input
stringlengths
33
5k
output
stringlengths
32
5k
import requests from packaging import version from typing import Sequence, Union, List, Optional from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, ) from tgi.types import ( Message, ) def resolve_tgi_function_call(url: str) -> bool: url = f"{url}/info" model_info = dict(requests.get(url).json()) tgi_version = model_info.get("version", None) if version.parse(tgi_version) >= version.parse("2.0.1"): return True else: raise ValueError( "'text-generation-inference' version ", f"incompatible with function call: {tgi_version}. ", "Function call support was added in v2.0.1", ) def get_max_input_tokens(url: str) -> Union[int, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) tgi_version = model_info.get("version", None) if version.parse(tgi_version) >= version.parse("2.1.0"): return model_info.get("max_input_tokens", None) else: return model_info.get("max_input_length", None) def get_max_total_tokens(url: str) -> Union[int, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) return model_info.get("max_total_tokens", None) def get_model_name(url: str) -> Union[str, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) return model_info.get("model_id", None) def to_tgi_messages(messages: Sequence[ChatMessage]) -> Sequence[Message]: out_messages = [] for m in messages: tool_calls = m.additional_kwargs.get("tool_calls") out_messages.append( Message(role=m.role.value, content=m.content, tool_calls=tool_calls) ) return out_messages def force_single_tool_call(response: ChatResponse) -> None: tool_calls = response.message.additional_kwargs.get("tool_calls", []) if len(tool_calls) > 1: response.message.additional_kwargs["tool_calls"] = [tool_calls[0]] def resolve_tool_choice( tools: Optional[List[dict]] = None, tool_choice: str = "none" ) -> Union[str, dict]: """Resolve tool choice. Check if tool_name exists in tools. Note that unlike in OpenAI specification, 'auto' will ALWAYS choose the tool for you. Set to 'none' explicitly if do not wish to use tool. """ valid_tool_choices = ["none", "auto"] + [t["function"]["name"] for t in tools or []] if tool_choice not in valid_tool_choices: raise ValueError( f"{tool_choice} is not a valid tool_choice. Must be one of {valid_tool_choices}" ) return tool_choice
import requests from packaging import version from typing import Sequence, Union, List, Optional from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, ) from text_generation.types import ( Message, ) def resolve_tgi_function_call(url: str) -> bool: url = f"{url}/info" model_info = dict(requests.get(url).json()) tgi_version = model_info.get("version", None) if version.parse(tgi_version) >= version.parse("2.0.1"): return True else: raise ValueError( "'text-generation-inference' version ", f"incompatible with function call: {tgi_version}. ", "Function call support was added in v2.0.1", ) def get_max_input_tokens(url: str) -> Union[int, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) tgi_version = model_info.get("version", None) if version.parse(tgi_version) >= version.parse("2.1.0"): return model_info.get("max_input_tokens", None) else: return model_info.get("max_input_length", None) def get_max_total_tokens(url: str) -> Union[int, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) return model_info.get("max_total_tokens", None) def get_model_name(url: str) -> Union[str, None]: url = f"{url}/info" model_info = dict(requests.get(url).json()) return model_info.get("model_id", None) def to_tgi_messages(messages: Sequence[ChatMessage]) -> Sequence[Message]: out_messages = [] for m in messages: tool_calls = m.additional_kwargs.get("tool_calls") out_messages.append( Message(role=m.role.value, content=m.content, tool_calls=tool_calls) ) return out_messages def force_single_tool_call(response: ChatResponse) -> None: tool_calls = response.message.additional_kwargs.get("tool_calls", []) if len(tool_calls) > 1: response.message.additional_kwargs["tool_calls"] = [tool_calls[0]] def resolve_tool_choice( tools: Optional[List[dict]] = None, tool_choice: str = "none" ) -> Union[str, dict]: """Resolve tool choice. Check if tool_name exists in tools. Note that unlike in OpenAI specification, 'auto' will ALWAYS choose the tool for you. Set to 'none' explicitly if do not wish to use tool. """ valid_tool_choices = ["none", "auto"] + [t["function"]["name"] for t in tools or []] if tool_choice not in valid_tool_choices: raise ValueError( f"{tool_choice} is not a valid tool_choice. Must be one of {valid_tool_choices}" ) return tool_choice
_INITIALIZED = False _LAZILY_IMPORTED = [ "CTCHypothesis", "CTCDecoder", "CTCDecoderLM", "CTCDecoderLMState", "ctc_decoder", "download_pretrained_files", ] def __getattr__(name: str): if name in _LAZILY_IMPORTED: try: from . import _ctc_decoder except AttributeError as err: raise RuntimeError( "CTC decoder requires the decoder extension. Please set BUILD_CTC_DECODER=1 when building from source." ) from err item = getattr(_ctc_decoder, name) globals()[name] = item return item raise AttributeError(f"module {__name__} has no attribute {name}") def __dir__(): return sorted(__all__ + _LAZILY_IMPORTED) __all__ = []
_INITIALIZED = False _LAZILY_IMPORTED = [ "CTCHypothesis", "CTCDecoder", "ctc_decoder", "download_pretrained_files", ] def __getattr__(name: str): if name in _LAZILY_IMPORTED: try: from . import _ctc_decoder except AttributeError as err: raise RuntimeError( "CTC decoder requires the decoder extension. Please set BUILD_CTC_DECODER=1 when building from source." ) from err item = getattr(_ctc_decoder, name) globals()[name] = item return item raise AttributeError(f"module {__name__} has no attribute {name}") def __dir__(): return sorted(__all__ + _LAZILY_IMPORTED) __all__ = []
from keras.src import ops from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.UnitNormalization") class UnitNormalization(Layer): """Unit normalization layer. Normalize a batch of inputs so that each input in the batch has a L2 norm equal to 1 (across the axes specified in `axis`). Example: >>> data = np.arange(6).reshape(2, 3) >>> normalized_data = keras.layers.UnitNormalization()(data) >>> np.sum(normalized_data[0, :] ** 2) 1.0 Args: axis: Integer or list/tuple. The axis or axes to normalize across. Typically, this is the features axis or axes. The left-out axes are typically the batch axis or axes. `-1` is the last dimension in the input. Defaults to `-1`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) if isinstance(axis, (list, tuple)): self.axis = list(axis) elif isinstance(axis, int): self.axis = axis else: raise TypeError( "Invalid value for `axis` argument: " "expected an int or a list/tuple of ints. " f"Received: axis={axis}" ) self.supports_masking = True def build(self, input_shape): self.built = True def call(self, inputs): x = ops.cast(inputs, self.compute_dtype) square_sum = ops.sum(ops.square(x), axis=self.axis, keepdims=True) x_inv_norm = ops.rsqrt(ops.maximum(square_sum, 1e-12)) return ops.multiply(x, x_inv_norm) def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = super().get_config() config.update({"axis": self.axis}) return config
from keras.src import ops from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.UnitNormalization") class UnitNormalization(Layer): """Unit normalization layer. Normalize a batch of inputs so that each input in the batch has a L2 norm equal to 1 (across the axes specified in `axis`). Example: >>> data = np.arange(6).reshape(2, 3) >>> normalized_data = keras.layers.UnitNormalization()(data) >>> print(np.sum(normalized_data[0, :] ** 2)) 0.99999994 Args: axis: Integer or list/tuple. The axis or axes to normalize across. Typically, this is the features axis or axes. The left-out axes are typically the batch axis or axes. `-1` is the last dimension in the input. Defaults to `-1`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) if isinstance(axis, (list, tuple)): self.axis = list(axis) elif isinstance(axis, int): self.axis = axis else: raise TypeError( "Invalid value for `axis` argument: " "expected an int or a list/tuple of ints. " f"Received: axis={axis}" ) self.supports_masking = True def build(self, input_shape): self.built = True def call(self, inputs): x = ops.cast(inputs, self.compute_dtype) square_sum = ops.sum(ops.square(x), axis=self.axis, keepdims=True) x_inv_norm = ops.rsqrt(ops.maximum(square_sum, 1e-12)) return ops.multiply(x, x_inv_norm) def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = super().get_config() config.update({"axis": self.axis}) return config
import os.path from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union import numpy as np from PIL import Image from .utils import check_integrity, download_url from .vision import VisionDataset class SEMEION(VisionDataset): r"""`SEMEION <http://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where directory ``semeion.py`` exists. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ url = "http://archive.ics.uci.edu/ml/machine-learning-databases/semeion/semeion.data" filename = "semeion.data" md5_checksum = "cb545d371d2ce14ec121470795a77432" def __init__( self, root: Union[str, Path], transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = True, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") fp = os.path.join(self.root, self.filename) data = np.loadtxt(fp) # convert value to 8 bit unsigned integer # color (white #255) the pixels self.data = (data[:, :256] * 255).astype("uint8") self.data = np.reshape(self.data, (-1, 16, 16)) self.labels = np.nonzero(data[:, 256:])[1] def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], int(self.labels[index]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img, mode="L") if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return len(self.data) def _check_integrity(self) -> bool: root = self.root fpath = os.path.join(root, self.filename) if not check_integrity(fpath, self.md5_checksum): return False return True def download(self) -> None: if self._check_integrity(): print("Files already downloaded and verified") return root = self.root download_url(self.url, root, self.filename, self.md5_checksum)
import os.path from typing import Any, Callable, Optional, Tuple import numpy as np from PIL import Image from .utils import check_integrity, download_url from .vision import VisionDataset class SEMEION(VisionDataset): r"""`SEMEION <http://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit>`_ Dataset. Args: root (string): Root directory of dataset where directory ``semeion.py`` exists. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ url = "http://archive.ics.uci.edu/ml/machine-learning-databases/semeion/semeion.data" filename = "semeion.data" md5_checksum = "cb545d371d2ce14ec121470795a77432" def __init__( self, root: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = True, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") fp = os.path.join(self.root, self.filename) data = np.loadtxt(fp) # convert value to 8 bit unsigned integer # color (white #255) the pixels self.data = (data[:, :256] * 255).astype("uint8") self.data = np.reshape(self.data, (-1, 16, 16)) self.labels = np.nonzero(data[:, 256:])[1] def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], int(self.labels[index]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img, mode="L") if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return len(self.data) def _check_integrity(self) -> bool: root = self.root fpath = os.path.join(root, self.filename) if not check_integrity(fpath, self.md5_checksum): return False return True def download(self) -> None: if self._check_integrity(): print("Files already downloaded and verified") return root = self.root download_url(self.url, root, self.filename, self.md5_checksum)
import numpy as np import scipy.signal from keras.src import backend from keras.src import initializers from keras.src import testing class ConstantInitializersTest(testing.TestCase): def test_zeros_initializer(self): shape = (3, 3) initializer = initializers.Zeros() values = initializer(shape=shape) self.assertEqual(values.shape, shape) np_values = backend.convert_to_numpy(values) self.assertAllClose(np_values, np.zeros(shape=shape)) self.run_class_serialization_test(initializer) def test_ones_initializer(self): shape = (3, 3) initializer = initializers.Ones() values = initializer(shape=shape) self.assertEqual(values.shape, shape) np_values = backend.convert_to_numpy(values) self.assertAllClose(np_values, np.ones(shape=shape)) self.run_class_serialization_test(initializer) def test_constant_initializer(self): shape = (3, 3) constant_value = 6.0 initializer = initializers.Constant(value=constant_value) values = initializer(shape=shape) self.assertEqual(values.shape, shape) np_values = backend.convert_to_numpy(values) self.assertAllClose( np_values, np.full(shape=shape, fill_value=constant_value) ) self.run_class_serialization_test(initializer) def test_constant_initializer_array_value(self): shape = (3, 3) constant_value = np.random.random((3, 3)) initializer = initializers.Constant(value=constant_value) values = initializer(shape=shape) self.assertEqual(values.shape, shape) np_values = backend.convert_to_numpy(values) self.assertAllClose( np_values, np.full(shape=shape, fill_value=constant_value) ) self.run_class_serialization_test(initializer) def test_identity_initializer(self): shape = (3, 3) gain = 2 initializer = initializers.Identity(gain=gain) values = initializer(shape=shape) self.assertEqual(values.shape, shape) np_values = backend.convert_to_numpy(values) self.assertAllClose(np_values, np.eye(*shape) * gain) self.run_class_serialization_test(initializer) def test_stft_initializer(self): shape = (256, 1, 513) time_range = np.arange(256).reshape((-1, 1, 1)) freq_range = (np.arange(513) / 1024.0).reshape((1, 1, -1)) pi = np.arccos(np.float64(-1)) args = -2 * pi * time_range * freq_range tol_kwargs = {} if backend.backend() == "jax": # TODO(mostafa-mahmoud): investigate the cases # of non-small error in jax and torch tol_kwargs = {"atol": 1e-4, "rtol": 1e-6} initializer = initializers.STFTInitializer("real", None) values = backend.convert_to_numpy(initializer(shape)) self.assertAllClose(np.cos(args), values, atol=1e-4) self.run_class_serialization_test(initializer) initializer = initializers.STFTInitializer( "real", "hamming", None, True, ) window = scipy.signal.windows.get_window("hamming", 256, True) window = window.astype("float64").reshape((-1, 1, 1)) values = backend.convert_to_numpy(initializer(shape, "float64")) self.assertAllClose(np.cos(args) * window, values, **tol_kwargs) self.run_class_serialization_test(initializer) initializer = initializers.STFTInitializer( "imag", "tukey", "density", False, ) window = scipy.signal.windows.get_window("tukey", 256, False) window = window.astype("float64").reshape((-1, 1, 1)) window = window / np.sqrt(np.sum(window**2)) values = backend.convert_to_numpy(initializer(shape, "float64")) self.assertAllClose(np.sin(args) * window, values, **tol_kwargs) self.run_class_serialization_test(initializer) initializer = initializers.STFTInitializer( "imag", list(range(1, 257)), "spectrum", ) window = np.arange(1, 257) window = window.astype("float64").reshape((-1, 1, 1)) window = window / np.sum(window) values = backend.convert_to_numpy(initializer(shape, "float64")) self.assertAllClose(np.sin(args) * window, values, **tol_kwargs) self.run_class_serialization_test(initializer) with self.assertRaises(ValueError): initializers.STFTInitializer("imaginary") with self.assertRaises(ValueError): initializers.STFTInitializer("real", scaling="l2") with self.assertRaises(ValueError): initializers.STFTInitializer("real", window="unknown")
import numpy as np from keras.src import backend from keras.src import initializers from keras.src import testing class ConstantInitializersTest(testing.TestCase): def test_zeros_initializer(self): shape = (3, 3) initializer = initializers.Zeros() values = initializer(shape=shape) self.assertEqual(values.shape, shape) np_values = backend.convert_to_numpy(values) self.assertAllClose(np_values, np.zeros(shape=shape)) self.run_class_serialization_test(initializer) def test_ones_initializer(self): shape = (3, 3) initializer = initializers.Ones() values = initializer(shape=shape) self.assertEqual(values.shape, shape) np_values = backend.convert_to_numpy(values) self.assertAllClose(np_values, np.ones(shape=shape)) self.run_class_serialization_test(initializer) def test_constant_initializer(self): shape = (3, 3) constant_value = 6.0 initializer = initializers.Constant(value=constant_value) values = initializer(shape=shape) self.assertEqual(values.shape, shape) np_values = backend.convert_to_numpy(values) self.assertAllClose( np_values, np.full(shape=shape, fill_value=constant_value) ) self.run_class_serialization_test(initializer) def test_constant_initializer_array_value(self): shape = (3, 3) constant_value = np.random.random((3, 3)) initializer = initializers.Constant(value=constant_value) values = initializer(shape=shape) self.assertEqual(values.shape, shape) np_values = backend.convert_to_numpy(values) self.assertAllClose( np_values, np.full(shape=shape, fill_value=constant_value) ) self.run_class_serialization_test(initializer) def test_identity_initializer(self): shape = (3, 3) gain = 2 initializer = initializers.Identity(gain=gain) values = initializer(shape=shape) self.assertEqual(values.shape, shape) np_values = backend.convert_to_numpy(values) self.assertAllClose(np_values, np.eye(*shape) * gain) self.run_class_serialization_test(initializer)
from ...utils import is_torch_available if is_torch_available(): from .auraflow_transformer_2d import AuraFlowTransformer2DModel from .cogvideox_transformer_3d import CogVideoXTransformer3DModel from .dit_transformer_2d import DiTTransformer2DModel from .dual_transformer_2d import DualTransformer2DModel from .hunyuan_transformer_2d import HunyuanDiT2DModel from .latte_transformer_3d import LatteTransformer3DModel from .lumina_nextdit2d import LuminaNextDiT2DModel from .pixart_transformer_2d import PixArtTransformer2DModel from .prior_transformer import PriorTransformer from .stable_audio_transformer import StableAudioDiTModel from .t5_film_transformer import T5FilmDecoder from .transformer_2d import Transformer2DModel from .transformer_allegro import AllegroTransformer3DModel from .transformer_cogview3plus import CogView3PlusTransformer2DModel from .transformer_flux import FluxTransformer2DModel from .transformer_sd3 import SD3Transformer2DModel from .transformer_temporal import TransformerTemporalModel
from ...utils import is_torch_available if is_torch_available(): from .auraflow_transformer_2d import AuraFlowTransformer2DModel from .cogvideox_transformer_3d import CogVideoXTransformer3DModel from .dit_transformer_2d import DiTTransformer2DModel from .dual_transformer_2d import DualTransformer2DModel from .hunyuan_transformer_2d import HunyuanDiT2DModel from .latte_transformer_3d import LatteTransformer3DModel from .lumina_nextdit2d import LuminaNextDiT2DModel from .pixart_transformer_2d import PixArtTransformer2DModel from .prior_transformer import PriorTransformer from .stable_audio_transformer import StableAudioDiTModel from .t5_film_transformer import T5FilmDecoder from .transformer_2d import Transformer2DModel from .transformer_cogview3plus import CogView3PlusTransformer2DModel from .transformer_flux import FluxTransformer2DModel from .transformer_sd3 import SD3Transformer2DModel from .transformer_temporal import TransformerTemporalModel
"""Callback Handler streams to stdout on new llm token.""" import sys from typing import Any, Optional from langchain_core.callbacks import StreamingStdOutCallbackHandler DEFAULT_ANSWER_PREFIX_TOKENS = ["Final", "Answer", ":"] class FinalStreamingStdOutCallbackHandler(StreamingStdOutCallbackHandler): """Callback handler for streaming in agents. Only works with agents using LLMs that support streaming. Only the final output of the agent will be streamed. """ def append_to_last_tokens(self, token: str) -> None: self.last_tokens.append(token) self.last_tokens_stripped.append(token.strip()) if len(self.last_tokens) > len(self.answer_prefix_tokens): self.last_tokens.pop(0) self.last_tokens_stripped.pop(0) def check_if_answer_reached(self) -> bool: if self.strip_tokens: return self.last_tokens_stripped == self.answer_prefix_tokens_stripped return self.last_tokens == self.answer_prefix_tokens def __init__( self, *, answer_prefix_tokens: Optional[list[str]] = None, strip_tokens: bool = True, stream_prefix: bool = False, ) -> None: """Instantiate FinalStreamingStdOutCallbackHandler. Args: answer_prefix_tokens: Token sequence that prefixes the answer. Default is ["Final", "Answer", ":"] strip_tokens: Ignore white spaces and new lines when comparing answer_prefix_tokens to last tokens? (to determine if answer has been reached) stream_prefix: Should answer prefix itself also be streamed? """ super().__init__() if answer_prefix_tokens is None: self.answer_prefix_tokens = DEFAULT_ANSWER_PREFIX_TOKENS else: self.answer_prefix_tokens = answer_prefix_tokens if strip_tokens: self.answer_prefix_tokens_stripped = [ token.strip() for token in self.answer_prefix_tokens ] else: self.answer_prefix_tokens_stripped = self.answer_prefix_tokens self.last_tokens = [""] * len(self.answer_prefix_tokens) self.last_tokens_stripped = [""] * len(self.answer_prefix_tokens) self.strip_tokens = strip_tokens self.stream_prefix = stream_prefix self.answer_reached = False def on_llm_start( self, serialized: dict[str, Any], prompts: list[str], **kwargs: Any, ) -> None: """Run when LLM starts running.""" self.answer_reached = False def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Run on new LLM token. Only available when streaming is enabled.""" # Remember the last n tokens, where n = len(answer_prefix_tokens) self.append_to_last_tokens(token) # Check if the last n tokens match the answer_prefix_tokens list ... if self.check_if_answer_reached(): self.answer_reached = True if self.stream_prefix: for t in self.last_tokens: sys.stdout.write(t) sys.stdout.flush() return # ... if yes, then print tokens from now on if self.answer_reached: sys.stdout.write(token) sys.stdout.flush()
"""Callback Handler streams to stdout on new llm token.""" import sys from typing import Any, Optional from langchain_core.callbacks import StreamingStdOutCallbackHandler DEFAULT_ANSWER_PREFIX_TOKENS = ["Final", "Answer", ":"] class FinalStreamingStdOutCallbackHandler(StreamingStdOutCallbackHandler): """Callback handler for streaming in agents. Only works with agents using LLMs that support streaming. Only the final output of the agent will be streamed. """ def append_to_last_tokens(self, token: str) -> None: self.last_tokens.append(token) self.last_tokens_stripped.append(token.strip()) if len(self.last_tokens) > len(self.answer_prefix_tokens): self.last_tokens.pop(0) self.last_tokens_stripped.pop(0) def check_if_answer_reached(self) -> bool: if self.strip_tokens: return self.last_tokens_stripped == self.answer_prefix_tokens_stripped return self.last_tokens == self.answer_prefix_tokens def __init__( self, *, answer_prefix_tokens: Optional[list[str]] = None, strip_tokens: bool = True, stream_prefix: bool = False, ) -> None: """Instantiate FinalStreamingStdOutCallbackHandler. Args: answer_prefix_tokens: Token sequence that prefixes the answer. Default is ["Final", "Answer", ":"] strip_tokens: Ignore white spaces and new lines when comparing answer_prefix_tokens to last tokens? (to determine if answer has been reached) stream_prefix: Should answer prefix itself also be streamed? """ super().__init__() if answer_prefix_tokens is None: self.answer_prefix_tokens = DEFAULT_ANSWER_PREFIX_TOKENS else: self.answer_prefix_tokens = answer_prefix_tokens if strip_tokens: self.answer_prefix_tokens_stripped = [ token.strip() for token in self.answer_prefix_tokens ] else: self.answer_prefix_tokens_stripped = self.answer_prefix_tokens self.last_tokens = [""] * len(self.answer_prefix_tokens) self.last_tokens_stripped = [""] * len(self.answer_prefix_tokens) self.strip_tokens = strip_tokens self.stream_prefix = stream_prefix self.answer_reached = False def on_llm_start( self, serialized: dict[str, Any], prompts: list[str], **kwargs: Any ) -> None: """Run when LLM starts running.""" self.answer_reached = False def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Run on new LLM token. Only available when streaming is enabled.""" # Remember the last n tokens, where n = len(answer_prefix_tokens) self.append_to_last_tokens(token) # Check if the last n tokens match the answer_prefix_tokens list ... if self.check_if_answer_reached(): self.answer_reached = True if self.stream_prefix: for t in self.last_tokens: sys.stdout.write(t) sys.stdout.flush() return # ... if yes, then print tokens from now on if self.answer_reached: sys.stdout.write(token) sys.stdout.flush()
import time from jina import Flow from tests.integration.instrumentation import ( get_exported_jobs, get_flow_metric_labels, get_services, ) def test_docker_instrumentation( jaeger_port, otlp_collector, otlp_receiver_port, docker_image_name, docker_image_built, prometheus_client, expected_flow_metric_labels, ): f = Flow( tracing=True, traces_exporter_host='http://localhost', traces_exporter_port=otlp_receiver_port, metrics=True, metrics_exporter_host='http://localhost', metrics_exporter_port=otlp_receiver_port, ).add(uses=f'docker://{docker_image_name}') with f: from docarray import DocumentArray f.post(f'/search', DocumentArray.empty(), continue_on_error=True) # give some time for the tracing and metrics exporters to finish exporting. # the client is slow to export the data time.sleep(3) services = get_services(jaeger_port) assert set(services) == {'executor0/rep-0', 'gateway/rep-0'} exported_jobs = get_exported_jobs(prometheus_client) assert exported_jobs == { 'gateway/rep-0', 'executor0/rep-0', } flow_metric_labels = get_flow_metric_labels(prometheus_client) assert flow_metric_labels.issubset(expected_flow_metric_labels)
import os import time import pytest from jina import Flow from tests.integration.instrumentation import ( get_exported_jobs, get_flow_metric_labels, get_services, ) def test_docker_instrumentation( jaeger_port, otlp_collector, otlp_receiver_port, docker_image_name, docker_image_built, prometheus_client, expected_flow_metric_labels, ): f = Flow( tracing=True, traces_exporter_host='http://localhost', traces_exporter_port=otlp_receiver_port, metrics=True, metrics_exporter_host='http://localhost', metrics_exporter_port=otlp_receiver_port, ).add(uses=f'docker://{docker_image_name}') with f: from jina import DocumentArray f.post(f'/search', DocumentArray.empty(), continue_on_error=True) # give some time for the tracing and metrics exporters to finish exporting. # the client is slow to export the data time.sleep(3) services = get_services(jaeger_port) assert set(services) == {'executor0/rep-0', 'gateway/rep-0'} exported_jobs = get_exported_jobs(prometheus_client) assert exported_jobs == { 'gateway/rep-0', 'executor0/rep-0', } flow_metric_labels = get_flow_metric_labels(prometheus_client) assert flow_metric_labels.issubset(expected_flow_metric_labels)
import torch import torchaudio.prototype.functional as F from torchaudio_unittest.common_utils import nested_params, TorchaudioTestCase class BatchConsistencyTest(TorchaudioTestCase): @nested_params( [F.convolve, F.fftconvolve], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (2, 3) L_x, L_y = 89, 43 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) actual = fn(x, y, mode) expected = torch.stack( [ torch.stack( [fn(x[i, j].unsqueeze(0), y[i, j].unsqueeze(0), mode).squeeze(0) for j in range(leading_dims[1])] ) for i in range(leading_dims[0]) ] ) self.assertEqual(expected, actual) def test_add_noise(self): leading_dims = (5, 2, 3) L = 51 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device) * 10 actual = F.add_noise(waveform, noise, lengths, snr) expected = [] for i in range(leading_dims[0]): for j in range(leading_dims[1]): for k in range(leading_dims[2]): expected.append(F.add_noise(waveform[i][j][k], noise[i][j][k], lengths[i][j][k], snr[i][j][k])) self.assertEqual(torch.stack(expected), actual.reshape(-1, L)) def test_speed(self): B = 5 orig_freq = 100 factor = 0.8 input_lengths = torch.randint(1, 1000, (B,), dtype=torch.int32) unbatched_input = [torch.ones((int(length),)) * 1.0 for length in input_lengths] batched_input = torch.nn.utils.rnn.pad_sequence(unbatched_input, batch_first=True) output, output_lengths = F.speed(batched_input, input_lengths, orig_freq=orig_freq, factor=factor) unbatched_output = [] unbatched_output_lengths = [] for idx in range(len(unbatched_input)): w, l = F.speed(unbatched_input[idx], input_lengths[idx], orig_freq=orig_freq, factor=factor) unbatched_output.append(w) unbatched_output_lengths.append(l) self.assertEqual(output_lengths, torch.stack(unbatched_output_lengths)) for idx in range(len(unbatched_output)): w, l = output[idx], output_lengths[idx] self.assertEqual(unbatched_output[idx], w[:l])
import torch import torchaudio.prototype.functional as F from torchaudio_unittest.common_utils import nested_params, TorchaudioTestCase class BatchConsistencyTest(TorchaudioTestCase): @nested_params( [F.convolve, F.fftconvolve], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (2, 3) L_x, L_y = 89, 43 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) actual = fn(x, y, mode) expected = torch.stack( [ torch.stack( [fn(x[i, j].unsqueeze(0), y[i, j].unsqueeze(0), mode).squeeze(0) for j in range(leading_dims[1])] ) for i in range(leading_dims[0]) ] ) self.assertEqual(expected, actual) def test_add_noise(self): leading_dims = (5, 2, 3) L = 51 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device) * 10 actual = F.add_noise(waveform, noise, lengths, snr) expected = [] for i in range(leading_dims[0]): for j in range(leading_dims[1]): for k in range(leading_dims[2]): expected.append(F.add_noise(waveform[i][j][k], noise[i][j][k], lengths[i][j][k], snr[i][j][k])) self.assertEqual(torch.stack(expected), actual.reshape(-1, L))
from abc import ABC, abstractmethod from typing import Dict, List import torch import torchaudio.functional as F from torch import Tensor from torchaudio.functional import TokenSpan class ITokenizer(ABC): @abstractmethod def __call__(self, transcript: List[str]) -> List[List[str]]: """Tokenize the given transcript (list of word) .. note:: The toranscript must be normalized. Args: transcript (list of str): Transcript (list of word). Returns: (list of int): List of token sequences """ class Tokenizer(ITokenizer): def __init__(self, dictionary: Dict[str, int]): self.dictionary = dictionary def __call__(self, transcript: List[str]) -> List[List[int]]: return [[self.dictionary[c] for c in word] for word in transcript] def _align_emission_and_tokens(emission: Tensor, tokens: List[int], blank: int = 0): device = emission.device emission = emission.unsqueeze(0) targets = torch.tensor([tokens], dtype=torch.int32, device=device) aligned_tokens, scores = F.forced_align(emission, targets, blank=blank) scores = scores.exp() # convert back to probability aligned_tokens, scores = aligned_tokens[0], scores[0] # remove batch dimension return aligned_tokens, scores class IAligner(ABC): @abstractmethod def __call__(self, emission: Tensor, tokens: List[List[int]]) -> List[List[TokenSpan]]: """Generate list of time-stamped token sequences Args: emission (Tensor): Sequence of token probability distributions in log-domain. Shape: `(time, tokens)`. tokens (list of integer sequence): Tokenized transcript. Output from :py:class:`torchaudio.pipelines.Wav2Vec2FABundle.Tokenizer`. Returns: (list of TokenSpan sequence): Tokens with time stamps and scores. """ def _unflatten(list_, lengths): assert len(list_) == sum(lengths) i = 0 ret = [] for l in lengths: ret.append(list_[i : i + l]) i += l return ret def _flatten(nested_list): return [item for list_ in nested_list for item in list_] class Aligner(IAligner): def __init__(self, blank): self.blank = blank def __call__(self, emission: Tensor, tokens: List[List[int]]) -> List[List[TokenSpan]]: if emission.ndim != 2: raise ValueError(f"The input emission must be 2D. Found: {emission.shape}") aligned_tokens, scores = _align_emission_and_tokens(emission, _flatten(tokens), self.blank) spans = F.merge_tokens(aligned_tokens, scores) return _unflatten(spans, [len(ts) for ts in tokens])
from abc import ABC, abstractmethod from typing import Dict, List import torch import torchaudio.functional as F from torch import Tensor from torchaudio.functional import TokenSpan class ITokenizer(ABC): @abstractmethod def __call__(self, transcript: List[str]) -> List[List[str]]: """Tokenize the given transcript (list of word) .. note:: The toranscript must be normalized. Args: transcript (list of str): Transcript (list of word). Returns: (list of int): List of token sequences """ class Tokenizer(ITokenizer): def __init__(self, dictionary: Dict[str, int]): self.dictionary = dictionary def __call__(self, transcript: List[str]) -> List[List[int]]: return [[self.dictionary[c] for c in word] for word in transcript] def _align_emission_and_tokens(emission: Tensor, tokens: List[int], blank: int = 0): device = emission.device emission = emission.unsqueeze(0) targets = torch.tensor([tokens], dtype=torch.int32, device=device) aligned_tokens, scores = F.forced_align(emission, targets, blank=blank) scores = scores.exp() # convert back to probability aligned_tokens, scores = aligned_tokens[0], scores[0] # remove batch dimension return aligned_tokens, scores class IAligner(ABC): @abstractmethod def __call__(self, emission: Tensor, tokens: List[List[int]]) -> List[List[TokenSpan]]: """Generate list of time-stamped token sequences Args: emission (Tensor): Sequence of token probability distributions in log-domain. Shape: `(time, tokens)`. tokens (list of integer sequence): Tokenized transcript. Output from :py:class:`Wav2Vec2FABundle.Tokenizer`. Returns: (list of TokenSpan sequence): Tokens with time stamps and scores. """ def _unflatten(list_, lengths): assert len(list_) == sum(lengths) i = 0 ret = [] for l in lengths: ret.append(list_[i : i + l]) i += l return ret def _flatten(nested_list): return [item for list_ in nested_list for item in list_] class Aligner(IAligner): def __init__(self, blank): self.blank = blank def __call__(self, emission: Tensor, tokens: List[List[int]]) -> List[List[TokenSpan]]: if emission.ndim != 2: raise ValueError(f"The input emission must be 2D. Found: {emission.shape}") aligned_tokens, scores = _align_emission_and_tokens(emission, _flatten(tokens), self.blank) spans = F.merge_tokens(aligned_tokens, scores) return _unflatten(spans, [len(ts) for ts in tokens])
from typing import Optional from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document from zyte_api import ZyteAPI from zyte_api.utils import USER_AGENT as PYTHON_ZYTE_API_USER_AGENT class ZyteSerpReader(BasePydanticReader): """ Get google search results URLs for a search query. Args: api_key: Zyte API key. extract_from: Determines the mode while extracting the search results. It can take one of the following values: 'httpResponseBody', 'browserHtml' Example: .. code-block:: python from llama_index.readers.zyte_serp import ZyteSerpReader reader = ZyteSerpReader( api_key="ZYTE_API_KEY", ) docs = reader.load_data( "search query", ) Zyte-API reference: https://docs.zyte.com/zyte-api/get-started.html """ client: ZyteAPI api_key: str extract_from: Optional[str] def __init__( self, api_key: str, extract_from: Optional[str] = None, ) -> None: """Initialize with file path.""" user_agent = f"llama-index-zyte-api/{PYTHON_ZYTE_API_USER_AGENT}" client = ZyteAPI( api_key=api_key, user_agent=user_agent, ) super().__init__( api_key=api_key, extract_from=extract_from, client=client, ) def _serp_url(self, query: str): from urllib.parse import quote_plus base_url = "https://www.google.com/search?q=" return base_url + quote_plus(query) def load_data(self, query: str): serp_url = self._serp_url(query) serp_request = { "url": serp_url, "serp": True, } if self.extract_from: serp_request.update({"serpOptions": {"extractFrom": self.extract_from}}) results = self.client.get(serp_request) docs = [] for result in results["serp"]["organicResults"]: doc = Document( text=result["url"], metadata={"name": result["name"], "rank": result["rank"]}, ) docs.append(doc) return docs
from typing import Optional from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document from zyte_api import ZyteAPI from zyte_api.utils import USER_AGENT as PYTHON_ZYTE_API_USER_AGENT class ZyteSerpReader(BasePydanticReader): """Get google search results URLs for a search query. Args: api_key: Zyte API key. extract_from: Determines the mode while extracting the search results. It can take one of the following values: 'httpResponseBody', 'browserHtml' Example: .. code-block:: python from llama_index.readers.zyte_serp import ZyteSerpReader reader = ZyteSerpReader( api_key="ZYTE_API_KEY", ) docs = reader.load_data( "search query", ) Zyte-API reference: https://docs.zyte.com/zyte-api/get-started.html """ client: ZyteAPI api_key: str extract_from: Optional[str] def __init__( self, api_key: str, extract_from: Optional[str] = None, ) -> None: """Initialize with file path.""" user_agent = f"llama-index-zyte-api/{PYTHON_ZYTE_API_USER_AGENT}" client = ZyteAPI( api_key=api_key, user_agent=user_agent, ) super().__init__( api_key=api_key, extract_from=extract_from, client=client, ) def _serp_url(self, query: str): from urllib.parse import quote_plus base_url = "https://www.google.com/search?q=" return base_url + quote_plus(query) def load_data(self, query: str): serp_url = self._serp_url(query) serp_request = { "url": serp_url, "serp": True, } if self.extract_from: serp_request.update({"serpOptions": {"extractFrom": self.extract_from}}) results = self.client.get(serp_request) docs = [] for result in results["serp"]["organicResults"]: doc = Document( text=result["url"], metadata={"name": result["name"], "rank": result["rank"]}, ) docs.append(doc) return docs
import itertools import warnings from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class PandasConfig(datasets.BuilderConfig): """BuilderConfig for Pandas.""" features: Optional[datasets.Features] = None class Pandas(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = PandasConfig def _info(self): warnings.warn( "The Pandas builder is deprecated and will be removed in the next major version of datasets.", FutureWarning, ) return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): """We handle string, list and dicts in datafiles""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") data_files = dl_manager.download_and_extract(self.config.data_files) if isinstance(data_files, (str, list, tuple)): files = data_files if isinstance(files, str): files = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive files = [dl_manager.iter_files(file) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive files = [dl_manager.iter_files(file) for file in files] splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) return splits def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, self.config.features.arrow_schema) return pa_table def _generate_tables(self, files): for i, file in enumerate(itertools.chain.from_iterable(files)): with open(file, "rb") as f: pa_table = pa.Table.from_pandas(pd.read_pickle(f)) yield i, self._cast_table(pa_table)
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class PandasConfig(datasets.BuilderConfig): """BuilderConfig for Pandas.""" features: Optional[datasets.Features] = None class Pandas(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = PandasConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): """We handle string, list and dicts in datafiles""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") data_files = dl_manager.download_and_extract(self.config.data_files) if isinstance(data_files, (str, list, tuple)): files = data_files if isinstance(files, str): files = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive files = [dl_manager.iter_files(file) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive files = [dl_manager.iter_files(file) for file in files] splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) return splits def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, self.config.features.arrow_schema) return pa_table def _generate_tables(self, files): for i, file in enumerate(itertools.chain.from_iterable(files)): with open(file, "rb") as f: pa_table = pa.Table.from_pandas(pd.read_pickle(f)) yield i, self._cast_table(pa_table)
from keras.src import backend from keras.src.api_export import keras_export from keras.src.dtype_policies import dtype_policy from keras.src.dtype_policies.dtype_policy import QUANTIZATION_MODES from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.dtype_policies.dtype_policy import QuantizedDTypePolicy from keras.src.dtype_policies.dtype_policy import QuantizedFloat8DTypePolicy ALL_OBJECTS = { DTypePolicy, FloatDTypePolicy, QuantizedDTypePolicy, QuantizedFloat8DTypePolicy, } ALL_OBJECTS_DICT = {cls.__name__: cls for cls in ALL_OBJECTS} @keras_export("keras.dtype_policies.serialize") def serialize(dtype_policy): """Serializes `DTypePolicy` instance. Args: dtype_policy: A Keras `DTypePolicy` instance. Returns: `DTypePolicy` configuration dictionary. """ from keras.src.saving import serialization_lib return serialization_lib.serialize_keras_object(dtype_policy) @keras_export("keras.dtype_policies.deserialize") def deserialize(config, custom_objects=None): """Deserializes a serialized `DTypePolicy` instance. Args: config: `DTypePolicy` configuration. custom_objects: Optional dictionary mapping names (strings) to custom objects (classes and functions) to be considered during deserialization. Returns: A Keras `DTypePolicy` instance. """ from keras.src.saving import serialization_lib return serialization_lib.deserialize_keras_object( config, module_objects=ALL_OBJECTS_DICT, custom_objects=custom_objects, ) @keras_export("keras.dtype_policies.get") def get(identifier): """Retrieves a Keras `DTypePolicy` instance. The `identifier` may be the string name of a `DTypePolicy` class. >>> policy = dtype_policies.get("mixed_bfloat16") >>> type(policy) <class '...FloatDTypePolicy'> You can also specify `config` of the dtype policy to this function by passing dict containing `class_name` and `config` as an identifier. Also note that the `class_name` must map to a `DTypePolicy` class >>> identifier = {"class_name": "FloatDTypePolicy", ... "config": {"name": "float32"}} >>> policy = dtype_policies.get(identifier) >>> type(policy) <class '...FloatDTypePolicy'> Args: identifier: A dtype policy identifier. One of `None` or string name of a `DTypePolicy` or `DTypePolicy` configuration dictionary or a `DTypePolicy` instance. Returns: A Keras `DTypePolicy` instance. """ from keras.src.dtype_policies.dtype_policy import ( _get_quantized_dtype_policy_by_str, ) if identifier is None: return dtype_policy.dtype_policy() if isinstance( identifier, (DTypePolicy, FloatDTypePolicy, QuantizedDTypePolicy) ): return identifier if isinstance(identifier, dict): return deserialize(identifier) if isinstance(identifier, str): if identifier.startswith(QUANTIZATION_MODES): return _get_quantized_dtype_policy_by_str(identifier) else: return FloatDTypePolicy(identifier) try: return FloatDTypePolicy(backend.standardize_dtype(identifier)) except: raise ValueError( "Cannot interpret `dtype` argument. Expected a string " f"or an instance of DTypePolicy. Received: dtype={identifier}" )
from keras.src import backend from keras.src.api_export import keras_export from keras.src.dtype_policies import dtype_policy from keras.src.dtype_policies.dtype_policy import QUANTIZATION_MODES from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.dtype_policies.dtype_policy import QuantizedDTypePolicy from keras.src.dtype_policies.dtype_policy import QuantizedFloat8DTypePolicy ALL_OBJECTS = { DTypePolicy, FloatDTypePolicy, QuantizedDTypePolicy, QuantizedFloat8DTypePolicy, } ALL_OBJECTS_DICT = {cls.__name__: cls for cls in ALL_OBJECTS} @keras_export("keras.dtype_policies.serialize") def serialize(dtype_policy): """Serializes `DTypePolicy` instance. Args: dtype_policy: A Keras `DTypePolicy` instance. Returns: `DTypePolicy` configuration dictionary. """ from keras.src.saving import serialization_lib return serialization_lib.serialize_keras_object(dtype_policy) @keras_export("keras.dtype_policies.deserialize") def deserialize(config, custom_objects=None): """Deserializes a serialized `DTypePolicy` instance. Args: config: `DTypePolicy` configuration. custom_objects: Optional dictionary mapping names (strings) to custom objects (classes and functions) to be considered during deserialization. Returns: A Keras `DTypePolicy` instance. """ from keras.src.saving import serialization_lib return serialization_lib.deserialize_keras_object( config, module_objects=ALL_OBJECTS_DICT, custom_objects=custom_objects, ) @keras_export("keras.dtype_policies.get") def get(identifier): """Retrieves a Keras `DTypePolicy` instance. The `identifier` may be the string name of a `DTypePolicy` class. >>> policy = dtype_policies.get("mixed_bfloat16") >>> type(policy) <class '...FloatDTypePolicy'> You can also specify `config` of the dtype policy to this function by passing dict containing `class_name` and `config` as an identifier. Also note that the `class_name` must map to a `DTypePolicy` class >>> identifier = {"class_name": "FloatDTypePolicy", ... "config": {"name": "float32"}} >>> policy = dtype_policies.get(identifier) >>> type(policy) <class '...FloatDTypePolicy'> Args: identifier: A dtype policy identifier. One of `None` or string name of a `DTypePolicy` or `DTypePolicy` configuration dictionary or a `DTypePolicy` instance. Returns: A Keras `DTypePolicy` instance. """ from keras.src.dtype_policies.dtype_policy import ( _get_quantized_dtype_policy_by_str, ) if identifier is None: return dtype_policy.dtype_policy() if isinstance(identifier, (FloatDTypePolicy, QuantizedDTypePolicy)): return identifier if isinstance(identifier, dict): return deserialize(identifier) if isinstance(identifier, str): if identifier.startswith(QUANTIZATION_MODES): return _get_quantized_dtype_policy_by_str(identifier) else: return FloatDTypePolicy(identifier) try: return FloatDTypePolicy(backend.standardize_dtype(identifier)) except: raise ValueError( "Cannot interpret `dtype` argument. Expected a string " f"or an instance of DTypePolicy. Received: dtype={identifier}" )
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import subprocess import sys import pytorch_sphinx_theme sys.path.insert(0, os.path.abspath('../..')) # -- Project information ----------------------------------------------------- project = 'mmengine' copyright = '2022, mmengine contributors' author = 'mmengine contributors' version_file = '../../mmengine/version.py' with open(version_file) as f: exec(compile(f.read(), version_file, 'exec')) __version__ = locals()['__version__'] # The short X.Y version version = __version__ # The full version, including alpha/beta/rc tags release = __version__ # -- General configuration --------------------------------------------------- # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = 'zh_CN' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.intersphinx', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'myst_parser', 'sphinx_copybutton', 'sphinx.ext.autodoc.typehints', ] # yapf: disable autodoc_typehints = 'description' myst_heading_anchors = 4 myst_enable_extensions = ['colon_fence'] # Configuration for intersphinx intersphinx_mapping = { 'python': ('https://docs.python.org/3', None), 'numpy': ('https://numpy.org/doc/stable', None), 'torch': ('https://pytorch.org/docs/stable/', None), 'mmcv': ('https://mmcv.readthedocs.io/zh_CN/2.x/', None), } # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'pytorch_sphinx_theme' html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()] html_theme_options = { 'menu': [ { 'name': 'GitHub', 'url': 'https://github.com/open-mmlab/mmengine' }, ], # Specify the language of shared menu 'menu_lang': 'cn', } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] html_css_files = ['css/readthedocs.css'] # -- Extension configuration ------------------------------------------------- # Ignore >>> when copying code copybutton_prompt_text = r'>>> |\.\.\. ' copybutton_prompt_is_regexp = True def builder_inited_handler(app): subprocess.run(['./cp_origin_docs.sh']) def setup(app): app.connect('builder-inited', builder_inited_handler)
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import subprocess import sys import pytorch_sphinx_theme sys.path.insert(0, os.path.abspath('../..')) # -- Project information ----------------------------------------------------- project = 'mmengine' copyright = '2022, mmengine contributors' author = 'mmengine contributors' version_file = '../../mmengine/version.py' with open(version_file) as f: exec(compile(f.read(), version_file, 'exec')) __version__ = locals()['__version__'] # The short X.Y version version = __version__ # The full version, including alpha/beta/rc tags release = __version__ # -- General configuration --------------------------------------------------- # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = 'zh_CN' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.intersphinx', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'sphinx.ext.autosectionlabel', 'myst_parser', 'sphinx_copybutton', 'sphinx.ext.autodoc.typehints', ] # yapf: disable autodoc_typehints = 'description' myst_heading_anchors = 4 myst_enable_extensions = ['colon_fence'] # Configuration for intersphinx intersphinx_mapping = { 'python': ('https://docs.python.org/3', None), 'numpy': ('https://numpy.org/doc/stable', None), 'torch': ('https://pytorch.org/docs/stable/', None), 'mmcv': ('https://mmcv.readthedocs.io/zh_CN/2.x/', None), } # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'pytorch_sphinx_theme' html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()] html_theme_options = { 'menu': [ { 'name': 'GitHub', 'url': 'https://github.com/open-mmlab/mmengine' }, ], # Specify the language of shared menu 'menu_lang': 'cn', } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] html_css_files = ['css/readthedocs.css'] # -- Extension configuration ------------------------------------------------- # Ignore >>> when copying code copybutton_prompt_text = r'>>> |\.\.\. ' copybutton_prompt_is_regexp = True def builder_inited_handler(app): subprocess.run(['./cp_origin_docs.sh']) def setup(app): app.connect('builder-inited', builder_inited_handler)
_base_ = './cascade-rcnn_r50_fpn_1x_coco.py' model = dict( # use caffe img_norm data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32), backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
_base_ = './cascade_rcnn_r50_fpn_1x_coco.py' model = dict( # use caffe img_norm data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32), backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
import grpc from grpc_health.v1 import health, health_pb2, health_pb2_grpc from grpc_reflection.v1alpha import reflection from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.proto import jina_pb2, jina_pb2_grpc class DummyResponseModel(BaseModel): protocol: str class MultiProtocolGateway(Gateway): def __init__(self, **kwargs): super().__init__(**kwargs) self.http_port = self.runtime_args.port[0] self.grpc_port = self.runtime_args.port[1] self.health_servicer = health.HealthServicer(experimental_non_blocking=True) async def _setup_http_server(self): from fastapi import FastAPI app = FastAPI( title='HTTP Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return {'protocol': 'http'} self.http_server = Server( Config(app, host=__default_host__, port=self.http_port) ) async def _setup_grpc_server(self): self.grpc_server = grpc.aio.server() jina_pb2_grpc.add_JinaRPCServicer_to_server( self.streamer._streamer, self.grpc_server ) service_names = ( jina_pb2.DESCRIPTOR.services_by_name['JinaRPC'].full_name, reflection.SERVICE_NAME, ) # Mark all services as healthy. health_pb2_grpc.add_HealthServicer_to_server( self.health_servicer, self.grpc_server ) for service in service_names: self.health_servicer.set(service, health_pb2.HealthCheckResponse.SERVING) reflection.enable_server_reflection(service_names, self.grpc_server) self.grpc_server.add_insecure_port(f'{__default_host__}:{self.grpc_port}') await self.grpc_server.start() async def setup_server(self): await self._setup_http_server() await self._setup_grpc_server() async def run_server(self): await self.http_server.serve() await self.grpc_server.wait_for_termination() async def shutdown(self): self.http_server.should_exit = True await self.grpc_server.stop(0) await self.http_server.shutdown() self.health_servicer.enter_graceful_shutdown() @property def _should_exit(self) -> bool: return self.http_server.should_exit
import grpc from grpc_health.v1 import health, health_pb2, health_pb2_grpc from grpc_reflection.v1alpha import reflection from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.proto import jina_pb2, jina_pb2_grpc class DummyResponseModel(BaseModel): protocol: str class MultiProtocolGateway(Gateway): def __init__(self, **kwargs): super().__init__(**kwargs) self.http_port = self.runtime_args.port[0] self.grpc_port = self.runtime_args.port[1] self.health_servicer = health.HealthServicer(experimental_non_blocking=True) async def _setup_http_server(self): from fastapi import FastAPI app = FastAPI( title='HTTP Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return {'protocol': 'http'} self.http_server = Server( Config(app, host=__default_host__, port=self.http_port) ) async def _setup_grpc_server(self): self.grpc_server = grpc.aio.server() jina_pb2_grpc.add_JinaRPCServicer_to_server( self.streamer._streamer, self.grpc_server ) service_names = ( jina_pb2.DESCRIPTOR.services_by_name['JinaRPC'].full_name, reflection.SERVICE_NAME, ) # Mark all services as healthy. health_pb2_grpc.add_HealthServicer_to_server( self.health_servicer, self.grpc_server ) for service in service_names: self.health_servicer.set(service, health_pb2.HealthCheckResponse.SERVING) reflection.enable_server_reflection(service_names, self.grpc_server) self.grpc_server.add_insecure_port(f'{__default_host__}:{self.grpc_port}') await self.grpc_server.start() async def setup_server(self): await self._setup_http_server() await self._setup_grpc_server() async def run_server(self): await self.http_server.serve() await self.grpc_server.wait_for_termination() async def teardown(self): await super().teardown() await self.http_server.shutdown() self.health_servicer.enter_graceful_shutdown() async def stop_server(self): self.http_server.should_exit = True await self.grpc_server.stop(0) @property def _should_exit(self) -> bool: return self.http_server.should_exit
from jina import Executor, requests class MyExecutorToReload1(Executor): def __init__(self, **kwargs): super().__init__(**kwargs) @requests() def foo(self, docs, **kwargs): for doc in docs: doc.text = 'MyExecutorBeforeReload' @requests(on='/bar') def bar(self, docs, **kwargs): for doc in docs: doc.text = 'MyExecutorBeforeReloadBar'
from jina import Executor, requests class MyExecutorToReload1(Executor): def __init__(self, **kwargs): super().__init__(**kwargs) @requests() def foo(self, docs, **kwargs): for doc in docs: doc.text = 'MyExecutorBeforeReload'
import random from pathlib import Path from typing import Callable, Dict, Tuple import opentelemetry.sdk.metrics.view import pytest from opentelemetry.sdk.metrics.export import ( AggregationTemporality, MetricExporter, MetricExportResult, MetricsData, PeriodicExportingMetricReader, ) class DirMetricExporter(MetricExporter): """Implementation of :class:`MetricExporter` that prints metrics to a file in a given directory. This class can be used for diagnostic or testing purposes. """ def __init__( self, metric_dir: str, preferred_temporality: Dict[type, AggregationTemporality] = None, preferred_aggregation: Dict[ type, "opentelemetry.sdk.metrics.view.Aggregation" ] = None, ): print(f'JOAN IS HERE DIRMETRIC') super().__init__( preferred_temporality=preferred_temporality, preferred_aggregation=preferred_aggregation, ) self.metric_filename: Path = Path(metric_dir) / str(random.randint(0, 1048575)) self.f = open(self.metric_filename, 'a') def export( self, metrics_data: MetricsData, timeout_millis: float = 10_000, **kwargs, ) -> MetricExportResult: print(f'export to {self.metric_filename} => {metrics_data.to_json()[0:3]}') self.f.write(metrics_data.to_json()) self.f.write('\n') self.f.flush() return MetricExportResult.SUCCESS def shutdown(self, timeout_millis: float = 30_000, **kwargs) -> None: pass def force_flush(self, timeout_millis: float = 10_000) -> bool: return True def __del__(self): self.f.close() @pytest.fixture(scope='function') def monkeypatch_metric_exporter( tmpdir_factory: pytest.TempdirFactory, ) -> Tuple[Callable, Callable]: import json import os import time from pathlib import Path import opentelemetry.sdk.metrics.export collect_path = Path(tmpdir_factory.mktemp('otel-collector')) metrics_path = collect_path / 'metrics' os.mkdir(metrics_path) tick_counter_filename = collect_path / 'tick_counter' with open(tick_counter_filename, 'w', encoding='utf-8') as f: f.write('0') def collect_metrics(): print(f'tick_counter_filename {tick_counter_filename}') with open(tick_counter_filename, 'r', encoding='utf-8') as ft: tick_counter = int(ft.read()) with open(tick_counter_filename, 'w', encoding='utf-8') as ft2: ft2.write(str(tick_counter + 1)) time.sleep(2) def _get_service_name(otel_measurement): return otel_measurement['resource_metrics'][0]['resource']['attributes'][ 'service.name' ] def read_metrics(): def read_metric_file(filename): print(f'filename {filename}') with open(filename, 'r', encoding='utf-8') as fr: r = fr.read() print(f'READ {r[0:3]}') try: return json.loads(r) except: return None ret = {} for i in map(read_metric_file, metrics_path.glob('*')): if i is not None: ret[_get_service_name(i)] = i return ret class PatchedTextReader(PeriodicExportingMetricReader): def __init__(self, *args, **kwargs) -> None: self.exporter = DirMetricExporter(metrics_path) self.tick_counter = 0 super().__init__( exporter=self.exporter, export_interval_millis=500, ) def _ticker(self) -> None: interval_secs = self._export_interval_millis / 1e3 while not self._shutdown_event.wait(interval_secs): with open(tick_counter_filename, 'r', encoding='utf-8') as f: tick_counter = int(f.read()) if tick_counter != self.tick_counter: self.tick_counter = tick_counter self.collect(timeout_millis=self._export_timeout_millis) self.collect(timeout_millis=self._export_interval_millis) real_reader = opentelemetry.sdk.metrics.export.PeriodicExportingMetricReader opentelemetry.sdk.metrics.export.PeriodicExportingMetricReader = PatchedTextReader yield collect_metrics, read_metrics opentelemetry.sdk.metrics.export.PeriodicExportingMetricReader = real_reader
import random from pathlib import Path from typing import Callable, Dict, Tuple import opentelemetry.sdk.metrics.export import opentelemetry.sdk.metrics.view import pytest from opentelemetry.sdk.metrics.export import ( AggregationTemporality, MetricExporter, MetricExportResult, MetricsData, PeriodicExportingMetricReader, ) class DirMetricExporter(MetricExporter): """Implementation of :class:`MetricExporter` that prints metrics to a file in a given directory. This class can be used for diagnostic or testing purposes. """ def __init__( self, metric_dir: str, preferred_temporality: Dict[type, AggregationTemporality] = None, preferred_aggregation: Dict[ type, "opentelemetry.sdk.metrics.view.Aggregation" ] = None, ): super().__init__( preferred_temporality=preferred_temporality, preferred_aggregation=preferred_aggregation, ) self.metric_filename: Path = Path(metric_dir) / str(random.randint(0, 1048575)) self.f = open(self.metric_filename, 'a') def export( self, metrics_data: MetricsData, timeout_millis: float = 10_000, **kwargs, ) -> MetricExportResult: self.f.write(metrics_data.to_json()) self.f.write('\n') self.f.flush() return MetricExportResult.SUCCESS def shutdown(self, timeout_millis: float = 30_000, **kwargs) -> None: pass def force_flush(self, timeout_millis: float = 10_000) -> bool: return True def __del__(self): self.f.close() @pytest.fixture(scope='function') def monkeypatch_metric_exporter( tmpdir_factory: pytest.TempdirFactory, ) -> Tuple[Callable, Callable]: import json import os import time from pathlib import Path import opentelemetry.sdk.metrics.export collect_path = Path(tmpdir_factory.mktemp('otel-collector')) metrics_path = collect_path / 'metrics' os.mkdir(metrics_path) tick_counter_filename = collect_path / 'tick_counter' with open(tick_counter_filename, 'w', encoding='utf-8') as f: f.write('0') def collect_metrics(): with open(tick_counter_filename, 'r', encoding='utf-8') as f: tick_counter = int(f.read()) with open(tick_counter_filename, 'w', encoding='utf-8') as f: f.write(str(tick_counter + 1)) time.sleep(2) def _get_service_name(otel_measurement): return otel_measurement['resource_metrics'][0]['resource']['attributes'][ 'service.name' ] def read_metrics(): def read_metric_file(filename): with open(filename, 'r', encoding='utf-8') as f: return json.loads(f.read()) return { _get_service_name(i): i for i in map(read_metric_file, metrics_path.glob('*')) } class PatchedTextReader(PeriodicExportingMetricReader): def __init__(self, *args, **kwargs) -> None: self.exporter = DirMetricExporter(metrics_path) self.tick_counter = 0 super().__init__( exporter=self.exporter, export_interval_millis=500, ) def _ticker(self) -> None: interval_secs = self._export_interval_millis / 1e3 while not self._shutdown_event.wait(interval_secs): with open(tick_counter_filename, 'r', encoding='utf-8') as f: tick_counter = int(f.read()) if tick_counter != self.tick_counter: self.tick_counter = tick_counter self.collect(timeout_millis=self._export_timeout_millis) self.collect(timeout_millis=self._export_interval_millis) real_reader = opentelemetry.sdk.metrics.export.PeriodicExportingMetricReader opentelemetry.sdk.metrics.export.PeriodicExportingMetricReader = PatchedTextReader yield collect_metrics, read_metrics opentelemetry.sdk.metrics.export.PeriodicExportingMetricReader = real_reader
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.documents import Audio from docarray.typing import AnyEmbedding, AnyTensor from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl from docarray.utils.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: import torch tf_available = is_tf_available() if tf_available: import tensorflow as tf # type: ignore T = TypeVar('T', bound='Video') class Video(BaseDocument): """ Document for handling video. The Video Document can contain a VideoUrl (`Video.url`), an Audio Document (`Video.audio`), a VideoTensor (`Video.tensor`), an AnyTensor representing the indices of the video's key frames (`Video.key_frame_indices`) and an AnyEmbedding (`Video.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Video # use it directly vid = Video( url='https://github.com/docarray/docarray/tree/feat-add-video-v2/tests/toydata/mov_bbb.mp4?raw=true' ) vid.audio.tensor, vid.tensor, vid.key_frame_indices = vid.url.load() model = MyEmbeddingModel() vid.embedding = model(vid.tensor) You can extend this Document: .. code-block:: python from typing import Optional from docarray.documents import Text, Video # extend it class MyVideo(Video): name: Optional[Text] video = MyVideo( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video.video_tensor = video.url.load().video model = MyEmbeddingModel() video.embedding = model(video.tensor) video.name = Text(text='my first video') You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Text, Video # compose it class MultiModalDoc(BaseDocument): video: Video text: Text mmdoc = MultiModalDoc( video=Video( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.video.video_tensor = mmdoc.video.url.load().video # or mmdoc.video.bytes = mmdoc.video.url.load_bytes() """ url: Optional[VideoUrl] audio: Optional[Audio] = Audio() tensor: Optional[VideoTensor] key_frame_indices: Optional[AnyTensor] embedding: Optional[AnyEmbedding] bytes: Optional[bytes] = None @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) or (tf_available and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) return super().validate(value)
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.documents import Audio from docarray.typing import AnyEmbedding, AnyTensor from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl from docarray.utils.misc import is_torch_available torch_available = is_torch_available() if torch_available: import torch T = TypeVar('T', bound='Video') class Video(BaseDocument): """ Document for handling video. The Video Document can contain a VideoUrl (`Video.url`), an Audio Document (`Video.audio`), a VideoTensor (`Video.tensor`), an AnyTensor representing the indices of the video's key frames (`Video.key_frame_indices`) and an AnyEmbedding (`Video.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Video # use it directly vid = Video( url='https://github.com/docarray/docarray/tree/feat-add-video-v2/tests/toydata/mov_bbb.mp4?raw=true' ) vid.audio.tensor, vid.tensor, vid.key_frame_indices = vid.url.load() model = MyEmbeddingModel() vid.embedding = model(vid.tensor) You can extend this Document: .. code-block:: python from typing import Optional from docarray.documents import Text, Video # extend it class MyVideo(Video): name: Optional[Text] video = MyVideo( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video.video_tensor = video.url.load().video model = MyEmbeddingModel() video.embedding = model(video.tensor) video.name = Text(text='my first video') You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Text, Video # compose it class MultiModalDoc(BaseDocument): video: Video text: Text mmdoc = MultiModalDoc( video=Video( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.video.video_tensor = mmdoc.video.url.load().video # or mmdoc.video.bytes = mmdoc.video.url.load_bytes() """ url: Optional[VideoUrl] audio: Optional[Audio] = Audio() tensor: Optional[VideoTensor] key_frame_indices: Optional[AnyTensor] embedding: Optional[AnyEmbedding] bytes: Optional[bytes] = None @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) ): value = cls(tensor=value) return super().validate(value)
import os import pytest from llama_index.llms.nvidia import NVIDIA from typing import Any from pytest_httpx import HTTPXMock @pytest.fixture() def mock_local_models(httpx_mock: HTTPXMock): mock_response = { "data": [ { "id": "model1", "object": "model", "created": 1234567890, "owned_by": "OWNER", "root": "model1", } ] } httpx_mock.add_response( url="https://test_url/v1/models", method="GET", json=mock_response, status_code=200, ) def get_api_key(instance: Any) -> str: return instance.api_key def test_create_default_url_without_api_key() -> None: NVIDIA() @pytest.mark.usefixtures("mock_local_models") def test_create_unknown_url_without_api_key(masked_env_var: str) -> None: NVIDIA(base_url="https://test_url/v1") @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_create_with_api_key(param: str, masked_env_var: str) -> None: instance = NVIDIA(**{param: "just testing no failure"}) assert get_api_key(instance) == "just testing no failure" def test_api_key_priority(masked_env_var: str) -> None: try: os.environ["NVIDIA_API_KEY"] = "ENV" assert get_api_key(NVIDIA()) == "ENV" assert get_api_key(NVIDIA(nvidia_api_key="PARAM")) == "PARAM" assert get_api_key(NVIDIA(api_key="PARAM")) == "PARAM" assert get_api_key(NVIDIA(api_key="LOW", nvidia_api_key="HIGH")) == "HIGH" finally: # we must clean up environ or it may impact other tests del os.environ["NVIDIA_API_KEY"] @pytest.mark.integration() def test_missing_api_key_error(masked_env_var: str) -> None: with pytest.warns(UserWarning): client = NVIDIA() with pytest.raises(Exception) as exc_info: client.complete("Hello, world!").text message = str(exc_info.value) assert "401" in message @pytest.mark.integration() def test_bogus_api_key_error(masked_env_var: str) -> None: client = NVIDIA(nvidia_api_key="BOGUS") with pytest.raises(Exception) as exc_info: client.complete("Hello, world!").text message = str(exc_info.value) assert "401" in message @pytest.mark.integration() @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_api_key(chat_model: str, mode: dict, param: str, masked_env_var: str) -> None: client = NVIDIA(model=chat_model, **{**mode, **{param: masked_env_var}}) assert client.complete("Hello, world!").text
import os import pytest from llama_index.llms.nvidia import NVIDIA from typing import Any from pytest_httpx import HTTPXMock @pytest.fixture() def mock_local_models(httpx_mock: HTTPXMock): mock_response = { "data": [ { "id": "model1", "object": "model", "created": 1234567890, "owned_by": "OWNER", "root": "model1", } ] } httpx_mock.add_response( url="https://test_url/v1/models", method="GET", json=mock_response, status_code=200, ) def get_api_key(instance: Any) -> str: return instance.api_key def test_create_default_url_without_api_key(masked_env_var: str) -> None: with pytest.warns(UserWarning): NVIDIA() @pytest.mark.usefixtures("mock_local_models") def test_create_unknown_url_without_api_key(masked_env_var: str) -> None: NVIDIA(base_url="https://test_url/v1") @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_create_with_api_key(param: str, masked_env_var: str) -> None: instance = NVIDIA(**{param: "just testing no failure"}) assert get_api_key(instance) == "just testing no failure" def test_api_key_priority(masked_env_var: str) -> None: try: os.environ["NVIDIA_API_KEY"] = "ENV" assert get_api_key(NVIDIA()) == "ENV" assert get_api_key(NVIDIA(nvidia_api_key="PARAM")) == "PARAM" assert get_api_key(NVIDIA(api_key="PARAM")) == "PARAM" assert get_api_key(NVIDIA(api_key="LOW", nvidia_api_key="HIGH")) == "HIGH" finally: # we must clean up environ or it may impact other tests del os.environ["NVIDIA_API_KEY"] @pytest.mark.integration() def test_missing_api_key_error(masked_env_var: str) -> None: with pytest.warns(UserWarning): client = NVIDIA() with pytest.raises(Exception) as exc_info: client.complete("Hello, world!").text message = str(exc_info.value) assert "401" in message @pytest.mark.integration() def test_bogus_api_key_error(masked_env_var: str) -> None: client = NVIDIA(nvidia_api_key="BOGUS") with pytest.raises(Exception) as exc_info: client.complete("Hello, world!").text message = str(exc_info.value) assert "401" in message @pytest.mark.integration() @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_api_key(chat_model: str, mode: dict, param: str, masked_env_var: str) -> None: client = NVIDIA(model=chat_model, **{**mode, **{param: masked_env_var}}) assert client.complete("Hello, world!").text
import glob import os import pytest from jina import Document, Flow from jina.constants import __uptime__, __windows__ from jina.enums import LogVerbosity from jina.helper import colored from jina.logging.logger import JinaLogger cur_dir = os.path.dirname(os.path.abspath(__file__)) def log(logger: JinaLogger): logger.debug('this is test debug message') logger.info('this is test info message') logger.success('this is test success message') logger.warning('this is test warning message') logger.error('this is test error message') logger.critical('this is test critical message') def test_color_log(): with JinaLogger('test_logger') as logger: logger.debug('this is test debug message') logger.info('this is test info message') logger.info(f'this is test {colored("color", "red")} message') logger.success('this is test success message') logger.warning('this is test warning message') logger.error('this is test error message') logger.critical('this is test critical message') def test_logging_syslog(): with JinaLogger( 'test_logger', log_config=os.path.join(cur_dir, 'yaml/syslog.yml') ) as logger: log(logger) assert len(logger.handlers) == 0 if __windows__ else 1 def test_logging_default(): with JinaLogger('test_logger') as logger: log(logger) assert len(logger.handlers) == 1 def test_logging_level_yaml(monkeypatch): monkeypatch.delenv('JINA_LOG_LEVEL', raising=True) # ignore global env fn = os.path.join(cur_dir, f'jina-{__uptime__}.log') with JinaLogger( 'test_file_logger', log_config=os.path.join(cur_dir, 'yaml/file.yml') ) as file_logger: if os.path.exists(fn): os.remove(fn) log(file_logger) assert file_logger.logger.level == LogVerbosity.from_string('INFO') for f in glob.glob(cur_dir + '/*.log'): os.remove(f) def test_logging_file(monkeypatch): monkeypatch.delenv('JINA_LOG_LEVEL', raising=True) # ignore global env uptime = __uptime__.replace(':', '.') if __windows__ else __uptime__ fn = os.path.join(cur_dir, f'jina-{uptime}.log') with JinaLogger( 'test_file_logger', log_config=os.path.join(cur_dir, 'yaml/file.yml') ) as file_logger: log(file_logger) assert os.path.exists(fn) with open(fn) as fp: assert len(fp.readlines()) == 5 for f in glob.glob(cur_dir + '/*.log'): os.remove(f) @pytest.mark.slow def test_logging_quiet(caplog): # no way to capture logs in multiprocessing # see discussion here: https://github.com/pytest-dev/pytest/issues/3037#issuecomment-745050393 f = Flow().add(quiet=True).add() with f: f.index(Document())
import glob import os from datetime import datetime import pytest from jina import Document, Flow, __uptime__, __windows__ from jina.enums import LogVerbosity from jina.helper import colored from jina.logging.logger import JinaLogger cur_dir = os.path.dirname(os.path.abspath(__file__)) def log(logger: JinaLogger): logger.debug('this is test debug message') logger.info('this is test info message') logger.success('this is test success message') logger.warning('this is test warning message') logger.error('this is test error message') logger.critical('this is test critical message') def test_color_log(): with JinaLogger('test_logger') as logger: logger.debug('this is test debug message') logger.info('this is test info message') logger.info(f'this is test {colored("color", "red")} message') logger.success('this is test success message') logger.warning('this is test warning message') logger.error('this is test error message') logger.critical('this is test critical message') def test_logging_syslog(): with JinaLogger( 'test_logger', log_config=os.path.join(cur_dir, 'yaml/syslog.yml') ) as logger: log(logger) assert len(logger.handlers) == 0 if __windows__ else 1 def test_logging_default(): with JinaLogger('test_logger') as logger: log(logger) assert len(logger.handlers) == 1 def test_logging_level_yaml(monkeypatch): monkeypatch.delenv('JINA_LOG_LEVEL', raising=True) # ignore global env fn = os.path.join(cur_dir, f'jina-{__uptime__}.log') with JinaLogger( 'test_file_logger', log_config=os.path.join(cur_dir, 'yaml/file.yml') ) as file_logger: if os.path.exists(fn): os.remove(fn) log(file_logger) assert file_logger.logger.level == LogVerbosity.from_string('INFO') for f in glob.glob(cur_dir + '/*.log'): os.remove(f) def test_logging_file(monkeypatch): monkeypatch.delenv('JINA_LOG_LEVEL', raising=True) # ignore global env uptime = __uptime__.replace(':', '.') if __windows__ else __uptime__ fn = os.path.join(cur_dir, f'jina-{uptime}.log') with JinaLogger( 'test_file_logger', log_config=os.path.join(cur_dir, 'yaml/file.yml') ) as file_logger: log(file_logger) assert os.path.exists(fn) with open(fn) as fp: assert len(fp.readlines()) == 5 for f in glob.glob(cur_dir + '/*.log'): os.remove(f) @pytest.mark.slow def test_logging_quiet(caplog): # no way to capture logs in multiprocessing # see discussion here: https://github.com/pytest-dev/pytest/issues/3037#issuecomment-745050393 f = Flow().add(quiet=True).add() with f: f.index(Document())
__copyright__ = 'Copyright (c) 2020-2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' from typing import Any, Iterable, Optional import librosa as lr import numpy as np import torch from jina import DocumentArray, Executor, requests from jina.excepts import BadDocType from .audio_clip.model import AudioCLIP class AudioCLIPEncoder(Executor): """ Encode audio data with AudioCLIP embeddings :param model_path: path of the pre-trained AudioCLIP model :param default_traversal_paths: default traversal path :param device: Torch device string (e.g. 'cpu', 'cuda', 'cuda:2') """ TARGET_SAMPLE_RATE = 44100 # derived from ESResNeXt def __init__( self, model_path: str = 'assets/AudioCLIP-Full-Training.pt', default_traversal_paths: Iterable[str] = ('r',), device: str = 'cpu', *args, **kwargs ): super().__init__(*args, **kwargs) torch.set_grad_enabled(False) self.model_path = model_path self.aclp = AudioCLIP(pretrained=model_path).to(device).eval() self.default_traversal_paths = default_traversal_paths @requests def encode( self, docs: Optional[DocumentArray], parameters: dict, *args, **kwargs ) -> Any: if docs: cleaned_document_array = self._get_input_data(docs, parameters) self._create_embeddings(cleaned_document_array) def _get_input_data(self, docs: DocumentArray, parameters: dict): """Create a filtered set of Documents to iterate over.""" traversal_paths = parameters.get( 'traversal_paths', self.default_traversal_paths ) # traverse thought all documents which have to be processed flat_docs = docs.traverse_flat(traversal_paths) # filter out documents without audio wav filtered_docs = DocumentArray( [doc for doc in flat_docs if doc.blob is not None] ) return filtered_docs def _create_embeddings(self, filtered_docs: Iterable): """Update the documents with the embeddings generated by AudioCLIP""" for d in filtered_docs: d.blob, d.tags['sample_rate'] = self._resample( d.blob, d.tags.get('sample_rate', None) ) audio = torch.Tensor(d.blob).unsqueeze(0) embedding = self.aclp.encode_audio(audio=audio)[0] d.embedding = embedding.cpu().numpy() def _resample(self, blob: np.ndarray, orig_sr: int): if orig_sr is None: raise BadDocType( 'sample rate is not given, please provide a valid sample rate' ) if orig_sr == AudioCLIPEncoder.TARGET_SAMPLE_RATE: return return ( lr.resample(blob, orig_sr, AudioCLIPEncoder.TARGET_SAMPLE_RATE), AudioCLIPEncoder.TARGET_SAMPLE_RATE, )
__copyright__ = 'Copyright (c) 2020-2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' from typing import Optional, Iterable, Any from jina import Executor, DocumentArray, requests from jina.excepts import BadDocType import librosa as lr import numpy as np import torch from .audio_clip.model import AudioCLIP class AudioCLIPEncoder(Executor): """ Encode audio data with AudioCLIP embeddings :param model_path: path of the pre-trained AudioCLIP model :param default_traversal_paths: default traversal path """ TARGET_SAMPLE_RATE = 44100 # derived from ESResNeXt def __init__( self, model_path: str = 'assets/AudioCLIP-Full-Training.pt', default_traversal_paths: Iterable[str] = ['r'], *args, **kwargs ): super().__init__(*args, **kwargs) torch.set_grad_enabled(False) self.model_path = model_path self.aclp = AudioCLIP(pretrained=model_path) self.aclp.eval() self.aclp.audio.eval() self.default_traversal_paths = default_traversal_paths @requests def encode( self, docs: Optional[DocumentArray], parameters: dict, *args, **kwargs ) -> Any: if docs: cleaned_document_array = self._get_input_data(docs, parameters) self._create_embeddings(cleaned_document_array) def _get_input_data(self, docs: DocumentArray, parameters: dict): """Create a filtered set of Documents to iterate over.""" traversal_paths = parameters.get( 'traversal_paths', self.default_traversal_paths ) # traverse thought all documents which have to be processed flat_docs = docs.traverse_flat(traversal_paths) # filter out documents without audio wav filtered_docs = DocumentArray( [doc for doc in flat_docs if doc.blob is not None] ) return filtered_docs def _create_embeddings(self, filtered_docs: Iterable): """Update the documents with the embeddings generated by AudioCLIP""" for d in filtered_docs: d.blob, d.tags['sample_rate'] = self._resample( d.blob, d.tags.get('sample_rate', None) ) audio = torch.Tensor(d.blob).unsqueeze(0) embedding = self.aclp.encode_audio(audio=audio)[0] d.embedding = embedding.cpu().numpy() def _resample(self, blob: np.ndarray, orig_sr: int): if orig_sr is None: raise BadDocType( 'sample rate is not given, please provide a valid sample rate' ) if orig_sr == AudioCLIPEncoder.TARGET_SAMPLE_RATE: return return ( lr.resample(blob, orig_sr, AudioCLIPEncoder.TARGET_SAMPLE_RATE), AudioCLIPEncoder.TARGET_SAMPLE_RATE, )
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomResize', scale=[(1333, 640), (1333, 800)]), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox') test_evaluator = val_evaluator # training schedule for 3x with `RepeatDataset` train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate # Experiments show that using milestones=[9, 11] has higher performance param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[9, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox') test_evaluator = val_evaluator # TODO: use repeat dataset wrapper # training schedule for 3x train_cfg = dict(by_epoch=True, max_epochs=36) val_cfg = dict(interval=3) test_cfg = dict() # learning rate # Experiments show that using milestones=[27, 33] has higher performance param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=36, by_epoch=True, milestones=[27, 33], gamma=0.1) ] # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
import csv import os from pathlib import Path from typing import Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import extract_archive _RELEASE_CONFIGS = { "release1": { "folder_in_archive": "wavs", "url": "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2", "checksum": "be1a30453f28eb8dd26af4101ae40cbf2c50413b1bb21936cbcdc6fae3de8aa5", } } class LJSPEECH(Dataset): """*LJSpeech-1.1* :cite:`ljspeech17` dataset. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. url (str, optional): The URL to download the dataset from. (default: ``"https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2"``) folder_in_archive (str, optional): The top-level directory of the dataset. (default: ``"wavs"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ def __init__( self, root: Union[str, Path], url: str = _RELEASE_CONFIGS["release1"]["url"], folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"], download: bool = False, ) -> None: self._parse_filesystem(root, url, folder_in_archive, download) def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None: root = Path(root) basename = os.path.basename(url) archive = root / basename basename = Path(basename.split(".tar.bz2")[0]) folder_in_archive = basename / folder_in_archive self._path = root / folder_in_archive self._metadata_path = root / basename / "metadata.csv" if download: if not os.path.isdir(self._path): if not os.path.isfile(archive): checksum = _RELEASE_CONFIGS["release1"]["checksum"] download_url_to_file(url, archive, hash_prefix=checksum) extract_archive(archive) else: if not os.path.exists(self._path): raise RuntimeError( f"The path {self._path} doesn't exist. " "Please check the ``root`` path or set `download=True` to download it" ) with open(self._metadata_path, "r", newline="") as metadata: flist = csv.reader(metadata, delimiter="|", quoting=csv.QUOTE_NONE) self._flist = list(flist) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; Tensor: Waveform int: Sample rate str: Transcript str: Normalized Transcript """ line = self._flist[n] fileid, transcript, normalized_transcript = line fileid_audio = self._path / (fileid + ".wav") # Load audio waveform, sample_rate = torchaudio.load(fileid_audio) return ( waveform, sample_rate, transcript, normalized_transcript, ) def __len__(self) -> int: return len(self._flist)
import csv import os from pathlib import Path from typing import Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import extract_archive _RELEASE_CONFIGS = { "release1": { "folder_in_archive": "wavs", "url": "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2", "checksum": "be1a30453f28eb8dd26af4101ae40cbf2c50413b1bb21936cbcdc6fae3de8aa5", } } class LJSPEECH(Dataset): """Create a Dataset for *LJSpeech-1.1* :cite:`ljspeech17`. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. url (str, optional): The URL to download the dataset from. (default: ``"https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2"``) folder_in_archive (str, optional): The top-level directory of the dataset. (default: ``"wavs"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ def __init__( self, root: Union[str, Path], url: str = _RELEASE_CONFIGS["release1"]["url"], folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"], download: bool = False, ) -> None: self._parse_filesystem(root, url, folder_in_archive, download) def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None: root = Path(root) basename = os.path.basename(url) archive = root / basename basename = Path(basename.split(".tar.bz2")[0]) folder_in_archive = basename / folder_in_archive self._path = root / folder_in_archive self._metadata_path = root / basename / "metadata.csv" if download: if not os.path.isdir(self._path): if not os.path.isfile(archive): checksum = _RELEASE_CONFIGS["release1"]["checksum"] download_url_to_file(url, archive, hash_prefix=checksum) extract_archive(archive) else: if not os.path.exists(self._path): raise RuntimeError( f"The path {self._path} doesn't exist. " "Please check the ``root`` path or set `download=True` to download it" ) with open(self._metadata_path, "r", newline="") as metadata: flist = csv.reader(metadata, delimiter="|", quoting=csv.QUOTE_NONE) self._flist = list(flist) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str, str): ``(waveform, sample_rate, transcript, normalized_transcript)`` """ line = self._flist[n] fileid, transcript, normalized_transcript = line fileid_audio = self._path / (fileid + ".wav") # Load audio waveform, sample_rate = torchaudio.load(fileid_audio) return ( waveform, sample_rate, transcript, normalized_transcript, ) def __len__(self) -> int: return len(self._flist)
import numpy as np from docarray import Image def test_image(): image = Image(url='http://jina.ai') image.tensor = image.url.load() assert isinstance(image.tensor, np.ndarray)
import numpy as np from docarray import Image from docarray.typing import Tensor def test_image(): image = Image(uri='http://jina.ai') image.tensor = image.uri.load() assert isinstance(image.tensor, np.ndarray)
"""Output parsers using Pydantic.""" import json from typing import Annotated, Generic, Optional import pydantic from pydantic import SkipValidation from typing_extensions import override from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers import JsonOutputParser from langchain_core.outputs import Generation from langchain_core.utils.pydantic import ( PydanticBaseModel, TBaseModel, ) class PydanticOutputParser(JsonOutputParser, Generic[TBaseModel]): """Parse an output using a pydantic model.""" pydantic_object: Annotated[type[TBaseModel], SkipValidation()] """The pydantic model to parse.""" def _parse_obj(self, obj: dict) -> TBaseModel: try: if issubclass(self.pydantic_object, pydantic.BaseModel): return self.pydantic_object.model_validate(obj) if issubclass(self.pydantic_object, pydantic.v1.BaseModel): return self.pydantic_object.parse_obj(obj) msg = f"Unsupported model version for PydanticOutputParser: \ {self.pydantic_object.__class__}" raise OutputParserException(msg) except (pydantic.ValidationError, pydantic.v1.ValidationError) as e: raise self._parser_exception(e, obj) from e def _parser_exception( self, e: Exception, json_object: dict ) -> OutputParserException: json_string = json.dumps(json_object) name = self.pydantic_object.__name__ msg = f"Failed to parse {name} from completion {json_string}. Got: {e}" return OutputParserException(msg, llm_output=json_string) def parse_result( self, result: list[Generation], *, partial: bool = False ) -> Optional[TBaseModel]: """Parse the result of an LLM call to a pydantic object. Args: result: The result of the LLM call. partial: Whether to parse partial JSON objects. If True, the output will be a JSON object containing all the keys that have been returned so far. Defaults to False. Returns: The parsed pydantic object. """ try: json_object = super().parse_result(result) return self._parse_obj(json_object) except OutputParserException: if partial: return None raise def parse(self, text: str) -> TBaseModel: """Parse the output of an LLM call to a pydantic object. Args: text: The output of the LLM call. Returns: The parsed pydantic object. """ return super().parse(text) def get_format_instructions(self) -> str: """Return the format instructions for the JSON output. Returns: The format instructions for the JSON output. """ # Copy schema to avoid altering original Pydantic schema. schema = dict(self.pydantic_object.model_json_schema().items()) # Remove extraneous fields. reduced_schema = schema if "title" in reduced_schema: del reduced_schema["title"] if "type" in reduced_schema: del reduced_schema["type"] # Ensure json in context is well-formed with double quotes. schema_str = json.dumps(reduced_schema, ensure_ascii=False) return _PYDANTIC_FORMAT_INSTRUCTIONS.format(schema=schema_str) @property def _type(self) -> str: return "pydantic" @property @override def OutputType(self) -> type[TBaseModel]: """Return the pydantic model.""" return self.pydantic_object _PYDANTIC_FORMAT_INSTRUCTIONS = """The output should be formatted as a JSON instance that conforms to the JSON schema below. As an example, for the schema {{"properties": {{"foo": {{"title": "Foo", "description": "a list of strings", "type": "array", "items": {{"type": "string"}}}}}}, "required": ["foo"]}} the object {{"foo": ["bar", "baz"]}} is a well-formatted instance of the schema. The object {{"properties": {{"foo": ["bar", "baz"]}}}} is not well-formatted. Here is the output schema: ``` {schema} ```""" # noqa: E501 # Re-exporting types for backwards compatibility __all__ = [ "PydanticBaseModel", "PydanticOutputParser", "TBaseModel", ]
"""Output parsers using Pydantic.""" import json from typing import Annotated, Generic, Optional import pydantic from pydantic import SkipValidation from typing_extensions import override from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers import JsonOutputParser from langchain_core.outputs import Generation from langchain_core.utils.pydantic import ( IS_PYDANTIC_V2, PydanticBaseModel, TBaseModel, ) class PydanticOutputParser(JsonOutputParser, Generic[TBaseModel]): """Parse an output using a pydantic model.""" pydantic_object: Annotated[type[TBaseModel], SkipValidation()] """The pydantic model to parse.""" def _parse_obj(self, obj: dict) -> TBaseModel: if IS_PYDANTIC_V2: try: if issubclass(self.pydantic_object, pydantic.BaseModel): return self.pydantic_object.model_validate(obj) if issubclass(self.pydantic_object, pydantic.v1.BaseModel): return self.pydantic_object.parse_obj(obj) msg = f"Unsupported model version for PydanticOutputParser: \ {self.pydantic_object.__class__}" raise OutputParserException(msg) except (pydantic.ValidationError, pydantic.v1.ValidationError) as e: raise self._parser_exception(e, obj) from e else: # pydantic v1 try: return self.pydantic_object.parse_obj(obj) except pydantic.ValidationError as e: raise self._parser_exception(e, obj) from e def _parser_exception( self, e: Exception, json_object: dict ) -> OutputParserException: json_string = json.dumps(json_object) name = self.pydantic_object.__name__ msg = f"Failed to parse {name} from completion {json_string}. Got: {e}" return OutputParserException(msg, llm_output=json_string) def parse_result( self, result: list[Generation], *, partial: bool = False ) -> Optional[TBaseModel]: """Parse the result of an LLM call to a pydantic object. Args: result: The result of the LLM call. partial: Whether to parse partial JSON objects. If True, the output will be a JSON object containing all the keys that have been returned so far. Defaults to False. Returns: The parsed pydantic object. """ try: json_object = super().parse_result(result) return self._parse_obj(json_object) except OutputParserException: if partial: return None raise def parse(self, text: str) -> TBaseModel: """Parse the output of an LLM call to a pydantic object. Args: text: The output of the LLM call. Returns: The parsed pydantic object. """ return super().parse(text) def get_format_instructions(self) -> str: """Return the format instructions for the JSON output. Returns: The format instructions for the JSON output. """ # Copy schema to avoid altering original Pydantic schema. schema = dict(self.pydantic_object.model_json_schema().items()) # Remove extraneous fields. reduced_schema = schema if "title" in reduced_schema: del reduced_schema["title"] if "type" in reduced_schema: del reduced_schema["type"] # Ensure json in context is well-formed with double quotes. schema_str = json.dumps(reduced_schema, ensure_ascii=False) return _PYDANTIC_FORMAT_INSTRUCTIONS.format(schema=schema_str) @property def _type(self) -> str: return "pydantic" @property @override def OutputType(self) -> type[TBaseModel]: """Return the pydantic model.""" return self.pydantic_object _PYDANTIC_FORMAT_INSTRUCTIONS = """The output should be formatted as a JSON instance that conforms to the JSON schema below. As an example, for the schema {{"properties": {{"foo": {{"title": "Foo", "description": "a list of strings", "type": "array", "items": {{"type": "string"}}}}}}, "required": ["foo"]}} the object {{"foo": ["bar", "baz"]}} is a well-formatted instance of the schema. The object {{"properties": {{"foo": ["bar", "baz"]}}}} is not well-formatted. Here is the output schema: ``` {schema} ```""" # noqa: E501 # Re-exporting types for backwards compatibility __all__ = [ "PydanticBaseModel", "PydanticOutputParser", "TBaseModel", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.openapi.planner_prompt import ( API_CONTROLLER_PROMPT, API_CONTROLLER_TOOL_DESCRIPTION, API_CONTROLLER_TOOL_NAME, API_ORCHESTRATOR_PROMPT, API_PLANNER_PROMPT, API_PLANNER_TOOL_DESCRIPTION, API_PLANNER_TOOL_NAME, PARSING_DELETE_PROMPT, PARSING_GET_PROMPT, PARSING_PATCH_PROMPT, PARSING_POST_PROMPT, PARSING_PUT_PROMPT, REQUESTS_DELETE_TOOL_DESCRIPTION, REQUESTS_GET_TOOL_DESCRIPTION, REQUESTS_PATCH_TOOL_DESCRIPTION, REQUESTS_POST_TOOL_DESCRIPTION, REQUESTS_PUT_TOOL_DESCRIPTION, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "API_CONTROLLER_PROMPT": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "API_CONTROLLER_TOOL_DESCRIPTION": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "API_CONTROLLER_TOOL_NAME": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "API_ORCHESTRATOR_PROMPT": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "API_PLANNER_PROMPT": ("langchain_community.agent_toolkits.openapi.planner_prompt"), "API_PLANNER_TOOL_DESCRIPTION": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "API_PLANNER_TOOL_NAME": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "PARSING_DELETE_PROMPT": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "PARSING_GET_PROMPT": ("langchain_community.agent_toolkits.openapi.planner_prompt"), "PARSING_PATCH_PROMPT": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "PARSING_POST_PROMPT": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "PARSING_PUT_PROMPT": ("langchain_community.agent_toolkits.openapi.planner_prompt"), "REQUESTS_DELETE_TOOL_DESCRIPTION": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "REQUESTS_GET_TOOL_DESCRIPTION": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "REQUESTS_PATCH_TOOL_DESCRIPTION": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "REQUESTS_POST_TOOL_DESCRIPTION": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "REQUESTS_PUT_TOOL_DESCRIPTION": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "API_CONTROLLER_PROMPT", "API_CONTROLLER_TOOL_DESCRIPTION", "API_CONTROLLER_TOOL_NAME", "API_ORCHESTRATOR_PROMPT", "API_PLANNER_PROMPT", "API_PLANNER_TOOL_DESCRIPTION", "API_PLANNER_TOOL_NAME", "PARSING_DELETE_PROMPT", "PARSING_GET_PROMPT", "PARSING_PATCH_PROMPT", "PARSING_POST_PROMPT", "PARSING_PUT_PROMPT", "REQUESTS_DELETE_TOOL_DESCRIPTION", "REQUESTS_GET_TOOL_DESCRIPTION", "REQUESTS_PATCH_TOOL_DESCRIPTION", "REQUESTS_POST_TOOL_DESCRIPTION", "REQUESTS_PUT_TOOL_DESCRIPTION", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.openapi.planner_prompt import ( API_CONTROLLER_PROMPT, API_CONTROLLER_TOOL_DESCRIPTION, API_CONTROLLER_TOOL_NAME, API_ORCHESTRATOR_PROMPT, API_PLANNER_PROMPT, API_PLANNER_TOOL_DESCRIPTION, API_PLANNER_TOOL_NAME, PARSING_DELETE_PROMPT, PARSING_GET_PROMPT, PARSING_PATCH_PROMPT, PARSING_POST_PROMPT, PARSING_PUT_PROMPT, REQUESTS_DELETE_TOOL_DESCRIPTION, REQUESTS_GET_TOOL_DESCRIPTION, REQUESTS_PATCH_TOOL_DESCRIPTION, REQUESTS_POST_TOOL_DESCRIPTION, REQUESTS_PUT_TOOL_DESCRIPTION, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "API_CONTROLLER_PROMPT": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "API_CONTROLLER_TOOL_DESCRIPTION": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "API_CONTROLLER_TOOL_NAME": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "API_ORCHESTRATOR_PROMPT": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "API_PLANNER_PROMPT": ("langchain_community.agent_toolkits.openapi.planner_prompt"), "API_PLANNER_TOOL_DESCRIPTION": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "API_PLANNER_TOOL_NAME": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "PARSING_DELETE_PROMPT": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "PARSING_GET_PROMPT": ("langchain_community.agent_toolkits.openapi.planner_prompt"), "PARSING_PATCH_PROMPT": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "PARSING_POST_PROMPT": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "PARSING_PUT_PROMPT": ("langchain_community.agent_toolkits.openapi.planner_prompt"), "REQUESTS_DELETE_TOOL_DESCRIPTION": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "REQUESTS_GET_TOOL_DESCRIPTION": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "REQUESTS_PATCH_TOOL_DESCRIPTION": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "REQUESTS_POST_TOOL_DESCRIPTION": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), "REQUESTS_PUT_TOOL_DESCRIPTION": ( "langchain_community.agent_toolkits.openapi.planner_prompt" ), } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "API_PLANNER_PROMPT", "API_PLANNER_TOOL_NAME", "API_PLANNER_TOOL_DESCRIPTION", "API_CONTROLLER_PROMPT", "API_CONTROLLER_TOOL_NAME", "API_CONTROLLER_TOOL_DESCRIPTION", "API_ORCHESTRATOR_PROMPT", "REQUESTS_GET_TOOL_DESCRIPTION", "PARSING_GET_PROMPT", "REQUESTS_POST_TOOL_DESCRIPTION", "PARSING_POST_PROMPT", "REQUESTS_PATCH_TOOL_DESCRIPTION", "PARSING_PATCH_PROMPT", "REQUESTS_PUT_TOOL_DESCRIPTION", "PARSING_PUT_PROMPT", "REQUESTS_DELETE_TOOL_DESCRIPTION", "PARSING_DELETE_PROMPT", ]
from __future__ import annotations __version__ = "4.2.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" import importlib import os import warnings from sentence_transformers.backend import ( export_dynamic_quantized_onnx_model, export_optimized_onnx_model, export_static_quantized_openvino_model, ) from sentence_transformers.cross_encoder import ( CrossEncoder, CrossEncoderModelCardData, CrossEncoderTrainer, CrossEncoderTrainingArguments, ) from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset from sentence_transformers.LoggingHandler import LoggingHandler from sentence_transformers.model_card import SentenceTransformerModelCardData from sentence_transformers.quantization import quantize_embeddings from sentence_transformers.readers import InputExample from sentence_transformers.sampler import DefaultBatchSampler, MultiDatasetDefaultBatchSampler from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.sparse_encoder import ( SparseEncoder, SparseEncoderModelCardData, SparseEncoderTrainer, SparseEncoderTrainingArguments, ) from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments from sentence_transformers.util import mine_hard_negatives # If codecarbon is installed and the log level is not defined, # automatically overwrite the default to "error" if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ: os.environ["CODECARBON_LOG_LEVEL"] = "error" # Globally silence PyTorch sparse CSR tensor beta warning warnings.filterwarnings("ignore", message="Sparse CSR tensor support is in beta state") __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "SimilarityFunction", "InputExample", "CrossEncoder", "CrossEncoderTrainer", "CrossEncoderTrainingArguments", "CrossEncoderModelCardData", "SentenceTransformerTrainer", "SentenceTransformerTrainingArguments", "SentenceTransformerModelCardData", "SparseEncoder", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", "SparseEncoderModelCardData", "quantize_embeddings", "export_optimized_onnx_model", "export_dynamic_quantized_onnx_model", "export_static_quantized_openvino_model", "DefaultBatchSampler", "MultiDatasetDefaultBatchSampler", "mine_hard_negatives", ]
from __future__ import annotations __version__ = "4.2.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" import importlib import os from sentence_transformers.backend import ( export_dynamic_quantized_onnx_model, export_optimized_onnx_model, export_static_quantized_openvino_model, ) from sentence_transformers.cross_encoder import ( CrossEncoder, CrossEncoderModelCardData, CrossEncoderTrainer, CrossEncoderTrainingArguments, ) from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset from sentence_transformers.LoggingHandler import LoggingHandler from sentence_transformers.model_card import SentenceTransformerModelCardData from sentence_transformers.quantization import quantize_embeddings from sentence_transformers.readers import InputExample from sentence_transformers.sampler import DefaultBatchSampler, MultiDatasetDefaultBatchSampler from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments from sentence_transformers.util import mine_hard_negatives # If codecarbon is installed and the log level is not defined, # automatically overwrite the default to "error" if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ: os.environ["CODECARBON_LOG_LEVEL"] = "error" __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "SimilarityFunction", "InputExample", "CrossEncoder", "CrossEncoderTrainer", "CrossEncoderTrainingArguments", "CrossEncoderModelCardData", "SentenceTransformerTrainer", "SentenceTransformerTrainingArguments", "SentenceTransformerModelCardData", "quantize_embeddings", "export_optimized_onnx_model", "export_dynamic_quantized_onnx_model", "export_static_quantized_openvino_model", "DefaultBatchSampler", "MultiDatasetDefaultBatchSampler", "mine_hard_negatives", ]
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmcv.runner import force_fp32 from mmdet.registry import MODELS from .base_roi_extractor import BaseRoIExtractor @MODELS.register_module() class SingleRoIExtractor(BaseRoIExtractor): """Extract RoI features from a single level feature map. If there are multiple input feature levels, each RoI is mapped to a level according to its scale. The mapping rule is proposed in `FPN <https://arxiv.org/abs/1612.03144>`_. Args: roi_layer (dict): Specify RoI layer type and arguments. out_channels (int): Output channels of RoI layers. featmap_strides (List[int]): Strides of input feature maps. finest_scale (int): Scale threshold of mapping to level 0. Default: 56. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None """ def __init__(self, roi_layer, out_channels, featmap_strides, finest_scale=56, init_cfg=None): super(SingleRoIExtractor, self).__init__(roi_layer, out_channels, featmap_strides, init_cfg) self.finest_scale = finest_scale def map_roi_levels(self, rois, num_levels): """Map rois to corresponding feature levels by scales. - scale < finest_scale * 2: level 0 - finest_scale * 2 <= scale < finest_scale * 4: level 1 - finest_scale * 4 <= scale < finest_scale * 8: level 2 - scale >= finest_scale * 8: level 3 Args: rois (Tensor): Input RoIs, shape (k, 5). num_levels (int): Total level number. Returns: Tensor: Level index (0-based) of each RoI, shape (k, ) """ scale = torch.sqrt( (rois[:, 3] - rois[:, 1]) * (rois[:, 4] - rois[:, 2])) target_lvls = torch.floor(torch.log2(scale / self.finest_scale + 1e-6)) target_lvls = target_lvls.clamp(min=0, max=num_levels - 1).long() return target_lvls @force_fp32(apply_to=('feats', ), out_fp16=True) def forward(self, feats, rois, roi_scale_factor=None): """Forward function.""" out_size = self.roi_layers[0].output_size num_levels = len(feats) expand_dims = (-1, self.out_channels * out_size[0] * out_size[1]) if torch.onnx.is_in_onnx_export(): # Work around to export mask-rcnn to onnx roi_feats = rois[:, :1].clone().detach() roi_feats = roi_feats.expand(*expand_dims) roi_feats = roi_feats.reshape(-1, self.out_channels, *out_size) roi_feats = roi_feats * 0 else: roi_feats = feats[0].new_zeros( rois.size(0), self.out_channels, *out_size) # TODO: remove this when parrots supports if torch.__version__ == 'parrots': roi_feats.requires_grad = True if num_levels == 1: if len(rois) == 0: return roi_feats return self.roi_layers[0](feats[0], rois) target_lvls = self.map_roi_levels(rois, num_levels) if roi_scale_factor is not None: rois = self.roi_rescale(rois, roi_scale_factor) for i in range(num_levels): mask = target_lvls == i if torch.onnx.is_in_onnx_export(): # To keep all roi_align nodes exported to onnx # and skip nonzero op mask = mask.float().unsqueeze(-1) # select target level rois and reset the rest rois to zero. rois_i = rois.clone().detach() rois_i *= mask mask_exp = mask.expand(*expand_dims).reshape(roi_feats.shape) roi_feats_t = self.roi_layers[i](feats[i], rois_i) roi_feats_t *= mask_exp roi_feats += roi_feats_t continue inds = mask.nonzero(as_tuple=False).squeeze(1) if inds.numel() > 0: rois_ = rois[inds] roi_feats_t = self.roi_layers[i](feats[i], rois_) roi_feats[inds] = roi_feats_t else: # Sometimes some pyramid levels will not be used for RoI # feature extraction and this will cause an incomplete # computation graph in one GPU, which is different from those # in other GPUs and will cause a hanging error. # Therefore, we add it to ensure each feature pyramid is # included in the computation graph to avoid runtime bugs. roi_feats += sum( x.view(-1)[0] for x in self.parameters()) * 0. + feats[i].sum() * 0. return roi_feats
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmcv.runner import force_fp32 from mmdet.models.builder import ROI_EXTRACTORS from .base_roi_extractor import BaseRoIExtractor @ROI_EXTRACTORS.register_module() class SingleRoIExtractor(BaseRoIExtractor): """Extract RoI features from a single level feature map. If there are multiple input feature levels, each RoI is mapped to a level according to its scale. The mapping rule is proposed in `FPN <https://arxiv.org/abs/1612.03144>`_. Args: roi_layer (dict): Specify RoI layer type and arguments. out_channels (int): Output channels of RoI layers. featmap_strides (List[int]): Strides of input feature maps. finest_scale (int): Scale threshold of mapping to level 0. Default: 56. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None """ def __init__(self, roi_layer, out_channels, featmap_strides, finest_scale=56, init_cfg=None): super(SingleRoIExtractor, self).__init__(roi_layer, out_channels, featmap_strides, init_cfg) self.finest_scale = finest_scale def map_roi_levels(self, rois, num_levels): """Map rois to corresponding feature levels by scales. - scale < finest_scale * 2: level 0 - finest_scale * 2 <= scale < finest_scale * 4: level 1 - finest_scale * 4 <= scale < finest_scale * 8: level 2 - scale >= finest_scale * 8: level 3 Args: rois (Tensor): Input RoIs, shape (k, 5). num_levels (int): Total level number. Returns: Tensor: Level index (0-based) of each RoI, shape (k, ) """ scale = torch.sqrt( (rois[:, 3] - rois[:, 1]) * (rois[:, 4] - rois[:, 2])) target_lvls = torch.floor(torch.log2(scale / self.finest_scale + 1e-6)) target_lvls = target_lvls.clamp(min=0, max=num_levels - 1).long() return target_lvls @force_fp32(apply_to=('feats', ), out_fp16=True) def forward(self, feats, rois, roi_scale_factor=None): """Forward function.""" out_size = self.roi_layers[0].output_size num_levels = len(feats) expand_dims = (-1, self.out_channels * out_size[0] * out_size[1]) if torch.onnx.is_in_onnx_export(): # Work around to export mask-rcnn to onnx roi_feats = rois[:, :1].clone().detach() roi_feats = roi_feats.expand(*expand_dims) roi_feats = roi_feats.reshape(-1, self.out_channels, *out_size) roi_feats = roi_feats * 0 else: roi_feats = feats[0].new_zeros( rois.size(0), self.out_channels, *out_size) # TODO: remove this when parrots supports if torch.__version__ == 'parrots': roi_feats.requires_grad = True if num_levels == 1: if len(rois) == 0: return roi_feats return self.roi_layers[0](feats[0], rois) target_lvls = self.map_roi_levels(rois, num_levels) if roi_scale_factor is not None: rois = self.roi_rescale(rois, roi_scale_factor) for i in range(num_levels): mask = target_lvls == i if torch.onnx.is_in_onnx_export(): # To keep all roi_align nodes exported to onnx # and skip nonzero op mask = mask.float().unsqueeze(-1) # select target level rois and reset the rest rois to zero. rois_i = rois.clone().detach() rois_i *= mask mask_exp = mask.expand(*expand_dims).reshape(roi_feats.shape) roi_feats_t = self.roi_layers[i](feats[i], rois_i) roi_feats_t *= mask_exp roi_feats += roi_feats_t continue inds = mask.nonzero(as_tuple=False).squeeze(1) if inds.numel() > 0: rois_ = rois[inds] roi_feats_t = self.roi_layers[i](feats[i], rois_) roi_feats[inds] = roi_feats_t else: # Sometimes some pyramid levels will not be used for RoI # feature extraction and this will cause an incomplete # computation graph in one GPU, which is different from those # in other GPUs and will cause a hanging error. # Therefore, we add it to ensure each feature pyramid is # included in the computation graph to avoid runtime bugs. roi_feats += sum( x.view(-1)[0] for x in self.parameters()) * 0. + feats[i].sum() * 0. return roi_feats
from __future__ import annotations from pathlib import Path from unittest.mock import Mock, PropertyMock import pytest import torch from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import InformationRetrievalEvaluator from sentence_transformers.util import cos_sim @pytest.fixture def mock_model(): def mock_encode(sentences: str | list[str], **kwargs) -> torch.Tensor: """ We simply one-hot encode the sentences; if a sentence contains a keyword, the corresponding one-hot encoding is added to the sentence embedding. """ one_hot_encodings = { "pokemon": torch.tensor([1.0, 0.0, 0.0, 0.0, 0.0]), "car": torch.tensor([0.0, 1.0, 0.0, 0.0, 0.0]), "vehicle": torch.tensor([0.0, 0.0, 1.0, 0.0, 0.0]), "fruit": torch.tensor([0.0, 0.0, 0.0, 1.0, 0.0]), "vegetable": torch.tensor([0.0, 0.0, 0.0, 0.0, 1.0]), } if isinstance(sentences, str): sentences = [sentences] embeddings = [] for sentence in sentences: encoding = torch.zeros(5) for keyword, one_hot in one_hot_encodings.items(): if keyword in sentence: encoding += one_hot embeddings.append(encoding) return torch.stack(embeddings) model = Mock(spec=SentenceTransformer) model.similarity_fn_name = "cosine" model.similarity.side_effect = cos_sim model.encode.side_effect = mock_encode model.encode_query.side_effect = mock_encode model.encode_document.side_effect = mock_encode model.model_card_data = PropertyMock(return_value=Mock()) return model @pytest.fixture def test_data(): queries = { "0": "What is a pokemon?", "1": "What is a vegetable?", "2": "What is a fruit?", "3": "What is a vehicle?", "4": "What is a car?", } corpus = { "0": "A pokemon is a fictional creature", "1": "A vegetable is a plant", "2": "A fruit is a plant", "3": "A vehicle is a machine", "4": "A car is a vehicle", } relevant_docs = {"0": {"0"}, "1": {"1"}, "2": {"2"}, "3": {"3", "4"}, "4": {"4"}} return queries, corpus, relevant_docs def test_simple(test_data, tmp_path: Path): queries, corpus, relevant_docs = test_data model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") ir_evaluator = InformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="test", accuracy_at_k=[1, 3], precision_recall_at_k=[1, 3], mrr_at_k=[3], ndcg_at_k=[3], map_at_k=[5], ) results = ir_evaluator(model, output_path=str(tmp_path)) expected_keys = [ "test_cosine_accuracy@1", "test_cosine_accuracy@3", "test_cosine_precision@1", "test_cosine_precision@3", "test_cosine_recall@1", "test_cosine_recall@3", "test_cosine_ndcg@3", "test_cosine_mrr@3", "test_cosine_map@5", ] assert set(results.keys()) == set(expected_keys) def test_metrices(test_data, mock_model, tmp_path: Path): queries, corpus, relevant_docs = test_data ir_evaluator = InformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="test", accuracy_at_k=[1, 3], precision_recall_at_k=[1, 3], mrr_at_k=[3], ndcg_at_k=[3], map_at_k=[5], ) results = ir_evaluator(mock_model, output_path=str(tmp_path)) # We expect test_cosine_precision@3 to be 0.4, since 6 out of 15 (5 queries * 3) are True Positives # We expect test_cosine_recall@1 to be 0.9; the average of 4 times a recall of 1 and once a recall of 0.5 expected_results = { "test_cosine_accuracy@1": 1.0, "test_cosine_accuracy@3": 1.0, "test_cosine_precision@1": 1.0, "test_cosine_precision@3": 0.4, "test_cosine_recall@1": 0.9, "test_cosine_recall@3": 1.0, "test_cosine_ndcg@3": 1.0, "test_cosine_mrr@3": 1.0, "test_cosine_map@5": 1.0, } for key, expected_value in expected_results.items(): assert results[key] == pytest.approx(expected_value, abs=1e-9)
from __future__ import annotations from pathlib import Path from unittest.mock import Mock, PropertyMock import pytest import torch from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import InformationRetrievalEvaluator from sentence_transformers.util import cos_sim @pytest.fixture def mock_model(): def mock_encode(sentences: str | list[str], **kwargs) -> torch.Tensor: """ We simply one-hot encode the sentences; if a sentence contains a keyword, the corresponding one-hot encoding is added to the sentence embedding. """ one_hot_encodings = { "pokemon": torch.tensor([1.0, 0.0, 0.0, 0.0, 0.0]), "car": torch.tensor([0.0, 1.0, 0.0, 0.0, 0.0]), "vehicle": torch.tensor([0.0, 0.0, 1.0, 0.0, 0.0]), "fruit": torch.tensor([0.0, 0.0, 0.0, 1.0, 0.0]), "vegetable": torch.tensor([0.0, 0.0, 0.0, 0.0, 1.0]), } if isinstance(sentences, str): sentences = [sentences] embeddings = [] for sentence in sentences: encoding = torch.zeros(5) for keyword, one_hot in one_hot_encodings.items(): if keyword in sentence: encoding += one_hot embeddings.append(encoding) return torch.stack(embeddings) model = Mock(spec=SentenceTransformer) model.similarity_fn_name = "cosine" model.similarity.side_effect = cos_sim model.encode.side_effect = mock_encode model.model_card_data = PropertyMock(return_value=Mock()) return model @pytest.fixture def test_data(): queries = { "0": "What is a pokemon?", "1": "What is a vegetable?", "2": "What is a fruit?", "3": "What is a vehicle?", "4": "What is a car?", } corpus = { "0": "A pokemon is a fictional creature", "1": "A vegetable is a plant", "2": "A fruit is a plant", "3": "A vehicle is a machine", "4": "A car is a vehicle", } relevant_docs = {"0": {"0"}, "1": {"1"}, "2": {"2"}, "3": {"3", "4"}, "4": {"4"}} return queries, corpus, relevant_docs def test_simple(test_data, tmp_path: Path): queries, corpus, relevant_docs = test_data model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") ir_evaluator = InformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="test", accuracy_at_k=[1, 3], precision_recall_at_k=[1, 3], mrr_at_k=[3], ndcg_at_k=[3], map_at_k=[5], ) results = ir_evaluator(model, output_path=str(tmp_path)) expected_keys = [ "test_cosine_accuracy@1", "test_cosine_accuracy@3", "test_cosine_precision@1", "test_cosine_precision@3", "test_cosine_recall@1", "test_cosine_recall@3", "test_cosine_ndcg@3", "test_cosine_mrr@3", "test_cosine_map@5", ] assert set(results.keys()) == set(expected_keys) def test_metrices(test_data, mock_model, tmp_path: Path): queries, corpus, relevant_docs = test_data ir_evaluator = InformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="test", accuracy_at_k=[1, 3], precision_recall_at_k=[1, 3], mrr_at_k=[3], ndcg_at_k=[3], map_at_k=[5], ) results = ir_evaluator(mock_model, output_path=str(tmp_path)) # We expect test_cosine_precision@3 to be 0.4, since 6 out of 15 (5 queries * 3) are True Positives # We expect test_cosine_recall@1 to be 0.9; the average of 4 times a recall of 1 and once a recall of 0.5 expected_results = { "test_cosine_accuracy@1": 1.0, "test_cosine_accuracy@3": 1.0, "test_cosine_precision@1": 1.0, "test_cosine_precision@3": 0.4, "test_cosine_recall@1": 0.9, "test_cosine_recall@3": 1.0, "test_cosine_ndcg@3": 1.0, "test_cosine_mrr@3": 1.0, "test_cosine_map@5": 1.0, } for key, expected_value in expected_results.items(): assert results[key] == pytest.approx(expected_value, abs=1e-9)
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn import torch.nn.functional as F from ..builder import LOSSES from .utils import weighted_loss @weighted_loss def mse_loss(pred, target): """Warpper of mse loss.""" return F.mse_loss(pred, target, reduction='none') @LOSSES.register_module() class MSELoss(nn.Module): """MSELoss. Args: reduction (str, optional): The method that reduces the loss to a scalar. Options are "none", "mean" and "sum". loss_weight (float, optional): The weight of the loss. Defaults to 1.0 """ def __init__(self, reduction='mean', loss_weight=1.0): super().__init__() self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None): """Forward function of loss. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. weight (torch.Tensor, optional): Weight of the loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. Returns: torch.Tensor: The calculated loss """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss = self.loss_weight * mse_loss( pred, target, weight, reduction=reduction, avg_factor=avg_factor) return loss
import torch.nn as nn import torch.nn.functional as F from ..builder import LOSSES from .utils import weighted_loss @weighted_loss def mse_loss(pred, target): """Warpper of mse loss.""" return F.mse_loss(pred, target, reduction='none') @LOSSES.register_module() class MSELoss(nn.Module): """MSELoss. Args: reduction (str, optional): The method that reduces the loss to a scalar. Options are "none", "mean" and "sum". loss_weight (float, optional): The weight of the loss. Defaults to 1.0 """ def __init__(self, reduction='mean', loss_weight=1.0): super().__init__() self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None): """Forward function of loss. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. weight (torch.Tensor, optional): Weight of the loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. Returns: torch.Tensor: The calculated loss """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss = self.loss_weight * mse_loss( pred, target, weight, reduction=reduction, avg_factor=avg_factor) return loss
from __future__ import annotations import math from pathlib import Path import pytest from tokenizers import Tokenizer from sentence_transformers import SentenceTransformer from sentence_transformers.models.StaticEmbedding import StaticEmbedding try: import model2vec except ImportError: model2vec = None skip_if_no_model2vec = pytest.mark.skipif(model2vec is None, reason="The model2vec library is not installed.") def test_initialization_with_embedding_weights(tokenizer: Tokenizer, embedding_weights) -> None: model = StaticEmbedding(tokenizer, embedding_weights=embedding_weights) assert model.embedding.weight.shape == (30522, 768) def test_initialization_with_embedding_dim(tokenizer: Tokenizer) -> None: model = StaticEmbedding(tokenizer, embedding_dim=768) assert model.embedding.weight.shape == (30522, 768) def test_tokenize(static_embedding_model: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding_model.tokenize(texts) assert "input_ids" in tokens assert "offsets" in tokens def test_forward(static_embedding_model: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding_model.tokenize(texts) output = static_embedding_model(tokens) assert "sentence_embedding" in output def test_save_and_load(tmp_path: Path, static_embedding_model: StaticEmbedding) -> None: save_dir = tmp_path / "model" save_dir.mkdir() static_embedding_model.save(str(save_dir)) loaded_model = StaticEmbedding.load(str(save_dir)) assert loaded_model.embedding.weight.shape == static_embedding_model.embedding.weight.shape @skip_if_no_model2vec() def test_from_distillation() -> None: model = StaticEmbedding.from_distillation("sentence-transformers-testing/stsb-bert-tiny-safetensors", pca_dims=32) # The shape has been 29528 for <0.5.0, 29525 for 0.5.0, and 29524 for >=0.6.0, so let's make a safer test # that checks the first dimension is close to 29525 and the second dimension is 32. assert abs(model.embedding.weight.shape[0] - 29525) < 5 assert model.embedding.weight.shape[1] == 32 @skip_if_no_model2vec() def test_from_model2vec() -> None: model = StaticEmbedding.from_model2vec("minishlab/M2V_base_output") assert model.embedding.weight.shape == (29528, 256) def test_loading_model2vec() -> None: model = SentenceTransformer("minishlab/potion-base-8M") assert model.get_sentence_embedding_dimension() == 256 assert model.max_seq_length == math.inf test_sentences = ["It's so sunny outside!", "The sun is shining outside!"] embeddings = model.encode(test_sentences) assert embeddings.shape == (2, 256) similarity = model.similarity(embeddings[0], embeddings[1]) assert similarity.item() > 0.7
from __future__ import annotations import math from pathlib import Path import numpy as np import pytest from packaging.version import Version, parse from tokenizers import Tokenizer from sentence_transformers import SentenceTransformer from sentence_transformers.models.StaticEmbedding import StaticEmbedding try: import model2vec from model2vec import __version__ as M2V_VERSION except ImportError: model2vec = None skip_if_no_model2vec = pytest.mark.skipif(model2vec is None, reason="The model2vec library is not installed.") @pytest.fixture(scope="session") def tokenizer() -> Tokenizer: return Tokenizer.from_pretrained("bert-base-uncased") @pytest.fixture def embedding_weights(): return np.random.rand(30522, 768) @pytest.fixture def static_embedding(tokenizer: Tokenizer, embedding_weights) -> StaticEmbedding: return StaticEmbedding(tokenizer, embedding_weights=embedding_weights) def test_initialization_with_embedding_weights(tokenizer: Tokenizer, embedding_weights) -> None: model = StaticEmbedding(tokenizer, embedding_weights=embedding_weights) assert model.embedding.weight.shape == (30522, 768) def test_initialization_with_embedding_dim(tokenizer: Tokenizer) -> None: model = StaticEmbedding(tokenizer, embedding_dim=768) assert model.embedding.weight.shape == (30522, 768) def test_tokenize(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) assert "input_ids" in tokens assert "offsets" in tokens def test_forward(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) output = static_embedding(tokens) assert "sentence_embedding" in output def test_save_and_load(tmp_path: Path, static_embedding: StaticEmbedding) -> None: save_dir = tmp_path / "model" save_dir.mkdir() static_embedding.save(str(save_dir)) loaded_model = StaticEmbedding.load(str(save_dir)) assert loaded_model.embedding.weight.shape == static_embedding.embedding.weight.shape @skip_if_no_model2vec() def test_from_distillation() -> None: model = StaticEmbedding.from_distillation("sentence-transformers-testing/stsb-bert-tiny-safetensors", pca_dims=32) expected_shape = (29525 if parse(M2V_VERSION) >= Version("0.5.0") else 29528, 32) assert model.embedding.weight.shape == expected_shape @skip_if_no_model2vec() def test_from_model2vec() -> None: model = StaticEmbedding.from_model2vec("minishlab/M2V_base_output") assert model.embedding.weight.shape == (29528, 256) def test_loading_model2vec() -> None: model = SentenceTransformer("minishlab/potion-base-8M") assert model.get_sentence_embedding_dimension() == 256 assert model.max_seq_length == math.inf test_sentences = ["It's so sunny outside!", "The sun is shining outside!"] embeddings = model.encode(test_sentences) assert embeddings.shape == (2, 256) similarity = model.similarity(embeddings[0], embeddings[1]) assert similarity.item() > 0.7
import datasets _DESCRIPTION = """\ """ _URL = "https://www.gutenberg.org/files/2554/2554-h/2554-h.htm" _DATA_URL = "https://raw.githubusercontent.com/patrickvonplaten/datasets/master/crime_and_punishment.txt" class CrimeAndPunish(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # datasets.features.FeatureConnectors features=datasets.Features( { "line": datasets.Value("string"), } ), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, homepage=_URL, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data = dl_manager.download_and_extract(_DATA_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"data_file": data, "split": "train"}, ), ] def _generate_examples(self, data_file, split): with open(data_file, "rb") as f: id_counter = 0 add_text = False crime_and_punishment_occ_counter = 0 for line in f: line = line.decode("UTF-8") if "CRIME AND PUNISHMENT" in line: crime_and_punishment_occ_counter += 1 add_text = crime_and_punishment_occ_counter == 3 if "End of Project" in line: add_text = False if add_text is True: result = {"line": line} id_counter += 1 yield id_counter, result
import datasets _DESCRIPTION = """\ """ _URL = "https://www.gutenberg.org/files/2554/2554-h/2554-h.htm" _DATA_URL = "https://raw.githubusercontent.com/patrickvonplaten/datasets/master/crime_and_punishment.txt" class CrimeAndPunishConfig(datasets.BuilderConfig): """BuilderConfig for Crime and Punish.""" def __init__(self, data_url, **kwargs): """BuilderConfig for BlogAuthorship Args: data_url: `string`, url to the dataset (word or raw level) **kwargs: keyword arguments forwarded to super. """ super(CrimeAndPunishConfig, self).__init__( version=datasets.Version( "1.0.0", ), **kwargs, ) self.data_url = data_url class CrimeAndPunish(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.1.0") BUILDER_CONFIGS = [ CrimeAndPunishConfig( name="crime-and-punish", data_url=_DATA_URL, description="word level dataset. No processing is needed other than replacing newlines with <eos> tokens.", ), ] def _info(self): return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # datasets.features.FeatureConnectors features=datasets.Features( { "line": datasets.Value("string"), } ), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, homepage=_URL, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" if self.config.name == "crime-and-punish": data = dl_manager.download_and_extract(self.config.data_url) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"data_file": data, "split": "train"}, ), ] else: raise ValueError(f"{self.config.name} does not exist") def _generate_examples(self, data_file, split): with open(data_file, "rb") as f: id_counter = 0 add_text = False crime_and_punishment_occ_counter = 0 for line in f: line = line.decode("UTF-8") if "CRIME AND PUNISHMENT" in line: crime_and_punishment_occ_counter += 1 add_text = crime_and_punishment_occ_counter == 3 if "End of Project" in line: add_text = False if add_text is True: result = {"line": line} id_counter += 1 yield id_counter, result
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Dict, Iterable, Optional import torch from jina import DocumentArray, Executor, requests from sentence_transformers import SentenceTransformer class TransformerSentenceEncoder(Executor): """ Encode the Document text into embedding. """ def __init__( self, model_name: str = 'all-MiniLM-L6-v2', traversal_paths: Iterable[str] = ('r',), batch_size: int = 32, device: str = 'cpu', *args, **kwargs ): """ :param model_name: The name of the sentence transformer to be used :param device: Torch device to put the model on (e.g. 'cpu', 'cuda', 'cuda:1') :param traversal_paths: Default traversal paths :param batch_size: Batch size to be used in the encoder model """ super().__init__(*args, **kwargs) self.batch_size = batch_size self.traversal_paths = traversal_paths self.model = SentenceTransformer(model_name, device=device) @requests def encode( self, docs: Optional[DocumentArray] = None, parameters: Dict = {}, **kwargs ): """ Encode all docs with text and store the encodings in the ``embedding`` attribute of the docs. :param docs: Documents to send to the encoder. They need to have the ``text`` attribute get an embedding. :param parameters: Any additional parameters for the `encode` function. """ if docs is None: return for batch in docs.batch( traversal_paths=parameters.get('traversal_paths', self.traversal_paths), batch_size=parameters.get('batch_size', self.batch_size), require_attr='text', ): texts = batch.get_attributes('text') with torch.inference_mode(): embeddings = self.model.encode(texts) for doc, embedding in zip(batch, embeddings): doc.embedding = embedding
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Dict, Iterable, Optional import torch from jina import DocumentArray, Executor, requests from jina_commons.batching import get_docs_batch_generator from sentence_transformers import SentenceTransformer class TransformerSentenceEncoder(Executor): """ Encode the Document text into embedding. """ def __init__( self, model_name: str = 'all-MiniLM-L6-v2', traversal_paths: Iterable[str] = ('r',), batch_size: int = 32, device: str = 'cpu', *args, **kwargs ): """ :param model_name: The name of the sentence transformer to be used :param device: Torch device to put the model on (e.g. 'cpu', 'cuda', 'cuda:1') :param traversal_paths: Default traversal paths :param batch_size: Batch size to be used in the encoder model """ super().__init__(*args, **kwargs) self.batch_size = batch_size self.traversal_paths = traversal_paths self.model = SentenceTransformer(model_name, device=device) @requests def encode( self, docs: Optional[DocumentArray] = None, parameters: Dict = {}, **kwargs ): """ Encode all docs with text and store the encodings in the ``embedding`` attribute of the docs. :param docs: Documents to send to the encoder. They need to have the ``text`` attribute get an embedding. :param parameters: Any additional parameters for the `encode` function. """ for batch in get_docs_batch_generator( docs, traversal_path=parameters.get('traversal_paths', self.traversal_paths), batch_size=parameters.get('batch_size', self.batch_size), needs_attr='text', ): texts = batch.get_attributes('text') with torch.no_grad(): embeddings = self.model.encode(texts) for doc, embedding in zip(batch, embeddings): doc.embedding = embedding
# Copyright (c) OpenMMLab. All rights reserved. from .base_det_dataset import BaseDetDataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_panoptic import CocoPanopticDataset from .crowdhuman import CrowdHumanDataset from .dataset_wrappers import MultiImageMixDataset from .deepfashion import DeepFashionDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .objects365 import Objects365V1Dataset, Objects365V2Dataset from .openimages import OpenImagesChallengeDataset, OpenImagesDataset from .samplers import (AspectRatioBatchSampler, ClassAwareSampler, GroupMultiSourceSampler, MultiSourceSampler) from .utils import get_loading_pipeline from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset __all__ = [ 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'WIDERFaceDataset', 'get_loading_pipeline', 'CocoPanopticDataset', 'MultiImageMixDataset', 'OpenImagesDataset', 'OpenImagesChallengeDataset', 'AspectRatioBatchSampler', 'ClassAwareSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler', 'BaseDetDataset', 'CrowdHumanDataset', 'Objects365V1Dataset', 'Objects365V2Dataset' ]
# Copyright (c) OpenMMLab. All rights reserved. from .base_det_dataset import BaseDetDataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_panoptic import CocoPanopticDataset from .crowdhuman import CrowdHumanDataset from .dataset_wrappers import MultiImageMixDataset from .deepfashion import DeepFashionDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .openimages import OpenImagesChallengeDataset, OpenImagesDataset from .samplers import (AspectRatioBatchSampler, ClassAwareSampler, GroupMultiSourceSampler, MultiSourceSampler) from .utils import get_loading_pipeline from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset __all__ = [ 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'WIDERFaceDataset', 'get_loading_pipeline', 'CocoPanopticDataset', 'MultiImageMixDataset', 'OpenImagesDataset', 'OpenImagesChallengeDataset', 'AspectRatioBatchSampler', 'ClassAwareSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler', 'BaseDetDataset', 'CrowdHumanDataset' ]
import os from pathlib import Path from torchaudio.datasets import cmuarctic from torchaudio_unittest.common_utils import ( get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase, ) def get_mock_dataset(root_dir): """ root_dir: directory to the mocked dataset """ mocked_data = [] sample_rate = 16000 transcript = "This is a test transcript." base_dir = os.path.join(root_dir, "ARCTIC", "cmu_us_aew_arctic") txt_dir = os.path.join(base_dir, "etc") os.makedirs(txt_dir, exist_ok=True) txt_file = os.path.join(txt_dir, "txt.done.data") audio_dir = os.path.join(base_dir, "wav") os.makedirs(audio_dir, exist_ok=True) seed = 42 with open(txt_file, "w") as txt: for c in ["a", "b"]: for i in range(5): utterance_id = f"arctic_{c}{i:04d}" path = os.path.join(audio_dir, f"{utterance_id}.wav") data = get_whitenoise( sample_rate=sample_rate, duration=3, n_channels=1, dtype="int16", seed=seed, ) save_wav(path, data, sample_rate) sample = ( normalize_wav(data), sample_rate, transcript, utterance_id.split("_")[1], ) mocked_data.append(sample) txt.write(f'( {utterance_id} "{transcript}" )\n') seed += 1 return mocked_data class TestCMUARCTIC(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None samples = [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.samples = get_mock_dataset(cls.root_dir) def _test_cmuarctic(self, dataset): n_ite = 0 for i, (waveform, sample_rate, transcript, utterance_id) in enumerate(dataset): expected_sample = self.samples[i] assert sample_rate == expected_sample[1] assert transcript == expected_sample[2] assert utterance_id == expected_sample[3] self.assertEqual(expected_sample[0], waveform, atol=5e-5, rtol=1e-8) n_ite += 1 assert n_ite == len(self.samples) def test_cmuarctic_str(self): dataset = cmuarctic.CMUARCTIC(self.root_dir) self._test_cmuarctic(dataset) def test_cmuarctic_path(self): dataset = cmuarctic.CMUARCTIC(Path(self.root_dir)) self._test_cmuarctic(dataset)
import os from pathlib import Path from torchaudio.datasets import cmuarctic from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, get_whitenoise, save_wav, normalize_wav, ) def get_mock_dataset(root_dir): """ root_dir: directory to the mocked dataset """ mocked_data = [] sample_rate = 16000 transcript = "This is a test transcript." base_dir = os.path.join(root_dir, "ARCTIC", "cmu_us_aew_arctic") txt_dir = os.path.join(base_dir, "etc") os.makedirs(txt_dir, exist_ok=True) txt_file = os.path.join(txt_dir, "txt.done.data") audio_dir = os.path.join(base_dir, "wav") os.makedirs(audio_dir, exist_ok=True) seed = 42 with open(txt_file, "w") as txt: for c in ["a", "b"]: for i in range(5): utterance_id = f"arctic_{c}{i:04d}" path = os.path.join(audio_dir, f"{utterance_id}.wav") data = get_whitenoise( sample_rate=sample_rate, duration=3, n_channels=1, dtype="int16", seed=seed, ) save_wav(path, data, sample_rate) sample = ( normalize_wav(data), sample_rate, transcript, utterance_id.split("_")[1], ) mocked_data.append(sample) txt.write(f'( {utterance_id} "{transcript}" )\n') seed += 1 return mocked_data class TestCMUARCTIC(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None samples = [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.samples = get_mock_dataset(cls.root_dir) def _test_cmuarctic(self, dataset): n_ite = 0 for i, (waveform, sample_rate, transcript, utterance_id) in enumerate(dataset): expected_sample = self.samples[i] assert sample_rate == expected_sample[1] assert transcript == expected_sample[2] assert utterance_id == expected_sample[3] self.assertEqual(expected_sample[0], waveform, atol=5e-5, rtol=1e-8) n_ite += 1 assert n_ite == len(self.samples) def test_cmuarctic_str(self): dataset = cmuarctic.CMUARCTIC(self.root_dir) self._test_cmuarctic(dataset) def test_cmuarctic_path(self): dataset = cmuarctic.CMUARCTIC(Path(self.root_dir)) self._test_cmuarctic(dataset)
from __future__ import annotations from .model_card import SparseEncoderModelCardData from .SparseEncoder import SparseEncoder from .trainer import SparseEncoderTrainer from .training_args import SparseEncoderTrainingArguments __all__ = [ "SparseEncoder", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", "SparseEncoderModelCardData", ]
from __future__ import annotations from .model_card import SparseEncoderModelCardData from .SparseEncoder import SparseEncoder from .trainer import SparseEncoderTrainer from .training_args import SparseEncoderTrainingArguments __all__ = [ "SparseEncoder", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", "SparseEncoderModelCardData", ] # TODO : Add tests for all the components
"""Script to check if python modules can be imported.""" import random import string import sys import traceback from importlib.machinery import SourceFileLoader if __name__ == "__main__": files = sys.argv[1:] has_failure = False for file in files: try: module_name = "".join( random.choice(string.ascii_letters) for _ in range(20) # noqa: S311 ) SourceFileLoader(module_name, file).load_module() except Exception: has_failure = True print(file) # noqa: T201 traceback.print_exc() print() # noqa: T201 sys.exit(1 if has_failure else 0)
import random import string import sys import traceback from importlib.machinery import SourceFileLoader if __name__ == "__main__": files = sys.argv[1:] has_failure = False for file in files: try: module_name = "".join( random.choice(string.ascii_letters) for _ in range(20) # noqa: S311 ) SourceFileLoader(module_name, file).load_module() except Exception: has_failure = True print(file) # noqa: T201 traceback.print_exc() print() # noqa: T201 sys.exit(1 if has_failure else 0)
import importlib.util import warnings from functools import wraps from typing import Optional def is_module_available(*modules: str) -> bool: r"""Returns if a top-level module with :attr:`name` exists *without** importing it. This is generally safer than try-catch block around a `import X`. It avoids third party libraries breaking assumptions of some of our tests, e.g., setting multiprocessing start method when imported (see librosa/#747, torchvision/#544). """ return all(importlib.util.find_spec(m) is not None for m in modules) def requires_module(*modules: str): """Decorate function to give error message if invoked without required optional modules. This decorator is to give better error message to users rather than raising ``NameError: name 'module' is not defined`` at random places. """ missing = [m for m in modules if not is_module_available(m)] if not missing: # fall through. If all the modules are available, no need to decorate def decorator(func): return func else: req = f"module: {missing[0]}" if len(missing) == 1 else f"modules: {missing}" def decorator(func): @wraps(func) def wrapped(*args, **kwargs): raise RuntimeError(f"{func.__module__}.{func.__name__} requires {req}") return wrapped return decorator def deprecated(direction: str, version: Optional[str] = None, remove: bool = False): """Decorator to add deprecation message Args: direction (str): Migration steps to be given to users. version (str or int): The version when the object will be removed """ def decorator(func): @wraps(func) def wrapped(*args, **kwargs): message = f"{func.__module__}.{func.__name__} has been deprecated. {direction}" if remove: message += f' It will be removed from {"future" if version is None else version} release. ' warnings.warn(message, stacklevel=2) return func(*args, **kwargs) return wrapped return decorator def fail_with_message(message): """Generate decorator to give users message about missing TorchAudio extension.""" def decorator(func): @wraps(func) def wrapped(*args, **kwargs): raise RuntimeError(f"{func.__module__}.{func.__name__} {message}") return wrapped return decorator def no_op(func): """Op-op decorator. Used in place of fail_with_message when a functionality that requires extension works fine.""" return func
import importlib.util import warnings from functools import wraps from typing import Optional def is_module_available(*modules: str) -> bool: r"""Returns if a top-level module with :attr:`name` exists *without** importing it. This is generally safer than try-catch block around a `import X`. It avoids third party libraries breaking assumptions of some of our tests, e.g., setting multiprocessing start method when imported (see librosa/#747, torchvision/#544). """ return all(importlib.util.find_spec(m) is not None for m in modules) def requires_module(*modules: str): """Decorate function to give error message if invoked without required optional modules. This decorator is to give better error message to users rather than raising ``NameError: name 'module' is not defined`` at random places. """ missing = [m for m in modules if not is_module_available(m)] if not missing: # fall through. If all the modules are available, no need to decorate def decorator(func): return func else: req = f"module: {missing[0]}" if len(missing) == 1 else f"modules: {missing}" def decorator(func): @wraps(func) def wrapped(*args, **kwargs): raise RuntimeError(f"{func.__module__}.{func.__name__} requires {req}") return wrapped return decorator def deprecated(direction: str, version: Optional[str] = None): """Decorator to add deprecation message Args: direction (str): Migration steps to be given to users. version (str or int): The version when the object will be removed """ def decorator(func): @wraps(func) def wrapped(*args, **kwargs): message = ( f"{func.__module__}.{func.__name__} has been deprecated " f'and will be removed from {"future" if version is None else version} release. ' f"{direction}" ) warnings.warn(message, stacklevel=2) return func(*args, **kwargs) return wrapped return decorator def fail_with_message(message): """Generate decorator to give users message about missing TorchAudio extension.""" def decorator(func): @wraps(func) def wrapped(*args, **kwargs): raise RuntimeError(f"{func.__module__}.{func.__name__} {message}") return wrapped return decorator def no_op(func): """Op-op decorator. Used in place of fail_with_message when a functionality that requires extension works fine.""" return func
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.utils.sequence_utils import pad_sequences as pad_sequences
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.utils.sequence_utils import pad_sequences
# Copyright (c) OpenMMLab. All rights reserved. from typing import Union import torch from torch import Tensor from mmdet.registry import TASK_UTILS from mmdet.structures.bbox import BaseBoxes, HorizontalBoxes, get_box_tensor from .base_bbox_coder import BaseBBoxCoder @TASK_UTILS.register_module() class YOLOBBoxCoder(BaseBBoxCoder): """YOLO BBox coder. Following `YOLO <https://arxiv.org/abs/1506.02640>`_, this coder divide image into grids, and encode bbox (x1, y1, x2, y2) into (cx, cy, dw, dh). cx, cy in [0., 1.], denotes relative center position w.r.t the center of bboxes. dw, dh are the same as :obj:`DeltaXYWHBBoxCoder`. Args: eps (float): Min value of cx, cy when encoding. """ def __init__(self, eps: float = 1e-6, **kwargs): super().__init__(**kwargs) self.eps = eps def encode(self, bboxes: Union[Tensor, BaseBoxes], gt_bboxes: Union[Tensor, BaseBoxes], stride: Union[Tensor, int]) -> Tensor: """Get box regression transformation deltas that can be used to transform the ``bboxes`` into the ``gt_bboxes``. Args: bboxes (torch.Tensor or :obj:`BaseBoxes`): Source boxes, e.g., anchors. gt_bboxes (torch.Tensor or :obj:`BaseBoxes`): Target of the transformation, e.g., ground-truth boxes. stride (torch.Tensor | int): Stride of bboxes. Returns: torch.Tensor: Box transformation deltas """ bboxes = get_box_tensor(bboxes) gt_bboxes = get_box_tensor(gt_bboxes) assert bboxes.size(0) == gt_bboxes.size(0) assert bboxes.size(-1) == gt_bboxes.size(-1) == 4 x_center_gt = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) * 0.5 y_center_gt = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) * 0.5 w_gt = gt_bboxes[..., 2] - gt_bboxes[..., 0] h_gt = gt_bboxes[..., 3] - gt_bboxes[..., 1] x_center = (bboxes[..., 0] + bboxes[..., 2]) * 0.5 y_center = (bboxes[..., 1] + bboxes[..., 3]) * 0.5 w = bboxes[..., 2] - bboxes[..., 0] h = bboxes[..., 3] - bboxes[..., 1] w_target = torch.log((w_gt / w).clamp(min=self.eps)) h_target = torch.log((h_gt / h).clamp(min=self.eps)) x_center_target = ((x_center_gt - x_center) / stride + 0.5).clamp( self.eps, 1 - self.eps) y_center_target = ((y_center_gt - y_center) / stride + 0.5).clamp( self.eps, 1 - self.eps) encoded_bboxes = torch.stack( [x_center_target, y_center_target, w_target, h_target], dim=-1) return encoded_bboxes def decode(self, bboxes: Union[Tensor, BaseBoxes], pred_bboxes: Tensor, stride: Union[Tensor, int]) -> Union[Tensor, BaseBoxes]: """Apply transformation `pred_bboxes` to `boxes`. Args: boxes (torch.Tensor or :obj:`BaseBoxes`): Basic boxes, e.g. anchors. pred_bboxes (torch.Tensor): Encoded boxes with shape stride (torch.Tensor | int): Strides of bboxes. Returns: Union[torch.Tensor, :obj:`BaseBoxes`]: Decoded boxes. """ bboxes = get_box_tensor(bboxes) assert pred_bboxes.size(-1) == bboxes.size(-1) == 4 xy_centers = (bboxes[..., :2] + bboxes[..., 2:]) * 0.5 + ( pred_bboxes[..., :2] - 0.5) * stride whs = (bboxes[..., 2:] - bboxes[..., :2]) * 0.5 * pred_bboxes[..., 2:].exp() decoded_bboxes = torch.stack( (xy_centers[..., 0] - whs[..., 0], xy_centers[..., 1] - whs[..., 1], xy_centers[..., 0] + whs[..., 0], xy_centers[..., 1] + whs[..., 1]), dim=-1) if self.use_box_type: decoded_bboxes = HorizontalBoxes(decoded_bboxes) return decoded_bboxes
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.registry import TASK_UTILS from mmdet.structures.bbox import HorizontalBoxes, get_box_tensor from .base_bbox_coder import BaseBBoxCoder @TASK_UTILS.register_module() class YOLOBBoxCoder(BaseBBoxCoder): """YOLO BBox coder. Following `YOLO <https://arxiv.org/abs/1506.02640>`_, this coder divide image into grids, and encode bbox (x1, y1, x2, y2) into (cx, cy, dw, dh). cx, cy in [0., 1.], denotes relative center position w.r.t the center of bboxes. dw, dh are the same as :obj:`DeltaXYWHBBoxCoder`. Args: eps (float): Min value of cx, cy when encoding. """ def __init__(self, eps=1e-6, **kwargs): super().__init__(**kwargs) self.eps = eps def encode(self, bboxes, gt_bboxes, stride): """Get box regression transformation deltas that can be used to transform the ``bboxes`` into the ``gt_bboxes``. Args: bboxes (torch.Tensor or :obj:`BaseBoxes`): Source boxes, e.g., anchors. gt_bboxes (torch.Tensor or :obj:`BaseBoxes`): Target of the transformation, e.g., ground-truth boxes. stride (torch.Tensor | int): Stride of bboxes. Returns: torch.Tensor: Box transformation deltas """ bboxes = get_box_tensor(bboxes) gt_bboxes = get_box_tensor(gt_bboxes) assert bboxes.size(0) == gt_bboxes.size(0) assert bboxes.size(-1) == gt_bboxes.size(-1) == 4 x_center_gt = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) * 0.5 y_center_gt = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) * 0.5 w_gt = gt_bboxes[..., 2] - gt_bboxes[..., 0] h_gt = gt_bboxes[..., 3] - gt_bboxes[..., 1] x_center = (bboxes[..., 0] + bboxes[..., 2]) * 0.5 y_center = (bboxes[..., 1] + bboxes[..., 3]) * 0.5 w = bboxes[..., 2] - bboxes[..., 0] h = bboxes[..., 3] - bboxes[..., 1] w_target = torch.log((w_gt / w).clamp(min=self.eps)) h_target = torch.log((h_gt / h).clamp(min=self.eps)) x_center_target = ((x_center_gt - x_center) / stride + 0.5).clamp( self.eps, 1 - self.eps) y_center_target = ((y_center_gt - y_center) / stride + 0.5).clamp( self.eps, 1 - self.eps) encoded_bboxes = torch.stack( [x_center_target, y_center_target, w_target, h_target], dim=-1) return encoded_bboxes def decode(self, bboxes, pred_bboxes, stride): """Apply transformation `pred_bboxes` to `boxes`. Args: boxes (torch.Tensor or :obj:`BaseBoxes`): Basic boxes, e.g. anchors. pred_bboxes (torch.Tensor): Encoded boxes with shape stride (torch.Tensor | int): Strides of bboxes. Returns: Union[torch.Tensor, :obj:`BaseBoxes`]: Decoded boxes. """ bboxes = get_box_tensor(bboxes) assert pred_bboxes.size(-1) == bboxes.size(-1) == 4 xy_centers = (bboxes[..., :2] + bboxes[..., 2:]) * 0.5 + ( pred_bboxes[..., :2] - 0.5) * stride whs = (bboxes[..., 2:] - bboxes[..., :2]) * 0.5 * pred_bboxes[..., 2:].exp() decoded_bboxes = torch.stack( (xy_centers[..., 0] - whs[..., 0], xy_centers[..., 1] - whs[..., 1], xy_centers[..., 0] + whs[..., 0], xy_centers[..., 1] + whs[..., 1]), dim=-1) if self.use_box_type: decoded_bboxes = HorizontalBoxes(decoded_bboxes) return decoded_bboxes
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 20 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/advanced_tutorials/registry.html. """ from .build_functions import (build_model_from_cfg, build_runner_from_cfg, build_scheduler_from_cfg) from .registry import Registry # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner', build_func=build_runner_from_cfg) # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of loops like `EpochBasedTrainLoop` LOOPS = Registry('loop') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model', build_model_from_cfg) # mangage all kinds of model wrappers like 'MMDistributedDataParallel' MODEL_WRAPPERS = Registry('model_wrapper') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage optimizer wrapper OPTIM_WRAPPERS = Registry('optim_wrapper') # manage constructors that customize the optimization hyperparameters. OPTIM_WRAPPER_CONSTRUCTORS = Registry('optimizer wrapper constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry( 'parameter scheduler', build_func=build_scheduler_from_cfg) # manage all kinds of metrics METRICS = Registry('metric') # manage evaluator EVALUATOR = Registry('evaluator') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util') # manage visualizer VISUALIZERS = Registry('visualizer') # manage visualizer backend VISBACKENDS = Registry('vis_backend') # manage logprocessor LOG_PROCESSORS = Registry('log_processor') # manage inferencer INFERENCERS = Registry('inferencer') # manage function FUNCTIONS = Registry('function')
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 20 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/advanced_tutorials/registry.html. """ from .build_functions import (build_model_from_cfg, build_runner_from_cfg, build_scheduler_from_cfg) from .registry import Registry # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner', build_func=build_runner_from_cfg) # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of loops like `EpochBasedTrainLoop` LOOPS = Registry('loop') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model', build_model_from_cfg) # mangage all kinds of model wrappers like 'MMDistributedDataParallel' MODEL_WRAPPERS = Registry('model_wrapper') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage optimizer wrapper OPTIM_WRAPPERS = Registry('optim_wrapper') # manage constructors that customize the optimization hyperparameters. OPTIM_WRAPPER_CONSTRUCTORS = Registry('optimizer wrapper constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry( 'parameter scheduler', build_func=build_scheduler_from_cfg) # manage all kinds of metrics METRICS = Registry('metric') # manage evaluator EVALUATOR = Registry('evaluator') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util') # manage visualizer VISUALIZERS = Registry('visualizer') # manage visualizer backend VISBACKENDS = Registry('vis_backend') # manage logprocessor LOG_PROCESSORS = Registry('log_processor') # manage inferencer INFERENCERS = Registry('inferencer')
from unittest.mock import MagicMock, patch import pytest from llama_index.core.llms import ChatMessage, MessageRole from llama_index.llms.huggingface import HuggingFaceInferenceAPI STUB_MODEL_NAME = "placeholder_model" @pytest.fixture(name="hf_inference_api") def fixture_hf_inference_api() -> HuggingFaceInferenceAPI: with patch.dict("sys.modules", huggingface_hub=MagicMock()): return HuggingFaceInferenceAPI(model_name=STUB_MODEL_NAME) class TestHuggingFaceInferenceAPI: def test_class_name(self, hf_inference_api: HuggingFaceInferenceAPI) -> None: assert HuggingFaceInferenceAPI.class_name() == HuggingFaceInferenceAPI.__name__ assert hf_inference_api.class_name() == HuggingFaceInferenceAPI.__name__ def test_instantiation(self) -> None: mock_hub = MagicMock() with patch.dict("sys.modules", huggingface_hub=mock_hub): llm = HuggingFaceInferenceAPI(model_name=STUB_MODEL_NAME) assert llm.model_name == STUB_MODEL_NAME # Check can be both a large language model and an embedding model assert isinstance(llm, HuggingFaceInferenceAPI) # Confirm Clients are instantiated correctly # mock_hub.InferenceClient.assert_called_once_with( # model=STUB_MODEL_NAME, token=None, timeout=None, headers=None, cookies=None # ) # mock_hub.AsyncInferenceClient.assert_called_once_with( # model=STUB_MODEL_NAME, token=None, timeout=None, headers=None, cookies=None # ) def test_chat(self, hf_inference_api: HuggingFaceInferenceAPI) -> None: messages = [ ChatMessage(content="Which movie is the best?"), ChatMessage(content="It's Die Hard for sure.", role=MessageRole.ASSISTANT), ChatMessage(content="Can you explain why?"), ] generated_response = ( " It's based on the book of the same name by James Fenimore Cooper." ) conversational_return = { "choices": [ { "message": { "content": generated_response, } } ] } with patch.object( hf_inference_api._sync_client, "chat_completion", return_value=conversational_return, ) as mock_conversational: response = hf_inference_api.chat(messages=messages) assert response.message.role == MessageRole.ASSISTANT assert response.message.content == generated_response mock_conversational.assert_called_once_with( messages=[{"role": m.role.value, "content": m.content} for m in messages], model=STUB_MODEL_NAME, ) def test_chat_text_generation( self, hf_inference_api: HuggingFaceInferenceAPI ) -> None: mock_message_to_prompt = MagicMock( return_value="System: You are an expert movie reviewer\nUser: Which movie is the best?\nAssistant:" ) hf_inference_api.task = "text-generation" hf_inference_api.messages_to_prompt = mock_message_to_prompt messages = [ ChatMessage( role=MessageRole.SYSTEM, content="You are an expert movie reviewer" ), ChatMessage(role=MessageRole.USER, content="Which movie is the best?"), ] conversational_return = "It's Die Hard for sure." with patch.object( hf_inference_api._sync_client, "text_generation", return_value=conversational_return, ) as mock_complete: response = hf_inference_api.chat(messages=messages) hf_inference_api.messages_to_prompt.assert_called_once_with(messages) assert response.message.role == MessageRole.ASSISTANT assert response.message.content == conversational_return mock_complete.assert_called_once_with( "System: You are an expert movie reviewer\nUser: Which movie is the best?\nAssistant:", max_new_tokens=256, ) def test_complete(self, hf_inference_api: HuggingFaceInferenceAPI) -> None: prompt = "My favorite color is " generated_text = '"green" and I love to paint. I have been painting for 30 years and have been' with patch.object( hf_inference_api._sync_client, "text_generation", return_value=generated_text, ) as mock_text_generation: response = hf_inference_api.complete(prompt) mock_text_generation.assert_called_once_with(prompt, max_new_tokens=256) assert response.text == generated_text
from unittest.mock import MagicMock, patch import pytest from llama_index.core.llms import ChatMessage, MessageRole from llama_index.llms.huggingface import HuggingFaceInferenceAPI STUB_MODEL_NAME = "placeholder_model" @pytest.fixture(name="hf_inference_api") def fixture_hf_inference_api() -> HuggingFaceInferenceAPI: with patch.dict("sys.modules", huggingface_hub=MagicMock()): return HuggingFaceInferenceAPI(model_name=STUB_MODEL_NAME) class TestHuggingFaceInferenceAPI: def test_class_name(self, hf_inference_api: HuggingFaceInferenceAPI) -> None: assert HuggingFaceInferenceAPI.class_name() == HuggingFaceInferenceAPI.__name__ assert hf_inference_api.class_name() == HuggingFaceInferenceAPI.__name__ def test_instantiation(self) -> None: mock_hub = MagicMock() with patch.dict("sys.modules", huggingface_hub=mock_hub): llm = HuggingFaceInferenceAPI(model_name=STUB_MODEL_NAME) assert llm.model_name == STUB_MODEL_NAME # Check can be both a large language model and an embedding model assert isinstance(llm, HuggingFaceInferenceAPI) # Confirm Clients are instantiated correctly # mock_hub.InferenceClient.assert_called_once_with( # model=STUB_MODEL_NAME, token=None, timeout=None, headers=None, cookies=None # ) # mock_hub.AsyncInferenceClient.assert_called_once_with( # model=STUB_MODEL_NAME, token=None, timeout=None, headers=None, cookies=None # ) def test_chat(self, hf_inference_api: HuggingFaceInferenceAPI) -> None: messages = [ ChatMessage(content="Which movie is the best?"), ChatMessage(content="It's Die Hard for sure.", role=MessageRole.ASSISTANT), ChatMessage(content="Can you explain why?"), ] generated_response = ( " It's based on the book of the same name by James Fenimore Cooper." ) conversational_return = { "generated_text": generated_response, "conversation": { "generated_responses": ["It's Die Hard for sure.", generated_response], "past_user_inputs": [ "Which movie is the best?", "Can you explain why?", ], }, } with patch.object( hf_inference_api._sync_client, "conversational", return_value=conversational_return, ) as mock_conversational: response = hf_inference_api.chat(messages=messages) assert response.message.role == MessageRole.ASSISTANT assert response.message.content == generated_response mock_conversational.assert_called_once_with( text="Can you explain why?", past_user_inputs=["Which movie is the best?"], generated_responses=["It's Die Hard for sure."], ) def test_chat_text_generation( self, hf_inference_api: HuggingFaceInferenceAPI ) -> None: mock_message_to_prompt = MagicMock( return_value="System: You are an expert movie reviewer\nUser: Which movie is the best?\nAssistant:" ) hf_inference_api.task = "text-generation" hf_inference_api.messages_to_prompt = mock_message_to_prompt messages = [ ChatMessage( role=MessageRole.SYSTEM, content="You are an expert movie reviewer" ), ChatMessage(role=MessageRole.USER, content="Which movie is the best?"), ] conversational_return = "It's Die Hard for sure." with patch.object( hf_inference_api._sync_client, "text_generation", return_value=conversational_return, ) as mock_complete: response = hf_inference_api.chat(messages=messages) hf_inference_api.messages_to_prompt.assert_called_once_with(messages) assert response.message.role == MessageRole.ASSISTANT assert response.message.content == conversational_return mock_complete.assert_called_once_with( "System: You are an expert movie reviewer\nUser: Which movie is the best?\nAssistant:", max_new_tokens=256, ) def test_complete(self, hf_inference_api: HuggingFaceInferenceAPI) -> None: prompt = "My favorite color is " generated_text = '"green" and I love to paint. I have been painting for 30 years and have been' with patch.object( hf_inference_api._sync_client, "text_generation", return_value=generated_text, ) as mock_text_generation: response = hf_inference_api.complete(prompt) mock_text_generation.assert_called_once_with(prompt, max_new_tokens=256) assert response.text == generated_text
# Copyright (c) OpenMMLab. All rights reserved. from .default_scope import DefaultScope from .registry import Registry, build_from_cfg from .root import (DATA_SAMPLERS, DATASETS, HOOKS, LOG_PROCESSORS, LOOPS, METRICS, MODEL_WRAPPERS, MODELS, OPTIM_WRAPPER_CONSTRUCTORS, OPTIM_WRAPPERS, OPTIMIZERS, PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS, TRANSFORMS, VISBACKENDS, VISUALIZERS, WEIGHT_INITIALIZERS) from .utils import count_registered_modules, traverse_registry_tree __all__ = [ 'Registry', 'build_from_cfg', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIM_WRAPPER_CONSTRUCTORS', 'TASK_UTILS', 'PARAM_SCHEDULERS', 'METRICS', 'MODEL_WRAPPERS', 'OPTIM_WRAPPERS', 'LOOPS', 'VISBACKENDS', 'VISUALIZERS', 'LOG_PROCESSORS', 'DefaultScope', 'traverse_registry_tree', 'count_registered_modules' ]
# Copyright (c) OpenMMLab. All rights reserved. from .default_scope import DefaultScope from .registry import Registry, build_from_cfg from .root import (DATA_SAMPLERS, DATASETS, HOOKS, LOG_PROCESSORS, LOOPS, METRICS, MODEL_WRAPPERS, MODELS, OPTIMIZER_CONSTRUCTORS, OPTIMIZERS, PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS, TRANSFORMS, VISBACKENDS, VISUALIZERS, WEIGHT_INITIALIZERS) from .utils import count_registered_modules, traverse_registry_tree __all__ = [ 'Registry', 'build_from_cfg', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIMIZER_CONSTRUCTORS', 'TASK_UTILS', 'PARAM_SCHEDULERS', 'METRICS', 'MODEL_WRAPPERS', 'LOOPS', 'VISBACKENDS', 'VISUALIZERS', 'LOG_PROCESSORS', 'DefaultScope', 'traverse_registry_tree', 'count_registered_modules' ]
_base_ = '../mask_rcnn/mask-rcnn_x101-32x4d_fpn_1x_coco.py' model = dict( backbone=dict( norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, plugins=[ dict( cfg=dict(type='ContextBlock', ratio=1. / 4), stages=(False, True, True, True), position='after_conv3') ]))
_base_ = '../mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py' model = dict( backbone=dict( norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, plugins=[ dict( cfg=dict(type='ContextBlock', ratio=1. / 4), stages=(False, True, True, True), position='after_conv3') ]))
# Copyright (c) OpenMMLab. All rights reserved. from .amp_optimizer_wrapper import AmpOptimWrapper from .builder import (OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS, build_optim_wrapper) from .default_constructor import DefaultOptimWrapperConstructor from .optimizer_wrapper import OptimWrapper from .optimizer_wrapper_dict import OptimWrapperDict __all__ = [ 'OPTIM_WRAPPER_CONSTRUCTORS', 'OPTIMIZERS', 'DefaultOptimWrapperConstructor', 'build_optim_wrapper', 'OptimWrapper', 'AmpOptimWrapper', 'OptimWrapperDict' ]
# Copyright (c) OpenMMLab. All rights reserved. from .builder import OPTIMIZER_CONSTRUCTORS, OPTIMIZERS, build_optimizer from .default_constructor import DefaultOptimizerConstructor __all__ = [ 'OPTIMIZER_CONSTRUCTORS', 'OPTIMIZERS', 'DefaultOptimizerConstructor', 'build_optimizer' ]
_base_ = [ '../_base_/models/faster-rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( data_preprocessor=dict( # The mean and std are used in PyCls when training RegNets mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], bgr_to_rgb=False), backbone=dict( _delete_=True, type='RegNet', arch='regnetx_3.2gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_3.2gf')), neck=dict( type='FPN', in_channels=[96, 192, 432, 1008], out_channels=256, num_outs=5)) optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005))
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( data_preprocessor=dict( # The mean and std are used in PyCls when training RegNets mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], bgr_to_rgb=False), backbone=dict( _delete_=True, type='RegNet', arch='regnetx_3.2gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_3.2gf')), neck=dict( type='FPN', in_channels=[96, 192, 432, 1008], out_channels=256, num_outs=5)) optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005))
import json from pathlib import Path import yaml from llama_index.core.tools.tool_spec.base import BaseToolSpec from llama_index.tools.openapi import OpenAPIToolSpec def test_class(): names_of_base_classes = [b.__name__ for b in OpenAPIToolSpec.__mro__] assert BaseToolSpec.__name__ in names_of_base_classes def test_opid_filter(): openapi_spec = load_example_spec() llamaindex_tool_spec = OpenAPIToolSpec( spec=openapi_spec, operation_id_filter=lambda it: it != "findPetsByTags" ) spec_array = llamaindex_tool_spec.load_openapi_spec() deserialized = json.loads(spec_array[0].text) endpoints: list = deserialized["endpoints"] operation = next( filter(lambda it: it["path_template"] == "/pet/findByTags", endpoints), None ) assert operation is None def test_request_body(): openapi_spec = load_example_spec() llamaindex_tool_spec = OpenAPIToolSpec(spec=openapi_spec) spec_array = llamaindex_tool_spec.load_openapi_spec() deserialized = json.loads(spec_array[0].text) endpoints: list = deserialized["endpoints"] operation = next( filter( lambda it: it["path_template"] == "/pet" and it["verb"] == "PUT", endpoints ) ) assert isinstance(operation["requestBody"], dict) def load_example_spec(): current_file_path = Path(__file__).resolve() example_file = current_file_path.parent / "example.json" with example_file.open("r", encoding="utf-8") as file: return yaml.safe_load(file)
from llama_index.core.tools.tool_spec.base import BaseToolSpec from llama_index.tools.openapi import OpenAPIToolSpec def test_class(): names_of_base_classes = [b.__name__ for b in OpenAPIToolSpec.__mro__] assert BaseToolSpec.__name__ in names_of_base_classes
from langchain_core.utils.html import ( DEFAULT_LINK_REGEX, PREFIXES_TO_IGNORE, PREFIXES_TO_IGNORE_REGEX, SUFFIXES_TO_IGNORE, SUFFIXES_TO_IGNORE_REGEX, extract_sub_links, find_all_links, ) __all__ = [ "DEFAULT_LINK_REGEX", "PREFIXES_TO_IGNORE", "PREFIXES_TO_IGNORE_REGEX", "SUFFIXES_TO_IGNORE", "SUFFIXES_TO_IGNORE_REGEX", "extract_sub_links", "find_all_links", ]
from langchain_core.utils.html import ( DEFAULT_LINK_REGEX, PREFIXES_TO_IGNORE, PREFIXES_TO_IGNORE_REGEX, SUFFIXES_TO_IGNORE, SUFFIXES_TO_IGNORE_REGEX, extract_sub_links, find_all_links, ) __all__ = [ "PREFIXES_TO_IGNORE", "SUFFIXES_TO_IGNORE", "SUFFIXES_TO_IGNORE_REGEX", "PREFIXES_TO_IGNORE_REGEX", "DEFAULT_LINK_REGEX", "find_all_links", "extract_sub_links", ]
_base_ = './mask_rcnn_r50_fpn_1x_coco.py' model = dict( # use caffe img_norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False), backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe'))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './mask_rcnn_r50_fpn_1x_coco.py' data_preprocessor = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32) model = dict( # use caffe img_norm data_preprocessor=data_preprocessor, backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe'))) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
from backend.data.credit import UsageTransactionMetadata, get_user_credit_model from backend.data.execution import ( ExecutionResult, RedisExecutionEventBus, create_graph_execution, get_execution_results, get_incomplete_executions, get_latest_execution, update_execution_status, update_execution_status_batch, update_graph_execution_start_time, update_graph_execution_stats, update_node_execution_stats, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import ( get_connected_output_nodes, get_graph, get_graph_metadata, get_node, ) from backend.data.notifications import ( create_or_add_to_user_notification_batch, empty_user_notification_batch, get_all_batches_by_type, get_user_notification_batch, get_user_notification_oldest_message_in_batch, ) from backend.data.user import ( get_active_user_ids_in_timerange, get_user_email_by_id, get_user_email_verification, get_user_integrations, get_user_metadata, get_user_notification_preference, update_user_integrations, update_user_metadata, ) from backend.util.service import AppService, expose, exposed_run_and_wait from backend.util.settings import Config config = Config() _user_credit_model = get_user_credit_model() async def _spend_credits( user_id: str, cost: int, metadata: UsageTransactionMetadata ) -> int: return await _user_credit_model.spend_credits(user_id, cost, metadata) class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.event_queue = RedisExecutionEventBus() @classmethod def get_port(cls) -> int: return config.database_api_port @expose def send_execution_update(self, execution_result: ExecutionResult): self.event_queue.publish(execution_result) # Executions create_graph_execution = exposed_run_and_wait(create_graph_execution) get_execution_results = exposed_run_and_wait(get_execution_results) get_incomplete_executions = exposed_run_and_wait(get_incomplete_executions) get_latest_execution = exposed_run_and_wait(get_latest_execution) update_execution_status = exposed_run_and_wait(update_execution_status) update_execution_status_batch = exposed_run_and_wait(update_execution_status_batch) update_graph_execution_start_time = exposed_run_and_wait( update_graph_execution_start_time ) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) get_connected_output_nodes = exposed_run_and_wait(get_connected_output_nodes) get_graph_metadata = exposed_run_and_wait(get_graph_metadata) # Credits spend_credits = exposed_run_and_wait(_spend_credits) # User + User Metadata + User Integrations get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata) get_user_integrations = exposed_run_and_wait(get_user_integrations) update_user_integrations = exposed_run_and_wait(update_user_integrations) # User Comms - async get_active_user_ids_in_timerange = exposed_run_and_wait( get_active_user_ids_in_timerange ) get_user_email_by_id = exposed_run_and_wait(get_user_email_by_id) get_user_email_verification = exposed_run_and_wait(get_user_email_verification) get_user_notification_preference = exposed_run_and_wait( get_user_notification_preference ) # Notifications - async create_or_add_to_user_notification_batch = exposed_run_and_wait( create_or_add_to_user_notification_batch ) empty_user_notification_batch = exposed_run_and_wait(empty_user_notification_batch) get_all_batches_by_type = exposed_run_and_wait(get_all_batches_by_type) get_user_notification_batch = exposed_run_and_wait(get_user_notification_batch) get_user_notification_oldest_message_in_batch = exposed_run_and_wait( get_user_notification_oldest_message_in_batch )
from backend.data.credit import get_user_credit_model from backend.data.execution import ( ExecutionResult, NodeExecutionEntry, RedisExecutionEventBus, create_graph_execution, get_execution_results, get_incomplete_executions, get_latest_execution, update_execution_status, update_execution_status_batch, update_graph_execution_start_time, update_graph_execution_stats, update_node_execution_stats, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import ( get_connected_output_nodes, get_graph, get_graph_metadata, get_node, ) from backend.data.notifications import ( create_or_add_to_user_notification_batch, empty_user_notification_batch, get_all_batches_by_type, get_user_notification_batch, get_user_notification_oldest_message_in_batch, ) from backend.data.user import ( get_active_user_ids_in_timerange, get_user_email_by_id, get_user_email_verification, get_user_integrations, get_user_metadata, get_user_notification_preference, update_user_integrations, update_user_metadata, ) from backend.util.service import AppService, expose, exposed_run_and_wait from backend.util.settings import Config config = Config() _user_credit_model = get_user_credit_model() async def _spend_credits(entry: NodeExecutionEntry) -> int: return await _user_credit_model.spend_credits(entry, 0, 0) class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.event_queue = RedisExecutionEventBus() @classmethod def get_port(cls) -> int: return config.database_api_port @expose def send_execution_update(self, execution_result: ExecutionResult): self.event_queue.publish(execution_result) # Executions create_graph_execution = exposed_run_and_wait(create_graph_execution) get_execution_results = exposed_run_and_wait(get_execution_results) get_incomplete_executions = exposed_run_and_wait(get_incomplete_executions) get_latest_execution = exposed_run_and_wait(get_latest_execution) update_execution_status = exposed_run_and_wait(update_execution_status) update_execution_status_batch = exposed_run_and_wait(update_execution_status_batch) update_graph_execution_start_time = exposed_run_and_wait( update_graph_execution_start_time ) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) get_connected_output_nodes = exposed_run_and_wait(get_connected_output_nodes) get_graph_metadata = exposed_run_and_wait(get_graph_metadata) # Credits spend_credits = exposed_run_and_wait(_spend_credits) # User + User Metadata + User Integrations get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata) get_user_integrations = exposed_run_and_wait(get_user_integrations) update_user_integrations = exposed_run_and_wait(update_user_integrations) # User Comms - async get_active_user_ids_in_timerange = exposed_run_and_wait( get_active_user_ids_in_timerange ) get_user_email_by_id = exposed_run_and_wait(get_user_email_by_id) get_user_email_verification = exposed_run_and_wait(get_user_email_verification) get_user_notification_preference = exposed_run_and_wait( get_user_notification_preference ) # Notifications - async create_or_add_to_user_notification_batch = exposed_run_and_wait( create_or_add_to_user_notification_batch ) empty_user_notification_batch = exposed_run_and_wait(empty_user_notification_batch) get_all_batches_by_type = exposed_run_and_wait(get_all_batches_by_type) get_user_notification_batch = exposed_run_and_wait(get_user_notification_batch) get_user_notification_oldest_message_in_batch = exposed_run_and_wait( get_user_notification_oldest_message_in_batch )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import pytest from jina import Document, Flow def data_generator(num_docs): for i in range(num_docs): doc = Document(text='it is a good day! the dog sits on the floor.') yield doc def test_use_in_flow(): with Flow.load_config('flow.yml') as flow: resp = flow.post(on='/encode', inputs=data_generator(5), return_results=True) docs = resp[0].docs assert len(docs) == 5 for doc in docs: assert doc.embedding.shape == (768,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( ['jina', 'executor', f'--uses=docker://{build_docker_image}'], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'pea', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:"/GPU:0"', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from jina import Document, Flow def data_generator(num_docs): for i in range(num_docs): doc = Document(text='it is a good day! the dog sits on the floor.') yield doc def test_use_in_flow(): with Flow.load_config('flow.yml') as flow: resp = flow.post(on='/encode', inputs=data_generator(5), return_results=True) docs = resp[0].docs assert len(docs) == 5 for doc in docs: assert doc.embedding.shape == (768,)
_base_ = '../cascade_rcnn/cascade-mask-rcnn_r50_fpn_1x_coco.py' train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict( type='InstaBoost', action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) max_epochs = 48 param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[32, 44], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # only keep latest 3 checkpoints default_hooks = dict(checkpoint=dict(max_keep_ckpts=3))
_base_ = '../cascade_rcnn/cascade-mask-rcnn_r50_fpn_1x_coco.py' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict( type='InstaBoost', action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) max_epochs = 48 param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[32, 44], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # only keep latest 3 checkpoints default_hooks = dict(checkpoint=dict(max_keep_ckpts=3))
""" MangaDex info reader. Retrieves data about a particular manga by title. """ import logging from typing import List import requests from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document logger = logging.getLogger(__name__) class MangaDexReader(BaseReader): def __init__(self) -> None: self.base_url = "https://api.mangadex.org" def _get_manga_info(self, title: str): try: manga_response = requests.get( f"{self.base_url}/manga", params={"title": title} ) manga_response.raise_for_status() manga_data = manga_response.json()["data"] if len(manga_data): return manga_data[0] else: logger.warning(f"No match found for title '{title}'") return None except requests.exceptions.HTTPError as http_error: logger.error(f"HTTP error: {http_error}") except requests.exceptions.RequestException as req_error: logger.error(f"Request Error: {req_error}") return None # Authors and artists are combined def _get_manga_author(self, id: str): try: author_response = requests.get( f"{self.base_url}/author", params={"ids[]": [id]} ) author_response.raise_for_status() return author_response.json()["data"][0] except requests.exceptions.HTTPError as http_error: logger.error(f"HTTP error: {http_error}") except requests.exceptions.RequestException as req_error: logger.error(f"Request Error: {req_error}") return None def _get_manga_chapters(self, manga_id: str, lang: str): try: chapter_response = requests.get( f"{self.base_url}/manga/{manga_id}/feed", params={ "translatedLanguage[]": [lang], "order[chapter]": "asc", }, ) chapter_response.raise_for_status() return chapter_response.json() except requests.exceptions.HTTPError as http_error: logger.error(f"HTTP error: {http_error}") except requests.exceptions.RequestException as req_error: logger.error(f"Request Error: {req_error}") return None def load_data(self, titles: List[str], lang: str = "en") -> List[Document]: """ Load data from the MangaDex API. Args: title (List[str]): List of manga titles lang (str, optional): ISO 639-1 language code. Defaults to 'en'. Returns: List[Document]: A list of Documents. """ result = [] for title in titles: manga = self._get_manga_info(title) if not manga: continue author_name, artist_name = None, None for r in manga["relationships"]: if r["type"] == "author": author = self._get_manga_author(r["id"]) author_name = author["attributes"]["name"] if r["type"] == "artist": artist = self._get_manga_author(r["id"]) artist_name = artist["attributes"]["name"] chapters = self._get_manga_chapters(manga["id"], lang) chapter_count = chapters.get("total", None) latest_chapter_published_at = None if len(chapters["data"]): latest_chapter = chapters["data"][-1] latest_chapter_published_at = latest_chapter["attributes"]["publishAt"] # Get tags for the selected language tags = [] for tag in manga["attributes"]["tags"]: tag_name_dict = tag["attributes"]["name"] if lang in tag_name_dict: tags.append(tag_name_dict[lang]) doc = Document( text=manga["attributes"]["title"].get(lang, title), extra_info={ "id": manga["id"], "author": author_name, "artist": artist_name, "description": manga["attributes"]["description"].get(lang, None), "original_language": manga["attributes"]["originalLanguage"], "tags": tags, "chapter_count": chapter_count, "latest_chapter_published_at": latest_chapter_published_at, }, ) result.append(doc) return result if __name__ == "__main__": reader = MangaDexReader() print(reader.load_data(titles=["Grand Blue Dreaming"], lang="en"))
""" MangaDex info reader. Retrieves data about a particular manga by title. """ import logging from typing import List import requests from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document logger = logging.getLogger(__name__) class MangaDexReader(BaseReader): def __init__(self) -> None: self.base_url = "https://api.mangadex.org" def _get_manga_info(self, title: str): try: manga_response = requests.get( f"{self.base_url}/manga", params={"title": title} ) manga_response.raise_for_status() manga_data = manga_response.json()["data"] if len(manga_data): return manga_data[0] else: logger.warning(f"No match found for title '{title}'") return None except requests.exceptions.HTTPError as http_error: logger.error(f"HTTP error: {http_error}") except requests.exceptions.RequestException as req_error: logger.error(f"Request Error: {req_error}") return None # Authors and artists are combined def _get_manga_author(self, id: str): try: author_response = requests.get( f"{self.base_url}/author", params={"ids[]": [id]} ) author_response.raise_for_status() return author_response.json()["data"][0] except requests.exceptions.HTTPError as http_error: logger.error(f"HTTP error: {http_error}") except requests.exceptions.RequestException as req_error: logger.error(f"Request Error: {req_error}") return None def _get_manga_chapters(self, manga_id: str, lang: str): try: chapter_response = requests.get( f"{self.base_url}/manga/{manga_id}/feed", params={ "translatedLanguage[]": [lang], "order[chapter]": "asc", }, ) chapter_response.raise_for_status() return chapter_response.json() except requests.exceptions.HTTPError as http_error: logger.error(f"HTTP error: {http_error}") except requests.exceptions.RequestException as req_error: logger.error(f"Request Error: {req_error}") return None def load_data(self, titles: List[str], lang: str = "en") -> List[Document]: """Load data from the MangaDex API. Args: title (List[str]): List of manga titles lang (str, optional): ISO 639-1 language code. Defaults to 'en'. Returns: List[Document]: A list of Documents. """ result = [] for title in titles: manga = self._get_manga_info(title) if not manga: continue author_name, artist_name = None, None for r in manga["relationships"]: if r["type"] == "author": author = self._get_manga_author(r["id"]) author_name = author["attributes"]["name"] if r["type"] == "artist": artist = self._get_manga_author(r["id"]) artist_name = artist["attributes"]["name"] chapters = self._get_manga_chapters(manga["id"], lang) chapter_count = chapters.get("total", None) latest_chapter_published_at = None if len(chapters["data"]): latest_chapter = chapters["data"][-1] latest_chapter_published_at = latest_chapter["attributes"]["publishAt"] # Get tags for the selected language tags = [] for tag in manga["attributes"]["tags"]: tag_name_dict = tag["attributes"]["name"] if lang in tag_name_dict: tags.append(tag_name_dict[lang]) doc = Document( text=manga["attributes"]["title"].get(lang, title), extra_info={ "id": manga["id"], "author": author_name, "artist": artist_name, "description": manga["attributes"]["description"].get(lang, None), "original_language": manga["attributes"]["originalLanguage"], "tags": tags, "chapter_count": chapter_count, "latest_chapter_published_at": latest_chapter_published_at, }, ) result.append(doc) return result if __name__ == "__main__": reader = MangaDexReader() print(reader.load_data(titles=["Grand Blue Dreaming"], lang="en"))
"""Elasticsearch (or Opensearch) reader over REST api. This only uses the basic search api, so it will work with Elasticsearch and Opensearch. """ from typing import Any, List, Optional from llama_index.core.bridge.pydantic import PrivateAttr from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document class ElasticsearchReader(BasePydanticReader): """ Read documents from an Elasticsearch/Opensearch index. These documents can then be used in a downstream Llama Index data structure. Args: endpoint (str): URL (http/https) of cluster index (str): Name of the index (required) httpx_client_args (dict): Optional additional args to pass to the `httpx.Client` """ is_remote: bool = True endpoint: str index: str httpx_client_args: Optional[dict] = None _client: Any = PrivateAttr() def __init__( self, endpoint: str, index: str, httpx_client_args: Optional[dict] = None ): """Initialize with parameters.""" super().__init__( endpoint=endpoint, index=index, httpx_client_args=httpx_client_args ) import_err_msg = """ `httpx` package not found. Install via `pip install httpx` """ try: import httpx except ImportError: raise ImportError(import_err_msg) self._client = httpx.Client(base_url=endpoint, **(httpx_client_args or {})) @classmethod def class_name(cls) -> str: return "ElasticsearchReader" def load_data( self, field: str, query: Optional[dict] = None, embedding_field: Optional[str] = None, metadata_fields: Optional[List[str]] = None, ) -> List[Document]: """Read data from the Elasticsearch index. Args: field (str): Field in the document to retrieve text from query (Optional[dict]): Elasticsearch JSON query DSL object. For example: {"query": {"match": {"message": {"query": "this is a test"}}}} embedding_field (Optional[str]): If there are embeddings stored in this index, this field can be used to set the embedding field on the returned Document list. metadata_fields (Optional[List[str]]): Fields used as metadata. Default is all fields in the document except those specified by the field and embedding_field parameters. Returns: List[Document]: A list of documents. """ res = self._client.post(f"{self.index}/_search", json=query).json() documents = [] for hit in res["hits"]["hits"]: doc_id = hit["_id"] value = hit["_source"][field] embedding = hit["_source"].get(embedding_field or "", None) if metadata_fields: metadata = { k: v for k, v in hit["_source"].items() if k in metadata_fields } else: hit["_source"].pop(field) hit["_source"].pop(embedding_field or "", None) metadata = hit["_source"] documents.append( Document(id_=doc_id, text=value, metadata=metadata, embedding=embedding) ) return documents
"""Elasticsearch (or Opensearch) reader over REST api. This only uses the basic search api, so it will work with Elasticsearch and Opensearch. """ from typing import Any, List, Optional from llama_index.core.bridge.pydantic import PrivateAttr from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document class ElasticsearchReader(BasePydanticReader): """ Read documents from an Elasticsearch/Opensearch index. These documents can then be used in a downstream Llama Index data structure. Args: endpoint (str): URL (http/https) of cluster index (str): Name of the index (required) httpx_client_args (dict): Optional additional args to pass to the `httpx.Client` """ is_remote: bool = True endpoint: str index: str httpx_client_args: Optional[dict] = None _client: Any = PrivateAttr() def __init__( self, endpoint: str, index: str, httpx_client_args: Optional[dict] = None ): """Initialize with parameters.""" super().__init__( endpoint=endpoint, index=index, httpx_client_args=httpx_client_args ) import_err_msg = """ `httpx` package not found. Install via `pip install httpx` """ try: import httpx except ImportError: raise ImportError(import_err_msg) self._client = httpx.Client(base_url=endpoint, **(httpx_client_args or {})) @classmethod def class_name(cls) -> str: return "ElasticsearchReader" def load_data( self, field: str, query: Optional[dict] = None, embedding_field: Optional[str] = None, ) -> List[Document]: """Read data from the Elasticsearch index. Args: field (str): Field in the document to retrieve text from query (Optional[dict]): Elasticsearch JSON query DSL object. For example: {"query": {"match": {"message": {"query": "this is a test"}}}} embedding_field (Optional[str]): If there are embeddings stored in this index, this field can be used to set the embedding field on the returned Document list. Returns: List[Document]: A list of documents. """ res = self._client.post(f"{self.index}/_search", json=query).json() documents = [] for hit in res["hits"]["hits"]: doc_id = hit["_id"] value = hit["_source"][field] embedding = hit["_source"].get(embedding_field or "", None) documents.append( Document( id_=doc_id, text=value, metadata=hit["_source"], embedding=embedding ) ) return documents
"""Init file.""" from llama_index.readers.mangadex.base import MangaDexReader __all__ = ["MangaDexReader"]
"""Init file.""" from llama_index.readers.mangadex.base import MangaDexReader __all__ = ["MangaDexReader"]
# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from diffusers import AutoencoderKLTemporalDecoder from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, torch_device, ) from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class AutoencoderKLTemporalDecoderTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = AutoencoderKLTemporalDecoder main_input_name = "sample" base_precision = 1e-2 @property def dummy_input(self): batch_size = 3 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) num_frames = 3 return {"sample": image, "num_frames": num_frames} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "latent_channels": 4, "layers_per_block": 2, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"Encoder", "TemporalDecoder", "UNetMidBlock2D"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) @unittest.skip("Test unsupported.") def test_forward_with_norm_groups(self): pass
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from diffusers import AutoencoderKLTemporalDecoder from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, torch_device, ) from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class AutoencoderKLTemporalDecoderTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = AutoencoderKLTemporalDecoder main_input_name = "sample" base_precision = 1e-2 @property def dummy_input(self): batch_size = 3 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) num_frames = 3 return {"sample": image, "num_frames": num_frames} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "latent_channels": 4, "layers_per_block": 2, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"Encoder", "TemporalDecoder", "UNetMidBlock2D"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) @unittest.skip("Test unsupported.") def test_forward_with_norm_groups(self): pass
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.core import build_assigner, build_sampler def _dummy_bbox_sampling(proposal_list, gt_bboxes, gt_labels): """Create sample results that can be passed to BBoxHead.get_targets.""" num_imgs = 1 feat = torch.rand(1, 1, 3, 3) assign_config = dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1) sampler_config = dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True) bbox_assigner = build_assigner(assign_config) bbox_sampler = build_sampler(sampler_config) gt_bboxes_ignore = [None for _ in range(num_imgs)] sampling_results = [] for i in range(num_imgs): assign_result = bbox_assigner.assign(proposal_list[i], gt_bboxes[i], gt_bboxes_ignore[i], gt_labels[i]) sampling_result = bbox_sampler.sample( assign_result, proposal_list[i], gt_bboxes[i], gt_labels[i], feats=feat) sampling_results.append(sampling_result) return sampling_results
import torch from mmdet.core import build_assigner, build_sampler def _dummy_bbox_sampling(proposal_list, gt_bboxes, gt_labels): """Create sample results that can be passed to BBoxHead.get_targets.""" num_imgs = 1 feat = torch.rand(1, 1, 3, 3) assign_config = dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1) sampler_config = dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True) bbox_assigner = build_assigner(assign_config) bbox_sampler = build_sampler(sampler_config) gt_bboxes_ignore = [None for _ in range(num_imgs)] sampling_results = [] for i in range(num_imgs): assign_result = bbox_assigner.assign(proposal_list[i], gt_bboxes[i], gt_bboxes_ignore[i], gt_labels[i]) sampling_result = bbox_sampler.sample( assign_result, proposal_list[i], gt_bboxes[i], gt_labels[i], feats=feat) sampling_results.append(sampling_result) return sampling_results
_base_ = [ '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( type='SOLOv2', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=0, num_outs=5), mask_head=dict( type='SOLOV2Head', num_classes=80, in_channels=256, feat_channels=512, stacked_convs=4, strides=[8, 8, 16, 32, 32], scale_ranges=((1, 96), (48, 192), (96, 384), (192, 768), (384, 2048)), pos_scale=0.2, num_grids=[40, 36, 24, 16, 12], cls_down_index=0, mask_feature_head=dict( feat_channels=128, start_level=0, end_level=3, out_channels=256, mask_stride=4, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)), loss_mask=dict(type='DiceLoss', use_sigmoid=True, loss_weight=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0)), # model training and testing settings test_cfg=dict( nms_pre=500, score_thr=0.1, mask_thr=0.5, filter_thr=0.05, kernel='gaussian', # gaussian/linear sigma=2.0, max_per_img=100)) # optimizer optim_wrapper = dict( optimizer=dict(lr=0.01), clip_grad=dict(max_norm=35, norm_type=2)) val_evaluator = dict(metric='segm') test_evaluator = val_evaluator
_base_ = [ '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( type='SOLOv2', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=0, num_outs=5), mask_head=dict( type='SOLOV2Head', num_classes=80, in_channels=256, feat_channels=512, stacked_convs=4, strides=[8, 8, 16, 32, 32], scale_ranges=((1, 96), (48, 192), (96, 384), (192, 768), (384, 2048)), pos_scale=0.2, num_grids=[40, 36, 24, 16, 12], cls_down_index=0, mask_feature_head=dict( feat_channels=128, start_level=0, end_level=3, out_channels=256, mask_stride=4, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)), loss_mask=dict(type='DiceLoss', use_sigmoid=True, loss_weight=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0)), # model training and testing settings test_cfg=dict( nms_pre=500, score_thr=0.1, mask_thr=0.5, filter_thr=0.05, kernel='gaussian', # gaussian/linear sigma=2.0, max_per_img=100)) # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.utils import digit_version from mmengine.utils.dl_utils import TORCH_VERSION from .base import BaseStrategy from .deepspeed import DeepSpeedStrategy from .distributed import DDPStrategy from .single_device import SingleDeviceStrategy __all__ = [ 'BaseStrategy', 'DDPStrategy', 'SingleDeviceStrategy', 'DeepSpeedStrategy' ] if digit_version(TORCH_VERSION) >= digit_version('2.0.0'): try: from .fsdp import FSDPStrategy # noqa:F401 __all__.append('FSDPStrategy') except: # noqa: E722 pass
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.utils import digit_version, is_installed from mmengine.utils.dl_utils import TORCH_VERSION from .base import BaseStrategy from .distributed import DDPStrategy from .single_device import SingleDeviceStrategy __all__ = ['BaseStrategy', 'DDPStrategy', 'SingleDeviceStrategy'] if is_installed('deepspeed'): from .deepspeed import DeepSpeedStrategy # noqa: F401 __all__.append('DeepSpeedStrategy') if digit_version(TORCH_VERSION) >= digit_version('2.0.0'): try: from .fsdp import FSDPStrategy # noqa:F401 __all__.append('FSDPStrategy') except: # noqa: E722 pass
"""Schema for Blobs and Blob Loaders. The goal is to facilitate decoupling of content loading from content parsing code. In addition, content loading code should provide a lazy loading interface by default. """ from __future__ import annotations from abc import ABC, abstractmethod from typing import TYPE_CHECKING # Re-export Blob and PathLike for backwards compatibility from langchain_core.documents.base import Blob as Blob from langchain_core.documents.base import PathLike as PathLike if TYPE_CHECKING: from collections.abc import Iterable class BlobLoader(ABC): """Abstract interface for blob loaders implementation. Implementer should be able to load raw content from a storage system according to some criteria and return the raw content lazily as a stream of blobs. """ @abstractmethod def yield_blobs( self, ) -> Iterable[Blob]: """A lazy loader for raw data represented by LangChain's Blob object. Returns: A generator over blobs """ # Re-export Blob and Pathlike for backwards compatibility __all__ = ["Blob", "BlobLoader", "PathLike"]
"""Schema for Blobs and Blob Loaders. The goal is to facilitate decoupling of content loading from content parsing code. In addition, content loading code should provide a lazy loading interface by default. """ from __future__ import annotations from abc import ABC, abstractmethod from collections.abc import Iterable # Re-export Blob and PathLike for backwards compatibility from langchain_core.documents.base import Blob as Blob from langchain_core.documents.base import PathLike as PathLike class BlobLoader(ABC): """Abstract interface for blob loaders implementation. Implementer should be able to load raw content from a storage system according to some criteria and return the raw content lazily as a stream of blobs. """ @abstractmethod def yield_blobs( self, ) -> Iterable[Blob]: """A lazy loader for raw data represented by LangChain's Blob object. Returns: A generator over blobs """ # Re-export Blob and Pathlike for backwards compatibility __all__ = ["Blob", "BlobLoader", "PathLike"]
import hashlib import secrets from typing import NamedTuple class APIKeyContainer(NamedTuple): """Container for API key parts.""" raw: str prefix: str postfix: str hash: str class APIKeyManager: PREFIX: str = "agpt_" PREFIX_LENGTH: int = 8 POSTFIX_LENGTH: int = 8 def generate_api_key(self) -> APIKeyContainer: """Generate a new API key with all its parts.""" raw_key = f"{self.PREFIX}{secrets.token_urlsafe(32)}" return APIKeyContainer( raw=raw_key, prefix=raw_key[: self.PREFIX_LENGTH], postfix=raw_key[-self.POSTFIX_LENGTH :], hash=hashlib.sha256(raw_key.encode()).hexdigest(), ) def verify_api_key(self, provided_key: str, stored_hash: str) -> bool: """Verify if a provided API key matches the stored hash.""" if not provided_key.startswith(self.PREFIX): return False provided_hash = hashlib.sha256(provided_key.encode()).hexdigest() return secrets.compare_digest(provided_hash, stored_hash)
import hashlib import secrets from typing import NamedTuple class APIKeyContainer(NamedTuple): """Container for API key parts.""" raw: str prefix: str postfix: str hash: str class APIKeyManager: PREFIX: str = "agpt_" PREFIX_LENGTH: int = 8 POSTFIX_LENGTH: int = 8 def generate_api_key(self) -> APIKeyContainer: """Generate a new API key with all its parts.""" raw_key = f"{self.PREFIX}{secrets.token_urlsafe(32)}" return APIKeyContainer( raw=raw_key, prefix=raw_key[: self.PREFIX_LENGTH], postfix=raw_key[-self.POSTFIX_LENGTH :], hash=hashlib.sha256(raw_key.encode()).hexdigest(), ) def verify_api_key(self, provided_key: str, stored_hash: str) -> bool: """Verify if a provided API key matches the stored hash.""" if not provided_key.startswith(self.PREFIX): return False return hashlib.sha256(provided_key.encode()).hexdigest() == stored_hash
from .filtering import ( allpass_biquad, band_biquad, bandpass_biquad, bandreject_biquad, bass_biquad, biquad, contrast, dcshift, deemph_biquad, dither, equalizer_biquad, filtfilt, flanger, gain, highpass_biquad, lfilter, lowpass_biquad, overdrive, phaser, riaa_biquad, treble_biquad, vad, ) from .functional import ( amplitude_to_DB, apply_beamforming, apply_codec, compute_deltas, compute_kaldi_pitch, create_dct, DB_to_amplitude, detect_pitch_frequency, edit_distance, griffinlim, inverse_spectrogram, linear_fbanks, mask_along_axis, mask_along_axis_iid, melscale_fbanks, mu_law_decoding, mu_law_encoding, mvdr_weights_rtf, mvdr_weights_souden, phase_vocoder, pitch_shift, psd, resample, rnnt_loss, rtf_evd, rtf_power, sliding_window_cmn, spectral_centroid, spectrogram, ) __all__ = [ "amplitude_to_DB", "compute_deltas", "compute_kaldi_pitch", "create_dct", "melscale_fbanks", "linear_fbanks", "DB_to_amplitude", "detect_pitch_frequency", "griffinlim", "mask_along_axis", "mask_along_axis_iid", "mu_law_encoding", "mu_law_decoding", "phase_vocoder", "sliding_window_cmn", "spectrogram", "inverse_spectrogram", "spectral_centroid", "allpass_biquad", "band_biquad", "bandpass_biquad", "bandreject_biquad", "bass_biquad", "biquad", "contrast", "dither", "dcshift", "deemph_biquad", "equalizer_biquad", "filtfilt", "flanger", "gain", "highpass_biquad", "lfilter", "lowpass_biquad", "overdrive", "phaser", "riaa_biquad", "treble_biquad", "vad", "apply_codec", "resample", "edit_distance", "pitch_shift", "rnnt_loss", "psd", "mvdr_weights_souden", "mvdr_weights_rtf", "rtf_evd", "rtf_power", "apply_beamforming", ]
from .filtering import ( allpass_biquad, band_biquad, bandpass_biquad, bandreject_biquad, bass_biquad, biquad, contrast, dither, dcshift, deemph_biquad, equalizer_biquad, filtfilt, flanger, gain, highpass_biquad, lfilter, lowpass_biquad, overdrive, phaser, riaa_biquad, treble_biquad, vad, ) from .functional import ( amplitude_to_DB, compute_deltas, compute_kaldi_pitch, create_dct, melscale_fbanks, linear_fbanks, DB_to_amplitude, detect_pitch_frequency, inverse_spectrogram, griffinlim, mask_along_axis, mask_along_axis_iid, mu_law_encoding, mu_law_decoding, phase_vocoder, sliding_window_cmn, spectrogram, spectral_centroid, apply_codec, resample, edit_distance, pitch_shift, rnnt_loss, psd, mvdr_weights_souden, mvdr_weights_rtf, rtf_evd, rtf_power, apply_beamforming, ) __all__ = [ "amplitude_to_DB", "compute_deltas", "compute_kaldi_pitch", "create_dct", "melscale_fbanks", "linear_fbanks", "DB_to_amplitude", "detect_pitch_frequency", "griffinlim", "mask_along_axis", "mask_along_axis_iid", "mu_law_encoding", "mu_law_decoding", "phase_vocoder", "sliding_window_cmn", "spectrogram", "inverse_spectrogram", "spectral_centroid", "allpass_biquad", "band_biquad", "bandpass_biquad", "bandreject_biquad", "bass_biquad", "biquad", "contrast", "dither", "dcshift", "deemph_biquad", "equalizer_biquad", "filtfilt", "flanger", "gain", "highpass_biquad", "lfilter", "lowpass_biquad", "overdrive", "phaser", "riaa_biquad", "treble_biquad", "vad", "apply_codec", "resample", "edit_distance", "pitch_shift", "rnnt_loss", "psd", "mvdr_weights_souden", "mvdr_weights_rtf", "rtf_evd", "rtf_power", "apply_beamforming", ]
from sentence_transformers import models from sentence_transformers.sparse_encoder import SparseEncoder from sentence_transformers.sparse_encoder.models import IDF, MLMTransformer, SpladePooling print("# ------------------------------------------example with v2 distill-----------------------------------------") doc_encoder = MLMTransformer("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill") asym = models.Asym( { "query": [ IDF.from_json( "opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill", tokenizer=doc_encoder.tokenizer, frozen=True, ), ], "doc": [ doc_encoder, SpladePooling("max"), ], } ) model = SparseEncoder( modules=[asym], similarity_fn_name="dot", ) query = "What's the weather in ny now?" document = "Currently New York is rainy." query_embed = model.encode([{"query": query}]) document_embed = model.encode([{"doc": document}]) sim = model.similarity(query_embed, document_embed) print(f"Similarity: {sim}") # Visualize top tokens for each text top_k = 3 print(f"\nTop tokens {top_k} for each text:") decoded_query = model.decode(query_embed[0], top_k=top_k) decoded_document = model.decode(document_embed[0]) for i in range(top_k): query_token, query_score = decoded_query[i] doc_score = next((score for token, score in decoded_document if token == query_token), 0) if doc_score != 0: print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}") """ # ------------------------------------------example with v2 distill----------------------------------------- Similarity: tensor([[17.5307]], device='cuda:0') Top tokens 3 for each text: Token: ny, Query score: 5.7729, Document score: 1.4109 Token: weather, Query score: 4.5684, Document score: 1.4673 Token: now, Query score: 3.5895, Document score: 0.7473 """ print("# -----------------------------------------example with v3 distill-----------------------------------------") doc_encoder = MLMTransformer("opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill") asym = models.Asym( { "query": [ IDF.from_json( "opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill", tokenizer=doc_encoder.tokenizer, frozen=True, ), ], "doc": [ doc_encoder, SpladePooling(pooling_strategy="max", activation_function="log1p_relu"), ], } ) model = SparseEncoder( modules=[asym], similarity_fn_name="dot", ) query = "What's the weather in ny now?" document = "Currently New York is rainy." query_embed = model.encode([{"query": query}]) document_embed = model.encode([{"doc": document}]) sim = model.similarity(query_embed, document_embed) print(f"Similarity: {sim}") # Visualize top tokens for each text top_k = 10 print(f"\nTop tokens {top_k} for each text:") decoded_query = model.decode(query_embed[0], top_k=top_k) decoded_document = model.decode(document_embed[0]) for i in range(min(top_k, len(decoded_query))): query_token, query_score = decoded_query[i] doc_score = next((score for token, score in decoded_document if token == query_token), 0) if doc_score != 0: print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}") """ # -----------------------------------------example with v3 distill----------------------------------------- Similarity: tensor([[11.1105]], device='cuda:0') Top tokens 10 for each text: Token: ny, Query score: 5.7729, Document score: 0.8049 Token: weather, Query score: 4.5684, Document score: 0.9710 Token: now, Query score: 3.5895, Document score: 0.4720 Token: ?, Query score: 3.3313, Document score: 0.0286 Token: what, Query score: 2.7699, Document score: 0.0787 Token: in, Query score: 0.4989, Document score: 0.0417 """
from sentence_transformers import models from sentence_transformers.sparse_encoder import SparseEncoder from sentence_transformers.sparse_encoder.models import IDF, MLMTransformer, SpladePooling print("# ------------------------------------------example with v2 distill-----------------------------------------") doc_encoder = MLMTransformer("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill") asym = models.Asym( { "query": [ IDF.from_json( "opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill", tokenizer=doc_encoder.tokenizer, frozen=True, ), ], "doc": [ doc_encoder, SpladePooling("max"), ], } ) model = SparseEncoder( modules=[asym], similarity_fn_name="dot", ) query = "What's the weather in ny now?" document = "Currently New York is rainy." query_embed = model.encode([{"query": query}]) document_embed = model.encode([{"doc": document}]) sim = model.similarity(query_embed, document_embed) print(f"Similarity: {sim}") # Visualize top tokens for each text top_k = 3 print(f"\nTop tokens {top_k} for each text:") decoded_query = model.decode(query_embed)[0] decoded_document = model.decode(document_embed[0], top_k=100) for i in range(top_k): query_token, query_score = decoded_query[i] doc_score = next((score for token, score in decoded_document if token == query_token), 0) if doc_score != 0: print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}") """ # ------------------------------------------example with v2 distill----------------------------------------- Similarity: tensor([[17.5307]], device='cuda:0') Top tokens 3 for each text: Token: ny, Query score: 5.7729, Document score: 1.4109 Token: weather, Query score: 4.5684, Document score: 1.4673 Token: now, Query score: 3.5895, Document score: 0.7473 """ print("# -----------------------------------------example with v3 distill-----------------------------------------") doc_encoder = MLMTransformer("opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill") asym = models.Asym( { "query": [ IDF.from_json( "opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill", tokenizer=doc_encoder.tokenizer, frozen=True, ), ], "doc": [ doc_encoder, SpladePooling(pooling_strategy="max", activation_function="log1p_relu"), ], } ) model = SparseEncoder( modules=[asym], similarity_fn_name="dot", ) query = "What's the weather in ny now?" document = "Currently New York is rainy." query_embed = model.encode([{"query": query}]) document_embed = model.encode([{"doc": document}]) sim = model.similarity(query_embed, document_embed) print(f"Similarity: {sim}") # Visualize top tokens for each text top_k = 10 print(f"\nTop tokens {top_k} for each text:") decoded_query = model.decode(query_embed)[0] decoded_document = model.decode(document_embed[0], top_k=100) for i in range(top_k): query_token, query_score = decoded_query[i] doc_score = next((score for token, score in decoded_document if token == query_token), 0) if doc_score != 0: print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}") """ # -----------------------------------------example with v3 distill----------------------------------------- Similarity: tensor([[11.1105]], device='cuda:0') Top tokens 10 for each text: Token: ny, Query score: 5.7729, Document score: 0.8049 Token: weather, Query score: 4.5684, Document score: 0.9710 Token: now, Query score: 3.5895, Document score: 0.4720 Token: ?, Query score: 3.3313, Document score: 0.0286 Token: what, Query score: 2.7699, Document score: 0.0787 Token: in, Query score: 0.4989, Document score: 0.0417 """
from typing import Optional from docarray.document import BaseDocument from docarray.typing.tensor.embedding import Embedding, Tensor class Text(BaseDocument): """ base Document for Text handling """ text: str = '' tensor: Optional[Tensor] embedding: Optional[Embedding]
from typing import Optional from docarray.document import BaseDocument from docarray.typing.embedding import Embedding, Tensor class Text(BaseDocument): """ base Document for Text handling """ text: str = '' tensor: Optional[Tensor] embedding: Optional[Embedding]
from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union import PIL.Image from .utils import check_integrity, download_and_extract_archive, download_url, verify_str_arg from .vision import VisionDataset class Flowers102(VisionDataset): """`Oxford 102 Flower <https://www.robots.ox.ac.uk/~vgg/data/flowers/102/>`_ Dataset. .. warning:: This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format. Oxford 102 Flower is an image classification dataset consisting of 102 flower categories. The flowers were chosen to be flowers commonly occurring in the United Kingdom. Each class consists of between 40 and 258 images. The images have large scale, pose and light variations. In addition, there are categories that have large variations within the category, and several very similar categories. Args: root (str or ``pathlib.Path``): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ _download_url_prefix = "https://www.robots.ox.ac.uk/~vgg/data/flowers/102/" _file_dict = { # filename, md5 "image": ("102flowers.tgz", "52808999861908f626f3c1f4e79d11fa"), "label": ("imagelabels.mat", "e0620be6f572b9609742df49c70aed4d"), "setid": ("setid.mat", "a5357ecc9cb78c4bef273ce3793fc85c"), } _splits_map = {"train": "trnid", "val": "valid", "test": "tstid"} def __init__( self, root: Union[str, Path], split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "val", "test")) self._base_folder = Path(self.root) / "flowers-102" self._images_folder = self._base_folder / "jpg" if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") from scipy.io import loadmat set_ids = loadmat(self._base_folder / self._file_dict["setid"][0], squeeze_me=True) image_ids = set_ids[self._splits_map[self._split]].tolist() labels = loadmat(self._base_folder / self._file_dict["label"][0], squeeze_me=True) image_id_to_label = dict(enumerate((labels["labels"] - 1).tolist(), 1)) self._labels = [] self._image_files = [] for image_id in image_ids: self._labels.append(image_id_to_label[image_id]) self._image_files.append(self._images_folder / f"image_{image_id:05d}.jpg") def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def extra_repr(self) -> str: return f"split={self._split}" def _check_integrity(self): if not (self._images_folder.exists() and self._images_folder.is_dir()): return False for id in ["label", "setid"]: filename, md5 = self._file_dict[id] if not check_integrity(str(self._base_folder / filename), md5): return False return True def download(self): if self._check_integrity(): return download_and_extract_archive( f"{self._download_url_prefix}{self._file_dict['image'][0]}", str(self._base_folder), md5=self._file_dict["image"][1], ) for id in ["label", "setid"]: filename, md5 = self._file_dict[id] download_url(self._download_url_prefix + filename, str(self._base_folder), md5=md5)
from pathlib import Path from typing import Any, Callable, Optional, Tuple import PIL.Image from .utils import check_integrity, download_and_extract_archive, download_url, verify_str_arg from .vision import VisionDataset class Flowers102(VisionDataset): """`Oxford 102 Flower <https://www.robots.ox.ac.uk/~vgg/data/flowers/102/>`_ Dataset. .. warning:: This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format. Oxford 102 Flower is an image classification dataset consisting of 102 flower categories. The flowers were chosen to be flowers commonly occurring in the United Kingdom. Each class consists of between 40 and 258 images. The images have large scale, pose and light variations. In addition, there are categories that have large variations within the category, and several very similar categories. Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ _download_url_prefix = "https://www.robots.ox.ac.uk/~vgg/data/flowers/102/" _file_dict = { # filename, md5 "image": ("102flowers.tgz", "52808999861908f626f3c1f4e79d11fa"), "label": ("imagelabels.mat", "e0620be6f572b9609742df49c70aed4d"), "setid": ("setid.mat", "a5357ecc9cb78c4bef273ce3793fc85c"), } _splits_map = {"train": "trnid", "val": "valid", "test": "tstid"} def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "val", "test")) self._base_folder = Path(self.root) / "flowers-102" self._images_folder = self._base_folder / "jpg" if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") from scipy.io import loadmat set_ids = loadmat(self._base_folder / self._file_dict["setid"][0], squeeze_me=True) image_ids = set_ids[self._splits_map[self._split]].tolist() labels = loadmat(self._base_folder / self._file_dict["label"][0], squeeze_me=True) image_id_to_label = dict(enumerate((labels["labels"] - 1).tolist(), 1)) self._labels = [] self._image_files = [] for image_id in image_ids: self._labels.append(image_id_to_label[image_id]) self._image_files.append(self._images_folder / f"image_{image_id:05d}.jpg") def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def extra_repr(self) -> str: return f"split={self._split}" def _check_integrity(self): if not (self._images_folder.exists() and self._images_folder.is_dir()): return False for id in ["label", "setid"]: filename, md5 = self._file_dict[id] if not check_integrity(str(self._base_folder / filename), md5): return False return True def download(self): if self._check_integrity(): return download_and_extract_archive( f"{self._download_url_prefix}{self._file_dict['image'][0]}", str(self._base_folder), md5=self._file_dict["image"][1], ) for id in ["label", "setid"]: filename, md5 = self._file_dict[id] download_url(self._download_url_prefix + filename, str(self._base_folder), md5=md5)
__version__ = '0.39.0' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
__version__ = '0.38.1' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
import os from typing import Any import numpy as np import pytest from scipy import sparse from jina import Document, DocumentArray, Executor, Flow, requests from tests import validate_callback cur_dir = os.path.dirname(os.path.abspath(__file__)) TOP_K = 3 @pytest.fixture(scope='function') def num_docs(): return 10 @pytest.fixture(scope='function') def docs_to_index(num_docs): docs = [] for idx in range(1, num_docs + 1): doc = Document(id=str(idx), content=np.array([idx * 5])) docs.append(doc) return DocumentArray(docs) class DummyCSRSparseIndexEncoder(Executor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.docs = DocumentArray() @requests(on='/index') def encode(self, docs: DocumentArray, *args, **kwargs) -> Any: for i, doc in enumerate(docs): doc.embedding = sparse.coo_matrix(doc.content) self.docs.extend(docs) @requests(on='/search') def query(self, docs: DocumentArray, parameters, *args, **kwargs): top_k = int(parameters['top_k']) for doc in docs: doc.matches = self.docs[:top_k] def test_sparse_pipeline(mocker, docs_to_index): def validate(response): assert len(response.docs) == 1 for doc in response.docs: assert len(doc.matches) == TOP_K for i, match in enumerate(doc.matches): assert match.id == docs_to_index[i].id assert isinstance(match.embedding, sparse.coo_matrix) f = Flow().add(uses=DummyCSRSparseIndexEncoder) mock = mocker.Mock() error_mock = mocker.Mock() with f: f.post( on='/index', inputs=docs_to_index, on_error=error_mock, ) f.post( on='/search', inputs=docs_to_index[0], parameters={'top_k': TOP_K}, on_done=mock, on_error=error_mock, ) mock.assert_called_once() validate_callback(mock, validate) error_mock.assert_not_called()
from typing import Any import os import pytest import numpy as np from scipy import sparse from jina import Flow, Document, DocumentArray, requests, Executor from tests import validate_callback cur_dir = os.path.dirname(os.path.abspath(__file__)) TOP_K = 3 @pytest.fixture(scope='function') def num_docs(): return 10 @pytest.fixture(scope='function') def docs_to_index(num_docs): docs = [] for idx in range(1, num_docs + 1): doc = Document(id=str(idx), content=np.array([idx * 5])) docs.append(doc) return DocumentArray(docs) class DummyCSRSparseIndexEncoder(Executor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.docs = DocumentArray() @requests(on='/index') def encode(self, docs: 'DocumentArray', *args, **kwargs) -> Any: for i, doc in enumerate(docs): doc.embedding = sparse.coo_matrix(doc.content) self.docs.extend(docs) @requests(on='/search') def query(self, docs: 'DocumentArray', parameters, *args, **kwargs): top_k = int(parameters['top_k']) for doc in docs: doc.matches = self.docs[:top_k] def test_sparse_pipeline(mocker, docs_to_index): def validate(response): assert len(response.docs) == 1 for doc in response.docs: assert len(doc.matches) == TOP_K for i, match in enumerate(doc.matches): assert match.id == docs_to_index[i].id assert isinstance(match.embedding, sparse.coo_matrix) f = Flow().add(uses=DummyCSRSparseIndexEncoder) mock = mocker.Mock() error_mock = mocker.Mock() with f: f.post( on='/index', inputs=docs_to_index, on_error=error_mock, ) f.post( on='/search', inputs=docs_to_index[0], parameters={'top_k': TOP_K}, on_done=mock, on_error=error_mock, ) mock.assert_called_once() validate_callback(mock, validate) error_mock.assert_not_called()
from typing import Any, ForwardRef, Optional from typing_extensions import get_origin from typing_inspect import get_args, is_typevar, is_union_type from docarray.typing.id import ID from docarray.typing.tensor.abstract_tensor import AbstractTensor def is_type_tensor(type_: Any) -> bool: """Return True if type is a type Tensor or an Optional Tensor type.""" return isinstance(type_, type) and issubclass(type_, AbstractTensor) def is_tensor_union(type_: Any) -> bool: """Return True if type is a Union of type Tensors.""" is_union = is_union_type(type_) if is_union is None: return False else: return is_union and all( (is_type_tensor(t) or issubclass(t, type(None))) for t in get_args(type_) ) def change_cls_name(cls: type, new_name: str, scope: Optional[dict] = None) -> None: """Change the name of a class. :param cls: the class to change the name of :param new_name: the new name :param scope: the scope in which the class is defined """ if scope: scope[new_name] = cls cls.__qualname__ = cls.__qualname__[: -len(cls.__name__)] + new_name cls.__name__ = new_name def safe_issubclass(x: type, a_tuple: type) -> bool: """ This is a modified version of the built-in 'issubclass' function to support non-class input. Traditional 'issubclass' calls can result in a crash if the input is non-class type (e.g. list/tuple). :param x: A class 'x' :param a_tuple: A class, or a tuple of classes. :return: A boolean value - 'True' if 'x' is a subclass of 'A_tuple', 'False' otherwise. Note that if the origin of 'x' is a list or tuple, the function immediately returns 'False'. """ if ( (get_origin(x) in (list, tuple, dict, set)) or is_typevar(x) or (type(x) == ForwardRef) or is_typevar(x) or x == ID ): return False return issubclass(x, a_tuple)
from typing import Any, ForwardRef, Optional from typing_extensions import get_origin from typing_inspect import get_args, is_typevar, is_union_type from docarray.typing.id import ID from docarray.typing.tensor.abstract_tensor import AbstractTensor def is_type_tensor(type_: Any) -> bool: """Return True if type is a type Tensor or an Optional Tensor type.""" return isinstance(type_, type) and issubclass(type_, AbstractTensor) def is_tensor_union(type_: Any) -> bool: """Return True if type is a Union of type Tensors.""" is_union = is_union_type(type_) if is_union is None: return False else: return is_union and all( (is_type_tensor(t) or issubclass(t, type(None))) for t in get_args(type_) ) def change_cls_name(cls: type, new_name: str, scope: Optional[dict] = None) -> None: """Change the name of a class. :param cls: the class to change the name of :param new_name: the new name :param scope: the scope in which the class is defined """ if scope: scope[new_name] = cls cls.__qualname__ = cls.__qualname__[: -len(cls.__name__)] + new_name cls.__name__ = new_name def safe_issubclass(x: type, a_tuple: type) -> bool: """ This is a modified version of the built-in 'issubclass' function to support non-class input. Traditional 'issubclass' calls can result in a crash if the input is non-class type (e.g. list/tuple). :param x: A class 'x' :param a_tuple: A class, or a tuple of classes. :return: A boolean value - 'True' if 'x' is a subclass of 'A_tuple', 'False' otherwise. Note that if the origin of 'x' is a list or tuple, the function immediately returns 'False'. """ if ( (get_origin(x) in (list, tuple, dict, set)) or is_typevar(x) or (type(x) == ForwardRef) or is_typevar(x) or x == ID ): return False return issubclass(x, a_tuple)
from typing import Optional, List import numpy as np from docarray import BaseDoc, DocList from docarray.typing import NdArray from docarray.typing.bytes import ImageBytes from docarray.typing.url import AnyUrl from jina import Executor, requests from pydantic import Field class TextAndImageDoc(BaseDoc): text: Optional[str] = None url: Optional[AnyUrl] = None bytes: Optional[ImageBytes] = None num_tokens: Optional[int] = None input_ids: Optional[List[int]] = None class EmbeddingResponseModel(TextAndImageDoc): embeddings: NdArray = Field(description="The embedding of the texts", default=[]) class Config(BaseDoc.Config): allow_population_by_field_name = True arbitrary_types_allowed = True json_encoders = {NdArray: lambda v: v.tolist()} class SampleClipExecutor(Executor): @requests(on="/encode") def foo( self, docs: DocList[TextAndImageDoc], **kwargs ) -> DocList[EmbeddingResponseModel]: ret = [] for doc in docs: ret.append( EmbeddingResponseModel( id=doc.id, text=doc.text, url=doc.url, bytes=doc.bytes, embeddings=np.random.random((1, 64)), ) ) return DocList[EmbeddingResponseModel](ret)
from typing import Optional import numpy as np from docarray import BaseDoc, DocList from docarray.typing import NdArray from docarray.typing.bytes import ImageBytes from docarray.typing.url import AnyUrl from jina import Executor, requests from pydantic import Field class TextAndImageDoc(BaseDoc): text: Optional[str] = None url: Optional[AnyUrl] = None bytes: Optional[ImageBytes] = None class EmbeddingResponseModel(TextAndImageDoc): embeddings: NdArray = Field(description="The embedding of the texts", default=[]) class Config(BaseDoc.Config): allow_population_by_field_name = True arbitrary_types_allowed = True json_encoders = {NdArray: lambda v: v.tolist()} class SampleClipExecutor(Executor): @requests(on="/encode") def foo( self, docs: DocList[TextAndImageDoc], **kwargs ) -> DocList[EmbeddingResponseModel]: ret = [] for doc in docs: ret.append( EmbeddingResponseModel( id=doc.id, text=doc.text, url=doc.url, bytes=doc.bytes, embeddings=np.random.random((1, 64)), ) ) return DocList[EmbeddingResponseModel](ret)
from langchain_core.prompts.prompt import PromptTemplate _DEFAULT_TEMPLATE = """Question: Who lived longer, Muhammad Ali or Alan Turing? Are follow up questions needed here: Yes. Follow up: How old was Muhammad Ali when he died? Intermediate answer: Muhammad Ali was 74 years old when he died. Follow up: How old was Alan Turing when he died? Intermediate answer: Alan Turing was 41 years old when he died. So the final answer is: Muhammad Ali Question: When was the founder of craigslist born? Are follow up questions needed here: Yes. Follow up: Who was the founder of craigslist? Intermediate answer: Craigslist was founded by Craig Newmark. Follow up: When was Craig Newmark born? Intermediate answer: Craig Newmark was born on December 6, 1952. So the final answer is: December 6, 1952 Question: Who was the maternal grandfather of George Washington? Are follow up questions needed here: Yes. Follow up: Who was the mother of George Washington? Intermediate answer: The mother of George Washington was Mary Ball Washington. Follow up: Who was the father of Mary Ball Washington? Intermediate answer: The father of Mary Ball Washington was Joseph Ball. So the final answer is: Joseph Ball Question: Are both the directors of Jaws and Casino Royale from the same country? Are follow up questions needed here: Yes. Follow up: Who is the director of Jaws? Intermediate answer: The director of Jaws is Steven Spielberg. Follow up: Where is Steven Spielberg from? Intermediate answer: The United States. Follow up: Who is the director of Casino Royale? Intermediate answer: The director of Casino Royale is Martin Campbell. Follow up: Where is Martin Campbell from? Intermediate answer: New Zealand. So the final answer is: No Question: {input} Are followup questions needed here:{agent_scratchpad}""" PROMPT = PromptTemplate( input_variables=["input", "agent_scratchpad"], template=_DEFAULT_TEMPLATE )
# flake8: noqa from langchain_core.prompts.prompt import PromptTemplate _DEFAULT_TEMPLATE = """Question: Who lived longer, Muhammad Ali or Alan Turing? Are follow up questions needed here: Yes. Follow up: How old was Muhammad Ali when he died? Intermediate answer: Muhammad Ali was 74 years old when he died. Follow up: How old was Alan Turing when he died? Intermediate answer: Alan Turing was 41 years old when he died. So the final answer is: Muhammad Ali Question: When was the founder of craigslist born? Are follow up questions needed here: Yes. Follow up: Who was the founder of craigslist? Intermediate answer: Craigslist was founded by Craig Newmark. Follow up: When was Craig Newmark born? Intermediate answer: Craig Newmark was born on December 6, 1952. So the final answer is: December 6, 1952 Question: Who was the maternal grandfather of George Washington? Are follow up questions needed here: Yes. Follow up: Who was the mother of George Washington? Intermediate answer: The mother of George Washington was Mary Ball Washington. Follow up: Who was the father of Mary Ball Washington? Intermediate answer: The father of Mary Ball Washington was Joseph Ball. So the final answer is: Joseph Ball Question: Are both the directors of Jaws and Casino Royale from the same country? Are follow up questions needed here: Yes. Follow up: Who is the director of Jaws? Intermediate answer: The director of Jaws is Steven Spielberg. Follow up: Where is Steven Spielberg from? Intermediate answer: The United States. Follow up: Who is the director of Casino Royale? Intermediate answer: The director of Casino Royale is Martin Campbell. Follow up: Where is Martin Campbell from? Intermediate answer: New Zealand. So the final answer is: No Question: {input} Are followup questions needed here:{agent_scratchpad}""" PROMPT = PromptTemplate( input_variables=["input", "agent_scratchpad"], template=_DEFAULT_TEMPLATE )
import sqlite3 import warnings from dataclasses import dataclass, field from tempfile import NamedTemporaryFile from typing import Iterable, Dict, Optional, TYPE_CHECKING, Union from docarray.array.storage.sqlite.helper import initialize_table from docarray.array.storage.base.backend import BaseBackendMixin from docarray.helper import random_identity, dataclass_from_dict if TYPE_CHECKING: # pragma: no cover from docarray.typing import DocumentArraySourceType def _sanitize_table_name(table_name: str, raise_warning=True) -> str: ret = ''.join(c for c in table_name if c.isalnum() or c == '_') if ret != table_name and raise_warning: warnings.warn(f'The table name is changed to {ret} due to illegal characters') return ret @dataclass class SqliteConfig: connection: Optional[Union[str, 'sqlite3.Connection']] = None table_name: Optional[str] = None serialize_config: Dict = field(default_factory=dict) conn_config: Dict = field(default_factory=dict) journal_mode: str = 'WAL' synchronous: str = 'OFF' class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" schema_version = '0' def _sql(self, *args, **kwargs) -> 'sqlite3.Cursor': return self._cursor.execute(*args, **kwargs) def _commit(self): self._connection.commit() @property def _cursor(self) -> 'sqlite3.Cursor': return self._connection.cursor() def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, config: Optional[Union[SqliteConfig, Dict]] = None, **kwargs, ): if not config: config = SqliteConfig() if isinstance(config, dict): config = dataclass_from_dict(SqliteConfig, config) from docarray import Document sqlite3.register_adapter( Document, lambda d: d.to_bytes(**config.serialize_config) ) sqlite3.register_converter( 'Document', lambda x: Document.from_bytes(x, **config.serialize_config) ) _conn_kwargs = dict() _conn_kwargs.update(config.conn_config) if config.connection is None: config.connection = NamedTemporaryFile().name if isinstance(config.connection, str): self._connection = sqlite3.connect( config.connection, detect_types=sqlite3.PARSE_DECLTYPES, check_same_thread=False, **_conn_kwargs, ) elif isinstance(config.connection, sqlite3.Connection): self._connection = config.connection else: raise TypeError( f'connection argument must be None or a string or a sqlite3.Connection, not `{type(config.connection)}`' ) self._connection.execute(f'PRAGMA synchronous={config.synchronous}') self._connection.execute(f'PRAGMA journal_mode={config.journal_mode}') self._table_name = ( _sanitize_table_name(self.__class__.__name__ + random_identity()) if config.table_name is None else _sanitize_table_name(config.table_name) ) config.table_name = self._table_name initialize_table( self._table_name, self.__class__.__name__, self.schema_version, self._cursor ) self._connection.commit() self._config = config super()._init_storage() if _docs is None: return elif isinstance(_docs, Iterable): self.clear() self.extend(_docs) else: self.clear() if isinstance(_docs, Document): self.append(_docs) def _ensure_unique_config( self, config_root: dict, config_subindex: dict, config_joined: dict, subindex_name: str, ) -> dict: if 'table_name' not in config_subindex: subindex_table_name = _sanitize_table_name( config_joined['table_name'] + 'subindex' + subindex_name, raise_warning=False, ) config_joined['table_name'] = subindex_table_name return config_joined def __getstate__(self): d = dict(self.__dict__) del d['_connection'] return d def __setstate__(self, state): self.__dict__ = state _conn_kwargs = dict() _conn_kwargs.update(state['_config'].conn_config) self._connection = sqlite3.connect( state['_config'].connection, detect_types=sqlite3.PARSE_DECLTYPES, check_same_thread=False, **_conn_kwargs, )
import sqlite3 import warnings from dataclasses import dataclass, field from tempfile import NamedTemporaryFile from typing import Iterable, Dict, Optional, TYPE_CHECKING, Union from docarray.array.storage.sqlite.helper import initialize_table from docarray.array.storage.base.backend import BaseBackendMixin from docarray.helper import random_identity, dataclass_from_dict if TYPE_CHECKING: from docarray.typing import DocumentArraySourceType def _sanitize_table_name(table_name: str, raise_warning=True) -> str: ret = ''.join(c for c in table_name if c.isalnum() or c == '_') if ret != table_name and raise_warning: warnings.warn(f'The table name is changed to {ret} due to illegal characters') return ret @dataclass class SqliteConfig: connection: Optional[Union[str, 'sqlite3.Connection']] = None table_name: Optional[str] = None serialize_config: Dict = field(default_factory=dict) conn_config: Dict = field(default_factory=dict) journal_mode: str = 'WAL' synchronous: str = 'OFF' class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" schema_version = '0' def _sql(self, *args, **kwargs) -> 'sqlite3.Cursor': return self._cursor.execute(*args, **kwargs) def _commit(self): self._connection.commit() @property def _cursor(self) -> 'sqlite3.Cursor': return self._connection.cursor() def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, config: Optional[Union[SqliteConfig, Dict]] = None, **kwargs, ): if not config: config = SqliteConfig() if isinstance(config, dict): config = dataclass_from_dict(SqliteConfig, config) from docarray import Document sqlite3.register_adapter( Document, lambda d: d.to_bytes(**config.serialize_config) ) sqlite3.register_converter( 'Document', lambda x: Document.from_bytes(x, **config.serialize_config) ) _conn_kwargs = dict() _conn_kwargs.update(config.conn_config) if config.connection is None: config.connection = NamedTemporaryFile().name if isinstance(config.connection, str): self._connection = sqlite3.connect( config.connection, detect_types=sqlite3.PARSE_DECLTYPES, check_same_thread=False, **_conn_kwargs, ) elif isinstance(config.connection, sqlite3.Connection): self._connection = config.connection else: raise TypeError( f'connection argument must be None or a string or a sqlite3.Connection, not `{type(config.connection)}`' ) self._connection.execute(f'PRAGMA synchronous={config.synchronous}') self._connection.execute(f'PRAGMA journal_mode={config.journal_mode}') self._table_name = ( _sanitize_table_name(self.__class__.__name__ + random_identity()) if config.table_name is None else _sanitize_table_name(config.table_name) ) config.table_name = self._table_name initialize_table( self._table_name, self.__class__.__name__, self.schema_version, self._cursor ) self._connection.commit() self._config = config super()._init_storage() if _docs is None: return elif isinstance(_docs, Iterable): self.clear() self.extend(_docs) else: self.clear() if isinstance(_docs, Document): self.append(_docs) def _ensure_unique_config( self, config_root: dict, config_subindex: dict, config_joined: dict, subindex_name: str, ) -> dict: if 'table_name' not in config_subindex: subindex_table_name = _sanitize_table_name( config_joined['table_name'] + 'subindex' + subindex_name, raise_warning=False, ) config_joined['table_name'] = subindex_table_name return config_joined def __getstate__(self): d = dict(self.__dict__) del d['_connection'] return d def __setstate__(self, state): self.__dict__ = state _conn_kwargs = dict() _conn_kwargs.update(state['_config'].conn_config) self._connection = sqlite3.connect( state['_config'].connection, detect_types=sqlite3.PARSE_DECLTYPES, check_same_thread=False, **_conn_kwargs, )
import torch from datasets import Dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseEncoderTrainer, SparseMarginMSELoss, SpladePooling, ) # Initialize the SPLADE model student_model_name = "prithivida/Splade_PP_en_v1" student_model = SparseEncoder( modules=[ MLMTransformer(student_model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Initialize the SPLADE model teacher_model_name = "naver/splade-cocondenser-ensembledistil" teacher_model = SparseEncoder( modules=[ MLMTransformer(teacher_model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Create a small toy dataset train_dataset = Dataset.from_dict( { "query": ["It's nice weather outside today.", "He drove to work."], "passage1": ["It's so sunny.", "He took the car to work."], "passage2": ["It's very cold.", "She walked to the store."], "passage3": ["Its rainy", "She took the bus"], } ) def compute_labels(batch): emb_queries = teacher_model.encode(batch["query"]) emb_passages1 = teacher_model.encode(batch["passage1"]) emb_passages2 = teacher_model.encode(batch["passage2"]) emb_passages3 = teacher_model.encode(batch["passage3"]) return { "label": torch.stack( [ teacher_model.similarity_pairwise(emb_queries, emb_passages1) - teacher_model.similarity_pairwise(emb_queries, emb_passages2), teacher_model.similarity_pairwise(emb_queries, emb_passages1) - teacher_model.similarity_pairwise(emb_queries, emb_passages3), ], dim=1, ) } train_dataset = train_dataset.map(compute_labels, batched=True) loss = SparseMarginMSELoss(student_model) trainer = SparseEncoderTrainer(model=student_model, train_dataset=train_dataset, loss=loss) trainer.train()
from datasets import Dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseEncoderTrainer, SparseMarginMSELoss, SpladePooling, ) # Initialize the SPLADE model student_model_name = "prithivida/Splade_PP_en_v1" student_model = SparseEncoder( modules=[ MLMTransformer(student_model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Initialize the SPLADE model teacher_model_name = "naver/splade-cocondenser-ensembledistil" teacher_model = SparseEncoder( modules=[ MLMTransformer(teacher_model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Create a small toy dataset train_dataset = Dataset.from_dict( { "query": ["It's nice weather outside today.", "He drove to work."], "passage1": ["It's so sunny.", "He took the car to work."], "passage2": ["It's very sunny.", "She walked to the store."], } ) def compute_labels(batch): emb_queries = teacher_model.encode(batch["query"]) emb_passages1 = teacher_model.encode(batch["passage1"]) emb_passages2 = teacher_model.encode(batch["passage2"]) return { "label": teacher_model.similarity_pairwise(emb_queries, emb_passages1) - teacher_model.similarity_pairwise(emb_queries, emb_passages2) } train_dataset = train_dataset.map(compute_labels, batched=True) loss = SparseMarginMSELoss(student_model) trainer = SparseEncoderTrainer(model=student_model, train_dataset=train_dataset, loss=loss) trainer.train()
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict _TestCommandArgs = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", "num_proc", ], defaults=[None, None, None, False, False, False, False, False, None], ) def is_1percent_close(source, target): return (abs(source - target) / target) < 0.01 @pytest.mark.integration def test_test_command(dataset_dir): args = _TestCommandArgs(dataset=dataset_dir, all_configs=True, save_infos=True) test_command = TestCommand(*args) test_command.run() dataset_readme_path = os.path.join(dataset_dir, "README.md") assert os.path.exists(dataset_readme_path) dataset_infos = DatasetInfosDict.from_directory(dataset_dir) expected_dataset_infos = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string")), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]) ), "langs": Sequence(Value("string")), "spans": Sequence(Value("string")), } ), splits=[ { "name": "train", "num_bytes": 2351563, "num_examples": 10000, }, { "name": "validation", "num_bytes": 238418, "num_examples": 1000, }, ], download_size=3940680, dataset_size=2589981, ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: result, expected = getattr(dataset_infos["default"], key), getattr(expected_dataset_infos["default"], key) if key == "num_bytes": assert is_1percent_close(result, expected) elif key == "splits": assert list(result) == list(expected) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_1percent_close(result[split].num_bytes, expected[split].num_bytes) else: result == expected
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict _TestCommandArgs = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", "num_proc", "trust_remote_code", ], defaults=[None, None, None, False, False, False, False, False, None, None], ) def is_1percent_close(source, target): return (abs(source - target) / target) < 0.01 @pytest.mark.integration def test_test_command(dataset_loading_script_dir): args = _TestCommandArgs( dataset=dataset_loading_script_dir, all_configs=True, save_infos=True, trust_remote_code=True ) test_command = TestCommand(*args) test_command.run() dataset_readme_path = os.path.join(dataset_loading_script_dir, "README.md") assert os.path.exists(dataset_readme_path) dataset_infos = DatasetInfosDict.from_directory(dataset_loading_script_dir) expected_dataset_infos = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string")), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]) ), "langs": Sequence(Value("string")), "spans": Sequence(Value("string")), } ), splits=[ { "name": "train", "num_bytes": 2351563, "num_examples": 10000, }, { "name": "validation", "num_bytes": 238418, "num_examples": 1000, }, ], download_size=3940680, dataset_size=2589981, ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: result, expected = getattr(dataset_infos["default"], key), getattr(expected_dataset_infos["default"], key) if key == "num_bytes": assert is_1percent_close(result, expected) elif key == "splits": assert list(result) == list(expected) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_1percent_close(result[split].num_bytes, expected[split].num_bytes) else: result == expected
from typing import Dict, Optional, Tuple import numpy as np import torch import torchvision.transforms as T from jina import DocumentArray, Executor, requests from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform class TimmImageEncoder(Executor): """ TimmImageEncoder encodes Document blobs of type `ndarray` (`float32`) and shape `H x W x 3` into `d`-dimensional embedding. The input image in Document should be in RGB format. If `use_default_preprocessing=False`, the expected input shape is `3 x H x W` with `float32` dtype. Internally, :class:`TimmImageEncoder` wraps the pre-trained models from [Timm library](https://rwightman.github.io/pytorch-image-models/). """ def __init__( self, model_name: str = 'resnet18', device: str = 'cpu', traversal_path: Tuple[str] = ('r',), batch_size: Optional[int] = 32, use_default_preprocessing: bool = True, *args, **kwargs ): """ :param model_name: the name of the model. Models listed on: https://rwightman.github.io/pytorch-image-models/models/ :param device: Which device the model runs on. For example 'cpu' or 'cuda'. :param traversal_paths: Defines traversal path through the docs. It can be overridden via request params. :param batch_size: Defines the batch size for inference on the loaded Timm model. It can be overridden via request params. :param use_default_preprocessing: If the input should be preprocessed with default configuration. If `False`, inputs are expected to be pre-processed. :param args: Additional positional arguments. :param kwargs: Additional keyword arguments. """ super().__init__(*args, **kwargs) self.device = device self.batch_size = batch_size self.use_default_preprocessing = use_default_preprocessing self.traversal_path = traversal_path self._model = create_model(model_name, pretrained=True, num_classes=0) self._model = self._model.to(device) self._model.eval() config = resolve_data_config({}, model=self._model) self._preprocess = create_transform(**config) self._preprocess.transforms.insert(0, T.ToPILImage()) @requests def encode(self, docs: Optional[DocumentArray], parameters: Dict, **kwargs): """ Encode image data from the `blob` attribute of Documents into a ndarray of `D` as dimension, and fill the embedding of each Document. :param docs: DocumentArray containing images :param parameters: dictionary with additional request parameters. Possible values are `traversal_paths` and the `batch_size`. For example, `parameters={'traversal_paths': ['r'], 'batch_size': 10}`. :param kwargs: Additional keyword arguments. """ if docs is None: return traversal_paths = parameters.get('traversal_paths', self.traversal_path) batch_size = parameters.get('batch_size', self.batch_size) docs_batch_generator = docs.batch( traversal_paths=traversal_paths, batch_size=batch_size, require_attr='blob', ) for document_batch in docs_batch_generator: blob_batch = [d.blob for d in document_batch] if self.use_default_preprocessing: images = np.stack([self._preprocess(img) for img in blob_batch]) else: images = np.stack(blob_batch) with torch.inference_mode(): tensor = torch.from_numpy(images).to(self.device) features = self._model(tensor) features = features.cpu().numpy() for doc, embed in zip(document_batch, features): doc.embedding = embed
from typing import Dict, Iterable, Optional, Tuple import numpy as np import torch import torchvision.transforms as T from jina import DocumentArray, Executor, requests from jina_commons.batching import get_docs_batch_generator from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform class TimmImageEncoder(Executor): """ :class:`TimmImageEncoder` encodes ``Document`` blobs of type `ndarray` (`float32`) and shape `H x W x 3` into `ndarray` of `D`. Where `D` is the Dimension of the embedding. Input image in Document should be in RGB format. If `use_default_preprocessing=False`, the expected input shape is `3 x H x W` with `float32` dtype. Internally, :class:`TimmImageEncoder` wraps the pre-trained models from `Timm library`. https://rwightman.github.io/pytorch-image-models/ :param model_name: the name of the model. Models listed on: https://rwightman.github.io/pytorch-image-models/models/ :param device: Which device the model runs on. For example 'cpu' or 'cuda'. :param default_traversal_paths: Defines traversal path through the docs. Default input is the tuple ('r',) and can be overwritten. :param default_batch_size: Defines the batch size for inference on the loaded Timm model. Default batch size is 32 and can be updated by passing an int value. :param use_default_preprocessing: Should the input be preprocessed with default configuration. :param args: Additional positional arguments. :param kwargs: Additional keyword arguments. """ def __init__( self, model_name: str = 'resnet18', device: str = 'cpu', default_traversal_path: Tuple[str] = ('r',), default_batch_size: Optional[int] = 32, use_default_preprocessing: bool = True, *args, **kwargs ): super().__init__(*args, **kwargs) self.device = device self.default_batch_size = default_batch_size self.use_default_preprocessing = use_default_preprocessing self.default_traversal_path = default_traversal_path self._model = create_model(model_name, pretrained=True, num_classes=0) self._model = self._model.to(device) self._model.eval() config = resolve_data_config({}, model=self._model) self._preprocess = create_transform(**config) self._preprocess.transforms.insert(0, T.ToPILImage()) @requests def encode(self, docs: Optional[DocumentArray], parameters: Dict, **kwargs): """ Encode image data into a ndarray of `D` as dimension, and fill the embedding of each Document. :param docs: DocumentArray containing images :param parameters: dictionary to define the `traversal_paths` and the `batch_size`. For example, `parameters={'traversal_paths': ['r'], 'batch_size': 10}`. :param kwargs: Additional key value arguments. """ if docs: docs_batch_generator = get_docs_batch_generator( docs, traversal_path=parameters.get( 'traversal_paths', self.default_traversal_path ), batch_size=parameters.get('batch_size', self.default_batch_size), needs_attr='blob', ) self._compute_embeddings(docs_batch_generator) def _compute_embeddings(self, docs_batch_generator: Iterable) -> None: with torch.no_grad(): for document_batch in docs_batch_generator: blob_batch = [d.blob for d in document_batch] if self.use_default_preprocessing: images = np.stack([self._preprocess(img) for img in blob_batch]) else: images = np.stack(blob_batch) tensor = torch.from_numpy(images).to(self.device) features = self._model(tensor) features = features.cpu().numpy() for doc, embed in zip(document_batch, features): doc.embedding = embed
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import DistSamplerSeedHook class TestDistSamplerSeedHook: def test_before_epoch(self): hook = DistSamplerSeedHook() # Test dataset sampler runner = Mock() runner.epoch = 1 runner.train_loop.dataloader = Mock() runner.train_loop.dataloader.sampler = Mock() runner.train_loop.dataloader.sampler.set_epoch = Mock() hook.before_train_epoch(runner) runner.train_loop.dataloader.sampler.set_epoch.assert_called() # Test batch sampler runner = Mock() runner.train_loop.dataloader = Mock() runner.train_loop.dataloader.sampler = Mock(spec_set=True) runner.train_loop.dataloader.batch_sampler = Mock() runner.train_loop.dataloader.batch_sampler.sampler = Mock() runner.train_loop.dataloader.batch_sampler.sampler.set_epoch = Mock() hook.before_train_epoch(runner) runner.train_loop.dataloader.\ batch_sampler.sampler.set_epoch.assert_called()
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import DistSamplerSeedHook class TestDistSamplerSeedHook: def test_before_epoch(self): hook = DistSamplerSeedHook() # Test dataset sampler runner = Mock() runner.epoch = 1 runner.cur_dataloader = Mock() runner.cur_dataloader.sampler = Mock() runner.cur_dataloader.sampler.set_epoch = Mock() hook.before_train_epoch(runner) runner.cur_dataloader.sampler.set_epoch.assert_called() # Test batch sampler runner = Mock() runner.cur_dataloader = Mock() runner.cur_dataloader.sampler = Mock(spec_set=True) runner.cur_dataloader.batch_sampler = Mock() runner.cur_dataloader.batch_sampler.sampler = Mock() runner.cur_dataloader.batch_sampler.sampler.set_epoch = Mock() hook.before_train_epoch(runner) runner.cur_dataloader.batch_sampler.sampler.set_epoch.assert_called()
"""Init file.""" from llama_index.readers.web.agentql_web.base import ( AgentQLWebReader, ) from llama_index.readers.web.async_web.base import ( AsyncWebPageReader, ) from llama_index.readers.web.beautiful_soup_web.base import ( BeautifulSoupWebReader, ) from llama_index.readers.web.browserbase_web.base import BrowserbaseWebReader from llama_index.readers.web.firecrawl_web.base import FireCrawlWebReader from llama_index.readers.web.hyperbrowser_web.base import HyperbrowserWebReader from llama_index.readers.web.knowledge_base.base import ( KnowledgeBaseWebReader, ) from llama_index.readers.web.main_content_extractor.base import ( MainContentExtractorReader, ) from llama_index.readers.web.news.base import NewsArticleReader from llama_index.readers.web.oxylabs_web.base import OxylabsWebReader from llama_index.readers.web.readability_web.base import ( ReadabilityWebPageReader, ) from llama_index.readers.web.rss.base import ( RssReader, ) from llama_index.readers.web.rss_news.base import ( RssNewsReader, ) from llama_index.readers.web.scrapfly_web.base import ( ScrapflyReader, ) from llama_index.readers.web.simple_web.base import ( SimpleWebPageReader, ) from llama_index.readers.web.sitemap.base import ( SitemapReader, ) from llama_index.readers.web.spider_web.base import ( SpiderWebReader, ) from llama_index.readers.web.trafilatura_web.base import ( TrafilaturaWebReader, ) from llama_index.readers.web.unstructured_web.base import ( UnstructuredURLLoader, ) from llama_index.readers.web.whole_site.base import ( WholeSiteReader, ) from llama_index.readers.web.zyte_web.base import ( ZyteWebReader, ) __all__ = [ "AgentQLWebReader", "AsyncWebPageReader", "BeautifulSoupWebReader", "BrowserbaseWebReader", "FireCrawlWebReader", "HyperbrowserWebReader", "KnowledgeBaseWebReader", "MainContentExtractorReader", "NewsArticleReader", "OxylabsWebReader", "ReadabilityWebPageReader", "RssReader", "RssNewsReader", "ScrapflyReader", "SimpleWebPageReader", "SitemapReader", "SpiderWebReader", "TrafilaturaWebReader", "UnstructuredURLLoader", "WholeSiteReader", "ZyteWebReader", ]
"""Init file.""" from llama_index.readers.web.agentql_web.base import ( AgentQLWebReader, ) from llama_index.readers.web.async_web.base import ( AsyncWebPageReader, ) from llama_index.readers.web.beautiful_soup_web.base import ( BeautifulSoupWebReader, ) from llama_index.readers.web.browserbase_web.base import BrowserbaseWebReader from llama_index.readers.web.firecrawl_web.base import FireCrawlWebReader from llama_index.readers.web.hyperbrowser_web.base import HyperbrowserWebReader from llama_index.readers.web.knowledge_base.base import ( KnowledgeBaseWebReader, ) from llama_index.readers.web.main_content_extractor.base import ( MainContentExtractorReader, ) from llama_index.readers.web.news.base import NewsArticleReader from llama_index.readers.web.readability_web.base import ( ReadabilityWebPageReader, ) from llama_index.readers.web.rss.base import ( RssReader, ) from llama_index.readers.web.rss_news.base import ( RssNewsReader, ) from llama_index.readers.web.scrapfly_web.base import ( ScrapflyReader, ) from llama_index.readers.web.simple_web.base import ( SimpleWebPageReader, ) from llama_index.readers.web.sitemap.base import ( SitemapReader, ) from llama_index.readers.web.spider_web.base import ( SpiderWebReader, ) from llama_index.readers.web.trafilatura_web.base import ( TrafilaturaWebReader, ) from llama_index.readers.web.unstructured_web.base import ( UnstructuredURLLoader, ) from llama_index.readers.web.whole_site.base import ( WholeSiteReader, ) from llama_index.readers.web.zyte_web.base import ( ZyteWebReader, ) __all__ = [ "AgentQLWebReader", "AsyncWebPageReader", "BeautifulSoupWebReader", "BrowserbaseWebReader", "FireCrawlWebReader", "HyperbrowserWebReader", "KnowledgeBaseWebReader", "MainContentExtractorReader", "NewsArticleReader", "ReadabilityWebPageReader", "RssReader", "RssNewsReader", "ScrapflyReader", "SimpleWebPageReader", "SitemapReader", "SpiderWebReader", "TrafilaturaWebReader", "UnstructuredURLLoader", "WholeSiteReader", "ZyteWebReader", ]
# dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox') test_evaluator = val_evaluator
# dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'data_sample']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'data_sample']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) evaluation = dict(interval=1, metric='bbox')
import numpy as np from docarray import Document from docarray.typing import Tensor def test_set_tensor(): class MyDocument(Document): tensor: Tensor d = MyDocument(tensor=np.zeros((3, 224, 224))) assert isinstance(d.tensor, Tensor) assert isinstance(d.tensor, np.ndarray) assert (d.tensor == np.zeros((3, 224, 224))).all()
import numpy as np from docarray.typing import Tensor from docarray import Document def test_set_tensor(): class MyDocument(Document): tensor: Tensor d = MyDocument(tensor=np.zeros((3, 224, 224))) assert isinstance(d.tensor, Tensor) assert isinstance(d.tensor, np.ndarray) assert (d.tensor == np.zeros((3, 224, 224))).all()
from docarray.typing.tensor.audio.audio_ndarray import AudioNdArray __all__ = ['AudioNdArray'] from docarray.utils._internal.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor # noqa __all__.extend(['AudioTorchTensor']) tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.audio.audio_tensorflow_tensor import ( # noqa AudioTensorFlowTensor, ) __all__.extend(['AudioTensorFlowTensor'])
from docarray.typing.tensor.audio.audio_ndarray import AudioNdArray __all__ = ['AudioNdArray'] from docarray.utils.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor # noqa __all__.extend(['AudioTorchTensor']) tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.audio.audio_tensorflow_tensor import ( # noqa AudioTensorFlowTensor, ) __all__.extend(['AudioTensorFlowTensor'])
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DLPack functions.""" from absl.testing import parameterized import numpy as np from tensorflow.python.dlpack import dlpack from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.platform import test int_dtypes = [ np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64 ] float_dtypes = [np.float16, np.float32, np.float64] complex_dtypes = [np.complex64, np.complex128] dlpack_dtypes = ( int_dtypes + float_dtypes + [dtypes.bfloat16] + complex_dtypes + [np.bool_] ) testcase_shapes = [(), (1,), (2, 3), (2, 0), (0, 7), (4, 1, 2)] def FormatShapeAndDtype(shape, dtype): return "_{}[{}]".format(str(dtype), ",".join(map(str, shape))) def GetNamedTestParameters(): result = [] for dtype in dlpack_dtypes: for shape in testcase_shapes: result.append({ "testcase_name": FormatShapeAndDtype(shape, dtype), "dtype": dtype, "shape": shape }) return result class DLPackTest(parameterized.TestCase, test.TestCase): @parameterized.named_parameters(GetNamedTestParameters()) def testRoundTrip(self, dtype, shape): np.random.seed(42) if dtype == np.bool_: np_array = np.random.randint(0, 1, shape, np.bool_) else: np_array = np.random.randint(0, 10, shape) # copy to gpu if available tf_tensor = array_ops.identity(constant_op.constant(np_array, dtype=dtype)) tf_tensor_device = tf_tensor.device tf_tensor_dtype = tf_tensor.dtype dlcapsule = dlpack.to_dlpack(tf_tensor) del tf_tensor # should still work tf_tensor2 = dlpack.from_dlpack(dlcapsule) self.assertAllClose(np_array, tf_tensor2) if tf_tensor_dtype == dtypes.int32: # int32 tensor is always on cpu for now self.assertEqual(tf_tensor2.device, "/job:localhost/replica:0/task:0/device:CPU:0") else: self.assertEqual(tf_tensor_device, tf_tensor2.device) def testRoundTripWithoutToDlpack(self): np_array = np.random.randint(0, 10, [42]) self.assertAllEqual( np.from_dlpack(constant_op.constant(np_array).cpu()), np_array ) def testTensorsCanBeConsumedOnceOnly(self): np.random.seed(42) np_array = np.random.randint(0, 10, (2, 3, 4)) tf_tensor = constant_op.constant(np_array, dtype=np.float32) dlcapsule = dlpack.to_dlpack(tf_tensor) del tf_tensor # should still work _ = dlpack.from_dlpack(dlcapsule) def ConsumeDLPackTensor(): dlpack.from_dlpack(dlcapsule) # Should can be consumed only once self.assertRaisesRegex(Exception, ".*a DLPack tensor may be consumed at most once.*", ConsumeDLPackTensor) def testDLPackFromWithoutContextInitialization(self): tf_tensor = constant_op.constant(1) dlcapsule = dlpack.to_dlpack(tf_tensor) # Resetting the context doesn't cause an error. context._reset_context() _ = dlpack.from_dlpack(dlcapsule) def testUnsupportedTypeToDLPack(self): def UnsupportedQint16(): tf_tensor = constant_op.constant([[1, 4], [5, 2]], dtype=dtypes.qint16) _ = dlpack.to_dlpack(tf_tensor) self.assertRaisesRegex(Exception, ".* is not supported by dlpack", UnsupportedQint16) def testMustPassTensorArgumentToDLPack(self): with self.assertRaisesRegex( errors.InvalidArgumentError, "The argument to `to_dlpack` must be a TF tensor, not Python object"): dlpack.to_dlpack([1]) if __name__ == "__main__": ops.enable_eager_execution() test.main()
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DLPack functions.""" from absl.testing import parameterized import numpy as np from tensorflow.python.dlpack import dlpack from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.platform import test from tensorflow.python.ops import array_ops int_dtypes = [ np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64 ] float_dtypes = [np.float16, np.float32, np.float64] complex_dtypes = [np.complex64, np.complex128] dlpack_dtypes = ( int_dtypes + float_dtypes + [dtypes.bfloat16] + complex_dtypes + [np.bool_] ) testcase_shapes = [(), (1,), (2, 3), (2, 0), (0, 7), (4, 1, 2)] def FormatShapeAndDtype(shape, dtype): return "_{}[{}]".format(str(dtype), ",".join(map(str, shape))) def GetNamedTestParameters(): result = [] for dtype in dlpack_dtypes: for shape in testcase_shapes: result.append({ "testcase_name": FormatShapeAndDtype(shape, dtype), "dtype": dtype, "shape": shape }) return result class DLPackTest(parameterized.TestCase, test.TestCase): @parameterized.named_parameters(GetNamedTestParameters()) def testRoundTrip(self, dtype, shape): np.random.seed(42) if dtype == np.bool_: np_array = np.random.randint(0, 1, shape, np.bool_) else: np_array = np.random.randint(0, 10, shape) # copy to gpu if available tf_tensor = array_ops.identity(constant_op.constant(np_array, dtype=dtype)) tf_tensor_device = tf_tensor.device tf_tensor_dtype = tf_tensor.dtype dlcapsule = dlpack.to_dlpack(tf_tensor) del tf_tensor # should still work tf_tensor2 = dlpack.from_dlpack(dlcapsule) self.assertAllClose(np_array, tf_tensor2) if tf_tensor_dtype == dtypes.int32: # int32 tensor is always on cpu for now self.assertEqual(tf_tensor2.device, "/job:localhost/replica:0/task:0/device:CPU:0") else: self.assertEqual(tf_tensor_device, tf_tensor2.device) def testTensorsCanBeConsumedOnceOnly(self): np.random.seed(42) np_array = np.random.randint(0, 10, (2, 3, 4)) tf_tensor = constant_op.constant(np_array, dtype=np.float32) dlcapsule = dlpack.to_dlpack(tf_tensor) del tf_tensor # should still work _ = dlpack.from_dlpack(dlcapsule) def ConsumeDLPackTensor(): dlpack.from_dlpack(dlcapsule) # Should can be consumed only once self.assertRaisesRegex(Exception, ".*a DLPack tensor may be consumed at most once.*", ConsumeDLPackTensor) def testDLPackFromWithoutContextInitialization(self): tf_tensor = constant_op.constant(1) dlcapsule = dlpack.to_dlpack(tf_tensor) # Resetting the context doesn't cause an error. context._reset_context() _ = dlpack.from_dlpack(dlcapsule) def testUnsupportedTypeToDLPack(self): def UnsupportedQint16(): tf_tensor = constant_op.constant([[1, 4], [5, 2]], dtype=dtypes.qint16) _ = dlpack.to_dlpack(tf_tensor) self.assertRaisesRegex(Exception, ".* is not supported by dlpack", UnsupportedQint16) def testMustPassTensorArgumentToDLPack(self): with self.assertRaisesRegex( errors.InvalidArgumentError, "The argument to `to_dlpack` must be a TF tensor, not Python object"): dlpack.to_dlpack([1]) if __name__ == "__main__": ops.enable_eager_execution() test.main()
# Copyright (c) OpenMMLab. All rights reserved. from math import ceil from unittest import TestCase import torch from mmengine import Config from mmengine.structures import InstanceData from mmdet.models.dense_heads import FSAFHead class TestFSAFHead(TestCase): def test_fsaf_head_loss(self): """Tests fsaf head loss when truth is empty and non-empty.""" s = 300 img_metas = [{ 'img_shape': (s, s), 'pad_shape': (s, s), 'scale_factor': 1, }] cfg = Config( dict( assigner=dict( type='CenterRegionAssigner', pos_scale=0.2, neg_scale=0.2, min_pos_iof=0.01), allowed_border=-1, pos_weight=-1, debug=False)) fsaf_head = FSAFHead( num_classes=4, in_channels=1, stacked_convs=1, feat_channels=1, reg_decoded_bbox=True, anchor_generator=dict( type='AnchorGenerator', octave_base_scale=1, scales_per_octave=1, ratios=[1.0], strides=[8, 16, 32, 64, 128]), bbox_coder=dict(type='TBLRBBoxCoder', normalizer=4.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0, reduction='none'), loss_bbox=dict( type='IoULoss', eps=1e-6, loss_weight=1.0, reduction='none'), train_cfg=cfg) # FSAF head expects a multiple levels of features per image feats = ( torch.rand(1, 1, ceil(s / stride[0]), ceil(s / stride[0])) for stride in fsaf_head.prior_generator.strides) cls_scores, bbox_preds = fsaf_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = fsaf_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but # box loss should be zero empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) self.assertGreater(empty_cls_loss, 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = fsaf_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero')
# Copyright (c) OpenMMLab. All rights reserved. from math import ceil from unittest import TestCase import torch from mmengine import Config from mmengine.data import InstanceData from mmdet.models.dense_heads import FSAFHead class TestFSAFHead(TestCase): def test_fsaf_head_loss(self): """Tests fsaf head loss when truth is empty and non-empty.""" s = 300 img_metas = [{ 'img_shape': (s, s), 'pad_shape': (s, s), 'scale_factor': 1, }] cfg = Config( dict( assigner=dict( type='CenterRegionAssigner', pos_scale=0.2, neg_scale=0.2, min_pos_iof=0.01), allowed_border=-1, pos_weight=-1, debug=False)) fsaf_head = FSAFHead( num_classes=4, in_channels=1, stacked_convs=1, feat_channels=1, reg_decoded_bbox=True, anchor_generator=dict( type='AnchorGenerator', octave_base_scale=1, scales_per_octave=1, ratios=[1.0], strides=[8, 16, 32, 64, 128]), bbox_coder=dict(type='TBLRBBoxCoder', normalizer=4.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0, reduction='none'), loss_bbox=dict( type='IoULoss', eps=1e-6, loss_weight=1.0, reduction='none'), train_cfg=cfg) # FSAF head expects a multiple levels of features per image feats = ( torch.rand(1, 1, ceil(s / stride[0]), ceil(s / stride[0])) for stride in fsaf_head.prior_generator.strides) cls_scores, bbox_preds = fsaf_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = fsaf_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but # box loss should be zero empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) self.assertGreater(empty_cls_loss, 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = fsaf_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero')
# Copyright (c) OpenMMLab. All rights reserved. from .auto_augment import (AutoAugment, BrightnessTransform, ColorTransform, ContrastTransform, EqualizeTransform, Rotate, Shear, Translate) from .compose import Compose from .formatting import (ImageToTensor, PackDetInputs, ToDataContainer, ToTensor, Transpose) from .instaboost import InstaBoost from .loading import (FilterAnnotations, LoadAnnotations, LoadImageFromWebcam, LoadMultiChannelImageFromFiles, LoadPanopticAnnotations, LoadProposals) from .test_time_aug import MultiScaleFlipAug from .transforms import (Albu, CopyPaste, CutOut, Expand, MinIoURandomCrop, MixUp, Mosaic, Normalize, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) __all__ = [ 'PackDetInputs', 'Compose', 'ToTensor', 'ImageToTensor', 'ToDataContainer', 'Transpose', 'LoadImageFromWebcam', 'LoadAnnotations', 'LoadPanopticAnnotations', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'MultiScaleFlipAug', 'Resize', 'RandomFlip', 'RandomCrop', 'Normalize', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'Shear', 'Rotate', 'ColorTransform', 'EqualizeTransform', 'BrightnessTransform', 'ContrastTransform', 'Translate', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug', 'CopyPaste', 'FilterAnnotations', 'Pad' ]
# Copyright (c) OpenMMLab. All rights reserved. from .auto_augment import (AutoAugment, BrightnessTransform, ColorTransform, ContrastTransform, EqualizeTransform, Rotate, Shear, Translate) from .compose import Compose from .formatting import (ImageToTensor, PackDetInputs, ToDataContainer, ToTensor, Transpose) from .instaboost import InstaBoost from .loading import (FilterAnnotations, LoadAnnotations, LoadImageFromWebcam, LoadMultiChannelImageFromFiles, LoadPanopticAnnotations, LoadProposals) from .test_time_aug import MultiScaleFlipAug from .transforms import (Albu, CopyPaste, CutOut, Expand, MinIoURandomCrop, MixUp, Mosaic, Normalize, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) __all__ = [ 'PackDetInputs', 'Compose', 'ToTensor', 'ImageToTensor', 'ToDataContainer', 'Transpose', 'LoadImageFromWebcam', 'LoadAnnotations', 'LoadPanopticAnnotations', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'MultiScaleFlipAug', 'Resize', 'RandomFlip', 'RandomCrop', 'Normalize', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'Shear', 'Rotate', 'ColorTransform', 'EqualizeTransform', 'BrightnessTransform', 'ContrastTransform', 'Translate', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug', 'CopyPaste', 'FilterAnnotations' ]
from docutils import nodes from docutils.parsers.rst import Directive class BetaStatus(Directive): has_content = True text = "The {api_name} is in Beta stage, and backward compatibility is not guaranteed." def run(self): text = self.text.format(api_name=" ".join(self.content)) return [nodes.warning("", nodes.paragraph("", "", nodes.Text(text)))] class V2BetaStatus(BetaStatus): text = ( "The {api_name} is in Beta stage, and while we do not expect major breaking changes, " "some APIs may still change according to user feedback. Please submit any feedback you may have " "in this issue: https://github.com/pytorch/vision/issues/6753, and you can also check " "out https://github.com/pytorch/vision/issues/7319 to learn " "more about the APIs that we suspect might involve future changes." ) def setup(app): app.add_directive("betastatus", BetaStatus) app.add_directive("v2betastatus", V2BetaStatus) return { "version": "0.1", "parallel_read_safe": True, "parallel_write_safe": True, }
from docutils import nodes from docutils.parsers.rst import Directive class BetaStatus(Directive): has_content = True def run(self): api_name = " ".join(self.content) text = f"The {api_name} is in Beta stage, and backward compatibility is not guaranteed." return [nodes.warning("", nodes.paragraph("", "", nodes.Text(text)))] def setup(app): app.add_directive("betastatus", BetaStatus) return { "version": "0.1", "parallel_read_safe": True, "parallel_write_safe": True, }
import asyncio import copy from typing import Any, List, TYPE_CHECKING from jina.serve.runtimes.servers import BaseServer if TYPE_CHECKING: from jina.logging.logger import JinaLogger class CompositeBaseServer(BaseServer): """Composite Base Server implementation from which u can inherit a specific custom composite one""" servers: List['BaseServer'] logger: 'JinaLogger' def __init__( self, **kwargs, ): """Initialize the gateway :param kwargs: keyword args """ super().__init__(**kwargs) self._kwargs = kwargs @property def _server_kwargs(self): ret = [] # ignore monitoring and tracing args since they are not copyable ignored_attrs = [ 'metrics_registry', 'tracer_provider', 'grpc_tracing_server_interceptors', 'aio_tracing_client_interceptors', 'tracing_client_interceptor', ] for port, protocol in zip(self.ports, self.protocols): # ignore monitoring and tracing args since they are not copyable runtime_args = self._deepcopy_with_ignore_attrs( self.runtime_args, ignored_attrs ) runtime_args.port = port runtime_args.protocol = protocol server_kwargs = {k: v for k, v in self._kwargs.items() if k != 'runtime_args'} server_kwargs['runtime_args'] = dict(vars(runtime_args)) server_kwargs['req_handler'] = self._request_handler ret.append(server_kwargs) return ret async def setup_server(self): """ setup servers inside CompositeServer """ self.logger.debug(f'Setting up Composite server') tasks = [] for server in self.servers: tasks.append(asyncio.create_task(server.setup_server())) await asyncio.gather(*tasks) self.logger.debug(f'Composite server setup successful') async def shutdown(self): """Free other resources allocated with the server, e.g, gateway object, ...""" self.logger.debug(f'Shutting down server') await super().shutdown() shutdown_tasks = [] for server in self.servers: shutdown_tasks.append(asyncio.create_task(server.shutdown())) await asyncio.gather(*shutdown_tasks) self.logger.debug(f'Server shutdown finished') async def run_server(self): """Run servers inside CompositeServer forever""" run_server_tasks = [] for server in self.servers: run_server_tasks.append(asyncio.create_task(server.run_server())) await asyncio.gather(*run_server_tasks) @property def _should_exit(self) -> bool: should_exit_values = [ getattr(server, 'should_exit', True) for server in self.servers ] return all(should_exit_values) class CompositeServer(CompositeBaseServer): """Composite Server implementation""" def __init__( self, **kwargs, ): """Initialize the gateway :param kwargs: keyword args """ super().__init__(**kwargs) from jina.parsers.helper import _get_gateway_class self.servers: List[BaseServer] = [] for server_kwargs in self._server_kwargs: server_cls = _get_gateway_class(server_kwargs['runtime_args']['protocol'], works_as_load_balancer=self.works_as_load_balancer) server = server_cls(**server_kwargs) self.servers.append(server) self.gateways = self.servers # for backwards compatibility @staticmethod def _deepcopy_with_ignore_attrs(obj: Any, ignore_attrs: List[str]) -> Any: """Deep copy an object and ignore some attributes :param obj: the object to copy :param ignore_attrs: the attributes to ignore :return: the copied object """ memo = {} for k in ignore_attrs: if hasattr(obj, k): memo[id(getattr(obj, k))] = None # getattr(obj, k) return copy.deepcopy(obj, memo)
import asyncio import copy from typing import Any, List from jina.serve.runtimes.servers import BaseServer class CompositeServer(BaseServer): """Composite Server implementation""" def __init__( self, **kwargs, ): """Initialize the gateway :param kwargs: keyword args """ super().__init__(**kwargs) from jina.parsers.helper import _get_gateway_class self.servers: List[BaseServer] = [] for port, protocol in zip(self.ports, self.protocols): server_cls = _get_gateway_class(protocol, works_as_load_balancer=self.works_as_load_balancer) # ignore monitoring and tracing args since they are not copyable ignored_attrs = [ 'metrics_registry', 'tracer_provider', 'grpc_tracing_server_interceptors', 'aio_tracing_client_interceptors', 'tracing_client_interceptor', ] runtime_args = self._deepcopy_with_ignore_attrs( self.runtime_args, ignored_attrs ) runtime_args.port = [port] runtime_args.protocol = [protocol] server_kwargs = {k: v for k, v in kwargs.items() if k != 'runtime_args'} server_kwargs['runtime_args'] = dict(vars(runtime_args)) server_kwargs['req_handler'] = self._request_handler server = server_cls(**server_kwargs) self.servers.append(server) self.gateways = self.servers # for backwards compatibility async def setup_server(self): """ setup servers inside CompositeServer """ self.logger.debug(f'Setting up Composite server') tasks = [] for server in self.servers: tasks.append(asyncio.create_task(server.setup_server())) await asyncio.gather(*tasks) self.logger.debug(f'Composite server setup successful') async def shutdown(self): """Free other resources allocated with the server, e.g, gateway object, ...""" self.logger.debug(f'Shutting down server') await super().shutdown() shutdown_tasks = [] for server in self.servers: shutdown_tasks.append(asyncio.create_task(server.shutdown())) await asyncio.gather(*shutdown_tasks) self.logger.debug(f'Server shutdown finished') async def run_server(self): """Run servers inside CompositeServer forever""" run_server_tasks = [] for server in self.servers: run_server_tasks.append(asyncio.create_task(server.run_server())) await asyncio.gather(*run_server_tasks) @staticmethod def _deepcopy_with_ignore_attrs(obj: Any, ignore_attrs: List[str]) -> Any: """Deep copy an object and ignore some attributes :param obj: the object to copy :param ignore_attrs: the attributes to ignore :return: the copied object """ memo = {} for k in ignore_attrs: if hasattr(obj, k): memo[id(getattr(obj, k))] = None # getattr(obj, k) return copy.deepcopy(obj, memo) @property def _should_exit(self) -> bool: should_exit_values = [ getattr(server, 'should_exit', True) for server in self.servers ] return all(should_exit_values)
from __future__ import annotations from typing import Any, Optional, Union import PIL.Image import torch from ._tv_tensor import TVTensor class Mask(TVTensor): """:class:`torch.Tensor` subclass for segmentation and detection masks. Args: data (tensor-like, PIL.Image.Image): Any data that can be turned into a tensor with :func:`torch.as_tensor` as well as PIL images. dtype (torch.dtype, optional): Desired data type. If omitted, will be inferred from ``data``. device (torch.device, optional): Desired device. If omitted and ``data`` is a :class:`torch.Tensor`, the device is taken from it. Otherwise, the mask is constructed on the CPU. requires_grad (bool, optional): Whether autograd should record operations. If omitted and ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``. """ def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> Mask: if isinstance(data, PIL.Image.Image): from torchvision.transforms.v2 import functional as F data = F.pil_to_tensor(data) tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return tensor.as_subclass(cls)
from __future__ import annotations from typing import Any, Optional, Union import PIL.Image import torch from ._tv_tensor import TVTensor class Mask(TVTensor): """[BETA] :class:`torch.Tensor` subclass for segmentation and detection masks. Args: data (tensor-like, PIL.Image.Image): Any data that can be turned into a tensor with :func:`torch.as_tensor` as well as PIL images. dtype (torch.dtype, optional): Desired data type. If omitted, will be inferred from ``data``. device (torch.device, optional): Desired device. If omitted and ``data`` is a :class:`torch.Tensor`, the device is taken from it. Otherwise, the mask is constructed on the CPU. requires_grad (bool, optional): Whether autograd should record operations. If omitted and ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``. """ def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> Mask: if isinstance(data, PIL.Image.Image): from torchvision.transforms.v2 import functional as F data = F.pil_to_tensor(data) tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return tensor.as_subclass(cls)
import os import sys from pathlib import Path import pytest from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node from .utils import execute_subprocess_async, get_torch_dist_unique_port, require_torch def test_split_dataset_by_node_map_style(): full_ds = Dataset.from_dict({"i": range(17)}) full_size = len(full_ds) world_size = 3 datasets_per_rank = [ split_dataset_by_node(full_ds, rank=rank, world_size=world_size) for rank in range(world_size) ] assert sum(len(ds) for ds in datasets_per_rank) == full_size assert len({tuple(x.values()) for ds in datasets_per_rank for x in ds}) == full_size def test_split_dataset_by_node_iterable(): def gen(): return ({"i": i} for i in range(17)) world_size = 3 full_ds = IterableDataset.from_generator(gen) full_size = len(list(full_ds)) datasets_per_rank = [ split_dataset_by_node(full_ds, rank=rank, world_size=world_size) for rank in range(world_size) ] assert sum(len(list(ds)) for ds in datasets_per_rank) == full_size assert len({tuple(x.values()) for ds in datasets_per_rank for x in ds}) == full_size @pytest.mark.parametrize("shards_per_node", [1, 2, 3]) def test_split_dataset_by_node_iterable_sharded(shards_per_node): def gen(shards): for shard in shards: yield from ({"i": i, "shard": shard} for i in range(17)) world_size = 3 num_shards = shards_per_node * world_size gen_kwargs = {"shards": [f"shard_{shard_idx}.txt" for shard_idx in range(num_shards)]} full_ds = IterableDataset.from_generator(gen, gen_kwargs=gen_kwargs) full_size = len(list(full_ds)) assert full_ds.n_shards == world_size * shards_per_node datasets_per_rank = [ split_dataset_by_node(full_ds, rank=rank, world_size=world_size) for rank in range(world_size) ] assert [ds.n_shards for ds in datasets_per_rank] == [shards_per_node] * world_size assert sum(len(list(ds)) for ds in datasets_per_rank) == full_size assert len({tuple(x.values()) for ds in datasets_per_rank for x in ds}) == full_size def test_distributed_shuffle_iterable(): def gen(): return ({"i": i} for i in range(17)) world_size = 2 full_ds = IterableDataset.from_generator(gen) full_size = len(list(full_ds)) ds_rank0 = split_dataset_by_node(full_ds, rank=0, world_size=world_size).shuffle(seed=42) assert len(list(ds_rank0)) == 1 + full_size // world_size with pytest.raises(RuntimeError): split_dataset_by_node(full_ds, rank=0, world_size=world_size).shuffle() ds_rank0 = split_dataset_by_node(full_ds.shuffle(seed=42), rank=0, world_size=world_size) assert len(list(ds_rank0)) == 1 + full_size // world_size with pytest.raises(RuntimeError): split_dataset_by_node(full_ds.shuffle(), rank=0, world_size=world_size) @pytest.mark.parametrize("streaming", [False, True]) @require_torch @pytest.mark.skipif(os.name == "nt", reason="execute_subprocess_async doesn't support windows") @pytest.mark.integration def test_torch_distributed_run(streaming): nproc_per_node = 2 master_port = get_torch_dist_unique_port() test_script = Path(__file__).resolve().parent / "distributed_scripts" / "run_torch_distributed.py" distributed_args = f""" -m torch.distributed.run --nproc_per_node={nproc_per_node} --master_port={master_port} {test_script} """.split() args = f""" --streaming={streaming} """.split() cmd = [sys.executable] + distributed_args + args execute_subprocess_async(cmd, env=os.environ.copy()) @pytest.mark.parametrize( "nproc_per_node, num_workers", [ (2, 2), # each node has 2 shards and each worker has 1 shards (3, 2), # each node uses all the shards but skips examples, and each worker has 2 shards ], ) @require_torch @pytest.mark.skipif(os.name == "nt", reason="execute_subprocess_async doesn't support windows") @pytest.mark.integration def test_torch_distributed_run_streaming_with_num_workers(nproc_per_node, num_workers): streaming = True master_port = get_torch_dist_unique_port() test_script = Path(__file__).resolve().parent / "distributed_scripts" / "run_torch_distributed.py" distributed_args = f""" -m torch.distributed.run --nproc_per_node={nproc_per_node} --master_port={master_port} {test_script} """.split() args = f""" --streaming={streaming} --num_workers={num_workers} """.split() cmd = [sys.executable] + distributed_args + args execute_subprocess_async(cmd, env=os.environ.copy())
import os import sys from pathlib import Path import pytest from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node from .utils import execute_subprocess_async, get_torch_dist_unique_port, require_torch def test_split_dataset_by_node_map_style(): full_ds = Dataset.from_dict({"i": range(17)}) full_size = len(full_ds) world_size = 3 datasets_per_rank = [ split_dataset_by_node(full_ds, rank=rank, world_size=world_size) for rank in range(world_size) ] assert sum(len(ds) for ds in datasets_per_rank) == full_size assert len({tuple(x.values()) for ds in datasets_per_rank for x in ds}) == full_size def test_split_dataset_by_node_iterable(): def gen(): return ({"i": i} for i in range(17)) world_size = 3 full_ds = IterableDataset.from_generator(gen) full_size = len(list(full_ds)) datasets_per_rank = [ split_dataset_by_node(full_ds, rank=rank, world_size=world_size) for rank in range(world_size) ] assert sum(len(list(ds)) for ds in datasets_per_rank) == full_size assert len({tuple(x.values()) for ds in datasets_per_rank for x in ds}) == full_size @pytest.mark.parametrize("shards_per_node", [1, 2, 3]) def test_split_dataset_by_node_iterable_sharded(shards_per_node): def gen(shards): for shard in shards: yield from ({"i": i, "shard": shard} for i in range(17)) world_size = 3 num_shards = shards_per_node * world_size gen_kwargs = {"shards": [f"shard_{shard_idx}.txt" for shard_idx in range(num_shards)]} full_ds = IterableDataset.from_generator(gen, gen_kwargs=gen_kwargs) full_size = len(list(full_ds)) assert full_ds.n_shards == world_size * shards_per_node datasets_per_rank = [ split_dataset_by_node(full_ds, rank=rank, world_size=world_size) for rank in range(world_size) ] assert [ds.n_shards for ds in datasets_per_rank] == [shards_per_node] * world_size assert sum(len(list(ds)) for ds in datasets_per_rank) == full_size assert len({tuple(x.values()) for ds in datasets_per_rank for x in ds}) == full_size def test_distributed_shuffle_iterable(): def gen(): return ({"i": i} for i in range(17)) world_size = 2 full_ds = IterableDataset.from_generator(gen) full_size = len(list(full_ds)) ds_rank0 = split_dataset_by_node(full_ds, rank=0, world_size=world_size).shuffle(seed=42) assert len(list(ds_rank0)) == 1 + full_size // world_size with pytest.raises(RuntimeError): split_dataset_by_node(full_ds, rank=0, world_size=world_size).shuffle() ds_rank0 = split_dataset_by_node(full_ds.shuffle(seed=42), rank=0, world_size=world_size) assert len(list(ds_rank0)) == 1 + full_size // world_size with pytest.raises(RuntimeError): split_dataset_by_node(full_ds.shuffle(), rank=0, world_size=world_size) @pytest.mark.parametrize("streaming", [False, True]) @require_torch @pytest.mark.skipif(os.name == "nt", reason="execute_subprocess_async doesn't support windows") @pytest.mark.integration def test_torch_distributed_launch(streaming): nproc_per_node = 2 master_port = get_torch_dist_unique_port() test_script = Path(__file__).resolve().parent / "distributed_scripts" / "launch_torch_distributed.py" distributed_args = f""" -m torch.distributed.launch --nproc_per_node={nproc_per_node} --master_port={master_port} {test_script} """.split() args = f""" --streaming={streaming} """.split() cmd = [sys.executable] + distributed_args + args execute_subprocess_async(cmd, env=os.environ.copy()) @pytest.mark.parametrize( "nproc_per_node, num_workers", [ (2, 2), # each node has 2 shards and each worker has 1 shards (3, 2), # each node uses all the shards but skips examples, and each worker has 2 shards ], ) @require_torch @pytest.mark.skipif(os.name == "nt", reason="execute_subprocess_async doesn't support windows") @pytest.mark.integration def test_torch_distributed_launch_streaming_with_num_workers(nproc_per_node, num_workers): streaming = True master_port = get_torch_dist_unique_port() test_script = Path(__file__).resolve().parent / "distributed_scripts" / "launch_torch_distributed.py" distributed_args = f""" -m torch.distributed.launch --nproc_per_node={nproc_per_node} --master_port={master_port} {test_script} """.split() args = f""" --streaming={streaming} --num_workers={num_workers} """.split() cmd = [sys.executable] + distributed_args + args execute_subprocess_async(cmd, env=os.environ.copy())
"""Tool for asking human input.""" from typing import Callable, Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import Field def _print_func(text: str) -> None: print("\n") # noqa: T201 print(text) # noqa: T201 class HumanInputRun(BaseTool): """Tool that asks user for input.""" name: str = "human" description: str = ( "You can ask a human for guidance when you think you " "got stuck or you are not sure what to do next. " "The input should be a question for the human." ) prompt_func: Callable[[str], None] = Field(default_factory=lambda: _print_func) input_func: Callable = Field(default_factory=lambda: input) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Human input tool.""" self.prompt_func(query) return self.input_func()
"""Tool for asking human input.""" from typing import Callable, Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import Field def _print_func(text: str) -> None: print("\n") # noqa: T201 print(text) # noqa: T201 class HumanInputRun(BaseTool): # type: ignore[override] """Tool that asks user for input.""" name: str = "human" description: str = ( "You can ask a human for guidance when you think you " "got stuck or you are not sure what to do next. " "The input should be a question for the human." ) prompt_func: Callable[[str], None] = Field(default_factory=lambda: _print_func) input_func: Callable = Field(default_factory=lambda: input) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Human input tool.""" self.prompt_func(query) return self.input_func()
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', 'jina-hubble-sdk>=0.11.0', ], 'full': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'jina-hubble-sdk>=0.10.0', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', ], 'qdrant': [ 'qdrant-client~=0.7.3', ], 'annlite': [ 'annlite>=0.3.10', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'redis': [ 'redis>=4.3.0', ], 'benchmark': [ 'pandas', 'seaborn', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.10', 'elasticsearch>=8.2.0', 'redis>=4.3.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', 'jina-hubble-sdk>=0.11.0', ], 'full': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'jina-hubble-sdk>=0.10.0', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', ], 'qdrant': [ 'qdrant-client~=0.7.3', ], 'annlite': [ 'annlite>=0.3.2', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'redis': [ 'redis>=4.3.0', ], 'benchmark': [ 'pandas', 'seaborn', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.2', 'elasticsearch>=8.2.0', 'redis>=4.3.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
import logging import random from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseInformationRetrievalEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load the NFcorpus IR dataset (https://huggingface.co/datasets/BeIR/nfcorpus, https://huggingface.co/datasets/BeIR/nfcorpus-qrels) corpus = load_dataset("BeIR/nfcorpus", "corpus", split="corpus") queries = load_dataset("BeIR/nfcorpus", "queries", split="queries") relevant_docs_data = load_dataset("BeIR/nfcorpus-qrels", split="test") # For this dataset, we want to concatenate the title and texts for the corpus corpus = corpus.map(lambda x: {"text": x["title"] + " " + x["text"]}, remove_columns=["title"]) # Shrink the corpus size heavily to only the relevant documents + 1,000 random documents required_corpus_ids = set(map(str, relevant_docs_data["corpus-id"])) required_corpus_ids |= set(random.sample(corpus["_id"], k=1000)) corpus = corpus.filter(lambda x: x["_id"] in required_corpus_ids) # Convert the datasets to dictionaries corpus = dict(zip(corpus["_id"], corpus["text"])) # Our corpus (cid => document) queries = dict(zip(queries["_id"], queries["text"])) # Our queries (qid => question) relevant_docs = {} # Query ID to relevant documents (qid => set([relevant_cids]) for qid, corpus_ids in zip(relevant_docs_data["query-id"], relevant_docs_data["corpus-id"]): qid = str(qid) corpus_ids = str(corpus_ids) if qid not in relevant_docs: relevant_docs[qid] = set() relevant_docs[qid].add(corpus_ids) # Given queries, a corpus and a mapping with relevant documents, the SparseInformationRetrievalEvaluator computes different IR metrics. ir_evaluator = SparseInformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="BeIR-nfcorpus-subset-test", show_progress_bar=True, batch_size=16, ) # Run evaluation results = ir_evaluator(model) """ Queries: 323 Corpus: 3269 Score-Function: dot Accuracy@1: 50.77% Accuracy@3: 64.40% Accuracy@5: 66.87% Accuracy@10: 71.83% Precision@1: 50.77% Precision@3: 40.45% Precision@5: 34.06% Precision@10: 25.98% Recall@1: 6.27% Recall@3: 11.69% Recall@5: 13.74% Recall@10: 17.23% MRR@10: 0.5814 NDCG@10: 0.3621 MAP@100: 0.1838 Model Query Sparsity: Active Dimensions: 40.0, Sparsity Ratio: 0.9987 Model Corpus Sparsity: Active Dimensions: 206.2, Sparsity Ratio: 0.9932 """ # Print the results print(f"Primary metric: {ir_evaluator.primary_metric}") # => Primary metric: BeIR-nfcorpus-subset-test_dot_ndcg@10 print(f"Primary metric value: {results[ir_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.Primary metric value: 0.3621
import logging import random from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseInformationRetrievalEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load the NFcorpus IR dataset (https://huggingface.co/datasets/BeIR/nfcorpus, https://huggingface.co/datasets/BeIR/nfcorpus-qrels) corpus = load_dataset("BeIR/nfcorpus", "corpus", split="corpus") queries = load_dataset("BeIR/nfcorpus", "queries", split="queries") relevant_docs_data = load_dataset("BeIR/nfcorpus-qrels", split="test") # For this dataset, we want to concatenate the title and texts for the corpus corpus = corpus.map(lambda x: {"text": x["title"] + " " + x["text"]}, remove_columns=["title"]) # Shrink the corpus size heavily to only the relevant documents + 1,000 random documents required_corpus_ids = set(map(str, relevant_docs_data["corpus-id"])) required_corpus_ids |= set(random.sample(corpus["_id"], k=1000)) corpus = corpus.filter(lambda x: x["_id"] in required_corpus_ids) # Convert the datasets to dictionaries corpus = dict(zip(corpus["_id"], corpus["text"])) # Our corpus (cid => document) queries = dict(zip(queries["_id"], queries["text"])) # Our queries (qid => question) relevant_docs = {} # Query ID to relevant documents (qid => set([relevant_cids]) for qid, corpus_ids in zip(relevant_docs_data["query-id"], relevant_docs_data["corpus-id"]): qid = str(qid) corpus_ids = str(corpus_ids) if qid not in relevant_docs: relevant_docs[qid] = set() relevant_docs[qid].add(corpus_ids) # Given queries, a corpus and a mapping with relevant documents, the SparseInformationRetrievalEvaluator computes different IR metrics. ir_evaluator = SparseInformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="BeIR-nfcorpus-subset-test", show_progress_bar=True, batch_size=16, ) # Run evaluation results = ir_evaluator(model) """ Queries: 323 Corpus: 3269 Score-Function: dot Accuracy@1: 50.46% Accuracy@3: 64.40% Accuracy@5: 67.49% Accuracy@10: 72.14% Precision@1: 50.46% Precision@3: 40.87% Precision@5: 34.12% Precision@10: 26.10% Recall@1: 6.11% Recall@3: 11.73% Recall@5: 13.64% Recall@10: 17.24% MRR@10: 0.5801 NDCG@10: 0.3626 MAP@100: 0.1832 Model Query Sparsity: Active Dimensions: 43.1, Sparsity Ratio: 0.9986 Model Corpus Sparsity: Active Dimensions: 207.0, Sparsity Ratio: 0.9932 """ # Print the results print(f"Primary metric: {ir_evaluator.primary_metric}") # => Primary metric: BeIR-nfcorpus-subset-test_dot_ndcg@10 print(f"Primary metric value: {results[ir_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.3626
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import pytest from executor.audioclip_text import AudioCLIPTextEncoder from jina import Document, DocumentArray, Flow _EMBEDDING_DIM = 1024 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=AudioCLIPTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'pea', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:"cuda"', 'download_model:True', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import pytest from executor.audioclip_text import AudioCLIPTextEncoder from jina import Document, DocumentArray, Flow _EMBEDDING_DIM = 1024 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=AudioCLIPTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'pea', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:"cuda"', ], timeout=30, check=True, )
from __future__ import annotations import torch import transformers from PIL import Image from torch import nn class CLIPModel(nn.Module): save_in_root: bool = True def __init__(self, model_name: str = "openai/clip-vit-base-patch32", processor_name=None) -> None: super().__init__() if processor_name is None: processor_name = model_name self.model = transformers.CLIPModel.from_pretrained(model_name) self.processor = transformers.CLIPProcessor.from_pretrained(processor_name) def __repr__(self) -> str: return "CLIPModel()" @property def max_seq_length(self) -> int: return self.processor.tokenizer.model_max_length @max_seq_length.setter def max_seq_length(self, value: int) -> None: self.processor.tokenizer.model_max_length = value def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: image_embeds = [] text_embeds = [] if "pixel_values" in features: vision_outputs = self.model.vision_model(pixel_values=features["pixel_values"]) image_embeds = self.model.visual_projection(vision_outputs[1]) if "input_ids" in features: text_outputs = self.model.text_model( input_ids=features.get("input_ids"), attention_mask=features.get("attention_mask", None), position_ids=features.get("position_ids", None), output_attentions=features.get("output_attentions", None), output_hidden_states=features.get("output_hidden_states", None), ) text_embeds = self.model.text_projection(text_outputs[1]) sentence_embedding = [] image_features = iter(image_embeds) text_features = iter(text_embeds) for idx, input_type in enumerate(features["image_text_info"]): if input_type == 0: sentence_embedding.append(next(image_features)) else: sentence_embedding.append(next(text_features)) features["sentence_embedding"] = torch.stack(sentence_embedding).float() return features def tokenize(self, texts, padding: str | bool = True) -> dict[str, torch.Tensor]: images = [] texts_values = [] image_text_info = [] for idx, data in enumerate(texts): if isinstance(data, Image.Image): # An Image images.append(data) image_text_info.append(0) else: # A text texts_values.append(data) image_text_info.append(1) encoding = {} if len(texts_values): encoding = self.processor.tokenizer(texts_values, padding=padding, truncation=True, return_tensors="pt") if len(images): image_features = self.processor.image_processor(images, return_tensors="pt") encoding["pixel_values"] = image_features.pixel_values encoding["image_text_info"] = image_text_info return dict(encoding) @property def tokenizer(self) -> transformers.CLIPProcessor: return self.processor def save(self, output_path: str) -> None: self.model.save_pretrained(output_path) self.processor.save_pretrained(output_path) @staticmethod def load(input_path: str) -> CLIPModel: return CLIPModel(model_name=input_path)
from __future__ import annotations import torch import transformers from PIL import Image from torch import nn class CLIPModel(nn.Module): save_in_root: bool = True def __init__(self, model_name: str = "openai/clip-vit-base-patch32", processor_name=None) -> None: super().__init__() if processor_name is None: processor_name = model_name self.model = transformers.CLIPModel.from_pretrained(model_name) self.processor = transformers.CLIPProcessor.from_pretrained(processor_name) def __repr__(self) -> str: return "CLIPModel()" def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: image_embeds = [] text_embeds = [] if "pixel_values" in features: vision_outputs = self.model.vision_model(pixel_values=features["pixel_values"]) image_embeds = self.model.visual_projection(vision_outputs[1]) if "input_ids" in features: text_outputs = self.model.text_model( input_ids=features.get("input_ids"), attention_mask=features.get("attention_mask", None), position_ids=features.get("position_ids", None), output_attentions=features.get("output_attentions", None), output_hidden_states=features.get("output_hidden_states", None), ) text_embeds = self.model.text_projection(text_outputs[1]) sentence_embedding = [] image_features = iter(image_embeds) text_features = iter(text_embeds) for idx, input_type in enumerate(features["image_text_info"]): if input_type == 0: sentence_embedding.append(next(image_features)) else: sentence_embedding.append(next(text_features)) features["sentence_embedding"] = torch.stack(sentence_embedding).float() return features def tokenize(self, texts, padding: str | bool = True) -> dict[str, torch.Tensor]: images = [] texts_values = [] image_text_info = [] for idx, data in enumerate(texts): if isinstance(data, Image.Image): # An Image images.append(data) image_text_info.append(0) else: # A text texts_values.append(data) image_text_info.append(1) encoding = {} if len(texts_values): encoding = self.processor.tokenizer(texts_values, return_tensors="pt", padding=padding) if len(images): image_features = self.processor.image_processor(images, return_tensors="pt") encoding["pixel_values"] = image_features.pixel_values encoding["image_text_info"] = image_text_info return dict(encoding) @property def tokenizer(self) -> transformers.CLIPProcessor: return self.processor def save(self, output_path: str) -> None: self.model.save_pretrained(output_path) self.processor.save_pretrained(output_path) @staticmethod def load(input_path: str) -> CLIPModel: return CLIPModel(model_name=input_path)
from langchain_core.agents import AgentAction from langchain.agents.format_scratchpad.xml import format_xml def test_single_agent_action_observation() -> None: # Arrange agent_action = AgentAction(tool="Tool1", tool_input="Input1", log="Log1") observation = "Observation1" intermediate_steps = [(agent_action, observation)] # Act result = format_xml(intermediate_steps) expected_result = """<tool>Tool1</tool><tool_input>Input1\ </tool_input><observation>Observation1</observation>""" # Assert assert result == expected_result def test_multiple_agent_actions_observations() -> None: # Arrange agent_action1 = AgentAction(tool="Tool1", tool_input="Input1", log="Log1") agent_action2 = AgentAction(tool="Tool2", tool_input="Input2", log="Log2") observation1 = "Observation1" observation2 = "Observation2" intermediate_steps = [(agent_action1, observation1), (agent_action2, observation2)] # Act result = format_xml(intermediate_steps) # Assert expected_result = """<tool>Tool1</tool><tool_input>Input1\ </tool_input><observation>Observation1</observation><tool>\ Tool2</tool><tool_input>Input2</tool_input><observation>\ Observation2</observation>""" assert result == expected_result def test_empty_list_agent_actions() -> None: result = format_xml([]) assert result == "" def test_xml_escaping_minimal() -> None: """Test that XML tags in tool names are escaped with minimal format.""" # Arrange agent_action = AgentAction( tool="search<tool>nested</tool>", tool_input="query<input>test</input>", log="" ) observation = "Found <observation>result</observation>" intermediate_steps = [(agent_action, observation)] # Act result = format_xml(intermediate_steps, escape_format="minimal") # Assert - XML tags should be replaced with custom delimiters expected_result = ( "<tool>search[[tool]]nested[[/tool]]</tool>" "<tool_input>query<input>test</input></tool_input>" "<observation>Found [[observation]]result[[/observation]]</observation>" ) assert result == expected_result def test_no_escaping() -> None: """Test that escaping can be disabled.""" # Arrange agent_action = AgentAction(tool="Tool1", tool_input="Input1", log="") observation = "Observation1" intermediate_steps = [(agent_action, observation)] # Act result = format_xml(intermediate_steps, escape_format=None) # Assert expected_result = ( "<tool>Tool1</tool><tool_input>Input1</tool_input>" "<observation>Observation1</observation>" ) assert result == expected_result
from langchain_core.agents import AgentAction from langchain.agents.format_scratchpad.xml import format_xml def test_single_agent_action_observation() -> None: # Arrange agent_action = AgentAction(tool="Tool1", tool_input="Input1", log="Log1") observation = "Observation1" intermediate_steps = [(agent_action, observation)] # Act result = format_xml(intermediate_steps) expected_result = """<tool>Tool1</tool><tool_input>Input1\ </tool_input><observation>Observation1</observation>""" # Assert assert result == expected_result def test_multiple_agent_actions_observations() -> None: # Arrange agent_action1 = AgentAction(tool="Tool1", tool_input="Input1", log="Log1") agent_action2 = AgentAction(tool="Tool2", tool_input="Input2", log="Log2") observation1 = "Observation1" observation2 = "Observation2" intermediate_steps = [(agent_action1, observation1), (agent_action2, observation2)] # Act result = format_xml(intermediate_steps) # Assert expected_result = """<tool>Tool1</tool><tool_input>Input1\ </tool_input><observation>Observation1</observation><tool>\ Tool2</tool><tool_input>Input2</tool_input><observation>\ Observation2</observation>""" assert result == expected_result def test_empty_list_agent_actions() -> None: result = format_xml([]) assert result == ""
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=True) class AutomaticSpeechRecognition(TaskTemplate): task: str = field(default="automatic-speech-recognition", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"audio": Audio()}) label_schema: ClassVar[Features] = Features({"transcription": Value("string")}) audio_column: str = "audio" transcription_column: str = "transcription" def align_with_features(self, features): if self.audio_column not in features: raise ValueError(f"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column], Audio): raise ValueError(f"Column {self.audio_column} is not an Audio type.") task_template = copy.deepcopy(self) input_schema = self.input_schema.copy() input_schema["audio"] = features[self.audio_column] task_template.__dict__["input_schema"] = input_schema return task_template @property def column_mapping(self) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
import copy from dataclasses import dataclass from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=True) class AutomaticSpeechRecognition(TaskTemplate): task: str = "automatic-speech-recognition" input_schema: ClassVar[Features] = Features({"audio": Audio()}) label_schema: ClassVar[Features] = Features({"transcription": Value("string")}) audio_column: str = "audio" transcription_column: str = "transcription" def align_with_features(self, features): if self.audio_column not in features: raise ValueError(f"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column], Audio): raise ValueError(f"Column {self.audio_column} is not an Audio type.") task_template = copy.deepcopy(self) input_schema = self.input_schema.copy() input_schema["audio"] = features[self.audio_column] task_template.__dict__["input_schema"] = input_schema return task_template @property def column_mapping(self) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
_base_ = './rtmdet_l_8xb32-300e_coco.py' checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-s_imagenet_600e.pth' # noqa model = dict( backbone=dict( deepen_factor=0.33, widen_factor=0.5, init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint)), neck=dict(in_channels=[128, 256, 512], out_channels=128, num_csp_blocks=1), bbox_head=dict(in_channels=128, feat_channels=128, exp_on_reg=False)) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0), dict( type='RandomResize', scale=(1280, 1280), ratio_range=(0.5, 2.0), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict( type='CachedMixUp', img_scale=(640, 640), ratio_range=(1.0, 1.0), max_cached_images=20, pad_val=(114, 114, 114)), dict(type='PackDetInputs') ] train_pipeline_stage2 = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=(640, 640), ratio_range=(0.5, 2.0), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) custom_hooks = [ dict( type='EMAHook', ema_type='ExpMomentumEMA', momentum=0.0002, update_buffers=True, priority=49), dict( type='PipelineSwitchHook', switch_epoch=280, switch_pipeline=train_pipeline_stage2) ]
_base_ = './rtmdet_l_8xb32-300e_coco.py' checkpoint = 'TODO:imagenet_pretrain' # noqa model = dict( backbone=dict( deepen_factor=0.33, widen_factor=0.5, init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint)), neck=dict(in_channels=[128, 256, 512], out_channels=128, num_csp_blocks=1), bbox_head=dict(in_channels=128, feat_channels=128, exp_on_reg=False)) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0), dict( type='RandomResize', scale=(1280, 1280), ratio_range=(0.5, 2.0), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict( type='CachedMixUp', img_scale=(640, 640), ratio_range=(1.0, 1.0), max_cached_images=20, pad_val=(114, 114, 114)), dict(type='PackDetInputs') ] train_pipeline_stage2 = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=(640, 640), ratio_range=(0.5, 2.0), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) custom_hooks = [ dict( type='EMAHook', ema_type='ExpMomentumEMA', momentum=0.0002, update_buffers=True, priority=49), dict( type='PipelineSwitchHook', switch_epoch=280, switch_pipeline=train_pipeline_stage2) ]
# Copyright (c) OpenMMLab. All rights reserved. from argparse import ArgumentParser, Namespace from pathlib import Path from tempfile import TemporaryDirectory from mmengine.config import Config from mmengine.utils import mkdir_or_exist try: from model_archiver.model_packaging import package_model from model_archiver.model_packaging_utils import ModelExportUtils except ImportError: package_model = None def mmdet2torchserve( config_file: str, checkpoint_file: str, output_folder: str, model_name: str, model_version: str = '1.0', force: bool = False, ): """Converts MMDetection model (config + checkpoint) to TorchServe `.mar`. Args: config_file: In MMDetection config format. The contents vary for each task repository. checkpoint_file: In MMDetection checkpoint format. The contents vary for each task repository. output_folder: Folder where `{model_name}.mar` will be created. The file created will be in TorchServe archive format. model_name: If not None, used for naming the `{model_name}.mar` file that will be created under `output_folder`. If None, `{Path(checkpoint_file).stem}` will be used. model_version: Model's version. force: If True, if there is an existing `{model_name}.mar` file under `output_folder` it will be overwritten. """ mkdir_or_exist(output_folder) config = Config.fromfile(config_file) with TemporaryDirectory() as tmpdir: config.dump(f'{tmpdir}/config.py') args = Namespace( **{ 'model_file': f'{tmpdir}/config.py', 'serialized_file': checkpoint_file, 'handler': f'{Path(__file__).parent}/mmdet_handler.py', 'model_name': model_name or Path(checkpoint_file).stem, 'version': model_version, 'export_path': output_folder, 'force': force, 'requirements_file': None, 'extra_files': None, 'runtime': 'python', 'archive_format': 'default' }) manifest = ModelExportUtils.generate_manifest_json(args) package_model(args, manifest) def parse_args(): parser = ArgumentParser( description='Convert MMDetection models to TorchServe `.mar` format.') parser.add_argument('config', type=str, help='config file path') parser.add_argument('checkpoint', type=str, help='checkpoint file path') parser.add_argument( '--output-folder', type=str, required=True, help='Folder where `{model_name}.mar` will be created.') parser.add_argument( '--model-name', type=str, default=None, help='If not None, used for naming the `{model_name}.mar`' 'file that will be created under `output_folder`.' 'If None, `{Path(checkpoint_file).stem}` will be used.') parser.add_argument( '--model-version', type=str, default='1.0', help='Number used for versioning.') parser.add_argument( '-f', '--force', action='store_true', help='overwrite the existing `{model_name}.mar`') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() if package_model is None: raise ImportError('`torch-model-archiver` is required.' 'Try: pip install torch-model-archiver') mmdet2torchserve(args.config, args.checkpoint, args.output_folder, args.model_name, args.model_version, args.force)
# Copyright (c) OpenMMLab. All rights reserved. from argparse import ArgumentParser, Namespace from pathlib import Path from tempfile import TemporaryDirectory import mmcv try: from model_archiver.model_packaging import package_model from model_archiver.model_packaging_utils import ModelExportUtils except ImportError: package_model = None def mmdet2torchserve( config_file: str, checkpoint_file: str, output_folder: str, model_name: str, model_version: str = '1.0', force: bool = False, ): """Converts MMDetection model (config + checkpoint) to TorchServe `.mar`. Args: config_file: In MMDetection config format. The contents vary for each task repository. checkpoint_file: In MMDetection checkpoint format. The contents vary for each task repository. output_folder: Folder where `{model_name}.mar` will be created. The file created will be in TorchServe archive format. model_name: If not None, used for naming the `{model_name}.mar` file that will be created under `output_folder`. If None, `{Path(checkpoint_file).stem}` will be used. model_version: Model's version. force: If True, if there is an existing `{model_name}.mar` file under `output_folder` it will be overwritten. """ mmcv.mkdir_or_exist(output_folder) config = mmcv.Config.fromfile(config_file) with TemporaryDirectory() as tmpdir: config.dump(f'{tmpdir}/config.py') args = Namespace( **{ 'model_file': f'{tmpdir}/config.py', 'serialized_file': checkpoint_file, 'handler': f'{Path(__file__).parent}/mmdet_handler.py', 'model_name': model_name or Path(checkpoint_file).stem, 'version': model_version, 'export_path': output_folder, 'force': force, 'requirements_file': None, 'extra_files': None, 'runtime': 'python', 'archive_format': 'default' }) manifest = ModelExportUtils.generate_manifest_json(args) package_model(args, manifest) def parse_args(): parser = ArgumentParser( description='Convert MMDetection models to TorchServe `.mar` format.') parser.add_argument('config', type=str, help='config file path') parser.add_argument('checkpoint', type=str, help='checkpoint file path') parser.add_argument( '--output-folder', type=str, required=True, help='Folder where `{model_name}.mar` will be created.') parser.add_argument( '--model-name', type=str, default=None, help='If not None, used for naming the `{model_name}.mar`' 'file that will be created under `output_folder`.' 'If None, `{Path(checkpoint_file).stem}` will be used.') parser.add_argument( '--model-version', type=str, default='1.0', help='Number used for versioning.') parser.add_argument( '-f', '--force', action='store_true', help='overwrite the existing `{model_name}.mar`') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() if package_model is None: raise ImportError('`torch-model-archiver` is required.' 'Try: pip install torch-model-archiver') mmdet2torchserve(args.config, args.checkpoint, args.output_folder, args.model_name, args.model_version, args.force)
from backend.blocks.nvidia._auth import ( NvidiaCredentials, NvidiaCredentialsField, NvidiaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests from backend.util.type import MediaFileType class NvidiaDeepfakeDetectBlock(Block): class Input(BlockSchema): credentials: NvidiaCredentialsInput = NvidiaCredentialsField() image_base64: MediaFileType = SchemaField( description="Image to analyze for deepfakes", ) return_image: bool = SchemaField( description="Whether to return the processed image with markings", default=False, ) class Output(BlockSchema): status: str = SchemaField( description="Detection status (SUCCESS, ERROR, CONTENT_FILTERED)", ) image: MediaFileType = SchemaField( description="Processed image with detection markings (if return_image=True)", ) is_deepfake: float = SchemaField( description="Probability that the image is a deepfake (0-1)", ) def __init__(self): super().__init__( id="8c7d0d67-e79c-44f6-92a1-c2600c8aac7f", description="Detects potential deepfakes in images using Nvidia's AI API", categories={BlockCategory.SAFETY}, input_schema=NvidiaDeepfakeDetectBlock.Input, output_schema=NvidiaDeepfakeDetectBlock.Output, ) def run( self, input_data: Input, *, credentials: NvidiaCredentials, **kwargs ) -> BlockOutput: url = "https://ai.api.nvidia.com/v1/cv/hive/deepfake-image-detection" headers = { "accept": "application/json", "content-type": "application/json", "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", } image_data = f"data:image/jpeg;base64,{input_data.image_base64}" payload = { "input": [image_data], "return_image": input_data.return_image, } try: response = requests.post(url, headers=headers, json=payload) response.raise_for_status() data = response.json() result = data.get("data", [{}])[0] # Get deepfake probability from first bounding box if any deepfake_prob = 0.0 if result.get("bounding_boxes"): deepfake_prob = result["bounding_boxes"][0].get("is_deepfake", 0.0) yield "status", result.get("status", "ERROR") yield "is_deepfake", deepfake_prob if input_data.return_image: image_data = result.get("image", "") output_data = f"data:image/jpeg;base64,{image_data}" yield "image", output_data else: yield "image", "" except Exception as e: yield "error", str(e) yield "status", "ERROR" yield "is_deepfake", 0.0 yield "image", ""
from backend.blocks.nvidia._auth import ( NvidiaCredentials, NvidiaCredentialsField, NvidiaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests class NvidiaDeepfakeDetectBlock(Block): class Input(BlockSchema): credentials: NvidiaCredentialsInput = NvidiaCredentialsField() image_base64: str = SchemaField( description="Image to analyze for deepfakes", image_upload=True ) return_image: bool = SchemaField( description="Whether to return the processed image with markings", default=False, ) class Output(BlockSchema): status: str = SchemaField( description="Detection status (SUCCESS, ERROR, CONTENT_FILTERED)", default="", ) image: str = SchemaField( description="Processed image with detection markings (if return_image=True)", default="", image_output=True, ) is_deepfake: float = SchemaField( description="Probability that the image is a deepfake (0-1)", default=0.0, ) def __init__(self): super().__init__( id="8c7d0d67-e79c-44f6-92a1-c2600c8aac7f", description="Detects potential deepfakes in images using Nvidia's AI API", categories={BlockCategory.SAFETY}, input_schema=NvidiaDeepfakeDetectBlock.Input, output_schema=NvidiaDeepfakeDetectBlock.Output, ) def run( self, input_data: Input, *, credentials: NvidiaCredentials, **kwargs ) -> BlockOutput: url = "https://ai.api.nvidia.com/v1/cv/hive/deepfake-image-detection" headers = { "accept": "application/json", "content-type": "application/json", "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", } image_data = f"data:image/jpeg;base64,{input_data.image_base64}" payload = { "input": [image_data], "return_image": input_data.return_image, } try: response = requests.post(url, headers=headers, json=payload) response.raise_for_status() data = response.json() result = data.get("data", [{}])[0] # Get deepfake probability from first bounding box if any deepfake_prob = 0.0 if result.get("bounding_boxes"): deepfake_prob = result["bounding_boxes"][0].get("is_deepfake", 0.0) yield "status", result.get("status", "ERROR") yield "is_deepfake", deepfake_prob if input_data.return_image: image_data = result.get("image", "") output_data = f"data:image/jpeg;base64,{image_data}" yield "image", output_data else: yield "image", "" except Exception as e: yield "error", str(e) yield "status", "ERROR" yield "is_deepfake", 0.0 yield "image", ""
_base_ = 'tridentnet_r50-caffe_1x_coco.py' train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = 'tridentnet_r50-caffe_1x_coco.py' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
# Copyright (c) OpenMMLab. All rights reserved. """copy from https://github.com/ZwwWayne/K-Net/blob/main/knet/det/mask_pseudo_sampler.py.""" import torch from mmengine.data import InstanceData from mmdet.core.bbox.assigners import AssignResult from mmdet.registry import TASK_UTILS from .base_sampler import BaseSampler from .mask_sampling_result import MaskSamplingResult @TASK_UTILS.register_module() class MaskPseudoSampler(BaseSampler): """A pseudo sampler that does not do sampling actually.""" def __init__(self, **kwargs): pass def _sample_pos(self, **kwargs): """Sample positive samples.""" raise NotImplementedError def _sample_neg(self, **kwargs): """Sample negative samples.""" raise NotImplementedError def sample(self, assign_result: AssignResult, pred_instances: InstanceData, gt_instances: InstanceData, *args, **kwargs): """Directly returns the positive and negative indices of samples. Args: assign_result (:obj:`AssignResult`): Mask assigning results. pred_instances (:obj:`InstanceData`): Instances of model predictions. It includes ``scores`` and ``masks`` predicted by the model. gt_instances (:obj:`InstanceData`): Ground truth of instance annotations. It usually includes ``labels`` and ``masks`` attributes. Returns: :obj:`SamplingResult`: sampler results """ pred_masks = pred_instances.masks gt_masks = gt_instances.masks pos_inds = torch.nonzero( assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique() neg_inds = torch.nonzero( assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique() gt_flags = pred_masks.new_zeros(pred_masks.shape[0], dtype=torch.uint8) sampling_result = MaskSamplingResult( pos_inds=pos_inds, neg_inds=neg_inds, masks=pred_masks, gt_masks=gt_masks, assign_result=assign_result, gt_flags=gt_flags, avg_factor_with_neg=False) return sampling_result
# Copyright (c) OpenMMLab. All rights reserved. """copy from https://github.com/ZwwWayne/K-Net/blob/main/knet/det/mask_pseudo_sampler.py.""" import torch from mmdet.registry import TASK_UTILS from .base_sampler import BaseSampler from .mask_sampling_result import MaskSamplingResult @TASK_UTILS.register_module() class MaskPseudoSampler(BaseSampler): """A pseudo sampler that does not do sampling actually.""" def __init__(self, **kwargs): pass def _sample_pos(self, **kwargs): """Sample positive samples.""" raise NotImplementedError def _sample_neg(self, **kwargs): """Sample negative samples.""" raise NotImplementedError def sample(self, assign_result, masks, gt_masks, **kwargs): """Directly returns the positive and negative indices of samples. Args: assign_result (:obj:`AssignResult`): Assigned results masks (torch.Tensor): Bounding boxes gt_masks (torch.Tensor): Ground truth boxes Returns: :obj:`SamplingResult`: sampler results """ pos_inds = torch.nonzero( assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique() neg_inds = torch.nonzero( assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique() gt_flags = masks.new_zeros(masks.shape[0], dtype=torch.uint8) sampling_result = MaskSamplingResult(pos_inds, neg_inds, masks, gt_masks, assign_result, gt_flags) return sampling_result
from typing import TYPE_CHECKING, Type, TypeVar from pydantic import AnyUrl as BaseAnyUrl from pydantic import errors, parse_obj_as from docarray.document.base_node import BaseNode from docarray.proto import NodeProto if TYPE_CHECKING: from pydantic.networks import Parts T = TypeVar('T', bound='AnyUrl') class AnyUrl(BaseAnyUrl, BaseNode): host_required = ( False # turn off host requirement to allow passing of local paths as URL ) def _to_node_protobuf(self) -> NodeProto: """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(any_url=str(self)) @classmethod def validate_parts(cls, parts: 'Parts', validate_port: bool = True) -> 'Parts': """ A method used to validate parts of a URL. Our URLs should be able to function both in local and remote settings. Therefore, we allow missing `scheme`, making it possible to pass a file path. """ scheme = parts['scheme'] if scheme is None: pass # allow missing scheme, unlike pydantic elif cls.allowed_schemes and scheme.lower() not in cls.allowed_schemes: raise errors.UrlSchemePermittedError(set(cls.allowed_schemes)) if validate_port: cls._validate_port(parts['port']) user = parts['user'] if cls.user_required and user is None: raise errors.UrlUserInfoError() return parts @classmethod def from_protobuf(cls: Type[T], pb_msg: 'str') -> T: """ read url from a proto msg :param pb_msg: :return: url """ return parse_obj_as(cls, pb_msg)
from typing import Type, TypeVar from pydantic import AnyUrl as BaseAnyUrl from pydantic import parse_obj_as from docarray.document.base_node import BaseNode from docarray.proto import NodeProto T = TypeVar('T', bound='AnyUrl') class AnyUrl(BaseAnyUrl, BaseNode): def _to_node_protobuf(self) -> NodeProto: """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(any_url=str(self)) @classmethod def from_protobuf(cls: Type[T], pb_msg: 'str') -> T: """ read url from a proto msg :param pb_msg: :return: url """ return parse_obj_as(cls, pb_msg)