input
stringlengths
33
5k
output
stringlengths
32
5k
from ._dsp import ( adsr_envelope, extend_pitch, filter_waveform, frequency_impulse_response, oscillator_bank, sinc_impulse_response, ) from .functional import add_noise, barkscale_fbanks, convolve, deemphasis, fftconvolve, preemphasis, speed __all__ = [ "add_noise", "adsr_envelope", "barkscale_fbanks", "convolve", "deemphasis", "extend_pitch", "fftconvolve", "filter_waveform", "frequency_impulse_response", "oscillator_bank", "preemphasis", "sinc_impulse_response", "speed", ]
from ._dsp import adsr_envelope, extend_pitch, frequency_impulse_response, oscillator_bank, sinc_impulse_response from .functional import add_noise, barkscale_fbanks, convolve, deemphasis, fftconvolve, preemphasis, speed __all__ = [ "add_noise", "adsr_envelope", "barkscale_fbanks", "convolve", "deemphasis", "extend_pitch", "fftconvolve", "frequency_impulse_response", "oscillator_bank", "preemphasis", "sinc_impulse_response", "speed", ]
import logging from autogpt_libs.utils.cache import thread_cached from backend.data.block import ( Block, BlockCategory, BlockInput, BlockOutput, BlockSchema, BlockType, get_block, ) from backend.data.execution import ExecutionStatus from backend.data.model import SchemaField logger = logging.getLogger(__name__) @thread_cached def get_executor_manager_client(): from backend.executor import ExecutionManager from backend.util.service import get_service_client return get_service_client(ExecutionManager) @thread_cached def get_event_bus(): from backend.data.execution import RedisExecutionEventBus return RedisExecutionEventBus() class AgentExecutorBlock(Block): class Input(BlockSchema): user_id: str = SchemaField(description="User ID") graph_id: str = SchemaField(description="Graph ID") graph_version: int = SchemaField(description="Graph Version") data: BlockInput = SchemaField(description="Input data for the graph") input_schema: dict = SchemaField(description="Input schema for the graph") output_schema: dict = SchemaField(description="Output schema for the graph") class Output(BlockSchema): pass def __init__(self): super().__init__( id="e189baac-8c20-45a1-94a7-55177ea42565", description="Executes an existing agent inside your agent", input_schema=AgentExecutorBlock.Input, output_schema=AgentExecutorBlock.Output, block_type=BlockType.AGENT, categories={BlockCategory.AGENT}, ) def run(self, input_data: Input, **kwargs) -> BlockOutput: executor_manager = get_executor_manager_client() event_bus = get_event_bus() graph_exec = executor_manager.add_execution( graph_id=input_data.graph_id, graph_version=input_data.graph_version, user_id=input_data.user_id, data=input_data.data, ) log_id = f"Graph #{input_data.graph_id}-V{input_data.graph_version}, exec-id: {graph_exec.graph_exec_id}" logger.info(f"Starting execution of {log_id}") for event in event_bus.listen( graph_id=graph_exec.graph_id, graph_exec_id=graph_exec.graph_exec_id ): logger.info( f"Execution {log_id} produced input {event.input_data} output {event.output_data}" ) if not event.node_id: if event.status in [ExecutionStatus.COMPLETED, ExecutionStatus.FAILED]: logger.info(f"Execution {log_id} ended with status {event.status}") break else: continue if not event.block_id: logger.warning(f"{log_id} received event without block_id {event}") continue block = get_block(event.block_id) if not block or block.block_type != BlockType.OUTPUT: continue output_name = event.input_data.get("name") if not output_name: logger.warning(f"{log_id} produced an output with no name {event}") continue for output_data in event.output_data.get("output", []): logger.info(f"Execution {log_id} produced {output_name}: {output_data}") yield output_name, output_data
import logging from autogpt_libs.utils.cache import thread_cached from backend.data.block import ( Block, BlockCategory, BlockInput, BlockOutput, BlockSchema, BlockType, get_block, ) from backend.data.execution import ExecutionStatus from backend.data.model import SchemaField logger = logging.getLogger(__name__) @thread_cached def get_executor_manager_client(): from backend.executor import ExecutionManager from backend.util.service import get_service_client return get_service_client(ExecutionManager) @thread_cached def get_event_bus(): from backend.data.queue import RedisExecutionEventBus return RedisExecutionEventBus() class AgentExecutorBlock(Block): class Input(BlockSchema): user_id: str = SchemaField(description="User ID") graph_id: str = SchemaField(description="Graph ID") graph_version: int = SchemaField(description="Graph Version") data: BlockInput = SchemaField(description="Input data for the graph") input_schema: dict = SchemaField(description="Input schema for the graph") output_schema: dict = SchemaField(description="Output schema for the graph") class Output(BlockSchema): pass def __init__(self): super().__init__( id="e189baac-8c20-45a1-94a7-55177ea42565", description="Executes an existing agent inside your agent", input_schema=AgentExecutorBlock.Input, output_schema=AgentExecutorBlock.Output, block_type=BlockType.AGENT, categories={BlockCategory.AGENT}, ) def run(self, input_data: Input, **kwargs) -> BlockOutput: executor_manager = get_executor_manager_client() event_bus = get_event_bus() graph_exec = executor_manager.add_execution( graph_id=input_data.graph_id, graph_version=input_data.graph_version, user_id=input_data.user_id, data=input_data.data, ) log_id = f"Graph #{input_data.graph_id}-V{input_data.graph_version}, exec-id: {graph_exec.graph_exec_id}" logger.info(f"Starting execution of {log_id}") for event in event_bus.listen( graph_id=graph_exec.graph_id, graph_exec_id=graph_exec.graph_exec_id ): logger.info( f"Execution {log_id} produced input {event.input_data} output {event.output_data}" ) if not event.node_id: if event.status in [ExecutionStatus.COMPLETED, ExecutionStatus.FAILED]: logger.info(f"Execution {log_id} ended with status {event.status}") break else: continue if not event.block_id: logger.warning(f"{log_id} received event without block_id {event}") continue block = get_block(event.block_id) if not block or block.block_type != BlockType.OUTPUT: continue output_name = event.input_data.get("name") if not output_name: logger.warning(f"{log_id} produced an output with no name {event}") continue for output_data in event.output_data.get("output", []): logger.info(f"Execution {log_id} produced {output_name}: {output_data}") yield output_name, output_data
from __future__ import annotations import sys from .BoW import BoW from .CLIPModel import CLIPModel from .CNN import CNN from .Dense import Dense from .Dropout import Dropout from .InputModule import InputModule from .LayerNorm import LayerNorm from .LSTM import LSTM from .Module import Module from .Normalize import Normalize from .Pooling import Pooling from .Router import Asym, Router from .StaticEmbedding import StaticEmbedding from .Transformer import Transformer from .WeightedLayerPooling import WeightedLayerPooling from .WordEmbeddings import WordEmbeddings from .WordWeights import WordWeights sys.modules["sentence_transformers.models.Asym"] = sys.modules["sentence_transformers.models.Router"] __all__ = [ "Transformer", "StaticEmbedding", "Asym", "BoW", "CNN", "Dense", "Dropout", "LayerNorm", "LSTM", "Normalize", "Pooling", "WeightedLayerPooling", "WordEmbeddings", "WordWeights", "CLIPModel", "Module", "InputModule", "Router", ]
from __future__ import annotations from .Asym import Asym from .BoW import BoW from .CLIPModel import CLIPModel from .CNN import CNN from .Dense import Dense from .Dropout import Dropout from .InputModule import InputModule from .LayerNorm import LayerNorm from .LSTM import LSTM from .Module import Module from .Normalize import Normalize from .Pooling import Pooling from .StaticEmbedding import StaticEmbedding from .Transformer import Transformer from .WeightedLayerPooling import WeightedLayerPooling from .WordEmbeddings import WordEmbeddings from .WordWeights import WordWeights __all__ = [ "Transformer", "StaticEmbedding", "Asym", "BoW", "CNN", "Dense", "Dropout", "LayerNorm", "LSTM", "Normalize", "Pooling", "WeightedLayerPooling", "WordEmbeddings", "WordWeights", "CLIPModel", "Module", "InputModule", ]
import csv from contextlib import nullcontext from typing import Union, TextIO, Optional, Dict, TYPE_CHECKING, Type, Sequence import numpy as np if TYPE_CHECKING: from docarray.typing import T class CsvIOMixin: """CSV IO helper. can be applied to DA & DAM """ def save_embeddings_csv( self, file: Union[str, TextIO], encoding: str = 'utf-8', **kwargs ) -> None: """Save embeddings to a CSV file This function utilizes :meth:`numpy.savetxt` internal. :param file: File or filename to which the data is saved. :param encoding: encoding used to save the data into a file. By default, ``utf-8`` is used. :param kwargs: extra kwargs will be passed to :meth:`numpy.savetxt`. """ if hasattr(file, 'write'): file_ctx = nullcontext(file) else: file_ctx = open(file, 'w', encoding=encoding) with file_ctx: np.savetxt(file_ctx, self.embeddings, **kwargs) def save_csv( self, file: Union[str, TextIO], flatten_tags: bool = True, exclude_fields: Optional[Sequence[str]] = None, dialect: Union[str, 'csv.Dialect'] = 'excel', with_header: bool = True, encoding: str = 'utf-8', ) -> None: """Save array elements into a CSV file. :param file: File or filename to which the data is saved. :param flatten_tags: if set, then all fields in ``Document.tags`` will be flattened into ``tag__fieldname`` and stored as separated columns. It is useful when ``tags`` contain a lot of information. :param exclude_fields: if set, those fields wont show up in the output CSV :param dialect: define a set of parameters specific to a particular CSV dialect. could be a string that represents predefined dialects in your system, or could be a :class:`csv.Dialect` class that groups specific formatting parameters together. :param encoding: encoding used to save the data into a CSV file. By default, ``utf-8`` is used. """ if hasattr(file, 'write'): file_ctx = nullcontext(file) else: file_ctx = open(file, 'w', encoding=encoding) with file_ctx as fp: if flatten_tags and self[0].tags: keys = list(self[0].non_empty_fields) + list( f'tag__{k}' for k in self[0].tags ) keys.remove('tags') else: flatten_tags = False keys = list(self[0].non_empty_fields) if exclude_fields: for k in exclude_fields: if k in keys: keys.remove(k) writer = csv.DictWriter(fp, fieldnames=keys, dialect=dialect) if with_header: writer.writeheader() for d in self: pd = d.to_dict( protocol='jsonschema', exclude=set(exclude_fields) if exclude_fields else None, exclude_none=True, ) if flatten_tags: t = pd.pop('tags') pd.update({f'tag__{k}': v for k, v in t.items()}) writer.writerow(pd) @classmethod def load_csv( cls: Type['T'], file: Union[str, TextIO], field_resolver: Optional[Dict[str, str]] = None, encoding: str = 'utf-8', ) -> 'T': """Load array elements from a binary file. :param file: File or filename to which the data is saved. :param field_resolver: a map from field names defined in JSON, dict to the field names defined in Document. :param encoding: encoding used to read a CSV file. By default, ``utf-8`` is used. :return: a DocumentArray object """ from docarray.document.generators import from_csv return cls(from_csv(file, field_resolver=field_resolver, encoding=encoding))
import csv from contextlib import nullcontext from typing import Union, TextIO, Optional, Dict, TYPE_CHECKING, Type, Sequence import numpy as np if TYPE_CHECKING: from ....typing import T class CsvIOMixin: """CSV IO helper. can be applied to DA & DAM """ def save_embeddings_csv( self, file: Union[str, TextIO], encoding: str = 'utf-8', **kwargs ) -> None: """Save embeddings to a CSV file This function utilizes :meth:`numpy.savetxt` internal. :param file: File or filename to which the data is saved. :param encoding: encoding used to save the data into a file. By default, ``utf-8`` is used. :param kwargs: extra kwargs will be passed to :meth:`numpy.savetxt`. """ if hasattr(file, 'write'): file_ctx = nullcontext(file) else: file_ctx = open(file, 'w', encoding=encoding) with file_ctx: np.savetxt(file_ctx, self.embeddings, **kwargs) def save_csv( self, file: Union[str, TextIO], flatten_tags: bool = True, exclude_fields: Optional[Sequence[str]] = None, dialect: Union[str, 'csv.Dialect'] = 'excel', with_header: bool = True, encoding: str = 'utf-8', ) -> None: """Save array elements into a CSV file. :param file: File or filename to which the data is saved. :param flatten_tags: if set, then all fields in ``Document.tags`` will be flattened into ``tag__fieldname`` and stored as separated columns. It is useful when ``tags`` contain a lot of information. :param exclude_fields: if set, those fields wont show up in the output CSV :param dialect: define a set of parameters specific to a particular CSV dialect. could be a string that represents predefined dialects in your system, or could be a :class:`csv.Dialect` class that groups specific formatting parameters together. :param encoding: encoding used to save the data into a CSV file. By default, ``utf-8`` is used. """ if hasattr(file, 'write'): file_ctx = nullcontext(file) else: file_ctx = open(file, 'w', encoding=encoding) with file_ctx as fp: if flatten_tags and self[0].tags: keys = list(self[0].non_empty_fields) + list( f'tag__{k}' for k in self[0].tags ) keys.remove('tags') else: flatten_tags = False keys = list(self[0].non_empty_fields) if exclude_fields: for k in exclude_fields: if k in keys: keys.remove(k) writer = csv.DictWriter(fp, fieldnames=keys, dialect=dialect) if with_header: writer.writeheader() for d in self: pd = d.to_dict( protocol='jsonschema', exclude=set(exclude_fields) if exclude_fields else None, exclude_none=True, ) if flatten_tags: t = pd.pop('tags') pd.update({f'tag__{k}': v for k, v in t.items()}) writer.writerow(pd) @classmethod def load_csv( cls: Type['T'], file: Union[str, TextIO], field_resolver: Optional[Dict[str, str]] = None, encoding: str = 'utf-8', ) -> 'T': """Load array elements from a binary file. :param file: File or filename to which the data is saved. :param field_resolver: a map from field names defined in JSON, dict to the field names defined in Document. :param encoding: encoding used to read a CSV file. By default, ``utf-8`` is used. :return: a DocumentArray object """ from ....document.generators import from_csv return cls(from_csv(file, field_resolver=field_resolver, encoding=encoding))
from langchain.output_parsers.regex import RegexParser # NOTE: The almost same constant variables in ./test_combining_parser.py DEF_EXPECTED_RESULT = { "confidence": "A", "explanation": "Paris is the capital of France according to Wikipedia.", } DEF_README = """```json { "answer": "Paris", "source": "https://en.wikipedia.org/wiki/France" } ``` //Confidence: A, Explanation: Paris is the capital of France according to Wikipedia.""" def test_regex_parser_parse() -> None: """Test regex parser parse.""" parser = RegexParser( regex=r"Confidence: (A|B|C), Explanation: (.*)", output_keys=["confidence", "explanation"], default_output_key="noConfidence", ) assert DEF_EXPECTED_RESULT == parser.parse(DEF_README) def test_regex_parser_output_type() -> None: """Test regex parser output type is Dict[str, str].""" parser = RegexParser( regex=r"Confidence: (A|B|C), Explanation: (.*)", output_keys=["confidence", "explanation"], default_output_key="noConfidence", ) assert parser.OutputType == dict[str, str]
from typing import Dict from langchain.output_parsers.regex import RegexParser # NOTE: The almost same constant variables in ./test_combining_parser.py DEF_EXPECTED_RESULT = { "confidence": "A", "explanation": "Paris is the capital of France according to Wikipedia.", } DEF_README = """```json { "answer": "Paris", "source": "https://en.wikipedia.org/wiki/France" } ``` //Confidence: A, Explanation: Paris is the capital of France according to Wikipedia.""" def test_regex_parser_parse() -> None: """Test regex parser parse.""" parser = RegexParser( regex=r"Confidence: (A|B|C), Explanation: (.*)", output_keys=["confidence", "explanation"], default_output_key="noConfidence", ) assert DEF_EXPECTED_RESULT == parser.parse(DEF_README) def test_regex_parser_output_type() -> None: """Test regex parser output type is Dict[str, str].""" parser = RegexParser( regex=r"Confidence: (A|B|C), Explanation: (.*)", output_keys=["confidence", "explanation"], default_output_key="noConfidence", ) assert parser.OutputType is Dict[str, str]
import json import re import sys from functools import cache from pathlib import Path from typing import Dict, Iterable, List, Union CURR_DIR = Path(__file__).parent.absolute() CLI_TEMPLATE_DIR = ( CURR_DIR.parent.parent / "libs/cli/langchain_cli/integration_template/docs" ) INFO_BY_DIR: Dict[str, Dict[str, Union[int, str]]] = { "chat": { "issue_number": 22296, }, "document_loaders": { "issue_number": 22866, }, "stores": {"issue_number": 24888}, "llms": { "issue_number": 24803, }, "text_embedding": {"issue_number": 14856}, "toolkits": {"issue_number": 24820}, "tools": {"issue_number": "TODO"}, "vectorstores": {"issue_number": 24800}, "retrievers": {"issue_number": 24908}, } @cache def _get_headers(doc_dir: str) -> Iterable[str]: """Gets all markdown headers ## and below from the integration template. Ignores headers that contain "TODO".""" ipynb_name = f"{doc_dir}.ipynb" if not (CLI_TEMPLATE_DIR / ipynb_name).exists(): raise FileNotFoundError(f"Could not find {ipynb_name} in {CLI_TEMPLATE_DIR}") with open(CLI_TEMPLATE_DIR / ipynb_name, "r") as f: nb = json.load(f) headers: List[str] = [] for cell in nb["cells"]: if cell["cell_type"] == "markdown": for line in cell["source"]: if not line.startswith("## ") or "TODO" in line: continue header = line.strip() headers.append(header) return headers def check_header_order(path: Path) -> None: if path.name.startswith("index."): # skip index pages return doc_dir = path.parent.name if doc_dir not in INFO_BY_DIR: # Skip if not a directory we care about return if "toolkit" in path.name: headers = _get_headers("toolkits") else: headers = _get_headers(doc_dir) issue_number = INFO_BY_DIR[doc_dir].get("issue_number", "nonexistent") print(f"Checking {doc_dir} page {path}") with open(path, "r") as f: doc = f.read() notfound = [] for header in headers: index = doc.find(header) if index == -1: notfound.append(header) doc = doc[index + len(header) :] if notfound: notfound_headers = "\n- ".join(notfound) raise ValueError( f"Document {path} is missing headers:" "\n- " f"{notfound_headers}" "\n\n" "Please see https://github.com/langchain-ai/langchain/issues/" f"{issue_number} for instructions on how to correctly format a " f"{doc_dir} integration page." ) def main(*new_doc_paths: Union[str, Path]) -> None: for path in new_doc_paths: path = Path(path).resolve().absolute() if CURR_DIR.parent / "docs" / "integrations" in path.parents: check_header_order(path) else: continue if __name__ == "__main__": main(*sys.argv[1:])
import json import re import sys from functools import cache from pathlib import Path from typing import Dict, Iterable, List, Union CURR_DIR = Path(__file__).parent.absolute() CLI_TEMPLATE_DIR = ( CURR_DIR.parent.parent / "libs/cli/langchain_cli/integration_template/docs" ) INFO_BY_DIR: Dict[str, Dict[str, Union[int, str]]] = { "chat": { "issue_number": 22296, }, "document_loaders": { "issue_number": 22866, }, "stores": {"issue_number": 24888}, "llms": { "issue_number": 24803, }, "text_embedding": {"issue_number": 14856}, "toolkits": {"issue_number": 24820}, "tools": {"issue_number": "TODO"}, "vectorstores": {"issue_number": 24800}, "retrievers": {"issue_number": 24908}, } @cache def _get_headers(doc_dir: str) -> Iterable[str]: """Gets all markdown headers ## and below from the integration template. Ignores headers that contain "TODO".""" ipynb_name = f"{doc_dir}.ipynb" if not (CLI_TEMPLATE_DIR / ipynb_name).exists(): raise FileNotFoundError(f"Could not find {ipynb_name} in {CLI_TEMPLATE_DIR}") with open(CLI_TEMPLATE_DIR / ipynb_name, "r") as f: nb = json.load(f) headers: List[str] = [] for cell in nb["cells"]: if cell["cell_type"] == "markdown": for line in cell["source"]: if not line.startswith("## ") or "TODO" in line: continue header = line.strip() headers.append(header) return headers def check_header_order(path: Path) -> None: if path.name.startswith("index."): # skip index pages return doc_dir = path.parent.name if doc_dir not in INFO_BY_DIR: # Skip if not a directory we care about return headers = _get_headers(doc_dir) issue_number = INFO_BY_DIR[doc_dir].get("issue_number", "nonexistent") print(f"Checking {doc_dir} page {path}") with open(path, "r") as f: doc = f.read() notfound = [] for header in headers: index = doc.find(header) if index == -1: notfound.append(header) doc = doc[index + len(header) :] if notfound: notfound_headers = "\n- ".join(notfound) raise ValueError( f"Document {path} is missing headers:" "\n- " f"{notfound_headers}" "\n\n" "Please see https://github.com/langchain-ai/langchain/issues/" f"{issue_number} for instructions on how to correctly format a " f"{doc_dir} integration page." ) def main(*new_doc_paths: Union[str, Path]) -> None: for path in new_doc_paths: path = Path(path).resolve().absolute() if CURR_DIR.parent / "docs" / "integrations" in path.parents: check_header_order(path) else: continue if __name__ == "__main__": main(*sys.argv[1:])
"""Tool for the Google Books API.""" from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel, Field from langchain_community.utilities.google_books import GoogleBooksAPIWrapper class GoogleBooksQueryInput(BaseModel): """Input for the GoogleBooksQuery tool.""" query: str = Field(description="query to look up on google books") class GoogleBooksQueryRun(BaseTool): """Tool that searches the Google Books API.""" name: str = "GoogleBooks" description: str = ( "A wrapper around Google Books. " "Useful for when you need to answer general inquiries about " "books of certain topics and generate recommendation based " "off of key words" "Input should be a query string" ) api_wrapper: GoogleBooksAPIWrapper args_schema: Type[BaseModel] = GoogleBooksQueryInput def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Google Books tool.""" return self.api_wrapper.run(query)
"""Tool for the Google Books API.""" from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel, Field from langchain_community.utilities.google_books import GoogleBooksAPIWrapper class GoogleBooksQueryInput(BaseModel): """Input for the GoogleBooksQuery tool.""" query: str = Field(description="query to look up on google books") class GoogleBooksQueryRun(BaseTool): # type: ignore[override] """Tool that searches the Google Books API.""" name: str = "GoogleBooks" description: str = ( "A wrapper around Google Books. " "Useful for when you need to answer general inquiries about " "books of certain topics and generate recommendation based " "off of key words" "Input should be a query string" ) api_wrapper: GoogleBooksAPIWrapper args_schema: Type[BaseModel] = GoogleBooksQueryInput def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Google Books tool.""" return self.api_wrapper.run(query)
import time from typing import Tuple from redis import Redis from .config import RATE_LIMIT_SETTINGS class RateLimiter: def __init__( self, redis_host: str = RATE_LIMIT_SETTINGS.redis_host, redis_port: str = RATE_LIMIT_SETTINGS.redis_port, redis_password: str = RATE_LIMIT_SETTINGS.redis_password, requests_per_minute: int = RATE_LIMIT_SETTINGS.requests_per_minute, ): self.redis = Redis( host=redis_host, port=int(redis_port), password=redis_password, decode_responses=True, ) self.window = 60 self.max_requests = requests_per_minute async def check_rate_limit(self, api_key_id: str) -> Tuple[bool, int, int]: """ Check if request is within rate limits. Args: api_key_id: The API key identifier to check Returns: Tuple of (is_allowed, remaining_requests, reset_time) """ now = time.time() window_start = now - self.window key = f"ratelimit:{api_key_id}:1min" pipe = self.redis.pipeline() pipe.zremrangebyscore(key, 0, window_start) pipe.zadd(key, {str(now): now}) pipe.zcount(key, window_start, now) pipe.expire(key, self.window) _, _, request_count, _ = pipe.execute() remaining = max(0, self.max_requests - request_count) reset_time = int(now + self.window) return request_count <= self.max_requests, remaining, reset_time
import time from typing import Tuple from redis import Redis from .config import RATE_LIMIT_SETTINGS class RateLimiter: def __init__( self, redis_host: str = RATE_LIMIT_SETTINGS.redis_host, redis_port: str = RATE_LIMIT_SETTINGS.redis_port, redis_password: str = RATE_LIMIT_SETTINGS.redis_password, requests_per_minute: int = RATE_LIMIT_SETTINGS.requests_per_minute, ): self.redis = Redis( host=redis_host, port=redis_port, password=redis_password, decode_responses=True, ) self.window = 60 self.max_requests = requests_per_minute async def check_rate_limit(self, api_key_id: str) -> Tuple[bool, int, int]: """ Check if request is within rate limits. Args: api_key_id: The API key identifier to check Returns: Tuple of (is_allowed, remaining_requests, reset_time) """ now = time.time() window_start = now - self.window key = f"ratelimit:{api_key_id}:1min" pipe = self.redis.pipeline() pipe.zremrangebyscore(key, 0, window_start) pipe.zadd(key, {str(now): now}) pipe.zcount(key, window_start, now) pipe.expire(key, self.window) _, _, request_count, _ = pipe.execute() remaining = max(0, self.max_requests - request_count) reset_time = int(now + self.window) return request_count <= self.max_requests, remaining, reset_time
# Copyright (c) OpenMMLab. All rights reserved. import random import warnings import torch from mmcv.runner import get_dist_info from mmcv.runner.hooks import HOOKS, Hook from torch import distributed as dist @HOOKS.register_module() class SyncRandomSizeHook(Hook): """Change and synchronize the random image size across ranks. SyncRandomSizeHook is deprecated, please use Resize pipeline to achieve similar functions. Such as `dict(type='Resize', img_scale=[(448, 448), (832, 832)], multiscale_mode='range', keep_ratio=True)`. Note: Due to the multi-process dataloader, its behavior is different from YOLOX's official implementation, the official is to change the size every fixed iteration interval and what we achieved is a fixed epoch interval. Args: ratio_range (tuple[int]): Random ratio range. It will be multiplied by 32, and then change the dataset output image size. Default: (14, 26). img_scale (tuple[int]): Size of input image. Default: (640, 640). interval (int): The epoch interval of change image size. Default: 1. device (torch.device | str): device for returned tensors. Default: 'cuda'. """ def __init__(self, ratio_range=(14, 26), img_scale=(640, 640), interval=1, device='cuda'): warnings.warn('DeprecationWarning: SyncRandomSizeHook is deprecated. ' 'Please use Resize pipeline to achieve similar ' 'functions. Due to the multi-process dataloader, ' 'its behavior is different from YOLOX\'s official ' 'implementation, the official is to change the size ' 'every fixed iteration interval and what we achieved ' 'is a fixed epoch interval.') self.rank, world_size = get_dist_info() self.is_distributed = world_size > 1 self.ratio_range = ratio_range self.img_scale = img_scale self.interval = interval self.device = device def after_train_epoch(self, runner): """Change the dataset output image size.""" if self.ratio_range is not None and (runner.epoch + 1) % self.interval == 0: # Due to DDP and DP get the device behavior inconsistent, # so we did not get the device from runner.model. tensor = torch.LongTensor(2).to(self.device) if self.rank == 0: size_factor = self.img_scale[1] * 1. / self.img_scale[0] size = random.randint(*self.ratio_range) size = (int(32 * size), 32 * int(size * size_factor)) tensor[0] = size[0] tensor[1] = size[1] if self.is_distributed: dist.barrier() dist.broadcast(tensor, 0) runner.data_loader.dataset.update_dynamic_scale( (tensor[0].item(), tensor[1].item()))
# Copyright (c) OpenMMLab. All rights reserved. import random import torch from mmcv.runner import get_dist_info from mmcv.runner.hooks import HOOKS, Hook from torch import distributed as dist @HOOKS.register_module() class SyncRandomSizeHook(Hook): """Change and synchronize the random image size across ranks, currently used in YOLOX. Args: ratio_range (tuple[int]): Random ratio range. It will be multiplied by 32, and then change the dataset output image size. Default: (14, 26). img_scale (tuple[int]): Size of input image. Default: (640, 640). interval (int): The interval of change image size. Default: 10. device (torch.device | str): device for returned tensors. Default: 'cuda'. """ def __init__(self, ratio_range=(14, 26), img_scale=(640, 640), interval=10, device='cuda'): self.rank, world_size = get_dist_info() self.is_distributed = world_size > 1 self.ratio_range = ratio_range self.img_scale = img_scale self.interval = interval self.device = device def after_train_iter(self, runner): """Change the dataset output image size.""" if self.ratio_range is not None and (runner.iter + 1) % self.interval == 0: # Due to DDP and DP get the device behavior inconsistent, # so we did not get the device from runner.model. tensor = torch.LongTensor(2).to(self.device) if self.rank == 0: size_factor = self.img_scale[1] * 1. / self.img_scale[0] size = random.randint(*self.ratio_range) size = (int(32 * size), 32 * int(size * size_factor)) tensor[0] = size[0] tensor[1] = size[1] if self.is_distributed: dist.barrier() dist.broadcast(tensor, 0) runner.data_loader.dataset.update_dynamic_scale( (tensor[0].item(), tensor[1].item()))
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Dict, List, Optional, Union from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_accelerate_available, is_torch_available, logging if is_torch_available(): import torch logger = logging.get_logger(__name__) class BitNetHfQuantizer(HfQuantizer): """ 1.58-bit quantization from BitNet quantization method: Before loading: it converts the linear layers into BitLinear layers during loading. Check out the paper introducing this method : https://arxiv.org/pdf/2402.17764 """ requires_parameters_quantization = False requires_calibration = True required_packages = ["accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError("Loading a BitNet quantized model requires accelerate (`pip install accelerate`)") if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Loading ternary weights from tf/flax is currently not supported, please make" " sure the weights are in PyTorch format." ) if not torch.cuda.is_available(): logger.warning_once( "You don't have a GPU available to load the model, the inference will be slow because of weight unpacking" ) return device_map = kwargs.get("device_map", None) if device_map is None: logger.warning_once( "You have loaded a BitNet model on CPU and have a CUDA device available, make sure to set " "your model on a GPU device in order to run your model." ) elif device_map is not None: if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): raise ValueError( "You are attempting to load a BitNet model with a device_map that contains a CPU or disk device." "This is not supported. Please remove the CPU or disk device from the device_map." ) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[List[str]] = None, **kwargs, ): from ..integrations import replace_with_bitnet_linear self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) model = replace_with_bitnet_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config, pre_quantized=self.pre_quantized, ) def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": target_dtype = torch.int8 return target_dtype def is_serializable(self, safe_serialization=None): return True @property def is_trainable(self) -> bool: return ( self.quantization_config.linear_class == "autobitlinear" and self.quantization_config.quantization_mode == "online" ) @property def is_qat_trainable(self) -> bool: """Flag indicating whether the quantized model can carry out quantization aware training""" return ( self.quantization_config.linear_class == "autobitlinear" and self.quantization_config.quantization_mode == "online" )
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Dict, List, Optional, Union from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_accelerate_available, is_torch_available, logging if is_torch_available(): import torch logger = logging.get_logger(__name__) class BitNetHfQuantizer(HfQuantizer): """ 1.58-bit quantization from BitNet quantization method: Before loading: it converts the linear layers into BitLinear layers during loading. Checkout the paper introducing this method : https://arxiv.org/pdf/2402.17764 """ requires_parameters_quantization = False requires_calibration = True required_packages = ["accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError("Loading a BitNet quantized model requires accelerate (`pip install accelerate`)") if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Loading ternary weights from tf/flax is currently not supported, please make" " sure the weights are in PyTorch format." ) if not torch.cuda.is_available(): logger.warning_once( "You don't have a GPU available to load the model, the inference will be slow because of weight unpacking" ) return device_map = kwargs.get("device_map", None) if device_map is None: logger.warning_once( "You have loaded a BitNet model on CPU and have a CUDA device available, make sure to set " "your model on a GPU device in order to run your model." ) elif device_map is not None: if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): raise ValueError( "You are attempting to load a BitNet model with a device_map that contains a CPU or disk device." "This is not supported. Please remove the CPU or disk device from the device_map." ) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[List[str]] = None, **kwargs, ): from ..integrations import replace_with_bitnet_linear self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) model = replace_with_bitnet_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config, pre_quantized=self.pre_quantized, ) def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": target_dtype = torch.int8 return target_dtype def is_serializable(self, safe_serialization=None): return True @property def is_trainable(self) -> bool: return ( self.quantization_config.linear_class == "autobitlinear" and self.quantization_config.quantization_mode == "online" ) @property def is_qat_trainable(self) -> bool: """Flag indicating whether the quantized model can carry out quantization aware training""" return ( self.quantization_config.linear_class == "autobitlinear" and self.quantization_config.quantization_mode == "online" )
import os import pytest from jina import Document, Flow from jinahub.indexers.compound.FaissPostgresIndexer import FaissPostgresIndexer cur_dir = os.path.dirname(os.path.abspath(__file__)) compose_yml = os.path.join(cur_dir, 'docker-compose.yml') @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_integration_parallel(docker_compose): # test issue reported by @florian SHARDS = 3 with Flow().add( uses='FaissPostgresIndexer', shards=SHARDS, uses_with={'total_shards': 3} ) as f: f.index(Document())
import os import pytest from jina import Document, Flow from jinahub.indexers.searcher.compound.FaissPostgresIndexer import FaissPostgresIndexer cur_dir = os.path.dirname(os.path.abspath(__file__)) compose_yml = os.path.join(cur_dir, 'docker-compose.yml') @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_integration_parallel(docker_compose): # test issue reported by @florian SHARDS = 3 with Flow().add( uses='FaissPostgresIndexer', shards=SHARDS, uses_with={'total_shards': 3} ) as f: f.index(Document())
import random from datetime import datetime, timedelta from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers import BaseOutputParser from langchain_core.utils import comma_list def _generate_random_datetime_strings( pattern: str, n: int = 3, start_date: datetime = datetime(1, 1, 1), end_date: datetime = datetime.now() + timedelta(days=3650), ) -> list[str]: """Generates n random datetime strings conforming to the given pattern within the specified date range. Pattern should be a string containing the desired format codes. start_date and end_date should be datetime objects representing the start and end of the date range. """ examples = [] delta = end_date - start_date for i in range(n): random_delta = random.uniform(0, delta.total_seconds()) dt = start_date + timedelta(seconds=random_delta) date_string = dt.strftime(pattern) examples.append(date_string) return examples class DatetimeOutputParser(BaseOutputParser[datetime]): """Parse the output of an LLM call to a datetime.""" format: str = "%Y-%m-%dT%H:%M:%S.%fZ" """The string value that used as the datetime format.""" def get_format_instructions(self) -> str: examples = comma_list(_generate_random_datetime_strings(self.format)) return ( f"Write a datetime string that matches the " f"following pattern: '{self.format}'.\n\n" f"Examples: {examples}\n\n" f"Return ONLY this string, no other words!" ) def parse(self, response: str) -> datetime: try: return datetime.strptime(response.strip(), self.format) except ValueError as e: raise OutputParserException( f"Could not parse datetime string: {response}" ) from e @property def _type(self) -> str: return "datetime"
import random from datetime import datetime, timedelta from typing import List from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers import BaseOutputParser from langchain_core.utils import comma_list def _generate_random_datetime_strings( pattern: str, n: int = 3, start_date: datetime = datetime(1, 1, 1), end_date: datetime = datetime.now() + timedelta(days=3650), ) -> List[str]: """Generates n random datetime strings conforming to the given pattern within the specified date range. Pattern should be a string containing the desired format codes. start_date and end_date should be datetime objects representing the start and end of the date range. """ examples = [] delta = end_date - start_date for i in range(n): random_delta = random.uniform(0, delta.total_seconds()) dt = start_date + timedelta(seconds=random_delta) date_string = dt.strftime(pattern) examples.append(date_string) return examples class DatetimeOutputParser(BaseOutputParser[datetime]): """Parse the output of an LLM call to a datetime.""" format: str = "%Y-%m-%dT%H:%M:%S.%fZ" """The string value that used as the datetime format.""" def get_format_instructions(self) -> str: examples = comma_list(_generate_random_datetime_strings(self.format)) return ( f"Write a datetime string that matches the " f"following pattern: '{self.format}'.\n\n" f"Examples: {examples}\n\n" f"Return ONLY this string, no other words!" ) def parse(self, response: str) -> datetime: try: return datetime.strptime(response.strip(), self.format) except ValueError as e: raise OutputParserException( f"Could not parse datetime string: {response}" ) from e @property def _type(self) -> str: return "datetime"
import warnings from typing import Any, List, Union import torch from torchvision import datapoints from torchvision.transforms import functional as _F @torch.jit.unused def to_tensor(inpt: Any) -> torch.Tensor: warnings.warn( "The function `to_tensor(...)` is deprecated and will be removed in a future release. " "Instead, please use `to_image_tensor(...)` followed by `to_dtype(..., dtype=torch.float32, scale=True)`." ) return _F.to_tensor(inpt) def get_image_size(inpt: Union[datapoints._ImageTypeJIT, datapoints._VideoTypeJIT]) -> List[int]: warnings.warn( "The function `get_image_size(...)` is deprecated and will be removed in a future release. " "Instead, please use `get_spatial_size(...)` which returns `[h, w]` instead of `[w, h]`." ) return _F.get_image_size(inpt)
import warnings from typing import Any, List, Union import torch from torchvision import datapoints from torchvision.transforms import functional as _F @torch.jit.unused def to_tensor(inpt: Any) -> torch.Tensor: warnings.warn( "The function `to_tensor(...)` is deprecated and will be removed in a future release. " "Instead, please use `to_image_tensor(...)` followed by `convert_image_dtype(...)`." ) return _F.to_tensor(inpt) def get_image_size(inpt: Union[datapoints._ImageTypeJIT, datapoints._VideoTypeJIT]) -> List[int]: warnings.warn( "The function `get_image_size(...)` is deprecated and will be removed in a future release. " "Instead, please use `get_spatial_size(...)` which returns `[h, w]` instead of `[w, h]`." ) return _F.get_image_size(inpt)
_base_ = './yolox_s_8xb8-300e_coco.py' # model settings model = dict( backbone=dict(deepen_factor=1.0, widen_factor=1.0), neck=dict( in_channels=[256, 512, 1024], out_channels=256, num_csp_blocks=3), bbox_head=dict(in_channels=256, feat_channels=256))
_base_ = './yolox_s_8x8_300e_coco.py' # model settings model = dict( backbone=dict(deepen_factor=1.0, widen_factor=1.0), neck=dict( in_channels=[256, 512, 1024], out_channels=256, num_csp_blocks=3), bbox_head=dict(in_channels=256, feat_channels=256))
import asyncio import os import random import string import tempfile import time import pytest from jina import helper @pytest.fixture(scope='function') def random_workspace_name(): """Generate a random workspace name with digits and letters.""" rand = ''.join(random.choices(string.ascii_uppercase + string.digits, k=6)) return f'JINA_TEST_WORKSPACE_{rand}' @pytest.fixture(scope='function') def test_metas(tmpdir, random_workspace_name): from jina.serve.executors.metas import get_default_metas os.environ[random_workspace_name] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ[random_workspace_name] yield metas del os.environ[random_workspace_name] @pytest.fixture() def docker_compose(request): os.system( f"docker-compose -f {request.param} --project-directory . up --build -d --remove-orphans" ) time.sleep(10) yield os.system( f"docker-compose -f {request.param} --project-directory . down --remove-orphans" ) @pytest.fixture(scope='function') def port_generator(): generated_ports = set() def random_port(): port = helper.random_port() while port in generated_ports: port = helper.random_port() generated_ports.add(port) return port return random_port @pytest.fixture(autouse=True) def test_log_level(monkeypatch): monkeypatch.setenv('JINA_LOG_LEVEL', 'DEBUG') @pytest.fixture(autouse=True) def test_grpc_fork_support_true(monkeypatch): monkeypatch.setenv('GRPC_ENABLE_FORK_SUPPORT', 'true') @pytest.fixture(autouse=True) def test_timeout_ctrl_time(monkeypatch): monkeypatch.setenv('JINA_DEFAULT_TIMEOUT_CTRL', '500') @pytest.fixture(autouse=True) def test_disable_telemetry(monkeypatch): monkeypatch.setenv('JINA_OPTOUT_TELEMETRY', 'True') @pytest.fixture(autouse=True) def tmpfile(tmpdir): tmpfile = f'jina_test_{next(tempfile._get_candidate_names())}.db' return tmpdir / tmpfile @pytest.fixture(scope='session') def event_loop(request): """ Valid only for `pytest.mark.asyncio` tests """ loop = asyncio.get_event_loop_policy().new_event_loop() yield loop loop.close() @pytest.fixture(autouse=True) def set_test_pip_version() -> None: os.environ['JINA_GATEWAY_IMAGE'] = 'jinaai/jina:test-pip' yield if 'JINA_GATEWAY_IMAGE' in os.environ: # maybe another fixture has already removed del os.environ['JINA_GATEWAY_IMAGE']
import asyncio import os import random import string import tempfile import time import pytest from jina import helper @pytest.fixture(scope='function') def random_workspace_name(): """Generate a random workspace name with digits and letters.""" rand = ''.join(random.choices(string.ascii_uppercase + string.digits, k=6)) return f'JINA_TEST_WORKSPACE_{rand}' @pytest.fixture(scope='function') def test_metas(tmpdir, random_workspace_name): from jina.serve.executors.metas import get_default_metas os.environ[random_workspace_name] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ[random_workspace_name] yield metas del os.environ[random_workspace_name] @pytest.fixture() def docker_compose(request): os.system( f"docker-compose -f {request.param} --project-directory . up --build -d --remove-orphans" ) time.sleep(10) yield os.system( f"docker-compose -f {request.param} --project-directory . down --remove-orphans" ) @pytest.fixture(scope='function') def port_generator(): generated_ports = set() def random_port(): port = helper.random_port() while port in generated_ports: port = helper.random_port() generated_ports.add(port) return port return random_port @pytest.fixture(autouse=True) def test_log_level(monkeypatch): monkeypatch.setenv('JINA_LOG_LEVEL', 'DEBUG') @pytest.fixture(autouse=True) def test_grpc_fork_support_false(monkeypatch): monkeypatch.setenv('GRPC_ENABLE_FORK_SUPPORT', 'true') @pytest.fixture(autouse=True) def test_timeout_ctrl_time(monkeypatch): monkeypatch.setenv('JINA_DEFAULT_TIMEOUT_CTRL', '500') @pytest.fixture(autouse=True) def test_disable_telemetry(monkeypatch): monkeypatch.setenv('JINA_OPTOUT_TELEMETRY', 'True') @pytest.fixture(autouse=True) def tmpfile(tmpdir): tmpfile = f'jina_test_{next(tempfile._get_candidate_names())}.db' return tmpdir / tmpfile @pytest.fixture(scope='session') def event_loop(request): """ Valid only for `pytest.mark.asyncio` tests """ loop = asyncio.get_event_loop_policy().new_event_loop() yield loop loop.close() @pytest.fixture(autouse=True) def set_test_pip_version() -> None: os.environ['JINA_GATEWAY_IMAGE'] = 'jinaai/jina:test-pip' yield if 'JINA_GATEWAY_IMAGE' in os.environ: # maybe another fixture has already removed del os.environ['JINA_GATEWAY_IMAGE']
import re import sys file_name = sys.argv[1] with open(file_name, 'r', encoding='utf-8') as f: input = f.read() # official semver regex: https://semver.org/#is-there-a-suggested-regular-expression-regex-to-check-a-semver-string versions_regex = '(?P<major>0|[1-9]\d*)\.(?P<minor>0|[1-9]\d*)\.(?P<patch>0|[1-9]\d*)' output = re.sub( f'(?P<dep>[a-zA-Z0-9]+)(==|>=)(?P<version>{versions_regex}).*:', r'\g<dep>==\g<version>:', input, ) with open(file_name, 'w', encoding='utf-8') as f: f.write(output)
import re import sys file_name = sys.argv[1] with open(file_name, 'r') as f: input = f.read() # official semver regex: https://semver.org/#is-there-a-suggested-regular-expression-regex-to-check-a-semver-string versions_regex = '(?P<major>0|[1-9]\d*)\.(?P<minor>0|[1-9]\d*)\.(?P<patch>0|[1-9]\d*)' output = re.sub( f'(?P<dep>[a-zA-Z0-9]+)(==|>=)(?P<version>{versions_regex}).*:', r'\g<dep>==\g<version>:', input, ) with open(file_name, 'w') as f: f.write(output)
from .backend_utils import set_audio_backend from .case_utils import ( HttpServerMixin, is_ffmpeg_available, PytorchTestCase, skipIfCudaSmallMemory, skipIfNoCtcDecoder, skipIfNoCuda, skipIfNoExec, skipIfNoFFmpeg, skipIfNoKaldi, skipIfNoModule, skipIfNoQengine, skipIfNoSox, skipIfPy310, skipIfRocm, TempDirMixin, TestBaseMixin, TorchaudioTestCase, zip_equal, ) from .data_utils import get_asset_path, get_sinusoid, get_spectrogram, get_whitenoise from .func_utils import torch_script from .image_utils import get_image, rgb_to_gray, rgb_to_yuv_ccir, save_image from .parameterized_utils import load_params, nested_params from .wav_utils import get_wav_data, load_wav, normalize_wav, save_wav __all__ = [ "get_asset_path", "get_whitenoise", "get_sinusoid", "get_spectrogram", "set_audio_backend", "TempDirMixin", "HttpServerMixin", "TestBaseMixin", "PytorchTestCase", "TorchaudioTestCase", "is_ffmpeg_available", "skipIfNoCtcDecoder", "skipIfNoCuda", "skipIfCudaSmallMemory", "skipIfNoExec", "skipIfNoModule", "skipIfNoKaldi", "skipIfNoSox", "skipIfNoSoxBackend", "skipIfRocm", "skipIfNoQengine", "skipIfNoFFmpeg", "skipIfPy310", "get_wav_data", "normalize_wav", "load_wav", "save_wav", "load_params", "nested_params", "torch_script", "save_image", "get_image", "rgb_to_gray", "rgb_to_yuv_ccir", "zip_equal", ]
from .backend_utils import set_audio_backend from .case_utils import ( HttpServerMixin, is_ffmpeg_available, PytorchTestCase, skipIfNoCtcDecoder, skipIfNoCuda, skipIfNoExec, skipIfNoFFmpeg, skipIfNoKaldi, skipIfNoModule, skipIfNoQengine, skipIfNoSox, skipIfPy310, skipIfRocm, TempDirMixin, TestBaseMixin, TorchaudioTestCase, zip_equal, ) from .data_utils import get_asset_path, get_sinusoid, get_spectrogram, get_whitenoise from .func_utils import torch_script from .image_utils import get_image, rgb_to_gray, rgb_to_yuv_ccir, save_image from .parameterized_utils import load_params, nested_params from .wav_utils import get_wav_data, load_wav, normalize_wav, save_wav __all__ = [ "get_asset_path", "get_whitenoise", "get_sinusoid", "get_spectrogram", "set_audio_backend", "TempDirMixin", "HttpServerMixin", "TestBaseMixin", "PytorchTestCase", "TorchaudioTestCase", "is_ffmpeg_available", "skipIfNoCtcDecoder", "skipIfNoCuda", "skipIfNoExec", "skipIfNoModule", "skipIfNoKaldi", "skipIfNoSox", "skipIfNoSoxBackend", "skipIfRocm", "skipIfNoQengine", "skipIfNoFFmpeg", "skipIfPy310", "get_wav_data", "normalize_wav", "load_wav", "save_wav", "load_params", "nested_params", "torch_script", "save_image", "get_image", "rgb_to_gray", "rgb_to_yuv_ccir", "zip_equal", ]
import os import torchaudio import torchvision from torch.utils.data import Dataset def _load_list(args, *filenames): output = [] length = [] for filename in filenames: filepath = os.path.join(args.root_dir, "labels", filename) for line in open(filepath).read().splitlines(): dataset, rel_path, input_length = line.split(",")[0], line.split(",")[1], line.split(",")[2] path = os.path.normpath(os.path.join(args.root_dir, dataset, rel_path[:-4] + ".mp4")) length.append(int(input_length)) output.append(path) return output, length def load_video(path): """ rtype: torch, T x C x H x W """ vid = torchvision.io.read_video(path, pts_unit="sec", output_format="THWC")[0] vid = vid.permute((0, 3, 1, 2)) return vid def load_audio(path): """ rtype: torch, T x 1 """ waveform, sample_rate = torchaudio.load(path, normalize=True) return waveform.transpose(1, 0) def load_transcript(path): transcript_path = path.replace("video_seg", "text_seg")[:-4] + ".txt" return open(transcript_path).read().splitlines()[0] def load_item(path, modality): if modality == "video": return (load_video(path), load_transcript(path)) if modality == "audio": return (load_audio(path), load_transcript(path)) if modality == "audiovisual": return (load_audio(path), load_video(path), load_transcript(path)) class LRS3(Dataset): def __init__( self, args, subset: str = "train", ) -> None: if subset is not None and subset not in ["train", "val", "test"]: raise ValueError("When `subset` is not None, it must be one of ['train', 'val', 'test'].") self.args = args if subset == "train": self.files, self.lengths = _load_list(self.args, "lrs3_train_transcript_lengths_seg16s.csv") if subset == "val": self.files, self.lengths = _load_list(self.args, "lrs3_test_transcript_lengths_seg16s.csv") if subset == "test": self.files, self.lengths = _load_list(self.args, "lrs3_test_transcript_lengths_seg16s.csv") def __getitem__(self, n): path = self.files[n] return load_item(path, self.args.modality) def __len__(self) -> int: return len(self.files)
import os import torchaudio import torchvision from torch.utils.data import Dataset def _load_list(args, *filenames): output = [] length = [] for filename in filenames: filepath = os.path.join(args.root_dir, "labels", filename) for line in open(filepath).read().splitlines(): dataset, rel_path, input_length = line.split(",")[0], line.split(",")[1], line.split(",")[2] path = os.path.normpath(os.path.join(args.root_dir, dataset, rel_path[:-4] + ".mp4")) length.append(int(input_length)) output.append(path) return output, length def load_video(path): """ rtype: torch, T x C x H x W """ vid = torchvision.io.read_video(path, pts_unit="sec", output_format="THWC")[0] vid = vid.permute((0, 3, 1, 2)) return vid def load_audio(path): """ rtype: torch, T x 1 """ waveform, sample_rate = torchaudio.load(path, normalize=True) return waveform.transpose(1, 0) def load_transcript(path): transcript_path = path.replace("video_seg", "text_seg")[:-4] + ".txt" return open(transcript_path).read().splitlines()[0] def load_item(path, md): if md == "v": return (load_video(path), load_transcript(path)) if md == "a": return (load_audio(path), load_transcript(path)) if md == "av": return (load_audio(path), load_video(path), load_transcript(path)) class LRS3(Dataset): def __init__( self, args, subset: str = "train", ) -> None: if subset is not None and subset not in ["train", "val", "test"]: raise ValueError("When `subset` is not None, it must be one of ['train', 'val', 'test'].") self.args = args if subset == "train": self._filelist, self._lengthlist = _load_list(self.args, "lrs3_train_transcript_lengths_seg16s.csv") if subset == "val": self._filelist, self._lengthlist = _load_list(self.args, "lrs3_test_transcript_lengths_seg16s.csv") if subset == "test": self._filelist, self._lengthlist = _load_list(self.args, "lrs3_test_transcript_lengths_seg16s.csv") def __getitem__(self, n): path = self._filelist[n] return load_item(path, self.args.md) def __len__(self) -> int: return len(self._filelist)
from typing import Optional from typing_extensions import TypeAlias import torch from torch import Tensor from torch.autograd.grad_mode import no_grad def _get_foreach_kernels_supported_devices() -> list[str]: r"""Return the device type list that supports foreach kernels.""" return ["cuda", "xpu", "mtia", torch._C._get_privateuse1_backend_name()] def _get_fused_kernels_supported_devices() -> list[str]: r"""Return the device type list that supports fused kernels in optimizer.""" return [ "mps", "cuda", "xpu", "hpu", "cpu", "mtia", torch._C._get_privateuse1_backend_name(), ] TensorListList: TypeAlias = list[list[Optional[Tensor]]] Indices: TypeAlias = list[int] _foreach_supported_types = [torch.Tensor] # This util function splits tensors into groups by device and dtype, which is useful before sending # tensors off to a foreach implementation, which requires tensors to be on one device and dtype. # If tensorlistlist contains more than one tensorlist, the following assumptions are made BUT NOT verified: # - tensorlists CAN be None # - all tensors in the first specified list cannot be None # - given an index i, all specified tensorlist[i]s match in dtype and device # with_indices (bool, optional): whether to track previous indices as the last list per dictionary entry. # It comes in handy if there are Nones or literals in the tensorlists that are getting scattered out. # Whereas mutating a tensor in the resulting split-up tensorlists WILL propagate changes back to the # original input tensorlists, changing up Nones/literals WILL NOT propagate, and manual propagation # may be necessary. Check out torch/optim/sgd.py for an example. @no_grad() def _group_tensors_by_device_and_dtype( tensorlistlist: TensorListList, with_indices: bool = False, ) -> dict[tuple[torch.device, torch.dtype], tuple[TensorListList, Indices]]: return torch._C._group_tensors_by_device_and_dtype(tensorlistlist, with_indices) def _device_has_foreach_support(device: torch.device) -> bool: return ( device.type in (_get_foreach_kernels_supported_devices() + ["cpu"]) and not torch.jit.is_scripting() ) def _has_foreach_support(tensors: list[Tensor], device: torch.device) -> bool: return _device_has_foreach_support(device) and all( t is None or type(t) in _foreach_supported_types for t in tensors )
from typing import Optional from typing_extensions import TypeAlias import torch from torch import Tensor from torch.autograd.grad_mode import no_grad def _get_foreach_kernels_supported_devices() -> list[str]: r"""Return the device type list that supports foreach kernels.""" return ["cuda", "xpu", torch._C._get_privateuse1_backend_name()] def _get_fused_kernels_supported_devices() -> list[str]: r"""Return the device type list that supports fused kernels in optimizer.""" return [ "mps", "cuda", "xpu", "hpu", "cpu", torch._C._get_privateuse1_backend_name(), ] TensorListList: TypeAlias = list[list[Optional[Tensor]]] Indices: TypeAlias = list[int] _foreach_supported_types = [torch.Tensor] # This util function splits tensors into groups by device and dtype, which is useful before sending # tensors off to a foreach implementation, which requires tensors to be on one device and dtype. # If tensorlistlist contains more than one tensorlist, the following assumptions are made BUT NOT verified: # - tensorlists CAN be None # - all tensors in the first specified list cannot be None # - given an index i, all specified tensorlist[i]s match in dtype and device # with_indices (bool, optional): whether to track previous indices as the last list per dictionary entry. # It comes in handy if there are Nones or literals in the tensorlists that are getting scattered out. # Whereas mutating a tensor in the resulting split-up tensorlists WILL propagate changes back to the # original input tensorlists, changing up Nones/literals WILL NOT propagate, and manual propagation # may be necessary. Check out torch/optim/sgd.py for an example. @no_grad() def _group_tensors_by_device_and_dtype( tensorlistlist: TensorListList, with_indices: bool = False, ) -> dict[tuple[torch.device, torch.dtype], tuple[TensorListList, Indices]]: return torch._C._group_tensors_by_device_and_dtype(tensorlistlist, with_indices) def _device_has_foreach_support(device: torch.device) -> bool: return ( device.type in (_get_foreach_kernels_supported_devices() + ["cpu"]) and not torch.jit.is_scripting() ) def _has_foreach_support(tensors: list[Tensor], device: torch.device) -> bool: return _device_has_foreach_support(device) and all( t is None or type(t) in _foreach_supported_types for t in tensors )
from jina.schemas.helper import _cli_to_schema from jina_cli.export import api_to_dict for s in ('flow', 'gateway', 'executor'): a = _cli_to_schema(api_to_dict(), s) table = ['| Name | Description | Type | Default |', '|----|----|----|----|'] for k, v in a[f'Jina::{s.capitalize()}']['properties'].items(): desc = v["description"].replace("\n", "<br>") if k in ('port', 'port_monitoring'): v[ 'default' ] = 'random in [49152, 65535]' # avoid random numbers cause devbot forever committing table.append(f'| `{k}` | {desc} | `{v["type"]}` | `{v["default"]}` |') with open(f'../docs/concepts/flow/{s}-args.md', 'w') as fp: fp.write('\n'.join(table))
from jina.schemas.helper import _cli_to_schema from jina_cli.export import api_to_dict for s in ('flow', 'gateway', 'executor'): a = _cli_to_schema(api_to_dict(), s) table = ['| Name | Description | Type | Default |', '|----|----|----|----|'] for k, v in a[f'Jina::{s.capitalize()}']['properties'].items(): desc = v["description"].replace("\n", "<br>") if k in ('port', 'port_monitoring'): v[ 'default' ] = 'random in [49152, 65535]' # avoid random numbers cause devbot forever committing table.append(f'| `{k}` | {desc} | `{v["type"]}` | `{v["default"]}` |') with open(f'../docs/fundamentals/flow/{s}-args.md', 'w') as fp: fp.write('\n'.join(table))
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update` deps = { "Pillow": "Pillow", "accelerate": "accelerate>=0.31.0", "compel": "compel==0.1.8", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.27.0", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark>=0.2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.4.1", "jaxlib": "jaxlib>=0.4.1", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "parameterized": "parameterized", "peft": "peft>=0.6.0", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ruff": "ruff==0.9.10", "safetensors": "safetensors>=0.3.1", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "GitPython": "GitPython<3.1.19", "scipy": "scipy", "onnx": "onnx", "optimum_quanto": "optimum_quanto>=0.2.6", "gguf": "gguf>=0.10.0", "torchao": "torchao>=0.7.0", "bitsandbytes": "bitsandbytes>=0.43.3", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "tiktoken": "tiktoken>=0.7.0", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.41.2", "urllib3": "urllib3<=2.0.0", "black": "black", "phonemizer": "phonemizer", }
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update` deps = { "Pillow": "Pillow", "accelerate": "accelerate>=0.31.0", "compel": "compel==0.1.8", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.27.0", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark>=0.2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.4.1", "jaxlib": "jaxlib>=0.4.1", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "parameterized": "parameterized", "peft": "peft>=0.6.0", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ruff": "ruff==0.1.5", "safetensors": "safetensors>=0.3.1", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "GitPython": "GitPython<3.1.19", "scipy": "scipy", "onnx": "onnx", "optimum_quanto": "optimum_quanto>=0.2.6", "gguf": "gguf>=0.10.0", "torchao": "torchao>=0.7.0", "bitsandbytes": "bitsandbytes>=0.43.3", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "tiktoken": "tiktoken>=0.7.0", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.41.2", "urllib3": "urllib3<=2.0.0", "black": "black", "phonemizer": "phonemizer", }
from abc import abstractmethod from typing import TYPE_CHECKING, Any, Type, TypeVar from pydantic import BaseConfig from pydantic.fields import ModelField from docarray.base_document.base_node import BaseNode if TYPE_CHECKING: from docarray.proto import NodeProto T = TypeVar('T') class AbstractType(BaseNode): _proto_type_name: str @classmethod def __get_validators__(cls): yield cls.validate @classmethod @abstractmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: ... @classmethod @abstractmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: ... @abstractmethod def _to_node_protobuf(self: T) -> 'NodeProto': ...
from abc import abstractmethod from typing import TYPE_CHECKING, Any, Type, TypeVar from pydantic import BaseConfig from pydantic.fields import ModelField from docarray.base_document.base_node import BaseNode if TYPE_CHECKING: from docarray.proto import NodeProto T = TypeVar('T') class AbstractType(BaseNode): @classmethod def __get_validators__(cls): yield cls.validate @classmethod @abstractmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: ... @classmethod @abstractmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: ... @abstractmethod def _to_node_protobuf(self: T) -> 'NodeProto': ...
# Copyright (c) OpenMMLab. All rights reserved. from .base_sampler import BaseSampler from .combined_sampler import CombinedSampler from .instance_balanced_pos_sampler import InstanceBalancedPosSampler from .iou_balanced_neg_sampler import IoUBalancedNegSampler from .mask_pseudo_sampler import MaskPseudoSampler from .mask_sampling_result import MaskSamplingResult from .multi_instance_random_sampler import MultiInsRandomSampler from .multi_instance_sampling_result import MultiInstanceSamplingResult from .ohem_sampler import OHEMSampler from .pseudo_sampler import PseudoSampler from .random_sampler import RandomSampler from .sampling_result import SamplingResult from .score_hlr_sampler import ScoreHLRSampler __all__ = [ 'BaseSampler', 'PseudoSampler', 'RandomSampler', 'InstanceBalancedPosSampler', 'IoUBalancedNegSampler', 'CombinedSampler', 'OHEMSampler', 'SamplingResult', 'ScoreHLRSampler', 'MaskPseudoSampler', 'MaskSamplingResult', 'MultiInstanceSamplingResult', 'MultiInsRandomSampler' ]
# Copyright (c) OpenMMLab. All rights reserved. from .base_sampler import BaseSampler from .combined_sampler import CombinedSampler from .instance_balanced_pos_sampler import InstanceBalancedPosSampler from .iou_balanced_neg_sampler import IoUBalancedNegSampler from .mask_pseudo_sampler import MaskPseudoSampler from .mask_sampling_result import MaskSamplingResult from .ohem_sampler import OHEMSampler from .pseudo_sampler import PseudoSampler from .random_sampler import RandomSampler from .sampling_result import SamplingResult from .score_hlr_sampler import ScoreHLRSampler __all__ = [ 'BaseSampler', 'PseudoSampler', 'RandomSampler', 'InstanceBalancedPosSampler', 'IoUBalancedNegSampler', 'CombinedSampler', 'OHEMSampler', 'SamplingResult', 'ScoreHLRSampler', 'MaskPseudoSampler', 'MaskSamplingResult' ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders import CollegeConfidentialLoader # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "CollegeConfidentialLoader": "langchain_community.document_loaders", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "CollegeConfidentialLoader", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders import CollegeConfidentialLoader # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "CollegeConfidentialLoader": "langchain_community.document_loaders" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "CollegeConfidentialLoader", ]
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from pydantic import Field from docarray.base_doc import BaseDoc from docarray.documents import AudioDoc from docarray.typing import AnyEmbedding, AnyTensor, VideoBytes from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: tf = import_library('tensorflow', raise_error=False) torch = import_library('torch', raise_error=False) T = TypeVar('T', bound='VideoDoc') class VideoDoc(BaseDoc): """ Document for handling video. The Video Document can contain: - a [`VideoUrl`][docarray.typing.url.VideoUrl] (`VideoDoc.url`) - an [`AudioDoc`][docarray.documents.AudioDoc] (`VideoDoc.audio`) - a [`VideoTensor`](../../../api_references/typing/tensor/video) (`VideoDoc.tensor`) - an [`AnyTensor`](../../../api_references/typing/tensor/tensor) representing the indices of the video's key frames (`VideoDoc.key_frame_indices`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`VideoDoc.embedding`) - a [`VideoBytes`][docarray.typing.bytes.VideoBytes] object (`VideoDoc.bytes_`) You can use this Document directly: ```python from docarray.documents import VideoDoc # use it directly vid = VideoDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ) vid.tensor, vid.audio.tensor, vid.key_frame_indices = vid.url.load() # model = MyEmbeddingModel() # vid.embedding = model(vid.tensor) ``` You can extend this Document: ```python from typing import Optional from docarray.documents import TextDoc, VideoDoc # extend it class MyVideo(VideoDoc): name: Optional[TextDoc] video = MyVideo( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ) video.name = TextDoc(text='my first video') video.tensor = video.url.load().video # model = MyEmbeddingModel() # video.embedding = model(video.tensor) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import TextDoc, VideoDoc # compose it class MultiModalDoc(BaseDoc): video: VideoDoc text: TextDoc mmdoc = MultiModalDoc( video=VideoDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.video.tensor = mmdoc.video.url.load().video # or mmdoc.video.bytes_ = mmdoc.video.url.load_bytes() mmdoc.video.tensor = mmdoc.video.bytes_.load().video ``` """ url: Optional[VideoUrl] = Field( description='URL to a (potentially remote) video file that needs to be loaded', example='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true', default=None, ) audio: Optional[AudioDoc] = Field( description='Audio document associated with the video', default=None, ) tensor: Optional[VideoTensor] = Field( description='Tensor object representing the video which be specified to one of `VideoNdArray`, `VideoTorchTensor`, `VideoTensorFlowTensor`', default=None, ) key_frame_indices: Optional[AnyTensor] = Field( description='List of all the key frames in the video', example=[0, 1, 2, 3, 4], default=None, ) embedding: Optional[AnyEmbedding] = Field( description='Store an embedding: a vector representation of the video', example=[1, 0, 1], default=None, ) bytes_: Optional[VideoBytes] = Field( description='Bytes representation of the video', default=None, ) @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch is not None and isinstance(value, torch.Tensor) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) return super().validate(value)
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.documents import AudioDoc from docarray.typing import AnyEmbedding, AnyTensor, VideoBytes from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: tf = import_library('tensorflow', raise_error=False) torch = import_library('torch', raise_error=False) T = TypeVar('T', bound='VideoDoc') class VideoDoc(BaseDoc): """ Document for handling video. The Video Document can contain: - a [`VideoUrl`][docarray.typing.url.VideoUrl] (`VideoDoc.url`) - an [`AudioDoc`][docarray.documents.AudioDoc] (`VideoDoc.audio`) - a [`VideoTensor`](../../../api_references/typing/tensor/video) (`VideoDoc.tensor`) - an [`AnyTensor`](../../../api_references/typing/tensor/tensor) representing the indices of the video's key frames (`VideoDoc.key_frame_indices`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`VideoDoc.embedding`) - a [`VideoBytes`][docarray.typing.bytes.VideoBytes] object (`VideoDoc.bytes_`) You can use this Document directly: ```python from docarray.documents import VideoDoc # use it directly vid = VideoDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ) vid.tensor, vid.audio.tensor, vid.key_frame_indices = vid.url.load() # model = MyEmbeddingModel() # vid.embedding = model(vid.tensor) ``` You can extend this Document: ```python from typing import Optional from docarray.documents import TextDoc, VideoDoc # extend it class MyVideo(VideoDoc): name: Optional[TextDoc] video = MyVideo( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ) video.name = TextDoc(text='my first video') video.tensor = video.url.load().video # model = MyEmbeddingModel() # video.embedding = model(video.tensor) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import TextDoc, VideoDoc # compose it class MultiModalDoc(BaseDoc): video: VideoDoc text: TextDoc mmdoc = MultiModalDoc( video=VideoDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.video.tensor = mmdoc.video.url.load().video # or mmdoc.video.bytes_ = mmdoc.video.url.load_bytes() mmdoc.video.tensor = mmdoc.video.bytes_.load().video ``` """ url: Optional[VideoUrl] = None audio: Optional[AudioDoc] = AudioDoc() tensor: Optional[VideoTensor] = None key_frame_indices: Optional[AnyTensor] = None embedding: Optional[AnyEmbedding] = None bytes_: Optional[VideoBytes] = None @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch is not None and isinstance(value, torch.Tensor) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) return super().validate(value)
import logging from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseNanoBEIREvaluator, SpladePooling, ) logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Create evaluator for all NanoBEIR datasets evaluator = SparseNanoBEIREvaluator( dataset_names=None, # None means evaluate on all datasets show_progress_bar=True, batch_size=16, ) # Run evaluation results = evaluator(model) # Print the results print(f"Primary metric: {evaluator.primary_metric}") print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}")
from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseNanoBEIREvaluator, SpladePooling, ) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Create evaluator for all NanoBEIR datasets evaluator = SparseNanoBEIREvaluator( dataset_names=None, # None means evaluate on all datasets show_progress_bar=True, batch_size=32, ) # Run evaluation print("Starting evaluation on all NanoBEIR datasets") results = evaluator(model) print(f"Primary metric: {evaluator.primary_metric}") print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # Print results for each dataset for key, value in results.items(): if key.startswith("Nano"): print(f"{key}: {value:.4f}")
import numpy as np from docarray import DocumentArray, Document, dataclass from docarray.typing import Text from jina import Executor, Flow, requests def test_specific_params(): class MyExec(Executor): def __init__(self, params_awaited, *args, **kwargs): super().__init__(*args, **kwargs) self.params_awaited = params_awaited @requests def process(self, docs, parameters, **kwargs): for doc in docs: doc.tags['assert'] = parameters == self.params_awaited flow = ( Flow() .add(uses=MyExec, name='exec1', uses_with={'params_awaited': {'key_1': True}}) .add( uses=MyExec, name='exec2', uses_with={'params_awaited': {'key_1': True, 'key_2': False}}, ) ) with flow: docs = flow.index( DocumentArray.empty(size=1), parameters={'key_1': True, 'exec2__key_2': False}, ) assert docs[0].tags['assert'] def test_specific_params_with_branched_flow(): class TextEncoderTestSpecific(Executor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.model = lambda t: np.random.rand( len(t), 128 ) # initialize dummy text embedding model @requests(on='/encode') def encode_text(self, docs, parameters, **kwargs): path = parameters.get('access_path', None) text_docs = docs[path] embeddings = self.model(text_docs[:, 'text']) text_docs.embeddings = embeddings class EmbeddingCombinerTestSpecific(Executor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.model = lambda emb1, emb2: np.concatenate( [emb1, emb2], axis=1 ) # initialize dummy model to combine embeddings @requests(on='/encode') def combine(self, docs, parameters, **kwargs): text1_path = parameters.get('text1_access_path', None) text2_path = parameters.get('text2_access_path', None) assert text1_path == '@.[text1]' assert text2_path == '@.[text2]' text1_docs = docs[text1_path] text2_docs = docs[text2_path] combined_embeddings = self.model(text1_docs.embeddings, text2_docs.embeddings) docs.embeddings = combined_embeddings @dataclass class MMDoc: text1: Text text2: Text mmdoc_dataclass = MMDoc(text1='text 1', text2='text 2') da = DocumentArray([Document(mmdoc_dataclass)]) f = ( Flow() .add(uses=TextEncoderTestSpecific, name='Text1Encoder') .add(uses=TextEncoderTestSpecific, name='Text2Encoder', needs='gateway') .add(uses=EmbeddingCombinerTestSpecific, name='Combiner', needs=['Text1Encoder', 'Text2Encoder']) ) with f: da = f.post( inputs=da, on='/encode', parameters={ 'Text1Encoder__access_path': '@.[text1]', 'Text2Encoder__access_path': '@.[text2]', 'Combiner__text1_access_path': '@.[text1]', 'Combiner__text2_access_path': '@.[text2]', }, ) assert len(da) == 1 for d in da: assert d.embedding.shape == (256, )
import copy from docarray import DocumentArray from jina import Executor, Flow, requests def test_specific_params(): class MyExec(Executor): def __init__(self, params_awaited, *args, **kwargs): super().__init__(*args, **kwargs) self.params_awaited = params_awaited @requests def process(self, docs, parameters, **kwargs): docs[0].tags['assert'] = parameters == self.params_awaited flow = ( Flow() .add(uses=MyExec, name='exec1', uses_with={'params_awaited': {'key_1': True}}) .add( uses=MyExec, name='exec2', uses_with={'params_awaited': {'key_1': True, 'key_2': False}}, ) ) with flow: docs = flow.index( DocumentArray.empty(size=1), parameters={'key_1': True, 'exec2__key_2': False}, ) assert docs[0].tags['assert']
import json import os from typing import List import torch from torch import nn class CNN(nn.Module): """CNN-layer with multiple kernel-sizes over the word embeddings""" def __init__( self, in_word_embedding_dimension: int, out_channels: int = 256, kernel_sizes: List[int] = [1, 3, 5], stride_sizes: List[int] = None, ): nn.Module.__init__(self) self.config_keys = ["in_word_embedding_dimension", "out_channels", "kernel_sizes"] self.in_word_embedding_dimension = in_word_embedding_dimension self.out_channels = out_channels self.kernel_sizes = kernel_sizes self.embeddings_dimension = out_channels * len(kernel_sizes) self.convs = nn.ModuleList() in_channels = in_word_embedding_dimension if stride_sizes is None: stride_sizes = [1] * len(kernel_sizes) for kernel_size, stride in zip(kernel_sizes, stride_sizes): padding_size = int((kernel_size - 1) / 2) conv = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding_size, ) self.convs.append(conv) def forward(self, features): token_embeddings = features["token_embeddings"] token_embeddings = token_embeddings.transpose(1, -1) vectors = [conv(token_embeddings) for conv in self.convs] out = torch.cat(vectors, 1).transpose(1, -1) features.update({"token_embeddings": out}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str, **kwargs) -> List[int]: raise NotImplementedError() def save(self, output_path: str): with open(os.path.join(output_path, "cnn_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "cnn_config.json"), "r") as fIn: config = json.load(fIn) weights = torch.load(os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu")) model = CNN(**config) model.load_state_dict(weights) return model
import torch from torch import nn from typing import List import os import json class CNN(nn.Module): """CNN-layer with multiple kernel-sizes over the word embeddings""" def __init__( self, in_word_embedding_dimension: int, out_channels: int = 256, kernel_sizes: List[int] = [1, 3, 5], stride_sizes: List[int] = None, ): nn.Module.__init__(self) self.config_keys = ["in_word_embedding_dimension", "out_channels", "kernel_sizes"] self.in_word_embedding_dimension = in_word_embedding_dimension self.out_channels = out_channels self.kernel_sizes = kernel_sizes self.embeddings_dimension = out_channels * len(kernel_sizes) self.convs = nn.ModuleList() in_channels = in_word_embedding_dimension if stride_sizes is None: stride_sizes = [1] * len(kernel_sizes) for kernel_size, stride in zip(kernel_sizes, stride_sizes): padding_size = int((kernel_size - 1) / 2) conv = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding_size, ) self.convs.append(conv) def forward(self, features): token_embeddings = features["token_embeddings"] token_embeddings = token_embeddings.transpose(1, -1) vectors = [conv(token_embeddings) for conv in self.convs] out = torch.cat(vectors, 1).transpose(1, -1) features.update({"token_embeddings": out}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str, **kwargs) -> List[int]: raise NotImplementedError() def save(self, output_path: str): with open(os.path.join(output_path, "cnn_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "cnn_config.json"), "r") as fIn: config = json.load(fIn) weights = torch.load(os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu")) model = CNN(**config) model.load_state_dict(weights) return model
"""An internal script to process `new_model_failures_with_bad_commit.json` produced by `utils/check_bad_commit.py`. This is used by `.github/workflows/check_failed_model_tests.yml` to produce a slack report of the following form ``` <{url}|New failed tests> { "GH_ydshieh": { "vit": 1 } } ``` """ import json import os from collections import Counter from copy import deepcopy from get_previous_daily_ci import get_last_daily_ci_run from huggingface_hub import HfApi if __name__ == "__main__": api = HfApi() with open("new_model_failures_with_bad_commit.json") as fp: data = json.load(fp) with open("ci_results_run_models_gpu/model_job_links.json") as fp: model_job_links = json.load(fp) # TODO: extend team_members = [ "ydshieh", "zucchini-nlp", "ArthurZucker", "gante", "LysandreJik", "molbap", "qubvel", "Rocketknight1", "muellerzr", "SunMarc", ] # Counting the number of failures grouped by authors new_data = {} for model, model_result in data.items(): for device, failed_tests in model_result.items(): for failed_test in failed_tests: author = failed_test["author"] if author not in team_members: author = failed_test["merged_by"] if author not in new_data: new_data[author] = Counter() new_data[author].update([model]) for author in new_data: new_data[author] = dict(new_data[author]) # Group by author new_data_full = {author: deepcopy(data) for author in new_data} for author, _data in new_data_full.items(): for model, model_result in _data.items(): for device, failed_tests in model_result.items(): # prepare job_link and add it to each entry of new failed test information. # need to change from `single-gpu` to `single` and same for `multi-gpu` to match `job_link`. job_link = model_job_links[model][device.replace("-gpu", "")] failed_tests = [x for x in failed_tests if x["author"] == author or x["merged_by"] == author] for x in failed_tests: x.update({"job_link": job_link}) model_result[device] = failed_tests _data[model] = {k: v for k, v in model_result.items() if len(v) > 0} new_data_full[author] = {k: v for k, v in _data.items() if len(v) > 0} # Upload to Hub and get the url # if it is not a scheduled run, upload the reports to a subfolder under `report_repo_folder` report_repo_subfolder = "" if os.getenv("GITHUB_EVENT_NAME") != "schedule": report_repo_subfolder = f"{os.getenv('GITHUB_RUN_NUMBER')}-{os.getenv('GITHUB_RUN_ID')}" report_repo_subfolder = f"runs/{report_repo_subfolder}" workflow_run = get_last_daily_ci_run( token=os.environ["ACCESS_REPO_INFO_TOKEN"], workflow_run_id=os.getenv("GITHUB_RUN_ID") ) workflow_run_created_time = workflow_run["created_at"] report_repo_folder = workflow_run_created_time.split("T")[0] if report_repo_subfolder: report_repo_folder = f"{report_repo_folder}/{report_repo_subfolder}" with open("new_model_failures_with_bad_commit_grouped_by_authors.json", "w") as fp: json.dump(new_data_full, fp, ensure_ascii=False, indent=4) commit_info = api.upload_file( path_or_fileobj="new_model_failures_with_bad_commit_grouped_by_authors.json", path_in_repo=f"{report_repo_folder}/ci_results_run_models_gpu/new_model_failures_with_bad_commit_grouped_by_authors.json", repo_id="hf-internal-testing/transformers_daily_ci", repo_type="dataset", token=os.environ.get("TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN", None), ) url = f"https://huggingface.co/datasets/hf-internal-testing/transformers_daily_ci/raw/{commit_info.oid}/{report_repo_folder}/ci_results_run_models_gpu/new_model_failures_with_bad_commit_grouped_by_authors.json" # Add `GH_` prefix as keyword mention output = {} for author, item in new_data.items(): author = f"GH_{author}" output[author] = item report = f"<{url}|New failed tests>\\n\\n" report += json.dumps(output, indent=4).replace('"', '\\"').replace("\n", "\\n") print(report)
"""An internal script to process `new_model_failures_with_bad_commit.json` produced by `utils/check_bad_commit.py`. This is used by `.github/workflows/check_failed_model_tests.yml` to produce a slack report of the following form ``` <{url}|New failed tests> { "GH_ydshieh": { "vit": 1 } } ``` """ import datetime import json import os from collections import Counter from copy import deepcopy from huggingface_hub import HfApi if __name__ == "__main__": api = HfApi() with open("new_model_failures_with_bad_commit.json") as fp: data = json.load(fp) with open("ci_results_run_models_gpu/model_job_links.json") as fp: model_job_links = json.load(fp) # TODO: extend team_members = [ "ydshieh", "zucchini-nlp", "ArthurZucker", "gante", "LysandreJik", "molbap", "qubvel", "Rocketknight1", "muellerzr", "SunMarc", ] # Counting the number of failures grouped by authors new_data = {} for model, model_result in data.items(): for device, failed_tests in model_result.items(): for failed_test in failed_tests: author = failed_test["author"] if author not in team_members: author = failed_test["merged_by"] if author not in new_data: new_data[author] = Counter() new_data[author].update([model]) for author in new_data: new_data[author] = dict(new_data[author]) # Group by author new_data_full = {author: deepcopy(data) for author in new_data} for author, _data in new_data_full.items(): for model, model_result in _data.items(): for device, failed_tests in model_result.items(): # prepare job_link and add it to each entry of new failed test information. # need to change from `single-gpu` to `single` and same for `multi-gpu` to match `job_link`. job_link = model_job_links[model][device.replace("-gpu", "")] failed_tests = [x for x in failed_tests if x["author"] == author or x["merged_by"] == author] for x in failed_tests: x.update({"job_link": job_link}) model_result[device] = failed_tests _data[model] = {k: v for k, v in model_result.items() if len(v) > 0} new_data_full[author] = {k: v for k, v in _data.items() if len(v) > 0} # Upload to Hub and get the url with open("new_model_failures_with_bad_commit_grouped_by_authors.json", "w") as fp: json.dump(new_data_full, fp, ensure_ascii=False, indent=4) commit_info = api.upload_file( path_or_fileobj="new_model_failures_with_bad_commit_grouped_by_authors.json", path_in_repo=f"{datetime.datetime.today().strftime('%Y-%m-%d')}/ci_results_run_models_gpu/new_model_failures_with_bad_commit_grouped_by_authors.json", repo_id="hf-internal-testing/transformers_daily_ci", repo_type="dataset", token=os.environ.get("TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN", None), ) url = f"https://huggingface.co/datasets/hf-internal-testing/transformers_daily_ci/raw/{commit_info.oid}/{datetime.datetime.today().strftime('%Y-%m-%d')}/ci_results_run_models_gpu/new_model_failures_with_bad_commit_grouped_by_authors.json" # Add `GH_` prefix as keyword mention output = {} for author, item in new_data.items(): author = f"GH_{author}" output[author] = item report = f"<{url}|New failed tests>\\n\\n" report += json.dumps(output, indent=4).replace('"', '\\"').replace("\n", "\\n") print(report)
from pathlib import Path from typing import List, Tuple, Union import torch import torchaudio from torch.utils.data import Dataset SampleType = Tuple[int, torch.Tensor, List[torch.Tensor]] class LibriMix(Dataset): r"""Create the *LibriMix* :cite:`cosentino2020librimix` dataset. Args: root (str or Path): The path to the directory where the directory ``Libri2Mix`` or ``Libri3Mix`` is stored. subset (str, optional): The subset to use. Options: [``train-360``, ``train-100``, ``dev``, and ``test``] (Default: ``train-360``). num_speakers (int, optional): The number of speakers, which determines the directories to traverse. The Dataset will traverse ``s1`` to ``sN`` directories to collect N source audios. (Default: 2) sample_rate (int, optional): sample rate of audio files. The ``sample_rate`` determines which subdirectory the audio are fetched. If any of the audio has a different sample rate, raises ``ValueError``. Options: [8000, 16000] (Default: 8000) task (str, optional): the task of LibriMix. Options: [``enh_single``, ``enh_both``, ``sep_clean``, ``sep_noisy``] (Default: ``sep_clean``) Note: The LibriMix dataset needs to be manually generated. Please check https://github.com/JorisCos/LibriMix """ def __init__( self, root: Union[str, Path], subset: str = "train-360", num_speakers: int = 2, sample_rate: int = 8000, task: str = "sep_clean", ): self.root = Path(root) / f"Libri{num_speakers}Mix" if sample_rate == 8000: self.root = self.root / "wav8k/min" / subset elif sample_rate == 16000: self.root = self.root / "wav16k/min" / subset else: raise ValueError(f"Unsupported sample rate. Found {sample_rate}.") self.sample_rate = sample_rate self.task = task self.mix_dir = (self.root / f"mix_{task.split('_')[1]}").resolve() self.src_dirs = [(self.root / f"s{i+1}").resolve() for i in range(num_speakers)] self.files = [p.name for p in self.mix_dir.glob("*wav")] self.files.sort() def _load_audio(self, path) -> torch.Tensor: waveform, sample_rate = torchaudio.load(path) if sample_rate != self.sample_rate: raise ValueError( f"The dataset contains audio file of sample rate {sample_rate}, " f"but the requested sample rate is {self.sample_rate}." ) return waveform def _load_sample(self, filename) -> SampleType: mixed = self._load_audio(str(self.mix_dir / filename)) srcs = [] for i, dir_ in enumerate(self.src_dirs): src = self._load_audio(str(dir_ / filename)) if mixed.shape != src.shape: raise ValueError(f"Different waveform shapes. mixed: {mixed.shape}, src[{i}]: {src.shape}") srcs.append(src) return self.sample_rate, mixed, srcs def __len__(self) -> int: return len(self.files) def __getitem__(self, key: int) -> SampleType: """Load the n-th sample from the dataset. Args: key (int): The index of the sample to be loaded Returns: (int, Tensor, List[Tensor]): ``(sample_rate, mix_waveform, list_of_source_waveforms)`` """ return self._load_sample(self.files[key])
from pathlib import Path from typing import List, Tuple, Union import torch import torchaudio from torch.utils.data import Dataset SampleType = Tuple[int, torch.Tensor, List[torch.Tensor]] class LibriMix(Dataset): r"""Create the *LibriMix* [:footcite:`cosentino2020librimix`] dataset. Args: root (str or Path): The path to the directory where the directory ``Libri2Mix`` or ``Libri3Mix`` is stored. subset (str, optional): The subset to use. Options: [``train-360``, ``train-100``, ``dev``, and ``test``] (Default: ``train-360``). num_speakers (int, optional): The number of speakers, which determines the directories to traverse. The Dataset will traverse ``s1`` to ``sN`` directories to collect N source audios. (Default: 2) sample_rate (int, optional): sample rate of audio files. The ``sample_rate`` determines which subdirectory the audio are fetched. If any of the audio has a different sample rate, raises ``ValueError``. Options: [8000, 16000] (Default: 8000) task (str, optional): the task of LibriMix. Options: [``enh_single``, ``enh_both``, ``sep_clean``, ``sep_noisy``] (Default: ``sep_clean``) Note: The LibriMix dataset needs to be manually generated. Please check https://github.com/JorisCos/LibriMix """ def __init__( self, root: Union[str, Path], subset: str = "train-360", num_speakers: int = 2, sample_rate: int = 8000, task: str = "sep_clean", ): self.root = Path(root) / f"Libri{num_speakers}Mix" if sample_rate == 8000: self.root = self.root / "wav8k/min" / subset elif sample_rate == 16000: self.root = self.root / "wav16k/min" / subset else: raise ValueError(f"Unsupported sample rate. Found {sample_rate}.") self.sample_rate = sample_rate self.task = task self.mix_dir = (self.root / f"mix_{task.split('_')[1]}").resolve() self.src_dirs = [(self.root / f"s{i+1}").resolve() for i in range(num_speakers)] self.files = [p.name for p in self.mix_dir.glob("*wav")] self.files.sort() def _load_audio(self, path) -> torch.Tensor: waveform, sample_rate = torchaudio.load(path) if sample_rate != self.sample_rate: raise ValueError( f"The dataset contains audio file of sample rate {sample_rate}, " f"but the requested sample rate is {self.sample_rate}." ) return waveform def _load_sample(self, filename) -> SampleType: mixed = self._load_audio(str(self.mix_dir / filename)) srcs = [] for i, dir_ in enumerate(self.src_dirs): src = self._load_audio(str(dir_ / filename)) if mixed.shape != src.shape: raise ValueError(f"Different waveform shapes. mixed: {mixed.shape}, src[{i}]: {src.shape}") srcs.append(src) return self.sample_rate, mixed, srcs def __len__(self) -> int: return len(self.files) def __getitem__(self, key: int) -> SampleType: """Load the n-th sample from the dataset. Args: key (int): The index of the sample to be loaded Returns: (int, Tensor, List[Tensor]): ``(sample_rate, mix_waveform, list_of_source_waveforms)`` """ return self._load_sample(self.files[key])
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class Translation: """`FeatureConnector` for translations with fixed languages per example. Here for compatiblity with tfds. Args: languages (`dict`): A dictionary for each example mapping string language codes to string translations. Example: ```python >>> # At construction time: >>> datasets.features.Translation(languages=['en', 'fr', 'de']) >>> # During data generation: >>> yield { ... 'en': 'the cat', ... 'fr': 'le chat', ... 'de': 'die katze' ... } ``` """ languages: List[str] id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = None _type: str = field(default="Translation", init=False, repr=False) def __call__(self): return pa.struct({lang: pa.string() for lang in sorted(self.languages)}) def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: """Flatten the Translation feature into a dictionary.""" from .features import Value return {k: Value("string") for k in sorted(self.languages)} @dataclass class TranslationVariableLanguages: """`FeatureConnector` for translations with variable languages per example. Here for compatiblity with tfds. Args: languages (`dict`): A dictionary for each example mapping string language codes to one or more string translations. The languages present may vary from example to example. Returns: - `language` or `translation` (variable-length 1D `tf.Tensor` of `tf.string`): Language codes sorted in ascending order or plain text translations, sorted to align with language codes. Example: ```python >>> # At construction time: >>> datasets.features.TranslationVariableLanguages(languages=['en', 'fr', 'de']) >>> # During data generation: >>> yield { ... 'en': 'the cat', ... 'fr': ['le chat', 'la chatte,'] ... 'de': 'die katze' ... } >>> # Tensor returned : >>> { ... 'language': ['en', 'de', 'fr', 'fr'], ... 'translation': ['the cat', 'die katze', 'la chatte', 'le chat'], ... } ``` """ languages: Optional[List] = None num_languages: Optional[int] = None id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = None _type: str = field(default="TranslationVariableLanguages", init=False, repr=False) def __post_init__(self): self.languages = sorted(set(self.languages)) if self.languages else None self.num_languages = len(self.languages) if self.languages else None def __call__(self): return pa.struct({"language": pa.list_(pa.string()), "translation": pa.list_(pa.string())}) def encode_example(self, translation_dict): lang_set = set(self.languages) if set(translation_dict) == {"language", "translation"}: return translation_dict elif self.languages and set(translation_dict) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(translation_dict) - lang_set))}) are not in valid set ({", ".join(lang_set)}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. translation_tuples = [] for lang, text in translation_dict.items(): if isinstance(text, str): translation_tuples.append((lang, text)) else: translation_tuples.extend([(lang, el) for el in text]) # Ensure translations are in ascending order by language code. languages, translations = zip(*sorted(translation_tuples)) return {"language": languages, "translation": translations} def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: """Flatten the TranslationVariableLanguages feature into a dictionary.""" from .features import Sequence, Value return { "language": Sequence(Value("string")), "translation": Sequence(Value("string")), }
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class Translation: """`FeatureConnector` for translations with fixed languages per example. Here for compatiblity with tfds. Args: languages (`dict`): A dictionary for each example mapping string language codes to string translations. Example: ```python >>> # At construction time: >>> datasets.features.Translation(languages=['en', 'fr', 'de']) >>> # During data generation: >>> yield { ... 'en': 'the cat', ... 'fr': 'le chat', ... 'de': 'die katze' ... } ``` """ languages: List[str] id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = None _type: str = field(default="Translation", init=False, repr=False) def __call__(self): return pa.struct({lang: pa.string() for lang in sorted(self.languages)}) def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: """Flatten the Translation feature into a dictionary.""" from .features import Value return {k: Value("string") for k in sorted(self.languages)} @dataclass class TranslationVariableLanguages: """`FeatureConnector` for translations with variable languages per example. Here for compatiblity with tfds. Args: languages (`dict`): A dictionary for each example mapping string language codes to one or more string translations. The languages present may vary from example to example. Returns: - `language` or `translation` (variable-length 1D `tf.Tensor` of `tf.string`): Language codes sorted in ascending order or plain text translations, sorted to align with language codes. Example: ```python >>> # At construction time: >>> datasets.features.TranslationVariableLanguages(languages=['en', 'fr', 'de']) >>> # During data generation: >>> yield { ... 'en': 'the cat', ... 'fr': ['le chat', 'la chatte,'] ... 'de': 'die katze' ... } >>> # Tensor returned : >>> { ... 'language': ['en', 'de', 'fr', 'fr'], ... 'translation': ['the cat', 'die katze', 'la chatte', 'le chat'], ... } ``` """ languages: Optional[List] = None num_languages: Optional[int] = None id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = None _type: str = field(default="TranslationVariableLanguages", init=False, repr=False) def __post_init__(self): self.languages = sorted(set(self.languages)) if self.languages else None self.num_languages = len(self.languages) if self.languages else None def __call__(self): return pa.struct({"language": pa.list_(pa.string()), "translation": pa.list_(pa.string())}) def encode_example(self, translation_dict): lang_set = set(self.languages) if self.languages and set(translation_dict) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(translation_dict) - lang_set))}) are not in valid set ({", ".join(lang_set)}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. translation_tuples = [] for lang, text in translation_dict.items(): if isinstance(text, str): translation_tuples.append((lang, text)) else: translation_tuples.extend([(lang, el) for el in text]) # Ensure translations are in ascending order by language code. languages, translations = zip(*sorted(translation_tuples)) return {"language": languages, "translation": translations} def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: """Flatten the TranslationVariableLanguages feature into a dictionary.""" from .features import Sequence, Value return { "language": Sequence(Value("string")), "translation": Sequence(Value("string")), }
# pylint: disable=too-many-locals """Tests for learning to rank.""" from types import ModuleType from typing import Any import numpy as np import pytest import xgboost as xgb from xgboost import testing as tm def run_ranking_qid_df(impl: ModuleType, tree_method: str) -> None: """Test ranking with qid packed into X.""" import scipy.sparse from sklearn.metrics import mean_squared_error from sklearn.model_selection import StratifiedGroupKFold, cross_val_score X, y, q, _ = tm.make_ltr(n_samples=128, n_features=2, n_query_groups=8, max_rel=3) # pack qid into x using dataframe df = impl.DataFrame(X) df["qid"] = q ranker = xgb.XGBRanker(n_estimators=3, eval_metric="ndcg", tree_method=tree_method) ranker.fit(df, y) s = ranker.score(df, y) assert s > 0.7 # works with validation datasets as well valid_df = df.copy() valid_df.iloc[0, 0] = 3.0 ranker.fit(df, y, eval_set=[(valid_df, y)]) # same as passing qid directly ranker = xgb.XGBRanker(n_estimators=3, eval_metric="ndcg", tree_method=tree_method) ranker.fit(X, y, qid=q) s1 = ranker.score(df, y) assert np.isclose(s, s1) # Works with standard sklearn cv if tree_method != "gpu_hist": # we need cuML for this. kfold = StratifiedGroupKFold(shuffle=False) results = cross_val_score(ranker, df, y, cv=kfold, groups=df.qid) assert len(results) == 5 # Works with custom metric def neg_mse(*args: Any, **kwargs: Any) -> float: return -float(mean_squared_error(*args, **kwargs)) ranker = xgb.XGBRanker( n_estimators=3, eval_metric=neg_mse, tree_method=tree_method, disable_default_eval_metric=True, ) ranker.fit(df, y, eval_set=[(valid_df, y)]) score = ranker.score(valid_df, y) assert np.isclose(score, ranker.evals_result()["validation_0"]["neg_mse"][-1]) # Works with sparse data if tree_method != "gpu_hist": # no sparse with cuDF X_csr = scipy.sparse.csr_matrix(X) df = impl.DataFrame.sparse.from_spmatrix( X_csr, columns=[str(i) for i in range(X.shape[1])] ) df["qid"] = q ranker = xgb.XGBRanker( n_estimators=3, eval_metric="ndcg", tree_method=tree_method ) ranker.fit(df, y) s2 = ranker.score(df, y) assert np.isclose(s2, s) with pytest.raises(ValueError, match="Either `group` or `qid`."): ranker.fit(df, y, eval_set=[(X, y)]) def run_ranking_categorical(device: str) -> None: """Test LTR with categorical features.""" from sklearn.model_selection import cross_val_score X, y = tm.make_categorical( n_samples=512, n_features=10, n_categories=3, onehot=False ) rng = np.random.default_rng(1994) qid = rng.choice(3, size=y.shape[0]) qid = np.sort(qid) X["qid"] = qid ltr = xgb.XGBRanker(enable_categorical=True, device=device) ltr.fit(X, y) score = ltr.score(X, y) assert score > 0.9 ltr = xgb.XGBRanker(enable_categorical=True, device=device) # test using the score function inside sklearn. scores = cross_val_score(ltr, X, y) for s in scores: assert s > 0.7
# pylint: disable=too-many-locals """Tests for learning to rank.""" from types import ModuleType from typing import Any import numpy as np import pytest import xgboost as xgb from xgboost import testing as tm def run_ranking_qid_df(impl: ModuleType, tree_method: str) -> None: """Test ranking with qid packed into X.""" import scipy.sparse from sklearn.metrics import mean_squared_error from sklearn.model_selection import StratifiedGroupKFold, cross_val_score X, y, q, _ = tm.make_ltr(n_samples=128, n_features=2, n_query_groups=8, max_rel=3) # pack qid into x using dataframe df = impl.DataFrame(X) df["qid"] = q ranker = xgb.XGBRanker(n_estimators=3, eval_metric="ndcg", tree_method=tree_method) ranker.fit(df, y) s = ranker.score(df, y) assert s > 0.7 # works with validation datasets as well valid_df = df.copy() valid_df.iloc[0, 0] = 3.0 ranker.fit(df, y, eval_set=[(valid_df, y)]) # same as passing qid directly ranker = xgb.XGBRanker(n_estimators=3, eval_metric="ndcg", tree_method=tree_method) ranker.fit(X, y, qid=q) s1 = ranker.score(df, y) assert np.isclose(s, s1) # Works with standard sklearn cv if tree_method != "gpu_hist": # we need cuML for this. kfold = StratifiedGroupKFold(shuffle=False) results = cross_val_score(ranker, df, y, cv=kfold, groups=df.qid) assert len(results) == 5 # Works with custom metric def neg_mse(*args: Any, **kwargs: Any) -> float: return -float(mean_squared_error(*args, **kwargs)) ranker = xgb.XGBRanker( n_estimators=3, eval_metric=neg_mse, tree_method=tree_method, disable_default_eval_metric=True, ) ranker.fit(df, y, eval_set=[(valid_df, y)]) score = ranker.score(valid_df, y) assert np.isclose(score, ranker.evals_result()["validation_0"]["neg_mse"][-1]) # Works with sparse data if tree_method != "gpu_hist": # no sparse with cuDF X_csr = scipy.sparse.csr_matrix(X) df = impl.DataFrame.sparse.from_spmatrix( X_csr, columns=[str(i) for i in range(X.shape[1])] ) df["qid"] = q ranker = xgb.XGBRanker( n_estimators=3, eval_metric="ndcg", tree_method=tree_method ) ranker.fit(df, y) s2 = ranker.score(df, y) assert np.isclose(s2, s) with pytest.raises(ValueError, match="Either `group` or `qid`."): ranker.fit(df, y, eval_set=[(X, y)])
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.config import Config from mmengine.data import InstanceData from mmdet.models.dense_heads import YOLOV3Head class TestYOLOV3Head(TestCase): def test_yolo_head_loss(self): """Tests YOLO head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] head = YOLOV3Head( num_classes=4, in_channels=[1, 1, 1], out_channels=[1, 1, 1], train_cfg=Config( dict( assigner=dict( type='GridAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0)))) head.init_weights() # YOLO head expects a multiple levels of features per image feats = [ torch.rand(1, 1, s // stride[1], s // stride[0]) for stride in head.prior_generator.strides ] predmaps, = head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = head.loss_by_feat(predmaps, [gt_instances], img_metas) # When there is no truth, the conf loss should be nonzero but # cls loss and xy&wh loss should be zero empty_cls_loss = sum(empty_gt_losses['loss_cls']).item() empty_conf_loss = sum(empty_gt_losses['loss_conf']).item() empty_xy_loss = sum(empty_gt_losses['loss_xy']).item() empty_wh_loss = sum(empty_gt_losses['loss_wh']).item() self.assertGreater(empty_conf_loss, 0, 'conf loss should be non-zero') self.assertEqual( empty_cls_loss, 0, 'there should be no cls loss when there are no true boxes') self.assertEqual( empty_xy_loss, 0, 'there should be no xy loss when there are no true boxes') self.assertEqual( empty_wh_loss, 0, 'there should be no wh loss when there are no true boxes') # When truth is non-empty then all conf, cls loss and xywh loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = head.loss_by_feat(predmaps, [gt_instances], img_metas) one_gt_cls_loss = sum(one_gt_losses['loss_cls']).item() one_gt_conf_loss = sum(one_gt_losses['loss_conf']).item() one_gt_xy_loss = sum(one_gt_losses['loss_xy']).item() one_gt_wh_loss = sum(one_gt_losses['loss_wh']).item() self.assertGreater(one_gt_conf_loss, 0, 'conf loss should be non-zero') self.assertGreater(one_gt_cls_loss, 0, 'cls loss should be non-zero') self.assertGreater(one_gt_xy_loss, 0, 'xy loss should be non-zero') self.assertGreater(one_gt_wh_loss, 0, 'wh loss should be non-zero')
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.config import Config from mmengine.data import InstanceData from mmdet.models.dense_heads import YOLOV3Head class TestYOLOV3Head(TestCase): def test_yolo_head_loss(self): """Tests YOLO head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] head = YOLOV3Head( num_classes=4, in_channels=[1, 1, 1], out_channels=[1, 1, 1], train_cfg=Config( dict( assigner=dict( type='GridAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0)))) head.init_weights() # YOLO head expects a multiple levels of features per image feats = [ torch.rand(1, 1, s // stride[1], s // stride[0]) for stride in head.prior_generator.strides ] predmaps, = head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = head.loss(predmaps, [gt_instances], img_metas) # When there is no truth, the conf loss should be nonzero but # cls loss and xy&wh loss should be zero empty_cls_loss = sum(empty_gt_losses['loss_cls']).item() empty_conf_loss = sum(empty_gt_losses['loss_conf']).item() empty_xy_loss = sum(empty_gt_losses['loss_xy']).item() empty_wh_loss = sum(empty_gt_losses['loss_wh']).item() self.assertGreater(empty_conf_loss, 0, 'conf loss should be non-zero') self.assertEqual( empty_cls_loss, 0, 'there should be no cls loss when there are no true boxes') self.assertEqual( empty_xy_loss, 0, 'there should be no xy loss when there are no true boxes') self.assertEqual( empty_wh_loss, 0, 'there should be no wh loss when there are no true boxes') # When truth is non-empty then all conf, cls loss and xywh loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = head.loss(predmaps, [gt_instances], img_metas) one_gt_cls_loss = sum(one_gt_losses['loss_cls']).item() one_gt_conf_loss = sum(one_gt_losses['loss_conf']).item() one_gt_xy_loss = sum(one_gt_losses['loss_xy']).item() one_gt_wh_loss = sum(one_gt_losses['loss_wh']).item() self.assertGreater(one_gt_conf_loss, 0, 'conf loss should be non-zero') self.assertGreater(one_gt_cls_loss, 0, 'cls loss should be non-zero') self.assertGreater(one_gt_xy_loss, 0, 'xy loss should be non-zero') self.assertGreater(one_gt_wh_loss, 0, 'wh loss should be non-zero')
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def csv_file(tmp_path): filename = tmp_path / "file.csv" data = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def malformed_csv_file(tmp_path): filename = tmp_path / "malformed_file.csv" data = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def csv_file_with_image(tmp_path, image_file): filename = tmp_path / "csv_with_image.csv" data = textwrap.dedent( f"""\ image {image_file} """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def csv_file_with_label(tmp_path): filename = tmp_path / "csv_with_label.csv" data = textwrap.dedent( """\ label good bad good """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def csv_file_with_int_list(tmp_path): filename = tmp_path / "csv_with_int_list.csv" data = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(filename, "w") as f: f.write(data) return str(filename) def test_csv_generate_tables_raises_error_with_malformed_csv(csv_file, malformed_csv_file, caplog): csv = Csv() generator = csv._generate_tables([[csv_file, malformed_csv_file]]) with pytest.raises(ValueError, match="Error tokenizing data"): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(malformed_csv_file) in record.message for record in caplog.records ) @require_pil def test_csv_cast_image(csv_file_with_image): with open(csv_file_with_image, encoding="utf-8") as f: image_file = f.read().splitlines()[1] csv = Csv(encoding="utf-8", features=Features({"image": Image()})) generator = csv._generate_tables([[csv_file_with_image]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.schema.field("image").type == Image()() generated_content = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def test_csv_cast_label(csv_file_with_label): with open(csv_file_with_label, encoding="utf-8") as f: labels = f.read().splitlines()[1:] csv = Csv(encoding="utf-8", features=Features({"label": ClassLabel(names=["good", "bad"])})) generator = csv._generate_tables([[csv_file_with_label]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.schema.field("label").type == ClassLabel(names=["good", "bad"])() generated_content = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"]).str2int(label) for label in labels] def test_csv_convert_int_list(csv_file_with_int_list): csv = Csv(encoding="utf-8", sep=",", converters={"int_list": lambda x: [int(i) for i in x.split()]}) generator = csv._generate_tables([[csv_file_with_int_list]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa.types.is_list(pa_table.schema.field("int_list").type) generated_content = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def csv_file(tmp_path): filename = tmp_path / "file.csv" data = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def malformed_csv_file(tmp_path): filename = tmp_path / "malformed_file.csv" data = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def csv_file_with_image(tmp_path, image_file): filename = tmp_path / "csv_with_image.csv" data = textwrap.dedent( f"""\ image {image_file} """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def csv_file_with_label(tmp_path): filename = tmp_path / "csv_with_label.csv" data = textwrap.dedent( """\ label good bad good """ ) with open(filename, "w") as f: f.write(data) return str(filename) def test_csv_generate_tables_raises_error_with_malformed_csv(csv_file, malformed_csv_file, caplog): csv = Csv() generator = csv._generate_tables([[csv_file, malformed_csv_file]]) with pytest.raises(ValueError, match="Error tokenizing data"): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(malformed_csv_file) in record.message for record in caplog.records ) @require_pil def test_csv_cast_image(csv_file_with_image): with open(csv_file_with_image, encoding="utf-8") as f: image_file = f.read().splitlines()[1] csv = Csv(encoding="utf-8", features=Features({"image": Image()})) generator = csv._generate_tables([[csv_file_with_image]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.schema.field("image").type == Image()() generated_content = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] @require_pil def test_csv_cast_label(csv_file_with_label): with open(csv_file_with_label, encoding="utf-8") as f: labels = f.read().splitlines()[1:] csv = Csv(encoding="utf-8", features=Features({"label": ClassLabel(names=["good", "bad"])})) generator = csv._generate_tables([[csv_file_with_label]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.schema.field("label").type == ClassLabel(names=["good", "bad"])() generated_content = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"]).str2int(label) for label in labels]
from __future__ import annotations from sentence_transformers import util from sentence_transformers.losses.CoSENTLoss import CoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseCoSENTLoss(CoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0, similarity_fct=util.cos_sim) -> None: """ This class implements CoSENT (Cosine Sentence). It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(i,j)-s(k,l))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Anecdotal experiments show that this loss function produces a more powerful training signal than :class:`SparseCosineSimilarityLoss`, resulting in faster convergence and a final model with superior performance. Consequently, SparseCoSENTLoss may be used as a drop-in replacement for :class:`SparseCosineSimilarityLoss` in any training script. Args: model: SparseEncoder similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseAnglELoss` is SparseCoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. - :class:`SparseCosineSimilarityLoss` seems to produce a weaker training signal than SparseCoSENTLoss. In our experiments, SparseCoSENTLoss is recommended. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("naver/splade-cocondenser-ensembledistil") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SparseCoSENTLoss(model) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, scale=scale, similarity_fct=similarity_fct)
from __future__ import annotations from sentence_transformers import util from sentence_transformers.losses.CoSENTLoss import CoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseCoSENTLoss(CoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0, similarity_fct=util.cos_sim) -> None: return super().__init__(model, scale=scale, similarity_fct=similarity_fct)
from .hifigan_pipeline import HIFIGAN_VOCODER_V3_LJSPEECH, HiFiGANVocoderBundle from .rnnt_pipeline import EMFORMER_RNNT_BASE_MUSTC, EMFORMER_RNNT_BASE_TEDLIUM3 __all__ = [ "EMFORMER_RNNT_BASE_MUSTC", "EMFORMER_RNNT_BASE_TEDLIUM3", "HIFIGAN_VOCODER_V3_LJSPEECH", "HiFiGANVocoderBundle", ]
from .rnnt_pipeline import EMFORMER_RNNT_BASE_MUSTC, EMFORMER_RNNT_BASE_TEDLIUM3 __all__ = [ "EMFORMER_RNNT_BASE_MUSTC", "EMFORMER_RNNT_BASE_TEDLIUM3", ]
""" This examples loads a pre-trained model and evaluates it on the STSbenchmark dataset Usage: python evaluation_stsbenchmark.py OR python evaluation_stsbenchmark.py model_name """ import logging import os import sys import torch from datasets import load_dataset from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.similarity_functions import SimilarityFunction script_folder_path = os.path.dirname(os.path.realpath(__file__)) # Limit torch to 4 threads torch.set_num_threads(4) # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) model_name = sys.argv[1] if len(sys.argv) > 1 else "stsb-distilroberta-base-v2" # Load a named sentence model (based on BERT). This will download the model from our server. # Alternatively, you can also pass a filepath to SentenceTransformer() model = SentenceTransformer(model_name) stsb_eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=stsb_eval_dataset["sentence1"], sentences2=stsb_eval_dataset["sentence2"], scores=stsb_eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) model.evaluate(dev_evaluator) test_dataset = load_dataset("sentence-transformers/stsb", split="test") test_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-test", ) model.evaluate(test_evaluator)
""" This examples loads a pre-trained model and evaluates it on the STSbenchmark dataset Usage: python evaluation_stsbenchmark.py OR python evaluation_stsbenchmark.py model_name """ from sentence_transformers import SentenceTransformer, util, LoggingHandler, InputExample from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator import logging import sys import torch import gzip import os import csv script_folder_path = os.path.dirname(os.path.realpath(__file__)) #Limit torch to 4 threads torch.set_num_threads(4) #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout model_name = sys.argv[1] if len(sys.argv) > 1 else 'stsb-distilroberta-base-v2' # Load a named sentence model (based on BERT). This will download the model from our server. # Alternatively, you can also pass a filepath to SentenceTransformer() model = SentenceTransformer(model_name) sts_dataset_path = 'data/stsbenchmark.tsv.gz' if not os.path.exists(sts_dataset_path): util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score) if row['split'] == 'dev': dev_samples.append(inp_example) elif row['split'] == 'test': test_samples.append(inp_example) else: train_samples.append(inp_example) evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') model.evaluate(evaluator) evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test') model.evaluate(evaluator)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class SparseRCNN(TwoStageDetector): r"""Implementation of `Sparse R-CNN: End-to-End Object Detection with Learnable Proposals <https://arxiv.org/abs/2011.12450>`_""" def __init__(self, *args, **kwargs): super(SparseRCNN, self).__init__(*args, **kwargs) assert self.with_rpn, 'Sparse R-CNN and QueryInst ' \ 'do not support external proposals' def forward_train(self, img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None, gt_masks=None, proposals=None, **kwargs): """Forward function of SparseR-CNN and QueryInst in train stage. Args: img (Tensor): of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled. img_metas (list[dict]): list of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see :class:`mmdet.datasets.pipelines.Collect`. gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box gt_bboxes_ignore (None | list[Tensor): specify which bounding boxes can be ignored when computing the loss. gt_masks (List[Tensor], optional) : Segmentation masks for each box. This is required to train QueryInst. proposals (List[Tensor], optional): override rpn proposals with custom proposals. Use when `with_rpn` is False. Returns: dict[str, Tensor]: a dictionary of loss components """ assert proposals is None, 'Sparse R-CNN and QueryInst ' \ 'do not support external proposals' x = self.extract_feat(img) proposal_boxes, proposal_features, imgs_whwh = \ self.rpn_head.forward_train(x, img_metas) roi_losses = self.roi_head.forward_train( x, proposal_boxes, proposal_features, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=gt_bboxes_ignore, gt_masks=gt_masks, imgs_whwh=imgs_whwh) return roi_losses def simple_test(self, img, img_metas, rescale=False): """Test function without test time augmentation. Args: imgs (list[torch.Tensor]): List of multiple images img_metas (list[dict]): List of image information. rescale (bool): Whether to rescale the results. Defaults to False. Returns: list[list[np.ndarray]]: BBox results of each image and classes. The outer list corresponds to each image. The inner list corresponds to each class. """ x = self.extract_feat(img) proposal_boxes, proposal_features, imgs_whwh = \ self.rpn_head.simple_test_rpn(x, img_metas) results = self.roi_head.simple_test( x, proposal_boxes, proposal_features, img_metas, imgs_whwh=imgs_whwh, rescale=rescale) return results def forward_dummy(self, img): """Used for computing network flops. See `mmdetection/tools/analysis_tools/get_flops.py` """ # backbone x = self.extract_feat(img) # rpn num_imgs = len(img) dummy_img_metas = [ dict(img_shape=(800, 1333, 3)) for _ in range(num_imgs) ] proposal_boxes, proposal_features, imgs_whwh = \ self.rpn_head.simple_test_rpn(x, dummy_img_metas) # roi_head roi_outs = self.roi_head.forward_dummy(x, proposal_boxes, proposal_features, dummy_img_metas) return roi_outs
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class SparseRCNN(TwoStageDetector): r"""Implementation of `Sparse R-CNN: End-to-End Object Detection with Learnable Proposals <https://arxiv.org/abs/2011.12450>`_""" def __init__(self, *args, **kwargs): super(SparseRCNN, self).__init__(*args, **kwargs) assert self.with_rpn, 'Sparse R-CNN do not support external proposals' def forward_train(self, img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None, gt_masks=None, proposals=None, **kwargs): """Forward function of SparseR-CNN in train stage. Args: img (Tensor): of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled. img_metas (list[dict]): list of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see :class:`mmdet.datasets.pipelines.Collect`. gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box gt_bboxes_ignore (None | list[Tensor): specify which bounding boxes can be ignored when computing the loss. gt_masks (List[Tensor], optional) : Segmentation masks for each box. But we don't support it in this architecture. proposals (List[Tensor], optional): override rpn proposals with custom proposals. Use when `with_rpn` is False. Returns: dict[str, Tensor]: a dictionary of loss components """ assert proposals is None, 'Sparse R-CNN does not support' \ ' external proposals' assert gt_masks is None, 'Sparse R-CNN does not instance segmentation' x = self.extract_feat(img) proposal_boxes, proposal_features, imgs_whwh = \ self.rpn_head.forward_train(x, img_metas) roi_losses = self.roi_head.forward_train( x, proposal_boxes, proposal_features, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=gt_bboxes_ignore, gt_masks=gt_masks, imgs_whwh=imgs_whwh) return roi_losses def simple_test(self, img, img_metas, rescale=False): """Test function without test time augmentation. Args: imgs (list[torch.Tensor]): List of multiple images img_metas (list[dict]): List of image information. rescale (bool): Whether to rescale the results. Defaults to False. Returns: list[list[np.ndarray]]: BBox results of each image and classes. The outer list corresponds to each image. The inner list corresponds to each class. """ x = self.extract_feat(img) proposal_boxes, proposal_features, imgs_whwh = \ self.rpn_head.simple_test_rpn(x, img_metas) bbox_results = self.roi_head.simple_test( x, proposal_boxes, proposal_features, img_metas, imgs_whwh=imgs_whwh, rescale=rescale) return bbox_results def forward_dummy(self, img): """Used for computing network flops. See `mmdetection/tools/analysis_tools/get_flops.py` """ # backbone x = self.extract_feat(img) # rpn num_imgs = len(img) dummy_img_metas = [ dict(img_shape=(800, 1333, 3)) for _ in range(num_imgs) ] proposal_boxes, proposal_features, imgs_whwh = \ self.rpn_head.simple_test_rpn(x, dummy_img_metas) # roi_head roi_outs = self.roi_head.forward_dummy(x, proposal_boxes, proposal_features, dummy_img_metas) return roi_outs
"""Migrate LangChain to the most recent version.""" from pathlib import Path import rich import typer from gritql import run # type: ignore from typer import Option def get_gritdir_path() -> Path: """Get the path to the grit directory.""" script_dir = Path(__file__).parent return script_dir / ".grit" def migrate( ctx: typer.Context, # Using diff instead of dry-run for backwards compatibility with the old CLI diff: bool = Option( False, "--diff", help="Show the changes that would be made without applying them.", ), interactive: bool = Option( False, "--interactive", help="Prompt for confirmation before making each change", ), ) -> None: """Migrate langchain to the most recent version. Any undocumented arguments will be passed to the Grit CLI. """ rich.print( "✈️ This script will help you migrate to a LangChain 0.3. " "This migration script will attempt to replace old imports in the code " "with new ones. " "If you need to migrate to LangChain 0.2, please downgrade to version 0.0.29 " "of the langchain-cli.\n\n" "🔄 You will need to run the migration script TWICE to migrate (e.g., " "to update llms import from langchain, the script will first move them to " "corresponding imports from the community package, and on the second " "run will migrate from the community package to the partner package " "when possible). \n\n" "🔍 You can pre-view the changes by running with the --diff flag. \n\n" "🚫 You can disable specific import changes by using the --disable " "flag. \n\n" "📄 Update your pyproject.toml or requirements.txt file to " "reflect any imports from new packages. For example, if you see new " "imports from langchain_openai, langchain_anthropic or " "langchain_text_splitters you " "should add them to your dependencies! \n\n" '⚠️ This script is a "best-effort", and is likely to make some ' "mistakes.\n\n" "🛡️ Backup your code prior to running the migration script -- it will " "modify your files!\n\n" ) rich.print("-" * 10) rich.print() args = list(ctx.args) if interactive: args.append("--interactive") if diff: args.append("--dry-run") final_code = run.apply_pattern( "langchain_all_migrations()", args, grit_dir=get_gritdir_path(), ) raise typer.Exit(code=final_code)
"""Migrate LangChain to the most recent version.""" from pathlib import Path import rich import typer from gritql import run # type: ignore from typer import Option def get_gritdir_path() -> Path: """Get the path to the grit directory.""" script_dir = Path(__file__).parent return script_dir / ".grit" def migrate( ctx: typer.Context, # Using diff instead of dry-run for backwards compatibility with the old CLI diff: bool = Option( False, "--diff", help="Show the changes that would be made without applying them.", ), interactive: bool = Option( False, "--interactive", help="Prompt for confirmation before making each change", ), ) -> None: """Migrate langchain to the most recent version. Any undocumented arguments will be passed to the Grit CLI. """ rich.print( "✈️ This script will help you migrate to a LangChain 0.3. " "This migration script will attempt to replace old imports in the code " "with new ones. " "If you need to migrate to LangChain 0.2, please downgrade to version 0.0.29 " "of the langchain-cli.\n\n" "🔄 You will need to run the migration script TWICE to migrate (e.g., " "to update llms import from langchain, the script will first move them to " "corresponding imports from the community package, and on the second " "run will migrate from the community package to the partner package " "when possible). \n\n" "🔍 You can pre-view the changes by running with the --diff flag. \n\n" "🚫 You can disable specific import changes by using the --disable " "flag. \n\n" "📄 Update your pyproject.toml or requirements.txt file to " "reflect any imports from new packages. For example, if you see new " "imports from langchain_openai, langchain_anthropic or " "langchain_text_splitters you " "should them to your dependencies! \n\n" '⚠️ This script is a "best-effort", and is likely to make some ' "mistakes.\n\n" "🛡️ Backup your code prior to running the migration script -- it will " "modify your files!\n\n" ) rich.print("-" * 10) rich.print() args = list(ctx.args) if interactive: args.append("--interactive") if diff: args.append("--dry-run") final_code = run.apply_pattern( "langchain_all_migrations()", args, grit_dir=get_gritdir_path(), ) raise typer.Exit(code=final_code)
# Copyright (c) OpenMMLab. All rights reserved. from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, reduce_mean) from .misc import (center_of_mass, filter_scores_and_topk, flip_tensor, generate_coordinate, mask2ndarray, multi_apply, select_single_mlvl, unmap) __all__ = [ 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply', 'unmap', 'mask2ndarray', 'flip_tensor', 'all_reduce_dict', 'center_of_mass', 'generate_coordinate', 'select_single_mlvl', 'filter_scores_and_topk' ]
# Copyright (c) OpenMMLab. All rights reserved. from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, reduce_mean) from .misc import (center_of_mass, flip_tensor, generate_coordinate, mask2ndarray, multi_apply, select_single_mlvl, unmap) __all__ = [ 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply', 'unmap', 'mask2ndarray', 'flip_tensor', 'all_reduce_dict', 'center_of_mass', 'generate_coordinate', 'select_single_mlvl' ]
import os import re import subprocess from keras.src import backend # For torch, use index url to avoid installing nvidia drivers for the test. BACKEND_REQ = { "tensorflow": ("tensorflow-cpu", ""), "torch": ( "torch torchvision", "--extra-index-url https://download.pytorch.org/whl/cpu ", ), "jax": ("jax[cpu]", ""), "openvino": ("openvino", ""), } def setup_package(): subprocess.run("rm -rf tmp_build_dir", shell=True) build_process = subprocess.run( "python3 pip_build.py", capture_output=True, text=True, shell=True, ) print(build_process.stdout) whl_path = re.findall( r"[^\s]*\.whl", build_process.stdout, )[-1] if not whl_path: print(build_process.stderr) raise ValueError("Installing Keras package unsuccessful. ") return whl_path def create_virtualenv(): env_setup = [ # Create virtual environment "python3 -m venv test_env", ] os.environ["PATH"] = ( "/test_env/bin/" + os.pathsep + os.environ.get("PATH", "") ) run_commands_local(env_setup) def manage_venv_installs(whl_path): other_backends = list(set(BACKEND_REQ.keys()) - {backend.backend()}) backend_pkg, backend_extra_url = BACKEND_REQ[backend.backend()] install_setup = [ # Installs the backend's package and common requirements "pip install " + backend_extra_url + backend_pkg, "pip install -r requirements-common.txt", "pip install pytest", # Ensure other backends are uninstalled "pip uninstall -y " + BACKEND_REQ[other_backends[0]][0] + " " + BACKEND_REQ[other_backends[1]][0] + " " + BACKEND_REQ[other_backends[2]][0], # Install `.whl` package "pip install " + whl_path, ] run_commands_venv(install_setup) def run_keras_flow(): test_script = [ # Runs the example script "python -m pytest integration_tests/basic_full_flow.py", ] run_commands_venv(test_script) def cleanup(): cleanup_script = [ # Exits virtual environment, deletes files, and any # miscellaneous install logs "exit", "rm -rf test_env", "rm -rf tmp_build_dir", "rm -f *+cpu", ] run_commands_local(cleanup_script) def run_commands_local(commands): for command in commands: print(f"Running command: {command}") subprocess.run(command, shell=True) def run_commands_venv(commands): for command in commands: print(f"Running command: {command}") cmd_with_args = command.split(" ") cmd_with_args[0] = "test_env/bin/" + cmd_with_args[0] p = subprocess.Popen(cmd_with_args) assert p.wait() == 0 def test_keras_imports(): try: # Ensures packages from all backends are installed. # Builds Keras core package and returns package file path. whl_path = setup_package() # Creates and activates a virtual environment. create_virtualenv() # Ensures the backend's package is installed # and the other backends are uninstalled. manage_venv_installs(whl_path) # Runs test of basic flow in Keras Core. # Tests for backend-specific imports and `model.fit()`. run_keras_flow() # Removes virtual environment and associated files finally: cleanup() if __name__ == "__main__": test_keras_imports()
import os import re import subprocess from keras.src import backend # For torch, use index url to avoid installing nvidia drivers for the test. BACKEND_REQ = { "tensorflow": ("tensorflow-cpu", ""), "torch": ( "torch torchvision", "--extra-index-url https://download.pytorch.org/whl/cpu ", ), "jax": ("jax[cpu]", ""), } def setup_package(): subprocess.run("rm -rf tmp_build_dir", shell=True) build_process = subprocess.run( "python3 pip_build.py", capture_output=True, text=True, shell=True, ) print(build_process.stdout) whl_path = re.findall( r"[^\s]*\.whl", build_process.stdout, )[-1] if not whl_path: print(build_process.stderr) raise ValueError("Installing Keras package unsuccessful. ") return whl_path def create_virtualenv(): env_setup = [ # Create virtual environment "python3 -m venv test_env", ] os.environ["PATH"] = ( "/test_env/bin/" + os.pathsep + os.environ.get("PATH", "") ) run_commands_local(env_setup) def manage_venv_installs(whl_path): other_backends = list(set(BACKEND_REQ.keys()) - {backend.backend()}) backend_pkg, backend_extra_url = BACKEND_REQ[backend.backend()] install_setup = [ # Installs the backend's package and common requirements "pip install " + backend_extra_url + backend_pkg, "pip install -r requirements-common.txt", "pip install pytest", # Ensure other backends are uninstalled "pip uninstall -y " + BACKEND_REQ[other_backends[0]][0] + " " + BACKEND_REQ[other_backends[1]][0], # Install `.whl` package "pip install " + whl_path, ] run_commands_venv(install_setup) def run_keras_flow(): test_script = [ # Runs the example script "python -m pytest integration_tests/basic_full_flow.py", ] run_commands_venv(test_script) def cleanup(): cleanup_script = [ # Exits virtual environment, deletes files, and any # miscellaneous install logs "exit", "rm -rf test_env", "rm -rf tmp_build_dir", "rm -f *+cpu", ] run_commands_local(cleanup_script) def run_commands_local(commands): for command in commands: print(f"Running command: {command}") subprocess.run(command, shell=True) def run_commands_venv(commands): for command in commands: print(f"Running command: {command}") cmd_with_args = command.split(" ") cmd_with_args[0] = "test_env/bin/" + cmd_with_args[0] p = subprocess.Popen(cmd_with_args) assert p.wait() == 0 def test_keras_imports(): try: # Ensures packages from all backends are installed. # Builds Keras core package and returns package file path. whl_path = setup_package() # Creates and activates a virtual environment. create_virtualenv() # Ensures the backend's package is installed # and the other backends are uninstalled. manage_venv_installs(whl_path) # Runs test of basic flow in Keras Core. # Tests for backend-specific imports and `model.fit()`. run_keras_flow() # Removes virtual environment and associated files finally: cleanup() if __name__ == "__main__": test_keras_imports()
""" ===================================== How to write your own Datapoint class ===================================== This guide is intended for advanced users and downstream library maintainers. We explain how to write your own datapoint class, and how to make it compatible with the built-in Torchvision v2 transforms. Before continuing, make sure you have read :ref:`sphx_glr_auto_examples_v2_transforms_plot_datapoints.py`. """ # %% import torch from torchvision import datapoints from torchvision.transforms import v2 # %% # We will create a very simple class that just inherits from the base # :class:`~torchvision.datapoints.Datapoint` class. It will be enough to cover # what you need to know to implement your more elaborate uses-cases. If you need # to create a class that carries meta-data, take a look at how the # :class:`~torchvision.datapoints.BoundingBoxes` class is `implemented # <https://github.com/pytorch/vision/blob/main/torchvision/datapoints/_bounding_box.py>`_. class MyDatapoint(datapoints.Datapoint): pass my_dp = MyDatapoint([1, 2, 3]) my_dp # %% # Now that we have defined our custom Datapoint class, we want it to be # compatible with the built-in torchvision transforms, and the functional API. # For that, we need to implement a kernel which performs the core of the # transformation, and then "hook" it to the functional that we want to support # via :func:`~torchvision.transforms.v2.functional.register_kernel`. # # We illustrate this process below: we create a kernel for the "horizontal flip" # operation of our MyDatapoint class, and register it to the functional API. from torchvision.transforms.v2 import functional as F @F.register_kernel(functional="hflip", datapoint_cls=MyDatapoint) def hflip_my_datapoint(my_dp, *args, **kwargs): print("Flipping!") out = my_dp.flip(-1) return datapoints.wrap(out, like=my_dp) # %% # To understand why :func:`~torchvision.datapoints.wrap` is used, see # :ref:`datapoint_unwrapping_behaviour`. Ignore the ``*args, **kwargs`` for now, # we will explain it below in :ref:`param_forwarding`. # # .. note:: # # In our call to ``register_kernel`` above we used a string # ``functional="hflip"`` to refer to the functional we want to hook into. We # could also have used the functional *itself*, i.e. # ``@register_kernel(functional=F.hflip, ...)``. # # Now that we have registered our kernel, we can call the functional API on a # ``MyDatapoint`` instance: my_dp = MyDatapoint(torch.rand(3, 256, 256)) _ = F.hflip(my_dp) # %% # And we can also use the # :class:`~torchvision.transforms.v2.RandomHorizontalFlip` transform, since it relies on :func:`~torchvision.transforms.v2.functional.hflip` internally: t = v2.RandomHorizontalFlip(p=1) _ = t(my_dp) # %% # .. note:: # # We cannot register a kernel for a transform class, we can only register a # kernel for a **functional**. The reason we can't register a transform # class is because one transform may internally rely on more than one # functional, so in general we can't register a single kernel for a given # class. # # .. _param_forwarding: # # Parameter forwarding, and ensuring future compatibility of your kernels # ----------------------------------------------------------------------- # # The functional API that you're hooking into is public and therefore # **backward** compatible: we guarantee that the parameters of these functionals # won't be removed or renamed without a proper deprecation cycle. However, we # don't guarantee **forward** compatibility, and we may add new parameters in # the future. # # Imagine that in a future version, Torchvision adds a new ``inplace`` parameter # to its :func:`~torchvision.transforms.v2.functional.hflip` functional. If you # already defined and registered your own kernel as def hflip_my_datapoint(my_dp): # noqa print("Flipping!") out = my_dp.flip(-1) return datapoints.wrap(out, like=my_dp) # %% # then calling ``F.hflip(my_dp)`` will **fail**, because ``hflip`` will try to # pass the new ``inplace`` parameter to your kernel, but your kernel doesn't # accept it. # # For this reason, we recommend to always define your kernels with # ``*args, **kwargs`` in their signature, as done above. This way, your kernel # will be able to accept any new parameter that we may add in the future. # (Technically, adding `**kwargs` only should be enough).
""" ===================================== How to write your own Datapoint class ===================================== This guide is intended for advanced users and downstream library maintainers. We explain how to write your own datapoint class, and how to make it compatible with the built-in Torchvision v2 transforms. Before continuing, make sure you have read :ref:`sphx_glr_auto_examples_v2_transforms_plot_datapoints.py`. """ # %% import torch import torchvision # We are using BETA APIs, so we deactivate the associated warning, thereby acknowledging that # some APIs may slightly change in the future torchvision.disable_beta_transforms_warning() from torchvision import datapoints from torchvision.transforms import v2 # %% # We will create a very simple class that just inherits from the base # :class:`~torchvision.datapoints.Datapoint` class. It will be enough to cover # what you need to know to implement your more elaborate uses-cases. If you need # to create a class that carries meta-data, take a look at how the # :class:`~torchvision.datapoints.BoundingBoxes` class is `implemented # <https://github.com/pytorch/vision/blob/main/torchvision/datapoints/_bounding_box.py>`_. class MyDatapoint(datapoints.Datapoint): pass my_dp = MyDatapoint([1, 2, 3]) my_dp # %% # Now that we have defined our custom Datapoint class, we want it to be # compatible with the built-in torchvision transforms, and the functional API. # For that, we need to implement a kernel which performs the core of the # transformation, and then "hook" it to the functional that we want to support # via :func:`~torchvision.transforms.v2.functional.register_kernel`. # # We illustrate this process below: we create a kernel for the "horizontal flip" # operation of our MyDatapoint class, and register it to the functional API. from torchvision.transforms.v2 import functional as F @F.register_kernel(functional="hflip", datapoint_cls=MyDatapoint) def hflip_my_datapoint(my_dp, *args, **kwargs): print("Flipping!") out = my_dp.flip(-1) return datapoints.wrap(out, like=my_dp) # %% # To understand why :func:`~torchvision.datapoints.wrap` is used, see # :ref:`datapoint_unwrapping_behaviour`. Ignore the ``*args, **kwargs`` for now, # we will explain it below in :ref:`param_forwarding`. # # .. note:: # # In our call to ``register_kernel`` above we used a string # ``functional="hflip"`` to refer to the functional we want to hook into. We # could also have used the functional *itself*, i.e. # ``@register_kernel(functional=F.hflip, ...)``. # # Now that we have registered our kernel, we can call the functional API on a # ``MyDatapoint`` instance: my_dp = MyDatapoint(torch.rand(3, 256, 256)) _ = F.hflip(my_dp) # %% # And we can also use the # :class:`~torchvision.transforms.v2.RandomHorizontalFlip` transform, since it relies on :func:`~torchvision.transforms.v2.functional.hflip` internally: t = v2.RandomHorizontalFlip(p=1) _ = t(my_dp) # %% # .. note:: # # We cannot register a kernel for a transform class, we can only register a # kernel for a **functional**. The reason we can't register a transform # class is because one transform may internally rely on more than one # functional, so in general we can't register a single kernel for a given # class. # # .. _param_forwarding: # # Parameter forwarding, and ensuring future compatibility of your kernels # ----------------------------------------------------------------------- # # The functional API that you're hooking into is public and therefore # **backward** compatible: we guarantee that the parameters of these functionals # won't be removed or renamed without a proper deprecation cycle. However, we # don't guarantee **forward** compatibility, and we may add new parameters in # the future. # # Imagine that in a future version, Torchvision adds a new ``inplace`` parameter # to its :func:`~torchvision.transforms.v2.functional.hflip` functional. If you # already defined and registered your own kernel as def hflip_my_datapoint(my_dp): # noqa print("Flipping!") out = my_dp.flip(-1) return datapoints.wrap(out, like=my_dp) # %% # then calling ``F.hflip(my_dp)`` will **fail**, because ``hflip`` will try to # pass the new ``inplace`` parameter to your kernel, but your kernel doesn't # accept it. # # For this reason, we recommend to always define your kernels with # ``*args, **kwargs`` in their signature, as done above. This way, your kernel # will be able to accept any new parameter that we may add in the future. # (Technically, adding `**kwargs` only should be enough).
from pathlib import Path from typing import Any, Callable, Optional, Tuple import PIL.Image from .utils import check_integrity, download_and_extract_archive, download_url, verify_str_arg from .vision import VisionDataset class Flowers102(VisionDataset): """`Oxford 102 Flower <https://www.robots.ox.ac.uk/~vgg/data/flowers/102/>`_ Dataset. .. warning:: This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format. Oxford 102 Flower is an image classification dataset consisting of 102 flower categories. The flowers were chosen to be flowers commonly occurring in the United Kingdom. Each class consists of between 40 and 258 images. The images have large scale, pose and light variations. In addition, there are categories that have large variations within the category, and several very similar categories. Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ _download_url_prefix = "https://www.robots.ox.ac.uk/~vgg/data/flowers/102/" _file_dict = { # filename, md5 "image": ("102flowers.tgz", "52808999861908f626f3c1f4e79d11fa"), "label": ("imagelabels.mat", "e0620be6f572b9609742df49c70aed4d"), "setid": ("setid.mat", "a5357ecc9cb78c4bef273ce3793fc85c"), } _splits_map = {"train": "trnid", "val": "valid", "test": "tstid"} def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "val", "test")) self._base_folder = Path(self.root) / "flowers-102" self._images_folder = self._base_folder / "jpg" if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") from scipy.io import loadmat set_ids = loadmat(self._base_folder / self._file_dict["setid"][0], squeeze_me=True) image_ids = set_ids[self._splits_map[self._split]].tolist() labels = loadmat(self._base_folder / self._file_dict["label"][0], squeeze_me=True) image_id_to_label = dict(enumerate((labels["labels"] - 1).tolist(), 1)) self._labels = [] self._image_files = [] for image_id in image_ids: self._labels.append(image_id_to_label[image_id]) self._image_files.append(self._images_folder / f"image_{image_id:05d}.jpg") def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def extra_repr(self) -> str: return f"split={self._split}" def _check_integrity(self): if not (self._images_folder.exists() and self._images_folder.is_dir()): return False for id in ["label", "setid"]: filename, md5 = self._file_dict[id] if not check_integrity(str(self._base_folder / filename), md5): return False return True def download(self): if self._check_integrity(): return download_and_extract_archive( f"{self._download_url_prefix}{self._file_dict['image'][0]}", str(self._base_folder), md5=self._file_dict["image"][1], ) for id in ["label", "setid"]: filename, md5 = self._file_dict[id] download_url(self._download_url_prefix + filename, str(self._base_folder), md5=md5)
from pathlib import Path from typing import Any, Callable, Optional, Tuple import PIL.Image from .utils import check_integrity, download_and_extract_archive, download_url, verify_str_arg from .vision import VisionDataset class Flowers102(VisionDataset): """`Oxford 102 Flower <https://www.robots.ox.ac.uk/~vgg/data/flowers/102/>`_ Dataset. .. warning:: This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format. Oxford 102 Flower is an image classification dataset consisting of 102 flower categories. The flowers were chosen to be flowers commonly occurring in the United Kingdom. Each class consists of between 40 and 258 images. The images have large scale, pose and light variations. In addition, there are categories that have large variations within the category, and several very similar categories. Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ _download_url_prefix = "https://www.robots.ox.ac.uk/~vgg/data/flowers/102/" _file_dict = { # filename, md5 "image": ("102flowers.tgz", "52808999861908f626f3c1f4e79d11fa"), "label": ("imagelabels.mat", "e0620be6f572b9609742df49c70aed4d"), "setid": ("setid.mat", "a5357ecc9cb78c4bef273ce3793fc85c"), } _splits_map = {"train": "trnid", "val": "valid", "test": "tstid"} def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "val", "test")) self._base_folder = Path(self.root) / "flowers-102" self._images_folder = self._base_folder / "jpg" if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") from scipy.io import loadmat set_ids = loadmat(self._base_folder / self._file_dict["setid"][0], squeeze_me=True) image_ids = set_ids[self._splits_map[self._split]].tolist() labels = loadmat(self._base_folder / self._file_dict["label"][0], squeeze_me=True) image_id_to_label = dict(enumerate((labels["labels"] - 1).tolist(), 1)) self._labels = [] self._image_files = [] for image_id in image_ids: self._labels.append(image_id_to_label[image_id]) self._image_files.append(self._images_folder / f"image_{image_id:05d}.jpg") def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def extra_repr(self) -> str: return f"split={self._split}" def _check_integrity(self): if not (self._images_folder.exists() and self._images_folder.is_dir()): return False for id in ["label", "setid"]: filename, md5 = self._file_dict[id] if not check_integrity(str(self._base_folder / filename), md5): return False return True def download(self): if self._check_integrity(): return download_and_extract_archive( f"{self._download_url_prefix}{self._file_dict['image'][0]}", str(self._base_folder), md5=self._file_dict["image"][1], ) for id in ["label", "setid"]: filename, md5 = self._file_dict[id] download_url(self._download_url_prefix + filename, str(self._base_folder), md5=md5)
# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..utils.logging import get_logger logger = get_logger(__name__) # pylint: disable=invalid-name class CacheMixin: r""" A class for enable/disabling caching techniques on diffusion models. Supported caching techniques: - [Pyramid Attention Broadcast](https://huggingface.co/papers/2408.12588) - [FasterCache](https://huggingface.co/papers/2410.19355) """ _cache_config = None @property def is_cache_enabled(self) -> bool: return self._cache_config is not None def enable_cache(self, config) -> None: r""" Enable caching techniques on the model. Args: config (`Union[PyramidAttentionBroadcastConfig]`): The configuration for applying the caching technique. Currently supported caching techniques are: - [`~hooks.PyramidAttentionBroadcastConfig`] Example: ```python >>> import torch >>> from diffusers import CogVideoXPipeline, PyramidAttentionBroadcastConfig >>> pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16) >>> pipe.to("cuda") >>> config = PyramidAttentionBroadcastConfig( ... spatial_attention_block_skip_range=2, ... spatial_attention_timestep_skip_range=(100, 800), ... current_timestep_callback=lambda: pipe.current_timestep, ... ) >>> pipe.transformer.enable_cache(config) ``` """ from ..hooks import ( FasterCacheConfig, PyramidAttentionBroadcastConfig, apply_faster_cache, apply_pyramid_attention_broadcast, ) if self.is_cache_enabled: raise ValueError( f"Caching has already been enabled with {type(self._cache_config)}. To apply a new caching technique, please disable the existing one first." ) if isinstance(config, PyramidAttentionBroadcastConfig): apply_pyramid_attention_broadcast(self, config) elif isinstance(config, FasterCacheConfig): apply_faster_cache(self, config) else: raise ValueError(f"Cache config {type(config)} is not supported.") self._cache_config = config def disable_cache(self) -> None: from ..hooks import FasterCacheConfig, HookRegistry, PyramidAttentionBroadcastConfig from ..hooks.faster_cache import _FASTER_CACHE_BLOCK_HOOK, _FASTER_CACHE_DENOISER_HOOK from ..hooks.pyramid_attention_broadcast import _PYRAMID_ATTENTION_BROADCAST_HOOK if self._cache_config is None: logger.warning("Caching techniques have not been enabled, so there's nothing to disable.") return if isinstance(self._cache_config, PyramidAttentionBroadcastConfig): registry = HookRegistry.check_if_exists_or_initialize(self) registry.remove_hook(_PYRAMID_ATTENTION_BROADCAST_HOOK, recurse=True) elif isinstance(self._cache_config, FasterCacheConfig): registry = HookRegistry.check_if_exists_or_initialize(self) registry.remove_hook(_FASTER_CACHE_DENOISER_HOOK, recurse=True) registry.remove_hook(_FASTER_CACHE_BLOCK_HOOK, recurse=True) else: raise ValueError(f"Cache config {type(self._cache_config)} is not supported.") self._cache_config = None def _reset_stateful_cache(self, recurse: bool = True) -> None: from ..hooks import HookRegistry HookRegistry.check_if_exists_or_initialize(self).reset_stateful_hooks(recurse=recurse)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..utils.logging import get_logger logger = get_logger(__name__) # pylint: disable=invalid-name class CacheMixin: r""" A class for enable/disabling caching techniques on diffusion models. Supported caching techniques: - [Pyramid Attention Broadcast](https://huggingface.co/papers/2408.12588) - [FasterCache](https://huggingface.co/papers/2410.19355) """ _cache_config = None @property def is_cache_enabled(self) -> bool: return self._cache_config is not None def enable_cache(self, config) -> None: r""" Enable caching techniques on the model. Args: config (`Union[PyramidAttentionBroadcastConfig]`): The configuration for applying the caching technique. Currently supported caching techniques are: - [`~hooks.PyramidAttentionBroadcastConfig`] Example: ```python >>> import torch >>> from diffusers import CogVideoXPipeline, PyramidAttentionBroadcastConfig >>> pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16) >>> pipe.to("cuda") >>> config = PyramidAttentionBroadcastConfig( ... spatial_attention_block_skip_range=2, ... spatial_attention_timestep_skip_range=(100, 800), ... current_timestep_callback=lambda: pipe.current_timestep, ... ) >>> pipe.transformer.enable_cache(config) ``` """ from ..hooks import ( FasterCacheConfig, PyramidAttentionBroadcastConfig, apply_faster_cache, apply_pyramid_attention_broadcast, ) if self.is_cache_enabled: raise ValueError( f"Caching has already been enabled with {type(self._cache_config)}. To apply a new caching technique, please disable the existing one first." ) if isinstance(config, PyramidAttentionBroadcastConfig): apply_pyramid_attention_broadcast(self, config) elif isinstance(config, FasterCacheConfig): apply_faster_cache(self, config) else: raise ValueError(f"Cache config {type(config)} is not supported.") self._cache_config = config def disable_cache(self) -> None: from ..hooks import FasterCacheConfig, HookRegistry, PyramidAttentionBroadcastConfig from ..hooks.faster_cache import _FASTER_CACHE_BLOCK_HOOK, _FASTER_CACHE_DENOISER_HOOK from ..hooks.pyramid_attention_broadcast import _PYRAMID_ATTENTION_BROADCAST_HOOK if self._cache_config is None: logger.warning("Caching techniques have not been enabled, so there's nothing to disable.") return if isinstance(self._cache_config, PyramidAttentionBroadcastConfig): registry = HookRegistry.check_if_exists_or_initialize(self) registry.remove_hook(_PYRAMID_ATTENTION_BROADCAST_HOOK, recurse=True) elif isinstance(self._cache_config, FasterCacheConfig): registry = HookRegistry.check_if_exists_or_initialize(self) registry.remove_hook(_FASTER_CACHE_DENOISER_HOOK, recurse=True) registry.remove_hook(_FASTER_CACHE_BLOCK_HOOK, recurse=True) else: raise ValueError(f"Cache config {type(self._cache_config)} is not supported.") self._cache_config = None def _reset_stateful_cache(self, recurse: bool = True) -> None: from ..hooks import HookRegistry HookRegistry.check_if_exists_or_initialize(self).reset_stateful_hooks(recurse=recurse)
import os import time import uuid import pytest import qdrant_client from docarray.index import QdrantDocumentIndex cur_dir = os.path.dirname(os.path.abspath(__file__)) qdrant_yml = os.path.abspath(os.path.join(cur_dir, 'docker-compose.yml')) @pytest.fixture(scope='session', autouse=True) def start_storage(): os.system(f"docker-compose -f {qdrant_yml} up -d --remove-orphans") time.sleep(1) yield os.system(f"docker-compose -f {qdrant_yml} down --remove-orphans") @pytest.fixture(scope='function') def tmp_collection_name(): return uuid.uuid4().hex @pytest.fixture def qdrant() -> qdrant_client.QdrantClient: """This fixture takes care of removing the collection before each test case""" client = qdrant_client.QdrantClient(path='/tmp/qdrant-local') client.delete_collection(collection_name='documents') return client @pytest.fixture def qdrant_config(qdrant) -> QdrantDocumentIndex.DBConfig: return QdrantDocumentIndex.DBConfig(path=qdrant._client.location)
import pytest import qdrant_client from docarray.index import QdrantDocumentIndex @pytest.fixture def qdrant() -> qdrant_client.QdrantClient: """This fixture takes care of removing the collection before each test case""" client = qdrant_client.QdrantClient(path='/tmp/qdrant-local') client.delete_collection(collection_name='documents') return client @pytest.fixture def qdrant_config(qdrant) -> QdrantDocumentIndex.DBConfig: return QdrantDocumentIndex.DBConfig(path=qdrant._client.location)
import pytest from langchain.evaluation.parsing.json_schema import JsonSchemaEvaluator @pytest.fixture def json_schema_evaluator() -> JsonSchemaEvaluator: return JsonSchemaEvaluator() @pytest.mark.requires("jsonschema") def test_json_schema_evaluator_requires_input( json_schema_evaluator: JsonSchemaEvaluator, ) -> None: assert json_schema_evaluator.requires_input is False @pytest.mark.requires("jsonschema") def test_json_schema_evaluator_requires_reference( json_schema_evaluator: JsonSchemaEvaluator, ) -> None: assert json_schema_evaluator.requires_reference is True @pytest.mark.requires("jsonschema") def test_json_schema_evaluator_evaluation_name( json_schema_evaluator: JsonSchemaEvaluator, ) -> None: assert json_schema_evaluator.evaluation_name == "json_schema_validation" @pytest.mark.requires("jsonschema") def test_json_schema_evaluator_valid_prediction( json_schema_evaluator: JsonSchemaEvaluator, ) -> None: prediction = '{"name": "John", "age": 30}' reference = { "type": "object", "properties": {"name": {"type": "string"}, "age": {"type": "integer"}}, } result = json_schema_evaluator._evaluate_strings( prediction=prediction, reference=reference, ) assert result["score"] is True @pytest.mark.requires("jsonschema") def test_json_schema_evaluator_invalid_prediction( json_schema_evaluator: JsonSchemaEvaluator, ) -> None: prediction = '{"name": "John", "age": "30"}' # age is a string instead of integer reference = { "type": "object", "properties": {"name": {"type": "string"}, "age": {"type": "integer"}}, } result = json_schema_evaluator._evaluate_strings( prediction=prediction, reference=reference, ) assert result["score"] is False assert "reasoning" in result @pytest.mark.requires("jsonschema") def test_json_schema_evaluator_missing_property( json_schema_evaluator: JsonSchemaEvaluator, ) -> None: prediction = '{"name": "John"}' # age property is missing reference = { "type": "object", "properties": {"name": {"type": "string"}, "age": {"type": "integer"}}, "required": ["name", "age"], } result = json_schema_evaluator._evaluate_strings( prediction=prediction, reference=reference, ) assert result["score"] is False assert "reasoning" in result
import pytest from langchain.evaluation.parsing.json_schema import JsonSchemaEvaluator @pytest.fixture def json_schema_evaluator() -> JsonSchemaEvaluator: return JsonSchemaEvaluator() @pytest.mark.requires("jsonschema") def test_json_schema_evaluator_requires_input( json_schema_evaluator: JsonSchemaEvaluator, ) -> None: assert json_schema_evaluator.requires_input is False @pytest.mark.requires("jsonschema") def test_json_schema_evaluator_requires_reference( json_schema_evaluator: JsonSchemaEvaluator, ) -> None: assert json_schema_evaluator.requires_reference is True @pytest.mark.requires("jsonschema") def test_json_schema_evaluator_evaluation_name( json_schema_evaluator: JsonSchemaEvaluator, ) -> None: assert json_schema_evaluator.evaluation_name == "json_schema_validation" @pytest.mark.requires("jsonschema") def test_json_schema_evaluator_valid_prediction( json_schema_evaluator: JsonSchemaEvaluator, ) -> None: prediction = '{"name": "John", "age": 30}' reference = { "type": "object", "properties": {"name": {"type": "string"}, "age": {"type": "integer"}}, } result = json_schema_evaluator._evaluate_strings( prediction=prediction, reference=reference ) assert result["score"] is True @pytest.mark.requires("jsonschema") def test_json_schema_evaluator_invalid_prediction( json_schema_evaluator: JsonSchemaEvaluator, ) -> None: prediction = '{"name": "John", "age": "30"}' # age is a string instead of integer reference = { "type": "object", "properties": {"name": {"type": "string"}, "age": {"type": "integer"}}, } result = json_schema_evaluator._evaluate_strings( prediction=prediction, reference=reference ) assert result["score"] is False assert "reasoning" in result @pytest.mark.requires("jsonschema") def test_json_schema_evaluator_missing_property( json_schema_evaluator: JsonSchemaEvaluator, ) -> None: prediction = '{"name": "John"}' # age property is missing reference = { "type": "object", "properties": {"name": {"type": "string"}, "age": {"type": "integer"}}, "required": ["name", "age"], } result = json_schema_evaluator._evaluate_strings( prediction=prediction, reference=reference ) assert result["score"] is False assert "reasoning" in result
from __future__ import annotations from collections.abc import Iterable from enum import Enum from typing import Any import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer class SiameseDistanceMetric(Enum): """The metric for the contrastive loss""" EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2) MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1) COSINE_DISTANCE = lambda x, y: 1 - F.cosine_similarity(x, y) class ContrastiveLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5, size_average: bool = True, ) -> None: """ Contrastive loss. Expects as input two texts and a label of either 0 or 1. If the label == 1, then the distance between the two embeddings is reduced. If the label == 0, then the distance between the embeddings is increased. Args: model: SentenceTransformer model distance_metric: Function that returns a distance between two embeddings. The class SiameseDistanceMetric contains pre-defined metrices that can be used margin: Negative samples (label == 0) should have a distance of at least the margin value. size_average: Average by the size of the mini-batch. References: * Further information: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf * `Training Examples > Quora Duplicate Questions <../../examples/training/quora_duplicate_questions/README.html>`_ Requirements: 1. (anchor, positive/negative) pairs Inputs: +-----------------------------------------------+------------------------------+ | Texts | Labels | +===============================================+==============================+ | (anchor, positive/negative) pairs | 1 if positive, 0 if negative | +-----------------------------------------------+------------------------------+ Relations: - :class:`OnlineContrastiveLoss` is similar, but uses hard positive and hard negative pairs. It often yields better results. Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "label": [1, 0], }) loss = losses.ContrastiveLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.distance_metric = distance_metric self.margin = margin self.model = model self.size_average = size_average def get_config_dict(self) -> dict[str, Any]: distance_metric_name = self.distance_metric.__name__ for name, value in vars(SiameseDistanceMetric).items(): if value == self.distance_metric: distance_metric_name = f"SiameseDistanceMetric.{name}" break return {"distance_metric": distance_metric_name, "margin": self.margin, "size_average": self.size_average} def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] assert len(reps) == 2 rep_anchor, rep_other = reps distances = self.distance_metric(rep_anchor, rep_other) losses = 0.5 * ( labels.float() * distances.pow(2) + (1 - labels).float() * F.relu(self.margin - distances).pow(2) ) return losses.mean() if self.size_average else losses.sum() @property def citation(self) -> str: return """ @inproceedings{hadsell2006dimensionality, author={Hadsell, R. and Chopra, S. and LeCun, Y.}, booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, title={Dimensionality Reduction by Learning an Invariant Mapping}, year={2006}, volume={2}, number={}, pages={1735-1742}, doi={10.1109/CVPR.2006.100} } """
from __future__ import annotations from enum import Enum from typing import Any, Iterable import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer class SiameseDistanceMetric(Enum): """The metric for the contrastive loss""" EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2) MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1) COSINE_DISTANCE = lambda x, y: 1 - F.cosine_similarity(x, y) class ContrastiveLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5, size_average: bool = True, ) -> None: """ Contrastive loss. Expects as input two texts and a label of either 0 or 1. If the label == 1, then the distance between the two embeddings is reduced. If the label == 0, then the distance between the embeddings is increased. Args: model: SentenceTransformer model distance_metric: Function that returns a distance between two embeddings. The class SiameseDistanceMetric contains pre-defined metrices that can be used margin: Negative samples (label == 0) should have a distance of at least the margin value. size_average: Average by the size of the mini-batch. References: * Further information: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf * `Training Examples > Quora Duplicate Questions <../../examples/training/quora_duplicate_questions/README.html>`_ Requirements: 1. (anchor, positive/negative) pairs Inputs: +-----------------------------------------------+------------------------------+ | Texts | Labels | +===============================================+==============================+ | (anchor, positive/negative) pairs | 1 if positive, 0 if negative | +-----------------------------------------------+------------------------------+ Relations: - :class:`OnlineContrastiveLoss` is similar, but uses hard positive and hard negative pairs. It often yields better results. Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "label": [1, 0], }) loss = losses.ContrastiveLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.distance_metric = distance_metric self.margin = margin self.model = model self.size_average = size_average def get_config_dict(self) -> dict[str, Any]: distance_metric_name = self.distance_metric.__name__ for name, value in vars(SiameseDistanceMetric).items(): if value == self.distance_metric: distance_metric_name = f"SiameseDistanceMetric.{name}" break return {"distance_metric": distance_metric_name, "margin": self.margin, "size_average": self.size_average} def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] assert len(reps) == 2 rep_anchor, rep_other = reps distances = self.distance_metric(rep_anchor, rep_other) losses = 0.5 * ( labels.float() * distances.pow(2) + (1 - labels).float() * F.relu(self.margin - distances).pow(2) ) return losses.mean() if self.size_average else losses.sum() @property def citation(self) -> str: return """ @inproceedings{hadsell2006dimensionality, author={Hadsell, R. and Chopra, S. and LeCun, Y.}, booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, title={Dimensionality Reduction by Learning an Invariant Mapping}, year={2006}, volume={2}, number={}, pages={1735-1742}, doi={10.1109/CVPR.2006.100} } """
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import ConvModule, bias_init_with_prob, normal_init from ..builder import HEADS from .anchor_head import AnchorHead @HEADS.register_module() class RetinaSepBNHead(AnchorHead): """"RetinaHead with separate BN. In RetinaHead, conv/norm layers are shared across different FPN levels, while in RetinaSepBNHead, conv layers are shared across different FPN levels, but BN layers are separated. """ def __init__(self, num_classes, num_ins, in_channels, stacked_convs=4, conv_cfg=None, norm_cfg=None, init_cfg=None, **kwargs): assert init_cfg is None, 'To prevent abnormal initialization ' \ 'behavior, init_cfg is not allowed to be set' self.stacked_convs = stacked_convs self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.num_ins = num_ins super(RetinaSepBNHead, self).__init__( num_classes, in_channels, init_cfg=init_cfg, **kwargs) def _init_layers(self): """Initialize layers of the head.""" self.relu = nn.ReLU(inplace=True) self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i in range(self.num_ins): cls_convs = nn.ModuleList() reg_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.cls_convs.append(cls_convs) self.reg_convs.append(reg_convs) for i in range(self.stacked_convs): for j in range(1, self.num_ins): self.cls_convs[j][i].conv = self.cls_convs[0][i].conv self.reg_convs[j][i].conv = self.reg_convs[0][i].conv self.retina_cls = nn.Conv2d( self.feat_channels, self.num_anchors * self.cls_out_channels, 3, padding=1) self.retina_reg = nn.Conv2d( self.feat_channels, self.num_anchors * 4, 3, padding=1) def init_weights(self): """Initialize weights of the head.""" super(RetinaSepBNHead, self).init_weights() for m in self.cls_convs[0]: normal_init(m.conv, std=0.01) for m in self.reg_convs[0]: normal_init(m.conv, std=0.01) bias_cls = bias_init_with_prob(0.01) normal_init(self.retina_cls, std=0.01, bias=bias_cls) normal_init(self.retina_reg, std=0.01) def forward(self, feats): """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: Usually a tuple of classification scores and bbox prediction cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_anchors * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_anchors * 4. """ cls_scores = [] bbox_preds = [] for i, x in enumerate(feats): cls_feat = feats[i] reg_feat = feats[i] for cls_conv in self.cls_convs[i]: cls_feat = cls_conv(cls_feat) for reg_conv in self.reg_convs[i]: reg_feat = reg_conv(reg_feat) cls_score = self.retina_cls(cls_feat) bbox_pred = self.retina_reg(reg_feat) cls_scores.append(cls_score) bbox_preds.append(bbox_pred) return cls_scores, bbox_preds
import torch.nn as nn from mmcv.cnn import ConvModule, bias_init_with_prob, normal_init from ..builder import HEADS from .anchor_head import AnchorHead @HEADS.register_module() class RetinaSepBNHead(AnchorHead): """"RetinaHead with separate BN. In RetinaHead, conv/norm layers are shared across different FPN levels, while in RetinaSepBNHead, conv layers are shared across different FPN levels, but BN layers are separated. """ def __init__(self, num_classes, num_ins, in_channels, stacked_convs=4, conv_cfg=None, norm_cfg=None, init_cfg=None, **kwargs): assert init_cfg is None, 'To prevent abnormal initialization ' \ 'behavior, init_cfg is not allowed to be set' self.stacked_convs = stacked_convs self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.num_ins = num_ins super(RetinaSepBNHead, self).__init__( num_classes, in_channels, init_cfg=init_cfg, **kwargs) def _init_layers(self): """Initialize layers of the head.""" self.relu = nn.ReLU(inplace=True) self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i in range(self.num_ins): cls_convs = nn.ModuleList() reg_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.cls_convs.append(cls_convs) self.reg_convs.append(reg_convs) for i in range(self.stacked_convs): for j in range(1, self.num_ins): self.cls_convs[j][i].conv = self.cls_convs[0][i].conv self.reg_convs[j][i].conv = self.reg_convs[0][i].conv self.retina_cls = nn.Conv2d( self.feat_channels, self.num_anchors * self.cls_out_channels, 3, padding=1) self.retina_reg = nn.Conv2d( self.feat_channels, self.num_anchors * 4, 3, padding=1) def init_weights(self): """Initialize weights of the head.""" super(RetinaSepBNHead, self).init_weights() for m in self.cls_convs[0]: normal_init(m.conv, std=0.01) for m in self.reg_convs[0]: normal_init(m.conv, std=0.01) bias_cls = bias_init_with_prob(0.01) normal_init(self.retina_cls, std=0.01, bias=bias_cls) normal_init(self.retina_reg, std=0.01) def forward(self, feats): """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: Usually a tuple of classification scores and bbox prediction cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_anchors * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_anchors * 4. """ cls_scores = [] bbox_preds = [] for i, x in enumerate(feats): cls_feat = feats[i] reg_feat = feats[i] for cls_conv in self.cls_convs[i]: cls_feat = cls_conv(cls_feat) for reg_conv in self.reg_convs[i]: reg_feat = reg_conv(reg_feat) cls_score = self.retina_cls(cls_feat) bbox_pred = self.retina_reg(reg_feat) cls_scores.append(cls_score) bbox_preds.append(bbox_pred) return cls_scores, bbox_preds
import inspect import re from typing import Dict, List, Tuple from huggingface_hub.utils import insecure_hashlib from .arrow import arrow from .audiofolder import audiofolder from .cache import cache from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql from .text import text from .webdataset import webdataset def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return insecure_hashlib.sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), "webdataset": (webdataset.__name__, _hash_python_lines(inspect.getsource(webdataset).splitlines())), } # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES_2_15_HASHES = { "csv": "eea64c71ca8b46dd3f537ed218fc9bf495d5707789152eb2764f5c78fa66d59d", "json": "8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96", "pandas": "3ac4ffc4563c796122ef66899b9485a3f1a977553e2d2a8a318c72b8cc6f2202", "parquet": "ca31c69184d9832faed373922c2acccec0b13a0bb5bbbe19371385c3ff26f1d1", "arrow": "74f69db2c14c2860059d39860b1f400a03d11bf7fb5a8258ca38c501c878c137", "text": "c4a140d10f020282918b5dd1b8a49f0104729c6177f60a6b49ec2a365ec69f34", "imagefolder": "7b7ce5247a942be131d49ad4f3de5866083399a0f250901bd8dc202f8c5f7ce5", "audiofolder": "d3c1655c66c8f72e4efb5c79e952975fa6e2ce538473a6890241ddbddee9071c", } # Used to infer the module to use based on the data files extensions _EXTENSION_TO_MODULE: Dict[str, Tuple[str, dict]] = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".geoparquet": ("parquet", {}), ".gpq": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), ".tar": ("webdataset", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name _MODULE_TO_EXTENSIONS: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) for _module in _MODULE_TO_EXTENSIONS: _MODULE_TO_EXTENSIONS[_module].append(".zip")
import inspect import re from typing import Dict, List, Tuple from huggingface_hub.utils import insecure_hashlib from .arrow import arrow from .audiofolder import audiofolder from .cache import cache from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql from .text import text from .webdataset import webdataset def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return insecure_hashlib.sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), "webdataset": (webdataset.__name__, _hash_python_lines(inspect.getsource(webdataset).splitlines())), } # Used to infer the module to use based on the data files extensions _EXTENSION_TO_MODULE: Dict[str, Tuple[str, dict]] = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".geoparquet": ("parquet", {}), ".gpq": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), ".tar": ("webdataset", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name _MODULE_TO_EXTENSIONS: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) for _module in _MODULE_TO_EXTENSIONS: _MODULE_TO_EXTENSIONS[_module].append(".zip")
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] lang_model_name = 'bert-base-uncased' model = dict( type='GLIP', data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, patch_norm=True, out_indices=(1, 2, 3), with_cp=False, convert_weights=False), neck=dict( type='FPN', in_channels=[192, 384, 768], out_channels=256, start_level=0, relu_before_extra_convs=True, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='ATSSVLFusionHead', lang_model_name=lang_model_name, num_classes=80, in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128], center_offset=0.5), bbox_coder=dict( type='DeltaXYWHBBoxCoderForGLIP', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), ), language_model=dict(type='BertModel', name=lang_model_name), train_cfg=dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) test_pipeline = [ dict( type='LoadImageFromFile', backend_args=_base_.backend_args, imdecode_backend='pillow'), dict( type='FixScaleResize', scale=(800, 1333), keep_ratio=True, backend='pillow'), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'text', 'custom_entities')) ] val_dataloader = dict( dataset=dict(pipeline=test_pipeline, return_classes=True)) test_dataloader = val_dataloader
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] lang_model_name = 'bert-base-uncased' model = dict( type='GLIP', data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, patch_norm=True, out_indices=(1, 2, 3), with_cp=False, convert_weights=False), neck=dict( type='FPN', in_channels=[192, 384, 768], out_channels=256, start_level=0, relu_before_extra_convs=True, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='ATSSVLFusionHead', lang_model_name=lang_model_name, num_classes=80, in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128], center_offset=0.5), bbox_coder=dict( type='DeltaXYWHBBoxCoderForGLIP', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), ), language_model=dict(type='BertModel', name=lang_model_name), train_cfg=dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) test_pipeline = [ dict( type='LoadImageFromFile', backend_args=_base_.backend_args, imdecode_backend='pillow'), dict( type='FixScaleResize', scale=(800, 1333), keep_ratio=True, backend='pillow'), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'caption', 'custom_entities')) ] val_dataloader = dict( dataset=dict(pipeline=test_pipeline, return_caption=True)) test_dataloader = val_dataloader
# Copyright (c) OpenMMLab. All rights reserved. import inspect from mmengine.logging import print_log def get_caller_name(): """Get name of caller method.""" # this_func_frame = inspect.stack()[0][0] # i.e., get_caller_name # callee_frame = inspect.stack()[1][0] # e.g., log_img_scale caller_frame = inspect.stack()[2][0] # e.g., caller of log_img_scale caller_method = caller_frame.f_code.co_name try: caller_class = caller_frame.f_locals['self'].__class__.__name__ return f'{caller_class}.{caller_method}' except KeyError: # caller is a function return caller_method def log_img_scale(img_scale, shape_order='hw', skip_square=False): """Log image size. Args: img_scale (tuple): Image size to be logged. shape_order (str, optional): The order of image shape. 'hw' for (height, width) and 'wh' for (width, height). Defaults to 'hw'. skip_square (bool, optional): Whether to skip logging for square img_scale. Defaults to False. Returns: bool: Whether to have done logging. """ if shape_order == 'hw': height, width = img_scale elif shape_order == 'wh': width, height = img_scale else: raise ValueError(f'Invalid shape_order {shape_order}.') if skip_square and (height == width): return False caller = get_caller_name() print_log( f'image shape: height={height}, width={width} in {caller}', logger='current') return True
# Copyright (c) OpenMMLab. All rights reserved. import inspect import logging from mmcv.utils import get_logger def get_root_logger(log_file=None, log_level=logging.INFO): """Get root logger. Args: log_file (str, optional): File path of log. Defaults to None. log_level (int, optional): The level of logger. Defaults to logging.INFO. Returns: :obj:`logging.Logger`: The obtained logger """ logger = get_logger(name='mmdet', log_file=log_file, log_level=log_level) return logger def get_caller_name(): """Get name of caller method.""" # this_func_frame = inspect.stack()[0][0] # i.e., get_caller_name # callee_frame = inspect.stack()[1][0] # e.g., log_img_scale caller_frame = inspect.stack()[2][0] # e.g., caller of log_img_scale caller_method = caller_frame.f_code.co_name try: caller_class = caller_frame.f_locals['self'].__class__.__name__ return f'{caller_class}.{caller_method}' except KeyError: # caller is a function return caller_method def log_img_scale(img_scale, shape_order='hw', skip_square=False): """Log image size. Args: img_scale (tuple): Image size to be logged. shape_order (str, optional): The order of image shape. 'hw' for (height, width) and 'wh' for (width, height). Defaults to 'hw'. skip_square (bool, optional): Whether to skip logging for square img_scale. Defaults to False. Returns: bool: Whether to have done logging. """ if shape_order == 'hw': height, width = img_scale elif shape_order == 'wh': width, height = img_scale else: raise ValueError(f'Invalid shape_order {shape_order}.') if skip_square and (height == width): return False logger = get_root_logger() caller = get_caller_name() logger.info(f'image shape: height={height}, width={width} in {caller}') return True
# Copyright (c) OpenMMLab. All rights reserved. import copy import inspect from typing import List, Union import torch import torch.nn as nn from mmengine.config import Config, ConfigDict from mmengine.device import is_npu_available, is_npu_support_full_precision from mmengine.registry import OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS from .optimizer_wrapper import OptimWrapper def register_torch_optimizers() -> List[str]: """Register optimizers in ``torch.optim`` to the ``OPTIMIZERS`` registry. Returns: List[str]: A list of registered optimizers' name. """ torch_optimizers = [] for module_name in dir(torch.optim): if module_name.startswith('__'): continue _optim = getattr(torch.optim, module_name) if inspect.isclass(_optim) and issubclass(_optim, torch.optim.Optimizer): OPTIMIZERS.register_module(module=_optim) torch_optimizers.append(module_name) return torch_optimizers TORCH_OPTIMIZERS = register_torch_optimizers() def register_torch_npu_optimizers() -> List[str]: """Register optimizers in ``torch npu`` to the ``OPTIMIZERS`` registry. Returns: List[str]: A list of registered optimizers' name. """ if not is_npu_available(): return [] import torch_npu if not hasattr(torch_npu, 'optim'): return [] torch_npu_optimizers = [] for module_name in dir(torch_npu.optim): if module_name.startswith('__') or module_name in OPTIMIZERS: continue _optim = getattr(torch_npu.optim, module_name) if inspect.isclass(_optim) and issubclass(_optim, torch.optim.Optimizer): OPTIMIZERS.register_module(module=_optim) torch_npu_optimizers.append(module_name) return torch_npu_optimizers NPU_OPTIMIZERS = register_torch_npu_optimizers() def register_dadaptation_optimizers() -> List[str]: """Register optimizers in ``dadaptation`` to the ``OPTIMIZERS`` registry. Returns: List[str]: A list of registered optimizers' name. """ dadaptation_optimizers = [] try: import dadaptation except ImportError: pass else: for module_name in ['DAdaptAdaGrad', 'DAdaptAdam', 'DAdaptSGD']: _optim = getattr(dadaptation, module_name) if inspect.isclass(_optim) and issubclass(_optim, torch.optim.Optimizer): OPTIMIZERS.register_module(module=_optim) dadaptation_optimizers.append(module_name) return dadaptation_optimizers DADAPTATION_OPTIMIZERS = register_dadaptation_optimizers() def register_lion_optimizers() -> List[str]: """Register Lion optimizer to the ``OPTIMIZERS`` registry. Returns: List[str]: A list of registered optimizers' name. """ optimizers = [] try: from lion_pytorch import Lion except ImportError: pass else: OPTIMIZERS.register_module(module=Lion) optimizers.append('Lion') return optimizers LION_OPTIMIZERS = register_lion_optimizers() def build_optim_wrapper(model: nn.Module, cfg: Union[dict, Config, ConfigDict]) -> OptimWrapper: """Build function of OptimWrapper. If ``constructor`` is set in the ``cfg``, this method will build an optimizer wrapper constructor, and use optimizer wrapper constructor to build the optimizer wrapper. If ``constructor`` is not set, the ``DefaultOptimWrapperConstructor`` will be used by default. Args: model (nn.Module): Model to be optimized. cfg (dict): Config of optimizer wrapper, optimizer constructor and optimizer. Returns: OptimWrapper: The built optimizer wrapper. """ optim_wrapper_cfg = copy.deepcopy(cfg) constructor_type = optim_wrapper_cfg.pop('constructor', 'DefaultOptimWrapperConstructor') paramwise_cfg = optim_wrapper_cfg.pop('paramwise_cfg', None) # Since the current generation of NPU(Ascend 910) only supports # mixed precision training, here we turn on mixed precision # to make the training normal if is_npu_available() and not is_npu_support_full_precision(): optim_wrapper_cfg['type'] = 'AmpOptimWrapper' optim_wrapper_constructor = OPTIM_WRAPPER_CONSTRUCTORS.build( dict( type=constructor_type, optim_wrapper_cfg=optim_wrapper_cfg, paramwise_cfg=paramwise_cfg)) optim_wrapper = optim_wrapper_constructor(model) return optim_wrapper
# Copyright (c) OpenMMLab. All rights reserved. import copy import inspect from typing import List, Union import torch import torch.nn as nn from mmengine.config import Config, ConfigDict from mmengine.device import is_npu_available from mmengine.registry import OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS from .optimizer_wrapper import OptimWrapper def register_torch_optimizers() -> List[str]: """Register optimizers in ``torch.optim`` to the ``OPTIMIZERS`` registry. Returns: List[str]: A list of registered optimizers' name. """ torch_optimizers = [] for module_name in dir(torch.optim): if module_name.startswith('__'): continue _optim = getattr(torch.optim, module_name) if inspect.isclass(_optim) and issubclass(_optim, torch.optim.Optimizer): OPTIMIZERS.register_module(module=_optim) torch_optimizers.append(module_name) return torch_optimizers TORCH_OPTIMIZERS = register_torch_optimizers() def register_torch_npu_optimizers() -> List[str]: """Register optimizers in ``torch npu`` to the ``OPTIMIZERS`` registry. Returns: List[str]: A list of registered optimizers' name. """ if not is_npu_available(): return [] import torch_npu if not hasattr(torch_npu, 'optim'): return [] torch_npu_optimizers = [] for module_name in dir(torch_npu.optim): if module_name.startswith('__') or module_name in OPTIMIZERS: continue _optim = getattr(torch_npu.optim, module_name) if inspect.isclass(_optim) and issubclass(_optim, torch.optim.Optimizer): OPTIMIZERS.register_module(module=_optim) torch_npu_optimizers.append(module_name) return torch_npu_optimizers NPU_OPTIMIZERS = register_torch_npu_optimizers() def register_dadaptation_optimizers() -> List[str]: """Register optimizers in ``dadaptation`` to the ``OPTIMIZERS`` registry. Returns: List[str]: A list of registered optimizers' name. """ dadaptation_optimizers = [] try: import dadaptation except ImportError: pass else: for module_name in ['DAdaptAdaGrad', 'DAdaptAdam', 'DAdaptSGD']: _optim = getattr(dadaptation, module_name) if inspect.isclass(_optim) and issubclass(_optim, torch.optim.Optimizer): OPTIMIZERS.register_module(module=_optim) dadaptation_optimizers.append(module_name) return dadaptation_optimizers DADAPTATION_OPTIMIZERS = register_dadaptation_optimizers() def register_lion_optimizers() -> List[str]: """Register Lion optimizer to the ``OPTIMIZERS`` registry. Returns: List[str]: A list of registered optimizers' name. """ optimizers = [] try: from lion_pytorch import Lion except ImportError: pass else: OPTIMIZERS.register_module(module=Lion) optimizers.append('Lion') return optimizers LION_OPTIMIZERS = register_lion_optimizers() def build_optim_wrapper(model: nn.Module, cfg: Union[dict, Config, ConfigDict]) -> OptimWrapper: """Build function of OptimWrapper. If ``constructor`` is set in the ``cfg``, this method will build an optimizer wrapper constructor, and use optimizer wrapper constructor to build the optimizer wrapper. If ``constructor`` is not set, the ``DefaultOptimWrapperConstructor`` will be used by default. Args: model (nn.Module): Model to be optimized. cfg (dict): Config of optimizer wrapper, optimizer constructor and optimizer. Returns: OptimWrapper: The built optimizer wrapper. """ optim_wrapper_cfg = copy.deepcopy(cfg) constructor_type = optim_wrapper_cfg.pop('constructor', 'DefaultOptimWrapperConstructor') paramwise_cfg = optim_wrapper_cfg.pop('paramwise_cfg', None) # Since the current generation of NPU(Ascend 910) only supports # mixed precision training, here we turn on mixed precision by default # on the NPU to make the training normal if is_npu_available(): optim_wrapper_cfg['type'] = 'AmpOptimWrapper' optim_wrapper_constructor = OPTIM_WRAPPER_CONSTRUCTORS.build( dict( type=constructor_type, optim_wrapper_cfg=optim_wrapper_cfg, paramwise_cfg=paramwise_cfg)) optim_wrapper = optim_wrapper_constructor(model) return optim_wrapper
from typing import Any, Dict, Iterator import torch from ..utils import _log_api_usage_once try: from ._load_gpu_decoder import _HAS_GPU_VIDEO_DECODER except ModuleNotFoundError: _HAS_GPU_VIDEO_DECODER = False from ._video_opt import ( _HAS_VIDEO_OPT, _probe_video_from_file, _probe_video_from_memory, _read_video_from_file, _read_video_from_memory, _read_video_timestamps_from_file, _read_video_timestamps_from_memory, Timebase, VideoMetaData, ) from .image import ( decode_gif, decode_image, decode_jpeg, decode_png, encode_jpeg, encode_png, ImageReadMode, read_file, read_image, write_file, write_jpeg, write_png, ) from .video import read_video, read_video_timestamps, write_video from .video_reader import VideoReader __all__ = [ "write_video", "read_video", "read_video_timestamps", "_read_video_from_file", "_read_video_timestamps_from_file", "_probe_video_from_file", "_read_video_from_memory", "_read_video_timestamps_from_memory", "_probe_video_from_memory", "_HAS_VIDEO_OPT", "_HAS_GPU_VIDEO_DECODER", "_read_video_clip_from_memory", "_read_video_meta_data", "VideoMetaData", "Timebase", "ImageReadMode", "decode_image", "decode_jpeg", "decode_png", "encode_jpeg", "encode_png", "read_file", "read_image", "write_file", "write_jpeg", "write_png", "Video", "VideoReader", ]
from typing import Any, Dict, Iterator import torch from ..utils import _log_api_usage_once try: from ._load_gpu_decoder import _HAS_GPU_VIDEO_DECODER except ModuleNotFoundError: _HAS_GPU_VIDEO_DECODER = False from ._video_opt import ( _HAS_VIDEO_OPT, _probe_video_from_file, _probe_video_from_memory, _read_video_from_file, _read_video_from_memory, _read_video_timestamps_from_file, _read_video_timestamps_from_memory, Timebase, VideoMetaData, ) from .image import ( decode_image, decode_jpeg, decode_png, encode_jpeg, encode_png, ImageReadMode, read_file, read_image, write_file, write_jpeg, write_png, ) from .video import read_video, read_video_timestamps, write_video from .video_reader import VideoReader __all__ = [ "write_video", "read_video", "read_video_timestamps", "_read_video_from_file", "_read_video_timestamps_from_file", "_probe_video_from_file", "_read_video_from_memory", "_read_video_timestamps_from_memory", "_probe_video_from_memory", "_HAS_VIDEO_OPT", "_HAS_GPU_VIDEO_DECODER", "_read_video_clip_from_memory", "_read_video_meta_data", "VideoMetaData", "Timebase", "ImageReadMode", "decode_image", "decode_jpeg", "decode_png", "encode_jpeg", "encode_png", "read_file", "read_image", "write_file", "write_jpeg", "write_png", "Video", "VideoReader", ]
# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..utils import deprecate from .autoencoders.vq_model import VQEncoderOutput, VQModel class VQEncoderOutput(VQEncoderOutput): def __init__(self, *args, **kwargs): deprecation_message = "Importing `VQEncoderOutput` from `diffusers.models.vq_model` is deprecated and this will be removed in a future version. Please use `from diffusers.models.autoencoders.vq_model import VQEncoderOutput`, instead." deprecate("VQEncoderOutput", "0.31", deprecation_message) super().__init__(*args, **kwargs) class VQModel(VQModel): def __init__(self, *args, **kwargs): deprecation_message = "Importing `VQModel` from `diffusers.models.vq_model` is deprecated and this will be removed in a future version. Please use `from diffusers.models.autoencoders.vq_model import VQModel`, instead." deprecate("VQModel", "0.31", deprecation_message) super().__init__(*args, **kwargs)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..utils import deprecate from .autoencoders.vq_model import VQEncoderOutput, VQModel class VQEncoderOutput(VQEncoderOutput): def __init__(self, *args, **kwargs): deprecation_message = "Importing `VQEncoderOutput` from `diffusers.models.vq_model` is deprecated and this will be removed in a future version. Please use `from diffusers.models.autoencoders.vq_model import VQEncoderOutput`, instead." deprecate("VQEncoderOutput", "0.31", deprecation_message) super().__init__(*args, **kwargs) class VQModel(VQModel): def __init__(self, *args, **kwargs): deprecation_message = "Importing `VQModel` from `diffusers.models.vq_model` is deprecated and this will be removed in a future version. Please use `from diffusers.models.autoencoders.vq_model import VQModel`, instead." deprecate("VQModel", "0.31", deprecation_message) super().__init__(*args, **kwargs)
_base_ = './mask_rcnn_r50_fpn_1x_coco.py' preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) model = dict( # use caffe img_norm preprocess_cfg=preprocess_cfg, backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
_base_ = './mask_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe'))) # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
"""Run smoke tests""" import sys from pathlib import Path import torch import torchvision from torchvision.io import decode_jpeg, read_file, read_image from torchvision.models import resnet50, ResNet50_Weights SCRIPT_DIR = Path(__file__).parent def smoke_test_torchvision() -> None: print( "Is torchvision usable?", all(x is not None for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]), ) def smoke_test_torchvision_read_decode() -> None: img_jpg = read_image(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) if img_jpg.shape != (3, 606, 517): raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") img_png = read_image(str(SCRIPT_DIR / "assets" / "interlaced_png" / "wizard_low.png")) if img_png.shape != (4, 471, 354): raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}") def smoke_test_torchvision_decode_jpeg(device: str = "cpu"): img_jpg_data = read_file(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) img_jpg = decode_jpeg(img_jpg_data, device=device) if img_jpg.shape != (3, 606, 517): raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") def smoke_test_compile() -> None: try: model = resnet50().cuda() model = torch.compile(model) x = torch.randn(1, 3, 224, 224, device="cuda") out = model(x) print(f"torch.compile model output: {out.shape}") except RuntimeError: if sys.platform == "win32": print("Successfully caught torch.compile RuntimeError on win") else: raise def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None: img = read_image(str(SCRIPT_DIR / ".." / "gallery" / "assets" / "dog2.jpg")).to(device) # Step 1: Initialize model with the best available weights weights = ResNet50_Weights.DEFAULT model = resnet50(weights=weights).to(device) model.eval() # Step 2: Initialize the inference transforms preprocess = weights.transforms(antialias=(device != "mps")) # antialias not supported on MPS # Step 3: Apply inference preprocessing transforms batch = preprocess(img).unsqueeze(0) # Step 4: Use the model and print the predicted category prediction = model(batch).squeeze(0).softmax(0) class_id = prediction.argmax().item() score = prediction[class_id].item() category_name = weights.meta["categories"][class_id] expected_category = "German shepherd" print(f"{category_name} ({device}): {100 * score:.1f}%") if category_name != expected_category: raise RuntimeError(f"Failed ResNet50 classify {category_name} Expected: {expected_category}") def main() -> None: print(f"torchvision: {torchvision.__version__}") print(f"torch.cuda.is_available: {torch.cuda.is_available()}") # Turn 1.11.0aHASH into 1.11 (major.minor only) version = ".".join(torchvision.__version__.split(".")[:2]) if version >= "0.16": print(f"{torch.ops.image._jpeg_version() = }") assert torch.ops.image._is_compiled_against_turbo() smoke_test_torchvision() smoke_test_torchvision_read_decode() smoke_test_torchvision_resnet50_classify() smoke_test_torchvision_decode_jpeg() if torch.cuda.is_available(): smoke_test_torchvision_decode_jpeg("cuda") smoke_test_torchvision_resnet50_classify("cuda") # TODO: remove once pytorch/pytorch#110436 is resolved if sys.version_info < (3, 12, 0): smoke_test_compile() if torch.backends.mps.is_available(): smoke_test_torchvision_resnet50_classify("mps") if __name__ == "__main__": main()
"""Run smoke tests""" import sys from pathlib import Path import torch import torchvision from torchvision.io import decode_jpeg, read_file, read_image from torchvision.models import resnet50, ResNet50_Weights SCRIPT_DIR = Path(__file__).parent def smoke_test_torchvision() -> None: print( "Is torchvision usable?", all(x is not None for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]), ) def smoke_test_torchvision_read_decode() -> None: img_jpg = read_image(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) if img_jpg.shape != (3, 606, 517): raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") img_png = read_image(str(SCRIPT_DIR / "assets" / "interlaced_png" / "wizard_low.png")) if img_png.shape != (4, 471, 354): raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}") def smoke_test_torchvision_decode_jpeg(device: str = "cpu"): img_jpg_data = read_file(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) img_jpg = decode_jpeg(img_jpg_data, device=device) if img_jpg.shape != (3, 606, 517): raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") def smoke_test_compile() -> None: try: model = resnet50().cuda() model = torch.compile(model) x = torch.randn(1, 3, 224, 224, device="cuda") out = model(x) print(f"torch.compile model output: {out.shape}") except RuntimeError: if sys.platform == "win32": print("Successfully caught torch.compile RuntimeError on win") else: raise def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None: img = read_image(str(SCRIPT_DIR / ".." / "gallery" / "assets" / "dog2.jpg")).to(device) # Step 1: Initialize model with the best available weights weights = ResNet50_Weights.DEFAULT model = resnet50(weights=weights).to(device) model.eval() # Step 2: Initialize the inference transforms preprocess = weights.transforms(antialias=(device != "mps")) # antialias not supported on MPS # Step 3: Apply inference preprocessing transforms batch = preprocess(img).unsqueeze(0) # Step 4: Use the model and print the predicted category prediction = model(batch).squeeze(0).softmax(0) class_id = prediction.argmax().item() score = prediction[class_id].item() category_name = weights.meta["categories"][class_id] expected_category = "German shepherd" print(f"{category_name} ({device}): {100 * score:.1f}%") if category_name != expected_category: raise RuntimeError(f"Failed ResNet50 classify {category_name} Expected: {expected_category}") def main() -> None: print(f"torchvision: {torchvision.__version__}") print(f"torch.cuda.is_available: {torch.cuda.is_available()}") # Turn 1.11.0aHASH into 1.11 (major.minor only) version = ".".join(torchvision.__version__.split(".")[:2]) if version >= "0.16": print(f"{torch.ops.image._jpeg_version() = }") assert torch.ops.image._is_compiled_against_turbo() smoke_test_torchvision() smoke_test_torchvision_read_decode() smoke_test_torchvision_resnet50_classify() smoke_test_torchvision_decode_jpeg() if torch.cuda.is_available(): smoke_test_torchvision_decode_jpeg("cuda") smoke_test_torchvision_resnet50_classify("cuda") smoke_test_compile() if torch.backends.mps.is_available(): smoke_test_torchvision_resnet50_classify("mps") if __name__ == "__main__": main()
from ..utils import is_torch_available if is_torch_available(): from .hooks import HookRegistry, ModelHook from .layerwise_casting import apply_layerwise_casting, apply_layerwise_casting_hook from .pyramid_attention_broadcast import PyramidAttentionBroadcastConfig, apply_pyramid_attention_broadcast
from ..utils import is_torch_available if is_torch_available(): from .layerwise_casting import apply_layerwise_casting, apply_layerwise_casting_hook
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional import torch import torch.nn as nn from mmengine.runner import load_checkpoint from torch import Tensor from mmdet.core import ConfigType, OptConfigType, SampleList from mmdet.registry import MODELS from .kd_one_stage import KnowledgeDistillationSingleStageDetector @MODELS.register_module() class LAD(KnowledgeDistillationSingleStageDetector): """Implementation of `LAD <https://arxiv.org/pdf/2108.10520.pdf>`_.""" def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, teacher_backbone: ConfigType, teacher_neck: ConfigType, teacher_bbox_head: ConfigType, teacher_ckpt: Optional[str] = None, eval_teacher: bool = True, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, preprocess_cfg: OptConfigType = None) -> None: super(KnowledgeDistillationSingleStageDetector, self).__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, preprocess_cfg=preprocess_cfg) self.eval_teacher = eval_teacher self.teacher_model = nn.Module() self.teacher_model.backbone = MODELS.build(teacher_backbone) if teacher_neck is not None: self.teacher_model.neck = MODELS.build(teacher_neck) teacher_bbox_head.update(train_cfg=train_cfg) teacher_bbox_head.update(test_cfg=test_cfg) self.teacher_model.bbox_head = MODELS.build(teacher_bbox_head) if teacher_ckpt is not None: load_checkpoint( self.teacher_model, teacher_ckpt, map_location='cpu') @property def with_teacher_neck(self) -> bool: """bool: whether the detector has a teacher_neck""" return hasattr(self.teacher_model, 'neck') and \ self.teacher_model.neck is not None def extract_teacher_feat(self, batch_inputs: Tensor) -> Tensor: """Directly extract teacher features from the backbone+neck.""" x = self.teacher_model.backbone(batch_inputs) if self.with_teacher_neck: x = self.teacher_model.neck(x) return x def forward_train(self, batch_inputs: Tensor, batch_data_samples: SampleList, **kwargs) -> dict: """ Args: batch_inputs (Tensor): Input images of shape (N, C, H, W). These should usually be mean centered and std scaled. batch_data_samples (list[:obj:`DetDataSample`]): The batch data samples. It usually includes information such as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. Returns: dict[str, Tensor]: A dictionary of loss components. """ batch_gt_instances = [] batch_gt_instances_ignore = [] batch_img_metas = [] for data_sample in batch_data_samples: batch_img_metas.append(data_sample.metainfo) batch_gt_instances.append(data_sample.gt_instances) if 'ignored_instances' in data_sample: batch_gt_instances_ignore.append(data_sample.ignored_instances) else: batch_gt_instances_ignore.append(None) # get label assignment from the teacher with torch.no_grad(): x_teacher = self.extract_teacher_feat(batch_inputs) outs_teacher = self.teacher_model.bbox_head(x_teacher) label_assignment_results = \ self.teacher_model.bbox_head.get_label_assignment( *outs_teacher, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore) # the student use the label assignment from the teacher to learn x = self.extract_feat(batch_inputs) losses = self.bbox_head.forward_train(x, label_assignment_results, batch_gt_instances, batch_img_metas, batch_gt_instances_ignore) return losses
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from mmcv.runner import load_checkpoint from mmdet.registry import MODELS from .kd_one_stage import KnowledgeDistillationSingleStageDetector @MODELS.register_module() class LAD(KnowledgeDistillationSingleStageDetector): """Implementation of `LAD <https://arxiv.org/pdf/2108.10520.pdf>`_.""" def __init__(self, backbone, neck, bbox_head, teacher_backbone, teacher_neck, teacher_bbox_head, teacher_ckpt, eval_teacher=True, train_cfg=None, test_cfg=None, pretrained=None): super(KnowledgeDistillationSingleStageDetector, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained) self.eval_teacher = eval_teacher self.teacher_model = nn.Module() self.teacher_model.backbone = MODELS.build(teacher_backbone) if teacher_neck is not None: self.teacher_model.neck = MODELS.build(teacher_neck) teacher_bbox_head.update(train_cfg=train_cfg) teacher_bbox_head.update(test_cfg=test_cfg) self.teacher_model.bbox_head = MODELS.build(teacher_bbox_head) if teacher_ckpt is not None: load_checkpoint( self.teacher_model, teacher_ckpt, map_location='cpu') @property def with_teacher_neck(self): """bool: whether the detector has a teacher_neck""" return hasattr(self.teacher_model, 'neck') and \ self.teacher_model.neck is not None def extract_teacher_feat(self, img): """Directly extract teacher features from the backbone+neck.""" x = self.teacher_model.backbone(img) if self.with_teacher_neck: x = self.teacher_model.neck(x) return x def forward_train(self, img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None): """ Args: img (Tensor): Input images of shape (N, C, H, W). Typically these should be mean centered and std scaled. img_metas (list[dict]): A List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see :class:`mmdet.datasets.pipelines.Collect`. gt_bboxes (list[Tensor]): Each item are the truth boxes for each image in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): Class indices corresponding to each box gt_bboxes_ignore (None | list[Tensor]): Specify which bounding boxes can be ignored when computing the loss. Returns: dict[str, Tensor]: A dictionary of loss components. """ # get label assignment from the teacher with torch.no_grad(): x_teacher = self.extract_teacher_feat(img) outs_teacher = self.teacher_model.bbox_head(x_teacher) label_assignment_results = \ self.teacher_model.bbox_head.get_label_assignment( *outs_teacher, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) # the student use the label assignment from the teacher to learn x = self.extract_feat(img) losses = self.bbox_head.forward_train(x, label_assignment_results, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore) return losses
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import EmptyCacheHook class TestEmptyCacheHook: def test_emtpy_cache_hook(self): Hook = EmptyCacheHook(True, True, True) Runner = Mock() Hook._after_iter(Runner) Hook._before_epoch(Runner) Hook._after_epoch(Runner)
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import EmptyCacheHook class TestEmptyCacheHook: def test_emtpy_cache_hook(self): Hook = EmptyCacheHook(True, True, True) Runner = Mock() Hook.after_iter(Runner) Hook.before_epoch(Runner) Hook.after_epoch(Runner)
from typing import Any, Type, TypeVar, Union, cast import numpy as np from docarray.typing.tensor.embedding.embedding_mixin import EmbeddingMixin from docarray.typing.tensor.embedding.ndarray import NdArrayEmbedding from docarray.typing.tensor.tensor import AnyTensor from docarray.utils._internal.misc import ( # noqa is_jax_available, is_tf_available, is_torch_available, ) jax_available = is_jax_available() if jax_available: import jax.numpy as jnp # type: ignore from docarray.typing.tensor.embedding.jax_array import JaxArrayEmbedding from docarray.typing.tensor.jaxarray import JaxArray # noqa: F401 torch_available = is_torch_available() if torch_available: import torch from docarray.typing.tensor.embedding.torch import TorchEmbedding from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 tf_available = is_tf_available() if tf_available: import tensorflow as tf # type: ignore from docarray.typing.tensor.embedding.tensorflow import TensorFlowEmbedding from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor # noqa: F401 T = TypeVar("T", bound="AnyEmbedding") class AnyEmbedding(AnyTensor, EmbeddingMixin): """ Represents an embedding tensor object that can be used with TensorFlow, PyTorch, and NumPy type. --- '''python from docarray import BaseDoc from docarray.typing import AnyEmbedding class MyEmbeddingDoc(BaseDoc): embedding: AnyEmbedding # Example usage with TensorFlow: import tensorflow as tf doc = MyEmbeddingDoc(embedding=tf.zeros(1000, 2)) type(doc.embedding) # TensorFlowEmbedding # Example usage with PyTorch: import torch doc = MyEmbeddingDoc(embedding=torch.zeros(1000, 2)) type(doc.embedding) # TorchEmbedding # Example usage with NumPy: import numpy as np doc = MyEmbeddingDoc(embedding=np.zeros((1000, 2))) type(doc.embedding) # NdArrayEmbedding ''' --- Raises: TypeError: If the type of the value is not one of [torch.Tensor, tensorflow.Tensor, numpy.ndarray] """ @classmethod def _docarray_validate( cls: Type[T], value: Union[T, np.ndarray, Any], ): if torch_available: if isinstance(value, TorchTensor): return cast(TorchEmbedding, value) elif isinstance(value, torch.Tensor): return TorchEmbedding._docarray_from_native(value) # noqa if tf_available: if isinstance(value, TensorFlowTensor): return cast(TensorFlowEmbedding, value) elif isinstance(value, tf.Tensor): return TensorFlowEmbedding._docarray_from_native(value) # noqa if jax_available: if isinstance(value, JaxArray): return cast(JaxArrayEmbedding, value) elif isinstance(value, jnp.ndarray): return JaxArrayEmbedding._docarray_from_native(value) # noqa try: return NdArrayEmbedding._docarray_validate(value) except Exception: # noqa pass raise TypeError( f"Expected one of [torch.Tensor, tensorflow.Tensor, numpy.ndarray] " f"compatible type, got {type(value)}" )
from typing import TYPE_CHECKING, Any, Type, TypeVar, Union, cast import numpy as np from docarray.typing.tensor.embedding.embedding_mixin import EmbeddingMixin from docarray.typing.tensor.embedding.ndarray import NdArrayEmbedding from docarray.typing.tensor.tensor import AnyTensor from docarray.utils._internal.misc import ( # noqa is_jax_available, is_tf_available, is_torch_available, ) jax_available = is_jax_available() if jax_available: import jax.numpy as jnp # type: ignore from docarray.typing.tensor.embedding.jax_array import JaxArrayEmbedding from docarray.typing.tensor.jaxarray import JaxArray # noqa: F401 torch_available = is_torch_available() if torch_available: import torch from docarray.typing.tensor.embedding.torch import TorchEmbedding from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 tf_available = is_tf_available() if tf_available: import tensorflow as tf # type: ignore from docarray.typing.tensor.embedding.tensorflow import TensorFlowEmbedding from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor # noqa: F401 if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar("T", bound="AnyEmbedding") class AnyEmbedding(AnyTensor, EmbeddingMixin): """ Represents an embedding tensor object that can be used with TensorFlow, PyTorch, and NumPy type. --- '''python from docarray import BaseDoc from docarray.typing import AnyEmbedding class MyEmbeddingDoc(BaseDoc): embedding: AnyEmbedding # Example usage with TensorFlow: import tensorflow as tf doc = MyEmbeddingDoc(embedding=tf.zeros(1000, 2)) type(doc.embedding) # TensorFlowEmbedding # Example usage with PyTorch: import torch doc = MyEmbeddingDoc(embedding=torch.zeros(1000, 2)) type(doc.embedding) # TorchEmbedding # Example usage with NumPy: import numpy as np doc = MyEmbeddingDoc(embedding=np.zeros((1000, 2))) type(doc.embedding) # NdArrayEmbedding ''' --- Raises: TypeError: If the type of the value is not one of [torch.Tensor, tensorflow.Tensor, numpy.ndarray] """ @classmethod def __get_validators__(cls): yield cls.validate @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, Any], field: "ModelField", config: "BaseConfig", ): if torch_available: if isinstance(value, TorchTensor): return cast(TorchEmbedding, value) elif isinstance(value, torch.Tensor): return TorchEmbedding._docarray_from_native(value) # noqa if tf_available: if isinstance(value, TensorFlowTensor): return cast(TensorFlowEmbedding, value) elif isinstance(value, tf.Tensor): return TensorFlowEmbedding._docarray_from_native(value) # noqa if jax_available: if isinstance(value, JaxArray): return cast(JaxArrayEmbedding, value) elif isinstance(value, jnp.ndarray): return JaxArrayEmbedding._docarray_from_native(value) # noqa try: return NdArrayEmbedding.validate(value, field, config) except Exception: # noqa pass raise TypeError( f"Expected one of [torch.Tensor, tensorflow.Tensor, numpy.ndarray] " f"compatible type, got {type(value)}" )
_base_ = [ 'mmdet::_base_/models/mask-rcnn_r50_fpn.py', 'mmdet::_base_/datasets/coco_instance.py', 'mmdet::_base_/schedules/schedule_1x.py', 'mmdet::_base_/default_runtime.py' ] # please install the mmclassification dev-1.x branch # import mmcls.models to trigger register_module in mmcls custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False) checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext-v2/convnext-v2-base_3rdparty-fcmae_in1k_20230104-8a798eaf.pth' # noqa image_size = (1024, 1024) model = dict( backbone=dict( _delete_=True, type='mmcls.ConvNeXt', arch='base', out_indices=[0, 1, 2, 3], # TODO: verify stochastic depth rate {0.1, 0.2, 0.3, 0.4} drop_path_rate=0.4, layer_scale_init_value=0., # disable layer scale when using GRN gap_before_final_norm=False, use_grn=True, # V2 uses GRN init_cfg=dict( type='Pretrained', checkpoint=checkpoint_file, prefix='backbone.')), neck=dict(in_channels=[128, 256, 512, 1024]), test_cfg=dict( rpn=dict(nms=dict(type='nms')), # TODO: does RPN use soft_nms? rcnn=dict(nms=dict(type='soft_nms')))) train_pipeline = [ dict(type='LoadImageFromFile', backend_args=_base_.backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict( batch_size=4, # total_batch_size 32 = 8 GPUS x 4 images num_workers=8, dataset=dict(pipeline=train_pipeline)) max_epochs = 36 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[27, 33], gamma=0.1) ] # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', constructor='LearningRateDecayOptimizerConstructor', paramwise_cfg={ 'decay_rate': 0.95, 'decay_type': 'layer_wise', # TODO: sweep layer-wise lr decay? 'num_layers': 12 }, optimizer=dict( _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, )) default_hooks = dict(checkpoint=dict(max_keep_ckpts=1))
_base_ = [ 'mmdet::_base_/models/mask-rcnn_r50_fpn.py', 'mmdet::_base_/datasets/coco_instance.py', 'mmdet::_base_/schedules/schedule_1x.py', 'mmdet::_base_/default_runtime.py' ] # please install the mmclassification dev-1.x branch # import mmcls.models to trigger register_module in mmcls custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False) checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext-v2/convnext-v2-base_3rdparty-fcmae_in1k_20230104-8a798eaf.pth' # noqa image_size = (1024, 1024) model = dict( backbone=dict( _delete_=True, type='mmcls.ConvNeXt', arch='base', out_indices=[0, 1, 2, 3], # TODO: verify stochastic depth rate {0.1, 0.2, 0.3, 0.4} drop_path_rate=0.4, layer_scale_init_value=0., # disable layer scale when using GRN gap_before_final_norm=False, use_grn=True, # V2 uses GRN init_cfg=dict( type='Pretrained', checkpoint=checkpoint_file, prefix='backbone.')), neck=dict(in_channels=[128, 256, 512, 1024]), test_cfg=dict( rpn=dict(nms=dict(type='nms')), # TODO: does RPN use soft_nms? rcnn=dict(nms=dict(type='soft_nms')))) train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict( batch_size=4, # total_batch_size 32 = 8 GPUS x 4 images num_workers=8, dataset=dict(pipeline=train_pipeline)) max_epochs = 36 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[27, 33], gamma=0.1) ] # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', constructor='LearningRateDecayOptimizerConstructor', paramwise_cfg={ 'decay_rate': 0.95, 'decay_type': 'layer_wise', # TODO: sweep layer-wise lr decay? 'num_layers': 12 }, optimizer=dict( _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, )) default_hooks = dict(checkpoint=dict(max_keep_ckpts=1))
from typing import Any, Dict from pydantic.tools import parse_obj_as from docarray.document.abstract_document import AbstractDocument from docarray.document.base_node import BaseNode from docarray.proto import DocumentProto, NodeProto from docarray.typing import ID, AnyUrl, Embedding, ImageUrl, Tensor, TorchTensor class ProtoMixin(AbstractDocument, BaseNode): @classmethod def from_protobuf(cls, pb_msg: 'DocumentProto') -> 'ProtoMixin': """create a Document from a protobuf message""" from docarray import DocumentArray fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type = value.WhichOneof('content') # this if else statement need to be refactored it is too long # the check should be delegated to the type level if content_type == 'tensor': fields[field] = Tensor._read_from_proto(value.tensor) elif content_type == 'torch_tensor': fields[field] = TorchTensor._read_from_proto(value.torch_tensor) elif content_type == 'embedding': fields[field] = Embedding._read_from_proto(value.embedding) elif content_type == 'any_url': fields[field] = parse_obj_as(AnyUrl, value.any_url) elif content_type == 'image_url': fields[field] = parse_obj_as(ImageUrl, value.image_url) elif content_type == 'id': fields[field] = parse_obj_as(ID, value.id) elif content_type == 'text': fields[field] = value.text elif content_type == 'nested': fields[field] = cls._get_nested_document_class(field).from_protobuf( value.nested ) # we get to the parent class elif content_type == 'chunks': fields[field] = DocumentArray.from_protobuf( value.chunks ) # we get to the parent class elif content_type is None: fields[field] = None else: raise ValueError( f'type {content_type} is not supported for deserialization' ) return cls(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif type(value) is str: nested_item = NodeProto(text=value) elif type(value) is bytes: nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> NodeProto: """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(nested=self.to_protobuf())
from typing import Any, Dict from pydantic.tools import parse_obj_as from docarray.document.abstract_document import AbstractDocument from docarray.document.base_node import BaseNode from docarray.proto import DocumentProto, NodeProto from docarray.typing import ID, AnyUrl, Embedding, ImageUrl, Tensor class ProtoMixin(AbstractDocument, BaseNode): @classmethod def from_protobuf(cls, pb_msg: 'DocumentProto') -> 'ProtoMixin': """create a Document from a protobuf message""" from docarray import DocumentArray fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type = value.WhichOneof('content') # this if else statement need to be refactored it is too long # the check should be delegated to the type level if content_type == 'tensor': fields[field] = Tensor._read_from_proto(value.tensor) elif content_type == 'embedding': fields[field] = Embedding._read_from_proto(value.embedding) elif content_type == 'any_url': fields[field] = parse_obj_as(AnyUrl, value.any_url) elif content_type == 'image_url': fields[field] = parse_obj_as(ImageUrl, value.image_url) elif content_type == 'id': fields[field] = parse_obj_as(ID, value.id) elif content_type == 'text': fields[field] = value.text elif content_type == 'nested': fields[field] = cls._get_nested_document_class(field).from_protobuf( value.nested ) # we get to the parent class elif content_type == 'chunks': fields[field] = DocumentArray.from_protobuf( value.chunks ) # we get to the parent class elif content_type is None: fields[field] = None else: raise ValueError( f'type {content_type} is not supported for deserialization' ) return cls(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif type(value) is str: nested_item = NodeProto(text=value) elif type(value) is bytes: nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> NodeProto: """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(nested=self.to_protobuf())
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.transforms import LoadImageFromFile from mmdet.datasets.transforms import LoadAnnotations, LoadPanopticAnnotations from mmdet.registry import TRANSFORMS def get_loading_pipeline(pipeline): """Only keep loading image and annotations related configuration. Args: pipeline (list[dict]): Data pipeline configs. Returns: list[dict]: The new pipeline list with only keep loading image and annotations related configuration. Examples: >>> pipelines = [ ... dict(type='LoadImageFromFile'), ... dict(type='LoadAnnotations', with_bbox=True), ... dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), ... dict(type='RandomFlip', flip_ratio=0.5), ... dict(type='Normalize', **img_norm_cfg), ... dict(type='Pad', size_divisor=32), ... dict(type='DefaultFormatBundle'), ... dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ... ] >>> expected_pipelines = [ ... dict(type='LoadImageFromFile'), ... dict(type='LoadAnnotations', with_bbox=True) ... ] >>> assert expected_pipelines ==\ ... get_loading_pipeline(pipelines) """ loading_pipeline_cfg = [] for cfg in pipeline: obj_cls = TRANSFORMS.get(cfg['type']) # TODO:use more elegant way to distinguish loading modules if obj_cls is not None and obj_cls in (LoadImageFromFile, LoadAnnotations, LoadPanopticAnnotations): loading_pipeline_cfg.append(cfg) assert len(loading_pipeline_cfg) == 2, \ 'The data pipeline in your config file must include ' \ 'loading image and annotations related pipeline.' return loading_pipeline_cfg
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.transforms import LoadImageFromFile from mmdet.datasets.transforms import LoadAnnotations, LoadPanopticAnnotations from mmdet.registry import TRANSFORMS def get_loading_pipeline(pipeline): """Only keep loading image and annotations related configuration. Args: pipeline (list[dict]): Data pipeline configs. Returns: list[dict]: The new pipeline list with only keep loading image and annotations related configuration. Examples: >>> pipelines = [ ... dict(type='LoadImageFromFile'), ... dict(type='LoadAnnotations', with_bbox=True), ... dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), ... dict(type='RandomFlip', flip_ratio=0.5), ... dict(type='Normalize', **img_norm_cfg), ... dict(type='Pad', size_divisor=32), ... dict(type='DefaultFormatBundle'), ... dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ... ] >>> expected_pipelines = [ ... dict(type='LoadImageFromFile'), ... dict(type='LoadAnnotations', with_bbox=True) ... ] >>> assert expected_pipelines ==\ ... get_loading_pipeline(pipelines) """ loading_pipeline_cfg = [] for cfg in pipeline: obj_cls = TRANSFORMS.get(cfg['type']) # TODO:use more elegant way to distinguish loading modules if obj_cls is not None and obj_cls in (LoadImageFromFile, LoadAnnotations, LoadPanopticAnnotations): loading_pipeline_cfg.append(cfg) assert len(loading_pipeline_cfg) == 2, \ 'The data pipeline in your config file must include ' \ 'loading image and annotations related pipeline.' return loading_pipeline_cfg
import logging import os import signal import sys from abc import ABC, abstractmethod from multiprocessing import Process, set_start_method from typing import Optional from backend.util.logging import configure_logging from backend.util.metrics import sentry_init logger = logging.getLogger(__name__) _SERVICE_NAME = "MainProcess" def get_service_name(): return _SERVICE_NAME def set_service_name(name: str): global _SERVICE_NAME _SERVICE_NAME = name class AppProcess(ABC): """ A class to represent an object that can be executed in a background process. """ process: Optional[Process] = None cleaned_up = False set_start_method("spawn", force=True) configure_logging() sentry_init() # Methods that are executed INSIDE the process # @abstractmethod def run(self): """ The method that will be executed in the process. """ pass @classmethod @property def service_name(cls) -> str: return cls.__name__ @abstractmethod def cleanup(self): """ Implement this method on a subclass to do post-execution cleanup, e.g. disconnecting from a database or terminating child processes. """ pass def health_check(self) -> str: """ A method to check the health of the process. """ return "OK" def execute_run_command(self, silent): signal.signal(signal.SIGTERM, self._self_terminate) signal.signal(signal.SIGINT, self._self_terminate) try: if silent: sys.stdout = open(os.devnull, "w") sys.stderr = open(os.devnull, "w") set_service_name(self.service_name) logger.info(f"[{self.service_name}] Starting...") self.run() except (KeyboardInterrupt, SystemExit) as e: logger.warning(f"[{self.service_name}] Terminated: {e}; quitting...") finally: if not self.cleaned_up: self.cleanup() self.cleaned_up = True logger.info(f"[{self.service_name}] Terminated.") def _self_terminate(self, signum: int, frame): if not self.cleaned_up: self.cleanup() self.cleaned_up = True sys.exit(0) # Methods that are executed OUTSIDE the process # def __enter__(self): self.start(background=True) return self def __exit__(self, *args, **kwargs): self.stop() def start(self, background: bool = False, silent: bool = False, **proc_args) -> int: """ Start the background process. Args: background: Whether to run the process in the background. silent: Whether to disable stdout and stderr. proc_args: Additional arguments to pass to the process. Returns: the process id or 0 if the process is not running in the background. """ if not background: self.execute_run_command(silent) return 0 self.process = Process( name=self.__class__.__name__, target=self.execute_run_command, args=(silent,), **proc_args, ) self.process.start() self.health_check() logger.info(f"[{self.service_name}] started with PID {self.process.pid}") return self.process.pid or 0 def stop(self): """ Stop the background process. """ if not self.process: return self.process.terminate() self.process.join() logger.info(f"[{self.service_name}] with PID {self.process.pid} stopped") self.process = None
import logging import os import signal import sys from abc import ABC, abstractmethod from multiprocessing import Process, set_start_method from typing import Optional from backend.util.logging import configure_logging from backend.util.metrics import sentry_init logger = logging.getLogger(__name__) _SERVICE_NAME = "MainProcess" def get_service_name(): return _SERVICE_NAME def set_service_name(name: str): global _SERVICE_NAME _SERVICE_NAME = name class AppProcess(ABC): """ A class to represent an object that can be executed in a background process. """ process: Optional[Process] = None cleaned_up = False set_start_method("spawn", force=True) configure_logging() sentry_init() # Methods that are executed INSIDE the process # @abstractmethod def run(self): """ The method that will be executed in the process. """ pass @classmethod @property def service_name(cls) -> str: return cls.__name__ def cleanup(self): """ Implement this method on a subclass to do post-execution cleanup, e.g. disconnecting from a database or terminating child processes. """ pass def health_check(self) -> str: """ A method to check the health of the process. """ return "OK" def execute_run_command(self, silent): signal.signal(signal.SIGTERM, self._self_terminate) signal.signal(signal.SIGINT, self._self_terminate) try: if silent: sys.stdout = open(os.devnull, "w") sys.stderr = open(os.devnull, "w") set_service_name(self.service_name) logger.info(f"[{self.service_name}] Starting...") self.run() except (KeyboardInterrupt, SystemExit) as e: logger.warning(f"[{self.service_name}] Terminated: {e}; quitting...") finally: if not self.cleaned_up: self.cleanup() self.cleaned_up = True logger.info(f"[{self.service_name}] Terminated.") def _self_terminate(self, signum: int, frame): if not self.cleaned_up: self.cleanup() self.cleaned_up = True sys.exit(0) # Methods that are executed OUTSIDE the process # def __enter__(self): self.start(background=True) return self def __exit__(self, *args, **kwargs): self.stop() def start(self, background: bool = False, silent: bool = False, **proc_args) -> int: """ Start the background process. Args: background: Whether to run the process in the background. silent: Whether to disable stdout and stderr. proc_args: Additional arguments to pass to the process. Returns: the process id or 0 if the process is not running in the background. """ if not background: self.execute_run_command(silent) return 0 self.process = Process( name=self.__class__.__name__, target=self.execute_run_command, args=(silent,), **proc_args, ) self.process.start() self.health_check() logger.info(f"[{self.service_name}] started with PID {self.process.pid}") return self.process.pid or 0 def stop(self): """ Stop the background process. """ if not self.process: return self.process.terminate() self.process.join() logger.info(f"[{self.service_name}] with PID {self.process.pid} stopped") self.process = None
import pathlib from typing import Any, Dict, List, Tuple, Union from torchdata.datapipes.iter import Filter, IterDataPipe, Mapper from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, path_comparator, read_categories_file, ) from torchvision.prototype.tv_tensors import Label from .._api import register_dataset, register_info NAME = "country211" @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=read_categories_file(NAME)) @register_dataset(NAME) class Country211(Dataset): """ - **homepage**: https://github.com/openai/CLIP/blob/main/data/country211.md """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", ("train", "val", "test")) self._split_folder_name = "valid" if split == "val" else split self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) def _resources(self) -> List[OnlineResource]: return [ HttpResource( "https://openaipublic.azureedge.net/clip/data/country211.tgz", sha256="c011343cdc1296a8c31ff1d7129cf0b5e5b8605462cffd24f89266d6e6f4da3c", ) ] def _prepare_sample(self, data: Tuple[str, Any]) -> Dict[str, Any]: path, buffer = data category = pathlib.Path(path).parent.name return dict( label=Label.from_category(category, categories=self._categories), path=path, image=EncodedImage.from_file(buffer), ) def _filter_split(self, data: Tuple[str, Any], *, split: str) -> bool: return pathlib.Path(data[0]).parent.parent.name == split def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = resource_dps[0] dp = Filter(dp, path_comparator("parent.parent.name", self._split_folder_name)) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return { "train": 31_650, "val": 10_550, "test": 21_100, }[self._split] def _generate_categories(self) -> List[str]: resources = self._resources() dp = resources[0].load(self._root) return sorted({pathlib.Path(path).parent.name for path, _ in dp})
import pathlib from typing import Any, Dict, List, Tuple, Union from torchdata.datapipes.iter import Filter, IterDataPipe, Mapper from torchvision.prototype.datapoints import Label from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, path_comparator, read_categories_file, ) from .._api import register_dataset, register_info NAME = "country211" @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=read_categories_file(NAME)) @register_dataset(NAME) class Country211(Dataset): """ - **homepage**: https://github.com/openai/CLIP/blob/main/data/country211.md """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", ("train", "val", "test")) self._split_folder_name = "valid" if split == "val" else split self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) def _resources(self) -> List[OnlineResource]: return [ HttpResource( "https://openaipublic.azureedge.net/clip/data/country211.tgz", sha256="c011343cdc1296a8c31ff1d7129cf0b5e5b8605462cffd24f89266d6e6f4da3c", ) ] def _prepare_sample(self, data: Tuple[str, Any]) -> Dict[str, Any]: path, buffer = data category = pathlib.Path(path).parent.name return dict( label=Label.from_category(category, categories=self._categories), path=path, image=EncodedImage.from_file(buffer), ) def _filter_split(self, data: Tuple[str, Any], *, split: str) -> bool: return pathlib.Path(data[0]).parent.parent.name == split def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = resource_dps[0] dp = Filter(dp, path_comparator("parent.parent.name", self._split_folder_name)) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return { "train": 31_650, "val": 10_550, "test": 21_100, }[self._split] def _generate_categories(self) -> List[str]: resources = self._resources() dp = resources[0].load(self._root) return sorted({pathlib.Path(path).parent.name for path, _ in dp})
# Copyright (c) OpenMMLab. All rights reserved. from .gaussian_target import (gather_feat, gaussian_radius, gen_gaussian_target, get_local_maximum, get_topk_from_heatmap, transpose_and_gather_feat) from .image import imrenormalize from .make_divisible import make_divisible # Disable yapf because it conflicts with isort. # yapf: disable from .misc import (align_tensor, aligned_bilinear, center_of_mass, empty_instances, filter_gt_instances, filter_scores_and_topk, flip_tensor, generate_coordinate, images_to_levels, interpolate_as, levels_to_images, mask2ndarray, multi_apply, relative_coordinate_maps, rename_loss_dict, reweight_loss_dict, samplelist_boxtype2tensor, select_single_mlvl, sigmoid_geometric_mean, unfold_wo_center, unmap, unpack_gt_instances) from .panoptic_gt_processing import preprocess_panoptic_gt from .point_sample import (get_uncertain_point_coords_with_randomness, get_uncertainty) from .vlfuse_helper import BertEncoderLayer, VLFuse, permute_and_flatten from .wbf import weighted_boxes_fusion __all__ = [ 'gaussian_radius', 'gen_gaussian_target', 'make_divisible', 'get_local_maximum', 'get_topk_from_heatmap', 'transpose_and_gather_feat', 'interpolate_as', 'sigmoid_geometric_mean', 'gather_feat', 'preprocess_panoptic_gt', 'get_uncertain_point_coords_with_randomness', 'get_uncertainty', 'unpack_gt_instances', 'empty_instances', 'center_of_mass', 'filter_scores_and_topk', 'flip_tensor', 'generate_coordinate', 'levels_to_images', 'mask2ndarray', 'multi_apply', 'select_single_mlvl', 'unmap', 'images_to_levels', 'samplelist_boxtype2tensor', 'filter_gt_instances', 'rename_loss_dict', 'reweight_loss_dict', 'relative_coordinate_maps', 'aligned_bilinear', 'unfold_wo_center', 'imrenormalize', 'VLFuse', 'permute_and_flatten', 'BertEncoderLayer', 'align_tensor', 'weighted_boxes_fusion' ]
# Copyright (c) OpenMMLab. All rights reserved. from .gaussian_target import (gather_feat, gaussian_radius, gen_gaussian_target, get_local_maximum, get_topk_from_heatmap, transpose_and_gather_feat) from .image import imrenormalize from .make_divisible import make_divisible # Disable yapf because it conflicts with isort. # yapf: disable from .misc import (align_tensor, aligned_bilinear, center_of_mass, empty_instances, filter_gt_instances, filter_scores_and_topk, flip_tensor, generate_coordinate, images_to_levels, interpolate_as, levels_to_images, mask2ndarray, multi_apply, relative_coordinate_maps, rename_loss_dict, reweight_loss_dict, samplelist_boxtype2tensor, select_single_mlvl, sigmoid_geometric_mean, unfold_wo_center, unmap, unpack_gt_instances) from .panoptic_gt_processing import preprocess_panoptic_gt from .point_sample import (get_uncertain_point_coords_with_randomness, get_uncertainty) from .vlfuse_helper import BertEncoderLayer, VLFuse, permute_and_flatten __all__ = [ 'gaussian_radius', 'gen_gaussian_target', 'make_divisible', 'get_local_maximum', 'get_topk_from_heatmap', 'transpose_and_gather_feat', 'interpolate_as', 'sigmoid_geometric_mean', 'gather_feat', 'preprocess_panoptic_gt', 'get_uncertain_point_coords_with_randomness', 'get_uncertainty', 'unpack_gt_instances', 'empty_instances', 'center_of_mass', 'filter_scores_and_topk', 'flip_tensor', 'generate_coordinate', 'levels_to_images', 'mask2ndarray', 'multi_apply', 'select_single_mlvl', 'unmap', 'images_to_levels', 'samplelist_boxtype2tensor', 'filter_gt_instances', 'rename_loss_dict', 'reweight_loss_dict', 'relative_coordinate_maps', 'aligned_bilinear', 'unfold_wo_center', 'imrenormalize', 'VLFuse', 'permute_and_flatten', 'BertEncoderLayer', 'align_tensor' ]
"""Question-answering with sources over a vector database.""" import warnings from typing import Any from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.documents import Document from langchain_core.vectorstores import VectorStore from pydantic import Field, model_validator from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over a vector database.""" vectorstore: VectorStore = Field(exclude=True) """Vector Database to connect to.""" k: int = 4 """Number of results to return from store""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" search_kwargs: dict[str, Any] = Field(default_factory=dict) """Extra search args.""" def _reduce_tokens_below_limit(self, docs: list[Document]) -> list[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain, ): tokens = [ self.combine_documents_chain.llm_chain._get_num_tokens(doc.page_content) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs( self, inputs: dict[str, Any], *, run_manager: CallbackManagerForChainRun, ) -> list[Document]: question = inputs[self.question_key] docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs, ) return self._reduce_tokens_below_limit(docs) async def _aget_docs( self, inputs: dict[str, Any], *, run_manager: AsyncCallbackManagerForChainRun, ) -> list[Document]: msg = "VectorDBQAWithSourcesChain does not support async" raise NotImplementedError(msg) @model_validator(mode="before") @classmethod def raise_deprecation(cls, values: dict) -> Any: warnings.warn( "`VectorDBQAWithSourcesChain` is deprecated - " "please use `from langchain.chains import RetrievalQAWithSourcesChain`", stacklevel=5, ) return values @property def _chain_type(self) -> str: return "vector_db_qa_with_sources_chain"
"""Question-answering with sources over a vector database.""" import warnings from typing import Any from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.documents import Document from langchain_core.vectorstores import VectorStore from pydantic import Field, model_validator from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over a vector database.""" vectorstore: VectorStore = Field(exclude=True) """Vector Database to connect to.""" k: int = 4 """Number of results to return from store""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" search_kwargs: dict[str, Any] = Field(default_factory=dict) """Extra search args.""" def _reduce_tokens_below_limit(self, docs: list[Document]) -> list[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain, ): tokens = [ self.combine_documents_chain.llm_chain._get_num_tokens(doc.page_content) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs( self, inputs: dict[str, Any], *, run_manager: CallbackManagerForChainRun, ) -> list[Document]: question = inputs[self.question_key] docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs, ) return self._reduce_tokens_below_limit(docs) async def _aget_docs( self, inputs: dict[str, Any], *, run_manager: AsyncCallbackManagerForChainRun, ) -> list[Document]: msg = "VectorDBQAWithSourcesChain does not support async" raise NotImplementedError(msg) @model_validator(mode="before") @classmethod def raise_deprecation(cls, values: dict) -> Any: warnings.warn( "`VectorDBQAWithSourcesChain` is deprecated - " "please use `from langchain.chains import RetrievalQAWithSourcesChain`", stacklevel=2, ) return values @property def _chain_type(self) -> str: return "vector_db_qa_with_sources_chain"
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.structures import InstanceData from mmdet.registry import MODELS from mmdet.structures import DetDataSample from mmdet.testing import get_detector_cfg from mmdet.utils import register_all_modules class TestDETR(TestCase): def setUp(self) -> None: register_all_modules() def test_detr_head_loss(self): """Tests transformer head loss when truth is empty and non-empty.""" s = 256 metainfo = { 'img_shape': (s, s), 'scale_factor': (1, 1), 'pad_shape': (s, s), 'batch_input_shape': (s, s) } img_metas = DetDataSample() img_metas.set_metainfo(metainfo) batch_data_samples = [] batch_data_samples.append(img_metas) config = get_detector_cfg('detr/detr_r50_8xb2-150e_coco.py') model = MODELS.build(config) model.init_weights() random_image = torch.rand(1, 3, s, s) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) img_metas.gt_instances = gt_instances batch_data_samples1 = [] batch_data_samples1.append(img_metas) empty_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples1) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. for key, loss in empty_gt_losses.items(): if 'cls' in key: self.assertGreater(loss.item(), 0, 'cls loss should be non-zero') elif 'bbox' in key: self.assertEqual( loss.item(), 0, 'there should be no box loss when no ground true boxes') elif 'iou' in key: self.assertEqual( loss.item(), 0, 'there should be no iou loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) img_metas.gt_instances = gt_instances batch_data_samples2 = [] batch_data_samples2.append(img_metas) one_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples2) for loss in one_gt_losses.values(): self.assertGreater( loss.item(), 0, 'cls loss, or box loss, or iou loss should be non-zero') model.eval() # test _forward model._forward(random_image, batch_data_samples=batch_data_samples2) # test only predict model.predict( random_image, batch_data_samples=batch_data_samples2, rescale=True)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.structures import InstanceData from mmdet.models import build_detector from mmdet.structures import DetDataSample from mmdet.testing import get_detector_cfg from mmdet.utils import register_all_modules class TestDETR(TestCase): def setUp(self) -> None: register_all_modules() def test_detr_head_loss(self): """Tests transformer head loss when truth is empty and non-empty.""" s = 256 metainfo = { 'img_shape': (s, s), 'scale_factor': (1, 1), 'pad_shape': (s, s), 'batch_input_shape': (s, s) } img_metas = DetDataSample() img_metas.set_metainfo(metainfo) batch_data_samples = [] batch_data_samples.append(img_metas) config = get_detector_cfg('detr/detr_r50_8xb2-150e_coco.py') model = build_detector(config) model.init_weights() random_image = torch.rand(1, 3, s, s) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) img_metas.gt_instances = gt_instances batch_data_samples1 = [] batch_data_samples1.append(img_metas) empty_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples1) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. for key, loss in empty_gt_losses.items(): if 'cls' in key: self.assertGreater(loss.item(), 0, 'cls loss should be non-zero') elif 'bbox' in key: self.assertEqual( loss.item(), 0, 'there should be no box loss when no ground true boxes') elif 'iou' in key: self.assertEqual( loss.item(), 0, 'there should be no iou loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) img_metas.gt_instances = gt_instances batch_data_samples2 = [] batch_data_samples2.append(img_metas) one_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples2) for loss in one_gt_losses.values(): self.assertGreater( loss.item(), 0, 'cls loss, or box loss, or iou loss should be non-zero') model.eval() # test _forward model._forward(random_image, batch_data_samples=batch_data_samples2) # test only predict model.predict( random_image, batch_data_samples=batch_data_samples2, rescale=True)
""" The system trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) on the SNLI + MultiNLI (AllNLI) dataset with softmax loss function. At every 1000 training steps, the model is evaluated on the STS benchmark dataset Usage: python training_nli.py OR python training_nli.py pretrained_transformer_model_name """ import logging import sys import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers import SentenceTransformer, losses from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any Hugging Face pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "bert-base-uncased" train_batch_size = 16 output_dir = "output/training_nli_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Here we define our SentenceTransformer model. If not already a Sentence Transformer model, it will automatically # create one with "mean" pooling. model = SentenceTransformer(model_name) # 2. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli # We'll start with 10k training samples, but you can increase this to get a stronger model logging.info("Read AllNLI train dataset") train_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="train").select(range(10000)) eval_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="dev").select(range(1000)) logging.info(train_dataset) # 3. Define our training loss: https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss train_loss = losses.SoftmaxLoss( model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=3, ) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. stsb_eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=stsb_eval_dataset["sentence1"], sentences2=stsb_eval_dataset["sentence2"], scores=stsb_eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) logging.info("Evaluation before training:") dev_evaluator(model) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=1, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="nli-v1", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_dataset = load_dataset("sentence-transformers/stsb", split="test") test_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-nli-v1") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-nli-v1')`." )
""" The system trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) on the SNLI + MultiNLI (AllNLI) dataset with softmax loss function. At every 1000 training steps, the model is evaluated on the STS benchmark dataset Usage: python training_nli.py OR python training_nli.py pretrained_transformer_model_name """ from torch.utils.data import DataLoader import math from sentence_transformers import models, losses from sentence_transformers import LoggingHandler, SentenceTransformer, util, InputExample from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator import logging from datetime import datetime import sys import os import gzip import csv #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it nli_dataset_path = "data/AllNLI.tsv.gz" sts_dataset_path = "data/stsbenchmark.tsv.gz" if not os.path.exists(nli_dataset_path): util.http_get("https://sbert.net/datasets/AllNLI.tsv.gz", nli_dataset_path) if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "bert-base-uncased" # Read the dataset train_batch_size = 16 model_save_path = ( "output/training_nli_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False, ) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Read the AllNLI.tsv.gz file and create the training dataset logging.info("Read AllNLI train dataset") label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} train_samples = [] with gzip.open(nli_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: if row["split"] == "train": label_id = label2int[row["label"]] train_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) train_loss = losses.SoftmaxLoss( model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=len(label2int) ) # Read STSbenchmark dataset and use it as development set logging.info("Read STSbenchmark dev dataset") dev_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: if row["split"] == "dev": score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples( dev_samples, batch_size=train_batch_size, name="sts-dev" ) # Configure the training num_epochs = 1 warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=model_save_path, ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: if row["split"] == "test": score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 test_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples( test_samples, batch_size=train_batch_size, name="sts-test" ) test_evaluator(model, output_path=model_save_path)
from __future__ import annotations import json import os from torch import Tensor, nn class Dropout(nn.Module): """Dropout layer. Args: dropout: Sets a dropout value for dense layer. """ def __init__(self, dropout: float = 0.2): super(Dropout, self).__init__() self.dropout = dropout self.dropout_layer = nn.Dropout(self.dropout) def forward(self, features: dict[str, Tensor]): features.update({"sentence_embedding": self.dropout_layer(features["sentence_embedding"])}) return features def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump({"dropout": self.dropout}, fOut) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) model = Dropout(**config) return model
import json import os from typing import Dict from torch import Tensor, nn class Dropout(nn.Module): """Dropout layer. Args: dropout: Sets a dropout value for dense layer. """ def __init__(self, dropout: float = 0.2): super(Dropout, self).__init__() self.dropout = dropout self.dropout_layer = nn.Dropout(self.dropout) def forward(self, features: Dict[str, Tensor]): features.update({"sentence_embedding": self.dropout_layer(features["sentence_embedding"])}) return features def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump({"dropout": self.dropout}, fOut) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) model = Dropout(**config) return model
from typing import Any, Dict from backend.data.block import Block from backend.util.request import Requests from ._api import Color, CustomerDetails, OrderItem, Profile class Slant3DBlockBase(Block): """Base block class for Slant3D API interactions""" BASE_URL = "https://www.slant3dapi.com/api" def _get_headers(self, api_key: str) -> Dict[str, str]: return {"api-key": api_key, "Content-Type": "application/json"} def _make_request(self, method: str, endpoint: str, api_key: str, **kwargs) -> Dict: url = f"{self.BASE_URL}/{endpoint}" response = Requests().request( method=method, url=url, headers=self._get_headers(api_key), **kwargs ) if not response.ok: error_msg = response.json().get("error", "Unknown error") raise RuntimeError(f"API request failed: {error_msg}") return response.json() def _check_valid_color(self, profile: Profile, color: Color, api_key: str) -> str: response = self._make_request( "GET", "filament", api_key, params={"profile": profile.value, "color": color.value}, ) if profile == Profile.PLA: color_tag = color.value else: color_tag = f"{profile.value.lower()}{color.value.capitalize()}" valid_tags = [filament["colorTag"] for filament in response["filaments"]] if color_tag not in valid_tags: raise ValueError( f"""Invalid color profile combination {color_tag}. Valid colors for {profile.value} are: {','.join([filament['colorTag'].replace(profile.value.lower(), '') for filament in response['filaments'] if filament['profile'] == profile.value])} """ ) return color_tag def _convert_to_color(self, profile: Profile, color: Color, api_key: str) -> str: return self._check_valid_color(profile, color, api_key) def _format_order_data( self, customer: CustomerDetails, order_number: str, items: list[OrderItem], api_key: str, ) -> list[dict[str, Any]]: """Helper function to format order data for API requests""" orders = [] for item in items: order_data = { "email": customer.email, "phone": customer.phone, "name": customer.name, "orderNumber": order_number, "filename": item.file_url, "fileURL": item.file_url, "bill_to_street_1": customer.address, "bill_to_city": customer.city, "bill_to_state": customer.state, "bill_to_zip": customer.zip, "bill_to_country_as_iso": customer.country_iso, "bill_to_is_US_residential": str(customer.is_residential).lower(), "ship_to_name": customer.name, "ship_to_street_1": customer.address, "ship_to_city": customer.city, "ship_to_state": customer.state, "ship_to_zip": customer.zip, "ship_to_country_as_iso": customer.country_iso, "ship_to_is_US_residential": str(customer.is_residential).lower(), "order_item_name": item.file_url, "order_quantity": item.quantity, "order_image_url": "", "order_sku": "NOT_USED", "order_item_color": self._convert_to_color( item.profile, item.color, api_key ), "profile": item.profile.value, } orders.append(order_data) return orders
from typing import Any, Dict from backend.data.block import Block from backend.util.request import requests from ._api import Color, CustomerDetails, OrderItem, Profile class Slant3DBlockBase(Block): """Base block class for Slant3D API interactions""" BASE_URL = "https://www.slant3dapi.com/api" def _get_headers(self, api_key: str) -> Dict[str, str]: return {"api-key": api_key, "Content-Type": "application/json"} def _make_request(self, method: str, endpoint: str, api_key: str, **kwargs) -> Dict: url = f"{self.BASE_URL}/{endpoint}" response = requests.request( method=method, url=url, headers=self._get_headers(api_key), **kwargs ) if not response.ok: error_msg = response.json().get("error", "Unknown error") raise RuntimeError(f"API request failed: {error_msg}") return response.json() def _check_valid_color(self, profile: Profile, color: Color, api_key: str) -> str: response = self._make_request( "GET", "filament", api_key, params={"profile": profile.value, "color": color.value}, ) if profile == Profile.PLA: color_tag = color.value else: color_tag = f"{profile.value.lower()}{color.value.capitalize()}" valid_tags = [filament["colorTag"] for filament in response["filaments"]] if color_tag not in valid_tags: raise ValueError( f"""Invalid color profile combination {color_tag}. Valid colors for {profile.value} are: {','.join([filament['colorTag'].replace(profile.value.lower(), '') for filament in response['filaments'] if filament['profile'] == profile.value])} """ ) return color_tag def _convert_to_color(self, profile: Profile, color: Color, api_key: str) -> str: return self._check_valid_color(profile, color, api_key) def _format_order_data( self, customer: CustomerDetails, order_number: str, items: list[OrderItem], api_key: str, ) -> list[dict[str, Any]]: """Helper function to format order data for API requests""" orders = [] for item in items: order_data = { "email": customer.email, "phone": customer.phone, "name": customer.name, "orderNumber": order_number, "filename": item.file_url, "fileURL": item.file_url, "bill_to_street_1": customer.address, "bill_to_city": customer.city, "bill_to_state": customer.state, "bill_to_zip": customer.zip, "bill_to_country_as_iso": customer.country_iso, "bill_to_is_US_residential": str(customer.is_residential).lower(), "ship_to_name": customer.name, "ship_to_street_1": customer.address, "ship_to_city": customer.city, "ship_to_state": customer.state, "ship_to_zip": customer.zip, "ship_to_country_as_iso": customer.country_iso, "ship_to_is_US_residential": str(customer.is_residential).lower(), "order_item_name": item.file_url, "order_quantity": item.quantity, "order_image_url": "", "order_sku": "NOT_USED", "order_item_color": self._convert_to_color( item.profile, item.color, api_key ), "profile": item.profile.value, } orders.append(order_data) return orders
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.documents import PointCloud3D from tests import TOYDATA_DIR LOCAL_OBJ_FILE = str(TOYDATA_DIR / 'tetrahedron.obj') REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_OBJ_FILE, REMOTE_OBJ_FILE]) def test_point_cloud(file_url): print(f"file_url = {file_url}") point_cloud = PointCloud3D(url=file_url) point_cloud.tensor = point_cloud.url.load(samples=100) assert isinstance(point_cloud.tensor, np.ndarray) def test_point_cloud_np(): image = parse_obj_as(PointCloud3D, np.zeros((10, 10, 3))) assert (image.tensor == np.zeros((10, 10, 3))).all() def test_point_cloud_torch(): image = parse_obj_as(PointCloud3D, torch.zeros(10, 10, 3)) assert (image.tensor == torch.zeros(10, 10, 3)).all() def test_point_cloud_shortcut_doc(): class MyDoc(BaseDocument): image: PointCloud3D image2: PointCloud3D image3: PointCloud3D doc = MyDoc( image='http://myurl.ply', image2=np.zeros((10, 10, 3)), image3=torch.zeros(10, 10, 3), ) assert doc.image.url == 'http://myurl.ply' assert (doc.image2.tensor == np.zeros((10, 10, 3))).all() assert (doc.image3.tensor == torch.zeros(10, 10, 3)).all()
import numpy as np import pytest from docarray.documents import PointCloud3D from tests import TOYDATA_DIR LOCAL_OBJ_FILE = str(TOYDATA_DIR / 'tetrahedron.obj') REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_OBJ_FILE, REMOTE_OBJ_FILE]) def test_point_cloud(file_url): print(f"file_url = {file_url}") point_cloud = PointCloud3D(url=file_url) point_cloud.tensor = point_cloud.url.load(samples=100) assert isinstance(point_cloud.tensor, np.ndarray)
import argparse import urllib from http import HTTPStatus from jina.enums import GatewayProtocolType from jina.helper import parse_host_scheme from jina.logging.predefined import default_logger class NetworkChecker: """Check if a BaseDeployment is running or not.""" def __init__(self, args: 'argparse.Namespace'): """ Create a new :class:`NetworkChecker`. :param args: args provided by the CLI. """ import time from jina import Client from jina.logging.profile import TimeContext from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime try: total_time = 0 total_success = 0 for j in range(args.attempts): with TimeContext( f'ping {args.target} on {args.host} at {j} round', default_logger ) as tc: if args.target == 'executor': hostname, port, protocol, _ = parse_host_scheme(args.host) r = WorkerRuntime.is_ready(f'{hostname}:{port}') elif args.target == 'gateway': hostname, port, protocol, _ = parse_host_scheme(args.host) r = GatewayRuntime.is_ready( f'{hostname}:{port}', protocol=GatewayProtocolType.from_string(protocol), ) elif args.target == 'flow': r = Client(host=args.host).is_flow_ready(timeout=args.timeout) if not r: default_logger.warning( 'not responding, attempt (%d/%d) in 1s' % (j + 1, args.attempts) ) else: total_success += 1 total_time += tc.duration if args.attempts > 0: time.sleep(1) if total_success < args.attempts: default_logger.warning( 'message lost %.0f%% (%d/%d) ' % ( (1 - total_success / args.attempts) * 100, args.attempts - total_success, args.attempts, ) ) if total_success > 0: default_logger.info( 'avg. latency: %.0f ms' % (total_time / total_success * 1000) ) if total_success >= args.min_successful_attempts: default_logger.info( f'readiness check succeeded {total_success} times!!!' ) exit(0) else: default_logger.info( f'readiness check succeeded {total_success} times, less than {args.min_successful_attempts}' ) except KeyboardInterrupt: pass # returns 1 (anomaly) when it comes to here exit(1)
import argparse import urllib from http import HTTPStatus from jina.logging.predefined import default_logger from jina.helper import parse_host_scheme class NetworkChecker: """Check if a BaseDeployment is running or not.""" def __init__(self, args: 'argparse.Namespace'): """ Create a new :class:`NetworkChecker`. :param args: args provided by the CLI. """ import time from jina import Client from jina.logging.profile import TimeContext from jina.serve.runtimes.worker import WorkerRuntime from jina.serve.runtimes.gateway import GatewayRuntime try: total_time = 0 total_success = 0 for j in range(args.attempts): with TimeContext( f'ping {args.target} on {args.host} at {j} round', default_logger ) as tc: if args.target == 'executor': hostname, port, protocol, _ = parse_host_scheme(args.host) r = WorkerRuntime.is_ready(f'{hostname}:{port}') elif args.target == 'gateway': hostname, port, protocol, _ = parse_host_scheme(args.host) r = GatewayRuntime.is_ready(f'{hostname}:{port}', protocol=protocol) elif args.target == 'flow': r = Client(host=args.host).is_flow_ready(timeout=args.timeout) if not r: default_logger.warning( 'not responding, attempt (%d/%d) in 1s' % (j + 1, args.attempts) ) else: total_success += 1 total_time += tc.duration if args.attempts > 0: time.sleep(1) if total_success < args.attempts: default_logger.warning( 'message lost %.0f%% (%d/%d) ' % ( (1 - total_success / args.attempts) * 100, args.attempts - total_success, args.attempts, ) ) if total_success > 0: default_logger.info( 'avg. latency: %.0f ms' % (total_time / total_success * 1000) ) if total_success >= args.min_successful_attempts: default_logger.info( f'readiness check succeeded {total_success} times!!!' ) exit(0) else: default_logger.info( f'readiness check succeeded {total_success} times, less than {args.min_successful_attempts}' ) except KeyboardInterrupt: pass # returns 1 (anomaly) when it comes to here exit(1)
_base_ = './queryinst_r50_fpn_ms-480-800-3x_coco.py' num_proposals = 300 model = dict( rpn_head=dict(num_proposals=num_proposals), test_cfg=dict( _delete_=True, rpn=None, rcnn=dict(max_per_img=num_proposals, mask_thr_binary=0.5))) # augmentation strategy originates from DETR. train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[[ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', scales=[(400, 1333), (500, 1333), (600, 1333)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ]]), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './queryinst_r50_fpn_ms-480-800-3x_coco.py' num_proposals = 300 model = dict( rpn_head=dict(num_proposals=num_proposals), test_cfg=dict( _delete_=True, rpn=None, rcnn=dict(max_per_img=num_proposals, mask_thr_binary=0.5))) # augmentation strategy originates from DETR. train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[[ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', scales=[(400, 1333), (500, 1333), (600, 1333)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ]]), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
#!/usr/bin/env python3 """The demo script for testing the pre-trained Emformer RNNT pipelines. Example: python pipeline_demo.py --model-type librispeech --dataset-path ./datasets/librispeech """ import logging import pathlib from argparse import ArgumentParser, RawTextHelpFormatter from dataclasses import dataclass from functools import partial from typing import Callable import torch import torchaudio from common import MODEL_TYPE_LIBRISPEECH, MODEL_TYPE_MUSTC, MODEL_TYPE_TEDLIUM3 from mustc.dataset import MUSTC from torchaudio.pipelines import EMFORMER_RNNT_BASE_LIBRISPEECH from torchaudio.pipelines import RNNTBundle from torchaudio.prototype.pipelines import EMFORMER_RNNT_BASE_MUSTC, EMFORMER_RNNT_BASE_TEDLIUM3 logger = logging.getLogger(__name__) @dataclass class Config: dataset: Callable bundle: RNNTBundle _CONFIGS = { MODEL_TYPE_LIBRISPEECH: Config( partial(torchaudio.datasets.LIBRISPEECH, url="test-clean"), EMFORMER_RNNT_BASE_LIBRISPEECH, ), MODEL_TYPE_MUSTC: Config( partial(MUSTC, subset="tst-COMMON"), EMFORMER_RNNT_BASE_MUSTC, ), MODEL_TYPE_TEDLIUM3: Config( partial(torchaudio.datasets.TEDLIUM, release="release3", subset="test"), EMFORMER_RNNT_BASE_TEDLIUM3, ), } def run_eval_streaming(args): dataset = _CONFIGS[args.model_type].dataset(args.dataset_path) bundle = _CONFIGS[args.model_type].bundle decoder = bundle.get_decoder() token_processor = bundle.get_token_processor() feature_extractor = bundle.get_feature_extractor() streaming_feature_extractor = bundle.get_streaming_feature_extractor() hop_length = bundle.hop_length num_samples_segment = bundle.segment_length * hop_length num_samples_segment_right_context = num_samples_segment + bundle.right_context_length * hop_length for idx in range(10): sample = dataset[idx] waveform = sample[0].squeeze() # Streaming decode. state, hypothesis = None, None for idx in range(0, len(waveform), num_samples_segment): segment = waveform[idx : idx + num_samples_segment_right_context] segment = torch.nn.functional.pad(segment, (0, num_samples_segment_right_context - len(segment))) with torch.no_grad(): features, length = streaming_feature_extractor(segment) hypos, state = decoder.infer(features, length, 10, state=state, hypothesis=hypothesis) hypothesis = hypos[0] transcript = token_processor(hypothesis[0], lstrip=False) print(transcript, end="", flush=True) print() # Non-streaming decode. with torch.no_grad(): features, length = feature_extractor(waveform) hypos = decoder(features, length, 10) print(token_processor(hypos[0][0])) print() def parse_args(): parser = ArgumentParser(description=__doc__, formatter_class=RawTextHelpFormatter) parser.add_argument("--model-type", type=str, choices=_CONFIGS.keys(), required=True) parser.add_argument( "--dataset-path", type=pathlib.Path, help="Path to dataset.", required=True, ) parser.add_argument("--debug", action="store_true", help="whether to use debug level for logging") return parser.parse_args() def init_logger(debug): fmt = "%(asctime)s %(message)s" if debug else "%(message)s" level = logging.DEBUG if debug else logging.INFO logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S") def cli_main(): args = parse_args() init_logger(args.debug) run_eval_streaming(args) if __name__ == "__main__": cli_main()
#!/usr/bin/env python3 """The demo script for testing the pre-trained Emformer RNNT pipelines. Example: python pipeline_demo.py --model-type librispeech --dataset-path ./datasets/librispeech """ import logging import pathlib from argparse import ArgumentParser, RawTextHelpFormatter from dataclasses import dataclass from functools import partial from typing import Callable import torch import torchaudio from common import MODEL_TYPE_LIBRISPEECH, MODEL_TYPE_MUSTC, MODEL_TYPE_TEDLIUM3 from mustc.dataset import MUSTC from torchaudio.pipelines import EMFORMER_RNNT_BASE_LIBRISPEECH from torchaudio.pipelines import RNNTBundle from torchaudio.prototype.pipelines import EMFORMER_RNNT_BASE_MUSTC, EMFORMER_RNNT_BASE_TEDLIUM3 logger = logging.getLogger(__name__) @dataclass class Config: dataset: Callable bundle: RNNTBundle _CONFIGS = { MODEL_TYPE_LIBRISPEECH: Config( partial(torchaudio.datasets.LIBRISPEECH, url="test-clean"), EMFORMER_RNNT_BASE_LIBRISPEECH, ), MODEL_TYPE_MUSTC: Config( partial(MUSTC, subset="tst-COMMON"), EMFORMER_RNNT_BASE_MUSTC, ), MODEL_TYPE_TEDLIUM3: Config( partial(torchaudio.datasets.TEDLIUM, release="release3", subset="test"), EMFORMER_RNNT_BASE_TEDLIUM3, ), } def run_eval_streaming(args): dataset = _CONFIGS[args.model_type].dataset(args.dataset_path) bundle = _CONFIGS[args.model_type].bundle decoder = bundle.get_decoder() token_processor = bundle.get_token_processor() feature_extractor = bundle.get_feature_extractor() streaming_feature_extractor = bundle.get_streaming_feature_extractor() hop_length = bundle.hop_length num_samples_segment = bundle.segment_length * hop_length num_samples_segment_right_context = num_samples_segment + bundle.right_context_length * hop_length for idx in range(10): sample = dataset[idx] waveform = sample[0].squeeze() # Streaming decode. state, hypothesis = None, None for idx in range(0, len(waveform), num_samples_segment): segment = waveform[idx : idx + num_samples_segment_right_context] segment = torch.nn.functional.pad(segment, (0, num_samples_segment_right_context - len(segment))) with torch.no_grad(): features, length = streaming_feature_extractor(segment) hypos, state = decoder.infer(features, length, 10, state=state, hypothesis=hypothesis) hypothesis = hypos[0] transcript = token_processor(hypothesis.tokens, lstrip=False) print(transcript, end="", flush=True) print() # Non-streaming decode. with torch.no_grad(): features, length = feature_extractor(waveform) hypos = decoder(features, length, 10) print(token_processor(hypos[0].tokens)) print() def parse_args(): parser = ArgumentParser(description=__doc__, formatter_class=RawTextHelpFormatter) parser.add_argument("--model-type", type=str, choices=_CONFIGS.keys(), required=True) parser.add_argument( "--dataset-path", type=pathlib.Path, help="Path to dataset.", required=True, ) parser.add_argument("--debug", action="store_true", help="whether to use debug level for logging") return parser.parse_args() def init_logger(debug): fmt = "%(asctime)s %(message)s" if debug else "%(message)s" level = logging.DEBUG if debug else logging.INFO logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S") def cli_main(): args = parse_args() init_logger(args.debug) run_eval_streaming(args) if __name__ == "__main__": cli_main()
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def hf_hub_url(repo_id: str, path: str, revision: Optional[str] = None) -> str: if version.parse(hfh.__version__) < version.parse("0.11.0"): # old versions of hfh don't url-encode the file path path = quote(path) return hfh.hf_hub_url(repo_id, path, repo_type="dataset", revision=revision)
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh def hf_hub_url(repo_id: str, path: str, revision: Optional[str] = None) -> str: return hfh.hf_hub_url(repo_id, quote(path), repo_type="dataset", revision=revision)
# Copyright (c) OpenMMLab. All rights reserved. import time from typing import Any, Optional, Sequence, Tuple, Union from mmengine.data import BaseDataElement from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[Tuple[Any, BaseDataElement]]] @HOOKS.register_module() class IterTimerHook(Hook): """A hook that logs the time spent during iteration. E.g. ``data_time`` for loading data and ``time`` for a model train step. """ priority = 'NORMAL' def _before_epoch(self, runner, mode: str = 'train') -> None: """Record time flag before start a epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ self.t = time.time() def _before_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, mode: str = 'train') -> None: """Logging time for loading data and update the time flag. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[Tuple[Any, BaseDataElement]], optional): Data from dataloader. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ # TODO: update for new logging system runner.message_hub.update_scalar(f'{mode}/data_time', time.time() - self.t) def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence[BaseDataElement]]] = None, mode: str = 'train') -> None: """Logging time for a iteration and update the time flag. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[Tuple[Any, BaseDataElement]], optional): Data from dataloader. Defaults to None. outputs (dict or sequence, optional): Outputs from model. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ # TODO: update for new logging system runner.message_hub.update_scalar(f'{mode}/time', time.time() - self.t) self.t = time.time()
# Copyright (c) OpenMMLab. All rights reserved. import time from typing import Any, Optional, Sequence, Tuple, Union from mmengine.data import BaseDataElement from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[Tuple[Any, BaseDataElement]]] @HOOKS.register_module() class IterTimerHook(Hook): """A hook that logs the time spent during iteration. E.g. ``data_time`` for loading data and ``time`` for a model train step. """ priority = 'NORMAL' def _before_epoch(self, runner, mode: str = 'train') -> None: """Record time flag before start a epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ self.t = time.time() def _before_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, mode: str = 'train') -> None: """Logging time for loading data and update the time flag. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[Tuple[Any, BaseDataElement]], optional): Data from dataloader. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ # TODO: update for new logging system runner.message_hub.update_log(f'{mode}/data_time', time.time() - self.t) def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence[BaseDataElement]]] = None, mode: str = 'train') -> None: """Logging time for a iteration and update the time flag. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[Tuple[Any, BaseDataElement]], optional): Data from dataloader. Defaults to None. outputs (dict or sequence, optional): Outputs from model. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ # TODO: update for new logging system runner.message_hub.update_log(f'{mode}/time', time.time() - self.t) self.t = time.time()
_base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py' model = dict( backbone=dict( embed_dims=64, num_layers=[3, 6, 40, 3], mlp_ratios=(4, 4, 4, 4), init_cfg=dict(checkpoint='https://github.com/whai362/PVT/' 'releases/download/v2/pvt_v2_b5.pth')), neck=dict(in_channels=[64, 128, 320, 512])) # optimizer optim_wrapper = dict( optimizer=dict( _delete_=True, type='AdamW', lr=0.0001 / 1.4, weight_decay=0.0001)) # dataset settings train_dataloader = dict(batch_size=1, num_workers=1) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (1 samples per GPU) auto_scale_lr = dict(base_batch_size=8)
_base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py' model = dict( backbone=dict( embed_dims=64, num_layers=[3, 6, 40, 3], mlp_ratios=(4, 4, 4, 4), init_cfg=dict(checkpoint='https://github.com/whai362/PVT/' 'releases/download/v2/pvt_v2_b5.pth')), neck=dict(in_channels=[64, 128, 320, 512])) # optimizer optimizer = dict( _delete_=True, type='AdamW', lr=0.0001 / 1.4, weight_decay=0.0001) # dataset settings data = dict(samples_per_gpu=1, workers_per_gpu=1) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (1 samples per GPU) auto_scale_lr = dict(base_batch_size=8)
from typing import Union from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers.openai_tools import PydanticToolsParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import Runnable from langchain_core.utils.function_calling import convert_pydantic_to_openai_function from pydantic import BaseModel _EXTRACTION_TEMPLATE = """Extract and save the relevant entities mentioned \ in the following passage together with their properties. If a property is not present and is not required in the function parameters, do not include it in the output.""" # noqa: E501 @deprecated( since="0.1.14", message=( "LangChain has introduced a method called `with_structured_output` that" "is available on ChatModels capable of tool calling." "You can read more about the method here: " "<https://python.langchain.com/docs/modules/model_io/chat/structured_output/>. " "Please follow our extraction use case documentation for more guidelines" "on how to do information extraction with LLMs." "<https://python.langchain.com/docs/use_cases/extraction/>. " "with_structured_output does not currently support a list of pydantic schemas. " "If this is a blocker or if you notice other issues, please provide " "feedback here:" "<https://github.com/langchain-ai/langchain/discussions/18154>" ), removal="1.0", alternative=( """ from pydantic import BaseModel, Field from langchain_anthropic import ChatAnthropic class Joke(BaseModel): setup: str = Field(description="The setup of the joke") punchline: str = Field(description="The punchline to the joke") # Or any other chat model that supports tools. # Please reference to to the documentation of structured_output # to see an up to date list of which models support # with_structured_output. model = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) structured_llm = model.with_structured_output(Joke) structured_llm.invoke("Tell me a joke about cats. Make sure to call the Joke function.") """ ), ) def create_extraction_chain_pydantic( pydantic_schemas: Union[list[type[BaseModel]], type[BaseModel]], llm: BaseLanguageModel, system_message: str = _EXTRACTION_TEMPLATE, ) -> Runnable: """Creates a chain that extracts information from a passage. Args: pydantic_schemas: The schema of the entities to extract. llm: The language model to use. system_message: The system message to use for extraction. Returns: A runnable that extracts information from a passage. """ if not isinstance(pydantic_schemas, list): pydantic_schemas = [pydantic_schemas] prompt = ChatPromptTemplate.from_messages( [ ("system", system_message), ("user", "{input}"), ] ) functions = [convert_pydantic_to_openai_function(p) for p in pydantic_schemas] tools = [{"type": "function", "function": d} for d in functions] model = llm.bind(tools=tools) chain = prompt | model | PydanticToolsParser(tools=pydantic_schemas) return chain
from typing import List, Type, Union from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers.openai_tools import PydanticToolsParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import Runnable from langchain_core.utils.function_calling import convert_pydantic_to_openai_function from pydantic import BaseModel _EXTRACTION_TEMPLATE = """Extract and save the relevant entities mentioned \ in the following passage together with their properties. If a property is not present and is not required in the function parameters, do not include it in the output.""" # noqa: E501 @deprecated( since="0.1.14", message=( "LangChain has introduced a method called `with_structured_output` that" "is available on ChatModels capable of tool calling." "You can read more about the method here: " "<https://python.langchain.com/docs/modules/model_io/chat/structured_output/>. " "Please follow our extraction use case documentation for more guidelines" "on how to do information extraction with LLMs." "<https://python.langchain.com/docs/use_cases/extraction/>. " "with_structured_output does not currently support a list of pydantic schemas. " "If this is a blocker or if you notice other issues, please provide " "feedback here:" "<https://github.com/langchain-ai/langchain/discussions/18154>" ), removal="1.0", alternative=( """ from pydantic import BaseModel, Field from langchain_anthropic import ChatAnthropic class Joke(BaseModel): setup: str = Field(description="The setup of the joke") punchline: str = Field(description="The punchline to the joke") # Or any other chat model that supports tools. # Please reference to to the documentation of structured_output # to see an up to date list of which models support # with_structured_output. model = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) structured_llm = model.with_structured_output(Joke) structured_llm.invoke("Tell me a joke about cats. Make sure to call the Joke function.") """ ), ) def create_extraction_chain_pydantic( pydantic_schemas: Union[List[Type[BaseModel]], Type[BaseModel]], llm: BaseLanguageModel, system_message: str = _EXTRACTION_TEMPLATE, ) -> Runnable: """Creates a chain that extracts information from a passage. Args: pydantic_schemas: The schema of the entities to extract. llm: The language model to use. system_message: The system message to use for extraction. Returns: A runnable that extracts information from a passage. """ if not isinstance(pydantic_schemas, list): pydantic_schemas = [pydantic_schemas] prompt = ChatPromptTemplate.from_messages( [ ("system", system_message), ("user", "{input}"), ] ) functions = [convert_pydantic_to_openai_function(p) for p in pydantic_schemas] tools = [{"type": "function", "function": d} for d in functions] model = llm.bind(tools=tools) chain = prompt | model | PydanticToolsParser(tools=pydantic_schemas) return chain
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlite3 import sqlalchemy class SqlDatasetReader(AbstractDatasetInputStream): def __init__( self, sql: Union[str, "sqlalchemy.sql.Selectable"], con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"], features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, **kwargs, ): super().__init__(features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, **kwargs) self.builder = Sql( cache_dir=cache_dir, features=features, sql=sql, con=con, **kwargs, ) def read(self): download_config = None download_mode = None verification_mode = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, verification_mode=verification_mode, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, ) # Build dataset for splits dataset = self.builder.as_dataset( split="train", verification_mode=verification_mode, in_memory=self.keep_in_memory ) return dataset class SqlDatasetWriter: def __init__( self, dataset: Dataset, name: str, con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"], batch_size: Optional[int] = None, num_proc: Optional[int] = None, **to_sql_kwargs, ): if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0.") self.dataset = dataset self.name = name self.con = con self.batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE self.num_proc = num_proc self.to_sql_kwargs = to_sql_kwargs def write(self) -> int: _ = self.to_sql_kwargs.pop("sql", None) _ = self.to_sql_kwargs.pop("con", None) index = self.to_sql_kwargs.pop("index", False) written = self._write(index=index, **self.to_sql_kwargs) return written def _batch_sql(self, args): offset, index, to_sql_kwargs = args to_sql_kwargs = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs batch = query_table( table=self.dataset.data, key=slice(offset, offset + self.batch_size), indices=self.dataset._indices, ) df = batch.to_pandas() num_rows = df.to_sql(self.name, self.con, index=index, **to_sql_kwargs) return num_rows or len(df) def _write(self, index, **to_sql_kwargs) -> int: """Writes the pyarrow table as SQL to a database. Caller is responsible for opening and closing the SQL connection. """ written = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0, len(self.dataset), self.batch_size), unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating SQL from Arrow format", ): written += self._batch_sql((offset, index, to_sql_kwargs)) else: num_rows, batch_size = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql, [(offset, index, to_sql_kwargs) for offset in range(0, num_rows, batch_size)], ), total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size, unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating SQL from Arrow format", ): written += num_rows return written
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlite3 import sqlalchemy class SqlDatasetReader(AbstractDatasetInputStream): def __init__( self, sql: Union[str, "sqlalchemy.sql.Selectable"], con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"], features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, **kwargs, ): super().__init__(features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, **kwargs) self.builder = Sql( cache_dir=cache_dir, features=features, sql=sql, con=con, **kwargs, ) def read(self): download_config = None download_mode = None verification_mode = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, verification_mode=verification_mode, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, ) # Build dataset for splits dataset = self.builder.as_dataset( split="train", verification_mode=verification_mode, in_memory=self.keep_in_memory ) return dataset class SqlDatasetWriter: def __init__( self, dataset: Dataset, name: str, con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"], batch_size: Optional[int] = None, num_proc: Optional[int] = None, **to_sql_kwargs, ): if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0.") self.dataset = dataset self.name = name self.con = con self.batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE self.num_proc = num_proc self.to_sql_kwargs = to_sql_kwargs def write(self) -> int: _ = self.to_sql_kwargs.pop("sql", None) _ = self.to_sql_kwargs.pop("con", None) written = self._write(**self.to_sql_kwargs) return written def _batch_sql(self, args): offset, to_sql_kwargs = args to_sql_kwargs = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs batch = query_table( table=self.dataset.data, key=slice(offset, offset + self.batch_size), indices=self.dataset._indices, ) df = batch.to_pandas() num_rows = df.to_sql(self.name, self.con, **to_sql_kwargs) return num_rows or len(df) def _write(self, **to_sql_kwargs) -> int: """Writes the pyarrow table as SQL to a database. Caller is responsible for opening and closing the SQL connection. """ written = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0, len(self.dataset), self.batch_size), unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating SQL from Arrow format", ): written += self._batch_sql((offset, to_sql_kwargs)) else: num_rows, batch_size = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql, [(offset, to_sql_kwargs) for offset in range(0, num_rows, batch_size)], ), total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size, unit="ba", disable=not logging.is_progress_bar_enabled(), desc="Creating SQL from Arrow format", ): written += num_rows return written
_base_ = [ '../_base_/models/faster-rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.pth' # noqa model = dict( backbone=dict( init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint))) optim_wrapper = dict( optimizer=dict(_delete_=True, type='AdamW', lr=0.0002, weight_decay=0.05), paramwise_cfg=dict(norm_decay_mult=0., bypass_duplicate=True))
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.pth' # noqa model = dict( backbone=dict( init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint))) optim_wrapper = dict( optimizer=dict(_delete_=True, type='AdamW', lr=0.0002, weight_decay=0.05), paramwise_cfg=dict(norm_decay_mult=0., bypass_duplicate=True))
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import numpy as np import pytest from jina import Document, DocumentArray from jina.executors.metas import get_default_metas from jina_commons.indexers.dump import import_vectors from ..annoy_searcher import AnnoySearcher # fix the seed here np.random.seed(500) docs = DocumentArray([Document(embedding=np.random.random(10)) for i in range(10)]) search_doc = DocumentArray([Document(embedding=np.random.random(10))]) DUMP_PATH = 'tests/dump1' TOP_K = 5 @pytest.fixture(scope='function', autouse=True) def metas(tmpdir): os.environ['TEST_WORKSPACE'] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ['TEST_WORKSPACE'] yield metas del os.environ['TEST_WORKSPACE'] def test_simple_annoy(): from annoy import AnnoyIndex _index = AnnoyIndex(5, 'angular') for j in range(3): _index.add_item(j, np.random.random((5,))) _index.build(4) idx1, _ = _index.get_nns_by_vector( np.random.random((5,)), 3, include_distances=True ) assert len(idx1) == 3 @pytest.mark.parametrize(['metric', 'is_distance'], [('angular', True), ('euclidean', True), ('manhattan', True), ('hamming', True), ('dot', True), ('angular', False), ('euclidean', False), ('manhattan', False), ('hamming', False), ('dot', False)]) def test_metric(tmpdir, metric, is_distance): metas = {'workspace': str(tmpdir), 'name': 'searcher', } runtime_args = {'pea_id': 0, 'replica_id': 0} indexer = AnnoySearcher(dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas, metric=metric, is_distance=is_distance, runtime_args=runtime_args) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) assert len(docs[0].matches) == TOP_K for i in range(len(docs[0].matches) - 1): if not is_distance: assert docs[0].matches[i].scores[metric].value >= docs[0].matches[i + 1].scores[metric].value else: assert docs[0].matches[i].scores[metric].value <= docs[0].matches[i + 1].scores[metric].value def test_query_vector(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher'} runtime_args = {'pea_id': 0, 'replica_id': 0} indexer = AnnoySearcher(dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas, runtime_args=runtime_args) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) ids, vecs = import_vectors(DUMP_PATH, str(0)) ids = np.array(list(ids)) vecs = np.array(list(vecs)) assert len(docs) == 1 assert len(docs[0].matches) == TOP_K assert docs[0].matches[0].id in ids assert len(docs[0].matches[0].embedding) == 7 assert docs[0].matches[0].embedding in vecs da = DocumentArray([Document(id=0), Document(id=1), Document(id=2)]) indexer.fill_embedding(da) for i, doc in enumerate(da): assert list(doc.embedding) def test_query_vector_empty(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher'} runtime_args = {'pea_id': 0, 'replica_id': 0} indexer = AnnoySearcher(default_top_k=TOP_K, metas=metas, runtime_args=runtime_args) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) assert len(docs[0].matches) == 0
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import numpy as np import pytest from jina import Document, DocumentArray from jina.executors.metas import get_default_metas from jina_commons.indexers.dump import import_vectors from ..annoy import AnnoySearcher # fix the seed here np.random.seed(500) docs = DocumentArray([Document(embedding=np.random.random(10)) for i in range(10)]) search_doc = DocumentArray([Document(embedding=np.random.random(10))]) DUMP_PATH = 'tests/dump1' TOP_K = 5 @pytest.fixture(scope='function', autouse=True) def metas(tmpdir): os.environ['TEST_WORKSPACE'] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ['TEST_WORKSPACE'] yield metas del os.environ['TEST_WORKSPACE'] def test_simple_annoy(): from annoy import AnnoyIndex _index = AnnoyIndex(5, 'angular') for j in range(3): _index.add_item(j, np.random.random((5,))) _index.build(4) idx1, _ = _index.get_nns_by_vector( np.random.random((5,)), 3, include_distances=True ) assert len(idx1) == 3 @pytest.mark.parametrize(['metric', 'is_distance'], [('angular', True), ('euclidean', True), ('manhattan', True), ('hamming', True), ('dot', True), ('angular', False), ('euclidean', False), ('manhattan', False), ('hamming', False), ('dot', False)]) def test_metric(tmpdir, metric, is_distance): metas = {'workspace': str(tmpdir), 'name': 'searcher', } runtime_args = {'pea_id': 0, 'replica_id': 0} indexer = AnnoySearcher(dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas, metric=metric, is_distance=is_distance, runtime_args=runtime_args) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) assert len(docs[0].matches) == TOP_K for i in range(len(docs[0].matches) - 1): if not is_distance: assert docs[0].matches[i].scores[metric].value >= docs[0].matches[i + 1].scores[metric].value else: assert docs[0].matches[i].scores[metric].value <= docs[0].matches[i + 1].scores[metric].value def test_query_vector(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher'} runtime_args = {'pea_id': 0, 'replica_id': 0} indexer = AnnoySearcher(dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas, runtime_args=runtime_args) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) ids, vecs = import_vectors(DUMP_PATH, str(0)) ids = np.array(list(ids)) vecs = np.array(list(vecs)) assert len(docs) == 1 assert len(docs[0].matches) == TOP_K assert docs[0].matches[0].id in ids assert len(docs[0].matches[0].embedding) == 7 assert docs[0].matches[0].embedding in vecs da = DocumentArray([Document(id=0), Document(id=1), Document(id=2)]) indexer.fill_embedding(da) for i, doc in enumerate(da): assert list(doc.embedding) def test_query_vector_empty(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher'} runtime_args = {'pea_id': 0, 'replica_id': 0} indexer = AnnoySearcher(default_top_k=TOP_K, metas=metas, runtime_args=runtime_args) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) assert len(docs[0].matches) == 0
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.documents import VideoDoc from docarray.typing import AudioNdArray, NdArray, VideoNdArray from docarray.utils.misc import is_tf_available from tests import TOYDATA_DIR tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE]) def test_video(file_url): vid = VideoDoc(url=file_url) vid.tensor, vid.audio.tensor, vid.key_frame_indices = vid.url.load() assert isinstance(vid.tensor, VideoNdArray) assert isinstance(vid.audio.tensor, AudioNdArray) assert isinstance(vid.key_frame_indices, NdArray) def test_video_np(): video = parse_obj_as(VideoDoc, np.zeros((10, 10, 3))) assert (video.tensor == np.zeros((10, 10, 3))).all() def test_video_torch(): video = parse_obj_as(VideoDoc, torch.zeros(10, 10, 3)) assert (video.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_video_tensorflow(): video = parse_obj_as(VideoDoc, tf.zeros((10, 10, 3))) assert tnp.allclose(video.tensor.tensor, tf.zeros((10, 10, 3))) def test_video_shortcut_doc(): class MyDoc(BaseDocument): video: VideoDoc video2: VideoDoc video3: VideoDoc doc = MyDoc( video='http://myurl.mp4', video2=np.zeros((10, 10, 3)), video3=torch.zeros(10, 10, 3), ) assert doc.video.url == 'http://myurl.mp4' assert (doc.video2.tensor == np.zeros((10, 10, 3))).all() assert (doc.video3.tensor == torch.zeros(10, 10, 3)).all()
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.documents import Video from docarray.typing import AudioNdArray, NdArray, VideoNdArray from docarray.utils.misc import is_tf_available from tests import TOYDATA_DIR tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE]) def test_video(file_url): vid = Video(url=file_url) vid.tensor, vid.audio.tensor, vid.key_frame_indices = vid.url.load() assert isinstance(vid.tensor, VideoNdArray) assert isinstance(vid.audio.tensor, AudioNdArray) assert isinstance(vid.key_frame_indices, NdArray) def test_video_np(): video = parse_obj_as(Video, np.zeros((10, 10, 3))) assert (video.tensor == np.zeros((10, 10, 3))).all() def test_video_torch(): video = parse_obj_as(Video, torch.zeros(10, 10, 3)) assert (video.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_video_tensorflow(): video = parse_obj_as(Video, tf.zeros((10, 10, 3))) assert tnp.allclose(video.tensor.tensor, tf.zeros((10, 10, 3))) def test_video_shortcut_doc(): class MyDoc(BaseDocument): video: Video video2: Video video3: Video doc = MyDoc( video='http://myurl.mp4', video2=np.zeros((10, 10, 3)), video3=torch.zeros(10, 10, 3), ) assert doc.video.url == 'http://myurl.mp4' assert (doc.video2.tensor == np.zeros((10, 10, 3))).all() assert (doc.video3.tensor == torch.zeros(10, 10, 3)).all()
import os import pytest import respx from llama_index.postprocessor.nvidia_rerank import NVIDIARerank as Interface from llama_index.core.schema import NodeWithScore, Document from typing import Any @pytest.fixture() def mock_local_models(respx_mock: respx.MockRouter) -> None: respx_mock.get("https://test_url/v1/models").respond( json={"data": [{"id": "model1"}]} ) def get_api_key(instance: Any) -> str: return instance._api_key def test_create_default_url_without_api_key(masked_env_var: str) -> None: with pytest.raises(ValueError) as e: Interface() assert "API key is required" in str(e.value) @pytest.mark.usefixtures("mock_local_models") def test_create_unknown_url_without_api_key(masked_env_var: str) -> None: Interface(base_url="https://test_url/v1") @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_create_with_api_key(param: str, masked_env_var: str) -> None: instance = Interface(**{param: "just testing no failure"}) assert get_api_key(instance) == "just testing no failure" def test_api_key_priority(masked_env_var: str) -> None: try: os.environ["NVIDIA_API_KEY"] = "ENV" assert get_api_key(Interface()) == "ENV" assert get_api_key(Interface(nvidia_api_key="PARAM")) == "PARAM" assert get_api_key(Interface(api_key="PARAM")) == "PARAM" assert get_api_key(Interface(api_key="LOW", nvidia_api_key="HIGH")) == "HIGH" finally: # we must clean up environ or it may impact other tests del os.environ["NVIDIA_API_KEY"] @pytest.mark.integration() def test_bogus_api_key_error(masked_env_var: str) -> None: client = Interface(nvidia_api_key="BOGUS") with pytest.raises(Exception) as exc_info: client.postprocess_nodes( [NodeWithScore(node=Document(text="Hello, world!"))], query_str="Hello, world!", ) message = str(exc_info.value) assert "401" in message @pytest.mark.integration() @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_api_key(model: str, mode: dict, param: str, masked_env_var: str) -> None: client = Interface(model=model, **{**mode, **{param: masked_env_var}}) assert client.postprocess_nodes( [NodeWithScore(node=Document(text="Hello, world!"))], query_str="Hello, world!", )
import os import pytest from llama_index.postprocessor.nvidia_rerank import NVIDIARerank as Interface from llama_index.core.schema import NodeWithScore, Document from typing import Any from requests_mock import Mocker @pytest.fixture() def mock_local_models(requests_mock: Mocker) -> None: requests_mock.get( "https://test_url/v1/models", json={ "data": [ {"id": "model1"}, ] }, ) def get_api_key(instance: Any) -> str: return instance._api_key def test_create_default_url_without_api_key(masked_env_var: str) -> None: with pytest.raises(ValueError) as e: Interface() assert "API key is required" in str(e.value) @pytest.mark.usefixtures("mock_local_models") def test_create_unknown_url_without_api_key(masked_env_var: str) -> None: Interface(base_url="https://test_url/v1") @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_create_with_api_key(param: str, masked_env_var: str) -> None: instance = Interface(**{param: "just testing no failure"}) assert get_api_key(instance) == "just testing no failure" def test_api_key_priority(masked_env_var: str) -> None: try: os.environ["NVIDIA_API_KEY"] = "ENV" assert get_api_key(Interface()) == "ENV" assert get_api_key(Interface(nvidia_api_key="PARAM")) == "PARAM" assert get_api_key(Interface(api_key="PARAM")) == "PARAM" assert get_api_key(Interface(api_key="LOW", nvidia_api_key="HIGH")) == "HIGH" finally: # we must clean up environ or it may impact other tests del os.environ["NVIDIA_API_KEY"] @pytest.mark.integration() def test_bogus_api_key_error(masked_env_var: str) -> None: client = Interface(nvidia_api_key="BOGUS") with pytest.raises(Exception) as exc_info: client.postprocess_nodes( [NodeWithScore(node=Document(text="Hello, world!"))], query_str="Hello, world!", ) message = str(exc_info.value) assert "401" in message @pytest.mark.integration() @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_api_key(model: str, mode: dict, param: str, masked_env_var: str) -> None: client = Interface(model=model, **{**mode, **{param: masked_env_var}}) assert client.postprocess_nodes( [NodeWithScore(node=Document(text="Hello, world!"))], query_str="Hello, world!", )
from llama_index.core.constants import DATA_KEY, TYPE_KEY from llama_index.core.schema import ( BaseNode, Document, ImageDocument, ImageNode, IndexNode, Node, NodeRelationship, RelatedNodeInfo, TextNode, ) def doc_to_json(doc: BaseNode) -> dict: return { DATA_KEY: doc.to_dict(), TYPE_KEY: doc.get_type(), } def json_to_doc(doc_dict: dict) -> BaseNode: doc_type = doc_dict[TYPE_KEY] data_dict = doc_dict[DATA_KEY] doc: BaseNode if "extra_info" in data_dict: return legacy_json_to_doc(doc_dict) else: if doc_type == Document.get_type(): if data_dict["class_name"] == ImageDocument.class_name(): doc = ImageDocument.from_dict(data_dict) else: doc = Document.from_dict(data_dict) elif doc_type == Node.get_type(): doc = Node.from_dict(data_dict) elif doc_type == TextNode.get_type(): doc = TextNode.from_dict(data_dict) elif doc_type == ImageNode.get_type(): doc = ImageNode.from_dict(data_dict) elif doc_type == IndexNode.get_type(): doc = IndexNode.from_dict(data_dict) elif doc_type == Node.get_type(): doc = Node.from_dict(data_dict) else: raise ValueError(f"Unknown doc type: {doc_type}") return doc def legacy_json_to_doc(doc_dict: dict) -> BaseNode: """Todo: Deprecated legacy support for old node versions.""" doc_type = doc_dict[TYPE_KEY] data_dict = doc_dict[DATA_KEY] doc: BaseNode text = data_dict.get("text", "") metadata = data_dict.get("extra_info", {}) or {} id_ = data_dict.get("doc_id", None) relationships = data_dict.get("relationships", {}) relationships = { NodeRelationship(k): RelatedNodeInfo(node_id=str(v)) for k, v in relationships.items() } if doc_type == Document.get_type(): doc = Document( text=text, metadata=metadata, id=id_, relationships=relationships ) elif doc_type == TextNode.get_type(): doc = TextNode( text=text, metadata=metadata, id=id_, relationships=relationships ) elif doc_type == ImageNode.get_type(): image = data_dict.get("image", None) doc = ImageNode( text=text, metadata=metadata, id=id_, relationships=relationships, image=image, ) elif doc_type == IndexNode.get_type(): index_id = data_dict.get("index_id", None) doc = IndexNode( text=text, metadata=metadata, id=id_, relationships=relationships, index_id=index_id, ) else: raise ValueError(f"Unknown doc type: {doc_type}") return doc
from llama_index.core.constants import DATA_KEY, TYPE_KEY from llama_index.core.schema import ( BaseNode, Document, ImageDocument, ImageNode, IndexNode, Node, NodeRelationship, RelatedNodeInfo, TextNode, ) def doc_to_json(doc: BaseNode) -> dict: return { DATA_KEY: doc.to_dict(), TYPE_KEY: doc.get_type(), } def json_to_doc(doc_dict: dict) -> BaseNode: doc_type = doc_dict[TYPE_KEY] data_dict = doc_dict[DATA_KEY] doc: BaseNode if "extra_info" in data_dict: return legacy_json_to_doc(doc_dict) else: if doc_type == Document.get_type(): if data_dict["class_name"] == ImageDocument.class_name(): doc = ImageDocument.from_dict(data_dict) else: doc = Document.from_dict(data_dict) elif doc_type == TextNode.get_type(): doc = TextNode.from_dict(data_dict) elif doc_type == ImageNode.get_type(): doc = ImageNode.from_dict(data_dict) elif doc_type == IndexNode.get_type(): doc = IndexNode.from_dict(data_dict) elif doc_type == Node.get_type(): doc = Node.from_dict(data_dict) else: raise ValueError(f"Unknown doc type: {doc_type}") return doc def legacy_json_to_doc(doc_dict: dict) -> BaseNode: """Todo: Deprecated legacy support for old node versions.""" doc_type = doc_dict[TYPE_KEY] data_dict = doc_dict[DATA_KEY] doc: BaseNode text = data_dict.get("text", "") metadata = data_dict.get("extra_info", {}) or {} id_ = data_dict.get("doc_id", None) relationships = data_dict.get("relationships", {}) relationships = { NodeRelationship(k): RelatedNodeInfo(node_id=str(v)) for k, v in relationships.items() } if doc_type == Document.get_type(): doc = Document( text=text, metadata=metadata, id=id_, relationships=relationships ) elif doc_type == TextNode.get_type(): doc = TextNode( text=text, metadata=metadata, id=id_, relationships=relationships ) elif doc_type == ImageNode.get_type(): image = data_dict.get("image", None) doc = ImageNode( text=text, metadata=metadata, id=id_, relationships=relationships, image=image, ) elif doc_type == IndexNode.get_type(): index_id = data_dict.get("index_id", None) doc = IndexNode( text=text, metadata=metadata, id=id_, relationships=relationships, index_id=index_id, ) else: raise ValueError(f"Unknown doc type: {doc_type}") return doc
from dataclasses import dataclass, field from typing import Any, Dict, Type import pytest from pydantic import Field from docarray import BaseDoc from docarray.index.abstract import BaseDocIndex from docarray.typing import NdArray pytestmark = pytest.mark.index class SimpleDoc(BaseDoc): tens: NdArray[10] = Field(dim=1000) class FakeQueryBuilder: ... @dataclass class DBConfig(BaseDocIndex.DBConfig): work_dir: str = '.' other: int = 5 @dataclass class RuntimeConfig(BaseDocIndex.RuntimeConfig): default_column_config: Dict[Type, Dict[str, Any]] = field( default_factory=lambda: { str: { 'dim': 128, 'space': 'l2', }, } ) default_ef: int = 50 def _identity(*x, **y): return x, y class DummyDocIndex(BaseDocIndex): DBConfig = DBConfig RuntimeConfig = RuntimeConfig def python_type_to_db_type(self, x): return str _index = _identity num_docs = _identity _del_items = _identity _get_items = _identity execute_query = _identity _find = _identity _find_batched = _identity _filter = _identity _filter_batched = _identity _text_search = _identity _text_search_batched = _identity def test_defaults(): index = DummyDocIndex[SimpleDoc]() assert index._db_config.other == 5 assert index._db_config.work_dir == '.' assert index._runtime_config.default_column_config[str] == { 'dim': 128, 'space': 'l2', } def test_set_by_class(): # change all settings index = DummyDocIndex[SimpleDoc](DBConfig(work_dir='hi', other=10)) assert index._db_config.other == 10 assert index._db_config.work_dir == 'hi' index.configure(RuntimeConfig(default_column_config={}, default_ef=10)) assert index._runtime_config.default_column_config == {} # change only some settings index = DummyDocIndex[SimpleDoc](DBConfig(work_dir='hi')) assert index._db_config.other == 5 assert index._db_config.work_dir == 'hi' index.configure(RuntimeConfig(default_column_config={})) assert index._runtime_config.default_column_config == {} def test_set_by_kwargs(): # change all settings index = DummyDocIndex[SimpleDoc](work_dir='hi', other=10) assert index._db_config.other == 10 assert index._db_config.work_dir == 'hi' index.configure(default_column_config={}, default_ef=10) assert index._runtime_config.default_column_config == {} # change only some settings index = DummyDocIndex[SimpleDoc](work_dir='hi') assert index._db_config.other == 5 assert index._db_config.work_dir == 'hi' index.configure(default_column_config={}) assert index._runtime_config.default_column_config == {} def test_default_column_config(): index = DummyDocIndex[SimpleDoc]() assert index._runtime_config.default_column_config == { str: { 'dim': 128, 'space': 'l2', }, }
from dataclasses import dataclass, field from typing import Any, Dict, Type import pytest from pydantic import Field from docarray import BaseDoc from docarray.index.abstract import BaseDocIndex from docarray.typing import NdArray pytestmark = pytest.mark.index class SimpleDoc(BaseDoc): tens: NdArray[10] = Field(dim=1000) class FakeQueryBuilder: ... @dataclass class DBConfig(BaseDocIndex.DBConfig): work_dir: str = '.' other: int = 5 default_column_config: Dict[Type, Dict[str, Any]] = field( default_factory=lambda: { str: { 'dim': 128, 'space': 'l2', }, } ) default_ef: int = 50 @dataclass class RuntimeConfig(BaseDocIndex.RuntimeConfig): pass def _identity(*x, **y): return x, y class DummyDocIndex(BaseDocIndex): DBConfig = DBConfig RuntimeConfig = RuntimeConfig def python_type_to_db_type(self, x): return str _index = _identity num_docs = _identity _del_items = _identity _get_items = _identity execute_query = _identity _find = _identity _find_batched = _identity _filter = _identity _filter_batched = _identity _text_search = _identity _text_search_batched = _identity def test_defaults(): index = DummyDocIndex[SimpleDoc]() assert index._db_config.other == 5 assert index._db_config.work_dir == '.' assert index._runtime_config.default_column_config[str] == { 'dim': 128, 'space': 'l2', } def test_set_by_class(): # change all settings index = DummyDocIndex[SimpleDoc](DBConfig(work_dir='hi', other=10)) assert index._db_config.other == 10 assert index._db_config.work_dir == 'hi' index.configure(RuntimeConfig(default_column_config={}, default_ef=10)) assert index._runtime_config.default_column_config == {} # change only some settings index = DummyDocIndex[SimpleDoc](DBConfig(work_dir='hi')) assert index._db_config.other == 5 assert index._db_config.work_dir == 'hi' index.configure(RuntimeConfig(default_column_config={})) assert index._runtime_config.default_column_config == {} def test_set_by_kwargs(): # change all settings index = DummyDocIndex[SimpleDoc](work_dir='hi', other=10) assert index._db_config.other == 10 assert index._db_config.work_dir == 'hi' index.configure(default_column_config={}, default_ef=10) assert index._runtime_config.default_column_config == {} # change only some settings index = DummyDocIndex[SimpleDoc](work_dir='hi') assert index._db_config.other == 5 assert index._db_config.work_dir == 'hi' index.configure(default_column_config={}) assert index._runtime_config.default_column_config == {} def test_default_column_config(): index = DummyDocIndex[SimpleDoc]() assert index._runtime_config.default_column_config == { str: { 'dim': 128, 'space': 'l2', }, }
from abc import ABC from contextlib import ExitStack from rich.table import Table from jina.helper import CatchAllCleanupContextManager, get_internal_ip, get_public_ip class BaseOrchestrator(ExitStack, ABC): """Base orchestrator class""" def __enter__(self): with CatchAllCleanupContextManager(self): return self.start() def __exit__(self, exc_type, exc_val, exc_tb): if hasattr(self, '_stop_event'): self._stop_event.set() super().__exit__(exc_type, exc_val, exc_tb) def _init_table(self): table = Table( title=None, box=None, highlight=True, show_header=False, min_width=40 ) table.add_column('', justify='left') table.add_column('', justify='right') table.add_column('', justify='right') return table @property def address_private(self) -> str: """Return the private IP address of the gateway for connecting from other machine in the same network .. # noqa: DAR201""" if getattr(self, '_internal_ip', None): return self._internal_ip else: self._internal_ip = get_internal_ip() return self._internal_ip @property def address_public(self) -> str: """Return the public IP address of the gateway for connecting from other machine in the public network .. # noqa: DAR201""" if getattr(self, '_public_ip', None): return self._public_ip else: self._public_ip = get_public_ip() return self._public_ip
from abc import ABC from contextlib import ExitStack from rich.table import Table from jina.helper import CatchAllCleanupContextManager, get_internal_ip, get_public_ip class BaseOrchestrator(ExitStack, ABC): """Base orchestrator class""" def __enter__(self): with CatchAllCleanupContextManager(self): return self.start() def __exit__(self, exc_type, exc_val, exc_tb): if hasattr(self, '_stop_event'): self._stop_event.set() super().__exit__(exc_type, exc_val, exc_tb) def _init_table(self): table = Table( title=None, box=None, highlight=True, show_header=False, min_width=40 ) table.add_column('', justify='left') table.add_column('', justify='right') table.add_column('', justify='right') return table @property def address_private(self) -> str: """Return the private IP address of the gateway for connecting from other machine in the same network .. # noqa: DAR201""" return get_internal_ip() @property def address_public(self) -> str: """Return the public IP address of the gateway for connecting from other machine in the public network .. # noqa: DAR201""" return get_public_ip()
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from pathlib import Path from jina import Document, DocumentArray, Executor from ...sentencizer import Sentencizer def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.min_sent_len == 1 def test_executor(): ex = Sentencizer() input = DocumentArray([Document(text='Hello. World.')]) ex.segment(input, {}) assert input[0].chunks[0].text == 'Hello.' assert input[0].chunks[1].text == 'World.'
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from jina import Document, DocumentArray from ...sentencizer import Sentencizer def test_executor(): ex = Sentencizer.load_config('../../config.yml') input = DocumentArray([Document(text='Hello. World.')]) ex.segment(input, {}) assert input[0].chunks[0].text == 'Hello.' assert input[0].chunks[1].text == 'World.'
""" This examples trains a CrossEncoder for the STSbenchmark task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continuous labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_stsbenchmark.py """ import csv import gzip import logging import math import os from datetime import datetime from torch.utils.data import DataLoader from sentence_transformers import InputExample, LoggingHandler, util from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CrossEncoderCorrelationEvaluator #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # Define our Cross-Encoder train_batch_size = 16 num_epochs = 4 model_save_path = "output/training_stsbenchmark-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # We use distilroberta-base as base model and set num_labels=1, which predicts a continuous score between 0 and 1 model = CrossEncoder("distilroberta-base", num_labels=1) # Read STSb dataset logger.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 if row["split"] == "dev": dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) elif row["split"] == "test": test_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) else: # As we want to get symmetric scores, i.e. CrossEncoder(A,B) = CrossEncoder(B,A), we pass both combinations to the train set train_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) train_samples.append(InputExample(texts=[row["sentence2"], row["sentence1"]], label=score)) # We wrap train_samples (which is a List[InputExample]) into a pytorch DataLoader train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) # We add an evaluator, which evaluates the performance during training evaluator = CrossEncoderCorrelationEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logger.info(f"Warmup-steps: {warmup_steps}") # Train the model model.fit( train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, warmup_steps=warmup_steps, output_path=model_save_path, ) ##### Load model and eval on test set model = CrossEncoder(model_save_path) evaluator = CrossEncoderCorrelationEvaluator.from_input_examples(test_samples, name="sts-test") evaluator(model)
""" This examples trains a CrossEncoder for the STSbenchmark task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continuous labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_stsbenchmark.py """ import csv import gzip import logging import math import os from datetime import datetime from torch.utils.data import DataLoader from sentence_transformers import InputExample, LoggingHandler, util from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # Define our Cross-Encoder train_batch_size = 16 num_epochs = 4 model_save_path = "output/training_stsbenchmark-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # We use distilroberta-base as base model and set num_labels=1, which predicts a continuous score between 0 and 1 model = CrossEncoder("distilroberta-base", num_labels=1) # Read STSb dataset logger.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 if row["split"] == "dev": dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) elif row["split"] == "test": test_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) else: # As we want to get symmetric scores, i.e. CrossEncoder(A,B) = CrossEncoder(B,A), we pass both combinations to the train set train_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) train_samples.append(InputExample(texts=[row["sentence2"], row["sentence1"]], label=score)) # We wrap train_samples (which is a List[InputExample]) into a pytorch DataLoader train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) # We add an evaluator, which evaluates the performance during training evaluator = CECorrelationEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logger.info(f"Warmup-steps: {warmup_steps}") # Train the model model.fit( train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, warmup_steps=warmup_steps, output_path=model_save_path, ) ##### Load model and eval on test set model = CrossEncoder(model_save_path) evaluator = CECorrelationEvaluator.from_input_examples(test_samples, name="sts-test") evaluator(model)
import os import pathlib import pytest from docarray.helper import ( protocol_and_compress_from_file_path, add_protocol_and_compress_to_file_path, filter_dict, get_full_version, ) @pytest.mark.parametrize( 'file_path', ['doc_array', '../docarray', './a_folder/docarray'] ) @pytest.mark.parametrize( 'protocol', ['protobuf', 'protobuf-array', 'pickle', 'pickle-array'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) def test_protocol_and_compress_from_file_path(file_path, protocol, compress): file_path_extended = file_path if protocol: file_path_extended += '.' + protocol if compress: file_path_extended += '.' + compress _protocol, _compress = protocol_and_compress_from_file_path(file_path_extended) assert _protocol in {'protobuf', 'protobuf-array', 'pickle', 'pickle-array', None} assert _compress in {'lz4', 'bz2', 'lzma', 'zlib', 'gzip', None} assert protocol == _protocol assert compress == _compress @pytest.mark.parametrize('file_path', ['doc_array', './some_folder/doc_array']) @pytest.mark.parametrize( 'protocol', ['protobuf', 'protobuf-array', 'pickle', 'pickle-array'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip']) def test_add_protocol_and_compress_to_file_path(file_path, compress, protocol): file_path_extended = add_protocol_and_compress_to_file_path( file_path, compress, protocol ) file_path_suffixes = [ e.replace('.', '') for e in pathlib.Path(file_path_extended).suffixes ] if compress: assert compress in file_path_suffixes if protocol: assert protocol in file_path_suffixes def test_filter_dict(): conf_dict = {'x': 0, 'y': 1, 'z': None, 'k': ''} assert list(filter_dict(conf_dict).keys()) == ['x', 'y', 'k'] def test_ci_vendor(): if 'GITHUB_WORKFLOW' in os.environ: assert get_full_version()['ci-vendor'] == 'GITHUB_ACTIONS'
import os import pathlib import pytest from docarray.helper import ( protocol_and_compress_from_file_path, add_protocol_and_compress_to_file_path, get_full_version, ) @pytest.mark.parametrize( 'file_path', ['doc_array', '../docarray', './a_folder/docarray'] ) @pytest.mark.parametrize( 'protocol', ['protobuf', 'protobuf-array', 'pickle', 'pickle-array'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) def test_protocol_and_compress_from_file_path(file_path, protocol, compress): file_path_extended = file_path if protocol: file_path_extended += '.' + protocol if compress: file_path_extended += '.' + compress _protocol, _compress = protocol_and_compress_from_file_path(file_path_extended) assert _protocol in {'protobuf', 'protobuf-array', 'pickle', 'pickle-array', None} assert _compress in {'lz4', 'bz2', 'lzma', 'zlib', 'gzip', None} assert protocol == _protocol assert compress == _compress @pytest.mark.parametrize('file_path', ['doc_array', './some_folder/doc_array']) @pytest.mark.parametrize( 'protocol', ['protobuf', 'protobuf-array', 'pickle', 'pickle-array'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip']) def test_add_protocol_and_compress_to_file_path(file_path, compress, protocol): file_path_extended = add_protocol_and_compress_to_file_path( file_path, compress, protocol ) file_path_suffixes = [ e.replace('.', '') for e in pathlib.Path(file_path_extended).suffixes ] if compress: assert compress in file_path_suffixes if protocol: assert protocol in file_path_suffixes def test_ci_vendor(): if 'GITHUB_WORKFLOW' in os.environ: assert get_full_version()['ci-vendor'] == 'GITHUB_ACTIONS'
# Copyright (c) OpenMMLab. All rights reserved. import copy import inspect from typing import List, Union import torch import torch.nn as nn from mmengine.config import Config, ConfigDict from mmengine.device import is_npu_available from mmengine.registry import OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS from .optimizer_wrapper import OptimWrapper def register_torch_optimizers() -> List[str]: """Register optimizers in ``torch.optim`` to the ``OPTIMIZERS`` registry. Returns: List[str]: A list of registered optimizers' name. """ torch_optimizers = [] for module_name in dir(torch.optim): if module_name.startswith('__'): continue _optim = getattr(torch.optim, module_name) if inspect.isclass(_optim) and issubclass(_optim, torch.optim.Optimizer): OPTIMIZERS.register_module(module=_optim) torch_optimizers.append(module_name) return torch_optimizers TORCH_OPTIMIZERS = register_torch_optimizers() def build_optim_wrapper(model: nn.Module, cfg: Union[dict, Config, ConfigDict]) -> OptimWrapper: """Build function of OptimWrapper. If ``constructor`` is set in the ``cfg``, this method will build an optimizer wrapper constructor, and use optimizer wrapper constructor to build the optimizer wrapper. If ``constructor`` is not set, the ``DefaultOptimWrapperConstructor`` will be used by default. Args: model (nn.Module): Model to be optimized. cfg (dict): Config of optimizer wrapper, optimizer constructor and optimizer. Returns: OptimWrapper: The built optimizer wrapper. """ optim_wrapper_cfg = copy.deepcopy(cfg) constructor_type = optim_wrapper_cfg.pop('constructor', 'DefaultOptimWrapperConstructor') paramwise_cfg = optim_wrapper_cfg.pop('paramwise_cfg', None) # Since the current generation of NPU(Ascend 910) only supports # mixed precision training, here we turn on mixed precision by default # on the NPU to make the training normal if is_npu_available(): optim_wrapper_cfg['type'] = 'AmpOptimWrapper' optim_wrapper_constructor = OPTIM_WRAPPER_CONSTRUCTORS.build( dict( type=constructor_type, optim_wrapper_cfg=optim_wrapper_cfg, paramwise_cfg=paramwise_cfg)) optim_wrapper = optim_wrapper_constructor(model) return optim_wrapper
# Copyright (c) OpenMMLab. All rights reserved. import copy import inspect from typing import List, Union import torch import torch.nn as nn from mmengine.config import Config, ConfigDict from mmengine.registry import OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS from .optimizer_wrapper import OptimWrapper def register_torch_optimizers() -> List[str]: """Register optimizers in ``torch.optim`` to the ``OPTIMIZERS`` registry. Returns: List[str]: A list of registered optimizers' name. """ torch_optimizers = [] for module_name in dir(torch.optim): if module_name.startswith('__'): continue _optim = getattr(torch.optim, module_name) if inspect.isclass(_optim) and issubclass(_optim, torch.optim.Optimizer): OPTIMIZERS.register_module(module=_optim) torch_optimizers.append(module_name) return torch_optimizers TORCH_OPTIMIZERS = register_torch_optimizers() def build_optim_wrapper(model: nn.Module, cfg: Union[dict, Config, ConfigDict]) -> OptimWrapper: """Build function of OptimWrapper. If ``constructor`` is set in the ``cfg``, this method will build an optimizer wrapper constructor, and use optimizer wrapper constructor to build the optimizer wrapper. If ``constructor`` is not set, the ``DefaultOptimWrapperConstructor`` will be used by default. Args: model (nn.Module): Model to be optimized. cfg (dict): Config of optimizer wrapper, optimizer constructor and optimizer. Returns: OptimWrapper: The built optimizer wrapper. """ optim_wrapper_cfg = copy.deepcopy(cfg) constructor_type = optim_wrapper_cfg.pop('constructor', 'DefaultOptimWrapperConstructor') paramwise_cfg = optim_wrapper_cfg.pop('paramwise_cfg', None) optim_wrapper_constructor = OPTIM_WRAPPER_CONSTRUCTORS.build( dict( type=constructor_type, optim_wrapper_cfg=optim_wrapper_cfg, paramwise_cfg=paramwise_cfg)) optim_wrapper = optim_wrapper_constructor(model) return optim_wrapper
from typing import TYPE_CHECKING import numpy as np if TYPE_CHECKING: from docarray import Document def image_setter(value) -> 'Document': from docarray import Document doc = Document(modality='image') if isinstance(value, str): doc.uri = value doc._metadata['image_type'] = 'uri' doc.load_uri_to_image_tensor() elif isinstance(value, np.ndarray): doc.tensor = value doc._metadata['image_type'] = 'ndarray' else: from PIL.Image import Image if isinstance(value, Image): doc.tensor = np.array(value) doc._metadata['image_type'] = 'PIL' return doc def text_setter(value) -> 'Document': from docarray import Document return Document(text=value, modality='text') def uri_setter(value) -> 'Document': from docarray import Document return Document(uri=value) def audio_setter(value) -> 'Document': from docarray import Document if isinstance(value, np.ndarray): return Document(tensor=value, _metadata={'audio_type': 'ndarray'}) else: return Document( uri=value, modality='audio', _metadata={'audio_type': 'uri'} ).load_uri_to_audio_tensor() def video_setter(value) -> 'Document': from docarray import Document if isinstance(value, np.ndarray): return Document(tensor=value, _metadata={'video_type': 'ndarray'}) else: return Document( uri=value, modality='video', _metadata={'video_type': 'uri'} ).load_uri_to_video_tensor() def mesh_setter(value) -> 'Document': from docarray import Document if isinstance(value, np.ndarray): return Document(tensor=value, _metadata={'mesh_type': 'ndarray'}) else: return Document( uri=value, modality='mesh', _metadata={'mesh_type': 'uri'} ).load_uri_to_point_cloud_tensor(1000) def blob_setter(value) -> 'Document': from docarray import Document if isinstance(value, bytes): return Document(blob=value, _metadata={'blob_type': 'bytes'}) else: return Document(uri=value, _metadata={'blob_type': 'uri'}).load_uri_to_blob() def json_setter(value) -> 'Document': from docarray import Document return Document(modality='json', tags=value) def tabular_setter(value) -> 'Document': from docarray import Document, DocumentArray return Document(uri=value, chunks=DocumentArray.from_csv(value), modality='tabular')
from typing import TYPE_CHECKING import numpy as np if TYPE_CHECKING: from docarray import Document def image_setter(value) -> 'Document': from docarray import Document doc = Document(modality='image') if isinstance(value, str): doc.uri = value doc._metadata['image_type'] = 'uri' doc.load_uri_to_image_tensor() elif isinstance(value, np.ndarray): doc.tensor = value doc._metadata['image_type'] = 'ndarray' else: from PIL.Image import Image if isinstance(value, Image): doc.tensor = np.array(value) doc._metadata['image_type'] = 'PIL' return doc def text_setter(value) -> 'Document': from docarray import Document return Document(text=value, modality='text') def audio_setter(value) -> 'Document': from docarray import Document if isinstance(value, np.ndarray): return Document(tensor=value, _metadata={'audio_type': 'ndarray'}) else: return Document( uri=value, modality='audio', _metadata={'audio_type': 'uri'} ).load_uri_to_audio_tensor() def video_setter(value) -> 'Document': from docarray import Document if isinstance(value, np.ndarray): return Document(tensor=value, _metadata={'video_type': 'ndarray'}) else: return Document( uri=value, modality='video', _metadata={'video_type': 'uri'} ).load_uri_to_video_tensor() def mesh_setter(value) -> 'Document': from docarray import Document if isinstance(value, np.ndarray): return Document(tensor=value, _metadata={'mesh_type': 'ndarray'}) else: return Document( uri=value, modality='mesh', _metadata={'mesh_type': 'uri'} ).load_uri_to_point_cloud_tensor(1000) def blob_setter(value) -> 'Document': from docarray import Document if isinstance(value, bytes): return Document(blob=value, _metadata={'blob_type': 'bytes'}) else: return Document(uri=value, _metadata={'blob_type': 'uri'}).load_uri_to_blob() def json_setter(value) -> 'Document': from docarray import Document return Document(modality='json', tags=value) def tabular_setter(value) -> 'Document': from docarray import Document, DocumentArray return Document(uri=value, chunks=DocumentArray.from_csv(value), modality='tabular')
"""Reader that pulls in a BoardDocs site.""" import json from typing import Any, List, Optional import html2text import requests from bs4 import BeautifulSoup from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class BoardDocsReader(BaseReader): """ BoardDocs doc reader. Read public agendas included on a BoardDocs site. Args: site (str): The BoardDocs site you'd like to index, e.g. "ca/redwood" committee_id (str): The committee on the site you want to index """ def __init__( self, site: str, committee_id: str, ) -> None: """Initialize with parameters.""" self.site = site self.committee_id = committee_id self.base_url = "https://go.boarddocs.com/" + site + "/Board.nsf" # set up the headers required for the server to answer self.headers = { "accept": "application/json, text/javascript, */*; q=0.01", "accept-language": "en-US,en;q=0.9", "content-type": "application/x-www-form-urlencoded; charset=UTF-8", "sec-ch-ua": ( '"Google Chrome";v="113", "Chromium";v="113", "Not-A.Brand";v="24"' ), "sec-ch-ua-mobile": "?0", "sec-ch-ua-platform": '"macOS"', "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-origin", "x-requested-with": "XMLHttpRequest", } super().__init__() def get_meeting_list(self) -> List[dict]: """ Returns a list of meetings for the committee. Args: None Returns: List[dict]: A list of meetings, each with a meetingID, date, and unid """ meeting_list_url = self.base_url + "/BD-GetMeetingsList?open" data = "current_committee_id=" + self.committee_id response = requests.post(meeting_list_url, headers=self.headers, data=data) meetingsData = json.loads(response.text) return [ { "meetingID": meeting.get("unique", None), "date": meeting.get("numberdate", None), "unid": meeting.get("unid", None), } for meeting in meetingsData ] def process_meeting( self, meeting_id: str, index_pdfs: bool = True ) -> List[Document]: """ Returns documents from the given meeting. """ agenda_url = self.base_url + "/PRINT-AgendaDetailed" # set the meetingID & committee data = "id=" + meeting_id + "&" + "current_committee_id=" + self.committee_id # POST the request! response = requests.post(agenda_url, headers=self.headers, data=data) # parse the returned HTML soup = BeautifulSoup(response.content, "html.parser") agenda_date = soup.find("div", {"class": "print-meeting-date"}).string agenda_title = soup.find("div", {"class": "print-meeting-name"}).string [fd.a.get("href") for fd in soup.find_all("div", {"class": "public-file"})] agenda_data = html2text.html2text(response.text) # TODO: index the linked PDFs in agenda_files! docs = [] agenda_doc = Document( text=agenda_data, doc_id=meeting_id, extra_info={ "committee": self.committee_id, "title": agenda_title, "date": agenda_date, "url": agenda_url, }, ) docs.append(agenda_doc) return docs def load_data( self, meeting_ids: Optional[List[str]] = None, **load_kwargs: Any ) -> List[Document]: """ Load all meetings of the committee. Args: meeting_ids (List[str]): A list of meeting IDs to load. If None, load all meetings. """ # if a list of meetings wasn't provided, enumerate them all if not meeting_ids: meeting_ids = [ meeting.get("meetingID") for meeting in self.get_meeting_list() ] # process all relevant meetings & return the documents docs = [] for meeting_id in meeting_ids: docs.extend(self.process_meeting(meeting_id)) return docs
"""Reader that pulls in a BoardDocs site.""" import json from typing import Any, List, Optional import html2text import requests from bs4 import BeautifulSoup from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class BoardDocsReader(BaseReader): """BoardDocs doc reader. Read public agendas included on a BoardDocs site. Args: site (str): The BoardDocs site you'd like to index, e.g. "ca/redwood" committee_id (str): The committee on the site you want to index """ def __init__( self, site: str, committee_id: str, ) -> None: """Initialize with parameters.""" self.site = site self.committee_id = committee_id self.base_url = "https://go.boarddocs.com/" + site + "/Board.nsf" # set up the headers required for the server to answer self.headers = { "accept": "application/json, text/javascript, */*; q=0.01", "accept-language": "en-US,en;q=0.9", "content-type": "application/x-www-form-urlencoded; charset=UTF-8", "sec-ch-ua": ( '"Google Chrome";v="113", "Chromium";v="113", "Not-A.Brand";v="24"' ), "sec-ch-ua-mobile": "?0", "sec-ch-ua-platform": '"macOS"', "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-origin", "x-requested-with": "XMLHttpRequest", } super().__init__() def get_meeting_list(self) -> List[dict]: """ Returns a list of meetings for the committee. Args: None Returns: List[dict]: A list of meetings, each with a meetingID, date, and unid """ meeting_list_url = self.base_url + "/BD-GetMeetingsList?open" data = "current_committee_id=" + self.committee_id response = requests.post(meeting_list_url, headers=self.headers, data=data) meetingsData = json.loads(response.text) return [ { "meetingID": meeting.get("unique", None), "date": meeting.get("numberdate", None), "unid": meeting.get("unid", None), } for meeting in meetingsData ] def process_meeting( self, meeting_id: str, index_pdfs: bool = True ) -> List[Document]: """ Returns documents from the given meeting. """ agenda_url = self.base_url + "/PRINT-AgendaDetailed" # set the meetingID & committee data = "id=" + meeting_id + "&" + "current_committee_id=" + self.committee_id # POST the request! response = requests.post(agenda_url, headers=self.headers, data=data) # parse the returned HTML soup = BeautifulSoup(response.content, "html.parser") agenda_date = soup.find("div", {"class": "print-meeting-date"}).string agenda_title = soup.find("div", {"class": "print-meeting-name"}).string [fd.a.get("href") for fd in soup.find_all("div", {"class": "public-file"})] agenda_data = html2text.html2text(response.text) # TODO: index the linked PDFs in agenda_files! docs = [] agenda_doc = Document( text=agenda_data, doc_id=meeting_id, extra_info={ "committee": self.committee_id, "title": agenda_title, "date": agenda_date, "url": agenda_url, }, ) docs.append(agenda_doc) return docs def load_data( self, meeting_ids: Optional[List[str]] = None, **load_kwargs: Any ) -> List[Document]: """Load all meetings of the committee. Args: meeting_ids (List[str]): A list of meeting IDs to load. If None, load all meetings. """ # if a list of meetings wasn't provided, enumerate them all if not meeting_ids: meeting_ids = [ meeting.get("meetingID") for meeting in self.get_meeting_list() ] # process all relevant meetings & return the documents docs = [] for meeting_id in meeting_ids: docs.extend(self.process_meeting(meeting_id)) return docs
import numpy as np from absl.testing import parameterized from tensorflow import data as tf_data from keras.src import backend from keras.src import layers from keras.src import testing class RandomRotationTest(testing.TestCase): @parameterized.named_parameters( ("random_rotate_neg4", -0.4), ("random_rotate_neg2", -0.2), ("random_rotate_4", 0.4), ("random_rotate_2", 0.2), ("random_rotate_tuple", (-0.2, 0.4)), ) def test_random_rotation_shapes(self, factor): self.run_layer_test( layers.RandomRotation, init_kwargs={ "factor": factor, }, input_shape=(2, 3, 4), expected_output_shape=(2, 3, 4), supports_masking=False, run_training_check=False, ) def test_random_rotation_correctness(self): if backend.config.image_data_format() == "channels_last": input_shape = (1, 5, 5, 1) else: input_shape = (1, 1, 5, 5) input_image = np.reshape(np.arange(0, 25), input_shape) layer = layers.RandomRotation(factor=(0.5, 0.5)) actual_output = layer(input_image) expected_output = np.asarray( [ [24, 23, 22, 21, 20], [19, 18, 17, 16, 15], [14, 13, 12, 11, 10], [9, 8, 7, 6, 5], [4, 3, 2, 1, 0], ] ).reshape(input_shape) self.assertAllClose( backend.convert_to_tensor(expected_output), actual_output, atol=1e-5 ) def test_training_false(self): input_image = np.reshape(np.arange(0, 25), (1, 5, 5, 1)) layer = layers.RandomRotation(factor=(0.5, 0.5)) actual_output = layer(input_image, training=False) self.assertAllClose(actual_output, input_image) def test_tf_data_compatibility(self): if backend.config.image_data_format() == "channels_last": input_shape = (1, 5, 5, 1) else: input_shape = (1, 1, 5, 5) input_image = np.reshape(np.arange(0, 25), input_shape) layer = layers.RandomRotation(factor=(0.5, 0.5)) ds = tf_data.Dataset.from_tensor_slices(input_image).map(layer) expected_output = np.asarray( [ [24, 23, 22, 21, 20], [19, 18, 17, 16, 15], [14, 13, 12, 11, 10], [9, 8, 7, 6, 5], [4, 3, 2, 1, 0], ] ).reshape(input_shape[1:]) output = next(iter(ds)).numpy() self.assertAllClose(expected_output, output)
import numpy as np from absl.testing import parameterized from tensorflow import data as tf_data from keras.src import backend from keras.src import layers from keras.src import testing class RandomRotationTest(testing.TestCase): @parameterized.named_parameters( ("random_rotate_neg4", -0.4), ("random_rotate_neg2", -0.2), ("random_rotate_4", 0.4), ("random_rotate_2", 0.2), ("random_rotate_tuple", (-0.2, 0.4)), ) def test_random_rotation_shapes(self, factor): self.run_layer_test( layers.RandomRotation, init_kwargs={ "factor": factor, }, input_shape=(2, 3, 4), expected_output_shape=(2, 3, 4), supports_masking=False, run_training_check=False, ) def test_random_rotation_correctness(self): if backend.config.image_data_format() == "channels_last": input_shape = (1, 5, 5, 1) else: input_shape = (1, 1, 5, 5) input_image = np.reshape(np.arange(0, 25), input_shape) layer = layers.RandomRotation(factor=(0.5, 0.5)) actual_output = layer(input_image) expected_output = np.asarray( [ [24, 23, 22, 21, 20], [19, 18, 17, 16, 15], [14, 13, 12, 11, 10], [9, 8, 7, 6, 5], [4, 3, 2, 1, 0], ] ).reshape(input_shape) self.assertAllClose( backend.convert_to_tensor(expected_output), actual_output, atol=1e-5 ) def test_training_false(self): input_image = np.reshape(np.arange(0, 25), (1, 5, 5, 1)) layer = layers.RandomRotation(factor=(0.5, 0.5)) actual_output = layer(input_image, training=False) self.assertAllClose(actual_output, input_image) def test_tf_data_compatibility(self): if backend.config.image_data_format() == "channels_last": input_shape = (1, 5, 5, 1) else: input_shape = (1, 1, 5, 5) input_image = np.reshape(np.arange(0, 25), input_shape) layer = layers.RandomRotation(factor=(0.5, 0.5)) ds = tf_data.Dataset.from_tensor_slices(input_image).map(layer) expected_output = np.asarray( [ [24, 23, 22, 21, 20], [19, 18, 17, 16, 15], [14, 13, 12, 11, 10], [9, 8, 7, 6, 5], [4, 3, 2, 1, 0], ] ).reshape(input_shape[1:]) for output in ds.take(1): output = output.numpy() self.assertAllClose(expected_output, output)
# Copyright (c) OpenMMLab. All rights reserved. from .amp_optimizer_wrapper import AmpOptimWrapper from .apex_optimizer_wrapper import ApexOptimWrapper from .base import BaseOptimWrapper from .builder import (OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS, build_optim_wrapper) from .default_constructor import DefaultOptimWrapperConstructor from .optimizer_wrapper import OptimWrapper from .optimizer_wrapper_dict import OptimWrapperDict from .zero_optimizer import ZeroRedundancyOptimizer __all__ = [ 'OPTIM_WRAPPER_CONSTRUCTORS', 'OPTIMIZERS', 'DefaultOptimWrapperConstructor', 'build_optim_wrapper', 'OptimWrapper', 'AmpOptimWrapper', 'ApexOptimWrapper', 'OptimWrapperDict', 'ZeroRedundancyOptimizer', 'BaseOptimWrapper' ]
# Copyright (c) OpenMMLab. All rights reserved. from ._deepspeed import DeepSpeedOptimWrapper from .amp_optimizer_wrapper import AmpOptimWrapper from .apex_optimizer_wrapper import ApexOptimWrapper from .base import BaseOptimWrapper from .builder import (OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS, build_optim_wrapper) from .default_constructor import DefaultOptimWrapperConstructor from .optimizer_wrapper import OptimWrapper from .optimizer_wrapper_dict import OptimWrapperDict from .zero_optimizer import ZeroRedundancyOptimizer __all__ = [ 'OPTIM_WRAPPER_CONSTRUCTORS', 'OPTIMIZERS', 'DefaultOptimWrapperConstructor', 'build_optim_wrapper', 'OptimWrapper', 'AmpOptimWrapper', 'ApexOptimWrapper', 'OptimWrapperDict', 'ZeroRedundancyOptimizer', 'BaseOptimWrapper', 'DeepSpeedOptimWrapper' ]
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import List import numpy as np import pytest from jina import Flow, Document, DocumentArray from ...image_tf_encoder import ImageTFEncoder input_dim = 336 target_output_dim = 1280 @pytest.mark.parametrize('arr_in', [ (np.ones((input_dim, input_dim, 3), dtype=np.float32)), ]) def test_tf_no_batch(arr_in: np.ndarray): flow = Flow().add(uses=ImageTFEncoder) with flow: results = flow.post( on='/test', inputs=DocumentArray([Document(blob=arr_in)]), return_results=True ) assert len(results[0].docs) == 1 assert results[0].docs[0].embedding.shape == (target_output_dim,) def test_tf_batch(): flow = Flow().add(uses=ImageTFEncoder) with flow: results = flow.post( on='/test', inputs=(Document(blob=np.ones((input_dim, input_dim, 3), dtype=np.float32)) for _ in range(25)), return_results=True ) assert len(results[0].docs.get_attributes('embedding')) == 25 assert results[0].docs.get_attributes('embedding')[0].shape == (target_output_dim,) @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_paths'], [ (pytest.lazy_fixture('docs_with_blobs'), [[['r'], 10], [['c'], 0], [['cc'], 0]], ['r']), (pytest.lazy_fixture('docs_with_chunk_blobs'), [[['r'], 0], [['c'], 10], [['cc'], 0]], ['c']), (pytest.lazy_fixture('docs_with_chunk_chunk_blobs'), [[['r'], 0], [['c'], 0], [['cc'], 10]], ['cc']) ] ) def test_traversal_path(docs: DocumentArray, docs_per_path: List[List[str]], traversal_paths: List[str]): flow = Flow().add(uses=ImageTFEncoder) with flow: results = flow.post( on='/test', inputs=docs, parameters={'traversal_paths': traversal_paths}, return_results=True ) for path, count in docs_per_path: assert len(DocumentArray(results[0].docs).traverse_flat(path).get_attributes('embedding')) == count
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import List import numpy as np import pytest from jina import Flow, Document, DocumentArray from jinahub.encoder.image_tf_encoder import ImageTFEncoder input_dim = 336 target_output_dim = 1280 @pytest.mark.parametrize('arr_in', [ (np.ones((input_dim, input_dim, 3), dtype=np.float32)), ]) def test_tf_no_batch(arr_in: np.ndarray): flow = Flow().add(uses=ImageTFEncoder) with flow: results = flow.post( on='/test', inputs=DocumentArray([Document(blob=arr_in)]), return_results=True ) assert len(results[0].docs) == 1 assert results[0].docs[0].embedding.shape == (target_output_dim,) def test_tf_batch(): flow = Flow().add(uses=ImageTFEncoder) with flow: results = flow.post( on='/test', inputs=(Document(blob=np.ones((input_dim, input_dim, 3), dtype=np.float32)) for _ in range(25)), return_results=True ) assert len(results[0].docs.get_attributes('embedding')) == 25 assert results[0].docs.get_attributes('embedding')[0].shape == (target_output_dim,) @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_paths'], [ (pytest.lazy_fixture('docs_with_blobs'), [[['r'], 10], [['c'], 0], [['cc'], 0]], ['r']), (pytest.lazy_fixture('docs_with_chunk_blobs'), [[['r'], 0], [['c'], 10], [['cc'], 0]], ['c']), (pytest.lazy_fixture('docs_with_chunk_chunk_blobs'), [[['r'], 0], [['c'], 0], [['cc'], 10]], ['cc']) ] ) def test_traversal_path(docs: DocumentArray, docs_per_path: List[List[str]], traversal_paths: List[str]): flow = Flow().add(uses=ImageTFEncoder) with flow: results = flow.post( on='/test', inputs=docs, parameters={'traversal_paths': traversal_paths}, return_results=True ) for path, count in docs_per_path: assert len(DocumentArray(results[0].docs).traverse_flat(path).get_attributes('embedding')) == count
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.torch_tensor import TorchTensor, metaTorchAndNode from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoTorchTensor') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_torch_tensor') class VideoTorchTensor(TorchTensor, VideoTensorMixin, metaclass=metaTorchAndNode): """ Subclass of TorchTensor, to represent a video tensor. Adds video-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.typing import VideoTorchTensor, VideoUrl class MyVideoDoc(BaseDocument): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoTorchTensor] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=torch.randn(size=(100, 224, 224, 3)), ) doc_1.video_tensor.save(file_path='file_1.wav') doc_2 = MyVideoDoc( title='my_second_video_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.video_tensor = parse_obj_as(VideoTorchTensor, doc_2.url.load()) doc_2.video_tensor.save(file_path='file_2.wav') """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.torch_tensor import TorchTensor, metaTorchAndNode from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoTorchTensor') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_torch_tensor') class VideoTorchTensor(TorchTensor, VideoTensorMixin, metaclass=metaTorchAndNode): """ Subclass of TorchTensor, to represent a video tensor. Adds video-specific features to the tensor. EXAMPLE USAGE """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
_base_ = './rpn_r50_fpn_1x_coco.py' # use caffe img_norm model = dict( data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
_base_ = './rpn_r50_fpn_1x_coco.py' # use caffe img_norm preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) model = dict( preprocess_cfg=preprocess_cfg, backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
from abc import abstractmethod from typing import Iterator, Iterable, MutableSequence from docarray import Document, DocumentArray class BaseSequenceLikeMixin(MutableSequence[Document]): """Implement sequence-like methods""" def _update_subindices_append_extend(self, value): if getattr(self, '_subindices', None): for selector, da in self._subindices.items(): docs_selector = DocumentArray(value)[selector] if len(docs_selector) > 0: da.extend(docs_selector) def insert(self, index: int, value: 'Document'): """Insert `doc` at `index`. :param index: Position of the insertion. :param value: The doc needs to be inserted. """ self._set_doc_by_id(value.id, value) self._offset2ids.insert(index, value.id) def append(self, value: 'Document', **kwargs): """Append `doc` to the end of the array. :param value: The doc needs to be appended. """ self._append(value, **kwargs) self._update_subindices_append_extend(value) def _append(self, value, **kwargs): self._set_doc_by_id(value.id, value) self._offset2ids.append(value.id) @abstractmethod def __eq__(self, other): ... def __len__(self): return len(self._offset2ids) def __iter__(self) -> Iterator['Document']: for _id in self._offset2ids: yield self._get_doc_by_id(_id) @abstractmethod def __contains__(self, other): ... def clear(self): """Clear the data of :class:`DocumentArray`""" self._del_all_docs() def __bool__(self): """To simulate ```l = []; if l: ...``` :return: returns true if the length of the array is larger than 0 """ return len(self) > 0 def extend(self, values: Iterable['Document'], **kwargs) -> None: self._extend(values, **kwargs) self._update_subindices_append_extend(values) def _extend(self, values, **kwargs): for value in values: self._append(value, **kwargs)
from abc import abstractmethod from typing import Iterator, Iterable, MutableSequence from docarray import Document class BaseSequenceLikeMixin(MutableSequence[Document]): """Implement sequence-like methods""" def insert(self, index: int, value: 'Document'): """Insert `doc` at `index`. :param index: Position of the insertion. :param value: The doc needs to be inserted. """ self._set_doc_by_id(value.id, value) self._offset2ids.insert(index, value.id) def append(self, value: 'Document'): """Append `doc` to the end of the array. :param value: The doc needs to be appended. """ self._set_doc_by_id(value.id, value) self._offset2ids.append(value.id) @abstractmethod def __eq__(self, other): ... def __len__(self): return len(self._offset2ids) def __iter__(self) -> Iterator['Document']: for _id in self._offset2ids: yield self._get_doc_by_id(_id) @abstractmethod def __contains__(self, other): ... def clear(self): """Clear the data of :class:`DocumentArray`""" self._del_all_docs() def __bool__(self): """To simulate ```l = []; if l: ...``` :return: returns true if the length of the array is larger than 0 """ return len(self) > 0 def extend(self, values: Iterable['Document'], **kwargs) -> None: for value in values: self.append(value)
# dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'data_sample']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'data_sample']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) evaluation = dict(interval=1, metric='bbox')
# dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) evaluation = dict(interval=1, metric='bbox')