input
stringlengths
33
5k
output
stringlengths
32
5k
import os import urllib import numpy as np import PIL import pytest from PIL import Image from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_doc.io.json import orjson_dumps from docarray.typing import ImageUrl CUR_DIR = os.path.dirname(os.path.abspath(__file__)) PATH_TO_IMAGE_DATA = os.path.join(CUR_DIR, '..', '..', '..', 'toydata', 'image-data') IMAGE_PATHS = { 'png': os.path.join(PATH_TO_IMAGE_DATA, 'so_good.png'), 'jpg': os.path.join(PATH_TO_IMAGE_DATA, '05984.jpg'), 'jpeg': os.path.join(PATH_TO_IMAGE_DATA, '05984-2.jpeg'), } REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image_url(): uri = parse_obj_as(ImageUrl, REMOTE_JPG) tensor = uri.load() assert isinstance(tensor, np.ndarray) @pytest.mark.proto def test_proto_image_url(): uri = parse_obj_as(ImageUrl, REMOTE_JPG) uri._to_node_protobuf() def test_json_schema(): schema_json_of(ImageUrl) def test_dump_json(): url = parse_obj_as(ImageUrl, 'http://jina.ai/img.png') orjson_dumps(url) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) def test_load(image_format, path_to_img): url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load() assert isinstance(tensor, np.ndarray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) def test_load_pil(image_format, path_to_img): url = parse_obj_as(ImageUrl, path_to_img) img = url.load_pil() assert isinstance(img, PIL.Image.Image) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) @pytest.mark.parametrize('width,height', [(224, None), (None, 224), (224, 224)]) def test_load_width_height(image_format, path_to_img, width, height): url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load(width=width, height=height) assert isinstance(tensor, np.ndarray) shape = tensor.shape if width: assert shape[1] == width if height: assert shape[0] == height @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) @pytest.mark.parametrize( 'axis_layout', [ ('H', 'W', 'C'), ('H', 'C', 'W'), ('C', 'H', 'W'), ('C', 'W', 'H'), ('W', 'C', 'H'), ('W', 'H', 'C'), ], ) def test_load_channel_axis(image_format, path_to_img, axis_layout): sizes = {'H': 100, 'W': 200, 'C': 3} url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load(axis_layout=axis_layout, height=sizes['H'], width=sizes['W']) assert isinstance(tensor, np.ndarray) shape = tensor.shape for axis, axis_name in enumerate(axis_layout): assert shape[axis] == sizes[axis_name] @pytest.mark.internet def test_load_timeout(): url = parse_obj_as(ImageUrl, REMOTE_JPG) with pytest.raises(urllib.error.URLError): _ = url.load(timeout=0.001) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('jpg', REMOTE_JPG), ], ) def test_load_to_bytes(image_format, path_to_img): url = parse_obj_as(ImageUrl, path_to_img) _bytes = url.load_bytes() assert isinstance(_bytes, bytes) img = Image.frombytes(mode='1', size=(224, 224), data=_bytes) assert isinstance(img, Image.Image) @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('jpg', REMOTE_JPG), ('illegal', 'illegal'), ('illegal', 'https://www.google.com'), ('illegal', 'my/local/text/file.txt'), ], ) def test_validation(image_format, path_to_img): if image_format == 'illegal': with pytest.raises(ValueError): parse_obj_as(ImageUrl, path_to_img) else: url = parse_obj_as(ImageUrl, path_to_img) assert isinstance(url, ImageUrl) assert isinstance(url, str)
import os import urllib import numpy as np import pytest from PIL import Image from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_doc.io.json import orjson_dumps from docarray.typing import ImageUrl CUR_DIR = os.path.dirname(os.path.abspath(__file__)) PATH_TO_IMAGE_DATA = os.path.join(CUR_DIR, '..', '..', '..', 'toydata', 'image-data') IMAGE_PATHS = { 'png': os.path.join(PATH_TO_IMAGE_DATA, 'so_good.png'), 'jpg': os.path.join(PATH_TO_IMAGE_DATA, '05984.jpg'), 'jpeg': os.path.join(PATH_TO_IMAGE_DATA, '05984-2.jpeg'), } REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image_url(): uri = parse_obj_as(ImageUrl, REMOTE_JPG) tensor = uri.load() assert isinstance(tensor, np.ndarray) @pytest.mark.proto def test_proto_image_url(): uri = parse_obj_as(ImageUrl, REMOTE_JPG) uri._to_node_protobuf() def test_json_schema(): schema_json_of(ImageUrl) def test_dump_json(): url = parse_obj_as(ImageUrl, 'http://jina.ai/img.png') orjson_dumps(url) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) def test_load(image_format, path_to_img): url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load() assert isinstance(tensor, np.ndarray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) @pytest.mark.parametrize('width,height', [(224, None), (None, 224), (224, 224)]) def test_load_width_height(image_format, path_to_img, width, height): url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load(width=width, height=height) assert isinstance(tensor, np.ndarray) shape = tensor.shape if width: assert shape[1] == width if height: assert shape[0] == height @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) @pytest.mark.parametrize( 'axis_layout', [ ('H', 'W', 'C'), ('H', 'C', 'W'), ('C', 'H', 'W'), ('C', 'W', 'H'), ('W', 'C', 'H'), ('W', 'H', 'C'), ], ) def test_load_channel_axis(image_format, path_to_img, axis_layout): sizes = {'H': 100, 'W': 200, 'C': 3} url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load(axis_layout=axis_layout, height=sizes['H'], width=sizes['W']) assert isinstance(tensor, np.ndarray) shape = tensor.shape for axis, axis_name in enumerate(axis_layout): assert shape[axis] == sizes[axis_name] @pytest.mark.internet def test_load_timeout(): url = parse_obj_as(ImageUrl, REMOTE_JPG) with pytest.raises(urllib.error.URLError): _ = url.load(timeout=0.001) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('jpg', REMOTE_JPG), ], ) def test_load_to_bytes(image_format, path_to_img): url = parse_obj_as(ImageUrl, path_to_img) _bytes = url.load_bytes() assert isinstance(_bytes, bytes) img = Image.frombytes(mode='1', size=(224, 224), data=_bytes) assert isinstance(img, Image.Image) @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('jpg', REMOTE_JPG), ('illegal', 'illegal'), ('illegal', 'https://www.google.com'), ('illegal', 'my/local/text/file.txt'), ], ) def test_validation(image_format, path_to_img): if image_format == 'illegal': with pytest.raises(ValueError): parse_obj_as(ImageUrl, path_to_img) else: url = parse_obj_as(ImageUrl, path_to_img) assert isinstance(url, ImageUrl) assert isinstance(url, str)
import warnings from abc import ABC from typing import Any, Optional from langchain_core._api import deprecated from langchain_core.chat_history import ( BaseChatMessageHistory, InMemoryChatMessageHistory, ) from langchain_core.memory import BaseMemory from langchain_core.messages import AIMessage, HumanMessage from pydantic import Field from langchain.memory.utils import get_prompt_input_key @deprecated( since="0.3.1", removal="1.0.0", message=( "Please see the migration guide at: " "https://python.langchain.com/docs/versions/migrating_memory/" ), ) class BaseChatMemory(BaseMemory, ABC): """Abstract base class for chat memory. **ATTENTION** This abstraction was created prior to when chat models had native tool calling capabilities. It does **NOT** support native tool calling capabilities for chat models and will fail SILENTLY if used with a chat model that has native tool calling. DO NOT USE THIS ABSTRACTION FOR NEW CODE. """ chat_memory: BaseChatMessageHistory = Field( default_factory=InMemoryChatMessageHistory, ) output_key: Optional[str] = None input_key: Optional[str] = None return_messages: bool = False def _get_input_output( self, inputs: dict[str, Any], outputs: dict[str, str], ) -> tuple[str, str]: if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key if self.output_key is None: if len(outputs) == 1: output_key = next(iter(outputs.keys())) elif "output" in outputs: output_key = "output" warnings.warn( f"'{self.__class__.__name__}' got multiple output keys:" f" {outputs.keys()}. The default 'output' key is being used." f" If this is not desired, please manually set 'output_key'.", stacklevel=2, ) else: msg = ( f"Got multiple output keys: {outputs.keys()}, cannot " f"determine which to store in memory. Please set the " f"'output_key' explicitly." ) raise ValueError(msg) else: output_key = self.output_key return inputs[prompt_input_key], outputs[output_key] def save_context(self, inputs: dict[str, Any], outputs: dict[str, str]) -> None: """Save context from this conversation to buffer.""" input_str, output_str = self._get_input_output(inputs, outputs) self.chat_memory.add_messages( [ HumanMessage(content=input_str), AIMessage(content=output_str), ], ) async def asave_context( self, inputs: dict[str, Any], outputs: dict[str, str], ) -> None: """Save context from this conversation to buffer.""" input_str, output_str = self._get_input_output(inputs, outputs) await self.chat_memory.aadd_messages( [ HumanMessage(content=input_str), AIMessage(content=output_str), ], ) def clear(self) -> None: """Clear memory contents.""" self.chat_memory.clear() async def aclear(self) -> None: """Clear memory contents.""" await self.chat_memory.aclear()
import warnings from abc import ABC from typing import Any, Optional from langchain_core._api import deprecated from langchain_core.chat_history import ( BaseChatMessageHistory, InMemoryChatMessageHistory, ) from langchain_core.memory import BaseMemory from langchain_core.messages import AIMessage, HumanMessage from pydantic import Field from langchain.memory.utils import get_prompt_input_key @deprecated( since="0.3.1", removal="1.0.0", message=( "Please see the migration guide at: " "https://python.langchain.com/docs/versions/migrating_memory/" ), ) class BaseChatMemory(BaseMemory, ABC): """Abstract base class for chat memory. **ATTENTION** This abstraction was created prior to when chat models had native tool calling capabilities. It does **NOT** support native tool calling capabilities for chat models and will fail SILENTLY if used with a chat model that has native tool calling. DO NOT USE THIS ABSTRACTION FOR NEW CODE. """ chat_memory: BaseChatMessageHistory = Field( default_factory=InMemoryChatMessageHistory, ) output_key: Optional[str] = None input_key: Optional[str] = None return_messages: bool = False def _get_input_output( self, inputs: dict[str, Any], outputs: dict[str, str], ) -> tuple[str, str]: if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key if self.output_key is None: if len(outputs) == 1: output_key = next(iter(outputs.keys())) elif "output" in outputs: output_key = "output" warnings.warn( f"'{self.__class__.__name__}' got multiple output keys:" f" {outputs.keys()}. The default 'output' key is being used." f" If this is not desired, please manually set 'output_key'.", stacklevel=3, ) else: msg = ( f"Got multiple output keys: {outputs.keys()}, cannot " f"determine which to store in memory. Please set the " f"'output_key' explicitly." ) raise ValueError(msg) else: output_key = self.output_key return inputs[prompt_input_key], outputs[output_key] def save_context(self, inputs: dict[str, Any], outputs: dict[str, str]) -> None: """Save context from this conversation to buffer.""" input_str, output_str = self._get_input_output(inputs, outputs) self.chat_memory.add_messages( [ HumanMessage(content=input_str), AIMessage(content=output_str), ], ) async def asave_context( self, inputs: dict[str, Any], outputs: dict[str, str], ) -> None: """Save context from this conversation to buffer.""" input_str, output_str = self._get_input_output(inputs, outputs) await self.chat_memory.aadd_messages( [ HumanMessage(content=input_str), AIMessage(content=output_str), ], ) def clear(self) -> None: """Clear memory contents.""" self.chat_memory.clear() async def aclear(self) -> None: """Clear memory contents.""" await self.chat_memory.aclear()
from typing import Any, Optional, Type, TypeVar, Union from docarray.base_document import BaseDocument from docarray.typing import TextUrl from docarray.typing.tensor.embedding import AnyEmbedding T = TypeVar('T', bound='TextDoc') class TextDoc(BaseDocument): """ Document for handling text. It can contain a TextUrl (`TextDoc.url`), a str (`TextDoc.text`), and an AnyEmbedding (`TextDoc.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import TextDoc # use it directly txt_doc = Text(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() model = MyEmbeddingModel() txt_doc.embedding = model(txt_doc.text) You can initialize directly from a string: .. code-block:: python from docarray.documents import TextDoc txt_doc = Text('hello world') You can extend this Document: .. code-block:: python from docarray.documents import TextDoc from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyText(Text): second_embedding: Optional[AnyEmbedding] txt_doc = MyText(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() model = MyEmbeddingModel() txt_doc.embedding = model(txt_doc.text) txt_doc.second_embedding = model(txt_doc.text) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import ImageDoc, TextDoc # compose it class MultiModalDoc(BaseDocument): image_doc: Image text_doc: Text mmdoc = MultiModalDoc( image_doc=Image(url="http://www.jina.ai/image.jpg"), text_doc=Text(text="hello world, how are you doing?"), ) mmdoc.text_doc.text = mmdoc.text_doc.url.load() # or mmdoc.text_doc.bytes = mmdoc.text_doc.url.load_bytes() This Document can be compared against another Document of the same type or a string. When compared against another object of the same type, the pydantic BaseModel equality check will apply which checks the equality of every attribute, including `id`. When compared against a str, it will check the equality of the `text` attribute against the given string. .. code-block:: python from docarray.documents import TextDoc doc = Text(text='This is the main text', url='exampleurl.com') doc2 = Text(text='This is the main text', url='exampleurl.com') doc == 'This is the main text' # True doc == doc2 # False, their ids are not equivalent """ text: Optional[str] = None url: Optional[TextUrl] = None embedding: Optional[AnyEmbedding] = None bytes: Optional[bytes] = None def __init__(self, text: Optional[str] = None, **kwargs): if 'text' not in kwargs: kwargs['text'] = text super().__init__(**kwargs) @classmethod def validate( cls: Type[T], value: Union[str, Any], ) -> T: if isinstance(value, str): value = cls(text=value) return super().validate(value) def __eq__(self, other: Any) -> bool: if isinstance(other, str): return self.text == other else: # BaseModel has a default equality return super().__eq__(other) def __contains__(self, item: str) -> bool: """ This method makes `Text` behave the same as an `str`. .. code-block:: python from docarray.documents import Text t = Text(text='this is my text document') assert 'text' in t assert 'docarray' not in t :param item: A string to be checked if is a substring of `text` attribute :return: A boolean determining the presence of `item` as a substring in `text` """ if self.text is not None: return self.text.__contains__(item) else: return False def _get_string_for_regex_filter(self): return self.text
from typing import Any, Optional, Type, TypeVar, Union from docarray.base_document import BaseDocument from docarray.typing import TextUrl from docarray.typing.tensor.embedding import AnyEmbedding T = TypeVar('T', bound='Text') class Text(BaseDocument): """ Document for handling text. It can contain a TextUrl (`Text.url`), a str (`Text.text`), and an AnyEmbedding (`Text.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Text # use it directly txt_doc = Text(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() model = MyEmbeddingModel() txt_doc.embedding = model(txt_doc.text) You can initialize directly from a string: .. code-block:: python from docarray.documents import Text txt_doc = Text('hello world') You can extend this Document: .. code-block:: python from docarray.documents import Text from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyText(Text): second_embedding: Optional[AnyEmbedding] txt_doc = MyText(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() model = MyEmbeddingModel() txt_doc.embedding = model(txt_doc.text) txt_doc.second_embedding = model(txt_doc.text) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Image, Text # compose it class MultiModalDoc(BaseDocument): image_doc: Image text_doc: Text mmdoc = MultiModalDoc( image_doc=Image(url="http://www.jina.ai/image.jpg"), text_doc=Text(text="hello world, how are you doing?"), ) mmdoc.text_doc.text = mmdoc.text_doc.url.load() # or mmdoc.text_doc.bytes = mmdoc.text_doc.url.load_bytes() This Document can be compared against another Document of the same type or a string. When compared against another object of the same type, the pydantic BaseModel equality check will apply which checks the equality of every attribute, including `id`. When compared against a str, it will check the equality of the `text` attribute against the given string. .. code-block:: python from docarray.documents import Text doc = Text(text='This is the main text', url='exampleurl.com') doc2 = Text(text='This is the main text', url='exampleurl.com') doc == 'This is the main text' # True doc == doc2 # False, their ids are not equivalent """ text: Optional[str] = None url: Optional[TextUrl] = None embedding: Optional[AnyEmbedding] = None bytes: Optional[bytes] = None def __init__(self, text: Optional[str] = None, **kwargs): if 'text' not in kwargs: kwargs['text'] = text super().__init__(**kwargs) @classmethod def validate( cls: Type[T], value: Union[str, Any], ) -> T: if isinstance(value, str): value = cls(text=value) return super().validate(value) def __eq__(self, other: Any) -> bool: if isinstance(other, str): return self.text == other else: # BaseModel has a default equality return super().__eq__(other) def __contains__(self, item: str) -> bool: """ This method makes `Text` behave the same as an `str`. .. code-block:: python from docarray.documents import Text t = Text(text='this is my text document') assert 'text' in t assert 'docarray' not in t :param item: A string to be checked if is a substring of `text` attribute :return: A boolean determining the presence of `item` as a substring in `text` """ if self.text is not None: return self.text.__contains__(item) else: return False def _get_string_for_regex_filter(self): return self.text
_base_ = '../htc/htc_x101-64x4d_fpn_16xb1-20e_coco.py' # learning policy max_epochs = 28 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[24, 27], gamma=0.1) ]
_base_ = '../htc/htc_x101_64x4d_fpn_16x1_20e_coco.py' # learning policy max_epochs = 28 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[24, 27], gamma=0.1) ]
_base_ = './cascade_mask_rcnn_r50_fpn_mstrain_3x_coco.py' preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], to_rgb=False, pad_size_divisor=32) model = dict( # ResNeXt-101-32x8d model trained with Caffe2 at FB, # so the mean and std need to be changed. preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=8, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnext101_32x8d')))
_base_ = './cascade_mask_rcnn_r50_fpn_mstrain_3x_coco.py' model = dict( backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=8, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnext101_32x8d'))) # ResNeXt-101-32x8d model trained with Caffe2 at FB, # so the mean and std need to be changed. img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], to_rgb=False) # In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)], # multiscale_mode='range' train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='Resize', img_scale=[(1333, 640), (1333, 800)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(dataset=dict(pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
from pathlib import Path import pytest from langchain_community.document_loaders import CSVLoader, DirectoryLoader, TextLoader from langchain_community.document_loaders.helpers import detect_file_encodings @pytest.mark.requires("chardet") def test_loader_detect_encoding_text() -> None: """Test text loader.""" path = Path(__file__).parent.parent / "examples" files = path.glob("**/*.txt") loader = DirectoryLoader(str(path), glob="**/*.txt", loader_cls=TextLoader) loader_detect_encoding = DirectoryLoader( str(path), glob="**/*.txt", loader_kwargs={"autodetect_encoding": True}, loader_cls=TextLoader, ) with pytest.raises((UnicodeDecodeError, RuntimeError)): loader.load() docs = loader_detect_encoding.load() assert len(docs) == len(list(files)) @pytest.mark.requires("chardet") def test_loader_detect_encoding_csv() -> None: """Test csv loader.""" path = Path(__file__).parent.parent / "examples" files = path.glob("**/*.csv") # Count the number of lines. row_count = 0 for file in files: encodings = detect_file_encodings(str(file)) for encoding in encodings: try: row_count += sum(1 for line in open(file, encoding=encoding.encoding)) break except UnicodeDecodeError: continue # CSVLoader uses DictReader, and one line per file is a header, # so subtract the number of files. row_count -= 1 loader = DirectoryLoader( str(path), glob="**/*.csv", loader_cls=CSVLoader, ) loader_detect_encoding = DirectoryLoader( str(path), glob="**/*.csv", loader_kwargs={"autodetect_encoding": True}, loader_cls=CSVLoader, ) with pytest.raises((UnicodeDecodeError, RuntimeError)): loader.load() docs = loader_detect_encoding.load() assert len(docs) == row_count @pytest.mark.skip(reason="slow test") @pytest.mark.requires("chardet") def test_loader_detect_encoding_timeout(tmpdir: str) -> None: path = Path(tmpdir) file_path = str(path / "blob.txt") # 2mb binary blob with open(file_path, "wb") as f: f.write(b"\x00" * 2_000_000) with pytest.raises(TimeoutError): detect_file_encodings(file_path, timeout=1) detect_file_encodings(file_path, timeout=10)
from pathlib import Path import pytest from langchain_community.document_loaders import CSVLoader, DirectoryLoader, TextLoader from langchain_community.document_loaders.helpers import detect_file_encodings @pytest.mark.requires("chardet") def test_loader_detect_encoding_text() -> None: """Test text loader.""" path = Path(__file__).parent.parent / "examples" files = path.glob("**/*.txt") loader = DirectoryLoader(str(path), glob="**/*.txt", loader_cls=TextLoader) loader_detect_encoding = DirectoryLoader( str(path), glob="**/*.txt", loader_kwargs={"autodetect_encoding": True}, loader_cls=TextLoader, # type: ignore ) with pytest.raises((UnicodeDecodeError, RuntimeError)): loader.load() docs = loader_detect_encoding.load() assert len(docs) == len(list(files)) @pytest.mark.requires("chardet") def test_loader_detect_encoding_csv() -> None: """Test csv loader.""" path = Path(__file__).parent.parent / "examples" files = path.glob("**/*.csv") # Count the number of lines. row_count = 0 for file in files: encodings = detect_file_encodings(str(file)) for encoding in encodings: try: row_count += sum(1 for line in open(file, encoding=encoding.encoding)) break except UnicodeDecodeError: continue # CSVLoader uses DictReader, and one line per file is a header, # so subtract the number of files. row_count -= 1 loader = DirectoryLoader( str(path), glob="**/*.csv", loader_cls=CSVLoader, # type: ignore ) loader_detect_encoding = DirectoryLoader( str(path), glob="**/*.csv", loader_kwargs={"autodetect_encoding": True}, loader_cls=CSVLoader, # type: ignore ) with pytest.raises((UnicodeDecodeError, RuntimeError)): loader.load() docs = loader_detect_encoding.load() assert len(docs) == row_count @pytest.mark.skip(reason="slow test") @pytest.mark.requires("chardet") def test_loader_detect_encoding_timeout(tmpdir: str) -> None: path = Path(tmpdir) file_path = str(path / "blob.txt") # 2mb binary blob with open(file_path, "wb") as f: f.write(b"\x00" * 2_000_000) with pytest.raises(TimeoutError): detect_file_encodings(file_path, timeout=1) detect_file_encodings(file_path, timeout=10)
# dataset settings dataset_type = 'CocoPanopticDataset' data_root = 'data/coco/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadPanopticAnnotations', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadPanopticAnnotations', backend_args=backend_args), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/panoptic_train2017.json', data_prefix=dict( img='train2017/', seg='annotations/panoptic_train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/panoptic_val2017.json', data_prefix=dict(img='val2017/', seg='annotations/panoptic_val2017/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoPanopticMetric', ann_file=data_root + 'annotations/panoptic_val2017.json', seg_prefix=data_root + 'annotations/panoptic_val2017/', backend_args=backend_args) test_evaluator = val_evaluator # inference on test dataset and # format the output results for submission. # test_dataloader = dict( # batch_size=1, # num_workers=1, # persistent_workers=True, # drop_last=False, # sampler=dict(type='DefaultSampler', shuffle=False), # dataset=dict( # type=dataset_type, # data_root=data_root, # ann_file='annotations/panoptic_image_info_test-dev2017.json', # data_prefix=dict(img='test2017/'), # test_mode=True, # pipeline=test_pipeline)) # test_evaluator = dict( # type='CocoPanopticMetric', # format_only=True, # ann_file=data_root + 'annotations/panoptic_image_info_test-dev2017.json', # outfile_prefix='./work_dirs/coco_panoptic/test')
# dataset settings dataset_type = 'CocoPanopticDataset' # data_root = 'data/coco/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadPanopticAnnotations', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadPanopticAnnotations', backend_args=backend_args), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/panoptic_train2017.json', data_prefix=dict( img='train2017/', seg='annotations/panoptic_train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/panoptic_val2017.json', data_prefix=dict(img='val2017/', seg='annotations/panoptic_val2017/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoPanopticMetric', ann_file=data_root + 'annotations/panoptic_val2017.json', seg_prefix=data_root + 'annotations/panoptic_val2017/', backend_args=backend_args) test_evaluator = val_evaluator # inference on test dataset and # format the output results for submission. # test_dataloader = dict( # batch_size=1, # num_workers=1, # persistent_workers=True, # drop_last=False, # sampler=dict(type='DefaultSampler', shuffle=False), # dataset=dict( # type=dataset_type, # data_root=data_root, # ann_file='annotations/panoptic_image_info_test-dev2017.json', # data_prefix=dict(img='test2017/'), # test_mode=True, # pipeline=test_pipeline)) # test_evaluator = dict( # type='CocoPanopticMetric', # format_only=True, # ann_file=data_root + 'annotations/panoptic_image_info_test-dev2017.json', # outfile_prefix='./work_dirs/coco_panoptic/test')
_base_ = './mask_rcnn_r50_fpn_1x_coco.py' # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict(type='AmpOptimWrapper')
_base_ = './mask_rcnn_r50_fpn_1x_coco.py' # fp16 settings fp16 = dict(loss_scale=512.)
"""Google Calendar reader.""" import datetime import os from typing import Any, List, Optional, Union from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document SCOPES = ["https://www.googleapis.com/auth/calendar.readonly"] # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class GoogleCalendarReader(BaseReader): """ Google Calendar reader. Reads events from Google Calendar """ def load_data( self, number_of_results: Optional[int] = 100, start_date: Optional[Union[str, datetime.date]] = None, ) -> List[Document]: """ Load data from user's calendar. Args: number_of_results (Optional[int]): the number of events to return. Defaults to 100. start_date (Optional[Union[str, datetime.date]]): the start date to return events from. Defaults to today. """ from googleapiclient.discovery import build credentials = self._get_credentials() service = build("calendar", "v3", credentials=credentials) if start_date is None: start_date = datetime.date.today() elif isinstance(start_date, str): start_date = datetime.date.fromisoformat(start_date) start_datetime = datetime.datetime.combine(start_date, datetime.time.min) start_datetime_utc = start_datetime.strftime("%Y-%m-%dT%H:%M:%S.%fZ") events_result = ( service.events() .list( calendarId="primary", timeMin=start_datetime_utc, maxResults=number_of_results, singleEvents=True, orderBy="startTime", ) .execute() ) events = events_result.get("items", []) if not events: return [] results = [] for event in events: if "dateTime" in event["start"]: start_time = event["start"]["dateTime"] else: start_time = event["start"]["date"] if "dateTime" in event["end"]: end_time = event["end"]["dateTime"] else: end_time = event["end"]["date"] event_string = f"Status: {event['status']}, " event_string += f"Summary: {event['summary']}, " event_string += f"Start time: {start_time}, " event_string += f"End time: {end_time}, " organizer = event.get("organizer", {}) display_name = organizer.get("displayName", "N/A") email = organizer.get("email", "N/A") if display_name != "N/A": event_string += f"Organizer: {display_name} ({email})" else: event_string += f"Organizer: {email}" results.append(Document(text=event_string)) return results def _get_credentials(self) -> Any: """ Get valid user credentials from storage. The file token.json stores the user's access and refresh tokens, and is created automatically when the authorization flow completes for the first time. Returns: Credentials, the obtained credential. """ from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request from google.oauth2.credentials import Credentials creds = None if os.path.exists("token.json"): creds = Credentials.from_authorized_user_file("token.json", SCOPES) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( "credentials.json", SCOPES ) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open("token.json", "w") as token: token.write(creds.to_json()) return creds if __name__ == "__main__": reader = GoogleCalendarReader() print(reader.load_data())
"""Google Calendar reader.""" import datetime import os from typing import Any, List, Optional, Union from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document SCOPES = ["https://www.googleapis.com/auth/calendar.readonly"] # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class GoogleCalendarReader(BaseReader): """Google Calendar reader. Reads events from Google Calendar """ def load_data( self, number_of_results: Optional[int] = 100, start_date: Optional[Union[str, datetime.date]] = None, ) -> List[Document]: """Load data from user's calendar. Args: number_of_results (Optional[int]): the number of events to return. Defaults to 100. start_date (Optional[Union[str, datetime.date]]): the start date to return events from. Defaults to today. """ from googleapiclient.discovery import build credentials = self._get_credentials() service = build("calendar", "v3", credentials=credentials) if start_date is None: start_date = datetime.date.today() elif isinstance(start_date, str): start_date = datetime.date.fromisoformat(start_date) start_datetime = datetime.datetime.combine(start_date, datetime.time.min) start_datetime_utc = start_datetime.strftime("%Y-%m-%dT%H:%M:%S.%fZ") events_result = ( service.events() .list( calendarId="primary", timeMin=start_datetime_utc, maxResults=number_of_results, singleEvents=True, orderBy="startTime", ) .execute() ) events = events_result.get("items", []) if not events: return [] results = [] for event in events: if "dateTime" in event["start"]: start_time = event["start"]["dateTime"] else: start_time = event["start"]["date"] if "dateTime" in event["end"]: end_time = event["end"]["dateTime"] else: end_time = event["end"]["date"] event_string = f"Status: {event['status']}, " event_string += f"Summary: {event['summary']}, " event_string += f"Start time: {start_time}, " event_string += f"End time: {end_time}, " organizer = event.get("organizer", {}) display_name = organizer.get("displayName", "N/A") email = organizer.get("email", "N/A") if display_name != "N/A": event_string += f"Organizer: {display_name} ({email})" else: event_string += f"Organizer: {email}" results.append(Document(text=event_string)) return results def _get_credentials(self) -> Any: """Get valid user credentials from storage. The file token.json stores the user's access and refresh tokens, and is created automatically when the authorization flow completes for the first time. Returns: Credentials, the obtained credential. """ from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request from google.oauth2.credentials import Credentials creds = None if os.path.exists("token.json"): creds = Credentials.from_authorized_user_file("token.json", SCOPES) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( "credentials.json", SCOPES ) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open("token.json", "w") as token: token.write(creds.to_json()) return creds if __name__ == "__main__": reader = GoogleCalendarReader() print(reader.load_data())
from keras.src import backend from keras.src.api_export import keras_export from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501 BaseImagePreprocessingLayer, ) @keras_export("keras.layers.RandomGrayscale") class RandomGrayscale(BaseImagePreprocessingLayer): """Preprocessing layer for random conversion of RGB images to grayscale. This layer randomly converts input images to grayscale with a specified factor. When applied, it maintains the original number of channels but sets all channels to the same grayscale value. This can be useful for data augmentation and training models to be robust to color variations. The conversion preserves the perceived luminance of the original color image using standard RGB to grayscale conversion coefficients. Images that are not selected for conversion remain unchanged. **Note:** This layer is safe to use inside a `tf.data` pipeline (independently of which backend you're using). Args: factor: Float between 0 and 1, specifying the factor of converting each image to grayscale. Defaults to 0.5. A value of 1.0 means all images will be converted, while 0.0 means no images will be converted. data_format: String, one of `"channels_last"` (default) or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, height, width, channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, height, width)`. Input shape: 3D (unbatched) or 4D (batched) tensor with shape: `(..., height, width, channels)`, in `"channels_last"` format, or `(..., channels, height, width)`, in `"channels_first"` format. Output shape: Same as input shape. The output maintains the same number of channels as the input, even for grayscale-converted images where all channels will have the same value. """ def __init__(self, factor=0.5, data_format=None, seed=None, **kwargs): super().__init__(**kwargs) if factor < 0 or factor > 1: raise ValueError( "`factor` should be between 0 and 1. " f"Received: factor={factor}" ) self.factor = factor self.data_format = backend.standardize_data_format(data_format) self.seed = seed self.generator = self.backend.random.SeedGenerator(seed) def get_random_transformation(self, images, training=True, seed=None): if seed is None: seed = self._get_seed_generator(self.backend._backend) random_values = self.backend.random.uniform( shape=(self.backend.core.shape(images)[0],), minval=0, maxval=1, seed=seed, ) should_apply = self.backend.numpy.expand_dims( random_values < self.factor, axis=[1, 2, 3] ) return should_apply def transform_images(self, images, transformation, training=True): if training: should_apply = ( transformation if transformation is not None else self.get_random_transformation(images) ) grayscale_images = self.backend.image.rgb_to_grayscale( images, data_format=self.data_format ) return self.backend.numpy.where( should_apply, grayscale_images, images ) return images def compute_output_shape(self, input_shape): return input_shape def compute_output_spec(self, inputs, **kwargs): return inputs def transform_bounding_boxes(self, bounding_boxes, **kwargs): return bounding_boxes def transform_labels(self, labels, transformations=None, **kwargs): return labels def transform_segmentation_masks( self, segmentation_masks, transformations=None, **kwargs ): return segmentation_masks def get_config(self): config = super().get_config() config.update({"factor": self.factor}) return config
from keras.src import backend from keras.src.api_export import keras_export from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501 BaseImagePreprocessingLayer, ) @keras_export("keras.layers.RandomGrayscale") class RandomGrayscale(BaseImagePreprocessingLayer): """Preprocessing layer for random conversion of RGB images to grayscale. This layer randomly converts input images to grayscale with a specified factor. When applied, it maintains the original number of channels but sets all channels to the same grayscale value. This can be useful for data augmentation and training models to be robust to color variations. The conversion preserves the perceived luminance of the original color image using standard RGB to grayscale conversion coefficients. Images that are not selected for conversion remain unchanged. **Note:** This layer is safe to use inside a `tf.data` pipeline (independently of which backend you're using). Args: factor: Float between 0 and 1, specifying the factor of converting each image to grayscale. Defaults to 0.5. A value of 1.0 means all images will be converted, while 0.0 means no images will be converted. data_format: String, one of `"channels_last"` (default) or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, height, width, channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, height, width)`. Input shape: 3D (unbatched) or 4D (batched) tensor with shape: `(..., height, width, channels)`, in `"channels_last"` format, or `(..., channels, height, width)`, in `"channels_first"` format. Output shape: Same as input shape. The output maintains the same number of channels as the input, even for grayscale-converted images where all channels will have the same value. """ def __init__(self, factor=0.5, data_format=None, seed=None, **kwargs): super().__init__(**kwargs) if factor < 0 or factor > 1: raise ValueError( "`factor` should be between 0 and 1. " f"Received: factor={factor}" ) self.factor = factor self.data_format = backend.standardize_data_format(data_format) self.seed = seed self.generator = self.backend.random.SeedGenerator(seed) def get_random_transformation(self, images, training=True, seed=None): if seed is None: seed = self._get_seed_generator(self.backend._backend) random_values = self.backend.random.uniform( shape=(self.backend.core.shape(images)[0],), minval=0, maxval=1, seed=seed, ) should_apply = self.backend.numpy.expand_dims( random_values < self.factor, axis=[1, 2, 3] ) return should_apply def transform_images(self, images, transformations=None, **kwargs): should_apply = ( transformations if transformations is not None else self.get_random_transformation(images) ) grayscale_images = self.backend.image.rgb_to_grayscale( images, data_format=self.data_format ) return self.backend.numpy.where(should_apply, grayscale_images, images) def compute_output_shape(self, input_shape): return input_shape def compute_output_spec(self, inputs, **kwargs): return inputs def transform_bounding_boxes(self, bounding_boxes, **kwargs): return bounding_boxes def transform_labels(self, labels, transformations=None, **kwargs): return labels def transform_segmentation_masks( self, segmentation_masks, transformations=None, **kwargs ): return segmentation_masks def get_config(self): config = super().get_config() config.update({"factor": self.factor}) return config
import json from typing import Union, Sequence, Dict, Any, Callable from tenacity import ( retry, stop_after_attempt, wait_exponential, retry_if_exception_type, ) from asyncio import iscoroutinefunction from requests.exceptions import Timeout, ConnectionError from llama_index.core.base.llms.types import ChatMessage, ChatResponse, MessageRole def maybe_decode_sse_data(data: bytes) -> Union[dict, None]: """ Decode data from the streaming response. Checks whether the incoming data is an actual SSE data message. Args: data (bytes): The incoming data. Returns: Union[dict, None]: The decoded data or None. """ if data and data.startswith(b"data: "): data = data.decode("utf-8").strip("data: ") try: return json.loads(data) except json.JSONDecodeError: return None else: return None def maybe_extract_from_json(data: dict, key: str = "text") -> Union[str, None]: """ Extract text from a JSON response. Args: data (dict): The JSON response. Returns: Union[str, None]: The extracted text or None. """ if "choices" in data: if len(data["choices"]) > 0 and key in data["choices"][0]: return data["choices"][0][key] else: return None else: return None def chat_messages_to_list(messages: Sequence[ChatMessage]) -> Sequence[Dict[str, Any]]: """ Convert a sequence of chat messages to a list of dictionaries. Args: messages (Sequence[ChatMessage]): A sequence of chat messages. Returns: Sequence[Dict[str, Any]]: A list of dictionaries. """ chat_messages = [] for message in messages: if message.role in [ MessageRole.USER, MessageRole.ASSISTANT, MessageRole.SYSTEM, MessageRole.TOOL, ]: chat_messages.append( { "role": message.role, "content": message.content, **message.additional_kwargs, } ) return chat_messages def create_retry_decorator(retry_limit: int) -> Callable[[Any], Any]: """ Create a retry decorator with the given retry limit. Args: retry_limit (int): The retry limit. Returns: Callable[[Any], Any]: The retry decorator. """ initial_delay = 4 max_delay = 10 return retry( reraise=True, stop=stop_after_attempt(retry_limit), wait=wait_exponential(multiplier=1, min=initial_delay, max=max_delay), retry=( retry_if_exception_type(Timeout) | retry_if_exception_type(ConnectionError) ), ) def retry_request( request_func: Callable[..., Any], max_retries: int = 10, *args: Any, **kwargs: Any ) -> Any: """ Retry a request function. Args: request_func (Callable[..., Any]): The request function. max_retries (int): The maximum number of retries. *args (Any): The positional arguments. **kwargs (Any): The keyword arguments. Returns: Any: The response. """ retry_func = create_retry_decorator(max_retries) @retry_func def retry_func(request_func: Callable[..., Any], *args: Any, **kwargs: Any) -> Any: return request_func(*args, **kwargs) return retry_func(request_func, *args, **kwargs) async def aretry_request( request_func: Callable[..., Any], max_retries: int = 10, *args: Any, **kwargs: Any ) -> Any: """ Retry a request function asynchronously. Args: request_func (Callable[..., Any]): The request function. max_retries (int): The maximum number of retries. *args (Any): The positional arguments. **kwargs (Any): The keyword arguments. Returns: Any: The response. """ retry_decorator = create_retry_decorator(max_retries) @retry_decorator async def retry_func( request_func: Callable[..., Any], *args: Any, **kwargs: Any ) -> Any: if iscoroutinefunction(request_func): return await request_func(*args, **kwargs) else: return request_func(*args, **kwargs) return await retry_func(request_func, *args, **kwargs) def force_single_tool_call(response: ChatResponse) -> None: """ Force a single tool call in the response. Overrides the tool calls in the response message. """ tool_calls = response.message.additional_kwargs.get("tool_calls", []) if len(tool_calls) > 1: response.message.additional_kwargs["tool_calls"] = [tool_calls[0]]
import json from typing import Union, Sequence, Dict, Any, Callable from tenacity import ( retry, stop_after_attempt, wait_exponential, retry_if_exception_type, ) from asyncio import iscoroutinefunction from requests.exceptions import Timeout, ConnectionError from llama_index.core.base.llms.types import ChatMessage, ChatResponse, MessageRole def maybe_decode_sse_data(data: bytes) -> Union[dict, None]: """ Decode data from the streaming response. Checks whether the incoming data is an actual SSE data message. Args: data (bytes): The incoming data. Returns: Union[dict, None]: The decoded data or None. """ if data and data.startswith(b"data: "): data = data.decode("utf-8").strip("data: ") try: return json.loads(data) except json.JSONDecodeError: return None else: return None def maybe_extract_from_json(data: dict, key: str = "text") -> Union[str, None]: """ Extract text from a JSON response. Args: data (dict): The JSON response. Returns: Union[str, None]: The extracted text or None. """ if "choices" in data: if len(data["choices"]) > 0 and key in data["choices"][0]: return data["choices"][0][key] else: return None else: return None def chat_messages_to_list(messages: Sequence[ChatMessage]) -> Sequence[Dict[str, Any]]: """ Convert a sequence of chat messages to a list of dictionaries. Args: messages (Sequence[ChatMessage]): A sequence of chat messages. Returns: Sequence[Dict[str, Any]]: A list of dictionaries. """ chat_messages = [] for message in messages: if message.role in [ MessageRole.USER, MessageRole.ASSISTANT, MessageRole.SYSTEM, MessageRole.TOOL, ]: chat_messages.append( { "role": message.role, "content": message.content, **message.additional_kwargs, } ) return chat_messages def create_retry_decorator(retry_limit: int) -> Callable[[Any], Any]: """ Create a retry decorator with the given retry limit. Args: retry_limit (int): The retry limit. Returns: Callable[[Any], Any]: The retry decorator. """ initial_delay = 4 max_delay = 10 return retry( reraise=True, stop=stop_after_attempt(retry_limit), wait=wait_exponential(multiplier=1, min=initial_delay, max=max_delay), retry=( retry_if_exception_type(Timeout) | retry_if_exception_type(ConnectionError) ), ) def retry_request( request_func: Callable[..., Any], max_retries: int = 10, *args: Any, **kwargs: Any ) -> Any: """ Retry a request function. Args: request_func (Callable[..., Any]): The request function. max_retries (int): The maximum number of retries. *args (Any): The positional arguments. **kwargs (Any): The keyword arguments. Returns: Any: The response. """ retry_func = create_retry_decorator(max_retries) @retry_func def retry_func(request_func: Callable[..., Any], *args: Any, **kwargs: Any) -> Any: return request_func(*args, **kwargs) return retry_func(request_func, *args, **kwargs) async def aretry_request( request_func: Callable[..., Any], max_retries: int = 10, *args: Any, **kwargs: Any ) -> Any: """ Retry a request function asynchronously. Args: request_func (Callable[..., Any]): The request function. max_retries (int): The maximum number of retries. *args (Any): The positional arguments. **kwargs (Any): The keyword arguments. Returns: Any: The response. """ retry_decorator = create_retry_decorator(max_retries) @retry_decorator async def retry_func( request_func: Callable[..., Any], *args: Any, **kwargs: Any ) -> Any: if iscoroutinefunction(request_func): return await request_func(*args, **kwargs) else: return request_func(*args, **kwargs) return await retry_func(request_func, *args, **kwargs) def force_single_tool_call(response: ChatResponse) -> None: """ Force a single tool call in the response. Overrides the tool calls in the response message. """ tool_calls = response.message.additional_kwargs.get("tool_calls", []) if len(tool_calls) > 1: response.message.additional_kwargs["tool_calls"] = [tool_calls[0]]
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class HfFileSystem(AbstractFileSystem): """Interface to files in a Hugging face repository""" root_marker = "" protocol = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self, repo_info: Optional[DatasetInfo] = None, token: Optional[str] = None, **kwargs, ): """ The file system can be instantiated using a huggingface_hub.hf_api.DatasetInfo object, and can be used to list and open files from a Hugging Face dataset repository with fsspec. Args: repo_info (:obj:``DatasetInfo``, `optional`): Dataset repository info from huggingface_hub.HfApi().dataset_info(...) token (:obj:``str``, `optional`): Hugging Face token. Will default to the locally saved token if not provided. """ super().__init__(self, **kwargs) self.repo_info = repo_info self.token = token self.dir_cache = None def _get_dirs(self): if self.dir_cache is None: self.dir_cache = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes self.dir_cache[hf_file.rfilename] = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(d): {"name": str(d), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1] } ) def _open( self, path: str, mode: str = "rb", **kwargs, ): if not isinstance(self.repo_info, DatasetInfo): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}") url = hf_hub_url(self.repo_info.id, path, revision=self.repo_info.sha) return fsspec.open( url, mode=mode, headers=get_authentication_headers_for_url(url, use_auth_token=self.token), ).open() def info(self, path, **kwargs): self._get_dirs() path = self._strip_protocol(path) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(path) def ls(self, path, detail=False, **kwargs): self._get_dirs() path = PurePosixPath(path.strip("/")) paths = {} for p, f in self.dir_cache.items(): p = PurePosixPath(p.strip("/")) root = p.parent if root == path: paths[str(p)] = f out = list(paths.values()) if detail: return out else: return list(sorted(f["name"] for f in out))
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url, hf_hub_url class HfFileSystem(AbstractFileSystem): """Interface to files in a Hugging face repository""" root_marker = "" protocol = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self, repo_info: Optional[DatasetInfo] = None, token: Optional[str] = None, **kwargs, ): """ The file system can be instantiated using a huggingface_hub.hf_api.DatasetInfo object, and can be used to list and open files from a Hugging Face dataset repository with fsspec. Args: repo_info (:obj:``DatasetInfo``, `optional`): Dataset repository info from huggingface_hub.HfApi().dataset_info(...) token (:obj:``str``, `optional`): Hugging Face token. Will default to the locally saved token if not provided. """ super().__init__(self, **kwargs) self.repo_info = repo_info self.token = token self.dir_cache = None def _get_dirs(self): if self.dir_cache is None: self.dir_cache = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes self.dir_cache[hf_file.rfilename] = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(d): {"name": str(d), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1] } ) def _open( self, path: str, mode: str = "rb", **kwargs, ): if not isinstance(self.repo_info, DatasetInfo): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}") url = hf_hub_url(self.repo_info.id, path, revision=self.repo_info.sha) return fsspec.open( url, mode=mode, headers=get_authentication_headers_for_url(url, use_auth_token=self.token), ).open() def info(self, path, **kwargs): self._get_dirs() path = self._strip_protocol(path) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(path) def ls(self, path, detail=False, **kwargs): self._get_dirs() path = PurePosixPath(path.strip("/")) paths = {} for p, f in self.dir_cache.items(): p = PurePosixPath(p.strip("/")) root = p.parent if root == path: paths[str(p)] = f out = list(paths.values()) if detail: return out else: return list(sorted(f["name"] for f in out))
from datasets import load_dataset from sentence_transformers import SentenceTransformer from sentence_transformers.quantization import quantize_embeddings, semantic_search_usearch # 1. Load the quora corpus with questions dataset = load_dataset("quora", split="train").map( lambda batch: {"text": [text for sample in batch["questions"] for text in sample["text"]]}, batched=True, remove_columns=["questions", "is_duplicate"], ) max_corpus_size = 100_000 corpus = dataset["text"][:max_corpus_size] num_queries = 1_000 queries = corpus[:num_queries] # 2. Load the model model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") # 3. Encode the corpus full_corpus_embeddings = model.encode(corpus, normalize_embeddings=True, show_progress_bar=True) # 4. Encode the queries using the full precision query_embeddings = model.encode(queries, normalize_embeddings=True) for exact in (True, False): for corpus_precision in ("float32", "int8", "binary"): corpus_embeddings = quantize_embeddings(full_corpus_embeddings, precision=corpus_precision) # NOTE: We can also pass "precision=..." to the encode method to quantize the embeddings directly, # but we want to keep the full precision embeddings to act as a calibration dataset for quantizing # the query embeddings. This is important only if you are using uint8 or int8 precision # 5. Perform semantic search using usearch rescore_multiplier = 4 results, search_time = semantic_search_usearch( query_embeddings, corpus_embeddings=corpus_embeddings, corpus_precision=corpus_precision, top_k=10, calibration_embeddings=full_corpus_embeddings, rescore=corpus_precision != "float32", rescore_multiplier=rescore_multiplier, exact=exact, ) print( f"{'Exact' if exact else 'Approximate'} search time using {corpus_precision} corpus: {search_time:.6f} seconds" + (f" (rescore_multiplier: {rescore_multiplier})" if corpus_precision != "float32" else "") )
from sentence_transformers import SentenceTransformer from sentence_transformers.quantization import quantize_embeddings, semantic_search_usearch from datasets import load_dataset # 1. Load the quora corpus with questions dataset = load_dataset("quora", split="train").map( lambda batch: {"text": [text for sample in batch["questions"] for text in sample["text"]]}, batched=True, remove_columns=["questions", "is_duplicate"], ) max_corpus_size = 100_000 corpus = dataset["text"][:max_corpus_size] num_queries = 1_000 queries = corpus[:num_queries] # 2. Load the model model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") # 3. Encode the corpus full_corpus_embeddings = model.encode(corpus, normalize_embeddings=True, show_progress_bar=True) # 4. Encode the queries using the full precision query_embeddings = model.encode(queries, normalize_embeddings=True) for exact in (True, False): for corpus_precision in ("float32", "int8", "binary"): corpus_embeddings = quantize_embeddings(full_corpus_embeddings, precision=corpus_precision) # NOTE: We can also pass "precision=..." to the encode method to quantize the embeddings directly, # but we want to keep the full precision embeddings to act as a calibration dataset for quantizing # the query embeddings. This is important only if you are using uint8 or int8 precision # 5. Perform semantic search using usearch rescore_multiplier = 4 results, search_time = semantic_search_usearch( query_embeddings, corpus_embeddings=corpus_embeddings, corpus_precision=corpus_precision, top_k=10, calibration_embeddings=full_corpus_embeddings, rescore=corpus_precision != "float32", rescore_multiplier=rescore_multiplier, exact=exact, ) print( f"{'Exact' if exact else 'Approximate'} search time using {corpus_precision} corpus: {search_time:.6f} seconds" + (f" (rescore_multiplier: {rescore_multiplier})" if corpus_precision != "float32" else "") )
# pylint: disable=invalid-name,unused-import """For compatibility and optional dependencies.""" import importlib.util import logging import sys import types from typing import Any, Sequence, cast import numpy as np from ._typing import _T assert sys.version_info[0] == 3, "Python 2 is no longer supported." def py_str(x: bytes | None) -> str: """convert c string back to python string""" assert x is not None # ctypes might return None return x.decode("utf-8") # type: ignore def lazy_isinstance(instance: Any, module: str, name: str) -> bool: """Use string representation to identify a type.""" # Notice, we use .__class__ as opposed to type() in order # to support object proxies such as weakref.proxy cls = instance.__class__ is_same_module = cls.__module__ == module has_same_name = cls.__name__ == name return is_same_module and has_same_name # pandas try: from pandas import DataFrame, MultiIndex, Series from pandas import concat as pandas_concat PANDAS_INSTALLED = True except ImportError: MultiIndex = object DataFrame = object Series = object pandas_concat = None PANDAS_INSTALLED = False # sklearn try: from sklearn.base import BaseEstimator as XGBModelBase from sklearn.base import ClassifierMixin as XGBClassifierBase from sklearn.base import RegressorMixin as XGBRegressorBase from sklearn.preprocessing import LabelEncoder try: from sklearn.model_selection import KFold as XGBKFold from sklearn.model_selection import StratifiedKFold as XGBStratifiedKFold except ImportError: from sklearn.cross_validation import KFold as XGBKFold from sklearn.cross_validation import StratifiedKFold as XGBStratifiedKFold SKLEARN_INSTALLED = True except ImportError: SKLEARN_INSTALLED = False # used for compatibility without sklearn XGBModelBase = object XGBClassifierBase = object XGBRegressorBase = object LabelEncoder = object XGBKFold = None XGBStratifiedKFold = None _logger = logging.getLogger(__name__) def is_cudf_available() -> bool: """Check cuDF package available or not""" if importlib.util.find_spec("cudf") is None: return False try: import cudf return True except ImportError: _logger.exception("Importing cuDF failed, use DMatrix instead of QDM") return False def is_cupy_available() -> bool: """Check cupy package available or not""" if importlib.util.find_spec("cupy") is None: return False try: import cupy return True except ImportError: return False def import_cupy() -> types.ModuleType: """Import cupy.""" if not is_cupy_available(): raise ImportError("`cupy` is required for handling CUDA buffer.") import cupy # pylint: disable=import-error return cupy try: import scipy.sparse as scipy_sparse from scipy.sparse import csr_matrix as scipy_csr except ImportError: scipy_sparse = False scipy_csr = object def concat(value: Sequence[_T]) -> _T: # pylint: disable=too-many-return-statements """Concatenate row-wise.""" if isinstance(value[0], np.ndarray): value_arr = cast(Sequence[np.ndarray], value) return np.concatenate(value_arr, axis=0) if scipy_sparse and isinstance(value[0], scipy_sparse.csr_matrix): return scipy_sparse.vstack(value, format="csr") if scipy_sparse and isinstance(value[0], scipy_sparse.csc_matrix): return scipy_sparse.vstack(value, format="csc") if scipy_sparse and isinstance(value[0], scipy_sparse.spmatrix): # other sparse format will be converted to CSR. return scipy_sparse.vstack(value, format="csr") if PANDAS_INSTALLED and isinstance(value[0], (DataFrame, Series)): return pandas_concat(value, axis=0) if lazy_isinstance(value[0], "cudf.core.dataframe", "DataFrame") or lazy_isinstance( value[0], "cudf.core.series", "Series" ): from cudf import concat as CUDF_concat # pylint: disable=import-error return CUDF_concat(value, axis=0) from .data import _is_cupy_alike if _is_cupy_alike(value[0]): import cupy # pylint: disable=import-error # pylint: disable=c-extension-no-member,no-member d = cupy.cuda.runtime.getDevice() for v in value: arr = cast(cupy.ndarray, v) d_v = arr.device.id assert d_v == d, "Concatenating arrays on different devices." return cupy.concatenate(value, axis=0) raise TypeError("Unknown type.")
# pylint: disable= invalid-name, unused-import """For compatibility and optional dependencies.""" import importlib.util import logging import sys import types from typing import Any, Dict, List, Optional, Sequence, cast import numpy as np from ._typing import _T assert sys.version_info[0] == 3, "Python 2 is no longer supported." def py_str(x: bytes) -> str: """convert c string back to python string""" return x.decode("utf-8") # type: ignore def lazy_isinstance(instance: Any, module: str, name: str) -> bool: """Use string representation to identify a type.""" # Notice, we use .__class__ as opposed to type() in order # to support object proxies such as weakref.proxy cls = instance.__class__ is_same_module = cls.__module__ == module has_same_name = cls.__name__ == name return is_same_module and has_same_name # pandas try: from pandas import DataFrame, MultiIndex, Series from pandas import concat as pandas_concat PANDAS_INSTALLED = True except ImportError: MultiIndex = object DataFrame = object Series = object pandas_concat = None PANDAS_INSTALLED = False # sklearn try: from sklearn.base import BaseEstimator as XGBModelBase from sklearn.base import ClassifierMixin as XGBClassifierBase from sklearn.base import RegressorMixin as XGBRegressorBase from sklearn.preprocessing import LabelEncoder try: from sklearn.model_selection import KFold as XGBKFold from sklearn.model_selection import StratifiedKFold as XGBStratifiedKFold except ImportError: from sklearn.cross_validation import KFold as XGBKFold from sklearn.cross_validation import StratifiedKFold as XGBStratifiedKFold SKLEARN_INSTALLED = True except ImportError: SKLEARN_INSTALLED = False # used for compatibility without sklearn XGBModelBase = object XGBClassifierBase = object XGBRegressorBase = object LabelEncoder = object XGBKFold = None XGBStratifiedKFold = None _logger = logging.getLogger(__name__) def is_cudf_available() -> bool: """Check cuDF package available or not""" if importlib.util.find_spec("cudf") is None: return False try: import cudf return True except ImportError: _logger.exception("Importing cuDF failed, use DMatrix instead of QDM") return False def is_cupy_available() -> bool: """Check cupy package available or not""" if importlib.util.find_spec("cupy") is None: return False try: import cupy return True except ImportError: return False def import_cupy() -> types.ModuleType: """Import cupy.""" if not is_cupy_available(): raise ImportError("`cupy` is required for handling CUDA buffer.") import cupy # pylint: disable=import-error return cupy try: import scipy.sparse as scipy_sparse from scipy.sparse import csr_matrix as scipy_csr except ImportError: scipy_sparse = False scipy_csr = object def concat(value: Sequence[_T]) -> _T: # pylint: disable=too-many-return-statements """Concatenate row-wise.""" if isinstance(value[0], np.ndarray): value_arr = cast(Sequence[np.ndarray], value) return np.concatenate(value_arr, axis=0) if scipy_sparse and isinstance(value[0], scipy_sparse.csr_matrix): return scipy_sparse.vstack(value, format="csr") if scipy_sparse and isinstance(value[0], scipy_sparse.csc_matrix): return scipy_sparse.vstack(value, format="csc") if scipy_sparse and isinstance(value[0], scipy_sparse.spmatrix): # other sparse format will be converted to CSR. return scipy_sparse.vstack(value, format="csr") if PANDAS_INSTALLED and isinstance(value[0], (DataFrame, Series)): return pandas_concat(value, axis=0) if lazy_isinstance(value[0], "cudf.core.dataframe", "DataFrame") or lazy_isinstance( value[0], "cudf.core.series", "Series" ): from cudf import concat as CUDF_concat # pylint: disable=import-error return CUDF_concat(value, axis=0) from .data import _is_cupy_alike if _is_cupy_alike(value[0]): import cupy # pylint: disable=import-error # pylint: disable=c-extension-no-member,no-member d = cupy.cuda.runtime.getDevice() for v in value: arr = cast(cupy.ndarray, v) d_v = arr.device.id assert d_v == d, "Concatenating arrays on different devices." return cupy.concatenate(value, axis=0) raise TypeError("Unknown type.")
from __future__ import annotations import sys from .BoW import BoW from .CLIPModel import CLIPModel from .CNN import CNN from .Dense import Dense from .Dropout import Dropout from .InputModule import InputModule from .LayerNorm import LayerNorm from .LSTM import LSTM from .Module import Module from .Normalize import Normalize from .Pooling import Pooling from .Router import Asym, Router from .StaticEmbedding import StaticEmbedding from .Transformer import Transformer from .WeightedLayerPooling import WeightedLayerPooling from .WordEmbeddings import WordEmbeddings from .WordWeights import WordWeights sys.modules["sentence_transformers.models.Asym"] = sys.modules["sentence_transformers.models.Router"] __all__ = [ "Transformer", "StaticEmbedding", "Asym", "BoW", "CNN", "Dense", "Dropout", "LayerNorm", "LSTM", "Normalize", "Pooling", "WeightedLayerPooling", "WordEmbeddings", "WordWeights", "CLIPModel", "Module", "InputModule", "Router", ]
from __future__ import annotations from .Asym import Asym from .BoW import BoW from .CLIPModel import CLIPModel from .CNN import CNN from .Dense import Dense from .Dropout import Dropout from .InputModule import InputModule from .LayerNorm import LayerNorm from .LSTM import LSTM from .Module import Module from .Normalize import Normalize from .Pooling import Pooling from .StaticEmbedding import StaticEmbedding from .Transformer import Transformer from .WeightedLayerPooling import WeightedLayerPooling from .WordEmbeddings import WordEmbeddings from .WordWeights import WordWeights __all__ = [ "Transformer", "StaticEmbedding", "Asym", "BoW", "CNN", "Dense", "Dropout", "LayerNorm", "LSTM", "Normalize", "Pooling", "WeightedLayerPooling", "WordEmbeddings", "WordWeights", "CLIPModel", "Module", "InputModule", ]
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig from .single_stage_instance_seg import SingleStageInstanceSegmentor @MODELS.register_module() class CondInst(SingleStageInstanceSegmentor): """Implementation of `CondInst <https://arxiv.org/abs/2003.05664>`_""" def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, mask_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, mask_head=mask_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from mmdet.utils.typing import ConfigType, OptConfigType, OptMultiConfig from .single_stage_instance_seg import SingleStageInstanceSegmentor @MODELS.register_module() class CondInst(SingleStageInstanceSegmentor): """Implementation of `CondInst <https://arxiv.org/abs/2003.05664>`_""" def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, mask_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, mask_head=mask_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
import torch from torchaudio_unittest.common_utils import PytorchTestCase, skipIfNoCuda from .torchscript_consistency_impl import Transforms, TransformsFloat32Only @skipIfNoCuda class TestTransformsFloat32(Transforms, TransformsFloat32Only, PytorchTestCase): dtype = torch.float32 device = torch.device("cuda") @skipIfNoCuda class TestTransformsFloat64(Transforms, PytorchTestCase): dtype = torch.float64 device = torch.device("cuda")
import torch from torchaudio_unittest.common_utils import skipIfNoCuda, PytorchTestCase from .torchscript_consistency_impl import Transforms, TransformsFloat32Only @skipIfNoCuda class TestTransformsFloat32(Transforms, TransformsFloat32Only, PytorchTestCase): dtype = torch.float32 device = torch.device("cuda") @skipIfNoCuda class TestTransformsFloat64(Transforms, PytorchTestCase): dtype = torch.float64 device = torch.device("cuda")
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoNdArray') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_ndarray') class VideoNdArray(NdArray, VideoTensorMixin): """ Subclass of NdArray, to represent a video tensor. Adds video-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional import numpy as np from pydantic import parse_obj_as from docarray import BaseDocument from docarray.typing import VideoNdArray, VideoUrl class MyVideoDoc(BaseDocument): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoNdArray] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=np.random.random((100, 224, 224, 3)), ) doc_1.video_tensor.save(file_path='file_1.wav') doc_2 = MyVideoDoc( title='my_second_video_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.video_tensor = parse_obj_as(VideoNdArray, doc_2.url.load()) doc_2.video_tensor.save(file_path='file_2.wav') """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoNdArray') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_ndarray') class VideoNdArray(NdArray, VideoTensorMixin): """ Subclass of NdArray, to represent a video tensor. Adds video-specific features to the tensor. EXAMPLE USAGE """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
_base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py' model = dict( backbone=dict( embed_dims=64, num_layers=[3, 8, 27, 3], init_cfg=dict(checkpoint='https://github.com/whai362/PVT/' 'releases/download/v2/pvt_v2_b4.pth')), neck=dict(in_channels=[64, 128, 320, 512])) # optimizer optim_wrapper = dict( optimizer=dict( _delete_=True, type='AdamW', lr=0.0001 / 1.4, weight_decay=0.0001)) # dataset settings train_dataloader = dict(batch_size=1, num_workers=1) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (1 samples per GPU) auto_scale_lr = dict(base_batch_size=8)
_base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py' model = dict( backbone=dict( embed_dims=64, num_layers=[3, 8, 27, 3], init_cfg=dict(checkpoint='https://github.com/whai362/PVT/' 'releases/download/v2/pvt_v2_b4.pth')), neck=dict(in_channels=[64, 128, 320, 512])) # optimizer optimizer = dict( _delete_=True, type='AdamW', lr=0.0001 / 1.4, weight_decay=0.0001) # dataset settings data = dict(samples_per_gpu=1, workers_per_gpu=1) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (1 samples per GPU) auto_scale_lr = dict(base_batch_size=8)
"""News article reader using Newspaper.""" import logging from importlib.util import find_spec from typing import Any, Generator, List from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document logger = logging.getLogger(__name__) class NewsArticleReader(BaseReader): """ Simple news article reader. Reads news articles from the web and parses them using the `newspaper` library. Args: text_mode (bool): Whether to load a text version or HTML version of the content (default=True). use_nlp (bool): Whether to use NLP to extract additional summary and keywords (default=True). newspaper_kwargs: Additional keyword arguments to pass to newspaper.Article. See https://newspaper.readthedocs.io/en/latest/user_guide/quickstart.html#article """ def __init__( self, text_mode: bool = True, use_nlp: bool = True, **newspaper_kwargs: Any ) -> None: """Initialize with parameters.""" if find_spec("newspaper") is None: raise ImportError( "`newspaper` package not found, please run `pip install newspaper3k`" ) self.load_text = text_mode self.use_nlp = use_nlp self.newspaper_kwargs = newspaper_kwargs def load_data(self, urls: List[str]) -> List[Document]: """ Load data from the list of news article urls. Args: urls (List[str]): List of URLs to load news articles. Returns: List[Document]: List of documents. """ if not isinstance(urls, list) and not isinstance(urls, Generator): raise ValueError("urls must be a list or generator.") documents = [] for url in urls: from newspaper import Article try: article = Article(url, **self.newspaper_kwargs) article.download() article.parse() if self.use_nlp: article.nlp() except Exception as e: logger.error(f"Error fetching or processing {url}, exception: {e}") continue metadata = { "title": getattr(article, "title", ""), "link": getattr(article, "url", getattr(article, "canonical_link", "")), "authors": getattr(article, "authors", []), "language": getattr(article, "meta_lang", ""), "description": getattr(article, "meta_description", ""), "publish_date": getattr(article, "publish_date", ""), } if self.load_text: content = article.text else: content = article.html if self.use_nlp: metadata["keywords"] = getattr(article, "keywords", []) metadata["summary"] = getattr(article, "summary", "") documents.append(Document(text=content, metadata=metadata)) return documents if __name__ == "__main__": reader = NewsArticleReader() article = reader.load_data(["https://www.bbc.com/news/world-us-canada-56797998"]) print(article)
"""News article reader using Newspaper.""" import logging from importlib.util import find_spec from typing import Any, Generator, List from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document logger = logging.getLogger(__name__) class NewsArticleReader(BaseReader): """ Simple news article reader. Reads news articles from the web and parses them using the `newspaper` library. Args: text_mode (bool): Whether to load a text version or HTML version of the content (default=True). use_nlp (bool): Whether to use NLP to extract additional summary and keywords (default=True). newspaper_kwargs: Additional keyword arguments to pass to newspaper.Article. See https://newspaper.readthedocs.io/en/latest/user_guide/quickstart.html#article """ def __init__( self, text_mode: bool = True, use_nlp: bool = True, **newspaper_kwargs: Any ) -> None: """Initialize with parameters.""" if find_spec("newspaper") is None: raise ImportError( "`newspaper` package not found, please run `pip install newspaper3k`" ) self.load_text = text_mode self.use_nlp = use_nlp self.newspaper_kwargs = newspaper_kwargs def load_data(self, urls: List[str]) -> List[Document]: """ Load data from the list of news article urls. Args: urls (List[str]): List of URLs to load news articles. Returns: List[Document]: List of documents. """ if not isinstance(urls, list) and not isinstance(urls, Generator): raise ValueError("urls must be a list or generator.") documents = [] for url in urls: from newspaper import Article try: article = Article(url, **self.newspaper_kwargs) article.download() article.parse() if self.use_nlp: article.nlp() except Exception as e: logger.error(f"Error fetching or processing {url}, exception: {e}") continue metadata = { "title": getattr(article, "title", ""), "link": getattr(article, "url", getattr(article, "canonical_link", "")), "authors": getattr(article, "authors", []), "language": getattr(article, "meta_lang", ""), "description": getattr(article, "meta_description", ""), "publish_date": getattr(article, "publish_date", ""), } if self.load_text: content = article.text else: content = article.html if self.use_nlp: metadata["keywords"] = getattr(article, "keywords", []) metadata["summary"] = getattr(article, "summary", "") documents.append(Document(text=content, metadata=metadata)) return documents if __name__ == "__main__": reader = NewsArticleReader() article = reader.load_data(["https://www.bbc.com/news/world-us-canada-56797998"]) print(article)
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.ndarray import NdArray MAX_INT_16 = 2**15 @_register_proto(proto_type_name='image_ndarray') class ImageNdArray(AbstractImageTensor, NdArray): """ Subclass of NdArray, to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to image bytes which are optimized to send over the wire --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import ImageBytes, ImageNdArray, ImageUrl class MyImageDoc(BaseDoc): title: str tensor: Optional[ImageNdArray] url: Optional[ImageUrl] bytes: Optional[ImageBytes] # from url doc = MyImageDoc( title='my_second_audio_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() ``` --- """ ...
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.ndarray import NdArray MAX_INT_16 = 2**15 @_register_proto(proto_type_name='image_ndarray') class ImageNdArray(AbstractImageTensor, NdArray): """ Subclass of NdArray, to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to image bytes which are optimized to send over the wire --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import ImageNdArray, ImageUrl class MyImageDoc(BaseDoc): title: str tensor: Optional[ImageNdArray] url: Optional[ImageUrl] bytes: Optional[bytes] # from url doc = MyImageDoc( title='my_second_audio_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() ``` --- """ ...
import logging import sentry_sdk from sentry_sdk.integrations.anthropic import AnthropicIntegration from sentry_sdk.integrations.logging import LoggingIntegration from backend.util.settings import Settings def sentry_init(): sentry_dsn = Settings().secrets.sentry_dsn sentry_sdk.init( dsn=sentry_dsn, traces_sample_rate=1.0, profiles_sample_rate=1.0, environment=f"app:{Settings().config.app_env.value}-behave:{Settings().config.behave_as.value}", _experiments={"enable_logs": True}, integrations=[ LoggingIntegration(sentry_logs_level=logging.INFO), AnthropicIntegration( include_prompts=False, ), ], ) def sentry_alert(error: Exception): sentry_sdk.capture_exception(error) sentry_sdk.flush()
import logging import sentry_sdk from sentry_sdk.integrations.anthropic import AnthropicIntegration from sentry_sdk.integrations.logging import LoggingIntegration from backend.util.settings import Settings def sentry_init(): sentry_dsn = Settings().secrets.sentry_dsn sentry_sdk.init( dsn=sentry_dsn, traces_sample_rate=1.0, profiles_sample_rate=1.0, environment=f"app:{Settings().config.app_env.value}-behave:{Settings().config.behave_as.value}", _experiments={"enable_logs": True}, integrations=[ LoggingIntegration(sentry_logs_level=logging.INFO), AnthropicIntegration( include_prompts=False, ), ], )
""" Experimental Object Oriented Distributed API - torch.distributed._dist2 ======================================================================= This is an experimental new API for PyTorch Distributed. This is actively in development and subject to change or deletion entirely. This is intended as a proving ground for more flexible and object oriented distributed APIs. """ from collections.abc import Generator from contextlib import contextmanager from datetime import timedelta from typing import Protocol, Union import torch from torch._C._distributed_c10d import ( _current_process_group, _set_process_group, Backend, ProcessGroup, ReduceOp, Store, ) from torch.distributed.rendezvous import rendezvous _BACKENDS: dict[str, "ProcessGroupFactory"] = {} __all__ = [ "ProcessGroup", "ReduceOp", "ProcessGroupFactory", "register_backend", "new_group", "current_process_group", "process_group", ] class ProcessGroupFactory(Protocol): """Protocol for process group factories.""" def __call__( self, store: Store, rank: int, world_size: int, timeout: timedelta, device: torch.device, pg_options: Backend.Options, ) -> ProcessGroup: ... def register_backend(name: str, func: ProcessGroupFactory) -> None: """ Register a new process group backend. Args: name: The name of the backend. func: The function to create the process group. """ if name in _BACKENDS: raise ValueError(f"Backend {name} already registered") _BACKENDS[name] = func def _gloo_factory( store: Store, rank: int, world_size: int, timeout: timedelta, device: torch.device, pg_options: Backend.Options, ) -> ProcessGroup: from torch.distributed import ProcessGroupGloo assert pg_options is None, "Gloo backend does not support options" backend_class = ProcessGroupGloo(store, rank, world_size, timeout) backend_class._set_sequence_number_for_group() pg = ProcessGroup(store, rank, world_size) pg._set_default_backend(ProcessGroup.BackendType.GLOO) # register devices pg._register_backend(device, ProcessGroup.BackendType.GLOO, backend_class) pg._register_backend( torch.device("cpu"), ProcessGroup.BackendType.GLOO, backend_class ) if torch.cuda.is_available(): pg._register_backend( torch.device("cuda"), ProcessGroup.BackendType.GLOO, backend_class ) return pg def _nccl_factory( store: Store, rank: int, world_size: int, timeout: timedelta, device: torch.device, pg_options: Backend.Options, ) -> ProcessGroup: from torch.distributed import ProcessGroupNCCL assert isinstance(pg_options, ProcessGroupNCCL.Options) pg_options._timeout = timeout backend_class = ProcessGroupNCCL(store, rank, world_size, pg_options) backend_class._set_sequence_number_for_group() backend_class.eager_connect_single_device(device) pg = ProcessGroup(store, rank, world_size) pg._set_default_backend(ProcessGroup.BackendType.NCCL) pg._register_backend(device, ProcessGroup.BackendType.NCCL, backend_class) return pg register_backend("gloo", _gloo_factory) register_backend("nccl", _nccl_factory) def new_group( backend: str, timeout: timedelta, device: Union[str, torch.device], pg_options: Backend.Options, ) -> ProcessGroup: """ Create a new process group with the given backend and options. This group is independent and will not be globally registered and thus not usable via the standard torch.distributed.* APIs. Args: backend: The backend to use for the process group. timeout: The timeout for collective operations. device: The device to use for the process group. pg_options: The options to use for the process group. Returns: A new process group. """ if backend not in _BACKENDS: raise ValueError(f"Backend {backend} not registered") device = torch.device(device) store, rank, world_size = next(iter(rendezvous("env://"))) store.set_timeout(timeout) return _BACKENDS[backend](store, rank, world_size, timeout, device, pg_options) def current_process_group() -> ProcessGroup: """ Get the current process group. Thread local method. Returns: The current process group. """ return _current_process_group() @contextmanager def process_group(pg: ProcessGroup) -> Generator[None, None, None]: """ Context manager for process groups. Thread local method. Args: pg: The process group to use. """ prev_pg = current_process_group() _set_process_group(pg) try: yield finally: _set_process_group(prev_pg)
""" Experimental Object Oriented Distributed API - torch.distributed._dist2 ======================================================================= This is an experimental new API for PyTorch Distributed. This is actively in development and subject to change or deletion entirely. This is intended as a proving ground for more flexible and object oriented distributed APIs. """ from collections.abc import Generator from contextlib import contextmanager from datetime import timedelta from typing import Protocol, Union import torch from torch._C._distributed_c10d import ( _current_process_group, _set_process_group, Backend, ProcessGroup, Store, ) from torch.distributed.rendezvous import rendezvous _BACKENDS: dict[str, "ProcessGroupFactory"] = {} class ProcessGroupFactory(Protocol): """Protocol for process group factories.""" def __call__( self, store: Store, rank: int, world_size: int, timeout: timedelta, device: torch.device, pg_options: Backend.Options, ) -> ProcessGroup: ... def register_backend(name: str, func: ProcessGroupFactory) -> None: """ Register a new process group backend. Args: name: The name of the backend. func: The function to create the process group. """ if name in _BACKENDS: raise ValueError(f"Backend {name} already registered") _BACKENDS[name] = func def _gloo_factory( store: Store, rank: int, world_size: int, timeout: timedelta, device: torch.device, pg_options: Backend.Options, ) -> ProcessGroup: from torch.distributed import ProcessGroupGloo assert pg_options is None, "Gloo backend does not support options" backend_class = ProcessGroupGloo(store, rank, world_size, timeout) backend_class._set_sequence_number_for_group() pg = ProcessGroup(store, rank, world_size) pg._set_default_backend(ProcessGroup.BackendType.GLOO) # register devices pg._register_backend(device, ProcessGroup.BackendType.GLOO, backend_class) pg._register_backend( torch.device("cpu"), ProcessGroup.BackendType.GLOO, backend_class ) if torch.cuda.is_available(): pg._register_backend( torch.device("cuda"), ProcessGroup.BackendType.GLOO, backend_class ) return pg def _nccl_factory( store: Store, rank: int, world_size: int, timeout: timedelta, device: torch.device, pg_options: Backend.Options, ) -> ProcessGroup: from torch.distributed import ProcessGroupNCCL assert isinstance(pg_options, ProcessGroupNCCL.Options) pg_options._timeout = timeout backend_class = ProcessGroupNCCL(store, rank, world_size, pg_options) backend_class._set_sequence_number_for_group() backend_class.eager_connect_single_device(device) pg = ProcessGroup(store, rank, world_size) pg._set_default_backend(ProcessGroup.BackendType.NCCL) pg._register_backend(device, ProcessGroup.BackendType.NCCL, backend_class) return pg register_backend("gloo", _gloo_factory) register_backend("nccl", _nccl_factory) def new_group( backend: str, timeout: timedelta, device: Union[str, torch.device], pg_options: Backend.Options, ) -> ProcessGroup: """ Create a new process group with the given backend and options. This group is independent and will not be globally registered and thus not usable via the standard torch.distributed.* APIs. Args: backend: The backend to use for the process group. timeout: The timeout for collective operations. device: The device to use for the process group. pg_options: The options to use for the process group. Returns: A new process group. """ if backend not in _BACKENDS: raise ValueError(f"Backend {backend} not registered") device = torch.device(device) store, rank, world_size = next(iter(rendezvous("env://"))) store.set_timeout(timeout) return _BACKENDS[backend](store, rank, world_size, timeout, device, pg_options) def current_process_group() -> ProcessGroup: """ Get the current process group. Thread local method. Returns: The current process group. """ return _current_process_group() @contextmanager def process_group(pg: ProcessGroup) -> Generator[None, None, None]: """ Context manager for process groups. Thread local method. Args: pg: The process group to use. """ prev_pg = current_process_group() _set_process_group(pg) try: yield finally: _set_process_group(prev_pg)
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseEmbeddingSimilarityEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") model.similarity_fn_name = "cosine" # even though the model is trained with dot, we need to set it to cosine for evaluation as the score in the dataset is cosine similarity # Load the STSB dataset (https://huggingface.co/datasets/sentence-transformers/stsb) eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") # Initialize the evaluator dev_evaluator = SparseEmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], name="sts_dev", ) results = dev_evaluator(model) """ Model Sparsity Stats: num_rows: 1500, num_cols: 30522, row_non_zero_mean: 80.34333038330078, row_sparsity_mean: 0.9973676204681396 Model Sparsity Stats: num_rows: 1500, num_cols: 30522, row_non_zero_mean: 81.78266906738281, row_sparsity_mean: 0.9973204731941223 EmbeddingSimilarityEvaluator: Evaluating the model on the sts_dev dataset: Cosine-Similarity : Pearson: 0.8430 Spearman: 0.8368 """ # Print the results print(f"Primary metric: {dev_evaluator.primary_metric}") # => Primary metric: sts_dev_spearman_cosine print(f"Primary metric value: {results[dev_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8368
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseEmbeddingSimilarityEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") model.similarity_fn_name = "cosine" # even though the model is trained with dot, we need to set it to cosine for evaluation as the score in the dataset is cosine similarity # Load the STSB dataset (https://huggingface.co/datasets/sentence-transformers/stsb) eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") # Initialize the evaluator dev_evaluator = SparseEmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], name="sts_dev", ) results = dev_evaluator(model) """ EmbeddingSimilarityEvaluator: Evaluating the model on the sts_dev dataset: Cosine-Similarity : Pearson: 0.8430 Spearman: 0.8368 """ # Print the results print(f"Primary metric: {dev_evaluator.primary_metric}") # => Primary metric: sts_dev_spearman_cosine print(f"Primary metric value: {results[dev_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8368
import logging from autogpt_libs.auth.middleware import auth_middleware from fastapi import APIRouter, Depends, HTTPException from backend.server.utils import get_user_id from .models import ApiResponse, ChatRequest from .service import OttoService logger = logging.getLogger(__name__) router = APIRouter() @router.post( "/ask", response_model=ApiResponse, dependencies=[Depends(auth_middleware)], summary="Proxy Otto Chat Request", ) async def proxy_otto_request( request: ChatRequest, user_id: str = Depends(get_user_id) ) -> ApiResponse: """ Proxy requests to Otto API while adding necessary security headers and logging. Requires an authenticated user. """ logger.debug("Forwarding request to Otto for user %s", user_id) try: return await OttoService.ask(request, user_id) except Exception as e: logger.exception("Otto request failed for user %s: %s", user_id, e) raise HTTPException( status_code=502, detail={"message": str(e), "hint": "Check Otto service status."}, )
import logging from autogpt_libs.auth.middleware import auth_middleware from fastapi import APIRouter, Depends, HTTPException from backend.server.utils import get_user_id from .models import ApiResponse, ChatRequest from .service import OttoService logger = logging.getLogger(__name__) router = APIRouter() @router.post( "/ask", response_model=ApiResponse, dependencies=[Depends(auth_middleware)] ) async def proxy_otto_request( request: ChatRequest, user_id: str = Depends(get_user_id) ) -> ApiResponse: """ Proxy requests to Otto API while adding necessary security headers and logging. Requires an authenticated user. """ logger.debug("Forwarding request to Otto for user %s", user_id) try: return await OttoService.ask(request, user_id) except Exception as e: logger.exception("Otto request failed for user %s: %s", user_id, e) raise HTTPException( status_code=502, detail={"message": str(e), "hint": "Check Otto service status."}, )
"""Tool for the Google search API.""" from typing import Optional from langchain_core._api.deprecation import deprecated from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from langchain_community.utilities.google_search import GoogleSearchAPIWrapper @deprecated( since="0.0.33", removal="1.0", alternative_import="langchain_google_community.GoogleSearchRun", ) class GoogleSearchRun(BaseTool): """Tool that queries the Google search API.""" name: str = "google_search" description: str = ( "A wrapper around Google Search. " "Useful for when you need to answer questions about current events. " "Input should be a search query." ) api_wrapper: GoogleSearchAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.api_wrapper.run(query) @deprecated( since="0.0.33", removal="1.0", alternative_import="langchain_google_community.GoogleSearchResults", ) class GoogleSearchResults(BaseTool): """Tool that queries the Google Search API and gets back json.""" name: str = "google_search_results_json" description: str = ( "A wrapper around Google Search. " "Useful for when you need to answer questions about current events. " "Input should be a search query. Output is a JSON array of the query results" ) num_results: int = 4 api_wrapper: GoogleSearchAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return str(self.api_wrapper.results(query, self.num_results))
"""Tool for the Google search API.""" from typing import Optional from langchain_core._api.deprecation import deprecated from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from langchain_community.utilities.google_search import GoogleSearchAPIWrapper @deprecated( since="0.0.33", removal="1.0", alternative_import="langchain_google_community.GoogleSearchRun", ) class GoogleSearchRun(BaseTool): # type: ignore[override] """Tool that queries the Google search API.""" name: str = "google_search" description: str = ( "A wrapper around Google Search. " "Useful for when you need to answer questions about current events. " "Input should be a search query." ) api_wrapper: GoogleSearchAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.api_wrapper.run(query) @deprecated( since="0.0.33", removal="1.0", alternative_import="langchain_google_community.GoogleSearchResults", ) class GoogleSearchResults(BaseTool): # type: ignore[override] """Tool that queries the Google Search API and gets back json.""" name: str = "google_search_results_json" description: str = ( "A wrapper around Google Search. " "Useful for when you need to answer questions about current events. " "Input should be a search query. Output is a JSON array of the query results" ) num_results: int = 4 api_wrapper: GoogleSearchAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return str(self.api_wrapper.results(query, self.num_results))
import glob import os import pytest from jina import Document, Flow from jina.constants import __uptime__, __windows__ from jina.enums import LogVerbosity from jina.helper import colored from jina.logging.logger import JinaLogger cur_dir = os.path.dirname(os.path.abspath(__file__)) def log(logger: JinaLogger): logger.debug('this is test debug message') logger.info('this is test info message') logger.success('this is test success message') logger.warning('this is test warning message') logger.error('this is test error message') logger.critical('this is test critical message') def test_color_log(): with JinaLogger('test_logger') as logger: logger.debug('this is test debug message') logger.info('this is test info message') logger.info(f'this is test {colored("color", "red")} message') logger.success('this is test success message') logger.warning('this is test warning message') logger.error('this is test error message') logger.critical('this is test critical message') def test_logging_syslog(): with JinaLogger( 'test_logger', log_config=os.path.join(cur_dir, 'yaml/syslog.yml') ) as logger: log(logger) assert len(logger.handlers) == 0 if __windows__ else 1 def test_logging_default(): import logging import sys with JinaLogger('test_logger') as logger: log(logger) assert len(logger.handlers) == 1 # test whether suppress root handlers logging.root.handlers.append(logging.StreamHandler(sys.stdout)) with JinaLogger('test_logger', suppress_root_logging=False) as logger: log(logger) assert len(logging.root.handlers) > 0 def test_logging_level_yaml(monkeypatch): monkeypatch.delenv('JINA_LOG_LEVEL', raising=True) # ignore global env fn = os.path.join(cur_dir, f'jina-{__uptime__}.log') with JinaLogger( 'test_file_logger', log_config=os.path.join(cur_dir, 'yaml/file.yml') ) as file_logger: if os.path.exists(fn): os.remove(fn) log(file_logger) assert file_logger.logger.level == LogVerbosity.from_string('INFO') for f in glob.glob(cur_dir + '/*.log'): os.remove(f) def test_logging_file(monkeypatch): monkeypatch.delenv('JINA_LOG_LEVEL', raising=True) # ignore global env uptime = __uptime__.replace(':', '.') if __windows__ else __uptime__ fn = os.path.join(cur_dir, f'jina-{uptime}.log') with JinaLogger( 'test_file_logger', log_config=os.path.join(cur_dir, 'yaml/file.yml') ) as file_logger: log(file_logger) assert os.path.exists(fn) with open(fn) as fp: assert len(fp.readlines()) == 5 for f in glob.glob(cur_dir + '/*.log'): os.remove(f) @pytest.mark.slow def test_logging_quiet(caplog): # no way to capture logs in multiprocessing # see discussion here: https://github.com/pytest-dev/pytest/issues/3037#issuecomment-745050393 f = Flow().add(quiet=True).add() with f: f.index(Document())
import glob import os import pytest from jina import Document, Flow from jina.constants import __uptime__, __windows__ from jina.enums import LogVerbosity from jina.helper import colored from jina.logging.logger import JinaLogger cur_dir = os.path.dirname(os.path.abspath(__file__)) def log(logger: JinaLogger): logger.debug('this is test debug message') logger.info('this is test info message') logger.success('this is test success message') logger.warning('this is test warning message') logger.error('this is test error message') logger.critical('this is test critical message') def test_color_log(): with JinaLogger('test_logger') as logger: logger.debug('this is test debug message') logger.info('this is test info message') logger.info(f'this is test {colored("color", "red")} message') logger.success('this is test success message') logger.warning('this is test warning message') logger.error('this is test error message') logger.critical('this is test critical message') def test_logging_syslog(): with JinaLogger( 'test_logger', log_config=os.path.join(cur_dir, 'yaml/syslog.yml') ) as logger: log(logger) assert len(logger.handlers) == 0 if __windows__ else 1 def test_logging_default(): import logging import sys with JinaLogger('test_logger') as logger: log(logger) assert len(logger.handlers) == 1 # test whether suppress root handlers logging.root.handlers.append(logging.StreamHandler(sys.stdout)) with JinaLogger('test_logger', suppress_root_logging=False) as logger: log(logger) assert len(logging.root.handlers) > 0 with JinaLogger('test_logger') as logger: log(logger) assert len(logging.root.handlers) == 0 def test_logging_level_yaml(monkeypatch): monkeypatch.delenv('JINA_LOG_LEVEL', raising=True) # ignore global env fn = os.path.join(cur_dir, f'jina-{__uptime__}.log') with JinaLogger( 'test_file_logger', log_config=os.path.join(cur_dir, 'yaml/file.yml') ) as file_logger: if os.path.exists(fn): os.remove(fn) log(file_logger) assert file_logger.logger.level == LogVerbosity.from_string('INFO') for f in glob.glob(cur_dir + '/*.log'): os.remove(f) def test_logging_file(monkeypatch): monkeypatch.delenv('JINA_LOG_LEVEL', raising=True) # ignore global env uptime = __uptime__.replace(':', '.') if __windows__ else __uptime__ fn = os.path.join(cur_dir, f'jina-{uptime}.log') with JinaLogger( 'test_file_logger', log_config=os.path.join(cur_dir, 'yaml/file.yml') ) as file_logger: log(file_logger) assert os.path.exists(fn) with open(fn) as fp: assert len(fp.readlines()) == 5 for f in glob.glob(cur_dir + '/*.log'): os.remove(f) @pytest.mark.slow def test_logging_quiet(caplog): # no way to capture logs in multiprocessing # see discussion here: https://github.com/pytest-dev/pytest/issues/3037#issuecomment-745050393 f = Flow().add(quiet=True).add() with f: f.index(Document())
from typing import Optional, Union, Callable, Tuple, TYPE_CHECKING, Dict if TYPE_CHECKING: import numpy as np from docarray.typing import ArrayType from docarray import DocumentArray class MatchMixin: """A mixin that provides match functionality to DocumentArrays""" def match( self, darray: 'DocumentArray', metric: Union[ str, Callable[['ArrayType', 'ArrayType'], 'np.ndarray'] ] = 'cosine', limit: Optional[Union[int, float]] = 20, normalization: Optional[Tuple[float, float]] = None, metric_name: Optional[str] = None, batch_size: Optional[int] = None, exclude_self: bool = False, filter: Optional[Dict] = None, only_id: bool = False, use_scipy: bool = False, device: str = 'cpu', num_worker: Optional[int] = 1, on: Optional[str] = None, **kwargs, ) -> None: """Compute embedding based nearest neighbour in `another` for each Document in `self`, and store results in `matches`. .. note:: 'cosine', 'euclidean', 'sqeuclidean' are supported natively without extra dependency. You can use other distance metric provided by ``scipy``, such as `braycurtis`, `canberra`, `chebyshev`, `cityblock`, `correlation`, `cosine`, `dice`, `euclidean`, `hamming`, `jaccard`, `jensenshannon`, `kulsinski`, `mahalanobis`, `matching`, `minkowski`, `rogerstanimoto`, `russellrao`, `seuclidean`, `sokalmichener`, `sokalsneath`, `sqeuclidean`, `wminkowski`, `yule`. To use scipy metric, please set ``use_scipy=True``. - To make all matches values in [0, 1], use ``dA.match(dB, normalization=(0, 1))`` - To invert the distance as score and make all values in range [0, 1], use ``dA.match(dB, normalization=(1, 0))``. Note, how ``normalization`` differs from the previous. - If a custom metric distance is provided. Make sure that it returns scores as distances and not similarity, meaning the smaller the better. :param darray: the other DocumentArray to match against :param metric: the distance metric :param limit: the maximum number of matches, when not given defaults to 20. :param normalization: a tuple [a, b] to be used with min-max normalization, the min distance will be rescaled to `a`, the max distance will be rescaled to `b` all values will be rescaled into range `[a, b]`. :param metric_name: if provided, then match result will be marked with this string. :param batch_size: if provided, then ``darray`` is loaded in batches, where each of them is at most ``batch_size`` elements. When `darray` is big, this can significantly speedup the computation. :param exclude_self: if set, Documents in ``darray`` with same ``id`` as the left-hand values will not be considered as matches. :param filter: filter query used for pre-filtering :param only_id: if set, then returning matches will only contain ``id`` :param use_scipy: if set, use ``scipy`` as the computation backend. Note, ``scipy`` does not support distance on sparse matrix. :param device: the computational device for ``.match()``, can be either `cpu` or `cuda`. :param num_worker: the number of parallel workers. If not given, then the number of CPUs in the system will be used. .. note:: This argument is only effective when ``batch_size`` is set. :param on: specifies a subindex to search on. If set, the returned DocumentArray will be retrieved from the given subindex. :param kwargs: other kwargs. """ if not (self and darray): return for d in self: d.matches.clear() match_docs = darray.find( self, metric=metric, limit=limit, normalization=normalization, metric_name=metric_name, batch_size=batch_size, exclude_self=exclude_self, filter=filter, only_id=only_id, use_scipy=use_scipy, device=device, num_worker=num_worker, on=on, **kwargs, ) if not isinstance(match_docs, list): match_docs = [match_docs] for m, d in zip(match_docs, self): d.matches = m
from typing import Optional, Union, Callable, Tuple, TYPE_CHECKING, Dict if TYPE_CHECKING: import numpy as np from docarray.typing import ArrayType from docarray import DocumentArray class MatchMixin: """A mixin that provides match functionality to DocumentArrays""" def match( self, darray: 'DocumentArray', metric: Union[ str, Callable[['ArrayType', 'ArrayType'], 'np.ndarray'] ] = 'cosine', limit: Optional[Union[int, float]] = 20, normalization: Optional[Tuple[float, float]] = None, metric_name: Optional[str] = None, batch_size: Optional[int] = None, exclude_self: bool = False, filter: Optional[Dict] = None, only_id: bool = False, use_scipy: bool = False, device: str = 'cpu', num_worker: Optional[int] = 1, **kwargs, ) -> None: """Compute embedding based nearest neighbour in `another` for each Document in `self`, and store results in `matches`. .. note:: 'cosine', 'euclidean', 'sqeuclidean' are supported natively without extra dependency. You can use other distance metric provided by ``scipy``, such as `braycurtis`, `canberra`, `chebyshev`, `cityblock`, `correlation`, `cosine`, `dice`, `euclidean`, `hamming`, `jaccard`, `jensenshannon`, `kulsinski`, `mahalanobis`, `matching`, `minkowski`, `rogerstanimoto`, `russellrao`, `seuclidean`, `sokalmichener`, `sokalsneath`, `sqeuclidean`, `wminkowski`, `yule`. To use scipy metric, please set ``use_scipy=True``. - To make all matches values in [0, 1], use ``dA.match(dB, normalization=(0, 1))`` - To invert the distance as score and make all values in range [0, 1], use ``dA.match(dB, normalization=(1, 0))``. Note, how ``normalization`` differs from the previous. - If a custom metric distance is provided. Make sure that it returns scores as distances and not similarity, meaning the smaller the better. :param darray: the other DocumentArray to match against :param metric: the distance metric :param limit: the maximum number of matches, when not given defaults to 20. :param normalization: a tuple [a, b] to be used with min-max normalization, the min distance will be rescaled to `a`, the max distance will be rescaled to `b` all values will be rescaled into range `[a, b]`. :param metric_name: if provided, then match result will be marked with this string. :param batch_size: if provided, then ``darray`` is loaded in batches, where each of them is at most ``batch_size`` elements. When `darray` is big, this can significantly speedup the computation. :param exclude_self: if set, Documents in ``darray`` with same ``id`` as the left-hand values will not be considered as matches. :param filter: filter query used for pre-filtering :param only_id: if set, then returning matches will only contain ``id`` :param use_scipy: if set, use ``scipy`` as the computation backend. Note, ``scipy`` does not support distance on sparse matrix. :param device: the computational device for ``.match()``, can be either `cpu` or `cuda`. :param num_worker: the number of parallel workers. If not given, then the number of CPUs in the system will be used. .. note:: This argument is only effective when ``batch_size`` is set. :param kwargs: other kwargs. """ if not (self and darray): return for d in self: d.matches.clear() match_docs = darray.find( self, metric=metric, limit=limit, normalization=normalization, metric_name=metric_name, batch_size=batch_size, exclude_self=exclude_self, filter=filter, only_id=only_id, use_scipy=use_scipy, device=device, num_worker=num_worker, ) if not isinstance(match_docs, list): match_docs = [match_docs] for m, d in zip(match_docs, self): d.matches = m
import numpy as np import pytest import torch from docarray.base_document import BaseDocument from docarray.base_document.io.json import orjson_dumps from docarray.typing import AnyUrl, NdArray, TorchTensor @pytest.fixture() def doc_and_class(): class Mmdoc(BaseDocument): img: NdArray url: AnyUrl txt: str torch_tensor: TorchTensor bytes_: bytes doc = Mmdoc( img=np.zeros((10)), url='http://doccaray.io', txt='hello', torch_tensor=torch.zeros(10), bytes_=b'hello', ) return doc, Mmdoc def test_to_json(doc_and_class): doc, _ = doc_and_class doc.json() def test_from_json(doc_and_class): doc, Mmdoc = doc_and_class new_doc = Mmdoc.parse_raw(doc.json()) for (field, field2) in zip(doc.dict().keys(), new_doc.dict().keys()): if field in ['torch_tensor', 'img']: assert (getattr(doc, field) == getattr(doc, field2)).all() else: assert getattr(doc, field) == getattr(doc, field2) def test_to_dict_to_json(doc_and_class): doc, Mmdoc = doc_and_class new_doc = Mmdoc.parse_raw(orjson_dumps(doc.dict())) for (field, field2) in zip(doc.dict().keys(), new_doc.dict().keys()): if field in ['torch_tensor', 'img']: assert (getattr(doc, field) == getattr(doc, field2)).all() else: assert getattr(doc, field) == getattr(doc, field2)
import numpy as np import pytest import torch from docarray.base_document import BaseDocument from docarray.base_document.io.json import orjson_dumps from docarray.typing import AnyUrl, NdArray, TorchTensor @pytest.fixture() def doc_and_class(): class Mmdoc(BaseDocument): img: NdArray url: AnyUrl txt: str torch_tensor: TorchTensor doc = Mmdoc( img=np.zeros((10)), url='http://doccaray.io', txt='hello', torch_tensor=torch.zeros(10), ) return doc, Mmdoc def test_to_json(doc_and_class): doc, _ = doc_and_class doc.json() def test_from_json(doc_and_class): doc, Mmdoc = doc_and_class new_doc = Mmdoc.parse_raw(doc.json()) for (field, field2) in zip(doc.dict().keys(), new_doc.dict().keys()): if field in ['torch_tensor', 'img']: assert (getattr(doc, field) == getattr(doc, field2)).all() else: assert getattr(doc, field) == getattr(doc, field2) def test_to_dict_to_json(doc_and_class): doc, Mmdoc = doc_and_class new_doc = Mmdoc.parse_raw(orjson_dumps(doc.dict())) for (field, field2) in zip(doc.dict().keys(), new_doc.dict().keys()): if field in ['torch_tensor', 'img']: assert (getattr(doc, field) == getattr(doc, field2)).all() else: assert getattr(doc, field) == getattr(doc, field2)
import pathlib from collections.abc import Iterator from typing import Any, BinaryIO, Union from torchdata.datapipes.iter import Filter, IterDataPipe, Mapper, Zipper from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, path_comparator, read_categories_file, read_mat, ) from torchvision.prototype.tv_tensors import Label from torchvision.tv_tensors import BoundingBoxes from .._api import register_dataset, register_info class StanfordCarsLabelReader(IterDataPipe[tuple[int, int, int, int, int, str]]): def __init__(self, datapipe: IterDataPipe[dict[str, Any]]) -> None: self.datapipe = datapipe def __iter__(self) -> Iterator[tuple[int, int, int, int, int, str]]: for _, file in self.datapipe: data = read_mat(file, squeeze_me=True) for ann in data["annotations"]: yield tuple(ann) # type: ignore[misc] NAME = "stanford-cars" @register_info(NAME) def _info() -> dict[str, Any]: return dict(categories=read_categories_file(NAME)) @register_dataset(NAME) class StanfordCars(Dataset): """Stanford Cars dataset. homepage="https://ai.stanford.edu/~jkrause/cars/car_dataset.html", dependencies=scipy """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check, dependencies=("scipy",)) _URL_ROOT = "https://ai.stanford.edu/~jkrause/" _URLS = { "train": f"{_URL_ROOT}car196/cars_train.tgz", "test": f"{_URL_ROOT}car196/cars_test.tgz", "cars_test_annos_withlabels": f"{_URL_ROOT}car196/cars_test_annos_withlabels.mat", "car_devkit": f"{_URL_ROOT}cars/car_devkit.tgz", } _CHECKSUM = { "train": "b97deb463af7d58b6bfaa18b2a4de9829f0f79e8ce663dfa9261bf7810e9accd", "test": "bffea656d6f425cba3c91c6d83336e4c5f86c6cffd8975b0f375d3a10da8e243", "cars_test_annos_withlabels": "790f75be8ea34eeded134cc559332baf23e30e91367e9ddca97d26ed9b895f05", "car_devkit": "512b227b30e2f0a8aab9e09485786ab4479582073a144998da74d64b801fd288", } def _resources(self) -> list[OnlineResource]: resources: list[OnlineResource] = [HttpResource(self._URLS[self._split], sha256=self._CHECKSUM[self._split])] if self._split == "train": resources.append(HttpResource(url=self._URLS["car_devkit"], sha256=self._CHECKSUM["car_devkit"])) else: resources.append( HttpResource( self._URLS["cars_test_annos_withlabels"], sha256=self._CHECKSUM["cars_test_annos_withlabels"] ) ) return resources def _prepare_sample(self, data: tuple[tuple[str, BinaryIO], tuple[int, int, int, int, int, str]]) -> dict[str, Any]: image, target = data path, buffer = image image = EncodedImage.from_file(buffer) return dict( path=path, image=image, label=Label(target[4] - 1, categories=self._categories), bounding_boxes=BoundingBoxes(target[:4], format="xyxy", spatial_size=image.spatial_size), ) def _datapipe(self, resource_dps: list[IterDataPipe]) -> IterDataPipe[dict[str, Any]]: images_dp, targets_dp = resource_dps if self._split == "train": targets_dp = Filter(targets_dp, path_comparator("name", "cars_train_annos.mat")) targets_dp = StanfordCarsLabelReader(targets_dp) dp = Zipper(images_dp, targets_dp) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def _generate_categories(self) -> list[str]: resources = self._resources() devkit_dp = resources[1].load(self._root) meta_dp = Filter(devkit_dp, path_comparator("name", "cars_meta.mat")) _, meta_file = next(iter(meta_dp)) return list(read_mat(meta_file, squeeze_me=True)["class_names"]) def __len__(self) -> int: return 8_144 if self._split == "train" else 8_041
import pathlib from typing import Any, BinaryIO, Dict, Iterator, List, Tuple, Union from torchdata.datapipes.iter import Filter, IterDataPipe, Mapper, Zipper from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, path_comparator, read_categories_file, read_mat, ) from torchvision.prototype.tv_tensors import Label from torchvision.tv_tensors import BoundingBoxes from .._api import register_dataset, register_info class StanfordCarsLabelReader(IterDataPipe[Tuple[int, int, int, int, int, str]]): def __init__(self, datapipe: IterDataPipe[Dict[str, Any]]) -> None: self.datapipe = datapipe def __iter__(self) -> Iterator[Tuple[int, int, int, int, int, str]]: for _, file in self.datapipe: data = read_mat(file, squeeze_me=True) for ann in data["annotations"]: yield tuple(ann) # type: ignore[misc] NAME = "stanford-cars" @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=read_categories_file(NAME)) @register_dataset(NAME) class StanfordCars(Dataset): """Stanford Cars dataset. homepage="https://ai.stanford.edu/~jkrause/cars/car_dataset.html", dependencies=scipy """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check, dependencies=("scipy",)) _URL_ROOT = "https://ai.stanford.edu/~jkrause/" _URLS = { "train": f"{_URL_ROOT}car196/cars_train.tgz", "test": f"{_URL_ROOT}car196/cars_test.tgz", "cars_test_annos_withlabels": f"{_URL_ROOT}car196/cars_test_annos_withlabels.mat", "car_devkit": f"{_URL_ROOT}cars/car_devkit.tgz", } _CHECKSUM = { "train": "b97deb463af7d58b6bfaa18b2a4de9829f0f79e8ce663dfa9261bf7810e9accd", "test": "bffea656d6f425cba3c91c6d83336e4c5f86c6cffd8975b0f375d3a10da8e243", "cars_test_annos_withlabels": "790f75be8ea34eeded134cc559332baf23e30e91367e9ddca97d26ed9b895f05", "car_devkit": "512b227b30e2f0a8aab9e09485786ab4479582073a144998da74d64b801fd288", } def _resources(self) -> List[OnlineResource]: resources: List[OnlineResource] = [HttpResource(self._URLS[self._split], sha256=self._CHECKSUM[self._split])] if self._split == "train": resources.append(HttpResource(url=self._URLS["car_devkit"], sha256=self._CHECKSUM["car_devkit"])) else: resources.append( HttpResource( self._URLS["cars_test_annos_withlabels"], sha256=self._CHECKSUM["cars_test_annos_withlabels"] ) ) return resources def _prepare_sample(self, data: Tuple[Tuple[str, BinaryIO], Tuple[int, int, int, int, int, str]]) -> Dict[str, Any]: image, target = data path, buffer = image image = EncodedImage.from_file(buffer) return dict( path=path, image=image, label=Label(target[4] - 1, categories=self._categories), bounding_boxes=BoundingBoxes(target[:4], format="xyxy", spatial_size=image.spatial_size), ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: images_dp, targets_dp = resource_dps if self._split == "train": targets_dp = Filter(targets_dp, path_comparator("name", "cars_train_annos.mat")) targets_dp = StanfordCarsLabelReader(targets_dp) dp = Zipper(images_dp, targets_dp) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def _generate_categories(self) -> List[str]: resources = self._resources() devkit_dp = resources[1].load(self._root) meta_dp = Filter(devkit_dp, path_comparator("name", "cars_meta.mat")) _, meta_file = next(iter(meta_dp)) return list(read_mat(meta_file, squeeze_me=True)["class_names"]) def __len__(self) -> int: return 8_144 if self._split == "train" else 8_041
import numpy as np import pytest from absl.testing import parameterized from tensorflow import data as tf_data from keras.src import backend from keras.src import layers from keras.src import ops from keras.src import testing class RandomGrayscaleTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_layer(self): self.run_layer_test( layers.RandomGrayscale, init_kwargs={ "factor": 0.5, "data_format": "channels_last", }, input_shape=(1, 2, 2, 3), supports_masking=False, expected_output_shape=(1, 2, 2, 3), ) self.run_layer_test( layers.RandomGrayscale, init_kwargs={ "factor": 0.5, "data_format": "channels_first", }, input_shape=(1, 3, 2, 2), supports_masking=False, expected_output_shape=(1, 3, 2, 2), ) @parameterized.named_parameters( ("channels_last", "channels_last"), ("channels_first", "channels_first") ) def test_grayscale_conversion(self, data_format): if data_format == "channels_last": xs = np.random.uniform(0, 255, size=(2, 4, 4, 3)).astype(np.float32) layer = layers.RandomGrayscale(factor=1.0, data_format=data_format) transformed = ops.convert_to_numpy(layer(xs)) self.assertEqual(transformed.shape[-1], 3) for img in transformed: r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2] self.assertTrue(np.allclose(r, g) and np.allclose(g, b)) else: xs = np.random.uniform(0, 255, size=(2, 3, 4, 4)).astype(np.float32) layer = layers.RandomGrayscale(factor=1.0, data_format=data_format) transformed = ops.convert_to_numpy(layer(xs)) self.assertEqual(transformed.shape[1], 3) for img in transformed: r, g, b = img[0], img[1], img[2] self.assertTrue(np.allclose(r, g) and np.allclose(g, b)) def test_invalid_factor(self): with self.assertRaises(ValueError): layers.RandomGrayscale(factor=-0.1) with self.assertRaises(ValueError): layers.RandomGrayscale(factor=1.1) def test_tf_data_compatibility(self): data_format = backend.config.image_data_format() if data_format == "channels_last": input_data = np.random.random((2, 8, 8, 3)) * 255 else: input_data = np.random.random((2, 3, 8, 8)) * 255 layer = layers.RandomGrayscale(factor=0.5, data_format=data_format) ds = tf_data.Dataset.from_tensor_slices(input_data).batch(2).map(layer) for output in ds.take(1): output_array = output.numpy() self.assertEqual(output_array.shape, input_data.shape) def test_grayscale_with_single_color_image(self): test_cases = [ # batched inputs (np.full((1, 4, 4, 3), 128, dtype=np.float32), "channels_last"), (np.full((1, 3, 4, 4), 128, dtype=np.float32), "channels_first"), # unbatched inputs (np.full((4, 4, 3), 128, dtype=np.float32), "channels_last"), (np.full((3, 4, 4), 128, dtype=np.float32), "channels_first"), ] for xs, data_format in test_cases: layer = layers.RandomGrayscale(factor=1.0, data_format=data_format) transformed = ops.convert_to_numpy(layer(xs)) # Determine if the input was batched is_batched = len(xs.shape) == 4 # If batched, select the first image from the batch for inspection. # Otherwise, use the transformed image directly. # `image_to_inspect` will always be a 3D tensor. if is_batched: image_to_inspect = transformed[0] else: image_to_inspect = transformed if data_format == "channels_last": # image_to_inspect has shape (H, W, C), # get the first channel [:, :, 0] channel_data = image_to_inspect[:, :, 0] else: # data_format == "channels_first" # image_to_inspect has shape (C, H, W), # get the first channel [0, :, :] channel_data = image_to_inspect[0, :, :] unique_vals = np.unique(channel_data) self.assertEqual(len(unique_vals), 1)
import numpy as np import pytest from absl.testing import parameterized from tensorflow import data as tf_data from keras.src import backend from keras.src import layers from keras.src import ops from keras.src import testing class RandomGrayscaleTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_layer(self): self.run_layer_test( layers.RandomGrayscale, init_kwargs={ "factor": 0.5, "data_format": "channels_last", }, input_shape=(1, 2, 2, 3), supports_masking=False, expected_output_shape=(1, 2, 2, 3), ) self.run_layer_test( layers.RandomGrayscale, init_kwargs={ "factor": 0.5, "data_format": "channels_first", }, input_shape=(1, 3, 2, 2), supports_masking=False, expected_output_shape=(1, 3, 2, 2), ) @parameterized.named_parameters( ("channels_last", "channels_last"), ("channels_first", "channels_first") ) def test_grayscale_conversion(self, data_format): if data_format == "channels_last": xs = np.random.uniform(0, 255, size=(2, 4, 4, 3)).astype(np.float32) layer = layers.RandomGrayscale(factor=1.0, data_format=data_format) transformed = ops.convert_to_numpy(layer(xs)) self.assertEqual(transformed.shape[-1], 3) for img in transformed: r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2] self.assertTrue(np.allclose(r, g) and np.allclose(g, b)) else: xs = np.random.uniform(0, 255, size=(2, 3, 4, 4)).astype(np.float32) layer = layers.RandomGrayscale(factor=1.0, data_format=data_format) transformed = ops.convert_to_numpy(layer(xs)) self.assertEqual(transformed.shape[1], 3) for img in transformed: r, g, b = img[0], img[1], img[2] self.assertTrue(np.allclose(r, g) and np.allclose(g, b)) def test_invalid_factor(self): with self.assertRaises(ValueError): layers.RandomGrayscale(factor=-0.1) with self.assertRaises(ValueError): layers.RandomGrayscale(factor=1.1) def test_tf_data_compatibility(self): data_format = backend.config.image_data_format() if data_format == "channels_last": input_data = np.random.random((2, 8, 8, 3)) * 255 else: input_data = np.random.random((2, 3, 8, 8)) * 255 layer = layers.RandomGrayscale(factor=0.5, data_format=data_format) ds = tf_data.Dataset.from_tensor_slices(input_data).batch(2).map(layer) for output in ds.take(1): output_array = output.numpy() self.assertEqual(output_array.shape, input_data.shape) def test_grayscale_with_single_color_image(self): test_cases = [ (np.full((1, 4, 4, 3), 128, dtype=np.float32), "channels_last"), (np.full((1, 3, 4, 4), 128, dtype=np.float32), "channels_first"), ] for xs, data_format in test_cases: layer = layers.RandomGrayscale(factor=1.0, data_format=data_format) transformed = ops.convert_to_numpy(layer(xs)) if data_format == "channels_last": unique_vals = np.unique(transformed[0, :, :, 0]) self.assertEqual(len(unique_vals), 1) else: unique_vals = np.unique(transformed[0, 0, :, :]) self.assertEqual(len(unique_vals), 1)
from ._source_separation_pipeline import CONVTASNET_BASE_LIBRI2MIX, SourceSeparationBundle from ._tts import ( TACOTRON2_GRIFFINLIM_CHAR_LJSPEECH, TACOTRON2_GRIFFINLIM_PHONE_LJSPEECH, TACOTRON2_WAVERNN_CHAR_LJSPEECH, TACOTRON2_WAVERNN_PHONE_LJSPEECH, Tacotron2TTSBundle, ) from ._wav2vec2.impl import ( HUBERT_ASR_LARGE, HUBERT_ASR_XLARGE, HUBERT_BASE, HUBERT_LARGE, HUBERT_XLARGE, VOXPOPULI_ASR_BASE_10K_DE, VOXPOPULI_ASR_BASE_10K_EN, VOXPOPULI_ASR_BASE_10K_ES, VOXPOPULI_ASR_BASE_10K_FR, VOXPOPULI_ASR_BASE_10K_IT, WAV2VEC2_ASR_BASE_100H, WAV2VEC2_ASR_BASE_10M, WAV2VEC2_ASR_BASE_960H, WAV2VEC2_ASR_LARGE_100H, WAV2VEC2_ASR_LARGE_10M, WAV2VEC2_ASR_LARGE_960H, WAV2VEC2_ASR_LARGE_LV60K_100H, WAV2VEC2_ASR_LARGE_LV60K_10M, WAV2VEC2_ASR_LARGE_LV60K_960H, WAV2VEC2_BASE, WAV2VEC2_LARGE, WAV2VEC2_LARGE_LV60K, WAV2VEC2_XLSR53, Wav2Vec2ASRBundle, Wav2Vec2Bundle, ) from .rnnt_pipeline import EMFORMER_RNNT_BASE_LIBRISPEECH, RNNTBundle __all__ = [ "Wav2Vec2Bundle", "Wav2Vec2ASRBundle", "WAV2VEC2_BASE", "WAV2VEC2_LARGE", "WAV2VEC2_LARGE_LV60K", "WAV2VEC2_ASR_BASE_10M", "WAV2VEC2_ASR_BASE_100H", "WAV2VEC2_ASR_BASE_960H", "WAV2VEC2_ASR_LARGE_10M", "WAV2VEC2_ASR_LARGE_100H", "WAV2VEC2_ASR_LARGE_960H", "WAV2VEC2_ASR_LARGE_LV60K_10M", "WAV2VEC2_ASR_LARGE_LV60K_100H", "WAV2VEC2_ASR_LARGE_LV60K_960H", "WAV2VEC2_XLSR53", "VOXPOPULI_ASR_BASE_10K_EN", "VOXPOPULI_ASR_BASE_10K_ES", "VOXPOPULI_ASR_BASE_10K_DE", "VOXPOPULI_ASR_BASE_10K_FR", "VOXPOPULI_ASR_BASE_10K_IT", "HUBERT_BASE", "HUBERT_LARGE", "HUBERT_XLARGE", "HUBERT_ASR_LARGE", "HUBERT_ASR_XLARGE", "Tacotron2TTSBundle", "TACOTRON2_GRIFFINLIM_CHAR_LJSPEECH", "TACOTRON2_GRIFFINLIM_PHONE_LJSPEECH", "TACOTRON2_WAVERNN_CHAR_LJSPEECH", "TACOTRON2_WAVERNN_PHONE_LJSPEECH", "RNNTBundle", "EMFORMER_RNNT_BASE_LIBRISPEECH", "SourceSeparationBundle", "CONVTASNET_BASE_LIBRI2MIX", ]
from ._tts import ( TACOTRON2_GRIFFINLIM_CHAR_LJSPEECH, TACOTRON2_GRIFFINLIM_PHONE_LJSPEECH, TACOTRON2_WAVERNN_CHAR_LJSPEECH, TACOTRON2_WAVERNN_PHONE_LJSPEECH, Tacotron2TTSBundle, ) from ._wav2vec2.impl import ( HUBERT_ASR_LARGE, HUBERT_ASR_XLARGE, HUBERT_BASE, HUBERT_LARGE, HUBERT_XLARGE, VOXPOPULI_ASR_BASE_10K_DE, VOXPOPULI_ASR_BASE_10K_EN, VOXPOPULI_ASR_BASE_10K_ES, VOXPOPULI_ASR_BASE_10K_FR, VOXPOPULI_ASR_BASE_10K_IT, WAV2VEC2_ASR_BASE_100H, WAV2VEC2_ASR_BASE_10M, WAV2VEC2_ASR_BASE_960H, WAV2VEC2_ASR_LARGE_100H, WAV2VEC2_ASR_LARGE_10M, WAV2VEC2_ASR_LARGE_960H, WAV2VEC2_ASR_LARGE_LV60K_100H, WAV2VEC2_ASR_LARGE_LV60K_10M, WAV2VEC2_ASR_LARGE_LV60K_960H, WAV2VEC2_BASE, WAV2VEC2_LARGE, WAV2VEC2_LARGE_LV60K, WAV2VEC2_XLSR53, Wav2Vec2ASRBundle, Wav2Vec2Bundle, ) from .rnnt_pipeline import EMFORMER_RNNT_BASE_LIBRISPEECH, RNNTBundle __all__ = [ "Wav2Vec2Bundle", "Wav2Vec2ASRBundle", "WAV2VEC2_BASE", "WAV2VEC2_LARGE", "WAV2VEC2_LARGE_LV60K", "WAV2VEC2_ASR_BASE_10M", "WAV2VEC2_ASR_BASE_100H", "WAV2VEC2_ASR_BASE_960H", "WAV2VEC2_ASR_LARGE_10M", "WAV2VEC2_ASR_LARGE_100H", "WAV2VEC2_ASR_LARGE_960H", "WAV2VEC2_ASR_LARGE_LV60K_10M", "WAV2VEC2_ASR_LARGE_LV60K_100H", "WAV2VEC2_ASR_LARGE_LV60K_960H", "WAV2VEC2_XLSR53", "VOXPOPULI_ASR_BASE_10K_EN", "VOXPOPULI_ASR_BASE_10K_ES", "VOXPOPULI_ASR_BASE_10K_DE", "VOXPOPULI_ASR_BASE_10K_FR", "VOXPOPULI_ASR_BASE_10K_IT", "HUBERT_BASE", "HUBERT_LARGE", "HUBERT_XLARGE", "HUBERT_ASR_LARGE", "HUBERT_ASR_XLARGE", "Tacotron2TTSBundle", "TACOTRON2_GRIFFINLIM_CHAR_LJSPEECH", "TACOTRON2_GRIFFINLIM_PHONE_LJSPEECH", "TACOTRON2_WAVERNN_CHAR_LJSPEECH", "TACOTRON2_WAVERNN_PHONE_LJSPEECH", "RNNTBundle", "EMFORMER_RNNT_BASE_LIBRISPEECH", ]
# Copyright (c) OpenMMLab. All rights reserved. from .atss import ATSS from .autoassign import AutoAssign from .base import BaseDetector from .boxinst import BoxInst from .cascade_rcnn import CascadeRCNN from .centernet import CenterNet from .condinst import CondInst from .cornernet import CornerNet from .crowddet import CrowdDet from .d2_wrapper import Detectron2Wrapper from .ddod import DDOD from .deformable_detr import DeformableDETR from .detr import DETR from .fast_rcnn import FastRCNN from .faster_rcnn import FasterRCNN from .fcos import FCOS from .fovea import FOVEA from .fsaf import FSAF from .gfl import GFL from .grid_rcnn import GridRCNN from .htc import HybridTaskCascade from .kd_one_stage import KnowledgeDistillationSingleStageDetector from .lad import LAD from .mask2former import Mask2Former from .mask_rcnn import MaskRCNN from .mask_scoring_rcnn import MaskScoringRCNN from .maskformer import MaskFormer from .nasfcos import NASFCOS from .paa import PAA from .panoptic_fpn import PanopticFPN from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor from .point_rend import PointRend from .queryinst import QueryInst from .reppoints_detector import RepPointsDetector from .retinanet import RetinaNet from .rpn import RPN from .rtmdet import RTMDet from .scnet import SCNet from .semi_base import SemiBaseDetector from .single_stage import SingleStageDetector from .soft_teacher import SoftTeacher from .solo import SOLO from .solov2 import SOLOv2 from .sparse_rcnn import SparseRCNN from .tood import TOOD from .trident_faster_rcnn import TridentFasterRCNN from .two_stage import TwoStageDetector from .vfnet import VFNet from .yolact import YOLACT from .yolo import YOLOV3 from .yolof import YOLOF from .yolox import YOLOX __all__ = [ 'ATSS', 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN', 'KnowledgeDistillationSingleStageDetector', 'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN', 'RepPointsDetector', 'FOVEA', 'FSAF', 'NASFCOS', 'PointRend', 'GFL', 'CornerNet', 'PAA', 'YOLOV3', 'YOLACT', 'VFNet', 'DETR', 'TridentFasterRCNN', 'SparseRCNN', 'SCNet', 'SOLO', 'SOLOv2', 'DeformableDETR', 'AutoAssign', 'YOLOF', 'CenterNet', 'YOLOX', 'TwoStagePanopticSegmentor', 'PanopticFPN', 'QueryInst', 'LAD', 'TOOD', 'MaskFormer', 'DDOD', 'Mask2Former', 'SemiBaseDetector', 'SoftTeacher', 'RTMDet', 'Detectron2Wrapper', 'RTMDet', 'CrowdDet', 'CondInst', 'BoxInst' ]
# Copyright (c) OpenMMLab. All rights reserved. from .atss import ATSS from .autoassign import AutoAssign from .base import BaseDetector from .cascade_rcnn import CascadeRCNN from .centernet import CenterNet from .condinst import CondInst from .cornernet import CornerNet from .crowddet import CrowdDet from .d2_wrapper import Detectron2Wrapper from .ddod import DDOD from .deformable_detr import DeformableDETR from .detr import DETR from .fast_rcnn import FastRCNN from .faster_rcnn import FasterRCNN from .fcos import FCOS from .fovea import FOVEA from .fsaf import FSAF from .gfl import GFL from .grid_rcnn import GridRCNN from .htc import HybridTaskCascade from .kd_one_stage import KnowledgeDistillationSingleStageDetector from .lad import LAD from .mask2former import Mask2Former from .mask_rcnn import MaskRCNN from .mask_scoring_rcnn import MaskScoringRCNN from .maskformer import MaskFormer from .nasfcos import NASFCOS from .paa import PAA from .panoptic_fpn import PanopticFPN from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor from .point_rend import PointRend from .queryinst import QueryInst from .reppoints_detector import RepPointsDetector from .retinanet import RetinaNet from .rpn import RPN from .rtmdet import RTMDet from .scnet import SCNet from .semi_base import SemiBaseDetector from .single_stage import SingleStageDetector from .soft_teacher import SoftTeacher from .solo import SOLO from .solov2 import SOLOv2 from .sparse_rcnn import SparseRCNN from .tood import TOOD from .trident_faster_rcnn import TridentFasterRCNN from .two_stage import TwoStageDetector from .vfnet import VFNet from .yolact import YOLACT from .yolo import YOLOV3 from .yolof import YOLOF from .yolox import YOLOX __all__ = [ 'ATSS', 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN', 'KnowledgeDistillationSingleStageDetector', 'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN', 'RepPointsDetector', 'FOVEA', 'FSAF', 'NASFCOS', 'PointRend', 'GFL', 'CornerNet', 'PAA', 'YOLOV3', 'YOLACT', 'VFNet', 'DETR', 'TridentFasterRCNN', 'SparseRCNN', 'SCNet', 'SOLO', 'SOLOv2', 'DeformableDETR', 'AutoAssign', 'YOLOF', 'CenterNet', 'YOLOX', 'TwoStagePanopticSegmentor', 'PanopticFPN', 'QueryInst', 'LAD', 'TOOD', 'MaskFormer', 'DDOD', 'Mask2Former', 'SemiBaseDetector', 'SoftTeacher', 'RTMDet', 'Detectron2Wrapper', 'RTMDet', 'CrowdDet', 'CondInst' ]
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=self.host, port=self.port)) async def run_server(self): await self.server.serve() async def shutdown(self): self.server.should_exit = True await self.server.shutdown()
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.port = self.runtime_args.port[0] self.host = self.runtime_args.host self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=self.host, port=self.port)) async def run_server(self): await self.server.serve() async def shutdown(self): self.server.should_exit = True await self.server.shutdown()
# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Image processor class for MobileNetV1.""" from ...image_processing_utils_fast import ( BaseImageProcessorFast, DefaultFastImageProcessorKwargs, Unpack, ) from ...image_utils import IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, PILImageResampling from ...utils import auto_docstring @auto_docstring class MobileNetV1ImageProcessorFast(BaseImageProcessorFast): resample = PILImageResampling.BILINEAR image_mean = IMAGENET_STANDARD_MEAN image_std = IMAGENET_STANDARD_STD size = {"shortest_edge": 256} default_to_square = False crop_size = {"height": 224, "width": 224} do_resize = True do_center_crop = True do_rescale = True do_normalize = True def __init__(self, **kwargs: Unpack[DefaultFastImageProcessorKwargs]) -> None: super().__init__(**kwargs) __all__ = ["MobileNetV1ImageProcessorFast"]
# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Image processor class for MobileNetV1.""" from ...image_processing_utils_fast import ( BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, BaseImageProcessorFast, DefaultFastImageProcessorKwargs, Unpack, ) from ...image_utils import IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, PILImageResampling from ...utils import add_start_docstrings @add_start_docstrings( "Constructs a fast MobileNetV1 image processor.", BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, ) class MobileNetV1ImageProcessorFast(BaseImageProcessorFast): resample = PILImageResampling.BILINEAR image_mean = IMAGENET_STANDARD_MEAN image_std = IMAGENET_STANDARD_STD size = {"shortest_edge": 256} default_to_square = False crop_size = {"height": 224, "width": 224} do_resize = True do_center_crop = True do_rescale = True do_normalize = True def __init__(self, **kwargs: Unpack[DefaultFastImageProcessorKwargs]) -> None: super().__init__(**kwargs) __all__ = ["MobileNetV1ImageProcessorFast"]
# mypy: allow-untyped-defs import functools from collections.abc import Hashable from dataclasses import dataclass, fields from typing import TypeVar from typing_extensions import dataclass_transform T = TypeVar("T", bound="_Union") class _UnionTag(str): __slots__ = ("_cls",) _cls: Hashable @staticmethod def create(t, cls): tag = _UnionTag(t) assert not hasattr(tag, "_cls") tag._cls = cls return tag def __eq__(self, cmp) -> bool: assert isinstance(cmp, str) other = str(cmp) assert other in _get_field_names(self._cls), ( f"{other} is not a valid tag for {self._cls}. Available tags: {_get_field_names(self._cls)}" ) return str(self) == other def __hash__(self): return hash(str(self)) @functools.cache def _get_field_names(cls) -> set[str]: return {f.name for f in fields(cls)} # If you turn a schema class that inherits from union into a dataclass, please use # this decorator to configure it. It's safe, faster and allows code sharing. # # For example, _union_dataclass customizes the __eq__ method to only check the type # and value property instead of default implementation of dataclass which goes # through every field in the dataclass. @dataclass_transform(eq_default=False) def _union_dataclass(cls: type[T]) -> type[T]: assert issubclass(cls, _Union), f"{cls} must inheirt from {_Union}." return dataclass(repr=False, eq=False)(cls) class _Union: _type: _UnionTag @classmethod def create(cls, **kwargs): assert len(kwargs) == 1 obj = cls(**{**{f.name: None for f in fields(cls)}, **kwargs}) # type: ignore[arg-type] obj._type = _UnionTag.create(next(iter(kwargs.keys())), cls) return obj def __post_init__(self): assert not any( f.name in ("type", "_type", "create", "value") for f in fields(self) # type: ignore[arg-type, misc] ) @property def type(self) -> str: try: return self._type except AttributeError as e: raise RuntimeError( f"Please use {type(self).__name__}.create to instantiate the union type." ) from e @property def value(self): return getattr(self, self.type) def __getattribute__(self, name): attr = super().__getattribute__(name) if attr is None and name in _get_field_names(type(self)) and name != self.type: # type: ignore[arg-type] raise AttributeError(f"Field {name} is not set.") return attr def __eq__(self, other: object) -> bool: if not isinstance(other, _Union): return False return self.type == other.type and self.value == other.value def __str__(self): return self.__repr__() def __repr__(self): return f"{type(self).__name__}({self.type}={getattr(self, self.type)})"
# mypy: allow-untyped-defs import functools from collections.abc import Hashable from dataclasses import dataclass, fields from typing import TypeVar from typing_extensions import dataclass_transform T = TypeVar("T", bound="_Union") class _UnionTag(str): __slots__ = ("_cls",) _cls: Hashable @staticmethod def create(t, cls): tag = _UnionTag(t) assert not hasattr(tag, "_cls") tag._cls = cls return tag def __eq__(self, cmp) -> bool: assert isinstance(cmp, str) other = str(cmp) assert other in _get_field_names(self._cls), ( f"{other} is not a valid tag for {self._cls}. Available tags: {_get_field_names(self._cls)}" ) return str(self) == other def __hash__(self): return hash(str(self)) @functools.cache def _get_field_names(cls) -> set[str]: return {f.name for f in fields(cls)} # If you turn a schema class that inherits from union into a dataclass, please use # this decorator to configure it. It's safe, faster and allows code sharing. # # For example, _union_dataclass customizes the __eq__ method to only check the type # and value property instead of default implmentation of dataclass which goes # through every field in the dataclass. @dataclass_transform(eq_default=False) def _union_dataclass(cls: type[T]) -> type[T]: assert issubclass(cls, _Union), f"{cls} must inheirt from {_Union}." return dataclass(repr=False, eq=False)(cls) class _Union: _type: _UnionTag @classmethod def create(cls, **kwargs): assert len(kwargs) == 1 obj = cls(**{**{f.name: None for f in fields(cls)}, **kwargs}) # type: ignore[arg-type] obj._type = _UnionTag.create(next(iter(kwargs.keys())), cls) return obj def __post_init__(self): assert not any( f.name in ("type", "_type", "create", "value") for f in fields(self) # type: ignore[arg-type, misc] ) @property def type(self) -> str: try: return self._type except AttributeError as e: raise RuntimeError( f"Please use {type(self).__name__}.create to instantiate the union type." ) from e @property def value(self): return getattr(self, self.type) def __getattribute__(self, name): attr = super().__getattribute__(name) if attr is None and name in _get_field_names(type(self)) and name != self.type: # type: ignore[arg-type] raise AttributeError(f"Field {name} is not set.") return attr def __eq__(self, other: object) -> bool: if not isinstance(other, _Union): return False return self.type == other.type and self.value == other.value def __str__(self): return self.__repr__() def __repr__(self): return f"{type(self).__name__}({self.type}={getattr(self, self.type)})"
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import pickle from inspect import signature import pytest from sklearn.utils.deprecation import _is_deprecated, deprecated @deprecated("qwerty") class MockClass1: pass class MockClass2: @deprecated("mockclass2_method") def method(self): pass @deprecated("n_features_ is deprecated") # type: ignore[prop-decorator] @property def n_features_(self): """Number of input features.""" return 10 class MockClass3: @deprecated() def __init__(self): pass class MockClass4: pass class MockClass5(MockClass1): """Inherit from deprecated class but does not call super().__init__.""" def __init__(self, a): self.a = a @deprecated("a message") class MockClass6: """A deprecated class that overrides __new__.""" def __new__(cls, *args, **kwargs): assert len(args) > 0 return super().__new__(cls) @deprecated() def mock_function(): return 10 def test_deprecated(): with pytest.warns(FutureWarning, match="qwerty"): MockClass1() with pytest.warns(FutureWarning, match="mockclass2_method"): MockClass2().method() with pytest.warns(FutureWarning, match="deprecated"): MockClass3() with pytest.warns(FutureWarning, match="qwerty"): MockClass5(42) with pytest.warns(FutureWarning, match="a message"): MockClass6(42) with pytest.warns(FutureWarning, match="deprecated"): val = mock_function() assert val == 10 def test_is_deprecated(): # Test if _is_deprecated helper identifies wrapping via deprecated # NOTE it works only for class methods and functions assert _is_deprecated(MockClass1.__new__) assert _is_deprecated(MockClass2().method) assert _is_deprecated(MockClass3.__init__) assert not _is_deprecated(MockClass4.__init__) assert _is_deprecated(MockClass5.__new__) assert _is_deprecated(mock_function) def test_pickle(): pickle.loads(pickle.dumps(mock_function)) def test_deprecated_class_signature(): @deprecated() class MockClass: def __init__(self, a, b=1, c=2): pass assert list(signature(MockClass).parameters.keys()) == ["a", "b", "c"]
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import pickle from inspect import signature import pytest from sklearn.utils.deprecation import _is_deprecated, deprecated @deprecated("qwerty") class MockClass1: pass class MockClass2: @deprecated("mockclass2_method") def method(self): pass @deprecated("n_features_ is deprecated") # type: ignore @property def n_features_(self): """Number of input features.""" return 10 class MockClass3: @deprecated() def __init__(self): pass class MockClass4: pass class MockClass5(MockClass1): """Inherit from deprecated class but does not call super().__init__.""" def __init__(self, a): self.a = a @deprecated("a message") class MockClass6: """A deprecated class that overrides __new__.""" def __new__(cls, *args, **kwargs): assert len(args) > 0 return super().__new__(cls) @deprecated() def mock_function(): return 10 def test_deprecated(): with pytest.warns(FutureWarning, match="qwerty"): MockClass1() with pytest.warns(FutureWarning, match="mockclass2_method"): MockClass2().method() with pytest.warns(FutureWarning, match="deprecated"): MockClass3() with pytest.warns(FutureWarning, match="qwerty"): MockClass5(42) with pytest.warns(FutureWarning, match="a message"): MockClass6(42) with pytest.warns(FutureWarning, match="deprecated"): val = mock_function() assert val == 10 def test_is_deprecated(): # Test if _is_deprecated helper identifies wrapping via deprecated # NOTE it works only for class methods and functions assert _is_deprecated(MockClass1.__new__) assert _is_deprecated(MockClass2().method) assert _is_deprecated(MockClass3.__init__) assert not _is_deprecated(MockClass4.__init__) assert _is_deprecated(MockClass5.__new__) assert _is_deprecated(mock_function) def test_pickle(): pickle.loads(pickle.dumps(mock_function)) def test_deprecated_class_signature(): @deprecated() class MockClass: def __init__(self, a, b=1, c=2): pass assert list(signature(MockClass).parameters.keys()) == ["a", "b", "c"]
_base_ = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py' model = dict( neck=dict( type='PAFPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5))
_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' model = dict( neck=dict( type='PAFPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5))
""" The system trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) on the SNLI + MultiNLI (AllNLI) dataset with softmax loss function. At every 1000 training steps, the model is evaluated on the STS benchmark dataset Usage: python training_nli.py OR python training_nli.py pretrained_transformer_model_name """ import traceback from datasets import load_dataset from sentence_transformers import losses from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator import logging from datetime import datetime import sys from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any Hugging Face pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "bert-base-uncased" train_batch_size = 16 output_dir = "output/training_nli_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Here we define our SentenceTransformer model. If not already a Sentence Transformer model, it will automatically # create one with "mean" pooling. model = SentenceTransformer(model_name) # 2. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli # We'll start with 10k training samples, but you can increase this to get a stronger model logging.info("Read AllNLI train dataset") train_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="train").select(range(10000)) eval_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="dev").select(range(1000)) logging.info(train_dataset) # 3. Define our training loss: https://sbert.net/docs/package_reference/losses.html#softmaxloss train_loss = losses.SoftmaxLoss( model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=3, ) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. stsb_eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=stsb_eval_dataset["sentence1"], sentences2=stsb_eval_dataset["sentence2"], scores=stsb_eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) logging.info("Evaluation before training:") dev_evaluator(model) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=1, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="nli-v1", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_dataset = load_dataset("sentence-transformers/stsb", split="test") test_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-nli-v1") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-nli-v1')`." )
""" The system trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) on the SNLI + MultiNLI (AllNLI) dataset with softmax loss function. At every 1000 training steps, the model is evaluated on the STS benchmark dataset Usage: python training_nli.py OR python training_nli.py pretrained_transformer_model_name """ from torch.utils.data import DataLoader import math from sentence_transformers import models, losses from sentence_transformers import LoggingHandler, SentenceTransformer, util, InputExample from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator import logging from datetime import datetime import sys import os import gzip import csv #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it nli_dataset_path = "data/AllNLI.tsv.gz" sts_dataset_path = "data/stsbenchmark.tsv.gz" if not os.path.exists(nli_dataset_path): util.http_get("https://sbert.net/datasets/AllNLI.tsv.gz", nli_dataset_path) if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "bert-base-uncased" # Read the dataset train_batch_size = 16 model_save_path = ( "output/training_nli_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False, ) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Read the AllNLI.tsv.gz file and create the training dataset logging.info("Read AllNLI train dataset") label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} train_samples = [] with gzip.open(nli_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: if row["split"] == "train": label_id = label2int[row["label"]] train_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) train_loss = losses.SoftmaxLoss( model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=len(label2int) ) # Read STSbenchmark dataset and use it as development set logging.info("Read STSbenchmark dev dataset") dev_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: if row["split"] == "dev": score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples( dev_samples, batch_size=train_batch_size, name="sts-dev" ) # Configure the training num_epochs = 1 warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=model_save_path, ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: if row["split"] == "test": score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 test_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples( test_samples, batch_size=train_batch_size, name="sts-test" ) test_evaluator(model, output_path=model_save_path)
from __future__ import annotations import pytest from sentence_transformers.cross_encoder import CrossEncoder @pytest.mark.parametrize( "model_name, expected_score", [ ("cross-encoder/ms-marco-MiniLM-L-6-v2", [8.12545108795166, -3.045016050338745, -3.1524128913879395]), ("cross-encoder/ms-marco-TinyBERT-L-2-v2", [8.142767906188965, 1.2057735919952393, -2.7283530235290527]), ("cross-encoder/stsb-distilroberta-base", [0.4977430999279022, 0.255491703748703, 0.28261035680770874]), ("mixedbread-ai/mxbai-rerank-xsmall-v1", [0.9224735498428345, 0.04793589934706688, 0.03315146267414093]), ], ) def test_pretrained_model(model_name: str, expected_score: list[float]) -> None: # Ensure that pretrained models are not accidentally changed model = CrossEncoder(model_name) query = "is toprol xl the same as metoprolol?" answers = [ "Metoprolol succinate is also known by the brand name Toprol XL. It is the extended-release form of metoprolol. Metoprolol succinate is approved to treat high blood pressure, chronic chest pain, and congestive heart failure.", "Pill with imprint 1 is White, Round and has been identified as Metoprolol Tartrate 25 mg.", "Interactions between your drugs No interactions were found between Allergy Relief and metoprolol. This does not necessarily mean no interactions exist. Always consult your healthcare provider.", ] scores = model.predict([(query, answer) for answer in answers]) assert scores.tolist() == pytest.approx(expected_score, rel=1e-4)
from __future__ import annotations import pytest from sentence_transformers.cross_encoder import CrossEncoder @pytest.mark.parametrize( "model_name, expected_score", [ ("cross-encoder/ms-marco-MiniLM-L-6-v2", [8.12545108795166, -3.045016050338745, -3.1524128913879395]), ("cross-encoder/ms-marco-TinyBERT-L-2-v2", [8.142767906188965, 1.2057735919952393, -2.7283530235290527]), ("cross-encoder/stsb-distilroberta-base", [0.4977430999279022, 0.255491703748703, 0.28261035680770874]), ("mixedbread-ai/mxbai-rerank-xsmall-v1", [0.9224735498428345, 0.04793589934706688, 0.03315146267414093]), ], ) def test_pretrained_model(model_name: str, expected_score: list[float]) -> None: # Ensure that pretrained models are not accidentally changed model = CrossEncoder(model_name) query = "is toprol xl the same as metoprolol?" answers = [ "Metoprolol succinate is also known by the brand name Toprol XL. It is the extended-release form of metoprolol. Metoprolol succinate is approved to treat high blood pressure, chronic chest pain, and congestive heart failure.", "Pill with imprint 1 is White, Round and has been identified as Metoprolol Tartrate 25 mg.", "Interactions between your drugs No interactions were found between Allergy Relief and metoprolol. This does not necessarily mean no interactions exist. Always consult your healthcare provider.", ] scores = model.predict([(query, answer) for answer in answers]) assert scores.tolist() == pytest.approx(expected_score, rel=1e-6, abs=1e-12)
r"""Utility classes & functions for data loading. Code in this folder is mostly used by ../dataloder.py. A lot of multiprocessing is used in data loading, which only supports running functions defined in global environment (py2 can't serialize static methods). Therefore, for code tidiness we put these functions into different files in this folder. """ import atexit import sys # old private location of the ExceptionWrapper that some users rely on: from torch._utils import ExceptionWrapper IS_WINDOWS = sys.platform == "win32" MP_STATUS_CHECK_INTERVAL = 5.0 r"""Interval (in seconds) to check status of processes to avoid hanging in multiprocessing data loading. This is mainly used in getting data from another process, in which case we need to periodically check whether the sender is alive to prevent hanging.""" python_exit_status = False r"""Whether Python is shutting down. This flag is guaranteed to be set before the Python core library resources are freed, but Python may already be exiting for some time when this is set. Hook to set this flag is `_set_python_exit_flag`, and is inspired by a similar hook in Python 3.7 multiprocessing library: https://github.com/python/cpython/blob/d4d60134b29290049e28df54f23493de4f1824b6/Lib/multiprocessing/util.py#L277-L327 """ try: import numpy HAS_NUMPY = True except ModuleNotFoundError: HAS_NUMPY = False def _set_python_exit_flag() -> None: global python_exit_status python_exit_status = True atexit.register(_set_python_exit_flag) from . import collate, fetch, pin_memory, signal_handling, worker
# mypy: allow-untyped-defs r"""Utility classes & functions for data loading. Code in this folder is mostly used by ../dataloder.py. A lot of multiprocessing is used in data loading, which only supports running functions defined in global environment (py2 can't serialize static methods). Therefore, for code tidiness we put these functions into different files in this folder. """ import atexit import sys # old private location of the ExceptionWrapper that some users rely on: from torch._utils import ExceptionWrapper IS_WINDOWS = sys.platform == "win32" MP_STATUS_CHECK_INTERVAL = 5.0 r"""Interval (in seconds) to check status of processes to avoid hanging in multiprocessing data loading. This is mainly used in getting data from another process, in which case we need to periodically check whether the sender is alive to prevent hanging.""" python_exit_status = False r"""Whether Python is shutting down. This flag is guaranteed to be set before the Python core library resources are freed, but Python may already be exiting for some time when this is set. Hook to set this flag is `_set_python_exit_flag`, and is inspired by a similar hook in Python 3.7 multiprocessing library: https://github.com/python/cpython/blob/d4d60134b29290049e28df54f23493de4f1824b6/Lib/multiprocessing/util.py#L277-L327 """ try: import numpy HAS_NUMPY = True except ModuleNotFoundError: HAS_NUMPY = False def _set_python_exit_flag(): global python_exit_status python_exit_status = True atexit.register(_set_python_exit_flag) from . import collate, fetch, pin_memory, signal_handling, worker
from typing import TYPE_CHECKING, Dict, Type from docarray.array.abstract_array import AbstractDocumentArray from docarray.typing.tensor.abstract_tensor import AbstractTensor if TYPE_CHECKING: from docarray.proto import DocumentArrayProto, NodeProto class ProtoArrayMixin(AbstractDocumentArray): @classmethod def from_protobuf( cls: Type[AbstractDocumentArray], pb_msg: 'DocumentArrayProto' ) -> AbstractDocumentArray: """create a Document from a protobuf message""" content_type = pb_msg.WhichOneof('content') if content_type == 'list_': return cls( cls.document_type.from_protobuf(doc_proto) for doc_proto in pb_msg.list_.docs ) elif content_type == 'stack': da = cls( cls.document_type.from_protobuf(doc_proto) for doc_proto in pb_msg.stack.list_.docs ) da._columns = pb_msg.stack.columns return da else: raise ValueError(f'proto message content {content_type} is not supported') def to_protobuf(self) -> 'DocumentArrayProto': """Convert DocumentArray into a Protobuf message. :param ndarray_type: can be ``list`` or ``numpy``, if set it will force all ndarray-like object from all Documents to ``List`` or ``numpy.ndarray``. :return: the protobuf message """ from docarray.proto import ( DocumentArrayListProto, DocumentArrayProto, DocumentArrayStackedProto, UnionArrayProto, ) if self.is_stacked() and self._columns is not None: da_proto = DocumentArrayListProto() for doc in self.__iter_over_stacked_documents__(): da_proto.docs.append(doc.to_protobuf()) columns_proto: Dict[str, UnionArrayProto] = dict() for field, column in self._columns.items(): if isinstance(column, ProtoArrayMixin): columns_proto[field] = UnionArrayProto( document_array=DocumentArrayProto(stack=column.to_protobuf()) ) elif isinstance(column, AbstractTensor): columns_proto[field] = UnionArrayProto(ndarray=column.to_protobuf()) da_proto = DocumentArrayStackedProto(list_=da_proto, columns=columns_proto) return DocumentArrayProto(stack=da_proto) else: da_proto = DocumentArrayListProto() for doc in self: da_proto.docs.append(doc.to_protobuf()) return DocumentArrayProto(list_=da_proto) def _to_node_protobuf(self) -> 'NodeProto': """Convert a DocumentArray into a NodeProto protobuf message. This function should be called when a DocumentArray is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ from docarray.proto import NodeProto return NodeProto(chunks=self.to_protobuf())
from typing import TYPE_CHECKING, Type from docarray.array.abstract_array import AbstractDocumentArray if TYPE_CHECKING: from docarray.proto import DocumentArrayProto, NodeProto class ProtoArrayMixin(AbstractDocumentArray): @classmethod def from_protobuf( cls: Type[AbstractDocumentArray], pb_msg: 'DocumentArrayProto' ) -> AbstractDocumentArray: """create a Document from a protobuf message""" return cls(cls.document_type.from_protobuf(od) for od in pb_msg.docs) def to_protobuf(self) -> 'DocumentArrayProto': """Convert DocumentArray into a Protobuf message. :param ndarray_type: can be ``list`` or ``numpy``, if set it will force all ndarray-like object from all Documents to ``List`` or ``numpy.ndarray``. :return: the protobuf message """ from docarray.proto import DocumentArrayProto dap = DocumentArrayProto() for doc in self: dap.docs.append(doc.to_protobuf()) return dap def _to_node_protobuf(self) -> 'NodeProto': """Convert a DocumentArray into a NodeProto protobuf message. This function should be called when a DocumentArray is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ from docarray.proto import NodeProto return NodeProto(chunks=self.to_protobuf())
from logging import Logger from backend.util.settings import AppEnvironment, BehaveAs, Settings settings = Settings() def configure_logging(): import logging import autogpt_libs.logging.config if ( settings.config.behave_as == BehaveAs.LOCAL or settings.config.app_env == AppEnvironment.LOCAL ): autogpt_libs.logging.config.configure_logging(force_cloud_logging=False) else: autogpt_libs.logging.config.configure_logging(force_cloud_logging=True) # Silence httpx logger logging.getLogger("httpx").setLevel(logging.WARNING) class TruncatedLogger: def __init__( self, logger: Logger, prefix: str = "", metadata: dict | None = None, max_length: int = 1000, ): self.logger = logger self.metadata = metadata or {} self.max_length = max_length self.prefix = prefix def info(self, msg: str, **extra): msg = self._wrap(msg, **extra) self.logger.info(msg, extra=self._get_metadata(**extra)) def warning(self, msg: str, **extra): msg = self._wrap(msg, **extra) self.logger.warning(msg, extra=self._get_metadata(**extra)) def error(self, msg: str, **extra): msg = self._wrap(msg, **extra) self.logger.error(msg, extra=self._get_metadata(**extra)) def debug(self, msg: str, **extra): msg = self._wrap(msg, **extra) self.logger.debug(msg, extra=self._get_metadata(**extra)) def exception(self, msg: str, **extra): msg = self._wrap(msg, **extra) self.logger.exception(msg, extra=self._get_metadata(**extra)) def _get_metadata(self, **extra): metadata = {**self.metadata, **extra} return {"json_fields": metadata} if metadata else {} def _wrap(self, msg: str, **extra): extra_msg = str(extra or "") if len(extra_msg) > 1000: extra_msg = extra_msg[:1000] + "..." return f"{self.prefix} {msg} {extra_msg}"
from backend.util.settings import AppEnvironment, BehaveAs, Settings settings = Settings() def configure_logging(): import logging import autogpt_libs.logging.config if ( settings.config.behave_as == BehaveAs.LOCAL or settings.config.app_env == AppEnvironment.LOCAL ): autogpt_libs.logging.config.configure_logging(force_cloud_logging=False) else: autogpt_libs.logging.config.configure_logging(force_cloud_logging=True) # Silence httpx logger logging.getLogger("httpx").setLevel(logging.WARNING)
from datetime import datetime, timedelta from backend.blocks.hubspot._auth import ( HubSpotCredentials, HubSpotCredentialsField, HubSpotCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import Requests class HubSpotEngagementBlock(Block): class Input(BlockSchema): credentials: HubSpotCredentialsInput = HubSpotCredentialsField() operation: str = SchemaField( description="Operation to perform (send_email, track_engagement)", default="send_email", ) email_data: dict = SchemaField( description="Email data including recipient, subject, content", default_factory=dict, ) contact_id: str = SchemaField( description="Contact ID for engagement tracking", default="" ) timeframe_days: int = SchemaField( description="Number of days to look back for engagement", default=30, ) class Output(BlockSchema): result: dict = SchemaField(description="Operation result") status: str = SchemaField(description="Operation status") def __init__(self): super().__init__( id="c6524385-7d87-49d6-a470-248bd29ca765", description="Manages HubSpot engagements - sends emails and tracks engagement metrics", categories={BlockCategory.CRM, BlockCategory.COMMUNICATION}, input_schema=HubSpotEngagementBlock.Input, output_schema=HubSpotEngagementBlock.Output, ) def run( self, input_data: Input, *, credentials: HubSpotCredentials, **kwargs ) -> BlockOutput: base_url = "https://api.hubapi.com" headers = { "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", "Content-Type": "application/json", } if input_data.operation == "send_email": # Using the email send API email_url = f"{base_url}/crm/v3/objects/emails" email_data = { "properties": { "hs_timestamp": datetime.now().isoformat(), "hubspot_owner_id": "1", # This should be configurable "hs_email_direction": "OUTBOUND", "hs_email_status": "SEND", "hs_email_subject": input_data.email_data.get("subject"), "hs_email_text": input_data.email_data.get("content"), "hs_email_to_email": input_data.email_data.get("recipient"), } } response = Requests().post(email_url, headers=headers, json=email_data) result = response.json() yield "result", result yield "status", "email_sent" elif input_data.operation == "track_engagement": # Get engagement events for the contact from_date = datetime.now() - timedelta(days=input_data.timeframe_days) engagement_url = ( f"{base_url}/crm/v3/objects/contacts/{input_data.contact_id}/engagement" ) params = {"limit": 100, "after": from_date.isoformat()} response = Requests().get(engagement_url, headers=headers, params=params) engagements = response.json() # Process engagement metrics metrics = { "email_opens": 0, "email_clicks": 0, "email_replies": 0, "last_engagement": None, "engagement_score": 0, } for engagement in engagements.get("results", []): eng_type = engagement.get("properties", {}).get("hs_engagement_type") if eng_type == "EMAIL": metrics["email_opens"] += 1 elif eng_type == "EMAIL_CLICK": metrics["email_clicks"] += 1 elif eng_type == "EMAIL_REPLY": metrics["email_replies"] += 1 # Update last engagement time eng_time = engagement.get("properties", {}).get("hs_timestamp") if eng_time and ( not metrics["last_engagement"] or eng_time > metrics["last_engagement"] ): metrics["last_engagement"] = eng_time # Calculate simple engagement score metrics["engagement_score"] = ( metrics["email_opens"] + metrics["email_clicks"] * 2 + metrics["email_replies"] * 3 ) yield "result", metrics yield "status", "engagement_tracked"
from datetime import datetime, timedelta from backend.blocks.hubspot._auth import ( HubSpotCredentials, HubSpotCredentialsField, HubSpotCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests class HubSpotEngagementBlock(Block): class Input(BlockSchema): credentials: HubSpotCredentialsInput = HubSpotCredentialsField() operation: str = SchemaField( description="Operation to perform (send_email, track_engagement)", default="send_email", ) email_data: dict = SchemaField( description="Email data including recipient, subject, content", default_factory=dict, ) contact_id: str = SchemaField( description="Contact ID for engagement tracking", default="" ) timeframe_days: int = SchemaField( description="Number of days to look back for engagement", default=30, ) class Output(BlockSchema): result: dict = SchemaField(description="Operation result") status: str = SchemaField(description="Operation status") def __init__(self): super().__init__( id="c6524385-7d87-49d6-a470-248bd29ca765", description="Manages HubSpot engagements - sends emails and tracks engagement metrics", categories={BlockCategory.CRM, BlockCategory.COMMUNICATION}, input_schema=HubSpotEngagementBlock.Input, output_schema=HubSpotEngagementBlock.Output, ) def run( self, input_data: Input, *, credentials: HubSpotCredentials, **kwargs ) -> BlockOutput: base_url = "https://api.hubapi.com" headers = { "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", "Content-Type": "application/json", } if input_data.operation == "send_email": # Using the email send API email_url = f"{base_url}/crm/v3/objects/emails" email_data = { "properties": { "hs_timestamp": datetime.now().isoformat(), "hubspot_owner_id": "1", # This should be configurable "hs_email_direction": "OUTBOUND", "hs_email_status": "SEND", "hs_email_subject": input_data.email_data.get("subject"), "hs_email_text": input_data.email_data.get("content"), "hs_email_to_email": input_data.email_data.get("recipient"), } } response = requests.post(email_url, headers=headers, json=email_data) result = response.json() yield "result", result yield "status", "email_sent" elif input_data.operation == "track_engagement": # Get engagement events for the contact from_date = datetime.now() - timedelta(days=input_data.timeframe_days) engagement_url = ( f"{base_url}/crm/v3/objects/contacts/{input_data.contact_id}/engagement" ) params = {"limit": 100, "after": from_date.isoformat()} response = requests.get(engagement_url, headers=headers, params=params) engagements = response.json() # Process engagement metrics metrics = { "email_opens": 0, "email_clicks": 0, "email_replies": 0, "last_engagement": None, "engagement_score": 0, } for engagement in engagements.get("results", []): eng_type = engagement.get("properties", {}).get("hs_engagement_type") if eng_type == "EMAIL": metrics["email_opens"] += 1 elif eng_type == "EMAIL_CLICK": metrics["email_clicks"] += 1 elif eng_type == "EMAIL_REPLY": metrics["email_replies"] += 1 # Update last engagement time eng_time = engagement.get("properties", {}).get("hs_timestamp") if eng_time and ( not metrics["last_engagement"] or eng_time > metrics["last_engagement"] ): metrics["last_engagement"] = eng_time # Calculate simple engagement score metrics["engagement_score"] = ( metrics["email_opens"] + metrics["email_clicks"] * 2 + metrics["email_replies"] * 3 ) yield "result", metrics yield "status", "engagement_tracked"
__version__ = '0.13.6' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
__version__ = '0.13.5' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import AIPluginTool from langchain_community.tools.plugin import AIPlugin, AIPluginToolSchema, ApiConfig # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "ApiConfig": "langchain_community.tools.plugin", "AIPlugin": "langchain_community.tools.plugin", "AIPluginToolSchema": "langchain_community.tools.plugin", "AIPluginTool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AIPlugin", "AIPluginTool", "AIPluginToolSchema", "ApiConfig", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import AIPluginTool from langchain_community.tools.plugin import AIPlugin, AIPluginToolSchema, ApiConfig # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "ApiConfig": "langchain_community.tools.plugin", "AIPlugin": "langchain_community.tools.plugin", "AIPluginToolSchema": "langchain_community.tools.plugin", "AIPluginTool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "ApiConfig", "AIPlugin", "AIPluginToolSchema", "AIPluginTool", ]
import pytest from jina import Executor, Flow, requests from jina.clients.base.helper import HTTPClientlet, WebsocketClientlet from jina.clients.request.helper import _new_data_request from jina.excepts import BadServer from jina.logging.logger import JinaLogger from jina.types.request.data import DataRequest logger = JinaLogger('clientlet') class ClientTestExecutor(Executor): @requests def error(self, **kwargs): raise NotImplementedError @pytest.fixture def flow_with_exception_request(): return Flow().add(uses=ClientTestExecutor).add() @pytest.mark.asyncio async def test_http_clientlet(): from jina.helper import random_port port = random_port() with Flow(port=port, protocol='http').add(): async with HTTPClientlet( url=f'http://localhost:{port}/post', logger=logger ) as iolet: request = _new_data_request('/', None, {'a': 'b'}) assert request.header.target_executor == '' r = await iolet.send_message(request) response = DataRequest(await r.json()) assert response.header.exec_endpoint == '/' assert response.parameters == {'a': 'b'} @pytest.mark.asyncio async def test_http_clientlet_target(): from jina.helper import random_port port = random_port() with Flow(port=port, protocol='http').add(): async with HTTPClientlet( url=f'http://localhost:{port}/post', logger=logger ) as iolet: request = _new_data_request('/', 'nothing', {'a': 'b'}) assert request.header.target_executor == 'nothing' r = await iolet.send_message(request) response = DataRequest(await r.json()) assert response.header.exec_endpoint == '/' assert response.parameters == {'a': 'b'} @pytest.mark.asyncio async def test_websocket_clientlet(): with pytest.raises(ConnectionError): async with WebsocketClientlet(url='ws://localhost:12345', logger=logger): pass def test_client_behaviour(flow_with_exception_request, mocker): on_done_mock = mocker.Mock() on_always_mock = mocker.Mock() on_error_mock = None with pytest.raises(BadServer): with flow_with_exception_request as f: f.post( '', on_done=on_done_mock, on_error=on_error_mock, on_always=on_always_mock, ) on_always_mock.assert_called_once() on_done_mock.assert_not_called()
import aiohttp import pytest from jina import Executor, Flow, requests from jina.clients.base.helper import HTTPClientlet, WebsocketClientlet from jina.clients.request.helper import _new_data_request from jina.excepts import BadServer from jina.logging.logger import JinaLogger from jina.types.request.data import DataRequest logger = JinaLogger('clientlet') class ClientTestExecutor(Executor): @requests def error(self, **kwargs): raise NotImplementedError @pytest.fixture def flow_with_exception_request(): return Flow().add(uses=ClientTestExecutor).add() @pytest.mark.asyncio async def test_http_clientlet(): from jina.helper import random_port port = random_port() with Flow(port=port, protocol='http').add(): async with HTTPClientlet( url=f'http://localhost:{port}/post', logger=logger ) as iolet: request = _new_data_request('/', None, {'a': 'b'}) assert request.header.target_executor == '' r = await iolet.send_message(request) response = DataRequest(await r.json()) assert response.header.exec_endpoint == '/' assert response.parameters == {'a': 'b'} @pytest.mark.asyncio async def test_http_clientlet_target(): from jina.helper import random_port port = random_port() with Flow(port=port, protocol='http').add(): async with HTTPClientlet( url=f'http://localhost:{port}/post', logger=logger ) as iolet: request = _new_data_request('/', 'nothing', {'a': 'b'}) assert request.header.target_executor == 'nothing' r = await iolet.send_message(request) response = DataRequest(await r.json()) assert response.header.exec_endpoint == '/' assert response.parameters == {'a': 'b'} @pytest.mark.asyncio async def test_websocket_clientlet(): with pytest.raises(aiohttp.ClientError): async with WebsocketClientlet(url='ws://localhost:12345', logger=logger): pass def test_client_behaviour(flow_with_exception_request, mocker): on_done_mock = mocker.Mock() on_always_mock = mocker.Mock() on_error_mock = None with pytest.raises(BadServer): with flow_with_exception_request as f: f.post( '', on_done=on_done_mock, on_error=on_error_mock, on_always=on_always_mock, ) on_always_mock.assert_called_once() on_done_mock.assert_not_called()
import sys import tempfile from unittest.mock import patch from keras.src.testing import test_case from keras.src.utils import io_utils class TestIoUtils(test_case.TestCase): def test_enable_interactive_logging(self): io_utils.enable_interactive_logging() self.assertTrue(io_utils.is_interactive_logging_enabled()) def test_disable_interactive_logging(self): io_utils.disable_interactive_logging() self.assertFalse(io_utils.is_interactive_logging_enabled()) def test_set_logging_verbosity_valid(self): valid_levels = ["FATAL", "ERROR", "WARNING", "INFO", "DEBUG"] for level in valid_levels: io_utils.set_logging_verbosity(level) def test_set_logging_verbosity_invalid(self): with self.assertRaises(ValueError): io_utils.set_logging_verbosity("INVALID") @patch("builtins.input", side_effect=["y"]) def test_ask_to_proceed_with_overwrite_yes(self, _): self.assertTrue(io_utils.ask_to_proceed_with_overwrite("test_path")) @patch("builtins.input", side_effect=["n"]) def test_ask_to_proceed_with_overwrite_no(self, _): self.assertFalse(io_utils.ask_to_proceed_with_overwrite("test_path")) @patch("sys.stdout.write") def test_print_msg_interactive_with_line_break(self, mock_write): io_utils.enable_interactive_logging() io_utils.print_msg("Hello", line_break=True) mock_write.assert_called_once_with("Hello\n") @patch("sys.stdout.write") def test_print_msg_interactive_without_line_break(self, mock_write): io_utils.enable_interactive_logging() io_utils.print_msg("Hello", line_break=False) mock_write.assert_called_once_with("Hello") @patch("absl.logging.info") def test_print_msg_non_interactive(self, mock_logging): io_utils.disable_interactive_logging() io_utils.print_msg("Hello") mock_logging.assert_called_once_with("Hello") @patch("builtins.input", side_effect=["invalid", "invalid", "y"]) def test_ask_to_proceed_with_overwrite_invalid_then_yes(self, _): self.assertTrue(io_utils.ask_to_proceed_with_overwrite("test_path")) @patch("builtins.input", side_effect=["invalid", "n"]) def test_ask_to_proceed_with_overwrite_invalid_then_no(self, _): self.assertFalse(io_utils.ask_to_proceed_with_overwrite("test_path")) def test_print_msg_with_different_encoding(self): # https://github.com/keras-team/keras/issues/19386 io_utils.enable_interactive_logging() self.assertTrue(io_utils.is_interactive_logging_enabled()) ori_stdout = sys.stdout with tempfile.TemporaryFile(mode="w", encoding="cp1251") as tmp: sys.stdout = tmp io_utils.print_msg("━") sys.stdout = ori_stdout
from unittest.mock import patch from keras.src.testing import test_case from keras.src.utils import io_utils class TestIoUtils(test_case.TestCase): def test_enable_interactive_logging(self): io_utils.enable_interactive_logging() self.assertTrue(io_utils.is_interactive_logging_enabled()) def test_disable_interactive_logging(self): io_utils.disable_interactive_logging() self.assertFalse(io_utils.is_interactive_logging_enabled()) def test_set_logging_verbosity_valid(self): valid_levels = ["FATAL", "ERROR", "WARNING", "INFO", "DEBUG"] for level in valid_levels: io_utils.set_logging_verbosity(level) def test_set_logging_verbosity_invalid(self): with self.assertRaises(ValueError): io_utils.set_logging_verbosity("INVALID") @patch("builtins.input", side_effect=["y"]) def test_ask_to_proceed_with_overwrite_yes(self, _): self.assertTrue(io_utils.ask_to_proceed_with_overwrite("test_path")) @patch("builtins.input", side_effect=["n"]) def test_ask_to_proceed_with_overwrite_no(self, _): self.assertFalse(io_utils.ask_to_proceed_with_overwrite("test_path")) @patch("sys.stdout.write") def test_print_msg_interactive_with_line_break(self, mock_write): io_utils.enable_interactive_logging() io_utils.print_msg("Hello", line_break=True) mock_write.assert_called_once_with("Hello\n") @patch("sys.stdout.write") def test_print_msg_interactive_without_line_break(self, mock_write): io_utils.enable_interactive_logging() io_utils.print_msg("Hello", line_break=False) mock_write.assert_called_once_with("Hello") @patch("absl.logging.info") def test_print_msg_non_interactive(self, mock_logging): io_utils.disable_interactive_logging() io_utils.print_msg("Hello") mock_logging.assert_called_once_with("Hello") @patch("builtins.input", side_effect=["invalid", "invalid", "y"]) def test_ask_to_proceed_with_overwrite_invalid_then_yes(self, _): self.assertTrue(io_utils.ask_to_proceed_with_overwrite("test_path")) @patch("builtins.input", side_effect=["invalid", "n"]) def test_ask_to_proceed_with_overwrite_invalid_then_no(self, _): self.assertFalse(io_utils.ask_to_proceed_with_overwrite("test_path"))
import json import re from typing import TypeVar import yaml from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers import BaseOutputParser from pydantic import BaseModel, ValidationError from langchain.output_parsers.format_instructions import YAML_FORMAT_INSTRUCTIONS T = TypeVar("T", bound=BaseModel) class YamlOutputParser(BaseOutputParser[T]): """Parse YAML output using a pydantic model.""" pydantic_object: type[T] """The pydantic model to parse.""" pattern: re.Pattern = re.compile( r"^```(?:ya?ml)?(?P<yaml>[^`]*)", re.MULTILINE | re.DOTALL ) """Regex pattern to match yaml code blocks within triple backticks with optional yaml or yml prefix.""" def parse(self, text: str) -> T: try: # Greedy search for 1st yaml candidate. match = re.search(self.pattern, text.strip()) # If no backticks were present, try to parse the entire output as yaml. yaml_str = match.group("yaml") if match else text json_object = yaml.safe_load(yaml_str) if hasattr(self.pydantic_object, "model_validate"): return self.pydantic_object.model_validate(json_object) else: return self.pydantic_object.parse_obj(json_object) except (yaml.YAMLError, ValidationError) as e: name = self.pydantic_object.__name__ msg = f"Failed to parse {name} from completion {text}. Got: {e}" raise OutputParserException(msg, llm_output=text) from e def get_format_instructions(self) -> str: # Copy schema to avoid altering original Pydantic schema. schema = {k: v for k, v in self.pydantic_object.schema().items()} # Remove extraneous fields. reduced_schema = schema if "title" in reduced_schema: del reduced_schema["title"] if "type" in reduced_schema: del reduced_schema["type"] # Ensure yaml in context is well-formed with double quotes. schema_str = json.dumps(reduced_schema) return YAML_FORMAT_INSTRUCTIONS.format(schema=schema_str) @property def _type(self) -> str: return "yaml" @property def OutputType(self) -> type[T]: return self.pydantic_object
import json import re from typing import TypeVar import yaml from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers import BaseOutputParser from pydantic import BaseModel, ValidationError from langchain.output_parsers.format_instructions import YAML_FORMAT_INSTRUCTIONS T = TypeVar("T", bound=BaseModel) class YamlOutputParser(BaseOutputParser[T]): """Parse YAML output using a pydantic model.""" pydantic_object: type[T] """The pydantic model to parse.""" pattern: re.Pattern = re.compile( r"^```(?:ya?ml)?(?P<yaml>[^`]*)", re.MULTILINE | re.DOTALL ) """Regex pattern to match yaml code blocks within triple backticks with optional yaml or yml prefix.""" def parse(self, text: str) -> T: try: # Greedy search for 1st yaml candidate. match = re.search(self.pattern, text.strip()) yaml_str = "" if match: yaml_str = match.group("yaml") else: # If no backticks were present, try to parse the entire output as yaml. yaml_str = text json_object = yaml.safe_load(yaml_str) if hasattr(self.pydantic_object, "model_validate"): return self.pydantic_object.model_validate(json_object) else: return self.pydantic_object.parse_obj(json_object) except (yaml.YAMLError, ValidationError) as e: name = self.pydantic_object.__name__ msg = f"Failed to parse {name} from completion {text}. Got: {e}" raise OutputParserException(msg, llm_output=text) from e def get_format_instructions(self) -> str: # Copy schema to avoid altering original Pydantic schema. schema = {k: v for k, v in self.pydantic_object.schema().items()} # Remove extraneous fields. reduced_schema = schema if "title" in reduced_schema: del reduced_schema["title"] if "type" in reduced_schema: del reduced_schema["type"] # Ensure yaml in context is well-formed with double quotes. schema_str = json.dumps(reduced_schema) return YAML_FORMAT_INSTRUCTIONS.format(schema=schema_str) @property def _type(self) -> str: return "yaml" @property def OutputType(self) -> type[T]: return self.pydantic_object
"""Init file of LlamaIndex.""" __version__ = "0.12.33.post1" import logging from logging import NullHandler from typing import Callable, Optional try: # Force pants to install eval_type_backport on 3.9 import eval_type_backport # noqa # type: ignore except ImportError: pass # response from llama_index.core.base.response.schema import Response # import global eval handler from llama_index.core.callbacks.global_handlers import set_global_handler from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.embeddings.mock_embed_model import MockEmbedding # indices # loading from llama_index.core.indices import ( ComposableGraph, DocumentSummaryIndex, GPTDocumentSummaryIndex, GPTKeywordTableIndex, GPTListIndex, GPTRAKEKeywordTableIndex, GPTSimpleKeywordTableIndex, GPTTreeIndex, GPTVectorStoreIndex, KeywordTableIndex, KnowledgeGraphIndex, ListIndex, PropertyGraphIndex, RAKEKeywordTableIndex, SimpleKeywordTableIndex, SummaryIndex, TreeIndex, VectorStoreIndex, load_graph_from_storage, load_index_from_storage, load_indices_from_storage, ) # structured from llama_index.core.indices.common.struct_store.base import ( SQLDocumentContextBuilder, ) # prompt helper from llama_index.core.indices.prompt_helper import PromptHelper # prompts from llama_index.core.prompts import ( BasePromptTemplate, ChatPromptTemplate, # backwards compatibility Prompt, PromptTemplate, SelectorPromptTemplate, ) from llama_index.core.readers import SimpleDirectoryReader, download_loader # Response Synthesizer from llama_index.core.response_synthesizers.factory import get_response_synthesizer from llama_index.core.schema import Document, QueryBundle from llama_index.core.service_context import ( ServiceContext, set_global_service_context, ) # global settings from llama_index.core.settings import Settings # storage from llama_index.core.storage.storage_context import StorageContext # sql wrapper from llama_index.core.utilities.sql_wrapper import SQLDatabase # global tokenizer from llama_index.core.utils import get_tokenizer, set_global_tokenizer # best practices for library logging: # https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library logging.getLogger(__name__).addHandler(NullHandler()) __all__ = [ "StorageContext", "ServiceContext", "ComposableGraph", # indices "SummaryIndex", "VectorStoreIndex", "SimpleKeywordTableIndex", "KeywordTableIndex", "RAKEKeywordTableIndex", "TreeIndex", "DocumentSummaryIndex", "KnowledgeGraphIndex", "PropertyGraphIndex", # indices - legacy names "GPTKeywordTableIndex", "GPTKnowledgeGraphIndex", "GPTSimpleKeywordTableIndex", "GPTRAKEKeywordTableIndex", "GPTListIndex", "ListIndex", "GPTTreeIndex", "GPTVectorStoreIndex", "GPTDocumentSummaryIndex", "Prompt", "PromptTemplate", "BasePromptTemplate", "ChatPromptTemplate", "SelectorPromptTemplate", "SummaryPrompt", "TreeInsertPrompt", "TreeSelectPrompt", "TreeSelectMultiplePrompt", "RefinePrompt", "QuestionAnswerPrompt", "KeywordExtractPrompt", "QueryKeywordExtractPrompt", "Response", "Document", "SimpleDirectoryReader", "MockEmbedding", "SQLDatabase", "SQLDocumentContextBuilder", "SQLContextBuilder", "PromptHelper", "IndexStructType", "download_loader", "load_graph_from_storage", "load_index_from_storage", "load_indices_from_storage", "QueryBundle", "get_response_synthesizer", "set_global_service_context", "set_global_handler", "set_global_tokenizer", "get_tokenizer", "Settings", ] # eval global toggle from llama_index.core.callbacks.base_handler import BaseCallbackHandler global_handler: Optional[BaseCallbackHandler] = None # NOTE: keep for backwards compatibility SQLContextBuilder = SQLDocumentContextBuilder # global tokenizer global_tokenizer: Optional[Callable[[str], list]] = None
"""Init file of LlamaIndex.""" __version__ = "0.12.32" import logging from logging import NullHandler from typing import Callable, Optional try: # Force pants to install eval_type_backport on 3.9 import eval_type_backport # noqa # type: ignore except ImportError: pass # response from llama_index.core.base.response.schema import Response # import global eval handler from llama_index.core.callbacks.global_handlers import set_global_handler from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.embeddings.mock_embed_model import MockEmbedding # indices # loading from llama_index.core.indices import ( ComposableGraph, DocumentSummaryIndex, GPTDocumentSummaryIndex, GPTKeywordTableIndex, GPTListIndex, GPTRAKEKeywordTableIndex, GPTSimpleKeywordTableIndex, GPTTreeIndex, GPTVectorStoreIndex, KeywordTableIndex, KnowledgeGraphIndex, ListIndex, PropertyGraphIndex, RAKEKeywordTableIndex, SimpleKeywordTableIndex, SummaryIndex, TreeIndex, VectorStoreIndex, load_graph_from_storage, load_index_from_storage, load_indices_from_storage, ) # structured from llama_index.core.indices.common.struct_store.base import ( SQLDocumentContextBuilder, ) # prompt helper from llama_index.core.indices.prompt_helper import PromptHelper # prompts from llama_index.core.prompts import ( BasePromptTemplate, ChatPromptTemplate, # backwards compatibility Prompt, PromptTemplate, SelectorPromptTemplate, ) from llama_index.core.readers import SimpleDirectoryReader, download_loader # Response Synthesizer from llama_index.core.response_synthesizers.factory import get_response_synthesizer from llama_index.core.schema import Document, QueryBundle from llama_index.core.service_context import ( ServiceContext, set_global_service_context, ) # global settings from llama_index.core.settings import Settings # storage from llama_index.core.storage.storage_context import StorageContext # sql wrapper from llama_index.core.utilities.sql_wrapper import SQLDatabase # global tokenizer from llama_index.core.utils import get_tokenizer, set_global_tokenizer # best practices for library logging: # https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library logging.getLogger(__name__).addHandler(NullHandler()) __all__ = [ "StorageContext", "ServiceContext", "ComposableGraph", # indices "SummaryIndex", "VectorStoreIndex", "SimpleKeywordTableIndex", "KeywordTableIndex", "RAKEKeywordTableIndex", "TreeIndex", "DocumentSummaryIndex", "KnowledgeGraphIndex", "PropertyGraphIndex", # indices - legacy names "GPTKeywordTableIndex", "GPTKnowledgeGraphIndex", "GPTSimpleKeywordTableIndex", "GPTRAKEKeywordTableIndex", "GPTListIndex", "ListIndex", "GPTTreeIndex", "GPTVectorStoreIndex", "GPTDocumentSummaryIndex", "Prompt", "PromptTemplate", "BasePromptTemplate", "ChatPromptTemplate", "SelectorPromptTemplate", "SummaryPrompt", "TreeInsertPrompt", "TreeSelectPrompt", "TreeSelectMultiplePrompt", "RefinePrompt", "QuestionAnswerPrompt", "KeywordExtractPrompt", "QueryKeywordExtractPrompt", "Response", "Document", "SimpleDirectoryReader", "MockEmbedding", "SQLDatabase", "SQLDocumentContextBuilder", "SQLContextBuilder", "PromptHelper", "IndexStructType", "download_loader", "load_graph_from_storage", "load_index_from_storage", "load_indices_from_storage", "QueryBundle", "get_response_synthesizer", "set_global_service_context", "set_global_handler", "set_global_tokenizer", "get_tokenizer", "Settings", ] # eval global toggle from llama_index.core.callbacks.base_handler import BaseCallbackHandler global_handler: Optional[BaseCallbackHandler] = None # NOTE: keep for backwards compatibility SQLContextBuilder = SQLDocumentContextBuilder # global tokenizer global_tokenizer: Optional[Callable[[str], list]] = None
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .compat_config import compat_cfg from .logger import get_caller_name, get_root_logger, log_img_scale from .misc import find_latest_checkpoint, update_data_root from .setup_env import setup_multi_processes from .split_batch import split_batch from .util_distribution import build_ddp, build_dp, get_device __all__ = [ 'get_root_logger', 'collect_env', 'find_latest_checkpoint', 'update_data_root', 'setup_multi_processes', 'get_caller_name', 'log_img_scale', 'compat_cfg', 'split_batch', 'build_ddp', 'build_dp', 'get_device' ]
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .compat_config import compat_cfg from .logger import get_caller_name, get_root_logger, log_img_scale from .misc import find_latest_checkpoint, update_data_root from .setup_env import setup_multi_processes from .split_batch import split_batch __all__ = [ 'get_root_logger', 'collect_env', 'find_latest_checkpoint', 'update_data_root', 'setup_multi_processes', 'get_caller_name', 'log_img_scale', 'compat_cfg', 'split_batch' ]
import logging from typing import List import numpy as np from torch.utils.data import IterableDataset from sentence_transformers.readers import InputExample logger = logging.getLogger(__name__) class SentenceLabelDataset(IterableDataset): """ This dataset can be used for some specific Triplet Losses like BATCH_HARD_TRIPLET_LOSS which requires multiple examples with the same label in a batch. It draws n consecutive, random and unique samples from one label at a time. This is repeated for each label. Labels with fewer than n unique samples are ignored. This also applied to drawing without replacement, once less than n samples remain for a label, it is skipped. This *DOES NOT* check if there are more labels than the batch is large or if the batch size is divisible by the samples drawn per label. """ def __init__(self, examples: List[InputExample], samples_per_label: int = 2, with_replacement: bool = False): """ Creates a LabelSampler for a SentenceLabelDataset. Args: examples (List[InputExample]): A list of InputExamples. samples_per_label (int, optional): The number of consecutive, random, and unique samples drawn per label. The batch size should be a multiple of samples_per_label. Defaults to 2. with_replacement (bool, optional): If True, each sample is drawn at most once (depending on the total number of samples per label). If False, one sample can be drawn in multiple draws, but not multiple times in the same drawing. Defaults to False. """ super().__init__() self.samples_per_label = samples_per_label # Group examples by label label2ex = {} for example in examples: if example.label not in label2ex: label2ex[example.label] = [] label2ex[example.label].append(example) # Include only labels with at least 2 examples self.grouped_inputs = [] self.groups_right_border = [] num_labels = 0 for label, label_examples in label2ex.items(): if len(label_examples) >= self.samples_per_label: self.grouped_inputs.extend(label_examples) self.groups_right_border.append( len(self.grouped_inputs) ) # At which position does this label group / bucket end? num_labels += 1 self.label_range = np.arange(num_labels) self.with_replacement = with_replacement np.random.shuffle(self.label_range) logger.info( "SentenceLabelDataset: {} examples, from which {} examples could be used (those labels appeared at least {} times). {} different labels found.".format( len(examples), len(self.grouped_inputs), self.samples_per_label, num_labels ) ) def __iter__(self): label_idx = 0 count = 0 already_seen = {} while count < len(self.grouped_inputs): label = self.label_range[label_idx] if label not in already_seen: already_seen[label] = set() left_border = 0 if label == 0 else self.groups_right_border[label - 1] right_border = self.groups_right_border[label] if self.with_replacement: selection = np.arange(left_border, right_border) else: selection = [i for i in np.arange(left_border, right_border) if i not in already_seen[label]] if len(selection) >= self.samples_per_label: for element_idx in np.random.choice(selection, self.samples_per_label, replace=False): count += 1 already_seen[label].add(element_idx) yield self.grouped_inputs[element_idx] label_idx += 1 if label_idx >= len(self.label_range): label_idx = 0 already_seen = {} np.random.shuffle(self.label_range) def __len__(self): return len(self.grouped_inputs)
""" """ from torch.utils.data import IterableDataset import numpy as np from typing import List from ..readers import InputExample import logging logger = logging.getLogger(__name__) class SentenceLabelDataset(IterableDataset): """ This dataset can be used for some specific Triplet Losses like BATCH_HARD_TRIPLET_LOSS which requires multiple examples with the same label in a batch. It draws n consecutive, random and unique samples from one label at a time. This is repeated for each label. Labels with fewer than n unique samples are ignored. This also applied to drawing without replacement, once less than n samples remain for a label, it is skipped. This *DOES NOT* check if there are more labels than the batch is large or if the batch size is divisible by the samples drawn per label. """ def __init__(self, examples: List[InputExample], samples_per_label: int = 2, with_replacement: bool = False): """ Creates a LabelSampler for a SentenceLabelDataset. :param examples: a list with InputExamples :param samples_per_label: the number of consecutive, random and unique samples drawn per label. Batch size should be a multiple of samples_per_label :param with_replacement: if this is True, then each sample is drawn at most once (depending on the total number of samples per label). if this is False, then one sample can be drawn in multiple draws, but still not multiple times in the same drawing. """ super().__init__() self.samples_per_label = samples_per_label # Group examples by label label2ex = {} for example in examples: if example.label not in label2ex: label2ex[example.label] = [] label2ex[example.label].append(example) # Include only labels with at least 2 examples self.grouped_inputs = [] self.groups_right_border = [] num_labels = 0 for label, label_examples in label2ex.items(): if len(label_examples) >= self.samples_per_label: self.grouped_inputs.extend(label_examples) self.groups_right_border.append( len(self.grouped_inputs) ) # At which position does this label group / bucket end? num_labels += 1 self.label_range = np.arange(num_labels) self.with_replacement = with_replacement np.random.shuffle(self.label_range) logger.info( "SentenceLabelDataset: {} examples, from which {} examples could be used (those labels appeared at least {} times). {} different labels found.".format( len(examples), len(self.grouped_inputs), self.samples_per_label, num_labels ) ) def __iter__(self): label_idx = 0 count = 0 already_seen = {} while count < len(self.grouped_inputs): label = self.label_range[label_idx] if label not in already_seen: already_seen[label] = set() left_border = 0 if label == 0 else self.groups_right_border[label - 1] right_border = self.groups_right_border[label] if self.with_replacement: selection = np.arange(left_border, right_border) else: selection = [i for i in np.arange(left_border, right_border) if i not in already_seen[label]] if len(selection) >= self.samples_per_label: for element_idx in np.random.choice(selection, self.samples_per_label, replace=False): count += 1 already_seen[label].add(element_idx) yield self.grouped_inputs[element_idx] label_idx += 1 if label_idx >= len(self.label_range): label_idx = 0 already_seen = {} np.random.shuffle(self.label_range) def __len__(self): return len(self.grouped_inputs)
from docarray.typing.tensor.audio.audio_ndarray import AudioNdArray __all__ = ['AudioNdArray'] from docarray.utils.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor # noqa __all__.extend(['AudioTorchTensor']) tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.audio.audio_tensorflow_tensor import ( # noqa AudioTensorFlowTensor, ) __all__.extend(['AudioTensorFlowTensor'])
from docarray.typing.tensor.audio.audio_ndarray import AudioNdArray __all__ = ['AudioNdArray'] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor # noqa __all__.extend(['AudioTorchTensor'])
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import tempfile import unittest import torch from transformers import AutoProcessor, LlamaTokenizerFast, LlavaNextProcessor from transformers.testing_utils import ( require_vision, ) from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import LlavaNextImageProcessor @require_vision class LlavaNextProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = LlavaNextProcessor @classmethod def setUpClass(cls): cls.tmpdirname = tempfile.mkdtemp() image_processor = LlavaNextImageProcessor() tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b") tokenizer.add_special_tokens({"additional_special_tokens": ["<image>"]}) processor_kwargs = cls.prepare_processor_dict() processor = LlavaNextProcessor(image_processor, tokenizer, **processor_kwargs) processor.save_pretrained(cls.tmpdirname) cls.image_token = processor.image_token def get_tokenizer(self, **kwargs): return LlavaNextProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return LlavaNextProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor @staticmethod def prepare_processor_dict(): return { "chat_template": "{% for message in messages %}{% if message['role'] != 'system' %}{{ message['role'].upper() + ': '}}{% endif %}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>\n' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] + ' '}}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] + ' '}}{% endgeneration %}{% endfor %}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'ASSISTANT:' }}{% endif %}", "patch_size": 128, "vision_feature_select_strategy": "default" } # fmt: skip # Copied from tests.models.llava.test_processor_llava.LlavaProcessorTest.test_chat_template_is_saved def test_chat_template_is_saved(self): processor_loaded = self.processor_class.from_pretrained(self.tmpdirname) processor_dict_loaded = json.loads(processor_loaded.to_json_string()) # chat templates aren't serialized to json in processors self.assertFalse("chat_template" in processor_dict_loaded.keys()) # they have to be saved as separate file and loaded back from that file # so we check if the same template is loaded processor_dict = self.prepare_processor_dict() self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None)) def test_image_token_filling(self): processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-vicuna-7b-hf") processor.patch_size = 14 processor.vision_feature_select_strategy = "default" # Important to check with non square image image = torch.randint(0, 2, (3, 500, 316)) expected_image_tokens = 1526 image_token_index = 32000 messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] inputs = processor( text=[processor.apply_chat_template(messages)], images=[image], return_tensors="pt", ) image_tokens = (inputs["input_ids"] == image_token_index).sum().item() self.assertEqual(expected_image_tokens, image_tokens)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import tempfile import unittest import torch from transformers import AutoProcessor, LlamaTokenizerFast, LlavaNextProcessor from transformers.testing_utils import ( require_vision, ) from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import LlavaNextImageProcessor @require_vision class LlavaNextProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = LlavaNextProcessor @classmethod def setUpClass(cls): cls.tmpdirname = tempfile.mkdtemp() image_processor = LlavaNextImageProcessor() tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b") processor_kwargs = cls.prepare_processor_dict() processor = LlavaNextProcessor(image_processor, tokenizer, **processor_kwargs) processor.save_pretrained(cls.tmpdirname) cls.image_token = processor.image_token def get_tokenizer(self, **kwargs): return LlavaNextProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return LlavaNextProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor @staticmethod def prepare_processor_dict(): return { "chat_template": "{% for message in messages %}{% if message['role'] != 'system' %}{{ message['role'].upper() + ': '}}{% endif %}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>\n' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] + ' '}}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] + ' '}}{% endgeneration %}{% endfor %}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'ASSISTANT:' }}{% endif %}", "patch_size": 128, "vision_feature_select_strategy": "default" } # fmt: skip # Copied from tests.models.llava.test_processor_llava.LlavaProcessorTest.test_chat_template_is_saved def test_chat_template_is_saved(self): processor_loaded = self.processor_class.from_pretrained(self.tmpdirname) processor_dict_loaded = json.loads(processor_loaded.to_json_string()) # chat templates aren't serialized to json in processors self.assertFalse("chat_template" in processor_dict_loaded.keys()) # they have to be saved as separate file and loaded back from that file # so we check if the same template is loaded processor_dict = self.prepare_processor_dict() self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None)) def test_image_token_filling(self): processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-vicuna-7b-hf") processor.patch_size = 14 processor.vision_feature_select_strategy = "default" # Important to check with non square image image = torch.randint(0, 2, (3, 500, 316)) expected_image_tokens = 1526 image_token_index = 32000 messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] inputs = processor( text=[processor.apply_chat_template(messages)], images=[image], return_tensors="pt", ) image_tokens = (inputs["input_ids"] == image_token_index).sum().item() self.assertEqual(expected_image_tokens, image_tokens)
from datetime import datetime, timezone from unittest.mock import AsyncMock import pytest from fastapi import WebSocket from backend.data.execution import ExecutionResult, ExecutionStatus from backend.server.conn_manager import ConnectionManager from backend.server.model import Methods, WsMessage @pytest.fixture def connection_manager() -> ConnectionManager: return ConnectionManager() @pytest.fixture def mock_websocket() -> AsyncMock: websocket: AsyncMock = AsyncMock(spec=WebSocket) websocket.send_text = AsyncMock() return websocket @pytest.mark.asyncio async def test_connect( connection_manager: ConnectionManager, mock_websocket: AsyncMock ) -> None: await connection_manager.connect(mock_websocket) assert mock_websocket in connection_manager.active_connections mock_websocket.accept.assert_called_once() def test_disconnect( connection_manager: ConnectionManager, mock_websocket: AsyncMock ) -> None: connection_manager.active_connections.add(mock_websocket) connection_manager.subscriptions["test_graph"] = {mock_websocket} connection_manager.disconnect(mock_websocket) assert mock_websocket not in connection_manager.active_connections assert mock_websocket not in connection_manager.subscriptions["test_graph"] @pytest.mark.asyncio async def test_subscribe( connection_manager: ConnectionManager, mock_websocket: AsyncMock ) -> None: await connection_manager.subscribe("test_graph", mock_websocket) assert mock_websocket in connection_manager.subscriptions["test_graph"] @pytest.mark.asyncio async def test_unsubscribe( connection_manager: ConnectionManager, mock_websocket: AsyncMock ) -> None: connection_manager.subscriptions["test_graph"] = {mock_websocket} await connection_manager.unsubscribe("test_graph", mock_websocket) assert "test_graph" not in connection_manager.subscriptions @pytest.mark.asyncio async def test_send_execution_result( connection_manager: ConnectionManager, mock_websocket: AsyncMock ) -> None: connection_manager.subscriptions["test_graph"] = {mock_websocket} result: ExecutionResult = ExecutionResult( graph_id="test_graph", graph_version=1, graph_exec_id="test_exec_id", node_exec_id="test_node_exec_id", node_id="test_node_id", block_id="test_block_id", status=ExecutionStatus.COMPLETED, input_data={"input1": "value1"}, output_data={"output1": ["result1"]}, add_time=datetime.now(tz=timezone.utc), queue_time=None, start_time=datetime.now(tz=timezone.utc), end_time=datetime.now(tz=timezone.utc), ) await connection_manager.send_execution_result(result) mock_websocket.send_text.assert_called_once_with( WsMessage( method=Methods.EXECUTION_EVENT, channel="test_graph", data=result.model_dump(), ).model_dump_json() ) @pytest.mark.asyncio async def test_send_execution_result_no_subscribers( connection_manager: ConnectionManager, mock_websocket: AsyncMock ) -> None: result: ExecutionResult = ExecutionResult( graph_id="test_graph", graph_version=1, graph_exec_id="test_exec_id", node_exec_id="test_node_exec_id", node_id="test_node_id", block_id="test_block_id", status=ExecutionStatus.COMPLETED, input_data={"input1": "value1"}, output_data={"output1": ["result1"]}, add_time=datetime.now(), queue_time=None, start_time=datetime.now(), end_time=datetime.now(), ) await connection_manager.send_execution_result(result) mock_websocket.send_text.assert_not_called()
from datetime import datetime, timezone from unittest.mock import AsyncMock import pytest from fastapi import WebSocket from backend.data.execution import ExecutionResult, ExecutionStatus from backend.server.conn_manager import ConnectionManager from backend.server.model import Methods, WsMessage @pytest.fixture def connection_manager() -> ConnectionManager: return ConnectionManager() @pytest.fixture def mock_websocket() -> AsyncMock: websocket: AsyncMock = AsyncMock(spec=WebSocket) websocket.send_text = AsyncMock() return websocket @pytest.mark.asyncio async def test_connect( connection_manager: ConnectionManager, mock_websocket: AsyncMock ) -> None: await connection_manager.connect(mock_websocket) assert mock_websocket in connection_manager.active_connections mock_websocket.accept.assert_called_once() def test_disconnect( connection_manager: ConnectionManager, mock_websocket: AsyncMock ) -> None: connection_manager.active_connections.add(mock_websocket) connection_manager.subscriptions["test_graph"] = {mock_websocket} connection_manager.disconnect(mock_websocket) assert mock_websocket not in connection_manager.active_connections assert mock_websocket not in connection_manager.subscriptions["test_graph"] @pytest.mark.asyncio async def test_subscribe( connection_manager: ConnectionManager, mock_websocket: AsyncMock ) -> None: await connection_manager.subscribe("test_graph", mock_websocket) assert mock_websocket in connection_manager.subscriptions["test_graph"] @pytest.mark.asyncio async def test_unsubscribe( connection_manager: ConnectionManager, mock_websocket: AsyncMock ) -> None: connection_manager.subscriptions["test_graph"] = {mock_websocket} await connection_manager.unsubscribe("test_graph", mock_websocket) assert "test_graph" not in connection_manager.subscriptions @pytest.mark.asyncio async def test_send_execution_result( connection_manager: ConnectionManager, mock_websocket: AsyncMock ) -> None: connection_manager.subscriptions["test_graph"] = {mock_websocket} result: ExecutionResult = ExecutionResult( graph_id="test_graph", graph_version=1, graph_exec_id="test_exec_id", node_exec_id="test_node_exec_id", node_id="test_node_id", status=ExecutionStatus.COMPLETED, input_data={"input1": "value1"}, output_data={"output1": ["result1"]}, add_time=datetime.now(tz=timezone.utc), queue_time=None, start_time=datetime.now(tz=timezone.utc), end_time=datetime.now(tz=timezone.utc), ) await connection_manager.send_execution_result(result) mock_websocket.send_text.assert_called_once_with( WsMessage( method=Methods.EXECUTION_EVENT, channel="test_graph", data=result.model_dump(), ).model_dump_json() ) @pytest.mark.asyncio async def test_send_execution_result_no_subscribers( connection_manager: ConnectionManager, mock_websocket: AsyncMock ) -> None: result: ExecutionResult = ExecutionResult( graph_id="test_graph", graph_version=1, graph_exec_id="test_exec_id", node_exec_id="test_node_exec_id", node_id="test_node_id", status=ExecutionStatus.COMPLETED, input_data={"input1": "value1"}, output_data={"output1": ["result1"]}, add_time=datetime.now(), queue_time=None, start_time=datetime.now(), end_time=datetime.now(), ) await connection_manager.send_execution_result(result) mock_websocket.send_text.assert_not_called()
"""**Chat Models** are a variation on language models. While Chat Models use language models under the hood, the interface they expose is a bit different. Rather than expose a "text in, text out" API, they expose an interface where "chat messages" are the inputs and outputs. **Class hierarchy:** .. code-block:: BaseLanguageModel --> BaseChatModel --> <name> # Examples: ChatOpenAI, ChatGooglePalm **Main helpers:** .. code-block:: AIMessage, BaseMessage, HumanMessage """ # noqa: E501 import warnings from langchain_core._api import LangChainDeprecationWarning from langchain._api.interactive_env import is_interactive_env from langchain.chat_models.base import init_chat_model def __getattr__(name: str) -> None: from langchain_community import chat_models # If not in interactive env, raise warning. if not is_interactive_env(): warnings.warn( "Importing chat models from langchain is deprecated. Importing from " "langchain will no longer be supported as of langchain==0.2.0. " "Please import from langchain-community instead:\n\n" f"`from langchain_community.chat_models import {name}`.\n\n" "To install langchain-community run `pip install -U langchain-community`.", category=LangChainDeprecationWarning, ) return getattr(chat_models, name) __all__ = [ "AzureChatOpenAI", "BedrockChat", "ChatAnthropic", "ChatAnyscale", "ChatBaichuan", "ChatCohere", "ChatDatabricks", "ChatEverlyAI", "ChatFireworks", "ChatGooglePalm", "ChatHunyuan", "ChatJavelinAIGateway", "ChatKonko", "ChatLiteLLM", "ChatMLflowAIGateway", "ChatMlflow", "ChatOllama", "ChatOpenAI", "ChatVertexAI", "ChatYandexGPT", "ErnieBotChat", "FakeListChatModel", "GigaChat", "HumanInputChatModel", "JinaChat", "MiniMaxChat", "PaiEasChatEndpoint", "PromptLayerChatOpenAI", "QianfanChatEndpoint", "VolcEngineMaasChat", "init_chat_model", ]
"""**Chat Models** are a variation on language models. While Chat Models use language models under the hood, the interface they expose is a bit different. Rather than expose a "text in, text out" API, they expose an interface where "chat messages" are the inputs and outputs. **Class hierarchy:** .. code-block:: BaseLanguageModel --> BaseChatModel --> <name> # Examples: ChatOpenAI, ChatGooglePalm **Main helpers:** .. code-block:: AIMessage, BaseMessage, HumanMessage """ # noqa: E501 import warnings from langchain_core._api import LangChainDeprecationWarning from langchain._api.interactive_env import is_interactive_env from langchain.chat_models.base import init_chat_model def __getattr__(name: str) -> None: from langchain_community import chat_models # If not in interactive env, raise warning. if not is_interactive_env(): warnings.warn( "Importing chat models from langchain is deprecated. Importing from " "langchain will no longer be supported as of langchain==0.2.0. " "Please import from langchain-community instead:\n\n" f"`from langchain_community.chat_models import {name}`.\n\n" "To install langchain-community run `pip install -U langchain-community`.", category=LangChainDeprecationWarning, ) return getattr(chat_models, name) __all__ = [ "init_chat_model", "ChatOpenAI", "BedrockChat", "AzureChatOpenAI", "FakeListChatModel", "PromptLayerChatOpenAI", "ChatDatabricks", "ChatEverlyAI", "ChatAnthropic", "ChatCohere", "ChatGooglePalm", "ChatMlflow", "ChatMLflowAIGateway", "ChatOllama", "ChatVertexAI", "JinaChat", "HumanInputChatModel", "MiniMaxChat", "ChatAnyscale", "ChatLiteLLM", "ErnieBotChat", "ChatJavelinAIGateway", "ChatKonko", "PaiEasChatEndpoint", "QianfanChatEndpoint", "ChatFireworks", "ChatYandexGPT", "ChatBaichuan", "ChatHunyuan", "GigaChat", "VolcEngineMaasChat", ]
from __future__ import annotations from sentence_transformers.sparse_encoder.losses.CSRLoss import CSRLoss from sentence_transformers.sparse_encoder.losses.CSRReconstructionLoss import ( CSRReconstructionLoss, ) from sentence_transformers.sparse_encoder.losses.FlopsLoss import FlopsLoss from sentence_transformers.sparse_encoder.losses.SparseAnglELoss import SparseAnglELoss from sentence_transformers.sparse_encoder.losses.SparseCachedGISTEmbedLoss import ( SparseCachedGISTEmbedLoss, ) from sentence_transformers.sparse_encoder.losses.SparseCachedMultipleNegativesRankingLoss import ( SparseCachedMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.losses.SparseCoSENTLoss import ( SparseCoSENTLoss, ) from sentence_transformers.sparse_encoder.losses.SparseCosineSimilarityLoss import ( SparseCosineSimilarityLoss, ) from sentence_transformers.sparse_encoder.losses.SparseDistillKLDivLoss import ( SparseDistillKLDivLoss, ) from sentence_transformers.sparse_encoder.losses.SparseGISTEmbedLoss import ( SparseGISTEmbedLoss, ) from sentence_transformers.sparse_encoder.losses.SparseMarginMSELoss import ( SparseMarginMSELoss, ) from sentence_transformers.sparse_encoder.losses.SparseMSELoss import SparseMSELoss from sentence_transformers.sparse_encoder.losses.SparseMultipleNegativesRankingLoss import ( SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.losses.SparseTripletLoss import ( SparseTripletLoss, ) from sentence_transformers.sparse_encoder.losses.SpladeLoss import SpladeLoss __all__ = [ "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", "FlopsLoss", "SpladeLoss", ]
from __future__ import annotations from sentence_transformers.sparse_encoder.losses.CSRLoss import CSRLoss from sentence_transformers.sparse_encoder.losses.CSRReconstructionLoss import ( CSRReconstructionLoss, ) from sentence_transformers.sparse_encoder.losses.SparseAnglELoss import SparseAnglELoss from sentence_transformers.sparse_encoder.losses.SparseCachedGISTEmbedLoss import ( SparseCachedGISTEmbedLoss, ) from sentence_transformers.sparse_encoder.losses.SparseCachedMultipleNegativesRankingLoss import ( SparseCachedMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.losses.SparseCoSENTLoss import ( SparseCoSENTLoss, ) from sentence_transformers.sparse_encoder.losses.SparseCosineSimilarityLoss import ( SparseCosineSimilarityLoss, ) from sentence_transformers.sparse_encoder.losses.SparseDistillKLDivLoss import ( SparseDistillKLDivLoss, ) from sentence_transformers.sparse_encoder.losses.SparseGISTEmbedLoss import ( SparseGISTEmbedLoss, ) from sentence_transformers.sparse_encoder.losses.SparseMarginMSELoss import ( SparseMarginMSELoss, ) from sentence_transformers.sparse_encoder.losses.SparseMSELoss import SparseMSELoss from sentence_transformers.sparse_encoder.losses.SparseMultipleNegativesRankingLoss import ( SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.losses.SparseTripletLoss import ( SparseTripletLoss, ) __all__ = [ "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", ]
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp from typing import Optional, Sequence, Tuple import cv2 import numpy as np from mmengine.data import BaseDataElement from mmengine.hooks import Hook from mmengine.registry import HOOKS from mmengine.utils.misc import tensor2imgs @HOOKS.register_module() class NaiveVisualizationHook(Hook): """Show or Write the predicted results during the process of testing. Args: interval (int): Visualization interval. Default: 1. draw_gt (bool): Whether to draw the ground truth. Default to True. draw_pred (bool): Whether to draw the predicted result. Default to True. """ priority = 'NORMAL' def __init__(self, interval: int = 1, draw_gt: bool = True, draw_pred: bool = True): self.draw_gt = draw_gt self.draw_pred = draw_pred self._interval = interval def _unpad(self, input: np.ndarray, unpad_shape: Tuple[int, int]) -> np.ndarray: unpad_width, unpad_height = unpad_shape unpad_image = input[:unpad_height, :unpad_width] return unpad_image def after_test_iter( self, runner, batch_idx: int, data_batch: Optional[Sequence[dict]] = None, outputs: Optional[Sequence[BaseDataElement]] = None) -> None: """Show or Write the predicted results. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the test loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (Sequence[BaseDataElement], optional): Outputs from model. Defaults to None. """ if self.every_n_iters(runner, self._interval): for data, output in zip(data_batch, outputs): # type: ignore input = data['inputs'] data_sample = data['data_sample'] input = tensor2imgs(input, **data_sample.get('img_norm_cfg', dict()))[0] # TODO We will implement a function to revert the augmentation # in the future. ori_shape = (data_sample.ori_width, data_sample.ori_height) if 'pad_shape' in data_sample: input = self._unpad(input, data_sample.get('scale', ori_shape)) origin_image = cv2.resize(input, ori_shape) name = osp.basename(data_sample.img_path) runner.writer.add_image(name, origin_image, data_sample, output, self.draw_gt, self.draw_pred)
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp from typing import Any, Optional, Sequence, Tuple import cv2 import numpy as np from mmengine.data import BaseDataElement from mmengine.hooks import Hook from mmengine.registry import HOOKS from mmengine.utils.misc import tensor2imgs @HOOKS.register_module() class NaiveVisualizationHook(Hook): """Show or Write the predicted results during the process of testing. Args: interval (int): Visualization interval. Default: 1. draw_gt (bool): Whether to draw the ground truth. Default to True. draw_pred (bool): Whether to draw the predicted result. Default to True. """ priority = 'NORMAL' def __init__(self, interval: int = 1, draw_gt: bool = True, draw_pred: bool = True): self.draw_gt = draw_gt self.draw_pred = draw_pred self._interval = interval def _unpad(self, input: np.ndarray, unpad_shape: Tuple[int, int]) -> np.ndarray: unpad_width, unpad_height = unpad_shape unpad_image = input[:unpad_height, :unpad_width] return unpad_image def after_test_iter( self, runner, batch_idx: int, data_batch: Optional[Sequence[Tuple[Any, BaseDataElement]]] = None, outputs: Optional[Sequence[BaseDataElement]] = None) -> None: """Show or Write the predicted results. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the test loop. data_batch (Sequence[Tuple[Any, BaseDataElement]], optional): Data from dataloader. Defaults to None. outputs (Sequence[BaseDataElement], optional): Outputs from model. Defaults to None. """ if self.every_n_iters(runner, self._interval): inputs, data_samples = data_batch # type: ignore inputs = tensor2imgs(inputs, **data_samples[0].get('img_norm_cfg', dict())) for input, data_sample, output in zip( inputs, data_samples, # type: ignore outputs): # type: ignore # TODO We will implement a function to revert the augmentation # in the future. ori_shape = (data_sample.ori_width, data_sample.ori_height) if 'pad_shape' in data_sample: input = self._unpad(input, data_sample.get('scale', ori_shape)) origin_image = cv2.resize(input, ori_shape) name = osp.basename(data_sample.img_path) runner.writer.add_image(name, origin_image, data_sample, output, self.draw_gt, self.draw_pred)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.structures import InstanceData from mmengine.testing import assert_allclose from mmdet.models.task_modules.assigners import GridAssigner class TestGridAssigner(TestCase): def test_assign(self): assigner = GridAssigner(pos_iou_thr=0.5, neg_iou_thr=0.3) pred_instances = InstanceData( priors=torch.Tensor([[23, 23, 43, 43], [4, 5, 6, 7]]), responsible_flags=torch.BoolTensor([1, 1])) gt_instances = InstanceData( bboxes=torch.Tensor([[23, 23, 43, 43]]), labels=torch.LongTensor([0])) assign_result = assigner.assign( pred_instances=pred_instances, gt_instances=gt_instances) expected_gt_inds = torch.LongTensor([1, 0]) assert_allclose(assign_result.gt_inds, expected_gt_inds) # invalid neg_iou_thr with self.assertRaises(AssertionError): assigner = GridAssigner( pos_iou_thr=0.5, neg_iou_thr=[0.3, 0.1, 0.4]) assigner.assign( pred_instances=pred_instances, gt_instances=gt_instances) # multi-neg_iou_thr assigner = GridAssigner(pos_iou_thr=0.5, neg_iou_thr=(0.1, 0.3)) assign_result = assigner.assign( pred_instances=pred_instances, gt_instances=gt_instances) expected_gt_inds = torch.LongTensor([1, -1]) assert_allclose(assign_result.gt_inds, expected_gt_inds) # gt_max_assign_all=False assigner = GridAssigner( pos_iou_thr=0.5, neg_iou_thr=0.3, gt_max_assign_all=False) assign_result = assigner.assign( pred_instances=pred_instances, gt_instances=gt_instances) expected_gt_inds = torch.LongTensor([1, 0]) assert_allclose(assign_result.gt_inds, expected_gt_inds) # large min_pos_iou assigner = GridAssigner( pos_iou_thr=0.5, neg_iou_thr=0.3, min_pos_iou=1) assign_result = assigner.assign( pred_instances=pred_instances, gt_instances=gt_instances) expected_gt_inds = torch.LongTensor([1, 0]) assert_allclose(assign_result.gt_inds, expected_gt_inds) def test_assign_with_empty_gt(self): assigner = GridAssigner(pos_iou_thr=0.5, neg_iou_thr=0.3) pred_instances = InstanceData( priors=torch.Tensor([[0, 12, 23, 34], [4, 5, 6, 7]]), responsible_flags=torch.BoolTensor([1, 1])) gt_instances = InstanceData( bboxes=torch.empty(0, 4), labels=torch.empty(0)) assign_result = assigner.assign( pred_instances=pred_instances, gt_instances=gt_instances) expected_gt_inds = torch.LongTensor([0, 0]) assert_allclose(assign_result.gt_inds, expected_gt_inds) def test_assign_with_empty_priors(self): assigner = GridAssigner(pos_iou_thr=0.5, neg_iou_thr=0.3) pred_instances = InstanceData( priors=torch.Tensor(torch.empty(0, 4)), responsible_flags=torch.empty(0)) gt_instances = InstanceData( bboxes=torch.Tensor([[23, 23, 43, 43]]), labels=torch.LongTensor([0])) assign_result = assigner.assign( pred_instances=pred_instances, gt_instances=gt_instances) expected_gt_inds = torch.LongTensor([]) assert_allclose(assign_result.gt_inds, expected_gt_inds)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.data import InstanceData from mmengine.testing import assert_allclose from mmdet.models.task_modules.assigners import GridAssigner class TestGridAssigner(TestCase): def test_assign(self): assigner = GridAssigner(pos_iou_thr=0.5, neg_iou_thr=0.3) pred_instances = InstanceData( priors=torch.Tensor([[23, 23, 43, 43], [4, 5, 6, 7]]), responsible_flags=torch.BoolTensor([1, 1])) gt_instances = InstanceData( bboxes=torch.Tensor([[23, 23, 43, 43]]), labels=torch.LongTensor([0])) assign_result = assigner.assign( pred_instances=pred_instances, gt_instances=gt_instances) expected_gt_inds = torch.LongTensor([1, 0]) assert_allclose(assign_result.gt_inds, expected_gt_inds) # invalid neg_iou_thr with self.assertRaises(AssertionError): assigner = GridAssigner( pos_iou_thr=0.5, neg_iou_thr=[0.3, 0.1, 0.4]) assigner.assign( pred_instances=pred_instances, gt_instances=gt_instances) # multi-neg_iou_thr assigner = GridAssigner(pos_iou_thr=0.5, neg_iou_thr=(0.1, 0.3)) assign_result = assigner.assign( pred_instances=pred_instances, gt_instances=gt_instances) expected_gt_inds = torch.LongTensor([1, -1]) assert_allclose(assign_result.gt_inds, expected_gt_inds) # gt_max_assign_all=False assigner = GridAssigner( pos_iou_thr=0.5, neg_iou_thr=0.3, gt_max_assign_all=False) assign_result = assigner.assign( pred_instances=pred_instances, gt_instances=gt_instances) expected_gt_inds = torch.LongTensor([1, 0]) assert_allclose(assign_result.gt_inds, expected_gt_inds) # large min_pos_iou assigner = GridAssigner( pos_iou_thr=0.5, neg_iou_thr=0.3, min_pos_iou=1) assign_result = assigner.assign( pred_instances=pred_instances, gt_instances=gt_instances) expected_gt_inds = torch.LongTensor([1, 0]) assert_allclose(assign_result.gt_inds, expected_gt_inds) def test_assign_with_empty_gt(self): assigner = GridAssigner(pos_iou_thr=0.5, neg_iou_thr=0.3) pred_instances = InstanceData( priors=torch.Tensor([[0, 12, 23, 34], [4, 5, 6, 7]]), responsible_flags=torch.BoolTensor([1, 1])) gt_instances = InstanceData( bboxes=torch.empty(0, 4), labels=torch.empty(0)) assign_result = assigner.assign( pred_instances=pred_instances, gt_instances=gt_instances) expected_gt_inds = torch.LongTensor([0, 0]) assert_allclose(assign_result.gt_inds, expected_gt_inds) def test_assign_with_empty_priors(self): assigner = GridAssigner(pos_iou_thr=0.5, neg_iou_thr=0.3) pred_instances = InstanceData( priors=torch.Tensor(torch.empty(0, 4)), responsible_flags=torch.empty(0)) gt_instances = InstanceData( bboxes=torch.Tensor([[23, 23, 43, 43]]), labels=torch.LongTensor([0])) assign_result = assigner.assign( pred_instances=pred_instances, gt_instances=gt_instances) expected_gt_inds = torch.LongTensor([]) assert_allclose(assign_result.gt_inds, expected_gt_inds)
from typing import Any from llama_index.core.agent import ReActAgentWorker, StructuredPlannerAgent from llama_index.core.agent.runner.planner import Plan, SubTask from llama_index.core.llms.custom import CustomLLM from llama_index.core.llms import LLMMetadata, CompletionResponse, CompletionResponseGen from llama_index.core.tools import FunctionTool class MockLLM(CustomLLM): @property def metadata(self) -> LLMMetadata: """ LLM metadata. Returns: LLMMetadata: LLM metadata containing various information about the LLM. """ return LLMMetadata() def complete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponse: if "CREATE A PLAN" in prompt: text = Plan( sub_tasks=[ SubTask( name="one", input="one", expected_output="one", dependencies=[] ), SubTask( name="two", input="two", expected_output="two", dependencies=[] ), SubTask( name="three", input="three", expected_output="three", dependencies=["one", "two"], ), ] ).model_dump_json() return CompletionResponse(text=text) # dummy response for react return CompletionResponse(text="Final Answer: All done") def stream_complete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponseGen: raise NotImplementedError def dummy_function(a: int, b: int) -> int: """A dummy function that adds two numbers together.""" return a + b def test_planner_agent() -> None: dummy_tool = FunctionTool.from_defaults(fn=dummy_function) dummy_llm = MockLLM() worker = ReActAgentWorker.from_tools([dummy_tool], llm=dummy_llm) agent = StructuredPlannerAgent(worker, tools=[dummy_tool], llm=dummy_llm) # create a plan plan_id = agent.create_plan("CREATE A PLAN") plan = agent.state.plan_dict[plan_id] assert plan is not None assert len(plan.sub_tasks) == 3 assert len(agent.state.get_completed_sub_tasks(plan_id)) == 0 assert len(agent.state.get_remaining_subtasks(plan_id)) == 3 assert len(agent.state.get_next_sub_tasks(plan_id)) == 2 next_tasks = agent.state.get_next_sub_tasks(plan_id) for task in next_tasks: response = agent.run_task(task.name) agent.state.add_completed_sub_task(plan_id, task) assert len(agent.state.get_completed_sub_tasks(plan_id)) == 2 next_tasks = agent.state.get_next_sub_tasks(plan_id) assert len(next_tasks) == 1 # will insert the original dummy plan again agent.refine_plan("CREATE A PLAN", plan_id) assert len(plan.sub_tasks) == 3 assert len(agent.state.get_completed_sub_tasks(plan_id)) == 2 assert len(agent.state.get_remaining_subtasks(plan_id)) == 1 assert len(agent.state.get_next_sub_tasks(plan_id)) == 1
from typing import Any from llama_index.core.agent import ReActAgentWorker, StructuredPlannerAgent from llama_index.core.agent.runner.planner import Plan, SubTask from llama_index.core.llms.custom import CustomLLM from llama_index.core.llms import LLMMetadata, CompletionResponse, CompletionResponseGen from llama_index.core.tools import FunctionTool class MockLLM(CustomLLM): @property def metadata(self) -> LLMMetadata: """LLM metadata. Returns: LLMMetadata: LLM metadata containing various information about the LLM. """ return LLMMetadata() def complete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponse: if "CREATE A PLAN" in prompt: text = Plan( sub_tasks=[ SubTask( name="one", input="one", expected_output="one", dependencies=[] ), SubTask( name="two", input="two", expected_output="two", dependencies=[] ), SubTask( name="three", input="three", expected_output="three", dependencies=["one", "two"], ), ] ).model_dump_json() return CompletionResponse(text=text) # dummy response for react return CompletionResponse(text="Final Answer: All done") def stream_complete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponseGen: raise NotImplementedError def dummy_function(a: int, b: int) -> int: """A dummy function that adds two numbers together.""" return a + b def test_planner_agent() -> None: dummy_tool = FunctionTool.from_defaults(fn=dummy_function) dummy_llm = MockLLM() worker = ReActAgentWorker.from_tools([dummy_tool], llm=dummy_llm) agent = StructuredPlannerAgent(worker, tools=[dummy_tool], llm=dummy_llm) # create a plan plan_id = agent.create_plan("CREATE A PLAN") plan = agent.state.plan_dict[plan_id] assert plan is not None assert len(plan.sub_tasks) == 3 assert len(agent.state.get_completed_sub_tasks(plan_id)) == 0 assert len(agent.state.get_remaining_subtasks(plan_id)) == 3 assert len(agent.state.get_next_sub_tasks(plan_id)) == 2 next_tasks = agent.state.get_next_sub_tasks(plan_id) for task in next_tasks: response = agent.run_task(task.name) agent.state.add_completed_sub_task(plan_id, task) assert len(agent.state.get_completed_sub_tasks(plan_id)) == 2 next_tasks = agent.state.get_next_sub_tasks(plan_id) assert len(next_tasks) == 1 # will insert the original dummy plan again agent.refine_plan("CREATE A PLAN", plan_id) assert len(plan.sub_tasks) == 3 assert len(agent.state.get_completed_sub_tasks(plan_id)) == 2 assert len(agent.state.get_remaining_subtasks(plan_id)) == 1 assert len(agent.state.get_next_sub_tasks(plan_id)) == 1
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet import * # noqa from mmdet.structures import DetDataSample from mmdet.testing import demo_mm_inputs, get_detector_cfg from mmdet.utils import register_all_modules class TestKDSingleStageDetector(TestCase): def setUp(self): register_all_modules() @parameterized.expand(['ld/ld_r18-gflv1-r101_fpn_1x_coco.py']) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) self.assertTrue(detector.backbone) self.assertTrue(detector.neck) self.assertTrue(detector.bbox_head) @parameterized.expand([('ld/ld_r18-gflv1-r101_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_single_stage_forward_train(self, cfg_file, devices): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) data = detector.data_preprocessor(packed_inputs, True) # Test forward train losses = detector.forward(**data, mode='loss') self.assertIsInstance(losses, dict) @parameterized.expand([('ld/ld_r18-gflv1-r101_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_single_stage_forward_test(self, cfg_file, devices): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) data = detector.data_preprocessor(packed_inputs, False) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward(**data, mode='predict') self.assertEqual(len(batch_results), 2) self.assertIsInstance(batch_results[0], DetDataSample)
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet import * # noqa from mmdet.structures import DetDataSample from mmdet.testing import demo_mm_inputs, get_detector_cfg from mmdet.utils import register_all_modules class TestKDSingleStageDetector(TestCase): def setUp(self): register_all_modules() @parameterized.expand(['ld/ld_r18_gflv1_r101_fpn_coco_1x.py']) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) self.assertTrue(detector.backbone) self.assertTrue(detector.neck) self.assertTrue(detector.bbox_head) @parameterized.expand([('ld/ld_r18_gflv1_r101_fpn_coco_1x.py', ('cpu', 'cuda'))]) def test_single_stage_forward_train(self, cfg_file, devices): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) data = detector.data_preprocessor(packed_inputs, True) # Test forward train losses = detector.forward(**data, mode='loss') self.assertIsInstance(losses, dict) @parameterized.expand([('ld/ld_r18_gflv1_r101_fpn_coco_1x.py', ('cpu', 'cuda'))]) def test_single_stage_forward_test(self, cfg_file, devices): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) data = detector.data_preprocessor(packed_inputs, False) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward(**data, mode='predict') self.assertEqual(len(batch_results), 2) self.assertIsInstance(batch_results[0], DetDataSample)
_base_ = './yolox_s_8xb8-300e_coco.py' # model settings model = dict( data_preprocessor=dict(batch_augments=[ dict( type='BatchSyncRandomResize', random_size_range=(320, 640), size_divisor=32, interval=10) ]), backbone=dict(deepen_factor=0.33, widen_factor=0.375), neck=dict(in_channels=[96, 192, 384], out_channels=96), bbox_head=dict(in_channels=96, feat_channels=96)) img_scale = (640, 640) # width, height train_pipeline = [ dict(type='Mosaic', img_scale=img_scale, pad_val=114.0), dict( type='RandomAffine', scaling_ratio_range=(0.5, 1.5), # img_scale is (width, height) border=(-img_scale[0] // 2, -img_scale[1] // 2)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), # Resize and Pad are for the last 15 epochs when Mosaic and # RandomAffine are closed by YOLOXModeSwitchHook. dict(type='Resize', scale=img_scale, keep_ratio=True), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=(416, 416), keep_ratio=True), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
_base_ = './yolox_s_8xb8-300e_coco.py' # model settings model = dict( data_preprocessor=dict(batch_augments=[ dict( type='BatchSyncRandomResize', random_size_range=(320, 640), size_divisor=32, interval=10) ]), backbone=dict(deepen_factor=0.33, widen_factor=0.375), neck=dict(in_channels=[96, 192, 384], out_channels=96), bbox_head=dict(in_channels=96, feat_channels=96)) img_scale = (640, 640) # width, height # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='Mosaic', img_scale=img_scale, pad_val=114.0), dict( type='RandomAffine', scaling_ratio_range=(0.5, 1.5), # img_scale is (width, height) border=(-img_scale[0] // 2, -img_scale[1] // 2)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), # Resize and Pad are for the last 15 epochs when Mosaic and # RandomAffine are closed by YOLOXModeSwitchHook. dict(type='Resize', scale=img_scale, keep_ratio=True), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(416, 416), keep_ratio=True), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
import pytest from llama_index.core.extractors import DocumentContextExtractor from llama_index.core.llms import ChatMessage, ChatResponse, MockLLM from llama_index.core.schema import Document, NodeRelationship, TextNode from llama_index.core.storage.docstore.simple_docstore import SimpleDocumentStore @pytest.fixture() def mock_llm(): class CustomMockLLM(MockLLM): def chat(self, messages, **kwargs): return ChatResponse( message=ChatMessage( role="assistant", blocks=[ { "text": f"Context for the provided chunk", "block_type": "text", } ], ) ) return CustomMockLLM() @pytest.fixture() def sample_documents(): return [ Document( text="This is chapter 1. It contains important information. This is a test document.", metadata={"title": "Doc 1"}, ), Document( text="Chapter 2 builds on previous concepts. It introduces new ideas. More test content here.", metadata={"title": "Doc 2"}, ), ] @pytest.fixture() def create_text_nodes(): def _create_nodes(document, texts): doc_info = document.as_related_node_info() return [ TextNode( text=text, metadata={}, relationships={NodeRelationship.SOURCE: doc_info}, ) for text in texts ] return _create_nodes @pytest.fixture() def docstore(sample_documents): docstore = SimpleDocumentStore() for doc in sample_documents: docstore.add_documents([doc]) return docstore @pytest.fixture() def context_extractor(docstore, mock_llm): return DocumentContextExtractor( docstore=docstore, llm=mock_llm, max_context_length=1000, max_output_tokens=100, oversized_document_strategy="error", ) @pytest.mark.asyncio async def test_context_extraction_basic( context_extractor, sample_documents, create_text_nodes ): doc = sample_documents[0] nodes = create_text_nodes( doc, ["This is chapter 1.", "It contains important information."] ) try: metadata_list = await context_extractor.aextract(nodes) print("METADATA LIST: ", metadata_list) if metadata_list is None: raise ValueError("context_extractor.aextract() returned None") assert len(metadata_list) == len(nodes) for metadata in metadata_list: assert "context" in metadata assert metadata["context"] == "Context for the provided chunk" except Exception as e: print(f"Error during extraction: {e!s}") raise def test_invalid_oversized_strategy(): with pytest.raises(ValueError): DocumentContextExtractor( docstore=SimpleDocumentStore(), llm=MockLLM(), max_context_length=1000, max_output_tokens=100, oversized_document_strategy="invalid_strategy", ) @pytest.mark.asyncio async def test_context_extraction_oversized_document(create_text_nodes): large_doc = Document( text="This is a very long document. " * 1000, metadata={"title": "Large Doc"} ) docstore = SimpleDocumentStore() docstore.add_documents([large_doc]) extractor = DocumentContextExtractor( docstore=docstore, llm=MockLLM(), max_context_length=100, # Small limit to trigger error max_output_tokens=50, oversized_document_strategy="error", ) nodes = create_text_nodes(large_doc, ["This is a test chunk."]) with pytest.raises(ValueError): await extractor.aextract(nodes) @pytest.mark.asyncio async def test_context_extraction_custom_prompt( docstore, mock_llm, sample_documents, create_text_nodes ): custom_prompt = "Generate a detailed context for this chunk:" extractor = DocumentContextExtractor( docstore=docstore, llm=mock_llm, prompt=DocumentContextExtractor.ORIGINAL_CONTEXT_PROMPT, max_context_length=1000, max_output_tokens=100, ) nodes = create_text_nodes(sample_documents[0], ["Test chunk"]) metadata_list = await extractor.aextract(nodes) assert len(metadata_list) == 1 assert "context" in metadata_list[0] @pytest.mark.asyncio async def test_multiple_documents_context( context_extractor, sample_documents, create_text_nodes ): # Create nodes from different documents nodes = create_text_nodes( sample_documents[0], ["This is chapter 1."] ) + create_text_nodes( sample_documents[1], ["Chapter 2 builds on previous concepts."] ) metadata_list = await context_extractor.aextract(nodes) assert len(metadata_list) == 2 for metadata in metadata_list: assert "context" in metadata
import pytest from llama_index.core.extractors import DocumentContextExtractor from llama_index.core.llms import ChatMessage, ChatResponse, MockLLM from llama_index.core.schema import Document, NodeRelationship, TextNode from llama_index.core.storage.docstore.simple_docstore import SimpleDocumentStore @pytest.fixture() def mock_llm(): class CustomMockLLM(MockLLM): def chat(self, messages, **kwargs): return ChatResponse( message=ChatMessage( role="assistant", blocks=[ { "text": f"Context for the provided chunk", "block_type": "text", } ], ) ) return CustomMockLLM() @pytest.fixture() def sample_documents(): return [ Document( text="This is chapter 1. It contains important information. This is a test document.", metadata={"title": "Doc 1"}, ), Document( text="Chapter 2 builds on previous concepts. It introduces new ideas. More test content here.", metadata={"title": "Doc 2"}, ), ] @pytest.fixture() def create_text_nodes(): def _create_nodes(document, texts): doc_info = document.as_related_node_info() return [ TextNode( text=text, metadata={}, relationships={NodeRelationship.SOURCE: doc_info}, ) for text in texts ] return _create_nodes @pytest.fixture() def docstore(sample_documents): docstore = SimpleDocumentStore() for doc in sample_documents: docstore.add_documents([doc]) return docstore @pytest.fixture() def context_extractor(docstore, mock_llm): return DocumentContextExtractor( docstore=docstore, llm=mock_llm, max_context_length=1000, max_output_tokens=100, oversized_document_strategy="error", ) @pytest.mark.asyncio() async def test_context_extraction_basic( context_extractor, sample_documents, create_text_nodes ): doc = sample_documents[0] nodes = create_text_nodes( doc, ["This is chapter 1.", "It contains important information."] ) try: metadata_list = await context_extractor.aextract(nodes) print("METADATA LIST: ", metadata_list) if metadata_list is None: raise ValueError("context_extractor.aextract() returned None") assert len(metadata_list) == len(nodes) for metadata in metadata_list: assert "context" in metadata assert metadata["context"] == "Context for the provided chunk" except Exception as e: print(f"Error during extraction: {e!s}") raise def test_invalid_oversized_strategy(): with pytest.raises(ValueError): DocumentContextExtractor( docstore=SimpleDocumentStore(), llm=MockLLM(), max_context_length=1000, max_output_tokens=100, oversized_document_strategy="invalid_strategy", ) @pytest.mark.asyncio() async def test_context_extraction_oversized_document(create_text_nodes): large_doc = Document( text="This is a very long document. " * 1000, metadata={"title": "Large Doc"} ) docstore = SimpleDocumentStore() docstore.add_documents([large_doc]) extractor = DocumentContextExtractor( docstore=docstore, llm=MockLLM(), max_context_length=100, # Small limit to trigger error max_output_tokens=50, oversized_document_strategy="error", ) nodes = create_text_nodes(large_doc, ["This is a test chunk."]) with pytest.raises(ValueError): await extractor.aextract(nodes) @pytest.mark.asyncio() async def test_context_extraction_custom_prompt( docstore, mock_llm, sample_documents, create_text_nodes ): custom_prompt = "Generate a detailed context for this chunk:" extractor = DocumentContextExtractor( docstore=docstore, llm=mock_llm, prompt=DocumentContextExtractor.ORIGINAL_CONTEXT_PROMPT, max_context_length=1000, max_output_tokens=100, ) nodes = create_text_nodes(sample_documents[0], ["Test chunk"]) metadata_list = await extractor.aextract(nodes) assert len(metadata_list) == 1 assert "context" in metadata_list[0] @pytest.mark.asyncio() async def test_multiple_documents_context( context_extractor, sample_documents, create_text_nodes ): # Create nodes from different documents nodes = create_text_nodes( sample_documents[0], ["This is chapter 1."] ) + create_text_nodes( sample_documents[1], ["Chapter 2 builds on previous concepts."] ) metadata_list = await context_extractor.aextract(nodes) assert len(metadata_list) == 2 for metadata in metadata_list: assert "context" in metadata
import json from typing import Any, Dict, Optional, Tuple from llama_index.core.schema import ( BaseNode, ImageNode, IndexNode, NodeRelationship, RelatedNodeInfo, TextNode, ) DEFAULT_TEXT_KEY = "text" DEFAULT_EMBEDDING_KEY = "embedding" DEFAULT_DOC_ID_KEY = "doc_id" def _validate_is_flat_dict(metadata_dict: dict) -> None: """ Validate that metadata dict is flat, and key is str, and value is one of (str, int, float, None). """ for key, val in metadata_dict.items(): if not isinstance(key, str): raise ValueError("Metadata key must be str!") if not isinstance(val, (str, int, float, type(None))): raise ValueError( f"Value for metadata {key} must be one of (str, int, float, None)" ) def node_to_metadata_dict( node: BaseNode, remove_text: bool = False, text_field: str = DEFAULT_TEXT_KEY, flat_metadata: bool = False, ) -> Dict[str, Any]: """Common logic for saving Node data into metadata dict.""" # Using mode="json" here because BaseNode may have fields of type bytes (e.g. images in ImageBlock), # which would cause serialization issues. node_dict = node.model_dump(mode="json") metadata: Dict[str, Any] = node_dict.get("metadata", {}) if flat_metadata: _validate_is_flat_dict(metadata) # store entire node as json string - some minor text duplication if remove_text: node_dict[text_field] = "" # remove embedding from node_dict node_dict["embedding"] = None # dump remainder of node_dict to json string metadata["_node_content"] = json.dumps(node_dict) metadata["_node_type"] = node.class_name() # store ref doc id at top level to allow metadata filtering # kept for backwards compatibility, will consolidate in future metadata["document_id"] = node.ref_doc_id or "None" # for Chroma metadata["doc_id"] = node.ref_doc_id or "None" # for Pinecone, Qdrant, Redis metadata["ref_doc_id"] = node.ref_doc_id or "None" # for Weaviate return metadata def metadata_dict_to_node(metadata: dict, text: Optional[str] = None) -> BaseNode: """Common logic for loading Node data from metadata dict.""" node_json = metadata.get("_node_content", None) node_type = metadata.get("_node_type", None) if node_json is None: raise ValueError("Node content not found in metadata dict.") node: BaseNode if node_type == IndexNode.class_name(): node = IndexNode.from_json(node_json) elif node_type == ImageNode.class_name(): node = ImageNode.from_json(node_json) else: node = TextNode.from_json(node_json) if text is not None: node.set_content(text) return node # TODO: Deprecated conversion functions def legacy_metadata_dict_to_node( metadata: dict, text_key: str = DEFAULT_TEXT_KEY ) -> Tuple[dict, dict, dict]: """Common logic for loading Node data from metadata dict.""" # make a copy first if metadata is None: metadata = {} else: metadata = metadata.copy() # load node_info from json string node_info_str = metadata.pop("node_info", "") if node_info_str == "": node_info = {} else: node_info = json.loads(node_info_str) # load relationships from json string relationships_str = metadata.pop("relationships", "") relationships: Dict[NodeRelationship, RelatedNodeInfo] if relationships_str == "": relationships = {} else: relationships = { NodeRelationship(k): RelatedNodeInfo(node_id=str(v)) for k, v in json.loads(relationships_str).items() } # remove other known fields metadata.pop(text_key, None) id_ = metadata.pop("id", None) document_id = metadata.pop("document_id", None) doc_id = metadata.pop("doc_id", None) ref_doc_id = metadata.pop("ref_doc_id", None) # don't remove id's from metadata that llama-index doesn't know about ref_doc_id_info = relationships.get(NodeRelationship.PARENT, None) if ref_doc_id_info is not None: ref_doc_id = ref_doc_id_info.node_id if id_ is not None and id_ != ref_doc_id: metadata["id"] = id_ if document_id is not None and document_id != ref_doc_id: metadata["document_id"] = document_id if doc_id is not None and doc_id != ref_doc_id: metadata["doc_id"] = doc_id # remaining metadata is metadata or node_info new_metadata = {} for key, val in metadata.items(): # don't enforce types on metadata anymore (we did in the past) # since how we store this data now has been updated new_metadata[key] = val return new_metadata, node_info, relationships
import json from typing import Any, Dict, Optional, Tuple from llama_index.core.schema import ( BaseNode, ImageNode, IndexNode, NodeRelationship, RelatedNodeInfo, TextNode, ) DEFAULT_TEXT_KEY = "text" DEFAULT_EMBEDDING_KEY = "embedding" DEFAULT_DOC_ID_KEY = "doc_id" def _validate_is_flat_dict(metadata_dict: dict) -> None: """ Validate that metadata dict is flat, and key is str, and value is one of (str, int, float, None). """ for key, val in metadata_dict.items(): if not isinstance(key, str): raise ValueError("Metadata key must be str!") if not isinstance(val, (str, int, float, type(None))): raise ValueError( f"Value for metadata {key} must be one of (str, int, float, None)" ) def node_to_metadata_dict( node: BaseNode, remove_text: bool = False, text_field: str = DEFAULT_TEXT_KEY, flat_metadata: bool = False, ) -> Dict[str, Any]: """Common logic for saving Node data into metadata dict.""" node_dict = node.dict() metadata: Dict[str, Any] = node_dict.get("metadata", {}) if flat_metadata: _validate_is_flat_dict(metadata) # store entire node as json string - some minor text duplication if remove_text: node_dict[text_field] = "" # remove embedding from node_dict node_dict["embedding"] = None # dump remainder of node_dict to json string metadata["_node_content"] = json.dumps(node_dict) metadata["_node_type"] = node.class_name() # store ref doc id at top level to allow metadata filtering # kept for backwards compatibility, will consolidate in future metadata["document_id"] = node.ref_doc_id or "None" # for Chroma metadata["doc_id"] = node.ref_doc_id or "None" # for Pinecone, Qdrant, Redis metadata["ref_doc_id"] = node.ref_doc_id or "None" # for Weaviate return metadata def metadata_dict_to_node(metadata: dict, text: Optional[str] = None) -> BaseNode: """Common logic for loading Node data from metadata dict.""" node_json = metadata.get("_node_content", None) node_type = metadata.get("_node_type", None) if node_json is None: raise ValueError("Node content not found in metadata dict.") node: BaseNode if node_type == IndexNode.class_name(): node = IndexNode.from_json(node_json) elif node_type == ImageNode.class_name(): node = ImageNode.from_json(node_json) else: node = TextNode.from_json(node_json) if text is not None: node.set_content(text) return node # TODO: Deprecated conversion functions def legacy_metadata_dict_to_node( metadata: dict, text_key: str = DEFAULT_TEXT_KEY ) -> Tuple[dict, dict, dict]: """Common logic for loading Node data from metadata dict.""" # make a copy first if metadata is None: metadata = {} else: metadata = metadata.copy() # load node_info from json string node_info_str = metadata.pop("node_info", "") if node_info_str == "": node_info = {} else: node_info = json.loads(node_info_str) # load relationships from json string relationships_str = metadata.pop("relationships", "") relationships: Dict[NodeRelationship, RelatedNodeInfo] if relationships_str == "": relationships = {} else: relationships = { NodeRelationship(k): RelatedNodeInfo(node_id=str(v)) for k, v in json.loads(relationships_str).items() } # remove other known fields metadata.pop(text_key, None) id_ = metadata.pop("id", None) document_id = metadata.pop("document_id", None) doc_id = metadata.pop("doc_id", None) ref_doc_id = metadata.pop("ref_doc_id", None) # don't remove id's from metadata that llama-index doesn't know about ref_doc_id_info = relationships.get(NodeRelationship.PARENT, None) if ref_doc_id_info is not None: ref_doc_id = ref_doc_id_info.node_id if id_ is not None and id_ != ref_doc_id: metadata["id"] = id_ if document_id is not None and document_id != ref_doc_id: metadata["document_id"] = document_id if doc_id is not None and doc_id != ref_doc_id: metadata["doc_id"] = doc_id # remaining metadata is metadata or node_info new_metadata = {} for key, val in metadata.items(): # don't enforce types on metadata anymore (we did in the past) # since how we store this data now has been updated new_metadata[key] = val return new_metadata, node_info, relationships
""" ================================================ Kernel Density Estimate of Species Distributions ================================================ This shows an example of a neighbors-based query (in particular a kernel density estimate) on geospatial data, using a Ball Tree built upon the Haversine distance metric -- i.e. distances over points in latitude/longitude. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <https://matplotlib.org/basemap/>`_ to plot the coast lines and national boundaries of South America. This example does not perform any learning over the data (see :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py` for an example of classification based on the attributes in this dataset). It simply shows the kernel density estimate of observed data points in geospatial coordinates. The two species are: - `"Bradypus variegatus" <https://www.iucnredlist.org/species/3038/47437046>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- - `"Maximum entropy modeling of species geographic distributions" <http://rob.schapire.net/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import fetch_species_distributions from sklearn.neighbors import KernelDensity # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) # Get matrices/arrays of species IDs and locations data = fetch_species_distributions() species_names = ["Bradypus Variegatus", "Microryzomys Minutus"] Xtrain = np.vstack([data["train"]["dd lat"], data["train"]["dd long"]]).T ytrain = np.array( [d.decode("ascii").startswith("micro") for d in data["train"]["species"]], dtype="int", ) Xtrain *= np.pi / 180.0 # Convert lat/long to radians # Set up the data grid for the contour plot xgrid, ygrid = construct_grids(data) X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1]) land_reference = data.coverages[6][::5, ::5] land_mask = (land_reference > -9999).ravel() xy = np.vstack([Y.ravel(), X.ravel()]).T xy = xy[land_mask] xy *= np.pi / 180.0 # Plot map of South America with distributions of each species fig = plt.figure() fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05) for i in range(2): plt.subplot(1, 2, i + 1) # construct a kernel density estimate of the distribution print(" - computing KDE in spherical coordinates") kde = KernelDensity( bandwidth=0.04, metric="haversine", kernel="gaussian", algorithm="ball_tree" ) kde.fit(Xtrain[ytrain == i]) # evaluate only on the land: -9999 indicates ocean Z = np.full(land_mask.shape[0], -9999, dtype="int") Z[land_mask] = np.exp(kde.score_samples(xy)) Z = Z.reshape(X.shape) # plot contours of the density levels = np.linspace(0, Z.max(), 25) plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) if basemap: print(" - plot coastlines using basemap") m = Basemap( projection="cyl", llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution="c", ) m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour( X, Y, land_reference, levels=[-9998], colors="k", linestyles="solid" ) plt.xticks([]) plt.yticks([]) plt.title(species_names[i]) plt.show()
""" ================================================ Kernel Density Estimate of Species Distributions ================================================ This shows an example of a neighbors-based query (in particular a kernel density estimate) on geospatial data, using a Ball Tree built upon the Haversine distance metric -- i.e. distances over points in latitude/longitude. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <https://matplotlib.org/basemap/>`_ to plot the coast lines and national boundaries of South America. This example does not perform any learning over the data (see :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py` for an example of classification based on the attributes in this dataset). It simply shows the kernel density estimate of observed data points in geospatial coordinates. The two species are: - `"Bradypus variegatus" <https://www.iucnredlist.org/species/3038/47437046>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- - `"Maximum entropy modeling of species geographic distributions" <http://rob.schapire.net/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # noqa: E501 # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import fetch_species_distributions from sklearn.neighbors import KernelDensity # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) # Get matrices/arrays of species IDs and locations data = fetch_species_distributions() species_names = ["Bradypus Variegatus", "Microryzomys Minutus"] Xtrain = np.vstack([data["train"]["dd lat"], data["train"]["dd long"]]).T ytrain = np.array( [d.decode("ascii").startswith("micro") for d in data["train"]["species"]], dtype="int", ) Xtrain *= np.pi / 180.0 # Convert lat/long to radians # Set up the data grid for the contour plot xgrid, ygrid = construct_grids(data) X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1]) land_reference = data.coverages[6][::5, ::5] land_mask = (land_reference > -9999).ravel() xy = np.vstack([Y.ravel(), X.ravel()]).T xy = xy[land_mask] xy *= np.pi / 180.0 # Plot map of South America with distributions of each species fig = plt.figure() fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05) for i in range(2): plt.subplot(1, 2, i + 1) # construct a kernel density estimate of the distribution print(" - computing KDE in spherical coordinates") kde = KernelDensity( bandwidth=0.04, metric="haversine", kernel="gaussian", algorithm="ball_tree" ) kde.fit(Xtrain[ytrain == i]) # evaluate only on the land: -9999 indicates ocean Z = np.full(land_mask.shape[0], -9999, dtype="int") Z[land_mask] = np.exp(kde.score_samples(xy)) Z = Z.reshape(X.shape) # plot contours of the density levels = np.linspace(0, Z.max(), 25) plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) if basemap: print(" - plot coastlines using basemap") m = Basemap( projection="cyl", llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution="c", ) m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour( X, Y, land_reference, levels=[-9998], colors="k", linestyles="solid" ) plt.xticks([]) plt.yticks([]) plt.title(species_names[i]) plt.show()
from __future__ import annotations import json from typing import Optional, Type import requests import yaml from langchain_core.callbacks import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain_core.tools import BaseTool from pydantic import BaseModel class ApiConfig(BaseModel): """API Configuration.""" type: str url: str has_user_authentication: Optional[bool] = False class AIPlugin(BaseModel): """AI Plugin Definition.""" schema_version: str name_for_model: str name_for_human: str description_for_model: str description_for_human: str auth: Optional[dict] = None api: ApiConfig logo_url: Optional[str] contact_email: Optional[str] legal_info_url: Optional[str] @classmethod def from_url(cls, url: str) -> AIPlugin: """Instantiate AIPlugin from a URL.""" response = requests.get(url).json() return cls(**response) def marshal_spec(txt: str) -> dict: """Convert the yaml or json serialized spec to a dict. Args: txt: The yaml or json serialized spec. Returns: dict: The spec as a dict. """ try: return json.loads(txt) except json.JSONDecodeError: return yaml.safe_load(txt) class AIPluginToolSchema(BaseModel): """Schema for AIPluginTool.""" tool_input: Optional[str] = "" class AIPluginTool(BaseTool): """Tool for getting the OpenAPI spec for an AI Plugin.""" plugin: AIPlugin api_spec: str args_schema: Type[AIPluginToolSchema] = AIPluginToolSchema @classmethod def from_plugin_url(cls, url: str) -> AIPluginTool: plugin = AIPlugin.from_url(url) description = ( f"Call this tool to get the OpenAPI spec (and usage guide) " f"for interacting with the {plugin.name_for_human} API. " f"You should only call this ONCE! What is the " f"{plugin.name_for_human} API useful for? " ) + plugin.description_for_human open_api_spec_str = requests.get(plugin.api.url).text open_api_spec = marshal_spec(open_api_spec_str) api_spec = ( f"Usage Guide: {plugin.description_for_model}\n\n" f"OpenAPI Spec: {open_api_spec}" ) return cls( name=plugin.name_for_model, description=description, plugin=plugin, api_spec=api_spec, ) def _run( self, tool_input: Optional[str] = "", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.api_spec async def _arun( self, tool_input: Optional[str] = None, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" return self.api_spec
from __future__ import annotations import json from typing import Optional, Type import requests import yaml from langchain_core.callbacks import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain_core.tools import BaseTool from pydantic import BaseModel class ApiConfig(BaseModel): """API Configuration.""" type: str url: str has_user_authentication: Optional[bool] = False class AIPlugin(BaseModel): """AI Plugin Definition.""" schema_version: str name_for_model: str name_for_human: str description_for_model: str description_for_human: str auth: Optional[dict] = None api: ApiConfig logo_url: Optional[str] contact_email: Optional[str] legal_info_url: Optional[str] @classmethod def from_url(cls, url: str) -> AIPlugin: """Instantiate AIPlugin from a URL.""" response = requests.get(url).json() return cls(**response) def marshal_spec(txt: str) -> dict: """Convert the yaml or json serialized spec to a dict. Args: txt: The yaml or json serialized spec. Returns: dict: The spec as a dict. """ try: return json.loads(txt) except json.JSONDecodeError: return yaml.safe_load(txt) class AIPluginToolSchema(BaseModel): """Schema for AIPluginTool.""" tool_input: Optional[str] = "" class AIPluginTool(BaseTool): # type: ignore[override, override] """Tool for getting the OpenAPI spec for an AI Plugin.""" plugin: AIPlugin api_spec: str args_schema: Type[AIPluginToolSchema] = AIPluginToolSchema @classmethod def from_plugin_url(cls, url: str) -> AIPluginTool: plugin = AIPlugin.from_url(url) description = ( f"Call this tool to get the OpenAPI spec (and usage guide) " f"for interacting with the {plugin.name_for_human} API. " f"You should only call this ONCE! What is the " f"{plugin.name_for_human} API useful for? " ) + plugin.description_for_human open_api_spec_str = requests.get(plugin.api.url).text open_api_spec = marshal_spec(open_api_spec_str) api_spec = ( f"Usage Guide: {plugin.description_for_model}\n\n" f"OpenAPI Spec: {open_api_spec}" ) return cls( name=plugin.name_for_model, description=description, plugin=plugin, api_spec=api_spec, ) def _run( self, tool_input: Optional[str] = "", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.api_spec async def _arun( self, tool_input: Optional[str] = None, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" return self.api_spec
from langchain_core.agents import AgentAction from langchain.agents.format_scratchpad.log import format_log_to_str def test_single_agent_action_observation() -> None: intermediate_steps = [ (AgentAction(tool="Tool1", tool_input="input1", log="Log1"), "Observation1"), ] expected_result = "Log1\nObservation: Observation1\nThought: " assert format_log_to_str(intermediate_steps) == expected_result def test_multiple_agent_actions_observations() -> None: intermediate_steps = [ (AgentAction(tool="Tool1", tool_input="input1", log="Log1"), "Observation1"), (AgentAction(tool="Tool2", tool_input="input2", log="Log2"), "Observation2"), (AgentAction(tool="Tool3", tool_input="input3", log="Log3"), "Observation3"), ] expected_result = """Log1\nObservation: Observation1\nThought: \ Log2\nObservation: Observation2\nThought: Log3\nObservation: \ Observation3\nThought: """ assert format_log_to_str(intermediate_steps) == expected_result def test_custom_prefixes() -> None: intermediate_steps = [ (AgentAction(tool="Tool1", tool_input="input1", log="Log1"), "Observation1"), ] observation_prefix = "Custom Observation: " llm_prefix = "Custom Thought: " expected_result = "Log1\nCustom Observation: Observation1\nCustom Thought: " assert ( format_log_to_str(intermediate_steps, observation_prefix, llm_prefix) == expected_result ) def test_empty_intermediate_steps() -> None: output = format_log_to_str([]) assert output == ""
from langchain_core.agents import AgentAction from langchain.agents.format_scratchpad.log import format_log_to_str def test_single_agent_action_observation() -> None: intermediate_steps = [ (AgentAction(tool="Tool1", tool_input="input1", log="Log1"), "Observation1") ] expected_result = "Log1\nObservation: Observation1\nThought: " assert format_log_to_str(intermediate_steps) == expected_result def test_multiple_agent_actions_observations() -> None: intermediate_steps = [ (AgentAction(tool="Tool1", tool_input="input1", log="Log1"), "Observation1"), (AgentAction(tool="Tool2", tool_input="input2", log="Log2"), "Observation2"), (AgentAction(tool="Tool3", tool_input="input3", log="Log3"), "Observation3"), ] expected_result = """Log1\nObservation: Observation1\nThought: \ Log2\nObservation: Observation2\nThought: Log3\nObservation: \ Observation3\nThought: """ assert format_log_to_str(intermediate_steps) == expected_result def test_custom_prefixes() -> None: intermediate_steps = [ (AgentAction(tool="Tool1", tool_input="input1", log="Log1"), "Observation1") ] observation_prefix = "Custom Observation: " llm_prefix = "Custom Thought: " expected_result = "Log1\nCustom Observation: Observation1\nCustom Thought: " assert ( format_log_to_str(intermediate_steps, observation_prefix, llm_prefix) == expected_result ) def test_empty_intermediate_steps() -> None: output = format_log_to_str([]) assert output == ""
"""Azure Translate tool spec.""" import requests from llama_index.core.tools.tool_spec.base import BaseToolSpec ENDPOINT_BASE_URL = "https://api.cognitive.microsofttranslator.com/translate" class AzureTranslateToolSpec(BaseToolSpec): """Azure Translate tool spec.""" spec_functions = ["translate"] def __init__(self, api_key: str, region: str) -> None: """Initialize with parameters.""" self.headers = { "Ocp-Apim-Subscription-Key": api_key, "Ocp-Apim-Subscription-Region": region, "Content-type": "application/json", } def translate(self, text: str, language: str): """ Use this tool to translate text from one language to another. The source language will be automatically detected. You need to specify the target language using a two character language code. Args: language (str): Target translation language. """ request = requests.post( ENDPOINT_BASE_URL, params={"api-version": "3.0", "to": language}, headers=self.headers, json=[{"text": text}], ) return request.json()
"""Azure Translate tool spec.""" import requests from llama_index.core.tools.tool_spec.base import BaseToolSpec ENDPOINT_BASE_URL = "https://api.cognitive.microsofttranslator.com/translate" class AzureTranslateToolSpec(BaseToolSpec): """Azure Translate tool spec.""" spec_functions = ["translate"] def __init__(self, api_key: str, region: str) -> None: """Initialize with parameters.""" self.headers = { "Ocp-Apim-Subscription-Key": api_key, "Ocp-Apim-Subscription-Region": region, "Content-type": "application/json", } def translate(self, text: str, language: str): """ Use this tool to translate text from one language to another. The source language will be automatically detected. You need to specify the target language using a two character language code. Args: language (str): Target translation language. """ request = requests.post( ENDPOINT_BASE_URL, params={"api-version": "3.0", "to": language}, headers=self.headers, json=[{"text": text}], ) return request.json()
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.models.utils.misc import get_box_tensor from mmdet.registry import TASK_UTILS from mmdet.structures.bbox import HorizontalBoxes from .base_bbox_coder import BaseBBoxCoder @TASK_UTILS.register_module() class YOLOBBoxCoder(BaseBBoxCoder): """YOLO BBox coder. Following `YOLO <https://arxiv.org/abs/1506.02640>`_, this coder divide image into grids, and encode bbox (x1, y1, x2, y2) into (cx, cy, dw, dh). cx, cy in [0., 1.], denotes relative center position w.r.t the center of bboxes. dw, dh are the same as :obj:`DeltaXYWHBBoxCoder`. Args: eps (float): Min value of cx, cy when encoding. """ def __init__(self, eps=1e-6, **kwargs): super().__init__(**kwargs) self.eps = eps def encode(self, bboxes, gt_bboxes, stride): """Get box regression transformation deltas that can be used to transform the ``bboxes`` into the ``gt_bboxes``. Args: bboxes (torch.Tensor or :obj:`BaseBoxes`): Source boxes, e.g., anchors. gt_bboxes (torch.Tensor or :obj:`BaseBoxes`): Target of the transformation, e.g., ground-truth boxes. stride (torch.Tensor | int): Stride of bboxes. Returns: torch.Tensor: Box transformation deltas """ bboxes = get_box_tensor(bboxes) gt_bboxes = get_box_tensor(gt_bboxes) assert bboxes.size(0) == gt_bboxes.size(0) assert bboxes.size(-1) == gt_bboxes.size(-1) == 4 x_center_gt = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) * 0.5 y_center_gt = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) * 0.5 w_gt = gt_bboxes[..., 2] - gt_bboxes[..., 0] h_gt = gt_bboxes[..., 3] - gt_bboxes[..., 1] x_center = (bboxes[..., 0] + bboxes[..., 2]) * 0.5 y_center = (bboxes[..., 1] + bboxes[..., 3]) * 0.5 w = bboxes[..., 2] - bboxes[..., 0] h = bboxes[..., 3] - bboxes[..., 1] w_target = torch.log((w_gt / w).clamp(min=self.eps)) h_target = torch.log((h_gt / h).clamp(min=self.eps)) x_center_target = ((x_center_gt - x_center) / stride + 0.5).clamp( self.eps, 1 - self.eps) y_center_target = ((y_center_gt - y_center) / stride + 0.5).clamp( self.eps, 1 - self.eps) encoded_bboxes = torch.stack( [x_center_target, y_center_target, w_target, h_target], dim=-1) return encoded_bboxes def decode(self, bboxes, pred_bboxes, stride): """Apply transformation `pred_bboxes` to `boxes`. Args: boxes (torch.Tensor or :obj:`BaseBoxes`): Basic boxes, e.g. anchors. pred_bboxes (torch.Tensor): Encoded boxes with shape stride (torch.Tensor | int): Strides of bboxes. Returns: Union[torch.Tensor, :obj:`BaseBoxes`]: Decoded boxes. """ bboxes = get_box_tensor(bboxes) assert pred_bboxes.size(-1) == bboxes.size(-1) == 4 xy_centers = (bboxes[..., :2] + bboxes[..., 2:]) * 0.5 + ( pred_bboxes[..., :2] - 0.5) * stride whs = (bboxes[..., 2:] - bboxes[..., :2]) * 0.5 * pred_bboxes[..., 2:].exp() decoded_bboxes = torch.stack( (xy_centers[..., 0] - whs[..., 0], xy_centers[..., 1] - whs[..., 1], xy_centers[..., 0] + whs[..., 0], xy_centers[..., 1] + whs[..., 1]), dim=-1) if self.use_box_type: decoded_bboxes = HorizontalBoxes(decoded_bboxes) return decoded_bboxes
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.registry import TASK_UTILS from .base_bbox_coder import BaseBBoxCoder @TASK_UTILS.register_module() class YOLOBBoxCoder(BaseBBoxCoder): """YOLO BBox coder. Following `YOLO <https://arxiv.org/abs/1506.02640>`_, this coder divide image into grids, and encode bbox (x1, y1, x2, y2) into (cx, cy, dw, dh). cx, cy in [0., 1.], denotes relative center position w.r.t the center of bboxes. dw, dh are the same as :obj:`DeltaXYWHBBoxCoder`. Args: eps (float): Min value of cx, cy when encoding. """ def __init__(self, eps=1e-6): super(BaseBBoxCoder, self).__init__() self.eps = eps def encode(self, bboxes, gt_bboxes, stride): """Get box regression transformation deltas that can be used to transform the ``bboxes`` into the ``gt_bboxes``. Args: bboxes (torch.Tensor): Source boxes, e.g., anchors. gt_bboxes (torch.Tensor): Target of the transformation, e.g., ground-truth boxes. stride (torch.Tensor | int): Stride of bboxes. Returns: torch.Tensor: Box transformation deltas """ assert bboxes.size(0) == gt_bboxes.size(0) assert bboxes.size(-1) == gt_bboxes.size(-1) == 4 x_center_gt = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) * 0.5 y_center_gt = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) * 0.5 w_gt = gt_bboxes[..., 2] - gt_bboxes[..., 0] h_gt = gt_bboxes[..., 3] - gt_bboxes[..., 1] x_center = (bboxes[..., 0] + bboxes[..., 2]) * 0.5 y_center = (bboxes[..., 1] + bboxes[..., 3]) * 0.5 w = bboxes[..., 2] - bboxes[..., 0] h = bboxes[..., 3] - bboxes[..., 1] w_target = torch.log((w_gt / w).clamp(min=self.eps)) h_target = torch.log((h_gt / h).clamp(min=self.eps)) x_center_target = ((x_center_gt - x_center) / stride + 0.5).clamp( self.eps, 1 - self.eps) y_center_target = ((y_center_gt - y_center) / stride + 0.5).clamp( self.eps, 1 - self.eps) encoded_bboxes = torch.stack( [x_center_target, y_center_target, w_target, h_target], dim=-1) return encoded_bboxes def decode(self, bboxes, pred_bboxes, stride): """Apply transformation `pred_bboxes` to `boxes`. Args: boxes (torch.Tensor): Basic boxes, e.g. anchors. pred_bboxes (torch.Tensor): Encoded boxes with shape stride (torch.Tensor | int): Strides of bboxes. Returns: torch.Tensor: Decoded boxes. """ assert pred_bboxes.size(-1) == bboxes.size(-1) == 4 xy_centers = (bboxes[..., :2] + bboxes[..., 2:]) * 0.5 + ( pred_bboxes[..., :2] - 0.5) * stride whs = (bboxes[..., 2:] - bboxes[..., :2]) * 0.5 * pred_bboxes[..., 2:].exp() decoded_bboxes = torch.stack( (xy_centers[..., 0] - whs[..., 0], xy_centers[..., 1] - whs[..., 1], xy_centers[..., 0] + whs[..., 0], xy_centers[..., 1] + whs[..., 1]), dim=-1) return decoded_bboxes
import logging import sentry_sdk from sentry_sdk.integrations.anthropic import AnthropicIntegration from sentry_sdk.integrations.logging import LoggingIntegration from backend.util.settings import Settings def sentry_init(): sentry_dsn = Settings().secrets.sentry_dsn sentry_sdk.init( dsn=sentry_dsn, traces_sample_rate=1.0, profiles_sample_rate=1.0, environment=f"app:{Settings().config.app_env.value}-behave:{Settings().config.behave_as.value}", _experiments={"enable_logs": True}, integrations=[ LoggingIntegration(sentry_logs_level=logging.INFO), AnthropicIntegration( include_prompts=False, ), ], )
import logging import sentry_sdk from sentry_sdk.integrations.anthropic import AnthropicIntegration from sentry_sdk.integrations.logging import LoggingIntegration from backend.util.settings import Settings def sentry_init(): sentry_dsn = Settings().secrets.sentry_dsn sentry_sdk.init( dsn=sentry_dsn, traces_sample_rate=1.0, profiles_sample_rate=1.0, environment=f"app:{Settings().config.app_env.value}-behave:{Settings().config.behave_as.value}", _experiments={ "enable_logs": True, }, integrations=[ LoggingIntegration(sentry_logs_level=logging.INFO), AnthropicIntegration( include_prompts=False, ), ], )
# Copyright (c) OpenMMLab. All rights reserved. import logging import os.path as osp from argparse import ArgumentParser from mmcv import Config from mmdet.apis import inference_detector, init_detector, show_result_pyplot from mmdet.utils import get_root_logger def parse_args(): parser = ArgumentParser() parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint_root', help='Checkpoint file root path') parser.add_argument('--img', default='demo/demo.jpg', help='Image file') parser.add_argument('--aug', action='store_true', help='aug test') parser.add_argument('--model-name', help='model name to inference') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument( '--wait-time', type=float, default=1, help='the interval of show (s), 0 is block') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='bbox score threshold') args = parser.parse_args() return args def inference_model(config_name, checkpoint, args, logger=None): cfg = Config.fromfile(config_name) if args.aug: if 'flip' in cfg.data.test.pipeline[1]: cfg.data.test.pipeline[1].flip = True else: if logger is not None: logger.error(f'{config_name}: unable to start aug test') else: print(f'{config_name}: unable to start aug test', flush=True) model = init_detector(cfg, checkpoint, device=args.device) # test a single image result = inference_detector(model, args.img) # show the results if args.show: show_result_pyplot( model, args.img, result, score_thr=args.score_thr, wait_time=args.wait_time) return result # Sample test whether the inference code is correct def main(args): config = Config.fromfile(args.config) # test single model if args.model_name: if args.model_name in config: model_infos = config[args.model_name] if not isinstance(model_infos, list): model_infos = [model_infos] model_info = model_infos[0] config_name = model_info['config'].strip() print(f'processing: {config_name}', flush=True) checkpoint = osp.join(args.checkpoint_root, model_info['checkpoint'].strip()) # build the model from a config file and a checkpoint file inference_model(config_name, checkpoint, args) return else: raise RuntimeError('model name input error.') # test all model logger = get_root_logger( log_file='benchmark_test_image.log', log_level=logging.ERROR) for model_key in config: model_infos = config[model_key] if not isinstance(model_infos, list): model_infos = [model_infos] for model_info in model_infos: print('processing: ', model_info['config'], flush=True) config_name = model_info['config'].strip() checkpoint = osp.join(args.checkpoint_root, model_info['checkpoint'].strip()) try: # build the model from a config file and a checkpoint file inference_model(config_name, checkpoint, args, logger) except Exception as e: logger.error(f'{config_name} " : {repr(e)}') if __name__ == '__main__': args = parse_args() main(args)
import logging import os.path as osp from argparse import ArgumentParser from mmcv import Config from mmdet.apis import inference_detector, init_detector, show_result_pyplot from mmdet.utils import get_root_logger def parse_args(): parser = ArgumentParser() parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint_root', help='Checkpoint file root path') parser.add_argument('--img', default='demo/demo.jpg', help='Image file') parser.add_argument('--aug', action='store_true', help='aug test') parser.add_argument('--model-name', help='model name to inference') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument( '--wait-time', type=float, default=1, help='the interval of show (s), 0 is block') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='bbox score threshold') args = parser.parse_args() return args def inference_model(config_name, checkpoint, args, logger=None): cfg = Config.fromfile(config_name) if args.aug: if 'flip' in cfg.data.test.pipeline[1]: cfg.data.test.pipeline[1].flip = True else: if logger is not None: logger.error(f'{config_name}: unable to start aug test') else: print(f'{config_name}: unable to start aug test', flush=True) model = init_detector(cfg, checkpoint, device=args.device) # test a single image result = inference_detector(model, args.img) # show the results if args.show: show_result_pyplot( model, args.img, result, score_thr=args.score_thr, wait_time=args.wait_time) return result # Sample test whether the inference code is correct def main(args): config = Config.fromfile(args.config) # test single model if args.model_name: if args.model_name in config: model_infos = config[args.model_name] if not isinstance(model_infos, list): model_infos = [model_infos] model_info = model_infos[0] config_name = model_info['config'].strip() print(f'processing: {config_name}', flush=True) checkpoint = osp.join(args.checkpoint_root, model_info['checkpoint'].strip()) # build the model from a config file and a checkpoint file inference_model(config_name, checkpoint, args) return else: raise RuntimeError('model name input error.') # test all model logger = get_root_logger( log_file='benchmark_test_image.log', log_level=logging.ERROR) for model_key in config: model_infos = config[model_key] if not isinstance(model_infos, list): model_infos = [model_infos] for model_info in model_infos: print('processing: ', model_info['config'], flush=True) config_name = model_info['config'].strip() checkpoint = osp.join(args.checkpoint_root, model_info['checkpoint'].strip()) try: # build the model from a config file and a checkpoint file inference_model(config_name, checkpoint, args, logger) except Exception as e: logger.error(f'{config_name} " : {repr(e)}') if __name__ == '__main__': args = parse_args() main(args)
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.registry import MODELS from mmdet.testing import demo_mm_inputs, demo_mm_proposals, get_roi_head_cfg from mmdet.utils import register_all_modules class TestPISARoIHead(TestCase): def setUp(self): register_all_modules() self.roi_head_cfg = get_roi_head_cfg( 'pisa/faster-rcnn_r50_fpn_pisa_1x_coco.py') def test_init(self): roi_head = MODELS.build(self.roi_head_cfg) self.assertTrue(roi_head.with_bbox) @parameterized.expand(['cpu', 'cuda']) def test_pisa_roi_head(self, device): """Tests trident roi head predict.""" if not torch.cuda.is_available() and device == 'cuda': # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') roi_head = MODELS.build(self.roi_head_cfg) roi_head = roi_head.to(device=device) s = 256 feats = [] for i in range(len(roi_head.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 256, s // (2**(i + 2)), s // (2**(i + 2))).to(device=device)) image_shapes = [(3, s, s)] batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=image_shapes, num_items=[1], num_classes=4, with_mask=True, device=device)['data_samples'] proposals_list = demo_mm_proposals( image_shapes=image_shapes, num_proposals=100, device=device) out = roi_head.loss(feats, proposals_list, batch_data_samples) loss_cls = out['loss_cls'] loss_bbox = out['loss_bbox'] self.assertGreater(loss_cls.sum(), 0, 'cls loss should be non-zero') self.assertGreater(loss_bbox.sum(), 0, 'box loss should be non-zero') batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=image_shapes, num_items=[0], num_classes=4, with_mask=True, device=device)['data_samples'] proposals_list = demo_mm_proposals( image_shapes=image_shapes, num_proposals=100, device=device) out = roi_head.loss(feats, proposals_list, batch_data_samples) empty_cls_loss = out['loss_cls'] empty_bbox_loss = out['loss_bbox'] self.assertGreater(empty_cls_loss.sum(), 0, 'cls loss should be non-zero') self.assertEqual( empty_bbox_loss.sum(), 0, 'there should be no box loss when there are no true boxes')
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.registry import MODELS from mmdet.testing import demo_mm_inputs, demo_mm_proposals, get_roi_head_cfg from mmdet.utils import register_all_modules class TestPISARoIHead(TestCase): def setUp(self): register_all_modules() self.roi_head_cfg = get_roi_head_cfg( 'pisa/pisa_faster_rcnn_r50_fpn_1x_coco.py') def test_init(self): roi_head = MODELS.build(self.roi_head_cfg) self.assertTrue(roi_head.with_bbox) @parameterized.expand(['cpu', 'cuda']) def test_pisa_roi_head(self, device): """Tests trident roi head predict.""" if not torch.cuda.is_available() and device == 'cuda': # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') roi_head = MODELS.build(self.roi_head_cfg) roi_head = roi_head.to(device=device) s = 256 feats = [] for i in range(len(roi_head.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 256, s // (2**(i + 2)), s // (2**(i + 2))).to(device=device)) image_shapes = [(3, s, s)] batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=image_shapes, num_items=[1], num_classes=4, with_mask=True, device=device)['data_samples'] proposals_list = demo_mm_proposals( image_shapes=image_shapes, num_proposals=100, device=device) out = roi_head.loss(feats, proposals_list, batch_data_samples) loss_cls = out['loss_cls'] loss_bbox = out['loss_bbox'] self.assertGreater(loss_cls.sum(), 0, 'cls loss should be non-zero') self.assertGreater(loss_bbox.sum(), 0, 'box loss should be non-zero') batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=image_shapes, num_items=[0], num_classes=4, with_mask=True, device=device)['data_samples'] proposals_list = demo_mm_proposals( image_shapes=image_shapes, num_proposals=100, device=device) out = roi_head.loss(feats, proposals_list, batch_data_samples) empty_cls_loss = out['loss_cls'] empty_bbox_loss = out['loss_bbox'] self.assertGreater(empty_cls_loss.sum(), 0, 'cls loss should be non-zero') self.assertEqual( empty_bbox_loss.sum(), 0, 'there should be no box loss when there are no true boxes')
from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union from PIL import Image from .folder import find_classes, make_dataset from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class Imagenette(VisionDataset): """`Imagenette <https://github.com/fastai/imagenette#imagenette-1>`_ image classification dataset. Args: root (str or ``pathlib.Path``): Root directory of the Imagenette dataset. split (string, optional): The dataset split. Supports ``"train"`` (default), and ``"val"``. size (string, optional): The image size. Supports ``"full"`` (default), ``"320px"``, and ``"160px"``. download (bool, optional): If ``True``, downloads the dataset components and places them in ``root``. Already downloaded archives are not downloaded again. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version, e.g. ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. Attributes: classes (list): List of the class name tuples. class_to_idx (dict): Dict with items (class name, class index). wnids (list): List of the WordNet IDs. wnid_to_idx (dict): Dict with items (WordNet ID, class index). """ _ARCHIVES = { "full": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz", "fe2fc210e6bb7c5664d602c3cd71e612"), "320px": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz", "3df6f0d01a2c9592104656642f5e78a3"), "160px": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz", "e793b78cc4c9e9a4ccc0c1155377a412"), } _WNID_TO_CLASS = { "n01440764": ("tench", "Tinca tinca"), "n02102040": ("English springer", "English springer spaniel"), "n02979186": ("cassette player",), "n03000684": ("chain saw", "chainsaw"), "n03028079": ("church", "church building"), "n03394916": ("French horn", "horn"), "n03417042": ("garbage truck", "dustcart"), "n03425413": ("gas pump", "gasoline pump", "petrol pump", "island dispenser"), "n03445777": ("golf ball",), "n03888257": ("parachute", "chute"), } def __init__( self, root: Union[str, Path], split: str = "train", size: str = "full", download=False, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ["train", "val"]) self._size = verify_str_arg(size, "size", ["full", "320px", "160px"]) self._url, self._md5 = self._ARCHIVES[self._size] self._size_root = Path(self.root) / Path(self._url).stem self._image_root = str(self._size_root / self._split) if download: self._download() elif not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it.") self.wnids, self.wnid_to_idx = find_classes(self._image_root) self.classes = [self._WNID_TO_CLASS[wnid] for wnid in self.wnids] self.class_to_idx = { class_name: idx for wnid, idx in self.wnid_to_idx.items() for class_name in self._WNID_TO_CLASS[wnid] } self._samples = make_dataset(self._image_root, self.wnid_to_idx, extensions=".jpeg") def _check_exists(self) -> bool: return self._size_root.exists() def _download(self): if self._check_exists(): return download_and_extract_archive(self._url, self.root, md5=self._md5) def __getitem__(self, idx: int) -> Tuple[Any, Any]: path, label = self._samples[idx] image = Image.open(path).convert("RGB") if self.transform is not None: image = self.transform(image) if self.target_transform is not None: label = self.target_transform(label) return image, label def __len__(self) -> int: return len(self._samples)
from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union from PIL import Image from .folder import find_classes, make_dataset from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class Imagenette(VisionDataset): """`Imagenette <https://github.com/fastai/imagenette#imagenette-1>`_ image classification dataset. Args: root (str or ``pathlib.Path``): Root directory of the Imagenette dataset. split (string, optional): The dataset split. Supports ``"train"`` (default), and ``"val"``. size (string, optional): The image size. Supports ``"full"`` (default), ``"320px"``, and ``"160px"``. download (bool, optional): If ``True``, downloads the dataset components and places them in ``root``. Already downloaded archives are not downloaded again. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version, e.g. ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. Attributes: classes (list): List of the class name tuples. class_to_idx (dict): Dict with items (class name, class index). wnids (list): List of the WordNet IDs. wnid_to_idx (dict): Dict with items (WordNet ID, class index). """ _ARCHIVES = { "full": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz", "fe2fc210e6bb7c5664d602c3cd71e612"), "320px": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz", "3df6f0d01a2c9592104656642f5e78a3"), "160px": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz", "e793b78cc4c9e9a4ccc0c1155377a412"), } _WNID_TO_CLASS = { "n01440764": ("tench", "Tinca tinca"), "n02102040": ("English springer", "English springer spaniel"), "n02979186": ("cassette player",), "n03000684": ("chain saw", "chainsaw"), "n03028079": ("church", "church building"), "n03394916": ("French horn", "horn"), "n03417042": ("garbage truck", "dustcart"), "n03425413": ("gas pump", "gasoline pump", "petrol pump", "island dispenser"), "n03445777": ("golf ball",), "n03888257": ("parachute", "chute"), } def __init__( self, root: Union[str, Path], split: str = "train", size: str = "full", download=False, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ["train", "val"]) self._size = verify_str_arg(size, "size", ["full", "320px", "160px"]) self._url, self._md5 = self._ARCHIVES[self._size] self._size_root = Path(self.root) / Path(self._url).stem self._image_root = str(self._size_root / self._split) if download: self._download() elif not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it.") self.wnids, self.wnid_to_idx = find_classes(self._image_root) self.classes = [self._WNID_TO_CLASS[wnid] for wnid in self.wnids] self.class_to_idx = { class_name: idx for wnid, idx in self.wnid_to_idx.items() for class_name in self._WNID_TO_CLASS[wnid] } self._samples = make_dataset(self._image_root, self.wnid_to_idx, extensions=".jpeg") def _check_exists(self) -> bool: return self._size_root.exists() def _download(self): if self._check_exists(): raise RuntimeError( f"The directory {self._size_root} already exists. " f"If you want to re-download or re-extract the images, delete the directory." ) download_and_extract_archive(self._url, self.root, md5=self._md5) def __getitem__(self, idx: int) -> Tuple[Any, Any]: path, label = self._samples[idx] image = Image.open(path).convert("RGB") if self.transform is not None: image = self.transform(image) if self.target_transform is not None: label = self.target_transform(label) return image, label def __len__(self) -> int: return len(self._samples)
from pathlib import Path from typing import Any, List, Union from langchain_community.document_loaders.unstructured import ( UnstructuredFileLoader, validate_unstructured_version, ) class UnstructuredTSVLoader(UnstructuredFileLoader): """Load `TSV` files using `Unstructured`. Like other Unstructured loaders, UnstructuredTSVLoader can be used in both "single" and "elements" mode. If you use the loader in "elements" mode, the TSV file will be a single Unstructured Table element. If you use the loader in "elements" mode, an HTML representation of the table will be available in the "text_as_html" key in the document metadata. Examples -------- from langchain_community.document_loaders.tsv import UnstructuredTSVLoader loader = UnstructuredTSVLoader("stanley-cups.tsv", mode="elements") docs = loader.load() """ def __init__( self, file_path: Union[str, Path], mode: str = "single", **unstructured_kwargs: Any, ): file_path = str(file_path) validate_unstructured_version(min_unstructured_version="0.7.6") super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.partition.tsv import partition_tsv return partition_tsv(filename=self.file_path, **self.unstructured_kwargs)
from pathlib import Path from typing import Any, List, Union from langchain_community.document_loaders.unstructured import ( UnstructuredFileLoader, validate_unstructured_version, ) class UnstructuredTSVLoader(UnstructuredFileLoader): """Load `TSV` files using `Unstructured`. Like other Unstructured loaders, UnstructuredTSVLoader can be used in both "single" and "elements" mode. If you use the loader in "elements" mode, the TSV file will be a single Unstructured Table element. If you use the loader in "elements" mode, an HTML representation of the table will be available in the "text_as_html" key in the document metadata. Examples -------- from langchain_community.document_loaders.tsv import UnstructuredTSVLoader loader = UnstructuredTSVLoader("stanley-cups.tsv", mode="elements") docs = loader.load() """ def __init__( self, file_path: Union[str, Path], mode: str = "single", **unstructured_kwargs: Any, ): file_path = str(file_path) validate_unstructured_version(min_unstructured_version="0.7.6") super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.partition.tsv import partition_tsv return partition_tsv(filename=self.file_path, **self.unstructured_kwargs) # type: ignore[arg-type]
"""Chat generation output classes.""" from __future__ import annotations from typing import TYPE_CHECKING, Literal, Union from pydantic import model_validator from langchain_core.messages import BaseMessage, BaseMessageChunk from langchain_core.outputs.generation import Generation from langchain_core.utils._merge import merge_dicts if TYPE_CHECKING: from typing_extensions import Self class ChatGeneration(Generation): """A single chat generation output. A subclass of Generation that represents the response from a chat model that generates chat messages. The `message` attribute is a structured representation of the chat message. Most of the time, the message will be of type `AIMessage`. Users working with chat models will usually access information via either `AIMessage` (returned from runnable interfaces) or `LLMResult` (available via callbacks). """ text: str = "" """*SHOULD NOT BE SET DIRECTLY* The text contents of the output message.""" message: BaseMessage """The message output by the chat model.""" # Override type to be ChatGeneration, ignore mypy error as this is intentional type: Literal["ChatGeneration"] = "ChatGeneration" # type: ignore[assignment] """Type is used exclusively for serialization purposes.""" @model_validator(mode="after") def set_text(self) -> Self: """Set the text attribute to be the contents of the message. Args: values: The values of the object. Returns: The values of the object with the text attribute set. Raises: ValueError: If the message is not a string or a list. """ try: text = "" if isinstance(self.message.content, str): text = self.message.content # Assumes text in content blocks in OpenAI format. # Uses first text block. elif isinstance(self.message.content, list): for block in self.message.content: if isinstance(block, str): text = block break if isinstance(block, dict) and "text" in block: text = block["text"] break else: pass self.text = text except (KeyError, AttributeError) as e: msg = "Error while initializing ChatGeneration" raise ValueError(msg) from e return self class ChatGenerationChunk(ChatGeneration): """ChatGeneration chunk. ChatGeneration chunks can be concatenated with other ChatGeneration chunks. """ message: BaseMessageChunk """The message chunk output by the chat model.""" # Override type to be ChatGeneration, ignore mypy error as this is intentional type: Literal["ChatGenerationChunk"] = "ChatGenerationChunk" # type: ignore[assignment] """Type is used exclusively for serialization purposes.""" def __add__( self, other: Union[ChatGenerationChunk, list[ChatGenerationChunk]] ) -> ChatGenerationChunk: """Concatenate two ChatGenerationChunks. Args: other: The other ChatGenerationChunk or list of ChatGenerationChunks to concatenate. """ if isinstance(other, ChatGenerationChunk): generation_info = merge_dicts( self.generation_info or {}, other.generation_info or {}, ) return ChatGenerationChunk( message=self.message + other.message, generation_info=generation_info or None, ) if isinstance(other, list) and all( isinstance(x, ChatGenerationChunk) for x in other ): generation_info = merge_dicts( self.generation_info or {}, *[chunk.generation_info for chunk in other if chunk.generation_info], ) return ChatGenerationChunk( message=self.message + [chunk.message for chunk in other], generation_info=generation_info or None, ) msg = f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" raise TypeError(msg)
"""Chat generation output classes.""" from __future__ import annotations from typing import TYPE_CHECKING, Literal, Union from pydantic import model_validator from langchain_core.messages import BaseMessage, BaseMessageChunk from langchain_core.outputs.generation import Generation from langchain_core.utils._merge import merge_dicts if TYPE_CHECKING: from typing_extensions import Self class ChatGeneration(Generation): """A single chat generation output. A subclass of Generation that represents the response from a chat model that generates chat messages. The `message` attribute is a structured representation of the chat message. Most of the time, the message will be of type `AIMessage`. Users working with chat models will usually access information via either `AIMessage` (returned from runnable interfaces) or `LLMResult` (available via callbacks). """ text: str = "" """*SHOULD NOT BE SET DIRECTLY* The text contents of the output message.""" message: BaseMessage """The message output by the chat model.""" # Override type to be ChatGeneration, ignore mypy error as this is intentional type: Literal["ChatGeneration"] = "ChatGeneration" # type: ignore[assignment] """Type is used exclusively for serialization purposes.""" @model_validator(mode="after") def set_text(self) -> Self: """Set the text attribute to be the contents of the message. Args: values: The values of the object. Returns: The values of the object with the text attribute set. Raises: ValueError: If the message is not a string or a list. """ try: text = "" if isinstance(self.message.content, str): text = self.message.content # HACK: Assumes text in content blocks in OpenAI format. # Uses first text block. elif isinstance(self.message.content, list): for block in self.message.content: if isinstance(block, str): text = block break if isinstance(block, dict) and "text" in block: text = block["text"] break else: pass self.text = text except (KeyError, AttributeError) as e: msg = "Error while initializing ChatGeneration" raise ValueError(msg) from e return self class ChatGenerationChunk(ChatGeneration): """ChatGeneration chunk. ChatGeneration chunks can be concatenated with other ChatGeneration chunks. """ message: BaseMessageChunk """The message chunk output by the chat model.""" # Override type to be ChatGeneration, ignore mypy error as this is intentional type: Literal["ChatGenerationChunk"] = "ChatGenerationChunk" # type: ignore[assignment] """Type is used exclusively for serialization purposes.""" def __add__( self, other: Union[ChatGenerationChunk, list[ChatGenerationChunk]] ) -> ChatGenerationChunk: """Concatenate two ChatGenerationChunks. Args: other: The other ChatGenerationChunk or list of ChatGenerationChunks to concatenate. """ if isinstance(other, ChatGenerationChunk): generation_info = merge_dicts( self.generation_info or {}, other.generation_info or {}, ) return ChatGenerationChunk( message=self.message + other.message, generation_info=generation_info or None, ) if isinstance(other, list) and all( isinstance(x, ChatGenerationChunk) for x in other ): generation_info = merge_dicts( self.generation_info or {}, *[chunk.generation_info for chunk in other if chunk.generation_info], ) return ChatGenerationChunk( message=self.message + [chunk.message for chunk in other], generation_info=generation_info or None, ) msg = f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" raise TypeError(msg)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.llms import GradientLLM from langchain_community.llms.gradient_ai import TrainResult # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "TrainResult": "langchain_community.llms.gradient_ai", "GradientLLM": "langchain_community.llms", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GradientLLM", "TrainResult", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.llms import GradientLLM from langchain_community.llms.gradient_ai import TrainResult # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "TrainResult": "langchain_community.llms.gradient_ai", "GradientLLM": "langchain_community.llms", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "TrainResult", "GradientLLM", ]
import os import warnings import torch from torchvision import datasets, io, models, ops, transforms, utils from .extension import _HAS_OPS try: from .version import __version__ # noqa: F401 except ImportError: pass # Check if torchvision is being imported within the root folder if not _HAS_OPS and os.path.dirname(os.path.realpath(__file__)) == os.path.join( os.path.realpath(os.getcwd()), "torchvision" ): message = ( "You are importing torchvision within its own root folder ({}). " "This is not expected to work and may give errors. Please exit the " "torchvision project source and relaunch your python interpreter." ) warnings.warn(message.format(os.getcwd())) _image_backend = "PIL" _video_backend = "pyav" def set_image_backend(backend): """ Specifies the package used to load images. Args: backend (string): Name of the image backend. one of {'PIL', 'accimage'}. The :mod:`accimage` package uses the Intel IPP library. It is generally faster than PIL, but does not support as many operations. """ global _image_backend if backend not in ["PIL", "accimage"]: raise ValueError(f"Invalid backend '{backend}'. Options are 'PIL' and 'accimage'") _image_backend = backend def get_image_backend(): """ Gets the name of the package used to load images """ return _image_backend def set_video_backend(backend): """ Specifies the package used to decode videos. Args: backend (string): Name of the video backend. one of {'pyav', 'video_reader'}. The :mod:`pyav` package uses the 3rd party PyAv library. It is a Pythonic binding for the FFmpeg libraries. The :mod:`video_reader` package includes a native C++ implementation on top of FFMPEG libraries, and a python API of TorchScript custom operator. It generally decodes faster than :mod:`pyav`, but is perhaps less robust. .. note:: Building with FFMPEG is disabled by default in the latest `main`. If you want to use the 'video_reader' backend, please compile torchvision from source. """ global _video_backend if backend not in ["pyav", "video_reader"]: raise ValueError("Invalid video backend '%s'. Options are 'pyav' and 'video_reader'" % backend) if backend == "video_reader" and not io._HAS_VIDEO_OPT: message = "video_reader video backend is not available. Please compile torchvision from source and try again" warnings.warn(message) else: _video_backend = backend def get_video_backend(): """ Returns the currently active video backend used to decode videos. Returns: str: Name of the video backend. one of {'pyav', 'video_reader'}. """ return _video_backend def _is_tracing(): return torch._C._get_tracing_state()
import os import warnings from modulefinder import Module import torch from torchvision import datasets, io, models, ops, transforms, utils from .extension import _HAS_OPS, _load_library try: from .version import __version__ # noqa: F401 except ImportError: pass try: _load_library("Decoder") _HAS_GPU_VIDEO_DECODER = True except (ImportError, OSError, ModuleNotFoundError): _HAS_GPU_VIDEO_DECODER = False # Check if torchvision is being imported within the root folder if not _HAS_OPS and os.path.dirname(os.path.realpath(__file__)) == os.path.join( os.path.realpath(os.getcwd()), "torchvision" ): message = ( "You are importing torchvision within its own root folder ({}). " "This is not expected to work and may give errors. Please exit the " "torchvision project source and relaunch your python interpreter." ) warnings.warn(message.format(os.getcwd())) _image_backend = "PIL" _video_backend = "pyav" def set_image_backend(backend): """ Specifies the package used to load images. Args: backend (string): Name of the image backend. one of {'PIL', 'accimage'}. The :mod:`accimage` package uses the Intel IPP library. It is generally faster than PIL, but does not support as many operations. """ global _image_backend if backend not in ["PIL", "accimage"]: raise ValueError(f"Invalid backend '{backend}'. Options are 'PIL' and 'accimage'") _image_backend = backend def get_image_backend(): """ Gets the name of the package used to load images """ return _image_backend def set_video_backend(backend): """ Specifies the package used to decode videos. Args: backend (string): Name of the video backend. one of {'pyav', 'video_reader'}. The :mod:`pyav` package uses the 3rd party PyAv library. It is a Pythonic binding for the FFmpeg libraries. The :mod:`video_reader` package includes a native C++ implementation on top of FFMPEG libraries, and a python API of TorchScript custom operator. It generally decodes faster than :mod:`pyav`, but is perhaps less robust. .. note:: Building with FFMPEG is disabled by default in the latest `main`. If you want to use the 'video_reader' backend, please compile torchvision from source. """ global _video_backend if backend not in ["pyav", "video_reader", "cuda"]: raise ValueError("Invalid video backend '%s'. Options are 'pyav', 'video_reader' and 'cuda'" % backend) if backend == "video_reader" and not io._HAS_VIDEO_OPT: # TODO: better messages message = "video_reader video backend is not available. Please compile torchvision from source and try again" raise RuntimeError(message) elif backend == "cuda" and not _HAS_GPU_VIDEO_DECODER: # TODO: better messages message = "cuda video backend is not available." raise RuntimeError(message) else: _video_backend = backend def get_video_backend(): """ Returns the currently active video backend used to decode videos. Returns: str: Name of the video backend. one of {'pyav', 'video_reader'}. """ return _video_backend def _is_tracing(): return torch._C._get_tracing_state()
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # model settings norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), norm_cfg=norm_cfg, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 960)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # model settings norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), norm_cfg=norm_cfg, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 960)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
from typing import Optional import numpy as np from docarray import BaseDoc, DocList from docarray.documents import ImageDoc from docarray.typing import AnyTensor, ImageUrl from jina import Deployment, Executor, Flow, requests def test_different_document_schema(): class Image(BaseDoc): tensor: Optional[AnyTensor] url: ImageUrl class MyExec(Executor): @requests(on='/foo') def foo(self, docs: DocList[Image], **kwargs) -> DocList[Image]: for doc in docs: doc.tensor = doc.url.load() return docs with Flow().add(uses=MyExec) as f: docs = f.post( on='/foo', inputs=DocList[Image]([Image(url='https://via.placeholder.com/150.png')]), return_type=DocList[Image], ) docs = docs.stack() assert docs.tensor.ndim == 4 def test_send_custom_doc(): class MyDoc(BaseDoc): text: str class MyExec(Executor): @requests(on='/foo') def foo(self, docs: DocList[MyDoc], **kwargs): docs[0].text = 'hello world' with Flow().add(uses=MyExec) as f: doc = f.post(on='/foo', inputs=MyDoc(text='hello'), return_type=DocList[MyDoc]) assert doc[0].text == 'hello world' def test_input_response_schema(): class MyDoc(BaseDoc): text: str class MyExec(Executor): @requests( on='/foo', request_schema=DocList[MyDoc], response_schema=DocList[MyDoc], ) def foo(self, docs, **kwargs): assert docs.__class__.doc_type == MyDoc docs[0].text = 'hello world' return docs with Flow().add(uses=MyExec) as f: docs = f.post(on='/foo', inputs=MyDoc(text='hello'), return_type=DocList[MyDoc]) assert docs[0].text == 'hello world' assert docs.__class__.doc_type == MyDoc def test_input_response_schema_annotation(): class MyDoc(BaseDoc): text: str class MyExec(Executor): @requests(on='/bar') def bar(self, docs: DocList[MyDoc], **kwargs) -> DocList[MyDoc]: assert docs.__class__.doc_type == MyDoc docs[0].text = 'hello world' return docs with Flow().add(uses=MyExec) as f: docs = f.post(on='/bar', inputs=MyDoc(text='hello'), return_type=DocList[MyDoc]) assert docs[0].text == 'hello world' assert docs.__class__.doc_type == MyDoc def test_different_output_input(): class InputDoc(BaseDoc): img: ImageDoc class OutputDoc(BaseDoc): embedding: AnyTensor class MyExec(Executor): @requests(on='/bar') def bar(self, docs: DocList[InputDoc], **kwargs) -> DocList[OutputDoc]: docs_return = DocList[OutputDoc]( [OutputDoc(embedding=np.zeros((100, 1))) for _ in range(len(docs))] ) return docs_return with Flow().add(uses=MyExec) as f: docs = f.post( on='/bar', inputs=InputDoc(img=ImageDoc(tensor=np.zeros((3, 224, 224)))), return_type=DocList[OutputDoc], ) assert docs[0].embedding.shape == (100, 1) assert docs.__class__.doc_type == OutputDoc def test_deployments(): class InputDoc(BaseDoc): img: ImageDoc class OutputDoc(BaseDoc): embedding: AnyTensor class MyExec(Executor): @requests(on='/bar') def bar(self, docs: DocList[InputDoc], **kwargs) -> DocList[OutputDoc]: docs_return = DocList[OutputDoc]( [OutputDoc(embedding=np.zeros((100, 1))) for _ in range(len(docs))] ) return docs_return with Deployment(uses=MyExec) as dep: docs = dep.post( on='/bar', inputs=InputDoc(img=ImageDoc(tensor=np.zeros((3, 224, 224)))), return_type=DocList[OutputDoc], ) assert docs[0].embedding.shape == (100, 1) assert docs.__class__.doc_type == OutputDoc
from typing import Optional import numpy as np from docarray import BaseDoc from docarray import DocArray as DocumentArray from docarray.documents import ImageDoc from docarray.typing import AnyTensor, ImageUrl from jina import Deployment, Executor, Flow, requests def test_different_document_schema(): class Image(BaseDoc): tensor: Optional[AnyTensor] url: ImageUrl class MyExec(Executor): @requests(on='/foo') def foo(self, docs: DocumentArray[Image], **kwargs) -> DocumentArray[Image]: for doc in docs: doc.tensor = doc.url.load() return docs with Flow().add(uses=MyExec) as f: docs = f.post( on='/foo', inputs=DocumentArray[Image]( [Image(url='https://via.placeholder.com/150.png')] ), return_type=DocumentArray[Image], ) docs = docs.stack() assert docs.tensor.ndim == 4 def test_send_custom_doc(): class MyDoc(BaseDoc): text: str class MyExec(Executor): @requests(on='/foo') def foo(self, docs: DocumentArray[MyDoc], **kwargs): docs[0].text = 'hello world' with Flow().add(uses=MyExec) as f: doc = f.post( on='/foo', inputs=MyDoc(text='hello'), return_type=DocumentArray[MyDoc] ) assert doc[0].text == 'hello world' def test_input_response_schema(): class MyDoc(BaseDoc): text: str class MyExec(Executor): @requests( on='/foo', request_schema=DocumentArray[MyDoc], response_schema=DocumentArray[MyDoc], ) def foo(self, docs, **kwargs): assert docs.__class__.document_type == MyDoc docs[0].text = 'hello world' return docs with Flow().add(uses=MyExec) as f: docs = f.post( on='/foo', inputs=MyDoc(text='hello'), return_type=DocumentArray[MyDoc] ) assert docs[0].text == 'hello world' assert docs.__class__.document_type == MyDoc def test_input_response_schema_annotation(): class MyDoc(BaseDoc): text: str class MyExec(Executor): @requests(on='/bar') def bar(self, docs: DocumentArray[MyDoc], **kwargs) -> DocumentArray[MyDoc]: assert docs.__class__.document_type == MyDoc docs[0].text = 'hello world' return docs with Flow().add(uses=MyExec) as f: docs = f.post( on='/bar', inputs=MyDoc(text='hello'), return_type=DocumentArray[MyDoc] ) assert docs[0].text == 'hello world' assert docs.__class__.document_type == MyDoc def test_different_output_input(): class InputDoc(BaseDoc): img: ImageDoc class OutputDoc(BaseDoc): embedding: AnyTensor class MyExec(Executor): @requests(on='/bar') def bar( self, docs: DocumentArray[InputDoc], **kwargs ) -> DocumentArray[OutputDoc]: docs_return = DocumentArray[OutputDoc]( [OutputDoc(embedding=np.zeros((100, 1))) for _ in range(len(docs))] ) return docs_return with Flow().add(uses=MyExec) as f: docs = f.post( on='/bar', inputs=InputDoc(img=ImageDoc(tensor=np.zeros((3, 224, 224)))), return_type=DocumentArray[OutputDoc], ) assert docs[0].embedding.shape == (100, 1) assert docs.__class__.document_type == OutputDoc def test_deployments(): class InputDoc(BaseDoc): img: ImageDoc class OutputDoc(BaseDoc): embedding: AnyTensor class MyExec(Executor): @requests(on='/bar') def bar( self, docs: DocumentArray[InputDoc], **kwargs ) -> DocumentArray[OutputDoc]: docs_return = DocumentArray[OutputDoc]( [OutputDoc(embedding=np.zeros((100, 1))) for _ in range(len(docs))] ) return docs_return with Deployment(uses=MyExec) as dep: docs = dep.post( on='/bar', inputs=InputDoc(img=ImageDoc(tensor=np.zeros((3, 224, 224)))), return_type=DocumentArray[OutputDoc], ) assert docs[0].embedding.shape == (100, 1) assert docs.__class__.document_type == OutputDoc
from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDocument from docarray.base_document.io.json import orjson_dumps from docarray.typing import AudioTorchTensor, AudioUrl from tests import TOYDATA_DIR AUDIO_FILES = [ str(TOYDATA_DIR / 'hello.wav'), str(TOYDATA_DIR / 'olleh.wav'), ] REMOTE_AUDIO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/olleh.wav?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_audio_url(file_url): uri = parse_obj_as(AudioUrl, file_url) tensor = uri.load() assert isinstance(tensor, np.ndarray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load_audio_url_to_audio_torch_tensor_field(file_url): class MyAudioDoc(BaseDocument): audio_url: AudioUrl tensor: Optional[AudioTorchTensor] doc = MyAudioDoc(audio_url=file_url) doc.tensor = doc.audio_url.load() assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, AudioTorchTensor) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load(file_url): url = parse_obj_as(AudioUrl, file_url) tensor = url.load() assert isinstance(tensor, np.ndarray) def test_json_schema(): schema_json_of(AudioUrl) def test_dump_json(): url = parse_obj_as(AudioUrl, REMOTE_AUDIO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [ *[file for file in AUDIO_FILES], REMOTE_AUDIO_FILE, ], ) def test_validation(path_to_file): url = parse_obj_as(AudioUrl, path_to_file) assert isinstance(url, AudioUrl) assert isinstance(url, str) @pytest.mark.parametrize( 'path_to_file', [ 'illegal', 'https://www.google.com', 'my/local/text/file.txt', 'my/local/text/file.png', ], ) def test_illegal_validation(path_to_file): with pytest.raises(ValueError, match='AudioUrl'): parse_obj_as(AudioUrl, path_to_file) @pytest.mark.proto @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_proto_audio_url(file_url): uri = parse_obj_as(AudioUrl, file_url) proto = uri._to_node_protobuf() assert 'audio_url' in str(proto)
from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDocument from docarray.base_document.io.json import orjson_dumps from docarray.typing import AudioTorchTensor, AudioUrl from tests import TOYDATA_DIR AUDIO_FILES = [ str(TOYDATA_DIR / 'hello.wav'), str(TOYDATA_DIR / 'olleh.wav'), ] REMOTE_AUDIO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/olleh.wav?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_audio_url(file_url): uri = parse_obj_as(AudioUrl, file_url) tensor = uri.load() assert isinstance(tensor, np.ndarray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load_audio_url_to_audio_torch_tensor_field(file_url): class MyAudioDoc(BaseDocument): audio_url: AudioUrl tensor: Optional[AudioTorchTensor] doc = MyAudioDoc(audio_url=file_url) doc.tensor = doc.audio_url.load() assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, AudioTorchTensor) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load(file_url): url = parse_obj_as(AudioUrl, file_url) tensor = url.load() assert isinstance(tensor, np.ndarray) def test_json_schema(): schema_json_of(AudioUrl) def test_dump_json(): url = parse_obj_as(AudioUrl, REMOTE_AUDIO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [ *[file for file in AUDIO_FILES], REMOTE_AUDIO_FILE, ], ) def test_validation(path_to_file): url = parse_obj_as(AudioUrl, path_to_file) assert isinstance(url, AudioUrl) assert isinstance(url, str) @pytest.mark.parametrize( 'path_to_file', [ 'illegal', 'https://www.google.com', 'my/local/text/file.txt', 'my/local/text/file.png', ], ) def test_illegal_validation(path_to_file): with pytest.raises(ValueError, match='AudioUrl'): parse_obj_as(AudioUrl, path_to_file) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_proto_audio_url(file_url): uri = parse_obj_as(AudioUrl, file_url) proto = uri._to_node_protobuf() assert 'audio_url' in str(proto)
__all__ = ["LoggingCallbackHandler"] import logging from typing import Any, Optional from uuid import UUID from langchain_core.exceptions import TracerException from langchain_core.tracers.stdout import FunctionCallbackHandler from langchain_core.utils.input import get_bolded_text, get_colored_text class LoggingCallbackHandler(FunctionCallbackHandler): """Tracer that logs via the input Logger.""" name: str = "logging_callback_handler" def __init__( self, logger: logging.Logger, log_level: int = logging.INFO, extra: Optional[dict] = None, **kwargs: Any, ) -> None: log_method = getattr(logger, logging.getLevelName(level=log_level).lower()) def callback(text: str) -> None: log_method(text, extra=extra) super().__init__(function=callback, **kwargs) def on_text( self, text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> None: try: crumbs_str = f"[{self.get_breadcrumbs(run=self._get_run(run_id=run_id))}] " except TracerException: crumbs_str = "" self.function_callback( f"{get_colored_text('[text]', color='blue')}" f" {get_bolded_text(f'{crumbs_str}New text:')}\n{text}", )
__all__ = ["LoggingCallbackHandler"] import logging from typing import Any, Optional from uuid import UUID from langchain_core.exceptions import TracerException from langchain_core.tracers.stdout import FunctionCallbackHandler from langchain_core.utils.input import get_bolded_text, get_colored_text class LoggingCallbackHandler(FunctionCallbackHandler): """Tracer that logs via the input Logger.""" name: str = "logging_callback_handler" def __init__( self, logger: logging.Logger, log_level: int = logging.INFO, extra: Optional[dict] = None, **kwargs: Any, ) -> None: log_method = getattr(logger, logging.getLevelName(level=log_level).lower()) def callback(text: str) -> None: log_method(text, extra=extra) super().__init__(function=callback, **kwargs) def on_text( self, text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any, ) -> None: try: crumbs_str = f"[{self.get_breadcrumbs(run=self._get_run(run_id=run_id))}] " except TracerException: crumbs_str = "" self.function_callback( f"{get_colored_text('[text]', color='blue')}" f" {get_bolded_text(f'{crumbs_str}New text:')}\n{text}" )
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox', backend_args=backend_args) test_evaluator = val_evaluator # training schedule for 3x with `RepeatDataset` train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate # Experiments show that using milestones=[9, 11] has higher performance param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[9, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox') test_evaluator = val_evaluator # training schedule for 3x with `RepeatDataset` train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate # Experiments show that using milestones=[9, 11] has higher performance param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[9, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)
""" Demo for accessing the xgboost eval metrics by using sklearn interface ====================================================================== """ import numpy as np from sklearn.datasets import make_hastie_10_2 import xgboost as xgb X, y = make_hastie_10_2(n_samples=2000, random_state=42) # Map labels from {-1, 1} to {0, 1} labels, y = np.unique(y, return_inverse=True) X_train, X_test = X[:1600], X[1600:] y_train, y_test = y[:1600], y[1600:] param_dist = {"objective": "binary:logistic", "n_estimators": 2} clf = xgb.XGBModel( **param_dist, eval_metric="logloss", ) # Or you can use: clf = xgb.XGBClassifier(**param_dist) clf.fit( X_train, y_train, eval_set=[(X_train, y_train), (X_test, y_test)], verbose=True, ) # Load evals result by calling the evals_result() function evals_result = clf.evals_result() print("Access logloss metric directly from validation_0:") print(evals_result["validation_0"]["logloss"]) print("") print("Access metrics through a loop:") for e_name, e_mtrs in evals_result.items(): print("- {}".format(e_name)) for e_mtr_name, e_mtr_vals in e_mtrs.items(): print(" - {}".format(e_mtr_name)) print(" - {}".format(e_mtr_vals)) print("") print("Access complete dict:") print(evals_result)
""" Demo for accessing the xgboost eval metrics by using sklearn interface ====================================================================== """ import numpy as np from sklearn.datasets import make_hastie_10_2 import xgboost as xgb X, y = make_hastie_10_2(n_samples=2000, random_state=42) # Map labels from {-1, 1} to {0, 1} labels, y = np.unique(y, return_inverse=True) X_train, X_test = X[:1600], X[1600:] y_train, y_test = y[:1600], y[1600:] param_dist = {'objective':'binary:logistic', 'n_estimators':2} clf = xgb.XGBModel(**param_dist) # Or you can use: clf = xgb.XGBClassifier(**param_dist) clf.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_test, y_test)], eval_metric='logloss', verbose=True) # Load evals result by calling the evals_result() function evals_result = clf.evals_result() print('Access logloss metric directly from validation_0:') print(evals_result['validation_0']['logloss']) print('') print('Access metrics through a loop:') for e_name, e_mtrs in evals_result.items(): print('- {}'.format(e_name)) for e_mtr_name, e_mtr_vals in e_mtrs.items(): print(' - {}'.format(e_mtr_name)) print(' - {}'.format(e_mtr_vals)) print('') print('Access complete dict:') print(evals_result)
from abc import abstractmethod from typing import Any, Type, TypeVar from pydantic import BaseConfig from pydantic.fields import ModelField from docarray.base_doc.base_node import BaseNode T = TypeVar('T') class AbstractType(BaseNode): @classmethod def __get_validators__(cls): yield cls.validate @classmethod @abstractmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: ...
from abc import abstractmethod from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar from pydantic import BaseConfig from pydantic.fields import ModelField from docarray.base_doc.base_node import BaseNode if TYPE_CHECKING: from docarray.proto import NodeProto T = TypeVar('T') class AbstractType(BaseNode): _proto_type_name: Optional[str] = None @classmethod def __get_validators__(cls): yield cls.validate @classmethod @abstractmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: ... @classmethod @abstractmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: ... @abstractmethod def _to_node_protobuf(self: T) -> 'NodeProto': ... def _docarray_to_json_compatible(self): """ Convert itself into a json compatible object :return: a representation of the tensor compatible with orjson """ return self
import pytest import torch from torchvision.prototype import datapoints @pytest.mark.parametrize( ("data", "input_requires_grad", "expected_requires_grad"), [ ([0.0], None, False), ([0.0], False, False), ([0.0], True, True), (torch.tensor([0.0], requires_grad=False), None, False), (torch.tensor([0.0], requires_grad=False), False, False), (torch.tensor([0.0], requires_grad=False), True, True), (torch.tensor([0.0], requires_grad=True), None, True), (torch.tensor([0.0], requires_grad=True), False, False), (torch.tensor([0.0], requires_grad=True), True, True), ], ) def test_new_requires_grad(data, input_requires_grad, expected_requires_grad): datapoint = datapoints.Label(data, requires_grad=input_requires_grad) assert datapoint.requires_grad is expected_requires_grad def test_isinstance(): assert isinstance( datapoints.Label([0, 1, 0], categories=["foo", "bar"]), torch.Tensor, ) def test_wrapping_no_copy(): tensor = torch.tensor([0, 1, 0], dtype=torch.int64) label = datapoints.Label(tensor, categories=["foo", "bar"]) assert label.data_ptr() == tensor.data_ptr() def test_to_wrapping(): tensor = torch.tensor([0, 1, 0], dtype=torch.int64) label = datapoints.Label(tensor, categories=["foo", "bar"]) label_to = label.to(torch.int32) assert type(label_to) is datapoints.Label assert label_to.dtype is torch.int32 assert label_to.categories is label.categories def test_to_datapoint_reference(): tensor = torch.tensor([0, 1, 0], dtype=torch.int64) label = datapoints.Label(tensor, categories=["foo", "bar"]).to(torch.int32) tensor_to = tensor.to(label) assert type(tensor_to) is torch.Tensor assert tensor_to.dtype is torch.int32 def test_clone_wrapping(): tensor = torch.tensor([0, 1, 0], dtype=torch.int64) label = datapoints.Label(tensor, categories=["foo", "bar"]) label_clone = label.clone() assert type(label_clone) is datapoints.Label assert label_clone.data_ptr() != label.data_ptr() assert label_clone.categories is label.categories def test_requires_grad__wrapping(): tensor = torch.tensor([0, 1, 0], dtype=torch.float32) label = datapoints.Label(tensor, categories=["foo", "bar"]) assert not label.requires_grad label_requires_grad = label.requires_grad_(True) assert type(label_requires_grad) is datapoints.Label assert label.requires_grad assert label_requires_grad.requires_grad def test_other_op_no_wrapping(): tensor = torch.tensor([0, 1, 0], dtype=torch.int64) label = datapoints.Label(tensor, categories=["foo", "bar"]) # any operation besides .to() and .clone() will do here output = label * 2 assert type(output) is torch.Tensor @pytest.mark.parametrize( "op", [ lambda t: t.numpy(), lambda t: t.tolist(), lambda t: t.max(dim=-1), ], ) def test_no_tensor_output_op_no_wrapping(op): tensor = torch.tensor([0, 1, 0], dtype=torch.int64) label = datapoints.Label(tensor, categories=["foo", "bar"]) output = op(label) assert type(output) is not datapoints.Label def test_inplace_op_no_wrapping(): tensor = torch.tensor([0, 1, 0], dtype=torch.int64) label = datapoints.Label(tensor, categories=["foo", "bar"]) output = label.add_(0) assert type(output) is torch.Tensor assert type(label) is datapoints.Label def test_wrap_like(): tensor = torch.tensor([0, 1, 0], dtype=torch.int64) label = datapoints.Label(tensor, categories=["foo", "bar"]) # any operation besides .to() and .clone() will do here output = label * 2 label_new = datapoints.Label.wrap_like(label, output) assert type(label_new) is datapoints.Label assert label_new.data_ptr() == output.data_ptr() assert label_new.categories is label.categories
import pytest import torch from torchvision.prototype import datapoints def test_isinstance(): assert isinstance( datapoints.Label([0, 1, 0], categories=["foo", "bar"]), torch.Tensor, ) def test_wrapping_no_copy(): tensor = torch.tensor([0, 1, 0], dtype=torch.int64) label = datapoints.Label(tensor, categories=["foo", "bar"]) assert label.data_ptr() == tensor.data_ptr() def test_to_wrapping(): tensor = torch.tensor([0, 1, 0], dtype=torch.int64) label = datapoints.Label(tensor, categories=["foo", "bar"]) label_to = label.to(torch.int32) assert type(label_to) is datapoints.Label assert label_to.dtype is torch.int32 assert label_to.categories is label.categories def test_to_datapoint_reference(): tensor = torch.tensor([0, 1, 0], dtype=torch.int64) label = datapoints.Label(tensor, categories=["foo", "bar"]).to(torch.int32) tensor_to = tensor.to(label) assert type(tensor_to) is torch.Tensor assert tensor_to.dtype is torch.int32 def test_clone_wrapping(): tensor = torch.tensor([0, 1, 0], dtype=torch.int64) label = datapoints.Label(tensor, categories=["foo", "bar"]) label_clone = label.clone() assert type(label_clone) is datapoints.Label assert label_clone.data_ptr() != label.data_ptr() assert label_clone.categories is label.categories def test_requires_grad__wrapping(): tensor = torch.tensor([0, 1, 0], dtype=torch.float32) label = datapoints.Label(tensor, categories=["foo", "bar"]) assert not label.requires_grad label_requires_grad = label.requires_grad_(True) assert type(label_requires_grad) is datapoints.Label assert label.requires_grad assert label_requires_grad.requires_grad def test_other_op_no_wrapping(): tensor = torch.tensor([0, 1, 0], dtype=torch.int64) label = datapoints.Label(tensor, categories=["foo", "bar"]) # any operation besides .to() and .clone() will do here output = label * 2 assert type(output) is torch.Tensor @pytest.mark.parametrize( "op", [ lambda t: t.numpy(), lambda t: t.tolist(), lambda t: t.max(dim=-1), ], ) def test_no_tensor_output_op_no_wrapping(op): tensor = torch.tensor([0, 1, 0], dtype=torch.int64) label = datapoints.Label(tensor, categories=["foo", "bar"]) output = op(label) assert type(output) is not datapoints.Label def test_inplace_op_no_wrapping(): tensor = torch.tensor([0, 1, 0], dtype=torch.int64) label = datapoints.Label(tensor, categories=["foo", "bar"]) output = label.add_(0) assert type(output) is torch.Tensor assert type(label) is datapoints.Label def test_wrap_like(): tensor = torch.tensor([0, 1, 0], dtype=torch.int64) label = datapoints.Label(tensor, categories=["foo", "bar"]) # any operation besides .to() and .clone() will do here output = label * 2 label_new = datapoints.Label.wrap_like(label, output) assert type(label_new) is datapoints.Label assert label_new.data_ptr() == output.data_ptr() assert label_new.categories is label.categories
"""Standard LangChain interface tests""" from langchain_core.language_models import BaseChatModel from langchain_tests.unit_tests import ChatModelUnitTests from langchain_anthropic import ChatAnthropic class TestAnthropicStandard(ChatModelUnitTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatAnthropic @property def chat_model_params(self) -> dict: return {"model": "claude-3-haiku-20240307"}
"""Standard LangChain interface tests""" from typing import Type from langchain_core.language_models import BaseChatModel from langchain_tests.unit_tests import ChatModelUnitTests from langchain_anthropic import ChatAnthropic class TestAnthropicStandard(ChatModelUnitTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return ChatAnthropic @property def chat_model_params(self) -> dict: return {"model": "claude-3-haiku-20240307"}
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool as average_pool from keras.src.ops.nn import batch_normalization as batch_normalization from keras.src.ops.nn import binary_crossentropy as binary_crossentropy from keras.src.ops.nn import ( categorical_crossentropy as categorical_crossentropy, ) from keras.src.ops.nn import celu as celu from keras.src.ops.nn import conv as conv from keras.src.ops.nn import conv_transpose as conv_transpose from keras.src.ops.nn import ctc_decode as ctc_decode from keras.src.ops.nn import ctc_loss as ctc_loss from keras.src.ops.nn import depthwise_conv as depthwise_conv from keras.src.ops.nn import dot_product_attention as dot_product_attention from keras.src.ops.nn import elu as elu from keras.src.ops.nn import gelu as gelu from keras.src.ops.nn import glu as glu from keras.src.ops.nn import hard_shrink as hard_shrink from keras.src.ops.nn import hard_sigmoid as hard_sigmoid from keras.src.ops.nn import hard_silu as hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh as hard_tanh from keras.src.ops.nn import layer_normalization as layer_normalization from keras.src.ops.nn import leaky_relu as leaky_relu from keras.src.ops.nn import log_sigmoid as log_sigmoid from keras.src.ops.nn import log_softmax as log_softmax from keras.src.ops.nn import max_pool as max_pool from keras.src.ops.nn import moments as moments from keras.src.ops.nn import multi_hot as multi_hot from keras.src.ops.nn import normalize as normalize from keras.src.ops.nn import one_hot as one_hot from keras.src.ops.nn import polar as polar from keras.src.ops.nn import psnr as psnr from keras.src.ops.nn import relu as relu from keras.src.ops.nn import relu6 as relu6 from keras.src.ops.nn import rms_normalization as rms_normalization from keras.src.ops.nn import selu as selu from keras.src.ops.nn import separable_conv as separable_conv from keras.src.ops.nn import sigmoid as sigmoid from keras.src.ops.nn import silu as silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink as soft_shrink from keras.src.ops.nn import softmax as softmax from keras.src.ops.nn import softplus as softplus from keras.src.ops.nn import softsign as softsign from keras.src.ops.nn import ( sparse_categorical_crossentropy as sparse_categorical_crossentropy, ) from keras.src.ops.nn import sparse_plus as sparse_plus from keras.src.ops.nn import sparse_sigmoid as sparse_sigmoid from keras.src.ops.nn import sparsemax as sparsemax from keras.src.ops.nn import squareplus as squareplus from keras.src.ops.nn import tanh_shrink as tanh_shrink from keras.src.ops.nn import threshold as threshold
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool as average_pool from keras.src.ops.nn import batch_normalization as batch_normalization from keras.src.ops.nn import binary_crossentropy as binary_crossentropy from keras.src.ops.nn import ( categorical_crossentropy as categorical_crossentropy, ) from keras.src.ops.nn import celu as celu from keras.src.ops.nn import conv as conv from keras.src.ops.nn import conv_transpose as conv_transpose from keras.src.ops.nn import ctc_decode as ctc_decode from keras.src.ops.nn import ctc_loss as ctc_loss from keras.src.ops.nn import depthwise_conv as depthwise_conv from keras.src.ops.nn import dot_product_attention as dot_product_attention from keras.src.ops.nn import elu as elu from keras.src.ops.nn import gelu as gelu from keras.src.ops.nn import glu as glu from keras.src.ops.nn import hard_shrink as hard_shrink from keras.src.ops.nn import hard_sigmoid as hard_sigmoid from keras.src.ops.nn import hard_silu as hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh as hard_tanh from keras.src.ops.nn import leaky_relu as leaky_relu from keras.src.ops.nn import log_sigmoid as log_sigmoid from keras.src.ops.nn import log_softmax as log_softmax from keras.src.ops.nn import max_pool as max_pool from keras.src.ops.nn import moments as moments from keras.src.ops.nn import multi_hot as multi_hot from keras.src.ops.nn import normalize as normalize from keras.src.ops.nn import one_hot as one_hot from keras.src.ops.nn import polar as polar from keras.src.ops.nn import psnr as psnr from keras.src.ops.nn import relu as relu from keras.src.ops.nn import relu6 as relu6 from keras.src.ops.nn import rms_normalization as rms_normalization from keras.src.ops.nn import selu as selu from keras.src.ops.nn import separable_conv as separable_conv from keras.src.ops.nn import sigmoid as sigmoid from keras.src.ops.nn import silu as silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink as soft_shrink from keras.src.ops.nn import softmax as softmax from keras.src.ops.nn import softplus as softplus from keras.src.ops.nn import softsign as softsign from keras.src.ops.nn import ( sparse_categorical_crossentropy as sparse_categorical_crossentropy, ) from keras.src.ops.nn import sparse_plus as sparse_plus from keras.src.ops.nn import sparse_sigmoid as sparse_sigmoid from keras.src.ops.nn import sparsemax as sparsemax from keras.src.ops.nn import squareplus as squareplus from keras.src.ops.nn import tanh_shrink as tanh_shrink from keras.src.ops.nn import threshold as threshold
""" =================================== How to write your own v2 transforms =================================== .. note:: Try on `collab <https://colab.research.google.com/github/pytorch/vision/blob/gh-pages/main/_generated_ipynb_notebooks/plot_custom_transforms.ipynb>`_ or :ref:`go to the end <sphx_glr_download_auto_examples_transforms_plot_custom_transforms.py>` to download the full example code. This guide explains how to write transforms that are compatible with the torchvision transforms V2 API. """ # %% import torch from torchvision import tv_tensors from torchvision.transforms import v2 # %% # Just create a ``nn.Module`` and override the ``forward`` method # =============================================================== # # In most cases, this is all you're going to need, as long as you already know # the structure of the input that your transform will expect. For example if # you're just doing image classification, your transform will typically accept a # single image as input, or a ``(img, label)`` input. So you can just hard-code # your ``forward`` method to accept just that, e.g. # # .. code:: python # # class MyCustomTransform(torch.nn.Module): # def forward(self, img, label): # # Do some transformations # return new_img, new_label # # .. note:: # # This means that if you have a custom transform that is already compatible # with the V1 transforms (those in ``torchvision.transforms``), it will # still work with the V2 transforms without any change! # # We will illustrate this more completely below with a typical detection case, # where our samples are just images, bounding boxes and labels: class MyCustomTransform(torch.nn.Module): def forward(self, img, bboxes, label): # we assume inputs are always structured like this print( f"I'm transforming an image of shape {img.shape} " f"with bboxes = {bboxes}\n{label = }" ) # Do some transformations. Here, we're just passing though the input return img, bboxes, label transforms = v2.Compose([ MyCustomTransform(), v2.RandomResizedCrop((224, 224), antialias=True), v2.RandomHorizontalFlip(p=1), v2.Normalize(mean=[0, 0, 0], std=[1, 1, 1]) ]) H, W = 256, 256 img = torch.rand(3, H, W) bboxes = tv_tensors.BoundingBoxes( torch.tensor([[0, 10, 10, 20], [50, 50, 70, 70]]), format="XYXY", canvas_size=(H, W) ) label = 3 out_img, out_bboxes, out_label = transforms(img, bboxes, label) # %% print(f"Output image shape: {out_img.shape}\nout_bboxes = {out_bboxes}\n{out_label = }") # %% # .. note:: # While working with TVTensor classes in your code, make sure to # familiarize yourself with this section: # :ref:`tv_tensor_unwrapping_behaviour` # # Supporting arbitrary input structures # ===================================== # # In the section above, we have assumed that you already know the structure of # your inputs and that you're OK with hard-coding this expected structure in # your code. If you want your custom transforms to be as flexible as possible, # this can be a bit limiting. # # A key feature of the builtin Torchvision V2 transforms is that they can accept # arbitrary input structure and return the same structure as output (with # transformed entries). For example, transforms can accept a single image, or a # tuple of ``(img, label)``, or an arbitrary nested dictionary as input: structured_input = { "img": img, "annotations": (bboxes, label), "something_that_will_be_ignored": (1, "hello") } structured_output = v2.RandomHorizontalFlip(p=1)(structured_input) assert isinstance(structured_output, dict) assert structured_output["something_that_will_be_ignored"] == (1, "hello") print(f"The transformed bboxes are:\n{structured_output['annotations'][0]}") # %% # If you want to reproduce this behavior in your own transform, we invite you to # look at our `code # <https://github.com/pytorch/vision/blob/main/torchvision/transforms/v2/_transform.py>`_ # and adapt it to your needs. # # In brief, the core logic is to unpack the input into a flat list using `pytree # <https://github.com/pytorch/pytorch/blob/main/torch/utils/_pytree.py>`_, and # then transform only the entries that can be transformed (the decision is made # based on the **class** of the entries, as all TVTensors are # tensor-subclasses) plus some custom logic that is out of score here - check the # code for details. The (potentially transformed) entries are then repacked and # returned, in the same structure as the input. # # We do not provide public dev-facing tools to achieve that at this time, but if # this is something that would be valuable to you, please let us know by opening # an issue on our `GitHub repo <https://github.com/pytorch/vision/issues>`_.
""" =================================== How to write your own v2 transforms =================================== .. note:: Try on `collab <https://colab.research.google.com/github/pytorch/vision/blob/gh-pages/main/_generated_ipynb_notebooks/plot_custom_transforms.ipynb>`_ or :ref:`go to the end <sphx_glr_download_auto_examples_transforms_plot_custom_transforms.py>` to download the full example code. This guide explains how to write transforms that are compatible with the torchvision transforms V2 API. """ # %% import torch from torchvision import tv_tensors from torchvision.transforms import v2 # %% # Just create a ``nn.Module`` and override the ``forward`` method # =============================================================== # # In most cases, this is all you're going to need, as long as you already know # the structure of the input that your transform will expect. For example if # you're just doing image classification, your transform will typically accept a # single image as input, or a ``(img, label)`` input. So you can just hard-code # your ``forward`` method to accept just that, e.g. # # .. code:: python # # class MyCustomTransform(torch.nn.Module): # def forward(self, img, label): # # Do some transformations # return new_img, new_label # # .. note:: # # This means that if you have a custom transform that is already compatible # with the V1 transforms (those in ``torchvision.transforms``), it will # still work with the V2 transforms without any change! # # We will illustrate this more completely below with a typical detection case, # where our samples are just images, bounding boxes and labels: class MyCustomTransform(torch.nn.Module): def forward(self, img, bboxes, label): # we assume inputs are always structured like this print( f"I'm transforming an image of shape {img.shape} " f"with bboxes = {bboxes}\n{label = }" ) # Do some transformations. Here, we're just passing though the input return img, bboxes, label transforms = v2.Compose([ MyCustomTransform(), v2.RandomResizedCrop((224, 224), antialias=True), v2.RandomHorizontalFlip(p=1), v2.Normalize(mean=[0, 0, 0], std=[1, 1, 1]) ]) H, W = 256, 256 img = torch.rand(3, H, W) bboxes = tv_tensors.BoundingBoxes( torch.tensor([[0, 10, 10, 20], [50, 50, 70, 70]]), format="XYXY", canvas_size=(H, W) ) label = 3 out_img, out_bboxes, out_label = transforms(img, bboxes, label) # %% print(f"Output image shape: {out_img.shape}\nout_bboxes = {out_bboxes}\n{out_label = }") # %% # .. note:: # While working with tv_tensor classes in your code, make sure to # familiarize yourself with this section: # :ref:`tv_tensor_unwrapping_behaviour` # # Supporting arbitrary input structures # ===================================== # # In the section above, we have assumed that you already know the structure of # your inputs and that you're OK with hard-coding this expected structure in # your code. If you want your custom transforms to be as flexible as possible, # this can be a bit limiting. # # A key feature of the builtin Torchvision V2 transforms is that they can accept # arbitrary input structure and return the same structure as output (with # transformed entries). For example, transforms can accept a single image, or a # tuple of ``(img, label)``, or an arbitrary nested dictionary as input: structured_input = { "img": img, "annotations": (bboxes, label), "something_that_will_be_ignored": (1, "hello") } structured_output = v2.RandomHorizontalFlip(p=1)(structured_input) assert isinstance(structured_output, dict) assert structured_output["something_that_will_be_ignored"] == (1, "hello") print(f"The transformed bboxes are:\n{structured_output['annotations'][0]}") # %% # If you want to reproduce this behavior in your own transform, we invite you to # look at our `code # <https://github.com/pytorch/vision/blob/main/torchvision/transforms/v2/_transform.py>`_ # and adapt it to your needs. # # In brief, the core logic is to unpack the input into a flat list using `pytree # <https://github.com/pytorch/pytorch/blob/main/torch/utils/_pytree.py>`_, and # then transform only the entries that can be transformed (the decision is made # based on the **class** of the entries, as all tv_tensors are # tensor-subclasses) plus some custom logic that is out of score here - check the # code for details. The (potentially transformed) entries are then repacked and # returned, in the same structure as the input. # # We do not provide public dev-facing tools to achieve that at this time, but if # this is something that would be valuable to you, please let us know by opening # an issue on our `GitHub repo <https://github.com/pytorch/vision/issues>`_.
import logging import requests from fastapi import Request from backend.data import integrations from backend.data.model import APIKeyCredentials, Credentials from backend.integrations.providers import ProviderName from backend.integrations.webhooks.base import BaseWebhooksManager logger = logging.getLogger(__name__) class Slant3DWebhooksManager(BaseWebhooksManager): """Manager for Slant3D webhooks""" PROVIDER_NAME = ProviderName.SLANT3D BASE_URL = "https://www.slant3dapi.com/api" async def _register_webhook( self, credentials: Credentials, webhook_type: str, resource: str, events: list[str], ingress_url: str, secret: str, ) -> tuple[str, dict]: """Register a new webhook with Slant3D""" if not isinstance(credentials, APIKeyCredentials): raise ValueError("API key is required to register a webhook") headers = { "api-key": credentials.api_key.get_secret_value(), "Content-Type": "application/json", } # Slant3D's API doesn't use events list, just register for all order updates payload = {"endPoint": ingress_url} response = requests.post( f"{self.BASE_URL}/customer/webhookSubscribe", headers=headers, json=payload ) if not response.ok: error = response.json().get("error", "Unknown error") raise RuntimeError(f"Failed to register webhook: {error}") webhook_config = { "endpoint": ingress_url, "provider": self.PROVIDER_NAME, "events": ["order.shipped"], # Currently the only supported event "type": webhook_type, } return "", webhook_config @classmethod async def validate_payload( cls, webhook: integrations.Webhook, request: Request ) -> tuple[dict, str]: """Validate incoming webhook payload from Slant3D""" payload = await request.json() # Validate required fields from Slant3D API spec required_fields = ["orderId", "status", "trackingNumber", "carrierCode"] missing_fields = [field for field in required_fields if field not in payload] if missing_fields: raise ValueError(f"Missing required fields: {', '.join(missing_fields)}") # Normalize payload structure normalized_payload = { "orderId": payload["orderId"], "status": payload["status"], "trackingNumber": payload["trackingNumber"], "carrierCode": payload["carrierCode"], } # Currently Slant3D only sends shipping notifications # Convert status to lowercase for event format compatibility event_type = f"order.{payload['status'].lower()}" return normalized_payload, event_type async def _deregister_webhook( self, webhook: integrations.Webhook, credentials: Credentials ) -> None: """ Note: Slant3D API currently doesn't provide a deregistration endpoint. This would need to be handled through support. """ # Log warning since we can't properly deregister logger.warning( f"Warning: Manual deregistration required for webhook {webhook.id}" ) pass
import logging from typing import ClassVar import requests from fastapi import Request from backend.data import integrations from backend.data.model import APIKeyCredentials, Credentials from backend.integrations.webhooks.base import BaseWebhooksManager logger = logging.getLogger(__name__) class Slant3DWebhooksManager(BaseWebhooksManager): """Manager for Slant3D webhooks""" PROVIDER_NAME: ClassVar[str] = "slant3d" BASE_URL = "https://www.slant3dapi.com/api" async def _register_webhook( self, credentials: Credentials, webhook_type: str, resource: str, events: list[str], ingress_url: str, secret: str, ) -> tuple[str, dict]: """Register a new webhook with Slant3D""" if not isinstance(credentials, APIKeyCredentials): raise ValueError("API key is required to register a webhook") headers = { "api-key": credentials.api_key.get_secret_value(), "Content-Type": "application/json", } # Slant3D's API doesn't use events list, just register for all order updates payload = {"endPoint": ingress_url} response = requests.post( f"{self.BASE_URL}/customer/webhookSubscribe", headers=headers, json=payload ) if not response.ok: error = response.json().get("error", "Unknown error") raise RuntimeError(f"Failed to register webhook: {error}") webhook_config = { "endpoint": ingress_url, "provider": self.PROVIDER_NAME, "events": ["order.shipped"], # Currently the only supported event "type": webhook_type, } return "", webhook_config @classmethod async def validate_payload( cls, webhook: integrations.Webhook, request: Request ) -> tuple[dict, str]: """Validate incoming webhook payload from Slant3D""" payload = await request.json() # Validate required fields from Slant3D API spec required_fields = ["orderId", "status", "trackingNumber", "carrierCode"] missing_fields = [field for field in required_fields if field not in payload] if missing_fields: raise ValueError(f"Missing required fields: {', '.join(missing_fields)}") # Normalize payload structure normalized_payload = { "orderId": payload["orderId"], "status": payload["status"], "trackingNumber": payload["trackingNumber"], "carrierCode": payload["carrierCode"], } # Currently Slant3D only sends shipping notifications # Convert status to lowercase for event format compatibility event_type = f"order.{payload['status'].lower()}" return normalized_payload, event_type async def _deregister_webhook( self, webhook: integrations.Webhook, credentials: Credentials ) -> None: """ Note: Slant3D API currently doesn't provide a deregistration endpoint. This would need to be handled through support. """ # Log warning since we can't properly deregister logger.warning( f"Warning: Manual deregistration required for webhook {webhook.id}" ) pass
from keras.src.api_export import keras_export from keras.src.layers.pooling.base_pooling import BasePooling @keras_export(["keras.layers.MaxPooling3D", "keras.layers.MaxPool3D"]) class MaxPooling3D(BasePooling): """Max pooling operation for 3D data (spatial or spatio-temporal). Downsamples the input along its spatial dimensions (depth, height, and width) by taking the maximum value over an input window (of size defined by `pool_size`) for each channel of the input. The window is shifted by `strides` along each dimension. Args: pool_size: int or tuple of 3 integers, factors by which to downscale (dim1, dim2, dim3). If only one integer is specified, the same window length will be used for all dimensions. strides: int or tuple of 3 integers, or None. Strides values. If None, it will default to `pool_size`. If only one int is specified, the same stride size will be used for all dimensions. padding: string, either `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. data_format: string, either `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be `"channels_last"`. Input shape: - If `data_format="channels_last"`: 5D tensor with shape: `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - If `data_format="channels_first"`: 5D tensor with shape: `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)` Output shape: - If `data_format="channels_last"`: 5D tensor with shape: `(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)` - If `data_format="channels_first"`: 5D tensor with shape: `(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)` Example: ```python depth = 30 height = 30 width = 30 channels = 3 inputs = keras.layers.Input(shape=(depth, height, width, channels)) layer = keras.layers.MaxPooling3D(pool_size=3) outputs = layer(inputs) # Shape: (batch_size, 10, 10, 10, 3) ``` """ def __init__( self, pool_size=(2, 2, 2), strides=None, padding="valid", data_format=None, name=None, **kwargs ): super().__init__( pool_size, strides, pool_dimensions=3, pool_mode="max", padding=padding, data_format=data_format, name=name, **kwargs, )
from keras.src.api_export import keras_export from keras.src.layers.pooling.base_pooling import BasePooling @keras_export(["keras.layers.MaxPooling3D", "keras.layers.MaxPool3D"]) class MaxPooling3D(BasePooling): """Max pooling operation for 3D data (spatial or spatio-temporal). Downsamples the input along its spatial dimensions (depth, height, and width) by taking the maximum value over an input window (of size defined by `pool_size`) for each channel of the input. The window is shifted by `strides` along each dimension. Args: pool_size: int or tuple of 3 integers, factors by which to downscale (dim1, dim2, dim3). If only one integer is specified, the same window length will be used for all dimensions. strides: int or tuple of 3 integers, or None. Strides values. If None, it will default to `pool_size`. If only one int is specified, the same stride size will be used for all dimensions. padding: string, either `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. data_format: string, either `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be `"channels_last"`. Input shape: - If `data_format="channels_last"`: 5D tensor with shape: `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - If `data_format="channels_first"`: 5D tensor with shape: `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)` Output shape: - If `data_format="channels_last"`: 5D tensor with shape: `(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)` - If `data_format="channels_first"`: 5D tensor with shape: `(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)` Example: ```python depth = 30 height = 30 width = 30 channels = 3 inputs = keras.layers.Input(shape=(depth, height, width, channels)) layer = keras.layers.MaxPooling3D(pool_size=3) outputs = layer(inputs) # Shape: (batch_size, 10, 10, 10, 3) ``` """ def __init__( self, pool_size=(2, 2, 2), strides=None, padding="valid", data_format=None, name=None, **kwargs ): super().__init__( pool_size, strides, pool_dimensions=3, pool_mode="max", padding=padding, data_format=data_format, name=name, **kwargs, )
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class FCOS(SingleStageDetector): """Implementation of `FCOS <https://arxiv.org/abs/1904.01355>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(FCOS, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class FCOS(SingleStageDetector): """Implementation of `FCOS <https://arxiv.org/abs/1904.01355>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(FCOS, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
_base_ = './mask_rcnn_r50_fpn_gn-all_2x_coco.py' # learning policy max_epochs = 36 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[28, 34], gamma=0.1) ]
_base_ = './mask_rcnn_r50_fpn_gn-all_2x_coco.py' # learning policy lr_config = dict(step=[28, 34]) runner = dict(type='EpochBasedRunner', max_epochs=36)
import subprocess import pytest from jina import Document, DocumentArray, Flow from ...clip_text import CLIPTextEncoder _EMBEDDING_DIM = 512 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=CLIPTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:cuda', ], timeout=30, check=True, )
import subprocess import pytest from jina import Document, DocumentArray, Flow from ...clip_text import CLIPTextEncoder _EMBEDDING_DIM = 512 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=CLIPTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, )
"""Fake Embedding class for testing purposes.""" import math from langchain_core.embeddings import Embeddings fake_texts = ["foo", "bar", "baz"] class FakeEmbeddings(Embeddings): """Fake embeddings functionality for testing.""" def embed_documents(self, texts: list[str]) -> list[list[float]]: """Return simple embeddings. Embeddings encode each text as its index.""" return [[1.0] * 9 + [float(i)] for i in range(len(texts))] async def aembed_documents(self, texts: list[str]) -> list[list[float]]: return self.embed_documents(texts) def embed_query(self, text: str) -> list[float]: """Return constant query embeddings. Embeddings are identical to embed_documents(texts)[0]. Distance to each text will be that text's index, as it was passed to embed_documents.""" return [1.0] * 9 + [0.0] async def aembed_query(self, text: str) -> list[float]: return self.embed_query(text) class ConsistentFakeEmbeddings(FakeEmbeddings): """Fake embeddings which remember all the texts seen so far to return consistent vectors for the same texts.""" def __init__(self, dimensionality: int = 10) -> None: self.known_texts: list[str] = [] self.dimensionality = dimensionality def embed_documents(self, texts: list[str]) -> list[list[float]]: """Return consistent embeddings for each text seen so far.""" out_vectors = [] for text in texts: if text not in self.known_texts: self.known_texts.append(text) vector = [1.0] * (self.dimensionality - 1) + [ float(self.known_texts.index(text)) ] out_vectors.append(vector) return out_vectors def embed_query(self, text: str) -> list[float]: """Return consistent embeddings for the text, if seen before, or a constant one if the text is unknown.""" return self.embed_documents([text])[0] class AngularTwoDimensionalEmbeddings(Embeddings): """ From angles (as strings in units of pi) to unit embedding vectors on a circle. """ def embed_documents(self, texts: list[str]) -> list[list[float]]: """ Make a list of texts into a list of embedding vectors. """ return [self.embed_query(text) for text in texts] def embed_query(self, text: str) -> list[float]: """ Convert input text to a 'vector' (list of floats). If the text is a number, use it as the angle for the unit vector in units of pi. Any other input text becomes the singular result [0, 0] ! """ try: angle = float(text) return [math.cos(angle * math.pi), math.sin(angle * math.pi)] except ValueError: # Assume: just test string, no attention is paid to values. return [0.0, 0.0]
"""Fake Embedding class for testing purposes.""" import math from typing import List from langchain_core.embeddings import Embeddings fake_texts = ["foo", "bar", "baz"] class FakeEmbeddings(Embeddings): """Fake embeddings functionality for testing.""" def embed_documents(self, texts: List[str]) -> List[List[float]]: """Return simple embeddings. Embeddings encode each text as its index.""" return [[float(1.0)] * 9 + [float(i)] for i in range(len(texts))] async def aembed_documents(self, texts: List[str]) -> List[List[float]]: return self.embed_documents(texts) def embed_query(self, text: str) -> List[float]: """Return constant query embeddings. Embeddings are identical to embed_documents(texts)[0]. Distance to each text will be that text's index, as it was passed to embed_documents.""" return [float(1.0)] * 9 + [float(0.0)] async def aembed_query(self, text: str) -> List[float]: return self.embed_query(text) class ConsistentFakeEmbeddings(FakeEmbeddings): """Fake embeddings which remember all the texts seen so far to return consistent vectors for the same texts.""" def __init__(self, dimensionality: int = 10) -> None: self.known_texts: List[str] = [] self.dimensionality = dimensionality def embed_documents(self, texts: List[str]) -> List[List[float]]: """Return consistent embeddings for each text seen so far.""" out_vectors = [] for text in texts: if text not in self.known_texts: self.known_texts.append(text) vector = [float(1.0)] * (self.dimensionality - 1) + [ float(self.known_texts.index(text)) ] out_vectors.append(vector) return out_vectors def embed_query(self, text: str) -> List[float]: """Return consistent embeddings for the text, if seen before, or a constant one if the text is unknown.""" return self.embed_documents([text])[0] class AngularTwoDimensionalEmbeddings(Embeddings): """ From angles (as strings in units of pi) to unit embedding vectors on a circle. """ def embed_documents(self, texts: List[str]) -> List[List[float]]: """ Make a list of texts into a list of embedding vectors. """ return [self.embed_query(text) for text in texts] def embed_query(self, text: str) -> List[float]: """ Convert input text to a 'vector' (list of floats). If the text is a number, use it as the angle for the unit vector in units of pi. Any other input text becomes the singular result [0, 0] ! """ try: angle = float(text) return [math.cos(angle * math.pi), math.sin(angle * math.pi)] except ValueError: # Assume: just test string, no attention is paid to values. return [0.0, 0.0]
import types from typing_extensions import TYPE_CHECKING from docarray.typing.tensor.audio import AudioNdArray from docarray.typing.tensor.embedding import AnyEmbedding, NdArrayEmbedding from docarray.typing.tensor.image import ImageNdArray, ImageTensor from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor from docarray.typing.tensor.video import VideoNdArray from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) if TYPE_CHECKING: from docarray.typing.tensor.audio import AudioJaxArray # noqa: F401 from docarray.typing.tensor.audio import AudioTensorFlowTensor # noqa: F401 from docarray.typing.tensor.audio import AudioTorchTensor # noqa: F401 from docarray.typing.tensor.embedding import JaxArrayEmbedding # noqa F401 from docarray.typing.tensor.embedding import TensorFlowEmbedding # noqa: F401 from docarray.typing.tensor.embedding import TorchEmbedding # noqa: F401 from docarray.typing.tensor.image import ImageJaxArray # noqa: F401 from docarray.typing.tensor.image import ImageTensorFlowTensor # noqa: F401 from docarray.typing.tensor.image import ImageTorchTensor # noqa: F401 from docarray.typing.tensor.jaxarray import JaxArray # noqa: F401 from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor # noqa: F401 from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 from docarray.typing.tensor.video import VideoJaxArray # noqa: F401 from docarray.typing.tensor.video import VideoTensorFlowTensor # noqa: F401 from docarray.typing.tensor.video import VideoTorchTensor # noqa: F401 __all__ = [ 'NdArray', 'AnyTensor', 'AnyEmbedding', 'NdArrayEmbedding', 'ImageNdArray', 'ImageTensor', 'AudioNdArray', 'VideoNdArray', ] def __getattr__(name: str): if 'Torch' in name: import_library('torch', raise_error=True) elif 'TensorFlow' in name: import_library('tensorflow', raise_error=True) elif 'Jax' in name: import_library('jax', raise_error=True) lib: types.ModuleType if name == 'TorchTensor': import docarray.typing.tensor.torch_tensor as lib elif name == 'TensorFlowTensor': import docarray.typing.tensor.tensorflow_tensor as lib elif name == 'JaxArray': import docarray.typing.tensor.jaxarray as lib elif name in ['TorchEmbedding', 'TensorFlowEmbedding', 'JaxArrayEmbedding']: import docarray.typing.tensor.embedding as lib elif name in ['ImageTorchTensor', 'ImageTensorFlowTensor', 'ImageJaxArray']: import docarray.typing.tensor.image as lib elif name in ['AudioTorchTensor', 'AudioTensorFlowTensor', 'AudioJaxArray']: import docarray.typing.tensor.audio as lib elif name in ['VideoTorchTensor', 'VideoTensorFlowTensor', 'VideoJaxArray']: import docarray.typing.tensor.video as lib else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' ) tensor_cls = getattr(lib, name) if name not in __all__: __all__.append(name) return tensor_cls
import types from typing_extensions import TYPE_CHECKING from docarray.typing.tensor.audio import AudioNdArray from docarray.typing.tensor.embedding import AnyEmbedding, NdArrayEmbedding from docarray.typing.tensor.image import ImageNdArray, ImageTensor from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor from docarray.typing.tensor.video import VideoNdArray from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) if TYPE_CHECKING: from docarray.typing.tensor.audio import AudioTensorFlowTensor # noqa: F401 from docarray.typing.tensor.audio import AudioTorchTensor # noqa: F401 from docarray.typing.tensor.embedding import TensorFlowEmbedding # noqa: F401 from docarray.typing.tensor.embedding import TorchEmbedding # noqa: F401 from docarray.typing.tensor.image import ImageTensorFlowTensor # noqa: F401 from docarray.typing.tensor.image import ImageTorchTensor # noqa: F401 from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor # noqa: F401 from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 from docarray.typing.tensor.video import VideoTensorFlowTensor # noqa: F401 from docarray.typing.tensor.video import VideoTorchTensor # noqa: F401 __all__ = [ 'NdArray', 'AnyTensor', 'AnyEmbedding', 'NdArrayEmbedding', 'ImageNdArray', 'ImageTensor', 'AudioNdArray', 'VideoNdArray', ] def __getattr__(name: str): if 'Torch' in name: import_library('torch', raise_error=True) elif 'TensorFlow' in name: import_library('tensorflow', raise_error=True) lib: types.ModuleType if name == 'TorchTensor': import docarray.typing.tensor.torch_tensor as lib elif name == 'TensorFlowTensor': import docarray.typing.tensor.tensorflow_tensor as lib elif name in ['TorchEmbedding', 'TensorFlowEmbedding']: import docarray.typing.tensor.embedding as lib elif name in ['ImageTorchTensor', 'ImageTensorFlowTensor']: import docarray.typing.tensor.image as lib elif name in ['AudioTorchTensor', 'AudioTensorFlowTensor']: import docarray.typing.tensor.audio as lib elif name in ['VideoTorchTensor', 'VideoTensorFlowTensor']: import docarray.typing.tensor.video as lib else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' ) tensor_cls = getattr(lib, name) if name not in __all__: __all__.append(name) return tensor_cls
# Copyright (c) OpenMMLab. All rights reserved. from .backbones import * # noqa: F401,F403 from .data_preprocessors import * # noqa: F401,F403 from .dense_heads import * # noqa: F401,F403 from .detectors import * # noqa: F401,F403 from .language_models import * # noqa: F401,F403 from .layers import * # noqa: F401,F403 from .losses import * # noqa: F401,F403 from .mot import * # noqa: F401,F403 from .necks import * # noqa: F401,F403 from .reid import * # noqa: F401,F403 from .roi_heads import * # noqa: F401,F403 from .seg_heads import * # noqa: F401,F403 from .task_modules import * # noqa: F401,F403 from .test_time_augs import * # noqa: F401,F403 from .trackers import * # noqa: F401,F403 from .tracking_heads import * # noqa: F401,F403 from .vis import * # noqa: F401,F403
# Copyright (c) OpenMMLab. All rights reserved. from .backbones import * # noqa: F401,F403 from .data_preprocessors import * # noqa: F401,F403 from .dense_heads import * # noqa: F401,F403 from .detectors import * # noqa: F401,F403 from .layers import * # noqa: F401,F403 from .losses import * # noqa: F401,F403 from .necks import * # noqa: F401,F403 from .roi_heads import * # noqa: F401,F403 from .seg_heads import * # noqa: F401,F403 from .task_modules import * # noqa: F401,F403 from .test_time_augs import * # noqa: F401,F403
import types from typing import TYPE_CHECKING from docarray.store.file import FileDocStore from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) if TYPE_CHECKING: from docarray.store.jac import JACDocStore # noqa: F401 from docarray.store.s3 import S3DocStore # noqa: F401 __all__ = ['FileDocStore'] def __getattr__(name: str): lib: types.ModuleType if name == 'JACDocStore': import_library('hubble', raise_error=True) import docarray.store.jac as lib elif name == 'S3DocStore': import_library('smart_open', raise_error=True) import_library('botocore', raise_error=True) import_library('boto3', raise_error=True) import docarray.store.s3 as lib else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' ) store_cls = getattr(lib, name) if name not in __all__: __all__.append(name) return store_cls
from docarray.store.file import FileDocStore from docarray.store.jac import JACDocStore from docarray.store.s3 import S3DocStore __all__ = ['JACDocStore', 'FileDocStore', 'S3DocStore']
import enum from typing import Any, Optional import pydantic from backend.data.api_key import APIKeyPermission, APIKeyWithoutHash from backend.data.graph import Graph class WSMethod(enum.Enum): SUBSCRIBE_GRAPH_EXEC = "subscribe_graph_execution" UNSUBSCRIBE = "unsubscribe" GRAPH_EXECUTION_EVENT = "graph_execution_event" NODE_EXECUTION_EVENT = "node_execution_event" ERROR = "error" HEARTBEAT = "heartbeat" class WSMessage(pydantic.BaseModel): method: WSMethod data: Optional[dict[str, Any] | list[Any] | str] = None success: bool | None = None channel: str | None = None error: str | None = None class WSSubscribeGraphExecutionRequest(pydantic.BaseModel): graph_exec_id: str class ExecuteGraphResponse(pydantic.BaseModel): graph_exec_id: str class CreateGraph(pydantic.BaseModel): graph: Graph class CreateAPIKeyRequest(pydantic.BaseModel): name: str permissions: list[APIKeyPermission] description: Optional[str] = None class CreateAPIKeyResponse(pydantic.BaseModel): api_key: APIKeyWithoutHash plain_text_key: str class SetGraphActiveVersion(pydantic.BaseModel): active_graph_version: int class UpdatePermissionsRequest(pydantic.BaseModel): permissions: list[APIKeyPermission] class Pagination(pydantic.BaseModel): total_items: int = pydantic.Field( description="Total number of items.", examples=[42] ) total_pages: int = pydantic.Field( description="Total number of pages.", examples=[2] ) current_page: int = pydantic.Field( description="Current_page page number.", examples=[1] ) page_size: int = pydantic.Field( description="Number of items per page.", examples=[25] ) class RequestTopUp(pydantic.BaseModel): credit_amount: int
import enum from typing import Any, List, Optional, Union import pydantic import backend.data.graph from backend.data.api_key import APIKeyPermission, APIKeyWithoutHash class Methods(enum.Enum): SUBSCRIBE = "subscribe" UNSUBSCRIBE = "unsubscribe" EXECUTION_EVENT = "execution_event" ERROR = "error" HEARTBEAT = "heartbeat" class WsMessage(pydantic.BaseModel): method: Methods data: Optional[Union[dict[str, Any], list[Any], str]] = None success: bool | None = None channel: str | None = None error: str | None = None class ExecutionSubscription(pydantic.BaseModel): graph_id: str graph_version: int class ExecuteGraphResponse(pydantic.BaseModel): graph_exec_id: str class CreateGraph(pydantic.BaseModel): graph: backend.data.graph.Graph class CreateAPIKeyRequest(pydantic.BaseModel): name: str permissions: List[APIKeyPermission] description: Optional[str] = None class CreateAPIKeyResponse(pydantic.BaseModel): api_key: APIKeyWithoutHash plain_text_key: str class SetGraphActiveVersion(pydantic.BaseModel): active_graph_version: int class UpdatePermissionsRequest(pydantic.BaseModel): permissions: List[APIKeyPermission] class Pagination(pydantic.BaseModel): total_items: int = pydantic.Field( description="Total number of items.", examples=[42] ) total_pages: int = pydantic.Field( description="Total number of pages.", examples=[2] ) current_page: int = pydantic.Field( description="Current_page page number.", examples=[1] ) page_size: int = pydantic.Field( description="Number of items per page.", examples=[25] ) class RequestTopUp(pydantic.BaseModel): credit_amount: int
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api.utils import bounding_boxes from keras.api.utils import legacy from keras.src.backend.common.global_state import clear_session from keras.src.backend.common.keras_tensor import is_keras_tensor from keras.src.backend.common.variables import standardize_dtype from keras.src.layers.preprocessing.feature_space import FeatureSpace from keras.src.ops.operation_utils import get_source_inputs from keras.src.saving.object_registration import CustomObjectScope from keras.src.saving.object_registration import ( CustomObjectScope as custom_object_scope, ) from keras.src.saving.object_registration import get_custom_objects from keras.src.saving.object_registration import get_registered_name from keras.src.saving.object_registration import get_registered_object from keras.src.saving.object_registration import register_keras_serializable from keras.src.saving.serialization_lib import deserialize_keras_object from keras.src.saving.serialization_lib import serialize_keras_object from keras.src.trainers.data_adapters.data_adapter_utils import ( pack_x_y_sample_weight, ) from keras.src.trainers.data_adapters.data_adapter_utils import ( unpack_x_y_sample_weight, ) from keras.src.trainers.data_adapters.py_dataset_adapter import PyDataset from keras.src.trainers.data_adapters.py_dataset_adapter import ( PyDataset as Sequence, ) from keras.src.utils.audio_dataset_utils import audio_dataset_from_directory from keras.src.utils.config import Config from keras.src.utils.dataset_utils import split_dataset from keras.src.utils.file_utils import get_file from keras.src.utils.image_dataset_utils import image_dataset_from_directory from keras.src.utils.image_utils import array_to_img from keras.src.utils.image_utils import img_to_array from keras.src.utils.image_utils import load_img from keras.src.utils.image_utils import save_img from keras.src.utils.io_utils import disable_interactive_logging from keras.src.utils.io_utils import enable_interactive_logging from keras.src.utils.io_utils import is_interactive_logging_enabled from keras.src.utils.model_visualization import model_to_dot from keras.src.utils.model_visualization import plot_model from keras.src.utils.numerical_utils import normalize from keras.src.utils.numerical_utils import to_categorical from keras.src.utils.progbar import Progbar from keras.src.utils.rng_utils import set_random_seed from keras.src.utils.sequence_utils import pad_sequences from keras.src.utils.text_dataset_utils import text_dataset_from_directory from keras.src.utils.timeseries_dataset_utils import ( timeseries_dataset_from_array, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api.utils import legacy from keras.src.backend.common.global_state import clear_session from keras.src.backend.common.keras_tensor import is_keras_tensor from keras.src.backend.common.variables import standardize_dtype from keras.src.layers.preprocessing.feature_space import FeatureSpace from keras.src.ops.operation_utils import get_source_inputs from keras.src.saving.object_registration import CustomObjectScope from keras.src.saving.object_registration import ( CustomObjectScope as custom_object_scope, ) from keras.src.saving.object_registration import get_custom_objects from keras.src.saving.object_registration import get_registered_name from keras.src.saving.object_registration import get_registered_object from keras.src.saving.object_registration import register_keras_serializable from keras.src.saving.serialization_lib import deserialize_keras_object from keras.src.saving.serialization_lib import serialize_keras_object from keras.src.trainers.data_adapters.data_adapter_utils import ( pack_x_y_sample_weight, ) from keras.src.trainers.data_adapters.data_adapter_utils import ( unpack_x_y_sample_weight, ) from keras.src.trainers.data_adapters.py_dataset_adapter import PyDataset from keras.src.trainers.data_adapters.py_dataset_adapter import ( PyDataset as Sequence, ) from keras.src.utils.audio_dataset_utils import audio_dataset_from_directory from keras.src.utils.config import Config from keras.src.utils.dataset_utils import split_dataset from keras.src.utils.file_utils import get_file from keras.src.utils.image_dataset_utils import image_dataset_from_directory from keras.src.utils.image_utils import array_to_img from keras.src.utils.image_utils import img_to_array from keras.src.utils.image_utils import load_img from keras.src.utils.image_utils import save_img from keras.src.utils.io_utils import disable_interactive_logging from keras.src.utils.io_utils import enable_interactive_logging from keras.src.utils.io_utils import is_interactive_logging_enabled from keras.src.utils.model_visualization import model_to_dot from keras.src.utils.model_visualization import plot_model from keras.src.utils.numerical_utils import normalize from keras.src.utils.numerical_utils import to_categorical from keras.src.utils.progbar import Progbar from keras.src.utils.rng_utils import set_random_seed from keras.src.utils.sequence_utils import pad_sequences from keras.src.utils.text_dataset_utils import text_dataset_from_directory from keras.src.utils.timeseries_dataset_utils import ( timeseries_dataset_from_array, )
import json import os from typing import Dict import torch from torch import Tensor, nn from sentence_transformers.util import fullname, import_from_string class Dense(nn.Module): """ Feed-forward function with activiation function. This layer takes a fixed-sized sentence embedding and passes it through a feed-forward layer. Can be used to generate deep averaging networks (DAN). Args: in_features: Size of the input dimension out_features: Output size bias: Add a bias vector activation_function: Pytorch activation function applied on output init_weight: Initial value for the matrix of the linear layer init_bias: Initial value for the bias of the linear layer """ def __init__( self, in_features: int, out_features: int, bias: bool = True, activation_function=nn.Tanh(), init_weight: Tensor = None, init_bias: Tensor = None, ): super(Dense, self).__init__() self.in_features = in_features self.out_features = out_features self.bias = bias self.activation_function = activation_function self.linear = nn.Linear(in_features, out_features, bias=bias) if init_weight is not None: self.linear.weight = nn.Parameter(init_weight) if init_bias is not None: self.linear.bias = nn.Parameter(init_bias) def forward(self, features: Dict[str, Tensor]): features.update({"sentence_embedding": self.activation_function(self.linear(features["sentence_embedding"]))}) return features def get_sentence_embedding_dimension(self) -> int: return self.out_features def get_config_dict(self): return { "in_features": self.in_features, "out_features": self.out_features, "bias": self.bias, "activation_function": fullname(self.activation_function), } def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut) torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def __repr__(self): return "Dense({})".format(self.get_config_dict()) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) config["activation_function"] = import_from_string(config["activation_function"])() model = Dense(**config) model.load_state_dict( torch.load(os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu")) ) return model
import torch from torch import Tensor from torch import nn from typing import Dict import os import json from ..util import fullname, import_from_string class Dense(nn.Module): """ Feed-forward function with activiation function. This layer takes a fixed-sized sentence embedding and passes it through a feed-forward layer. Can be used to generate deep averaging networks (DAN). Args: in_features: Size of the input dimension out_features: Output size bias: Add a bias vector activation_function: Pytorch activation function applied on output init_weight: Initial value for the matrix of the linear layer init_bias: Initial value for the bias of the linear layer """ def __init__( self, in_features: int, out_features: int, bias: bool = True, activation_function=nn.Tanh(), init_weight: Tensor = None, init_bias: Tensor = None, ): super(Dense, self).__init__() self.in_features = in_features self.out_features = out_features self.bias = bias self.activation_function = activation_function self.linear = nn.Linear(in_features, out_features, bias=bias) if init_weight is not None: self.linear.weight = nn.Parameter(init_weight) if init_bias is not None: self.linear.bias = nn.Parameter(init_bias) def forward(self, features: Dict[str, Tensor]): features.update({"sentence_embedding": self.activation_function(self.linear(features["sentence_embedding"]))}) return features def get_sentence_embedding_dimension(self) -> int: return self.out_features def get_config_dict(self): return { "in_features": self.in_features, "out_features": self.out_features, "bias": self.bias, "activation_function": fullname(self.activation_function), } def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut) torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def __repr__(self): return "Dense({})".format(self.get_config_dict()) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) config["activation_function"] = import_from_string(config["activation_function"])() model = Dense(**config) model.load_state_dict( torch.load(os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu")) ) return model