_weight * smooth_l1_loss( pred, target, weight, beta=self.beta, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss_bbox @LOSSES.register_module() class L1Loss(nn.Module): """L1 loss. Args: reduction (str, optional): The method to reduce the loss. Options are "none", "mean" and "sum". loss_weight (float, optional): The weight of loss. """ def __init__(self, reduction='mean', loss_weight=1.0): super(L1Loss, self).__init__() self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None): """Forward function. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. weight (torch.Tensor, optional): The weight of loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_bbox = self.loss_weight * l1_loss( pred, target, weight, reduction=reduction, avg_factor=avg_factor) return loss_bbox
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig from .single_stage_instance_seg import SingleStageInstanceSegmentor @MODELS.register_module() class SOLOv2(SingleStageInstanceSegmentor): """`SOLOv2: Dynamic and Fast Instance Segmentation <https://arxiv.org/abs/2003.10152>`_ """ def __init__(self, backbone: ConfigType, neck: OptConfigType = None, bbox_head: OptConfigType = None, mask_head: OptConfigType = None, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, mask_head=mask_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig from ..builder import DETECTORS from .single_stage_instance_seg import SingleStageInstanceSegmentor @DETECTORS.register_module() class SOLOv2(SingleStageInstanceSegmentor): """`SOLOv2: Dynamic and Fast Instance Segmentation <https://arxiv.org/abs/2003.10152>`_ """ def __init__(self, backbone: ConfigType, neck: OptConfigType = None, bbox_head: OptConfigType = None, mask_head: OptConfigType = None, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, mask_head=mask_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
import os from pathlib import Path from torchaudio.datasets import yesno from torchaudio_unittest.common_utils import ( get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase, ) def get_mock_data(root_dir, labels): """ root_dir: path labels: list of labels """ mocked_data = [] base_dir = os.path.join(root_dir, "waves_yesno") os.makedirs(base_dir, exist_ok=True) for i, label in enumerate(labels): filename = f'{"_".join(str(l) for l in label)}.wav' path = os.path.join(base_dir, filename) data = get_whitenoise(sample_rate=8000, duration=6, n_channels=1, dtype="int16", seed=i) save_wav(path, data, 8000) mocked_data.append(normalize_wav(data)) return mocked_data class TestYesNo(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None data = [] labels = [ [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1], [0, 1, 0, 1, 0, 1, 1, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1], ] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.data = get_mock_data(cls.root_dir, cls.labels) def _test_yesno(self, dataset): n_ite = 0 for i, (waveform, sample_rate, label) in enumerate(dataset): expected_label = self.labels[i] expected_data = self.data[i] self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8) assert sample_rate == 8000 assert label == expected_label n_ite += 1 assert n_ite == len(self.data) def test_yesno_str(self): dataset = yesno.YESNO(self.root_dir) self._test_yesno(dataset) def test_yesno_path(self): dataset = yesno.YESNO(Path(self.root_dir)) self._test_yesno(dataset)
import os from pathlib import Path from torchaudio.datasets import yesno from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, get_whitenoise, save_wav, normalize_wav, ) def get_mock_data(root_dir, labels): """ root_dir: path labels: list of labels """ mocked_data = [] base_dir = os.path.join(root_dir, "waves_yesno") os.makedirs(base_dir, exist_ok=True) for i, label in enumerate(labels): filename = f'{"_".join(str(l) for l in label)}.wav' path = os.path.join(base_dir, filename) data = get_whitenoise(sample_rate=8000, duration=6, n_channels=1, dtype="int16", seed=i) save_wav(path, data, 8000) mocked_data.append(normalize_wav(data)) return mocked_data class TestYesNo(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None data = [] labels = [ [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1], [0, 1, 0, 1, 0, 1, 1, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1], ] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.data = get_mock_data(cls.root_dir, cls.labels) def _test_yesno(self, dataset): n_ite = 0 for i, (waveform, sample_rate, label) in enumerate(dataset): expected_label = self.labels[i] expected_data = self.data[i] self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8) assert sample_rate == 8000 assert label == expected_label n_ite += 1 assert n_ite == len(self.data) def test_yesno_str(self): dataset = yesno.YESNO(self.root_dir) self._test_yesno(dataset) def test_yesno_path(self): dataset = yesno.YESNO(Path(self.root_dir)) self._test_yesno(dataset)
"""Test node mapping.""" from llama_index.core import SQLDatabase from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.objects.base_node_mapping import SimpleObjectNodeMapping from llama_index.core.objects.table_node_mapping import ( SQLTableNodeMapping, SQLTableSchema, ) from llama_index.core.objects.tool_node_mapping import SimpleToolNodeMapping from llama_index.core.tools.function_tool import FunctionTool from pytest_mock import MockerFixture class _TestObject(BaseModel): """Test object for node mapping.""" __test__ = False name: str def __hash__(self) -> int: return hash(self.name) def __str__(self) -> str: return f"_TestObject(name='{self.name}')" class _TestSQLDatabase(SQLDatabase): """Test object for SQL Table Schema Node Mapping.""" def __init__(self) -> None: pass def test_simple_object_node_mapping() -> None: """Test simple object node mapping.""" strs = ["a", "b", "c"] node_mapping = SimpleObjectNodeMapping.from_objects(strs) assert node_mapping.to_node("a").text == "a" assert node_mapping.from_node(node_mapping.to_node("a")) == "a" objects = [_TestObject(name="a"), _TestObject(name="b"), _TestObject(name="c")] node_mapping = SimpleObjectNodeMapping.from_objects(objects) assert node_mapping.to_node(objects[0]).text == "_TestObject(name='a')" assert node_mapping.from_node(node_mapping.to_node(objects[0])) == objects[0] def test_simple_object_node_mapping_persist() -> None: """Test persist/load.""" strs = ["a", "b", "c"] node_mapping = SimpleObjectNodeMapping.from_objects(strs) node_mapping.persist() loaded_node_mapping = SimpleObjectNodeMapping.from_persist_dir() assert node_mapping.obj_node_mapping == loaded_node_mapping.obj_node_mapping def test_tool_object_node_mapping() -> None: """Test tool object node mapping.""" tool1 = FunctionTool.from_defaults( fn=lambda x: x, name="test_tool", description="test", ) tool2 = FunctionTool.from_defaults( fn=lambda x, y: x + y, name="test_tool2", description="test" ) node_mapping = SimpleToolNodeMapping.from_objects([tool1, tool2]) # don't need to check for tool fn schema assert ("Tool name: test_tool\nTool description: test\n") in node_mapping.to_node( tool1 ).get_text() assert node_mapping.from_node(node_mapping.to_node(tool1)) == tool1 assert ("Tool name: test_tool2\nTool description: test\n") in node_mapping.to_node( tool2 ).get_text() recon_tool2 = node_mapping.from_node(node_mapping.to_node(tool2)) assert recon_tool2(1, 2).raw_output == 3 tool3 = FunctionTool.from_defaults( fn=lambda x, y: x * y, name="test_tool3", description="test3" ) node_mapping.add_object(tool3) assert ("Tool name: test_tool3\nTool description: test3\n") in node_mapping.to_node( tool3 ).get_text() assert node_mapping.from_node(node_mapping.to_node(tool3)) == tool3 def test_sql_table_node_mapping_to_node(mocker: MockerFixture) -> None: """Test to add node for sql table node mapping object to ensure no 'None' values in metadata output to avoid issues with nulls when upserting to indexes.""" mocker.patch( "llama_index.core.utilities.sql_wrapper.SQLDatabase.get_single_table_info", return_value="", ) # Define two table schemas with one that does not have context str defined table1 = SQLTableSchema(table_name="table1") table2 = SQLTableSchema(table_name="table2", context_str="stuff here") tables = [table1, table2] # Create the mapping sql_database = _TestSQLDatabase() mapping = SQLTableNodeMapping(sql_database) # Create the nodes nodes = [] for table in tables: node = mapping.to_node(table) nodes.append(node) # Make sure no None values are passed in otherwise PineconeVectorStore will fail the upsert for node in nodes: assert None not in node.metadata.values()
"""Test node mapping.""" from llama_index.core import SQLDatabase from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.objects.base_node_mapping import SimpleObjectNodeMapping from llama_index.core.objects.table_node_mapping import ( SQLTableNodeMapping, SQLTableSchema, ) from llama_index.core.objects.tool_node_mapping import SimpleToolNodeMapping from llama_index.core.tools.function_tool import FunctionTool from pytest_mock import MockerFixture class _TestObject(BaseModel): """Test object for node mapping.""" __test__ = False name: str def __hash__(self) -> int: return hash(self.name) def __str__(self) -> str: return f"_TestObject(name='{self.name}')" class _TestSQLDatabase(SQLDatabase): """Test object for SQL Table Schema Node Mapping.""" def __init__(self) -> None: pass def test_simple_object_node_mapping() -> None: """Test simple object node mapping.""" strs = ["a", "b", "c"] node_mapping = SimpleObjectNodeMapping.from_objects(strs) assert node_mapping.to_node("a").text == "a" assert node_mapping.from_node(node_mapping.to_node("a")) == "a" objects = [_TestObject(name="a"), _TestObject(name="b"), _TestObject(name="c")] node_mapping = SimpleObjectNodeMapping.from_objects(objects) assert node_mapping.to_node(objects[0]).text == "_TestObject(name='a')" assert node_mapping.from_node(node_mapping.to_node(objects[0])) == objects[0] def test_simple_object_node_mapping_persist() -> None: """Test persist/load.""" strs = ["a", "b", "c"] node_mapping = SimpleObjectNodeMapping.from_objects(strs) node_mapping.persist() loaded_node_mapping = SimpleObjectNodeMapping.from_persist_dir() assert node_mapping.obj_node_mapping == loaded_node_mapping.obj_node_mapping def test_tool_object_node_mapping() -> None: """Test tool object node mapping.""" tool1 = FunctionTool.from_defaults( fn=lambda x: x, name="test_tool", description="test", ) tool2 = FunctionTool.from_defaults( fn=lambda x, y: x + y, name="test_tool2", description="test" ) node_mapping = SimpleToolNodeMapping.from_objects([tool1, tool2]) # don't need to check for tool fn schema assert ( "Tool name: test_tool\n" "Tool description: test\n" ) in node_mapping.to_node(tool1).get_text() assert node_mapping.from_node(node_mapping.to_node(tool1)) == tool1 assert ( "Tool name: test_tool2\n" "Tool description: test\n" ) in node_mapping.to_node(tool2).get_text() recon_tool2 = node_mapping.from_node(node_mapping.to_node(tool2)) assert recon_tool2(1, 2).raw_output == 3 tool3 = FunctionTool.from_defaults( fn=lambda x, y: x * y, name="test_tool3", description="test3" ) node_mapping.add_object(tool3) assert ( "Tool name: test_tool3\n" "Tool description: test3\n" ) in node_mapping.to_node(tool3).get_text() assert node_mapping.from_node(node_mapping.to_node(tool3)) == tool3 def test_sql_table_node_mapping_to_node(mocker: MockerFixture) -> None: """Test to add node for sql table node mapping object to ensure no 'None' values in metadata output to avoid issues with nulls when upserting to indexes.""" mocker.patch( "llama_index.core.utilities.sql_wrapper.SQLDatabase.get_single_table_info", return_value="", ) # Define two table schemas with one that does not have context str defined table1 = SQLTableSchema(table_name="table1") table2 = SQLTableSchema(table_name="table2", context_str="stuff here") tables = [table1, table2] # Create the mapping sql_database = _TestSQLDatabase() mapping = SQLTableNodeMapping(sql_database) # Create the nodes nodes = [] for table in tables: node = mapping.to_node(table) nodes.append(node) # Make sure no None values are passed in otherwise PineconeVectorStore will fail the upsert for node in nodes: assert None not in node.metadata.values()
""" This file contains deprecated code that can only be used with the old `model.fit`-style Sentence Transformers v2.X training. It exists for backwards compatibility with the `model.old_fit` method, but will be removed in a future version. Nowadays, with Sentence Transformers v3+, it is recommended to use the `SentenceTransformerTrainer` class to train models. See https://www.sbert.net/docs/sentence_transformer/training_overview.html for more information. See this script for more details on how to use the new training API: https://github.com/UKPLab/sentence-transformers/blob/master/examples/sentence_transformer/unsupervised_learning/TSDAE/train_stsb_tsdae.py """ from __future__ import annotations import numpy as np from torch.utils.data import Dataset from transformers.utils.import_utils import NLTK_IMPORT_ERROR, is_nltk_available from sentence_transformers.readers.InputExample import InputExample class DenoisingAutoEncoderDataset(Dataset): """ The DenoisingAutoEncoderDataset returns InputExamples in the format: texts=[noise_fn(sentence), sentence] It is used in combination with the DenoisingAutoEncoderLoss: Here, a decoder tries to re-construct the sentence without noise. Args: sentences: A list of sentences noise_fn: A noise function: Given a string, it returns a string with noise, e.g. deleted words """ def __init__(self, sentences: list[str], noise_fn=lambda s: DenoisingAutoEncoderDataset.delete(s)): if not is_nltk_available(): raise ImportError(NLTK_IMPORT_ERROR.format(self.__class__.__name__)) self.sentences = sentences self.noise_fn = noise_fn def __getitem__(self, item): sent = self.sentences[item] return InputExample(texts=[self.noise_fn(sent), sent]) def __len__(self): return len(self.sentences) # Deletion noise. @staticmethod def delete(text, del_ratio=0.6): from nltk import word_tokenize from nltk.tokenize.treebank import TreebankWordDetokenizer words = word_tokenize(text) n = len(words) if n == 0: return text keep_or_not = np.random.rand(n) > del_ratio if sum(keep_or_not) == 0: keep_or_not[np.random.choice(n)] = True # guarantee that at least one word remains words_processed = TreebankWordDetokenizer().detokenize(np.array(words)[keep_or_not]) return words_processed
""" This file contains deprecated code that can only be used with the old `model.fit`-style Sentence Transformers v2.X training. It exists for backwards compatibility with the `model.old_fit` method, but will be removed in a future version. Nowadays, with Sentence Transformers v3+, it is recommended to use the `SentenceTransformerTrainer` class to train models. See https://www.sbert.net/docs/sentence_transformer/training_overview.html for more information. See this script for more details on how to use the new training API: https://github.com/UKPLab/sentence-transformers/blob/master/examples/unsupervised_learning/TSDAE/train_stsb_tsdae.py """ from __future__ import annotations import numpy as np from torch.utils.data import Dataset from transformers.utils.import_utils import NLTK_IMPORT_ERROR, is_nltk_available from sentence_transformers.readers.InputExample import InputExample class DenoisingAutoEncoderDataset(Dataset): """ The DenoisingAutoEncoderDataset returns InputExamples in the format: texts=[noise_fn(sentence), sentence] It is used in combination with the DenoisingAutoEncoderLoss: Here, a decoder tries to re-construct the sentence without noise. Args: sentences: A list of sentences noise_fn: A noise function: Given a string, it returns a string with noise, e.g. deleted words """ def __init__(self, sentences: list[str], noise_fn=lambda s: DenoisingAutoEncoderDataset.delete(s)): if not is_nltk_available(): raise ImportError(NLTK_IMPORT_ERROR.format(self.__class__.__name__)) self.sentences = sentences self.noise_fn = noise_fn def __getitem__(self, item): sent = self.sentences[item] return InputExample(texts=[self.noise_fn(sent), sent]) def __len__(self): return len(self.sentences) # Deletion noise. @staticmethod def delete(text, del_ratio=0.6): from nltk import word_tokenize from nltk.tokenize.treebank import TreebankWordDetokenizer words = word_tokenize(text) n = len(words) if n == 0: return text keep_or_not = np.random.rand(n) > del_ratio if sum(keep_or_not) == 0: keep_or_not[np.random.choice(n)] = True # guarantee that at least one word remains words_processed = TreebankWordDetokenizer().detokenize(np.array(words)[keep_or_not]) return words_processed
import collections from keras.src import backend from keras.src import testing from keras.src.utils import tracking class TrackingTest(testing.TestCase): def test_untracking_in_tracked_list(self): tracked_variables = [] tracker = tracking.Tracker( { "variables": ( lambda x: isinstance(x, backend.Variable), tracked_variables, ), } ) v1 = backend.Variable(1.0) v2 = backend.Variable(2.0) lst = tracking.TrackedList([], tracker) lst.append(v1) lst.append(None) lst.append(v2) lst.append(0) self.assertLen(tracked_variables, 2) self.assertEqual(tracked_variables[0], v1) self.assertEqual(tracked_variables[1], v2) lst.remove(v1) self.assertLen(lst, 3) self.assertLen(tracked_variables, 1) lst.remove(v2) self.assertLen(lst, 2) self.assertLen(tracked_variables, 0) lst2 = tracking.TrackedList([], tracker) lst2.append(v1) lst2.append(None) lst2.append(v2) lst2.append(0) popped_value = lst2.pop() self.assertEqual(popped_value, 0) self.assertLen(lst2, 3) self.assertLen(tracked_variables, 2) lst2.clear() self.assertLen(lst2, 0) self.assertLen(tracked_variables, 0) lst2.append(v1) lst2.append(v2) del lst2[0] self.assertLen(lst2, 1) self.assertLen(tracked_variables, 1) def test_tuple_tracking(self): tracked_variables = [] tracker = tracking.Tracker( { "variables": ( lambda x: isinstance(x, backend.Variable), tracked_variables, ), } ) v1 = backend.Variable(1.0) v2 = backend.Variable(2.0) tup = (v1, v2) tup = tracker.track(tup) self.assertIsInstance(tup, tuple) self.assertLen(tracked_variables, 2) self.assertEqual(tracked_variables[0], v1) self.assertEqual(tracked_variables[1], v2) def test_namedtuple_tracking(self): tracked_variables = [] tracker = tracking.Tracker( { "variables": ( lambda x: isinstance(x, backend.Variable), tracked_variables, ), } ) v1 = backend.Variable(1.0) v2 = backend.Variable(2.0) nt = collections.namedtuple("NT", ["x", "y"]) tup = nt(x=v1, y=v2) tup = tracker.track(tup) self.assertIsInstance(tup, tuple) self.assertEqual(tup.x, v1) self.assertEqual(tup.y, v2) self.assertLen(tracked_variables, 2) self.assertEqual(tracked_variables[0], v1) self.assertEqual(tracked_variables[1], v2)
import collections from keras.src import backend from keras.src import testing from keras.src.utils import tracking class TrackingTest(testing.TestCase): def test_untracking_in_tracked_list(self): tracked_variables = [] tracker = tracking.Tracker( { "variables": ( lambda x: isinstance(x, backend.Variable), tracked_variables, ), } ) v1 = backend.Variable(1) v2 = backend.Variable(2) lst = tracking.TrackedList([], tracker) lst.append(v1) lst.append(None) lst.append(v2) lst.append(0) self.assertLen(tracked_variables, 2) self.assertEqual(tracked_variables[0], v1) self.assertEqual(tracked_variables[1], v2) lst.remove(v1) self.assertLen(lst, 3) self.assertLen(tracked_variables, 1) lst.remove(v2) self.assertLen(lst, 2) self.assertLen(tracked_variables, 0) lst2 = tracking.TrackedList([], tracker) lst2.append(v1) lst2.append(None) lst2.append(v2) lst2.append(0) popped_value = lst2.pop() self.assertEqual(popped_value, 0) self.assertLen(lst2, 3) self.assertLen(tracked_variables, 2) lst2.clear() self.assertLen(lst2, 0) self.assertLen(tracked_variables, 0) lst2.append(v1) lst2.append(v2) del lst2[0] self.assertLen(lst2, 1) self.assertLen(tracked_variables, 1) def test_tuple_tracking(self): tracked_variables = [] tracker = tracking.Tracker( { "variables": ( lambda x: isinstance(x, backend.Variable), tracked_variables, ), } ) v1 = backend.Variable(1) v2 = backend.Variable(2) tup = (v1, v2) tup = tracker.track(tup) self.assertIsInstance(tup, tuple) self.assertLen(tracked_variables, 2) self.assertEqual(tracked_variables[0], v1) self.assertEqual(tracked_variables[1], v2) def test_namedtuple_tracking(self): tracked_variables = [] tracker = tracking.Tracker( { "variables": ( lambda x: isinstance(x, backend.Variable), tracked_variables, ), } ) v1 = backend.Variable(1) v2 = backend.Variable(2) nt = collections.namedtuple("NT", ["x", "y"]) tup = nt(x=v1, y=v2) tup = tracker.track(tup) self.assertIsInstance(tup, tuple) self.assertEqual(tup.x, v1) self.assertEqual(tup.y, v2) self.assertLen(tracked_variables, 2) self.assertEqual(tracked_variables[0], v1) self.assertEqual(tracked_variables[1], v2)
# Copyright (c) OpenMMLab. All rights reserved. from .empty_cache_hook import EmptyCacheHook from .checkpoint_hook import CheckpointHook from .hook import Hook from .iter_timer_hook import IterTimerHook from .optimizer_hook import OptimizerHook from .param_scheduler_hook import ParamSchedulerHook from .sampler_seed_hook import DistSamplerSeedHook __all__ = [ 'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook', 'OptimizerHook', 'EmptyCacheHook', 'CheckpointHook' ]
# Copyright (c) OpenMMLab. All rights reserved. from .empty_cache_hook import EmptyCacheHook from .hook import Hook from .iter_timer_hook import IterTimerHook from .optimizer_hook import OptimizerHook from .param_scheduler_hook import ParamSchedulerHook from .sampler_seed_hook import DistSamplerSeedHook __all__ = [ 'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook', 'OptimizerHook', 'EmptyCacheHook' ]
_base_ = [ '../_base_/default_runtime.py', '../_base_/datasets/coco_detection.py' ] # model settings model = dict( type='CornerNet', backbone=dict( type='HourglassNet', downsample_times=5, num_stacks=2, stage_channels=[256, 256, 384, 384, 384, 512], stage_blocks=[2, 2, 2, 2, 2, 4], norm_cfg=dict(type='BN', requires_grad=True)), neck=None, bbox_head=dict( type='CornerHead', num_classes=80, in_channels=256, num_feat_levels=2, corner_emb_channels=1, loss_heatmap=dict( type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=1), loss_embedding=dict( type='AssociativeEmbeddingLoss', pull_weight=0.10, push_weight=0.10), loss_offset=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1)), # training and testing settings train_cfg=None, test_cfg=dict( corner_topk=100, local_maximum_kernel=3, distance_threshold=0.5, score_thr=0.05, max_per_img=100, nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian'))) # data settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='RandomCenterCropPad', crop_size=(511, 511), ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3), test_mode=False, test_pad_mode=None, **img_norm_cfg), dict(type='Resize', img_scale=(511, 511), keep_ratio=False), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict( type='MultiScaleFlipAug', scale_factor=1.0, flip=True, transforms=[ dict(type='Resize'), dict( type='RandomCenterCropPad', crop_size=None, ratios=None, border=None, test_mode=True, test_pad_mode=['logical_or', 127], **img_norm_cfg), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict( type='Collect', keys=['img'], meta_keys=('filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'img_norm_cfg', 'border')), ]) ] data = dict( samples_per_gpu=3, workers_per_gpu=3, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='Adam', lr=0.0005) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[180]) runner = dict(type='EpochBasedRunner', max_epochs=210) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (3 samples per GPU) auto_scale_lr = dict(base_batch_size=96)
_base_ = [ '../_base_/default_runtime.py', '../_base_/datasets/coco_detection.py' ] # model settings model = dict( type='CornerNet', backbone=dict( type='HourglassNet', downsample_times=5, num_stacks=2, stage_channels=[256, 256, 384, 384, 384, 512], stage_blocks=[2, 2, 2, 2, 2, 4], norm_cfg=dict(type='BN', requires_grad=True)), neck=None, bbox_head=dict( type='CornerHead', num_classes=80, in_channels=256, num_feat_levels=2, corner_emb_channels=1, loss_heatmap=dict( type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=1), loss_embedding=dict( type='AssociativeEmbeddingLoss', pull_weight=0.10, push_weight=0.10), loss_offset=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1)), # training and testing settings train_cfg=None, test_cfg=dict( corner_topk=100, local_maximum_kernel=3, distance_threshold=0.5, score_thr=0.05, max_per_img=100, nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian'))) # data settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='RandomCenterCropPad', crop_size=(511, 511), ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3), test_mode=False, test_pad_mode=None, **img_norm_cfg), dict(type='Resize', img_scale=(511, 511), keep_ratio=False), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict( type='MultiScaleFlipAug', scale_factor=1.0, flip=True, transforms=[ dict(type='Resize'), dict( type='RandomCenterCropPad', crop_size=None, ratios=None, border=None, test_mode=True, test_pad_mode=['logical_or', 127], **img_norm_cfg), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict( type='Collect', keys=['img'], meta_keys=('filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'img_norm_cfg', 'border')), ]) ] data = dict( samples_per_gpu=3, workers_per_gpu=3, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='Adam', lr=0.0005) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[180]) runner = dict(type='EpochBasedRunner', max_epochs=210)
"""[DEPRECATED] Pipeline prompt template.""" from typing import Any from typing import Optional as Optional from pydantic import model_validator from langchain_core._api.deprecation import deprecated from langchain_core.prompt_values import PromptValue from langchain_core.prompts.base import BasePromptTemplate from langchain_core.prompts.chat import BaseChatPromptTemplate def _get_inputs(inputs: dict, input_variables: list[str]) -> dict: return {k: inputs[k] for k in input_variables} @deprecated( since="0.3.22", removal="1.0", message=( "This class is deprecated. Please see the docstring below or at the link" " for a replacement option: " "https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.pipeline.PipelinePromptTemplate.html" ), ) class PipelinePromptTemplate(BasePromptTemplate): """[DEPRECATED] Pipeline prompt template. This has been deprecated in favor of chaining individual prompts together in your code. E.g. using a for loop, you could do: .. code-block:: python my_input = {"key": "value"} for name, prompt in pipeline_prompts: my_input[name] = prompt.invoke(my_input).to_string() my_output = final_prompt.invoke(my_input) Prompt template for composing multiple prompt templates together. This can be useful when you want to reuse parts of prompts. A PipelinePrompt consists of two main parts: - final_prompt: This is the final prompt that is returned - pipeline_prompts: This is a list of tuples, consisting of a string (`name`) and a Prompt Template. Each PromptTemplate will be formatted and then passed to future prompt templates as a variable with the same name as `name` """ final_prompt: BasePromptTemplate """The final prompt that is returned.""" pipeline_prompts: list[tuple[str, BasePromptTemplate]] """A list of tuples, consisting of a string (`name`) and a Prompt Template.""" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "pipeline"] @model_validator(mode="before") @classmethod def get_input_variables(cls, values: dict) -> Any: """Get input variables.""" created_variables = set() all_variables = set() for k, prompt in values["pipeline_prompts"]: created_variables.add(k) all_variables.update(prompt.input_variables) values["input_variables"] = list(all_variables.difference(created_variables)) return values def format_prompt(self, **kwargs: Any) -> PromptValue: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ for k, prompt in self.pipeline_prompts: _inputs = _get_inputs(kwargs, prompt.input_variables) if isinstance(prompt, BaseChatPromptTemplate): kwargs[k] = prompt.format_messages(**_inputs) else: kwargs[k] = prompt.format(**_inputs) _inputs = _get_inputs(kwargs, self.final_prompt.input_variables) return self.final_prompt.format_prompt(**_inputs) async def aformat_prompt(self, **kwargs: Any) -> PromptValue: """Async format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ for k, prompt in self.pipeline_prompts: _inputs = _get_inputs(kwargs, prompt.input_variables) if isinstance(prompt, BaseChatPromptTemplate): kwargs[k] = await prompt.aformat_messages(**_inputs) else: kwargs[k] = await prompt.aformat(**_inputs) _inputs = _get_inputs(kwargs, self.final_prompt.input_variables) return await self.final_prompt.aformat_prompt(**_inputs) def format(self, **kwargs: Any) -> str: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ return self.format_prompt(**kwargs).to_string() async def aformat(self, **kwargs: Any) -> str: """Async format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ return (await self.aformat_prompt(**kwargs)).to_string() @property def _prompt_type(self) -> str: raise ValueError PipelinePromptTemplate.model_rebuild()
from typing import Any from typing import Optional as Optional from pydantic import model_validator from langchain_core._api.deprecation import deprecated from langchain_core.prompt_values import PromptValue from langchain_core.prompts.base import BasePromptTemplate from langchain_core.prompts.chat import BaseChatPromptTemplate def _get_inputs(inputs: dict, input_variables: list[str]) -> dict: return {k: inputs[k] for k in input_variables} @deprecated( since="0.3.22", removal="1.0", message=( "This class is deprecated. Please see the docstring below or at the link" " for a replacement option: " "https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.pipeline.PipelinePromptTemplate.html" ), ) class PipelinePromptTemplate(BasePromptTemplate): """This has been deprecated in favor of chaining individual prompts together in your code. E.g. using a for loop, you could do: .. code-block:: python my_input = {"key": "value"} for name, prompt in pipeline_prompts: my_input[name] = prompt.invoke(my_input).to_string() my_output = final_prompt.invoke(my_input) Prompt template for composing multiple prompt templates together. This can be useful when you want to reuse parts of prompts. A PipelinePrompt consists of two main parts: - final_prompt: This is the final prompt that is returned - pipeline_prompts: This is a list of tuples, consisting of a string (`name`) and a Prompt Template. Each PromptTemplate will be formatted and then passed to future prompt templates as a variable with the same name as `name` """ final_prompt: BasePromptTemplate """The final prompt that is returned.""" pipeline_prompts: list[tuple[str, BasePromptTemplate]] """A list of tuples, consisting of a string (`name`) and a Prompt Template.""" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "pipeline"] @model_validator(mode="before") @classmethod def get_input_variables(cls, values: dict) -> Any: """Get input variables.""" created_variables = set() all_variables = set() for k, prompt in values["pipeline_prompts"]: created_variables.add(k) all_variables.update(prompt.input_variables) values["input_variables"] = list(all_variables.difference(created_variables)) return values def format_prompt(self, **kwargs: Any) -> PromptValue: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ for k, prompt in self.pipeline_prompts: _inputs = _get_inputs(kwargs, prompt.input_variables) if isinstance(prompt, BaseChatPromptTemplate): kwargs[k] = prompt.format_messages(**_inputs) else: kwargs[k] = prompt.format(**_inputs) _inputs = _get_inputs(kwargs, self.final_prompt.input_variables) return self.final_prompt.format_prompt(**_inputs) async def aformat_prompt(self, **kwargs: Any) -> PromptValue: """Async format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ for k, prompt in self.pipeline_prompts: _inputs = _get_inputs(kwargs, prompt.input_variables) if isinstance(prompt, BaseChatPromptTemplate): kwargs[k] = await prompt.aformat_messages(**_inputs) else: kwargs[k] = await prompt.aformat(**_inputs) _inputs = _get_inputs(kwargs, self.final_prompt.input_variables) return await self.final_prompt.aformat_prompt(**_inputs) def format(self, **kwargs: Any) -> str: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ return self.format_prompt(**kwargs).to_string() async def aformat(self, **kwargs: Any) -> str: """Async format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ return (await self.aformat_prompt(**kwargs)).to_string() @property def _prompt_type(self) -> str: raise ValueError PipelinePromptTemplate.model_rebuild()
from fastapi.testclient import TestClient from docs_src.configure_swagger_ui.tutorial003 import app client = TestClient(app) def test_swagger_ui(): response = client.get("/docs") assert response.status_code == 200, response.text assert '"deepLinking": false,' in response.text, ( "overridden configs should be preserved" ) assert '"deepLinking": true' not in response.text, ( "overridden configs should not include the old value" ) assert '"syntaxHighlight": false' not in response.text, ( "not used parameters should not be included" ) assert '"dom_id": "#swagger-ui"' in response.text, ( "default configs should be preserved" ) assert "presets: [" in response.text, "default configs should be preserved" assert "SwaggerUIBundle.presets.apis," in response.text, ( "default configs should be preserved" ) assert "SwaggerUIBundle.SwaggerUIStandalonePreset" in response.text, ( "default configs should be preserved" ) assert '"layout": "BaseLayout",' in response.text, ( "default configs should be preserved" ) assert '"showExtensions": true,' in response.text, ( "default configs should be preserved" ) assert '"showCommonExtensions": true,' in response.text, ( "default configs should be preserved" ) def test_get_users(): response = client.get("/users/foo") assert response.status_code == 200, response.text assert response.json() == {"message": "Hello foo"}
from fastapi.testclient import TestClient from docs_src.configure_swagger_ui.tutorial003 import app client = TestClient(app) def test_swagger_ui(): response = client.get("/docs") assert response.status_code == 200, response.text assert ( '"deepLinking": false,' in response.text ), "overridden configs should be preserved" assert ( '"deepLinking": true' not in response.text ), "overridden configs should not include the old value" assert ( '"syntaxHighlight": false' not in response.text ), "not used parameters should not be included" assert ( '"dom_id": "#swagger-ui"' in response.text ), "default configs should be preserved" assert "presets: [" in response.text, "default configs should be preserved" assert ( "SwaggerUIBundle.presets.apis," in response.text ), "default configs should be preserved" assert ( "SwaggerUIBundle.SwaggerUIStandalonePreset" in response.text ), "default configs should be preserved" assert ( '"layout": "BaseLayout",' in response.text ), "default configs should be preserved" assert ( '"showExtensions": true,' in response.text ), "default configs should be preserved" assert ( '"showCommonExtensions": true,' in response.text ), "default configs should be preserved" def test_get_users(): response = client.get("/users/foo") assert response.status_code == 200, response.text assert response.json() == {"message": "Hello foo"}
import warnings from typing import Optional, TypeVar from docarray.typing.bytes.video_bytes import VideoBytes, VideoLoadResult from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.utils._internal.misc import is_notebook T = TypeVar('T', bound='VideoUrl') @_register_proto(proto_type_name='video_url') class VideoUrl(AnyUrl): """ URL to a video file. Can be remote (web) URL, or a local file path. """ def load(self: T, **kwargs) -> VideoLoadResult: """ Load the data from the url into a `NamedTuple` of [`VideoNdArray`][docarray.typing.VideoNdArray], [`AudioNdArray`][docarray.typing.AudioNdArray] and [`NdArray`][docarray.typing.NdArray]. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import VideoUrl, VideoNdArray, AudioNdArray, NdArray class MyDoc(BaseDoc): video_url: VideoUrl video: Optional[VideoNdArray] audio: Optional[AudioNdArray] key_frame_indices: Optional[NdArray] doc = MyDoc( video_url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) doc.video, doc.audio, doc.key_frame_indices = doc.video_url.load() assert isinstance(doc.video, VideoNdArray) assert isinstance(doc.audio, AudioNdArray) assert isinstance(doc.key_frame_indices, NdArray) ``` --- You can load only the key frames (or video, audio respectively): --- ```python from pydantic import parse_obj_as from docarray.typing import NdArray, VideoUrl url = parse_obj_as( VideoUrl, 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true', ) key_frame_indices = url.load().key_frame_indices assert isinstance(key_frame_indices, NdArray) ``` --- :param kwargs: supports all keyword arguments that are being supported by av.open() as described [here](https://pyav.org/docs/stable/api/_globals.html?highlight=open#av.open) :return: [`AudioNdArray`][docarray.typing.AudioNdArray] representing the audio content, [`VideoNdArray`][docarray.typing.VideoNdArray] representing the images of the video, [`NdArray`][docarray.typing.NdArray] of the key frame indices. """ buffer = self.load_bytes(**kwargs) return buffer.load() def load_bytes(self, timeout: Optional[float] = None) -> VideoBytes: """ Convert url to [`VideoBytes`][docarray.typing.VideoBytes]. This will either load or download the file and save it into an [`VideoBytes`][docarray.typing.VideoBytes] object. :param timeout: timeout for urlopen. Only relevant if url is not local :return: [`VideoBytes`][docarray.typing.VideoBytes] object """ bytes_ = super().load_bytes(timeout=timeout) return VideoBytes(bytes_) def display(self): """ Play video from url in notebook. """ if is_notebook(): from IPython.display import display remote_url = True if self.startswith('http') else False if remote_url: from IPython.display import Video b = self.load_bytes() display(Video(data=b, embed=True, mimetype='video/mp4')) else: import os from IPython.display import HTML path = os.path.relpath(self) src = f''' <body> <video width="320" height="240" autoplay muted controls> <source src="{path}"> Your browser does not support the video tag. </video> </body> ''' display(HTML(src)) else: warnings.warn('Display of video is only possible in a notebook.')
import warnings from typing import Optional, TypeVar from docarray.typing.bytes.video_bytes import VideoBytes, VideoLoadResult from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.utils._internal.misc import is_notebook T = TypeVar('T', bound='VideoUrl') @_register_proto(proto_type_name='video_url') class VideoUrl(AnyUrl): """ URL to a video file. Can be remote (web) URL, or a local file path. """ def load(self: T, **kwargs) -> VideoLoadResult: """ Load the data from the url into a `NamedTuple` of [`VideoNdArray`][docarray.typing.VideoNdArray], [`AudioNdArray`][docarray.typing.AudioNdArray] and [`NdArray`][docarray.typing.NdArray]. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import VideoUrl, VideoNdArray, AudioNdArray, NdArray class MyDoc(BaseDoc): video_url: VideoUrl video: Optional[VideoNdArray] audio: Optional[AudioNdArray] key_frame_indices: Optional[NdArray] doc = MyDoc( video_url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) doc.video, doc.audio, doc.key_frame_indices = doc.video_url.load() assert isinstance(doc.video, VideoNdArray) assert isinstance(doc.audio, AudioNdArray) assert isinstance(doc.key_frame_indices, NdArray) ``` --- You can load only the key frames (or video, audio respectively): --- ```python from pydantic import parse_obj_as from docarray.typing import NdArray, VideoUrl url = parse_obj_as( VideoUrl, 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true', ) key_frame_indices = url.load().key_frame_indices assert isinstance(key_frame_indices, NdArray) ``` --- :param kwargs: supports all keyword arguments that are being supported by av.open() as described in: https://pyav.org/docs/stable/api/_globals.html?highlight=open#av.open :return: [`AudioNdArray`][docarray.typing.AudioNdArray] representing the audio content, [`VideoNdArray`][docarray.typing.VideoNdArray] representing the images of the video, [`NdArray`][docarray.typing.NdArray] of the key frame indices. """ buffer = self.load_bytes(**kwargs) return buffer.load() def load_bytes(self, timeout: Optional[float] = None) -> VideoBytes: """ Convert url to [`VideoBytes`][docarray.typing.VideoBytes]. This will either load or download the file and save it into an [`VideoBytes`][docarray.typing.VideoBytes] object. :param timeout: timeout for urlopen. Only relevant if url is not local :return: [`VideoBytes`][docarray.typing.VideoBytes] object """ bytes_ = super().load_bytes(timeout=timeout) return VideoBytes(bytes_) def display(self): """ Play video from url in notebook. """ if is_notebook(): from IPython.display import display remote_url = True if self.startswith('http') else False if remote_url: from IPython.display import Video b = self.load_bytes() display(Video(data=b, embed=True, mimetype='video/mp4')) else: import os from IPython.display import HTML path = os.path.relpath(self) src = f''' <body> <video width="320" height="240" autoplay muted controls> <source src="{path}"> Your browser does not support the video tag. </video> </body> ''' display(HTML(src)) else: warnings.warn('Display of video is only possible in a notebook.')
from __future__ import annotations import logging from typing import TYPE_CHECKING, Callable import numpy as np from sentence_transformers.evaluation.NanoBEIREvaluator import NanoBEIREvaluator from sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator import ( SparseInformationRetrievalEvaluator, ) if TYPE_CHECKING: from torch import Tensor from sentence_transformers.evaluation import SimilarityFunction from sentence_transformers.evaluation.NanoBEIREvaluator import ( DatasetNameType, ) from sentence_transformers.sparse_encoder import SparseEncoder logger = logging.getLogger(__name__) class SparseNanoBEIREvaluator(NanoBEIREvaluator): information_retrieval_class = SparseInformationRetrievalEvaluator def __init__( self, dataset_names: list[DatasetNameType] | None = None, mrr_at_k: list[int] = [10], ndcg_at_k: list[int] = [10], accuracy_at_k: list[int] = [1, 3, 5, 10], precision_recall_at_k: list[int] = [1, 3, 5, 10], map_at_k: list[int] = [100], show_progress_bar: bool = False, batch_size: int = 32, write_csv: bool = True, truncate_dim: int | None = None, score_functions: dict[str, Callable[[Tensor, Tensor], Tensor]] = None, main_score_function: str | SimilarityFunction | None = None, aggregate_fn: Callable[[list[float]], float] = np.mean, aggregate_key: str = "mean", query_prompts: str | dict[str, str] | None = None, corpus_prompts: str | dict[str, str] | None = None, ): super().__init__( dataset_names=dataset_names, mrr_at_k=mrr_at_k, ndcg_at_k=ndcg_at_k, accuracy_at_k=accuracy_at_k, precision_recall_at_k=precision_recall_at_k, map_at_k=map_at_k, show_progress_bar=show_progress_bar, batch_size=batch_size, write_csv=write_csv, truncate_dim=truncate_dim, score_functions=score_functions, main_score_function=main_score_function, aggregate_fn=aggregate_fn, aggregate_key=aggregate_key, query_prompts=query_prompts, corpus_prompts=corpus_prompts, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1, *args, **kwargs ) -> dict[str, float]: return super().__call__(model, output_path=output_path, epoch=epoch, steps=steps, *args, **kwargs) def _load_dataset( self, dataset_name: DatasetNameType, **ir_evaluator_kwargs ) -> SparseInformationRetrievalEvaluator: return super()._load_dataset(dataset_name, **ir_evaluator_kwargs)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Callable import numpy as np from sentence_transformers.evaluation.NanoBEIREvaluator import NanoBEIREvaluator from sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator import ( SparseInformationRetrievalEvaluator, ) if TYPE_CHECKING: from torch import Tensor from sentence_transformers.evaluation import SimilarityFunction from sentence_transformers.evaluation.NanoBEIREvaluator import ( DatasetNameType, ) from sentence_transformers.sparse_encoder import SparseEncoder logger = logging.getLogger(__name__) class SparseNanoBEIREvaluator(NanoBEIREvaluator): def __init__( self, dataset_names: list[DatasetNameType] | None = None, mrr_at_k: list[int] = [10], ndcg_at_k: list[int] = [10], accuracy_at_k: list[int] = [1, 3, 5, 10], precision_recall_at_k: list[int] = [1, 3, 5, 10], map_at_k: list[int] = [100], show_progress_bar: bool = False, batch_size: int = 32, write_csv: bool = True, truncate_dim: int | None = None, score_functions: dict[str, Callable[[Tensor, Tensor], Tensor]] = None, main_score_function: str | SimilarityFunction | None = None, aggregate_fn: Callable[[list[float]], float] = np.mean, aggregate_key: str = "mean", query_prompts: str | dict[str, str] | None = None, corpus_prompts: str | dict[str, str] | None = None, ): self.information_retrieval_class = SparseInformationRetrievalEvaluator super().__init__( dataset_names=dataset_names, mrr_at_k=mrr_at_k, ndcg_at_k=ndcg_at_k, accuracy_at_k=accuracy_at_k, precision_recall_at_k=precision_recall_at_k, map_at_k=map_at_k, show_progress_bar=show_progress_bar, batch_size=batch_size, write_csv=write_csv, truncate_dim=truncate_dim, score_functions=score_functions, main_score_function=main_score_function, aggregate_fn=aggregate_fn, aggregate_key=aggregate_key, query_prompts=query_prompts, corpus_prompts=corpus_prompts, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1, *args, **kwargs ) -> dict[str, float]: return super().__call__(model, output_path=output_path, epoch=epoch, steps=steps, *args, **kwargs) def _load_dataset( self, dataset_name: DatasetNameType, **ir_evaluator_kwargs ) -> SparseInformationRetrievalEvaluator: return super()._load_dataset(dataset_name, **ir_evaluator_kwargs)
""" This file contains deprecated code that can only be used with the old `model.fit`-style Sentence Transformers v2.X training. It exists for backwards compatibility with the `model.old_fit` method, but will be removed in a future version. Nowadays, with Sentence Transformers v3+, it is recommended to use the `SentenceTransformerTrainer` class to train models. See https://www.sbert.net/docs/sentence_transformer/training_overview.html for more information. Instead, you should create a `datasets` `Dataset` for training: https://huggingface.co/docs/datasets/create_dataset """ from __future__ import annotations import gzip import os from . import InputExample class NLIDataReader: """Reads in the Stanford NLI dataset and the MultiGenre NLI dataset""" def __init__(self, dataset_folder): self.dataset_folder = dataset_folder def get_examples(self, filename, max_examples=0): """ data_splits specified which data split to use (train, dev, test). Expects that self.dataset_folder contains the files s1.$data_split.gz, s2.$data_split.gz, labels.$data_split.gz, e.g., for the train split, s1.train.gz, s2.train.gz, labels.train.gz """ s1 = gzip.open(os.path.join(self.dataset_folder, "s1." + filename), mode="rt", encoding="utf-8").readlines() s2 = gzip.open(os.path.join(self.dataset_folder, "s2." + filename), mode="rt", encoding="utf-8").readlines() labels = gzip.open( os.path.join(self.dataset_folder, "labels." + filename), mode="rt", encoding="utf-8" ).readlines() examples = [] id = 0 for sentence_a, sentence_b, label in zip(s1, s2, labels): guid = "%s-%d" % (filename, id) id += 1 examples.append(InputExample(guid=guid, texts=[sentence_a, sentence_b], label=self.map_label(label))) if 0 < max_examples <= len(examples): break return examples @staticmethod def get_labels(): return {"contradiction": 0, "entailment": 1, "neutral": 2} def get_num_labels(self): return len(self.get_labels()) def map_label(self, label): return self.get_labels()[label.strip().lower()]
from __future__ import annotations import gzip import os from . import InputExample class NLIDataReader: """Reads in the Stanford NLI dataset and the MultiGenre NLI dataset""" def __init__(self, dataset_folder): self.dataset_folder = dataset_folder def get_examples(self, filename, max_examples=0): """ data_splits specified which data split to use (train, dev, test). Expects that self.dataset_folder contains the files s1.$data_split.gz, s2.$data_split.gz, labels.$data_split.gz, e.g., for the train split, s1.train.gz, s2.train.gz, labels.train.gz """ s1 = gzip.open(os.path.join(self.dataset_folder, "s1." + filename), mode="rt", encoding="utf-8").readlines() s2 = gzip.open(os.path.join(self.dataset_folder, "s2." + filename), mode="rt", encoding="utf-8").readlines() labels = gzip.open( os.path.join(self.dataset_folder, "labels." + filename), mode="rt", encoding="utf-8" ).readlines() examples = [] id = 0 for sentence_a, sentence_b, label in zip(s1, s2, labels): guid = "%s-%d" % (filename, id) id += 1 examples.append(InputExample(guid=guid, texts=[sentence_a, sentence_b], label=self.map_label(label))) if 0 < max_examples <= len(examples): break return examples @staticmethod def get_labels(): return {"contradiction": 0, "entailment": 1, "neutral": 2} def get_num_labels(self): return len(self.get_labels()) def map_label(self, label): return self.get_labels()[label.strip().lower()]
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.models.layers import ResLayer, SimplifiedBasicBlock from mmdet.registry import MODELS from .fused_semantic_head import FusedSemanticHead @MODELS.register_module() class SCNetSemanticHead(FusedSemanticHead): """Mask head for `SCNet <https://arxiv.org/abs/2012.10150>`_. Args: conv_to_res (bool, optional): if True, change the conv layers to ``SimplifiedBasicBlock``. """ def __init__(self, conv_to_res: bool = True, **kwargs) -> None: super().__init__(**kwargs) self.conv_to_res = conv_to_res if self.conv_to_res: num_res_blocks = self.num_convs // 2 self.convs = ResLayer( SimplifiedBasicBlock, self.in_channels, self.conv_out_channels, num_res_blocks, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) self.num_convs = num_res_blocks
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.models.utils import ResLayer, SimplifiedBasicBlock from mmdet.registry import MODELS from .fused_semantic_head import FusedSemanticHead @MODELS.register_module() class SCNetSemanticHead(FusedSemanticHead): """Mask head for `SCNet <https://arxiv.org/abs/2012.10150>`_. Args: conv_to_res (bool, optional): if True, change the conv layers to ``SimplifiedBasicBlock``. """ def __init__(self, conv_to_res: bool = True, **kwargs) -> None: super().__init__(**kwargs) self.conv_to_res = conv_to_res if self.conv_to_res: num_res_blocks = self.num_convs // 2 self.convs = ResLayer( SimplifiedBasicBlock, self.in_channels, self.conv_out_channels, num_res_blocks, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) self.num_convs = num_res_blocks
from typing import Any, Dict, Iterable import torch from torch import Tensor, nn from sentence_transformers import util from sentence_transformers.SentenceTransformer import SentenceTransformer class MultipleNegativesSymmetricRankingLoss(nn.Module): def __init__(self, model: SentenceTransformer, scale: float = 20.0, similarity_fct=util.cos_sim) -> None: """ This loss is an adaptation of MultipleNegativesRankingLoss. MultipleNegativesRankingLoss computes the following loss: For a given anchor and a list of candidates, find the positive candidate. In MultipleNegativesSymmetricRankingLoss, we add another loss term: Given the positive and a list of all anchors, find the correct (matching) anchor. For the example of question-answering: You have (question, answer)-pairs. MultipleNegativesRankingLoss just computes the loss to find the answer for a given question. MultipleNegativesSymmetricRankingLoss additionally computes the loss to find the question for a given answer. Note: If you pass triplets, the negative entry will be ignored. A anchor is just searched for the positive. Args: model: SentenceTransformer model scale: Output of similarity function is multiplied by scale value similarity_fct: similarity function between sentence embeddings. By default, cos_sim. Can also be set to dot product (and then set scale to 1) Requirements: 1. (anchor, positive) pairs Relations: - Like :class:`MultipleNegativesRankingLoss`, but with an additional loss term. Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive) pairs | none | +---------------------------------------+--------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], }) loss = losses.MultipleNegativesSymmetricRankingLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(MultipleNegativesSymmetricRankingLoss, self).__init__() self.model = model self.scale = scale self.similarity_fct = similarity_fct self.cross_entropy_loss = nn.CrossEntropyLoss() def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor) -> Tensor: reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] anchor = reps[0] candidates = torch.cat(reps[1:]) scores = self.similarity_fct(anchor, candidates) * self.scale labels = torch.tensor( range(len(scores)), dtype=torch.long, device=scores.device ) # Example a[i] should match with b[i] anchor_positive_scores = scores[:, 0 : len(reps[1])] forward_loss = self.cross_entropy_loss(scores, labels) backward_loss = self.cross_entropy_loss(anchor_positive_scores.transpose(0, 1), labels) return (forward_loss + backward_loss) / 2 def get_config_dict(self) -> Dict[str, Any]: return {"scale": self.scale, "similarity_fct": self.similarity_fct.__name__}
from typing import Dict, Iterable import torch from torch import Tensor, nn from sentence_transformers import util from sentence_transformers.SentenceTransformer import SentenceTransformer class MultipleNegativesSymmetricRankingLoss(nn.Module): def __init__(self, model: SentenceTransformer, scale: float = 20.0, similarity_fct=util.cos_sim): """ This loss is an adaptation of MultipleNegativesRankingLoss. MultipleNegativesRankingLoss computes the following loss: For a given anchor and a list of candidates, find the positive candidate. In MultipleNegativesSymmetricRankingLoss, we add another loss term: Given the positive and a list of all anchors, find the correct (matching) anchor. For the example of question-answering: You have (question, answer)-pairs. MultipleNegativesRankingLoss just computes the loss to find the answer for a given question. MultipleNegativesSymmetricRankingLoss additionally computes the loss to find the question for a given answer. Note: If you pass triplets, the negative entry will be ignored. A anchor is just searched for the positive. Args: model: SentenceTransformer model scale: Output of similarity function is multiplied by scale value similarity_fct: similarity function between sentence embeddings. By default, cos_sim. Can also be set to dot product (and then set scale to 1) Requirements: 1. (anchor, positive) pairs Relations: - Like :class:`MultipleNegativesRankingLoss`, but with an additional loss term. Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive) pairs | none | +---------------------------------------+--------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], }) loss = losses.MultipleNegativesSymmetricRankingLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(MultipleNegativesSymmetricRankingLoss, self).__init__() self.model = model self.scale = scale self.similarity_fct = similarity_fct self.cross_entropy_loss = nn.CrossEntropyLoss() def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor): reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] anchor = reps[0] candidates = torch.cat(reps[1:]) scores = self.similarity_fct(anchor, candidates) * self.scale labels = torch.tensor( range(len(scores)), dtype=torch.long, device=scores.device ) # Example a[i] should match with b[i] anchor_positive_scores = scores[:, 0 : len(reps[1])] forward_loss = self.cross_entropy_loss(scores, labels) backward_loss = self.cross_entropy_loss(anchor_positive_scores.transpose(0, 1), labels) return (forward_loss + backward_loss) / 2 def get_config_dict(self): return {"scale": self.scale, "similarity_fct": self.similarity_fct.__name__}
# Copyright (c) OpenMMLab. All rights reserved. import ast import os.path as osp import re import warnings from typing import Tuple from mmengine.fileio import load from mmengine.utils import check_file_exist PKG2PROJECT = { 'mmcls': 'mmcls', 'mmdet': 'mmdet', 'mmdet3d': 'mmdet3d', 'mmseg': 'mmsegmentation', 'mmaction2': 'mmaction2', 'mmtrack': 'mmtrack', 'mmpose': 'mmpose', 'mmedit': 'mmedit', 'mmocr': 'mmocr', 'mmgen': 'mmgen', 'mmfewshot': 'mmfewshot', 'mmrazor': 'mmrazor', 'mmflow': 'mmflow', 'mmhuman3d': 'mmhuman3d', 'mmrotate': 'mmrotate', 'mmselfsup': 'mmselfsup', 'mmyolo': 'mmyolo', } def _get_cfg_metainfo(package_path: str, cfg_path: str) -> dict: """Get target meta information from all 'metafile.yml' defined in `mode- index.yml` of external package. Args: package_path (str): Path of external package. cfg_path (str): Name of experiment config. Returns: dict: Meta information of target experiment. """ meta_index_path = osp.join(package_path, '.mim', 'model-index.yml') meta_index = load(meta_index_path) cfg_dict = dict() for meta_path in meta_index['Import']: meta_path = osp.join(package_path, '.mim', meta_path) cfg_meta = load(meta_path) for model_cfg in cfg_meta['Models']: if 'Config' not in model_cfg: warnings.warn(f'There is not `Config` define in {model_cfg}') continue cfg_name = model_cfg['Config'].partition('/')[-1] # Some config could have multiple weights, we only pick the # first one. if cfg_name in cfg_dict: continue cfg_dict[cfg_name] = model_cfg if cfg_path not in cfg_dict: raise ValueError(f'Expected configs: {cfg_dict.keys()}, but got ' f'{cfg_path}') return cfg_dict[cfg_path] def _get_external_cfg_path(package_path: str, cfg_file: str) -> str: """Get config path of external package. Args: package_path (str): Path of external package. cfg_file (str): Name of experiment config. Returns: str: Absolute config path from external package. """ cfg_file = cfg_file.split('.')[0] model_cfg = _get_cfg_metainfo(package_path, cfg_file) cfg_path = osp.join(package_path, model_cfg['Config']) check_file_exist(cfg_path) return cfg_path def _get_external_cfg_base_path(package_path: str, cfg_name: str) -> str: """Get base config path of external package. Args: package_path (str): Path of external package. cfg_name (str): External relative config path with 'package::'. Returns: str: Absolute config path from external package. """ cfg_path = osp.join(package_path, '.mim', 'configs', cfg_name) check_file_exist(cfg_path) return cfg_path def _get_package_and_cfg_path(cfg_path: str) -> Tuple[str, str]: """Get package name and relative config path. Args: cfg_path (str): External relative config path with 'package::'. Returns: Tuple[str, str]: Package name and config path. """ if re.match(r'\w*::\w*/\w*', cfg_path) is None: raise ValueError( '`_get_package_and_cfg_path` is used for get external package, ' 'please specify the package name and relative config path, just ' 'like `mmdet::faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py`') package_cfg = cfg_path.split('::') if len(package_cfg) > 2: raise ValueError('`::` should only be used to separate package and ' 'config name, but found multiple `::` in ' f'{cfg_path}') package, cfg_path = package_cfg assert package in PKG2PROJECT, 'mmengine does not support to load ' \ f'{package} config.' package = PKG2PROJECT[package] return package, cfg_path class RemoveAssignFromAST(ast.NodeTransformer): """Remove Assign node if the target's name match the key. Args: key (str): The target name of the Assign node. """ def __init__(self, key): self.key = key def visit_Assign(self, node): if (isinstance(node.targets[0], ast.Name) and node.targets[0].id == self.key): return None else: return node
# Copyright (c) OpenMMLab. All rights reserved. import ast import os.path as osp import re import warnings from typing import Tuple from mmengine.fileio import load from mmengine.utils import check_file_exist PKG2PROJECT = { 'mmcls': 'mmcls', 'mmdet': 'mmdet', 'mmdet3d': 'mmdet3d', 'mmseg': 'mmsegmentation', 'mmaction2': 'mmaction2', 'mmtrack': 'mmtrack', 'mmpose': 'mmpose', 'mmedit': 'mmedit', 'mmocr': 'mmocr', 'mmgen': 'mmgen', 'mmfewshot': 'mmfewshot', 'mmrazor': 'mmrazor', 'mmflow': 'mmflow', 'mmhuman3d': 'mmhuman3d', 'mmrotate': 'mmrotate', 'mmselfsup': 'mmselfsup', } def _get_cfg_metainfo(package_path: str, cfg_path: str) -> dict: """Get target meta information from all 'metafile.yml' defined in `mode- index.yml` of external package. Args: package_path (str): Path of external package. cfg_path (str): Name of experiment config. Returns: dict: Meta information of target experiment. """ meta_index_path = osp.join(package_path, '.mim', 'model-index.yml') meta_index = load(meta_index_path) cfg_dict = dict() for meta_path in meta_index['Import']: meta_path = osp.join(package_path, '.mim', meta_path) cfg_meta = load(meta_path) for model_cfg in cfg_meta['Models']: if 'Config' not in model_cfg: warnings.warn(f'There is not `Config` define in {model_cfg}') continue cfg_name = model_cfg['Config'].partition('/')[-1] # Some config could have multiple weights, we only pick the # first one. if cfg_name in cfg_dict: continue cfg_dict[cfg_name] = model_cfg if cfg_path not in cfg_dict: raise ValueError(f'Expected configs: {cfg_dict.keys()}, but got ' f'{cfg_path}') return cfg_dict[cfg_path] def _get_external_cfg_path(package_path: str, cfg_file: str) -> str: """Get config path of external package. Args: package_path (str): Path of external package. cfg_file (str): Name of experiment config. Returns: str: Absolute config path from external package. """ cfg_file = cfg_file.split('.')[0] model_cfg = _get_cfg_metainfo(package_path, cfg_file) cfg_path = osp.join(package_path, model_cfg['Config']) check_file_exist(cfg_path) return cfg_path def _get_external_cfg_base_path(package_path: str, cfg_name: str) -> str: """Get base config path of external package. Args: package_path (str): Path of external package. cfg_name (str): External relative config path with 'package::'. Returns: str: Absolute config path from external package. """ cfg_path = osp.join(package_path, '.mim', 'configs', cfg_name) check_file_exist(cfg_path) return cfg_path def _get_package_and_cfg_path(cfg_path: str) -> Tuple[str, str]: """Get package name and relative config path. Args: cfg_path (str): External relative config path with 'package::'. Returns: Tuple[str, str]: Package name and config path. """ if re.match(r'\w*::\w*/\w*', cfg_path) is None: raise ValueError( '`_get_package_and_cfg_path` is used for get external package, ' 'please specify the package name and relative config path, just ' 'like `mmdet::faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py`') package_cfg = cfg_path.split('::') if len(package_cfg) > 2: raise ValueError('`::` should only be used to separate package and ' 'config name, but found multiple `::` in ' f'{cfg_path}') package, cfg_path = package_cfg assert package in PKG2PROJECT, 'mmengine does not support to load ' \ f'{package} config.' package = PKG2PROJECT[package] return package, cfg_path class RemoveAssignFromAST(ast.NodeTransformer): """Remove Assign node if the target's name match the key. Args: key (str): The target name of the Assign node. """ def __init__(self, key): self.key = key def visit_Assign(self, node): if (isinstance(node.targets[0], ast.Name) and node.targets[0].id == self.key): return None else: return node
# Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import WanTransformer3DModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin, TorchCompileTesterMixin enable_full_determinism() class WanTransformer3DTests(ModelTesterMixin, unittest.TestCase): model_class = WanTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 1 num_channels = 4 num_frames = 2 height = 16 width = 16 text_encoder_embedding_dim = 16 sequence_length = 12 hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, text_encoder_embedding_dim)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (4, 1, 16, 16) @property def output_shape(self): return (4, 1, 16, 16) def prepare_init_args_and_inputs_for_common(self): init_dict = { "patch_size": (1, 2, 2), "num_attention_heads": 2, "attention_head_dim": 12, "in_channels": 4, "out_channels": 4, "text_dim": 16, "freq_dim": 256, "ffn_dim": 32, "num_layers": 2, "cross_attn_norm": True, "qk_norm": "rms_norm_across_heads", "rope_max_seq_len": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"WanTransformer3DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) class WanTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase): model_class = WanTransformer3DModel def prepare_init_args_and_inputs_for_common(self): return WanTransformer3DTests().prepare_init_args_and_inputs_for_common()
# Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import WanTransformer3DModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin, TorchCompileTesterMixin enable_full_determinism() class WanTransformer3DTests(ModelTesterMixin, TorchCompileTesterMixin, unittest.TestCase): model_class = WanTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 1 num_channels = 4 num_frames = 2 height = 16 width = 16 text_encoder_embedding_dim = 16 sequence_length = 12 hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, text_encoder_embedding_dim)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, } @property def input_shape(self): return (4, 1, 16, 16) @property def output_shape(self): return (4, 1, 16, 16) def prepare_init_args_and_inputs_for_common(self): init_dict = { "patch_size": (1, 2, 2), "num_attention_heads": 2, "attention_head_dim": 12, "in_channels": 4, "out_channels": 4, "text_dim": 16, "freq_dim": 256, "ffn_dim": 32, "num_layers": 2, "cross_attn_norm": True, "qk_norm": "rms_norm_across_heads", "rope_max_seq_len": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"WanTransformer3DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
from llama_index_instrumentation.base import BaseEvent # noqa
from typing import Any, Dict, Optional from llama_index.core.bridge.pydantic import BaseModel, Field, ConfigDict from uuid import uuid4 from datetime import datetime from llama_index.core.instrumentation.span import active_span_id class BaseEvent(BaseModel): model_config = ConfigDict( arbitrary_types_allowed=True, # copy_on_model_validation = "deep" # not supported in Pydantic V2... ) timestamp: datetime = Field(default_factory=lambda: datetime.now()) id_: str = Field(default_factory=lambda: str(uuid4())) span_id: Optional[str] = Field(default_factory=active_span_id.get) # type: ignore tags: Dict[str, Any] = Field(default={}) @classmethod def class_name(cls) -> str: """Return class name.""" return "BaseEvent" def dict(self, **kwargs: Any) -> Dict[str, Any]: """Keep for backwards compatibility.""" return self.model_dump(**kwargs) def model_dump(self, **kwargs: Any) -> Dict[str, Any]: data = super().model_dump(**kwargs) data["class_name"] = self.class_name() return data
"""Module definitions of agent types together with corresponding agents.""" from enum import Enum from langchain_core._api import deprecated from langchain._api.deprecation import AGENT_DEPRECATION_WARNING @deprecated( "0.1.0", message=AGENT_DEPRECATION_WARNING, removal="1.0", ) class AgentType(str, Enum): """An enum for agent types. See documentation: https://python.langchain.com/api_reference/langchain/agents/langchain.agents.agent_types.AgentType.html """ ZERO_SHOT_REACT_DESCRIPTION = "zero-shot-react-description" """A zero shot agent that does a reasoning step before acting.""" REACT_DOCSTORE = "react-docstore" """A zero shot agent that does a reasoning step before acting. This agent has access to a document store that allows it to look up relevant information to answering the question. """ SELF_ASK_WITH_SEARCH = "self-ask-with-search" """An agent that breaks down a complex question into a series of simpler questions. This agent uses a search tool to look up answers to the simpler questions in order to answer the original complex question. """ CONVERSATIONAL_REACT_DESCRIPTION = "conversational-react-description" CHAT_ZERO_SHOT_REACT_DESCRIPTION = "chat-zero-shot-react-description" """A zero shot agent that does a reasoning step before acting. This agent is designed to be used in conjunction """ CHAT_CONVERSATIONAL_REACT_DESCRIPTION = "chat-conversational-react-description" STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION = ( "structured-chat-zero-shot-react-description" ) """An zero-shot react agent optimized for chat models. This agent is capable of invoking tools that have multiple inputs. """ OPENAI_FUNCTIONS = "openai-functions" """An agent optimized for using open AI functions.""" OPENAI_MULTI_FUNCTIONS = "openai-multi-functions"
"""Module definitions of agent types together with corresponding agents.""" from enum import Enum from langchain_core._api import deprecated from langchain._api.deprecation import AGENT_DEPRECATION_WARNING @deprecated( "0.1.0", message=AGENT_DEPRECATION_WARNING, removal="1.0", ) class AgentType(str, Enum): """An enum for agent types. See documentation: https://python.langchain.com/api_reference/langchain/agents/langchain.agents.agent_types.AgentType.html """ ZERO_SHOT_REACT_DESCRIPTION = "zero-shot-react-description" """A zero shot agent that does a reasoning step before acting.""" REACT_DOCSTORE = "react-docstore" """A zero shot agent that does a reasoning step before acting. This agent has access to a document store that allows it to look up relevant information to answering the question. """ SELF_ASK_WITH_SEARCH = "self-ask-with-search" """An agent that breaks down a complex question into a series of simpler questions. This agent uses a search tool to look up answers to the simpler questions in order to answer the original complex question. """ CONVERSATIONAL_REACT_DESCRIPTION = "conversational-react-description" CHAT_ZERO_SHOT_REACT_DESCRIPTION = "chat-zero-shot-react-description" """A zero shot agent that does a reasoning step before acting. This agent is designed to be used in conjunction """ CHAT_CONVERSATIONAL_REACT_DESCRIPTION = "chat-conversational-react-description" STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION = ( "structured-chat-zero-shot-react-description" ) """An zero-shot react agent optimized for chat models. This agent is capable of invoking tools that have multiple inputs. """ OPENAI_FUNCTIONS = "openai-functions" """An agent optimized for using open AI functions.""" OPENAI_MULTI_FUNCTIONS = "openai-multi-functions"
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Sequence from mmengine.data import BaseDataElement from mmengine.hooks import Hook from mmengine.runner import Runner from mmdet.registry import HOOKS DATA_BATCH = Optional[Sequence[dict]] @HOOKS.register_module() class MemoryProfilerHook(Hook): """Memory profiler hook recording memory information including virtual memory, swap memory, and the memory of the current process. Args: interval (int): Checking interval (every k iterations). Default: 50. """ def __init__(self, interval: int = 50) -> None: try: from psutil import swap_memory, virtual_memory self._swap_memory = swap_memory self._virtual_memory = virtual_memory except ImportError: raise ImportError('psutil is not installed, please install it by: ' 'pip install psutil') try: from memory_profiler import memory_usage self._memory_usage = memory_usage except ImportError: raise ImportError( 'memory_profiler is not installed, please install it by: ' 'pip install memory_profiler') self.interval = interval def _record_memory_information(self, runner: Runner) -> None: """Regularly record memory information. Args: runner (:obj:`Runner`): The runner of the training or evaluation process. """ # in Byte virtual_memory = self._virtual_memory() swap_memory = self._swap_memory() # in MB process_memory = self._memory_usage()[0] factor = 1024 * 1024 runner.logger.info( 'Memory information ' 'available_memory: ' f'{round(virtual_memory.available / factor)} MB, ' 'used_memory: ' f'{round(virtual_memory.used / factor)} MB, ' f'memory_utilization: {virtual_memory.percent} %, ' 'available_swap_memory: ' f'{round((swap_memory.total - swap_memory.used) / factor)}' ' MB, ' f'used_swap_memory: {round(swap_memory.used / factor)} MB, ' f'swap_memory_utilization: {swap_memory.percent} %, ' 'current_process_memory: ' f'{round(process_memory)} MB') def after_train_iter(self, runner: Runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """Regularly record memory information. Args: runner (:obj:`Runner`): The runner of the training process. batch_idx (int): The index of the current batch in the train loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (Union[Sequence[:obj:`BaseDataElement`], dict], optional): Outputs from model. Defaults to None. """ if self.every_n_inner_iters(batch_idx, self.interval): self._record_memory_information(runner) def after_val_iter( self, runner: Runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Sequence[BaseDataElement]] = None) -> None: """Regularly record memory information. Args: runner (:obj:`Runner`): The runner of the validation process. batch_idx (int): The index of the current batch in the val loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (Union[Sequence[:obj:`BaseDataElement`], dict], optional): Outputs from model. Defaults to None. """ if self.every_n_inner_iters(batch_idx, self.interval): self._record_memory_information(runner) def after_test_iter( self, runner: Runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Sequence[BaseDataElement]] = None) -> None: """Regularly record memory information. Args: runner (:obj:`Runner`): The runner of the testing process. batch_idx (int): The index of the current batch in the test loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (Union[Sequence[:obj:`BaseDataElement`], dict], optional): Outputs from model. Defaults to None. """ if self.every_n_inner_iters(batch_idx, self.interval): self._record_memory_information(runner)
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Sequence, Union from mmengine.data import BaseDataElement from mmengine.hooks import Hook from mmengine.runner import Runner from mmdet.registry import HOOKS @HOOKS.register_module() class MemoryProfilerHook(Hook): """Memory profiler hook recording memory information including virtual memory, swap memory, and the memory of the current process. Args: interval (int): Checking interval (every k iterations). Default: 50. """ def __init__(self, interval: int = 50) -> None: try: from psutil import swap_memory, virtual_memory self._swap_memory = swap_memory self._virtual_memory = virtual_memory except ImportError: raise ImportError('psutil is not installed, please install it by: ' 'pip install psutil') try: from memory_profiler import memory_usage self._memory_usage = memory_usage except ImportError: raise ImportError( 'memory_profiler is not installed, please install it by: ' 'pip install memory_profiler') self.interval = interval def _after_iter(self, runner: Runner, batch_idx: int, data_batch: Optional[Sequence[dict]] = None, outputs: Optional[Union[Sequence[BaseDataElement], dict]] = None, mode: str = 'train') -> None: """Regularly record memory information. Args: runner (:obj:`Runner`): The runner of the training process. batch_idx (int): The index of the current batch in the train loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (Union[Sequence[:obj:`BaseDataElement`], dict], optional): Outputs from model. Defaults to None. """ if self.every_n_inner_iters(batch_idx, self.interval): # in Byte virtual_memory = self._virtual_memory() swap_memory = self._swap_memory() # in MB process_memory = self._memory_usage()[0] factor = 1024 * 1024 runner.logger.info( 'Memory information ' 'available_memory: ' f'{round(virtual_memory.available / factor)} MB, ' 'used_memory: ' f'{round(virtual_memory.used / factor)} MB, ' f'memory_utilization: {virtual_memory.percent} %, ' 'available_swap_memory: ' f'{round((swap_memory.total - swap_memory.used) / factor)}' ' MB, ' f'used_swap_memory: {round(swap_memory.used / factor)} MB, ' f'swap_memory_utilization: {swap_memory.percent} %, ' 'current_process_memory: ' f'{round(process_memory)} MB')
from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.packs.corrective_rag import CorrectiveRAGPack def test_class(): names_of_base_classes = [b.__name__ for b in CorrectiveRAGPack.__mro__] assert BaseLlamaPack.__name__ in names_of_base_classes
from llama_index.core.llama_pack import BaseLlamaPack from llama_index.packs.corrective_rag import CorrectiveRAGPack def test_class(): names_of_base_classes = [b.__name__ for b in CorrectiveRAGPack.__mro__] assert BaseLlamaPack.__name__ in names_of_base_classes
"""Logic for selecting examples to include in prompts.""" from typing import TYPE_CHECKING, Any from langchain_core.example_selectors.length_based import ( LengthBasedExampleSelector, ) from langchain_core.example_selectors.semantic_similarity import ( MaxMarginalRelevanceExampleSelector, SemanticSimilarityExampleSelector, ) from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.example_selectors.ngram_overlap import ( NGramOverlapExampleSelector, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUPS = { "NGramOverlapExampleSelector": ( "langchain_community.example_selectors.ngram_overlap" ), } _import_attribute = create_importer(__file__, deprecated_lookups=DEPRECATED_LOOKUPS) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "LengthBasedExampleSelector", "MaxMarginalRelevanceExampleSelector", "NGramOverlapExampleSelector", "SemanticSimilarityExampleSelector", ]
"""Logic for selecting examples to include in prompts.""" from typing import TYPE_CHECKING, Any from langchain_core.example_selectors.length_based import ( LengthBasedExampleSelector, ) from langchain_core.example_selectors.semantic_similarity import ( MaxMarginalRelevanceExampleSelector, SemanticSimilarityExampleSelector, ) from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.example_selectors.ngram_overlap import ( NGramOverlapExampleSelector, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUPS = { "NGramOverlapExampleSelector": "langchain_community.example_selectors.ngram_overlap" } _import_attribute = create_importer(__file__, deprecated_lookups=DEPRECATED_LOOKUPS) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "LengthBasedExampleSelector", "MaxMarginalRelevanceExampleSelector", "NGramOverlapExampleSelector", "SemanticSimilarityExampleSelector", ]
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class GeneratorDatasetInputStream(AbstractDatasetInputStream): def __init__( self, generator: Callable, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, gen_kwargs: Optional[dict] = None, num_proc: Optional[int] = None, **kwargs, ): super().__init__( features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, num_proc=num_proc, **kwargs, ) self.builder = Generator( cache_dir=cache_dir, features=features, generator=generator, gen_kwargs=gen_kwargs, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split="train") # Build regular (map-style) dataset else: download_config = None download_mode = None ignore_verifications = False use_auth_token = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, use_auth_token=use_auth_token, num_proc=self.num_proc, ) dataset = self.builder.as_dataset( split="train", ignore_verifications=ignore_verifications, in_memory=self.keep_in_memory ) return dataset
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class GeneratorDatasetInputStream(AbstractDatasetInputStream): def __init__( self, generator: Callable, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, gen_kwargs: Optional[dict] = None, **kwargs, ): super().__init__( features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, **kwargs ) self.builder = Generator( cache_dir=cache_dir, features=features, generator=generator, gen_kwargs=gen_kwargs, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split="train") # Build regular (map-style) dataset else: download_config = None download_mode = None ignore_verifications = False use_auth_token = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, use_auth_token=use_auth_token, ) dataset = self.builder.as_dataset( split="train", ignore_verifications=ignore_verifications, in_memory=self.keep_in_memory ) return dataset
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing_extensions import TYPE_CHECKING if TYPE_CHECKING: from rich.console import Console, ConsoleOptions, RenderResult from rich.measure import Measurement from docarray.typing.tensor.abstract_tensor import AbstractTensor class TensorDisplay: """ Rich representation of a tensor. """ tensor_min_width: int = 30 def __init__(self, tensor: 'AbstractTensor'): self.tensor = tensor def __rich_console__( self, console: 'Console', options: 'ConsoleOptions' ) -> 'RenderResult': comp_be = self.tensor.get_comp_backend() t_squeezed = comp_be.squeeze(comp_be.detach(self.tensor)) if comp_be.n_dim(t_squeezed) == 1 and comp_be.shape(t_squeezed)[0] < 200: import colorsys from rich.color import Color from rich.segment import Segment from rich.style import Style tensor_normalized = comp_be.minmax_normalize(t_squeezed, (0, 5)) hue = 0.75 saturation = 1.0 for idx, y in enumerate(tensor_normalized): luminance = 0.1 + ((y / 5) * 0.7) r, g, b = colorsys.hls_to_rgb(hue, luminance + 0.07, saturation) color = Color.from_rgb(r * 255, g * 255, b * 255) yield Segment('▄', Style(color=color, bgcolor=color)) if idx != 0 and idx % options.max_width == 0: yield Segment.line() else: from rich.text import Text yield Text( f'{self.tensor.__class__.__name__} of ' f'shape {comp_be.shape(self.tensor)}, ' f'dtype: {str(comp_be.dtype(self.tensor))}' ) def __rich_measure__( self, console: 'Console', options: 'ConsoleOptions' ) -> 'Measurement': from rich.measure import Measurement width = self._compute_table_width(max_width=options.max_width) return Measurement(1, width) def _compute_table_width(self, max_width: int) -> int: """ Compute the width of the table. Depending on the length of the tensor, the width should be in the range of 30 (min) and a given `max_width`. :return: the width of the table """ comp_be = self.tensor.get_comp_backend() t_squeezed = comp_be.squeeze(comp_be.detach(self.tensor)) if comp_be.n_dim(t_squeezed) == 1 and comp_be.shape(t_squeezed)[0] < max_width: min_capped = max(comp_be.shape(t_squeezed)[0], self.tensor_min_width) min_max_capped = min(min_capped, max_width) return min_max_capped else: return max_width
from typing_extensions import TYPE_CHECKING if TYPE_CHECKING: from rich.console import Console, ConsoleOptions, RenderResult from rich.measure import Measurement from docarray.typing.tensor.abstract_tensor import AbstractTensor class TensorDisplay: """ Rich representation of a tensor. """ tensor_min_width: int = 30 def __init__(self, tensor: 'AbstractTensor'): self.tensor = tensor def __rich_console__( self, console: 'Console', options: 'ConsoleOptions' ) -> 'RenderResult': comp_be = self.tensor.get_comp_backend() t_squeezed = comp_be.squeeze(comp_be.detach(self.tensor)) if comp_be.n_dim(t_squeezed) == 1 and comp_be.shape(t_squeezed)[0] < 200: import colorsys from rich.color import Color from rich.segment import Segment from rich.style import Style tensor_normalized = comp_be.minmax_normalize(t_squeezed, (0, 5)) hue = 0.75 saturation = 1.0 for idx, y in enumerate(tensor_normalized): luminance = 0.1 + ((y / 5) * 0.7) r, g, b = colorsys.hls_to_rgb(hue, luminance + 0.07, saturation) color = Color.from_rgb(r * 255, g * 255, b * 255) yield Segment('▄', Style(color=color, bgcolor=color)) if idx != 0 and idx % options.max_width == 0: yield Segment.line() else: from rich.text import Text yield Text( f'{self.tensor.__class__.__name__} of ' f'shape {comp_be.shape(self.tensor)}, ' f'dtype: {str(comp_be.dtype(self.tensor))}' ) def __rich_measure__( self, console: 'Console', options: 'ConsoleOptions' ) -> 'Measurement': from rich.measure import Measurement width = self._compute_table_width(max_width=options.max_width) return Measurement(1, width) def _compute_table_width(self, max_width: int) -> int: """ Compute the width of the table. Depending on the length of the tensor, the width should be in the range of 30 (min) and a given `max_width`. :return: the width of the table """ comp_be = self.tensor.get_comp_backend() t_squeezed = comp_be.squeeze(comp_be.detach(self.tensor)) if comp_be.n_dim(t_squeezed) == 1 and comp_be.shape(t_squeezed)[0] < max_width: min_capped = max(comp_be.shape(t_squeezed)[0], self.tensor_min_width) min_max_capped = min(min_capped, max_width) return min_max_capped else: return max_width
# Copyright (c) OpenMMLab. All rights reserved. from .hub import load_url from .manager import ManagerMeta, ManagerMixin from .misc import (check_prerequisites, concat_list, deprecated_api_warning, has_batch_norm, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, mmcv_full_available, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .parrots_wrapper import TORCH_VERSION from .path import (check_file_exist, fopen, is_abs, is_filepath, mkdir_or_exist, scandir, symlink) from .setup_env import set_multi_processing from .sync_bn import revert_sync_batchnorm from .version_utils import digit_version, get_git_hash # TODO: creates intractable circular import issues # from .time_counter import TimeCounter __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_method_overridden', 'has_method', 'mmcv_full_available', 'digit_version', 'get_git_hash', 'TORCH_VERSION', 'load_url', 'ManagerMeta', 'ManagerMixin', 'set_multi_processing', 'has_batch_norm', 'is_abs', 'revert_sync_batchnorm' ]
# Copyright (c) OpenMMLab. All rights reserved. from .hub import load_url from .manager import ManagerMeta, ManagerMixin from .misc import (check_prerequisites, concat_list, deprecated_api_warning, has_batch_norm, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, mmcv_full_available, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .parrots_wrapper import TORCH_VERSION from .path import (check_file_exist, fopen, is_abs, is_filepath, mkdir_or_exist, scandir, symlink) from .setup_env import set_multi_processing from .version_utils import digit_version, get_git_hash # TODO: creates intractable circular import issues # from .time_counter import TimeCounter __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_method_overridden', 'has_method', 'mmcv_full_available', 'digit_version', 'get_git_hash', 'TORCH_VERSION', 'load_url', 'ManagerMeta', 'ManagerMixin', 'set_multi_processing', 'has_batch_norm', 'is_abs' ]