input
stringlengths
33
5k
output
stringlengths
32
5k
import numpy as np import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_document.io.json import orjson_dumps from docarray.typing import AnyEmbedding @pytest.mark.proto def test_proto_embedding(): embedding = parse_obj_as(AnyEmbedding, np.zeros((3, 224, 224))) embedding._to_node_protobuf() def test_json_schema(): schema_json_of(AnyEmbedding) def test_dump_json(): tensor = parse_obj_as(AnyEmbedding, np.zeros((3, 224, 224))) orjson_dumps(tensor)
import numpy as np from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_document.io.json import orjson_dumps from docarray.typing import AnyEmbedding def test_proto_embedding(): embedding = parse_obj_as(AnyEmbedding, np.zeros((3, 224, 224))) embedding._to_node_protobuf() def test_json_schema(): schema_json_of(AnyEmbedding) def test_dump_json(): tensor = parse_obj_as(AnyEmbedding, np.zeros((3, 224, 224))) orjson_dumps(tensor)
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', 'jina-hubble-sdk>=0.11.0', ], 'full': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'jina-hubble-sdk>=0.10.0', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', 'weaviate-client~=3.3.0', 'annlite>=0.3.2', 'qdrant-client~=0.7.3', 'elasticsearch>=8.2.0', ], 'qdrant': [ 'qdrant-client~=0.7.3', ], 'annlite': [ 'annlite>=0.3.2', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.2', 'elasticsearch>=8.2.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', 'jina-hubble-sdk>=0.11.0', ], 'full': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'jina-hubble-sdk>=0.10.0', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', 'weaviate-client~=3.3.0', 'annlite>=0.3.2', 'qdrant-client~=0.7.3', 'elasticsearch>=8.2.0', ], 'qdrant': [ 'qdrant-client~=0.7.3', ], 'annlite': [ 'annlite>=0.3.2', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.2', 'elasticsearch>=8.2.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Type, TypeVar, Union, cast import numpy as np if TYPE_CHECKING: from pydantic.fields import ModelField from pydantic import BaseConfig from docarray.document.base_node import BaseNode from docarray.proto import NdArrayProto, NodeProto T = TypeVar('T', bound='Tensor') class Tensor(np.ndarray, BaseNode): @classmethod def __get_validators__(cls): # one or more validators may be yielded which will be called in the # order to validate the input, each validator will receive as an input # the value returned from the previous validator yield cls.validate @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: if isinstance(value, np.ndarray): return cls.from_ndarray(value) elif isinstance(value, Tensor): return cast(T, value) elif isinstance(value, list) or isinstance(value, tuple): try: arr_from_list: np.ndarray = np.asarray(value) return cls.from_ndarray(arr_from_list) except Exception: pass # handled below else: try: arr: np.ndarray = np.ndarray(value) return cls.from_ndarray(arr) except Exception: pass # handled below raise ValueError(f'Expected a numpy.ndarray compatible type, got {type(value)}') @classmethod def from_ndarray(cls: Type[T], value: np.ndarray) -> T: return value.view(cls) @classmethod def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: # this is needed to dump to json field_schema.update(type='string', format='tensor') def _to_json_compatible(self) -> np.ndarray: """ Convert tensor into a json compatible object :return: a list representation of the tensor """ return self.unwrap() def unwrap(self) -> np.ndarray: """ Return the original ndarray without any memory copy. The original view rest intact and is still a Document Tensor but the return object is a pure np.ndarray but both object share the same memory layout. EXAMPLE USAGE .. code-block:: python from docarray.typing import Tensor import numpy as np t1 = Tensor.validate(np.zeros((3, 224, 224)), None, None) # here t is a docarray Tensor t2 = t.unwrap() # here t2 is a pure np.ndarray but t1 is still a Docarray Tensor # But both share the same underlying memory :return: a numpy ndarray """ return self.view(np.ndarray) def _to_node_protobuf(self: T, field: str = 'tensor') -> NodeProto: """Convert itself into a NodeProto protobuf message. This function should be called when the Document is nested into another Document that need to be converted into a protobuf :param field: field in which to store the content in the node proto :return: the nested item protobuf message """ nd_proto = NdArrayProto() self._flush_tensor_to_proto(nd_proto, value=self) return NodeProto(**{field: nd_proto}) @classmethod def from_protobuf(cls: Type[T], pb_msg: 'NdArrayProto') -> 'T': """ read ndarray from a proto msg :param pb_msg: :return: a numpy array """ source = pb_msg.dense if source.buffer: x = np.frombuffer(source.buffer, dtype=source.dtype) return cls.from_ndarray(x.reshape(source.shape)) elif len(source.shape) > 0: return cls.from_ndarray(np.zeros(source.shape)) else: raise ValueError(f'proto message {pb_msg} cannot be cast to a Tensor') @staticmethod def _flush_tensor_to_proto(pb_msg: 'NdArrayProto', value: 'Tensor'): pb_msg.dense.buffer = value.tobytes() pb_msg.dense.ClearField('shape') pb_msg.dense.shape.extend(list(value.shape)) pb_msg.dense.dtype = value.dtype.str
from typing import TYPE_CHECKING, Any, Type, TypeVar, Union, cast import numpy as np if TYPE_CHECKING: from pydantic.fields import ModelField from pydantic import BaseConfig from docarray.document.base_node import BaseNode from docarray.proto import NdArrayProto, NodeProto T = TypeVar('T', bound='Tensor') class Tensor(np.ndarray, BaseNode): @classmethod def __get_validators__(cls): # one or more validators may be yielded which will be called in the # order to validate the input, each validator will receive as an input # the value returned from the previous validator yield cls.validate @classmethod def validate( cls: Type[T], value: Union[T, Any], field: 'ModelField', config: 'BaseConfig' ) -> T: if isinstance(value, np.ndarray): return cls.from_ndarray(value) elif isinstance(value, Tensor): return cast(T, value) else: try: arr: np.ndarray = np.ndarray(value) return cls.from_ndarray(arr) except Exception: pass # handled below raise ValueError(f'Expected a numpy.ndarray, got {type(value)}') @classmethod def from_ndarray(cls: Type[T], value: np.ndarray) -> T: return value.view(cls) def _to_node_protobuf(self: T, field: str = 'tensor') -> NodeProto: """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nested into another Document that need to be converted into a protobuf :param field: field in which to store the content in the node proto :return: the nested item protobuf message """ nd_proto = NdArrayProto() self._flush_tensor_to_proto(nd_proto, value=self) return NodeProto(**{field: nd_proto}) @classmethod def from_protobuf(cls: Type[T], pb_msg: 'NdArrayProto') -> 'T': """ read ndarray from a proto msg :param pb_msg: :return: a numpy array """ source = pb_msg.dense if source.buffer: x = np.frombuffer(source.buffer, dtype=source.dtype) return cls.from_ndarray(x.reshape(source.shape)) elif len(source.shape) > 0: return cls.from_ndarray(np.zeros(source.shape)) else: raise ValueError(f'proto message {pb_msg} cannot be cast to a Tensor') @staticmethod def _flush_tensor_to_proto(pb_msg: 'NdArrayProto', value: 'Tensor'): pb_msg.dense.buffer = value.tobytes() pb_msg.dense.ClearField('shape') pb_msg.dense.shape.extend(list(value.shape)) pb_msg.dense.dtype = value.dtype.str
from __future__ import annotations import gzip from . import InputExample class PairedFilesReader: """Reads in the a Pair Dataset, split in two files""" def __init__(self, filepaths): self.filepaths = filepaths def get_examples(self, max_examples=0): fIns = [] for filepath in self.filepaths: fIn = ( gzip.open(filepath, "rt", encoding="utf-8") if filepath.endswith(".gz") else open(filepath, encoding="utf-8") ) fIns.append(fIn) examples = [] eof = False while not eof: texts = [] for fIn in fIns: text = fIn.readline() if text == "": eof = True break texts.append(text) if eof: break examples.append(InputExample(guid=str(len(examples)), texts=texts, label=1)) if max_examples > 0 and len(examples) >= max_examples: break return examples
from __future__ import annotations import gzip from . import InputExample class PairedFilesReader(object): """Reads in the a Pair Dataset, split in two files""" def __init__(self, filepaths): self.filepaths = filepaths def get_examples(self, max_examples=0): fIns = [] for filepath in self.filepaths: fIn = ( gzip.open(filepath, "rt", encoding="utf-8") if filepath.endswith(".gz") else open(filepath, encoding="utf-8") ) fIns.append(fIn) examples = [] eof = False while not eof: texts = [] for fIn in fIns: text = fIn.readline() if text == "": eof = True break texts.append(text) if eof: break examples.append(InputExample(guid=str(len(examples)), texts=texts, label=1)) if max_examples > 0 and len(examples) >= max_examples: break return examples
import os from typing import Dict from hubble.executor.helper import is_valid_docker_uri, parse_hub_uri from hubble.executor.hubio import HubIO from jina import ( __default_executor__, __default_grpc_gateway__, __default_http_gateway__, __default_websocket_gateway__, __version__, ) from jina.enums import PodRoleType def get_image_name(uses: str) -> str: """The image can be provided in different formats by the user. This function converts it to an image name which can be understood by k8s. It uses the Hub api to get the image name and the latest tag on Docker Hub. If you don't want to rebuild image on Jina Hub, you can set `JINA_HUB_NO_IMAGE_REBUILD` environment variable. :param uses: image name :return: normalized image name """ try: rebuild_image = 'JINA_HUB_NO_IMAGE_REBUILD' not in os.environ scheme, name, tag, secret = parse_hub_uri(uses) meta_data, _ = HubIO.fetch_meta( name, tag, secret=secret, rebuild_image=rebuild_image, force=True ) image_name = meta_data.image_name return image_name except Exception: if uses.startswith('docker'): # docker:// is a valid requirement and user may want to put its own image return uses.replace('docker://', '') raise def to_compatible_name(name: str) -> str: """Converts the deployment name to a valid name for K8s and docker compose. :param name: name of the deployment :return: compatible name """ return name.replace('/', '-').replace('_', '-').lower() def get_base_executor_version(): """ Get the version of jina to be used :return: the version tag """ import requests try: url = 'https://registry.hub.docker.com/v2/repositories/jinaai/jina/tags' result: Dict = requests.get(url, params={'name': __version__}).json() if result.get('count', 0) > 0: return __version__ else: return 'master' except: return 'master' def construct_runtime_container_args(cargs, uses_metas, uses_with, pod_type): """ Construct a set of Namespace arguments into a list of arguments to pass to a container entrypoint :param cargs: The namespace arguments :param uses_metas: The uses_metas to override :param uses_with: The uses_with to override :param pod_type: The pod_type :return: Arguments to pass to container """ import json from jina.helper import ArgNamespace from jina.parsers import set_pod_parser taboo = { 'uses_with', 'uses_metas', 'volumes', 'uses_before', 'uses_after', 'workspace_id', 'noblock_on_start', 'env', } if pod_type == PodRoleType.HEAD: taboo.add('uses') taboo.add('workspace') if pod_type in {PodRoleType.WORKER, PodRoleType.GATEWAY}: taboo.add('polling') non_defaults = ArgNamespace.get_non_defaults_args( cargs, set_pod_parser(), taboo=taboo, ) _args = ArgNamespace.kwargs2list(non_defaults) container_args = ['executor'] + _args if uses_metas is not None: container_args.extend(['--uses-metas', json.dumps(uses_metas)]) if uses_with is not None: container_args.extend(['--uses-with', json.dumps(uses_with)]) container_args.append('--native') return container_args def validate_uses(uses: str): """Validate uses argument :param uses: uses argument :return: boolean indicating whether is a valid uses to be used in K8s or docker compose """ # Uses can be either None (not specified), default gateway class, default executor or docker image # None => deplyoment uses base container image and uses is determined inside container # default gateway class or default executor => deployment uses base container and sets uses in command # container images => deployment uses the specified container image and uses is defined by container if ( uses is None or uses in [ __default_http_gateway__, __default_websocket_gateway__, __default_grpc_gateway__, __default_executor__, ] or uses.startswith('docker://') ): return True try: return is_valid_docker_uri(uses) except ValueError: return False
import os from typing import Dict from hubble.executor.helper import parse_hub_uri from hubble.executor.hubio import HubIO from jina import ( __default_executor__, __default_grpc_gateway__, __default_http_gateway__, __default_websocket_gateway__, __version__, ) from jina.enums import PodRoleType def get_image_name(uses: str) -> str: """The image can be provided in different formats by the user. This function converts it to an image name which can be understood by k8s. It uses the Hub api to get the image name and the latest tag on Docker Hub. If you don't want to rebuild image on Jina Hub, you can set `JINA_HUB_NO_IMAGE_REBUILD` environment variable. :param uses: image name :return: normalized image name """ try: rebuild_image = 'JINA_HUB_NO_IMAGE_REBUILD' not in os.environ scheme, name, tag, secret = parse_hub_uri(uses) meta_data, _ = HubIO.fetch_meta( name, tag, secret=secret, rebuild_image=rebuild_image, force=True ) image_name = meta_data.image_name return image_name except Exception: if uses.startswith('docker'): # docker:// is a valid requirement and user may want to put its own image return uses.replace('docker://', '') raise def to_compatible_name(name: str) -> str: """Converts the deployment name to a valid name for K8s and docker compose. :param name: name of the deployment :return: compatible name """ return name.replace('/', '-').replace('_', '-').lower() def get_base_executor_version(): """ Get the version of jina to be used :return: the version tag """ import requests try: url = 'https://registry.hub.docker.com/v2/repositories/jinaai/jina/tags' result: Dict = requests.get(url, params={'name': __version__}).json() if result.get('count', 0) > 0: return __version__ else: return 'master' except: return 'master' def construct_runtime_container_args(cargs, uses_metas, uses_with, pod_type): """ Construct a set of Namespace arguments into a list of arguments to pass to a container entrypoint :param cargs: The namespace arguments :param uses_metas: The uses_metas to override :param uses_with: The uses_with to override :param pod_type: The pod_type :return: Arguments to pass to container """ import json from jina.helper import ArgNamespace from jina.parsers import set_pod_parser taboo = { 'uses_with', 'uses_metas', 'volumes', 'uses_before', 'uses_after', 'workspace_id', 'noblock_on_start', 'env', } if pod_type == PodRoleType.HEAD: taboo.add('uses') taboo.add('workspace') if pod_type in {PodRoleType.WORKER, PodRoleType.GATEWAY}: taboo.add('polling') non_defaults = ArgNamespace.get_non_defaults_args( cargs, set_pod_parser(), taboo=taboo, ) _args = ArgNamespace.kwargs2list(non_defaults) container_args = ['executor'] + _args if uses_metas is not None: container_args.extend(['--uses-metas', json.dumps(uses_metas)]) if uses_with is not None: container_args.extend(['--uses-with', json.dumps(uses_with)]) container_args.append('--native') return container_args def validate_uses(uses: str): """Validate uses argument :param uses: uses argument :return: boolean indicating whether is a valid uses to be used in K8s or docker compose """ # Uses can be either None (not specified), default gateway class, default executor or docker image # None => deplyoment uses base container image and uses is determined inside container # default gateway class or default executor => deployment uses base container and sets uses in command # container images => deployment uses the specified container image and uses is defined by container if ( uses is None or uses in [ __default_http_gateway__, __default_websocket_gateway__, __default_grpc_gateway__, __default_executor__, ] or uses.startswith('docker://') ): return True try: scheme, _, _, _ = parse_hub_uri(uses) if scheme in {'jinahub+docker', 'jinahub+sandbox'}: return True except ValueError: return False
"""Function calling agent.""" from typing import Any, List, Optional from llama_index.core.agent.runner.base import AgentRunner, AgentState from llama_index.core.agent.function_calling.step import ( FunctionCallingAgentWorker, DEFAULT_MAX_FUNCTION_CALLS, ) from llama_index.core.base.llms.types import ChatMessage from llama_index.core.callbacks import CallbackManager from llama_index.core.llms.function_calling import FunctionCallingLLM from llama_index.core.memory.types import BaseMemory from llama_index.core.objects.base import ObjectRetriever from llama_index.core.settings import Settings from llama_index.core.tools.types import BaseTool class FunctionCallingAgent(AgentRunner): """ Function calling agent. Light wrapper around AgentRunner. """ @classmethod def from_tools( cls, tools: Optional[List[BaseTool]] = None, tool_retriever: Optional[ObjectRetriever[BaseTool]] = None, llm: Optional[FunctionCallingLLM] = None, verbose: bool = False, max_function_calls: int = DEFAULT_MAX_FUNCTION_CALLS, callback_manager: Optional[CallbackManager] = None, system_prompt: Optional[str] = None, prefix_messages: Optional[List[ChatMessage]] = None, memory: Optional[BaseMemory] = None, chat_history: Optional[List[ChatMessage]] = None, state: Optional[AgentState] = None, allow_parallel_tool_calls: bool = True, **kwargs: Any, ) -> "FunctionCallingAgent": """Create a FunctionCallingAgent from a list of tools.""" tools = tools or [] llm = llm or Settings.llm # type: ignore assert isinstance( llm, FunctionCallingLLM ), "llm must be an instance of FunctionCallingLLM" if callback_manager is not None: llm.callback_manager = callback_manager if system_prompt is not None: if prefix_messages is not None: raise ValueError( "Cannot specify both system_prompt and prefix_messages" ) prefix_messages = [ChatMessage(content=system_prompt, role="system")] prefix_messages = prefix_messages or [] agent_worker = FunctionCallingAgentWorker.from_tools( tools, tool_retriever=tool_retriever, llm=llm, verbose=verbose, max_function_calls=max_function_calls, callback_manager=callback_manager, prefix_messages=prefix_messages, allow_parallel_tool_calls=allow_parallel_tool_calls, ) return cls( agent_worker=agent_worker, memory=memory, chat_history=chat_history, state=state, llm=llm, callback_manager=callback_manager, verbose=verbose, **kwargs, )
"""Function calling agent.""" from typing import Any, List, Optional from llama_index.core.agent.runner.base import AgentRunner, AgentState from llama_index.core.agent.function_calling.step import ( FunctionCallingAgentWorker, DEFAULT_MAX_FUNCTION_CALLS, ) from llama_index.core.base.llms.types import ChatMessage from llama_index.core.callbacks import CallbackManager from llama_index.core.llms.function_calling import FunctionCallingLLM from llama_index.core.memory.types import BaseMemory from llama_index.core.objects.base import ObjectRetriever from llama_index.core.settings import Settings from llama_index.core.tools.types import BaseTool class FunctionCallingAgent(AgentRunner): """Function calling agent. Light wrapper around AgentRunner. """ @classmethod def from_tools( cls, tools: Optional[List[BaseTool]] = None, tool_retriever: Optional[ObjectRetriever[BaseTool]] = None, llm: Optional[FunctionCallingLLM] = None, verbose: bool = False, max_function_calls: int = DEFAULT_MAX_FUNCTION_CALLS, callback_manager: Optional[CallbackManager] = None, system_prompt: Optional[str] = None, prefix_messages: Optional[List[ChatMessage]] = None, memory: Optional[BaseMemory] = None, chat_history: Optional[List[ChatMessage]] = None, state: Optional[AgentState] = None, allow_parallel_tool_calls: bool = True, **kwargs: Any, ) -> "FunctionCallingAgent": """Create a FunctionCallingAgent from a list of tools.""" tools = tools or [] llm = llm or Settings.llm # type: ignore assert isinstance( llm, FunctionCallingLLM ), "llm must be an instance of FunctionCallingLLM" if callback_manager is not None: llm.callback_manager = callback_manager if system_prompt is not None: if prefix_messages is not None: raise ValueError( "Cannot specify both system_prompt and prefix_messages" ) prefix_messages = [ChatMessage(content=system_prompt, role="system")] prefix_messages = prefix_messages or [] agent_worker = FunctionCallingAgentWorker.from_tools( tools, tool_retriever=tool_retriever, llm=llm, verbose=verbose, max_function_calls=max_function_calls, callback_manager=callback_manager, prefix_messages=prefix_messages, allow_parallel_tool_calls=allow_parallel_tool_calls, ) return cls( agent_worker=agent_worker, memory=memory, chat_history=chat_history, state=state, llm=llm, callback_manager=callback_manager, verbose=verbose, **kwargs, )
from abc import ABC, abstractmethod import warnings from collections import namedtuple from dataclasses import is_dataclass, asdict from typing import Dict, Optional, TYPE_CHECKING, Union, List, Tuple if TYPE_CHECKING: from docarray.typing import DocumentArraySourceType, ArrayType TypeMap = namedtuple('TypeMap', ['type', 'converter']) class BaseBackendMixin(ABC): TYPE_MAP: Dict[str, TypeMap] def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, copy: bool = False, *args, **kwargs, ): self._load_offset2ids() def _init_subindices( self, _docs: Optional['DocumentArraySourceType'] = None, *args, **kwargs ): self._subindices = {} subindex_configs = kwargs.get('subindex_configs', None) if subindex_configs: config = asdict(self._config) if getattr(self, '_config', None) else dict() for name, config_subindex in subindex_configs.items(): config_subindex = ( dict() if config_subindex is None else config_subindex ) # allow None as input if is_dataclass(config_subindex): config_subindex = asdict(config_subindex) config_joined = {**config, **config_subindex} config_joined = self._ensure_unique_config( config, config_subindex, config_joined, name ) self._subindices[name] = self.__class__(config=config_joined) if _docs: from docarray import DocumentArray self._subindices[name].extend( DocumentArray(_docs).traverse_flat(name[1:]) ) @abstractmethod def _ensure_unique_config( self, config_root: dict, config_subindex: dict, config_joined: dict, subindex_name: str, ) -> dict: """ Ensures that the subindex configuration is unique, despite it inheriting unpopulated fields from the root config. :param config_root: The configuration of the root index. :param config_subindex: The configuration that was explicitly provided by the user for the subindex. :param config_joined: The configuration that combines root and subindex configs. This is the configuration that will be used for subindex construction. :param subindex_name: Name (access path) of the subindex :return: config_joined that is unique compared to config_root """ ... def _get_storage_infos(self) -> Optional[Dict]: if hasattr(self, '_config') and is_dataclass(self._config): return {k: str(v) for k, v in asdict(self._config).items()} def _map_id(self, _id: str) -> str: return _id def _map_column(self, value, col_type) -> str: return self.TYPE_MAP[col_type].converter(value) def _map_embedding(self, embedding: 'ArrayType') -> 'ArrayType': from docarray.math.ndarray import to_numpy_array return to_numpy_array(embedding) def _map_type(self, col_type: str) -> str: return self.TYPE_MAP[col_type].type def _normalize_columns( self, columns: Optional[Union[List[Tuple[str, str]], Dict[str, str]]] ) -> Dict[str, str]: if columns is None: return {} if isinstance(columns, list): warnings.warn( 'Using "columns" as a List of Tuples will be deprecated soon. Please provide a Dictionary.' ) columns = {col_desc[0]: col_desc[1] for col_desc in columns} return columns
from abc import ABC, abstractmethod import warnings from collections import namedtuple from dataclasses import is_dataclass, asdict from typing import Dict, Optional, TYPE_CHECKING, Union, List, Tuple if TYPE_CHECKING: from docarray.typing import DocumentArraySourceType, ArrayType TypeMap = namedtuple('TypeMap', ['type', 'converter']) class BaseBackendMixin(ABC): TYPE_MAP: Dict[str, TypeMap] def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, copy: bool = False, *args, **kwargs, ): self._load_offset2ids() def _init_subindices(self, *args, **kwargs): self._subindices = {} subindex_configs = kwargs.get('subindex_configs', None) if subindex_configs: config = asdict(self._config) if getattr(self, '_config', None) else dict() for name, config_subindex in subindex_configs.items(): config_subindex = ( dict() if config_subindex is None else config_subindex ) # allow None as input if is_dataclass(config_subindex): config_subindex = asdict(config_subindex) config_joined = {**config, **config_subindex} config_joined = self._ensure_unique_config( config, config_subindex, config_joined, name ) self._subindices[name] = self.__class__(config=config_joined) self._subindices[name].extend(self.traverse_flat(name[1:])) @abstractmethod def _ensure_unique_config( self, config_root: dict, config_subindex: dict, config_joined: dict, subindex_name: str, ) -> dict: """ Ensures that the subindex configuration is unique, despite it inheriting unpopulated fields from the root config. :param config_root: The configuration of the root index. :param config_subindex: The configuration that was explicitly provided by the user for the subindex. :param config_joined: The configuration that combines root and subindex configs. This is the configuration that will be used for subindex construction. :param subindex_name: Name (access path) of the subindex :return: config_joined that is unique compared to config_root """ ... def _get_storage_infos(self) -> Optional[Dict]: if hasattr(self, '_config') and is_dataclass(self._config): return {k: str(v) for k, v in asdict(self._config).items()} def _map_id(self, _id: str) -> str: return _id def _map_column(self, value, col_type) -> str: return self.TYPE_MAP[col_type].converter(value) def _map_embedding(self, embedding: 'ArrayType') -> 'ArrayType': from docarray.math.ndarray import to_numpy_array return to_numpy_array(embedding) def _map_type(self, col_type: str) -> str: return self.TYPE_MAP[col_type].type def _normalize_columns( self, columns: Optional[Union[List[Tuple[str, str]], Dict[str, str]]] ) -> Dict[str, str]: if columns is None: return {} if isinstance(columns, list): warnings.warn( 'Using "columns" as a List of Tuples will be deprecated soon. Please provide a Dictionary.' ) columns = {col_desc[0]: col_desc[1] for col_desc in columns} return columns
# Copyright (c) OpenMMLab. All rights reserved. import logging from typing import List, Optional, Sequence import torch from torch.nn.parameter import Parameter from torch.nn.utils import clip_grad from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[dict]] @HOOKS.register_module() class OptimizerHook(Hook): """A hook contains custom operations for the optimizer. Args: grad_clip (dict, optional): A config dict to control the clip_grad. Defaults to None. detect_anomalous_params (bool): This option is only used for debugging which will slow down the training speed. Detect anomalous parameters that are not included in the computational graph with ``loss`` as the root. There are two cases - Parameters were not used during forward pass. - Parameters were not used to produce loss. Defaults to False. """ priority = 'HIGH' def __init__(self, grad_clip: Optional[dict] = None, detect_anomalous_params: bool = False) -> None: self.grad_clip = grad_clip self.detect_anomalous_params = detect_anomalous_params def clip_grads(self, params: List[Parameter]) -> Optional[torch.Tensor]: """Clip the gradients of parameters. Args: params (list[Parameter]): Model's parameters. Returns: Optional[torch.Tensor]: Total norm of the parameters if there is at least one param requiring gradient, else None. """ params = list( filter(lambda p: p.requires_grad and p.grad is not None, params)) if len(params) > 0: return clip_grad.clip_grad_norm_(params, **self.grad_clip) return None def after_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """All operations need to be finished after each training iteration. This function will finish following 3 operations: - Detect any anomalous parameters which are not included in the training graph. (optional) - Compute the gradient of model parameters. - Clip the gradients of each parameter. (optional) - Update model parameters with gradients. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the train loop. data_batch (Sequence[dict], optional): Data from dataloader. In order to keep this interface consistent with other hooks, we keep ``data_batch`` here. Defaults to None. outputs (dict, optional): Outputs from model. In order to keep this interface consistent with other hooks, we keep ``outputs`` here. Defaults to None. """ runner.optimizer.zero_grad() runner.message_hub.update_scalar( 'train/lr', runner.optimizer.param_groups[0]['lr']) if self.detect_anomalous_params: self.detect_anomalous_parameters(runner.outputs['loss'], runner) runner.outputs['loss'].backward() if self.grad_clip is not None: grad_norm = self.clip_grads(runner.model.parameters()) if grad_norm is not None: # Add grad norm to the logger runner.log_buffer.update({'grad_norm': float(grad_norm)}, runner.outputs['num_samples']) runner.optimizer.step() def detect_anomalous_parameters(self, loss: torch.Tensor, runner) -> None: """Detect anomalous parameters that are not included in the graph. Args: loss (torch.Tensor): The loss of current iteration. runner (Runner): The runner of the training process. """ logger = runner.logger parameters_in_graph = set() visited = set() def traverse(grad_fn): if grad_fn is None: return if grad_fn not in visited: visited.add(grad_fn) if hasattr(grad_fn, 'variable'): parameters_in_graph.add(grad_fn.variable) parents = grad_fn.next_functions if parents is not None: for parent in parents: grad_fn = parent[0] traverse(grad_fn) traverse(loss.grad_fn) for n, p in runner.model.named_parameters(): if p not in parameters_in_graph and p.requires_grad: logger.log( level=logging.ERROR, msg=f'{n} with shape {p.size()} is not ' f'in the computational graph \n')
# Copyright (c) OpenMMLab. All rights reserved. import logging from typing import List, Optional, Sequence import torch from torch.nn.parameter import Parameter from torch.nn.utils import clip_grad from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[dict]] @HOOKS.register_module() class OptimizerHook(Hook): """A hook contains custom operations for the optimizer. Args: grad_clip (dict, optional): A config dict to control the clip_grad. Defaults to None. detect_anomalous_params (bool): This option is only used for debugging which will slow down the training speed. Detect anomalous parameters that are not included in the computational graph with ``loss`` as the root. There are two cases - Parameters were not used during forward pass. - Parameters were not used to produce loss. Defaults to False. """ priority = 'HIGH' def __init__(self, grad_clip: Optional[dict] = None, detect_anomalous_params: bool = False) -> None: self.grad_clip = grad_clip self.detect_anomalous_params = detect_anomalous_params def clip_grads(self, params: List[Parameter]) -> Optional[torch.Tensor]: """Clip the gradients of parameters. Args: params (list[Parameter]): Model's parameters. Returns: Optional[torch.Tensor]: Total norm of the parameters if there is at least one param requiring gradient, else None. """ params = list( filter(lambda p: p.requires_grad and p.grad is not None, params)) if len(params) > 0: return clip_grad.clip_grad_norm_(params, **self.grad_clip) return None def after_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """All operations need to be finished after each training iteration. This function will finish following 3 operations: - Detect any anomalous parameters which are not included in the training graph. (optional) - Compute the gradient of model parameters. - Clip the gradients of each parameter. (optional) - Update model parameters with gradients. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the train loop. data_batch (Sequence[dict], optional): Data from dataloader. In order to keep this interface consistent with other hooks, we keep ``data_batch`` here. Defaults to None. outputs (dict, optional): Outputs from model. In order to keep this interface consistent with other hooks, we keep ``outputs`` here. Defaults to None. """ runner.optimizer.zero_grad() if self.detect_anomalous_params: self.detect_anomalous_parameters(runner.outputs['loss'], runner) runner.outputs['loss'].backward() if self.grad_clip is not None: grad_norm = self.clip_grads(runner.model.parameters()) if grad_norm is not None: # Add grad norm to the logger runner.log_buffer.update({'grad_norm': float(grad_norm)}, runner.outputs['num_samples']) runner.optimizer.step() def detect_anomalous_parameters(self, loss: torch.Tensor, runner) -> None: """Detect anomalous parameters that are not included in the graph. Args: loss (torch.Tensor): The loss of current iteration. runner (Runner): The runner of the training process. """ logger = runner.logger parameters_in_graph = set() visited = set() def traverse(grad_fn): if grad_fn is None: return if grad_fn not in visited: visited.add(grad_fn) if hasattr(grad_fn, 'variable'): parameters_in_graph.add(grad_fn.variable) parents = grad_fn.next_functions if parents is not None: for parent in parents: grad_fn = parent[0] traverse(grad_fn) traverse(loss.grad_fn) for n, p in runner.model.named_parameters(): if p not in parameters_in_graph and p.requires_grad: logger.log( level=logging.ERROR, msg=f'{n} with shape {p.size()} is not ' f'in the computational graph \n')
from __future__ import annotations import json from typing import TYPE_CHECKING, List, Optional, Sequence, Type from langchain_core.callbacks import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from pydantic import BaseModel, Field from langchain_community.tools.playwright.base import BaseBrowserTool from langchain_community.tools.playwright.utils import ( aget_current_page, get_current_page, ) if TYPE_CHECKING: from playwright.async_api import Page as AsyncPage from playwright.sync_api import Page as SyncPage class GetElementsToolInput(BaseModel): """Input for GetElementsTool.""" selector: str = Field( ..., description="CSS selector, such as '*', 'div', 'p', 'a', #id, .classname", ) attributes: List[str] = Field( default_factory=lambda: ["innerText"], description="Set of attributes to retrieve for each element", ) async def _aget_elements( page: AsyncPage, selector: str, attributes: Sequence[str] ) -> List[dict]: """Get elements matching the given CSS selector.""" elements = await page.query_selector_all(selector) results = [] for element in elements: result = {} for attribute in attributes: if attribute == "innerText": val: Optional[str] = await element.inner_text() else: val = await element.get_attribute(attribute) if val is not None and val.strip() != "": result[attribute] = val if result: results.append(result) return results def _get_elements( page: SyncPage, selector: str, attributes: Sequence[str] ) -> List[dict]: """Get elements matching the given CSS selector.""" elements = page.query_selector_all(selector) results = [] for element in elements: result = {} for attribute in attributes: if attribute == "innerText": val: Optional[str] = element.inner_text() else: val = element.get_attribute(attribute) if val is not None and val.strip() != "": result[attribute] = val if result: results.append(result) return results class GetElementsTool(BaseBrowserTool): """Tool for getting elements in the current web page matching a CSS selector.""" name: str = "get_elements" description: str = ( "Retrieve elements in the current web page matching the given CSS selector" ) args_schema: Type[BaseModel] = GetElementsToolInput def _run( self, selector: str, attributes: Sequence[str] = ["innerText"], run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) # Navigate to the desired webpage before using this tool results = _get_elements(page, selector, attributes) return json.dumps(results, ensure_ascii=False) async def _arun( self, selector: str, attributes: Sequence[str] = ["innerText"], run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}") page = await aget_current_page(self.async_browser) # Navigate to the desired webpage before using this tool results = await _aget_elements(page, selector, attributes) return json.dumps(results, ensure_ascii=False)
from __future__ import annotations import json from typing import TYPE_CHECKING, List, Optional, Sequence, Type from langchain_core.callbacks import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from pydantic import BaseModel, Field from langchain_community.tools.playwright.base import BaseBrowserTool from langchain_community.tools.playwright.utils import ( aget_current_page, get_current_page, ) if TYPE_CHECKING: from playwright.async_api import Page as AsyncPage from playwright.sync_api import Page as SyncPage class GetElementsToolInput(BaseModel): """Input for GetElementsTool.""" selector: str = Field( ..., description="CSS selector, such as '*', 'div', 'p', 'a', #id, .classname", ) attributes: List[str] = Field( default_factory=lambda: ["innerText"], description="Set of attributes to retrieve for each element", ) async def _aget_elements( page: AsyncPage, selector: str, attributes: Sequence[str] ) -> List[dict]: """Get elements matching the given CSS selector.""" elements = await page.query_selector_all(selector) results = [] for element in elements: result = {} for attribute in attributes: if attribute == "innerText": val: Optional[str] = await element.inner_text() else: val = await element.get_attribute(attribute) if val is not None and val.strip() != "": result[attribute] = val if result: results.append(result) return results def _get_elements( page: SyncPage, selector: str, attributes: Sequence[str] ) -> List[dict]: """Get elements matching the given CSS selector.""" elements = page.query_selector_all(selector) results = [] for element in elements: result = {} for attribute in attributes: if attribute == "innerText": val: Optional[str] = element.inner_text() else: val = element.get_attribute(attribute) if val is not None and val.strip() != "": result[attribute] = val if result: results.append(result) return results class GetElementsTool(BaseBrowserTool): # type: ignore[override, override] """Tool for getting elements in the current web page matching a CSS selector.""" name: str = "get_elements" description: str = ( "Retrieve elements in the current web page matching the given CSS selector" ) args_schema: Type[BaseModel] = GetElementsToolInput def _run( self, selector: str, attributes: Sequence[str] = ["innerText"], run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) # Navigate to the desired webpage before using this tool results = _get_elements(page, selector, attributes) return json.dumps(results, ensure_ascii=False) async def _arun( self, selector: str, attributes: Sequence[str] = ["innerText"], run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}") page = await aget_current_page(self.async_browser) # Navigate to the desired webpage before using this tool results = await _aget_elements(page, selector, attributes) return json.dumps(results, ensure_ascii=False)
from __future__ import annotations import csv import logging import os import numpy as np from sentence_transformers import InputExample logger = logging.getLogger(__name__) class CEBinaryAccuracyEvaluator: """ This evaluator can be used with the CrossEncoder class. It is designed for CrossEncoders with 1 outputs. It measure the accuracy of the predict class vs. the gold labels. It uses a fixed threshold to determine the label (0 vs 1). See CEBinaryClassificationEvaluator for an evaluator that determines automatically the optimal threshold. """ def __init__( self, sentence_pairs: list[list[str]], labels: list[int], name: str = "", threshold: float = 0.5, write_csv: bool = True, ): self.sentence_pairs = sentence_pairs self.labels = labels self.name = name self.threshold = threshold self.csv_file = "CEBinaryAccuracyEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = ["epoch", "steps", "Accuracy"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: list[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = f" after epoch {epoch}:" else: out_txt = f" in epoch {epoch} after {steps} steps:" else: out_txt = ":" logger.info("CEBinaryAccuracyEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) pred_labels = pred_scores > self.threshold assert len(pred_labels) == len(self.labels) acc = np.sum(pred_labels == self.labels) / len(self.labels) logger.info(f"Accuracy: {acc * 100:.2f}") if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc]) return acc
from __future__ import annotations import csv import logging import os import numpy as np from sentence_transformers import InputExample logger = logging.getLogger(__name__) class CEBinaryAccuracyEvaluator: """ This evaluator can be used with the CrossEncoder class. It is designed for CrossEncoders with 1 outputs. It measure the accuracy of the predict class vs. the gold labels. It uses a fixed threshold to determine the label (0 vs 1). See CEBinaryClassificationEvaluator for an evaluator that determines automatically the optimal threshold. """ def __init__( self, sentence_pairs: list[list[str]], labels: list[int], name: str = "", threshold: float = 0.5, write_csv: bool = True, ): self.sentence_pairs = sentence_pairs self.labels = labels self.name = name self.threshold = threshold self.csv_file = "CEBinaryAccuracyEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = ["epoch", "steps", "Accuracy"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: list[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CEBinaryAccuracyEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) pred_labels = pred_scores > self.threshold assert len(pred_labels) == len(self.labels) acc = np.sum(pred_labels == self.labels) / len(self.labels) logger.info("Accuracy: {:.2f}".format(acc * 100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc]) return acc
from torchaudio._internal.module_utils import dropping_support _CTC_DECODERS = [ "CTCHypothesis", "CTCDecoder", "CTCDecoderLM", "CTCDecoderLMState", "ctc_decoder", "download_pretrained_files", ] _CUDA_CTC_DECODERS = [ "CUCTCDecoder", "CUCTCHypothesis", "cuda_ctc_decoder", ] def __getattr__(name: str): if name in _CTC_DECODERS: try: from . import _ctc_decoder except Exception as err: raise RuntimeError( "CTC Decoder suit requires flashlight-text package and optionally KenLM. Please install them." ) from err item = getattr(_ctc_decoder, name) globals()[name] = item return item elif name in _CUDA_CTC_DECODERS: try: from . import _cuda_ctc_decoder except AttributeError as err: raise RuntimeError( "To use CUCTC decoder, please set BUILD_CUDA_CTC_DECODER=1 when building from source." ) from err item = dropping_support(getattr(_cuda_ctc_decoder, name)) globals()[name] = item return item raise AttributeError(f"module {__name__} has no attribute {name}") def __dir__(): return sorted(__all__) __all__ = _CTC_DECODERS + _CUDA_CTC_DECODERS
_CTC_DECODERS = [ "CTCHypothesis", "CTCDecoder", "CTCDecoderLM", "CTCDecoderLMState", "ctc_decoder", "download_pretrained_files", ] _CUDA_CTC_DECODERS = [ "CUCTCDecoder", "CUCTCHypothesis", "cuda_ctc_decoder", ] def __getattr__(name: str): if name in _CTC_DECODERS: try: from . import _ctc_decoder except Exception as err: raise RuntimeError( "CTC Decoder suit requires flashlight-text package and optionally KenLM. Please install them." ) from err item = getattr(_ctc_decoder, name) globals()[name] = item return item elif name in _CUDA_CTC_DECODERS: try: from . import _cuda_ctc_decoder except AttributeError as err: raise RuntimeError( "To use CUCTC decoder, please set BUILD_CUDA_CTC_DECODER=1 when building from source." ) from err item = getattr(_cuda_ctc_decoder, name) globals()[name] = item return item raise AttributeError(f"module {__name__} has no attribute {name}") def __dir__(): return sorted(__all__) __all__ = _CTC_DECODERS + _CUDA_CTC_DECODERS
"""Run smoke tests""" import os from pathlib import Path from sys import platform import torch import torch.nn as nn import torchvision from torchvision.io import read_image from torchvision.models import resnet50, ResNet50_Weights SCRIPT_DIR = Path(__file__).parent def smoke_test_torchvision() -> None: print( "Is torchvision usable?", all(x is not None for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]), ) def smoke_test_torchvision_read_decode() -> None: img_jpg = read_image(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) if img_jpg.ndim != 3 or img_jpg.numel() < 100: raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") img_png = read_image(str(SCRIPT_DIR / "assets" / "interlaced_png" / "wizard_low.png")) if img_png.ndim != 3 or img_png.numel() < 100: raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}") def smoke_test_compile() -> None: try: model = resnet50().cuda() model = torch.compile(model) x = torch.randn(1, 3, 224, 224, device="cuda") out = model(x) print(f"torch.compile model output: {out.shape}") except RuntimeError: if platform == "win32": print("Successfully caught torch.compile RuntimeError on win") else: raise def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None: img = read_image(str(SCRIPT_DIR / ".." / "gallery" / "assets" / "dog2.jpg")).to(device) # Step 1: Initialize model with the best available weights weights = ResNet50_Weights.DEFAULT model = resnet50(weights=weights).to(device) model.eval() # Step 2: Initialize the inference transforms preprocess = weights.transforms() # Step 3: Apply inference preprocessing transforms batch = preprocess(img).unsqueeze(0) # Step 4: Use the model and print the predicted category prediction = model(batch).squeeze(0).softmax(0) class_id = prediction.argmax().item() score = prediction[class_id].item() category_name = weights.meta["categories"][class_id] expected_category = "German shepherd" print(f"{category_name} ({device}): {100 * score:.1f}%") if category_name != expected_category: raise RuntimeError(f"Failed ResNet50 classify {category_name} Expected: {expected_category}") def main() -> None: print(f"torchvision: {torchvision.__version__}") print(f"torch.cuda.is_available: {torch.cuda.is_available()}") smoke_test_torchvision() smoke_test_torchvision_read_decode() smoke_test_torchvision_resnet50_classify() if torch.cuda.is_available(): smoke_test_torchvision_resnet50_classify("cuda") smoke_test_compile() if torch.backends.mps.is_available(): smoke_test_torchvision_resnet50_classify("mps") if __name__ == "__main__": main()
"""Run smoke tests""" import os from pathlib import Path import torch import torch.nn as nn import torchvision from torchvision.io import read_image from torchvision.models import resnet50, ResNet50_Weights SCRIPT_DIR = Path(__file__).parent def smoke_test_torchvision() -> None: print( "Is torchvision usable?", all(x is not None for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]), ) def smoke_test_torchvision_read_decode() -> None: img_jpg = read_image(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) if img_jpg.ndim != 3 or img_jpg.numel() < 100: raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") img_png = read_image(str(SCRIPT_DIR / "assets" / "interlaced_png" / "wizard_low.png")) if img_png.ndim != 3 or img_png.numel() < 100: raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}") def smoke_test_compile() -> None: model = resnet50().cuda() model = torch.compile(model) x = torch.randn(1, 3, 224, 224, device="cuda") out = model(x) print(f"torch.compile model output: {out.shape}") def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None: img = read_image(str(SCRIPT_DIR / ".." / "gallery" / "assets" / "dog2.jpg")).to(device) # Step 1: Initialize model with the best available weights weights = ResNet50_Weights.DEFAULT model = resnet50(weights=weights).to(device) model.eval() # Step 2: Initialize the inference transforms preprocess = weights.transforms() # Step 3: Apply inference preprocessing transforms batch = preprocess(img).unsqueeze(0) # Step 4: Use the model and print the predicted category prediction = model(batch).squeeze(0).softmax(0) class_id = prediction.argmax().item() score = prediction[class_id].item() category_name = weights.meta["categories"][class_id] expected_category = "German shepherd" print(f"{category_name} ({device}): {100 * score:.1f}%") if category_name != expected_category: raise RuntimeError(f"Failed ResNet50 classify {category_name} Expected: {expected_category}") def main() -> None: print(f"torchvision: {torchvision.__version__}") print(f"torch.cuda.is_available: {torch.cuda.is_available()}") smoke_test_torchvision() smoke_test_torchvision_read_decode() smoke_test_torchvision_resnet50_classify() if torch.cuda.is_available(): smoke_test_torchvision_resnet50_classify("cuda") smoke_test_compile() if torch.backends.mps.is_available(): smoke_test_torchvision_resnet50_classify("mps") if __name__ == "__main__": main()
import json import logging import os from collections import defaultdict from pathlib import Path from huggingface_hub import HfApi import diffusers PATH_TO_REPO = Path(__file__).parent.parent.resolve() ALWAYS_TEST_PIPELINE_MODULES = [ "controlnet", "stable_diffusion", "stable_diffusion_2", "stable_diffusion_xl", "stable_diffusion_adapter", "ip_adapters", "kandinsky2_2", ] PIPELINE_USAGE_CUTOFF = int(os.getenv("PIPELINE_USAGE_CUTOFF", 50000)) logger = logging.getLogger(__name__) api = HfApi() def filter_pipelines(usage_dict, usage_cutoff=10000): output = [] for diffusers_object, usage in usage_dict.items(): if usage < usage_cutoff: continue is_diffusers_pipeline = hasattr(diffusers.pipelines, diffusers_object) if not is_diffusers_pipeline: continue output.append(diffusers_object) return output def fetch_pipeline_objects(): models = api.list_models(library="diffusers") downloads = defaultdict(int) for model in models: is_counted = False for tag in model.tags: if tag.startswith("diffusers:"): is_counted = True downloads[tag[len("diffusers:") :]] += model.downloads if not is_counted: downloads["other"] += model.downloads # Remove 0 downloads downloads = {k: v for k, v in downloads.items() if v > 0} pipeline_objects = filter_pipelines(downloads, PIPELINE_USAGE_CUTOFF) return pipeline_objects def fetch_pipeline_modules_to_test(): try: pipeline_objects = fetch_pipeline_objects() except Exception as e: logger.error(e) raise RuntimeError("Unable to fetch model list from HuggingFace Hub.") test_modules = [] for pipeline_name in pipeline_objects: module = getattr(diffusers, pipeline_name) test_module = module.__module__.split(".")[-2].strip() test_modules.append(test_module) return test_modules def main(): test_modules = fetch_pipeline_modules_to_test() test_modules.extend(ALWAYS_TEST_PIPELINE_MODULES) # Get unique modules test_modules = sorted(set(test_modules)) print(json.dumps(test_modules)) save_path = f"{PATH_TO_REPO}/reports" os.makedirs(save_path, exist_ok=True) with open(f"{save_path}/test-pipelines.json", "w") as f: json.dump({"pipeline_test_modules": test_modules}, f) if __name__ == "__main__": main()
import json import logging import os from collections import defaultdict from pathlib import Path from huggingface_hub import HfApi import diffusers PATH_TO_REPO = Path(__file__).parent.parent.resolve() ALWAYS_TEST_PIPELINE_MODULES = [ "controlnet", "stable_diffusion", "stable_diffusion_2", "stable_diffusion_xl", "stable_diffusion_adapter", "deepfloyd_if", "ip_adapters", "kandinsky", "kandinsky2_2", "text_to_video_synthesis", "wuerstchen", ] PIPELINE_USAGE_CUTOFF = int(os.getenv("PIPELINE_USAGE_CUTOFF", 50000)) logger = logging.getLogger(__name__) api = HfApi() def filter_pipelines(usage_dict, usage_cutoff=10000): output = [] for diffusers_object, usage in usage_dict.items(): if usage < usage_cutoff: continue is_diffusers_pipeline = hasattr(diffusers.pipelines, diffusers_object) if not is_diffusers_pipeline: continue output.append(diffusers_object) return output def fetch_pipeline_objects(): models = api.list_models(library="diffusers") downloads = defaultdict(int) for model in models: is_counted = False for tag in model.tags: if tag.startswith("diffusers:"): is_counted = True downloads[tag[len("diffusers:") :]] += model.downloads if not is_counted: downloads["other"] += model.downloads # Remove 0 downloads downloads = {k: v for k, v in downloads.items() if v > 0} pipeline_objects = filter_pipelines(downloads, PIPELINE_USAGE_CUTOFF) return pipeline_objects def fetch_pipeline_modules_to_test(): try: pipeline_objects = fetch_pipeline_objects() except Exception as e: logger.error(e) raise RuntimeError("Unable to fetch model list from HuggingFace Hub.") test_modules = [] for pipeline_name in pipeline_objects: module = getattr(diffusers, pipeline_name) test_module = module.__module__.split(".")[-2].strip() test_modules.append(test_module) return test_modules def main(): test_modules = fetch_pipeline_modules_to_test() test_modules.extend(ALWAYS_TEST_PIPELINE_MODULES) # Get unique modules test_modules = sorted(set(test_modules)) print(json.dumps(test_modules)) save_path = f"{PATH_TO_REPO}/reports" os.makedirs(save_path, exist_ok=True) with open(f"{save_path}/test-pipelines.json", "w") as f: json.dump({"pipeline_test_modules": test_modules}, f) if __name__ == "__main__": main()
import numpy as np import pytest from docarray.computation.numpy_backend import NumpyCompBackend def test_to_device(): with pytest.raises(NotImplementedError): NumpyCompBackend.to_device(np.random.rand(10, 3), 'meta') @pytest.mark.parametrize( 'array,result', [ (np.zeros((5)), 1), (np.zeros((1, 5)), 2), (np.zeros((5, 5)), 2), (np.zeros(()), 0), ], ) def test_n_dim(array, result): assert NumpyCompBackend.n_dim(array) == result @pytest.mark.parametrize( 'array,result', [ (np.zeros((10,)), (10,)), (np.zeros((5, 5)), (5, 5)), (np.zeros(()), ()), ], ) def test_shape(array, result): shape = NumpyCompBackend.shape(array) assert shape == result assert type(shape) == tuple def test_device(): array = np.array([1, 2, 3]) assert NumpyCompBackend.device(array) is None @pytest.mark.parametrize('dtype', [np.int64, np.float64, np.int, np.float]) def test_dtype(dtype): array = np.array([1, 2, 3], dtype=dtype) assert NumpyCompBackend.dtype(array) == dtype def test_empty(): array = NumpyCompBackend.empty((10, 3)) assert array.shape == (10, 3) def test_empty_dtype(): tensor = NumpyCompBackend.empty((10, 3), dtype=np.int32) assert tensor.shape == (10, 3) assert tensor.dtype == np.int32 def test_empty_device(): with pytest.raises(NotImplementedError): NumpyCompBackend.empty((10, 3), device='meta') def test_squeeze(): tensor = np.zeros(shape=(1, 1, 3, 1)) squeezed = NumpyCompBackend.squeeze(tensor) assert squeezed.shape == (3,) @pytest.mark.parametrize( 'array,t_range,x_range,result', [ (np.array([0, 1, 2, 3, 4, 5]), (0, 10), None, np.array([0, 2, 4, 6, 8, 10])), (np.array([0, 1, 2, 3, 4, 5]), (0, 10), (0, 10), np.array([0, 1, 2, 3, 4, 5])), ( np.array([[0.0, 1.0], [0.0, 1.0]]), (0, 10), None, np.array([[0.0, 10.0], [0.0, 10.0]]), ), ], ) def test_minmax_normalize(array, t_range, x_range, result): output = NumpyCompBackend.minmax_normalize( tensor=array, t_range=t_range, x_range=x_range ) assert np.allclose(output, result)
import numpy as np import pytest from docarray.computation.numpy_backend import NumpyCompBackend def test_to_device(): with pytest.raises(NotImplementedError): NumpyCompBackend.to_device(np.random.rand(10, 3), 'meta') @pytest.mark.parametrize( 'array,result', [ (np.zeros((5)), 1), (np.zeros((1, 5)), 2), (np.zeros((5, 5)), 2), (np.zeros(()), 0), ], ) def test_n_dim(array, result): assert NumpyCompBackend.n_dim(array) == result @pytest.mark.parametrize( 'array,result', [ (np.zeros((10,)), (10,)), (np.zeros((5, 5)), (5, 5)), (np.zeros(()), ()), ], ) def test_shape(array, result): shape = NumpyCompBackend.shape(array) assert shape == result assert type(shape) == tuple def test_empty(): array = NumpyCompBackend.empty((10, 3)) assert array.shape == (10, 3) def test_empty_dtype(): tensor = NumpyCompBackend.empty((10, 3), dtype=np.int32) assert tensor.shape == (10, 3) assert tensor.dtype == np.int32 def test_empty_device(): with pytest.raises(NotImplementedError): NumpyCompBackend.empty((10, 3), device='meta') def test_squeeze(): tensor = np.zeros(shape=(1, 1, 3, 1)) squeezed = NumpyCompBackend.squeeze(tensor) assert squeezed.shape == (3,) @pytest.mark.parametrize( 'array,t_range,x_range,result', [ (np.array([0, 1, 2, 3, 4, 5]), (0, 10), None, np.array([0, 2, 4, 6, 8, 10])), (np.array([0, 1, 2, 3, 4, 5]), (0, 10), (0, 10), np.array([0, 1, 2, 3, 4, 5])), ( np.array([[0.0, 1.0], [0.0, 1.0]]), (0, 10), None, np.array([[0.0, 10.0], [0.0, 10.0]]), ), ], ) def test_minmax_normalize(array, t_range, x_range, result): output = NumpyCompBackend.minmax_normalize( tensor=array, t_range=t_range, x_range=x_range ) assert np.allclose(output, result)
# Copyright (c) OpenMMLab. All rights reserved. from .builder import DATASETS, PIPELINES, build_dataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_panoptic import CocoPanopticDataset from .dataset_wrappers import MultiImageMixDataset from .deepfashion import DeepFashionDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .openimages import OpenImagesChallengeDataset, OpenImagesDataset from .samplers import AspectRatioBatchSampler, ClassAwareSampler from .utils import get_loading_pipeline from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset __all__ = [ 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'WIDERFaceDataset', 'DATASETS', 'PIPELINES', 'build_dataset', 'get_loading_pipeline', 'CocoPanopticDataset', 'MultiImageMixDataset', 'OpenImagesDataset', 'OpenImagesChallengeDataset', 'AspectRatioBatchSampler', 'ClassAwareSampler' ]
# Copyright (c) OpenMMLab. All rights reserved. from .builder import DATASETS, PIPELINES, build_dataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_panoptic import CocoPanopticDataset from .custom import CustomDataset from .dataset_wrappers import MultiImageMixDataset from .deepfashion import DeepFashionDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .openimages import OpenImagesChallengeDataset, OpenImagesDataset from .samplers import AspectRatioBatchSampler, ClassAwareSampler from .utils import get_loading_pipeline, replace_ImageToTensor from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset __all__ = [ 'CustomDataset', 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'WIDERFaceDataset', 'DATASETS', 'PIPELINES', 'build_dataset', 'replace_ImageToTensor', 'get_loading_pipeline', 'CocoPanopticDataset', 'MultiImageMixDataset', 'OpenImagesDataset', 'OpenImagesChallengeDataset', 'AspectRatioBatchSampler', 'ClassAwareSampler' ]
"""Test EdenAi's text to speech Tool . In order to run this test, you need to have an EdenAI api key. You can get it by registering for free at https://app.edenai.run/user/register. A test key can be found at https://app.edenai.run/admin/account/settings by clicking on the 'sandbox' toggle. (calls will be free, and will return dummy results) You'll then need to set EDENAI_API_KEY environment variable to your api key. """ from urllib.parse import urlparse from langchain_community.tools.edenai import EdenAiTextToSpeechTool def test_edenai_call() -> None: """Test simple call to edenai's text to speech endpoint.""" text2speech = EdenAiTextToSpeechTool( providers=["amazon"], language="en", voice="MALE" ) output = text2speech.invoke("hello") parsed_url = urlparse(output) assert text2speech.name == "edenai_text_to_speech" assert text2speech.feature == "audio" assert text2speech.subfeature == "text_to_speech" assert isinstance(output, str) assert parsed_url.scheme in ["http", "https"]
"""Test EdenAi's text to speech Tool . In order to run this test, you need to have an EdenAI api key. You can get it by registering for free at https://app.edenai.run/user/register. A test key can be found at https://app.edenai.run/admin/account/settings by clicking on the 'sandbox' toggle. (calls will be free, and will return dummy results) You'll then need to set EDENAI_API_KEY environment variable to your api key. """ from urllib.parse import urlparse from langchain_community.tools.edenai import EdenAiTextToSpeechTool def test_edenai_call() -> None: """Test simple call to edenai's text to speech endpoint.""" text2speech = EdenAiTextToSpeechTool( # type: ignore[call-arg] providers=["amazon"], language="en", voice="MALE" ) output = text2speech.invoke("hello") parsed_url = urlparse(output) assert text2speech.name == "edenai_text_to_speech" assert text2speech.feature == "audio" assert text2speech.subfeature == "text_to_speech" assert isinstance(output, str) assert parsed_url.scheme in ["http", "https"]
from langchain_core.load.serializable import ( BaseSerialized, Serializable, SerializedConstructor, SerializedNotImplemented, SerializedSecret, to_json_not_implemented, try_neq_default, ) __all__ = [ "BaseSerialized", "Serializable", "SerializedConstructor", "SerializedNotImplemented", "SerializedSecret", "to_json_not_implemented", "try_neq_default", ]
from langchain_core.load.serializable import ( BaseSerialized, Serializable, SerializedConstructor, SerializedNotImplemented, SerializedSecret, to_json_not_implemented, try_neq_default, ) __all__ = [ "BaseSerialized", "SerializedConstructor", "SerializedSecret", "SerializedNotImplemented", "try_neq_default", "Serializable", "to_json_not_implemented", ]
import os import warnings from pathlib import Path import torch from torchaudio._internal import module_utils as _mod_utils # noqa: F401 _LIB_DIR = Path(__file__).parent / "lib" def _get_lib_path(lib: str): suffix = "pyd" if os.name == "nt" else "so" path = _LIB_DIR / f"{lib}.{suffix}" return path def _load_lib(lib: str) -> bool: """Load extension module Note: In case `torchaudio` is deployed with `pex` format, the library file is not in a standard location. In this case, we expect that `libtorchaudio` is available somewhere in the search path of dynamic loading mechanism, so that importing `_torchaudio` will have library loader find and load `libtorchaudio`. This is the reason why the function should not raising an error when the library file is not found. Returns: bool: True if the library file is found AND the library loaded without failure. False if the library file is not found (like in the case where torchaudio is deployed with pex format, thus the shared library file is in a non-standard location.). If the library file is found but there is an issue loading the library, (such as missing dependency) then this function raises the exception as-is. Raises: Exception: If the library file is found, but there is an issue loading the library file, (when underlying `ctype.DLL` throws an exception), this function will pass the exception as-is, instead of catching it and returning bool. The expected case is `OSError` thrown by `ctype.DLL` when a dynamic dependency is not found. This behavior was chosen because the expected failure case is not recoverable. If a dependency is missing, then users have to install it. """ path = _get_lib_path(lib) if not path.exists(): return False torch.ops.load_library(path) torch.classes.load_library(path) return True _FFMPEG_INITIALIZED = False def _init_ffmpeg(): global _FFMPEG_INITIALIZED if _FFMPEG_INITIALIZED: return if not torch.ops.torchaudio.is_ffmpeg_available(): raise RuntimeError( "torchaudio is not compiled with FFmpeg integration. Please set USE_FFMPEG=1 when compiling torchaudio." ) try: _load_lib("libtorchaudio_ffmpeg") except OSError as err: raise ImportError("FFmpeg libraries are not found. Please install FFmpeg.") from err import torchaudio._torchaudio_ffmpeg # noqa torch.ops.torchaudio.ffmpeg_init() if torch.ops.torchaudio.ffmpeg_get_log_level() > 8: torch.ops.torchaudio.ffmpeg_set_log_level(8) _FFMPEG_INITIALIZED = True def _init_extension(): if not _mod_utils.is_module_available("torchaudio._torchaudio"): warnings.warn("torchaudio C++ extension is not available.") return _load_lib("libtorchaudio") # This import is for initializing the methods registered via PyBind11 # This has to happen after the base library is loaded from torchaudio import _torchaudio # noqa # Because this part is executed as part of `import torchaudio`, we ignore the # initialization failure. # If the FFmpeg integration is not properly initialized, then detailed error # will be raised when client code attempts to import the dedicated feature. try: _init_ffmpeg() except Exception: pass def _check_cuda_version(): version = torch.ops.torchaudio.cuda_version() if version is not None and torch.version.cuda is not None: version_str = str(version) ta_version = f"{version_str[:-3]}.{version_str[-2]}" t_version = torch.version.cuda.split(".") t_version = f"{t_version[0]}.{t_version[1]}" if ta_version != t_version: raise RuntimeError( "Detected that PyTorch and TorchAudio were compiled with different CUDA versions. " f"PyTorch has CUDA version {t_version} whereas TorchAudio has CUDA version {ta_version}. " "Please install the TorchAudio version that matches your PyTorch version." ) _init_extension() _check_cuda_version()
import os import warnings from pathlib import Path import torch from torchaudio._internal import module_utils as _mod_utils # noqa: F401 _LIB_DIR = Path(__file__).parent / "lib" def _get_lib_path(lib: str): suffix = "pyd" if os.name == "nt" else "so" path = _LIB_DIR / f"{lib}.{suffix}" return path def _load_lib(lib: str) -> bool: """Load extension module Note: In case `torchaudio` is deployed with `pex` format, the library file is not in a standard location. In this case, we expect that `libtorchaudio` is available somewhere in the search path of dynamic loading mechanism, so that importing `_torchaudio` will have library loader find and load `libtorchaudio`. This is the reason why the function should not raising an error when the library file is not found. Returns: bool: True if the library file is found AND the library loaded without failure. False if the library file is not found (like in the case where torchaudio is deployed with pex format, thus the shared library file is in a non-standard location.). If the library file is found but there is an issue loading the library, (such as missing dependency) then this function raises the exception as-is. Raises: Exception: If the library file is found, but there is an issue loading the library file, (when underlying `ctype.DLL` throws an exception), this function will pass the exception as-is, instead of catching it and returning bool. The expected case is `OSError` thrown by `ctype.DLL` when a dynamic dependency is not found. This behavior was chosen because the expected failure case is not recoverable. If a dependency is missing, then users have to install it. """ path = _get_lib_path(lib) if not path.exists(): return False torch.ops.load_library(path) torch.classes.load_library(path) return True _FFMPEG_INITIALIZED = False def _init_ffmpeg(): global _FFMPEG_INITIALIZED if _FFMPEG_INITIALIZED: return if not torch.ops.torchaudio.is_ffmpeg_available(): raise RuntimeError( "torchaudio is not compiled with FFmpeg integration. Please set USE_FFMPEG=1 when compiling torchaudio." ) try: _load_lib("libtorchaudio_ffmpeg") except OSError as err: raise ImportError("FFmpeg libraries are not found. Please install FFmpeg.") from err import torchaudio._torchaudio_ffmpeg # noqa torch.ops.torchaudio.ffmpeg_init() if torch.ops.torchaudio.ffmpeg_get_log_level() > 8: torch.ops.torchaudio.ffmpeg_set_log_level(8) _FFMPEG_INITIALIZED = True def _init_extension(): if not _mod_utils.is_module_available("torchaudio._torchaudio"): warnings.warn("torchaudio C++ extension is not available.") return _load_lib("libtorchaudio") # This import is for initializing the methods registered via PyBind11 # This has to happen after the base library is loaded from torchaudio import _torchaudio # noqa # Because this part is executed as part of `import torchaudio`, we ignore the # initialization failure. # If the FFmpeg integration is not properly initialized, then detailed error # will be raised when client code attempts to import the dedicated feature. try: _init_ffmpeg() except Exception: pass def _check_cuda_version(): version = torch.ops.torchaudio.cuda_version() if version is not None and torch.version.cuda is not None: version_str = str(version) ta_version = f"{version_str[:-3]}.{version_str[-2]}" t_version = torch.version.cuda if ta_version != t_version: raise RuntimeError( "Detected that PyTorch and TorchAudio were compiled with different CUDA versions. " f"PyTorch has CUDA version {t_version} whereas TorchAudio has CUDA version {ta_version}. " "Please install the TorchAudio version that matches your PyTorch version." ) _init_extension() _check_cuda_version()
""" This example runs a BiLSTM after the word embedding lookup. The output of the BiLSTM is than pooled, for example with max-pooling (which gives a system like InferSent) or with mean-pooling. Note, you can also pass BERT embeddings to the BiLSTM. """ import logging import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers import SentenceTransformer, losses, models from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) num_train_epochs = 1 batch_size = 32 output_dir = "output/training_stsbenchmark_bilstm-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 2. Define the model # Map tokens to traditional word embeddings like GloVe word_embedding_model = models.WordEmbeddings.from_text_file("glove.6B.300d.txt.gz") lstm = models.LSTM(word_embedding_dimension=word_embedding_model.get_word_embedding_dimension(), hidden_dim=1024) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( lstm.get_word_embedding_dimension(), pooling_mode="mean", ) model = SentenceTransformer(modules=[word_embedding_model, lstm, pooling_model]) # 3. Define our training loss # CosineSimilarityLoss (https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) needs two text columns and # one similarity score column (between 0 and 1) train_loss = losses.CosineSimilarityLoss(model=model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_train_epochs, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="glove-bilstm-sts", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 8. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = "glove-bilstm-sts" try: model.push_to_hub(model_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}')`." )
""" This example runs a BiLSTM after the word embedding lookup. The output of the BiLSTM is than pooled, for example with max-pooling (which gives a system like InferSent) or with mean-pooling. Note, you can also pass BERT embeddings to the BiLSTM. """ import logging import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers import SentenceTransformer, losses, models from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) num_train_epochs = 1 batch_size = 32 output_dir = "output/training_stsbenchmark_bilstm-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 2. Define the model # Map tokens to traditional word embeddings like GloVe word_embedding_model = models.WordEmbeddings.from_text_file("glove.6B.300d.txt.gz") lstm = models.LSTM(word_embedding_dimension=word_embedding_model.get_word_embedding_dimension(), hidden_dim=1024) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( lstm.get_word_embedding_dimension(), pooling_mode="mean", ) model = SentenceTransformer(modules=[word_embedding_model, lstm, pooling_model]) # 3. Define our training loss # CosineSimilarityLoss (https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) needs two text columns and # one similarity score column (between 0 and 1) train_loss = losses.CosineSimilarityLoss(model=model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_train_epochs, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="glove-bilstm-sts", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 8. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = "glove-bilstm-sts" try: model.push_to_hub(model_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}')`." )
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/openimages_detection.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_1x.py' ] model = dict( bbox_head=dict( num_classes=601, anchor_generator=dict(basesize_ratio_range=(0.2, 0.9)))) # dataset settings dataset_type = 'OpenImagesDataset' data_root = 'data/OpenImages/' input_size = 300 train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='Expand', mean={{_base_.model.data_preprocessor.mean}}, to_rgb={{_base_.model.data_preprocessor.bgr_to_rgb}}, ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'instances')) ] train_dataloader = dict( batch_size=8, # using 32 GPUS while training. total batch size is 32 x 8 batch_sampler=None, dataset=dict( _delete_=True, type='RepeatDataset', times=3, # repeat 3 times, total epochs are 12 x 3 dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/oidv6-train-annotations-bbox.csv', data_prefix=dict(img='OpenImages/train/'), label_file='annotations/class-descriptions-boxable.csv', hierarchy_file='annotations/bbox_labels_600_hierarchy.json', meta_file='annotations/train-image-metas.pkl', pipeline=train_pipeline))) val_dataloader = dict(batch_size=8, dataset=dict(pipeline=test_pipeline)) test_dataloader = dict(batch_size=8, dataset=dict(pipeline=test_pipeline)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.04, momentum=0.9, weight_decay=5e-4)) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=20000), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=256)
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/openimages_detection.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_1x.py' ] model = dict( bbox_head=dict( num_classes=601, anchor_generator=dict(basesize_ratio_range=(0.2, 0.9)))) # dataset settings dataset_type = 'OpenImagesDataset' data_root = 'data/OpenImages/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True, normed_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(300, 300), keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='RandomFlip', flip_ratio=0.5), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(300, 300), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, # using 32 GPUS while training. workers_per_gpu=0, # workers_per_gpu > 0 may occur out of memory train=dict( _delete_=True, type='RepeatDataset', times=3, dataset=dict( type=dataset_type, ann_file=data_root + 'annotations/oidv6-train-annotations-bbox.csv', img_prefix=data_root + 'OpenImages/train/', label_file=data_root + 'annotations/class-descriptions-boxable.csv', hierarchy_file=data_root + 'annotations/bbox_labels_600_hierarchy.json', pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.04, momentum=0.9, weight_decay=5e-4) optimizer_config = dict() # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=20000, warmup_ratio=0.001, step=[8, 11]) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=256)
"""Autoretriever prompts.""" from llama_index.core.prompts.base import PromptTemplate from llama_index.core.prompts.prompt_type import PromptType from llama_index.core.vector_stores.types import ( FilterOperator, MetadataFilter, MetadataInfo, VectorStoreInfo, VectorStoreQuerySpec, ) # NOTE: these prompts are inspired from langchain's self-query prompt, # and adapted to our use case. # https://github.com/hwchase17/langchain/tree/main/langchain/chains/query_constructor/prompt.py PREFIX = """\ Your goal is to structure the user's query to match the request schema provided below. << Structured Request Schema >> When responding use a markdown code snippet with a JSON object formatted in the \ following schema: {schema_str} The query string should contain only text that is expected to match the contents of \ documents. Any conditions in the filter should not be mentioned in the query as well. Make sure that filters only refer to attributes that exist in the data source. Make sure that filters take into account the descriptions of attributes. Make sure that filters are only used as needed. If there are no filters that should be \ applied return [] for the filter value.\ If the user's query explicitly mentions number of documents to retrieve, set top_k to \ that number, otherwise do not set top_k. """ example_info = VectorStoreInfo( content_info="Lyrics of a song", metadata_info=[ MetadataInfo(name="artist", type="str", description="Name of the song artist"), MetadataInfo( name="genre", type="str", description='The song genre, one of "pop", "rock" or "rap"', ), ], ) example_query = "What are songs by Taylor Swift or Katy Perry in the dance pop genre" example_output = VectorStoreQuerySpec( query="teenager love", filters=[ MetadataFilter(key="artist", value="Taylor Swift"), MetadataFilter(key="artist", value="Katy Perry"), MetadataFilter(key="genre", value="pop"), ], ) example_info_2 = VectorStoreInfo( content_info="Classic literature", metadata_info=[ MetadataInfo(name="author", type="str", description="Author name"), MetadataInfo( name="book_title", type="str", description="Book title", ), MetadataInfo( name="year", type="int", description="Year Published", ), MetadataInfo( name="pages", type="int", description="Number of pages", ), MetadataInfo( name="summary", type="str", description="A short summary of the book", ), ], ) example_query_2 = "What are some books by Jane Austen published after 1813 that explore the theme of marriage for social standing?" example_output_2 = VectorStoreQuerySpec( query="Books related to theme of marriage for social standing", filters=[ MetadataFilter(key="year", value="1813", operator=FilterOperator.GT), MetadataFilter(key="author", value="Jane Austen"), ], ) EXAMPLES = f"""\ << Example 1. >> Data Source: ```json {example_info.model_dump_json(indent=4)} ``` User Query: {example_query} Structured Request: ```json {example_output.model_dump_json()} << Example 2. >> Data Source: ```json {example_info_2.model_dump_json(indent=4)} ``` User Query: {example_query_2} Structured Request: ```json {example_output_2.model_dump_json()} ``` """.replace("{", "{{").replace("}", "}}") SUFFIX = """ << Example 3. >> Data Source: ```json {info_str} ``` User Query: {query_str} Structured Request: """ DEFAULT_VECTOR_STORE_QUERY_PROMPT_TMPL = PREFIX + EXAMPLES + SUFFIX # deprecated, kept for backwards compatibility """Vector store query prompt.""" VectorStoreQueryPrompt = PromptTemplate DEFAULT_VECTOR_STORE_QUERY_PROMPT = PromptTemplate( template=DEFAULT_VECTOR_STORE_QUERY_PROMPT_TMPL, prompt_type=PromptType.VECTOR_STORE_QUERY, )
"""Autoretriever prompts.""" from llama_index.core.prompts.base import PromptTemplate from llama_index.core.prompts.prompt_type import PromptType from llama_index.core.vector_stores.types import ( FilterOperator, MetadataFilter, MetadataInfo, VectorStoreInfo, VectorStoreQuerySpec, ) # NOTE: these prompts are inspired from langchain's self-query prompt, # and adapted to our use case. # https://github.com/hwchase17/langchain/tree/main/langchain/chains/query_constructor/prompt.py PREFIX = """\ Your goal is to structure the user's query to match the request schema provided below. << Structured Request Schema >> When responding use a markdown code snippet with a JSON object formatted in the \ following schema: {schema_str} The query string should contain only text that is expected to match the contents of \ documents. Any conditions in the filter should not be mentioned in the query as well. Make sure that filters only refer to attributes that exist in the data source. Make sure that filters take into account the descriptions of attributes. Make sure that filters are only used as needed. If there are no filters that should be \ applied return [] for the filter value.\ If the user's query explicitly mentions number of documents to retrieve, set top_k to \ that number, otherwise do not set top_k. """ example_info = VectorStoreInfo( content_info="Lyrics of a song", metadata_info=[ MetadataInfo(name="artist", type="str", description="Name of the song artist"), MetadataInfo( name="genre", type="str", description='The song genre, one of "pop", "rock" or "rap"', ), ], ) example_query = "What are songs by Taylor Swift or Katy Perry in the dance pop genre" example_output = VectorStoreQuerySpec( query="teenager love", filters=[ MetadataFilter(key="artist", value="Taylor Swift"), MetadataFilter(key="artist", value="Katy Perry"), MetadataFilter(key="genre", value="pop"), ], ) example_info_2 = VectorStoreInfo( content_info="Classic literature", metadata_info=[ MetadataInfo(name="author", type="str", description="Author name"), MetadataInfo( name="book_title", type="str", description="Book title", ), MetadataInfo( name="year", type="int", description="Year Published", ), MetadataInfo( name="pages", type="int", description="Number of pages", ), MetadataInfo( name="summary", type="str", description="A short summary of the book", ), ], ) example_query_2 = "What are some books by Jane Austen published after 1813 that explore the theme of marriage for social standing?" example_output_2 = VectorStoreQuerySpec( query="Books related to theme of marriage for social standing", filters=[ MetadataFilter(key="year", value="1813", operator=FilterOperator.GT), MetadataFilter(key="author", value="Jane Austen"), ], ) EXAMPLES = f"""\ << Example 1. >> Data Source: ```json {example_info.model_dump_json(indent=4)} ``` User Query: {example_query} Structured Request: ```json {example_output.model_dump_json()} << Example 2. >> Data Source: ```json {example_info_2.model_dump_json(indent=4)} ``` User Query: {example_query_2} Structured Request: ```json {example_output_2.model_dump_json()} ``` """.replace( "{", "{{" ).replace( "}", "}}" ) SUFFIX = """ << Example 3. >> Data Source: ```json {info_str} ``` User Query: {query_str} Structured Request: """ DEFAULT_VECTOR_STORE_QUERY_PROMPT_TMPL = PREFIX + EXAMPLES + SUFFIX # deprecated, kept for backwards compatibility """Vector store query prompt.""" VectorStoreQueryPrompt = PromptTemplate DEFAULT_VECTOR_STORE_QUERY_PROMPT = PromptTemplate( template=DEFAULT_VECTOR_STORE_QUERY_PROMPT_TMPL, prompt_type=PromptType.VECTOR_STORE_QUERY, )
from typing import Any, Optional, Union, cast from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import HumanMessage, SystemMessage from langchain_core.output_parsers import BaseLLMOutputParser from langchain_core.output_parsers.openai_functions import ( OutputFunctionsParser, PydanticOutputFunctionsParser, ) from langchain_core.prompts import PromptTemplate from langchain_core.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate from langchain_core.utils.pydantic import is_basemodel_subclass from pydantic import BaseModel, Field from langchain.chains.llm import LLMChain from langchain.chains.openai_functions.utils import get_llm_kwargs class AnswerWithSources(BaseModel): """An answer to the question, with sources.""" answer: str = Field(..., description="Answer to the question that was asked") sources: list[str] = Field( ..., description="List of sources used to answer the question", ) @deprecated( since="0.2.13", removal="1.0", message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with structured responses: " "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" ), ) def create_qa_with_structure_chain( llm: BaseLanguageModel, schema: Union[dict, type[BaseModel]], output_parser: str = "base", prompt: Optional[Union[PromptTemplate, ChatPromptTemplate]] = None, verbose: bool = False, # noqa: FBT001,FBT002 ) -> LLMChain: """Create a question answering chain that returns an answer with sources based on schema. Args: llm: Language model to use for the chain. schema: Pydantic schema to use for the output. output_parser: Output parser to use. Should be one of `pydantic` or `base`. Default to `base`. prompt: Optional prompt to use for the chain. Returns: """ if output_parser == "pydantic": if not (isinstance(schema, type) and is_basemodel_subclass(schema)): msg = ( "Must provide a pydantic class for schema when output_parser is " "'pydantic'." ) raise ValueError(msg) _output_parser: BaseLLMOutputParser = PydanticOutputFunctionsParser( pydantic_schema=schema, ) elif output_parser == "base": _output_parser = OutputFunctionsParser() else: msg = ( f"Got unexpected output_parser: {output_parser}. " f"Should be one of `pydantic` or `base`." ) raise ValueError(msg) if isinstance(schema, type) and is_basemodel_subclass(schema): if hasattr(schema, "model_json_schema"): schema_dict = cast(dict, schema.model_json_schema()) else: schema_dict = cast(dict, schema.schema()) else: schema_dict = cast(dict, schema) function = { "name": schema_dict["title"], "description": schema_dict["description"], "parameters": schema_dict, } llm_kwargs = get_llm_kwargs(function) messages = [ SystemMessage( content=( "You are a world class algorithm to answer " "questions in a specific format." ), ), HumanMessage(content="Answer question using the following context"), HumanMessagePromptTemplate.from_template("{context}"), HumanMessagePromptTemplate.from_template("Question: {question}"), HumanMessage(content="Tips: Make sure to answer in the correct format"), ] prompt = prompt or ChatPromptTemplate(messages=messages) # type: ignore[arg-type] return LLMChain( llm=llm, prompt=prompt, llm_kwargs=llm_kwargs, output_parser=_output_parser, verbose=verbose, ) @deprecated( since="0.2.13", removal="1.0", message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with sources: " "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" ), ) def create_qa_with_sources_chain( llm: BaseLanguageModel, verbose: bool = False, # noqa: FBT001,FBT002 **kwargs: Any, ) -> LLMChain: """Create a question answering chain that returns an answer with sources. Args: llm: Language model to use for the chain. verbose: Whether to print the details of the chain **kwargs: Keyword arguments to pass to `create_qa_with_structure_chain`. Returns: Chain (LLMChain) that can be used to answer questions with citations. """ return create_qa_with_structure_chain( llm, AnswerWithSources, verbose=verbose, **kwargs, )
from typing import Any, Optional, Union, cast from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import HumanMessage, SystemMessage from langchain_core.output_parsers import BaseLLMOutputParser from langchain_core.output_parsers.openai_functions import ( OutputFunctionsParser, PydanticOutputFunctionsParser, ) from langchain_core.prompts import PromptTemplate from langchain_core.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate from langchain_core.utils.pydantic import is_basemodel_subclass from pydantic import BaseModel, Field from langchain.chains.llm import LLMChain from langchain.chains.openai_functions.utils import get_llm_kwargs class AnswerWithSources(BaseModel): """An answer to the question, with sources.""" answer: str = Field(..., description="Answer to the question that was asked") sources: list[str] = Field( ..., description="List of sources used to answer the question" ) @deprecated( since="0.2.13", removal="1.0", message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with structured responses: " "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" ), ) def create_qa_with_structure_chain( llm: BaseLanguageModel, schema: Union[dict, type[BaseModel]], output_parser: str = "base", prompt: Optional[Union[PromptTemplate, ChatPromptTemplate]] = None, verbose: bool = False, # noqa: FBT001,FBT002 ) -> LLMChain: """Create a question answering chain that returns an answer with sources based on schema. Args: llm: Language model to use for the chain. schema: Pydantic schema to use for the output. output_parser: Output parser to use. Should be one of `pydantic` or `base`. Default to `base`. prompt: Optional prompt to use for the chain. Returns: """ if output_parser == "pydantic": if not (isinstance(schema, type) and is_basemodel_subclass(schema)): msg = ( "Must provide a pydantic class for schema when output_parser is " "'pydantic'." ) raise ValueError(msg) _output_parser: BaseLLMOutputParser = PydanticOutputFunctionsParser( pydantic_schema=schema ) elif output_parser == "base": _output_parser = OutputFunctionsParser() else: msg = ( f"Got unexpected output_parser: {output_parser}. " f"Should be one of `pydantic` or `base`." ) raise ValueError(msg) if isinstance(schema, type) and is_basemodel_subclass(schema): if hasattr(schema, "model_json_schema"): schema_dict = cast(dict, schema.model_json_schema()) else: schema_dict = cast(dict, schema.schema()) else: schema_dict = cast(dict, schema) function = { "name": schema_dict["title"], "description": schema_dict["description"], "parameters": schema_dict, } llm_kwargs = get_llm_kwargs(function) messages = [ SystemMessage( content=( "You are a world class algorithm to answer " "questions in a specific format." ) ), HumanMessage(content="Answer question using the following context"), HumanMessagePromptTemplate.from_template("{context}"), HumanMessagePromptTemplate.from_template("Question: {question}"), HumanMessage(content="Tips: Make sure to answer in the correct format"), ] prompt = prompt or ChatPromptTemplate(messages=messages) # type: ignore[arg-type] return LLMChain( llm=llm, prompt=prompt, llm_kwargs=llm_kwargs, output_parser=_output_parser, verbose=verbose, ) @deprecated( since="0.2.13", removal="1.0", message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with sources: " "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" ), ) def create_qa_with_sources_chain( llm: BaseLanguageModel, verbose: bool = False, # noqa: FBT001,FBT002 **kwargs: Any, ) -> LLMChain: """Create a question answering chain that returns an answer with sources. Args: llm: Language model to use for the chain. verbose: Whether to print the details of the chain **kwargs: Keyword arguments to pass to `create_qa_with_structure_chain`. Returns: Chain (LLMChain) that can be used to answer questions with citations. """ return create_qa_with_structure_chain( llm, AnswerWithSources, verbose=verbose, **kwargs )
_base_ = './faster-rcnn_r50_fpn_8xb8-amp-lsj-200e_coco.py' model = dict( backbone=dict( depth=18, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict(in_channels=[64, 128, 256, 512]))
_base_ = './faster_rcnn_r50_fpn_lsj_200e_8x8_fp16_coco.py' model = dict( backbone=dict( depth=18, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict(in_channels=[64, 128, 256, 512]))
from typing import Any, Dict, List, Optional, Sequence, Tuple from llama_index.core.base.llms.types import ChatMessage, MessageRole from llama_index.core.base.llms.generic_utils import get_from_param_or_env DEFAULT_FIREWORKS_API_BASE = "https://api.fireworks.ai/inference/v1" DEFAULT_FIREWORKS_API_VERSION = "" LLAMA_MODELS = { "accounts/fireworks/models/llama-v2-7b-chat": 4096, "accounts/fireworks/models/llama-v2-13b-chat": 4096, "accounts/fireworks/models/llama-v2-70b-chat": 4096, "accounts/fireworks/models/llama-v2-34b-code-instruct": 16384, "accounts/fireworks/models/llamaguard-7b": 4096, "accounts/fireworks/models/llama-v3-8b-instruct": 8192, "accounts/fireworks/models/llama-v3-70b-instruct": 8192, "accounts/fireworks/models/llama-v3p1-8b-instruct": 131072, "accounts/fireworks/models/llama-v3p1-70b-instruct": 131072, "accounts/fireworks/models/llama-v3p1-405b-instruct": 131072, "accounts/fireworks/models/llama-v3p2-1b-instruct": 131072, "accounts/fireworks/models/llama-v3p2-3b-instruct": 131072, "accounts/fireworks/models/llama-v3p2-11b-vision-instruct": 131072, "accounts/fireworks/models/llama-v3p2-90b-vision-instruct": 131072, } MISTRAL_MODELS = { "accounts/fireworks/models/mistral-7b-instruct-4k": 16384, "accounts/fireworks/models/mixtral-8x7b-instruct": 32768, "accounts/fireworks/models/firefunction-v1": 32768, "accounts/fireworks/models/mixtral-8x22b-instruct": 65536, } FUNCTION_CALLING_MODELS = { "accounts/fireworks/models/firefunction-v2": 8192, } DEEPSEEK_MODELS = { "accounts/fireworks/models/deepseek-v3": 131072, "accounts/fireworks/models/deepseek-r1": 163840, } ALL_AVAILABLE_MODELS = { **LLAMA_MODELS, **MISTRAL_MODELS, **FUNCTION_CALLING_MODELS, **DEEPSEEK_MODELS, } DISCONTINUED_MODELS: Dict[str, int] = {} def fireworks_modelname_to_contextsize(modelname: str) -> int: """ Calculate the maximum number of tokens possible to generate for a model. Args: modelname: The modelname we want to know the context size for. Returns: The maximum context size Example: .. code-block:: python max_tokens = fireworks_modelname_to_contextsize(model_name) """ # handling finetuned models # TO BE FILLED if modelname in DISCONTINUED_MODELS: raise ValueError( f"Fireworks hosted model {modelname} has been discontinued. " "Please choose another model." ) context_size = ALL_AVAILABLE_MODELS.get(modelname, None) if context_size is None: raise ValueError( f"Unknown model: {modelname}. Please provide a valid Fireworks model name." "Known models are: " + ", ".join(ALL_AVAILABLE_MODELS.keys()) ) return context_size def is_function_calling_model(model: str) -> bool: return "function" in model def _message_to_fireworks_prompt(message: ChatMessage) -> Dict[str, Any]: if message.role == MessageRole.USER: prompt = {"role": "user", "content": message.content} elif message.role == MessageRole.ASSISTANT: prompt = {"role": "assistant", "content": message.content} elif message.role == MessageRole.SYSTEM: prompt = {"role": "system", "content": message.content} elif message.role == MessageRole.FUNCTION: raise ValueError(f"Message role {MessageRole.FUNCTION} is not supported.") else: raise ValueError(f"Unknown message role: {message.role}") return prompt def messages_to_fireworks_prompt(messages: Sequence[ChatMessage]) -> List[Dict]: if len(messages) == 0: raise ValueError("Got empty list of messages.") return [_message_to_fireworks_prompt(message) for message in messages] def resolve_fireworks_credentials( api_key: Optional[str] = None, api_base: Optional[str] = None, api_version: Optional[str] = None, ) -> Tuple[Optional[str], str, str]: """ "Resolve OpenAI credentials. The order of precedence is: 1. param 2. env 3. openai module 4. default """ # resolve from param or env api_key = get_from_param_or_env("api_key", api_key, "FIREWORKS_API_KEY", "") api_base = get_from_param_or_env("api_base", api_base, "FIREWORKS_API_BASE", "") api_version = get_from_param_or_env( "api_version", api_version, "FIREWORKS_API_VERSION", "" ) # resolve from openai module or default final_api_key = api_key or "" final_api_base = api_base or DEFAULT_FIREWORKS_API_BASE final_api_version = api_version or DEFAULT_FIREWORKS_API_VERSION return final_api_key, str(final_api_base), final_api_version
from typing import Any, Dict, List, Optional, Sequence, Tuple from llama_index.core.base.llms.types import ChatMessage, MessageRole from llama_index.core.base.llms.generic_utils import get_from_param_or_env DEFAULT_FIREWORKS_API_BASE = "https://api.fireworks.ai/inference/v1" DEFAULT_FIREWORKS_API_VERSION = "" LLAMA_MODELS = { "accounts/fireworks/models/llama-v2-7b-chat": 4096, "accounts/fireworks/models/llama-v2-13b-chat": 4096, "accounts/fireworks/models/llama-v2-70b-chat": 4096, "accounts/fireworks/models/llama-v2-34b-code-instruct": 16384, "accounts/fireworks/models/llamaguard-7b": 4096, "accounts/fireworks/models/llama-v3-8b-instruct": 8192, "accounts/fireworks/models/llama-v3-70b-instruct": 8192, "accounts/fireworks/models/llama-v3p1-8b-instruct": 131072, "accounts/fireworks/models/llama-v3p1-70b-instruct": 131072, "accounts/fireworks/models/llama-v3p1-405b-instruct": 131072, "accounts/fireworks/models/llama-v3p2-1b-instruct": 131072, "accounts/fireworks/models/llama-v3p2-3b-instruct": 131072, "accounts/fireworks/models/llama-v3p2-11b-vision-instruct": 131072, "accounts/fireworks/models/llama-v3p2-90b-vision-instruct": 131072, } MISTRAL_MODELS = { "accounts/fireworks/models/mistral-7b-instruct-4k": 16384, "accounts/fireworks/models/mixtral-8x7b-instruct": 32768, "accounts/fireworks/models/firefunction-v1": 32768, "accounts/fireworks/models/mixtral-8x22b-instruct": 65536, } FUNCTION_CALLING_MODELS = { "accounts/fireworks/models/firefunction-v2": 8192, } DEEPSEEK_MODELS = { "accounts/fireworks/models/deepseek-v3": 131072, } ALL_AVAILABLE_MODELS = { **LLAMA_MODELS, **MISTRAL_MODELS, **FUNCTION_CALLING_MODELS, **DEEPSEEK_MODELS, } DISCONTINUED_MODELS: Dict[str, int] = {} def fireworks_modelname_to_contextsize(modelname: str) -> int: """ Calculate the maximum number of tokens possible to generate for a model. Args: modelname: The modelname we want to know the context size for. Returns: The maximum context size Example: .. code-block:: python max_tokens = fireworks_modelname_to_contextsize(model_name) """ # handling finetuned models # TO BE FILLED if modelname in DISCONTINUED_MODELS: raise ValueError( f"Fireworks hosted model {modelname} has been discontinued. " "Please choose another model." ) context_size = ALL_AVAILABLE_MODELS.get(modelname, None) if context_size is None: raise ValueError( f"Unknown model: {modelname}. Please provide a valid Fireworks model name." "Known models are: " + ", ".join(ALL_AVAILABLE_MODELS.keys()) ) return context_size def is_function_calling_model(model: str) -> bool: return "function" in model def _message_to_fireworks_prompt(message: ChatMessage) -> Dict[str, Any]: if message.role == MessageRole.USER: prompt = {"role": "user", "content": message.content} elif message.role == MessageRole.ASSISTANT: prompt = {"role": "assistant", "content": message.content} elif message.role == MessageRole.SYSTEM: prompt = {"role": "system", "content": message.content} elif message.role == MessageRole.FUNCTION: raise ValueError(f"Message role {MessageRole.FUNCTION} is not supported.") else: raise ValueError(f"Unknown message role: {message.role}") return prompt def messages_to_fireworks_prompt(messages: Sequence[ChatMessage]) -> List[Dict]: if len(messages) == 0: raise ValueError("Got empty list of messages.") return [_message_to_fireworks_prompt(message) for message in messages] def resolve_fireworks_credentials( api_key: Optional[str] = None, api_base: Optional[str] = None, api_version: Optional[str] = None, ) -> Tuple[Optional[str], str, str]: """ "Resolve OpenAI credentials. The order of precedence is: 1. param 2. env 3. openai module 4. default """ # resolve from param or env api_key = get_from_param_or_env("api_key", api_key, "FIREWORKS_API_KEY", "") api_base = get_from_param_or_env("api_base", api_base, "FIREWORKS_API_BASE", "") api_version = get_from_param_or_env( "api_version", api_version, "FIREWORKS_API_VERSION", "" ) # resolve from openai module or default final_api_key = api_key or "" final_api_base = api_base or DEFAULT_FIREWORKS_API_BASE final_api_version = api_version or DEFAULT_FIREWORKS_API_VERSION return final_api_key, str(final_api_base), final_api_version
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional # usort: skip from ._transform import Transform # usort: skip from ._presets import StereoMatching # usort: skip from ._augment import RandomCutmix, RandomErasing, RandomMixup, SimpleCopyPaste from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, RandomAdjustSharpness, RandomAutocontrast, RandomEqualize, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, FixedSizeCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat, ConvertColorSpace, ConvertDtype, ConvertImageDtype from ._misc import ( GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, PermuteDimensions, RemoveSmallBoundingBoxes, ToDtype, TransposeDimensions, ) from ._temporal import UniformTemporalSubsample from ._type_conversion import LabelToOneHot, PILToTensor, ToImagePIL, ToImageTensor, ToPILImage from ._deprecated import Grayscale, RandomGrayscale, ToTensor # usort: skip
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional # usort: skip from ._transform import Transform # usort: skip from ._presets import StereoMatching # usort: skip from ._augment import RandomCutmix, RandomErasing, RandomMixup, SimpleCopyPaste from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, RandomAdjustSharpness, RandomAutocontrast, RandomEqualize, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, FixedSizeCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat, ConvertColorSpace, ConvertDtype, ConvertImageDtype from ._misc import ( GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, PermuteDimensions, RemoveSmallBoundingBoxes, ToDtype, TransposeDimensions, ) from ._temporal import UniformTemporalSubsample from ._type_conversion import DecodeImage, LabelToOneHot, PILToTensor, ToImagePIL, ToImageTensor, ToPILImage from ._deprecated import Grayscale, RandomGrayscale, ToTensor # usort: skip
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Literal from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseEmbeddingSimilarityEvaluator(EmbeddingSimilarityEvaluator): def __init__( self, sentences1: list[str], sentences2: list[str], scores: list[float], batch_size: int = 16, main_similarity: str | SimilarityFunction | None = None, similarity_fn_names: list[Literal["cosine", "euclidean", "manhattan", "dot"]] | None = None, name: str = "", show_progress_bar: bool = False, write_csv: bool = True, precision: Literal["float32", "int8", "uint8", "binary", "ubinary"] | None = None, truncate_dim: int | None = None, ): super().__init__( sentences1, sentences2, scores, batch_size, main_similarity, similarity_fn_names, name, show_progress_bar, write_csv, precision, truncate_dim, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model, output_path, epoch, steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> Tensor: return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, precision=self.precision, normalize_embeddings=bool(self.precision), **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch, step)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseEmbeddingSimilarityEvaluator(EmbeddingSimilarityEvaluator): def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super.__call__(model, output_path, epoch, steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> Tensor: return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, precision=self.precision, normalize_embeddings=bool(self.precision), **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch, step)
NEWS_DOCS = """API documentation: Endpoint: https://newsapi.org Top headlines /v2/top-headlines This endpoint provides live top and breaking headlines for a country, specific category in a country, single source, or multiple sources. You can also search with keywords. Articles are sorted by the earliest date published first. This endpoint is great for retrieving headlines for use with news tickers or similar. Request parameters country | The 2-letter ISO 3166-1 code of the country you want to get headlines for. Possible options: ae ar at au be bg br ca ch cn co cu cz de eg fr gb gr hk hu id ie il in it jp kr lt lv ma mx my ng nl no nz ph pl pt ro rs ru sa se sg si sk th tr tw ua us ve za. Note: you can't mix this param with the sources param. category | The category you want to get headlines for. Possible options: business entertainment general health science sports technology. Note: you can't mix this param with the sources param. sources | A comma-separated string of identifiers for the news sources or blogs you want headlines from. Use the /top-headlines/sources endpoint to locate these programmatically or look at the sources index. Note: you can't mix this param with the country or category params. q | Keywords or a phrase to search for. pageSize | int | The number of results to return per page (request). 20 is the default, 100 is the maximum. page | int | Use this to page through the results if the total results found is greater than the page size. Response object status | string | If the request was successful or not. Options: ok, error. In the case of error a code and message property will be populated. totalResults | int | The total number of results available for your request. articles | array[article] | The results of the request. source | object | The identifier id and a display name name for the source this article came from. author | string | The author of the article title | string | The headline or title of the article. description | string | A description or snippet from the article. url | string | The direct URL to the article. urlToImage | string | The URL to a relevant image for the article. publishedAt | string | The date and time that the article was published, in UTC (+000) content | string | The unformatted content of the article, where available. This is truncated to 200 chars. Use page size: 2 """ # noqa: E501
# flake8: noqa NEWS_DOCS = """API documentation: Endpoint: https://newsapi.org Top headlines /v2/top-headlines This endpoint provides live top and breaking headlines for a country, specific category in a country, single source, or multiple sources. You can also search with keywords. Articles are sorted by the earliest date published first. This endpoint is great for retrieving headlines for use with news tickers or similar. Request parameters country | The 2-letter ISO 3166-1 code of the country you want to get headlines for. Possible options: ae ar at au be bg br ca ch cn co cu cz de eg fr gb gr hk hu id ie il in it jp kr lt lv ma mx my ng nl no nz ph pl pt ro rs ru sa se sg si sk th tr tw ua us ve za. Note: you can't mix this param with the sources param. category | The category you want to get headlines for. Possible options: business entertainment general health science sports technology. Note: you can't mix this param with the sources param. sources | A comma-separated string of identifiers for the news sources or blogs you want headlines from. Use the /top-headlines/sources endpoint to locate these programmatically or look at the sources index. Note: you can't mix this param with the country or category params. q | Keywords or a phrase to search for. pageSize | int | The number of results to return per page (request). 20 is the default, 100 is the maximum. page | int | Use this to page through the results if the total results found is greater than the page size. Response object status | string | If the request was successful or not. Options: ok, error. In the case of error a code and message property will be populated. totalResults | int | The total number of results available for your request. articles | array[article] | The results of the request. source | object | The identifier id and a display name name for the source this article came from. author | string | The author of the article title | string | The headline or title of the article. description | string | A description or snippet from the article. url | string | The direct URL to the article. urlToImage | string | The URL to a relevant image for the article. publishedAt | string | The date and time that the article was published, in UTC (+000) content | string | The unformatted content of the article, where available. This is truncated to 200 chars. Use page size: 2 """
from jina import DocumentArray, Executor, Flow, requests def test_gateway_metric_labels(monkeypatch_metric_exporter): collect_metrics, read_metrics = monkeypatch_metric_exporter class FirstExec(Executor): @requests() def meow(self, docs, **kwargs): return DocumentArray.empty(3) class SecondExec(Executor): @requests() def meow(self, docs, **kwargs): return DocumentArray.empty(3) with Flow( tracing=False, metrics=True, metrics_exporter_host='http://localhost', metrics_exporter_port=4317, port=12345, ).add(name='first_exec', uses=FirstExec).add( name="second_exec", uses=SecondExec ) as f: f.post('/') collect_metrics() metrics = read_metrics() gateway_metrics = metrics['gateway/rep-0']['resource_metrics'][0][ 'scope_metrics' ][0]['metrics'] gateway_metric_data_point = { i['name']: i['data']['data_points'] for i in gateway_metrics } assert ( 'address' in gateway_metric_data_point['jina_sending_request_seconds'][0]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_sent_request_bytes'][0]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_received_response_bytes'][0]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_sending_request_seconds'][1]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_sent_request_bytes'][1]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_received_response_bytes'][1]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_sending_request_seconds'][0]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_sent_request_bytes'][0]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_received_response_bytes'][0]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_sending_request_seconds'][1]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_sent_request_bytes'][1]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_received_response_bytes'][1]['attributes'] ) assert {'first_exec', 'second_exec'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_received_response_bytes'] } assert {'first_exec', 'second_exec'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sent_request_bytes'] } assert {'first_exec', 'second_exec'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sending_request_seconds'] } def test_merge_with_no_reduce(monkeypatch_metric_exporter): collect_metrics, read_metrics = monkeypatch_metric_exporter f = ( Flow( tracing=False, metrics=True, metrics_exporter_host='http://localhost', metrics_exporter_port=4317, port=12345, ) .add(name='name1') .add(name='name2', needs=['gateway']) .add(name='name3', needs=['name1', 'name2'], disable_reduce=True) ) with f: f.post('/') collect_metrics() metrics = read_metrics() gateway_metrics = metrics['gateway/rep-0']['resource_metrics'][0][ 'scope_metrics' ][0]['metrics'] gateway_metric_data_point = { i['name']: i['data']['data_points'] for i in gateway_metrics } assert {'name1', 'name2', 'name3'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_received_response_bytes'] } assert {'name1', 'name2', 'name3'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sent_request_bytes'] } assert {'name1', 'name2', 'name3'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sending_request_seconds'] }
from jina import DocumentArray, Executor, Flow, requests def test_gateway_metric_labels(monkeypatch_metric_exporter): collect_metrics, read_metrics = monkeypatch_metric_exporter class FirstExec(Executor): @requests() def meow(self, docs, **kwargs): return DocumentArray.empty(3) class SecondExec(Executor): @requests() def meow(self, docs, **kwargs): return DocumentArray.empty(3) with Flow( tracing=False, metrics=True, metrics_exporter_host='http://localhost', metrics_exporter_port=4317, port=12345, ).add(name='first_exec', uses=FirstExec).add( name="second_exec", uses=SecondExec ) as f: f.post('/') collect_metrics() metrics = read_metrics() print(f' metrics {metrics.keys()}') gateway_metrics = metrics['gateway/rep-0']['resource_metrics'][0][ 'scope_metrics' ][0]['metrics'] gateway_metric_data_point = { i['name']: i['data']['data_points'] for i in gateway_metrics } assert ( 'address' in gateway_metric_data_point['jina_sending_request_seconds'][0]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_sent_request_bytes'][0]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_received_response_bytes'][0]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_sending_request_seconds'][1]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_sent_request_bytes'][1]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_received_response_bytes'][1]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_sending_request_seconds'][0]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_sent_request_bytes'][0]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_received_response_bytes'][0]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_sending_request_seconds'][1]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_sent_request_bytes'][1]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_received_response_bytes'][1]['attributes'] ) assert {'first_exec', 'second_exec'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_received_response_bytes'] } assert {'first_exec', 'second_exec'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sent_request_bytes'] } assert {'first_exec', 'second_exec'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sending_request_seconds'] } def test_merge_with_no_reduce(monkeypatch_metric_exporter): collect_metrics, read_metrics = monkeypatch_metric_exporter f = ( Flow( tracing=False, metrics=True, metrics_exporter_host='http://localhost', metrics_exporter_port=4317, port=12345, ) .add(name='name1') .add(name='name2', needs=['gateway']) .add(name='name3', needs=['name1', 'name2'], disable_reduce=True) ) with f: f.post('/') collect_metrics() metrics = read_metrics() gateway_metrics = metrics['gateway/rep-0']['resource_metrics'][0][ 'scope_metrics' ][0]['metrics'] gateway_metric_data_point = { i['name']: i['data']['data_points'] for i in gateway_metrics } assert {'name1', 'name2', 'name3'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_received_response_bytes'] } assert {'name1', 'name2', 'name3'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sent_request_bytes'] } assert {'name1', 'name2', 'name3'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sending_request_seconds'] }
# In[1]: import pandas as pd # In[2]: # from https://github.com/pytorch/audio/blob/main/.github/process_commit.py primary_labels_mapping = { "BC-breaking": "Backward-incompatible changes", "deprecation": "Deprecations", "bug fix": "Bug Fixes", "new feature": "New Features", "improvement": "Improvements", "prototype": "Prototypes", "other": "Other", "None": "Missing", } secondary_labels_mapping = { "module: io": "I/O", "module: ops": "Ops", "module: models": "Models", "module: pipelines": "Pipelines", "module: datasets": "Datasets", "module: docs": "Documentation", "module: tests": "Tests", "tutorial": "Tutorials", "recipe": "Recipes", "example": "Examples", "build": "Build", "style": "Style", "perf": "Performance", "other": "Other", "None": "Missing", } # In[3]: df = pd.read_json("data.json").T df.tail() # In[4]: def get_labels(col_name, labels): df[col_name] = [[] for _ in range(len(df))] for _, row in df.iterrows(): row[col_name] = "None" for label in labels: if label in row["labels"]: row[col_name] = label break # In[5]: get_labels("primary_label", primary_labels_mapping.keys()) get_labels("secondary_label", secondary_labels_mapping.keys()) df.tail(5) # In[6]: for primary_label in primary_labels_mapping.keys(): primary_df = df[df["primary_label"] == primary_label] if primary_df.empty: continue print(f"## {primary_labels_mapping[primary_label]}") for secondary_label in secondary_labels_mapping.keys(): secondary_df = primary_df[primary_df["secondary_label"] == secondary_label] if secondary_df.empty: continue print(f"### {secondary_labels_mapping[secondary_label]}") for _, row in secondary_df.iterrows(): print(f"- {row['title']}") print() print()
# In[1]: import pandas as pd # In[2]: # from https://github.com/pytorch/audio/blob/main/.github/process_commit.py primary_labels_mapping = { "BC-breaking": "Backward-incompatible changes", "deprecation": "Deprecations", "bug fix": "Bug Fixes", "new feature": "New Features", "improvement": "Improvements", "prototype": "Prototypes", "other": "Other", "None": "Missing", } secondary_labels_mapping = { "module: io": "I/O", "module: ops": "Ops", "module: models": "Models", "module: pipelines": "Pipelines", "module: datasets": "Datasets", "module: docs": "Documentation", "module: tests": "Tests", "tutorial": "Tutorials", "recipe": "Recipes", "example": "Examples", "build": "Build", "style": "Style", "perf": "Performance", "other": "Other", "None": "Missing", } # In[3]: df = pd.read_json("data.json").T df.tail() # In[4]: def get_labels(col_name, labels): df[col_name] = [[] for _ in range(len(df))] for _, row in df.iterrows(): row[col_name] = "None" for label in labels: if label in row["labels"]: row[col_name] = label break # In[5]: get_labels("primary_label", primary_labels_mapping.keys()) get_labels("secondary_label", secondary_labels_mapping.keys()) df.tail(5) # In[6]: for primary_label in primary_labels_mapping.keys(): primary_df = df[df["primary_label"] == primary_label] if primary_df.empty: continue print(f"## {primary_labels_mapping[primary_label]}") for secondary_label in secondary_labels_mapping.keys(): secondary_df = primary_df[primary_df["secondary_label"] == secondary_label] if secondary_df.empty: continue print(f"### {secondary_labels_mapping[secondary_label]}") for _, row in secondary_df.iterrows(): print(f"- {row['title']}") print() print()
from langchain_core.prompts import __all__ EXPECTED_ALL = [ "AIMessagePromptTemplate", "BaseChatPromptTemplate", "BasePromptTemplate", "ChatMessagePromptTemplate", "ChatPromptTemplate", "DictPromptTemplate", "FewShotPromptTemplate", "FewShotPromptWithTemplates", "FewShotChatMessagePromptTemplate", "format_document", "aformat_document", "HumanMessagePromptTemplate", "MessagesPlaceholder", "PipelinePromptTemplate", "PromptTemplate", "StringPromptTemplate", "SystemMessagePromptTemplate", "load_prompt", "check_valid_template", "get_template_variables", "jinja2_formatter", "validate_jinja2", ] def test_all_imports() -> None: assert set(__all__) == set(EXPECTED_ALL)
from langchain_core.prompts import __all__ EXPECTED_ALL = [ "AIMessagePromptTemplate", "BaseChatPromptTemplate", "BasePromptTemplate", "ChatMessagePromptTemplate", "ChatPromptTemplate", "FewShotPromptTemplate", "FewShotPromptWithTemplates", "FewShotChatMessagePromptTemplate", "format_document", "aformat_document", "HumanMessagePromptTemplate", "MessagesPlaceholder", "PipelinePromptTemplate", "PromptTemplate", "StringPromptTemplate", "SystemMessagePromptTemplate", "load_prompt", "check_valid_template", "get_template_variables", "jinja2_formatter", "validate_jinja2", ] def test_all_imports() -> None: assert set(__all__) == set(EXPECTED_ALL)
"""Pydantic v1 compatibility shim.""" from importlib import metadata from langchain_core._api.deprecation import warn_deprecated # Create namespaces for pydantic v1 and v2. # This code must stay at the top of the file before other modules may # attempt to import pydantic since it adds pydantic_v1 and pydantic_v2 to sys.modules. # # This hack is done for the following reasons: # * Langchain will attempt to remain compatible with both pydantic v1 and v2 since # both dependencies and dependents may be stuck on either version of v1 or v2. # * Creating namespaces for pydantic v1 and v2 should allow us to write code that # unambiguously uses either v1 or v2 API. # * This change is easier to roll out and roll back. try: from pydantic.v1 import * # noqa: F403 except ImportError: from pydantic import * # type: ignore # noqa: F403 try: _PYDANTIC_MAJOR_VERSION: int = int(metadata.version("pydantic").split(".")[0]) except metadata.PackageNotFoundError: _PYDANTIC_MAJOR_VERSION = 0 warn_deprecated( "0.3.0", removal="1.0.0", alternative="pydantic.v1 or pydantic", message=( "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " "The langchain_core.pydantic_v1 module was a " "compatibility shim for pydantic v1, and should no longer be used. " "Please update the code to import from Pydantic directly.\n\n" "For example, replace imports like: " "`from langchain_core.pydantic_v1 import BaseModel`\n" "with: `from pydantic import BaseModel`\n" "or the v1 compatibility namespace if you are working in a code base " "that has not been fully upgraded to pydantic 2 yet. " "\tfrom pydantic.v1 import BaseModel\n" ), )
from importlib import metadata from langchain_core._api.deprecation import warn_deprecated # Create namespaces for pydantic v1 and v2. # This code must stay at the top of the file before other modules may # attempt to import pydantic since it adds pydantic_v1 and pydantic_v2 to sys.modules. # # This hack is done for the following reasons: # * Langchain will attempt to remain compatible with both pydantic v1 and v2 since # both dependencies and dependents may be stuck on either version of v1 or v2. # * Creating namespaces for pydantic v1 and v2 should allow us to write code that # unambiguously uses either v1 or v2 API. # * This change is easier to roll out and roll back. try: from pydantic.v1 import * # noqa: F403 except ImportError: from pydantic import * # type: ignore # noqa: F403 try: _PYDANTIC_MAJOR_VERSION: int = int(metadata.version("pydantic").split(".")[0]) except metadata.PackageNotFoundError: _PYDANTIC_MAJOR_VERSION = 0 warn_deprecated( "0.3.0", removal="1.0.0", alternative="pydantic.v1 or pydantic", message=( "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " "The langchain_core.pydantic_v1 module was a " "compatibility shim for pydantic v1, and should no longer be used. " "Please update the code to import from Pydantic directly.\n\n" "For example, replace imports like: " "`from langchain_core.pydantic_v1 import BaseModel`\n" "with: `from pydantic import BaseModel`\n" "or the v1 compatibility namespace if you are working in a code base " "that has not been fully upgraded to pydantic 2 yet. " "\tfrom pydantic.v1 import BaseModel\n" ), )
_base_ = [ './faster_rcnn_r50_dc5.py', './mot_challenge.py', '../../../configs/_base_/default_runtime.py' ] model = dict( type='SELSA', pretrains=None, detector=dict( backbone=dict(depth=18, base_channels=2), roi_head=dict( type='SelsaRoIHead', bbox_head=dict( type='SelsaBBoxHead', num_shared_fcs=2, aggregator=dict( type='SelsaAggregator', in_channels=32, num_attention_blocks=16))))) # dataset settings data = dict( val=dict( ref_img_sampler=dict( _delete_=True, num_ref_imgs=14, frame_range=[-7, 7], method='test_with_adaptive_stride')), test=dict( ref_img_sampler=dict( _delete_=True, num_ref_imgs=14, frame_range=[-7, 7], method='test_with_adaptive_stride'))) # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[2, 5]) # runtime settings total_epochs = 7 evaluation = dict(metric=['bbox'], interval=7)
_base_ = [ './faster_rcnn_r50_dc5.py', './mot_challenge.py', '../../../configs/_base_/default_runtime.py' ] model = dict( type='SELSA', pretrains=None, detector=dict( pretrained='torchvision://resnet101', backbone=dict(depth=101), roi_head=dict( type='SelsaRoIHead', bbox_head=dict( type='SelsaBBoxHead', num_shared_fcs=2, aggregator=dict( type='SelsaAggregator', in_channels=1024, num_attention_blocks=16))))) # dataset settings data = dict( val=dict( ref_img_sampler=dict( _delete_=True, num_ref_imgs=14, frame_range=[-7, 7], method='test_with_adaptive_stride')), test=dict( ref_img_sampler=dict( _delete_=True, num_ref_imgs=14, frame_range=[-7, 7], method='test_with_adaptive_stride'))) # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[2, 5]) # runtime settings total_epochs = 7 evaluation = dict(metric=['bbox'], interval=7)
_base_ = './faster-rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = './faster_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 11 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from .registry import Registry, build_runner_from_cfg # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner', build_func=build_runner_from_cfg) # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of loops like `EpochBasedTrainLoop` LOOPS = Registry('loop') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model') # mangage all kinds of model wrappers like 'MMDistributedDataParallel' MODEL_WRAPPERS = Registry('model_wrapper') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage constructors that customize the optimization hyperparameters. OPTIM_WRAPPER_CONSTRUCTORS = Registry('optimizer wrapper constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry('parameter scheduler') # manage all kinds of metrics METRICS = Registry('metric') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util') # manage visualizer VISUALIZERS = Registry('visualizer') # manage visualizer backend VISBACKENDS = Registry('vis_backend') # manage logprocessor LOG_PROCESSORS = Registry('log_processor') # manage optimizer wrapper OPTIM_WRAPPERS = Registry('optim_wrapper') # manage evaluator EVALUATOR = Registry('evaluator')
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 11 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from .registry import Registry, build_runner_from_cfg # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner', build_func=build_runner_from_cfg) # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of loops like `EpochBasedTrainLoop` LOOPS = Registry('loop') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model') # mangage all kinds of model wrappers like 'MMDistributedDataParallel' MODEL_WRAPPERS = Registry('model_wrapper') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage constructors that customize the optimization hyperparameters. OPTIM_WRAPPER_CONSTRUCTORS = Registry('optimizer wrapper constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry('parameter scheduler') # manage all kinds of metrics METRICS = Registry('metric') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util') # manage visualizer VISUALIZERS = Registry('visualizer') # manage visualizer backend VISBACKENDS = Registry('vis_backend') # manage logprocessor LOG_PROCESSORS = Registry('log_processor') # manage optimizer wrapper OPTIM_WRAPPERS = Registry('optim_wrapper')
import copy as cp from dataclasses import fields from functools import lru_cache from typing import TYPE_CHECKING, Optional, Tuple, Dict from docarray.dataclasses import is_multimodal from docarray.helper import typename if TYPE_CHECKING: # pragma: no cover from docarray.typing import T @lru_cache() def _get_fields(dc): return [f.name for f in fields(dc)] class BaseDCType: _data_class = None def __init__( self: 'T', _obj: Optional['T'] = None, copy: bool = False, field_resolver: Optional[Dict[str, str]] = None, unknown_fields_handler: str = 'catch', **kwargs, ): self._data = None if isinstance(_obj, type(self)): if copy: self.copy_from(_obj) else: self._data = _obj._data elif isinstance(_obj, dict): kwargs.update(_obj) elif is_multimodal(_obj): self._data = type(self)._from_dataclass(_obj)._data if kwargs: try: self._data = self._data_class(self, **kwargs) except TypeError as ex: if unknown_fields_handler == 'raise': raise AttributeError(f'unknown attributes') from ex else: if field_resolver: kwargs = { field_resolver.get(k, k): v for k, v in kwargs.items() } _fields = _get_fields(self._data_class) _unknown_kwargs = None _unresolved = set(kwargs.keys()).difference(_fields) if _unresolved: _unknown_kwargs = {k: kwargs[k] for k in _unresolved} for k in _unresolved: kwargs.pop(k) self._data = self._data_class(self, **kwargs) if _unknown_kwargs and unknown_fields_handler == 'catch': getattr(self, self._unresolved_fields_dest).update( _unknown_kwargs ) for k in self._post_init_fields: if k in kwargs: setattr(self, k, kwargs[k]) if not _obj and not kwargs and self._data is None: self._data = self._data_class(self) if self._data is None: raise ValueError( f'Failed to initialize {typename(self)} from obj={_obj}, kwargs={kwargs}' ) def copy_from(self: 'T', other: 'T') -> None: """Overwrite self by copying from another :class:`Document`. :param other: the other Document to copy from """ self._data = cp.deepcopy(other._data) def clear(self) -> None: """Clear all fields from this :class:`Document` to their default values.""" for f in self.non_empty_fields: setattr(self._data, f, None) def pop(self, *fields) -> None: """Clear some fields from this :class:`Document` to their default values. :param fields: field names to clear. """ for f in fields: if hasattr(self, f): setattr(self._data, f, None) @property def non_empty_fields(self) -> Tuple[str]: """Get all non-emtpy fields of this :class:`Document`. Non-empty fields are the fields with not-`None` and not-default values. :return: field names in a tuple. """ return self._data._non_empty_fields @property def nbytes(self) -> int: """Return total bytes consumed by protobuf. :return: number of bytes """ return len(bytes(self)) def __hash__(self): return hash(self._data) def __repr__(self): content = str(self.non_empty_fields) content += f' at {getattr(self, "id", id(self))}' return f'<{self.__class__.__name__} {content.strip()}>' def __bytes__(self): return self.to_bytes() def __eq__(self, other): if type(self) is type(other): return self._data == other._data return False
import copy as cp from dataclasses import fields from functools import lru_cache from typing import TYPE_CHECKING, Optional, Tuple, Dict from docarray.dataclasses import is_multimodal from docarray.helper import typename if TYPE_CHECKING: from docarray.typing import T @lru_cache() def _get_fields(dc): return [f.name for f in fields(dc)] class BaseDCType: _data_class = None def __init__( self: 'T', _obj: Optional['T'] = None, copy: bool = False, field_resolver: Optional[Dict[str, str]] = None, unknown_fields_handler: str = 'catch', **kwargs, ): self._data = None if isinstance(_obj, type(self)): if copy: self.copy_from(_obj) else: self._data = _obj._data elif isinstance(_obj, dict): kwargs.update(_obj) elif is_multimodal(_obj): self._data = type(self)._from_dataclass(_obj)._data if kwargs: try: self._data = self._data_class(self, **kwargs) except TypeError as ex: if unknown_fields_handler == 'raise': raise AttributeError(f'unknown attributes') from ex else: if field_resolver: kwargs = { field_resolver.get(k, k): v for k, v in kwargs.items() } _fields = _get_fields(self._data_class) _unknown_kwargs = None _unresolved = set(kwargs.keys()).difference(_fields) if _unresolved: _unknown_kwargs = {k: kwargs[k] for k in _unresolved} for k in _unresolved: kwargs.pop(k) self._data = self._data_class(self, **kwargs) if _unknown_kwargs and unknown_fields_handler == 'catch': getattr(self, self._unresolved_fields_dest).update( _unknown_kwargs ) for k in self._post_init_fields: if k in kwargs: setattr(self, k, kwargs[k]) if not _obj and not kwargs and self._data is None: self._data = self._data_class(self) if self._data is None: raise ValueError( f'Failed to initialize {typename(self)} from obj={_obj}, kwargs={kwargs}' ) def copy_from(self: 'T', other: 'T') -> None: """Overwrite self by copying from another :class:`Document`. :param other: the other Document to copy from """ self._data = cp.deepcopy(other._data) def clear(self) -> None: """Clear all fields from this :class:`Document` to their default values.""" for f in self.non_empty_fields: setattr(self._data, f, None) def pop(self, *fields) -> None: """Clear some fields from this :class:`Document` to their default values. :param fields: field names to clear. """ for f in fields: if hasattr(self, f): setattr(self._data, f, None) @property def non_empty_fields(self) -> Tuple[str]: """Get all non-emtpy fields of this :class:`Document`. Non-empty fields are the fields with not-`None` and not-default values. :return: field names in a tuple. """ return self._data._non_empty_fields @property def nbytes(self) -> int: """Return total bytes consumed by protobuf. :return: number of bytes """ return len(bytes(self)) def __hash__(self): return hash(self._data) def __repr__(self): content = str(self.non_empty_fields) content += f' at {getattr(self, "id", id(self))}' return f'<{self.__class__.__name__} {content.strip()}>' def __bytes__(self): return self.to_bytes() def __eq__(self, other): if type(self) is type(other): return self._data == other._data return False
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '2.22.0' short_version = __version__ def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '2.21.0' short_version = __version__ def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.registry import HOOKS from .hook import Hook @HOOKS.register_module() class DistSamplerSeedHook(Hook): """Data-loading sampler for distributed training. When distributed training, it is only useful in conjunction with :obj:`EpochBasedRunner`, while :obj:`IterBasedRunner` achieves the same purpose with :obj:`IterLoader`. """ priority = 'NORMAL' def before_train_epoch(self, runner, mode: str = 'train') -> None: """Set the seed for sampler and batch_sampler. Args: runner (Runner): The runner of the training process. """ if hasattr(runner.train_loop.dataloader, 'sampler') and hasattr( runner.train_loop.dataloader.sampler, 'set_epoch'): # In case the` _SingleProcessDataLoaderIter` has no sampler, # or data loader uses `SequentialSampler` in Pytorch. runner.train_loop.dataloader.sampler.set_epoch(runner.epoch) elif hasattr(runner.train_loop.dataloader, 'batch_sampler') and hasattr( runner.train_loop.dataloader.batch_sampler.sampler, 'set_epoch'): # In case the` _SingleProcessDataLoaderIter` has no batch sampler. # batch sampler in pytorch warps the sampler as its attributes. runner.train_loop.dataloader.batch_sampler.sampler.set_epoch( runner.epoch)
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.registry import HOOKS from .hook import Hook @HOOKS.register_module() class DistSamplerSeedHook(Hook): """Data-loading sampler for distributed training. When distributed training, it is only useful in conjunction with :obj:`EpochBasedRunner`, while :obj:`IterBasedRunner` achieves the same purpose with :obj:`IterLoader`. """ priority = 'NORMAL' def before_train_epoch(self, runner, mode: str = 'train') -> None: """Set the seed for sampler and batch_sampler. Args: runner (Runner): The runner of the training process. """ if hasattr(runner.cur_dataloader.sampler, 'set_epoch'): # in case the data loader uses `SequentialSampler` in Pytorch runner.cur_dataloader.sampler.set_epoch(runner.epoch) elif hasattr(runner.cur_dataloader.batch_sampler.sampler, 'set_epoch'): # batch sampler in pytorch warps the sampler as its attributes. runner.cur_dataloader.batch_sampler.sampler.set_epoch(runner.epoch)
#!/usr/bin/env python import functools as func import glob import os.path as osp import re import numpy as np url_prefix = 'https://github.com/open-mmlab/mmdetection/blob/main/configs' files = sorted(glob.glob('../../configs/*/README.md')) stats = [] titles = [] num_ckpts = 0 for f in files: url = osp.dirname(f.replace('../../configs', url_prefix)) with open(f, 'r') as content_file: content = content_file.read() title = content.split('\n')[0].replace('# ', '').strip() ckpts = set(x.lower().strip() for x in re.findall(r'\[model\]\((https?.*)\)', content)) if len(ckpts) == 0: continue _papertype = [x for x in re.findall(r'\[([A-Z]+)\]', content)] assert len(_papertype) > 0 papertype = _papertype[0] paper = set([(papertype, title)]) titles.append(title) num_ckpts += len(ckpts) statsmsg = f""" \t* [{papertype}] [{title}]({url}) ({len(ckpts)} ckpts) """ stats.append((paper, ckpts, statsmsg)) allpapers = func.reduce(lambda a, b: a.union(b), [p for p, _, _ in stats]) msglist = '\n'.join(x for _, _, x in stats) papertypes, papercounts = np.unique([t for t, _ in allpapers], return_counts=True) countstr = '\n'.join( [f' - {t}: {c}' for t, c in zip(papertypes, papercounts)]) modelzoo = f""" # Model Zoo Statistics * Number of papers: {len(set(titles))} {countstr} * Number of checkpoints: {num_ckpts} {msglist} """ with open('modelzoo_statistics.md', 'w') as f: f.write(modelzoo)
#!/usr/bin/env python import functools as func import glob import os.path as osp import re import numpy as np url_prefix = 'https://github.com/open-mmlab/mmdetection/blob/3.x/configs' files = sorted(glob.glob('../../configs/*/README.md')) stats = [] titles = [] num_ckpts = 0 for f in files: url = osp.dirname(f.replace('../../configs', url_prefix)) with open(f, 'r') as content_file: content = content_file.read() title = content.split('\n')[0].replace('# ', '').strip() ckpts = set(x.lower().strip() for x in re.findall(r'\[model\]\((https?.*)\)', content)) if len(ckpts) == 0: continue _papertype = [x for x in re.findall(r'\[([A-Z]+)\]', content)] assert len(_papertype) > 0 papertype = _papertype[0] paper = set([(papertype, title)]) titles.append(title) num_ckpts += len(ckpts) statsmsg = f""" \t* [{papertype}] [{title}]({url}) ({len(ckpts)} ckpts) """ stats.append((paper, ckpts, statsmsg)) allpapers = func.reduce(lambda a, b: a.union(b), [p for p, _, _ in stats]) msglist = '\n'.join(x for _, _, x in stats) papertypes, papercounts = np.unique([t for t, _ in allpapers], return_counts=True) countstr = '\n'.join( [f' - {t}: {c}' for t, c in zip(papertypes, papercounts)]) modelzoo = f""" # Model Zoo Statistics * Number of papers: {len(set(titles))} {countstr} * Number of checkpoints: {num_ckpts} {msglist} """ with open('modelzoo_statistics.md', 'w') as f: f.write(modelzoo)
import inspect import pytest from datasets.splits import Split, SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict", [ SplitDict(), SplitDict({"train": SplitInfo(name="train", num_bytes=1337, num_examples=42, dataset_name="my_dataset")}), SplitDict({"train": SplitInfo(name="train", num_bytes=1337, num_examples=42)}), SplitDict({"train": SplitInfo()}), ], ) def test_split_dict_to_yaml_list(split_dict: SplitDict): split_dict_yaml_list = split_dict._to_yaml_list() assert len(split_dict_yaml_list) == len(split_dict) reloaded = SplitDict._from_yaml_list(split_dict_yaml_list) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump split_info.dataset_name = None # the split name of split_dict takes over the name of the split info object split_info.name = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info", [SplitInfo(), SplitInfo(dataset_name=None), SplitInfo(dataset_name="my_dataset")] ) def test_split_dict_asdict_has_dataset_name(split_info): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files split_dict_asdict = asdict(SplitDict({"train": split_info})) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name def test_named_split_inequality(): # Used while building the docs, when set as a default parameter value in a function signature assert Split.TRAIN != inspect.Parameter.empty
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict", [ SplitDict(), SplitDict({"train": SplitInfo(name="train", num_bytes=1337, num_examples=42, dataset_name="my_dataset")}), SplitDict({"train": SplitInfo(name="train", num_bytes=1337, num_examples=42)}), SplitDict({"train": SplitInfo()}), ], ) def test_split_dict_to_yaml_list(split_dict: SplitDict): split_dict_yaml_list = split_dict._to_yaml_list() assert len(split_dict_yaml_list) == len(split_dict) reloaded = SplitDict._from_yaml_list(split_dict_yaml_list) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump split_info.dataset_name = None # the split name of split_dict takes over the name of the split info object split_info.name = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info", [SplitInfo(), SplitInfo(dataset_name=None), SplitInfo(dataset_name="my_dataset")] ) def test_split_dict_asdict_has_dataset_name(split_info): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files split_dict_asdict = asdict(SplitDict({"train": split_info})) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
# Copyright (c) OpenMMLab. All rights reserved. """Get image metas on a specific dataset. Here is an example to run this script. Example: python tools/misc/get_image_metas.py ${CONFIG} \ --out ${OUTPUT FILE NAME} """ import argparse import csv import os.path as osp from multiprocessing import Pool import mmcv from mmcv import Config def parse_args(): parser = argparse.ArgumentParser(description='Collect image metas') parser.add_argument('config', help='Config file path') parser.add_argument( '--dataset', default='val', choices=['train', 'val', 'test'], help='Collect image metas from which dataset') parser.add_argument( '--out', default='validation-image-metas.pkl', help='The output image metas file name. The save dir is in the ' 'same directory as `dataset.ann_file` path') parser.add_argument( '--nproc', default=4, type=int, help='Processes used for get image metas') args = parser.parse_args() return args def get_metas_from_csv_style_ann_file(ann_file): data_infos = [] cp_filename = None with open(ann_file, 'r') as f: reader = csv.reader(f) for i, line in enumerate(reader): if i == 0: continue img_id = line[0] filename = f'{img_id}.jpg' if filename != cp_filename: data_infos.append(dict(filename=filename)) cp_filename = filename return data_infos def get_metas_from_txt_style_ann_file(ann_file): with open(ann_file) as f: lines = f.readlines() i = 0 data_infos = [] while i < len(lines): filename = lines[i].rstrip() data_infos.append(dict(filename=filename)) skip_lines = int(lines[i + 2]) + 3 i += skip_lines return data_infos def get_image_metas(data_info, img_prefix): file_client = mmcv.FileClient(backend='disk') filename = data_info.get('filename', None) if filename is not None: if img_prefix is not None: filename = osp.join(img_prefix, filename) img_bytes = file_client.get(filename) img = mmcv.imfrombytes(img_bytes, flag='color') shape = img.shape meta = dict(filename=filename, ori_shape=shape) else: raise NotImplementedError('Missing `filename` in data_info') return meta def main(): args = parse_args() assert args.out.endswith('pkl'), 'The output file name must be pkl suffix' # load config files cfg = Config.fromfile(args.config) dataloader_cfg = cfg.get(f'{args.dataset}_dataloader') ann_file = osp.join(dataloader_cfg.dataset.data_root, dataloader_cfg.dataset.ann_file) img_prefix = osp.join(dataloader_cfg.dataset.data_root, dataloader_cfg.dataset.data_prefix['img']) print(f'{"-" * 5} Start Processing {"-" * 5}') if ann_file.endswith('csv'): data_infos = get_metas_from_csv_style_ann_file(ann_file) elif ann_file.endswith('txt'): data_infos = get_metas_from_txt_style_ann_file(ann_file) else: shuffix = ann_file.split('.')[-1] raise NotImplementedError('File name must be csv or txt suffix but ' f'get {shuffix}') print(f'Successfully load annotation file from {ann_file}') print(f'Processing {len(data_infos)} images...') pool = Pool(args.nproc) # get image metas with multiple processes image_metas = pool.starmap( get_image_metas, zip(data_infos, [img_prefix for _ in range(len(data_infos))]), ) pool.close() # save image metas root_path = dataloader_cfg.dataset.ann_file.rsplit('/', 1)[0] save_path = osp.join(root_path, args.out) mmcv.dump(image_metas, save_path, protocol=4) print(f'Image meta file save to: {save_path}') if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. """Get test image metas on a specific dataset. Here is an example to run this script. Example: python tools/misc/get_image_metas.py ${CONFIG} \ --out ${OUTPUT FILE NAME} """ import argparse import csv import os.path as osp from multiprocessing import Pool import mmcv from mmcv import Config def parse_args(): parser = argparse.ArgumentParser(description='Collect image metas') parser.add_argument('config', help='Config file path') parser.add_argument( '--out', default='validation-image-metas.pkl', help='The output image metas file name. The save dir is in the ' 'same directory as `dataset.ann_file` path') parser.add_argument( '--nproc', default=4, type=int, help='Processes used for get image metas') args = parser.parse_args() return args def get_metas_from_csv_style_ann_file(ann_file): data_infos = [] cp_filename = None with open(ann_file, 'r') as f: reader = csv.reader(f) for i, line in enumerate(reader): if i == 0: continue img_id = line[0] filename = f'{img_id}.jpg' if filename != cp_filename: data_infos.append(dict(filename=filename)) cp_filename = filename return data_infos def get_metas_from_txt_style_ann_file(ann_file): with open(ann_file) as f: lines = f.readlines() i = 0 data_infos = [] while i < len(lines): filename = lines[i].rstrip() data_infos.append(dict(filename=filename)) skip_lines = int(lines[i + 2]) + 3 i += skip_lines return data_infos def get_image_metas(data_info, img_prefix): file_client = mmcv.FileClient(backend='disk') filename = data_info.get('filename', None) if filename is not None: if img_prefix is not None: filename = osp.join(img_prefix, filename) img_bytes = file_client.get(filename) img = mmcv.imfrombytes(img_bytes, flag='color') meta = dict(filename=filename, ori_shape=img.shape) else: raise NotImplementedError('Missing `filename` in data_info') return meta def main(): args = parse_args() assert args.out.endswith('pkl'), 'The output file name must be pkl suffix' # load config files cfg = Config.fromfile(args.config) ann_file = cfg.data.test.ann_file img_prefix = cfg.data.test.img_prefix print(f'{"-" * 5} Start Processing {"-" * 5}') if ann_file.endswith('csv'): data_infos = get_metas_from_csv_style_ann_file(ann_file) elif ann_file.endswith('txt'): data_infos = get_metas_from_txt_style_ann_file(ann_file) else: shuffix = ann_file.split('.')[-1] raise NotImplementedError('File name must be csv or txt suffix but ' f'get {shuffix}') print(f'Successfully load annotation file from {ann_file}') print(f'Processing {len(data_infos)} images...') pool = Pool(args.nproc) # get image metas with multiple processes image_metas = pool.starmap( get_image_metas, zip(data_infos, [img_prefix for _ in range(len(data_infos))]), ) pool.close() # save image metas root_path = cfg.data.test.ann_file.rsplit('/', 1)[0] save_path = osp.join(root_path, args.out) mmcv.dump(image_metas, save_path) print(f'Image meta file save to: {save_path}') if __name__ == '__main__': main()
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning) # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method _set_start_method('fork') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.16.2' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning) # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method _set_start_method('fork') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.16.1' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional import torch import torch.nn as nn from mmengine.runner import load_checkpoint from torch import Tensor from mmdet.core import ConfigType, OptConfigType, SampleList from mmdet.registry import MODELS from ..utils.misc import unpack_gt_instances from .kd_one_stage import KnowledgeDistillationSingleStageDetector @MODELS.register_module() class LAD(KnowledgeDistillationSingleStageDetector): """Implementation of `LAD <https://arxiv.org/pdf/2108.10520.pdf>`_.""" def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, teacher_backbone: ConfigType, teacher_neck: ConfigType, teacher_bbox_head: ConfigType, teacher_ckpt: Optional[str] = None, eval_teacher: bool = True, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, preprocess_cfg: OptConfigType = None) -> None: super(KnowledgeDistillationSingleStageDetector, self).__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, preprocess_cfg=preprocess_cfg) self.eval_teacher = eval_teacher self.teacher_model = nn.Module() self.teacher_model.backbone = MODELS.build(teacher_backbone) if teacher_neck is not None: self.teacher_model.neck = MODELS.build(teacher_neck) teacher_bbox_head.update(train_cfg=train_cfg) teacher_bbox_head.update(test_cfg=test_cfg) self.teacher_model.bbox_head = MODELS.build(teacher_bbox_head) if teacher_ckpt is not None: load_checkpoint( self.teacher_model, teacher_ckpt, map_location='cpu') @property def with_teacher_neck(self) -> bool: """bool: whether the detector has a teacher_neck""" return hasattr(self.teacher_model, 'neck') and \ self.teacher_model.neck is not None def extract_teacher_feat(self, batch_inputs: Tensor) -> Tensor: """Directly extract teacher features from the backbone+neck.""" x = self.teacher_model.backbone(batch_inputs) if self.with_teacher_neck: x = self.teacher_model.neck(x) return x def forward_train(self, batch_inputs: Tensor, batch_data_samples: SampleList, **kwargs) -> dict: """ Args: batch_inputs (Tensor): Input images of shape (N, C, H, W). These should usually be mean centered and std scaled. batch_data_samples (list[:obj:`DetDataSample`]): The batch data samples. It usually includes information such as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. Returns: dict[str, Tensor]: A dictionary of loss components. """ outputs = unpack_gt_instances(batch_data_samples) batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \ = outputs # get label assignment from the teacher with torch.no_grad(): x_teacher = self.extract_teacher_feat(batch_inputs) outs_teacher = self.teacher_model.bbox_head(x_teacher) label_assignment_results = \ self.teacher_model.bbox_head.get_label_assignment( *outs_teacher, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore) # the student use the label assignment from the teacher to learn x = self.extract_feat(batch_inputs) losses = self.bbox_head.forward_train(x, label_assignment_results, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore) return losses
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional import torch import torch.nn as nn from mmengine.runner import load_checkpoint from torch import Tensor from mmdet.core import ConfigType, OptConfigType, SampleList from mmdet.registry import MODELS from .kd_one_stage import KnowledgeDistillationSingleStageDetector @MODELS.register_module() class LAD(KnowledgeDistillationSingleStageDetector): """Implementation of `LAD <https://arxiv.org/pdf/2108.10520.pdf>`_.""" def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, teacher_backbone: ConfigType, teacher_neck: ConfigType, teacher_bbox_head: ConfigType, teacher_ckpt: Optional[str] = None, eval_teacher: bool = True, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, preprocess_cfg: OptConfigType = None) -> None: super(KnowledgeDistillationSingleStageDetector, self).__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, preprocess_cfg=preprocess_cfg) self.eval_teacher = eval_teacher self.teacher_model = nn.Module() self.teacher_model.backbone = MODELS.build(teacher_backbone) if teacher_neck is not None: self.teacher_model.neck = MODELS.build(teacher_neck) teacher_bbox_head.update(train_cfg=train_cfg) teacher_bbox_head.update(test_cfg=test_cfg) self.teacher_model.bbox_head = MODELS.build(teacher_bbox_head) if teacher_ckpt is not None: load_checkpoint( self.teacher_model, teacher_ckpt, map_location='cpu') @property def with_teacher_neck(self) -> bool: """bool: whether the detector has a teacher_neck""" return hasattr(self.teacher_model, 'neck') and \ self.teacher_model.neck is not None def extract_teacher_feat(self, batch_inputs: Tensor) -> Tensor: """Directly extract teacher features from the backbone+neck.""" x = self.teacher_model.backbone(batch_inputs) if self.with_teacher_neck: x = self.teacher_model.neck(x) return x def forward_train(self, batch_inputs: Tensor, batch_data_samples: SampleList, **kwargs) -> dict: """ Args: batch_inputs (Tensor): Input images of shape (N, C, H, W). These should usually be mean centered and std scaled. batch_data_samples (list[:obj:`DetDataSample`]): The batch data samples. It usually includes information such as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. Returns: dict[str, Tensor]: A dictionary of loss components. """ batch_gt_instances = [] batch_gt_instances_ignore = [] batch_img_metas = [] for data_sample in batch_data_samples: batch_img_metas.append(data_sample.metainfo) batch_gt_instances.append(data_sample.gt_instances) if 'ignored_instances' in data_sample: batch_gt_instances_ignore.append(data_sample.ignored_instances) else: batch_gt_instances_ignore.append(None) # get label assignment from the teacher with torch.no_grad(): x_teacher = self.extract_teacher_feat(batch_inputs) outs_teacher = self.teacher_model.bbox_head(x_teacher) label_assignment_results = \ self.teacher_model.bbox_head.get_label_assignment( *outs_teacher, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore) # the student use the label assignment from the teacher to learn x = self.extract_feat(batch_inputs) losses = self.bbox_head.forward_train(x, label_assignment_results, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore) return losses
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class HfFileSystem(AbstractFileSystem): """Interface to files in a Hugging face repository""" root_marker = "" protocol = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self, repo_info: Optional[DatasetInfo] = None, token: Optional[str] = None, **kwargs, ): """ The file system can be instantiated using a huggingface_hub.hf_api.DatasetInfo object, and can be used to list and open files from a Hugging Face dataset repository with fsspec. Args: repo_info (:obj:``DatasetInfo``, `optional`): Dataset repository info from huggingface_hub.HfApi().dataset_info(...) token (:obj:``str``, `optional`): Hugging Face token. Will default to the locally saved token if not provided. """ super().__init__(self, **kwargs) self.repo_info = repo_info self.token = token self.dir_cache = None def _get_dirs(self): if self.dir_cache is None: self.dir_cache = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes self.dir_cache[hf_file.rfilename] = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(d): {"name": str(d), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1] } ) def _open( self, path: str, mode: str = "rb", **kwargs, ): if not isinstance(self.repo_info, DatasetInfo): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}") url = hf_hub_url(self.repo_info.id, path, revision=self.repo_info.sha) return fsspec.open( url, mode=mode, headers=get_authentication_headers_for_url(url, token=self.token), client_kwargs={"trust_env": True}, # Enable reading proxy env variables. ).open() def info(self, path, **kwargs): self._get_dirs() path = self._strip_protocol(path) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(path) def ls(self, path, detail=False, **kwargs): self._get_dirs() path = PurePosixPath(path.strip("/")) paths = {} for p, f in self.dir_cache.items(): p = PurePosixPath(p.strip("/")) root = p.parent if root == path: paths[str(p)] = f out = list(paths.values()) if detail: return out else: return sorted(f["name"] for f in out)
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class HfFileSystem(AbstractFileSystem): """Interface to files in a Hugging face repository""" root_marker = "" protocol = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self, repo_info: Optional[DatasetInfo] = None, token: Optional[str] = None, **kwargs, ): """ The file system can be instantiated using a huggingface_hub.hf_api.DatasetInfo object, and can be used to list and open files from a Hugging Face dataset repository with fsspec. Args: repo_info (:obj:``DatasetInfo``, `optional`): Dataset repository info from huggingface_hub.HfApi().dataset_info(...) token (:obj:``str``, `optional`): Hugging Face token. Will default to the locally saved token if not provided. """ super().__init__(self, **kwargs) self.repo_info = repo_info self.token = token self.dir_cache = None def _get_dirs(self): if self.dir_cache is None: self.dir_cache = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes self.dir_cache[hf_file.rfilename] = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(d): {"name": str(d), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1] } ) def _open( self, path: str, mode: str = "rb", **kwargs, ): if not isinstance(self.repo_info, DatasetInfo): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}") url = hf_hub_url(self.repo_info.id, path, revision=self.repo_info.sha) return fsspec.open( url, mode=mode, headers=get_authentication_headers_for_url(url, use_auth_token=self.token), client_kwargs={"trust_env": True}, # Enable reading proxy env variables. ).open() def info(self, path, **kwargs): self._get_dirs() path = self._strip_protocol(path) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(path) def ls(self, path, detail=False, **kwargs): self._get_dirs() path = PurePosixPath(path.strip("/")) paths = {} for p, f in self.dir_cache.items(): p = PurePosixPath(p.strip("/")) root = p.parent if root == path: paths[str(p)] = f out = list(paths.values()) if detail: return out else: return sorted(f["name"] for f in out)
from jina.schemas.helper import _cli_to_schema from jina_cli.export import api_to_dict for s in ('flow', 'gateway', 'executor', 'deployment'): a = _cli_to_schema(api_to_dict(), s) table = ['| Name | Description | Type | Default |', '|----|----|----|----|'] for k, v in a[f'Jina::{s.capitalize()}']['properties'].items(): desc = v["description"].replace("\n", "<br>") if k in ('port', 'port_monitoring'): v[ 'default' ] = 'random in [49152, 65535]' # avoid random numbers cause devbot forever committing type = None if v['type'] == 'null' else v['type'] table.append(f'| `{k}` | {desc} | `{type}` | `{v["default"]}` |') with open(f'../docs/concepts/flow/{s}-args.md', 'w') as fp: fp.write('\n'.join(table))
from jina.schemas.helper import _cli_to_schema from jina_cli.export import api_to_dict for s in ('flow', 'gateway', 'executor'): a = _cli_to_schema(api_to_dict(), s) table = ['| Name | Description | Type | Default |', '|----|----|----|----|'] for k, v in a[f'Jina::{s.capitalize()}']['properties'].items(): desc = v["description"].replace("\n", "<br>") if k in ('port', 'port_monitoring'): v[ 'default' ] = 'random in [49152, 65535]' # avoid random numbers cause devbot forever committing type = None if v['type'] == 'null' else v['type'] table.append(f'| `{k}` | {desc} | `{type}` | `{v["default"]}` |') with open(f'../docs/concepts/flow/{s}-args.md', 'w') as fp: fp.write('\n'.join(table))
from collections.abc import Mapping from operator import itemgetter from typing import Any, Callable, Optional, Union from langchain_core.messages import BaseMessage from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser from langchain_core.runnables import RouterRunnable, Runnable from langchain_core.runnables.base import RunnableBindingBase from typing_extensions import TypedDict class OpenAIFunction(TypedDict): """A function description for ChatOpenAI""" name: str """The name of the function.""" description: str """The description of the function.""" parameters: dict """The parameters to the function.""" class OpenAIFunctionsRouter(RunnableBindingBase[BaseMessage, Any]): """A runnable that routes to the selected function.""" functions: Optional[list[OpenAIFunction]] def __init__( self, runnables: Mapping[ str, Union[ Runnable[dict, Any], Callable[[dict], Any], ], ], functions: Optional[list[OpenAIFunction]] = None, ): if functions is not None: if len(functions) != len(runnables): raise ValueError( "The number of functions does not match the number of runnables." ) if not all(func["name"] in runnables for func in functions): raise ValueError( "One or more function names are not found in runnables." ) router = ( JsonOutputFunctionsParser(args_only=False) | {"key": itemgetter("name"), "input": itemgetter("arguments")} | RouterRunnable(runnables) ) super().__init__(bound=router, kwargs={}, functions=functions)
from collections.abc import Mapping from operator import itemgetter from typing import Any, Callable, Optional, Union from langchain_core.messages import BaseMessage from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser from langchain_core.runnables import RouterRunnable, Runnable from langchain_core.runnables.base import RunnableBindingBase from typing_extensions import TypedDict class OpenAIFunction(TypedDict): """A function description for ChatOpenAI""" name: str """The name of the function.""" description: str """The description of the function.""" parameters: dict """The parameters to the function.""" class OpenAIFunctionsRouter(RunnableBindingBase[BaseMessage, Any]): """A runnable that routes to the selected function.""" functions: Optional[list[OpenAIFunction]] def __init__( self, runnables: Mapping[ str, Union[ Runnable[dict, Any], Callable[[dict], Any], ], ], functions: Optional[list[OpenAIFunction]] = None, ): if functions is not None: assert len(functions) == len(runnables) assert all(func["name"] in runnables for func in functions) router = ( JsonOutputFunctionsParser(args_only=False) | {"key": itemgetter("name"), "input": itemgetter("arguments")} | RouterRunnable(runnables) ) super().__init__(bound=router, kwargs={}, functions=functions)
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.23.1' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.23.0' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
from typing import Union from docarray.typing.tensor.ndarray import NdArray from docarray.utils._internal.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor # noqa: F401 AnyTensor = Union[NdArray] if torch_available and tf_available: AnyTensor = Union[NdArray, TorchTensor, TensorFlowTensor] # type: ignore elif torch_available: AnyTensor = Union[NdArray, TorchTensor] # type: ignore elif tf_available: AnyTensor = Union[NdArray, TensorFlowTensor] # type: ignore
from typing import Union from docarray.typing.tensor.ndarray import NdArray from docarray.utils.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor # noqa: F401 AnyTensor = Union[NdArray] if torch_available and tf_available: AnyTensor = Union[NdArray, TorchTensor, TensorFlowTensor] # type: ignore elif torch_available: AnyTensor = Union[NdArray, TorchTensor] # type: ignore elif tf_available: AnyTensor = Union[NdArray, TensorFlowTensor] # type: ignore
_base_ = './fcos_r50-caffe_fpn_gn-head_1x_coco.py' # model settings model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron/resnet101_caffe'))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 2x max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './fcos_r50-caffe_fpn_gn-head_1x_coco.py' # model settings model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron/resnet101_caffe'))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 2x max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
import numpy as np from docarray import BaseDoc, DocList from docarray.typing import NdArray from pydantic import Field, BaseModel from jina import Executor, requests class TextDoc(BaseDoc): text: str = Field(description="The text of the document", default="") class EmbeddingResponseModel(TextDoc): embeddings: NdArray = Field(description="The embedding of the texts", default=[]) class Config(BaseDoc.Config): allow_population_by_field_name = True arbitrary_types_allowed = True json_encoders = {NdArray: lambda v: v.tolist()} class Parameters(BaseModel): emb_dim: int class SampleExecutor(Executor): @requests(on="/encode") def foo(self, docs: DocList[TextDoc], **kwargs) -> DocList[EmbeddingResponseModel]: ret = [] for doc in docs: ret.append( EmbeddingResponseModel( id=doc.id, text=doc.text, embeddings=np.random.random((1, 64)), ) ) return DocList[EmbeddingResponseModel](ret) @requests(on="/encode_parameter") def bar(self, docs: DocList[TextDoc], parameters: Parameters, **kwargs) -> DocList[EmbeddingResponseModel]: ret = [] for doc in docs: ret.append( EmbeddingResponseModel( id=doc.id, text=doc.text, embeddings=np.random.random((1, parameters.emb_dim)), ) ) return DocList[EmbeddingResponseModel](ret)
import numpy as np from docarray import BaseDoc, DocList from docarray.typing import NdArray from pydantic import Field from jina import Executor, requests class TextDoc(BaseDoc): text: str = Field(description="The text of the document", default="") class EmbeddingResponseModel(TextDoc): embeddings: NdArray = Field(description="The embedding of the texts", default=[]) class Config(BaseDoc.Config): allow_population_by_field_name = True arbitrary_types_allowed = True json_encoders = {NdArray: lambda v: v.tolist()} class SampleExecutor(Executor): @requests(on="/encode") def foo(self, docs: DocList[TextDoc], **kwargs) -> DocList[EmbeddingResponseModel]: ret = [] for doc in docs: ret.append( EmbeddingResponseModel( id=doc.id, text=doc.text, embeddings=np.random.random((1, 64)), ) ) return DocList[EmbeddingResponseModel](ret)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Optional, List, Union, Dict import numpy as np from annoy import AnnoyIndex from jina import Executor, requests, DocumentArray, Document from jina_commons import get_logger from jina_commons.indexers.dump import import_vectors class AnnoySearcher(Executor): """Annoy powered vector indexer For more information about the Annoy supported parameters, please consult: - https://github.com/spotify/annoy .. note:: Annoy package dependency is only required at the query time. """ def __init__( self, default_top_k: int = 10, metric: str = 'euclidean', num_trees: int = 10, dump_path: Optional[str] = None, default_traversal_paths: List[str] = ['r'], is_distance: bool = False, **kwargs, ): """ Initialize an AnnoyIndexer :param default_top_k: get tok k vectors :param metric: Metric can be "angular", "euclidean", "manhattan", "hamming", or "dot" :param num_trees: builds a forest of n_trees trees. More trees gives higher precision when querying. :param dump_path: the path to load ids and vecs :param traverse_path: traverse path on docs, e.g. ['r'], ['c'] :param is_distance: Boolean flag that describes if distance metric need to be reinterpreted as similarities. :param args: :param kwargs: """ super().__init__(**kwargs) self.default_top_k = default_top_k self.metric = metric self.num_trees = num_trees self.default_traversal_paths = default_traversal_paths self.is_distance = is_distance self.logger = get_logger(self) self._doc_id_to_offset = {} dump_path = dump_path or kwargs.get('runtime_args', {}).get('dump_path', None) if dump_path is not None: self.logger.info('Start building "AnnoyIndexer" from dump data') ids, vecs = import_vectors(dump_path, str(self.runtime_args.pea_id)) self._ids = np.array(list(ids)) self._vecs = np.array(list(vecs)) num_dim = self._vecs.shape[1] self._indexer = AnnoyIndex(num_dim, self.metric) self._load_index(self._ids, self._vecs) self.logger.info('Done building Annoy index') else: self.logger.warning( 'No data loaded in "AnnoyIndexer". Use .rolling_update() to re-initialize it...' ) def _load_index(self, ids, vecs): for idx, v in enumerate(vecs): self._indexer.add_item(idx, v.astype(np.float32)) self._doc_id_to_offset[ids[idx]] = idx self._indexer.build(self.num_trees) @requests(on='/search') def search(self, docs: DocumentArray, parameters: Dict, **kwargs): if not hasattr(self, '_indexer'): self.logger.warning('Querying against an empty index') return traversal_paths = parameters.get( 'traversal_paths', self.default_traversal_paths ) top_k = parameters.get('top_k', self.default_top_k) for doc in docs.traverse_flat(traversal_paths): indices, dists = self._indexer.get_nns_by_vector( doc.embedding, top_k, include_distances=True ) for idx, dist in zip(indices, dists): match = Document(id=self._ids[idx], embedding=self._vecs[idx]) if self.is_distance: if self.metric == 'dot': match.scores[self.metric] = 1 - dist else: match.scores[self.metric] = dist else: if self.metric == 'dot': match.scores[self.metric] = dist elif self.metric == 'angular' or self.metric == 'hamming': match.scores[self.metric] = 1 - dist else: match.scores[self.metric] = 1 / (1 + dist) doc.matches.append(match) @requests(on='/fill_embedding') def fill_embedding(self, query_da: DocumentArray, **kwargs): for doc in query_da: doc_idx = self._doc_id_to_offset.get(doc.id) if doc_idx is not None: doc.embedding = np.array(self._indexer.get_item_vector(int(doc_idx))) else: self.logger.warning(f'Document {doc.id} not found in index')
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Optional, List, Union, Dict import numpy as np from annoy import AnnoyIndex from jina import Executor, requests, DocumentArray, Document from jina_commons import get_logger from jina_commons.indexers.dump import import_vectors class AnnoySearcher(Executor): """Annoy powered vector indexer For more information about the Annoy supported parameters, please consult: - https://github.com/spotify/annoy .. note:: Annoy package dependency is only required at the query time. """ def __init__( self, default_top_k: int = 10, metric: str = 'euclidean', num_trees: int = 10, dump_path: Optional[str] = None, default_traversal_paths: List[str] = ['r'], is_distance: bool = False, **kwargs, ): """ Initialize an AnnoyIndexer :param default_top_k: get tok k vectors :param metric: Metric can be "angular", "euclidean", "manhattan", "hamming", or "dot" :param num_trees: builds a forest of n_trees trees. More trees gives higher precision when querying. :param dump_path: the path to load ids and vecs :param traverse_path: traverse path on docs, e.g. ['r'], ['c'] :param is_distance: Boolean flag that describes if distance metric need to be reinterpreted as similarities. :param args: :param kwargs: """ super().__init__(**kwargs) self.default_top_k = default_top_k self.metric = metric self.num_trees = num_trees self.default_traversal_paths = default_traversal_paths self.is_distance = is_distance self.logger = get_logger(self) dump_path = dump_path or kwargs.get('runtime_args', {}).get('dump_path', None) if dump_path is not None: self.logger.info('Start building "AnnoyIndexer" from dump data') ids, vecs = import_vectors(dump_path, str(self.runtime_args.pea_id)) self._ids = np.array(list(ids)) self._vecs = np.array(list(vecs)) num_dim = self._vecs.shape[1] self._indexer = AnnoyIndex(num_dim, self.metric) self._doc_id_to_offset = {} self._load_index(self._ids, self._vecs) self.logger.info('Done building Annoy index') else: self.logger.warning( 'No data loaded in "AnnoyIndexer". Use .rolling_update() to re-initialize it...' ) def _load_index(self, ids, vecs): for idx, v in enumerate(vecs): self._indexer.add_item(idx, v.astype(np.float32)) self._doc_id_to_offset[ids[idx]] = idx self._indexer.build(self.num_trees) @requests(on='/search') def search(self, docs: DocumentArray, parameters: Dict, **kwargs): if not hasattr(self, '_indexer'): self.logger.warning('Querying against an empty index') return traversal_paths = parameters.get( 'traversal_paths', self.default_traversal_paths ) top_k = parameters.get('top_k', self.default_top_k) for doc in docs.traverse_flat(traversal_paths): indices, dists = self._indexer.get_nns_by_vector( doc.embedding, top_k, include_distances=True ) for idx, dist in zip(indices, dists): match = Document(id=self._ids[idx], embedding=self._vecs[idx]) if self.is_distance: if self.metric == 'dot': match.scores[self.metric] = 1 - dist else: match.scores[self.metric] = dist else: if self.metric == 'dot': match.scores[self.metric] = dist elif self.metric == 'angular' or self.metric == 'hamming': match.scores[self.metric] = 1 - dist else: match.scores[self.metric] = 1 / (1 + dist) doc.matches.append(match) @requests(on='/fill_embedding') def fill_embedding(self, query_da: DocumentArray, **kwargs): for doc in query_da: doc.embedding = np.array( self._indexer.get_item_vector(int(self._doc_id_to_offset[str(doc.id)])) )
"""Test in memory docstore.""" from typing import Any from langchain.output_parsers.combining import CombiningOutputParser from langchain.output_parsers.regex import RegexParser from langchain.output_parsers.structured import ResponseSchema, StructuredOutputParser DEF_EXPECTED_RESULT = { "answer": "Paris", "source": "https://en.wikipedia.org/wiki/France", "confidence": "A", "explanation": "Paris is the capital of France according to Wikipedia.", } DEF_README = """```json { "answer": "Paris", "source": "https://en.wikipedia.org/wiki/France" } ``` //Confidence: A, Explanation: Paris is the capital of France according to Wikipedia.""" def test_combining_dict_result() -> None: """Test combining result.""" parsers = [ StructuredOutputParser( response_schemas=[ ResponseSchema( name="answer", description="answer to the user's question" ), ResponseSchema( name="source", description="source used to answer the user's question", ), ] ), RegexParser( regex=r"Confidence: (A|B|C), Explanation: (.*)", output_keys=["confidence", "explanation"], default_output_key="noConfidence", ), ] combining_parser = CombiningOutputParser(parsers=parsers) result_dict = combining_parser.parse(DEF_README) assert DEF_EXPECTED_RESULT == result_dict def test_combining_output_parser_output_type() -> None: """Test combining output parser output type is Dict[str, Any].""" parsers = [ StructuredOutputParser( response_schemas=[ ResponseSchema( name="answer", description="answer to the user's question" ), ResponseSchema( name="source", description="source used to answer the user's question", ), ] ), RegexParser( regex=r"Confidence: (A|B|C), Explanation: (.*)", output_keys=["confidence", "explanation"], default_output_key="noConfidence", ), ] combining_parser = CombiningOutputParser(parsers=parsers) assert combining_parser.OutputType == dict[str, Any]
"""Test in memory docstore.""" from typing import Any, Dict from langchain.output_parsers.combining import CombiningOutputParser from langchain.output_parsers.regex import RegexParser from langchain.output_parsers.structured import ResponseSchema, StructuredOutputParser DEF_EXPECTED_RESULT = { "answer": "Paris", "source": "https://en.wikipedia.org/wiki/France", "confidence": "A", "explanation": "Paris is the capital of France according to Wikipedia.", } DEF_README = """```json { "answer": "Paris", "source": "https://en.wikipedia.org/wiki/France" } ``` //Confidence: A, Explanation: Paris is the capital of France according to Wikipedia.""" def test_combining_dict_result() -> None: """Test combining result.""" parsers = [ StructuredOutputParser( response_schemas=[ ResponseSchema( name="answer", description="answer to the user's question" ), ResponseSchema( name="source", description="source used to answer the user's question", ), ] ), RegexParser( regex=r"Confidence: (A|B|C), Explanation: (.*)", output_keys=["confidence", "explanation"], default_output_key="noConfidence", ), ] combining_parser = CombiningOutputParser(parsers=parsers) result_dict = combining_parser.parse(DEF_README) assert DEF_EXPECTED_RESULT == result_dict def test_combining_output_parser_output_type() -> None: """Test combining output parser output type is Dict[str, Any].""" parsers = [ StructuredOutputParser( response_schemas=[ ResponseSchema( name="answer", description="answer to the user's question" ), ResponseSchema( name="source", description="source used to answer the user's question", ), ] ), RegexParser( regex=r"Confidence: (A|B|C), Explanation: (.*)", output_keys=["confidence", "explanation"], default_output_key="noConfidence", ), ] combining_parser = CombiningOutputParser(parsers=parsers) assert combining_parser.OutputType is Dict[str, Any]
"""Argparser module for Deployment runtimes""" import argparse from jina.enums import DeploymentRoleType from jina.parsers.helper import _SHOW_ALL_ARGS, KVAppendAction, add_arg_group from jina.parsers.orchestrate.runtimes.remote import _mixin_http_server_parser def mixin_base_deployment_parser(parser): """Add mixin arguments required by :class:`BaseDeployment` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Deployment') gp.add_argument( '--uses-before', type=str, help='The executor attached before the Pods described by --uses, typically before sending to all ' 'shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--uses-after', type=str, help='The executor attached after the Pods described by --uses, typically used for receiving from ' 'all shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--when', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The condition that the documents need to fulfill before reaching the Executor.' 'The condition can be defined in the form of a `DocArray query condition <https://docarray.jina.ai/fundamentals/documentarray/find/#query-by-conditions>`', ) gp.add_argument( '--external', action='store_true', default=False, help='The Deployment will be considered an external Deployment that has been started independently from the Flow.' 'This Deployment will not be context managed by the Flow.', ) gp.add_argument( '--grpc-metadata', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The metadata to be passed to the gRPC request.', ) # hidden CLI used for internal only gp.add_argument( '--deployment-role', type=DeploymentRoleType.from_string, choices=list(DeploymentRoleType), help='The role of this deployment in the flow' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--tls', action='store_true', default=False, help='If set, connect to deployment using tls encryption', ) _mixin_http_server_parser(gp)
"""Argparser module for Deployment runtimes""" import argparse from jina.enums import DeploymentRoleType from jina.parsers.helper import _SHOW_ALL_ARGS, KVAppendAction, add_arg_group def mixin_base_deployment_parser(parser): """Add mixin arguments required by :class:`BaseDeployment` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Deployment') gp.add_argument( '--uses-before', type=str, help='The executor attached before the Pods described by --uses, typically before sending to all ' 'shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--uses-after', type=str, help='The executor attached after the Pods described by --uses, typically used for receiving from ' 'all shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--when', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The condition that the documents need to fulfill before reaching the Executor.' 'The condition can be defined in the form of a `DocArray query condition <https://docarray.jina.ai/fundamentals/documentarray/find/#query-by-conditions>`', ) gp.add_argument( '--external', action='store_true', default=False, help='The Deployment will be considered an external Deployment that has been started independently from the Flow.' 'This Deployment will not be context managed by the Flow.', ) gp.add_argument( '--grpc-metadata', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The metadata to be passed to the gRPC request.', ) # hidden CLI used for internal only gp.add_argument( '--deployment-role', type=DeploymentRoleType.from_string, choices=list(DeploymentRoleType), help='The role of this deployment in the flow' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--tls', action='store_true', default=False, help='If set, connect to deployment using tls encryption', )
# Copyright (c) OpenMMLab. All rights reserved. """Image Demo. This script adopts a new infenence class, currently supports image path, np.array and folder input formats, and will support video and webcam in the future. Example: Save visualizations and predictions results:: python demo/image_demo.py demo/demo.jpg rtmdet-s python demo/image_demo.py demo/demo.jpg \ configs/rtmdet/rtmdet_s_8xb32-300e_coco.py \ --weights rtmdet_s_8xb32-300e_coco_20220905_161602-387a891e.pth python demo/image_demo.py demo/demo.jpg \ glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365 --texts bench python demo/image_demo.py demo/demo.jpg \ glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365 --texts 'bench . car .' python demo/image_demo.py demo/demo.jpg \ glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365 --texts 'bench . car .' -c python demo/image_demo.py demo/demo.jpg \ glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365 \ --texts 'There are a lot of cars here.' Visualize prediction results:: python demo/image_demo.py demo/demo.jpg rtmdet-ins-s --show python demo/image_demo.py demo/demo.jpg rtmdet-ins_s_8xb32-300e_coco \ --show """ from argparse import ArgumentParser from mmengine.logging import print_log from mmdet.apis import DetInferencer def parse_args(): parser = ArgumentParser() parser.add_argument( 'inputs', type=str, help='Input image file or folder path.') parser.add_argument( 'model', type=str, help='Config or checkpoint .pth file or the model name ' 'and alias defined in metafile. The model configuration ' 'file will try to read from .pth if the parameter is ' 'a .pth weights file.') parser.add_argument('--weights', default=None, help='Checkpoint file') parser.add_argument( '--out-dir', type=str, default='outputs', help='Output directory of images or prediction results.') parser.add_argument('--texts', help='text prompt') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--pred-score-thr', type=float, default=0.3, help='bbox score threshold') parser.add_argument( '--batch-size', type=int, default=1, help='Inference batch size.') parser.add_argument( '--show', action='store_true', help='Display the image in a popup window.') parser.add_argument( '--no-save-vis', action='store_true', help='Do not save detection vis results') parser.add_argument( '--no-save-pred', action='store_true', help='Do not save detection json results') parser.add_argument( '--print-result', action='store_true', help='Whether to print the results.') parser.add_argument( '--palette', default='none', choices=['coco', 'voc', 'citys', 'random', 'none'], help='Color palette used for visualization') # only for GLIP parser.add_argument( '--custom-entities', '-c', action='store_true', help='Whether to customize entity names? ' 'If so, the input text should be ' '"cls_name1 . cls_name2 . cls_name3 ." format') call_args = vars(parser.parse_args()) if call_args['no_save_vis'] and call_args['no_save_pred']: call_args['out_dir'] = '' if call_args['model'].endswith('.pth'): print_log('The model is a weight file, automatically ' 'assign the model to --weights') call_args['weights'] = call_args['model'] call_args['model'] = None init_kws = ['model', 'weights', 'device', 'palette'] init_args = {} for init_kw in init_kws: init_args[init_kw] = call_args.pop(init_kw) return init_args, call_args def main(): init_args, call_args = parse_args() # TODO: Video and Webcam are currently not supported and # may consume too much memory if your input folder has a lot of images. # We will be optimized later. inferencer = DetInferencer(**init_args) inferencer(**call_args) if call_args['out_dir'] != '' and not (call_args['no_save_vis'] and call_args['no_save_pred']): print_log(f'results have been saved at {call_args["out_dir"]}') if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. """Image Demo. This script adopts a new infenence class, currently supports image path, np.array and folder input formats, and will support video and webcam in the future. Example: Save visualizations and predictions results:: python demo/image_demo.py demo/demo.jpg rtmdet-s python demo/image_demo.py demo/demo.jpg \ configs/rtmdet/rtmdet_s_8xb32-300e_coco.py \ --weights rtmdet_s_8xb32-300e_coco_20220905_161602-387a891e.pth Visualize prediction results:: python demo/image_demo.py demo/demo.jpg rtmdet-ins-s --show python demo/image_demo.py demo/demo.jpg rtmdet-ins_s_8xb32-300e_coco \ --show """ from argparse import ArgumentParser from mmengine.logging import print_log from mmdet.apis import DetInferencer def parse_args(): parser = ArgumentParser() parser.add_argument( 'inputs', type=str, help='Input image file or folder path.') parser.add_argument( 'model', type=str, help='Config or checkpoint .pth file or the model name ' 'and alias defined in metafile. The model configuration ' 'file will try to read from .pth if the parameter is ' 'a .pth weights file.') parser.add_argument('--weights', default=None, help='Checkpoint file') parser.add_argument( '--out-dir', type=str, default='outputs', help='Output directory of images or prediction results.') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--pred-score-thr', type=float, default=0.3, help='bbox score threshold') parser.add_argument( '--batch-size', type=int, default=1, help='Inference batch size.') parser.add_argument( '--show', action='store_true', help='Display the image in a popup window.') parser.add_argument( '--no-save-vis', action='store_true', help='Do not save detection vis results') parser.add_argument( '--no-save-pred', action='store_true', help='Do not save detection json results') parser.add_argument( '--print-result', action='store_true', help='Whether to print the results.') parser.add_argument( '--palette', default='none', choices=['coco', 'voc', 'citys', 'random', 'none'], help='Color palette used for visualization') call_args = vars(parser.parse_args()) if call_args['no_save_vis'] and call_args['no_save_pred']: call_args['out_dir'] = '' if call_args['model'].endswith('.pth'): print_log('The model is a weight file, automatically ' 'assign the model to --weights') call_args['weights'] = call_args['model'] call_args['model'] = None init_kws = ['model', 'weights', 'device', 'palette'] init_args = {} for init_kw in init_kws: init_args[init_kw] = call_args.pop(init_kw) return init_args, call_args def main(): init_args, call_args = parse_args() # TODO: Video and Webcam are currently not supported and # may consume too much memory if your input folder has a lot of images. # We will be optimized later. inferencer = DetInferencer(**init_args) inferencer(**call_args) if call_args['out_dir'] != '' and not (call_args['no_save_vis'] and call_args['no_save_pred']): print_log(f'results have been saved at {call_args["out_dir"]}') if __name__ == '__main__': main()
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """Utilities to handle file locking in `datasets`.""" import os from filelock import FileLock as FileLock_ from filelock import UnixFileLock class FileLock(FileLock_): """ A `filelock.FileLock` initializer that handles long paths. """ MAX_FILENAME_LENGTH = 255 def __init__(self, lock_file, *args, **kwargs): lock_file = self.hash_filename_if_too_long(lock_file) super().__init__(lock_file, *args, **kwargs) @classmethod def hash_filename_if_too_long(cls, path: str) -> str: filename = os.path.basename(path) max_filename_length = cls.MAX_FILENAME_LENGTH if issubclass(cls, UnixFileLock): max_filename_length = min(max_filename_length, os.statvfs(os.path.dirname(path)).f_namemax) if len(filename) > max_filename_length: dirname = os.path.dirname(path) hashed_filename = str(hash(filename)) new_filename = ( filename[: max_filename_length - len(hashed_filename) - 8] + "..." + hashed_filename + ".lock" ) return os.path.join(dirname, new_filename) else: return path
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """Utilities to handle file locking in `datasets`.""" import os from filelock import FileLock as FileLock_ class FileLock(FileLock_): """ A `filelock.FileLock` initializer that handles long paths. """ MAX_FILENAME_LENGTH = 255 def __init__(self, lock_file, *args, **kwargs): lock_file = self.hash_filename_if_too_long(lock_file) super().__init__(lock_file, *args, **kwargs) @classmethod def hash_filename_if_too_long(cls, path: str) -> str: filename = os.path.basename(path) if len(filename) > cls.MAX_FILENAME_LENGTH: dirname = os.path.dirname(path) hashed_filename = str(hash(filename)) new_filename = ( filename[: cls.MAX_FILENAME_LENGTH - len(hashed_filename) - 8] + "..." + hashed_filename + ".lock" ) return os.path.join(dirname, new_filename) else: return path
# Copyright (c) OpenMMLab. All rights reserved. from functools import partial from typing import Optional import torch TORCH_VERSION = torch.__version__ def is_rocm_pytorch() -> bool: """Check whether the PyTorch is compiled on ROCm.""" is_rocm = False if TORCH_VERSION != 'parrots': try: from torch.utils.cpp_extension import ROCM_HOME is_rocm = True if ((torch.version.hip is not None) and (ROCM_HOME is not None)) else False except ImportError: pass return is_rocm def _get_cuda_home() -> Optional[str]: """Obtain the path of CUDA home.""" if TORCH_VERSION == 'parrots': from parrots.utils.build_extension import CUDA_HOME else: if is_rocm_pytorch(): from torch.utils.cpp_extension import ROCM_HOME CUDA_HOME = ROCM_HOME else: from torch.utils.cpp_extension import CUDA_HOME return CUDA_HOME def get_build_config(): """Obtain the build information of PyTorch or Parrots.""" if TORCH_VERSION == 'parrots': from parrots.config import get_build_info return get_build_info() else: return torch.__config__.show() def _get_conv() -> tuple: """A wrapper to obtain base classes of Conv layers from PyTorch or Parrots.""" if TORCH_VERSION == 'parrots': from parrots.nn.modules.conv import _ConvNd, _ConvTransposeMixin else: from torch.nn.modules.conv import _ConvNd, _ConvTransposeMixin return _ConvNd, _ConvTransposeMixin def _get_dataloader() -> tuple: """A wrapper to obtain DataLoader class from PyTorch or Parrots.""" if TORCH_VERSION == 'parrots': from torch.utils.data import DataLoader, PoolDataLoader else: from torch.utils.data import DataLoader PoolDataLoader = DataLoader return DataLoader, PoolDataLoader def _get_extension(): """A wrapper to obtain extension class from PyTorch or Parrots.""" if TORCH_VERSION == 'parrots': from parrots.utils.build_extension import BuildExtension, Extension CppExtension = partial(Extension, cuda=False) CUDAExtension = partial(Extension, cuda=True) else: from torch.utils.cpp_extension import (BuildExtension, CppExtension, CUDAExtension) return BuildExtension, CppExtension, CUDAExtension def _get_pool() -> tuple: """A wrapper to obtain base classes of pooling layers from PyTorch or Parrots.""" if TORCH_VERSION == 'parrots': from parrots.nn.modules.pool import (_AdaptiveAvgPoolNd, _AdaptiveMaxPoolNd, _AvgPoolNd, _MaxPoolNd) else: from torch.nn.modules.pooling import (_AdaptiveAvgPoolNd, _AdaptiveMaxPoolNd, _AvgPoolNd, _MaxPoolNd) return _AdaptiveAvgPoolNd, _AdaptiveMaxPoolNd, _AvgPoolNd, _MaxPoolNd def _get_norm() -> tuple: """A wrapper to obtain base classes of normalization layers from PyTorch or Parrots.""" if TORCH_VERSION == 'parrots': from parrots.nn.modules.batchnorm import _BatchNorm, _InstanceNorm SyncBatchNorm_ = torch.nn.SyncBatchNorm2d else: from torch.nn.modules.batchnorm import _BatchNorm from torch.nn.modules.instancenorm import _InstanceNorm SyncBatchNorm_ = torch.nn.SyncBatchNorm return _BatchNorm, _InstanceNorm, SyncBatchNorm_ _ConvNd, _ConvTransposeMixin = _get_conv() DataLoader, PoolDataLoader = _get_dataloader() BuildExtension, CppExtension, CUDAExtension = _get_extension() _BatchNorm, _InstanceNorm, SyncBatchNorm_ = _get_norm() _AdaptiveAvgPoolNd, _AdaptiveMaxPoolNd, _AvgPoolNd, _MaxPoolNd = _get_pool()
# Copyright (c) OpenMMLab. All rights reserved. from functools import partial from typing import Optional import torch TORCH_VERSION = torch.__version__ def is_rocm_pytorch() -> bool: is_rocm = False if TORCH_VERSION != 'parrots': try: from torch.utils.cpp_extension import ROCM_HOME is_rocm = True if ((torch.version.hip is not None) and (ROCM_HOME is not None)) else False except ImportError: pass return is_rocm def _get_cuda_home() -> Optional[str]: if TORCH_VERSION == 'parrots': from parrots.utils.build_extension import CUDA_HOME else: if is_rocm_pytorch(): from torch.utils.cpp_extension import ROCM_HOME CUDA_HOME = ROCM_HOME else: from torch.utils.cpp_extension import CUDA_HOME return CUDA_HOME def get_build_config(): if TORCH_VERSION == 'parrots': from parrots.config import get_build_info return get_build_info() else: return torch.__config__.show() def _get_conv() -> tuple: if TORCH_VERSION == 'parrots': from parrots.nn.modules.conv import _ConvNd, _ConvTransposeMixin else: from torch.nn.modules.conv import _ConvNd, _ConvTransposeMixin return _ConvNd, _ConvTransposeMixin def _get_dataloader() -> tuple: if TORCH_VERSION == 'parrots': from torch.utils.data import DataLoader, PoolDataLoader else: from torch.utils.data import DataLoader PoolDataLoader = DataLoader return DataLoader, PoolDataLoader def _get_extension(): if TORCH_VERSION == 'parrots': from parrots.utils.build_extension import BuildExtension, Extension CppExtension = partial(Extension, cuda=False) CUDAExtension = partial(Extension, cuda=True) else: from torch.utils.cpp_extension import (BuildExtension, CppExtension, CUDAExtension) return BuildExtension, CppExtension, CUDAExtension def _get_pool() -> tuple: if TORCH_VERSION == 'parrots': from parrots.nn.modules.pool import (_AdaptiveAvgPoolNd, _AdaptiveMaxPoolNd, _AvgPoolNd, _MaxPoolNd) else: from torch.nn.modules.pooling import (_AdaptiveAvgPoolNd, _AdaptiveMaxPoolNd, _AvgPoolNd, _MaxPoolNd) return _AdaptiveAvgPoolNd, _AdaptiveMaxPoolNd, _AvgPoolNd, _MaxPoolNd def _get_norm() -> tuple: if TORCH_VERSION == 'parrots': from parrots.nn.modules.batchnorm import _BatchNorm, _InstanceNorm SyncBatchNorm_ = torch.nn.SyncBatchNorm2d else: from torch.nn.modules.batchnorm import _BatchNorm from torch.nn.modules.instancenorm import _InstanceNorm SyncBatchNorm_ = torch.nn.SyncBatchNorm return _BatchNorm, _InstanceNorm, SyncBatchNorm_ _ConvNd, _ConvTransposeMixin = _get_conv() DataLoader, PoolDataLoader = _get_dataloader() BuildExtension, CppExtension, CUDAExtension = _get_extension() _BatchNorm, _InstanceNorm, SyncBatchNorm_ = _get_norm() _AdaptiveAvgPoolNd, _AdaptiveMaxPoolNd, _AvgPoolNd, _MaxPoolNd = _get_pool()
from __future__ import annotations import os import platform import tempfile import pytest from sentence_transformers import CrossEncoder, SentenceTransformer from sentence_transformers.models import Pooling, Transformer from sentence_transformers.util import is_datasets_available if is_datasets_available(): from datasets import DatasetDict, load_dataset @pytest.fixture() def stsb_bert_tiny_model() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") @pytest.fixture(scope="session") def stsb_bert_tiny_model_reused() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") @pytest.fixture() def paraphrase_distilroberta_base_v1_model() -> SentenceTransformer: return SentenceTransformer("paraphrase-distilroberta-base-v1") @pytest.fixture() def distilroberta_base_ce_model() -> CrossEncoder: return CrossEncoder("distilroberta-base", num_labels=1) @pytest.fixture() def clip_vit_b_32_model() -> SentenceTransformer: return SentenceTransformer("clip-ViT-B-32") @pytest.fixture() def distilbert_base_uncased_model() -> SentenceTransformer: word_embedding_model = Transformer("distilbert-base-uncased") pooling_model = Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) return model @pytest.fixture(scope="session") def stsb_dataset_dict() -> "DatasetDict": return load_dataset("mteb/stsbenchmark-sts") @pytest.fixture() def cache_dir(): """ In the CI environment, we use a temporary directory as `cache_dir` to avoid keeping the downloaded models on disk after the test. This is only required for Ubuntu, as we otherwise have disk space issues there. """ if os.environ.get("CI", None) and platform.system() == "Linux": with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield None
import os import platform import tempfile import pytest from sentence_transformers import CrossEncoder, SentenceTransformer from sentence_transformers.models import Pooling, Transformer from sentence_transformers.util import is_datasets_available if is_datasets_available(): from datasets import DatasetDict, load_dataset @pytest.fixture() def stsb_bert_tiny_model() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") @pytest.fixture(scope="session") def stsb_bert_tiny_model_reused() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") @pytest.fixture() def paraphrase_distilroberta_base_v1_model() -> SentenceTransformer: return SentenceTransformer("paraphrase-distilroberta-base-v1") @pytest.fixture() def distilroberta_base_ce_model() -> CrossEncoder: return CrossEncoder("distilroberta-base", num_labels=1) @pytest.fixture() def clip_vit_b_32_model() -> SentenceTransformer: return SentenceTransformer("clip-ViT-B-32") @pytest.fixture() def distilbert_base_uncased_model() -> SentenceTransformer: word_embedding_model = Transformer("distilbert-base-uncased") pooling_model = Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) return model @pytest.fixture(scope="session") def stsb_dataset_dict() -> "DatasetDict": return load_dataset("mteb/stsbenchmark-sts") @pytest.fixture() def cache_dir(): """ In the CI environment, we use a temporary directory as `cache_dir` to avoid keeping the downloaded models on disk after the test. This is only required for Ubuntu, as we otherwise have disk space issues there. """ if os.environ.get("CI", None) and platform.system() == "Linux": with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield None
import pytest from sklearn.base import BaseEstimator, RegressorMixin, TransformerMixin from sklearn.utils._tags import get_tags class NoTagsEstimator: pass class ClassifierEstimator: # This is to test whether not inheriting from mixins works. _estimator_type = "classifier" @pytest.mark.parametrize( "estimator, value", [ [NoTagsEstimator(), False], [ClassifierEstimator(), True], [TransformerMixin(), False], [RegressorMixin(), True], [BaseEstimator(), False], ], ) def test_requires_y(estimator, value): assert get_tags(estimator).target_tags.required == value
import pytest from sklearn.base import BaseEstimator from sklearn.utils._tags import ( _DEFAULT_TAGS, _safe_tags, ) class NoTagsEstimator: pass class MoreTagsEstimator: def _more_tags(self): return {"allow_nan": True} @pytest.mark.parametrize( "estimator, err_msg", [ (BaseEstimator(), "The key xxx is not defined in _get_tags"), (NoTagsEstimator(), "The key xxx is not defined in _DEFAULT_TAGS"), ], ) def test_safe_tags_error(estimator, err_msg): # Check that safe_tags raises error in ambiguous case. with pytest.raises(ValueError, match=err_msg): _safe_tags(estimator, key="xxx") @pytest.mark.parametrize( "estimator, key, expected_results", [ (NoTagsEstimator(), None, _DEFAULT_TAGS), (NoTagsEstimator(), "allow_nan", _DEFAULT_TAGS["allow_nan"]), (MoreTagsEstimator(), None, {**_DEFAULT_TAGS, **{"allow_nan": True}}), (MoreTagsEstimator(), "allow_nan", True), (BaseEstimator(), None, _DEFAULT_TAGS), (BaseEstimator(), "allow_nan", _DEFAULT_TAGS["allow_nan"]), (BaseEstimator(), "allow_nan", _DEFAULT_TAGS["allow_nan"]), ], ) def test_safe_tags_no_get_tags(estimator, key, expected_results): # check the behaviour of _safe_tags when an estimator does not implement # _get_tags assert _safe_tags(estimator, key=key) == expected_results
# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, LDMSuperResolutionPipeline, UNet2DModel, VQModel from diffusers.utils import PIL_INTERPOLATION from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, nightly, require_accelerator, require_torch, torch_device, ) enable_full_determinism() class LDMSuperResolutionPipelineFastTests(unittest.TestCase): @property def dummy_image(self): batch_size = 1 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) return image @property def dummy_uncond_unet(self): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=6, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model @property def dummy_vq_model(self): torch.manual_seed(0) model = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=3, ) return model def test_inference_superresolution(self): device = "cpu" unet = self.dummy_uncond_unet scheduler = DDIMScheduler() vqvae = self.dummy_vq_model ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) ldm.to(device) ldm.set_progress_bar_config(disable=None) init_image = self.dummy_image.to(device) generator = torch.Generator(device=device).manual_seed(0) image = ldm(image=init_image, generator=generator, num_inference_steps=2, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.8678, 0.8245, 0.6381, 0.6830, 0.4385, 0.5599, 0.4641, 0.6201, 0.5150]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @require_accelerator def test_inference_superresolution_fp16(self): unet = self.dummy_uncond_unet scheduler = DDIMScheduler() vqvae = self.dummy_vq_model # put models in fp16 unet = unet.half() vqvae = vqvae.half() ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) ldm.to(torch_device) ldm.set_progress_bar_config(disable=None) init_image = self.dummy_image.to(torch_device) image = ldm(init_image, num_inference_steps=2, output_type="np").images assert image.shape == (1, 64, 64, 3) @nightly @require_torch class LDMSuperResolutionPipelineIntegrationTests(unittest.TestCase): def test_inference_superresolution(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool.png" ) init_image = init_image.resize((64, 64), resample=PIL_INTERPOLATION["lanczos"]) ldm = LDMSuperResolutionPipeline.from_pretrained("duongna/ldm-super-resolution") ldm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ldm(image=init_image, generator=generator, num_inference_steps=20, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.7644, 0.7679, 0.7642, 0.7633, 0.7666, 0.7560, 0.7425, 0.7257, 0.6907]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, LDMSuperResolutionPipeline, UNet2DModel, VQModel from diffusers.utils import PIL_INTERPOLATION from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, nightly, require_accelerator, require_torch, torch_device, ) enable_full_determinism() class LDMSuperResolutionPipelineFastTests(unittest.TestCase): @property def dummy_image(self): batch_size = 1 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) return image @property def dummy_uncond_unet(self): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=6, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model @property def dummy_vq_model(self): torch.manual_seed(0) model = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=3, ) return model def test_inference_superresolution(self): device = "cpu" unet = self.dummy_uncond_unet scheduler = DDIMScheduler() vqvae = self.dummy_vq_model ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) ldm.to(device) ldm.set_progress_bar_config(disable=None) init_image = self.dummy_image.to(device) generator = torch.Generator(device=device).manual_seed(0) image = ldm(image=init_image, generator=generator, num_inference_steps=2, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.8678, 0.8245, 0.6381, 0.6830, 0.4385, 0.5599, 0.4641, 0.6201, 0.5150]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @require_accelerator def test_inference_superresolution_fp16(self): unet = self.dummy_uncond_unet scheduler = DDIMScheduler() vqvae = self.dummy_vq_model # put models in fp16 unet = unet.half() vqvae = vqvae.half() ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) ldm.to(torch_device) ldm.set_progress_bar_config(disable=None) init_image = self.dummy_image.to(torch_device) image = ldm(init_image, num_inference_steps=2, output_type="np").images assert image.shape == (1, 64, 64, 3) @nightly @require_torch class LDMSuperResolutionPipelineIntegrationTests(unittest.TestCase): def test_inference_superresolution(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool.png" ) init_image = init_image.resize((64, 64), resample=PIL_INTERPOLATION["lanczos"]) ldm = LDMSuperResolutionPipeline.from_pretrained("duongna/ldm-super-resolution") ldm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ldm(image=init_image, generator=generator, num_inference_steps=20, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.7644, 0.7679, 0.7642, 0.7633, 0.7666, 0.7560, 0.7425, 0.7257, 0.6907]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
import pytest from docarray import DocumentArray, Document from docarray.array.weaviate import DocumentArrayWeaviate import numpy as np @pytest.fixture() def docs(): return DocumentArray([Document(id=f'{i}') for i in range(1, 10)]) @pytest.mark.parametrize( 'to_delete', [ 0, 1, 4, -1, list(range(1, 4)), [2, 4, 7, 1, 1], slice(0, 2), slice(2, 4), slice(4, -1), [True, True, False], ..., ], ) def test_del_all(docs, to_delete): doc_to_delete = docs[to_delete] del docs[to_delete] assert doc_to_delete not in docs @pytest.mark.parametrize( 'to_delete, missing_id', [ ([True, False], ['1']), ([True, True, False], ['1', '2']), ([False, True], ['2']), ([False, False, True, True], ['3', '4']), ], ) def test_del_boolean_mask(docs, to_delete, missing_id): # assert each missing_id is present before deleting for m_id in missing_id: assert m_id in docs[:, 'id'] del docs[to_delete] # assert each missing_id is NOT present AFTER deleting for m_id in missing_id: assert m_id not in docs[:, 'id'] @pytest.mark.parametrize( ['deleted_ids', 'expected_ids'], [ (['1', '2', '3', '4'], ['5', '6', '7', '8', '9']), (['2', '4', '7', '1'], ['3', '5', '6', '8', '9']), ], ) def test_del_by_multiple_idx(docs, deleted_ids, expected_ids): del docs[deleted_ids] assert docs[:, 'id'] == expected_ids @pytest.mark.parametrize( 'da_cls,config,persist', [ (DocumentArrayWeaviate, {'n_dim': 10}, False), (DocumentArrayWeaviate, {'name': 'Storage', 'n_dim': 10}, True), ], ) def test_del_da_persist(da_cls, config, persist, docs, start_storage): da = da_cls(docs, config=config) del da da2 = da_cls(config=config) if persist: assert len(da2) == len(docs) else: assert len(da2) == 0 def test_del_da_attribute(): da = DocumentArray( [ Document(embedding=np.array([1, 2, 3]), text='d1'), Document(embedding=np.array([1, 2, 3]), text='d2'), ] ) q = DocumentArray( [ Document(embedding=np.array([4, 5, 6]), text='q1'), Document(embedding=np.array([2, 3, 4]), text='q1'), ] ) da.match(q) del da[...][:, 'embedding'] for d in da: assert d.embedding is None
import pytest from docarray import DocumentArray, Document from docarray.array.weaviate import DocumentArrayWeaviate @pytest.fixture() def docs(): return DocumentArray([Document(id=f'{i}') for i in range(1, 10)]) @pytest.mark.parametrize( 'to_delete', [ 0, 1, 4, -1, list(range(1, 4)), [2, 4, 7, 1, 1], slice(0, 2), slice(2, 4), slice(4, -1), [True, True, False], ..., ], ) def test_del_all(docs, to_delete): doc_to_delete = docs[to_delete] del docs[to_delete] assert doc_to_delete not in docs @pytest.mark.parametrize( 'to_delete, missing_id', [ ([True, False], ['1']), ([True, True, False], ['1', '2']), ([False, True], ['2']), ([False, False, True, True], ['3', '4']), ], ) def test_del_boolean_mask(docs, to_delete, missing_id): # assert each missing_id is present before deleting for m_id in missing_id: assert m_id in docs[:, 'id'] del docs[to_delete] # assert each missing_id is NOT present AFTER deleting for m_id in missing_id: assert m_id not in docs[:, 'id'] @pytest.mark.parametrize( ['deleted_ids', 'expected_ids'], [ (['1', '2', '3', '4'], ['5', '6', '7', '8', '9']), (['2', '4', '7', '1'], ['3', '5', '6', '8', '9']), ], ) def test_del_by_multiple_idx(docs, deleted_ids, expected_ids): del docs[deleted_ids] assert docs[:, 'id'] == expected_ids @pytest.mark.parametrize( 'da_cls,config,persist', [ (DocumentArrayWeaviate, {'n_dim': 10}, False), (DocumentArrayWeaviate, {'name': 'Storage', 'n_dim': 10}, True), ], ) def test_del_da_persist(da_cls, config, persist, docs, start_storage): da = da_cls(docs, config=config) del da da2 = da_cls(config=config) if persist: assert len(da2) == len(docs) else: assert len(da2) == 0
from abc import ABC from docarray.array.storage.annlite.backend import BackendMixin, AnnliteConfig from docarray.array.storage.annlite.find import FindMixin from docarray.array.storage.annlite.getsetdel import GetSetDelMixin from docarray.array.storage.annlite.seqlike import SequenceLikeMixin __all__ = ['StorageMixins', 'AnnliteConfig'] class StorageMixins(FindMixin, BackendMixin, GetSetDelMixin, SequenceLikeMixin, ABC): ...
from abc import ABC from .backend import BackendMixin, AnnliteConfig from .find import FindMixin from .getsetdel import GetSetDelMixin from .seqlike import SequenceLikeMixin __all__ = ['StorageMixins', 'AnnliteConfig'] class StorageMixins(FindMixin, BackendMixin, GetSetDelMixin, SequenceLikeMixin, ABC): ...
import enum from collections.abc import Sequence from typing import TypeVar T = TypeVar("T", bound=enum.Enum) class StrEnumMeta(enum.EnumMeta): auto = enum.auto def from_str(self: type[T], member: str) -> T: # type: ignore[misc] try: return self[member] except KeyError: # TODO: use `add_suggestion` from torchvision.prototype.utils._internal to improve the error message as # soon as it is migrated. raise ValueError(f"Unknown value '{member}' for {self.__name__}.") from None class StrEnum(enum.Enum, metaclass=StrEnumMeta): pass def sequence_to_str(seq: Sequence, separate_last: str = "") -> str: if not seq: return "" if len(seq) == 1: return f"'{seq[0]}'" head = "'" + "', '".join([str(item) for item in seq[:-1]]) + "'" tail = f"{'' if separate_last and len(seq) == 2 else ','} {separate_last}'{seq[-1]}'" return head + tail
import enum from typing import Sequence, Type, TypeVar T = TypeVar("T", bound=enum.Enum) class StrEnumMeta(enum.EnumMeta): auto = enum.auto def from_str(self: Type[T], member: str) -> T: # type: ignore[misc] try: return self[member] except KeyError: # TODO: use `add_suggestion` from torchvision.prototype.utils._internal to improve the error message as # soon as it is migrated. raise ValueError(f"Unknown value '{member}' for {self.__name__}.") from None class StrEnum(enum.Enum, metaclass=StrEnumMeta): pass def sequence_to_str(seq: Sequence, separate_last: str = "") -> str: if not seq: return "" if len(seq) == 1: return f"'{seq[0]}'" head = "'" + "', '".join([str(item) for item in seq[:-1]]) + "'" tail = f"{'' if separate_last and len(seq) == 2 else ','} {separate_last}'{seq[-1]}'" return head + tail
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import functools import warnings from inspect import signature __all__ = ["deprecated"] class deprecated: """Decorator to mark a function or class as deprecated. Issue a warning when the function is called/the class is instantiated and adds a warning to the docstring. The optional extra argument will be appended to the deprecation message and the docstring. Note: to use this with the default value for extra, put in an empty of parentheses: Examples -------- >>> from sklearn.utils import deprecated >>> deprecated() <sklearn.utils.deprecation.deprecated object at ...> >>> @deprecated() ... def some_function(): pass Parameters ---------- extra : str, default='' To be added to the deprecation messages. """ # Adapted from https://wiki.python.org/moin/PythonDecoratorLibrary, # but with many changes. def __init__(self, extra=""): self.extra = extra def __call__(self, obj): """Call method Parameters ---------- obj : object """ if isinstance(obj, type): return self._decorate_class(obj) elif isinstance(obj, property): # Note that this is only triggered properly if the `deprecated` # decorator is placed before the `property` decorator, like so: # # @deprecated(msg) # @property # def deprecated_attribute_(self): # ... return self._decorate_property(obj) else: return self._decorate_fun(obj) def _decorate_class(self, cls): msg = "Class %s is deprecated" % cls.__name__ if self.extra: msg += "; %s" % self.extra new = cls.__new__ sig = signature(cls) def wrapped(cls, *args, **kwargs): warnings.warn(msg, category=FutureWarning) if new is object.__new__: return object.__new__(cls) return new(cls, *args, **kwargs) cls.__new__ = wrapped wrapped.__name__ = "__new__" wrapped.deprecated_original = new # Restore the original signature, see PEP 362. cls.__signature__ = sig return cls def _decorate_fun(self, fun): """Decorate function fun""" msg = "Function %s is deprecated" % fun.__name__ if self.extra: msg += "; %s" % self.extra @functools.wraps(fun) def wrapped(*args, **kwargs): warnings.warn(msg, category=FutureWarning) return fun(*args, **kwargs) # Add a reference to the wrapped function so that we can introspect # on function arguments in Python 2 (already works in Python 3) wrapped.__wrapped__ = fun return wrapped def _decorate_property(self, prop): msg = self.extra @property @functools.wraps(prop.fget) def wrapped(*args, **kwargs): warnings.warn(msg, category=FutureWarning) return prop.fget(*args, **kwargs) return wrapped def _is_deprecated(func): """Helper to check if func is wrapped by our deprecated decorator""" closures = getattr(func, "__closure__", []) if closures is None: closures = [] is_deprecated = "deprecated" in "".join( [c.cell_contents for c in closures if isinstance(c.cell_contents, str)] ) return is_deprecated # TODO(1.8): remove force_all_finite and change the default value of ensure_all_finite # to True (remove None without deprecation). def _deprecate_force_all_finite(force_all_finite, ensure_all_finite): """Helper to deprecate force_all_finite in favor of ensure_all_finite.""" if force_all_finite != "deprecated": warnings.warn( "'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be " "removed in 1.8.", FutureWarning, ) if ensure_all_finite is not None: raise ValueError( "'force_all_finite' and 'ensure_all_finite' cannot be used together. " "Pass `ensure_all_finite` only." ) return force_all_finite if ensure_all_finite is None: return True return ensure_all_finite
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import functools import warnings from inspect import signature __all__ = ["deprecated"] class deprecated: """Decorator to mark a function or class as deprecated. Issue a warning when the function is called/the class is instantiated and adds a warning to the docstring. The optional extra argument will be appended to the deprecation message and the docstring. Note: to use this with the default value for extra, put in an empty of parentheses: Examples -------- >>> from sklearn.utils import deprecated >>> deprecated() <sklearn.utils.deprecation.deprecated object at ...> >>> @deprecated() ... def some_function(): pass Parameters ---------- extra : str, default='' To be added to the deprecation messages. """ # Adapted from https://wiki.python.org/moin/PythonDecoratorLibrary, # but with many changes. def __init__(self, extra=""): self.extra = extra def __call__(self, obj): """Call method Parameters ---------- obj : object """ if isinstance(obj, type): return self._decorate_class(obj) elif isinstance(obj, property): # Note that this is only triggered properly if the `deprecated` # decorator is placed before the `property` decorator, like so: # # @deprecated(msg) # @property # def deprecated_attribute_(self): # ... return self._decorate_property(obj) else: return self._decorate_fun(obj) def _decorate_class(self, cls): msg = "Class %s is deprecated" % cls.__name__ if self.extra: msg += "; %s" % self.extra new = cls.__new__ sig = signature(cls) def wrapped(cls, *args, **kwargs): warnings.warn(msg, category=FutureWarning) if new is object.__new__: return object.__new__(cls) return new(cls, *args, **kwargs) cls.__new__ = wrapped wrapped.__name__ = "__new__" wrapped.deprecated_original = new # Restore the original signature, see PEP 362. cls.__signature__ = sig return cls def _decorate_fun(self, fun): """Decorate function fun""" msg = "Function %s is deprecated" % fun.__name__ if self.extra: msg += "; %s" % self.extra @functools.wraps(fun) def wrapped(*args, **kwargs): warnings.warn(msg, category=FutureWarning) return fun(*args, **kwargs) # Add a reference to the wrapped function so that we can introspect # on function arguments in Python 2 (already works in Python 3) wrapped.__wrapped__ = fun return wrapped def _decorate_property(self, prop): msg = self.extra @property @functools.wraps(prop.fget) def wrapped(*args, **kwargs): warnings.warn(msg, category=FutureWarning) return prop.fget(*args, **kwargs) return wrapped def _is_deprecated(func): """Helper to check if func is wrapped by our deprecated decorator""" closures = getattr(func, "__closure__", []) if closures is None: closures = [] is_deprecated = "deprecated" in "".join( [c.cell_contents for c in closures if isinstance(c.cell_contents, str)] ) return is_deprecated # TODO: remove in 1.7 def _deprecate_Xt_in_inverse_transform(X, Xt): """Helper to deprecate the `Xt` argument in favor of `X` in inverse_transform.""" if X is not None and Xt is not None: raise TypeError("Cannot use both X and Xt. Use X only.") if X is None and Xt is None: raise TypeError("Missing required positional argument: X.") if Xt is not None: warnings.warn( "Xt was renamed X in version 1.5 and will be removed in 1.7.", FutureWarning, ) return Xt return X # TODO(1.8): remove force_all_finite and change the default value of ensure_all_finite # to True (remove None without deprecation). def _deprecate_force_all_finite(force_all_finite, ensure_all_finite): """Helper to deprecate force_all_finite in favor of ensure_all_finite.""" if force_all_finite != "deprecated": warnings.warn( "'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be " "removed in 1.8.", FutureWarning, ) if ensure_all_finite is not None: raise ValueError( "'force_all_finite' and 'ensure_all_finite' cannot be used together. " "Pass `ensure_all_finite` only." ) return force_all_finite if ensure_all_finite is None: return True return ensure_all_finite
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.27.9' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.27.8' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
import re from collections.abc import Sequence from typing import Optional from langchain_core.messages import BaseMessage def _is_openai_data_block(block: dict) -> bool: """Check if the block contains multimodal data in OpenAI Chat Completions format.""" if block.get("type") == "image_url": if ( (set(block.keys()) <= {"type", "image_url", "detail"}) and (image_url := block.get("image_url")) and isinstance(image_url, dict) ): url = image_url.get("url") if isinstance(url, str): return True elif block.get("type") == "file": if (file := block.get("file")) and isinstance(file, dict): file_data = file.get("file_data") if isinstance(file_data, str): return True elif block.get("type") == "input_audio": if (input_audio := block.get("input_audio")) and isinstance(input_audio, dict): audio_data = input_audio.get("data") audio_format = input_audio.get("format") if isinstance(audio_data, str) and isinstance(audio_format, str): return True else: return False return False def _parse_data_uri(uri: str) -> Optional[dict]: """Parse a data URI into its components. If parsing fails, return None. Example: .. code-block:: python data_uri = "..." parsed = _parse_data_uri(data_uri) assert parsed == { "source_type": "base64", "mime_type": "image/jpeg", "data": "/9j/4AAQSkZJRg...", } """ regex = r"^data:(?P<mime_type>[^;]+);base64,(?P<data>.+)$" match = re.match(regex, uri) if match is None: return None return { "source_type": "base64", "data": match.group("data"), "mime_type": match.group("mime_type"), } def _convert_openai_format_to_data_block(block: dict) -> dict: """Convert OpenAI image content block to standard data content block. If parsing fails, pass-through. Args: block: The OpenAI image content block to convert. Returns: The converted standard data content block. """ if block["type"] == "image_url": parsed = _parse_data_uri(block["image_url"]["url"]) if parsed is not None: parsed["type"] = "image" return parsed return block if block["type"] == "file": parsed = _parse_data_uri(block["file"]["file_data"]) if parsed is not None: parsed["type"] = "file" if filename := block["file"].get("filename"): parsed["filename"] = filename return parsed return block if block["type"] == "input_audio": data = block["input_audio"].get("data") audio_format = block["input_audio"].get("format") if data and audio_format: return { "type": "audio", "source_type": "base64", "data": data, "mime_type": f"audio/{audio_format}", } return block return block def _normalize_messages(messages: Sequence[BaseMessage]) -> list[BaseMessage]: """Extend support for message formats. Chat models implement support for images in OpenAI Chat Completions format, as well as other multimodal data as standard data blocks. This function extends support to audio and file data in OpenAI Chat Completions format by converting them to standard data blocks. """ formatted_messages = [] for message in messages: formatted_message = message if isinstance(message.content, list): for idx, block in enumerate(message.content): if ( isinstance(block, dict) # Subset to (PDF) files and audio, as most relevant chat models # support images in OAI format (and some may not yet support the # standard data block format) and block.get("type") in {"file", "input_audio"} and _is_openai_data_block(block) ): if formatted_message is message: formatted_message = message.model_copy() # Also shallow-copy content formatted_message.content = list(formatted_message.content) formatted_message.content[idx] = ( # type: ignore[index] # mypy confused by .model_copy _convert_openai_format_to_data_block(block) ) formatted_messages.append(formatted_message) return formatted_messages
import re from collections.abc import Sequence from typing import Optional from langchain_core.messages import BaseMessage def _is_openai_data_block(block: dict) -> bool: """Check if the block contains multimodal data in OpenAI Chat Completions format.""" if block.get("type") == "image_url": if ( (set(block.keys()) <= {"type", "image_url", "detail"}) and (image_url := block.get("image_url")) and isinstance(image_url, dict) ): url = image_url.get("url") if isinstance(url, str): return True elif block.get("type") == "file": if (file := block.get("file")) and isinstance(file, dict): file_data = file.get("file_data") if isinstance(file_data, str): return True elif block.get("type") == "input_audio": if (input_audio := block.get("input_audio")) and isinstance(input_audio, dict): audio_data = input_audio.get("data") audio_format = input_audio.get("format") if isinstance(audio_data, str) and isinstance(audio_format, str): return True else: return False return False def _parse_data_uri(uri: str) -> Optional[dict]: """Parse a data URI into its components. If parsing fails, return None. Example: .. code-block:: python data_uri = "..." parsed = _parse_data_uri(data_uri) assert parsed == { "source_type": "base64", "mime_type": "image/jpeg", "data": "/9j/4AAQSkZJRg...", } """ regex = r"^data:(?P<mime_type>[^;]+);base64,(?P<data>.+)$" match = re.match(regex, uri) if match is None: return None return { "source_type": "base64", "data": match.group("data"), "mime_type": match.group("mime_type"), } def _convert_openai_format_to_data_block(block: dict) -> dict: """Convert OpenAI image content block to standard data content block. If parsing fails, pass-through. Args: block: The OpenAI image content block to convert. Returns: The converted standard data content block. """ if block["type"] == "image_url": parsed = _parse_data_uri(block["image_url"]["url"]) if parsed is not None: parsed["type"] = "image" return parsed return block if block["type"] == "file": parsed = _parse_data_uri(block["file"]["file_data"]) if parsed is not None: parsed["type"] = "file" if filename := block["file"].get("filename"): parsed["filename"] = filename return parsed return block if block["type"] == "input_audio": data = block["input_audio"].get("data") audio_format = block["input_audio"].get("format") if data and audio_format: return { "type": "audio", "source_type": "base64", "data": data, "mime_type": f"audio/{audio_format}", } return block return block def _normalize_messages(messages: Sequence[BaseMessage]) -> list[BaseMessage]: """Extend support for message formats. Chat models implement support for images in OpenAI Chat Completions format, as well as other multimodal data as standard data blocks. This function extends support to audio and file data in OpenAI Chat Completions format by converting them to standard data blocks. """ formatted_messages = [] for message in messages: formatted_message = message if isinstance(message.content, list): for idx, block in enumerate(message.content): if ( isinstance(block, dict) # Subset to (PDF) files and audio, as most relevant chat models # support images in OAI format (and some may not yet support the # standard data block format) and block.get("type") in ("file", "input_audio") and _is_openai_data_block(block) ): if formatted_message is message: formatted_message = message.model_copy() # Also shallow-copy content formatted_message.content = list(formatted_message.content) formatted_message.content[idx] = ( # type: ignore[index] # mypy confused by .model_copy _convert_openai_format_to_data_block(block) ) formatted_messages.append(formatted_message) return formatted_messages
"""FastAPI framework, high performance, easy to learn, fast to code, ready for production""" __version__ = "0.115.7" from starlette import status as status from .applications import FastAPI as FastAPI from .background import BackgroundTasks as BackgroundTasks from .datastructures import UploadFile as UploadFile from .exceptions import HTTPException as HTTPException from .exceptions import WebSocketException as WebSocketException from .param_functions import Body as Body from .param_functions import Cookie as Cookie from .param_functions import Depends as Depends from .param_functions import File as File from .param_functions import Form as Form from .param_functions import Header as Header from .param_functions import Path as Path from .param_functions import Query as Query from .param_functions import Security as Security from .requests import Request as Request from .responses import Response as Response from .routing import APIRouter as APIRouter from .websockets import WebSocket as WebSocket from .websockets import WebSocketDisconnect as WebSocketDisconnect
"""FastAPI framework, high performance, easy to learn, fast to code, ready for production""" __version__ = "0.115.6" from starlette import status as status from .applications import FastAPI as FastAPI from .background import BackgroundTasks as BackgroundTasks from .datastructures import UploadFile as UploadFile from .exceptions import HTTPException as HTTPException from .exceptions import WebSocketException as WebSocketException from .param_functions import Body as Body from .param_functions import Cookie as Cookie from .param_functions import Depends as Depends from .param_functions import File as File from .param_functions import Form as Form from .param_functions import Header as Header from .param_functions import Path as Path from .param_functions import Query as Query from .param_functions import Security as Security from .requests import Request as Request from .responses import Response as Response from .routing import APIRouter as APIRouter from .websockets import WebSocket as WebSocket from .websockets import WebSocketDisconnect as WebSocketDisconnect
from torio.io import CodecConfig, StreamingMediaDecoder as StreamReader, StreamingMediaEncoder as StreamWriter from torchaudio._internal.module_utils import dropping_support from ._effector import AudioEffector from ._playback import play_audio as _play_audio CodecConfig.__init__ = dropping_support(CodecConfig.__init__) StreamReader.__init__ = dropping_support(StreamReader.__init__) StreamWriter.__init__ = dropping_support(StreamWriter.__init__) AudioEffector.__init__ = dropping_support(AudioEffector.__init__) play_audio = dropping_support(_play_audio) __all__ = [ "AudioEffector", "StreamReader", "StreamWriter", "CodecConfig", "play_audio", ]
from torio.io import CodecConfig, StreamingMediaDecoder as StreamReader, StreamingMediaEncoder as StreamWriter from ._effector import AudioEffector from ._playback import play_audio __all__ = [ "AudioEffector", "StreamReader", "StreamWriter", "CodecConfig", "play_audio", ]
_base_ = './solo_r50_fpn_1x_coco.py' train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(1333, 800), (1333, 768), (1333, 736), (1333, 704), (1333, 672), (1333, 640)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 3x max_epochs = 36 train_cfg = dict(by_epoch=True, max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=36, by_epoch=True, milestones=[27, 33], gamma=0.1) ]
_base_ = './solo_r50_fpn_1x_coco.py' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(1333, 800), (1333, 768), (1333, 736), (1333, 704), (1333, 672), (1333, 640)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 3x max_epochs = 36 train_cfg = dict(by_epoch=True, max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=36, by_epoch=True, milestones=[27, 33], gamma=0.1) ]
from typing import Any, Dict, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class MetalReader(BaseReader): """ Metal reader. Args: api_key (str): Metal API key. client_id (str): Metal client ID. index_id (str): Metal index ID. """ def __init__(self, api_key: str, client_id: str, index_id: str): import_err_msg = ( "`metal_sdk` package not found, please run `pip install metal_sdk`" ) try: import metal_sdk # noqa except ImportError: raise ImportError(import_err_msg) from metal_sdk.metal import Metal """Initialize with parameters.""" self._api_key = api_key self._client_id = client_id self._index_id = index_id self.metal_client = Metal(api_key, client_id, index_id) def load_data( self, limit: int, query_embedding: Optional[List[float]] = None, filters: Optional[Dict[str, Any]] = None, separate_documents: bool = True, **query_kwargs: Any ) -> List[Document]: """ Load data from Metal. Args: query_embedding (Optional[List[float]]): Query embedding for search. limit (int): Number of results to return. filters (Optional[Dict[str, Any]]): Filters to apply to the search. separate_documents (Optional[bool]): Whether to return separate documents per retrieved entry. Defaults to True. **query_kwargs: Keyword arguments to pass to the search. Returns: List[Document]: A list of documents. """ payload = { "embedding": query_embedding, "filters": filters, } response = self.metal_client.search(payload, limit=limit, **query_kwargs) documents = [] for item in response["data"]: text = item["text"] or (item["metadata"] and item["metadata"]["text"]) documents.append(Document(text=text)) if not separate_documents: text_list = [doc.get_content() for doc in documents] text = "\n\n".join(text_list) documents = [Document(text=text)] return documents
from typing import Any, Dict, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class MetalReader(BaseReader): """Metal reader. Args: api_key (str): Metal API key. client_id (str): Metal client ID. index_id (str): Metal index ID. """ def __init__(self, api_key: str, client_id: str, index_id: str): import_err_msg = ( "`metal_sdk` package not found, please run `pip install metal_sdk`" ) try: import metal_sdk # noqa except ImportError: raise ImportError(import_err_msg) from metal_sdk.metal import Metal """Initialize with parameters.""" self._api_key = api_key self._client_id = client_id self._index_id = index_id self.metal_client = Metal(api_key, client_id, index_id) def load_data( self, limit: int, query_embedding: Optional[List[float]] = None, filters: Optional[Dict[str, Any]] = None, separate_documents: bool = True, **query_kwargs: Any ) -> List[Document]: """Load data from Metal. Args: query_embedding (Optional[List[float]]): Query embedding for search. limit (int): Number of results to return. filters (Optional[Dict[str, Any]]): Filters to apply to the search. separate_documents (Optional[bool]): Whether to return separate documents per retrieved entry. Defaults to True. **query_kwargs: Keyword arguments to pass to the search. Returns: List[Document]: A list of documents. """ payload = { "embedding": query_embedding, "filters": filters, } response = self.metal_client.search(payload, limit=limit, **query_kwargs) documents = [] for item in response["data"]: text = item["text"] or (item["metadata"] and item["metadata"]["text"]) documents.append(Document(text=text)) if not separate_documents: text_list = [doc.get_content() for doc in documents] text = "\n\n".join(text_list) documents = [Document(text=text)] return documents
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from docarray.computation.numpy_backend import NumpyCompBackend from docarray.computation.torch_backend import TorchCompBackend np_metrics = NumpyCompBackend.Metrics torch_metrics = TorchCompBackend.Metrics def test_cosine_sim_compare(): a = torch.rand(128) b = torch.rand(128) torch.testing.assert_close( torch_metrics.cosine_sim(a, b), torch.from_numpy(np_metrics.cosine_sim(a.numpy(), b.numpy())), ) a = torch.rand(10, 3) b = torch.rand(5, 3) torch.testing.assert_close( torch_metrics.cosine_sim(a, b), torch.from_numpy(np_metrics.cosine_sim(a.numpy(), b.numpy())), ) def test_euclidean_dist_compare(): a = torch.rand(128) b = torch.rand(128) torch.testing.assert_close( torch_metrics.euclidean_dist(a, b), torch.from_numpy(np_metrics.euclidean_dist(a.numpy(), b.numpy())).to( torch.float32 ), ) a = torch.rand(10, 3) b = torch.rand(5, 3) torch.testing.assert_close( torch_metrics.euclidean_dist(a, b), torch.from_numpy(np_metrics.euclidean_dist(a.numpy(), b.numpy())), ) def test_sqeuclidean_dist_compare(): a = torch.rand(128) b = torch.rand(128) torch.testing.assert_close( torch_metrics.sqeuclidean_dist(a, b), torch.from_numpy(np_metrics.sqeuclidean_dist(a.numpy(), b.numpy())).to( torch.float32 ), ) a = torch.rand(10, 3) b = torch.rand(5, 3) torch.testing.assert_close( torch_metrics.sqeuclidean_dist(a, b), torch.from_numpy(np_metrics.sqeuclidean_dist(a.numpy(), b.numpy())), )
import torch from docarray.computation.numpy_backend import NumpyCompBackend from docarray.computation.torch_backend import TorchCompBackend np_metrics = NumpyCompBackend.Metrics torch_metrics = TorchCompBackend.Metrics def test_cosine_sim_compare(): a = torch.rand(128) b = torch.rand(128) torch.testing.assert_close( torch_metrics.cosine_sim(a, b), torch.from_numpy(np_metrics.cosine_sim(a.numpy(), b.numpy())), ) a = torch.rand(10, 3) b = torch.rand(5, 3) torch.testing.assert_close( torch_metrics.cosine_sim(a, b), torch.from_numpy(np_metrics.cosine_sim(a.numpy(), b.numpy())), ) def test_euclidean_dist_compare(): a = torch.rand(128) b = torch.rand(128) torch.testing.assert_close( torch_metrics.euclidean_dist(a, b), torch.from_numpy(np_metrics.euclidean_dist(a.numpy(), b.numpy())).to( torch.float32 ), ) a = torch.rand(10, 3) b = torch.rand(5, 3) torch.testing.assert_close( torch_metrics.euclidean_dist(a, b), torch.from_numpy(np_metrics.euclidean_dist(a.numpy(), b.numpy())), ) def test_sqeuclidean_dist_compare(): a = torch.rand(128) b = torch.rand(128) torch.testing.assert_close( torch_metrics.sqeuclidean_dist(a, b), torch.from_numpy(np_metrics.sqeuclidean_dist(a.numpy(), b.numpy())).to( torch.float32 ), ) a = torch.rand(10, 3) b = torch.rand(5, 3) torch.testing.assert_close( torch_metrics.sqeuclidean_dist(a, b), torch.from_numpy(np_metrics.sqeuclidean_dist(a.numpy(), b.numpy())), )
import functools import time from threading import Thread import numpy as np import pytest from jina import Client, Document, Flow @pytest.mark.slow @pytest.mark.parametrize('protocol', ['websocket', 'http']) def test_gateway_concurrency(protocol, reraise): port = 12345 CONCURRENCY = 2 def _validate(req, start, status_codes, durations, index): end = time.time() durations[index] = end - start status_codes[index] = req.status.code def _request(status_codes, durations, index): with reraise: start = time.time() on_done = functools.partial( _validate, start=start, status_codes=status_codes, durations=durations, index=index, ) results = Client(port=port, protocol=protocol).index( inputs=(Document() for _ in range(256)), _size=16, return_responses=True ) assert len(results) > 0 for result in results: on_done(result) f = Flow(protocol=protocol, port=port).add(parallel=2) with f: threads = [] status_codes = [None] * CONCURRENCY durations = [None] * CONCURRENCY for i in range(CONCURRENCY): t = Thread(target=_request, args=(status_codes, durations, i)) threads.append(t) t.start() for t in threads: t.join() success = status_codes.count(0) failed = len(status_codes) - success print( f'clients: {len(durations)}\n' f'min roundtrip time: {np.min(durations)}\n' f'max roundtrip time: {np.max(durations)}\n' f'mean roundtrip time: {np.mean(durations)}\n' ) assert success >= 1 # In some slow environments, a certain degree of failed # requests will occur. Here we limit the degree of failed # requests. rate = failed / success assert rate < 0.1
import functools import time from threading import Thread import numpy as np import pytest from jina import Client, Document, Flow @pytest.mark.slow @pytest.mark.parametrize('protocol', ['websocket', 'http']) def test_gateway_concurrency(protocol, reraise): port = 12345 CONCURRENCY = 2 def _validate(req, start, status_codes, durations, index): end = time.time() durations[index] = end - start status_codes[index] = req.status.code def _request(status_codes, durations, index): with reraise: start = time.time() on_done = functools.partial( _validate, start=start, status_codes=status_codes, durations=durations, index=index, ) results = Client(port=port, protocol=protocol, return_responses=True).index( inputs=(Document() for _ in range(256)), _size=16, ) assert len(results) > 0 for result in results: on_done(result) f = Flow(protocol=protocol, port=port).add(parallel=2) with f: threads = [] status_codes = [None] * CONCURRENCY durations = [None] * CONCURRENCY for i in range(CONCURRENCY): t = Thread(target=_request, args=(status_codes, durations, i)) threads.append(t) t.start() for t in threads: t.join() success = status_codes.count(0) failed = len(status_codes) - success print( f'clients: {len(durations)}\n' f'min roundtrip time: {np.min(durations)}\n' f'max roundtrip time: {np.max(durations)}\n' f'mean roundtrip time: {np.mean(durations)}\n' ) assert success >= 1 # In some slow environments, a certain degree of failed # requests will occur. Here we limit the degree of failed # requests. rate = failed / success assert rate < 0.1
from enum import Enum from typing import Dict, Iterable import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer class TripletDistanceMetric(Enum): """The metric for the triplet loss""" COSINE = lambda x, y: 1 - F.cosine_similarity(x, y) EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2) MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1) class TripletLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ): """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. Args: model: SentenceTransformerModel distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], "negative": ["It's quite rainy, sadly.", "She walked to the store."], }) loss = losses.TripletLoss(model=model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(TripletLoss, self).__init__() self.model = model self.distance_metric = distance_metric self.triplet_margin = triplet_margin def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor): reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] rep_anchor, rep_pos, rep_neg = reps distance_pos = self.distance_metric(rep_anchor, rep_pos) distance_neg = self.distance_metric(rep_anchor, rep_neg) losses = F.relu(distance_pos - distance_neg + self.triplet_margin) return losses.mean() def get_config_dict(self): distance_metric_name = self.distance_metric.__name__ for name, value in vars(TripletDistanceMetric).items(): if value == self.distance_metric: distance_metric_name = "TripletDistanceMetric.{}".format(name) break return {"distance_metric": distance_metric_name, "triplet_margin": self.triplet_margin} @property def citation(self) -> str: return """ @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } """
import torch from torch import nn, Tensor from typing import Union, Tuple, List, Iterable, Dict import torch.nn.functional as F from enum import Enum from ..SentenceTransformer import SentenceTransformer class TripletDistanceMetric(Enum): """ The metric for the triplet loss """ COSINE = lambda x, y: 1 - F.cosine_similarity(x, y) EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2) MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1) class TripletLoss(nn.Module): """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0). Margin is an important hyperparameter and needs to be tuned respectively. For further details, see: https://en.wikipedia.org/wiki/Triplet_loss :param model: SentenceTransformerModel :param distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. :param triplet_margin: The negative should be at least this much further away from the anchor than the positive. Example:: from sentence_transformers import SentenceTransformer, SentencesDataset, LoggingHandler, losses from sentence_transformers.readers import InputExample model = SentenceTransformer('distilbert-base-nli-mean-tokens') train_examples = [InputExample(texts=['Anchor 1', 'Positive 1', 'Negative 1']), InputExample(texts=['Anchor 2', 'Positive 2', 'Negative 2'])] train_dataset = SentencesDataset(train_examples, model) train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=train_batch_size) train_loss = losses.TripletLoss(model=model) """ def __init__(self, model: SentenceTransformer, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5): super(TripletLoss, self).__init__() self.model = model self.distance_metric = distance_metric self.triplet_margin = triplet_margin def get_config_dict(self): distance_metric_name = self.distance_metric.__name__ for name, value in vars(TripletDistanceMetric).items(): if value == self.distance_metric: distance_metric_name = "TripletDistanceMetric.{}".format(name) break return {'distance_metric': distance_metric_name, 'triplet_margin': self.triplet_margin} def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor): reps = [self.model(sentence_feature)['sentence_embedding'] for sentence_feature in sentence_features] rep_anchor, rep_pos, rep_neg = reps distance_pos = self.distance_metric(rep_anchor, rep_pos) distance_neg = self.distance_metric(rep_anchor, rep_neg) losses = F.relu(distance_pos - distance_neg + self.triplet_margin) return losses.mean()
"""init.py.""" from llama_index.tools.chatgpt_plugin.base import ( ChatGPTPluginToolSpec, ) __all__ = ["ChatGPTPluginToolSpec"]
"""init.py.""" from llama_index.tools.chatgpt_plugin.base import ( ChatGPTPluginToolSpec, ) __all__ = ["ChatGPTPluginToolSpec"]
_base_ = './queryinst_r50_fpn_ms-480-800-3x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = './queryinst_r50_fpn_mstrain_480-800_3x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
""" This file is part of the private API. Please do not use directly these classes as they will be modified on future versions without warning. The classes should be accessed only via the transforms argument of Weights. """ from typing import List, Optional, Tuple, Union import PIL.Image import torch from torch import Tensor from . import functional as F, InterpolationMode __all__ = ["StereoMatching"] class StereoMatching(torch.nn.Module): def __init__( self, *, use_gray_scale: bool = False, resize_size: Optional[Tuple[int, ...]], mean: Tuple[float, ...] = (0.5, 0.5, 0.5), std: Tuple[float, ...] = (0.5, 0.5, 0.5), interpolation: InterpolationMode = InterpolationMode.BILINEAR, ) -> None: super().__init__() # pacify mypy self.resize_size: Union[None, List] if resize_size is not None: self.resize_size = list(resize_size) else: self.resize_size = None self.mean = list(mean) self.std = list(std) self.interpolation = interpolation self.use_gray_scale = use_gray_scale def forward(self, left_image: Tensor, right_image: Tensor) -> Tuple[Tensor, Tensor]: def _process_image(img: PIL.Image.Image) -> Tensor: if not isinstance(img, Tensor): img = F.pil_to_tensor(img) if self.resize_size is not None: # We hard-code antialias=False to preserve results after we changed # its default from None to True (see # https://github.com/pytorch/vision/pull/7160) # TODO: we could re-train the stereo models with antialias=True? img = F.resize(img, self.resize_size, interpolation=self.interpolation, antialias=False) if self.use_gray_scale is True: img = F.rgb_to_grayscale(img) img = F.convert_image_dtype(img, torch.float) img = F.normalize(img, mean=self.mean, std=self.std) img = img.contiguous() return img left_image = _process_image(left_image) right_image = _process_image(right_image) return left_image, right_image def __repr__(self) -> str: format_string = self.__class__.__name__ + "(" format_string += f"\n resize_size={self.resize_size}" format_string += f"\n mean={self.mean}" format_string += f"\n std={self.std}" format_string += f"\n interpolation={self.interpolation}" format_string += "\n)" return format_string def describe(self) -> str: return ( "Accepts ``PIL.Image``, batched ``(B, C, H, W)`` and single ``(C, H, W)`` image ``torch.Tensor`` objects. " f"The images are resized to ``resize_size={self.resize_size}`` using ``interpolation={self.interpolation}``. " f"Finally the values are first rescaled to ``[0.0, 1.0]`` and then normalized using ``mean={self.mean}`` and " f"``std={self.std}``." )
""" This file is part of the private API. Please do not use directly these classes as they will be modified on future versions without warning. The classes should be accessed only via the transforms argument of Weights. """ from typing import List, Optional, Tuple, Union import PIL.Image import torch from torch import Tensor from . import functional as F, InterpolationMode __all__ = ["StereoMatching"] class StereoMatching(torch.nn.Module): def __init__( self, *, use_gray_scale: bool = False, resize_size: Optional[Tuple[int, ...]], mean: Tuple[float, ...] = (0.5, 0.5, 0.5), std: Tuple[float, ...] = (0.5, 0.5, 0.5), interpolation: InterpolationMode = InterpolationMode.BILINEAR, ) -> None: super().__init__() # pacify mypy self.resize_size: Union[None, List] if resize_size is not None: self.resize_size = list(resize_size) else: self.resize_size = None self.mean = list(mean) self.std = list(std) self.interpolation = interpolation self.use_gray_scale = use_gray_scale def forward(self, left_image: Tensor, right_image: Tensor) -> Tuple[Tensor, Tensor]: def _process_image(img: PIL.Image.Image) -> Tensor: if self.resize_size is not None: img = F.resize(img, self.resize_size, interpolation=self.interpolation) if not isinstance(img, Tensor): img = F.pil_to_tensor(img) if self.use_gray_scale is True: img = F.rgb_to_grayscale(img) img = F.convert_image_dtype(img, torch.float) img = F.normalize(img, mean=self.mean, std=self.std) img = img.contiguous() return img left_image = _process_image(left_image) right_image = _process_image(right_image) return left_image, right_image def __repr__(self) -> str: format_string = self.__class__.__name__ + "(" format_string += f"\n resize_size={self.resize_size}" format_string += f"\n mean={self.mean}" format_string += f"\n std={self.std}" format_string += f"\n interpolation={self.interpolation}" format_string += "\n)" return format_string def describe(self) -> str: return ( "Accepts ``PIL.Image``, batched ``(B, C, H, W)`` and single ``(C, H, W)`` image ``torch.Tensor`` objects. " f"The images are resized to ``resize_size={self.resize_size}`` using ``interpolation={self.interpolation}``. " f"Finally the values are first rescaled to ``[0.0, 1.0]`` and then normalized using ``mean={self.mean}`` and " f"``std={self.std}``." )
import pytest from langchain_core.memory import BaseMemory from langchain.chains.conversation.memory import ( ConversationBufferMemory, ConversationBufferWindowMemory, ConversationSummaryMemory, ) from langchain.memory import ReadOnlySharedMemory, SimpleMemory from tests.unit_tests.llms.fake_llm import FakeLLM def test_simple_memory() -> None: """Test SimpleMemory.""" memory = SimpleMemory(memories={"baz": "foo"}) output = memory.load_memory_variables({}) assert output == {"baz": "foo"} assert memory.memory_variables == ["baz"] @pytest.mark.parametrize( "memory", [ ConversationBufferMemory(memory_key="baz"), ConversationSummaryMemory(llm=FakeLLM(), memory_key="baz"), ConversationBufferWindowMemory(memory_key="baz"), ], ) def test_readonly_memory(memory: BaseMemory) -> None: read_only_memory = ReadOnlySharedMemory(memory=memory) memory.save_context({"input": "bar"}, {"output": "foo"}) assert read_only_memory.load_memory_variables({}) == memory.load_memory_variables( {}, )
import pytest from langchain_core.memory import BaseMemory from langchain.chains.conversation.memory import ( ConversationBufferMemory, ConversationBufferWindowMemory, ConversationSummaryMemory, ) from langchain.memory import ReadOnlySharedMemory, SimpleMemory from tests.unit_tests.llms.fake_llm import FakeLLM def test_simple_memory() -> None: """Test SimpleMemory.""" memory = SimpleMemory(memories={"baz": "foo"}) output = memory.load_memory_variables({}) assert output == {"baz": "foo"} assert memory.memory_variables == ["baz"] @pytest.mark.parametrize( "memory", [ ConversationBufferMemory(memory_key="baz"), ConversationSummaryMemory(llm=FakeLLM(), memory_key="baz"), ConversationBufferWindowMemory(memory_key="baz"), ], ) def test_readonly_memory(memory: BaseMemory) -> None: read_only_memory = ReadOnlySharedMemory(memory=memory) memory.save_context({"input": "bar"}, {"output": "foo"}) assert read_only_memory.load_memory_variables({}) == memory.load_memory_variables( {} )
""" Manages process groups for distributed compilation in TorchDynamo. This module handles the initialization and management of process groups used for distributed compilation. Key features: - Lazy initialization of compilation process groups - Only creates groups when distributed mode is enabled and available - Integrates with compiler_collectives configuration setting - Provides a single global process group for compilation coordination The process group is created only when needed and if the distributed environment is properly initialized, making it safe to import and use this module even in non-distributed scenarios. """ from typing import Optional import torch.distributed as dist from . import config _COMPILE_PG: Optional[dist.ProcessGroup] = None _GUARD_PG: Optional[dist.ProcessGroup] = None def get_compile_pg() -> Optional[dist.ProcessGroup]: if ( config.enable_compiler_collectives and dist.is_available() and dist.is_initialized() ): global _COMPILE_PG if _COMPILE_PG is None: # , timeout=datetime.timedelta(seconds=2) _COMPILE_PG = dist.distributed_c10d._new_group_with_tag( pg_tag="pt2_compile_pg" ) return _COMPILE_PG return None # NB: Unlike get_compile_pg, this is only called when guard collectives were # explicitly requested def get_guard_pg() -> Optional[dist.ProcessGroup]: if dist.is_available() and dist.is_initialized(): global _GUARD_PG if _GUARD_PG is None: _GUARD_PG = dist.distributed_c10d._new_group_with_tag(pg_tag="pt2_guard_pg") return _GUARD_PG return None
""" Manages process groups for distributed compilation in TorchDynamo. This module handles the initialization and management of process groups used for distributed compilation. Key features: - Lazy initialization of compilation process groups - Only creates groups when distributed mode is enabled and available - Integrates with compiler_collectives configuration setting - Provides a single global process group for compilation coordination The process group is created only when needed and if the distributed environment is properly initialized, making it safe to import and use this module even in non-distributed scenarios. """ from typing import Optional import torch.distributed as dist from . import config _COMPILE_PG: Optional[dist.ProcessGroup] = None def get_compile_pg() -> Optional[dist.ProcessGroup]: if ( config.enable_compiler_collectives and dist.is_available() and dist.is_initialized() ): global _COMPILE_PG if _COMPILE_PG is None: # , timeout=datetime.timedelta(seconds=2) _COMPILE_PG = dist.distributed_c10d._new_group_with_tag( pg_tag="pt2_compile_pg" ) return _COMPILE_PG return None
import unittest import torch from mmengine.structures import PixelData from mmengine.testing import assert_allclose from mmdet.models.seg_heads import PanopticFPNHead from mmdet.structures import DetDataSample class TestPanopticFPNHead(unittest.TestCase): def test_init_weights(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=1, inner_channels=1) head.init_weights() assert_allclose(head.conv_logits.bias.data, torch.zeros_like(head.conv_logits.bias.data)) def test_loss(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=32, inner_channels=32, start_level=0, end_level=1) x = [torch.rand((2, 32, 8, 8)), torch.rand((2, 32, 4, 4))] data_sample1 = DetDataSample() data_sample1.gt_sem_seg = PixelData( sem_seg=torch.randint(0, 4, (1, 7, 8))) data_sample2 = DetDataSample() data_sample2.gt_sem_seg = PixelData( sem_seg=torch.randint(0, 4, (1, 7, 8))) batch_data_samples = [data_sample1, data_sample2] results = head.loss(x, batch_data_samples) self.assertIsInstance(results, dict) def test_predict(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=32, inner_channels=32, start_level=0, end_level=1) x = [torch.rand((2, 32, 8, 8)), torch.rand((2, 32, 4, 4))] img_meta1 = { 'batch_input_shape': (16, 16), 'img_shape': (14, 14), 'ori_shape': (12, 12), } img_meta2 = { 'batch_input_shape': (16, 16), 'img_shape': (16, 16), 'ori_shape': (16, 16), } batch_img_metas = [img_meta1, img_meta2] head.eval() with torch.no_grad(): seg_preds = head.predict(x, batch_img_metas, rescale=False) self.assertTupleEqual(seg_preds[0].shape[-2:], (16, 16)) self.assertTupleEqual(seg_preds[1].shape[-2:], (16, 16)) seg_preds = head.predict(x, batch_img_metas, rescale=True) self.assertTupleEqual(seg_preds[0].shape[-2:], (12, 12)) self.assertTupleEqual(seg_preds[1].shape[-2:], (16, 16))
import unittest import torch from mmengine.data import PixelData from mmengine.testing import assert_allclose from mmdet.models.seg_heads import PanopticFPNHead from mmdet.structures import DetDataSample class TestPanopticFPNHead(unittest.TestCase): def test_init_weights(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=1, inner_channels=1) head.init_weights() assert_allclose(head.conv_logits.bias.data, torch.zeros_like(head.conv_logits.bias.data)) def test_loss(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=32, inner_channels=32, start_level=0, end_level=1) x = [torch.rand((2, 32, 8, 8)), torch.rand((2, 32, 4, 4))] data_sample1 = DetDataSample() data_sample1.gt_sem_seg = PixelData( sem_seg=torch.randint(0, 4, (1, 7, 8))) data_sample2 = DetDataSample() data_sample2.gt_sem_seg = PixelData( sem_seg=torch.randint(0, 4, (1, 7, 8))) batch_data_samples = [data_sample1, data_sample2] results = head.loss(x, batch_data_samples) self.assertIsInstance(results, dict) def test_predict(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=32, inner_channels=32, start_level=0, end_level=1) x = [torch.rand((2, 32, 8, 8)), torch.rand((2, 32, 4, 4))] img_meta1 = { 'batch_input_shape': (16, 16), 'img_shape': (14, 14), 'ori_shape': (12, 12), } img_meta2 = { 'batch_input_shape': (16, 16), 'img_shape': (16, 16), 'ori_shape': (16, 16), } batch_img_metas = [img_meta1, img_meta2] head.eval() with torch.no_grad(): seg_preds = head.predict(x, batch_img_metas, rescale=False) self.assertTupleEqual(seg_preds[0].shape[-2:], (16, 16)) self.assertTupleEqual(seg_preds[1].shape[-2:], (16, 16)) seg_preds = head.predict(x, batch_img_metas, rescale=True) self.assertTupleEqual(seg_preds[0].shape[-2:], (12, 12)) self.assertTupleEqual(seg_preds[1].shape[-2:], (16, 16))
import io from abc import ABC from docarray.typing.tensor.abstract_tensor import AbstractTensor class AbstractImageTensor(AbstractTensor, ABC): def to_bytes(self, format: str = 'PNG') -> bytes: """ Convert image tensor to bytes. :param format: the image format use to store the image, can be 'PNG' , 'JPG' ... :return: bytes """ from PIL import Image if format == 'jpg': format = 'jpeg' # unify it to ISO standard tensor = self.get_comp_backend().to_numpy(self) mode = 'RGB' if tensor.ndim == 3 else 'L' pil_image = Image.fromarray(tensor, mode=mode) with io.BytesIO() as buffer: pil_image.save(buffer, format=format) img_byte_arr = buffer.getvalue() return img_byte_arr
import io from abc import ABC, abstractmethod from docarray.typing.tensor.abstract_tensor import AbstractTensor class AbstractImageTensor(AbstractTensor, ABC): @abstractmethod def to_bytes(self, format: str = 'PNG') -> bytes: """ Convert image tensor to bytes. :param format: the image format use to store the image, can be 'PNG' , 'JPG' ... :return: bytes """ from PIL import Image if format == 'jpg': format = 'jpeg' # unify it to ISO standard tensor = self.get_comp_backend().to_numpy(self) mode = 'RGB' if tensor.ndim == 3 else 'L' pil_image = Image.fromarray(tensor, mode=mode) with io.BytesIO() as buffer: pil_image.save(buffer, format=format) img_byte_arr = buffer.getvalue() return img_byte_arr
from typing import Dict, Set from fastapi import WebSocket from backend.data.execution import ( ExecutionEventType, GraphExecutionEvent, NodeExecutionEvent, ) from backend.server.model import WSMessage, WSMethod _EVENT_TYPE_TO_METHOD_MAP: dict[ExecutionEventType, WSMethod] = { ExecutionEventType.GRAPH_EXEC_UPDATE: WSMethod.GRAPH_EXECUTION_EVENT, ExecutionEventType.NODE_EXEC_UPDATE: WSMethod.NODE_EXECUTION_EVENT, } class ConnectionManager: def __init__(self): self.active_connections: Set[WebSocket] = set() self.subscriptions: Dict[str, Set[WebSocket]] = {} async def connect_socket(self, websocket: WebSocket): await websocket.accept() self.active_connections.add(websocket) def disconnect_socket(self, websocket: WebSocket): self.active_connections.remove(websocket) for subscribers in self.subscriptions.values(): subscribers.discard(websocket) async def subscribe_graph_exec( self, *, user_id: str, graph_exec_id: str, websocket: WebSocket ) -> str: key = _graph_exec_channel_key(user_id, graph_exec_id) if key not in self.subscriptions: self.subscriptions[key] = set() self.subscriptions[key].add(websocket) return key async def unsubscribe( self, *, user_id: str, graph_exec_id: str, websocket: WebSocket ) -> str | None: key = _graph_exec_channel_key(user_id, graph_exec_id) if key in self.subscriptions: self.subscriptions[key].discard(websocket) if not self.subscriptions[key]: del self.subscriptions[key] return key return None async def send_execution_update( self, exec_event: GraphExecutionEvent | NodeExecutionEvent ) -> int: graph_exec_id = ( exec_event.id if isinstance(exec_event, GraphExecutionEvent) else exec_event.graph_exec_id ) key = _graph_exec_channel_key(exec_event.user_id, graph_exec_id) n_sent = 0 if key in self.subscriptions: message = WSMessage( method=_EVENT_TYPE_TO_METHOD_MAP[exec_event.event_type], channel=key, data=exec_event.model_dump(), ).model_dump_json() for connection in self.subscriptions[key]: await connection.send_text(message) n_sent += 1 return n_sent def _graph_exec_channel_key(user_id: str, graph_exec_id: str) -> str: return f"{user_id}|graph_exec#{graph_exec_id}"
from typing import Dict, Set from fastapi import WebSocket from backend.data import execution from backend.server.model import Methods, WsMessage class ConnectionManager: def __init__(self): self.active_connections: Set[WebSocket] = set() self.subscriptions: Dict[str, Set[WebSocket]] = {} async def connect(self, websocket: WebSocket): await websocket.accept() self.active_connections.add(websocket) def disconnect(self, websocket: WebSocket): self.active_connections.remove(websocket) for subscribers in self.subscriptions.values(): subscribers.discard(websocket) async def subscribe( self, *, user_id: str, graph_id: str, graph_version: int, websocket: WebSocket ): key = f"{user_id}_{graph_id}_{graph_version}" if key not in self.subscriptions: self.subscriptions[key] = set() self.subscriptions[key].add(websocket) async def unsubscribe( self, *, user_id: str, graph_id: str, graph_version: int, websocket: WebSocket ): key = f"{user_id}_{graph_id}_{graph_version}" if key in self.subscriptions: self.subscriptions[key].discard(websocket) if not self.subscriptions[key]: del self.subscriptions[key] async def send_execution_result(self, result: execution.ExecutionResult): key = f"{result.user_id}_{result.graph_id}_{result.graph_version}" if key in self.subscriptions: message = WsMessage( method=Methods.EXECUTION_EVENT, channel=key, data=result.model_dump(), ).model_dump_json() for connection in self.subscriptions[key]: await connection.send_text(message)
from __future__ import annotations import os import pytest from sentence_transformers import SentenceTransformer from sentence_transformers.models import Pooling, Transformer from sentence_transformers.util import is_datasets_available from tests.utils import SafeTemporaryDirectory if is_datasets_available(): from datasets import DatasetDict, load_dataset @pytest.fixture() def stsb_bert_tiny_model() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") @pytest.fixture(scope="session") def stsb_bert_tiny_model_reused() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") @pytest.fixture() def stsb_bert_tiny_model_onnx() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-onnx") @pytest.fixture() def stsb_bert_tiny_model_openvino() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-openvino") @pytest.fixture() def paraphrase_distilroberta_base_v1_model() -> SentenceTransformer: return SentenceTransformer("paraphrase-distilroberta-base-v1") @pytest.fixture() def clip_vit_b_32_model() -> SentenceTransformer: return SentenceTransformer("clip-ViT-B-32") @pytest.fixture() def distilbert_base_uncased_model() -> SentenceTransformer: word_embedding_model = Transformer("distilbert-base-uncased") pooling_model = Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) return model @pytest.fixture(scope="session") def stsb_dataset_dict() -> DatasetDict: return load_dataset("sentence-transformers/stsb") @pytest.fixture() def cache_dir(): """ In the CI environment, we use a temporary directory as `cache_dir` to avoid keeping the downloaded models on disk after the test. """ if os.environ.get("CI", None): # Note: `ignore_cleanup_errors=True` is used to avoid NotADirectoryError in Windows on GitHub Actions. # See https://github.com/python/cpython/issues/107408, https://www.scivision.dev/python-tempfile-permission-error-windows/ with SafeTemporaryDirectory() as tmp_dir: yield tmp_dir else: yield None
from __future__ import annotations import os import pytest from sentence_transformers import CrossEncoder, SentenceTransformer from sentence_transformers.models import Pooling, Transformer from sentence_transformers.util import is_datasets_available from tests.utils import SafeTemporaryDirectory if is_datasets_available(): from datasets import DatasetDict, load_dataset @pytest.fixture() def stsb_bert_tiny_model() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") @pytest.fixture(scope="session") def stsb_bert_tiny_model_reused() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") @pytest.fixture() def stsb_bert_tiny_model_onnx() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-onnx") @pytest.fixture() def stsb_bert_tiny_model_openvino() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-openvino") @pytest.fixture() def paraphrase_distilroberta_base_v1_model() -> SentenceTransformer: return SentenceTransformer("paraphrase-distilroberta-base-v1") @pytest.fixture() def distilroberta_base_ce_model() -> CrossEncoder: return CrossEncoder("distilroberta-base", num_labels=1) @pytest.fixture() def clip_vit_b_32_model() -> SentenceTransformer: return SentenceTransformer("clip-ViT-B-32") @pytest.fixture() def distilbert_base_uncased_model() -> SentenceTransformer: word_embedding_model = Transformer("distilbert-base-uncased") pooling_model = Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) return model @pytest.fixture(scope="session") def stsb_dataset_dict() -> DatasetDict: return load_dataset("mteb/stsbenchmark-sts") @pytest.fixture() def cache_dir(): """ In the CI environment, we use a temporary directory as `cache_dir` to avoid keeping the downloaded models on disk after the test. """ if os.environ.get("CI", None): # Note: `ignore_cleanup_errors=True` is used to avoid NotADirectoryError in Windows on GitHub Actions. # See https://github.com/python/cpython/issues/107408, https://www.scivision.dev/python-tempfile-permission-error-windows/ with SafeTemporaryDirectory() as tmp_dir: yield tmp_dir else: yield None
from __future__ import annotations from typing import Any, Iterable import torch from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.util import fullname class CosineSimilarityLoss(nn.Module): def __init__( self, model: SentenceTransformer, loss_fct: nn.Module = nn.MSELoss(), cos_score_transformation: nn.Module = nn.Identity(), ) -> None: """ CosineSimilarityLoss expects that the InputExamples consists of two texts and a float label. It computes the vectors ``u = model(sentence_A)`` and ``v = model(sentence_B)`` and measures the cosine-similarity between the two. By default, it minimizes the following loss: ``||input_label - cos_score_transformation(cosine_sim(u,v))||_2``. Args: model: SentenceTransformer model loss_fct: Which pytorch loss function should be used to compare the ``cosine_similarity(u, v)`` with the input_label? By default, MSE is used: ``||input_label - cosine_sim(u, v)||_2`` cos_score_transformation: The cos_score_transformation function is applied on top of cosine_similarity. By default, the identify function is used (i.e. no change). References: - `Training Examples > Semantic Textual Similarity <../../examples/training/sts/README.html>`_ Requirements: 1. Sentence pairs with corresponding similarity scores in range `[0, 1]` Relations: - :class:`CoSENTLoss` seems to produce a stronger training signal than CosineSimilarityLoss. In our experiments, CoSENTLoss is recommended. - :class:`AnglELoss` is :class:`CoSENTLoss` with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. It also produces a stronger training signal than CosineSimilarityLoss. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.CosineSimilarityLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.model = model self.loss_fct = loss_fct self.cos_score_transformation = cos_score_transformation def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] output = self.cos_score_transformation(torch.cosine_similarity(embeddings[0], embeddings[1])) return self.loss_fct(output, labels.float().view(-1)) def get_config_dict(self) -> dict[str, Any]: return {"loss_fct": fullname(self.loss_fct)}
from __future__ import annotations from typing import Any, Iterable import torch from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.util import fullname class CosineSimilarityLoss(nn.Module): def __init__( self, model: SentenceTransformer, loss_fct: nn.Module = nn.MSELoss(), cos_score_transformation: nn.Module = nn.Identity(), ) -> None: """ CosineSimilarityLoss expects that the InputExamples consists of two texts and a float label. It computes the vectors ``u = model(sentence_A)`` and ``v = model(sentence_B)`` and measures the cosine-similarity between the two. By default, it minimizes the following loss: ``||input_label - cos_score_transformation(cosine_sim(u,v))||_2``. Args: model: SentenceTransformer model loss_fct: Which pytorch loss function should be used to compare the ``cosine_similarity(u, v)`` with the input_label? By default, MSE is used: ``||input_label - cosine_sim(u, v)||_2`` cos_score_transformation: The cos_score_transformation function is applied on top of cosine_similarity. By default, the identify function is used (i.e. no change). References: - `Training Examples > Semantic Textual Similarity <../../examples/training/sts/README.html>`_ Requirements: 1. Sentence pairs with corresponding similarity scores in range `[0, 1]` Relations: - :class:`CoSENTLoss` seems to produce a stronger training signal than CosineSimilarityLoss. In our experiments, CoSENTLoss is recommended. - :class:`AnglELoss` is :class:`CoSENTLoss` with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. It also produces a stronger training signal than CosineSimilarityLoss. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.CosineSimilarityLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(CosineSimilarityLoss, self).__init__() self.model = model self.loss_fct = loss_fct self.cos_score_transformation = cos_score_transformation def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] output = self.cos_score_transformation(torch.cosine_similarity(embeddings[0], embeddings[1])) return self.loss_fct(output, labels.float().view(-1)) def get_config_dict(self) -> dict[str, Any]: return {"loss_fct": fullname(self.loss_fct)}
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( rpn_head=dict( anchor_generator=dict(type='LegacyAnchorGenerator', center_offset=0.5), bbox_coder=dict(type='LegacyDeltaXYWHBBoxCoder'), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict( type='RoIAlign', output_size=7, sampling_ratio=2, aligned=False)), mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict( type='RoIAlign', output_size=14, sampling_ratio=2, aligned=False)), bbox_head=dict( bbox_coder=dict(type='LegacyDeltaXYWHBBoxCoder'), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn_proposal=dict(max_per_img=2000), rcnn=dict(assigner=dict(match_low_quality=True))))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( rpn_head=dict( anchor_generator=dict(type='LegacyAnchorGenerator', center_offset=0.5), bbox_coder=dict(type='LegacyDeltaXYWHBBoxCoder'), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict( type='RoIAlign', output_size=7, sampling_ratio=2, aligned=False)), mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict( type='RoIAlign', output_size=14, sampling_ratio=2, aligned=False)), bbox_head=dict( bbox_coder=dict(type='LegacyDeltaXYWHBBoxCoder'), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn_proposal=dict(max_per_img=2000), rcnn=dict(assigner=dict(match_low_quality=True))))
import os import sys import unittest ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(ROOT_DIR, "utils")) import create_dependency_mapping # noqa: E402 # This is equivalent to `all` in the current library state (as of 09/01/2025) MODEL_ROOT = os.path.join("src", "transformers", "models") FILES_TO_PARSE = [ os.path.join(MODEL_ROOT, "starcoder2", "modular_starcoder2.py"), os.path.join(MODEL_ROOT, "gemma", "modular_gemma.py"), os.path.join(MODEL_ROOT, "olmo2", "modular_olmo2.py"), os.path.join(MODEL_ROOT, "diffllama", "modular_diffllama.py"), os.path.join(MODEL_ROOT, "granite", "modular_granite.py"), os.path.join(MODEL_ROOT, "gemma2", "modular_gemma2.py"), os.path.join(MODEL_ROOT, "mixtral", "modular_mixtral.py"), os.path.join(MODEL_ROOT, "olmo", "modular_olmo.py"), os.path.join(MODEL_ROOT, "rt_detr", "modular_rt_detr.py"), os.path.join(MODEL_ROOT, "qwen2", "modular_qwen2.py"), os.path.join(MODEL_ROOT, "qwen3", "modular_qwen3.py"), os.path.join(MODEL_ROOT, "llava_next_video", "modular_llava_next_video.py"), os.path.join(MODEL_ROOT, "cohere2", "modular_cohere2.py"), os.path.join(MODEL_ROOT, "modernbert", "modular_modernbert.py"), os.path.join(MODEL_ROOT, "colpali", "modular_colpali.py"), os.path.join(MODEL_ROOT, "deformable_detr", "modular_deformable_detr.py"), os.path.join(MODEL_ROOT, "aria", "modular_aria.py"), os.path.join(MODEL_ROOT, "ijepa", "modular_ijepa.py"), os.path.join(MODEL_ROOT, "bamba", "modular_bamba.py"), os.path.join(MODEL_ROOT, "dinov2_with_registers", "modular_dinov2_with_registers.py"), os.path.join(MODEL_ROOT, "instructblipvideo", "modular_instructblipvideo.py"), os.path.join(MODEL_ROOT, "glm", "modular_glm.py"), os.path.join(MODEL_ROOT, "phi", "modular_phi.py"), os.path.join(MODEL_ROOT, "mistral", "modular_mistral.py"), os.path.join(MODEL_ROOT, "phi3", "modular_phi3.py"), os.path.join(MODEL_ROOT, "cohere", "modular_cohere.py"), os.path.join(MODEL_ROOT, "glm4", "modular_glm4.py"), ] def appear_after(model1: str, model2: str, priority_list: list[list[str]]) -> bool: """Return True if `model1` appear after `model2` in `priority_list`.""" model1_index, model2_index = None, None for i, level in enumerate(priority_list): if model1 in level: model1_index = i if model2 in level: model2_index = i if model1_index is None or model2_index is None: raise ValueError(f"Model {model1} or {model2} not found in {priority_list}") return model1_index > model2_index class ConversionOrderTest(unittest.TestCase): def test_conversion_order(self): # Find the order priority_list, _ = create_dependency_mapping.find_priority_list(FILES_TO_PARSE) # Extract just the model names (list of lists) model_priority_list = [[file.split("/")[-2] for file in level] for level in priority_list] # These are based on what the current library order should be (as of 09/01/2025) self.assertTrue(appear_after("mixtral", "mistral", model_priority_list)) self.assertTrue(appear_after("gemma2", "gemma", model_priority_list)) self.assertTrue(appear_after("starcoder2", "mistral", model_priority_list)) self.assertTrue(appear_after("olmo2", "olmo", model_priority_list)) self.assertTrue(appear_after("diffllama", "mistral", model_priority_list)) self.assertTrue(appear_after("cohere2", "gemma2", model_priority_list)) self.assertTrue(appear_after("cohere2", "cohere", model_priority_list)) self.assertTrue(appear_after("phi3", "mistral", model_priority_list)) self.assertTrue(appear_after("glm4", "glm", model_priority_list))
import os import sys import unittest ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(ROOT_DIR, "utils")) import create_dependency_mapping # noqa: E402 # This is equivalent to `all` in the current library state (as of 09/01/2025) MODEL_ROOT = os.path.join("src", "transformers", "models") FILES_TO_PARSE = [ os.path.join(MODEL_ROOT, "starcoder2", "modular_starcoder2.py"), os.path.join(MODEL_ROOT, "gemma", "modular_gemma.py"), os.path.join(MODEL_ROOT, "olmo2", "modular_olmo2.py"), os.path.join(MODEL_ROOT, "diffllama", "modular_diffllama.py"), os.path.join(MODEL_ROOT, "granite", "modular_granite.py"), os.path.join(MODEL_ROOT, "gemma2", "modular_gemma2.py"), os.path.join(MODEL_ROOT, "mixtral", "modular_mixtral.py"), os.path.join(MODEL_ROOT, "olmo", "modular_olmo.py"), os.path.join(MODEL_ROOT, "rt_detr", "modular_rt_detr.py"), os.path.join(MODEL_ROOT, "qwen2", "modular_qwen2.py"), os.path.join(MODEL_ROOT, "qwen3", "modular_qwen3.py"), os.path.join(MODEL_ROOT, "llava_next_video", "modular_llava_next_video.py"), os.path.join(MODEL_ROOT, "cohere2", "modular_cohere2.py"), os.path.join(MODEL_ROOT, "modernbert", "modular_modernbert.py"), os.path.join(MODEL_ROOT, "colpali", "modular_colpali.py"), os.path.join(MODEL_ROOT, "deformable_detr", "modular_deformable_detr.py"), os.path.join(MODEL_ROOT, "aria", "modular_aria.py"), os.path.join(MODEL_ROOT, "ijepa", "modular_ijepa.py"), os.path.join(MODEL_ROOT, "bamba", "modular_bamba.py"), os.path.join(MODEL_ROOT, "dinov2_with_registers", "modular_dinov2_with_registers.py"), os.path.join(MODEL_ROOT, "instructblipvideo", "modular_instructblipvideo.py"), os.path.join(MODEL_ROOT, "glm", "modular_glm.py"), os.path.join(MODEL_ROOT, "phi", "modular_phi.py"), os.path.join(MODEL_ROOT, "mistral", "modular_mistral.py"), os.path.join(MODEL_ROOT, "phi3", "modular_phi3.py"), os.path.join(MODEL_ROOT, "cohere", "modular_cohere.py"), ] def appear_after(model1: str, model2: str, priority_list: list[str]) -> bool: """Return True if `model1` appear after `model2` in `priority_list`.""" return priority_list.index(model1) > priority_list.index(model2) class ConversionOrderTest(unittest.TestCase): def test_conversion_order(self): # Find the order priority_list, _ = create_dependency_mapping.find_priority_list(FILES_TO_PARSE) # Extract just the model names model_priority_list = [file.rsplit("modular_")[-1].replace(".py", "") for file in priority_list] # These are based on what the current library order should be (as of 09/01/2025) self.assertTrue(appear_after("mixtral", "mistral", model_priority_list)) self.assertTrue(appear_after("gemma2", "gemma", model_priority_list)) self.assertTrue(appear_after("starcoder2", "mistral", model_priority_list)) self.assertTrue(appear_after("olmo2", "olmo", model_priority_list)) self.assertTrue(appear_after("diffllama", "mistral", model_priority_list)) self.assertTrue(appear_after("cohere2", "gemma2", model_priority_list)) self.assertTrue(appear_after("cohere2", "cohere", model_priority_list)) self.assertTrue(appear_after("phi3", "mistral", model_priority_list))
"""Integration test for SerpAPI.""" from langchain_community.utilities import SerpAPIWrapper def test_call() -> None: """Test that call gives the correct answer.""" chain = SerpAPIWrapper() output = chain.run("What was Obama's first name?") assert output == "Barack Hussein Obama II"
"""Integration test for SerpAPI.""" from langchain_community.utilities import SerpAPIWrapper def test_call() -> None: """Test that call gives the correct answer.""" chain = SerpAPIWrapper() # type: ignore[call-arg] output = chain.run("What was Obama's first name?") assert output == "Barack Hussein Obama II"
from typing import Dict, List, Optional, Callable from jina.importer import ImportExtensions from jina.types.request.data import DataRequest from jina import DocumentArray from jina._docarray import docarray_v2 if docarray_v2: from docarray import DocList def get_fastapi_app( request_models_map: Dict, caller: Callable, **kwargs ): """ Get the app from FastAPI as the REST interface. :param request_models_map: Map describing the endpoints and its Pydantic models :param caller: Callable to be handled by the endpoints of the returned FastAPI app :param kwargs: Extra kwargs to make it compatible with other methods :return: fastapi app """ with ImportExtensions(required=True): from fastapi import FastAPI, Response, HTTPException import pydantic from jina.proto import jina_pb2 app = FastAPI() def add_route(endpoint_path, input_model, output_model, input_doc_list_model=None, output_doc_list_model=None): app_kwargs = dict(path=f'/{endpoint_path.strip("/")}', methods=['POST'], summary=f'Endpoint {endpoint_path}', response_model=output_model, ) if docarray_v2: from docarray.base_doc.docarray_response import DocArrayResponse app_kwargs['response_class'] = DocArrayResponse @app.api_route( **app_kwargs ) async def post(body: input_model, response: Response): req = DataRequest() if not docarray_v2: req.data.docs = DocumentArray.from_pydantic_model(body.data) else: req.data.docs = DocList[input_doc_list_model](body.data) req.parameters = body.parameters req.header.exec_endpoint = endpoint_path resp = await caller(req) status = resp.header.status if status.code == jina_pb2.StatusProto.ERROR: raise HTTPException(status_code=499, detail=status.description) else: if not docarray_v2: docs_response = resp.docs.to_dict() else: docs_response = resp.docs._data ret = output_model(data=docs_response, parameters=resp.parameters) return ret for endpoint, input_output_map in request_models_map.items(): if endpoint != '_jina_dry_run_': input_doc_model = input_output_map['input']['model'] output_doc_model = input_output_map['output']['model'] endpoint_input_model = pydantic.create_model( f'{endpoint.strip("/")}_input_model', data=(List[input_doc_model], []), parameters=(Optional[Dict], None), __config__=input_doc_model.__config__ ) endpoint_output_model = pydantic.create_model( f'{endpoint.strip("/")}_output_model', data=(List[output_doc_model], []), parameters=(Optional[Dict], None), __config__=output_doc_model.__config__ ) add_route(endpoint, input_model=endpoint_input_model, output_model=endpoint_output_model, input_doc_list_model=input_doc_model, output_doc_list_model=output_doc_model) from jina.serve.runtimes.gateway.health_model import JinaHealthModel @app.get( path='/', summary='Get the health of Jina Executor service', response_model=JinaHealthModel, ) async def _executor_health(): """ Get the health of this Gateway service. .. # noqa: DAR201 """ return {} return app
from typing import Dict, List, Optional, Callable from jina.importer import ImportExtensions from jina.types.request.data import DataRequest from jina import DocumentArray from jina._docarray import docarray_v2 if docarray_v2: from docarray import DocList def get_fastapi_app( request_models_map: Dict, caller: Callable, **kwargs ): """ Get the app from FastAPI as the REST interface. :param request_models_map: Map describing the endpoints and its Pydantic models :param caller: Callable to be handled by the endpoints of the returned FastAPI app :param kwargs: Extra kwargs to make it compatible with other methods :return: fastapi app """ with ImportExtensions(required=True): from fastapi import FastAPI, Response, HTTPException import pydantic from jina.proto import jina_pb2 app = FastAPI() def add_route(endpoint_path, input_model, output_model, input_doc_list_model=None, output_doc_list_model=None): @app.api_route( path=f'/{endpoint_path.strip("/")}', methods=['POST'], summary=f'Endpoint {endpoint_path}', response_model=output_model ) async def post(body: input_model, response: Response): req = DataRequest() if not docarray_v2: req.data.docs = DocumentArray.from_pydantic_model(body.data) else: req.data.docs = DocList[input_doc_list_model](body.data) req.parameters = body.parameters req.header.exec_endpoint = endpoint_path resp = await caller(req) status = resp.header.status if status.code == jina_pb2.StatusProto.ERROR: raise HTTPException(status_code=499, detail=status.description) else: if not docarray_v2: docs_response = resp.docs.to_dict() else: docs_response = resp.docs._data return output_model(data=docs_response, parameters=resp.parameters) for endpoint, input_output_map in request_models_map.items(): if endpoint != '_jina_dry_run_': input_doc_model = input_output_map['input']['model'] output_doc_model = input_output_map['output']['model'] endpoint_input_model = pydantic.create_model( f'{endpoint.strip("/")}_input_model', data=(List[input_doc_model], []), parameters=(Optional[Dict], None) ) endpoint_output_model = pydantic.create_model( f'{endpoint.strip("/")}_output_model', data=(List[output_doc_model], []), parameters=(Optional[Dict], None) ) add_route(endpoint, input_model=endpoint_input_model, output_model=endpoint_output_model, input_doc_list_model=input_doc_model, output_doc_list_model=output_doc_model) from jina.serve.runtimes.gateway.health_model import JinaHealthModel @app.get( path='/', summary='Get the health of Jina Executor service', response_model=JinaHealthModel, ) async def _executor_health(): """ Get the health of this Gateway service. .. # noqa: DAR201 """ return {} return app
# mypy: allow-untyped-defs import torch def is_available(): r"""Return whether PyTorch is built with MKL support.""" return torch._C.has_mkl VERBOSE_OFF = 0 VERBOSE_ON = 1 class verbose: """ On-demand oneMKL verbosing functionality. To make it easier to debug performance issues, oneMKL can dump verbose messages containing execution information like duration while executing the kernel. The verbosing functionality can be invoked via an environment variable named `MKL_VERBOSE`. However, this methodology dumps messages in all steps. Those are a large amount of verbose messages. Moreover, for investigating the performance issues, generally taking verbose messages for one single iteration is enough. This on-demand verbosing functionality makes it possible to control scope for verbose message dumping. In the following example, verbose messages will be dumped out for the second inference only. .. highlight:: python .. code-block:: python import torch model(data) with torch.backends.mkl.verbose(torch.backends.mkl.VERBOSE_ON): model(data) Args: level: Verbose level - ``VERBOSE_OFF``: Disable verbosing - ``VERBOSE_ON``: Enable verbosing """ def __init__(self, enable): self.enable = enable def __enter__(self): if self.enable == VERBOSE_OFF: return st = torch._C._verbose.mkl_set_verbose(self.enable) assert st, ( "Failed to set MKL into verbose mode. Please consider to disable this verbose scope." ) return self def __exit__(self, exc_type, exc_val, exc_tb): torch._C._verbose.mkl_set_verbose(VERBOSE_OFF) return False
# mypy: allow-untyped-defs import torch def is_available(): r"""Return whether PyTorch is built with MKL support.""" return torch._C.has_mkl VERBOSE_OFF = 0 VERBOSE_ON = 1 class verbose: """ On-demand oneMKL verbosing functionality. To make it easier to debug performance issues, oneMKL can dump verbose messages containing execution information like duration while executing the kernel. The verbosing functionality can be invoked via an environment variable named `MKL_VERBOSE`. However, this methodology dumps messages in all steps. Those are a large amount of verbose messages. Moreover, for investigating the performance issues, generally taking verbose messages for one single iteration is enough. This on-demand verbosing functionality makes it possible to control scope for verbose message dumping. In the following example, verbose messages will be dumped out for the second inference only. .. highlight:: python .. code-block:: python import torch model(data) with torch.backends.mkl.verbose(torch.backends.mkl.VERBOSE_ON): model(data) Args: level: Verbose level - ``VERBOSE_OFF``: Disable verbosing - ``VERBOSE_ON``: Enable verbosing """ def __init__(self, enable): self.enable = enable def __enter__(self): if self.enable == VERBOSE_OFF: return st = torch._C._verbose.mkl_set_verbose(self.enable) assert ( st ), "Failed to set MKL into verbose mode. Please consider to disable this verbose scope." return self def __exit__(self, exc_type, exc_val, exc_tb): torch._C._verbose.mkl_set_verbose(VERBOSE_OFF) return False
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import pytest from jina import Document, DocumentArray, Flow from laser_encoder import LaserEncoder def data_generator(num_docs): for i in range(num_docs): doc = Document(text='it is a good day! the dog sits on the floor.') yield doc @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( ['jina', 'executor', f'--uses=docker://{build_docker_image}'], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:cuda', ], timeout=30, check=True, ) _EMBEDDING_DIM = 1024 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=LaserEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import pytest from jina import Document, DocumentArray, Flow from laser_encoder import LaserEncoder _EMBEDDING_DIM = 1024 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=LaserEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, )
_base_ = '../common/lsj-200e_coco-detection.py' image_size = (1024, 1024) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] model = dict( type='CenterNet', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5, init_cfg=dict(type='Caffe2Xavier', layer='Conv2d'), relu_before_extra_convs=True), bbox_head=dict( type='CenterNetUpdateHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], loss_cls=dict( type='GaussianFocalLoss', pos_weight=0.25, neg_weight=0.75, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), ), train_cfg=None, test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) train_dataloader = dict(batch_size=8, num_workers=4) # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', optimizer=dict( type='SGD', lr=0.01 * 4, momentum=0.9, weight_decay=0.00004), paramwise_cfg=dict(norm_decay_mult=0.)) param_scheduler = [ dict( type='LinearLR', start_factor=0.00025, by_epoch=False, begin=0, end=4000), dict( type='MultiStepLR', begin=0, end=25, by_epoch=True, milestones=[22, 24], gamma=0.1) ] # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = '../common/lsj_200e_coco_detection.py' image_size = (1024, 1024) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] model = dict( type='CenterNet', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5, init_cfg=dict(type='Caffe2Xavier', layer='Conv2d'), relu_before_extra_convs=True), bbox_head=dict( type='CenterNetUpdateHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], loss_cls=dict( type='GaussianFocalLoss', pos_weight=0.25, neg_weight=0.75, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), ), train_cfg=None, test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) train_dataloader = dict(batch_size=8, num_workers=4) # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', optimizer=dict( type='SGD', lr=0.01 * 4, momentum=0.9, weight_decay=0.00004), paramwise_cfg=dict(norm_decay_mult=0.)) param_scheduler = [ dict( type='LinearLR', start_factor=0.00025, by_epoch=False, begin=0, end=4000), dict( type='MultiStepLR', begin=0, end=25, by_epoch=True, milestones=[22, 24], gamma=0.1) ] # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
from jina.parsers.helper import add_arg_group def mixin_head_parser(parser): """Mixing in arguments required by head pods and runtimes into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Head') gp.add_argument( '--compression', choices=['NoCompression', 'Deflate', 'Gzip'], help='The compression mechanism used when sending requests from the Head to the WorkerRuntimes. For more details, ' 'check https://grpc.github.io/grpc/python/grpc.html#compression.', ) gp.add_argument( '--uses-before-address', type=str, help='The address of the uses-before runtime', ) gp.add_argument( '--uses-after-address', type=str, help='The address of the uses-before runtime', ) gp.add_argument( '--connection-list', type=str, help='dictionary JSON with a list of connections to configure', ) gp.add_argument( '--disable-reduce', action='store_true', default=False, help='Disable the built-in reduce mechanism, set this if the reduction is to be handled by the Executor connected to this Head', ) gp.add_argument( '--timeout-send', type=int, default=None, help='The timeout in milliseconds used when sending data requests to Executors, -1 means no timeout, disabled by default', )
import argparse from jina.parsers.helper import add_arg_group def mixin_head_parser(parser): """Mixing in arguments required by head pods and runtimes into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Head') gp.add_argument( '--compression', choices=['NoCompression', 'Deflate', 'Gzip'], help='The compression mechanism used when sending requests from the Head to the WorkerRuntimes. For more details, ' 'check https://grpc.github.io/grpc/python/grpc.html#compression.', ) gp.add_argument( '--uses-before-address', type=str, help='The address of the uses-before runtime', ) gp.add_argument( '--uses-after-address', type=str, help='The address of the uses-before runtime', ) gp.add_argument( '--connection-list', type=str, help='dictionary JSON with a list of connections to configure', ) gp.add_argument( '--disable-reduce', action='store_true', default=False, help='Disable the built-in reduce mechanism, set this if the reduction is to be handled by the Executor connected to this Head', ) gp.add_argument( '--timeout-send', type=int, default=None, help='The timeout in milliseconds used when sending data requests to Executors, -1 means no timeout, disabled by default', )
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from docarray import BaseDoc, DocList def test_instance_and_equivalence(): class MyDoc(BaseDoc): text: str docs = DocList[MyDoc]([MyDoc(text='hello')]) assert issubclass(DocList[MyDoc], DocList[MyDoc]) assert issubclass(docs.__class__, DocList[MyDoc]) assert isinstance(docs, DocList[MyDoc]) def test_subclassing(): class MyDoc(BaseDoc): text: str class MyDocList(DocList[MyDoc]): pass docs = MyDocList([MyDoc(text='hello')]) assert issubclass(MyDocList, DocList[MyDoc]) assert issubclass(docs.__class__, DocList[MyDoc]) assert isinstance(docs, MyDocList) assert isinstance(docs, DocList[MyDoc]) assert issubclass(MyDoc, BaseDoc) assert not issubclass(DocList[MyDoc], DocList[BaseDoc]) assert not issubclass(MyDocList, DocList[BaseDoc])
from docarray import BaseDoc, DocList def test_instance_and_equivalence(): class MyDoc(BaseDoc): text: str docs = DocList[MyDoc]([MyDoc(text='hello')]) assert issubclass(DocList[MyDoc], DocList[MyDoc]) assert issubclass(docs.__class__, DocList[MyDoc]) assert isinstance(docs, DocList[MyDoc]) def test_subclassing(): class MyDoc(BaseDoc): text: str class MyDocList(DocList[MyDoc]): pass docs = MyDocList([MyDoc(text='hello')]) assert issubclass(MyDocList, DocList[MyDoc]) assert issubclass(docs.__class__, DocList[MyDoc]) assert isinstance(docs, MyDocList) assert isinstance(docs, DocList[MyDoc]) assert issubclass(MyDoc, BaseDoc) assert not issubclass(DocList[MyDoc], DocList[BaseDoc]) assert not issubclass(MyDocList, DocList[BaseDoc])
import pytest import torchaudio from torchaudio.pipelines import ( HUBERT_ASR_LARGE, HUBERT_ASR_XLARGE, HUBERT_BASE, HUBERT_LARGE, HUBERT_XLARGE, VOXPOPULI_ASR_BASE_10K_DE, VOXPOPULI_ASR_BASE_10K_EN, VOXPOPULI_ASR_BASE_10K_ES, VOXPOPULI_ASR_BASE_10K_FR, VOXPOPULI_ASR_BASE_10K_IT, WAV2VEC2_ASR_BASE_100H, WAV2VEC2_ASR_BASE_10M, WAV2VEC2_ASR_BASE_960H, WAV2VEC2_ASR_LARGE_100H, WAV2VEC2_ASR_LARGE_10M, WAV2VEC2_ASR_LARGE_960H, WAV2VEC2_ASR_LARGE_LV60K_100H, WAV2VEC2_ASR_LARGE_LV60K_10M, WAV2VEC2_ASR_LARGE_LV60K_960H, WAV2VEC2_BASE, WAV2VEC2_LARGE, WAV2VEC2_LARGE_LV60K, WAV2VEC2_XLSR53, ) @pytest.mark.parametrize( "bundle", [ WAV2VEC2_BASE, WAV2VEC2_LARGE, WAV2VEC2_LARGE_LV60K, WAV2VEC2_XLSR53, HUBERT_BASE, HUBERT_LARGE, HUBERT_XLARGE, ], ) def test_pretraining_models(bundle): """Smoke test of downloading weights for pretraining models""" bundle.get_model() @pytest.mark.parametrize( "bundle,lang,expected", [ (WAV2VEC2_ASR_BASE_10M, "en", "I|HAD|THAT|CURIYOSSITY|BESID|ME|AT|THIS|MOMENT|"), (WAV2VEC2_ASR_BASE_100H, "en", "I|HAD|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"), (WAV2VEC2_ASR_BASE_960H, "en", "I|HAD|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"), (WAV2VEC2_ASR_LARGE_10M, "en", "I|HAD|THAT|CURIOUSITY|BESIDE|ME|AT|THIS|MOMENT|"), (WAV2VEC2_ASR_LARGE_100H, "en", "I|HAD|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"), (WAV2VEC2_ASR_LARGE_960H, "en", "I|HAD|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"), (WAV2VEC2_ASR_LARGE_LV60K_10M, "en", "I|HAD|THAT|CURIOUSSITY|BESID|ME|AT|THISS|MOMENT|"), (WAV2VEC2_ASR_LARGE_LV60K_100H, "en", "I|HAVE|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"), (WAV2VEC2_ASR_LARGE_LV60K_960H, "en", "I|HAVE|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"), (HUBERT_ASR_LARGE, "en", "I|HAVE|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"), (HUBERT_ASR_XLARGE, "en", "I|HAVE|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"), ( VOXPOPULI_ASR_BASE_10K_EN, "en2", "i|hope|that|we|will|see|a|ddrasstic|decrease|of|funding|for|the|failed|eu|project|and|that|more|money|will|come|back|to|the|taxpayers", # noqa: E501 ), ( VOXPOPULI_ASR_BASE_10K_ES, "es", "la|primera|que|es|imprescindible|pensar|a|pequeña|a|escala|para|implicar|y|complementar|así|la|actuación|global", # noqa: E501 ), (VOXPOPULI_ASR_BASE_10K_DE, "de", "dabei|spielt|auch|eine|sorgfältige|berichterstattung|eine|wichtige|rolle"), ( VOXPOPULI_ASR_BASE_10K_FR, "fr", "la|commission|va|faire|des|propositions|sur|ce|sujet|comment|mettre|en|place|cette|capacité|fiscale|et|le|conseil|européen|y|reviendra|sour|les|sujets|au|moins|de|mars", # noqa: E501 ), ( VOXPOPULI_ASR_BASE_10K_IT, "it", "credo|che|illatino|non|sia|contemplato|tra|le|traduzioni|e|quindi|mi|attengo|allitaliano", ), ], ) def test_finetune_asr_model( bundle, lang, expected, sample_speech, ctc_decoder, ): """Smoke test of downloading weights for fine-tuning models and simple transcription""" model = bundle.get_model().eval() waveform, sample_rate = torchaudio.load(sample_speech) emission, _ = model(waveform) decoder = ctc_decoder(bundle.get_labels()) result = decoder(emission[0]) assert result == expected
import pytest import torchaudio from torchaudio.pipelines import ( WAV2VEC2_BASE, WAV2VEC2_LARGE, WAV2VEC2_LARGE_LV60K, WAV2VEC2_ASR_BASE_10M, WAV2VEC2_ASR_BASE_100H, WAV2VEC2_ASR_BASE_960H, WAV2VEC2_ASR_LARGE_10M, WAV2VEC2_ASR_LARGE_100H, WAV2VEC2_ASR_LARGE_960H, WAV2VEC2_ASR_LARGE_LV60K_10M, WAV2VEC2_ASR_LARGE_LV60K_100H, WAV2VEC2_ASR_LARGE_LV60K_960H, WAV2VEC2_XLSR53, HUBERT_BASE, HUBERT_LARGE, HUBERT_XLARGE, HUBERT_ASR_LARGE, HUBERT_ASR_XLARGE, VOXPOPULI_ASR_BASE_10K_EN, VOXPOPULI_ASR_BASE_10K_ES, VOXPOPULI_ASR_BASE_10K_DE, VOXPOPULI_ASR_BASE_10K_FR, VOXPOPULI_ASR_BASE_10K_IT, ) @pytest.mark.parametrize( "bundle", [ WAV2VEC2_BASE, WAV2VEC2_LARGE, WAV2VEC2_LARGE_LV60K, WAV2VEC2_XLSR53, HUBERT_BASE, HUBERT_LARGE, HUBERT_XLARGE, ], ) def test_pretraining_models(bundle): """Smoke test of downloading weights for pretraining models""" bundle.get_model() @pytest.mark.parametrize( "bundle,lang,expected", [ (WAV2VEC2_ASR_BASE_10M, "en", "I|HAD|THAT|CURIYOSSITY|BESID|ME|AT|THIS|MOMENT|"), (WAV2VEC2_ASR_BASE_100H, "en", "I|HAD|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"), (WAV2VEC2_ASR_BASE_960H, "en", "I|HAD|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"), (WAV2VEC2_ASR_LARGE_10M, "en", "I|HAD|THAT|CURIOUSITY|BESIDE|ME|AT|THIS|MOMENT|"), (WAV2VEC2_ASR_LARGE_100H, "en", "I|HAD|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"), (WAV2VEC2_ASR_LARGE_960H, "en", "I|HAD|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"), (WAV2VEC2_ASR_LARGE_LV60K_10M, "en", "I|HAD|THAT|CURIOUSSITY|BESID|ME|AT|THISS|MOMENT|"), (WAV2VEC2_ASR_LARGE_LV60K_100H, "en", "I|HAVE|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"), (WAV2VEC2_ASR_LARGE_LV60K_960H, "en", "I|HAVE|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"), (HUBERT_ASR_LARGE, "en", "I|HAVE|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"), (HUBERT_ASR_XLARGE, "en", "I|HAVE|THAT|CURIOSITY|BESIDE|ME|AT|THIS|MOMENT|"), ( VOXPOPULI_ASR_BASE_10K_EN, "en2", "i|hope|that|we|will|see|a|ddrasstic|decrease|of|funding|for|the|failed|eu|project|and|that|more|money|will|come|back|to|the|taxpayers", # noqa: E501 ), ( VOXPOPULI_ASR_BASE_10K_ES, "es", "la|primera|que|es|imprescindible|pensar|a|pequeña|a|escala|para|implicar|y|complementar|así|la|actuación|global", # noqa: E501 ), (VOXPOPULI_ASR_BASE_10K_DE, "de", "dabei|spielt|auch|eine|sorgfältige|berichterstattung|eine|wichtige|rolle"), ( VOXPOPULI_ASR_BASE_10K_FR, "fr", "la|commission|va|faire|des|propositions|sur|ce|sujet|comment|mettre|en|place|cette|capacité|fiscale|et|le|conseil|européen|y|reviendra|sour|les|sujets|au|moins|de|mars", # noqa: E501 ), ( VOXPOPULI_ASR_BASE_10K_IT, "it", "credo|che|illatino|non|sia|contemplato|tra|le|traduzioni|e|quindi|mi|attengo|allitaliano", ), ], ) def test_finetune_asr_model( bundle, lang, expected, sample_speech, ctc_decoder, ): """Smoke test of downloading weights for fine-tuning models and simple transcription""" model = bundle.get_model().eval() waveform, sample_rate = torchaudio.load(sample_speech) emission, _ = model(waveform) decoder = ctc_decoder(bundle.get_labels()) result = decoder(emission[0]) assert result == expected
_base_ = 'fcos_r50_caffe_fpn_gn-head_1x_coco.py' # model setting model = dict( data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), bbox_head=dict( norm_on_bbox=True, centerness_on_reg=True, dcn_on_last_conv=False, center_sampling=True, conv_bias=True, loss_bbox=dict(type='GIoULoss', loss_weight=1.0)), # training and testing settings test_cfg=dict(nms=dict(type='nms', iou_threshold=0.6))) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3.0, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # optimizer optim_wrapper = dict(clip_grad=None)
_base_ = 'fcos_r50_caffe_fpn_gn-head_1x_coco.py' # model setting preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) model = dict( preprocess_cfg=preprocess_cfg, backbone=dict( init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), bbox_head=dict( norm_on_bbox=True, centerness_on_reg=True, dcn_on_last_conv=False, center_sampling=True, conv_bias=True, loss_bbox=dict(type='GIoULoss', loss_weight=1.0)), # training and testing settings test_cfg=dict(nms=dict(type='nms', iou_threshold=0.6))) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3.0, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # optimizer default_hooks = dict(optimizer=dict(type='OptimizerHook', grad_clip=None))
from __future__ import annotations from collections.abc import Iterable import torch import torch.nn as nn from sentence_transformers.sparse_encoder.losses.ReconstructionLoss import ReconstructionLoss from sentence_transformers.sparse_encoder.losses.SparseMultipleNegativesRankingLoss import ( SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class CSRLoss(nn.Module): """ CSR Loss module that combines Reconstruction Loss and Sparse Multiple Negatives Ranking Loss. This module computes the combined loss according to the formula: L_CSR = L_recon + γ * L_MRL where: - L_recon = L(k) + L(4k)/8 + β*L_aux - L_MRL is the Multiple Negatives Ranking Loss """ def __init__( self, model: SparseEncoder, beta: float = 0.1, gamma: float = 1.0, scale: float = 20.0, ): super().__init__() self.model = model self.beta = beta self.gamma = gamma self.scale = scale # Initialize the component losses self.reconstruction_loss = ReconstructionLoss(model, beta) self.ranking_loss = SparseMultipleNegativesRankingLoss(model, scale) def forward( self, sentence_features: Iterable[dict[str, torch.Tensor]], labels: torch.Tensor = None, ) -> dict[str, torch.Tensor]: """ Forward pass of the CSR Loss module. This method is used when the loss is computed as part of the model's forward pass. Args: sentence_features: Iterable of dictionaries containing sentence embeddings labels: Optional tensor of labels (not used in this implementation) Returns: Dictionary containing the total loss and individual loss components """ # Compute embeddings using the model outputs = [self.model(sentence_feature) for sentence_feature in sentence_features] sparse_embeddings = [output["sparse_embedding"] for output in outputs] recon_loss = self.reconstruction_loss.compute_loss_from_embeddings(outputs) ranking_loss = self.ranking_loss.compute_loss_from_embeddings(sparse_embeddings) # Compute total loss: L_CSR = L_recon + γ * L_MRL total_loss = recon_loss + self.gamma * ranking_loss return total_loss def get_config_dict(self): """ Get the configuration dictionary. Returns: Dictionary containing the configuration parameters """ return { "beta": self.beta, "gamma": self.gamma, "scale": self.scale, }
from __future__ import annotations from collections.abc import Iterable import torch import torch.nn as nn from sentence_transformers.sparse_encoder.losses.ReconstructionLoss import ReconstructionLoss from sentence_transformers.sparse_encoder.losses.SparseMultipleNegativesRankingLoss import ( SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class CSRLoss(nn.Module): """ CSR Loss module that combines Reconstruction Loss and Sparse Multiple Negatives Ranking Loss. This module computes the combined loss according to the formula: L_CSR = L_recon + γ * L_MRL where: - L_recon = L(k) + L(4k)/8 + β*L_aux - L_MRL is the Multiple Negatives Ranking Loss """ def __init__( self, model: SparseEncoder, beta: float = 1 / 32, gamma: float = 0.1, scale: float = 20.0, ): super().__init__() self.model = model self.beta = beta self.gamma = gamma self.scale = scale # Initialize the component losses self.reconstruction_loss = ReconstructionLoss(model, beta) self.ranking_loss = SparseMultipleNegativesRankingLoss(model, scale) def forward( self, sentence_features: Iterable[dict[str, torch.Tensor]], labels: torch.Tensor = None, ) -> dict[str, torch.Tensor]: """ Forward pass of the CSR Loss module. This method is used when the loss is computed as part of the model's forward pass. Args: sentence_features: Iterable of dictionaries containing sentence embeddings labels: Optional tensor of labels (not used in this implementation) Returns: Dictionary containing the total loss and individual loss components """ # Compute embeddings using the model outputs = [self.model(sentence_feature) for sentence_feature in sentence_features] sparse_embeddings = [output["sparse_embedding"] for output in outputs] recon_loss = self.reconstruction_loss.compute_loss_from_embeddings(outputs) ranking_loss = self.ranking_loss.compute_loss_from_embeddings(sparse_embeddings) # Compute total loss: L_CSR = L_recon + γ * L_MRL total_loss = recon_loss + self.gamma * ranking_loss return total_loss def get_config_dict(self): """ Get the configuration dictionary. Returns: Dictionary containing the configuration parameters """ return { "beta": self.beta, "gamma": self.gamma, "scale": self.scale, }
from typing import Optional from docarray.document import BaseDocument from docarray.typing import TextUrl from docarray.typing.tensor.embedding import Embedding class Text(BaseDocument): """ Document for handling text. It can contain a TextUrl (`Text.url`), a str (`Text.text`), and an Embedding (`Text.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray import Text # use it directly txt_doc = Text(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() model = MyEmbeddingModel() txt_doc.embedding = model(txt_doc.text) You can extend this Document: .. code-block:: python from docarray import Text from docarray.typing import Embedding from typing import Optional # extend it class MyText(Text): second_embedding: Optional[Embedding] txt_doc = MyText(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() model = MyEmbeddingModel() txt_doc.embedding = model(txt_doc.text) txt_doc.second_embedding = model(txt_doc.text) You can use this Document for composition: .. code-block:: python from docarray import Document, Image, Text # compose it class MultiModalDoc(Document): image_doc: Image text_doc: Text mmdoc = MultiModalDoc( image_doc=Image(url="http://www.jina.ai/image.jpg"), text_doc=Text(text="hello world, how are you doing?"), ) mmdoc.text_doc.text = mmdoc.text_doc.url.load() """ text: Optional[str] = None url: Optional[TextUrl] = None embedding: Optional[Embedding] = None
from typing import Optional from docarray.document import BaseDocument from docarray.typing.tensor.embedding import Embedding, Tensor class Text(BaseDocument): """ base Document for Text handling """ text: str = '' tensor: Optional[Tensor] embedding: Optional[Embedding]
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/voc0712.py', '../_base_/default_runtime.py' ] model = dict( bbox_head=dict( num_classes=20, anchor_generator=dict(basesize_ratio_range=(0.2, 0.9)))) # dataset settings dataset_type = 'VOCDataset' data_root = 'data/VOCdevkit/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(300, 300), keep_ratio=False), dict(type='RandomFlip', flip_ratio=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(300, 300), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=3, train=dict( type='RepeatDataset', times=10, dataset=dict(pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=1e-3, momentum=0.9, weight_decay=5e-4) optimizer_config = dict() # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[16, 20]) checkpoint_config = dict(interval=1) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/voc0712.py', '../_base_/default_runtime.py' ] model = dict( bbox_head=dict( num_classes=20, anchor_generator=dict(basesize_ratio_range=(0.2, 0.9)))) # dataset settings dataset_type = 'VOCDataset' data_root = 'data/VOCdevkit/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(300, 300), keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='RandomFlip', flip_ratio=0.5), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(300, 300), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=3, train=dict( type='RepeatDataset', times=10, dataset=dict(pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=1e-3, momentum=0.9, weight_decay=5e-4) optimizer_config = dict() # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[16, 20]) checkpoint_config = dict(interval=1) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=24)
import os from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDoc from docarray.base_doc.io.json import orjson_dumps from docarray.typing import AudioBytes, AudioTorchTensor, AudioUrl from docarray.typing.url.mimetypes import ( OBJ_MIMETYPE, AUDIO_MIMETYPE, VIDEO_MIMETYPE, IMAGE_MIMETYPE, TEXT_MIMETYPE, ) from docarray.utils._internal.misc import is_tf_available from tests import TOYDATA_DIR tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.typing.tensor.audio import AudioTensorFlowTensor AUDIO_FILES = [ str(TOYDATA_DIR / 'hello.wav'), str(TOYDATA_DIR / 'olleh.wav'), ] REMOTE_AUDIO_FILE = 'https://github.com/docarray/docarray/blob/main/tests/toydata/olleh.wav?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_audio_url(file_url): uri = parse_obj_as(AudioUrl, file_url) tensor, _ = uri.load() assert isinstance(tensor, np.ndarray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load_audio_url_to_audio_torch_tensor_field(file_url): class MyAudioDoc(BaseDoc): audio_url: AudioUrl tensor: Optional[AudioTorchTensor] doc = MyAudioDoc(audio_url=file_url) doc.tensor, _ = doc.audio_url.load() assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, AudioTorchTensor) @pytest.mark.tensorflow @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load_audio_url_to_audio_tensorflow_tensor_field(file_url): class MyAudioDoc(BaseDoc): audio_url: AudioUrl tensor: Optional[AudioTensorFlowTensor] doc = MyAudioDoc(audio_url=file_url) doc.tensor, _ = doc.audio_url.load() assert isinstance(doc.tensor, AudioTensorFlowTensor) assert isinstance(doc.tensor.tensor, tf.Tensor) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load(file_url): url = parse_obj_as(AudioUrl, file_url) tensor, _ = url.load() assert isinstance(tensor, np.ndarray) def test_json_schema(): schema_json_of(AudioUrl) def test_dump_json(): url = parse_obj_as(AudioUrl, REMOTE_AUDIO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_validation(path_to_file): url = parse_obj_as(AudioUrl, path_to_file) assert isinstance(url, AudioUrl) assert isinstance(url, str) @pytest.mark.proto @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_proto_audio_url(file_url): uri = parse_obj_as(AudioUrl, file_url) proto = uri._to_node_protobuf() assert 'audio_url' in str(proto) def test_load_bytes(): uri = parse_obj_as(AudioUrl, REMOTE_AUDIO_FILE) audio_bytes = uri.load_bytes() assert isinstance(audio_bytes, bytes) assert isinstance(audio_bytes, AudioBytes) assert len(audio_bytes) > 0 @pytest.mark.parametrize( 'file_type, file_source', [ (AUDIO_MIMETYPE, AUDIO_FILES[0]), (AUDIO_MIMETYPE, AUDIO_FILES[1]), (AUDIO_MIMETYPE, REMOTE_AUDIO_FILE), (IMAGE_MIMETYPE, os.path.join(TOYDATA_DIR, 'test.png')), (VIDEO_MIMETYPE, os.path.join(TOYDATA_DIR, 'mov_bbb.mp4')), (TEXT_MIMETYPE, os.path.join(TOYDATA_DIR, 'test' 'test.html')), (TEXT_MIMETYPE, os.path.join(TOYDATA_DIR, 'test' 'test.md')), (TEXT_MIMETYPE, os.path.join(TOYDATA_DIR, 'penal_colony.txt')), (OBJ_MIMETYPE, os.path.join(TOYDATA_DIR, 'test.glb')), ], ) def test_file_validation(file_type, file_source): if file_type != AudioUrl.mime_type(): with pytest.raises(ValueError): parse_obj_as(AudioUrl, file_source) else: parse_obj_as(AudioUrl, file_source)
from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDoc from docarray.base_doc.io.json import orjson_dumps from docarray.typing import AudioBytes, AudioTorchTensor, AudioUrl from docarray.utils._internal.misc import is_tf_available from tests import TOYDATA_DIR tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.typing.tensor.audio import AudioTensorFlowTensor AUDIO_FILES = [ str(TOYDATA_DIR / 'hello.wav'), str(TOYDATA_DIR / 'olleh.wav'), ] REMOTE_AUDIO_FILE = 'https://github.com/docarray/docarray/blob/main/tests/toydata/olleh.wav?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_audio_url(file_url): uri = parse_obj_as(AudioUrl, file_url) tensor, _ = uri.load() assert isinstance(tensor, np.ndarray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load_audio_url_to_audio_torch_tensor_field(file_url): class MyAudioDoc(BaseDoc): audio_url: AudioUrl tensor: Optional[AudioTorchTensor] doc = MyAudioDoc(audio_url=file_url) doc.tensor, _ = doc.audio_url.load() assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, AudioTorchTensor) @pytest.mark.tensorflow @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load_audio_url_to_audio_tensorflow_tensor_field(file_url): class MyAudioDoc(BaseDoc): audio_url: AudioUrl tensor: Optional[AudioTensorFlowTensor] doc = MyAudioDoc(audio_url=file_url) doc.tensor, _ = doc.audio_url.load() assert isinstance(doc.tensor, AudioTensorFlowTensor) assert isinstance(doc.tensor.tensor, tf.Tensor) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load(file_url): url = parse_obj_as(AudioUrl, file_url) tensor, _ = url.load() assert isinstance(tensor, np.ndarray) def test_json_schema(): schema_json_of(AudioUrl) def test_dump_json(): url = parse_obj_as(AudioUrl, REMOTE_AUDIO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_validation(path_to_file): url = parse_obj_as(AudioUrl, path_to_file) assert isinstance(url, AudioUrl) assert isinstance(url, str) @pytest.mark.proto @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_proto_audio_url(file_url): uri = parse_obj_as(AudioUrl, file_url) proto = uri._to_node_protobuf() assert 'audio_url' in str(proto) def test_load_bytes(): uri = parse_obj_as(AudioUrl, REMOTE_AUDIO_FILE) audio_bytes = uri.load_bytes() assert isinstance(audio_bytes, bytes) assert isinstance(audio_bytes, AudioBytes) assert len(audio_bytes) > 0
import logging from datasets import load_dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseBinaryClassificationEvaluator, SparseEncoder, SpladePooling, ) logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Load a dataset with two text columns and a class label column # Using the Quora Duplicates dataset as an example eval_dataset = load_dataset("sentence-transformers/quora-duplicates", "pair-class", split="train[-1000:]") # Initialize the evaluator binary_acc_evaluator = SparseBinaryClassificationEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], labels=eval_dataset["label"], name="quora_duplicates_dev", show_progress_bar=True, similarity_fn_names=["cosine", "dot", "euclidean", "manhattan"], ) results = binary_acc_evaluator(model) # Print the results print(f"Primary metric: {binary_acc_evaluator.primary_metric}") print(f"Primary metric value: {results[binary_acc_evaluator.primary_metric]:.4f}")
from datasets import load_dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseBinaryClassificationEvaluator, SparseEncoder, SpladePooling, ) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Load a dataset with two text columns and a class label column # Using the Quora Duplicates dataset as an example eval_dataset = load_dataset("sentence-transformers/quora-duplicates", "pair-class", split="train[-1000:]") # Initialize the evaluator binary_acc_evaluator = SparseBinaryClassificationEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], labels=eval_dataset["label"], name="quora_duplicates_dev", show_progress_bar=True, similarity_fn_names=["cosine", "dot", "euclidean", "manhattan"], ) results = binary_acc_evaluator(model) # Print the results print(f"Primary metric: {binary_acc_evaluator.primary_metric}") print(f"Primary metric value: {results[binary_acc_evaluator.primary_metric]:.4f}")
import torch import os import clip import numpy as np from glob import glob from PIL import Image from jina import Flow, Document from ...clip_image import CLIPImageEncoder cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_clip_data(): docs = [] for file in glob(os.path.join(cur_dir, 'test_data', '*')): pil_image = Image.open(file) nd_image = np.array(pil_image) docs.append(Document(id=file, blob=nd_image)) with Flow().add(uses=CLIPImageEncoder) as f: results = f.post(on='/test', inputs=docs, return_results=True) os.path.join(cur_dir, 'test_data', 'banana2.png') image_name_to_ndarray = {} for d in results[0].docs: image_name_to_ndarray[d.id] = d.embedding def dist(a, b): nonlocal image_name_to_ndarray a_embedding = image_name_to_ndarray[os.path.join(cur_dir, 'test_data', f'{a}.png')] b_embedding = image_name_to_ndarray[os.path.join(cur_dir, 'test_data', f'{b}.png')] return np.linalg.norm(a_embedding - b_embedding) # assert semantic meaning is captured in the encoding small_distance = dist('banana1', 'banana2') assert small_distance < dist('banana1', 'airplane') assert small_distance < dist('banana1', 'satellite') assert small_distance < dist('banana1', 'studio') assert small_distance < dist('banana2', 'airplane') assert small_distance < dist('banana2', 'satellite') assert small_distance < dist('banana2', 'studio') assert small_distance < dist('airplane', 'studio') assert small_distance < dist('airplane', 'satellite') assert small_distance < dist('studio', 'satellite') # assert same results like calculating it manually model, preprocess = clip.load('ViT-B/32', device='cpu') assert len(image_name_to_ndarray) == 5 for file, actual_embedding in image_name_to_ndarray.items(): image = preprocess(Image.open(file)).unsqueeze(0).to('cpu') with torch.no_grad(): expected_embedding = model.encode_image(image).numpy()[0] np.testing.assert_almost_equal(actual_embedding, expected_embedding, 5)
import torch import os import clip import numpy as np from glob import glob from PIL import Image from jina import Flow, Document from jinahub.encoder.clip_image import CLIPImageEncoder cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_clip_data(): docs = [] for file in glob(os.path.join(cur_dir, 'test_data', '*')): pil_image = Image.open(file) nd_image = np.array(pil_image) docs.append(Document(id=file, blob=nd_image)) with Flow().add(uses=CLIPImageEncoder) as f: results = f.post(on='/test', inputs=docs, return_results=True) os.path.join(cur_dir, 'test_data', 'banana2.png') image_name_to_ndarray = {} for d in results[0].docs: image_name_to_ndarray[d.id] = d.embedding def dist(a, b): nonlocal image_name_to_ndarray a_embedding = image_name_to_ndarray[os.path.join(cur_dir, 'test_data', f'{a}.png')] b_embedding = image_name_to_ndarray[os.path.join(cur_dir, 'test_data', f'{b}.png')] return np.linalg.norm(a_embedding - b_embedding) # assert semantic meaning is captured in the encoding small_distance = dist('banana1', 'banana2') assert small_distance < dist('banana1', 'airplane') assert small_distance < dist('banana1', 'satellite') assert small_distance < dist('banana1', 'studio') assert small_distance < dist('banana2', 'airplane') assert small_distance < dist('banana2', 'satellite') assert small_distance < dist('banana2', 'studio') assert small_distance < dist('airplane', 'studio') assert small_distance < dist('airplane', 'satellite') assert small_distance < dist('studio', 'satellite') # assert same results like calculating it manually model, preprocess = clip.load('ViT-B/32', device='cpu') assert len(image_name_to_ndarray) == 5 for file, actual_embedding in image_name_to_ndarray.items(): image = preprocess(Image.open(file)).unsqueeze(0).to('cpu') with torch.no_grad(): expected_embedding = model.encode_image(image).numpy()[0] np.testing.assert_almost_equal(actual_embedding, expected_embedding, 5)
import logging import os from argparse import ArgumentParser import sentencepiece as spm from average_checkpoints import ensemble from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint from pytorch_lightning.strategies import DDPStrategy from transforms import get_data_module def get_trainer(args): seed_everything(1) checkpoint = ModelCheckpoint( dirpath=os.path.join(args.exp_dir, args.exp_name) if args.exp_dir else None, monitor="monitoring_step", mode="max", save_last=True, filename="{epoch}", save_top_k=10, ) lr_monitor = LearningRateMonitor(logging_interval="step") callbacks = [ checkpoint, lr_monitor, ] return Trainer( sync_batchnorm=True, default_root_dir=args.exp_dir, max_epochs=args.epochs, num_nodes=args.num_nodes, devices=args.gpus, accelerator="gpu", strategy=DDPStrategy(find_unused_parameters=False), callbacks=callbacks, reload_dataloaders_every_n_epochs=1, gradient_clip_val=10.0, ) def get_lightning_module(args): sp_model = spm.SentencePieceProcessor(model_file=str(args.sp_model_path)) if args.modality == "audiovisual": from lightning_av import AVConformerRNNTModule model = AVConformerRNNTModule(args, sp_model) else: from lightning import ConformerRNNTModule model = ConformerRNNTModule(args, sp_model) return model def parse_args(): parser = ArgumentParser() parser.add_argument( "--modality", type=str, help="Modality", choices=["audio", "video", "audiovisual"], required=True, ) parser.add_argument( "--mode", type=str, help="Perform online or offline recognition.", required=True, ) parser.add_argument( "--root-dir", type=str, help="Root directory to LRS3 audio-visual datasets.", required=True, ) parser.add_argument( "--sp-model-path", type=str, help="Path to SentencePiece model.", required=True, ) parser.add_argument( "--pretrained-model-path", type=str, help="Path to Pretraned model.", ) parser.add_argument( "--exp-dir", default="./exp", type=str, help="Directory to save checkpoints and logs to. (Default: './exp')", ) parser.add_argument( "--exp-name", type=str, help="Experiment name", ) parser.add_argument( "--num-nodes", default=4, type=int, help="Number of nodes to use for training. (Default: 4)", ) parser.add_argument( "--gpus", default=8, type=int, help="Number of GPUs per node to use for training. (Default: 8)", ) parser.add_argument( "--epochs", default=55, type=int, help="Number of epochs to train for. (Default: 55)", ) parser.add_argument( "--resume-from-checkpoint", default=None, type=str, help="Path to the checkpoint to resume from", ) parser.add_argument( "--debug", action="store_true", help="Whether to use debug level for logging", ) return parser.parse_args() def init_logger(debug): fmt = "%(asctime)s %(message)s" if debug else "%(message)s" level = logging.DEBUG if debug else logging.INFO logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S") def cli_main(): args = parse_args() init_logger(args.debug) model = get_lightning_module(args) data_module = get_data_module(args, str(args.sp_model_path)) trainer = get_trainer(args) trainer.fit(model, data_module) ensemble(args) if __name__ == "__main__": cli_main()
import logging import os from argparse import ArgumentParser import sentencepiece as spm from average_checkpoints import ensemble from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint from pytorch_lightning.strategies import DDPStrategy from transforms import get_data_module def get_trainer(args): seed_everything(1) checkpoint = ModelCheckpoint( dirpath=os.path.join(args.exp_dir, args.exp_name) if args.exp_dir else None, monitor="monitoring_step", mode="max", save_last=True, filename="{epoch}", save_top_k=10, ) lr_monitor = LearningRateMonitor(logging_interval="step") callbacks = [ checkpoint, lr_monitor, ] return Trainer( sync_batchnorm=True, default_root_dir=args.exp_dir, max_epochs=args.epochs, num_nodes=args.num_nodes, devices=args.gpus, accelerator="gpu", strategy=DDPStrategy(find_unused_parameters=False), callbacks=callbacks, reload_dataloaders_every_n_epochs=1, gradient_clip_val=10.0, ) def get_lightning_module(args): sp_model = spm.SentencePieceProcessor(model_file=str(args.sp_model_path)) if args.modality == "audiovisual": from lightning_av import AVConformerRNNTModule model = AVConformerRNNTModule(args, sp_model) else: from lightning import ConformerRNNTModule model = ConformerRNNTModule(args, sp_model) return model def parse_args(): parser = ArgumentParser() parser.add_argument( "--modality", type=str, help="Modality", required=True, ) parser.add_argument( "--mode", type=str, help="Perform online or offline recognition.", required=True, ) parser.add_argument( "--root-dir", type=str, help="Root directory to LRS3 audio-visual datasets.", required=True, ) parser.add_argument( "--sp-model-path", type=str, help="Path to SentencePiece model.", required=True, ) parser.add_argument( "--pretrained-model-path", type=str, help="Path to Pretraned model.", ) parser.add_argument( "--exp-dir", default="./exp", type=str, help="Directory to save checkpoints and logs to. (Default: './exp')", ) parser.add_argument( "--exp-name", type=str, help="Experiment name", ) parser.add_argument( "--num-nodes", default=4, type=int, help="Number of nodes to use for training. (Default: 4)", ) parser.add_argument( "--gpus", default=8, type=int, help="Number of GPUs per node to use for training. (Default: 8)", ) parser.add_argument( "--epochs", default=55, type=int, help="Number of epochs to train for. (Default: 55)", ) parser.add_argument( "--resume-from-checkpoint", default=None, type=str, help="Path to the checkpoint to resume from", ) parser.add_argument( "--debug", action="store_true", help="Whether to use debug level for logging", ) return parser.parse_args() def init_logger(debug): fmt = "%(asctime)s %(message)s" if debug else "%(message)s" level = logging.DEBUG if debug else logging.INFO logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S") def cli_main(): args = parse_args() init_logger(args.debug) model = get_lightning_module(args) data_module = get_data_module(args, str(args.sp_model_path)) trainer = get_trainer(args) trainer.fit(model, data_module) ensemble(args) if __name__ == "__main__": cli_main()
#! /usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2023 Imperial College London (Pingchuan Ma) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) import torch import torchaudio import torchvision class AVSRDataLoader: def __init__(self, modality, detector="retinaface", resize=None): self.modality = modality if modality == "video": if detector == "retinaface": from detectors.retinaface.detector import LandmarksDetector from detectors.retinaface.video_process import VideoProcess self.landmarks_detector = LandmarksDetector(device="cuda:0") self.video_process = VideoProcess(resize=resize) if detector == "mediapipe": from detectors.mediapipe.detector import LandmarksDetector from detectors.mediapipe.video_process import VideoProcess self.landmarks_detector = LandmarksDetector() self.video_process = VideoProcess(resize=resize) def load_data(self, data_filename, transform=True): if self.modality == "audio": audio, sample_rate = self.load_audio(data_filename) audio = self.audio_process(audio, sample_rate) return audio if self.modality == "video": landmarks = self.landmarks_detector(data_filename) video = self.load_video(data_filename) video = self.video_process(video, landmarks) video = torch.tensor(video) return video def load_audio(self, data_filename): waveform, sample_rate = torchaudio.load(data_filename, normalize=True) return waveform, sample_rate def load_video(self, data_filename): return torchvision.io.read_video(data_filename, pts_unit="sec")[0].numpy() def audio_process(self, waveform, sample_rate, target_sample_rate=16000): if sample_rate != target_sample_rate: waveform = torchaudio.functional.resample(waveform, sample_rate, target_sample_rate) waveform = torch.mean(waveform, dim=0, keepdim=True) return waveform
#! /usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2023 Imperial College London (Pingchuan Ma) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) import torch import torchaudio import torchvision class AVSRDataLoader: def __init__(self, modality, detector="retinaface", resize=None): self.modality = modality if modality == "video": if detector == "retinaface": from detectors.retinaface.detector import LandmarksDetector from detectors.retinaface.video_process import VideoProcess self.landmarks_detector = LandmarksDetector(device="cuda:0") self.video_process = VideoProcess(resize=resize) def load_data(self, data_filename, transform=True): if self.modality == "audio": audio, sample_rate = self.load_audio(data_filename) audio = self.audio_process(audio, sample_rate) return audio if self.modality == "video": landmarks = self.landmarks_detector(data_filename) video = self.load_video(data_filename) video = self.video_process(video, landmarks) video = torch.tensor(video) return video def load_audio(self, data_filename): waveform, sample_rate = torchaudio.load(data_filename, normalize=True) return waveform, sample_rate def load_video(self, data_filename): return torchvision.io.read_video(data_filename, pts_unit="sec")[0].numpy() def audio_process(self, waveform, sample_rate, target_sample_rate=16000): if sample_rate != target_sample_rate: waveform = torchaudio.functional.resample(waveform, sample_rate, target_sample_rate) waveform = torch.mean(waveform, dim=0, keepdim=True) return waveform