input
stringlengths
33
5k
output
stringlengths
32
5k
from typing import Any, Optional, Type, TypeVar, Union from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, AnyTensor, Mesh3DUrl T = TypeVar('T', bound='Mesh3D') class Mesh3D(BaseDocument): """ Document for handling meshes for 3D data representation. A mesh is a representation for 3D data and contains vertices and faces information. Vertices are points in a 3D space, represented as a tensor of shape (n_points, 3). Faces are triangular surfaces that can be defined by three points in 3D space, corresponding to the three vertices of a triangle. Faces can be represented as a tensor of shape (n_faces, 3). Each number in that tensor refers to an index of a vertex in the tensor of vertices. The Mesh3D Document can contain an Mesh3DUrl (`Mesh3D.url`), an AnyTensor of vertices (`Mesh3D.vertices`), an AnyTensor of faces (`Mesh3D.faces`) and an AnyEmbedding (`Mesh3D.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Mesh3D # use it directly mesh = Mesh3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') mesh.vertices, mesh.faces = mesh.url.load() model = MyEmbeddingModel() mesh.embedding = model(mesh.vertices) You can extend this Document: .. code-block:: python from docarray.documents import Mesh3D from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyMesh3D(Mesh3D): name: Optional[Text] mesh = MyMesh3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') mesh.vertices, mesh.faces = mesh.url.load() model = MyEmbeddingModel() mesh.embedding = model(mesh.vertices) mesh.name = 'my first mesh' You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Mesh3D, Text # compose it class MultiModalDoc(BaseDocument): mesh: Mesh3D text: Text mmdoc = MultiModalDoc( mesh=Mesh3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj'), text=Text(text='hello world, how are you doing?'), ) mmdoc.mesh.vertices, mmdoc.mesh.faces = mmdoc.mesh.url.load() # or mmdoc.mesh.bytes = mmdoc.mesh.url.load_bytes() """ url: Optional[Mesh3DUrl] vertices: Optional[AnyTensor] faces: Optional[AnyTensor] embedding: Optional[AnyEmbedding] bytes: Optional[bytes] @classmethod def validate( cls: Type[T], value: Union[str, Any], ) -> T: if isinstance(value, str): value = cls(url=value) return super().validate(value)
from typing import Any, Optional, Type, TypeVar, Union from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, AnyTensor, Mesh3DUrl T = TypeVar('T', bound='Mesh3D') class Mesh3D(BaseDocument): """ Document for handling meshes for 3D data representation. A mesh is a representation for 3D data and contains vertices and faces information. Vertices are points in a 3D space, represented as a tensor of shape (n_points, 3). Faces are triangular surfaces that can be defined by three points in 3D space, corresponding to the three vertices of a triangle. Faces can be represented as a tensor of shape (n_faces, 3). Each number in that tensor refers to an index of a vertex in the tensor of vertices. The Mesh3D Document can contain an Mesh3DUrl (`Mesh3D.url`), an AnyTensor of vertices (`Mesh3D.vertices`), an AnyTensor of faces (`Mesh3D.faces`) and an AnyEmbedding (`Mesh3D.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Mesh3D # use it directly mesh = Mesh3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') mesh.vertices, mesh.faces = mesh.url.load() model = MyEmbeddingModel() mesh.embedding = model(mesh.vertices) You can extend this Document: .. code-block:: python from docarray.documents import Mesh3D from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyMesh3D(Mesh3D): name: Optional[Text] mesh = MyMesh3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') mesh.vertices, mesh.faces = mesh.url.load() model = MyEmbeddingModel() mesh.embedding = model(mesh.vertices) mesh.name = 'my first mesh' You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Mesh3D, Text # compose it class MultiModalDoc(BaseDocument): mesh: Mesh3D text: Text mmdoc = MultiModalDoc( mesh=Mesh3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj'), text=Text(text='hello world, how are you doing?'), ) mmdoc.mesh.vertices, mmdoc.mesh.faces = mmdoc.mesh.url.load() """ url: Optional[Mesh3DUrl] vertices: Optional[AnyTensor] faces: Optional[AnyTensor] embedding: Optional[AnyEmbedding] @classmethod def validate( cls: Type[T], value: Union[str, Any], ) -> T: if isinstance(value, str): value = cls(url=value) return super().validate(value)
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', 'jina-hubble-sdk>=0.11.0', ], 'full': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'jina-hubble-sdk>=0.10.0', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', 'weaviate-client~=3.3.0', 'annlite>=0.3.2', 'qdrant-client~=0.7.3', 'elasticsearch>=8.2.0', ], 'qdrant': [ 'qdrant-client~=0.7.3', ], 'annlite': [ 'annlite>=0.3.2', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.2', 'elasticsearch>=8.2.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', 'jina-hubble-sdk>=0.11.0', ], 'full': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'jina-hubble-sdk>=0.10.0', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', 'weaviate-client~=3.3.0', 'annlite>=0.3.2,<0.3.6', 'qdrant-client~=0.7.3', 'elasticsearch>=8.2.0', ], 'qdrant': [ 'qdrant-client~=0.7.3', ], 'annlite': [ 'annlite>=0.3.2,<0.3.6', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.2,<0.3.6', 'elasticsearch>=8.2.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
import os from typing import Dict DEPLOYMENT_FILES = [ 'statefulset-executor', 'deployment-executor', 'deployment-gateway', 'deployment-uses-before', 'deployment-uses-after', 'deployment-uses-before-after', ] cur_dir = os.path.dirname(__file__) DEFAULT_RESOURCE_DIR = os.path.join( cur_dir, '..', '..', '..', '..', 'resources', 'k8s', 'template' ) def get_yaml(template: str, params: Dict) -> Dict: """Create a resource on Kubernetes based on the `template`. It fills the `template` using the `params`. :param template: path to the template file. :param params: dictionary for replacing the placeholders (keys) with the actual values. :return: The yaml dictionary with the corresponding template filled with parameters """ if template == 'configmap': yaml = _get_configmap_yaml(template, params) elif template in DEPLOYMENT_FILES and params.get('device_plugins'): yaml = _get_yaml(template, params) yaml = _get_deployment_with_device_plugins(yaml, params) else: yaml = _get_yaml(template, params) return yaml def _get_yaml(template: str, params: Dict) -> Dict: import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: content = f.read() for k, v in params.items(): content = content.replace(f'{{{k}}}', str(v)) d = yaml.safe_load(content) return d def _get_configmap_yaml(template: str, params: Dict): import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: config_map = yaml.safe_load(f) config_map['metadata']['name'] = params.get('name') + '-' + 'configmap' config_map['metadata']['namespace'] = params.get('namespace') if params.get('data'): for key, value in params['data'].items(): config_map['data'][key] = value return config_map def _get_device_plugins(params: Dict): data = {'limits': {}} for key, value in params.items(): data['limits'][key] = value return data def _get_deployment_with_device_plugins(deployment: Dict, params: Dict) -> Dict: device_plugins = _get_device_plugins(params['device_plugins']) deployment['spec']['template']['spec']['containers'][0][ 'resources' ] = device_plugins return deployment
import os from typing import Dict DEPLOYMENT_FILES = [ 'deployment-executor', 'deployment-gateway', 'deployment-uses-before', 'deployment-uses-after', 'deployment-uses-before-after', ] cur_dir = os.path.dirname(__file__) DEFAULT_RESOURCE_DIR = os.path.join( cur_dir, '..', '..', '..', '..', 'resources', 'k8s', 'template' ) def get_yaml(template: str, params: Dict) -> Dict: """Create a resource on Kubernetes based on the `template`. It fills the `template` using the `params`. :param template: path to the template file. :param params: dictionary for replacing the placeholders (keys) with the actual values. :return: The yaml dictionary with the corresponding template filled with parameters """ if template == 'configmap': yaml = _get_configmap_yaml(template, params) elif template in DEPLOYMENT_FILES and params.get('device_plugins'): yaml = _get_yaml(template, params) yaml = _get_deployment_with_device_plugins(yaml, params) else: yaml = _get_yaml(template, params) return yaml def _get_yaml(template: str, params: Dict) -> Dict: import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: content = f.read() for k, v in params.items(): content = content.replace(f'{{{k}}}', str(v)) d = yaml.safe_load(content) return d def _get_configmap_yaml(template: str, params: Dict): import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: config_map = yaml.safe_load(f) config_map['metadata']['name'] = params.get('name') + '-' + 'configmap' config_map['metadata']['namespace'] = params.get('namespace') if params.get('data'): for key, value in params['data'].items(): config_map['data'][key] = value return config_map def _get_device_plugins(params: Dict): data = {'limits': {}} for key, value in params.items(): data['limits'][key] = value return data def _get_deployment_with_device_plugins(deployment: Dict, params: Dict) -> Dict: device_plugins = _get_device_plugins(params['device_plugins']) deployment['spec']['template']['spec']['containers'][0][ 'resources' ] = device_plugins return deployment
import pytest from keras.src import backend from keras.src import testing class DeviceTest(testing.TestCase): @pytest.mark.skipif(backend.backend() != "tensorflow", reason="tf only") def test_tf_device_scope(self): import tensorflow as tf if not tf.config.list_physical_devices("GPU"): self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) # Also verify the explicit gpu device with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_jax_device_scope(self): import jax def get_device(t): # After updating to Jax 0.4.33, Directly access via t.device attr. return list(t.devices())[0] platform = jax.default_backend() if platform != "gpu": self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("cpu")[0]) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("cpu")[0]) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("gpu")[0]) # Also verify the explicit gpu device with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("gpu")[0]) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_invalid_jax_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device(123).__enter__() @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_torch_device_scope(self): import torch if not torch.cuda.device_count(): self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) # Also verify the explicit gpu -> cuda conversion with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_invalid_torch_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device(123).__enter__()
import pytest from keras.src import backend from keras.src import testing class DeviceTest(testing.TestCase): @pytest.mark.skipif(backend.backend() != "tensorflow", reason="tf only") def test_tf_device_scope(self): import tensorflow as tf if not tf.config.list_physical_devices("GPU"): self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) # Also verify the explicit gpu device with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_jax_device_scope(self): import jax from jax.lib import xla_bridge def get_device(t): # After updating to Jax 0.4.33, Directly access via t.device attr. return list(t.devices())[0] platform = xla_bridge.get_backend().platform if platform != "gpu": self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("cpu")[0]) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("cpu")[0]) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("gpu")[0]) # Also verify the explicit gpu device with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("gpu")[0]) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_invalid_jax_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device(123).__enter__() @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_torch_device_scope(self): import torch if not torch.cuda.device_count(): self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) # Also verify the explicit gpu -> cuda conversion with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_invalid_torch_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device(123).__enter__()
"""Patentsview reader that reads patent abstract.""" from typing import List import requests from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document BASE_URL = "https://api.patentsview.org/patents/query" class PatentsviewReader(BaseReader): """ Patentsview reader. Read patent abstract. """ def __init__(self) -> None: """Initialize with request body.""" self.json = {"q": {"patent_id": None}, "f": ["patent_abstract"]} def load_data(self, patent_number: List[str]) -> List[Document]: """ Load patent abstract given list of patent numbers. Args: patent_number: List[str]: List of patent numbers, e.g., 8848839. Returens: List[Document]: A list of Document objects, each including the abstract for a patent. """ if not patent_number: raise ValueError("Please input patent number") self.json["q"]["patent_id"] = patent_number response = requests.post(BASE_URL, json=self.json) if response.status_code == 200: data = response.json() patents = data.get("patents", []) results = [] for patent in patents: results.append(Document(text=patent["patent_abstract"])) else: raise Exception(f"Request failed with status code: {response.status_code}") return results
"""Patentsview reader that reads patent abstract.""" from typing import List import requests from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document BASE_URL = "https://api.patentsview.org/patents/query" class PatentsviewReader(BaseReader): """Patentsview reader. Read patent abstract. """ def __init__(self) -> None: """Initialize with request body.""" self.json = {"q": {"patent_id": None}, "f": ["patent_abstract"]} def load_data(self, patent_number: List[str]) -> List[Document]: """ Load patent abstract given list of patent numbers. Args: patent_number: List[str]: List of patent numbers, e.g., 8848839. Returens: List[Document]: A list of Document objects, each including the abstract for a patent. """ if not patent_number: raise ValueError("Please input patent number") self.json["q"]["patent_id"] = patent_number response = requests.post(BASE_URL, json=self.json) if response.status_code == 200: data = response.json() patents = data.get("patents", []) results = [] for patent in patents: results.append(Document(text=patent["patent_abstract"])) else: raise Exception(f"Request failed with status code: {response.status_code}") return results
# Copyright (c) OpenMMLab. All rights reserved. from .dist import (all_gather_object, all_reduce, all_gather, all_reduce_dict, collect_results, gather, broadcast, gather_object, sync_random_seed, broadcast_object_list, collect_results_cpu, collect_results_gpu, all_reduce_params) from .utils import (get_dist_info, init_dist, init_local_group, get_backend, get_world_size, get_rank, get_local_size, get_local_rank, is_main_process, master_only, barrier, get_local_group, is_distributed, get_default_group, get_data_device, get_comm_device, cast_data_device, infer_launcher) __all__ = [ 'all_gather_object', 'all_reduce', 'all_gather', 'all_reduce_dict', 'collect_results', 'collect_results_cpu', 'collect_results_gpu', 'gather', 'broadcast', 'gather_object', 'sync_random_seed', 'broadcast_object_list', 'get_dist_info', 'init_dist', 'init_local_group', 'get_backend', 'get_world_size', 'get_rank', 'get_local_size', 'get_local_group', 'get_local_rank', 'is_main_process', 'master_only', 'barrier', 'is_distributed', 'get_default_group', 'all_reduce_params', 'get_data_device', 'get_comm_device', 'cast_data_device', 'infer_launcher' ]
# Copyright (c) OpenMMLab. All rights reserved. from .dist import (all_gather_object, all_reduce, all_gather, all_reduce_dict, collect_results, gather, broadcast, gather_object, sync_random_seed, broadcast_object_list, collect_results_cpu, collect_results_gpu, all_reduce_params) from .utils import (get_dist_info, init_dist, init_local_group, get_backend, get_world_size, get_rank, get_local_size, get_local_rank, is_main_process, master_only, barrier, get_local_group, is_distributed, get_default_group, get_data_device, get_comm_device, cast_data_device) __all__ = [ 'all_gather_object', 'all_reduce', 'all_gather', 'all_reduce_dict', 'collect_results', 'collect_results_cpu', 'collect_results_gpu', 'gather', 'broadcast', 'gather_object', 'sync_random_seed', 'broadcast_object_list', 'get_dist_info', 'init_dist', 'init_local_group', 'get_backend', 'get_world_size', 'get_rank', 'get_local_size', 'get_local_group', 'get_local_rank', 'is_main_process', 'master_only', 'barrier', 'is_distributed', 'get_default_group', 'all_reduce_params', 'get_data_device', 'get_comm_device', 'cast_data_device' ]
import logging import sys import traceback from datasets import Dataset, load_dataset from peft import LoraConfig, TaskType from sentence_transformers import ( SentenceTransformer, SentenceTransformerModelCardData, SentenceTransformerTrainer, SentenceTransformerTrainingArguments, ) from sentence_transformers.evaluation import NanoBEIREvaluator from sentence_transformers.losses import CachedMultipleNegativesRankingLoss from sentence_transformers.training_args import BatchSamplers # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any Hugging Face pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "bert-base-uncased" model_name_only = model_name.split("/")[-1] # 1. Load a model to finetune with 2. (Optional) model card data model = SentenceTransformer( model_name, model_card_data=SentenceTransformerModelCardData( language="en", license="apache-2.0", model_name=f"{model_name_only} adapter finetuned on GooAQ pairs", ), ) # Create a LoRA adapter for the model peft_config = LoraConfig( task_type=TaskType.FEATURE_EXTRACTION, inference_mode=False, r=64, lora_alpha=128, lora_dropout=0.1, ) model.add_adapter(peft_config) # 3. Load a dataset to finetune on dataset = load_dataset("sentence-transformers/gooaq", split="train") dataset_dict = dataset.train_test_split(test_size=10_000, seed=12) train_dataset: Dataset = dataset_dict["train"].select(range(1_000_000)) eval_dataset: Dataset = dataset_dict["test"] # 4. Define a loss function loss = CachedMultipleNegativesRankingLoss(model, mini_batch_size=32) # 5. (Optional) Specify training arguments run_name = f"{model_name_only}-gooaq-peft" args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=f"models/{run_name}", # Optional training parameters: num_train_epochs=1, per_device_train_batch_size=1024, per_device_eval_batch_size=1024, learning_rate=2e-5, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=25, logging_first_step=True, run_name=run_name, # Will be used in W&B if `wandb` is installed ) # 6. (Optional) Create an evaluator & evaluate the base model # The full corpus, but only the evaluation queries dev_evaluator = NanoBEIREvaluator() dev_evaluator(model) # 7. Create a trainer & train trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, ) trainer.train() # (Optional) Evaluate the trained model on the evaluator after training dev_evaluator(model) # 8. Save the trained model final_output_dir = f"models/{run_name}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." )
import logging import sys import traceback from datasets import Dataset, load_dataset from peft import LoraConfig, TaskType from sentence_transformers import ( SentenceTransformer, SentenceTransformerModelCardData, SentenceTransformerTrainer, SentenceTransformerTrainingArguments, ) from sentence_transformers.evaluation import NanoBEIREvaluator from sentence_transformers.losses import MultipleNegativesRankingLoss from sentence_transformers.training_args import BatchSamplers # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any Hugging Face pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "bert-base-uncased" model_name_only = model_name.split("/")[-1] # 1. Load a model to finetune with 2. (Optional) model card data model = SentenceTransformer( model_name, model_card_data=SentenceTransformerModelCardData( language="en", license="apache-2.0", model_name=f"{model_name_only} adapter finetuned on GooAQ pairs", ), ) # Create a LoRA adapter for the model peft_config = LoraConfig( task_type=TaskType.FEATURE_EXTRACTION, inference_mode=False, r=64, lora_alpha=128, lora_dropout=0.1, ) model.add_adapter(peft_config) # 3. Load a dataset to finetune on dataset = load_dataset("sentence-transformers/gooaq", split="train") dataset_dict = dataset.train_test_split(test_size=10_000, seed=12) train_dataset: Dataset = dataset_dict["train"].select(range(1_000_000)) eval_dataset: Dataset = dataset_dict["test"] # 4. Define a loss function loss = MultipleNegativesRankingLoss(model) # 5. (Optional) Specify training arguments run_name = f"{model_name_only}-gooaq-peft" args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=f"models/{run_name}", # Optional training parameters: num_train_epochs=1, per_device_train_batch_size=1024, per_device_eval_batch_size=1024, learning_rate=2e-5, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=25, logging_first_step=True, run_name=run_name, # Will be used in W&B if `wandb` is installed ) # 6. (Optional) Create an evaluator & evaluate the base model # The full corpus, but only the evaluation queries dev_evaluator = NanoBEIREvaluator(batch_size=1024) dev_evaluator(model) # 7. Create a trainer & train trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, ) trainer.train() # (Optional) Evaluate the trained model on the evaluator after training dev_evaluator(model) # 8. Save the trained model final_output_dir = f"models/{run_name}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." )
from typing import TYPE_CHECKING import pytest from langchain_core.messages import AIMessage, HumanMessage, SystemMessage from pytest_mock import MockerFixture from langchain_community.chat_message_histories import ZepChatMessageHistory if TYPE_CHECKING: from zep_python import ZepClient @pytest.fixture @pytest.mark.requires("zep_python") def zep_chat(mocker: MockerFixture) -> ZepChatMessageHistory: mock_zep_client: ZepClient = mocker.patch("zep_python.ZepClient", autospec=True) mock_zep_client.memory = mocker.patch( "zep_python.memory.client.MemoryClient", autospec=True ) zep_chat: ZepChatMessageHistory = ZepChatMessageHistory( "test_session", "http://localhost:8000" ) zep_chat.zep_client = mock_zep_client return zep_chat @pytest.mark.requires("zep_python") def test_messages(mocker: MockerFixture, zep_chat: ZepChatMessageHistory) -> None: from zep_python import Memory, Message, Summary mock_memory: Memory = Memory( summary=Summary( content="summary", ), messages=[ Message(content="message", role="ai", metadata={"key": "value"}), Message(content="message2", role="human", metadata={"key2": "value2"}), ], ) zep_chat.zep_client.memory.get_memory.return_value = mock_memory result = zep_chat.messages assert len(result) == 3 assert isinstance(result[0], SystemMessage) # summary assert isinstance(result[1], AIMessage) assert isinstance(result[2], HumanMessage) @pytest.mark.requires("zep_python") def test_add_user_message( mocker: MockerFixture, zep_chat: ZepChatMessageHistory ) -> None: zep_chat.add_user_message("test message") zep_chat.zep_client.memory.add_memory.assert_called_once() @pytest.mark.requires("zep_python") def test_add_ai_message(mocker: MockerFixture, zep_chat: ZepChatMessageHistory) -> None: zep_chat.add_ai_message("test message") zep_chat.zep_client.memory.add_memory.assert_called_once() @pytest.mark.requires("zep_python") def test_append(mocker: MockerFixture, zep_chat: ZepChatMessageHistory) -> None: zep_chat.add_message(AIMessage(content="test message")) zep_chat.zep_client.memory.add_memory.assert_called_once() @pytest.mark.requires("zep_python") def test_search(mocker: MockerFixture, zep_chat: ZepChatMessageHistory) -> None: zep_chat.search("test query") zep_chat.zep_client.memory.search_memory.assert_called_once_with( "test_session", mocker.ANY, limit=None ) @pytest.mark.requires("zep_python") def test_clear(mocker: MockerFixture, zep_chat: ZepChatMessageHistory) -> None: zep_chat.clear() zep_chat.zep_client.memory.delete_memory.assert_called_once_with("test_session")
from typing import TYPE_CHECKING import pytest from langchain_core.messages import AIMessage, HumanMessage, SystemMessage from pytest_mock import MockerFixture from langchain_community.chat_message_histories import ZepChatMessageHistory if TYPE_CHECKING: from zep_python import ZepClient @pytest.fixture @pytest.mark.requires("zep_python") def zep_chat(mocker: MockerFixture) -> ZepChatMessageHistory: mock_zep_client: ZepClient = mocker.patch("zep_python.ZepClient", autospec=True) mock_zep_client.memory = mocker.patch( "zep_python.memory.client.MemoryClient", autospec=True ) zep_chat: ZepChatMessageHistory = ZepChatMessageHistory( "test_session", "http://localhost:8000" ) zep_chat.zep_client = mock_zep_client return zep_chat @pytest.mark.requires("zep_python") def test_messages(mocker: MockerFixture, zep_chat: ZepChatMessageHistory) -> None: from zep_python import Memory, Message, Summary mock_memory: Memory = Memory( summary=Summary( content="summary", ), messages=[ Message(content="message", role="ai", metadata={"key": "value"}), Message(content="message2", role="human", metadata={"key2": "value2"}), ], ) zep_chat.zep_client.memory.get_memory.return_value = mock_memory # type: ignore result = zep_chat.messages assert len(result) == 3 assert isinstance(result[0], SystemMessage) # summary assert isinstance(result[1], AIMessage) assert isinstance(result[2], HumanMessage) @pytest.mark.requires("zep_python") def test_add_user_message( mocker: MockerFixture, zep_chat: ZepChatMessageHistory ) -> None: zep_chat.add_user_message("test message") zep_chat.zep_client.memory.add_memory.assert_called_once() # type: ignore @pytest.mark.requires("zep_python") def test_add_ai_message(mocker: MockerFixture, zep_chat: ZepChatMessageHistory) -> None: zep_chat.add_ai_message("test message") zep_chat.zep_client.memory.add_memory.assert_called_once() # type: ignore @pytest.mark.requires("zep_python") def test_append(mocker: MockerFixture, zep_chat: ZepChatMessageHistory) -> None: zep_chat.add_message(AIMessage(content="test message")) zep_chat.zep_client.memory.add_memory.assert_called_once() # type: ignore @pytest.mark.requires("zep_python") def test_search(mocker: MockerFixture, zep_chat: ZepChatMessageHistory) -> None: zep_chat.search("test query") zep_chat.zep_client.memory.search_memory.assert_called_once_with( # type: ignore "test_session", mocker.ANY, limit=None ) @pytest.mark.requires("zep_python") def test_clear(mocker: MockerFixture, zep_chat: ZepChatMessageHistory) -> None: zep_chat.clear() zep_chat.zep_client.memory.delete_memory.assert_called_once_with( # type: ignore "test_session" )
import io import warnings from abc import ABC from typing import TYPE_CHECKING from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils._internal.misc import import_library, is_notebook class AbstractImageTensor(AbstractTensor, ABC): def to_bytes(self, format: str = 'PNG') -> bytes: """ Convert image tensor to bytes. :param format: the image format use to store the image, can be 'PNG' , 'JPG' ... :return: bytes """ if TYPE_CHECKING: from PIL import Image as PILImage else: PIL = import_library('PIL', raise_error=True) # noqa: F841 from PIL import Image as PILImage if format == 'jpg': format = 'jpeg' # unify it to ISO standard tensor = self.get_comp_backend().to_numpy(self) mode = 'RGB' if tensor.ndim == 3 else 'L' pil_image = PILImage.fromarray(tensor, mode=mode) with io.BytesIO() as buffer: pil_image.save(buffer, format=format) img_byte_arr = buffer.getvalue() return img_byte_arr def display(self) -> None: """ Display image data from tensor in notebook. """ if is_notebook(): if TYPE_CHECKING: from PIL import Image as PILImage else: PIL = import_library('PIL', raise_error=True) # noqa: F841 from PIL import Image as PILImage np_array = self.get_comp_backend().to_numpy(self) img = PILImage.fromarray(np_array) from IPython.display import display display(img) else: warnings.warn('Display of image is only possible in a notebook.')
import io import warnings from abc import ABC from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils._internal.misc import is_notebook class AbstractImageTensor(AbstractTensor, ABC): def to_bytes(self, format: str = 'PNG') -> bytes: """ Convert image tensor to bytes. :param format: the image format use to store the image, can be 'PNG' , 'JPG' ... :return: bytes """ from PIL import Image if format == 'jpg': format = 'jpeg' # unify it to ISO standard tensor = self.get_comp_backend().to_numpy(self) mode = 'RGB' if tensor.ndim == 3 else 'L' pil_image = Image.fromarray(tensor, mode=mode) with io.BytesIO() as buffer: pil_image.save(buffer, format=format) img_byte_arr = buffer.getvalue() return img_byte_arr def display(self) -> None: """ Display image data from tensor in notebook. """ if is_notebook(): from PIL import Image np_array = self.get_comp_backend().to_numpy(self) img = Image.fromarray(np_array) from IPython.display import display display(img) else: warnings.warn('Display of image is only possible in a notebook.')
# coding: utf-8 """LightGBM, Light Gradient Boosting Machine. Contributors: https://github.com/microsoft/LightGBM/graphs/contributors. """ from pathlib import Path from .basic import Booster, Dataset, Sequence, register_logger from .callback import early_stopping, log_evaluation, record_evaluation, reset_parameter from .engine import CVBooster, cv, train try: from .sklearn import LGBMClassifier, LGBMModel, LGBMRanker, LGBMRegressor except ImportError: pass try: from .plotting import create_tree_digraph, plot_importance, plot_metric, plot_split_value_histogram, plot_tree except ImportError: pass try: from .dask import DaskLGBMClassifier, DaskLGBMRanker, DaskLGBMRegressor except ImportError: pass _version_path = Path(__file__).absolute().parent / 'VERSION.txt' if _version_path.is_file(): __version__ = _version_path.read_text(encoding='utf-8').strip() __all__ = ['Dataset', 'Booster', 'CVBooster', 'Sequence', 'register_logger', 'train', 'cv', 'LGBMModel', 'LGBMRegressor', 'LGBMClassifier', 'LGBMRanker', 'DaskLGBMRegressor', 'DaskLGBMClassifier', 'DaskLGBMRanker', 'log_evaluation', 'record_evaluation', 'reset_parameter', 'early_stopping', 'plot_importance', 'plot_split_value_histogram', 'plot_metric', 'plot_tree', 'create_tree_digraph']
# coding: utf-8 """LightGBM, Light Gradient Boosting Machine. Contributors: https://github.com/microsoft/LightGBM/graphs/contributors. """ from pathlib import Path from .basic import Booster, Dataset, Sequence, register_logger from .callback import early_stopping, log_evaluation, print_evaluation, record_evaluation, reset_parameter from .engine import CVBooster, cv, train try: from .sklearn import LGBMClassifier, LGBMModel, LGBMRanker, LGBMRegressor except ImportError: pass try: from .plotting import create_tree_digraph, plot_importance, plot_metric, plot_split_value_histogram, plot_tree except ImportError: pass try: from .dask import DaskLGBMClassifier, DaskLGBMRanker, DaskLGBMRegressor except ImportError: pass _version_path = Path(__file__).absolute().parent / 'VERSION.txt' if _version_path.is_file(): __version__ = _version_path.read_text(encoding='utf-8').strip() __all__ = ['Dataset', 'Booster', 'CVBooster', 'Sequence', 'register_logger', 'train', 'cv', 'LGBMModel', 'LGBMRegressor', 'LGBMClassifier', 'LGBMRanker', 'DaskLGBMRegressor', 'DaskLGBMClassifier', 'DaskLGBMRanker', 'log_evaluation', 'print_evaluation', 'record_evaluation', 'reset_parameter', 'early_stopping', 'plot_importance', 'plot_split_value_histogram', 'plot_metric', 'plot_tree', 'create_tree_digraph']
from typing import Callable, Optional from .. import Features, NamedSplit, Split from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class GeneratorDatasetInputStream(AbstractDatasetInputStream): def __init__( self, generator: Callable, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, gen_kwargs: Optional[dict] = None, num_proc: Optional[int] = None, split: NamedSplit = Split.TRAIN, **kwargs, ): super().__init__( features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, num_proc=num_proc, **kwargs, ) self.builder = Generator( cache_dir=cache_dir, features=features, generator=generator, gen_kwargs=gen_kwargs, split=split, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split=self.builder.config.split) # Build regular (map-style) dataset else: download_config = None download_mode = None verification_mode = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, verification_mode=verification_mode, base_path=base_path, num_proc=self.num_proc, ) dataset = self.builder.as_dataset( split=self.builder.config.split, verification_mode=verification_mode, in_memory=self.keep_in_memory ) return dataset
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class GeneratorDatasetInputStream(AbstractDatasetInputStream): def __init__( self, generator: Callable, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, gen_kwargs: Optional[dict] = None, num_proc: Optional[int] = None, **kwargs, ): super().__init__( features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, num_proc=num_proc, **kwargs, ) self.builder = Generator( cache_dir=cache_dir, features=features, generator=generator, gen_kwargs=gen_kwargs, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split="train") # Build regular (map-style) dataset else: download_config = None download_mode = None verification_mode = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, verification_mode=verification_mode, base_path=base_path, num_proc=self.num_proc, ) dataset = self.builder.as_dataset( split="train", verification_mode=verification_mode, in_memory=self.keep_in_memory ) return dataset
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _NoDuplicateSafeLoader(yaml.SafeLoader): def _check_no_duplicates_on_constructed_node(self, node): keys = [self.constructed_objects[key_node] for key_node, _ in node.value] keys = [tuple(key) if isinstance(key, list) else key for key in keys] counter = Counter(keys) duplicate_keys = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"Got duplicate yaml keys: {duplicate_keys}") def construct_mapping(self, node, deep=False): mapping = super().construct_mapping(node, deep=deep) self._check_no_duplicates_on_constructed_node(node) return mapping def _split_yaml_from_readme(readme_content: str) -> Tuple[Optional[str], str]: full_content = [line for line in readme_content.splitlines()] if full_content and full_content[0] == "---" and "---" in full_content[1:]: sep_idx = full_content[1:].index("---") + 1 yamlblock = "\n".join(full_content[1:sep_idx]) return yamlblock, "\n".join(full_content[sep_idx + 1 :]) return None, "\n".join(full_content) class DatasetMetadata(dict): # class attributes _FIELDS_WITH_DASHES = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def from_readme(cls, path: Path) -> "DatasetMetadata": """Loads and validates the dataset metadat from its dataset card (README.md) Args: path (:obj:`Path`): Path to the dataset card (its README.md file) Returns: :class:`DatasetMetadata`: The dataset's metadata Raises: :obj:`TypeError`: If the dataset's metadata is invalid """ with open(path, encoding="utf-8") as readme_file: yaml_string, _ = _split_yaml_from_readme(readme_file.read()) if yaml_string is not None: return cls.from_yaml_string(yaml_string) else: return cls() def to_readme(self, path: Path): if path.exists(): with open(path, encoding="utf-8") as readme_file: readme_content = readme_file.read() else: readme_content = None updated_readme_content = self._to_readme(readme_content) with open(path, "w", encoding="utf-8") as readme_file: readme_file.write(updated_readme_content) def _to_readme(self, readme_content: Optional[str] = None) -> str: if readme_content is not None: _, content = _split_yaml_from_readme(readme_content) full_content = "---\n" + self.to_yaml_string() + "---\n" + content else: full_content = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def from_yaml_string(cls, string: str) -> "DatasetMetadata": """Loads and validates the dataset metadata from a YAML string Args: string (:obj:`str`): The YAML string Returns: :class:`DatasetMetadata`: The dataset's metadata Raises: :obj:`TypeError`: If the dataset's metadata is invalid """ metadata_dict = yaml.load(string, Loader=_NoDuplicateSafeLoader) or dict() # Convert the YAML keys to DatasetMetadata fields metadata_dict = { (key.replace("-", "_") if key.replace("-", "_") in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**metadata_dict) def to_yaml_string(self) -> str: return yaml.safe_dump( { (key.replace("_", "-") if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() }, sort_keys=False, allow_unicode=True, encoding="utf-8", ).decode("utf-8") if __name__ == "__main__": from argparse import ArgumentParser ap = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") args = ap.parse_args() readme_filepath = Path(args.readme_filepath) dataset_metadata = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _NoDuplicateSafeLoader(yaml.SafeLoader): def _check_no_duplicates_on_constructed_node(self, node): keys = [self.constructed_objects[key_node] for key_node, _ in node.value] keys = [tuple(key) if isinstance(key, list) else key for key in keys] counter = Counter(keys) duplicate_keys = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"Got duplicate yaml keys: {duplicate_keys}") def construct_mapping(self, node, deep=False): mapping = super().construct_mapping(node, deep=deep) self._check_no_duplicates_on_constructed_node(node) return mapping def _split_yaml_from_readme(readme_content: str) -> Tuple[Optional[str], str]: full_content = [line for line in readme_content.splitlines()] if full_content[0] == "---" and "---" in full_content[1:]: sep_idx = full_content[1:].index("---") + 1 yamlblock = "\n".join(full_content[1:sep_idx]) return yamlblock, "\n".join(full_content[sep_idx + 1 :]) return None, "\n".join(full_content) class DatasetMetadata(dict): # class attributes _FIELDS_WITH_DASHES = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def from_readme(cls, path: Path) -> "DatasetMetadata": """Loads and validates the dataset metadat from its dataset card (README.md) Args: path (:obj:`Path`): Path to the dataset card (its README.md file) Returns: :class:`DatasetMetadata`: The dataset's metadata Raises: :obj:`TypeError`: If the dataset's metadata is invalid """ with open(path, encoding="utf-8") as readme_file: yaml_string, _ = _split_yaml_from_readme(readme_file.read()) if yaml_string is not None: return cls.from_yaml_string(yaml_string) else: return cls() def to_readme(self, path: Path): if path.exists(): with open(path, encoding="utf-8") as readme_file: readme_content = readme_file.read() else: readme_content = None updated_readme_content = self._to_readme(readme_content) with open(path, "w", encoding="utf-8") as readme_file: readme_file.write(updated_readme_content) def _to_readme(self, readme_content: Optional[str] = None) -> str: if readme_content is not None: _, content = _split_yaml_from_readme(readme_content) full_content = "---\n" + self.to_yaml_string() + "---\n" + content else: full_content = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def from_yaml_string(cls, string: str) -> "DatasetMetadata": """Loads and validates the dataset metadata from a YAML string Args: string (:obj:`str`): The YAML string Returns: :class:`DatasetMetadata`: The dataset's metadata Raises: :obj:`TypeError`: If the dataset's metadata is invalid """ metadata_dict = yaml.load(string, Loader=_NoDuplicateSafeLoader) or dict() # Convert the YAML keys to DatasetMetadata fields metadata_dict = { (key.replace("-", "_") if key.replace("-", "_") in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**metadata_dict) def to_yaml_string(self) -> str: return yaml.safe_dump( { (key.replace("_", "-") if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() }, sort_keys=False, allow_unicode=True, encoding="utf-8", ).decode("utf-8") if __name__ == "__main__": from argparse import ArgumentParser ap = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") args = ap.parse_args() readme_filepath = Path(args.readme_filepath) dataset_metadata = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
import os import yaml from jina.serve.runtimes.gateway.gateway import BaseGateway, Gateway from jina.jaml import JAML class MyDummyGateway(Gateway): async def setup_server(self): self.server = 'dummy server' async def run_server(self): self.logger.info(self.server) async def shutdown(self): pass def test_cls_from_tag(): assert JAML.cls_from_tag('MyDummyGateway') == MyDummyGateway assert JAML.cls_from_tag('!MyDummyGateway') == MyDummyGateway assert JAML.cls_from_tag('BaseGateway') == BaseGateway assert JAML.cls_from_tag('Nonexisting') is None def test_base_jtype(tmpdir): gateway_path = os.path.join(tmpdir, 'gateway.yml') g = BaseGateway.load_config('Gateway', runtime_args={'port': [12345]}) g.save_config(gateway_path) with open(gateway_path, 'r') as file: conf = yaml.safe_load(file) assert 'jtype' in conf assert conf['jtype'] == 'Gateway' assert ( type(BaseGateway.load_config(gateway_path, runtime_args={'port': [12345]})) == Gateway ) def test_custom_jtype(tmpdir): gateway_path = os.path.join(tmpdir, 'gateway.yml') e = BaseGateway.load_config('MyDummyGateway', runtime_args={'port': [12345]}) print(f' e {type(e)} => {e.__dict__}') e.save_config(gateway_path) with open(gateway_path, 'r') as file: conf = yaml.safe_load(file) assert 'jtype' in conf assert conf['jtype'] == 'MyDummyGateway' assert ( type(BaseGateway.load_config(gateway_path, runtime_args={'port': [12345]})) == MyDummyGateway )
import os import pytest import yaml from jina import Gateway from jina.jaml import JAML from jina.serve.executors import BaseExecutor class MyDummyGateway(Gateway): async def setup_server(self): self.server = 'dummy server' async def run_server(self): self.logger.info(self.server) async def shutdown(self): pass def test_cls_from_tag(): assert JAML.cls_from_tag('MyDummyGateway') == MyDummyGateway assert JAML.cls_from_tag('!MyDummyGateway') == MyDummyGateway assert JAML.cls_from_tag('BaseGateway') == Gateway assert JAML.cls_from_tag('Nonexisting') is None def test_base_jtype(tmpdir): gateway_path = os.path.join(tmpdir, 'gateway.yml') from jina.serve.runtimes.gateway import BaseGateway g = BaseGateway.load_config('BaseGateway', runtime_args={'port': [12345]}) g.save_config(gateway_path) with open(gateway_path, 'r') as file: conf = yaml.safe_load(file) assert 'jtype' in conf assert conf['jtype'] == 'BaseGateway' assert ( type(Gateway.load_config(gateway_path, runtime_args={'port': [12345]})) == Gateway ) def test_custom_jtype(tmpdir): gateway_path = os.path.join(tmpdir, 'gateway.yml') e = Gateway.load_config('MyDummyGateway', runtime_args={'port': [12345]}) e.save_config(gateway_path) with open(gateway_path, 'r') as file: conf = yaml.safe_load(file) assert 'jtype' in conf assert conf['jtype'] == 'MyDummyGateway' assert ( type(Gateway.load_config(gateway_path, runtime_args={'port': [12345]})) == MyDummyGateway )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from pathlib import Path import os from PIL import Image from jina import Executor from jina.executors import BaseExecutor def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) def test_io_images_and_text(test_dir,doc_generator_img_text, expected_text): crafter = BaseExecutor.load_config('config.yml') doc_array = doc_generator_img_text for doc in doc_array: crafter.craft(doc) chunks = doc[0].chunks assert len(chunks) == 3 # Check images for idx, c in enumerate(chunks[:2]): with Image.open(os.path.join(test_dir, f'data/test_img_{idx}.jpg')) as img: blob = chunks[idx].blob assert chunks[idx].mime_type == 'image/*' assert blob.shape[1], blob.shape[0] == img.size if idx == 0: assert blob.shape == (660, 1024, 3) if idx == 1: assert blob.shape == (626, 1191, 3) # Check text assert chunks[2].text == expected_text assert chunks[2].mime_type == 'text/plain' def test_io_text(doc_generator_text, expected_text): crafter = BaseExecutor.load_config('config.yml') doc_array = doc_generator_text for doc in doc_array: crafter.craft(doc) chunks = doc[0].chunks assert len(chunks) == 1 # Check test assert chunks[0].text == expected_text assert chunks[0].mime_type == 'text/plain' def test_io_img(test_dir, doc_generator_img): crafter = BaseExecutor.load_config('config.yml') doc_array = doc_generator_img for doc in doc_array: crafter.craft(doc) chunks = doc[0].chunks assert len(chunks) == 3 # Check images for idx, c in enumerate(chunks[:2]): with Image.open(os.path.join(test_dir, f'data/test_img_{idx}.jpg')) as img: blob = chunks[idx].blob assert chunks[idx].mime_type == 'image/*' assert blob.shape[1], blob.shape[0] == img.size if idx == 0: assert blob.shape == (660, 1024, 3) if idx == 1: assert blob.shape == (626, 1191, 3)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os from PIL import Image from jina.executors import BaseExecutor def test_io_images_and_text(test_dir,doc_generator_img_text, expected_text): crafter = BaseExecutor.load_config('config.yml') doc_array = doc_generator_img_text for doc in doc_array: crafter.craft(doc) chunks = doc[0].chunks assert len(chunks) == 3 # Check images for idx, c in enumerate(chunks[:2]): with Image.open(os.path.join(test_dir, f'data/test_img_{idx}.jpg')) as img: blob = chunks[idx].blob assert chunks[idx].mime_type == 'image/*' assert blob.shape[1], blob.shape[0] == img.size if idx == 0: assert blob.shape == (660, 1024, 3) if idx == 1: assert blob.shape == (626, 1191, 3) # Check text assert chunks[2].text == expected_text assert chunks[2].mime_type == 'text/plain' def test_io_text(doc_generator_text, expected_text): crafter = BaseExecutor.load_config('config.yml') doc_array = doc_generator_text for doc in doc_array: crafter.craft(doc) chunks = doc[0].chunks assert len(chunks) == 1 # Check test assert chunks[0].text == expected_text assert chunks[0].mime_type == 'text/plain' def test_io_img(test_dir, doc_generator_img): crafter = BaseExecutor.load_config('config.yml') doc_array = doc_generator_img for doc in doc_array: crafter.craft(doc) chunks = doc[0].chunks assert len(chunks) == 3 # Check images for idx, c in enumerate(chunks[:2]): with Image.open(os.path.join(test_dir, f'data/test_img_{idx}.jpg')) as img: blob = chunks[idx].blob assert chunks[idx].mime_type == 'image/*' assert blob.shape[1], blob.shape[0] == img.size if idx == 0: assert blob.shape == (660, 1024, 3) if idx == 1: assert blob.shape == (626, 1191, 3)
import copy from dataclasses import dataclass, asdict, field from typing import ( Union, Dict, Optional, TYPE_CHECKING, Iterable, List, Tuple, ) import numpy as np from docarray.array.storage.base.backend import BaseBackendMixin, TypeMap from docarray.helper import dataclass_from_dict, filter_dict, _safe_cast_int if TYPE_CHECKING: # pragma: no cover from docarray.typing import DocumentArraySourceType, ArrayType @dataclass class AnnliteConfig: n_dim: int metric: str = 'cosine' serialize_config: Dict = field(default_factory=dict) data_path: Optional[str] = None ef_construction: Optional[int] = None ef_search: Optional[int] = None max_connection: Optional[int] = None n_components: Optional[int] = None columns: Optional[Union[List[Tuple[str, str]], Dict[str, str]]] = None class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" TYPE_MAP = { 'str': TypeMap(type='str', converter=str), 'float': TypeMap(type='float', converter=float), 'int': TypeMap(type='int', converter=_safe_cast_int), } def _map_embedding(self, embedding: 'ArrayType') -> 'ArrayType': if embedding is None: embedding = np.zeros(self.n_dim, dtype=np.float32) elif isinstance(embedding, list): from docarray.math.ndarray import to_numpy_array embedding = to_numpy_array(embedding) if embedding.ndim > 1: embedding = np.asarray(embedding).squeeze() return embedding def _normalize_columns(self, columns): columns = super()._normalize_columns(columns) for key in columns.keys(): columns[key] = self._map_type(columns[key]) return columns def _ensure_unique_config( self, config_root: dict, config_subindex: dict, config_joined: dict, subindex_name: str, ) -> dict: import os if 'data_path' not in config_subindex: config_joined['data_path'] = os.path.join( config_joined['data_path'], 'subindex_' + subindex_name ) return config_joined def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, config: Optional[Union[AnnliteConfig, Dict]] = None, subindex_configs: Optional[Dict] = None, **kwargs, ): config = copy.deepcopy(config) from docarray import Document if not config: raise ValueError('Config object must be specified') elif isinstance(config, dict): config = dataclass_from_dict(AnnliteConfig, config) if config.data_path is None: from tempfile import TemporaryDirectory config.data_path = TemporaryDirectory().name self._config = config self._config.columns = self._normalize_columns(self._config.columns) config = asdict(config) self.n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(self.n_dim, lock=False, **filter_dict(config)) super()._init_storage() if _docs is None: return self.clear() if isinstance(_docs, Iterable): self.extend(_docs) elif isinstance(_docs, Document): self.append(_docs) def __getstate__(self): state = dict(self.__dict__) del state['_annlite'] del state['_offsetmapping'] return state def __setstate__(self, state): self.__dict__ = state config = state['_config'] config = asdict(config) n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(n_dim, lock=False, **filter_dict(config)) def __len__(self): return self._annlite.index_size
from dataclasses import dataclass, asdict, field from typing import ( Union, Dict, Optional, TYPE_CHECKING, Iterable, List, Tuple, ) import numpy as np from docarray.array.storage.base.backend import BaseBackendMixin, TypeMap from docarray.helper import dataclass_from_dict, filter_dict, _safe_cast_int if TYPE_CHECKING: # pragma: no cover from docarray.typing import DocumentArraySourceType, ArrayType @dataclass class AnnliteConfig: n_dim: int metric: str = 'cosine' serialize_config: Dict = field(default_factory=dict) data_path: Optional[str] = None ef_construction: Optional[int] = None ef_search: Optional[int] = None max_connection: Optional[int] = None n_components: Optional[int] = None columns: Optional[Union[List[Tuple[str, str]], Dict[str, str]]] = None class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" TYPE_MAP = { 'str': TypeMap(type='str', converter=str), 'float': TypeMap(type='float', converter=float), 'int': TypeMap(type='int', converter=_safe_cast_int), } def _map_embedding(self, embedding: 'ArrayType') -> 'ArrayType': if embedding is None: embedding = np.zeros(self.n_dim, dtype=np.float32) elif isinstance(embedding, list): from docarray.math.ndarray import to_numpy_array embedding = to_numpy_array(embedding) if embedding.ndim > 1: embedding = np.asarray(embedding).squeeze() return embedding def _normalize_columns(self, columns): columns = super()._normalize_columns(columns) for key in columns.keys(): columns[key] = self._map_type(columns[key]) return columns def _ensure_unique_config( self, config_root: dict, config_subindex: dict, config_joined: dict, subindex_name: str, ) -> dict: import os if 'data_path' not in config_subindex: config_joined['data_path'] = os.path.join( config_joined['data_path'], 'subindex_' + subindex_name ) return config_joined def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, config: Optional[Union[AnnliteConfig, Dict]] = None, subindex_configs: Optional[Dict] = None, **kwargs, ): from docarray import Document if not config: raise ValueError('Config object must be specified') elif isinstance(config, dict): config = dataclass_from_dict(AnnliteConfig, config) if config.data_path is None: from tempfile import TemporaryDirectory config.data_path = TemporaryDirectory().name self._config = config self._config.columns = self._normalize_columns(self._config.columns) config = asdict(config) self.n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(self.n_dim, lock=False, **filter_dict(config)) super()._init_storage() if _docs is None: return self.clear() if isinstance(_docs, Iterable): self.extend(_docs) elif isinstance(_docs, Document): self.append(_docs) def __getstate__(self): state = dict(self.__dict__) del state['_annlite'] del state['_offsetmapping'] return state def __setstate__(self, state): self.__dict__ = state config = state['_config'] config = asdict(config) n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(n_dim, lock=False, **filter_dict(config)) def __len__(self): return self._annlite.index_size
import itertools from keras.src import tree from keras.src.trainers.data_adapters import data_adapter_utils from keras.src.trainers.data_adapters.data_adapter import DataAdapter class GeneratorDataAdapter(DataAdapter): """Adapter for Python generators.""" def __init__(self, generator): first_batches, generator = peek_and_restore(generator) self.generator = generator self._first_batches = first_batches self._output_signature = None if not isinstance(first_batches[0], tuple): raise ValueError( "When passing a Python generator to a Keras model, " "the generator must return a tuple, either " "(input,) or (inputs, targets) or " "(inputs, targets, sample_weights). " f"Received: {first_batches[0]}" ) def get_numpy_iterator(self): return data_adapter_utils.get_numpy_iterator(self.generator()) def get_jax_iterator(self): return data_adapter_utils.get_jax_iterator(self.generator()) def get_tf_dataset(self): from keras.src.utils.module_utils import tensorflow as tf def convert_to_tf(x, spec): if data_adapter_utils.is_scipy_sparse(x): x = data_adapter_utils.scipy_sparse_to_tf_sparse(x) elif data_adapter_utils.is_jax_sparse(x): x = data_adapter_utils.jax_sparse_to_tf_sparse(x) if not spec.shape.is_compatible_with(x.shape): raise TypeError( f"Generator yielded an element of shape {x.shape} where " f"an element of shape {spec.shape} was expected. Your " "generator provides tensors with variable input " "dimensions other than the batch size. Make sure that the " "generator's first two batches do not have the same " "dimension value wherever there is a variable input " "dimension." ) return x def get_tf_iterator(): for batch in self.generator(): batch = tree.map_structure( convert_to_tf, batch, self._output_signature ) yield batch if self._output_signature is None: self._output_signature = data_adapter_utils.get_tensor_spec( self._first_batches ) ds = tf.data.Dataset.from_generator( get_tf_iterator, output_signature=self._output_signature, ) ds = ds.prefetch(tf.data.AUTOTUNE) return ds def get_torch_dataloader(self): return data_adapter_utils.get_torch_dataloader(self.generator()) @property def num_batches(self): return None @property def batch_size(self): return None def peek_and_restore(generator): batches = list( itertools.islice( generator, data_adapter_utils.NUM_BATCHES_FOR_TENSOR_SPEC ) ) return batches, lambda: itertools.chain(batches, generator)
import itertools from keras.src import tree from keras.src.trainers.data_adapters import data_adapter_utils from keras.src.trainers.data_adapters.data_adapter import DataAdapter class GeneratorDataAdapter(DataAdapter): """Adapter for Python generators.""" def __init__(self, generator): first_batches, generator = peek_and_restore(generator) self.generator = generator self._first_batches = first_batches self._output_signature = None if not isinstance(first_batches[0], tuple): raise ValueError( "When passing a Python generator to a Keras model, " "the generator must return a tuple, either " "(input,) or (inputs, targets) or " "(inputs, targets, sample_weights). " f"Received: {first_batches[0]}" ) def get_numpy_iterator(self): return data_adapter_utils.get_numpy_iterator(self.generator) def get_jax_iterator(self): return data_adapter_utils.get_jax_iterator(self.generator) def get_tf_dataset(self): from keras.src.utils.module_utils import tensorflow as tf def convert_to_tf(x, spec): if data_adapter_utils.is_scipy_sparse(x): x = data_adapter_utils.scipy_sparse_to_tf_sparse(x) elif data_adapter_utils.is_jax_sparse(x): x = data_adapter_utils.jax_sparse_to_tf_sparse(x) if not spec.shape.is_compatible_with(x.shape): raise TypeError( f"Generator yielded an element of shape {x.shape} where " f"an element of shape {spec.shape} was expected. Your " "generator provides tensors with variable input " "dimensions other than the batch size. Make sure that the " "generator's first two batches do not have the same " "dimension value wherever there is a variable input " "dimension." ) return x def get_tf_iterator(): for batch in self.generator: batch = tree.map_structure( convert_to_tf, batch, self._output_signature ) yield batch if self._output_signature is None: self._output_signature = data_adapter_utils.get_tensor_spec( self._first_batches ) ds = tf.data.Dataset.from_generator( get_tf_iterator, output_signature=self._output_signature, ) ds = ds.prefetch(tf.data.AUTOTUNE) return ds def get_torch_dataloader(self): return data_adapter_utils.get_torch_dataloader(self.generator) @property def num_batches(self): return None @property def batch_size(self): return None def peek_and_restore(generator): batches = list( itertools.islice( generator, data_adapter_utils.NUM_BATCHES_FOR_TENSOR_SPEC ) ) return batches, itertools.chain(batches, generator)
"""langchain-core version information and utilities.""" VERSION = "0.3.56rc1"
"""langchain-core version information and utilities.""" VERSION = "0.3.55"
from typing import Dict, Iterable import torch from torch import Tensor, nn class MSELoss(nn.Module): def __init__(self, model): """ Computes the MSE loss between the computed sentence embedding and a target sentence embedding. This loss is used when extending sentence embeddings to new languages as described in our publication Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation. For an example, see `the distillation documentation <../../examples/training/distillation/README.html>`_ on extending language models to new languages. Args: model: SentenceTransformerModel References: - Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation: https://arxiv.org/abs/2004.09813 - `Training > Model Distillation <../../examples/training/distillation/README.html>`_ - `Training > Multilingual Models <../../examples/training/multilingual/README.html>`_ Requirements: 1. Usually uses a finetuned teacher M in a knowledge distillation setup Relations: - :class:`MarginMSELoss` is equivalent to this loss, but with a margin through a negative pair. Input: +-----------------------------------------+-----------------------------+ | Texts | Labels | +=========================================+=============================+ | sentence | model sentence embeddings | +-----------------------------------------+-----------------------------+ | sentence_1, sentence_2, ..., sentence_N | model sentence embeddings | +-----------------------------------------+-----------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset student_model = SentenceTransformer("microsoft/mpnet-base") teacher_model = SentenceTransformer("all-mpnet-base-v2") train_dataset = Dataset.from_dict({ "english": ["The first sentence", "The second sentence", "The third sentence", "The fourth sentence"], "french": ["La première phrase", "La deuxième phrase", "La troisième phrase", "La quatrième phrase"], }) def compute_labels(batch): return { "label": teacher_model.encode(batch["english"]) } train_dataset = train_dataset.map(compute_labels, batched=True) loss = losses.MSELoss(student_model) trainer = SentenceTransformerTrainer( model=student_model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(MSELoss, self).__init__() self.model = model self.loss_fct = nn.MSELoss() def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor): # Concatenate multiple inputs on the batch dimension if len(sentence_features) > 1: embeddings = torch.cat([self.model(inputs)["sentence_embedding"] for inputs in sentence_features], dim=0) # Repeat the labels for each input return self.loss_fct(embeddings, labels.repeat(len(sentence_features), 1)) embeddings = self.model(sentence_features[0])["sentence_embedding"] return self.loss_fct(embeddings, labels) @property def citation(self) -> str: return """ @inproceedings{reimers-2020-multilingual-sentence-bert, title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2020", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2004.09813", } """
import torch from torch import nn, Tensor from typing import Union, Tuple, List, Iterable, Dict class MSELoss(nn.Module): """ Computes the MSE loss between the computed sentence embedding and a target sentence embedding. This loss is used when extending sentence embeddings to new languages as described in our publication Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation: https://arxiv.org/abs/2004.09813 For an example, see the documentation on extending language models to new languages. """ def __init__(self, model): """ :param model: SentenceTransformerModel """ super(MSELoss, self).__init__() self.model = model self.loss_fct = nn.MSELoss() def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor): rep = self.model(sentence_features[0])['sentence_embedding'] return self.loss_fct(rep, labels)
from typing import Any, Optional from llama_index.core.storage.index_store.keyval_index_store import KVIndexStore from llama_index.storage.kvstore.couchbase import CouchbaseKVStore class CouchbaseIndexStore(KVIndexStore): """Couchbase Index store.""" def __init__( self, couchbase_kvstore: CouchbaseKVStore, namespace: Optional[str] = None, collection_suffix: Optional[str] = None, ) -> None: """ Initialize a CouchbaseIndexStore. Args: couchbase_kvstore (CouchbaseKVStore): Couchbase key-value store namespace (str): namespace for the index store collection_suffix (str): suffix for the collection name """ super().__init__( couchbase_kvstore, namespace=namespace, collection_suffix=collection_suffix, ) @classmethod def from_couchbase_client( cls, client: Any, bucket_name: str, scope_name: str, namespace: Optional[str] = None, collection_suffix: Optional[str] = None, async_client: Optional[Any] = None, ) -> "CouchbaseIndexStore": """Initialize a CouchbaseIndexStore from a Couchbase client.""" couchbase_kvstore = CouchbaseKVStore.from_couchbase_client( client=client, bucket_name=bucket_name, scope_name=scope_name, async_client=async_client, ) return cls(couchbase_kvstore, namespace, collection_suffix)
from typing import Any, Optional from llama_index.core.storage.index_store.keyval_index_store import KVIndexStore from llama_index.storage.kvstore.couchbase import CouchbaseKVStore class CouchbaseIndexStore(KVIndexStore): """Couchbase Index store.""" def __init__( self, couchbase_kvstore: CouchbaseKVStore, namespace: Optional[str] = None, collection_suffix: Optional[str] = None, ) -> None: """ Initialize a CouchbaseIndexStore. Args: couchbase_kvstore (CouchbaseKVStore): Couchbase key-value store namespace (str): namespace for the index store collection_suffix (str): suffix for the collection name """ super().__init__( couchbase_kvstore, namespace=namespace, collection_suffix=collection_suffix, ) @classmethod def from_couchbase_client( cls, client: Any, bucket_name: str, scope_name: str, namespace: Optional[str] = None, collection_suffix: Optional[str] = None, async_client: Optional[Any] = None, ) -> "CouchbaseIndexStore": """Initialize a CouchbaseIndexStore from a Couchbase client.""" couchbase_kvstore = CouchbaseKVStore.from_couchbase_client( client=client, bucket_name=bucket_name, scope_name=scope_name, async_client=async_client, ) return cls(couchbase_kvstore, namespace, collection_suffix)
from docarray.base_document.any_document import AnyDocument from docarray.base_document.base_node import BaseNode from docarray.base_document.document import BaseDocument from docarray.base_document.document_response import DocumentResponse __all__ = ['AnyDocument', 'BaseDocument', 'BaseNode', 'DocumentResponse']
from docarray.base_document.any_document import AnyDocument from docarray.base_document.base_node import BaseNode from docarray.base_document.document import BaseDocument __all__ = ['AnyDocument', 'BaseDocument', 'BaseNode']
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.16.0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.15.1.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chains.graph_qa.prompts import ( AQL_FIX_TEMPLATE, AQL_GENERATION_TEMPLATE, AQL_QA_TEMPLATE, CYPHER_GENERATION_PROMPT, CYPHER_GENERATION_TEMPLATE, CYPHER_QA_PROMPT, CYPHER_QA_TEMPLATE, GRAPHDB_QA_TEMPLATE, GRAPHDB_SPARQL_FIX_TEMPLATE, GRAPHDB_SPARQL_GENERATION_TEMPLATE, GREMLIN_GENERATION_TEMPLATE, KUZU_EXTRA_INSTRUCTIONS, KUZU_GENERATION_TEMPLATE, NEBULAGRAPH_EXTRA_INSTRUCTIONS, NEPTUNE_OPENCYPHER_EXTRA_INSTRUCTIONS, NEPTUNE_OPENCYPHER_GENERATION_SIMPLE_TEMPLATE, NEPTUNE_OPENCYPHER_GENERATION_TEMPLATE, NGQL_GENERATION_TEMPLATE, SPARQL_GENERATION_SELECT_TEMPLATE, SPARQL_GENERATION_UPDATE_TEMPLATE, SPARQL_INTENT_TEMPLATE, SPARQL_QA_TEMPLATE, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "AQL_FIX_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "AQL_GENERATION_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "AQL_QA_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "CYPHER_GENERATION_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "CYPHER_QA_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "CYPHER_QA_PROMPT": "langchain_community.chains.graph_qa.prompts", "CYPHER_GENERATION_PROMPT": "langchain_community.chains.graph_qa.prompts", "GRAPHDB_QA_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "GRAPHDB_SPARQL_FIX_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "GRAPHDB_SPARQL_GENERATION_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "GREMLIN_GENERATION_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "KUZU_EXTRA_INSTRUCTIONS": "langchain_community.chains.graph_qa.prompts", "KUZU_GENERATION_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "NEBULAGRAPH_EXTRA_INSTRUCTIONS": "langchain_community.chains.graph_qa.prompts", "NEPTUNE_OPENCYPHER_EXTRA_INSTRUCTIONS": ( "langchain_community.chains.graph_qa.prompts" ), "NEPTUNE_OPENCYPHER_GENERATION_SIMPLE_TEMPLATE": ( "langchain_community.chains.graph_qa.prompts" ), "NEPTUNE_OPENCYPHER_GENERATION_TEMPLATE": ( "langchain_community.chains.graph_qa.prompts" ), "NGQL_GENERATION_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "SPARQL_GENERATION_SELECT_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "SPARQL_GENERATION_UPDATE_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "SPARQL_INTENT_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "SPARQL_QA_TEMPLATE": "langchain_community.chains.graph_qa.prompts", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AQL_FIX_TEMPLATE", "AQL_GENERATION_TEMPLATE", "AQL_QA_TEMPLATE", "CYPHER_GENERATION_PROMPT", "CYPHER_GENERATION_TEMPLATE", "CYPHER_QA_PROMPT", "CYPHER_QA_TEMPLATE", "GRAPHDB_QA_TEMPLATE", "GRAPHDB_SPARQL_FIX_TEMPLATE", "GRAPHDB_SPARQL_GENERATION_TEMPLATE", "GREMLIN_GENERATION_TEMPLATE", "KUZU_EXTRA_INSTRUCTIONS", "KUZU_GENERATION_TEMPLATE", "NEBULAGRAPH_EXTRA_INSTRUCTIONS", "NEPTUNE_OPENCYPHER_EXTRA_INSTRUCTIONS", "NEPTUNE_OPENCYPHER_GENERATION_SIMPLE_TEMPLATE", "NEPTUNE_OPENCYPHER_GENERATION_TEMPLATE", "NGQL_GENERATION_TEMPLATE", "SPARQL_GENERATION_SELECT_TEMPLATE", "SPARQL_GENERATION_UPDATE_TEMPLATE", "SPARQL_INTENT_TEMPLATE", "SPARQL_QA_TEMPLATE", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chains.graph_qa.prompts import ( AQL_FIX_TEMPLATE, AQL_GENERATION_TEMPLATE, AQL_QA_TEMPLATE, CYPHER_GENERATION_PROMPT, CYPHER_GENERATION_TEMPLATE, CYPHER_QA_PROMPT, CYPHER_QA_TEMPLATE, GRAPHDB_QA_TEMPLATE, GRAPHDB_SPARQL_FIX_TEMPLATE, GRAPHDB_SPARQL_GENERATION_TEMPLATE, GREMLIN_GENERATION_TEMPLATE, KUZU_EXTRA_INSTRUCTIONS, KUZU_GENERATION_TEMPLATE, NEBULAGRAPH_EXTRA_INSTRUCTIONS, NEPTUNE_OPENCYPHER_EXTRA_INSTRUCTIONS, NEPTUNE_OPENCYPHER_GENERATION_SIMPLE_TEMPLATE, NEPTUNE_OPENCYPHER_GENERATION_TEMPLATE, NGQL_GENERATION_TEMPLATE, SPARQL_GENERATION_SELECT_TEMPLATE, SPARQL_GENERATION_UPDATE_TEMPLATE, SPARQL_INTENT_TEMPLATE, SPARQL_QA_TEMPLATE, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "AQL_FIX_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "AQL_GENERATION_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "AQL_QA_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "CYPHER_GENERATION_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "CYPHER_QA_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "CYPHER_QA_PROMPT": "langchain_community.chains.graph_qa.prompts", "CYPHER_GENERATION_PROMPT": "langchain_community.chains.graph_qa.prompts", "GRAPHDB_QA_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "GRAPHDB_SPARQL_FIX_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "GRAPHDB_SPARQL_GENERATION_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "GREMLIN_GENERATION_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "KUZU_EXTRA_INSTRUCTIONS": "langchain_community.chains.graph_qa.prompts", "KUZU_GENERATION_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "NEBULAGRAPH_EXTRA_INSTRUCTIONS": "langchain_community.chains.graph_qa.prompts", "NEPTUNE_OPENCYPHER_EXTRA_INSTRUCTIONS": ( "langchain_community.chains.graph_qa.prompts" ), "NEPTUNE_OPENCYPHER_GENERATION_SIMPLE_TEMPLATE": ( "langchain_community.chains.graph_qa.prompts" ), "NEPTUNE_OPENCYPHER_GENERATION_TEMPLATE": ( "langchain_community.chains.graph_qa.prompts" ), "NGQL_GENERATION_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "SPARQL_GENERATION_SELECT_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "SPARQL_GENERATION_UPDATE_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "SPARQL_INTENT_TEMPLATE": "langchain_community.chains.graph_qa.prompts", "SPARQL_QA_TEMPLATE": "langchain_community.chains.graph_qa.prompts", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AQL_FIX_TEMPLATE", "AQL_GENERATION_TEMPLATE", "AQL_QA_TEMPLATE", "CYPHER_GENERATION_TEMPLATE", "CYPHER_QA_TEMPLATE", "GRAPHDB_QA_TEMPLATE", "GRAPHDB_SPARQL_FIX_TEMPLATE", "GRAPHDB_SPARQL_GENERATION_TEMPLATE", "GREMLIN_GENERATION_TEMPLATE", "KUZU_EXTRA_INSTRUCTIONS", "KUZU_GENERATION_TEMPLATE", "NEBULAGRAPH_EXTRA_INSTRUCTIONS", "NEPTUNE_OPENCYPHER_EXTRA_INSTRUCTIONS", "NEPTUNE_OPENCYPHER_GENERATION_SIMPLE_TEMPLATE", "NEPTUNE_OPENCYPHER_GENERATION_TEMPLATE", "NGQL_GENERATION_TEMPLATE", "SPARQL_GENERATION_SELECT_TEMPLATE", "SPARQL_GENERATION_UPDATE_TEMPLATE", "SPARQL_INTENT_TEMPLATE", "SPARQL_QA_TEMPLATE", "CYPHER_QA_PROMPT", "CYPHER_GENERATION_PROMPT", ]
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path DATASETS_ON_HF_GCP = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def list_datasets_on_hf_gcp_parameters(with_config=True): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=True)) class TestDatasetOnHfGcp(TestCase): dataset = None config_name = None def test_dataset_info_available(self, dataset, config_name): with TemporaryDirectory() as tmp_dir: dataset_module = dataset_module_factory(dataset, cache_dir=tmp_dir) builder_cls = import_main_class(dataset_module.module_path, dataset=True) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_dir, config_name=config_name, hash=dataset_module.hash, ) dataset_info_url = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=False).replace(os.sep, "/"), config.DATASET_INFO_FILENAME, ] ) datset_info_path = cached_path(dataset_info_url, cache_dir=tmp_dir) self.assertTrue(os.path.exists(datset_info_path)) @pytest.mark.integration def test_as_dataset_from_hf_gcs(tmp_path_factory): tmp_dir = tmp_path_factory.mktemp("test_hf_gcp") / "test_wikipedia_simple" dataset_module = dataset_module_factory("wikipedia", cache_dir=tmp_dir) builder_cls = import_main_class(dataset_module.module_path) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_dir, config_name="20220301.frr", hash=dataset_module.hash, ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam builder_instance._download_and_prepare = None builder_instance.download_and_prepare() ds = builder_instance.as_dataset() assert ds @pytest.mark.integration def test_as_streaming_dataset_from_hf_gcs(tmp_path): dataset_module = dataset_module_factory("wikipedia", cache_dir=tmp_path) builder_cls = import_main_class(dataset_module.module_path, dataset=True) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_path, config_name="20220301.frr", hash=dataset_module.hash, ) ds = builder_instance.as_streaming_dataset() assert ds assert isinstance(ds, IterableDatasetDict) assert "train" in ds assert isinstance(ds["train"], IterableDataset) assert next(iter(ds["train"]))
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path DATASETS_ON_HF_GCP = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def list_datasets_on_hf_gcp_parameters(with_config=True): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=True)) class TestDatasetOnHfGcp(TestCase): dataset = None config_name = None def test_dataset_info_available(self, dataset, config_name): with TemporaryDirectory() as tmp_dir: dataset_module = dataset_module_factory(dataset, cache_dir=tmp_dir) builder_cls = import_main_class(dataset_module.module_path, dataset=True) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_dir, config_name=config_name, hash=dataset_module.hash, ) dataset_info_url = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=False).replace(os.sep, "/"), config.DATASET_INFO_FILENAME, ] ) datset_info_path = cached_path(dataset_info_url, cache_dir=tmp_dir) self.assertTrue(os.path.exists(datset_info_path)) @pytest.mark.integration def test_as_dataset_from_hf_gcs(tmp_path_factory): tmp_dir = tmp_path_factory.mktemp("test_hf_gcp") / "test_wikipedia_simple" dataset_module = dataset_module_factory("wikipedia", cache_dir=tmp_dir) builder_cls = import_main_class(dataset_module.module_path) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_dir, config_name="20220301.frr", hash=dataset_module.hash, ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam builder_instance._download_and_prepare = None builder_instance.download_and_prepare() ds = builder_instance.as_dataset() assert ds @pytest.mark.integration def test_as_streaming_dataset_from_hf_gcs(tmp_path): dataset_module = dataset_module_factory("wikipedia", cache_dir=tmp_path) builder_cls = import_main_class(dataset_module.module_path, dataset=True) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_path, config_name="20220301.frr", hash=dataset_module.hash, ) ds = builder_instance.as_streaming_dataset() assert ds assert isinstance(ds, IterableDatasetDict) assert "train" in ds assert isinstance(ds["train"], IterableDataset) assert next(iter(ds["train"]))
import csv import os from pathlib import Path from typing import Union import torchaudio from torch.utils.data import Dataset class FluentSpeechCommands(Dataset): """Create *Fluent Speech Commands* [:footcite:`fluent`] Dataset Args: root (str of Path): Path to the directory where the dataset is found. subset (str, optional): subset of the dataset to use. Options: [`"train"`, `"valid"`, `"test"`]. (Default: ``"train"``) """ def __init__(self, root: Union[str, Path], subset: str = "train"): if subset not in ["train", "valid", "test"]: raise ValueError("`subset` must be one of ['train', 'valid', 'test']") root = os.fspath(root) self._path = os.path.join(root, "fluent_speech_commands_dataset") if not os.path.isdir(self._path): raise RuntimeError("Dataset not found.") subset_path = os.path.join(self._path, "data", f"{subset}_data.csv") with open(subset_path) as subset_csv: subset_reader = csv.reader(subset_csv) data = list(subset_reader) self.header = data[0] self.data = data[1:] def __len__(self): return len(self.data) def __getitem__(self, n: int): """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str, int, str, str, str, str): ``(waveform, sample_rate, file_name, speaker_id, transcription, action, object, location)`` """ sample = self.data[n] file_name = sample[self.header.index("path")].split("/")[-1] file_name = file_name.split(".")[0] speaker_id, transcription, action, obj, location = sample[2:] wav_path = os.path.join(self._path, "wavs", "speakers", speaker_id, f"{file_name}.wav") wav, sample_rate = torchaudio.load(wav_path) return wav, sample_rate, file_name, speaker_id, transcription, action, obj, location
import csv import os from pathlib import Path from typing import Union import torchaudio from torch.utils.data import Dataset class FluentSpeechCommands(Dataset): """Create *Fluent Speech Commands* [:footcite:`fluent`] Dataset Args: root (str of Path): Path to the directory where the dataset is found. subset (str, optional): subset of the dataset to use. Options: [`"train"`, `"valid"`, `"test"`]. (Default: ``"train"``) """ def __init__(self, root: Union[str, Path], subset: str = "train"): assert subset in ["train", "valid", "test"], "`subset` must be one of ['train', 'valid', 'test']" root = os.fspath(root) self._path = os.path.join(root, "fluent_speech_commands_dataset") if not os.path.isdir(self._path): raise RuntimeError("Dataset not found.") subset_path = os.path.join(self._path, "data", f"{subset}_data.csv") with open(subset_path) as subset_csv: subset_reader = csv.reader(subset_csv) data = list(subset_reader) self.header = data[0] self.data = data[1:] def __len__(self): return len(self.data) def __getitem__(self, n: int): """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str, int, str, str, str, str): ``(waveform, sample_rate, file_name, speaker_id, transcription, action, object, location)`` """ sample = self.data[n] file_name = sample[self.header.index("path")].split("/")[-1] file_name = file_name.split(".")[0] speaker_id, transcription, action, obj, location = sample[2:] wav_path = os.path.join(self._path, "wavs", "speakers", speaker_id, f"{file_name}.wav") wav, sample_rate = torchaudio.load(wav_path) return wav, sample_rate, file_name, speaker_id, transcription, action, obj, location
from __future__ import annotations from collections.abc import Iterable import torch from torch import Tensor, nn from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class FlopsLoss(nn.Module): def __init__(self, model: SparseEncoder, threshold: float = None) -> None: """ FlopsLoss implements a regularization technique to promote sparsity in sparse encoder models. It calculates the squared L2 norm of the mean embedding vector, which helps reduce the number of floating-point operations (FLOPs) required during inference by encouraging more zero values in the embeddings. It can use a threshold to ignore embeddings with too few non-zero elements. This loss is used as a regularization component within other losses like :class:`SpladeLoss` rather than being used as a standalone loss function. Args: model: SparseEncoder model to be regularized threshold: Optional threshold for the number of non-zero elements in the embeddings. If specified, only embeddings with more than this number of non-zero elements will be considered. This can help to ignore embeddings that are too sparse and may not contribute meaningfully to the loss. References: - For further details, see: https://arxiv.org/pdf/2004.05665 for the general FLOPS loss and https://arxiv.org/pdf/2504.14839 for FLOPS with thresholds, a.k.a. FLOPS with l0 masking. Relations: - Used as a component within :class:`SpladeLoss` to regularize both query and document embeddings Example: - This loss is typically used within the :class:`SpladeLoss` class, which combines it with other loss components. """ super().__init__() self.model = model self.threshold = threshold def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: # Compute the embeddings and distribute them to anchor and candidates (positive and optionally negatives) embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] return self.compute_loss_from_embeddings(embeddings) def compute_loss_from_embeddings(self, embeddings: list[torch.Tensor]) -> torch.Tensor: if self.threshold is not None: l0_norm = (embeddings != 0).sum(dim=1) mask = (l0_norm > self.threshold).float() embeddings = embeddings * mask.unsqueeze(1) return torch.sum(torch.mean(embeddings, dim=0) ** 2) @property def citation(self) -> str: return """ @article{paria2020minimizing, title={Minimizing flops to learn efficient sparse representations}, author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{\'o}czos, Barnab{\'a}s}, journal={arXiv preprint arXiv:2004.05665}, year={2020} } """
from __future__ import annotations from collections.abc import Iterable import torch from torch import Tensor, nn from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class FlopsLoss(nn.Module): def __init__(self, model: SparseEncoder, threshold: float = None) -> None: """ FlopsLoss implements a regularization technique to promote sparsity in sparse encoder models. It calculates the squared L2 norm of the mean embedding vector, which helps reduce the number of floating-point operations (FLOPs) required during inference by encouraging more zero values in the embeddings. It can use a threshold to ignore embeddings with too few non-zero elements. This loss is used as a regularization component within other losses like :class:`SpladeLoss` rather than being used as a standalone loss function. Args: model: SparseEncoder model to be regularized threshold: Optional threshold for the number of non-zero elements in the embeddings. If specified, only embeddings with more than this number of non-zero elements will be considered. This can help to ignore embeddings that are too sparse and may not contribute meaningfully to the loss. References: - For further details, see: https://arxiv.org/pdf/2004.05665 for the general FLOPS loss and https://arxiv.org/pdf/2504.14839 for FLOPS with thresholds, a.k.a. FLOPS with l0 masking. Relations: - Used as a component within :class:`SpladeLoss` to regularize both query and document embeddings Example: - This loss is typically used within the :class:`SpladeLoss` class, which combines it with other loss components. """ super().__init__() self.model = model self.threshold = threshold def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: # Compute the embeddings and distribute them to anchor and candidates (positive and optionally negatives) embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] return self.compute_loss_from_embeddings(embeddings) def compute_loss_from_embeddings(self, embeddings: list[torch.Tensor], embeddings_type: str) -> torch.Tensor: if embeddings_type == "query": embeddings_to_use = embeddings[0] # (batch_size, embedding_dim) else: embeddings_to_use = torch.cat(embeddings[1:]) # (batch_size * (1 + num_negatives), embedding_dim) if self.threshold is not None: l0_norm = (embeddings_to_use != 0).sum(dim=1) mask = (l0_norm > self.threshold).float() embeddings_to_use = embeddings_to_use * mask.unsqueeze(1) return torch.sum(torch.mean(embeddings_to_use, dim=0) ** 2) @property def citation(self) -> str: return """ @article{paria2020minimizing, title={Minimizing flops to learn efficient sparse representations}, author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{\'o}czos, Barnab{\'a}s}, journal={arXiv preprint arXiv:2004.05665}, year={2020} } """
_base_ = './yolox_s_8x8_300e_coco.py' # model settings model = dict( random_size_range=(10, 20), backbone=dict(deepen_factor=0.33, widen_factor=0.375), neck=dict(in_channels=[96, 192, 384], out_channels=96), bbox_head=dict(in_channels=96, feat_channels=96)) img_scale = (640, 640) # height, width train_pipeline = [ dict(type='Mosaic', img_scale=img_scale, pad_val=114.0), dict( type='RandomAffine', scaling_ratio_range=(0.5, 1.5), border=(-img_scale[0] // 2, -img_scale[1] // 2)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Resize', img_scale=img_scale, keep_ratio=True), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(416, 416), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']) ]) ] train_dataset = dict(pipeline=train_pipeline) data = dict( train=train_dataset, val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
_base_ = './yolox_s_8x8_300e_coco.py' # model settings model = dict( random_size_range=(10, 20), backbone=dict(deepen_factor=0.33, widen_factor=0.375), neck=dict(in_channels=[96, 192, 384], out_channels=96), bbox_head=dict(in_channels=96, feat_channels=96)) img_scale = (640, 640) train_pipeline = [ dict(type='Mosaic', img_scale=img_scale, pad_val=114.0), dict( type='RandomAffine', scaling_ratio_range=(0.5, 1.5), border=(-img_scale[0] // 2, -img_scale[1] // 2)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Resize', img_scale=img_scale, keep_ratio=True), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(416, 416), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']) ]) ] train_dataset = dict(pipeline=train_pipeline) data = dict( train=train_dataset, val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
from contextlib import contextmanager from functools import partial from unittest.mock import patch import torch from parameterized import parameterized from torchaudio._internal.module_utils import is_module_available from torchaudio_unittest.common_utils import skipIfNoModule, TorchaudioTestCase from .utils import MockCustomDataset, MockDataloader, MockSentencePieceProcessor if is_module_available("pytorch_lightning", "sentencepiece"): from asr.emformer_rnnt.tedlium3.lightning import TEDLIUM3RNNTModule class MockTEDLIUM: def __init__(self, *args, **kwargs): pass def __getitem__(self, n: int): return ( torch.rand(1, 32640), 16000, "sup", 2, 3, 4, ) def __len__(self): return 10 @contextmanager def get_lightning_module(): with patch("sentencepiece.SentencePieceProcessor", new=partial(MockSentencePieceProcessor, num_symbols=500)), patch( "asr.emformer_rnnt.tedlium3.lightning.GlobalStatsNormalization", new=torch.nn.Identity ), patch("torchaudio.datasets.TEDLIUM", new=MockTEDLIUM), patch( "asr.emformer_rnnt.tedlium3.lightning.CustomDataset", new=MockCustomDataset ), patch( "torch.utils.data.DataLoader", new=MockDataloader ): yield TEDLIUM3RNNTModule( tedlium_path="tedlium_path", sp_model_path="sp_model_path", global_stats_path="global_stats_path", ) @skipIfNoModule("pytorch_lightning") @skipIfNoModule("sentencepiece") class TestTEDLIUM3RNNTModule(TorchaudioTestCase): @classmethod def setUpClass(cls) -> None: super().setUpClass() torch.random.manual_seed(31) @parameterized.expand( [ ("training_step", "train_dataloader"), ("validation_step", "val_dataloader"), ("test_step", "test_dataloader"), ] ) def test_step(self, step_fname, dataloader_fname): with get_lightning_module() as lightning_module: dataloader = getattr(lightning_module, dataloader_fname)() batch = next(iter(dataloader)) getattr(lightning_module, step_fname)(batch, 0) @parameterized.expand( [ ("val_dataloader",), ] ) def test_forward(self, dataloader_fname): with get_lightning_module() as lightning_module: dataloader = getattr(lightning_module, dataloader_fname)() batch = next(iter(dataloader)) lightning_module(batch)
from contextlib import contextmanager from functools import partial from unittest.mock import patch import torch from parameterized import parameterized from torchaudio._internal.module_utils import is_module_available from torchaudio_unittest.common_utils import TorchaudioTestCase, skipIfNoModule from .utils import MockSentencePieceProcessor, MockCustomDataset, MockDataloader if is_module_available("pytorch_lightning", "sentencepiece"): from asr.emformer_rnnt.tedlium3.lightning import TEDLIUM3RNNTModule class MockTEDLIUM: def __init__(self, *args, **kwargs): pass def __getitem__(self, n: int): return ( torch.rand(1, 32640), 16000, "sup", 2, 3, 4, ) def __len__(self): return 10 @contextmanager def get_lightning_module(): with patch("sentencepiece.SentencePieceProcessor", new=partial(MockSentencePieceProcessor, num_symbols=500)), patch( "asr.emformer_rnnt.tedlium3.lightning.GlobalStatsNormalization", new=torch.nn.Identity ), patch("torchaudio.datasets.TEDLIUM", new=MockTEDLIUM), patch( "asr.emformer_rnnt.tedlium3.lightning.CustomDataset", new=MockCustomDataset ), patch( "torch.utils.data.DataLoader", new=MockDataloader ): yield TEDLIUM3RNNTModule( tedlium_path="tedlium_path", sp_model_path="sp_model_path", global_stats_path="global_stats_path", ) @skipIfNoModule("pytorch_lightning") @skipIfNoModule("sentencepiece") class TestTEDLIUM3RNNTModule(TorchaudioTestCase): @classmethod def setUpClass(cls) -> None: super().setUpClass() torch.random.manual_seed(31) @parameterized.expand( [ ("training_step", "train_dataloader"), ("validation_step", "val_dataloader"), ("test_step", "test_dataloader"), ] ) def test_step(self, step_fname, dataloader_fname): with get_lightning_module() as lightning_module: dataloader = getattr(lightning_module, dataloader_fname)() batch = next(iter(dataloader)) getattr(lightning_module, step_fname)(batch, 0) @parameterized.expand( [ ("val_dataloader",), ] ) def test_forward(self, dataloader_fname): with get_lightning_module() as lightning_module: dataloader = getattr(lightning_module, dataloader_fname)() batch = next(iter(dataloader)) lightning_module(batch)
"""Argparser module for pinging""" from jina.parsers.base import set_base_parser def set_new_project_parser(parser=None): """Set the parser for `new` :param parser: an existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() parser.add_argument( 'name', type=str, help='The name of the project', default='hello-jina' ) parser.add_argument( '--type', type=str, help='The type of project to be created (either flow or deployment)', default='flow', ) return parser
"""Argparser module for pinging""" from jina.parsers.base import set_base_parser def set_new_project_parser(parser=None): """Set the parser for `new` :param parser: an existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() parser.add_argument( 'name', type=str, help='The name of the project', default='hello-jina' ) parser.add_argument( '--type', type=str, help='The type of project to be created (either flow or deployment)', default='flow' ) return parser
from torchaudio.datasets import librispeech from torchaudio_unittest.common_utils import TorchaudioTestCase from torchaudio_unittest.datasets.librispeech_test_impl import LibriSpeechTestMixin class TestLibriSpeech(LibriSpeechTestMixin, TorchaudioTestCase): librispeech_cls = librispeech.LIBRISPEECH
import os from pathlib import Path from torchaudio.datasets import librispeech from torchaudio_unittest.common_utils import ( get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase, ) # Used to generate a unique transcript for each dummy audio file _NUMBERS = ["ZERO", "ONE", "TWO", "THREE", "FOUR", "FIVE", "SIX", "SEVEN", "EIGHT", "NINE"] def get_mock_dataset(root_dir): """ root_dir: directory to the mocked dataset """ mocked_data = [] dataset_dir = os.path.join(root_dir, librispeech.FOLDER_IN_ARCHIVE, librispeech.URL) os.makedirs(dataset_dir, exist_ok=True) sample_rate = 16000 # 16kHz seed = 0 for speaker_id in range(5): speaker_path = os.path.join(dataset_dir, str(speaker_id)) os.makedirs(speaker_path, exist_ok=True) for chapter_id in range(3): chapter_path = os.path.join(speaker_path, str(chapter_id)) os.makedirs(chapter_path, exist_ok=True) trans_content = [] for utterance_id in range(10): filename = f"{speaker_id}-{chapter_id}-{utterance_id:04d}.wav" path = os.path.join(chapter_path, filename) transcript = " ".join([_NUMBERS[x] for x in [speaker_id, chapter_id, utterance_id]]) trans_content.append(f"{speaker_id}-{chapter_id}-{utterance_id:04d} {transcript}") data = get_whitenoise(sample_rate=sample_rate, duration=0.01, n_channels=1, dtype="float32", seed=seed) save_wav(path, data, sample_rate) sample = (normalize_wav(data), sample_rate, transcript, speaker_id, chapter_id, utterance_id) mocked_data.append(sample) seed += 1 trans_filename = f"{speaker_id}-{chapter_id}.trans.txt" trans_path = os.path.join(chapter_path, trans_filename) with open(trans_path, "w") as f: f.write("\n".join(trans_content)) return mocked_data class TestLibriSpeech(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None samples = [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.samples = get_mock_dataset(cls.root_dir) @classmethod def tearDownClass(cls): # In case of test failure librispeech.LIBRISPEECH._ext_audio = ".flac" def _test_librispeech(self, dataset): num_samples = 0 for i, (data, sample_rate, transcript, speaker_id, chapter_id, utterance_id) in enumerate(dataset): self.assertEqual(data, self.samples[i][0], atol=5e-5, rtol=1e-8) assert sample_rate == self.samples[i][1] assert transcript == self.samples[i][2] assert speaker_id == self.samples[i][3] assert chapter_id == self.samples[i][4] assert utterance_id == self.samples[i][5] num_samples += 1 assert num_samples == len(self.samples) librispeech.LIBRISPEECH._ext_audio = ".flac" def test_librispeech_str(self): librispeech.LIBRISPEECH._ext_audio = ".wav" dataset = librispeech.LIBRISPEECH(self.root_dir) self._test_librispeech(dataset) def test_librispeech_path(self): librispeech.LIBRISPEECH._ext_audio = ".wav" dataset = librispeech.LIBRISPEECH(Path(self.root_dir)) self._test_librispeech(dataset)
# Copyright (c) OpenMMLab. All rights reserved. import pytest from mmcv.utils import ConfigDict from mmdet.models.utils.transformer import (DetrTransformerDecoder, DetrTransformerEncoder, Transformer) def test_detr_transformer_dencoder_encoder_layer(): config = ConfigDict( dict( return_intermediate=True, num_layers=6, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, dropout=0.1), feedforward_channels=2048, ffn_dropout=0.1, operation_order=( 'norm', 'self_attn', 'norm', 'cross_attn', 'norm', 'ffn', )))) assert DetrTransformerDecoder(**config).layers[0].pre_norm assert len(DetrTransformerDecoder(**config).layers) == 6 DetrTransformerDecoder(**config) with pytest.raises(AssertionError): config = ConfigDict( dict( return_intermediate=True, num_layers=6, transformerlayers=[ dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, dropout=0.1), feedforward_channels=2048, ffn_dropout=0.1, operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm')) ] * 5)) DetrTransformerDecoder(**config) config = ConfigDict( dict( num_layers=6, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, dropout=0.1), feedforward_channels=2048, ffn_dropout=0.1, operation_order=('norm', 'self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm')))) with pytest.raises(AssertionError): # len(operation_order) == 6 DetrTransformerEncoder(**config) def test_transformer(): config = ConfigDict( dict( encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=[ dict( type='MultiheadAttention', embed_dims=256, num_heads=8, dropout=0.1) ], feedforward_channels=2048, ffn_dropout=0.1, operation_order=('self_attn', 'norm', 'ffn', 'norm'))), decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=6, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, dropout=0.1), feedforward_channels=2048, ffn_dropout=0.1, operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm')), ))) transformer = Transformer(**config) transformer.init_weights()
import pytest from mmcv.utils import ConfigDict from mmdet.models.utils.transformer import (DetrTransformerDecoder, DetrTransformerEncoder, Transformer) def test_detr_transformer_dencoder_encoder_layer(): config = ConfigDict( dict( return_intermediate=True, num_layers=6, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, dropout=0.1), feedforward_channels=2048, ffn_dropout=0.1, operation_order=( 'norm', 'self_attn', 'norm', 'cross_attn', 'norm', 'ffn', )))) assert DetrTransformerDecoder(**config).layers[0].pre_norm assert len(DetrTransformerDecoder(**config).layers) == 6 DetrTransformerDecoder(**config) with pytest.raises(AssertionError): config = ConfigDict( dict( return_intermediate=True, num_layers=6, transformerlayers=[ dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, dropout=0.1), feedforward_channels=2048, ffn_dropout=0.1, operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm')) ] * 5)) DetrTransformerDecoder(**config) config = ConfigDict( dict( num_layers=6, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, dropout=0.1), feedforward_channels=2048, ffn_dropout=0.1, operation_order=('norm', 'self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm')))) with pytest.raises(AssertionError): # len(operation_order) == 6 DetrTransformerEncoder(**config) def test_transformer(): config = ConfigDict( dict( encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=[ dict( type='MultiheadAttention', embed_dims=256, num_heads=8, dropout=0.1) ], feedforward_channels=2048, ffn_dropout=0.1, operation_order=('self_attn', 'norm', 'ffn', 'norm'))), decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=6, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, dropout=0.1), feedforward_channels=2048, ffn_dropout=0.1, operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm')), ))) transformer = Transformer(**config) transformer.init_weights()
"""Tool for the OpenWeatherMap API.""" from typing import Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import Field from langchain_community.utilities.openweathermap import OpenWeatherMapAPIWrapper class OpenWeatherMapQueryRun(BaseTool): """Tool that queries the OpenWeatherMap API.""" api_wrapper: OpenWeatherMapAPIWrapper = Field( default_factory=OpenWeatherMapAPIWrapper ) name: str = "open_weather_map" description: str = ( "A wrapper around OpenWeatherMap API. " "Useful for fetching current weather information for a specified location. " "Input should be a location string (e.g. London,GB)." ) def _run( self, location: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> str: """Use the OpenWeatherMap tool.""" return self.api_wrapper.run(location)
"""Tool for the OpenWeatherMap API.""" from typing import Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import Field from langchain_community.utilities.openweathermap import OpenWeatherMapAPIWrapper class OpenWeatherMapQueryRun(BaseTool): # type: ignore[override] """Tool that queries the OpenWeatherMap API.""" api_wrapper: OpenWeatherMapAPIWrapper = Field( default_factory=OpenWeatherMapAPIWrapper # type: ignore[arg-type] ) name: str = "open_weather_map" description: str = ( "A wrapper around OpenWeatherMap API. " "Useful for fetching current weather information for a specified location. " "Input should be a location string (e.g. London,GB)." ) def _run( self, location: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> str: """Use the OpenWeatherMap tool.""" return self.api_wrapper.run(location)
"""AgentQL Web Reader.""" import httpx from typing import Optional, List from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document import logging logging.getLogger("root").setLevel(logging.INFO) QUERY_DATA_ENDPOINT = "https://api.agentql.com/v1/query-data" API_TIMEOUT_SECONDS = 900 REQUEST_ORIGIN = "llamaindex" class AgentQLWebReader(BasePydanticReader): """ Scrape a URL with or without a agentql query and returns document in json format. Args: api_key (str): The AgentQL API key, get one at https://dev.agentql.com params (dict): Additional parameters to pass to the AgentQL API. Visit https://docs.agentql.com/rest-api/api-reference for details. """ api_key: str params: Optional[dict] def __init__( self, api_key: str, params: Optional[dict] = None, ) -> None: super().__init__(api_key=api_key, params=params) def load_data( self, url: str, query: Optional[str] = None, prompt: Optional[str] = None ) -> List[Document]: """ Load data from the input directory. Args: url (str): URL to scrape or crawl. query (Optional[str]): AgentQL query used to specify the scraped data. prompt (Optional[str]): Natural language description of the data you want to scrape. Either query or prompt must be provided. params (Optional[dict]): Additional parameters to pass to the AgentQL API. Visit https://docs.agentql.com/rest-api/api-reference for details. Returns: List[Document]: List of documents. """ payload = {"url": url, "query": query, "prompt": prompt, "params": self.params} headers = { "X-API-Key": f"{self.api_key}", "Content-Type": "application/json", "X-TF-Request-Origin": REQUEST_ORIGIN, } try: response = httpx.post( QUERY_DATA_ENDPOINT, headers=headers, json=payload, timeout=API_TIMEOUT_SECONDS, ) response.raise_for_status() except httpx.HTTPStatusError as e: response = e.response if response.status_code in [401, 403]: raise ValueError( "Please, provide a valid API Key. You can create one at https://dev.agentql.com." ) from e else: try: error_json = response.json() msg = ( error_json["error_info"] if "error_info" in error_json else error_json["detail"] ) except (ValueError, TypeError): msg = f"HTTP {e}." raise ValueError(msg) from e else: json = response.json() return [Document(text=str(json["data"]), metadata=json["metadata"])]
"""AgentQL Web Reader.""" import httpx from typing import Optional, List from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document import logging logging.getLogger("root").setLevel(logging.INFO) QUERY_DATA_ENDPOINT = "https://api.agentql.com/v1/query-data" API_TIMEOUT_SECONDS = 900 class AgentQLWebReader(BasePydanticReader): """ Scrape a URL with or without a agentql query and returns document in json format. Args: api_key (str): The AgentQL API key, get one at https://dev.agentql.com params (dict): Additional parameters to pass to the AgentQL API. Visit https://docs.agentql.com/rest-api/api-reference for details. """ api_key: str params: Optional[dict] def __init__( self, api_key: str, params: Optional[dict] = None, ) -> None: super().__init__(api_key=api_key, params=params) def load_data( self, url: str, query: Optional[str] = None, prompt: Optional[str] = None ) -> List[Document]: """ Load data from the input directory. Args: url (str): URL to scrape or crawl. query (Optional[str]): AgentQL query used to specify the scraped data. prompt (Optional[str]): Natural language description of the data you want to scrape. Either query or prompt must be provided. params (Optional[dict]): Additional parameters to pass to the AgentQL API. Visit https://docs.agentql.com/rest-api/api-reference for details. Returns: List[Document]: List of documents. """ payload = {"url": url, "query": query, "prompt": prompt, "params": self.params} headers = {"X-API-Key": f"{self.api_key}", "Content-Type": "application/json"} try: response = httpx.post( QUERY_DATA_ENDPOINT, headers=headers, json=payload, timeout=API_TIMEOUT_SECONDS, ) response.raise_for_status() except httpx.HTTPStatusError as e: response = e.response if response.status_code in [401, 403]: raise ValueError( "Please, provide a valid API Key. You can create one at https://dev.agentql.com." ) from e else: try: error_json = response.json() msg = ( error_json["error_info"] if "error_info" in error_json else error_json["detail"] ) except (ValueError, TypeError): msg = f"HTTP {e}." raise ValueError(msg) from e else: json = response.json() return [Document(text=str(json["data"]), metadata=json["metadata"])]
from __future__ import annotations from dataclasses import dataclass from sentence_transformers.training_args import SentenceTransformerTrainingArguments @dataclass class SparseEncoderTrainingArguments(SentenceTransformerTrainingArguments): r""" SparseEncoderTrainingArguments extends :class:`~SentenceTransformerTrainingArguments` which itself extend :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. prompts (`Union[Dict[str, Dict[str, str]], Dict[str, str], str]`, *optional*): The prompts to use for each column in the training, evaluation and test datasets. Four formats are accepted: 1. `str`: A single prompt to use for all columns in the datasets, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 2. `Dict[str, str]`: A dictionary mapping column names to prompts, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 3. `Dict[str, str]`: A dictionary mapping dataset names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. 4. `Dict[str, Dict[str, str]]`: A dictionary mapping dataset names to dictionaries mapping column names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. router_mapping (`Optional[Dict[str, str]]`, *optional*): A mapping of dataset column names to Router routes, like "query" or "document". This is used to specify which Router submodule to use for each dataset. Two formats are accepted: 1. `Dict[str, str]`: A mapping of column names to routes. 2. `Dict[str, Dict[str, str]]`: A mapping of dataset names to a mapping of column names to routes for multi-dataset training/evaluation. learning_rate_mapping (`Optional[Dict[str, float]]`, *optional*): A mapping of parameter name regular expressions to learning rates. This allows you to set different learning rates for different parts of the model, e.g., `{'IDF\.*': 1e-3}` for the IDF module. This is useful when you want to fine-tune specific parts of the model with different learning rates. """
from __future__ import annotations from dataclasses import dataclass from sentence_transformers.training_args import SentenceTransformerTrainingArguments @dataclass class SparseEncoderTrainingArguments(SentenceTransformerTrainingArguments): """ SparseEncoderTrainingArguments extends :class:`~SentenceTransformerTrainingArguments` which itself extend :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. prompts (`Union[Dict[str, Dict[str, str]], Dict[str, str], str]`, *optional*): The prompts to use for each column in the training, evaluation and test datasets. Four formats are accepted: 1. `str`: A single prompt to use for all columns in the datasets, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 2. `Dict[str, str]`: A dictionary mapping column names to prompts, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 3. `Dict[str, str]`: A dictionary mapping dataset names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. 4. `Dict[str, Dict[str, str]]`: A dictionary mapping dataset names to dictionaries mapping column names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. """
# ruff: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "2.18.0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# ruff: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "2.17.2.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
import pytest as pytest from langchain_core.documents import Document from langchain.retrievers.multi_query import LineListOutputParser, _unique_documents @pytest.mark.parametrize( "documents,expected", [ ([], []), ([Document(page_content="foo")], [Document(page_content="foo")]), ([Document(page_content="foo")] * 2, [Document(page_content="foo")]), ( [Document(page_content="foo", metadata={"bar": "baz"})] * 2, [Document(page_content="foo", metadata={"bar": "baz"})], ), ( [Document(page_content="foo", metadata={"bar": [1, 2]})] * 2, [Document(page_content="foo", metadata={"bar": [1, 2]})], ), ( [Document(page_content="foo", metadata={"bar": {1, 2}})] * 2, [Document(page_content="foo", metadata={"bar": {1, 2}})], ), ( [ Document(page_content="foo", metadata={"bar": [1, 2]}), Document(page_content="foo", metadata={"bar": [2, 1]}), ], [ Document(page_content="foo", metadata={"bar": [1, 2]}), Document(page_content="foo", metadata={"bar": [2, 1]}), ], ), ], ) def test__unique_documents(documents: list[Document], expected: list[Document]) -> None: assert _unique_documents(documents) == expected @pytest.mark.parametrize( "text,expected", [ ("foo\nbar\nbaz", ["foo", "bar", "baz"]), ("foo\nbar\nbaz\n", ["foo", "bar", "baz"]), ("foo\n\nbar", ["foo", "bar"]), ], ) def test_line_list_output_parser(text: str, expected: list[str]) -> None: parser = LineListOutputParser() assert parser.parse(text) == expected
from typing import List import pytest as pytest from langchain_core.documents import Document from langchain.retrievers.multi_query import LineListOutputParser, _unique_documents @pytest.mark.parametrize( "documents,expected", [ ([], []), ([Document(page_content="foo")], [Document(page_content="foo")]), ([Document(page_content="foo")] * 2, [Document(page_content="foo")]), ( [Document(page_content="foo", metadata={"bar": "baz"})] * 2, [Document(page_content="foo", metadata={"bar": "baz"})], ), ( [Document(page_content="foo", metadata={"bar": [1, 2]})] * 2, [Document(page_content="foo", metadata={"bar": [1, 2]})], ), ( [Document(page_content="foo", metadata={"bar": {1, 2}})] * 2, [Document(page_content="foo", metadata={"bar": {1, 2}})], ), ( [ Document(page_content="foo", metadata={"bar": [1, 2]}), Document(page_content="foo", metadata={"bar": [2, 1]}), ], [ Document(page_content="foo", metadata={"bar": [1, 2]}), Document(page_content="foo", metadata={"bar": [2, 1]}), ], ), ], ) def test__unique_documents(documents: List[Document], expected: List[Document]) -> None: assert _unique_documents(documents) == expected @pytest.mark.parametrize( "text,expected", [ ("foo\nbar\nbaz", ["foo", "bar", "baz"]), ("foo\nbar\nbaz\n", ["foo", "bar", "baz"]), ("foo\n\nbar", ["foo", "bar"]), ], ) def test_line_list_output_parser(text: str, expected: List[str]) -> None: parser = LineListOutputParser() assert parser.parse(text) == expected
# coding: utf-8 """Tests for dual GPU+CPU support.""" import os import platform import pytest from sklearn.metrics import log_loss import lightgbm as lgb from .utils import load_breast_cancer @pytest.mark.skipif( os.environ.get("LIGHTGBM_TEST_DUAL_CPU_GPU", None) is None, reason="Only run if appropriate env variable is set", ) def test_cpu_and_gpu_work(): # If compiled appropriately, the same installation will support both GPU and CPU. X, y = load_breast_cancer(return_X_y=True) data = lgb.Dataset(X, y) params_cpu = {"verbosity": -1, "num_leaves": 31, "objective": "binary", "device": "cpu"} cpu_bst = lgb.train(params_cpu, data, num_boost_round=10) cpu_score = log_loss(y, cpu_bst.predict(X)) params_gpu = params_cpu.copy() params_gpu["device"] = "gpu" # Double-precision floats are only supported on x86_64 with PoCL params_gpu["gpu_use_dp"] = platform.machine() == "x86_64" gpu_bst = lgb.train(params_gpu, data, num_boost_round=10) gpu_score = log_loss(y, gpu_bst.predict(X)) rel = 1e-6 if params_gpu["gpu_use_dp"] else 1e-4 assert cpu_score == pytest.approx(gpu_score, rel=rel) assert gpu_score < 0.242
# coding: utf-8 """Tests for dual GPU+CPU support.""" import os import platform import pytest from sklearn.metrics import log_loss import lightgbm as lgb from .utils import load_breast_cancer @pytest.mark.skipif( os.environ.get("LIGHTGBM_TEST_DUAL_CPU_GPU", None) is None, reason="Only run if appropriate env variable is set", ) def test_cpu_and_gpu_work(): # If compiled appropriately, the same installation will support both GPU and CPU. X, y = load_breast_cancer(return_X_y=True) data = lgb.Dataset(X, y) params_cpu = {"verbosity": -1, "num_leaves": 31, "objective": "binary", "device": "cpu"} cpu_bst = lgb.train(params_cpu, data, num_boost_round=10) cpu_score = log_loss(y, cpu_bst.predict(X)) params_gpu = params_cpu.copy() params_gpu["device"] = "gpu" # Double-precision floats are only supported on x86_64 with PoCL params_gpu["gpu_use_dp"] = (platform.machine() == "x86_64") gpu_bst = lgb.train(params_gpu, data, num_boost_round=10) gpu_score = log_loss(y, gpu_bst.predict(X)) rel = 1e-6 if params_gpu["gpu_use_dp"] else 1e-4 assert cpu_score == pytest.approx(gpu_score, rel=rel) assert gpu_score < 0.242
"""A tracer that runs evaluators over completed runs.""" from langchain_core.tracers.evaluation import ( EvaluatorCallbackHandler, wait_for_all_evaluators, ) __all__ = ["EvaluatorCallbackHandler", "wait_for_all_evaluators"]
"""A tracer that runs evaluators over completed runs.""" from langchain_core.tracers.evaluation import ( EvaluatorCallbackHandler, wait_for_all_evaluators, ) __all__ = ["wait_for_all_evaluators", "EvaluatorCallbackHandler"]
# CoSENTLoss must be imported before AnglELoss from .CoSENTLoss import CoSENTLoss # isort: skip from .AdaptiveLayerLoss import AdaptiveLayerLoss from .AnglELoss import AnglELoss from .BatchAllTripletLoss import BatchAllTripletLoss from .BatchHardSoftMarginTripletLoss import BatchHardSoftMarginTripletLoss from .BatchHardTripletLoss import BatchHardTripletLoss, BatchHardTripletLossDistanceFunction from .BatchSemiHardTripletLoss import BatchSemiHardTripletLoss from .CachedGISTEmbedLoss import CachedGISTEmbedLoss from .CachedMultipleNegativesRankingLoss import CachedMultipleNegativesRankingLoss from .ContrastiveLoss import ContrastiveLoss, SiameseDistanceMetric from .ContrastiveTensionLoss import ( ContrastiveTensionDataLoader, ContrastiveTensionLoss, ContrastiveTensionLossInBatchNegatives, ) from .CosineSimilarityLoss import CosineSimilarityLoss from .DenoisingAutoEncoderLoss import DenoisingAutoEncoderLoss from .GISTEmbedLoss import GISTEmbedLoss from .MarginMSELoss import MarginMSELoss from .Matryoshka2dLoss import Matryoshka2dLoss from .MatryoshkaLoss import MatryoshkaLoss from .MegaBatchMarginLoss import MegaBatchMarginLoss from .MSELoss import MSELoss from .MultipleNegativesRankingLoss import MultipleNegativesRankingLoss from .MultipleNegativesSymmetricRankingLoss import MultipleNegativesSymmetricRankingLoss from .OnlineContrastiveLoss import OnlineContrastiveLoss from .SoftmaxLoss import SoftmaxLoss from .TripletLoss import TripletDistanceMetric, TripletLoss __all__ = [ "AdaptiveLayerLoss", "CosineSimilarityLoss", "SoftmaxLoss", "MultipleNegativesRankingLoss", "MultipleNegativesSymmetricRankingLoss", "TripletLoss", "TripletDistanceMetric", "MarginMSELoss", "MatryoshkaLoss", "Matryoshka2dLoss", "MSELoss", "ContrastiveLoss", "SiameseDistanceMetric", "CachedGISTEmbedLoss", "CachedMultipleNegativesRankingLoss", "ContrastiveTensionLoss", "ContrastiveTensionLossInBatchNegatives", "ContrastiveTensionDataLoader", "CoSENTLoss", "AnglELoss", "OnlineContrastiveLoss", "MegaBatchMarginLoss", "DenoisingAutoEncoderLoss", "GISTEmbedLoss", "BatchHardTripletLoss", "BatchHardTripletLossDistanceFunction", "BatchHardSoftMarginTripletLoss", "BatchSemiHardTripletLoss", "BatchAllTripletLoss", ]
from .AdaptiveLayerLoss import AdaptiveLayerLoss from .CosineSimilarityLoss import CosineSimilarityLoss from .SoftmaxLoss import SoftmaxLoss from .MultipleNegativesRankingLoss import MultipleNegativesRankingLoss from .MultipleNegativesSymmetricRankingLoss import MultipleNegativesSymmetricRankingLoss from .TripletLoss import TripletDistanceMetric, TripletLoss from .MarginMSELoss import MarginMSELoss from .MatryoshkaLoss import MatryoshkaLoss from .Matryoshka2dLoss import Matryoshka2dLoss from .MSELoss import MSELoss from .CachedMultipleNegativesRankingLoss import CachedMultipleNegativesRankingLoss from .ContrastiveLoss import SiameseDistanceMetric, ContrastiveLoss from .ContrastiveTensionLoss import ( ContrastiveTensionLoss, ContrastiveTensionLossInBatchNegatives, ContrastiveTensionDataLoader, ) from .CoSENTLoss import CoSENTLoss from .AnglELoss import AnglELoss from .OnlineContrastiveLoss import OnlineContrastiveLoss from .MegaBatchMarginLoss import MegaBatchMarginLoss from .DenoisingAutoEncoderLoss import DenoisingAutoEncoderLoss from .GISTEmbedLoss import GISTEmbedLoss from .CachedGISTEmbedLoss import CachedGISTEmbedLoss # Triplet losses from .BatchHardTripletLoss import BatchHardTripletLoss, BatchHardTripletLossDistanceFunction from .BatchHardSoftMarginTripletLoss import BatchHardSoftMarginTripletLoss from .BatchSemiHardTripletLoss import BatchSemiHardTripletLoss from .BatchAllTripletLoss import BatchAllTripletLoss __all__ = [ "AdaptiveLayerLoss", "CosineSimilarityLoss", "SoftmaxLoss", "MultipleNegativesRankingLoss", "MultipleNegativesSymmetricRankingLoss", "TripletLoss", "TripletDistanceMetric", "MarginMSELoss", "MatryoshkaLoss", "Matryoshka2dLoss", "MSELoss", "ContrastiveLoss", "SiameseDistanceMetric", "CachedGISTEmbedLoss", "CachedMultipleNegativesRankingLoss", "ContrastiveTensionLoss", "ContrastiveTensionLossInBatchNegatives", "ContrastiveTensionDataLoader", "CoSENTLoss", "AnglELoss", "OnlineContrastiveLoss", "MegaBatchMarginLoss", "DenoisingAutoEncoderLoss", "GISTEmbedLoss", "BatchHardTripletLoss", "BatchHardTripletLossDistanceFunction", "BatchHardSoftMarginTripletLoss", "BatchSemiHardTripletLoss", "BatchAllTripletLoss", ]
from __future__ import annotations import torch from sentence_transformers.models.Module import Module class SpladePooling(Module): """ SPLADE Pooling module for creating the sparse embeddings. This module implements the SPLADE pooling mechanism that: 1. Takes token logits from a masked language model (MLM). 2. Applies a sparse transformation using an activation function followed by log1p (i.e., log(1 + activation(MLM_logits))). 3. Applies a pooling strategy `max` or `sum` to produce sparse embeddings. The resulting embeddings are highly sparse and capture lexical information, making them suitable for efficient information retrieval. Args: pooling_strategy (str): Pooling method across token dimensions. Choices: - `sum`: Sum pooling (used in original SPLADE see https://arxiv.org/pdf/2107.05720). - `max`: Max pooling (used in SPLADEv2 and later models see https://arxiv.org/pdf/2109.10086 or https://arxiv.org/pdf/2205.04733). activation_function (str): Activation function applied before log1p transformation. Choices: - `relu`: ReLU activation (standard in all Splade models). - `log1p_relu`: log(1 + ReLU(x)) variant used in Opensearch Splade models see arxiv.org/pdf/2504.14839. word_embedding_dimension (int, optional): Dimensionality of the output embeddings (if needed). """ SPLADE_POOLING_MODES = ("sum", "max") SPLADE_ACTIVATION = ["relu", "log1p_relu"] config_keys: list[str] = ["pooling_strategy", "activation_function", "word_embedding_dimension"] def __init__( self, pooling_strategy: str = "max", activation_function="relu", word_embedding_dimension: int = None ) -> None: super().__init__() self.pooling_strategy = pooling_strategy if pooling_strategy not in self.SPLADE_POOLING_MODES: raise ValueError("pooling_strategy must be either 'max' or 'sum'") self.activation_function = activation_function if activation_function not in self.SPLADE_ACTIVATION: raise ValueError("activation_function must be either 'relu' or 'log1p_relu'") self.word_embedding_dimension = word_embedding_dimension # This will be set in the forward method def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: """Forward pass of the model. Args: features: Dictionary containing input features with 'token_embeddings' key as MLM logits. Returns: Dictionary containing SPLADE pooled embeddings """ # Get the MLM head logits (shape: batch_size, seq_length, vocab_size) mlm_logits = features["token_embeddings"] # Apply ReLU and log transformation for SPLADE if self.activation_function == "relu": splade_scores = torch.log1p(torch.relu(mlm_logits)) elif self.activation_function == "log1p_relu": splade_scores = torch.log1p(torch.log1p(torch.relu(mlm_logits))) else: raise ValueError("activation_function must be either 'relu' or 'log1p_relu'") # Pool across sequence length dimension if self.pooling_strategy == "max": pooled_scores = torch.max(splade_scores, dim=1)[0] # shape: batch_size, vocab_size else: # sum pooled_scores = torch.sum(splade_scores, dim=1) # shape: batch_size, vocab_size # Set the word embedding dimension if self.word_embedding_dimension is None: self.word_embedding_dimension = pooled_scores.shape[1] features["sentence_embedding"] = pooled_scores return features def save(self, output_path: str, *args, safe_serialization: bool = True, **kwargs) -> None: self.save_config(output_path) def __repr__(self) -> str: return f"SpladePooling({self.get_config_dict()})" def get_sentence_embedding_dimension(self) -> int: """Get the dimension of the sentence embedding. Returns: int: Dimension of the sentence embedding """ return self.word_embedding_dimension
from __future__ import annotations import json import os from typing import Any import torch from torch import nn class SpladePooling(nn.Module): """ SPLADE Pooling module for creating the sparse embeddings. This module implements the SPLADE pooling mechanism that: 1. Takes token logits from a masked language model (MLM). 2. Applies a sparse transformation using an activation function followed by log1p (i.e., log(1 + activation(MLM_logits))). 3. Applies a pooling strategy `max` or `sum` to produce sparse embeddings. The resulting embeddings are highly sparse and capture lexical information, making them suitable for efficient information retrieval. Args: pooling_strategy (str): Pooling method across token dimensions. Choices: - `sum`: Sum pooling (used in original SPLADE see https://arxiv.org/pdf/2107.05720). - `max`: Max pooling (used in SPLADEv2 and later models see https://arxiv.org/pdf/2109.10086 or https://arxiv.org/pdf/2205.04733). activation_function (str): Activation function applied before log1p transformation. Choices: - `relu`: ReLU activation (standard in all Splade models). - `log1p_relu`: log(1 + ReLU(x)) variant used in Opensearch Splade models see arxiv.org/pdf/2504.14839. word_embedding_dimension (int, optional): Dimensionality of the output embeddings (if needed). """ SPLADE_POOLING_MODES = ("sum", "max") SPLADE_ACTIVATION = ["relu", "log1p_relu"] def __init__( self, pooling_strategy: str = "max", activation_function="relu", word_embedding_dimension: int = None ) -> None: super().__init__() self.pooling_strategy = pooling_strategy if pooling_strategy not in self.SPLADE_POOLING_MODES: raise ValueError("pooling_strategy must be either 'max' or 'sum'") self.activation_function = activation_function if activation_function not in self.SPLADE_ACTIVATION: raise ValueError("activation_function must be either 'relu' or 'log1p_relu'") self.config_keys = ["pooling_strategy", "activation_function", "word_embedding_dimension"] self.word_embedding_dimension = word_embedding_dimension # This will be set in the forward method def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: """Forward pass of the model. Args: features: Dictionary containing input features with 'token_embeddings' key as MLM logits. Returns: Dictionary containing SPLADE pooled embeddings """ # Get the MLM head logits (shape: batch_size, seq_length, vocab_size) mlm_logits = features["token_embeddings"] # Apply ReLU and log transformation for SPLADE if self.activation_function == "relu": splade_scores = torch.log1p(torch.relu(mlm_logits)) elif self.activation_function == "log1p_relu": splade_scores = torch.log1p(torch.log1p(torch.relu(mlm_logits))) else: raise ValueError("activation_function must be either 'relu' or 'log1p_relu'") # Pool across sequence length dimension if self.pooling_strategy == "max": pooled_scores = torch.max(splade_scores, dim=1)[0] # shape: batch_size, vocab_size else: # sum pooled_scores = torch.sum(splade_scores, dim=1) # shape: batch_size, vocab_size # Set the word embedding dimension if self.word_embedding_dimension is None: self.word_embedding_dimension = pooled_scores.shape[1] features["sentence_embedding"] = pooled_scores return features def get_config_dict(self) -> dict[str, Any]: return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path) -> None: with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path) -> SpladePooling: with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return SpladePooling(**config) def __repr__(self) -> str: return f"SpladePooling({self.get_config_dict()})" def get_sentence_embedding_dimension(self) -> int: """Get the dimension of the sentence embedding. Returns: int: Dimension of the sentence embedding """ return self.word_embedding_dimension
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTranslationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model, not mutilingual but hope to see some on the hub soon model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a parallel sentences dataset dataset = load_dataset("sentence-transformers/parallel-sentences-news-commentary", "en-nl", split="train[:1000]") # Initialize the TranslationEvaluator using the same texts from two languages translation_evaluator = SparseTranslationEvaluator( source_sentences=dataset["english"], target_sentences=dataset["non_english"], name="news-commentary-en-nl", ) results = translation_evaluator(model) """ Evaluating translation matching Accuracy of the model on the news-commentary-en-nl dataset: Accuracy src2trg: 41.40 Accuracy trg2src: 47.70 Model Sparsity: Active Dimensions: 113.6, Sparsity Ratio: 0.9963 """ # Print the results print(f"Primary metric: {translation_evaluator.primary_metric}") # => Primary metric: news-commentary-en-nl_mean_accuracy print(f"Primary metric value: {results[translation_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.4455
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTranslationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model, not mutilingual but hope to see some on the hub soon model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a parallel sentences dataset dataset = load_dataset("sentence-transformers/parallel-sentences-news-commentary", "en-nl", split="train[:1000]") # Initialize the TranslationEvaluator using the same texts from two languages translation_evaluator = SparseTranslationEvaluator( source_sentences=dataset["english"], target_sentences=dataset["non_english"], name="news-commentary-en-nl", ) results = translation_evaluator(model) """ Evaluating translation matching Accuracy of the model on the news-commentary-en-nl dataset: Accuracy src2trg: 41.40 Accuracy trg2src: 47.70 Model Sparsity Stats: Row Non-Zero Mean: 113.6150016784668, Row Sparsity Mean: 0.9962776005268097 """ # Print the results print(f"Primary metric: {translation_evaluator.primary_metric}") # => Primary metric: news-commentary-en-nl_mean_accuracy print(f"Primary metric value: {results[translation_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.4455
from ...utils import is_flax_available, is_torch_available if is_torch_available(): from .controlnet import ControlNetModel, ControlNetOutput from .controlnet_flux import FluxControlNetModel, FluxControlNetOutput, FluxMultiControlNetModel from .controlnet_hunyuan import ( HunyuanControlNetOutput, HunyuanDiT2DControlNetModel, HunyuanDiT2DMultiControlNetModel, ) from .controlnet_sana import SanaControlNetModel from .controlnet_sd3 import SD3ControlNetModel, SD3ControlNetOutput, SD3MultiControlNetModel from .controlnet_sparsectrl import ( SparseControlNetConditioningEmbedding, SparseControlNetModel, SparseControlNetOutput, ) from .controlnet_union import ControlNetUnionModel from .controlnet_xs import ControlNetXSAdapter, ControlNetXSOutput, UNetControlNetXSModel from .multicontrolnet import MultiControlNetModel from .multicontrolnet_union import MultiControlNetUnionModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel
from ...utils import is_flax_available, is_torch_available if is_torch_available(): from .controlnet import ControlNetModel, ControlNetOutput from .controlnet_flux import FluxControlNetModel, FluxControlNetOutput, FluxMultiControlNetModel from .controlnet_hunyuan import ( HunyuanControlNetOutput, HunyuanDiT2DControlNetModel, HunyuanDiT2DMultiControlNetModel, ) from .controlnet_sd3 import SD3ControlNetModel, SD3ControlNetOutput, SD3MultiControlNetModel from .controlnet_sparsectrl import ( SparseControlNetConditioningEmbedding, SparseControlNetModel, SparseControlNetOutput, ) from .controlnet_union import ControlNetUnionModel from .controlnet_xs import ControlNetXSAdapter, ControlNetXSOutput, UNetControlNetXSModel from .multicontrolnet import MultiControlNetModel from .multicontrolnet_union import MultiControlNetUnionModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel
from typing import Any, Literal from pydantic import SecretStr from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import ( APIKeyCredentials, CredentialsField, CredentialsMetaInput, SchemaField, ) from backend.util.request import requests TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="unreal_speech", api_key=SecretStr("mock-unreal-speech-api-key"), title="Mock Unreal Speech API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.type, } class UnrealTextToSpeechBlock(Block): class Input(BlockSchema): text: str = SchemaField( description="The text to be converted to speech", placeholder="Enter the text you want to convert to speech", ) voice_id: str = SchemaField( description="The voice ID to use for text-to-speech conversion", placeholder="Scarlett", default="Scarlett", ) credentials: CredentialsMetaInput[ Literal["unreal_speech"], Literal["api_key"] ] = CredentialsField( provider="unreal_speech", supported_credential_types={"api_key"}, description="The Unreal Speech integration can be used with " "any API key with sufficient permissions for the blocks it is used on.", ) class Output(BlockSchema): mp3_url: str = SchemaField(description="The URL of the generated MP3 file") error: str = SchemaField(description="Error message if the API call failed") def __init__(self): super().__init__( id="4ff1ff6d-cc40-4caa-ae69-011daa20c378", description="Converts text to speech using the Unreal Speech API", categories={BlockCategory.AI, BlockCategory.TEXT}, input_schema=UnrealTextToSpeechBlock.Input, output_schema=UnrealTextToSpeechBlock.Output, test_input={ "text": "This is a test of the text to speech API.", "voice_id": "Scarlett", "credentials": TEST_CREDENTIALS_INPUT, }, test_output=[("mp3_url", "https://example.com/test.mp3")], test_mock={ "call_unreal_speech_api": lambda *args, **kwargs: { "OutputUri": "https://example.com/test.mp3" } }, test_credentials=TEST_CREDENTIALS, ) @staticmethod def call_unreal_speech_api( api_key: SecretStr, text: str, voice_id: str ) -> dict[str, Any]: url = "https://api.v7.unrealspeech.com/speech" headers = { "Authorization": f"Bearer {api_key.get_secret_value()}", "Content-Type": "application/json", } data = { "Text": text, "VoiceId": voice_id, "Bitrate": "192k", "Speed": "0", "Pitch": "1", "TimestampType": "sentence", } response = requests.post(url, headers=headers, json=data) return response.json() def run( self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs ) -> BlockOutput: api_response = self.call_unreal_speech_api( credentials.api_key, input_data.text, input_data.voice_id, ) yield "mp3_url", api_response["OutputUri"]
from typing import Any, Literal from autogpt_libs.supabase_integration_credentials_store.types import APIKeyCredentials from pydantic import SecretStr from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import CredentialsField, CredentialsMetaInput, SchemaField from backend.util.request import requests TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="unreal_speech", api_key=SecretStr("mock-unreal-speech-api-key"), title="Mock Unreal Speech API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.type, } class UnrealTextToSpeechBlock(Block): class Input(BlockSchema): text: str = SchemaField( description="The text to be converted to speech", placeholder="Enter the text you want to convert to speech", ) voice_id: str = SchemaField( description="The voice ID to use for text-to-speech conversion", placeholder="Scarlett", default="Scarlett", ) credentials: CredentialsMetaInput[ Literal["unreal_speech"], Literal["api_key"] ] = CredentialsField( provider="unreal_speech", supported_credential_types={"api_key"}, description="The Unreal Speech integration can be used with " "any API key with sufficient permissions for the blocks it is used on.", ) class Output(BlockSchema): mp3_url: str = SchemaField(description="The URL of the generated MP3 file") error: str = SchemaField(description="Error message if the API call failed") def __init__(self): super().__init__( id="4ff1ff6d-cc40-4caa-ae69-011daa20c378", description="Converts text to speech using the Unreal Speech API", categories={BlockCategory.AI, BlockCategory.TEXT}, input_schema=UnrealTextToSpeechBlock.Input, output_schema=UnrealTextToSpeechBlock.Output, test_input={ "text": "This is a test of the text to speech API.", "voice_id": "Scarlett", "credentials": TEST_CREDENTIALS_INPUT, }, test_output=[("mp3_url", "https://example.com/test.mp3")], test_mock={ "call_unreal_speech_api": lambda *args, **kwargs: { "OutputUri": "https://example.com/test.mp3" } }, test_credentials=TEST_CREDENTIALS, ) @staticmethod def call_unreal_speech_api( api_key: SecretStr, text: str, voice_id: str ) -> dict[str, Any]: url = "https://api.v7.unrealspeech.com/speech" headers = { "Authorization": f"Bearer {api_key.get_secret_value()}", "Content-Type": "application/json", } data = { "Text": text, "VoiceId": voice_id, "Bitrate": "192k", "Speed": "0", "Pitch": "1", "TimestampType": "sentence", } response = requests.post(url, headers=headers, json=data) return response.json() def run( self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs ) -> BlockOutput: api_response = self.call_unreal_speech_api( credentials.api_key, input_data.text, input_data.voice_id, ) yield "mp3_url", api_response["OutputUri"]
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class SuperPointConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SuperPointForKeypointDetection`]. It is used to instantiate a SuperPoint model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SuperPoint [magic-leap-community/superpoint](https://huggingface.co/magic-leap-community/superpoint) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: encoder_hidden_sizes (`List`, *optional*, defaults to `[64, 64, 128, 128]`): The number of channels in each convolutional layer in the encoder. decoder_hidden_size (`int`, *optional*, defaults to 256): The hidden size of the decoder. keypoint_decoder_dim (`int`, *optional*, defaults to 65): The output dimension of the keypoint decoder. descriptor_decoder_dim (`int`, *optional*, defaults to 256): The output dimension of the descriptor decoder. keypoint_threshold (`float`, *optional*, defaults to 0.005): The threshold to use for extracting keypoints. max_keypoints (`int`, *optional*, defaults to -1): The maximum number of keypoints to extract. If `-1`, will extract all keypoints. nms_radius (`int`, *optional*, defaults to 4): The radius for non-maximum suppression. border_removal_distance (`int`, *optional*, defaults to 4): The distance from the border to remove keypoints. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers import SuperPointConfig, SuperPointForKeypointDetection >>> # Initializing a SuperPoint superpoint style configuration >>> configuration = SuperPointConfig() >>> # Initializing a model from the superpoint style configuration >>> model = SuperPointForKeypointDetection(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "superpoint" def __init__( self, encoder_hidden_sizes: list[int] = [64, 64, 128, 128], decoder_hidden_size: int = 256, keypoint_decoder_dim: int = 65, descriptor_decoder_dim: int = 256, keypoint_threshold: float = 0.005, max_keypoints: int = -1, nms_radius: int = 4, border_removal_distance: int = 4, initializer_range=0.02, **kwargs, ): self.encoder_hidden_sizes = encoder_hidden_sizes self.decoder_hidden_size = decoder_hidden_size self.keypoint_decoder_dim = keypoint_decoder_dim self.descriptor_decoder_dim = descriptor_decoder_dim self.keypoint_threshold = keypoint_threshold self.max_keypoints = max_keypoints self.nms_radius = nms_radius self.border_removal_distance = border_removal_distance self.initializer_range = initializer_range super().__init__(**kwargs) __all__ = ["SuperPointConfig"]
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class SuperPointConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SuperPointForKeypointDetection`]. It is used to instantiate a SuperPoint model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SuperPoint [magic-leap-community/superpoint](https://huggingface.co/magic-leap-community/superpoint) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: encoder_hidden_sizes (`List`, *optional*, defaults to `[64, 64, 128, 128]`): The number of channels in each convolutional layer in the encoder. decoder_hidden_size (`int`, *optional*, defaults to 256): The hidden size of the decoder. keypoint_decoder_dim (`int`, *optional*, defaults to 65): The output dimension of the keypoint decoder. descriptor_decoder_dim (`int`, *optional*, defaults to 256): The output dimension of the descriptor decoder. keypoint_threshold (`float`, *optional*, defaults to 0.005): The threshold to use for extracting keypoints. max_keypoints (`int`, *optional*, defaults to -1): The maximum number of keypoints to extract. If `-1`, will extract all keypoints. nms_radius (`int`, *optional*, defaults to 4): The radius for non-maximum suppression. border_removal_distance (`int`, *optional*, defaults to 4): The distance from the border to remove keypoints. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers import SuperPointConfig, SuperPointForKeypointDetection >>> # Initializing a SuperPoint superpoint style configuration >>> configuration = SuperPointConfig() >>> # Initializing a model from the superpoint style configuration >>> model = SuperPointForKeypointDetection(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "superpoint" def __init__( self, encoder_hidden_sizes: List[int] = [64, 64, 128, 128], decoder_hidden_size: int = 256, keypoint_decoder_dim: int = 65, descriptor_decoder_dim: int = 256, keypoint_threshold: float = 0.005, max_keypoints: int = -1, nms_radius: int = 4, border_removal_distance: int = 4, initializer_range=0.02, **kwargs, ): self.encoder_hidden_sizes = encoder_hidden_sizes self.decoder_hidden_size = decoder_hidden_size self.keypoint_decoder_dim = keypoint_decoder_dim self.descriptor_decoder_dim = descriptor_decoder_dim self.keypoint_threshold = keypoint_threshold self.max_keypoints = max_keypoints self.nms_radius = nms_radius self.border_removal_distance = border_removal_distance self.initializer_range = initializer_range super().__init__(**kwargs) __all__ = ["SuperPointConfig"]
"""Sample a fraction of the Spider dataset.""" import argparse import json import os import random import shutil if __name__ == "__main__": parser = argparse.ArgumentParser( description="Create a sampled version of the Spider dataset." ) parser.add_argument( "--input", type=str, required=True, help="Path to the Spider dataset directory. " "This directory should contain the train.json, dev.json, " "and databases, " "downloaded from https://yale-lily.github.io/spider.", ) parser.add_argument( "--output", type=str, required=True, help="Path to the output directory of the sampled benchmark.", ) parser.add_argument( "--sample-factor", type=float, required=True, help="The sample factor to apply to sample a fraction " "of examples in both the train and dev datasets.", ) parser.add_argument("--seed", type=int, default=0, help="Random seed.") args = parser.parse_args() # Create the output directory if it does not exist. if not os.path.exists(args.output): os.makedirs(args.output) # Load the Spider dataset from the input directory. with open(os.path.join(args.input, "train_spider.json")) as f: train_spider = json.load(f) with open(os.path.join(args.input, "train_others.json")) as f: train_others = json.load(f) with open(os.path.join(args.input, "dev.json")) as f: dev = json.load(f) # Randomly sample (without replacement) the indices using the sample factor. random.seed(args.seed) train_spider_indices = list(range(len(train_spider))) train_others_indices = list(range(len(train_others))) dev_indices = list(range(len(dev))) train_spider_indices = random.choices( train_spider_indices, k=int(args.sample_factor * len(train_spider_indices)) ) train_others_indices = random.choices( train_others_indices, k=int(args.sample_factor * len(train_others_indices)) ) dev_indices = random.choices( dev_indices, k=int(args.sample_factor * len(dev_indices)) ) # Sort the indices to ensure same ordering as the original sql files. train_spider_indices.sort() train_others_indices.sort() dev_indices.sort() # Write the sampled datasets to the output directory. with open(os.path.join(args.output, "train_spider.json"), "w") as f: json.dump([train_spider[i] for i in train_spider_indices], f, indent=2) with open(os.path.join(args.output, "train_others.json"), "w") as f: json.dump([train_others[i] for i in train_others_indices], f, indent=2) with open(os.path.join(args.output, "dev.json"), "w") as f: json.dump([dev[i] for i in dev_indices], f, indent=2) # Write the sql files to the output directory. with open(os.path.join(args.output, "train_gold.sql"), "w") as f: for i in train_spider_indices: f.write( train_spider[i]["query"].replace("\t", " ") + "\t" + train_spider[i]["db_id"] + "\n" ) for i in train_others_indices: f.write( train_others[i]["query"].replace("\t", " ") + "\t" + train_others[i]["db_id"] + "\n" ) with open(os.path.join(args.output, "dev_gold.sql"), "w") as f: for i in dev_indices: f.write(dev[i]["query"] + "\t" + dev[i]["db_id"] + "\n") # Copy the database to the output directory. shutil.copytree( os.path.join(args.input, "database"), os.path.join(args.output, "database"), dirs_exist_ok=True, ) # Copy the tables.json file to the output directory. shutil.copyfile( os.path.join(args.input, "tables.json"), os.path.join(args.output, "tables.json"), ) # Print results. print(f"Sampled {len(train_spider_indices)} examples from train_spider.json.") print(f"Sampled {len(train_others_indices)} examples from train_others.json.") print(f"Sampled {len(dev_indices)} examples from dev.json.") print(f"All files written to {args.output}.")
"""Sample a fraction of the Spider dataset.""" import argparse import json import os import random import shutil if __name__ == "__main__": parser = argparse.ArgumentParser( description="Create a sampled version of the Spider dataset." ) parser.add_argument( "--input", type=str, required=True, help="Path to the Spider dataset directory. " "This directory should contain the train.json, dev.json, " "and databases, " "downloaded from https://yale-lily.github.io/spider.", ) parser.add_argument( "--output", type=str, required=True, help="Path to the output directory of the sampled benchmark.", ) parser.add_argument( "--sample-factor", type=float, required=True, help="The sample factor to apply to sample a fraction " "of examples in both the train and dev datasets.", ) parser.add_argument("--seed", type=int, default=0, help="Random seed.") args = parser.parse_args() # Create the output directory if it does not exist. if not os.path.exists(args.output): os.makedirs(args.output) # Load the Spider dataset from the input directory. with open(os.path.join(args.input, "train_spider.json")) as f: train_spider = json.load(f) with open(os.path.join(args.input, "train_others.json")) as f: train_others = json.load(f) with open(os.path.join(args.input, "dev.json")) as f: dev = json.load(f) # Randomly sample (without replacement) the indices using the sample factor. random.seed(args.seed) train_spider_indices = list(range(len(train_spider))) train_others_indices = list(range(len(train_others))) dev_indices = list(range(len(dev))) train_spider_indices = random.choices( train_spider_indices, k=int(args.sample_factor * len(train_spider_indices)) ) train_others_indices = random.choices( train_others_indices, k=int(args.sample_factor * len(train_others_indices)) ) dev_indices = random.choices( dev_indices, k=int(args.sample_factor * len(dev_indices)) ) # Sort the indices to ensure same ordering as the original sql files. train_spider_indices.sort() train_others_indices.sort() dev_indices.sort() # Write the sampled datasets to the output directory. with open(os.path.join(args.output, "train_spider.json"), "w") as f: json.dump([train_spider[i] for i in train_spider_indices], f, indent=2) with open(os.path.join(args.output, "train_others.json"), "w") as f: json.dump([train_others[i] for i in train_others_indices], f, indent=2) with open(os.path.join(args.output, "dev.json"), "w") as f: json.dump([dev[i] for i in dev_indices], f, indent=2) # Write the sql files to the output directory. with open(os.path.join(args.output, "train_gold.sql"), "w") as f: for i in train_spider_indices: f.write( train_spider[i]["query"].replace("\t", " ") + "\t" + train_spider[i]["db_id"] + "\n" ) for i in train_others_indices: f.write( train_others[i]["query"].replace("\t", " ") + "\t" + train_others[i]["db_id"] + "\n" ) with open(os.path.join(args.output, "dev_gold.sql"), "w") as f: for i in dev_indices: f.write(dev[i]["query"] + "\t" + dev[i]["db_id"] + "\n") # Copy the database to the output directory. shutil.copytree( os.path.join(args.input, "database"), os.path.join(args.output, "database"), dirs_exist_ok=True, ) # Copy the tables.json file to the output directory. shutil.copyfile( os.path.join(args.input, "tables.json"), os.path.join(args.output, "tables.json"), ) # Print results. print(f"Sampled {len(train_spider_indices)} examples from train_spider.json.") print(f"Sampled {len(train_others_indices)} examples from train_others.json.") print(f"Sampled {len(dev_indices)} examples from dev.json.") print(f"All files written to {args.output}.")
from __future__ import annotations import logging from datasets import load_dataset from sentence_transformers import SparseEncoder, SparseEncoderTrainer, SparseEncoderTrainingArguments from sentence_transformers.evaluation import SequentialEvaluator, SimilarityFunction from sentence_transformers.models import Pooling, Transformer from sentence_transformers.sparse_encoder import evaluation, losses, models from sentence_transformers.training_args import BatchSamplers # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def main(): # Initialize model components model_name = "tomaarsen/mpnet-base-nli" transformer = Transformer(model_name) transformer.requires_grad_(False) # Freeze the transformer model pooling = Pooling(transformer.get_word_embedding_dimension(), pooling_mode="mean") csr_sparsity = models.CSRSparsity( input_dim=transformer.get_word_embedding_dimension(), hidden_dim=4 * transformer.get_word_embedding_dimension(), k=256, # Number of top values to keep k_aux=512, # Number of top values for auxiliary loss ) # Create the SparseEncoder model model = SparseEncoder(modules=[transformer, pooling, csr_sparsity]) output_dir = "examples/sparse_encoder/output/sparse_encoder_nli_frozen_transformer_from_pretrained" # 2. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli train_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="train") eval_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev") logging.info(train_dataset) # 3. Initialize the loss loss = losses.CSRLoss( model=model, beta=0.1, # Weight for auxiliary loss gamma=1, # Weight for ranking loss scale=20.0, # Scale for similarity computation ) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. stsb_eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") evaluators = [] for k_dim in [16, 32, 64, 128, 256]: evaluators.append( evaluation.SparseEmbeddingSimilarityEvaluator( sentences1=stsb_eval_dataset["sentence1"], sentences2=stsb_eval_dataset["sentence2"], scores=stsb_eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name=f"sts-dev-{k_dim}", max_active_dims=k_dim, ) ) dev_evaluator = SequentialEvaluator(evaluators, main_score_function=lambda scores: scores[-1]) # Set up training arguments training_args = SparseEncoderTrainingArguments( output_dir=output_dir, num_train_epochs=1, per_device_train_batch_size=128, per_device_eval_batch_size=128, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch logging_steps=100, eval_strategy="steps", eval_steps=200, save_strategy="steps", save_steps=200, learning_rate=4e-5, optim="adamw_torch", weight_decay=1e-4, adam_epsilon=6.25e-10, run_name="sparse_encoder_nli_frozen_transformer_from_pretrained", ) # Initialize trainer trainer = SparseEncoderTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, ) # Train model trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_dataset = load_dataset("sentence-transformers/stsb", split="test") evaluators = [] for k_dim in [16, 32, 64, 128, 256]: evaluators.append( evaluation.SparseEmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name=f"sts-test-{k_dim}", max_active_dims=k_dim, ) ) test_evaluator = SequentialEvaluator(evaluators) test_evaluator(model) # 8. Save the trained & evaluated model locally model.save(output_dir) if __name__ == "__main__": main()
from __future__ import annotations import logging from datasets import load_dataset from sentence_transformers.evaluation import SequentialEvaluator, SimilarityFunction from sentence_transformers.models import Pooling, Transformer from sentence_transformers.sparse_encoder import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import ( SparseEmbeddingSimilarityEvaluator, ) from sentence_transformers.sparse_encoder.losses import CSRLoss from sentence_transformers.sparse_encoder.models import CSRSparsity from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import ( SparseEncoderTrainingArguments, ) from sentence_transformers.training_args import BatchSamplers # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def main(): # Initialize model components model_name = "tomaarsen/mpnet-base-nli" transformer = Transformer(model_name) transformer.requires_grad_(False) # Freeze the transformer model pooling = Pooling(transformer.get_word_embedding_dimension(), pooling_mode="mean") csr_sparsity = CSRSparsity( input_dim=transformer.get_word_embedding_dimension(), hidden_dim=4 * transformer.get_word_embedding_dimension(), k=256, # Number of top values to keep k_aux=512, # Number of top values for auxiliary loss ) # Create the SparseEncoder model model = SparseEncoder(modules=[transformer, pooling, csr_sparsity]) output_dir = "examples/sparse_encoder/output/sparse_encoder_nli_frozen_transformer_from_pretrained" # 2. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli train_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="train") eval_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev") logging.info(train_dataset) # 3. Initialize the loss loss = CSRLoss( model=model, beta=0.1, # Weight for auxiliary loss gamma=1, # Weight for ranking loss scale=20.0, # Scale for similarity computation ) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. stsb_eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") evaluators = [] for k_dim in [16, 32, 64, 128, 256]: evaluators.append( SparseEmbeddingSimilarityEvaluator( sentences1=stsb_eval_dataset["sentence1"], sentences2=stsb_eval_dataset["sentence2"], scores=stsb_eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name=f"sts-dev-{k_dim}", truncate_dim=k_dim, ) ) dev_evaluator = SequentialEvaluator(evaluators, main_score_function=lambda scores: scores[-1]) # Set up training arguments training_args = SparseEncoderTrainingArguments( output_dir=output_dir, num_train_epochs=1, per_device_train_batch_size=128, per_device_eval_batch_size=128, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch logging_steps=100, eval_strategy="steps", eval_steps=200, save_strategy="steps", save_steps=200, learning_rate=4e-5, optim="adamw_torch", weight_decay=1e-4, adam_epsilon=6.25e-10, run_name="sparse_encoder_nli_frozen_transformer_from_pretrained", ) # Initialize trainer trainer = SparseEncoderTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, ) # Train model trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_dataset = load_dataset("sentence-transformers/stsb", split="test") evaluators = [] for k_dim in [16, 32, 64, 128, 256]: evaluators.append( SparseEmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name=f"sts-test-{k_dim}", truncate_dim=k_dim, ) ) test_evaluator = SequentialEvaluator(evaluators) test_evaluator(model) # 8. Save the trained & evaluated model locally model.save(output_dir) if __name__ == "__main__": main()
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chat_models.anthropic import ( ChatAnthropic, convert_messages_to_prompt_anthropic, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "convert_messages_to_prompt_anthropic": "langchain_community.chat_models.anthropic", "ChatAnthropic": "langchain_community.chat_models.anthropic", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "ChatAnthropic", "convert_messages_to_prompt_anthropic", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chat_models.anthropic import ( ChatAnthropic, convert_messages_to_prompt_anthropic, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "convert_messages_to_prompt_anthropic": "langchain_community.chat_models.anthropic", "ChatAnthropic": "langchain_community.chat_models.anthropic", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "convert_messages_to_prompt_anthropic", "ChatAnthropic", ]
from typing import Iterable, Type from docarray.array.abstract_array import AbstractDocumentArray from docarray.array.mixins import GetAttributeArrayMixin, ProtoArrayMixin from docarray.document import AnyDocument, BaseDocument, BaseNode class DocumentArray( list, ProtoArrayMixin, GetAttributeArrayMixin, AbstractDocumentArray, BaseNode, ): """ a DocumentArray is a list-like container of Document of the same schema :param docs: iterable of Document """ document_type: Type[BaseDocument] = AnyDocument def __init__(self, docs: Iterable[BaseDocument]): super().__init__(doc_ for doc_ in docs) def __class_getitem__(cls, item: Type[BaseDocument]): if not issubclass(item, BaseDocument): raise ValueError( f'DocumentArray[item] item should be a Document not a {item} ' ) class _DocumenArrayTyped(DocumentArray): document_type: Type[BaseDocument] = item for field in _DocumenArrayTyped.document_type.__fields__.keys(): def _property_generator(val: str): return property(lambda self: self._get_documents_attribute(val)) setattr(_DocumenArrayTyped, field, _property_generator(field)) # this generates property on the fly based on the schema of the item _DocumenArrayTyped.__name__ = f'DocumentArray[{item.__name__}]' _DocumenArrayTyped.__qualname__ = f'DocumentArray[{item.__name__}]' return _DocumenArrayTyped
from typing import Iterable, Type from docarray.array.abstract_array import AbstractDocumentArray from docarray.array.mixins import GetAttributeArrayMixin, ProtoArrayMixin from docarray.document import AnyDocument, BaseDocument, BaseNode class DocumentArray( list, ProtoArrayMixin, GetAttributeArrayMixin, AbstractDocumentArray, BaseNode, ): """ a DocumentArray is a list-like container of Document of the same schema :param docs: iterable of Document """ document_type: Type[BaseDocument] = AnyDocument def __init__(self, docs: Iterable[BaseDocument]): super().__init__(doc_ for doc_ in docs) def __class_getitem__(cls, item: Type[BaseDocument]): if not issubclass(item, BaseDocument): raise ValueError( f'DocumentArray[item] item should be a Document not a {item} ' ) class _DocumenArrayTyped(DocumentArray): document_type: Type[BaseDocument] = item for field in _DocumenArrayTyped.document_type.__fields__.keys(): def _proprety_generator(val: str): return property(lambda self: self._get_documents_attribute(val)) setattr(_DocumenArrayTyped, field, _proprety_generator(field)) # this generates property on the fly based on the schema of the item _DocumenArrayTyped.__name__ = f'DocumentArray{item.__name__}' return _DocumenArrayTyped
import pytest from langchain_core.memory import BaseMemory from langchain.chains.conversation.memory import ( ConversationBufferMemory, ConversationBufferWindowMemory, ConversationSummaryMemory, ) from langchain.memory import ReadOnlySharedMemory, SimpleMemory from tests.unit_tests.llms.fake_llm import FakeLLM def test_simple_memory() -> None: """Test SimpleMemory.""" memory = SimpleMemory(memories={"baz": "foo"}) output = memory.load_memory_variables({}) assert output == {"baz": "foo"} assert memory.memory_variables == ["baz"] @pytest.mark.parametrize( "memory", [ ConversationBufferMemory(memory_key="baz"), ConversationSummaryMemory(llm=FakeLLM(), memory_key="baz"), ConversationBufferWindowMemory(memory_key="baz"), ], ) def test_readonly_memory(memory: BaseMemory) -> None: read_only_memory = ReadOnlySharedMemory(memory=memory) memory.save_context({"input": "bar"}, {"output": "foo"}) assert read_only_memory.load_memory_variables({}) == memory.load_memory_variables( {} )
import pytest from langchain_core.memory import BaseMemory from langchain.chains.conversation.memory import ( ConversationBufferMemory, ConversationBufferWindowMemory, ConversationSummaryMemory, ) from langchain.memory import ReadOnlySharedMemory, SimpleMemory from tests.unit_tests.llms.fake_llm import FakeLLM def test_simple_memory() -> None: """Test SimpleMemory.""" memory = SimpleMemory(memories={"baz": "foo"}) output = memory.load_memory_variables({}) assert output == {"baz": "foo"} assert ["baz"] == memory.memory_variables @pytest.mark.parametrize( "memory", [ ConversationBufferMemory(memory_key="baz"), ConversationSummaryMemory(llm=FakeLLM(), memory_key="baz"), ConversationBufferWindowMemory(memory_key="baz"), ], ) def test_readonly_memory(memory: BaseMemory) -> None: read_only_memory = ReadOnlySharedMemory(memory=memory) memory.save_context({"input": "bar"}, {"output": "foo"}) assert read_only_memory.load_memory_variables({}) == memory.load_memory_variables( {} )
from gravitasml.parser import Parser from gravitasml.token import tokenize from backend.data.block import Block, BlockOutput, BlockSchema from backend.data.model import SchemaField class XMLParserBlock(Block): class Input(BlockSchema): input_xml: str = SchemaField(description="input xml to be parsed") class Output(BlockSchema): parsed_xml: dict = SchemaField(description="output parsed xml to dict") error: str = SchemaField(description="Error in parsing") def __init__(self): super().__init__( id="286380af-9529-4b55-8be0-1d7c854abdb5", description="Parses XML using gravitasml to tokenize and coverts it to dict", input_schema=XMLParserBlock.Input, output_schema=XMLParserBlock.Output, test_input={"input_xml": "<tag1><tag2>content</tag2></tag1>"}, test_output=[ ("parsed_xml", {"tag1": {"tag2": "content"}}), ], ) async def run(self, input_data: Input, **kwargs) -> BlockOutput: try: tokens = tokenize(input_data.input_xml) parser = Parser(tokens) parsed_result = parser.parse() yield "parsed_xml", parsed_result except ValueError as val_e: raise ValueError(f"Validation error for dict:{val_e}") from val_e except SyntaxError as syn_e: raise SyntaxError(f"Error in input xml syntax: {syn_e}") from syn_e
from gravitasml.parser import Parser from gravitasml.token import tokenize from backend.data.block import Block, BlockOutput, BlockSchema from backend.data.model import SchemaField class XMLParserBlock(Block): class Input(BlockSchema): input_xml: str = SchemaField(description="input xml to be parsed") class Output(BlockSchema): parsed_xml: dict = SchemaField(description="output parsed xml to dict") error: str = SchemaField(description="Error in parsing") def __init__(self): super().__init__( id="286380af-9529-4b55-8be0-1d7c854abdb5", description="Parses XML using gravitasml to tokenize and coverts it to dict", input_schema=XMLParserBlock.Input, output_schema=XMLParserBlock.Output, test_input={"input_xml": "<tag1><tag2>content</tag2></tag1>"}, test_output=[ ("parsed_xml", {"tag1": {"tag2": "content"}}), ], ) def run(self, input_data: Input, **kwargs) -> BlockOutput: try: tokens = tokenize(input_data.input_xml) parser = Parser(tokens) parsed_result = parser.parse() yield "parsed_xml", parsed_result except ValueError as val_e: raise ValueError(f"Validation error for dict:{val_e}") from val_e except SyntaxError as syn_e: raise SyntaxError(f"Error in input xml syntax: {syn_e}") from syn_e
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] teacher_ckpt = 'http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_1x_coco/paa_r101_fpn_1x_coco_20200821-0a1825a4.pth' # noqa model = dict( type='LAD', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), # student backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # teacher teacher_ckpt=teacher_ckpt, teacher_backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), teacher_neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), teacher_bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.1, neg_iou_thr=0.1, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, score_voting=True, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) train_dataloader = dict(batch_size=8, num_workers=4) optim_wrapper = dict(type='AmpOptimWrapper', optimizer=dict(lr=0.01))
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] teacher_ckpt = 'http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_1x_coco/paa_r101_fpn_1x_coco_20200821-0a1825a4.pth' # noqa model = dict( type='LAD', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), # student backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # teacher teacher_ckpt=teacher_ckpt, teacher_backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), teacher_neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), teacher_bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.1, neg_iou_thr=0.1, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, score_voting=True, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) train_dataloader = dict(batch_size=8, num_workers=4) optim_wrapper = dict(type='AmpOptimWrapper', optimizer=dict(lr=0.01)) # TODO: MMEngine does not support fp16 yet. # fp16 = dict(loss_scale=512.)
import os from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Dict import orjson from pydantic import BaseModel, Field from rich.console import Console from docarray.base_doc.base_node import BaseNode from docarray.base_doc.io.json import orjson_dumps_and_decode from docarray.base_doc.mixins import IOMixin, UpdateMixin from docarray.typing import ID from docarray.typing.tensor.abstract_tensor import AbstractTensor if TYPE_CHECKING: from docarray.array.stacked.column_storage import ColumnStorageView _console: Console = Console() T = TypeVar('T', bound='BaseDoc') class BaseDoc(BaseModel, IOMixin, UpdateMixin, BaseNode): """ The base class for Documents """ id: Optional[ID] = Field(default_factory=lambda: ID(os.urandom(16).hex())) class Config: json_loads = orjson.loads json_dumps = orjson_dumps_and_decode # `DocArrayResponse` is able to handle tensors by itself. # Therefore, we stop FastAPI from doing any transformations # on tensors by setting an identity function as a custom encoder. json_encoders = {AbstractTensor: lambda x: x} validate_assignment = True @classmethod def from_view(cls: Type[T], storage_view: 'ColumnStorageView') -> T: doc = cls.__new__(cls) object.__setattr__(doc, '__dict__', storage_view) object.__setattr__(doc, '__fields_set__', set(storage_view.keys())) doc._init_private_attributes() return doc @classmethod def _get_field_type(cls, field: str) -> Type: """ Accessing the nested python Class define in the schema. Could be useful for reconstruction of Document in serialization/deserilization :param field: name of the field :return: """ return cls.__fields__[field].outer_type_ def __str__(self) -> str: with _console.capture() as capture: _console.print(self) return capture.get().strip() def summary(self) -> None: """Print non-empty fields and nested structure of this Document object.""" from docarray.display.document_summary import DocumentSummary DocumentSummary(doc=self).summary() @classmethod def schema_summary(cls) -> None: """Print a summary of the Documents schema.""" from docarray.display.document_summary import DocumentSummary DocumentSummary.schema_summary(cls) def _ipython_display_(self) -> None: """Displays the object in IPython as a summary""" self.summary() def is_view(self) -> bool: from docarray.array.stacked.column_storage import ColumnStorageView return isinstance(self.__dict__, ColumnStorageView) def __getattr__(self, item) -> Any: if item in self.__fields__.keys(): return self.__dict__[item] else: return super().__getattribute__(item) def __setattr__(self, field, value) -> None: if not self.is_view(): super().__setattr__(field, value) else: # here we first validate with pydantic # Then we apply the value to the remote dict, # and we change back the __dict__ value to the remote dict dict_ref = self.__dict__ super().__setattr__(field, value) for key, val in self.__dict__.items(): dict_ref[key] = val object.__setattr__(self, '__dict__', dict_ref) def _docarray_to_json_compatible(self) -> Dict: """ Convert itself into a json compatible object :return: A dictionary of the BaseDoc object """ return self.dict()
import os from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar import orjson from pydantic import BaseModel, Field from rich.console import Console from docarray.base_doc.base_node import BaseNode from docarray.base_doc.io.json import orjson_dumps, orjson_dumps_and_decode from docarray.base_doc.mixins import IOMixin, UpdateMixin from docarray.typing import ID if TYPE_CHECKING: from docarray.array.stacked.column_storage import ColumnStorageView _console: Console = Console() T = TypeVar('T', bound='BaseDoc') class BaseDoc(BaseModel, IOMixin, UpdateMixin, BaseNode): """ The base class for Documents """ id: Optional[ID] = Field(default_factory=lambda: ID(os.urandom(16).hex())) class Config: json_loads = orjson.loads json_dumps = orjson_dumps_and_decode json_encoders = {dict: orjson_dumps} validate_assignment = True @classmethod def from_view(cls: Type[T], storage_view: 'ColumnStorageView') -> T: doc = cls.__new__(cls) object.__setattr__(doc, '__dict__', storage_view) object.__setattr__(doc, '__fields_set__', set(storage_view.keys())) doc._init_private_attributes() return doc @classmethod def _get_field_type(cls, field: str) -> Type: """ Accessing the nested python Class define in the schema. Could be useful for reconstruction of Document in serialization/deserilization :param field: name of the field :return: """ return cls.__fields__[field].outer_type_ def __str__(self) -> str: with _console.capture() as capture: _console.print(self) return capture.get().strip() def summary(self) -> None: """Print non-empty fields and nested structure of this Document object.""" from docarray.display.document_summary import DocumentSummary DocumentSummary(doc=self).summary() @classmethod def schema_summary(cls) -> None: """Print a summary of the Documents schema.""" from docarray.display.document_summary import DocumentSummary DocumentSummary.schema_summary(cls) def _ipython_display_(self) -> None: """Displays the object in IPython as a summary""" self.summary() def is_view(self) -> bool: from docarray.array.stacked.column_storage import ColumnStorageView return isinstance(self.__dict__, ColumnStorageView) def __getattr__(self, item) -> Any: if item in self.__fields__.keys(): return self.__dict__[item] else: return super().__getattribute__(item) def __setattr__(self, field, value) -> None: if not self.is_view(): super().__setattr__(field, value) else: # here we first validate with pydantic # Then we apply the value to the remote dict, # and we change back the __dict__ value to the remote dict dict_ref = self.__dict__ super().__setattr__(field, value) for key, val in self.__dict__.items(): dict_ref[key] = val object.__setattr__(self, '__dict__', dict_ref)
import pytest from sklearn.base import ( BaseEstimator, RegressorMixin, TransformerMixin, ) from sklearn.utils._tags import get_tags class NoTagsEstimator: pass class ClassifierEstimator: # This is to test whether not inheriting from mixins works. _estimator_type = "classifier" class EmptyTransformer(TransformerMixin, BaseEstimator): pass class EmptyRegressor(RegressorMixin, BaseEstimator): pass @pytest.mark.filterwarnings("ignore:.*no __sklearn_tags__ attribute.*:FutureWarning") @pytest.mark.parametrize( "estimator, value", [ [NoTagsEstimator(), False], [ClassifierEstimator(), True], [EmptyTransformer(), False], [EmptyRegressor(), True], [BaseEstimator(), False], ], ) def test_requires_y(estimator, value): assert get_tags(estimator).target_tags.required == value
import pytest from sklearn.base import BaseEstimator, RegressorMixin, TransformerMixin from sklearn.utils._tags import get_tags class NoTagsEstimator: pass class ClassifierEstimator: # This is to test whether not inheriting from mixins works. _estimator_type = "classifier" @pytest.mark.parametrize( "estimator, value", [ [NoTagsEstimator(), False], [ClassifierEstimator(), True], [TransformerMixin(), False], [RegressorMixin(), True], [BaseEstimator(), False], ], ) def test_requires_y(estimator, value): assert get_tags(estimator).target_tags.required == value
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers import util from sentence_transformers.losses.CoSENTLoss import CoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseCoSENTLoss(CoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0, similarity_fct=util.cos_sim) -> None: """ This class implements CoSENT (Cosine Sentence). It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(i,j)-s(k,l))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Args: model: SparseEncoder similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Need to be used in SpladeLoss or CSRLoss as a loss function. - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseAnglELoss` is SparseCoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SpladeLoss( model=model, loss=losses.SparseCoSENTLoss(model), document_regularizer_weight=5e-5, use_document_regularizer_only=True ) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ model.similarity_fn_name = "cosine" return super().__init__(model, scale=scale, similarity_fct=similarity_fct) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError("SparseCoSENTLoss should not be used alone. Use it with SpladeLoss or CSRLoss.")
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers import util from sentence_transformers.losses.CoSENTLoss import CoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseCoSENTLoss(CoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0, similarity_fct=util.cos_sim) -> None: """ This class implements CoSENT (Cosine Sentence). It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(i,j)-s(k,l))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Args: model: SparseEncoder similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Need to be used in SpladeLoss or CSRLoss as a loss function. - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseAnglELoss` is SparseCoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SpladeLoss( model=model, loss=losses.SparseCoSENTLoss(model), corpus_regularizer_weight=5e-5, use_corpus_regularizer_only=True ) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ model.similarity_fn_name = "cosine" return super().__init__(model, scale=scale, similarity_fct=similarity_fct) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError("SparseCoSENTLoss should not be used alone. Use it with SpladeLoss or CSRLoss.")
from typing import Literal from autogpt_libs.supabase_integration_credentials_store.types import APIKeyCredentials from pydantic import SecretStr from backend.data.model import CredentialsField, CredentialsMetaInput JinaCredentials = APIKeyCredentials JinaCredentialsInput = CredentialsMetaInput[ Literal["jina"], Literal["api_key"], ] TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="jina", api_key=SecretStr("mock-jina-api-key"), title="Mock Jina API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.type, } def JinaCredentialsField() -> JinaCredentialsInput: """ Creates a Jina credentials input on a block. """ return CredentialsField( provider="jina", supported_credential_types={"api_key"}, description="The Jina integration can be used with an API Key.", ) TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="jina", api_key=SecretStr("mock-jina-api-key"), title="Mock Jina API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.type, }
from typing import Literal from autogpt_libs.supabase_integration_credentials_store.types import APIKeyCredentials from pydantic import SecretStr from backend.data.model import CredentialsField, CredentialsMetaInput JinaCredentials = APIKeyCredentials JinaCredentialsInput = CredentialsMetaInput[ Literal["jina"], Literal["api_key"], ] def JinaCredentialsField() -> JinaCredentialsInput: """ Creates a Jina credentials input on a block. """ return CredentialsField( provider="jina", supported_credential_types={"api_key"}, description="The Jina integration can be used with an API Key.", ) TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="jina", api_key=SecretStr("mock-jina-api-key"), title="Mock Jina API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.type, }
"""Test base tool child implementations.""" import inspect import re from typing import List, Type import pytest from langchain_core.tools import BaseTool from langchain_community.tools.amadeus.base import AmadeusBaseTool from langchain_community.tools.gmail.base import GmailBaseTool from langchain_community.tools.office365.base import O365BaseTool from langchain_community.tools.playwright.base import BaseBrowserTool from langchain_community.tools.slack.base import SlackBaseTool def get_non_abstract_subclasses(cls: Type[BaseTool]) -> List[Type[BaseTool]]: to_skip = { AmadeusBaseTool, BaseBrowserTool, GmailBaseTool, O365BaseTool, SlackBaseTool, } # Abstract but not recognized subclasses = [] for subclass in cls.__subclasses__(): if ( not getattr(subclass, "__abstract__", None) and not subclass.__name__.startswith("_") and subclass not in to_skip ): subclasses.append(subclass) sc = get_non_abstract_subclasses(subclass) subclasses.extend(sc) return subclasses @pytest.mark.parametrize("cls", get_non_abstract_subclasses(BaseTool)) # type: ignore[type-abstract] def test_all_subclasses_accept_run_manager(cls: Type[BaseTool]) -> None: """Test that tools defined in this repo accept a run manager argument.""" # This wouldn't be necessary if the BaseTool had a strict API. if cls._run is not BaseTool._run: run_func = cls._run params = inspect.signature(run_func).parameters assert "run_manager" in params pattern = re.compile(r"(?!Async)CallbackManagerForToolRun") assert bool(re.search(pattern, str(params["run_manager"].annotation))) assert params["run_manager"].default is None if cls._arun is not BaseTool._arun: run_func = cls._arun params = inspect.signature(run_func).parameters assert "run_manager" in params assert "AsyncCallbackManagerForToolRun" in str(params["run_manager"].annotation) assert params["run_manager"].default is None
"""Test base tool child implementations.""" import inspect import re from typing import List, Type import pytest from langchain_core.tools import BaseTool from langchain_community.tools.amadeus.base import AmadeusBaseTool from langchain_community.tools.gmail.base import GmailBaseTool from langchain_community.tools.office365.base import O365BaseTool from langchain_community.tools.playwright.base import BaseBrowserTool from langchain_community.tools.slack.base import SlackBaseTool def get_non_abstract_subclasses(cls: Type[BaseTool]) -> List[Type[BaseTool]]: to_skip = { AmadeusBaseTool, BaseBrowserTool, GmailBaseTool, O365BaseTool, SlackBaseTool, } # Abstract but not recognized subclasses = [] for subclass in cls.__subclasses__(): if ( not getattr(subclass, "__abstract__", None) and not subclass.__name__.startswith("_") and subclass not in to_skip ): subclasses.append(subclass) sc = get_non_abstract_subclasses(subclass) subclasses.extend(sc) return subclasses @pytest.mark.parametrize("cls", get_non_abstract_subclasses(BaseTool)) # type: ignore def test_all_subclasses_accept_run_manager(cls: Type[BaseTool]) -> None: """Test that tools defined in this repo accept a run manager argument.""" # This wouldn't be necessary if the BaseTool had a strict API. if cls._run is not BaseTool._run: run_func = cls._run params = inspect.signature(run_func).parameters assert "run_manager" in params pattern = re.compile(r"(?!Async)CallbackManagerForToolRun") assert bool(re.search(pattern, str(params["run_manager"].annotation))) assert params["run_manager"].default is None if cls._arun is not BaseTool._arun: run_func = cls._arun params = inspect.signature(run_func).parameters assert "run_manager" in params assert "AsyncCallbackManagerForToolRun" in str(params["run_manager"].annotation) assert params["run_manager"].default is None
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmdet.models.backbones import ResNeXt from mmdet.models.backbones.resnext import Bottleneck as BottleneckX from .utils import is_block def test_renext_bottleneck(): with pytest.raises(AssertionError): # Style must be in ['pytorch', 'caffe'] BottleneckX(64, 64, groups=32, base_width=4, style='tensorflow') # Test ResNeXt Bottleneck structure block = BottleneckX( 64, 64, groups=32, base_width=4, stride=2, style='pytorch') assert block.conv2.stride == (2, 2) assert block.conv2.groups == 32 assert block.conv2.out_channels == 128 # Test ResNeXt Bottleneck with DCN dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False) with pytest.raises(AssertionError): # conv_cfg must be None if dcn is not None BottleneckX( 64, 64, groups=32, base_width=4, dcn=dcn, conv_cfg=dict(type='Conv')) BottleneckX(64, 64, dcn=dcn) # Test ResNeXt Bottleneck forward block = BottleneckX(64, 16, groups=32, base_width=4) x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) # Test ResNeXt Bottleneck forward with plugins plugins = [ dict( cfg=dict( type='GeneralizedAttention', spatial_range=-1, num_heads=8, attention_type='0010', kv_stride=2), stages=(False, False, True, True), position='after_conv2') ] block = BottleneckX(64, 16, groups=32, base_width=4, plugins=plugins) x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) def test_resnext_backbone(): with pytest.raises(KeyError): # ResNeXt depth should be in [50, 101, 152] ResNeXt(depth=18) # Test ResNeXt with group 32, base_width 4 model = ResNeXt(depth=50, groups=32, base_width=4) for m in model.modules(): if is_block(m): assert m.conv2.groups == 32 model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) regnet_test_data = [ ('regnetx_400mf', dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0), [32, 64, 160, 384]), ('regnetx_800mf', dict(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16, bot_mul=1.0), [64, 128, 288, 672]), ('regnetx_1.6gf', dict(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18, bot_mul=1.0), [72, 168, 408, 912]), ('regnetx_3.2gf', dict(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25, bot_mul=1.0), [96, 192, 432, 1008]), ('regnetx_4.0gf', dict(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23, bot_mul=1.0), [80, 240, 560, 1360]), ('regnetx_6.4gf', dict(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17, bot_mul=1.0), [168, 392, 784, 1624]), ('regnetx_8.0gf', dict(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23, bot_mul=1.0), [80, 240, 720, 1920]), ('regnetx_12gf', dict(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19, bot_mul=1.0), [224, 448, 896, 2240]), ]
import pytest import torch from mmdet.models.backbones import ResNeXt from mmdet.models.backbones.resnext import Bottleneck as BottleneckX from .utils import is_block def test_renext_bottleneck(): with pytest.raises(AssertionError): # Style must be in ['pytorch', 'caffe'] BottleneckX(64, 64, groups=32, base_width=4, style='tensorflow') # Test ResNeXt Bottleneck structure block = BottleneckX( 64, 64, groups=32, base_width=4, stride=2, style='pytorch') assert block.conv2.stride == (2, 2) assert block.conv2.groups == 32 assert block.conv2.out_channels == 128 # Test ResNeXt Bottleneck with DCN dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False) with pytest.raises(AssertionError): # conv_cfg must be None if dcn is not None BottleneckX( 64, 64, groups=32, base_width=4, dcn=dcn, conv_cfg=dict(type='Conv')) BottleneckX(64, 64, dcn=dcn) # Test ResNeXt Bottleneck forward block = BottleneckX(64, 16, groups=32, base_width=4) x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) # Test ResNeXt Bottleneck forward with plugins plugins = [ dict( cfg=dict( type='GeneralizedAttention', spatial_range=-1, num_heads=8, attention_type='0010', kv_stride=2), stages=(False, False, True, True), position='after_conv2') ] block = BottleneckX(64, 16, groups=32, base_width=4, plugins=plugins) x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) def test_resnext_backbone(): with pytest.raises(KeyError): # ResNeXt depth should be in [50, 101, 152] ResNeXt(depth=18) # Test ResNeXt with group 32, base_width 4 model = ResNeXt(depth=50, groups=32, base_width=4) for m in model.modules(): if is_block(m): assert m.conv2.groups == 32 model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) regnet_test_data = [ ('regnetx_400mf', dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0), [32, 64, 160, 384]), ('regnetx_800mf', dict(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16, bot_mul=1.0), [64, 128, 288, 672]), ('regnetx_1.6gf', dict(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18, bot_mul=1.0), [72, 168, 408, 912]), ('regnetx_3.2gf', dict(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25, bot_mul=1.0), [96, 192, 432, 1008]), ('regnetx_4.0gf', dict(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23, bot_mul=1.0), [80, 240, 560, 1360]), ('regnetx_6.4gf', dict(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17, bot_mul=1.0), [168, 392, 784, 1624]), ('regnetx_8.0gf', dict(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23, bot_mul=1.0), [80, 240, 720, 1920]), ('regnetx_12gf', dict(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19, bot_mul=1.0), [224, 448, 896, 2240]), ]
"""Test HyDE.""" from typing import Any, Optional import numpy as np from langchain_core.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain_core.embeddings import Embeddings from langchain_core.language_models.llms import BaseLLM from langchain_core.outputs import Generation, LLMResult from langchain.chains.hyde.base import HypotheticalDocumentEmbedder from langchain.chains.hyde.prompts import PROMPT_MAP class FakeEmbeddings(Embeddings): """Fake embedding class for tests.""" def embed_documents(self, texts: list[str]) -> list[list[float]]: """Return random floats.""" return [list(np.random.uniform(0, 1, 10)) for _ in range(10)] def embed_query(self, text: str) -> list[float]: """Return random floats.""" return list(np.random.uniform(0, 1, 10)) class FakeLLM(BaseLLM): """Fake LLM wrapper for testing purposes.""" n: int = 1 def _generate( self, prompts: list[str], stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: return LLMResult(generations=[[Generation(text="foo") for _ in range(self.n)]]) async def _agenerate( self, prompts: list[str], stop: Optional[list[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: return LLMResult(generations=[[Generation(text="foo") for _ in range(self.n)]]) def get_num_tokens(self, text: str) -> int: """Return number of tokens.""" return len(text.split()) @property def _llm_type(self) -> str: """Return type of llm.""" return "fake" def test_hyde_from_llm() -> None: """Test loading HyDE from all prompts.""" for key in PROMPT_MAP: embedding = HypotheticalDocumentEmbedder.from_llm( FakeLLM(), FakeEmbeddings(), key ) embedding.embed_query("foo") def test_hyde_from_llm_with_multiple_n() -> None: """Test loading HyDE from all prompts.""" for key in PROMPT_MAP: embedding = HypotheticalDocumentEmbedder.from_llm( FakeLLM(n=8), FakeEmbeddings(), key ) embedding.embed_query("foo")
"""Test HyDE.""" from typing import Any, List, Optional import numpy as np from langchain_core.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain_core.embeddings import Embeddings from langchain_core.language_models.llms import BaseLLM from langchain_core.outputs import Generation, LLMResult from langchain.chains.hyde.base import HypotheticalDocumentEmbedder from langchain.chains.hyde.prompts import PROMPT_MAP class FakeEmbeddings(Embeddings): """Fake embedding class for tests.""" def embed_documents(self, texts: List[str]) -> List[List[float]]: """Return random floats.""" return [list(np.random.uniform(0, 1, 10)) for _ in range(10)] def embed_query(self, text: str) -> List[float]: """Return random floats.""" return list(np.random.uniform(0, 1, 10)) class FakeLLM(BaseLLM): """Fake LLM wrapper for testing purposes.""" n: int = 1 def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: return LLMResult(generations=[[Generation(text="foo") for _ in range(self.n)]]) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: return LLMResult(generations=[[Generation(text="foo") for _ in range(self.n)]]) def get_num_tokens(self, text: str) -> int: """Return number of tokens.""" return len(text.split()) @property def _llm_type(self) -> str: """Return type of llm.""" return "fake" def test_hyde_from_llm() -> None: """Test loading HyDE from all prompts.""" for key in PROMPT_MAP: embedding = HypotheticalDocumentEmbedder.from_llm( FakeLLM(), FakeEmbeddings(), key ) embedding.embed_query("foo") def test_hyde_from_llm_with_multiple_n() -> None: """Test loading HyDE from all prompts.""" for key in PROMPT_MAP: embedding = HypotheticalDocumentEmbedder.from_llm( FakeLLM(n=8), FakeEmbeddings(), key ) embedding.embed_query("foo")
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import os from huggingface_hub.constants import HF_HOME from packaging import version from ..dependency_versions_check import dep_version_check from .import_utils import ENV_VARS_TRUE_VALUES, is_peft_available, is_transformers_available MIN_PEFT_VERSION = "0.6.0" MIN_TRANSFORMERS_VERSION = "4.34.0" _CHECK_PEFT = os.environ.get("_CHECK_PEFT", "1") in ENV_VARS_TRUE_VALUES CONFIG_NAME = "config.json" WEIGHTS_NAME = "diffusion_pytorch_model.bin" WEIGHTS_INDEX_NAME = "diffusion_pytorch_model.bin.index.json" FLAX_WEIGHTS_NAME = "diffusion_flax_model.msgpack" ONNX_WEIGHTS_NAME = "model.onnx" SAFETENSORS_WEIGHTS_NAME = "diffusion_pytorch_model.safetensors" SAFE_WEIGHTS_INDEX_NAME = "diffusion_pytorch_model.safetensors.index.json" SAFETENSORS_FILE_EXTENSION = "safetensors" GGUF_FILE_EXTENSION = "gguf" ONNX_EXTERNAL_WEIGHTS_NAME = "weights.pb" HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co") DIFFUSERS_DYNAMIC_MODULE_NAME = "diffusers_modules" HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(HF_HOME, "modules")) DEPRECATED_REVISION_ARGS = ["fp16", "non-ema"] DIFFUSERS_REQUEST_TIMEOUT = 60 # Below should be `True` if the current version of `peft` and `transformers` are compatible with # PEFT backend. Will automatically fall back to PEFT backend if the correct versions of the libraries are # available. # For PEFT it is has to be greater than or equal to 0.6.0 and for transformers it has to be greater than or equal to 4.34.0. _required_peft_version = is_peft_available() and version.parse( version.parse(importlib.metadata.version("peft")).base_version ) >= version.parse(MIN_PEFT_VERSION) _required_transformers_version = is_transformers_available() and version.parse( version.parse(importlib.metadata.version("transformers")).base_version ) >= version.parse(MIN_TRANSFORMERS_VERSION) USE_PEFT_BACKEND = _required_peft_version and _required_transformers_version if USE_PEFT_BACKEND and _CHECK_PEFT: dep_version_check("peft") DECODE_ENDPOINT_SD_V1 = "https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/" DECODE_ENDPOINT_SD_XL = "https://x2dmsqunjd6k9prw.us-east-1.aws.endpoints.huggingface.cloud/" DECODE_ENDPOINT_FLUX = "https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud/" DECODE_ENDPOINT_HUNYUAN_VIDEO = "https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud/" ENCODE_ENDPOINT_SD_V1 = "https://qc6479g0aac6qwy9.us-east-1.aws.endpoints.huggingface.cloud/" ENCODE_ENDPOINT_SD_XL = "https://xjqqhmyn62rog84g.us-east-1.aws.endpoints.huggingface.cloud/" ENCODE_ENDPOINT_FLUX = "https://ptccx55jz97f9zgo.us-east-1.aws.endpoints.huggingface.cloud/"
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import os from huggingface_hub.constants import HF_HOME from packaging import version from ..dependency_versions_check import dep_version_check from .import_utils import ENV_VARS_TRUE_VALUES, is_peft_available, is_transformers_available MIN_PEFT_VERSION = "0.6.0" MIN_TRANSFORMERS_VERSION = "4.34.0" _CHECK_PEFT = os.environ.get("_CHECK_PEFT", "1") in ENV_VARS_TRUE_VALUES CONFIG_NAME = "config.json" WEIGHTS_NAME = "diffusion_pytorch_model.bin" WEIGHTS_INDEX_NAME = "diffusion_pytorch_model.bin.index.json" FLAX_WEIGHTS_NAME = "diffusion_flax_model.msgpack" ONNX_WEIGHTS_NAME = "model.onnx" SAFETENSORS_WEIGHTS_NAME = "diffusion_pytorch_model.safetensors" SAFE_WEIGHTS_INDEX_NAME = "diffusion_pytorch_model.safetensors.index.json" SAFETENSORS_FILE_EXTENSION = "safetensors" GGUF_FILE_EXTENSION = "gguf" ONNX_EXTERNAL_WEIGHTS_NAME = "weights.pb" HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co") DIFFUSERS_DYNAMIC_MODULE_NAME = "diffusers_modules" HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(HF_HOME, "modules")) DEPRECATED_REVISION_ARGS = ["fp16", "non-ema"] # Below should be `True` if the current version of `peft` and `transformers` are compatible with # PEFT backend. Will automatically fall back to PEFT backend if the correct versions of the libraries are # available. # For PEFT it is has to be greater than or equal to 0.6.0 and for transformers it has to be greater than or equal to 4.34.0. _required_peft_version = is_peft_available() and version.parse( version.parse(importlib.metadata.version("peft")).base_version ) >= version.parse(MIN_PEFT_VERSION) _required_transformers_version = is_transformers_available() and version.parse( version.parse(importlib.metadata.version("transformers")).base_version ) >= version.parse(MIN_TRANSFORMERS_VERSION) USE_PEFT_BACKEND = _required_peft_version and _required_transformers_version if USE_PEFT_BACKEND and _CHECK_PEFT: dep_version_check("peft") DECODE_ENDPOINT_SD_V1 = "https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/" DECODE_ENDPOINT_SD_XL = "https://x2dmsqunjd6k9prw.us-east-1.aws.endpoints.huggingface.cloud/" DECODE_ENDPOINT_FLUX = "https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud/" DECODE_ENDPOINT_HUNYUAN_VIDEO = "https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud/" ENCODE_ENDPOINT_SD_V1 = "https://qc6479g0aac6qwy9.us-east-1.aws.endpoints.huggingface.cloud/" ENCODE_ENDPOINT_SD_XL = "https://xjqqhmyn62rog84g.us-east-1.aws.endpoints.huggingface.cloud/" ENCODE_ENDPOINT_FLUX = "https://ptccx55jz97f9zgo.us-east-1.aws.endpoints.huggingface.cloud/"
from .database import DatabaseManager, DatabaseManagerClient from .manager import ExecutionManager from .scheduler import Scheduler __all__ = [ "DatabaseManager", "DatabaseManagerClient", "ExecutionManager", "Scheduler", ]
from .database import DatabaseManager from .manager import ExecutionManager from .scheduler import Scheduler __all__ = [ "DatabaseManager", "ExecutionManager", "Scheduler", ]
from typing import Dict, List, Optional, Set, Tuple import numpy as np import pytest import torch from docarray import DocumentArray from docarray.base_document import BaseDocument from docarray.typing import NdArray, TorchTensor @pytest.mark.proto def test_proto_simple(): class CustomDoc(BaseDocument): text: str doc = CustomDoc(text='hello') CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_ndarray(): class CustomDoc(BaseDocument): tensor: NdArray tensor = np.zeros((3, 224, 224)) doc = CustomDoc(tensor=tensor) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) assert (new_doc.tensor == tensor).all() @pytest.mark.proto def test_proto_with_nested_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc(text='hello', inner=CustomInnerDoc(tensor=np.zeros((3, 224, 224)))) CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_with_chunks_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=np.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() @pytest.mark.proto def test_proto_with_nested_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc( text='hello', inner=CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) ) CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_with_chunks_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() @pytest.mark.proto def test_optional_field_in_doc(): class CustomDoc(BaseDocument): text: Optional[str] CustomDoc.from_protobuf(CustomDoc().to_protobuf()) @pytest.mark.proto def test_optional_field_nested_in_doc(): class InnerDoc(BaseDocument): title: str class CustomDoc(BaseDocument): text: Optional[InnerDoc] CustomDoc.from_protobuf(CustomDoc().to_protobuf()) @pytest.mark.proto def test_integer_field(): class Meow(BaseDocument): age: int wealth: float registered: bool d = Meow(age=30, wealth=100.5, registered=True) rebuilt_doc = Meow.from_protobuf(d.to_protobuf()) assert rebuilt_doc.age == 30 assert rebuilt_doc.wealth == 100.5 assert rebuilt_doc.registered @pytest.mark.proto def test_list_set_dict_tuple_field(): class MyDoc(BaseDocument): list_: List dict_: Dict tuple_: Tuple set_: Set d = MyDoc( list_=[0, 1, 2], dict_={'a': 0, 'b': 1}, tuple_=tuple([0, 1]), set_={0, 1} ) rebuilt_doc = MyDoc.from_protobuf(d.to_protobuf()) assert rebuilt_doc.list_ == [0, 1, 2] assert rebuilt_doc.dict_ == {'a': 0, 'b': 1} assert rebuilt_doc.tuple_ == (0, 1) assert rebuilt_doc.set_ == {0, 1} @pytest.mark.proto @pytest.mark.parametrize( 'dtype', [ np.uint, np.uint8, np.uint64, int, np.int8, np.int64, float, np.float16, np.longfloat, np.double, ], ) def test_ndarray_dtype(dtype): class MyDoc(BaseDocument): tensor: NdArray doc = MyDoc(tensor=np.ndarray([1, 2, 3], dtype=dtype)) assert doc.tensor.dtype == dtype assert MyDoc.from_protobuf(doc.to_protobuf()).tensor.dtype == dtype assert MyDoc.parse_obj(doc.dict()).tensor.dtype == dtype @pytest.mark.proto @pytest.mark.parametrize( 'dtype', [ torch.uint8, torch.int, torch.int8, torch.int64, torch.float, torch.float64, torch.double, ], ) def test_torch_dtype(dtype): class MyDoc(BaseDocument): tensor: TorchTensor doc = MyDoc(tensor=torch.zeros([5, 5], dtype=dtype)) assert doc.tensor.dtype == dtype assert MyDoc.from_protobuf(doc.to_protobuf()).tensor.dtype == dtype assert MyDoc.parse_obj(doc.dict()).tensor.dtype == dtype
from typing import Dict, List, Optional, Set, Tuple import numpy as np import pytest import torch from docarray import DocumentArray from docarray.base_document import BaseDocument from docarray.typing import NdArray, TorchTensor @pytest.mark.proto def test_proto_simple(): class CustomDoc(BaseDocument): text: str doc = CustomDoc(text='hello') CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_ndarray(): class CustomDoc(BaseDocument): tensor: NdArray tensor = np.zeros((3, 224, 224)) doc = CustomDoc(tensor=tensor) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) assert (new_doc.tensor == tensor).all() @pytest.mark.proto def test_proto_with_nested_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc(text='hello', inner=CustomInnerDoc(tensor=np.zeros((3, 224, 224)))) CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_with_chunks_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=np.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() @pytest.mark.proto def test_proto_with_nested_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc( text='hello', inner=CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) ) CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_with_chunks_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() @pytest.mark.proto def test_optional_field_in_doc(): class CustomDoc(BaseDocument): text: Optional[str] CustomDoc.from_protobuf(CustomDoc().to_protobuf()) @pytest.mark.proto def test_optional_field_nested_in_doc(): class InnerDoc(BaseDocument): title: str class CustomDoc(BaseDocument): text: Optional[InnerDoc] CustomDoc.from_protobuf(CustomDoc().to_protobuf()) @pytest.mark.proto def test_integer_field(): class Meow(BaseDocument): age: int wealth: float registered: bool d = Meow(age=30, wealth=100.5, registered=True) rebuilt_doc = Meow.from_protobuf(d.to_protobuf()) assert rebuilt_doc.age == 30 assert rebuilt_doc.wealth == 100.5 assert rebuilt_doc.registered @pytest.mark.proto def test_list_set_dict_tuple_field(): class MyDoc(BaseDocument): list_: List dict_: Dict tuple_: Tuple set_: Set d = MyDoc( list_=[0, 1, 2], dict_={'a': 0, 'b': 1}, tuple_=tuple([0, 1]), set_={0, 1} ) rebuilt_doc = MyDoc.from_protobuf(d.to_protobuf()) assert rebuilt_doc.list_ == [0, 1, 2] assert rebuilt_doc.dict_ == {'a': 0, 'b': 1} assert rebuilt_doc.tuple_ == (0, 1) assert rebuilt_doc.set_ == {0, 1} @pytest.mark.proto @pytest.mark.parametrize( 'dtype', [ np.uint, np.uint8, np.uint64, int, np.int8, np.int64, float, np.float16, np.float128, np.double, ], ) def test_ndarray_dtype(dtype): class MyDoc(BaseDocument): tensor: NdArray doc = MyDoc(tensor=np.ndarray([1, 2, 3], dtype=dtype)) assert doc.tensor.dtype == dtype assert MyDoc.from_protobuf(doc.to_protobuf()).tensor.dtype == dtype assert MyDoc.parse_obj(doc.dict()).tensor.dtype == dtype @pytest.mark.proto @pytest.mark.parametrize( 'dtype', [ torch.uint8, torch.int, torch.int8, torch.int64, torch.float, torch.float64, torch.double, ], ) def test_torch_dtype(dtype): class MyDoc(BaseDocument): tensor: TorchTensor doc = MyDoc(tensor=torch.zeros([5, 5], dtype=dtype)) assert doc.tensor.dtype == dtype assert MyDoc.from_protobuf(doc.to_protobuf()).tensor.dtype == dtype assert MyDoc.parse_obj(doc.dict()).tensor.dtype == dtype
# flake8: noqa JIRA_ISSUE_CREATE_PROMPT = """ This tool is a wrapper around atlassian-python-api's Jira issue_create API, useful when you need to create a Jira issue. The input to this tool is a dictionary specifying the fields of the Jira issue, and will be passed into atlassian-python-api's Jira `issue_create` function. For example, to create a low priority task called "test issue" with description "test description", you would pass in the following dictionary: {{"summary": "test issue", "description": "test description", "issuetype": {{"name": "Task"}}, "priority": {{"name": "Low"}}}} """ JIRA_GET_ALL_PROJECTS_PROMPT = """ This tool is a wrapper around atlassian-python-api's Jira project API, useful when you need to fetch all the projects the user has access to, find out how many projects there are, or as an intermediary step that involve searching by projects. there is no input to this tool. """ JIRA_JQL_PROMPT = """ This tool is a wrapper around atlassian-python-api's Jira jql API, useful when you need to search for Jira issues. The input to this tool is a JQL query string, and will be passed into atlassian-python-api's Jira `jql` function, For example, to find all the issues in project "Test" assigned to the me, you would pass in the following string: project = Test AND assignee = currentUser() or to find issues with summaries that contain the word "test", you would pass in the following string: summary ~ 'test' """ JIRA_CATCH_ALL_PROMPT = """ This tool is a wrapper around atlassian-python-api's Jira API. There are other dedicated tools for fetching all projects, and creating and searching for issues, use this tool if you need to perform any other actions allowed by the atlassian-python-api Jira API. The input to this tool is a dictionary specifying a function from atlassian-python-api's Jira API, as well as a list of arguments and dictionary of keyword arguments to pass into the function. For example, to get all the users in a group, while increasing the max number of results to 100, you would pass in the following dictionary: {{"function": "get_all_users_from_group", "args": ["group"], "kwargs": {{"limit":100}} }} or to find out how many projects are in the Jira instance, you would pass in the following string: {{"function": "projects"}} For more information on the Jira API, refer to https://atlassian-python-api.readthedocs.io/jira.html """ JIRA_CONFLUENCE_PAGE_CREATE_PROMPT = """This tool is a wrapper around atlassian-python-api's Confluence atlassian-python-api API, useful when you need to create a Confluence page. The input to this tool is a dictionary specifying the fields of the Confluence page, and will be passed into atlassian-python-api's Confluence `create_page` function. For example, to create a page in the DEMO space titled "This is the title" with body "This is the body. You can use <strong>HTML tags</strong>!", you would pass in the following dictionary: {{"space": "DEMO", "title":"This is the title","body":"This is the body. You can use <strong>HTML tags</strong>!"}} """
# flake8: noqa JIRA_ISSUE_CREATE_PROMPT = """ This tool is a wrapper around atlassian-python-api's Jira issue_create API, useful when you need to create a Jira issue. The input to this tool is a dictionary specifying the fields of the Jira issue, and will be passed into atlassian-python-api's Jira `issue_create` function. For example, to create a low priority task called "test issue" with description "test description", you would pass in the following dictionary: {{"summary": "test issue", "description": "test description", "issuetype": {{"name": "Task"}}, "priority": {{"name": "Low"}}}} """ JIRA_GET_ALL_PROJECTS_PROMPT = """ This tool is a wrapper around atlassian-python-api's Jira project API, useful when you need to fetch all the projects the user has access to, find out how many projects there are, or as an intermediary step that involv searching by projects. there is no input to this tool. """ JIRA_JQL_PROMPT = """ This tool is a wrapper around atlassian-python-api's Jira jql API, useful when you need to search for Jira issues. The input to this tool is a JQL query string, and will be passed into atlassian-python-api's Jira `jql` function, For example, to find all the issues in project "Test" assigned to the me, you would pass in the following string: project = Test AND assignee = currentUser() or to find issues with summaries that contain the word "test", you would pass in the following string: summary ~ 'test' """ JIRA_CATCH_ALL_PROMPT = """ This tool is a wrapper around atlassian-python-api's Jira API. There are other dedicated tools for fetching all projects, and creating and searching for issues, use this tool if you need to perform any other actions allowed by the atlassian-python-api Jira API. The input to this tool is a dictionary specifying a function from atlassian-python-api's Jira API, as well as a list of arguments and dictionary of keyword arguments to pass into the function. For example, to get all the users in a group, while increasing the max number of results to 100, you would pass in the following dictionary: {{"function": "get_all_users_from_group", "args": ["group"], "kwargs": {{"limit":100}} }} or to find out how many projects are in the Jira instance, you would pass in the following string: {{"function": "projects"}} For more information on the Jira API, refer to https://atlassian-python-api.readthedocs.io/jira.html """ JIRA_CONFLUENCE_PAGE_CREATE_PROMPT = """This tool is a wrapper around atlassian-python-api's Confluence atlassian-python-api API, useful when you need to create a Confluence page. The input to this tool is a dictionary specifying the fields of the Confluence page, and will be passed into atlassian-python-api's Confluence `create_page` function. For example, to create a page in the DEMO space titled "This is the title" with body "This is the body. You can use <strong>HTML tags</strong>!", you would pass in the following dictionary: {{"space": "DEMO", "title":"This is the title","body":"This is the body. You can use <strong>HTML tags</strong>!"}} """
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.cnn.bricks import build_plugin_layer from mmcv.runner import force_fp32 from mmdet.registry import MODELS from .base_roi_extractor import BaseRoIExtractor @MODELS.register_module() class GenericRoIExtractor(BaseRoIExtractor): """Extract RoI features from all level feature maps levels. This is the implementation of `A novel Region of Interest Extraction Layer for Instance Segmentation <https://arxiv.org/abs/2004.13665>`_. Args: aggregation (str): The method to aggregate multiple feature maps. Options are 'sum', 'concat'. Default: 'sum'. pre_cfg (dict | None): Specify pre-processing modules. Default: None. post_cfg (dict | None): Specify post-processing modules. Default: None. kwargs (keyword arguments): Arguments that are the same as :class:`BaseRoIExtractor`. """ def __init__(self, aggregation='sum', pre_cfg=None, post_cfg=None, **kwargs): super(GenericRoIExtractor, self).__init__(**kwargs) assert aggregation in ['sum', 'concat'] self.aggregation = aggregation self.with_post = post_cfg is not None self.with_pre = pre_cfg is not None # build pre/post processing modules if self.with_post: self.post_module = build_plugin_layer(post_cfg, '_post_module')[1] if self.with_pre: self.pre_module = build_plugin_layer(pre_cfg, '_pre_module')[1] @force_fp32(apply_to=('feats', ), out_fp16=True) def forward(self, feats, rois, roi_scale_factor=None): """Forward function.""" if len(feats) == 1: return self.roi_layers[0](feats[0], rois) out_size = self.roi_layers[0].output_size num_levels = len(feats) roi_feats = feats[0].new_zeros( rois.size(0), self.out_channels, *out_size) # some times rois is an empty tensor if roi_feats.shape[0] == 0: return roi_feats if roi_scale_factor is not None: rois = self.roi_rescale(rois, roi_scale_factor) # mark the starting channels for concat mode start_channels = 0 for i in range(num_levels): roi_feats_t = self.roi_layers[i](feats[i], rois) end_channels = start_channels + roi_feats_t.size(1) if self.with_pre: # apply pre-processing to a RoI extracted from each layer roi_feats_t = self.pre_module(roi_feats_t) if self.aggregation == 'sum': # and sum them all roi_feats += roi_feats_t else: # and concat them along channel dimension roi_feats[:, start_channels:end_channels] = roi_feats_t # update channels starting position start_channels = end_channels # check if concat channels match at the end if self.aggregation == 'concat': assert start_channels == self.out_channels if self.with_post: # apply post-processing before return the result roi_feats = self.post_module(roi_feats) return roi_feats
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.cnn.bricks import build_plugin_layer from mmcv.runner import force_fp32 from mmdet.models.builder import ROI_EXTRACTORS from .base_roi_extractor import BaseRoIExtractor @ROI_EXTRACTORS.register_module() class GenericRoIExtractor(BaseRoIExtractor): """Extract RoI features from all level feature maps levels. This is the implementation of `A novel Region of Interest Extraction Layer for Instance Segmentation <https://arxiv.org/abs/2004.13665>`_. Args: aggregation (str): The method to aggregate multiple feature maps. Options are 'sum', 'concat'. Default: 'sum'. pre_cfg (dict | None): Specify pre-processing modules. Default: None. post_cfg (dict | None): Specify post-processing modules. Default: None. kwargs (keyword arguments): Arguments that are the same as :class:`BaseRoIExtractor`. """ def __init__(self, aggregation='sum', pre_cfg=None, post_cfg=None, **kwargs): super(GenericRoIExtractor, self).__init__(**kwargs) assert aggregation in ['sum', 'concat'] self.aggregation = aggregation self.with_post = post_cfg is not None self.with_pre = pre_cfg is not None # build pre/post processing modules if self.with_post: self.post_module = build_plugin_layer(post_cfg, '_post_module')[1] if self.with_pre: self.pre_module = build_plugin_layer(pre_cfg, '_pre_module')[1] @force_fp32(apply_to=('feats', ), out_fp16=True) def forward(self, feats, rois, roi_scale_factor=None): """Forward function.""" if len(feats) == 1: return self.roi_layers[0](feats[0], rois) out_size = self.roi_layers[0].output_size num_levels = len(feats) roi_feats = feats[0].new_zeros( rois.size(0), self.out_channels, *out_size) # some times rois is an empty tensor if roi_feats.shape[0] == 0: return roi_feats if roi_scale_factor is not None: rois = self.roi_rescale(rois, roi_scale_factor) # mark the starting channels for concat mode start_channels = 0 for i in range(num_levels): roi_feats_t = self.roi_layers[i](feats[i], rois) end_channels = start_channels + roi_feats_t.size(1) if self.with_pre: # apply pre-processing to a RoI extracted from each layer roi_feats_t = self.pre_module(roi_feats_t) if self.aggregation == 'sum': # and sum them all roi_feats += roi_feats_t else: # and concat them along channel dimension roi_feats[:, start_channels:end_channels] = roi_feats_t # update channels starting position start_channels = end_channels # check if concat channels match at the end if self.aggregation == 'concat': assert start_channels == self.out_channels if self.with_post: # apply post-processing before return the result roi_feats = self.post_module(roi_feats) return roi_feats
import numpy as np import torch from docarray import BaseDocument, DocumentArray from docarray.documents import Image, Text from docarray.typing import ( AnyEmbedding, AnyTensor, AnyUrl, ImageUrl, Mesh3DUrl, NdArray, PointCloud3DUrl, TextUrl, TorchEmbedding, TorchTensor, ) from docarray.typing.tensor import NdArrayEmbedding def test_multi_modal_doc_proto(): class MyMultiModalDoc(BaseDocument): image: Image text: Text class MySUperDoc(BaseDocument): doc: MyMultiModalDoc description: str doc = MyMultiModalDoc( image=Image(tensor=np.zeros((3, 224, 224))), text=Text(text='hello') ) MyMultiModalDoc.from_protobuf(doc.to_protobuf()) def test_all_types(): class NestedDoc(BaseDocument): tensor: NdArray class MyDoc(BaseDocument): img_url: ImageUrl txt_url: TextUrl mesh_url: Mesh3DUrl point_cloud_url: PointCloud3DUrl any_url: AnyUrl torch_tensor: TorchTensor torch_tensor_param: TorchTensor[224, 224, 3] np_array: NdArray np_array_param: NdArray[224, 224, 3] generic_nd_array: AnyTensor generic_torch_tensor: AnyTensor embedding: AnyEmbedding torch_embedding: TorchEmbedding[128] np_embedding: NdArrayEmbedding[128] nested_docs: DocumentArray[NestedDoc] doc = MyDoc( img_url='test.png', txt_url='test.txt', mesh_url='test.obj', point_cloud_url='test.obj', any_url='www.jina.ai', torch_tensor=torch.zeros((3, 224, 224)), torch_tensor_param=torch.zeros((3, 224, 224)), np_array=np.zeros((3, 224, 224)), np_array_param=np.zeros((3, 224, 224)), generic_nd_array=np.zeros((3, 224, 224)), generic_torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((3, 224, 224)), torch_embedding=torch.zeros((128,)), np_embedding=np.zeros((128,)), nested_docs=DocumentArray[NestedDoc]([NestedDoc(tensor=np.zeros((128,)))]), ) doc = MyDoc.from_protobuf(doc.to_protobuf()) assert doc.img_url == 'test.png' assert doc.txt_url == 'test.txt' assert doc.mesh_url == 'test.obj' assert doc.point_cloud_url == 'test.obj' assert doc.any_url == 'www.jina.ai' assert (doc.torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.torch_tensor, torch.Tensor) assert (doc.torch_tensor_param == torch.zeros((224, 224, 3))).all() assert isinstance(doc.torch_tensor_param, torch.Tensor) assert (doc.np_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.np_array, np.ndarray) assert doc.np_array.flags.writeable assert (doc.np_array_param == np.zeros((224, 224, 3))).all() assert isinstance(doc.np_array_param, np.ndarray) assert (doc.generic_nd_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.generic_nd_array, np.ndarray) assert (doc.generic_torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.generic_torch_tensor, torch.Tensor) assert (doc.torch_embedding == torch.zeros((128,))).all() assert isinstance(doc.torch_embedding, torch.Tensor) assert (doc.np_embedding == np.zeros((128,))).all() assert isinstance(doc.np_embedding, np.ndarray) assert (doc.embedding == np.zeros((3, 224, 224))).all()
import numpy as np import torch from docarray import BaseDocument, DocumentArray, Image, Text from docarray.typing import ( AnyEmbedding, AnyTensor, AnyUrl, ImageUrl, Mesh3DUrl, NdArray, PointCloud3DUrl, TextUrl, TorchEmbedding, TorchTensor, ) from docarray.typing.tensor import NdArrayEmbedding def test_multi_modal_doc_proto(): class MyMultiModalDoc(BaseDocument): image: Image text: Text class MySUperDoc(BaseDocument): doc: MyMultiModalDoc description: str doc = MyMultiModalDoc( image=Image(tensor=np.zeros((3, 224, 224))), text=Text(text='hello') ) MyMultiModalDoc.from_protobuf(doc.to_protobuf()) def test_all_types(): class NestedDoc(BaseDocument): tensor: NdArray class MyDoc(BaseDocument): img_url: ImageUrl txt_url: TextUrl mesh_url: Mesh3DUrl point_cloud_url: PointCloud3DUrl any_url: AnyUrl torch_tensor: TorchTensor torch_tensor_param: TorchTensor[224, 224, 3] np_array: NdArray np_array_param: NdArray[224, 224, 3] generic_nd_array: AnyTensor generic_torch_tensor: AnyTensor embedding: AnyEmbedding torch_embedding: TorchEmbedding[128] np_embedding: NdArrayEmbedding[128] nested_docs: DocumentArray[NestedDoc] doc = MyDoc( img_url='test.png', txt_url='test.txt', mesh_url='test.obj', point_cloud_url='test.obj', any_url='www.jina.ai', torch_tensor=torch.zeros((3, 224, 224)), torch_tensor_param=torch.zeros((3, 224, 224)), np_array=np.zeros((3, 224, 224)), np_array_param=np.zeros((3, 224, 224)), generic_nd_array=np.zeros((3, 224, 224)), generic_torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((3, 224, 224)), torch_embedding=torch.zeros((128,)), np_embedding=np.zeros((128,)), nested_docs=DocumentArray[NestedDoc]([NestedDoc(tensor=np.zeros((128,)))]), ) doc = MyDoc.from_protobuf(doc.to_protobuf()) assert doc.img_url == 'test.png' assert doc.txt_url == 'test.txt' assert doc.mesh_url == 'test.obj' assert doc.point_cloud_url == 'test.obj' assert doc.any_url == 'www.jina.ai' assert (doc.torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.torch_tensor, torch.Tensor) assert (doc.torch_tensor_param == torch.zeros((224, 224, 3))).all() assert isinstance(doc.torch_tensor_param, torch.Tensor) assert (doc.np_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.np_array, np.ndarray) assert doc.np_array.flags.writeable assert (doc.np_array_param == np.zeros((224, 224, 3))).all() assert isinstance(doc.np_array_param, np.ndarray) assert (doc.generic_nd_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.generic_nd_array, np.ndarray) assert (doc.generic_torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.generic_torch_tensor, torch.Tensor) assert (doc.torch_embedding == torch.zeros((128,))).all() assert isinstance(doc.torch_embedding, torch.Tensor) assert (doc.np_embedding == np.zeros((128,))).all() assert isinstance(doc.np_embedding, np.ndarray) assert (doc.embedding == np.zeros((3, 224, 224))).all()
from __future__ import annotations import logging from typing import Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain_core.utils.json import parse_json_markdown from langchain.agents.agent import AgentOutputParser logger = logging.getLogger(__name__) class JSONAgentOutputParser(AgentOutputParser): """Parses tool invocations and final answers in JSON format. Expects output to be in one of two formats. If the output signals that an action should be taken, should be in the below format. This will result in an AgentAction being returned. ``` { "action": "search", "action_input": "2+2" } ``` If the output signals that a final answer should be given, should be in the below format. This will result in an AgentFinish being returned. ``` { "action": "Final Answer", "action_input": "4" } ``` """ def parse(self, text: str) -> Union[AgentAction, AgentFinish]: try: response = parse_json_markdown(text) if isinstance(response, list): # gpt turbo frequently ignores the directive to emit a single action logger.warning("Got multiple action responses: %s", response) response = response[0] if response["action"] == "Final Answer": return AgentFinish({"output": response["action_input"]}, text) else: action_input = response.get("action_input", {}) if action_input is None: action_input = {} return AgentAction(response["action"], action_input, text) except Exception as e: raise OutputParserException(f"Could not parse LLM output: {text}") from e @property def _type(self) -> str: return "json-agent"
from __future__ import annotations import logging from typing import Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers.json import parse_json_markdown from langchain.agents.agent import AgentOutputParser logger = logging.getLogger(__name__) class JSONAgentOutputParser(AgentOutputParser): """Parses tool invocations and final answers in JSON format. Expects output to be in one of two formats. If the output signals that an action should be taken, should be in the below format. This will result in an AgentAction being returned. ``` { "action": "search", "action_input": "2+2" } ``` If the output signals that a final answer should be given, should be in the below format. This will result in an AgentFinish being returned. ``` { "action": "Final Answer", "action_input": "4" } ``` """ def parse(self, text: str) -> Union[AgentAction, AgentFinish]: try: response = parse_json_markdown(text) if isinstance(response, list): # gpt turbo frequently ignores the directive to emit a single action logger.warning("Got multiple action responses: %s", response) response = response[0] if response["action"] == "Final Answer": return AgentFinish({"output": response["action_input"]}, text) else: action_input = response.get("action_input", {}) if action_input is None: action_input = {} return AgentAction(response["action"], action_input, text) except Exception as e: raise OutputParserException(f"Could not parse LLM output: {text}") from e @property def _type(self) -> str: return "json-agent"
from typing import Any import numpy as np try: import torch # noqa: F401 except ImportError: torch_imported = False else: torch_imported = True try: import tensorflow as tf # type: ignore # noqa: F401 except (ImportError, TypeError): tf_imported = False else: tf_imported = True def is_torch_available(): return torch_imported def is_np_int(item: Any) -> bool: dtype = getattr(item, 'dtype', None) ndim = getattr(item, 'ndim', None) if dtype is not None and ndim is not None: try: return ndim == 0 and np.issubdtype(dtype, np.integer) except TypeError: return False return False # this is unreachable, but mypy wants it def is_tf_available(): return tf_imported def is_notebook() -> bool: """ Check if we're running in a Jupyter notebook, using magic command `get_ipython` that only available in Jupyter. :return: True if run in a Jupyter notebook else False. """ try: shell = get_ipython().__class__.__name__ # type: ignore except NameError: return False if shell == 'ZMQInteractiveShell': return True elif shell == 'Shell': return True elif shell == 'TerminalInteractiveShell': return False else: return False
try: import torch # noqa: F401 except ImportError: torch_imported = False else: torch_imported = True try: import tensorflow as tf # type: ignore # noqa: F401 except (ImportError, TypeError): tf_imported = False else: tf_imported = True def is_torch_available(): return torch_imported def is_tf_available(): return tf_imported def is_notebook() -> bool: """ Check if we're running in a Jupyter notebook, using magic command `get_ipython` that only available in Jupyter. :return: True if run in a Jupyter notebook else False. """ try: shell = get_ipython().__class__.__name__ # type: ignore except NameError: return False if shell == 'ZMQInteractiveShell': return True elif shell == 'Shell': return True elif shell == 'TerminalInteractiveShell': return False else: return False
# Copyright (c) OpenMMLab. All rights reserved. from math import ceil from unittest import TestCase import torch from mmengine import Config from mmengine.data import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import SSDHead class TestSSDHead(TestCase): def test_ssd_head_loss(self): """Tests ssd head loss when truth is empty and non-empty.""" s = 300 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] cfg = Config( dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0., ignore_iof_thr=-1, gt_max_assign_all=False), sampler=dict(type='PseudoSampler'), smoothl1_beta=1., allowed_border=-1, pos_weight=-1, neg_pos_ratio=3, debug=False)) ssd_head = SSDHead( num_classes=4, in_channels=(1, 1, 1, 1, 1, 1), stacked_convs=1, feat_channels=1, use_depthwise=True, anchor_generator=dict( type='SSDAnchorGenerator', scale_major=False, input_size=s, basesize_ratio_range=(0.15, 0.9), strides=[8, 16, 32, 64, 100, 300], ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]), train_cfg=cfg) # SSD head expects a multiple levels of features per image feats = ( torch.rand(1, 1, ceil(s / stride[0]), ceil(s / stride[0])) for stride in ssd_head.prior_generator.strides) cls_scores, bbox_preds = ssd_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = ssd_head.loss(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, cls_loss and box_loss should all be zero. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) self.assertEqual( empty_cls_loss.item(), 0, 'there should be no cls loss when there are no true boxes') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = ssd_head.loss(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero')
# Copyright (c) OpenMMLab. All rights reserved. from math import ceil from unittest import TestCase import torch from mmengine import Config from mmengine.data import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import SSDHead class TestSSDHead(TestCase): def test_ssd_head_loss(self): """Tests anchor head loss when truth is empty and non-empty.""" s = 300 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] cfg = Config( dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0., ignore_iof_thr=-1, gt_max_assign_all=False), smoothl1_beta=1., allowed_border=-1, pos_weight=-1, neg_pos_ratio=3, debug=False)) ssd_head = SSDHead( num_classes=4, in_channels=(1, 1, 1, 1, 1, 1), stacked_convs=1, feat_channels=1, use_depthwise=True, anchor_generator=dict( type='SSDAnchorGenerator', scale_major=False, input_size=s, basesize_ratio_range=(0.15, 0.9), strides=[8, 16, 32, 64, 100, 300], ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]), train_cfg=cfg) # Anchor head expects a multiple levels of features per image feats = ( torch.rand(1, 1, ceil(s / stride[0]), ceil(s / stride[0])) for stride in ssd_head.prior_generator.strides) cls_scores, bbox_preds = ssd_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = ssd_head.loss(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, cls_loss and box_loss should all be zero. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) self.assertEqual( empty_cls_loss.item(), 0, 'there should be no cls loss when there are no true boxes') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = ssd_head.loss(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero')
""" This script contains an example how to perform semantic search with OpenSearch. You need OpenSearch up and running locally: https://docs.opensearch.org/docs/latest/getting-started/quickstart/ Further, you need the Python OpenSearch Client installed: https://docs.opensearch.org/docs/latest/clients/python-low-level/, e.g.: ``` pip install opensearch-py ``` This script was created for `opensearch` v2.15.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.models import Router from sentence_transformers.sparse_encoder.models import MLMTransformer, SparseStaticEmbedding, SpladePooling from sentence_transformers.sparse_encoder.search_engines import semantic_search_opensearch # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] print(f"Finish loading data. Corpus size: {len(corpus)}") # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model model_id = "opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill" doc_encoder = MLMTransformer(model_id) router = Router.for_query_document( query_modules=[ SparseStaticEmbedding.from_json( model_id, tokenizer=doc_encoder.tokenizer, frozen=True, ), ], document_modules=[ doc_encoder, SpladePooling("max", activation_function="log1p_relu"), ], ) sparse_model = SparseEncoder(modules=[router], similarity_fn_name="dot") print("Start encoding corpus...") start_time = time.time() # 4. Encode the corpus corpus_embeddings = sparse_model.encode_document( corpus, convert_to_sparse_tensor=True, batch_size=32, show_progress_bar=True ) corpus_embeddings_decoded = sparse_model.decode(corpus_embeddings) print(f"Corpus encoding time: {time.time() - start_time:.6f} seconds") corpus_index = None while True: # 5. Encode the queries using inference-free mode start_time = time.time() query_embeddings = sparse_model.encode_query(queries, convert_to_sparse_tensor=True) query_embeddings_decoded = sparse_model.decode(query_embeddings) print(f"Query encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using OpenSearch results, search_time, corpus_index = semantic_search_opensearch( query_embeddings_decoded, corpus_embeddings_decoded=corpus_embeddings_decoded if corpus_index is None else None, corpus_index=corpus_index, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
""" This script contains an example how to perform semantic search with OpenSearch. You need OpenSearch up and running locally: https://docs.opensearch.org/docs/latest/getting-started/quickstart/ Further, you need the Python OpenSearch Client installed: https://docs.opensearch.org/docs/latest/clients/python-low-level/, e.g.: ``` pip install opensearch-py ``` This script was created for `opensearch` v2.15.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.models import Router from sentence_transformers.sparse_encoder.models import IDF, MLMTransformer, SpladePooling from sentence_transformers.sparse_encoder.search_engines import semantic_search_opensearch # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] print(f"Finish loading data. Corpus size: {len(corpus)}") # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model model_id = "opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill" doc_encoder = MLMTransformer(model_id) router = Router.for_query_document( query_modules=[ IDF.from_json( model_id, tokenizer=doc_encoder.tokenizer, frozen=True, ), ], document_modules=[ doc_encoder, SpladePooling("max", activation_function="log1p_relu"), ], ) sparse_model = SparseEncoder(modules=[router], similarity_fn_name="dot") print("Start encoding corpus...") start_time = time.time() # 4. Encode the corpus corpus_embeddings = sparse_model.encode_document( corpus, convert_to_sparse_tensor=True, batch_size=32, show_progress_bar=True ) corpus_embeddings_decoded = sparse_model.decode(corpus_embeddings) print(f"Corpus encoding time: {time.time() - start_time:.6f} seconds") corpus_index = None while True: # 5. Encode the queries using inference-free mode start_time = time.time() query_embeddings = sparse_model.encode_query(queries, convert_to_sparse_tensor=True) query_embeddings_decoded = sparse_model.decode(query_embeddings) print(f"Query encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using OpenSearch results, search_time, corpus_index = semantic_search_opensearch( query_embeddings_decoded, corpus_embeddings_decoded=corpus_embeddings_decoded if corpus_index is None else None, corpus_index=corpus_index, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.initializers import deserialize from keras.src.initializers import get from keras.src.initializers import serialize from keras.src.initializers.constant_initializers import Constant from keras.src.initializers.constant_initializers import Constant as constant from keras.src.initializers.constant_initializers import Identity from keras.src.initializers.constant_initializers import ( Identity as IdentityInitializer, ) from keras.src.initializers.constant_initializers import Identity as identity from keras.src.initializers.constant_initializers import Ones from keras.src.initializers.constant_initializers import Ones as ones from keras.src.initializers.constant_initializers import STFTInitializer from keras.src.initializers.constant_initializers import Zeros from keras.src.initializers.constant_initializers import Zeros as zeros from keras.src.initializers.initializer import Initializer from keras.src.initializers.random_initializers import GlorotNormal from keras.src.initializers.random_initializers import ( GlorotNormal as glorot_normal, ) from keras.src.initializers.random_initializers import GlorotUniform from keras.src.initializers.random_initializers import ( GlorotUniform as glorot_uniform, ) from keras.src.initializers.random_initializers import HeNormal from keras.src.initializers.random_initializers import HeNormal as he_normal from keras.src.initializers.random_initializers import HeUniform from keras.src.initializers.random_initializers import HeUniform as he_uniform from keras.src.initializers.random_initializers import LecunNormal from keras.src.initializers.random_initializers import ( LecunNormal as lecun_normal, ) from keras.src.initializers.random_initializers import LecunUniform from keras.src.initializers.random_initializers import ( LecunUniform as lecun_uniform, ) from keras.src.initializers.random_initializers import OrthogonalInitializer from keras.src.initializers.random_initializers import ( OrthogonalInitializer as Orthogonal, ) from keras.src.initializers.random_initializers import ( OrthogonalInitializer as orthogonal, ) from keras.src.initializers.random_initializers import RandomNormal from keras.src.initializers.random_initializers import ( RandomNormal as random_normal, ) from keras.src.initializers.random_initializers import RandomUniform from keras.src.initializers.random_initializers import ( RandomUniform as random_uniform, ) from keras.src.initializers.random_initializers import TruncatedNormal from keras.src.initializers.random_initializers import ( TruncatedNormal as truncated_normal, ) from keras.src.initializers.random_initializers import VarianceScaling from keras.src.initializers.random_initializers import ( VarianceScaling as variance_scaling, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.initializers import deserialize from keras.src.initializers import get from keras.src.initializers import serialize from keras.src.initializers.constant_initializers import Constant from keras.src.initializers.constant_initializers import Constant as constant from keras.src.initializers.constant_initializers import Identity from keras.src.initializers.constant_initializers import ( Identity as IdentityInitializer, ) from keras.src.initializers.constant_initializers import Identity as identity from keras.src.initializers.constant_initializers import Ones from keras.src.initializers.constant_initializers import Ones as ones from keras.src.initializers.constant_initializers import Zeros from keras.src.initializers.constant_initializers import Zeros as zeros from keras.src.initializers.initializer import Initializer from keras.src.initializers.random_initializers import GlorotNormal from keras.src.initializers.random_initializers import ( GlorotNormal as glorot_normal, ) from keras.src.initializers.random_initializers import GlorotUniform from keras.src.initializers.random_initializers import ( GlorotUniform as glorot_uniform, ) from keras.src.initializers.random_initializers import HeNormal from keras.src.initializers.random_initializers import HeNormal as he_normal from keras.src.initializers.random_initializers import HeUniform from keras.src.initializers.random_initializers import HeUniform as he_uniform from keras.src.initializers.random_initializers import LecunNormal from keras.src.initializers.random_initializers import ( LecunNormal as lecun_normal, ) from keras.src.initializers.random_initializers import LecunUniform from keras.src.initializers.random_initializers import ( LecunUniform as lecun_uniform, ) from keras.src.initializers.random_initializers import OrthogonalInitializer from keras.src.initializers.random_initializers import ( OrthogonalInitializer as Orthogonal, ) from keras.src.initializers.random_initializers import ( OrthogonalInitializer as orthogonal, ) from keras.src.initializers.random_initializers import RandomNormal from keras.src.initializers.random_initializers import ( RandomNormal as random_normal, ) from keras.src.initializers.random_initializers import RandomUniform from keras.src.initializers.random_initializers import ( RandomUniform as random_uniform, ) from keras.src.initializers.random_initializers import TruncatedNormal from keras.src.initializers.random_initializers import ( TruncatedNormal as truncated_normal, ) from keras.src.initializers.random_initializers import VarianceScaling from keras.src.initializers.random_initializers import ( VarianceScaling as variance_scaling, )
from .torch_object_detection_segmenter import TorchObjectDetectionSegmenter
from .torch_object_detection_segmenter import TorchObjectDetectionSegmenter
from __future__ import annotations from typing import Any, Iterable import torch from torch import Tensor, nn from sentence_transformers import util from sentence_transformers.SentenceTransformer import SentenceTransformer class MultipleNegativesSymmetricRankingLoss(nn.Module): def __init__(self, model: SentenceTransformer, scale: float = 20.0, similarity_fct=util.cos_sim) -> None: """ Given a list of (anchor, positive) pairs, this loss sums the following two losses: 1. Forward loss: Given an anchor, find the sample with the highest similarity out of all positives in the batch. This is equivalent to :class:`MultipleNegativesRankingLoss`. 2. Backward loss: Given a positive, find the sample with the highest similarity out of all anchors in the batch. For example with question-answer pairs, :class:`MultipleNegativesRankingLoss` just computes the loss to find the answer given a question, but :class:`MultipleNegativesSymmetricRankingLoss` additionally computes the loss to find the question given an answer. Note: If you pass triplets, the negative entry will be ignored. A anchor is just searched for the positive. Args: model: SentenceTransformer model scale: Output of similarity function is multiplied by scale value similarity_fct: similarity function between sentence embeddings. By default, cos_sim. Can also be set to dot product (and then set scale to 1) Requirements: 1. (anchor, positive) pairs Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive) pairs | none | +---------------------------------------+--------+ Recommendations: - Use ``BatchSamplers.NO_DUPLICATES`` (:class:`docs <sentence_transformers.training_args.BatchSamplers>`) to ensure that no in-batch negatives are duplicates of the anchor or positive samples. Relations: - Like :class:`MultipleNegativesRankingLoss`, but with an additional loss term. - :class:`CachedMultipleNegativesSymmetricRankingLoss` is equivalent to this loss, but it uses caching that allows for much higher batch sizes (and thus better performance) without extra memory usage. However, it is slightly slower. Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], }) loss = losses.MultipleNegativesSymmetricRankingLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.model = model self.scale = scale self.similarity_fct = similarity_fct self.cross_entropy_loss = nn.CrossEntropyLoss() def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] anchor = reps[0] candidates = torch.cat(reps[1:]) scores = self.similarity_fct(anchor, candidates) * self.scale labels = torch.tensor( range(len(scores)), dtype=torch.long, device=scores.device ) # Example a[i] should match with b[i] anchor_positive_scores = scores[:, 0 : len(reps[1])] forward_loss = self.cross_entropy_loss(scores, labels) backward_loss = self.cross_entropy_loss(anchor_positive_scores.transpose(0, 1), labels) return (forward_loss + backward_loss) / 2 def get_config_dict(self) -> dict[str, Any]: return {"scale": self.scale, "similarity_fct": self.similarity_fct.__name__}
from __future__ import annotations from typing import Any, Iterable import torch from torch import Tensor, nn from sentence_transformers import util from sentence_transformers.SentenceTransformer import SentenceTransformer class MultipleNegativesSymmetricRankingLoss(nn.Module): def __init__(self, model: SentenceTransformer, scale: float = 20.0, similarity_fct=util.cos_sim) -> None: """ Given a list of (anchor, positive) pairs, this loss sums the following two losses: 1. Forward loss: Given an anchor, find the sample with the highest similarity out of all positives in the batch. This is equivalent to :class:`MultipleNegativesRankingLoss`. 2. Backward loss: Given a positive, find the sample with the highest similarity out of all anchors in the batch. For example with question-answer pairs, :class:`MultipleNegativesRankingLoss` just computes the loss to find the answer given a question, but :class:`MultipleNegativesSymmetricRankingLoss` additionally computes the loss to find the question given an answer. Note: If you pass triplets, the negative entry will be ignored. A anchor is just searched for the positive. Args: model: SentenceTransformer model scale: Output of similarity function is multiplied by scale value similarity_fct: similarity function between sentence embeddings. By default, cos_sim. Can also be set to dot product (and then set scale to 1) Requirements: 1. (anchor, positive) pairs Relations: - Like :class:`MultipleNegativesRankingLoss`, but with an additional loss term. - :class:`CachedMultipleNegativesSymmetricRankingLoss` is equivalent to this loss, but it uses caching that allows for much higher batch sizes (and thus better performance) without extra memory usage. However, it is slightly slower. Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive) pairs | none | +---------------------------------------+--------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], }) loss = losses.MultipleNegativesSymmetricRankingLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.model = model self.scale = scale self.similarity_fct = similarity_fct self.cross_entropy_loss = nn.CrossEntropyLoss() def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] anchor = reps[0] candidates = torch.cat(reps[1:]) scores = self.similarity_fct(anchor, candidates) * self.scale labels = torch.tensor( range(len(scores)), dtype=torch.long, device=scores.device ) # Example a[i] should match with b[i] anchor_positive_scores = scores[:, 0 : len(reps[1])] forward_loss = self.cross_entropy_loss(scores, labels) backward_loss = self.cross_entropy_loss(anchor_positive_scores.transpose(0, 1), labels) return (forward_loss + backward_loss) / 2 def get_config_dict(self) -> dict[str, Any]: return {"scale": self.scale, "similarity_fct": self.similarity_fct.__name__}
_base_ = [ '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( type='SOLO', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_mask=True, pad_size_divisor=32), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=0, num_outs=5), mask_head=dict( type='SOLOHead', num_classes=80, in_channels=256, stacked_convs=7, feat_channels=256, strides=[8, 8, 16, 32, 32], scale_ranges=((1, 96), (48, 192), (96, 384), (192, 768), (384, 2048)), pos_scale=0.2, num_grids=[40, 36, 24, 16, 12], cls_down_index=0, loss_mask=dict(type='DiceLoss', use_sigmoid=True, loss_weight=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)), # model training and testing settings test_cfg=dict( nms_pre=500, score_thr=0.1, mask_thr=0.5, filter_thr=0.05, kernel='gaussian', # gaussian/linear sigma=2.0, max_per_img=100)) # optimizer optim_wrapper = dict(optimizer=dict(lr=0.01)) val_evaluator = dict(metric='segm') test_evaluator = val_evaluator
_base_ = [ '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( type='SOLO', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=0, num_outs=5), mask_head=dict( type='SOLOHead', num_classes=80, in_channels=256, stacked_convs=7, feat_channels=256, strides=[8, 8, 16, 32, 32], scale_ranges=((1, 96), (48, 192), (96, 384), (192, 768), (384, 2048)), pos_scale=0.2, num_grids=[40, 36, 24, 16, 12], cls_down_index=0, loss_mask=dict(type='DiceLoss', use_sigmoid=True, loss_weight=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)), # model training and testing settings test_cfg=dict( nms_pre=500, score_thr=0.1, mask_thr=0.5, filter_thr=0.05, kernel='gaussian', # gaussian/linear sigma=2.0, max_per_img=100)) # optimizer optim_wrapper = dict(optimizer=dict(lr=0.01)) val_evaluator = dict(metric='segm') test_evaluator = val_evaluator
import pytest from llama_index.readers.github import GithubRepositoryReader class MockGithubClient: pass @pytest.fixture() def github_reader(): return GithubRepositoryReader( github_client=MockGithubClient(), owner="owner", repo="repo" ) @pytest.mark.parametrize( ("blob_url", "expected_base_url"), [ ("https://github.com/owner/repo/blob/main/file.py", "https://github.com/"), ( "https://github-enterprise.com/owner/repo/blob/main/file.py", "https://github-enterprise.com/", ), ( "https://custom-domain.com/owner/repo/blob/main/file.py", "https://custom-domain.com/", ), ( "https://subdomain.github.com/owner/repo/blob/main/file.py", "https://subdomain.github.com/", ), ( "https://something.org/owner/repo/blob/main/file.py", "https://github.com/", ), ("", "https://github.com/"), ], ) def test_get_base_url(github_reader, blob_url, expected_base_url): base_url = github_reader._get_base_url(blob_url) assert base_url == expected_base_url, ( f"Expected {expected_base_url}, but got {base_url}" )
import pytest from llama_index.readers.github import GithubRepositoryReader class MockGithubClient: pass @pytest.fixture() def github_reader(): return GithubRepositoryReader( github_client=MockGithubClient(), owner="owner", repo="repo" ) @pytest.mark.parametrize( ("blob_url", "expected_base_url"), [ ("https://github.com/owner/repo/blob/main/file.py", "https://github.com/"), ( "https://github-enterprise.com/owner/repo/blob/main/file.py", "https://github-enterprise.com/", ), ( "https://custom-domain.com/owner/repo/blob/main/file.py", "https://custom-domain.com/", ), ( "https://subdomain.github.com/owner/repo/blob/main/file.py", "https://subdomain.github.com/", ), ( "https://something.org/owner/repo/blob/main/file.py", "https://github.com/", ), ("", "https://github.com/"), ], ) def test_get_base_url(github_reader, blob_url, expected_base_url): base_url = github_reader._get_base_url(blob_url) assert ( base_url == expected_base_url ), f"Expected {expected_base_url}, but got {base_url}"
_base_ = 'faster-rcnn_r50_fpn_ms-3x_coco.py' model = dict( data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
_base_ = 'faster-rcnn_r50_fpn_ms-3x_coco.py' model = dict( data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe'))) # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 640), (1333, 800)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(dataset=dict(pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
from __future__ import annotations import math from pathlib import Path import pytest from tokenizers import Tokenizer from sentence_transformers import SentenceTransformer from sentence_transformers.models.StaticEmbedding import StaticEmbedding try: import model2vec except ImportError: model2vec = None skip_if_no_model2vec = pytest.mark.skipif(model2vec is None, reason="The model2vec library is not installed.") def test_initialization_with_embedding_weights(tokenizer: Tokenizer, embedding_weights) -> None: model = StaticEmbedding(tokenizer, embedding_weights=embedding_weights) assert model.embedding.weight.shape == (30522, 768) def test_initialization_with_embedding_dim(tokenizer: Tokenizer) -> None: model = StaticEmbedding(tokenizer, embedding_dim=768) assert model.embedding.weight.shape == (30522, 768) def test_tokenize(static_embedding_model: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding_model.tokenize(texts) assert "input_ids" in tokens assert "offsets" in tokens def test_forward(static_embedding_model: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding_model.tokenize(texts) output = static_embedding_model(tokens) assert "sentence_embedding" in output def test_save_and_load(tmp_path: Path, static_embedding_model: StaticEmbedding) -> None: save_dir = tmp_path / "model" save_dir.mkdir() static_embedding_model.save(str(save_dir)) loaded_model = StaticEmbedding.load(str(save_dir)) assert loaded_model.embedding.weight.shape == static_embedding_model.embedding.weight.shape @skip_if_no_model2vec() def test_from_distillation() -> None: model = StaticEmbedding.from_distillation("sentence-transformers-testing/stsb-bert-tiny-safetensors", pca_dims=32) # The shape has been 29528 for <0.5.0, 29525 for 0.5.0, and 29524 for >=0.6.0, so let's make a safer test # that checks the first dimension is close to 29525 and the second dimension is 32. assert abs(model.embedding.weight.shape[0] - 29525) < 5 assert model.embedding.weight.shape[1] == 32 @skip_if_no_model2vec() def test_from_model2vec() -> None: model = StaticEmbedding.from_model2vec("minishlab/M2V_base_output") assert model.embedding.weight.shape == (29528, 256) def test_loading_model2vec() -> None: model = SentenceTransformer("minishlab/potion-base-8M") assert model.get_sentence_embedding_dimension() == 256 assert model.max_seq_length == math.inf test_sentences = ["It's so sunny outside!", "The sun is shining outside!"] embeddings = model.encode(test_sentences) assert embeddings.shape == (2, 256) similarity = model.similarity(embeddings[0], embeddings[1]) assert similarity.item() > 0.7
from __future__ import annotations import math from pathlib import Path import pytest from packaging.version import Version, parse from tokenizers import Tokenizer from sentence_transformers import SentenceTransformer from sentence_transformers.models.StaticEmbedding import StaticEmbedding try: import model2vec from model2vec import __version__ as M2V_VERSION except ImportError: model2vec = None skip_if_no_model2vec = pytest.mark.skipif(model2vec is None, reason="The model2vec library is not installed.") def test_initialization_with_embedding_weights(tokenizer: Tokenizer, embedding_weights) -> None: model = StaticEmbedding(tokenizer, embedding_weights=embedding_weights) assert model.embedding.weight.shape == (30522, 768) def test_initialization_with_embedding_dim(tokenizer: Tokenizer) -> None: model = StaticEmbedding(tokenizer, embedding_dim=768) assert model.embedding.weight.shape == (30522, 768) def test_tokenize(static_embedding_model: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding_model.tokenize(texts) assert "input_ids" in tokens assert "offsets" in tokens def test_forward(static_embedding_model: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding_model.tokenize(texts) output = static_embedding_model(tokens) assert "sentence_embedding" in output def test_save_and_load(tmp_path: Path, static_embedding_model: StaticEmbedding) -> None: save_dir = tmp_path / "model" save_dir.mkdir() static_embedding_model.save(str(save_dir)) loaded_model = StaticEmbedding.load(str(save_dir)) assert loaded_model.embedding.weight.shape == static_embedding_model.embedding.weight.shape @skip_if_no_model2vec() def test_from_distillation() -> None: model = StaticEmbedding.from_distillation("sentence-transformers-testing/stsb-bert-tiny-safetensors", pca_dims=32) expected_shape = (29525 if parse(M2V_VERSION) >= Version("0.5.0") else 29528, 32) assert model.embedding.weight.shape == expected_shape @skip_if_no_model2vec() def test_from_model2vec() -> None: model = StaticEmbedding.from_model2vec("minishlab/M2V_base_output") assert model.embedding.weight.shape == (29528, 256) def test_loading_model2vec() -> None: model = SentenceTransformer("minishlab/potion-base-8M") assert model.get_sentence_embedding_dimension() == 256 assert model.max_seq_length == math.inf test_sentences = ["It's so sunny outside!", "The sun is shining outside!"] embeddings = model.encode(test_sentences) assert embeddings.shape == (2, 256) similarity = model.similarity(embeddings[0], embeddings[1]) assert similarity.item() > 0.7
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np from mmengine.testing import assert_allclose from mmdet.core.mask import BitmapMasks, PolygonMasks def create_random_bboxes(num_bboxes, img_w, img_h): bboxes_left_top = np.random.uniform(0, 0.5, size=(num_bboxes, 2)) bboxes_right_bottom = np.random.uniform(0.5, 1, size=(num_bboxes, 2)) bboxes = np.concatenate((bboxes_left_top, bboxes_right_bottom), 1) bboxes = (bboxes * np.array([img_w, img_h, img_w, img_h])).astype( np.float32) return bboxes def create_full_masks(gt_bboxes, img_w, img_h): xmin, ymin = gt_bboxes[:, 0:1], gt_bboxes[:, 1:2] xmax, ymax = gt_bboxes[:, 2:3], gt_bboxes[:, 3:4] gt_masks = np.zeros((len(gt_bboxes), img_h, img_w), dtype=np.uint8) for i in range(len(gt_bboxes)): gt_masks[i, int(ymin[i]):int(ymax[i]), int(xmin[i]):int(xmax[i])] = 1 gt_masks = BitmapMasks(gt_masks, img_h, img_w) return gt_masks def construct_toy_data(poly2mask): img = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=np.uint8) img = np.stack([img, img, img], axis=-1) results = dict() results['img'] = img results['img_shape'] = img.shape[:2] results['gt_bboxes'] = np.array([[1, 0, 2, 2]], dtype=np.float32) results['gt_bboxes_labels'] = np.array([13], dtype=np.int64) if poly2mask: gt_masks = np.array([[0, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 0]], dtype=np.uint8)[None, :, :] results['gt_masks'] = BitmapMasks(gt_masks, 3, 4) else: raw_masks = [[np.array([1, 2, 1, 0, 2, 1], dtype=np.float32)]] results['gt_masks'] = PolygonMasks(raw_masks, 3, 4) results['gt_ignore_flags'] = np.array(np.array([1], dtype=bool)) results['gt_seg_map'] = np.array( [[255, 13, 255, 255], [255, 13, 13, 255], [255, 13, 255, 255]], dtype=np.uint8) return results def check_result_same(results, pipeline_results, check_keys): """Check whether the ``pipeline_results`` is the same with the predefined ``results``. Args: results (dict): Predefined results which should be the standard output of the transform pipeline. pipeline_results (dict): Results processed by the transform pipeline. check_keys (tuple): Keys that need to be checked between results and pipeline_results. """ for key in check_keys: if results.get(key, None) is None: continue if isinstance(results[key], (BitmapMasks, PolygonMasks)): assert_allclose(pipeline_results[key].to_ndarray(), results[key].to_ndarray()) else: assert_allclose(pipeline_results[key], results[key])
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np from mmdet.core.mask import BitmapMasks def create_random_bboxes(num_bboxes, img_w, img_h): bboxes_left_top = np.random.uniform(0, 0.5, size=(num_bboxes, 2)) bboxes_right_bottom = np.random.uniform(0.5, 1, size=(num_bboxes, 2)) bboxes = np.concatenate((bboxes_left_top, bboxes_right_bottom), 1) bboxes = (bboxes * np.array([img_w, img_h, img_w, img_h])).astype( np.float32) return bboxes def create_full_masks(gt_bboxes, img_w, img_h): xmin, ymin = gt_bboxes[:, 0:1], gt_bboxes[:, 1:2] xmax, ymax = gt_bboxes[:, 2:3], gt_bboxes[:, 3:4] gt_masks = np.zeros((len(gt_bboxes), img_h, img_w), dtype=np.uint8) for i in range(len(gt_bboxes)): gt_masks[i, int(ymin[i]):int(ymax[i]), int(xmin[i]):int(xmax[i])] = 1 gt_masks = BitmapMasks(gt_masks, img_h, img_w) return gt_masks
import os import time import pytest from docarray import Document from jina import Flow from jina.constants import __cache_path__ cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture(scope='module') def filewriter_exec_docker_image_built(): import docker client = docker.from_env() client.images.build( path=os.path.join(cur_dir, 'filewriter-exec/'), tag='filewriter-exec' ) client.close() yield time.sleep(2) client = docker.from_env() client.containers.prune() @pytest.mark.parametrize( 'source,destination,workspace', [('test/dir', '/custom/app', '/custom/app')], ) def test_volumes_in_flow( tmpdir, source, destination, workspace, filewriter_exec_docker_image_built ): if source: # test manually set volume and workspace source = os.path.join(tmpdir, source) volumes = [str(source) + ':' + destination] else: # test auto volume and workspace source = __cache_path__ f = Flow().add( uses='docker://filewriter-exec', volumes=volumes, workspace=workspace ) with f: f.post(inputs=[Document()], on='/foo') assert os.path.exists(source) found_output_file = False # workspace has random element, so we search for it for cur_path, dirs, files in os.walk(source): if 'out.txt' in files: with open(os.path.join(cur_path, 'out.txt'), 'r') as f: if f.read() == 'Filewriter was here': found_output_file = True assert found_output_file
import os import time import pytest from docarray import Document from jina import Flow, __cache_path__ cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture(scope='module') def filewriter_exec_docker_image_built(): import docker client = docker.from_env() client.images.build( path=os.path.join(cur_dir, 'filewriter-exec/'), tag='filewriter-exec' ) client.close() yield time.sleep(2) client = docker.from_env() client.containers.prune() @pytest.mark.parametrize( 'source,destination,workspace', [('test/dir', '/custom/app', '/custom/app')], ) def test_volumes_in_flow( tmpdir, source, destination, workspace, filewriter_exec_docker_image_built ): if source: # test manually set volume and workspace source = os.path.join(tmpdir, source) volumes = [str(source) + ':' + destination] else: # test auto volume and workspace source = __cache_path__ f = Flow().add( uses='docker://filewriter-exec', volumes=volumes, workspace=workspace ) with f: f.post(inputs=[Document()], on='/foo') assert os.path.exists(source) found_output_file = False # workspace has random element, so we search for it for cur_path, dirs, files in os.walk(source): if 'out.txt' in files: with open(os.path.join(cur_path, 'out.txt'), 'r') as f: if f.read() == 'Filewriter was here': found_output_file = True assert found_output_file
# Copyright (c) OpenMMLab. All rights reserved. from .det_data_sample import DetDataSample __all__ = ['DetDataSample']
# Copyright (c) OpenMMLab. All rights reserved. from .general_data import GeneralData from .instance_data import InstanceData __all__ = ['GeneralData', 'InstanceData']
"""Test in memory indexer.""" from collections.abc import AsyncGenerator, Generator import pytest from langchain_tests.integration_tests.indexer import ( AsyncDocumentIndexTestSuite, DocumentIndexerTestSuite, ) from langchain_core.documents import Document from langchain_core.indexing.base import DocumentIndex from langchain_core.indexing.in_memory import ( InMemoryDocumentIndex, ) class TestDocumentIndexerTestSuite(DocumentIndexerTestSuite): @pytest.fixture def index(self) -> Generator[DocumentIndex, None, None]: yield InMemoryDocumentIndex() # noqa: PT022 class TestAsyncDocumentIndexerTestSuite(AsyncDocumentIndexTestSuite): # Something funky is going on with mypy and async pytest fixture @pytest.fixture async def index(self) -> AsyncGenerator[DocumentIndex, None]: # type: ignore[override] yield InMemoryDocumentIndex() # noqa: PT022 def test_sync_retriever() -> None: index = InMemoryDocumentIndex() documents = [ Document(id="1", page_content="hello world"), Document(id="2", page_content="goodbye cat"), ] index.upsert(documents) assert index.invoke("hello") == [documents[0], documents[1]] assert index.invoke("cat") == [documents[1], documents[0]] async def test_async_retriever() -> None: index = InMemoryDocumentIndex() documents = [ Document(id="1", page_content="hello world"), Document(id="2", page_content="goodbye cat"), ] await index.aupsert(documents) assert (await index.ainvoke("hello")) == [documents[0], documents[1]] assert (await index.ainvoke("cat")) == [documents[1], documents[0]]
"""Test in memory indexer.""" from collections.abc import AsyncGenerator, Generator import pytest from langchain_tests.integration_tests.indexer import ( AsyncDocumentIndexTestSuite, DocumentIndexerTestSuite, ) from langchain_core.documents import Document from langchain_core.indexing.base import DocumentIndex from langchain_core.indexing.in_memory import ( InMemoryDocumentIndex, ) class TestDocumentIndexerTestSuite(DocumentIndexerTestSuite): @pytest.fixture def index(self) -> Generator[DocumentIndex, None, None]: yield InMemoryDocumentIndex() # noqa: PT022 class TestAsyncDocumentIndexerTestSuite(AsyncDocumentIndexTestSuite): # Something funky is going on with mypy and async pytest fixture @pytest.fixture async def index(self) -> AsyncGenerator[DocumentIndex, None]: # type: ignore yield InMemoryDocumentIndex() # noqa: PT022 def test_sync_retriever() -> None: index = InMemoryDocumentIndex() documents = [ Document(id="1", page_content="hello world"), Document(id="2", page_content="goodbye cat"), ] index.upsert(documents) assert index.invoke("hello") == [documents[0], documents[1]] assert index.invoke("cat") == [documents[1], documents[0]] async def test_async_retriever() -> None: index = InMemoryDocumentIndex() documents = [ Document(id="1", page_content="hello world"), Document(id="2", page_content="goodbye cat"), ] await index.aupsert(documents) assert (await index.ainvoke("hello")) == [documents[0], documents[1]] assert (await index.ainvoke("cat")) == [documents[1], documents[0]]
"""Llava Completion Pack.""" from typing import Any, Dict from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.llms.replicate import Replicate class LlavaCompletionPack(BaseLlamaPack): """Llava Completion pack.""" def __init__( self, image_url: str, **kwargs: Any, ) -> None: """Init params.""" import os if not os.environ.get("REPLICATE_API_TOKEN", None): raise ValueError("Replicate API Token is missing or blank.") self.image_url = image_url self.llm = Replicate( model="yorickvp/llava-13b:2facb4a474a0462c15041b78b1ad70952ea46b5ec6ad29583c0b29dbd4249591", image=self.image_url, ) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "llm": self.llm, "image_url": self.image_url, } def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.llm.complete(*args, **kwargs)
"""Llava Completion Pack.""" from typing import Any, Dict from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.llms.replicate import Replicate class LlavaCompletionPack(BaseLlamaPack): """Llava Completion pack.""" def __init__( self, image_url: str, **kwargs: Any, ) -> None: """Init params.""" import os if not os.environ.get("REPLICATE_API_TOKEN", None): raise ValueError("Replicate API Token is missing or blank.") self.image_url = image_url self.llm = Replicate( model="yorickvp/llava-13b:2facb4a474a0462c15041b78b1ad70952ea46b5ec6ad29583c0b29dbd4249591", image=self.image_url, ) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "llm": self.llm, "image_url": self.image_url, } def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.llm.complete(*args, **kwargs)
""" ============================== Ordinary Least Squares Example ============================== This example shows how to use the ordinary least squares (OLS) model called :class:`~sklearn.linear_model.LinearRegression` in scikit-learn. For this purpose, we use a single feature from the diabetes dataset and try to predict the diabetes progression using this linear model. We therefore load the diabetes dataset and split it into training and test sets. Then, we fit the model on the training set and evaluate its performance on the test set and finally visualize the results on the test set. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # Data Loading and Preparation # ---------------------------- # # Load the diabetes dataset. For simplicity, we only keep a single feature in the data. # Then, we split the data and target into training and test sets. from sklearn.datasets import load_diabetes from sklearn.model_selection import train_test_split X, y = load_diabetes(return_X_y=True) X = X[:, [2]] # Use only one feature X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=20, shuffle=False) # %% # Linear regression model # ----------------------- # # We create a linear regression model and fit it on the training data. Note that by # default, an intercept is added to the model. We can control this behavior by setting # the `fit_intercept` parameter. from sklearn.linear_model import LinearRegression regressor = LinearRegression().fit(X_train, y_train) # %% # Model evaluation # ---------------- # # We evaluate the model's performance on the test set using the mean squared error # and the coefficient of determination. from sklearn.metrics import mean_squared_error, r2_score y_pred = regressor.predict(X_test) print(f"Mean squared error: {mean_squared_error(y_test, y_pred):.2f}") print(f"Coefficient of determination: {r2_score(y_test, y_pred):.2f}") # %% # Plotting the results # -------------------- # # Finally, we visualize the results on the train and test data. import matplotlib.pyplot as plt fig, ax = plt.subplots(ncols=2, figsize=(10, 5), sharex=True, sharey=True) ax[0].scatter(X_train, y_train, label="Train data points") ax[0].plot( X_train, regressor.predict(X_train), linewidth=3, color="tab:orange", label="Model predictions", ) ax[0].set(xlabel="Feature", ylabel="Target", title="Train set") ax[0].legend() ax[1].scatter(X_test, y_test, label="Test data points") ax[1].plot(X_test, y_pred, linewidth=3, color="tab:orange", label="Model predictions") ax[1].set(xlabel="Feature", ylabel="Target", title="Test set") ax[1].legend() fig.suptitle("Linear Regression") plt.show() # %% # Conclusion # ---------- # # The trained model corresponds to the estimator that minimizes the mean squared error # between the predicted and the true target values on the training data. We therefore # obtain an estimator of the conditional mean of the target given the data. # # Note that in higher dimensions, minimizing only the squared error might lead to # overfitting. Therefore, regularization techniques are commonly used to prevent this # issue, such as those implemented in :class:`~sklearn.linear_model.Ridge` or # :class:`~sklearn.linear_model.Lasso`.
""" ========================================================= Linear Regression Example ========================================================= The example below uses only the first feature of the `diabetes` dataset, in order to illustrate the data points within the two-dimensional plot. The straight line can be seen in the plot, showing how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. The coefficients, residual sum of squares and the coefficient of determination are also calculated. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model from sklearn.metrics import mean_squared_error, r2_score # Load the diabetes dataset diabetes_X, diabetes_y = datasets.load_diabetes(return_X_y=True) # Use only one feature diabetes_X = diabetes_X[:, np.newaxis, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes_y[:-20] diabetes_y_test = diabetes_y[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # Make predictions using the testing set diabetes_y_pred = regr.predict(diabetes_X_test) # The coefficients print("Coefficients: \n", regr.coef_) # The mean squared error print("Mean squared error: %.2f" % mean_squared_error(diabetes_y_test, diabetes_y_pred)) # The coefficient of determination: 1 is perfect prediction print("Coefficient of determination: %.2f" % r2_score(diabetes_y_test, diabetes_y_pred)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color="black") plt.plot(diabetes_X_test, diabetes_y_pred, color="blue", linewidth=3) plt.xticks(()) plt.yticks(()) plt.show()
from typing import Optional import numpy as np from docarray import DocumentArray from docarray.document import BaseDocument from docarray.typing import Tensor def test_proto_simple(): class CustomDoc(BaseDocument): text: str doc = CustomDoc(text='hello') CustomDoc.from_protobuf(doc.to_protobuf()) def test_proto_ndarray(): class CustomDoc(BaseDocument): tensor: Tensor tensor = np.zeros((3, 224, 224)) doc = CustomDoc(tensor=tensor) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) assert (new_doc.tensor == tensor).all() def test_proto_with_nested_doc(): class CustomInnerDoc(BaseDocument): tensor: Tensor class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc(text='hello', inner=CustomInnerDoc(tensor=np.zeros((3, 224, 224)))) CustomDoc.from_protobuf(doc.to_protobuf()) def test_proto_with_chunks_doc(): class CustomInnerDoc(BaseDocument): tensor: Tensor class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=np.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() def test_optional_field_in_doc(): class CustomDoc(BaseDocument): text: Optional[str] CustomDoc.from_protobuf(CustomDoc().to_protobuf()) def test_optional_field_nested_in_doc(): class InnerDoc(BaseDocument): title: str class CustomDoc(BaseDocument): text: Optional[InnerDoc] CustomDoc.from_protobuf(CustomDoc().to_protobuf())
from typing import Optional import numpy as np from docarray import DocumentArray from docarray.document import BaseDocument def test_proto_simple(): class CustomDoc(BaseDocument): text: str doc = CustomDoc(text='hello') CustomDoc.from_protobuf(doc.to_protobuf()) def test_proto_ndarray(): class CustomDoc(BaseDocument): tensor: np.ndarray tensor = np.zeros((3, 224, 224)) doc = CustomDoc(tensor=tensor) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) assert (new_doc.tensor == tensor).all() def test_proto_with_nested_doc(): class CustomInnerDoc(BaseDocument): tensor: np.ndarray class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc(text='hello', inner=CustomInnerDoc(tensor=np.zeros((3, 224, 224)))) CustomDoc.from_protobuf(doc.to_protobuf()) def test_proto_with_chunks_doc(): class CustomInnerDoc(BaseDocument): tensor: np.ndarray class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=np.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() def test_optional_field_in_doc(): class CustomDoc(BaseDocument): text: Optional[str] CustomDoc.from_protobuf(CustomDoc().to_protobuf()) def test_optional_field_nested_in_doc(): class InnerDoc(BaseDocument): title: str class CustomDoc(BaseDocument): text: Optional[InnerDoc] CustomDoc.from_protobuf(CustomDoc().to_protobuf())
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest from typing import Dict, List from docarray import BaseDoc, DocList from docarray.base_doc import AnyDoc from docarray.documents import ImageDoc, TextDoc from docarray.typing import NdArray @pytest.mark.proto def test_simple_proto(): class CustomDoc(BaseDoc): text: str tensor: NdArray da = DocList( [CustomDoc(text='hello', tensor=np.zeros((3, 224, 224))) for _ in range(10)] ) new_da = DocList[CustomDoc].from_protobuf(da.to_protobuf()) for doc1, doc2 in zip(da, new_da): assert doc1.text == doc2.text assert (doc1.tensor == doc2.tensor).all() @pytest.mark.proto def test_nested_proto(): class CustomDocument(BaseDoc): text: TextDoc image: ImageDoc da = DocList[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocList[CustomDocument].from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_nested_proto_any_doc(): class CustomDocument(BaseDoc): text: TextDoc image: ImageDoc da = DocList[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocList.from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_any_doc_list_proto(): doc = AnyDoc(hello='world') pt = DocList([doc]).to_protobuf() docs = DocList.from_protobuf(pt) assert docs[0].hello == 'world' @pytest.mark.proto def test_any_nested_doc_list_proto(): from docarray import BaseDoc, DocList class TextDocWithId(BaseDoc): id: str text: str class ResultTestDoc(BaseDoc): matches: DocList[TextDocWithId] index_da = DocList[TextDocWithId]( [TextDocWithId(id=f'{i}', text=f'ID {i}') for i in range(10)] ) out_da = DocList[ResultTestDoc]([ResultTestDoc(matches=index_da[0:2])]) pb = out_da.to_protobuf() docs = DocList.from_protobuf(pb) assert docs[0].matches[0].id == '0' assert len(docs[0].matches) == 2 assert len(docs) == 1 @pytest.mark.proto def test_union_type_error(): from typing import Union class CustomDoc(BaseDoc): ud: Union[TextDoc, ImageDoc] = TextDoc(text='union type') docs = DocList[CustomDoc]([CustomDoc(ud=TextDoc(text='union type'))]) with pytest.raises(ValueError): DocList[CustomDoc].from_protobuf(docs.to_protobuf()) class BasisUnion(BaseDoc): ud: Union[int, str] docs_basic = DocList[BasisUnion]([BasisUnion(ud="hello")]) docs_copy = DocList[BasisUnion].from_protobuf(docs_basic.to_protobuf()) assert docs_copy == docs_basic class MySimpleDoc(BaseDoc): title: str class MyComplexDoc(BaseDoc): content_dict_doclist: Dict[str, DocList[MySimpleDoc]] content_dict_list: Dict[str, List[MySimpleDoc]] aux_dict: Dict[str, int] def test_to_from_proto_complex(): da = DocList[MyComplexDoc]( [ MyComplexDoc( content_dict_doclist={ 'test1': DocList[MySimpleDoc]( [MySimpleDoc(title='123'), MySimpleDoc(title='456')] ) }, content_dict_list={ 'test1': [MySimpleDoc(title='123'), MySimpleDoc(title='456')] }, aux_dict={'a': 0}, ) ] ) da2 = DocList[MyComplexDoc].from_protobuf(da.to_protobuf()) assert len(da2) == 1 d2 = da2[0] assert d2.aux_dict == {'a': 0} assert len(d2.content_dict_doclist['test1']) == 2 assert d2.content_dict_doclist['test1'][0].title == '123' assert d2.content_dict_doclist['test1'][1].title == '456' assert len(d2.content_dict_list['test1']) == 2 assert d2.content_dict_list['test1'][0].title == '123' assert d2.content_dict_list['test1'][1].title == '456'
import numpy as np import pytest from typing import Dict, List from docarray import BaseDoc, DocList from docarray.base_doc import AnyDoc from docarray.documents import ImageDoc, TextDoc from docarray.typing import NdArray @pytest.mark.proto def test_simple_proto(): class CustomDoc(BaseDoc): text: str tensor: NdArray da = DocList( [CustomDoc(text='hello', tensor=np.zeros((3, 224, 224))) for _ in range(10)] ) new_da = DocList[CustomDoc].from_protobuf(da.to_protobuf()) for doc1, doc2 in zip(da, new_da): assert doc1.text == doc2.text assert (doc1.tensor == doc2.tensor).all() @pytest.mark.proto def test_nested_proto(): class CustomDocument(BaseDoc): text: TextDoc image: ImageDoc da = DocList[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocList[CustomDocument].from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_nested_proto_any_doc(): class CustomDocument(BaseDoc): text: TextDoc image: ImageDoc da = DocList[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocList.from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_any_doc_list_proto(): doc = AnyDoc(hello='world') pt = DocList([doc]).to_protobuf() docs = DocList.from_protobuf(pt) assert docs[0].hello == 'world' @pytest.mark.proto def test_any_nested_doc_list_proto(): from docarray import BaseDoc, DocList class TextDocWithId(BaseDoc): id: str text: str class ResultTestDoc(BaseDoc): matches: DocList[TextDocWithId] index_da = DocList[TextDocWithId]( [TextDocWithId(id=f'{i}', text=f'ID {i}') for i in range(10)] ) out_da = DocList[ResultTestDoc]([ResultTestDoc(matches=index_da[0:2])]) pb = out_da.to_protobuf() docs = DocList.from_protobuf(pb) assert docs[0].matches[0].id == '0' assert len(docs[0].matches) == 2 assert len(docs) == 1 @pytest.mark.proto def test_union_type_error(): from typing import Union class CustomDoc(BaseDoc): ud: Union[TextDoc, ImageDoc] = TextDoc(text='union type') docs = DocList[CustomDoc]([CustomDoc(ud=TextDoc(text='union type'))]) with pytest.raises(ValueError): DocList[CustomDoc].from_protobuf(docs.to_protobuf()) class BasisUnion(BaseDoc): ud: Union[int, str] docs_basic = DocList[BasisUnion]([BasisUnion(ud="hello")]) docs_copy = DocList[BasisUnion].from_protobuf(docs_basic.to_protobuf()) assert docs_copy == docs_basic class MySimpleDoc(BaseDoc): title: str class MyComplexDoc(BaseDoc): content_dict_doclist: Dict[str, DocList[MySimpleDoc]] content_dict_list: Dict[str, List[MySimpleDoc]] aux_dict: Dict[str, int] def test_to_from_proto_complex(): da = DocList[MyComplexDoc]( [ MyComplexDoc( content_dict_doclist={ 'test1': DocList[MySimpleDoc]( [MySimpleDoc(title='123'), MySimpleDoc(title='456')] ) }, content_dict_list={ 'test1': [MySimpleDoc(title='123'), MySimpleDoc(title='456')] }, aux_dict={'a': 0}, ) ] ) da2 = DocList[MyComplexDoc].from_protobuf(da.to_protobuf()) assert len(da2) == 1 d2 = da2[0] assert d2.aux_dict == {'a': 0} assert len(d2.content_dict_doclist['test1']) == 2 assert d2.content_dict_doclist['test1'][0].title == '123' assert d2.content_dict_doclist['test1'][1].title == '456' assert len(d2.content_dict_list['test1']) == 2 assert d2.content_dict_list['test1'][0].title == '123' assert d2.content_dict_list['test1'][1].title == '456'
import logging from typing import TYPE_CHECKING if TYPE_CHECKING: from backend.util.process import AppProcess logger = logging.getLogger(__name__) def run_processes(*processes: "AppProcess", **kwargs): """ Execute all processes in the app. The last process is run in the foreground. Includes enhanced error handling and process lifecycle management. """ try: # Run all processes except the last one in the background. for process in processes[:-1]: process.start(background=True, **kwargs) # Run the last process in the foreground. processes[-1].start(background=False, **kwargs) finally: for process in processes: try: process.stop() except Exception as e: logger.exception(f"[{process.service_name}] unable to stop: {e}") def main(**kwargs): """ Run all the processes required for the AutoGPT-server (REST and WebSocket APIs). """ from backend.executor import DatabaseManager, ExecutionManager, Scheduler from backend.notifications import NotificationManager from backend.server.rest_api import AgentServer from backend.server.ws_api import WebsocketServer run_processes( DatabaseManager(), ExecutionManager(), Scheduler(), NotificationManager(), WebsocketServer(), AgentServer(), **kwargs, ) if __name__ == "__main__": main()
import logging from typing import TYPE_CHECKING if TYPE_CHECKING: from backend.util.process import AppProcess logger = logging.getLogger(__name__) def run_processes(*processes: "AppProcess", **kwargs): """ Execute all processes in the app. The last process is run in the foreground. Includes enhanced error handling and process lifecycle management. """ try: # Run all processes except the last one in the background. for process in processes[:-1]: process.start(background=True, **kwargs) # Run the last process in the foreground. processes[-1].start(background=False, **kwargs) finally: for process in processes: try: process.stop() except Exception as e: logger.exception(f"[{process.service_name}] unable to stop: {e}") def main(**kwargs): """ Run all the processes required for the AutoGPT-server (REST and WebSocket APIs). """ from backend.executor import DatabaseManager, ExecutionManager, ExecutionScheduler from backend.notifications import NotificationManager from backend.server.rest_api import AgentServer from backend.server.ws_api import WebsocketServer run_processes( DatabaseManager(), ExecutionManager(), ExecutionScheduler(), NotificationManager(), WebsocketServer(), AgentServer(), **kwargs, ) if __name__ == "__main__": main()
import sys import pytest from hypothesis import given, settings, strategies from xgboost.testing import no_cupy from xgboost.testing.updater import check_quantile_loss_extmem sys.path.append("tests/python") from test_data_iterator import run_data_iterator from test_data_iterator import test_single_batch as cpu_single_batch def test_gpu_single_batch() -> None: cpu_single_batch("gpu_hist") @pytest.mark.skipif(**no_cupy()) @given( strategies.integers(0, 1024), strategies.integers(1, 7), strategies.integers(0, 8), strategies.booleans(), strategies.booleans(), strategies.booleans(), ) @settings(deadline=None, max_examples=16, print_blob=True) def test_gpu_data_iterator( n_samples_per_batch: int, n_features: int, n_batches: int, subsample: bool, use_cupy: bool, on_host: bool, ) -> None: run_data_iterator( n_samples_per_batch, n_features, n_batches, "hist", subsample=subsample, device="cuda", use_cupy=use_cupy, on_host=on_host, ) def test_cpu_data_iterator() -> None: """Make sure CPU algorithm can handle GPU inputs""" run_data_iterator( 1024, 2, 3, "approx", device="cuda", subsample=False, use_cupy=True, on_host=False, ) def test_quantile_objective() -> None: with pytest.raises(ValueError, match="external memory"): check_quantile_loss_extmem(2, 2, 2, "hist", "cuda")
import sys import pytest from hypothesis import given, settings, strategies from xgboost.testing import no_cupy sys.path.append("tests/python") from test_data_iterator import run_data_iterator from test_data_iterator import test_single_batch as cpu_single_batch def test_gpu_single_batch() -> None: cpu_single_batch("gpu_hist") @pytest.mark.skipif(**no_cupy()) @given( strategies.integers(0, 1024), strategies.integers(1, 7), strategies.integers(0, 8), strategies.booleans(), strategies.booleans(), strategies.booleans(), ) @settings(deadline=None, max_examples=16, print_blob=True) def test_gpu_data_iterator( n_samples_per_batch: int, n_features: int, n_batches: int, subsample: bool, use_cupy: bool, on_host: bool, ) -> None: run_data_iterator( n_samples_per_batch, n_features, n_batches, "hist", subsample=subsample, device="cuda", use_cupy=use_cupy, on_host=on_host, ) def test_cpu_data_iterator() -> None: """Make sure CPU algorithm can handle GPU inputs""" run_data_iterator( 1024, 2, 3, "approx", device="cuda", subsample=False, use_cupy=True, on_host=False, )
from pathlib import Path from typing import Any, Iterator, List import pytest from langchain_core.documents import Document from langchain_community.document_loaders import DirectoryLoader from langchain_community.document_loaders.text import TextLoader def test_raise_error_if_path_not_exist() -> None: loader = DirectoryLoader("./not_exist_directory") with pytest.raises(FileNotFoundError) as e: loader.load() assert str(e.value) == "Directory not found: './not_exist_directory'" def test_raise_error_if_path_is_not_directory() -> None: loader = DirectoryLoader(__file__) with pytest.raises(ValueError) as e: loader.load() assert str(e.value) == f"Expected directory, got file: '{__file__}'" class CustomLoader(TextLoader): """Test loader. Mimics interface of existing file loader.""" def __init__(self, path: Path, **kwargs: Any) -> None: """Initialize the loader.""" self.path = path def load(self) -> List[Document]: """Load documents.""" with open(self.path, "r") as f: return [Document(page_content=f.read())] def lazy_load(self) -> Iterator[Document]: raise NotImplementedError("CustomLoader does not implement lazy_load()") def test_exclude_ignores_matching_files(tmp_path: Path) -> None: txt_file = tmp_path / "test.txt" py_file = tmp_path / "test.py" txt_file.touch() py_file.touch() loader = DirectoryLoader( str(tmp_path), exclude=["*.py"], loader_cls=CustomLoader, ) data = loader.load() assert len(data) == 1 def test_exclude_as_string_converts_to_sequence() -> None: loader = DirectoryLoader("./some_directory", exclude="*.py") assert loader.exclude == ("*.py",) class CustomLoaderMetadataOnly(CustomLoader): """Test loader that just returns the file path in metadata. For test_directory_loader_glob_multiple.""" # noqa: E501 def load(self) -> List[Document]: metadata = {"source": self.path} return [Document(page_content="", metadata=metadata)] def lazy_load(self) -> Iterator[Document]: return iter(self.load()) def test_directory_loader_glob_multiple() -> None: """Verify that globbing multiple patterns in a list works correctly.""" path_to_examples = "tests/examples/" list_extensions = [".rst", ".txt"] list_globs = [f"**/*{ext}" for ext in list_extensions] is_file_type_loaded = {ext: False for ext in list_extensions} loader = DirectoryLoader( path=path_to_examples, glob=list_globs, loader_cls=CustomLoaderMetadataOnly ) list_documents = loader.load() for doc in list_documents: path_doc = Path(doc.metadata.get("source", "")) ext_doc = path_doc.suffix if is_file_type_loaded.get(ext_doc, False): continue elif ext_doc in list_extensions: is_file_type_loaded[ext_doc] = True else: # Loaded a filetype that was not specified in extensions list assert False for ext in list_extensions: assert is_file_type_loaded.get(ext, False)
from pathlib import Path from typing import Any, Iterator, List import pytest from langchain_core.documents import Document from langchain_community.document_loaders import DirectoryLoader from langchain_community.document_loaders.text import TextLoader def test_raise_error_if_path_not_exist() -> None: loader = DirectoryLoader("./not_exist_directory") with pytest.raises(FileNotFoundError) as e: loader.load() assert str(e.value) == "Directory not found: './not_exist_directory'" def test_raise_error_if_path_is_not_directory() -> None: loader = DirectoryLoader(__file__) with pytest.raises(ValueError) as e: loader.load() assert str(e.value) == f"Expected directory, got file: '{__file__}'" class CustomLoader(TextLoader): """Test loader. Mimics interface of existing file loader.""" def __init__(self, path: Path, **kwargs: Any) -> None: """Initialize the loader.""" self.path = path def load(self) -> List[Document]: """Load documents.""" with open(self.path, "r") as f: return [Document(page_content=f.read())] def lazy_load(self) -> Iterator[Document]: raise NotImplementedError("CustomLoader does not implement lazy_load()") def test_exclude_ignores_matching_files(tmp_path: Path) -> None: txt_file = tmp_path / "test.txt" py_file = tmp_path / "test.py" txt_file.touch() py_file.touch() loader = DirectoryLoader( str(tmp_path), exclude=["*.py"], loader_cls=CustomLoader, # type: ignore ) data = loader.load() assert len(data) == 1 def test_exclude_as_string_converts_to_sequence() -> None: loader = DirectoryLoader("./some_directory", exclude="*.py") assert loader.exclude == ("*.py",) class CustomLoaderMetadataOnly(CustomLoader): """Test loader that just returns the file path in metadata. For test_directory_loader_glob_multiple.""" # noqa: E501 def load(self) -> List[Document]: metadata = {"source": self.path} return [Document(page_content="", metadata=metadata)] def lazy_load(self) -> Iterator[Document]: return iter(self.load()) def test_directory_loader_glob_multiple() -> None: """Verify that globbing multiple patterns in a list works correctly.""" path_to_examples = "tests/examples/" list_extensions = [".rst", ".txt"] list_globs = [f"**/*{ext}" for ext in list_extensions] is_file_type_loaded = {ext: False for ext in list_extensions} loader = DirectoryLoader( path=path_to_examples, glob=list_globs, loader_cls=CustomLoaderMetadataOnly ) list_documents = loader.load() for doc in list_documents: path_doc = Path(doc.metadata.get("source", "")) ext_doc = path_doc.suffix if is_file_type_loaded.get(ext_doc, False): continue elif ext_doc in list_extensions: is_file_type_loaded[ext_doc] = True else: # Loaded a filetype that was not specified in extensions list assert False for ext in list_extensions: assert is_file_type_loaded.get(ext, False)
# Copyright (c) OpenMMLab. All rights reserved. import warnings import torch.nn as nn from mmcv.runner import BaseModule, auto_fp16 from mmdet.models.backbones import ResNet from mmdet.models.builder import SHARED_HEADS from mmdet.models.utils import ResLayer as _ResLayer @SHARED_HEADS.register_module() class ResLayer(BaseModule): def __init__(self, depth, stage=3, stride=2, dilation=1, style='pytorch', norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, with_cp=False, dcn=None, pretrained=None, init_cfg=None): super(ResLayer, self).__init__(init_cfg) self.norm_eval = norm_eval self.norm_cfg = norm_cfg self.stage = stage self.fp16_enabled = False block, stage_blocks = ResNet.arch_settings[depth] stage_block = stage_blocks[stage] planes = 64 * 2**stage inplanes = 64 * 2**(stage - 1) * block.expansion res_layer = _ResLayer( block, inplanes, planes, stage_block, stride=stride, dilation=dilation, style=style, with_cp=with_cp, norm_cfg=self.norm_cfg, dcn=dcn) self.add_module(f'layer{stage + 1}', res_layer) assert not (init_cfg and pretrained), \ 'init_cfg and pretrained cannot be setting at the same time' if isinstance(pretrained, str): warnings.warn('DeprecationWarning: pretrained is a deprecated, ' 'please use "init_cfg" instead') self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) elif pretrained is None: if init_cfg is None: self.init_cfg = [ dict(type='Kaiming', layer='Conv2d'), dict( type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm']) ] else: raise TypeError('pretrained must be a str or None') @auto_fp16() def forward(self, x): res_layer = getattr(self, f'layer{self.stage + 1}') out = res_layer(x) return out def train(self, mode=True): super(ResLayer, self).train(mode) if self.norm_eval: for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval()
import warnings import torch.nn as nn from mmcv.runner import BaseModule, auto_fp16 from mmdet.models.backbones import ResNet from mmdet.models.builder import SHARED_HEADS from mmdet.models.utils import ResLayer as _ResLayer @SHARED_HEADS.register_module() class ResLayer(BaseModule): def __init__(self, depth, stage=3, stride=2, dilation=1, style='pytorch', norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, with_cp=False, dcn=None, pretrained=None, init_cfg=None): super(ResLayer, self).__init__(init_cfg) self.norm_eval = norm_eval self.norm_cfg = norm_cfg self.stage = stage self.fp16_enabled = False block, stage_blocks = ResNet.arch_settings[depth] stage_block = stage_blocks[stage] planes = 64 * 2**stage inplanes = 64 * 2**(stage - 1) * block.expansion res_layer = _ResLayer( block, inplanes, planes, stage_block, stride=stride, dilation=dilation, style=style, with_cp=with_cp, norm_cfg=self.norm_cfg, dcn=dcn) self.add_module(f'layer{stage + 1}', res_layer) assert not (init_cfg and pretrained), \ 'init_cfg and pretrained cannot be setting at the same time' if isinstance(pretrained, str): warnings.warn('DeprecationWarning: pretrained is a deprecated, ' 'please use "init_cfg" instead') self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) elif pretrained is None: if init_cfg is None: self.init_cfg = [ dict(type='Kaiming', layer='Conv2d'), dict( type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm']) ] else: raise TypeError('pretrained must be a str or None') @auto_fp16() def forward(self, x): res_layer = getattr(self, f'layer{self.stage + 1}') out = res_layer(x) return out def train(self, mode=True): super(ResLayer, self).train(mode) if self.norm_eval: for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval()
import copy import os.path as osp import unittest from mmcv.transforms import Compose from mmdet.datasets.transforms import MultiBranch from mmdet.utils import register_all_modules register_all_modules() class TestMultiBranch(unittest.TestCase): def setUp(self): """Setup the model and optimizer which are used in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ data_prefix = osp.join(osp.dirname(__file__), '../../data') img_path = osp.join(data_prefix, 'color.jpg') seg_map = osp.join(data_prefix, 'gray.jpg') self.meta_keys = ('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction', 'homography_matrix') self.results = { 'img_path': img_path, 'img_id': 12345, 'img_shape': (300, 400), 'seg_map_path': seg_map, 'instances': [{ 'bbox': [0, 0, 10, 20], 'bbox_label': 1, 'mask': [[0, 0, 0, 20, 10, 20, 10, 0]], 'ignore_flag': 0 }, { 'bbox': [10, 10, 110, 120], 'bbox_label': 2, 'mask': [[10, 10, 110, 10, 110, 120, 110, 10]], 'ignore_flag': 0 }, { 'bbox': [50, 50, 60, 80], 'bbox_label': 2, 'mask': [[50, 50, 60, 50, 60, 80, 50, 80]], 'ignore_flag': 1 }] } self.weak_pipeline = [ dict(type='ShearX'), dict(type='PackDetInputs', meta_keys=self.meta_keys) ] self.strong_pipeline = [ dict(type='ShearX'), dict(type='ShearY'), dict(type='PackDetInputs', meta_keys=self.meta_keys) ] self.labeled_pipeline = [ dict(type='LoadImageFromFile'), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict( type='MultiBranch', sup_teacher=self.weak_pipeline, sup_student=self.strong_pipeline), ] self.unlabeled_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict( type='MultiBranch', unsup_teacher=self.weak_pipeline, unsup_student=self.strong_pipeline), ] def test_transform(self): labeled_pipeline = Compose(self.labeled_pipeline) labeled_results = labeled_pipeline(copy.deepcopy(self.results)) unlabeled_pipeline = Compose(self.unlabeled_pipeline) unlabeled_results = unlabeled_pipeline(copy.deepcopy(self.results)) # test branch sup_teacher and sup_student sup_branches = ['sup_teacher', 'sup_student'] for branch in sup_branches: self.assertIn(branch, labeled_results) self.assertIn('homography_matrix', labeled_results[branch]['data_sample']) self.assertIn('labels', labeled_results[branch]['data_sample'].gt_instances) self.assertIn('bboxes', labeled_results[branch]['data_sample'].gt_instances) self.assertIn('masks', labeled_results[branch]['data_sample'].gt_instances) self.assertIn('gt_sem_seg', labeled_results[branch]['data_sample']) # test branch unsup_teacher and unsup_student unsup_branches = ['unsup_teacher', 'unsup_student'] for branch in unsup_branches: self.assertIn(branch, unlabeled_results) self.assertIn('homography_matrix', unlabeled_results[branch]['data_sample']) self.assertNotIn( 'labels', unlabeled_results[branch]['data_sample'].gt_instances) self.assertNotIn( 'bboxes', unlabeled_results[branch]['data_sample'].gt_instances) self.assertNotIn( 'masks', unlabeled_results[branch]['data_sample'].gt_instances) self.assertNotIn('gt_sem_seg', unlabeled_results[branch]['data_sample']) def test_repr(self): pipeline = [dict(type='PackDetInputs', meta_keys=())] transform = MultiBranch(sup=pipeline, unsup=pipeline) self.assertEqual( repr(transform), ("MultiBranch(branch_pipelines=['sup', 'unsup'])"))
import copy import os.path as osp import unittest from mmcv.transforms import Compose from mmdet.datasets.transforms import MultiBranch from mmdet.utils import register_all_modules register_all_modules() class TestMultiBranch(unittest.TestCase): def setUp(self): """Setup the model and optimizer which are used in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ data_prefix = osp.join(osp.dirname(__file__), '../../data') img_path = osp.join(data_prefix, 'color.jpg') seg_map = osp.join(data_prefix, 'gray.jpg') self.meta_keys = ('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction', 'homography_matrix') self.results = { 'img_path': img_path, 'img_id': 12345, 'img_shape': (300, 400), 'seg_map_path': seg_map, 'instances': [{ 'bbox': [0, 0, 10, 20], 'bbox_label': 1, 'mask': [[0, 0, 0, 20, 10, 20, 10, 0]], 'ignore_flag': 0 }, { 'bbox': [10, 10, 110, 120], 'bbox_label': 2, 'mask': [[10, 10, 110, 10, 110, 120, 110, 10]], 'ignore_flag': 0 }, { 'bbox': [50, 50, 60, 80], 'bbox_label': 2, 'ignore_flag': 1 }] } self.weak_pipeline = [ dict(type='ShearX'), dict(type='PackDetInputs', meta_keys=self.meta_keys) ] self.strong_pipeline = [ dict(type='ShearX'), dict(type='ShearY'), dict(type='PackDetInputs', meta_keys=self.meta_keys) ] self.labeled_pipeline = [ dict(type='LoadImageFromFile'), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict( type='MultiBranch', sup_teacher=self.weak_pipeline, sup_student=self.strong_pipeline), ] self.unlabeled_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict( type='MultiBranch', unsup_teacher=self.weak_pipeline, unsup_student=self.strong_pipeline), ] def test_transform(self): labeled_pipeline = Compose(self.labeled_pipeline) labeled_results = labeled_pipeline(copy.deepcopy(self.results)) unlabeled_pipeline = Compose(self.unlabeled_pipeline) unlabeled_results = unlabeled_pipeline(copy.deepcopy(self.results)) # test branch sup_teacher and sup_student sup_branches = ['sup_teacher', 'sup_student'] for branch in sup_branches: self.assertIn(branch, labeled_results) self.assertIn('homography_matrix', labeled_results[branch]['data_sample']) self.assertIn('labels', labeled_results[branch]['data_sample'].gt_instances) self.assertIn('bboxes', labeled_results[branch]['data_sample'].gt_instances) self.assertIn('masks', labeled_results[branch]['data_sample'].gt_instances) self.assertIn('gt_sem_seg', labeled_results[branch]['data_sample']) # test branch unsup_teacher and unsup_student unsup_branches = ['unsup_teacher', 'unsup_student'] for branch in unsup_branches: self.assertIn(branch, unlabeled_results) self.assertIn('homography_matrix', unlabeled_results[branch]['data_sample']) self.assertNotIn( 'labels', unlabeled_results[branch]['data_sample'].gt_instances) self.assertNotIn( 'bboxes', unlabeled_results[branch]['data_sample'].gt_instances) self.assertNotIn( 'masks', unlabeled_results[branch]['data_sample'].gt_instances) self.assertNotIn('gt_sem_seg', unlabeled_results[branch]['data_sample']) def test_repr(self): pipeline = [dict(type='PackDetInputs', meta_keys=())] transform = MultiBranch(sup=pipeline, unsup=pipeline) self.assertEqual( repr(transform), ("MultiBranch(branch_pipelines=['sup', 'unsup'])"))
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.typing import AnyEmbedding, ImageBytes, ImageUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.image.image_tensor import ImageTensor from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: tf = import_library('tensorflow', raise_error=False) torch = import_library('torch', raise_error=False) T = TypeVar('T', bound='ImageDoc') class ImageDoc(BaseDoc): """ Document for handling images. It can contain an ImageUrl (`Image.url`), an AnyTensor (`Image.tensor`), and an AnyEmbedding (`Image.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import ImageDoc # use it directly image = ImageDoc(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) You can extend this Document: .. code-block:: python from docarray.documents import ImageDoc from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(ImageDoc): second_embedding: Optional[AnyEmbedding] image = MyImage(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) image.second_embedding = model(image.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDoc from docarray.documents import ImageDoc, TextDoc # compose it class MultiModalDoc(BaseDoc): image: Image text: Text mmdoc = MultiModalDoc( image=Image(url="http://www.jina.ai/image.jpg"), text=Text(text="hello world, how are you doing?"), ) mmdoc.image.tensor = mmdoc.image.url.load() # or mmdoc.image.bytes_ = mmdoc.image.url.load_bytes() mmdoc.image.tensor = mmdoc.image.bytes.load() """ url: Optional[ImageUrl] tensor: Optional[ImageTensor] embedding: Optional[AnyEmbedding] bytes_: Optional[ImageBytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif ( isinstance(value, (AbstractTensor, np.ndarray)) or (torch is not None and isinstance(value, torch.Tensor)) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) elif isinstance(value, bytes): value = cls(byte=value) return super().validate(value)
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.typing import AnyEmbedding, ImageBytes, ImageUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.image.image_tensor import ImageTensor from docarray.utils._internal.misc import is_tf_available, is_torch_available T = TypeVar('T', bound='ImageDoc') torch_available = is_torch_available() if torch_available: import torch tf_available = is_tf_available() if tf_available: import tensorflow as tf # type: ignore class ImageDoc(BaseDoc): """ Document for handling images. It can contain an ImageUrl (`Image.url`), an AnyTensor (`Image.tensor`), and an AnyEmbedding (`Image.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import ImageDoc # use it directly image = ImageDoc(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) You can extend this Document: .. code-block:: python from docarray.documents import ImageDoc from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(ImageDoc): second_embedding: Optional[AnyEmbedding] image = MyImage(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) image.second_embedding = model(image.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDoc from docarray.documents import ImageDoc, TextDoc # compose it class MultiModalDoc(BaseDoc): image: Image text: Text mmdoc = MultiModalDoc( image=Image(url="http://www.jina.ai/image.jpg"), text=Text(text="hello world, how are you doing?"), ) mmdoc.image.tensor = mmdoc.image.url.load() # or mmdoc.image.bytes_ = mmdoc.image.url.load_bytes() mmdoc.image.tensor = mmdoc.image.bytes.load() """ url: Optional[ImageUrl] tensor: Optional[ImageTensor] embedding: Optional[AnyEmbedding] bytes_: Optional[ImageBytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif ( isinstance(value, (AbstractTensor, np.ndarray)) or (torch_available and isinstance(value, torch.Tensor)) or (tf_available and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) elif isinstance(value, bytes): value = cls(byte=value) return super().validate(value)
# TODO: deprecate agent_instructions = """You are a helpful assistant. Help the user answer any questions. You have access to the following tools: {tools} In order to use a tool, you can use <tool></tool> and <tool_input></tool_input> tags. \ You will then get back a response in the form <observation></observation> For example, if you have a tool called 'search' that could run a google search, in order to search for the weather in SF you would respond: <tool>search</tool><tool_input>weather in SF</tool_input> <observation>64 degrees</observation> When you are done, respond with a final answer between <final_answer></final_answer>. For example: <final_answer>The weather in SF is 64 degrees</final_answer> Begin! Question: {question}""" # noqa: E501
# flake8: noqa # TODO: deprecate agent_instructions = """You are a helpful assistant. Help the user answer any questions. You have access to the following tools: {tools} In order to use a tool, you can use <tool></tool> and <tool_input></tool_input> tags. \ You will then get back a response in the form <observation></observation> For example, if you have a tool called 'search' that could run a google search, in order to search for the weather in SF you would respond: <tool>search</tool><tool_input>weather in SF</tool_input> <observation>64 degrees</observation> When you are done, respond with a final answer between <final_answer></final_answer>. For example: <final_answer>The weather in SF is 64 degrees</final_answer> Begin! Question: {question}"""
_base_ = ['./ld_r18_gflv1_r101_fpn_coco_1x.py'] teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002-134b07df.pth' # noqa model = dict( teacher_config='configs/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco.py', teacher_ckpt=teacher_ckpt, backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5)) max_epochs = 24 param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # multi-scale training train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = ['./ld_r18_gflv1_r101_fpn_coco_1x.py'] teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002-134b07df.pth' # noqa model = dict( teacher_config='configs/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco.py', teacher_ckpt=teacher_ckpt, backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5)) lr_config = dict(step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24) # multi-scale training img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 480), (1333, 800)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] data = dict(train=dict(pipeline=train_pipeline))
from typing import TYPE_CHECKING, Optional, Type from langchain_core.callbacks import ( CallbackManagerForToolRun, ) from langchain_core.tools import BaseTool from pydantic import BaseModel, Field if TYPE_CHECKING: # This is for linting and IDE typehints import multion else: try: # We do this so pydantic can resolve the types when instantiating import multion except ImportError: pass class UpdateSessionSchema(BaseModel): """Input for UpdateSessionTool.""" sessionId: str = Field( ..., description="""The sessionID, received from one of the createSessions run before""", ) query: str = Field( ..., description="The query to run in multion agent.", ) url: str = Field( "https://www.google.com/", description="""The Url to run the agent at. \ Note: accepts only secure links having https://""", ) class MultionUpdateSession(BaseTool): """Tool that updates an existing Multion Browser Window with provided fields. Attributes: name: The name of the tool. Default: "update_multion_session" description: The description of the tool. args_schema: The schema for the tool's arguments. Default: UpdateSessionSchema """ name: str = "update_multion_session" description: str = """Use this tool to update \ an existing corresponding Multion Browser Window with provided fields. \ Note: sessionId must be received from previous Browser window creation.""" args_schema: Type[UpdateSessionSchema] = UpdateSessionSchema sessionId: str = "" def _run( self, sessionId: str, query: str, url: Optional[str] = "https://www.google.com/", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> dict: try: try: response = multion.update_session( sessionId, {"input": query, "url": url} ) content = {"sessionId": sessionId, "Response": response["message"]} self.sessionId = sessionId return content except Exception as e: print(f"{e}, retrying...") # noqa: T201 return {"error": f"{e}", "Response": "retrying..."} except Exception as e: raise Exception(f"An error occurred: {e}")
from typing import TYPE_CHECKING, Optional, Type from langchain_core.callbacks import ( CallbackManagerForToolRun, ) from langchain_core.tools import BaseTool from pydantic import BaseModel, Field if TYPE_CHECKING: # This is for linting and IDE typehints import multion else: try: # We do this so pydantic can resolve the types when instantiating import multion except ImportError: pass class UpdateSessionSchema(BaseModel): """Input for UpdateSessionTool.""" sessionId: str = Field( ..., description="""The sessionID, received from one of the createSessions run before""", ) query: str = Field( ..., description="The query to run in multion agent.", ) url: str = Field( "https://www.google.com/", description="""The Url to run the agent at. \ Note: accepts only secure links having https://""", ) class MultionUpdateSession(BaseTool): # type: ignore[override, override] """Tool that updates an existing Multion Browser Window with provided fields. Attributes: name: The name of the tool. Default: "update_multion_session" description: The description of the tool. args_schema: The schema for the tool's arguments. Default: UpdateSessionSchema """ name: str = "update_multion_session" description: str = """Use this tool to update \ an existing corresponding Multion Browser Window with provided fields. \ Note: sessionId must be received from previous Browser window creation.""" args_schema: Type[UpdateSessionSchema] = UpdateSessionSchema sessionId: str = "" def _run( self, sessionId: str, query: str, url: Optional[str] = "https://www.google.com/", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> dict: try: try: response = multion.update_session( sessionId, {"input": query, "url": url} ) content = {"sessionId": sessionId, "Response": response["message"]} self.sessionId = sessionId return content except Exception as e: print(f"{e}, retrying...") # noqa: T201 return {"error": f"{e}", "Response": "retrying..."} except Exception as e: raise Exception(f"An error occurred: {e}")
_base_ = ['./ld_r18-gflv1-r101_fpn_1x_coco.py'] model = dict( backbone=dict( type='ResNet', depth=34, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet34')), neck=dict( type='FPN', in_channels=[64, 128, 256, 512], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5))
_base_ = ['./ld_r18_gflv1_r101_fpn_coco_1x.py'] model = dict( backbone=dict( type='ResNet', depth=34, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet34')), neck=dict( type='FPN', in_channels=[64, 128, 256, 512], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5))
import os import socket from typing import TYPE_CHECKING, Optional def get_docker_network(client) -> Optional[str]: """Do a best-effort guess if the caller is already in a docker network Check if `hostname` exists in list of docker containers. If a container is found, check its network id :param client: docker client object :return: network id if exists """ import docker if TYPE_CHECKING: # pragma: no cover from docker.models.containers import Container container: 'Container' = None try: hostname = socket.gethostname() container = client.containers.get(hostname) except docker.errors.NotFound: try: # https://stackoverflow.com/a/52988227/15683245 with open('/proc/1/cpuset') as f: hostname = os.path.basename(f.read().rstrip()) container = client.containers.get(hostname) except Exception: return None try: networks = container.attrs['NetworkSettings']['Networks'] if networks: net_mode = list(networks.keys())[0] return networks[net_mode]['NetworkID'] else: return None except Exception: return None def get_gpu_device_requests(gpu_args): """Get docker device requests from gpu args :param gpu_args: gpu args fr :return: docker device requests """ import docker _gpus = { 'count': 0, 'capabilities': ['gpu'], 'device': [], 'driver': '', } for gpu_arg in gpu_args.split(','): if gpu_arg == 'all': _gpus['count'] = -1 if gpu_arg.isdigit(): _gpus['count'] = int(gpu_arg) if '=' in gpu_arg: gpu_arg_key, gpu_arg_value = gpu_arg.split('=') if gpu_arg_key in _gpus.keys(): if isinstance(_gpus[gpu_arg_key], list): _gpus[gpu_arg_key].append(gpu_arg_value) else: _gpus[gpu_arg_key] = gpu_arg_value device_requests = [ docker.types.DeviceRequest( count=_gpus['count'], driver=_gpus['driver'], device_ids=_gpus['device'], capabilities=[_gpus['capabilities']], ) ] return device_requests
import os import socket from typing import Optional, TYPE_CHECKING def get_docker_network(client) -> Optional[str]: """Do a best-effort guess if the caller is already in a docker network Check if `hostname` exists in list of docker containers. If a container is found, check its network id :param client: docker client object :return: network id if exists """ import docker if TYPE_CHECKING: # pragma: no cover from docker.models.containers import Container container: 'Container' = None try: hostname = socket.gethostname() container = client.containers.get(hostname) except docker.errors.NotFound: try: # https://stackoverflow.com/a/52988227/15683245 with open('/proc/1/cpuset') as f: hostname = os.path.basename(f.read().rstrip()) container = client.containers.get(hostname) except Exception: return None try: networks = container.attrs['NetworkSettings']['Networks'] if networks: net_mode = list(networks.keys())[0] return networks[net_mode]['NetworkID'] else: return None except Exception: return None def get_gpu_device_requests(gpu_args): """Get docker device requests from gpu args :param gpu_args: gpu args fr :return: docker device requests """ import docker _gpus = { 'count': 0, 'capabilities': ['gpu'], 'device': [], 'driver': '', } for gpu_arg in gpu_args.split(','): if gpu_arg == 'all': _gpus['count'] = -1 if gpu_arg.isdigit(): _gpus['count'] = int(gpu_arg) if '=' in gpu_arg: gpu_arg_key, gpu_arg_value = gpu_arg.split('=') if gpu_arg_key in _gpus.keys(): if isinstance(_gpus[gpu_arg_key], list): _gpus[gpu_arg_key].append(gpu_arg_value) else: _gpus[gpu_arg_key] = gpu_arg_value device_requests = [ docker.types.DeviceRequest( count=_gpus['count'], driver=_gpus['driver'], device_ids=_gpus['device'], capabilities=[_gpus['capabilities']], ) ] return device_requests
"""Module contains a few fake embedding models for testing purposes.""" # Please do not add additional fake embedding model implementations here. import hashlib from pydantic import BaseModel from typing_extensions import override from langchain_core.embeddings import Embeddings class FakeEmbeddings(Embeddings, BaseModel): """Fake embedding model for unit testing purposes. This embedding model creates embeddings by sampling from a normal distribution. Do not use this outside of testing, as it is not a real embedding model. Instantiate: .. code-block:: python from langchain_core.embeddings import FakeEmbeddings embed = FakeEmbeddings(size=100) Embed single text: .. code-block:: python input_text = "The meaning of life is 42" vector = embed.embed_query(input_text) print(vector[:3]) .. code-block:: python [-0.700234640213188, -0.581266257710429, -1.1328482266445354] Embed multiple texts: .. code-block:: python input_texts = ["Document 1...", "Document 2..."] vectors = embed.embed_documents(input_texts) print(len(vectors)) # The first 3 coordinates for the first vector print(vectors[0][:3]) .. code-block:: python 2 [-0.5670477847544458, -0.31403828652395727, -0.5840547508955257] """ size: int """The size of the embedding vector.""" def _get_embedding(self) -> list[float]: import numpy as np return list(np.random.default_rng().normal(size=self.size)) @override def embed_documents(self, texts: list[str]) -> list[list[float]]: return [self._get_embedding() for _ in texts] @override def embed_query(self, text: str) -> list[float]: return self._get_embedding() class DeterministicFakeEmbedding(Embeddings, BaseModel): """Deterministic fake embedding model for unit testing purposes. This embedding model creates embeddings by sampling from a normal distribution with a seed based on the hash of the text. Do not use this outside of testing, as it is not a real embedding model. Instantiate: .. code-block:: python from langchain_core.embeddings import DeterministicFakeEmbedding embed = DeterministicFakeEmbedding(size=100) Embed single text: .. code-block:: python input_text = "The meaning of life is 42" vector = embed.embed_query(input_text) print(vector[:3]) .. code-block:: python [-0.700234640213188, -0.581266257710429, -1.1328482266445354] Embed multiple texts: .. code-block:: python input_texts = ["Document 1...", "Document 2..."] vectors = embed.embed_documents(input_texts) print(len(vectors)) # The first 3 coordinates for the first vector print(vectors[0][:3]) .. code-block:: python 2 [-0.5670477847544458, -0.31403828652395727, -0.5840547508955257] """ size: int """The size of the embedding vector.""" def _get_embedding(self, seed: int) -> list[float]: import numpy as np # set the seed for the random generator rng = np.random.default_rng(seed) return list(rng.normal(size=self.size)) def _get_seed(self, text: str) -> int: """Get a seed for the random generator, using the hash of the text.""" return int(hashlib.sha256(text.encode("utf-8")).hexdigest(), 16) % 10**8 @override def embed_documents(self, texts: list[str]) -> list[list[float]]: return [self._get_embedding(seed=self._get_seed(_)) for _ in texts] @override def embed_query(self, text: str) -> list[float]: return self._get_embedding(seed=self._get_seed(text))
"""Module contains a few fake embedding models for testing purposes.""" # Please do not add additional fake embedding model implementations here. import hashlib from pydantic import BaseModel from typing_extensions import override from langchain_core.embeddings import Embeddings class FakeEmbeddings(Embeddings, BaseModel): """Fake embedding model for unit testing purposes. This embedding model creates embeddings by sampling from a normal distribution. Do not use this outside of testing, as it is not a real embedding model. Instantiate: .. code-block:: python from langchain_core.embeddings import FakeEmbeddings embed = FakeEmbeddings(size=100) Embed single text: .. code-block:: python input_text = "The meaning of life is 42" vector = embed.embed_query(input_text) print(vector[:3]) .. code-block:: python [-0.700234640213188, -0.581266257710429, -1.1328482266445354] Embed multiple texts: .. code-block:: python input_texts = ["Document 1...", "Document 2..."] vectors = embed.embed_documents(input_texts) print(len(vectors)) # The first 3 coordinates for the first vector print(vectors[0][:3]) .. code-block:: python 2 [-0.5670477847544458, -0.31403828652395727, -0.5840547508955257] """ size: int """The size of the embedding vector.""" def _get_embedding(self) -> list[float]: import numpy as np # type: ignore[import-not-found, import-untyped] return list(np.random.default_rng().normal(size=self.size)) @override def embed_documents(self, texts: list[str]) -> list[list[float]]: return [self._get_embedding() for _ in texts] @override def embed_query(self, text: str) -> list[float]: return self._get_embedding() class DeterministicFakeEmbedding(Embeddings, BaseModel): """Deterministic fake embedding model for unit testing purposes. This embedding model creates embeddings by sampling from a normal distribution with a seed based on the hash of the text. Do not use this outside of testing, as it is not a real embedding model. Instantiate: .. code-block:: python from langchain_core.embeddings import DeterministicFakeEmbedding embed = DeterministicFakeEmbedding(size=100) Embed single text: .. code-block:: python input_text = "The meaning of life is 42" vector = embed.embed_query(input_text) print(vector[:3]) .. code-block:: python [-0.700234640213188, -0.581266257710429, -1.1328482266445354] Embed multiple texts: .. code-block:: python input_texts = ["Document 1...", "Document 2..."] vectors = embed.embed_documents(input_texts) print(len(vectors)) # The first 3 coordinates for the first vector print(vectors[0][:3]) .. code-block:: python 2 [-0.5670477847544458, -0.31403828652395727, -0.5840547508955257] """ size: int """The size of the embedding vector.""" def _get_embedding(self, seed: int) -> list[float]: import numpy as np # type: ignore[import-not-found, import-untyped] # set the seed for the random generator rng = np.random.default_rng(seed) return list(rng.normal(size=self.size)) def _get_seed(self, text: str) -> int: """Get a seed for the random generator, using the hash of the text.""" return int(hashlib.sha256(text.encode("utf-8")).hexdigest(), 16) % 10**8 @override def embed_documents(self, texts: list[str]) -> list[list[float]]: return [self._get_embedding(seed=self._get_seed(_)) for _ in texts] @override def embed_query(self, text: str) -> list[float]: return self._get_embedding(seed=self._get_seed(text))
import os import pytest from google.ai.generativelanguage_v1beta.types import ( FunctionCallingConfig, ToolConfig, ) from llama_index.core.base.llms.base import BaseLLM from llama_index.core.base.llms.types import ChatMessage, ImageBlock, MessageRole from llama_index.core.prompts.base import ChatPromptTemplate from llama_index.core.tools.function_tool import FunctionTool from llama_index.llms.gemini import Gemini from llama_index.llms.gemini.utils import chat_message_to_gemini from pydantic import BaseModel def test_embedding_class() -> None: names_of_base_classes = [b.__name__ for b in Gemini.__mro__] assert BaseLLM.__name__ in names_of_base_classes def test_chat_message_to_gemini() -> None: msg = ChatMessage("Some content") assert chat_message_to_gemini(msg) == { "role": MessageRole.USER, "parts": [{"text": "Some content"}], } msg = ChatMessage("Some content") msg.blocks.append(ImageBlock(image=b"foo", image_mimetype="image/png")) gemini_msg = chat_message_to_gemini(msg) assert gemini_msg["role"] == MessageRole.USER assert len(gemini_msg["parts"]) == 2 @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_generate_image_prompt() -> None: msg = ChatMessage("Tell me the brand of the car in this image:") msg.blocks.append( ImageBlock( url="https://upload.wikimedia.org/wikipedia/commons/5/52/Ferrari_SP_FFX.jpg", image_mimetype="image/jpeg", ) ) response = Gemini(model="models/gemini-1.5-flash").chat(messages=[msg]) assert "ferrari" in str(response).lower() @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_chat_stream() -> None: msg = ChatMessage("List three types of software testing strategies") response = list(Gemini(model="models/gemini-1.5-flash").stream_chat(messages=[msg])) assert response @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_chat_with_tools() -> None: def add(a: int, b: int) -> int: """Add two integers and returns the result integer.""" return a + b add_tool = FunctionTool.from_defaults(fn=add) msg = ChatMessage("What is the result of adding 2 and 3?") model = Gemini(model="models/gemini-1.5-flash") response = model.chat_with_tools( user_msg=msg, tools=[add_tool], tool_config=ToolConfig( function_calling_config=FunctionCallingConfig( mode=FunctionCallingConfig.Mode.ANY ) ), ) tool_calls = model.get_tool_calls_from_response(response) assert len(tool_calls) == 1 assert tool_calls[0].tool_name == "add" assert tool_calls[0].tool_kwargs == {"a": 2, "b": 3} assert len(response.additional_kwargs["tool_calls"]) >= 1 @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_structured_llm() -> None: class Test(BaseModel): test: str gemini_flash = Gemini( model="models/gemini-2.0-flash-001", api_key=os.environ["GOOGLE_API_KEY"], additional_kwargs={"seed": 4242}, ) chat_prompt = ChatPromptTemplate(message_templates=[ChatMessage(content="test")]) direct_prediction_response = gemini_flash.structured_predict( output_cls=Test, prompt=chat_prompt ) assert direct_prediction_response.test is not None structured_llm_response = gemini_flash.as_structured_llm(Test).complete("test") assert structured_llm_response.raw.test is not None @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_is_function_calling_model() -> None: assert Gemini( model="models/gemini-2.0-flash-001" ).metadata.is_function_calling_model # this model is the only one that does not support function calling assert not Gemini( model="models/gemini-2.0-flash-thinking-exp-01-21" ).metadata.is_function_calling_model # in case of un-released models it should be possible to override the # capabilities of the current model manual_override = Gemini(model="models/gemini-2.0-flash-001") assert manual_override.metadata.is_function_calling_model manual_override._is_function_call_model = False assert not manual_override._is_function_call_model assert not manual_override.metadata.is_function_calling_model
import os import pytest from google.ai.generativelanguage_v1beta.types import ( FunctionCallingConfig, ToolConfig, ) from llama_index.core.base.llms.base import BaseLLM from llama_index.core.base.llms.types import ChatMessage, ImageBlock, MessageRole from llama_index.core.prompts.base import ChatPromptTemplate from llama_index.core.tools.function_tool import FunctionTool from llama_index.llms.gemini import Gemini from llama_index.llms.gemini.utils import chat_message_to_gemini from pydantic import BaseModel def test_embedding_class() -> None: names_of_base_classes = [b.__name__ for b in Gemini.__mro__] assert BaseLLM.__name__ in names_of_base_classes def test_chat_message_to_gemini() -> None: msg = ChatMessage("Some content") assert chat_message_to_gemini(msg) == { "role": MessageRole.USER, "parts": [{"text": "Some content"}], } msg = ChatMessage("Some content") msg.blocks.append(ImageBlock(image=b"foo", image_mimetype="image/png")) assert chat_message_to_gemini(msg) == { "role": MessageRole.USER, "parts": [{"text": "Some content"}, {"data": b"foo", "mime_type": "image/png"}], } @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_generate_image_prompt() -> None: msg = ChatMessage("Tell me the brand of the car in this image:") msg.blocks.append( ImageBlock( url="https://upload.wikimedia.org/wikipedia/commons/5/52/Ferrari_SP_FFX.jpg" ) ) response = Gemini(model="models/gemini-1.5-flash").chat(messages=[msg]) assert "ferrari" in str(response).lower() @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_chat_stream() -> None: msg = ChatMessage("List three types of software testing strategies") response = list(Gemini(model="models/gemini-1.5-flash").stream_chat(messages=[msg])) assert response @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_chat_with_tools() -> None: def add(a: int, b: int) -> int: """Add two integers and returns the result integer.""" return a + b add_tool = FunctionTool.from_defaults(fn=add) msg = ChatMessage("What is the result of adding 2 and 3?") model = Gemini(model="models/gemini-1.5-flash") response = model.chat_with_tools( user_msg=msg, tools=[add_tool], tool_config=ToolConfig( function_calling_config=FunctionCallingConfig( mode=FunctionCallingConfig.Mode.ANY ) ), ) tool_calls = model.get_tool_calls_from_response(response) assert len(tool_calls) == 1 assert tool_calls[0].tool_name == "add" assert tool_calls[0].tool_kwargs == {"a": 2, "b": 3} assert len(response.additional_kwargs["tool_calls"]) >= 1 @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_structured_llm() -> None: class Test(BaseModel): test: str gemini_flash = Gemini( model="models/gemini-2.0-flash-001", api_key=os.environ["GOOGLE_API_KEY"], additional_kwargs={"seed": 4242}, ) chat_prompt = ChatPromptTemplate(message_templates=[ChatMessage(content="test")]) direct_prediction_response = gemini_flash.structured_predict( output_cls=Test, prompt=chat_prompt ) assert direct_prediction_response.test is not None structured_llm_response = gemini_flash.as_structured_llm(Test).complete("test") assert structured_llm_response.raw.test is not None @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_is_function_calling_model() -> None: assert Gemini( model="models/gemini-2.0-flash-001" ).metadata.is_function_calling_model # this model is the only one that does not support function calling assert not Gemini( model="models/gemini-2.0-flash-thinking-exp-01-21" ).metadata.is_function_calling_model # in case of un-released models it should be possible to override the # capabilities of the current model manual_override = Gemini(model="models/gemini-2.0-flash-001") assert manual_override.metadata.is_function_calling_model manual_override._is_function_call_model = False assert not manual_override._is_function_call_model assert not manual_override.metadata.is_function_calling_model
import torch from docarray import Document from docarray.typing import TorchEmbedding, TorchTensor def test_set_torch_tensor(): class MyDocument(Document): tensor: TorchTensor d = MyDocument(tensor=torch.zeros((3, 224, 224))) assert isinstance(d.tensor, TorchTensor) assert isinstance(d.tensor, torch.Tensor) assert (d.tensor == torch.zeros((3, 224, 224))).all() def test_set_torch_embedding(): class MyDocument(Document): embedding: TorchEmbedding d = MyDocument(embedding=torch.zeros((128,))) assert isinstance(d.embedding, TorchTensor) assert isinstance(d.embedding, TorchEmbedding) assert isinstance(d.embedding, torch.Tensor) assert (d.embedding == torch.zeros((128,))).all()
import torch from docarray import Document from docarray.typing import TorchTensor def test_set_torch_tensor(): class MyDocument(Document): tensor: TorchTensor d = MyDocument(tensor=torch.zeros((3, 224, 224))) assert isinstance(d.tensor, TorchTensor) assert isinstance(d.tensor, torch.Tensor) assert (d.tensor == torch.zeros((3, 224, 224))).all()
from typing import Any, Optional, Type, TypeVar, Union from pydantic import Field from docarray.base_doc import BaseDoc from docarray.documents.mesh.vertices_and_faces import VerticesAndFaces from docarray.typing.tensor.embedding import AnyEmbedding from docarray.typing.url.url_3d.mesh_url import Mesh3DUrl from docarray.utils._internal.pydantic import is_pydantic_v2 if is_pydantic_v2: from pydantic import model_validator T = TypeVar('T', bound='Mesh3D') class Mesh3D(BaseDoc): """ Document for handling meshes for 3D data representation. A mesh is a representation for 3D data and contains vertices and faces information. Vertices are points in a 3D space, represented as a tensor of shape (n_points, 3). Faces are triangular surfaces that can be defined by three points in 3D space, corresponding to the three vertices of a triangle. Faces can be represented as a tensor of shape (n_faces, 3). Each number in that tensor refers to an index of a vertex in the tensor of vertices. The Mesh3D Document can contain: - an [`Mesh3DUrl`][docarray.typing.url.Mesh3DUrl] (`Mesh3D.url`) - a [`VerticesAndFaces`][docarray.documents.mesh.vertices_and_faces.VerticesAndFaces] object containing: - an [`AnyTensor`](../../../../api_references/typing/tensor/tensor) of vertices (`Mesh3D.tensors.vertices`) - an [`AnyTensor`](../../../../api_references/typing/tensor/tensor) of faces (`Mesh3D.tensors.faces`) - an [`AnyEmbedding`](../../../../api_references/typing/tensor/embedding) (`Mesh3D.embedding`) - a `bytes` object (`Mesh3D.bytes_`). You can use this Document directly: ```python from docarray.documents import Mesh3D # use it directly mesh = Mesh3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') mesh.tensors = mesh.url.load() # model = MyEmbeddingModel() # mesh.embedding = model(mesh.tensors.vertices) ``` You can extend this Document: ```python from docarray.documents import Mesh3D from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyMesh3D(Mesh3D): name: Optional[str] mesh = MyMesh3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') mesh.name = 'my first mesh' mesh.tensors = mesh.url.load() # model = MyEmbeddingModel() # mesh.embedding = model(mesh.vertices) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import Mesh3D, TextDoc # compose it class MultiModalDoc(BaseDoc): mesh: Mesh3D text: TextDoc mmdoc = MultiModalDoc( mesh=Mesh3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj'), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.mesh.tensors = mmdoc.mesh.url.load() # or mmdoc.mesh.bytes_ = mmdoc.mesh.url.load_bytes() ``` You can display your 3D mesh in a notebook from either its url, or its tensors: ```python from docarray.documents import Mesh3D # display from url mesh = Mesh3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') # mesh.url.display() # display from tensors mesh.tensors = mesh.url.load() # mesh.tensors.display() ``` """ url: Optional[Mesh3DUrl] = Field( description='URL to a file containing 3D mesh information. Can be remote (web) URL, or a local file path.', example='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj', default=None, ) tensors: Optional[VerticesAndFaces] = Field( description='A tensor object of 3D mesh of type `VerticesAndFaces`.', example=[[0, 1, 1], [1, 0, 1], [1, 1, 0]], default=None, ) embedding: Optional[AnyEmbedding] = Field( description='Store an embedding: a vector representation of the 3D mesh.', default=[1, 0, 1], ) bytes_: Optional[bytes] = Field( description='Bytes representation of 3D mesh.', default=None, ) if is_pydantic_v2: @model_validator(mode='before') @classmethod def validate_model_before(cls, value): if isinstance(value, str): return {'url': value} return value else: @classmethod def validate( cls: Type[T], value: Union[str, Any], ) -> T: if isinstance(value, str): value = cls(url=value) return super().validate(value)
from typing import Any, Optional, Type, TypeVar, Union from pydantic import Field from docarray.base_doc import BaseDoc from docarray.documents.mesh.vertices_and_faces import VerticesAndFaces from docarray.typing.tensor.embedding import AnyEmbedding from docarray.typing.url.url_3d.mesh_url import Mesh3DUrl T = TypeVar('T', bound='Mesh3D') class Mesh3D(BaseDoc): """ Document for handling meshes for 3D data representation. A mesh is a representation for 3D data and contains vertices and faces information. Vertices are points in a 3D space, represented as a tensor of shape (n_points, 3). Faces are triangular surfaces that can be defined by three points in 3D space, corresponding to the three vertices of a triangle. Faces can be represented as a tensor of shape (n_faces, 3). Each number in that tensor refers to an index of a vertex in the tensor of vertices. The Mesh3D Document can contain: - an [`Mesh3DUrl`][docarray.typing.url.Mesh3DUrl] (`Mesh3D.url`) - a [`VerticesAndFaces`][docarray.documents.mesh.vertices_and_faces.VerticesAndFaces] object containing: - an [`AnyTensor`](../../../../api_references/typing/tensor/tensor) of vertices (`Mesh3D.tensors.vertices`) - an [`AnyTensor`](../../../../api_references/typing/tensor/tensor) of faces (`Mesh3D.tensors.faces`) - an [`AnyEmbedding`](../../../../api_references/typing/tensor/embedding) (`Mesh3D.embedding`) - a `bytes` object (`Mesh3D.bytes_`). You can use this Document directly: ```python from docarray.documents import Mesh3D # use it directly mesh = Mesh3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') mesh.tensors = mesh.url.load() # model = MyEmbeddingModel() # mesh.embedding = model(mesh.tensors.vertices) ``` You can extend this Document: ```python from docarray.documents import Mesh3D from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyMesh3D(Mesh3D): name: Optional[str] mesh = MyMesh3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') mesh.name = 'my first mesh' mesh.tensors = mesh.url.load() # model = MyEmbeddingModel() # mesh.embedding = model(mesh.vertices) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import Mesh3D, TextDoc # compose it class MultiModalDoc(BaseDoc): mesh: Mesh3D text: TextDoc mmdoc = MultiModalDoc( mesh=Mesh3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj'), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.mesh.tensors = mmdoc.mesh.url.load() # or mmdoc.mesh.bytes_ = mmdoc.mesh.url.load_bytes() ``` You can display your 3D mesh in a notebook from either its url, or its tensors: ```python from docarray.documents import Mesh3D # display from url mesh = Mesh3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') # mesh.url.display() # display from tensors mesh.tensors = mesh.url.load() # mesh.tensors.display() ``` """ url: Optional[Mesh3DUrl] = Field( description='URL to a file containing 3D mesh information. Can be remote (web) URL, or a local file path.', example='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj', default=None, ) tensors: Optional[VerticesAndFaces] = Field( description='A tensor object of 3D mesh of type `VerticesAndFaces`.', example=[[0, 1, 1], [1, 0, 1], [1, 1, 0]], default=None, ) embedding: Optional[AnyEmbedding] = Field( description='Store an embedding: a vector representation of the 3D mesh.', default=[1, 0, 1], ) bytes_: Optional[bytes] = Field( description='Bytes representation of 3D mesh.', default=None, ) @classmethod def validate( cls: Type[T], value: Union[str, Any], ) -> T: if isinstance(value, str): value = cls(url=value) return super().validate(value)
from pathlib import Path from typing import Dict, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document, ImageDocument from llama_index.core.utils import infer_torch_device class ImageVisionLLMReader(BaseReader): """ Image parser. Caption image using Blip2 (a multimodal VisionLLM similar to GPT4). """ def __init__( self, parser_config: Optional[Dict] = None, keep_image: bool = False, prompt: str = "Question: describe what you see in this image. Answer:", ): """Init params.""" if parser_config is None: try: import sentencepiece # noqa import torch from PIL import Image # noqa from transformers import Blip2ForConditionalGeneration, Blip2Processor except ImportError: raise ImportError( "Please install extra dependencies that are required for " "the ImageCaptionReader: " "`pip install torch transformers sentencepiece Pillow`" ) self._torch = torch self._torch_imported = True device = infer_torch_device() dtype = ( self._torch.float16 if self._torch.cuda.is_available() else self._torch.float32 ) processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained( "Salesforce/blip2-opt-2.7b", torch_dtype=dtype ) parser_config = { "processor": processor, "model": model, "device": device, "dtype": dtype, } # Try to import PyTorch in order to run inference efficiently. self._import_torch() self._parser_config = parser_config self._keep_image = keep_image self._prompt = prompt def load_data( self, file: Path, extra_info: Optional[Dict] = None ) -> List[Document]: """Parse file.""" from llama_index.core.img_utils import img_2_b64 from PIL import Image # load document image image = Image.open(file) if image.mode != "RGB": image = image.convert("RGB") # Encode image into base64 string and keep in document image_str: Optional[str] = None if self._keep_image: image_str = img_2_b64(image) # Parse image into text model = self._parser_config["model"] processor = self._parser_config["processor"] device = self._parser_config["device"] dtype = self._parser_config["dtype"] model.to(device) # unconditional image captioning inputs = processor(image, self._prompt, return_tensors="pt").to(device, dtype) if self._torch_imported: # Gradients are not needed during inference. If PyTorch is # installed, we can instruct it to not track the gradients. # This reduces GPU memory usage and improves inference efficiency. with self._torch.no_grad(): out = model.generate(**inputs) else: # Fallback to less efficient behavior if PyTorch is not installed. out = model.generate(**inputs) text_str = processor.decode(out[0], skip_special_tokens=True) return [ ImageDocument( text=text_str, image=image_str, image_path=str(file), metadata=extra_info or {}, ) ] def _import_torch(self) -> None: self._torch = None try: import torch self._torch = torch self._torch_imported = True except ImportError: self._torch_imported = False
from pathlib import Path from typing import Dict, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document, ImageDocument from llama_index.core.utils import infer_torch_device class ImageVisionLLMReader(BaseReader): """Image parser. Caption image using Blip2 (a multimodal VisionLLM similar to GPT4). """ def __init__( self, parser_config: Optional[Dict] = None, keep_image: bool = False, prompt: str = "Question: describe what you see in this image. Answer:", ): """Init params.""" if parser_config is None: try: import sentencepiece # noqa import torch from PIL import Image # noqa from transformers import Blip2ForConditionalGeneration, Blip2Processor except ImportError: raise ImportError( "Please install extra dependencies that are required for " "the ImageCaptionReader: " "`pip install torch transformers sentencepiece Pillow`" ) self._torch = torch self._torch_imported = True device = infer_torch_device() dtype = ( self._torch.float16 if self._torch.cuda.is_available() else self._torch.float32 ) processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained( "Salesforce/blip2-opt-2.7b", torch_dtype=dtype ) parser_config = { "processor": processor, "model": model, "device": device, "dtype": dtype, } # Try to import PyTorch in order to run inference efficiently. self._import_torch() self._parser_config = parser_config self._keep_image = keep_image self._prompt = prompt def load_data( self, file: Path, extra_info: Optional[Dict] = None ) -> List[Document]: """Parse file.""" from llama_index.core.img_utils import img_2_b64 from PIL import Image # load document image image = Image.open(file) if image.mode != "RGB": image = image.convert("RGB") # Encode image into base64 string and keep in document image_str: Optional[str] = None if self._keep_image: image_str = img_2_b64(image) # Parse image into text model = self._parser_config["model"] processor = self._parser_config["processor"] device = self._parser_config["device"] dtype = self._parser_config["dtype"] model.to(device) # unconditional image captioning inputs = processor(image, self._prompt, return_tensors="pt").to(device, dtype) if self._torch_imported: # Gradients are not needed during inference. If PyTorch is # installed, we can instruct it to not track the gradients. # This reduces GPU memory usage and improves inference efficiency. with self._torch.no_grad(): out = model.generate(**inputs) else: # Fallback to less efficient behavior if PyTorch is not installed. out = model.generate(**inputs) text_str = processor.decode(out[0], skip_special_tokens=True) return [ ImageDocument( text=text_str, image=image_str, image_path=str(file), metadata=extra_info or {}, ) ] def _import_torch(self) -> None: self._torch = None try: import torch self._torch = torch self._torch_imported = True except ImportError: self._torch_imported = False
import json import logging from enum import Enum from typing import Any from requests.exceptions import HTTPError, RequestException from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests logger = logging.getLogger(name=__name__) class HttpMethod(Enum): GET = "GET" POST = "POST" PUT = "PUT" DELETE = "DELETE" PATCH = "PATCH" OPTIONS = "OPTIONS" HEAD = "HEAD" class SendWebRequestBlock(Block): class Input(BlockSchema): url: str = SchemaField( description="The URL to send the request to", placeholder="https://api.example.com", ) method: HttpMethod = SchemaField( description="The HTTP method to use for the request", default=HttpMethod.POST, ) headers: dict[str, str] = SchemaField( description="The headers to include in the request", default={}, ) json_format: bool = SchemaField( title="JSON format", description="Whether to send and receive body as JSON", default=True, ) body: Any = SchemaField( description="The body of the request", default=None, ) class Output(BlockSchema): response: object = SchemaField(description="The response from the server") client_error: object = SchemaField(description="Errors on 4xx status codes") server_error: object = SchemaField(description="Errors on 5xx status codes") error: str = SchemaField(description="Errors for all other exceptions") def __init__(self): super().__init__( id="6595ae1f-b924-42cb-9a41-551a0611c4b4", description="This block makes an HTTP request to the given URL.", categories={BlockCategory.OUTPUT}, input_schema=SendWebRequestBlock.Input, output_schema=SendWebRequestBlock.Output, ) def run(self, input_data: Input, **kwargs) -> BlockOutput: body = input_data.body if input_data.json_format: if isinstance(body, str): try: # Try to parse as JSON first body = json.loads(body) except json.JSONDecodeError: # If it's not valid JSON and just plain text, # we should send it as plain text instead input_data.json_format = False try: response = requests.request( input_data.method.value, input_data.url, headers=input_data.headers, json=body if input_data.json_format else None, data=body if not input_data.json_format else None, ) result = response.json() if input_data.json_format else response.text yield "response", result except HTTPError as e: # Handle error responses try: result = e.response.json() if input_data.json_format else str(e) except json.JSONDecodeError: result = str(e) if 400 <= e.response.status_code < 500: yield "client_error", result elif 500 <= e.response.status_code < 600: yield "server_error", result else: error_msg = ( "Unexpected status code " f"{e.response.status_code} '{e.response.reason}'" ) logger.warning(error_msg) yield "error", error_msg except RequestException as e: # Handle other request-related exceptions yield "error", str(e) except Exception as e: # Catch any other unexpected exceptions yield "error", str(e)
import json from enum import Enum from typing import Any from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests class HttpMethod(Enum): GET = "GET" POST = "POST" PUT = "PUT" DELETE = "DELETE" PATCH = "PATCH" OPTIONS = "OPTIONS" HEAD = "HEAD" class SendWebRequestBlock(Block): class Input(BlockSchema): url: str = SchemaField( description="The URL to send the request to", placeholder="https://api.example.com", ) method: HttpMethod = SchemaField( description="The HTTP method to use for the request", default=HttpMethod.POST, ) headers: dict[str, str] = SchemaField( description="The headers to include in the request", default={}, ) json_format: bool = SchemaField( title="JSON format", description="Whether to send and receive body as JSON", default=True, ) body: Any = SchemaField( description="The body of the request", default=None, ) class Output(BlockSchema): response: object = SchemaField(description="The response from the server") client_error: object = SchemaField(description="The error on 4xx status codes") server_error: object = SchemaField(description="The error on 5xx status codes") def __init__(self): super().__init__( id="6595ae1f-b924-42cb-9a41-551a0611c4b4", description="This block makes an HTTP request to the given URL.", categories={BlockCategory.OUTPUT}, input_schema=SendWebRequestBlock.Input, output_schema=SendWebRequestBlock.Output, ) def run(self, input_data: Input, **kwargs) -> BlockOutput: body = input_data.body if input_data.json_format: if isinstance(body, str): try: # Try to parse as JSON first body = json.loads(body) except json.JSONDecodeError: # If it's not valid JSON and just plain text, # we should send it as plain text instead input_data.json_format = False response = requests.request( input_data.method.value, input_data.url, headers=input_data.headers, json=body if input_data.json_format else None, data=body if not input_data.json_format else None, ) result = response.json() if input_data.json_format else response.text if response.status_code // 100 == 2: yield "response", result elif response.status_code // 100 == 4: yield "client_error", result elif response.status_code // 100 == 5: yield "server_error", result else: raise ValueError(f"Unexpected status code: {response.status_code}")
""" Example showing how to use the SpladeLambdaSchedulerCallback to gradually increase the lambda parameters during training of a SPLADE model. """ from datasets import Dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SchedulerType, SparseEncoder, SparseEncoderTrainer, SparseEncoderTrainingArguments, SparseMarginMSELoss, SpladeLambdaSchedulerCallback, SpladeLoss, SpladePooling, ) # Initialize the SPLADE model student_model_name = "prithivida/Splade_PP_en_v1" student_model = SparseEncoder( modules=[ MLMTransformer(student_model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Initialize the SPLADE model teacher_model_name = "naver/splade-cocondenser-ensembledistil" teacher_model = SparseEncoder( modules=[ MLMTransformer(teacher_model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Create a small toy dataset train_dataset = Dataset.from_dict( { "query": ["It's nice weather outside today.", "He drove to work."], "passage1": ["It's so sunny.", "He took the car to work."], "passage2": ["It's very sunny.", "She walked to the store."], } ) def compute_labels(batch): emb_queries = teacher_model.encode(batch["query"]) emb_passages1 = teacher_model.encode(batch["passage1"]) emb_passages2 = teacher_model.encode(batch["passage2"]) return { "label": teacher_model.similarity_pairwise(emb_queries, emb_passages1) - teacher_model.similarity_pairwise(emb_queries, emb_passages2) } train_dataset = train_dataset.map(compute_labels, batched=True) loss = SpladeLoss( student_model, main_loss=SparseMarginMSELoss(student_model), lambda_corpus=5e-3, lambda_query=0.1, ) # Create the callback with explicit parameters splade_callback = SpladeLambdaSchedulerCallback( loss=loss, scheduler_type=SchedulerType.QUADRATIC, # Can be LINEAR or QUADRATIC warmup_ratio=1 / 3, # Will reach max values after 20% of total steps ) training_args = SparseEncoderTrainingArguments( num_train_epochs=20, per_device_train_batch_size=2, output_dir="runs/splade_with_lambda_scheduling", logging_steps=1, ) # Create the trainer with the callback trainer = SparseEncoderTrainer( model=student_model, train_dataset=train_dataset, loss=loss, callbacks=[splade_callback], # Explicitly add the callback args=training_args, ) # Train the model with the scheduler active trainer.train() # Note: # 1. The lambda values of SpladeLoss will start at 0 and gradually increase to their maximum values # 2. When using the QUADRATIC scheduler, the values increase more slowly at first # 3. If you don't add the callback manually, the SparseEncoderTrainer will add it automatically # when it detects a SpladeLoss is being used, but with a linear scheduler and 1/3 warmup ratio
from datasets import Dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseEncoderTrainer, SparseMarginMSELoss, SpladeLoss, SpladePooling, ) # Initialize the SPLADE model student_model_name = "prithivida/Splade_PP_en_v1" student_model = SparseEncoder( modules=[ MLMTransformer(student_model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Initialize the SPLADE model teacher_model_name = "naver/splade-cocondenser-ensembledistil" teacher_model = SparseEncoder( modules=[ MLMTransformer(teacher_model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Create a small toy dataset train_dataset = Dataset.from_dict( { "query": ["It's nice weather outside today.", "He drove to work."], "passage1": ["It's so sunny.", "He took the car to work."], "passage2": ["It's very sunny.", "She walked to the store."], } ) def compute_labels(batch): emb_queries = teacher_model.encode(batch["query"]) emb_passages1 = teacher_model.encode(batch["passage1"]) emb_passages2 = teacher_model.encode(batch["passage2"]) return { "label": teacher_model.similarity_pairwise(emb_queries, emb_passages1) - teacher_model.similarity_pairwise(emb_queries, emb_passages2) } train_dataset = train_dataset.map(compute_labels, batched=True) loss = SpladeLoss( student_model, main_loss=SparseMarginMSELoss, lambda_corpus=5e-3, lambda_query=0.1, ) trainer = SparseEncoderTrainer( model=student_model, train_dataset=train_dataset, loss=loss, ) trainer.train()