input
stringlengths
33
5k
output
stringlengths
32
5k
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .cascade_rcnn import CascadeRCNN @DETECTORS.register_module() class SCNet(CascadeRCNN): """Implementation of `SCNet <https://arxiv.org/abs/2012.10150>`_""" def __init__(self, **kwargs): super(SCNet, self).__init__(**kwargs)
from ..builder import DETECTORS from .cascade_rcnn import CascadeRCNN @DETECTORS.register_module() class SCNet(CascadeRCNN): """Implementation of `SCNet <https://arxiv.org/abs/2012.10150>`_""" def __init__(self, **kwargs): super(SCNet, self).__init__(**kwargs)
from llama_index.core.memory.chat_memory_buffer import ChatMemoryBuffer from llama_index.core.memory.chat_summary_memory_buffer import ChatSummaryMemoryBuffer from llama_index.core.memory.types import BaseMemory from llama_index.core.memory.vector_memory import VectorMemory from llama_index.core.memory.simple_composable_memory import SimpleComposableMemory from llama_index.core.memory.memory import Memory, BaseMemoryBlock, InsertMethod from llama_index.core.memory.memory_blocks import ( StaticMemoryBlock, VectorMemoryBlock, FactExtractionMemoryBlock, ) __all__ = [ "BaseMemory", "Memory", "StaticMemoryBlock", "VectorMemoryBlock", "FactExtractionMemoryBlock", "BaseMemoryBlock", "InsertMethod", # Deprecated "ChatMemoryBuffer", "ChatSummaryMemoryBuffer", "SimpleComposableMemory", "VectorMemory", ]
from llama_index.core.memory.chat_memory_buffer import ChatMemoryBuffer from llama_index.core.memory.chat_summary_memory_buffer import ChatSummaryMemoryBuffer from llama_index.core.memory.types import BaseMemory from llama_index.core.memory.vector_memory import VectorMemory from llama_index.core.memory.simple_composable_memory import SimpleComposableMemory from llama_index.core.memory.memory import Memory from llama_index.core.memory.memory_blocks import ( StaticMemoryBlock, VectorMemoryBlock, FactExtractionMemoryBlock, ) __all__ = [ "BaseMemory", "Memory", "StaticMemoryBlock", "VectorMemoryBlock", "FactExtractionMemoryBlock", # Deprecated "ChatMemoryBuffer", "ChatSummaryMemoryBuffer", "SimpleComposableMemory", "VectorMemory", ]
_CTC_DECODERS = [ "CTCHypothesis", "CTCDecoder", "CTCDecoderLM", "CTCDecoderLMState", "ctc_decoder", "download_pretrained_files", ] def __getattr__(name: str): if name in _CTC_DECODERS: try: from . import _ctc_decoder except Exception as err: raise RuntimeError( "CTC Decoder suit requires flashlight-text package and optionally KenLM. Please install them." ) from err item = getattr(_ctc_decoder, name) globals()[name] = item return item raise AttributeError(f"module {__name__} has no attribute {name}") def __dir__(): return sorted(__all__) __all__ = _CTC_DECODERS
_INITIALIZED = False _LAZILY_IMPORTED = [ "CTCHypothesis", "CTCDecoder", "CTCDecoderLM", "CTCDecoderLMState", "ctc_decoder", "download_pretrained_files", ] def __getattr__(name: str): if name in _LAZILY_IMPORTED: try: from . import _ctc_decoder except AttributeError as err: raise RuntimeError( "CTC decoder requires the decoder extension. Please set BUILD_CTC_DECODER=1 when building from source." ) from err item = getattr(_ctc_decoder, name) globals()[name] = item return item raise AttributeError(f"module {__name__} has no attribute {name}") def __dir__(): return sorted(__all__ + _LAZILY_IMPORTED) __all__ = []
from io import BytesIO from typing import TYPE_CHECKING, Any, NamedTuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto from docarray.typing.tensor import AudioNdArray, NdArray, VideoNdArray from docarray.utils._internal.misc import import_library if TYPE_CHECKING: from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='VideoBytes') class VideoLoadResult(NamedTuple): video: VideoNdArray audio: AudioNdArray key_frame_indices: NdArray @_register_proto(proto_type_name='video_bytes') class VideoBytes(bytes, AbstractType): """ Bytes that store a video and that can be load into a video tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load(self, **kwargs) -> VideoLoadResult: """ Load the video from the bytes into a VideoLoadResult object consisting of a VideoNdArray (`VideoLoadResult.video`), an AudioNdArray (`VideoLoadResult.audio`) and an NdArray containing the key frame indices (`VideoLoadResult.key_frame_indices`). --- ```python from docarray import BaseDoc from docarray.typing import AudioNdArray, NdArray, VideoNdArray, VideoUrl class MyDoc(BaseDoc): video_url: VideoUrl doc = MyDoc( video_url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video, audio, key_frame_indices = doc.video_url.load() assert isinstance(video, VideoNdArray) assert isinstance(audio, AudioNdArray) assert isinstance(key_frame_indices, NdArray) ``` --- :param kwargs: supports all keyword arguments that are being supported by av.open() as described [here](https://pyav.org/docs/stable/api/_globals.html?highlight=open#av.open) :return: a VideoLoadResult instance with video, audio and keyframe indices """ if TYPE_CHECKING: import av else: av = import_library('av') with av.open(BytesIO(self), **kwargs) as container: audio_frames = [] video_frames = [] keyframe_indices = [] for frame in container.decode(): if type(frame) == av.audio.frame.AudioFrame: audio_frames.append(frame.to_ndarray()) elif type(frame) == av.video.frame.VideoFrame: video_frames.append(frame.to_ndarray(format='rgb24')) if frame.key_frame == 1: curr_index = len(video_frames) keyframe_indices.append(curr_index) if len(audio_frames) == 0: audio = parse_obj_as(AudioNdArray, np.array(audio_frames)) else: audio = parse_obj_as(AudioNdArray, np.stack(audio_frames)) video = parse_obj_as(VideoNdArray, np.stack(video_frames)) indices = parse_obj_as(NdArray, keyframe_indices) return VideoLoadResult(video=video, audio=audio, key_frame_indices=indices)
from io import BytesIO from typing import TYPE_CHECKING, Any, NamedTuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto from docarray.typing.tensor import AudioNdArray, NdArray, VideoNdArray from docarray.utils._internal.misc import import_library if TYPE_CHECKING: from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='VideoBytes') class VideoLoadResult(NamedTuple): video: VideoNdArray audio: AudioNdArray key_frame_indices: NdArray @_register_proto(proto_type_name='video_bytes') class VideoBytes(bytes, AbstractType): """ Bytes that store a video and that can be load into a video tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load(self, **kwargs) -> VideoLoadResult: """ Load the video from the bytes into a VideoLoadResult object consisting of a VideoNdArray (`VideoLoadResult.video`), an AudioNdArray (`VideoLoadResult.audio`) and an NdArray containing the key frame indices (`VideoLoadResult.key_frame_indices`). --- ```python from docarray import BaseDoc from docarray.typing import VideoUrl import numpy as np class MyDoc(BaseDoc): video_url: VideoUrl doc = MyDoc( video_url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video, audio, key_frame_indices = doc.video_url.load() assert isinstance(video, np.ndarray) assert isinstance(audio, np.ndarray) assert isinstance(key_frame_indices, np.ndarray) ``` --- :param kwargs: supports all keyword arguments that are being supported by av.open() as described [here](https://pyav.org/docs/stable/api/_globals.html?highlight=open#av.open) :return: a VideoLoadResult instance with video, audio and keyframe indices """ if TYPE_CHECKING: import av else: av = import_library('av') with av.open(BytesIO(self), **kwargs) as container: audio_frames = [] video_frames = [] keyframe_indices = [] for frame in container.decode(): if type(frame) == av.audio.frame.AudioFrame: audio_frames.append(frame.to_ndarray()) elif type(frame) == av.video.frame.VideoFrame: video_frames.append(frame.to_ndarray(format='rgb24')) if frame.key_frame == 1: curr_index = len(video_frames) keyframe_indices.append(curr_index) if len(audio_frames) == 0: audio = parse_obj_as(AudioNdArray, np.array(audio_frames)) else: audio = parse_obj_as(AudioNdArray, np.stack(audio_frames)) video = parse_obj_as(VideoNdArray, np.stack(video_frames)) indices = parse_obj_as(NdArray, keyframe_indices) return VideoLoadResult(video=video, audio=audio, key_frame_indices=indices)
from abc import ABC from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar, Union from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.typing.url.mimetypes import OBJ_MIMETYPE from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import trimesh T = TypeVar('T', bound='Url3D') @_register_proto(proto_type_name='url3d') class Url3D(AnyUrl, ABC): """ URL to a file containing 3D mesh or point cloud information. Can be remote (web) URL, or a local file path. """ @classmethod def mime_type(cls) -> str: return OBJ_MIMETYPE def _load_trimesh_instance( self: T, force: Optional[str] = None, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> Union['trimesh.Trimesh', 'trimesh.Scene']: """ Load the data from the url into a trimesh.Mesh or trimesh.Scene object. :param force: str or None. For 'mesh' try to coerce scenes into a single mesh. For 'scene' try to coerce everything into a scene. :param skip_materials: Skip materials if True, else skip. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: trimesh.Mesh or trimesh.Scene object """ import urllib.parse if TYPE_CHECKING: import trimesh else: trimesh = import_library('trimesh', raise_error=True) if not trimesh_args: trimesh_args = {} scheme = urllib.parse.urlparse(self).scheme loader = trimesh.load_remote if scheme in ['http', 'https'] else trimesh.load mesh = loader(self, force=force, skip_materials=skip_materials, **trimesh_args) return mesh
from abc import ABC from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar, Union from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import trimesh T = TypeVar('T', bound='Url3D') @_register_proto(proto_type_name='url3d') class Url3D(AnyUrl, ABC): """ URL to a file containing 3D mesh or point cloud information. Can be remote (web) URL, or a local file path. """ def _load_trimesh_instance( self: T, force: Optional[str] = None, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> Union['trimesh.Trimesh', 'trimesh.Scene']: """ Load the data from the url into a trimesh.Mesh or trimesh.Scene object. :param force: str or None. For 'mesh' try to coerce scenes into a single mesh. For 'scene' try to coerce everything into a scene. :param skip_materials: Skip materials if True, else skip. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: trimesh.Mesh or trimesh.Scene object """ import urllib.parse if TYPE_CHECKING: import trimesh else: trimesh = import_library('trimesh', raise_error=True) if not trimesh_args: trimesh_args = {} scheme = urllib.parse.urlparse(self).scheme loader = trimesh.load_remote if scheme in ['http', 'https'] else trimesh.load mesh = loader(self, force=force, skip_materials=skip_materials, **trimesh_args) return mesh
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api import activations from keras.api import applications from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import legacy from keras.api import mixed_precision from keras.api import models from keras.api import ops from keras.api import optimizers from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import tree from keras.api import utils from keras.api._tf_keras.keras import backend from keras.api._tf_keras.keras import layers from keras.api._tf_keras.keras import losses from keras.api._tf_keras.keras import metrics from keras.api._tf_keras.keras import preprocessing from keras.src.backend import Variable from keras.src.backend import device from keras.src.backend import name_scope from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.backend.common.stateless_scope import StatelessScope from keras.src.backend.common.symbolic_scope import SymbolicScope from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.initializers.initializer import Initializer from keras.src.layers.core.input_layer import Input from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer from keras.src.losses.loss import Loss from keras.src.metrics.metric import Metric from keras.src.models.model import Model from keras.src.models.sequential import Sequential from keras.src.ops.function import Function from keras.src.ops.operation import Operation from keras.src.optimizers.optimizer import Optimizer from keras.src.quantizers.quantizers import Quantizer from keras.src.regularizers.regularizers import Regularizer from keras.src.version import __version__ from keras.src.version import version
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api import activations from keras.api import applications from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import legacy from keras.api import mixed_precision from keras.api import models from keras.api import ops from keras.api import optimizers from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import tree from keras.api import utils from keras.api._tf_keras.keras import backend from keras.api._tf_keras.keras import layers from keras.api._tf_keras.keras import losses from keras.api._tf_keras.keras import metrics from keras.api._tf_keras.keras import preprocessing from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.backend.common.stateless_scope import StatelessScope from keras.src.backend.common.symbolic_scope import SymbolicScope from keras.src.backend.exports import Variable from keras.src.backend.exports import device from keras.src.backend.exports import name_scope from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.initializers.initializer import Initializer from keras.src.layers.core.input_layer import Input from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer from keras.src.losses.loss import Loss from keras.src.metrics.metric import Metric from keras.src.models.model import Model from keras.src.models.sequential import Sequential from keras.src.ops.function import Function from keras.src.ops.operation import Operation from keras.src.optimizers.optimizer import Optimizer from keras.src.quantizers.quantizers import Quantizer from keras.src.regularizers.regularizers import Regularizer from keras.src.version import __version__ from keras.src.version import version
""" Given a dataset with parallel sentences, one "english" column and one "non_english" column, this script evaluates a model on the translation task. Given a sentence in the "english" column, the model should find the correct translation in the "non_english" column, based on just the embeddings. It then computes an accuracy over all possible source sentences src_i. Equivalently, it computes also the accuracy for the other direction. A high accuracy score indicates that the model is able to find the correct translation out of a large pool with sentences. Good options for datasets are: * sentence-transformers/parallel-sentences-wikimatrix * sentence-transformers/parallel-sentences-tatoeba * sentence-transformers/parallel-sentences-talks As these have development sets. Usage: python examples/evaluation/evaluation_translation_matching.py [model_name_or_path] [dataset_name] [subset1] [subset2] ... For example: python examples/evaluation/evaluation_translation_matching.py distiluse-base-multilingual-cased sentence-transformers/parallel-sentences-tatoeba en-ar en-de en-nl """ import logging import sys from datasets import load_dataset from sentence_transformers import SentenceTransformer, evaluation # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) model_name = sys.argv[1] dataset_name = sys.argv[2] subsets = sys.argv[3:] inference_batch_size = 32 model = SentenceTransformer(model_name) for subset in subsets: dataset = load_dataset(dataset_name, subset) datasets = {} if dataset.column_names == ["train"]: num_samples = min(5000, len(dataset["train"])) datasets[f"train[:{num_samples}]"].append(dataset["train"].select(range(num_samples))) else: for split, sub_dataset in dataset.items(): if split != "train": datasets[split] = sub_dataset for split, sub_dataset in datasets.items(): logging.info(f"{dataset_name}, subset={subset}, split={split}, num_samples={len(sub_dataset)}") translation_evaluator = evaluation.TranslationEvaluator( sub_dataset["english"], sub_dataset["non_english"], name=f"{dataset_name}-{subset}-{split}", batch_size=inference_batch_size, ) translation_evaluator(model)
""" Given a tab separated file (.tsv) with parallel sentences, where the second column is the translation of the sentence in the first column, for example, in the format: src1 trg1 src2 trg2 ... where trg_i is the translation of src_i. Given src_i, the TranslationEvaluator checks which trg_j has the highest similarity using cosine similarity. If i == j, we assume a match, i.e., the correct translation has been found for src_i out of all possible target sentences. It then computes an accuracy over all possible source sentences src_i. Equivalently, it computes also the accuracy for the other direction. A high accuracy score indicates that the model is able to find the correct translation out of a large pool with sentences. Usage: python [model_name_or_path] [parallel-file1] [parallel-file2] ... For example: python distiluse-base-multilingual-cased talks-en-de.tsv.gz See the training_multilingual/get_parallel_data_...py scripts for getting parallel sentence data from different sources """ from sentence_transformers import SentenceTransformer, evaluation, LoggingHandler import sys import gzip import os import logging logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) model_name = sys.argv[1] filepaths = sys.argv[2:] inference_batch_size = 32 model = SentenceTransformer(model_name) for filepath in filepaths: src_sentences = [] trg_sentences = [] with gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open( filepath, "r", encoding="utf8" ) as fIn: for line in fIn: splits = line.strip().split("\t") if len(splits) >= 2: src_sentences.append(splits[0]) trg_sentences.append(splits[1]) logger.info(os.path.basename(filepath) + ": " + str(len(src_sentences)) + " sentence pairs") dev_trans_acc = evaluation.TranslationEvaluator( src_sentences, trg_sentences, name=os.path.basename(filepath), batch_size=inference_batch_size ) dev_trans_acc(model)
"""String output parser.""" from typing import Optional as Optional from langchain_core.output_parsers.transform import BaseTransformOutputParser class StrOutputParser(BaseTransformOutputParser[str]): """OutputParser that parses LLMResult into the top likely string.""" @classmethod def is_lc_serializable(cls) -> bool: """StrOutputParser is serializable. Returns: True """ return True @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "output_parser"]. """ return ["langchain", "schema", "output_parser"] @property def _type(self) -> str: """Return the output parser type for serialization.""" return "default" def parse(self, text: str) -> str: """Returns the input text with no changes.""" return text StrOutputParser.model_rebuild()
from typing import Optional as Optional from langchain_core.output_parsers.transform import BaseTransformOutputParser class StrOutputParser(BaseTransformOutputParser[str]): """OutputParser that parses LLMResult into the top likely string.""" @classmethod def is_lc_serializable(cls) -> bool: """Return whether this class is serializable.""" return True @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "output_parser"] @property def _type(self) -> str: """Return the output parser type for serialization.""" return "default" def parse(self, text: str) -> str: """Returns the input text with no changes.""" return text StrOutputParser.model_rebuild()
from __future__ import annotations import json import logging import time from typing import List, Optional, Type import requests from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field, HttpUrl, validator from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool logger = logging.getLogger(__name__) class SpeechToTextInput(BaseModel): query: HttpUrl = Field(description="url of the audio to analyze") class EdenAiSpeechToTextTool(EdenaiTool): """Tool that queries the Eden AI Speech To Text API. for api reference check edenai documentation: https://app.edenai.run/bricks/speech/asynchronous-speech-to-text. To use, you should have the environment variable ``EDENAI_API_KEY`` set with your API token. You can find your token here: https://app.edenai.run/admin/account/settings """ name: str = "edenai_speech_to_text" description: str = ( "A wrapper around edenai Services speech to text " "Useful for when you have to convert audio to text." "Input should be a url to an audio file." ) args_schema: Type[BaseModel] = SpeechToTextInput is_async: bool = True language: Optional[str] = "en" speakers: Optional[int] profanity_filter: bool = False custom_vocabulary: Optional[List[str]] feature: str = "audio" subfeature: str = "speech_to_text_async" base_url: str = "https://api.edenai.run/v2/audio/speech_to_text_async/" @validator("providers") def check_only_one_provider_selected(cls, v: List[str]) -> List[str]: """ This tool has no feature to combine providers results. Therefore we only allow one provider """ if len(v) > 1: raise ValueError( "Please select only one provider. " "The feature to combine providers results is not available " "for this tool." ) return v def _wait_processing(self, url: str) -> requests.Response: for _ in range(10): time.sleep(1) audio_analysis_result = self._get_edenai(url) temp = audio_analysis_result.json() if temp["status"] == "finished": if temp["results"][self.providers[0]]["error"] is not None: raise Exception( f"""EdenAI returned an unexpected response {temp["results"][self.providers[0]]["error"]}""" ) else: return audio_analysis_result raise Exception("Edenai speech to text job id processing Timed out") def _parse_response(self, response: dict) -> str: return response["public_id"] def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" all_params = { "file_url": query, "language": self.language, "speakers": self.speakers, "profanity_filter": self.profanity_filter, "custom_vocabulary": self.custom_vocabulary, } # filter so we don't send val to api when val is `None query_params = {k: v for k, v in all_params.items() if v is not None} job_id = self._call_eden_ai(query_params) url = self.base_url + job_id audio_analysis_result = self._wait_processing(url) result = audio_analysis_result.text formatted_text = json.loads(result) return formatted_text["results"][self.providers[0]]["text"]
from __future__ import annotations import json import logging import time from typing import List, Optional, Type import requests from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field, HttpUrl, validator from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool logger = logging.getLogger(__name__) class SpeechToTextInput(BaseModel): query: HttpUrl = Field(description="url of the audio to analyze") class EdenAiSpeechToTextTool(EdenaiTool): # type: ignore[override, override, override] """Tool that queries the Eden AI Speech To Text API. for api reference check edenai documentation: https://app.edenai.run/bricks/speech/asynchronous-speech-to-text. To use, you should have the environment variable ``EDENAI_API_KEY`` set with your API token. You can find your token here: https://app.edenai.run/admin/account/settings """ name: str = "edenai_speech_to_text" description: str = ( "A wrapper around edenai Services speech to text " "Useful for when you have to convert audio to text." "Input should be a url to an audio file." ) args_schema: Type[BaseModel] = SpeechToTextInput is_async: bool = True language: Optional[str] = "en" speakers: Optional[int] profanity_filter: bool = False custom_vocabulary: Optional[List[str]] feature: str = "audio" subfeature: str = "speech_to_text_async" base_url: str = "https://api.edenai.run/v2/audio/speech_to_text_async/" @validator("providers") def check_only_one_provider_selected(cls, v: List[str]) -> List[str]: """ This tool has no feature to combine providers results. Therefore we only allow one provider """ if len(v) > 1: raise ValueError( "Please select only one provider. " "The feature to combine providers results is not available " "for this tool." ) return v def _wait_processing(self, url: str) -> requests.Response: for _ in range(10): time.sleep(1) audio_analysis_result = self._get_edenai(url) temp = audio_analysis_result.json() if temp["status"] == "finished": if temp["results"][self.providers[0]]["error"] is not None: raise Exception( f"""EdenAI returned an unexpected response {temp["results"][self.providers[0]]["error"]}""" ) else: return audio_analysis_result raise Exception("Edenai speech to text job id processing Timed out") def _parse_response(self, response: dict) -> str: return response["public_id"] def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" all_params = { "file_url": query, "language": self.language, "speakers": self.speakers, "profanity_filter": self.profanity_filter, "custom_vocabulary": self.custom_vocabulary, } # filter so we don't send val to api when val is `None query_params = {k: v for k, v in all_params.items() if v is not None} job_id = self._call_eden_ai(query_params) url = self.base_url + job_id audio_analysis_result = self._wait_processing(url) result = audio_analysis_result.text formatted_text = json.loads(result) return formatted_text["results"][self.providers[0]]["text"]
"""Select examples based on length.""" import re from typing import Callable from pydantic import BaseModel, Field, model_validator from typing_extensions import Self from langchain_core.example_selectors.base import BaseExampleSelector from langchain_core.prompts.prompt import PromptTemplate def _get_length_based(text: str) -> int: return len(re.split("\n| ", text)) class LengthBasedExampleSelector(BaseExampleSelector, BaseModel): """Select examples based on length.""" examples: list[dict] """A list of the examples that the prompt template expects.""" example_prompt: PromptTemplate """Prompt template used to format the examples.""" get_text_length: Callable[[str], int] = _get_length_based """Function to measure prompt length. Defaults to word count.""" max_length: int = 2048 """Max length for the prompt, beyond which examples are cut.""" example_text_lengths: list[int] = Field(default_factory=list) # :meta private: """Length of each example.""" def add_example(self, example: dict[str, str]) -> None: """Add new example to list. Args: example: A dictionary with keys as input variables and values as their values. """ self.examples.append(example) string_example = self.example_prompt.format(**example) self.example_text_lengths.append(self.get_text_length(string_example)) async def aadd_example(self, example: dict[str, str]) -> None: """Async add new example to list. Args: example: A dictionary with keys as input variables and values as their values. """ self.add_example(example) @model_validator(mode="after") def post_init(self) -> Self: """Validate that the examples are formatted correctly.""" if self.example_text_lengths: return self string_examples = [self.example_prompt.format(**eg) for eg in self.examples] self.example_text_lengths = [self.get_text_length(eg) for eg in string_examples] return self def select_examples(self, input_variables: dict[str, str]) -> list[dict]: """Select which examples to use based on the input lengths. Args: input_variables: A dictionary with keys as input variables and values as their values. Returns: A list of examples to include in the prompt. """ inputs = " ".join(input_variables.values()) remaining_length = self.max_length - self.get_text_length(inputs) i = 0 examples = [] while remaining_length > 0 and i < len(self.examples): new_length = remaining_length - self.example_text_lengths[i] if new_length < 0: break examples.append(self.examples[i]) remaining_length = new_length i += 1 return examples async def aselect_examples(self, input_variables: dict[str, str]) -> list[dict]: """Async select which examples to use based on the input lengths. Args: input_variables: A dictionary with keys as input variables and values as their values. Returns: A list of examples to include in the prompt. """ return self.select_examples(input_variables)
"""Select examples based on length.""" import re from typing import Callable from pydantic import BaseModel, Field, model_validator from typing_extensions import Self from langchain_core.example_selectors.base import BaseExampleSelector from langchain_core.prompts.prompt import PromptTemplate def _get_length_based(text: str) -> int: return len(re.split("\n| ", text)) class LengthBasedExampleSelector(BaseExampleSelector, BaseModel): """Select examples based on length.""" examples: list[dict] """A list of the examples that the prompt template expects.""" example_prompt: PromptTemplate """Prompt template used to format the examples.""" get_text_length: Callable[[str], int] = _get_length_based """Function to measure prompt length. Defaults to word count.""" max_length: int = 2048 """Max length for the prompt, beyond which examples are cut.""" example_text_lengths: list[int] = Field(default_factory=list) # :meta private: """Length of each example.""" def add_example(self, example: dict[str, str]) -> None: """Add new example to list. Args: example: A dictionary with keys as input variables and values as their values. """ self.examples.append(example) string_example = self.example_prompt.format(**example) self.example_text_lengths.append(self.get_text_length(string_example)) async def aadd_example(self, example: dict[str, str]) -> None: """Async add new example to list. Args: example: A dictionary with keys as input variables and values as their values. """ self.add_example(example) @model_validator(mode="after") def post_init(self) -> Self: """Validate that the examples are formatted correctly.""" if self.example_text_lengths: return self string_examples = [self.example_prompt.format(**eg) for eg in self.examples] self.example_text_lengths = [self.get_text_length(eg) for eg in string_examples] return self def select_examples(self, input_variables: dict[str, str]) -> list[dict]: """Select which examples to use based on the input lengths. Args: input_variables: A dictionary with keys as input variables and values as their values. Returns: A list of examples to include in the prompt. """ inputs = " ".join(input_variables.values()) remaining_length = self.max_length - self.get_text_length(inputs) i = 0 examples = [] while remaining_length > 0 and i < len(self.examples): new_length = remaining_length - self.example_text_lengths[i] if new_length < 0: break else: examples.append(self.examples[i]) remaining_length = new_length i += 1 return examples async def aselect_examples(self, input_variables: dict[str, str]) -> list[dict]: """Async select which examples to use based on the input lengths. Args: input_variables: A dictionary with keys as input variables and values as their values. Returns: A list of examples to include in the prompt. """ return self.select_examples(input_variables)
import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_document.io.json import orjson_dumps from docarray.typing import TorchEmbedding, TorchTensor @pytest.mark.proto def test_proto_tensor(): tensor = parse_obj_as(TorchTensor, torch.zeros(3, 224, 224)) tensor._to_node_protobuf() def test_json_schema(): schema_json_of(TorchTensor) def test_dump_json(): tensor = parse_obj_as(TorchTensor, torch.zeros(3, 224, 224)) orjson_dumps(tensor) def test_unwrap(): tensor = parse_obj_as(TorchTensor, torch.zeros(3, 224, 224)) ndarray = tensor.unwrap() assert not isinstance(ndarray, TorchTensor) assert isinstance(tensor, TorchTensor) assert isinstance(ndarray, torch.Tensor) assert tensor.data_ptr() == ndarray.data_ptr() assert (ndarray == torch.zeros(3, 224, 224)).all() def test_parametrized(): # correct shape, single axis tensor = parse_obj_as(TorchTensor[128], torch.zeros(128)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (128,) # correct shape, multiple axis tensor = parse_obj_as(TorchTensor[3, 224, 224], torch.zeros(3, 224, 224)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (3, 224, 224) # wrong but reshapable shape tensor = parse_obj_as(TorchTensor[3, 224, 224], torch.zeros(224, 3, 224)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (3, 224, 224) # wrong and not reshapable shape with pytest.raises(ValueError): parse_obj_as(TorchTensor[3, 224, 224], torch.zeros(224, 224)) # test independent variable dimensions tensor = parse_obj_as(TorchTensor[3, 'x', 'y'], torch.zeros(3, 224, 224)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (3, 224, 224) tensor = parse_obj_as(TorchTensor[3, 'x', 'y'], torch.zeros(3, 60, 128)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (3, 60, 128) with pytest.raises(ValueError): parse_obj_as(TorchTensor[3, 'x', 'y'], torch.zeros(4, 224, 224)) with pytest.raises(ValueError): parse_obj_as(TorchTensor[3, 'x', 'y'], torch.zeros(100, 1)) # test dependent variable dimensions tensor = parse_obj_as(TorchTensor[3, 'x', 'x'], torch.zeros(3, 224, 224)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (3, 224, 224) with pytest.raises(ValueError): _ = parse_obj_as(TorchTensor[3, 'x', 'x'], torch.zeros(3, 60, 128)) with pytest.raises(ValueError): _ = parse_obj_as(TorchTensor[3, 'x', 'x'], torch.zeros(3, 60)) @pytest.mark.parametrize('shape', [(3, 224, 224), (224, 224, 3)]) def test_parameterized_tensor_class_name(shape): MyTT = TorchTensor[3, 224, 224] tensor = parse_obj_as(MyTT, torch.zeros(shape)) assert MyTT.__name__ == 'TorchTensor[3, 224, 224]' assert MyTT.__qualname__ == 'TorchTensor[3, 224, 224]' assert tensor.__class__.__name__ == 'TorchTensor' assert tensor.__class__.__qualname__ == 'TorchTensor' assert f'{tensor[0][0][0]}' == 'TorchTensor(0.)' def test_torch_embedding(): # correct shape tensor = parse_obj_as(TorchEmbedding[128], torch.zeros(128)) assert isinstance(tensor, TorchEmbedding) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (128,) # wrong shape at data setting time with pytest.raises(ValueError): parse_obj_as(TorchEmbedding[128], torch.zeros(256)) # illegal shape at class creation time with pytest.raises(ValueError): parse_obj_as(TorchEmbedding[128, 128], torch.zeros(128, 128)) def test_parametrized_subclass(): c1 = TorchTensor[128] c2 = TorchTensor[128] assert issubclass(c1, c2) assert issubclass(c1, TorchTensor) assert issubclass(c1, torch.Tensor) assert not issubclass(c1, TorchTensor[256]) def test_parametrized_instance(): t = parse_obj_as(TorchTensor[128], torch.zeros(128)) assert isinstance(t, TorchTensor[128]) assert isinstance(t, TorchTensor) assert isinstance(t, torch.Tensor) assert not isinstance(t, TorchTensor[256]) assert not isinstance(t, TorchTensor[2, 128]) assert not isinstance(t, TorchTensor[2, 2, 64]) def test_parametrized_equality(): t1 = parse_obj_as(TorchTensor[128], torch.zeros(128)) t2 = parse_obj_as(TorchTensor[128], torch.zeros(128)) assert (t1 == t2).all() def test_parametrized_operations(): t1 = parse_obj_as(TorchTensor[128], torch.zeros(128)) t2 = parse_obj_as(TorchTensor[128], torch.zeros(128)) t_result = t1 + t2 assert isinstance(t_result, torch.Tensor) assert isinstance(t_result, TorchTensor) assert isinstance(t_result, TorchTensor[128])
import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_document.io.json import orjson_dumps from docarray.typing import TorchEmbedding, TorchTensor def test_proto_tensor(): tensor = parse_obj_as(TorchTensor, torch.zeros(3, 224, 224)) tensor._to_node_protobuf() def test_json_schema(): schema_json_of(TorchTensor) def test_dump_json(): tensor = parse_obj_as(TorchTensor, torch.zeros(3, 224, 224)) orjson_dumps(tensor) def test_unwrap(): tensor = parse_obj_as(TorchTensor, torch.zeros(3, 224, 224)) ndarray = tensor.unwrap() assert not isinstance(ndarray, TorchTensor) assert isinstance(tensor, TorchTensor) assert isinstance(ndarray, torch.Tensor) assert tensor.data_ptr() == ndarray.data_ptr() assert (ndarray == torch.zeros(3, 224, 224)).all() def test_parametrized(): # correct shape, single axis tensor = parse_obj_as(TorchTensor[128], torch.zeros(128)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (128,) # correct shape, multiple axis tensor = parse_obj_as(TorchTensor[3, 224, 224], torch.zeros(3, 224, 224)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (3, 224, 224) # wrong but reshapable shape tensor = parse_obj_as(TorchTensor[3, 224, 224], torch.zeros(224, 3, 224)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (3, 224, 224) # wrong and not reshapable shape with pytest.raises(ValueError): parse_obj_as(TorchTensor[3, 224, 224], torch.zeros(224, 224)) # test independent variable dimensions tensor = parse_obj_as(TorchTensor[3, 'x', 'y'], torch.zeros(3, 224, 224)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (3, 224, 224) tensor = parse_obj_as(TorchTensor[3, 'x', 'y'], torch.zeros(3, 60, 128)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (3, 60, 128) with pytest.raises(ValueError): parse_obj_as(TorchTensor[3, 'x', 'y'], torch.zeros(4, 224, 224)) with pytest.raises(ValueError): parse_obj_as(TorchTensor[3, 'x', 'y'], torch.zeros(100, 1)) # test dependent variable dimensions tensor = parse_obj_as(TorchTensor[3, 'x', 'x'], torch.zeros(3, 224, 224)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (3, 224, 224) with pytest.raises(ValueError): _ = parse_obj_as(TorchTensor[3, 'x', 'x'], torch.zeros(3, 60, 128)) with pytest.raises(ValueError): _ = parse_obj_as(TorchTensor[3, 'x', 'x'], torch.zeros(3, 60)) @pytest.mark.parametrize('shape', [(3, 224, 224), (224, 224, 3)]) def test_parameterized_tensor_class_name(shape): MyTT = TorchTensor[3, 224, 224] tensor = parse_obj_as(MyTT, torch.zeros(shape)) assert MyTT.__name__ == 'TorchTensor[3, 224, 224]' assert MyTT.__qualname__ == 'TorchTensor[3, 224, 224]' assert tensor.__class__.__name__ == 'TorchTensor' assert tensor.__class__.__qualname__ == 'TorchTensor' assert f'{tensor[0][0][0]}' == 'TorchTensor(0.)' def test_torch_embedding(): # correct shape tensor = parse_obj_as(TorchEmbedding[128], torch.zeros(128)) assert isinstance(tensor, TorchEmbedding) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (128,) # wrong shape at data setting time with pytest.raises(ValueError): parse_obj_as(TorchEmbedding[128], torch.zeros(256)) # illegal shape at class creation time with pytest.raises(ValueError): parse_obj_as(TorchEmbedding[128, 128], torch.zeros(128, 128)) def test_parametrized_subclass(): c1 = TorchTensor[128] c2 = TorchTensor[128] assert issubclass(c1, c2) assert issubclass(c1, TorchTensor) assert issubclass(c1, torch.Tensor) assert not issubclass(c1, TorchTensor[256]) def test_parametrized_instance(): t = parse_obj_as(TorchTensor[128], torch.zeros(128)) assert isinstance(t, TorchTensor[128]) assert isinstance(t, TorchTensor) assert isinstance(t, torch.Tensor) assert not isinstance(t, TorchTensor[256]) assert not isinstance(t, TorchTensor[2, 128]) assert not isinstance(t, TorchTensor[2, 2, 64]) def test_parametrized_equality(): t1 = parse_obj_as(TorchTensor[128], torch.zeros(128)) t2 = parse_obj_as(TorchTensor[128], torch.zeros(128)) assert (t1 == t2).all() def test_parametrized_operations(): t1 = parse_obj_as(TorchTensor[128], torch.zeros(128)) t2 = parse_obj_as(TorchTensor[128], torch.zeros(128)) t_result = t1 + t2 assert isinstance(t_result, torch.Tensor) assert isinstance(t_result, TorchTensor) assert isinstance(t_result, TorchTensor[128])
from llama_index.core.node_parser.file.markdown import MarkdownNodeParser from llama_index.core.schema import Document def test_header_splits() -> None: markdown_parser = MarkdownNodeParser() splits = markdown_parser.get_nodes_from_documents( [ Document( text="""# Main Header Header 1 content # Header 2 Header 2 content """ ) ] ) assert len(splits) == 2 assert splits[0].metadata == {"header_path": "/"} assert splits[1].metadata == {"header_path": "/"} assert splits[0].text == "# Main Header\n\nHeader 1 content" assert splits[1].text == "# Header 2\nHeader 2 content" def test_header_splits_with_forwardslash() -> None: markdown_parser = MarkdownNodeParser( header_path_separator="\u203A" ) # Unicode for "›", infrequently used char splits = markdown_parser.get_nodes_from_documents( [ Document( text="""# Main Header Header 1 content ## FAQ FAQ content ### 24/7 Support Support content #### Contact info Contact info content """ ) ] ) assert len(splits) == 4 assert splits[0].metadata == {"header_path": "›"} assert splits[1].metadata == {"header_path": "›Main Header›"} assert splits[2].metadata == {"header_path": "›Main Header›FAQ›"} assert splits[3].metadata == {"header_path": "›Main Header›FAQ›24/7 Support›"} assert splits[0].text == "# Main Header\n\nHeader 1 content" assert splits[1].text == "## FAQ\nFAQ content" assert splits[2].text == "### 24/7 Support\nSupport content" assert splits[3].text == "#### Contact info\nContact info content" def test_header_splits_with_indented_code_blocks() -> None: markdown_parser = MarkdownNodeParser() splits = markdown_parser.get_nodes_from_documents( [ Document( text="""Some text # Header 1 ## Header 2 ### Header 3 ```txt Non indented block code ``` A list begins here: * Element 1 ```txt # has some indented code, but it's not handled as that. ``` * Element 2 ```txt # also has some code, but unbalanced fences (different number of spaces). Everything after this is considered code block! ``` * Element 3 * Element 4 ### Another Header 3 ```txt # has some wrongly indented fence, and leads to incorrect header detection. ``` ## Another Header 2 """ ) ] ) assert len(splits) == 6 assert splits[0].metadata == {"header_path": "/"} assert splits[0].text == "Some text" assert splits[1].metadata == {"header_path": "/"} assert splits[1].text == "# Header 1" assert splits[2].metadata == {"header_path": "/Header 1/"} assert splits[2].text == "## Header 2" assert splits[3].metadata == {"header_path": "/Header 1/Header 2/"} assert splits[3].text.endswith("* Element 4") assert splits[4].metadata == {"header_path": "/Header 1/Header 2/"} assert splits[4].text.endswith("```") assert splits[5].metadata == {"header_path": "/Header 1/"} assert splits[5].text == "## Another Header 2" def test_non_header_splits() -> None: markdown_parser = MarkdownNodeParser() splits = markdown_parser.get_nodes_from_documents( [ Document( text="""# Header 1 #Not a header Also # not a header # Still not a header """ ) ] ) assert len(splits) == 1 def test_pre_header_content() -> None: markdown_parser = MarkdownNodeParser() splits = markdown_parser.get_nodes_from_documents( [ Document( text=""" pre-header content # Header 1 Content ## Sub-header """ ) ] ) assert len(splits) == 3 def test_header_metadata() -> None: markdown_parser = MarkdownNodeParser() splits = markdown_parser.get_nodes_from_documents( [ Document( text="""# Main Header Content ## Sub-header Content ### Sub-sub header Content # New title """ ) ] ) assert len(splits) == 4 assert splits[0].metadata == {"header_path": "/"} assert splits[1].metadata == {"header_path": "/Main Header/"} assert splits[2].metadata == {"header_path": "/Main Header/Sub-header/"} assert splits[3].metadata == {"header_path": "/"} def test_header_metadata_with_level_jump() -> None: markdown_parser = MarkdownNodeParser() splits = markdown_parser.get_nodes_from_documents( [ Document( text="""# Main Header Content ### Sub-header Content ### Sub-sub header Content """ ) ] ) assert len(splits) == 3 assert splits[0].metadata == {"header_path": "/"} assert splits[1].metadata == {"header_path": "/Main Header/"} assert splits[2].metadata == {"header_path": "/Main Header/"}
from llama_index.core.node_parser.file.markdown import MarkdownNodeParser from llama_index.core.schema import Document def test_header_splits() -> None: markdown_parser = MarkdownNodeParser() splits = markdown_parser.get_nodes_from_documents( [ Document( text="""# Main Header Header 1 content # Header 2 Header 2 content """ ) ] ) assert len(splits) == 2 assert splits[0].metadata == {"header_path": "/"} assert splits[1].metadata == {"header_path": "/"} assert splits[0].text == "# Main Header\n\nHeader 1 content" assert splits[1].text == "# Header 2\nHeader 2 content" def test_header_splits_with_indented_code_blocks() -> None: markdown_parser = MarkdownNodeParser() splits = markdown_parser.get_nodes_from_documents( [ Document( text="""Some text # Header 1 ## Header 2 ### Header 3 ```txt Non indented block code ``` A list begins here: * Element 1 ```txt # has some indented code, but it's not handled as that. ``` * Element 2 ```txt # also has some code, but unbalanced fences (different number of spaces). Everything after this is considered code block! ``` * Element 3 * Element 4 ### Another Header 3 ```txt # has some wrongly indented fence, and leads to incorrect header detection. ``` ## Another Header 2 """ ) ] ) assert len(splits) == 6 assert splits[0].metadata == {"header_path": "/"} assert splits[0].text == "Some text" assert splits[1].metadata == {"header_path": "/"} assert splits[1].text == "# Header 1" assert splits[2].metadata == {"header_path": "/Header 1/"} assert splits[2].text == "## Header 2" assert splits[3].metadata == {"header_path": "/Header 1/Header 2/"} assert splits[3].text.endswith("* Element 4") assert splits[4].metadata == {"header_path": "/Header 1/Header 2/"} assert splits[4].text.endswith("```") assert splits[5].metadata == {"header_path": "/Header 1/"} assert splits[5].text == "## Another Header 2" def test_non_header_splits() -> None: markdown_parser = MarkdownNodeParser() splits = markdown_parser.get_nodes_from_documents( [ Document( text="""# Header 1 #Not a header Also # not a header # Still not a header """ ) ] ) assert len(splits) == 1 def test_pre_header_content() -> None: markdown_parser = MarkdownNodeParser() splits = markdown_parser.get_nodes_from_documents( [ Document( text=""" pre-header content # Header 1 Content ## Sub-header """ ) ] ) assert len(splits) == 3 def test_header_metadata() -> None: markdown_parser = MarkdownNodeParser() splits = markdown_parser.get_nodes_from_documents( [ Document( text="""# Main Header Content ## Sub-header Content ### Sub-sub header Content # New title """ ) ] ) assert len(splits) == 4 assert splits[0].metadata == {"header_path": "/"} assert splits[1].metadata == {"header_path": "/Main Header/"} assert splits[2].metadata == {"header_path": "/Main Header/Sub-header/"} assert splits[3].metadata == {"header_path": "/"} def test_header_metadata_with_level_jump() -> None: markdown_parser = MarkdownNodeParser() splits = markdown_parser.get_nodes_from_documents( [ Document( text="""# Main Header Content ### Sub-header Content ### Sub-sub header Content """ ) ] ) assert len(splits) == 3 assert splits[0].metadata == {"header_path": "/"} assert splits[1].metadata == {"header_path": "/Main Header/"} assert splits[2].metadata == {"header_path": "/Main Header/"}
from docarray.typing.tensor.embedding import AnyEmbedding, NdArrayEmbedding from docarray.typing.tensor.image import ImageNdArray, ImageTensor from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor __all__ = [ 'NdArray', 'AnyTensor', 'AnyEmbedding', 'NdArrayEmbedding', 'ImageNdArray', 'ImageTensor', 'TensorFlowTensor', ] from docarray.utils._internal.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.embedding import TorchEmbedding # noqa: F401 from docarray.typing.tensor.image import ImageTorchTensor # noqa: F401 from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 __all__.extend(['TorchEmbedding', 'TorchTensor', 'ImageTorchTensor']) torch_available = is_torch_available() tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.embedding import TensorFlowEmbedding # noqa: F401 from docarray.typing.tensor.image import ImageTensorFlowTensor # noqa: F401 from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor # noqa: F401 __all__.extend(['TensorFlowEmbedding', 'TensorFlowTensor', 'ImageTensorFlowTensor'])
from docarray.typing.tensor.embedding import AnyEmbedding, NdArrayEmbedding from docarray.typing.tensor.image import ImageNdArray, ImageTensor from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor __all__ = [ 'NdArray', 'AnyTensor', 'AnyEmbedding', 'NdArrayEmbedding', 'ImageNdArray', 'ImageTensor', 'TensorFlowTensor', ] from docarray.utils.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.embedding import TorchEmbedding # noqa: F401 from docarray.typing.tensor.image import ImageTorchTensor # noqa: F401 from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 __all__.extend(['TorchEmbedding', 'TorchTensor', 'ImageTorchTensor']) torch_available = is_torch_available() tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.embedding import TensorFlowEmbedding # noqa: F401 from docarray.typing.tensor.image import ImageTensorFlowTensor # noqa: F401 from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor # noqa: F401 __all__.extend(['TensorFlowEmbedding', 'TensorFlowTensor', 'ImageTensorFlowTensor'])
"""Utilities for working with HTML.""" import logging import re from collections.abc import Sequence from typing import Optional, Union from urllib.parse import urljoin, urlparse logger = logging.getLogger(__name__) PREFIXES_TO_IGNORE = ("javascript:", "mailto:", "#") SUFFIXES_TO_IGNORE = ( ".css", ".js", ".ico", ".png", ".jpg", ".jpeg", ".gif", ".svg", ".csv", ".bz2", ".zip", ".epub", ) SUFFIXES_TO_IGNORE_REGEX = ( "(?!" + "|".join([re.escape(s) + r"[\#'\"]" for s in SUFFIXES_TO_IGNORE]) + ")" ) PREFIXES_TO_IGNORE_REGEX = ( "(?!" + "|".join([re.escape(s) for s in PREFIXES_TO_IGNORE]) + ")" ) DEFAULT_LINK_REGEX = ( rf"href=[\"']{PREFIXES_TO_IGNORE_REGEX}((?:{SUFFIXES_TO_IGNORE_REGEX}.)*?)[\#'\"]" ) def find_all_links( raw_html: str, *, pattern: Union[str, re.Pattern, None] = None ) -> list[str]: """Extract all links from a raw HTML string. Args: raw_html: original HTML. pattern: Regex to use for extracting links from raw HTML. Returns: List[str]: all links """ pattern = pattern or DEFAULT_LINK_REGEX return list(set(re.findall(pattern, raw_html))) def extract_sub_links( raw_html: str, url: str, *, base_url: Optional[str] = None, pattern: Union[str, re.Pattern, None] = None, prevent_outside: bool = True, exclude_prefixes: Sequence[str] = (), continue_on_failure: bool = False, ) -> list[str]: """Extract all links from a raw HTML string and convert into absolute paths. Args: raw_html: original HTML. url: the url of the HTML. base_url: the base URL to check for outside links against. pattern: Regex to use for extracting links from raw HTML. prevent_outside: If True, ignore external links which are not children of the base URL. exclude_prefixes: Exclude any URLs that start with one of these prefixes. continue_on_failure: If True, continue if parsing a specific link raises an exception. Otherwise, raise the exception. Returns: List[str]: sub links. """ base_url_to_use = base_url if base_url is not None else url parsed_base_url = urlparse(base_url_to_use) parsed_url = urlparse(url) all_links = find_all_links(raw_html, pattern=pattern) absolute_paths = set() for link in all_links: try: parsed_link = urlparse(link) # Some may be absolute links like https://to/path if parsed_link.scheme == "http" or parsed_link.scheme == "https": absolute_path = link # Some may have omitted the protocol like //to/path elif link.startswith("//"): absolute_path = f"{parsed_url.scheme}:{link}" else: absolute_path = urljoin(url, parsed_link.path) if parsed_link.query: absolute_path += f"?{parsed_link.query}" absolute_paths.add(absolute_path) except Exception as e: if continue_on_failure: logger.warning( "Unable to load link %s. Raised exception:\n\n%s", link, e ) continue raise results = [] for path in absolute_paths: if any(path.startswith(exclude_prefix) for exclude_prefix in exclude_prefixes): continue if prevent_outside: parsed_path = urlparse(path) if parsed_base_url.netloc != parsed_path.netloc: continue # Will take care of verifying rest of path after netloc # if it's more specific if not path.startswith(base_url_to_use): continue results.append(path) return results
import logging import re from collections.abc import Sequence from typing import Optional, Union from urllib.parse import urljoin, urlparse logger = logging.getLogger(__name__) PREFIXES_TO_IGNORE = ("javascript:", "mailto:", "#") SUFFIXES_TO_IGNORE = ( ".css", ".js", ".ico", ".png", ".jpg", ".jpeg", ".gif", ".svg", ".csv", ".bz2", ".zip", ".epub", ) SUFFIXES_TO_IGNORE_REGEX = ( "(?!" + "|".join([re.escape(s) + r"[\#'\"]" for s in SUFFIXES_TO_IGNORE]) + ")" ) PREFIXES_TO_IGNORE_REGEX = ( "(?!" + "|".join([re.escape(s) for s in PREFIXES_TO_IGNORE]) + ")" ) DEFAULT_LINK_REGEX = ( rf"href=[\"']{PREFIXES_TO_IGNORE_REGEX}((?:{SUFFIXES_TO_IGNORE_REGEX}.)*?)[\#'\"]" ) def find_all_links( raw_html: str, *, pattern: Union[str, re.Pattern, None] = None ) -> list[str]: """Extract all links from a raw HTML string. Args: raw_html: original HTML. pattern: Regex to use for extracting links from raw HTML. Returns: List[str]: all links """ pattern = pattern or DEFAULT_LINK_REGEX return list(set(re.findall(pattern, raw_html))) def extract_sub_links( raw_html: str, url: str, *, base_url: Optional[str] = None, pattern: Union[str, re.Pattern, None] = None, prevent_outside: bool = True, exclude_prefixes: Sequence[str] = (), continue_on_failure: bool = False, ) -> list[str]: """Extract all links from a raw HTML string and convert into absolute paths. Args: raw_html: original HTML. url: the url of the HTML. base_url: the base URL to check for outside links against. pattern: Regex to use for extracting links from raw HTML. prevent_outside: If True, ignore external links which are not children of the base URL. exclude_prefixes: Exclude any URLs that start with one of these prefixes. continue_on_failure: If True, continue if parsing a specific link raises an exception. Otherwise, raise the exception. Returns: List[str]: sub links. """ base_url_to_use = base_url if base_url is not None else url parsed_base_url = urlparse(base_url_to_use) parsed_url = urlparse(url) all_links = find_all_links(raw_html, pattern=pattern) absolute_paths = set() for link in all_links: try: parsed_link = urlparse(link) # Some may be absolute links like https://to/path if parsed_link.scheme == "http" or parsed_link.scheme == "https": absolute_path = link # Some may have omitted the protocol like //to/path elif link.startswith("//"): absolute_path = f"{parsed_url.scheme}:{link}" else: absolute_path = urljoin(url, parsed_link.path) if parsed_link.query: absolute_path += f"?{parsed_link.query}" absolute_paths.add(absolute_path) except Exception as e: if continue_on_failure: logger.warning( "Unable to load link %s. Raised exception:\n\n%s", link, e ) continue raise results = [] for path in absolute_paths: if any(path.startswith(exclude_prefix) for exclude_prefix in exclude_prefixes): continue if prevent_outside: parsed_path = urlparse(path) if parsed_base_url.netloc != parsed_path.netloc: continue # Will take care of verifying rest of path after netloc # if it's more specific if not path.startswith(base_url_to_use): continue results.append(path) return results
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api.utils import bounding_boxes from keras.api.utils import legacy from keras.src.backend.common.global_state import clear_session from keras.src.backend.common.keras_tensor import is_keras_tensor from keras.src.backend.common.variables import standardize_dtype from keras.src.layers.preprocessing.feature_space import FeatureSpace from keras.src.ops.operation_utils import get_source_inputs from keras.src.saving.object_registration import CustomObjectScope from keras.src.saving.object_registration import ( CustomObjectScope as custom_object_scope, ) from keras.src.saving.object_registration import get_custom_objects from keras.src.saving.object_registration import get_registered_name from keras.src.saving.object_registration import get_registered_object from keras.src.saving.object_registration import register_keras_serializable from keras.src.saving.serialization_lib import deserialize_keras_object from keras.src.saving.serialization_lib import serialize_keras_object from keras.src.trainers.data_adapters.data_adapter_utils import ( pack_x_y_sample_weight, ) from keras.src.trainers.data_adapters.data_adapter_utils import ( unpack_x_y_sample_weight, ) from keras.src.trainers.data_adapters.py_dataset_adapter import PyDataset from keras.src.trainers.data_adapters.py_dataset_adapter import ( PyDataset as Sequence, ) from keras.src.utils.audio_dataset_utils import audio_dataset_from_directory from keras.src.utils.config import Config from keras.src.utils.dataset_utils import split_dataset from keras.src.utils.file_utils import get_file from keras.src.utils.image_dataset_utils import image_dataset_from_directory from keras.src.utils.image_utils import array_to_img from keras.src.utils.image_utils import img_to_array from keras.src.utils.image_utils import load_img from keras.src.utils.image_utils import save_img from keras.src.utils.io_utils import disable_interactive_logging from keras.src.utils.io_utils import enable_interactive_logging from keras.src.utils.io_utils import is_interactive_logging_enabled from keras.src.utils.model_visualization import model_to_dot from keras.src.utils.model_visualization import plot_model from keras.src.utils.numerical_utils import normalize from keras.src.utils.numerical_utils import to_categorical from keras.src.utils.progbar import Progbar from keras.src.utils.rng_utils import set_random_seed from keras.src.utils.sequence_utils import pad_sequences from keras.src.utils.text_dataset_utils import text_dataset_from_directory from keras.src.utils.timeseries_dataset_utils import ( timeseries_dataset_from_array, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api.utils import legacy from keras.src.backend.common.global_state import clear_session from keras.src.backend.common.keras_tensor import is_keras_tensor from keras.src.backend.common.variables import standardize_dtype from keras.src.layers.preprocessing.feature_space import FeatureSpace from keras.src.ops.operation_utils import get_source_inputs from keras.src.saving.object_registration import CustomObjectScope from keras.src.saving.object_registration import ( CustomObjectScope as custom_object_scope, ) from keras.src.saving.object_registration import get_custom_objects from keras.src.saving.object_registration import get_registered_name from keras.src.saving.object_registration import get_registered_object from keras.src.saving.object_registration import register_keras_serializable from keras.src.saving.serialization_lib import deserialize_keras_object from keras.src.saving.serialization_lib import serialize_keras_object from keras.src.trainers.data_adapters.data_adapter_utils import ( pack_x_y_sample_weight, ) from keras.src.trainers.data_adapters.data_adapter_utils import ( unpack_x_y_sample_weight, ) from keras.src.trainers.data_adapters.py_dataset_adapter import PyDataset from keras.src.trainers.data_adapters.py_dataset_adapter import ( PyDataset as Sequence, ) from keras.src.utils.audio_dataset_utils import audio_dataset_from_directory from keras.src.utils.config import Config from keras.src.utils.dataset_utils import split_dataset from keras.src.utils.file_utils import get_file from keras.src.utils.image_dataset_utils import image_dataset_from_directory from keras.src.utils.image_utils import array_to_img from keras.src.utils.image_utils import img_to_array from keras.src.utils.image_utils import load_img from keras.src.utils.image_utils import save_img from keras.src.utils.io_utils import disable_interactive_logging from keras.src.utils.io_utils import enable_interactive_logging from keras.src.utils.io_utils import is_interactive_logging_enabled from keras.src.utils.model_visualization import model_to_dot from keras.src.utils.model_visualization import plot_model from keras.src.utils.numerical_utils import normalize from keras.src.utils.numerical_utils import to_categorical from keras.src.utils.progbar import Progbar from keras.src.utils.rng_utils import set_random_seed from keras.src.utils.sequence_utils import pad_sequences from keras.src.utils.text_dataset_utils import text_dataset_from_directory from keras.src.utils.timeseries_dataset_utils import ( timeseries_dataset_from_array, )
# Copyright (c) OpenMMLab. All rights reserved. # flake8: noqa from .config import * from .data import * from .dataset import * from .fileio import * from .hooks import * from .logging import * from .registry import * from .utils import *
# Copyright (c) OpenMMLab. All rights reserved. # flake8: noqa from .config import * from .data import * from .dataset import * from .fileio import * from .hooks import * from .registry import * from .utils import *
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/schedules/schedule_1x.py', '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' ] image_size = (896, 896) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] norm_cfg = dict(type='BN', requires_grad=True) checkpoint = 'https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa_in1k_20220119-5b4887a0.pth' # noqa model = dict( data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( _delete_=True, type='EfficientNet', arch='b3', drop_path_rate=0.2, out_indices=(3, 4, 5), frozen_stages=0, norm_cfg=dict( type='SyncBN', requires_grad=True, eps=1e-3, momentum=0.01), norm_eval=False, init_cfg=dict( type='Pretrained', prefix='backbone', checkpoint=checkpoint)), neck=dict( in_channels=[48, 136, 384], start_level=0, out_channels=256, relu_before_extra_convs=True, no_norm_on_lateral=True, norm_cfg=norm_cfg), bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg), # training and testing settings train_cfg=dict(assigner=dict(neg_iou_thr=0.5))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.8, 1.2), keep_ratio=True), dict(type='RandomCrop', crop_size=image_size), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=image_size, keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=4, num_workers=4, dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer optim_wrapper = dict( optimizer=dict(lr=0.04), paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) # learning policy max_epochs = 12 param_scheduler = [ dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[8, 11], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # cudnn_benchmark=True can accelerate fix-size training env_cfg = dict(cudnn_benchmark=True) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (4 samples per GPU) auto_scale_lr = dict(base_batch_size=32)
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/schedules/schedule_1x.py', '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' ] image_size = (896, 896) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] norm_cfg = dict(type='BN', requires_grad=True) checkpoint = 'https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa_in1k_20220119-5b4887a0.pth' # noqa model = dict( data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( _delete_=True, type='EfficientNet', arch='b3', drop_path_rate=0.2, out_indices=(3, 4, 5), frozen_stages=0, norm_cfg=dict( type='SyncBN', requires_grad=True, eps=1e-3, momentum=0.01), norm_eval=False, init_cfg=dict( type='Pretrained', prefix='backbone', checkpoint=checkpoint)), neck=dict( in_channels=[48, 136, 384], start_level=0, out_channels=256, relu_before_extra_convs=True, no_norm_on_lateral=True, norm_cfg=norm_cfg), bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg), # training and testing settings train_cfg=dict(assigner=dict(neg_iou_thr=0.5))) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.8, 1.2), keep_ratio=True), dict(type='RandomCrop', crop_size=image_size), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=image_size, keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=4, num_workers=4, dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer optim_wrapper = dict( optimizer=dict(lr=0.04), paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) # learning policy max_epochs = 12 param_scheduler = [ dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[8, 11], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # cudnn_benchmark=True can accelerate fix-size training env_cfg = dict(cudnn_benchmark=True) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (4 samples per GPU) auto_scale_lr = dict(base_batch_size=32)
_base_ = './sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco.py' num_proposals = 300 model = dict( rpn_head=dict(num_proposals=num_proposals), test_cfg=dict( _delete_=True, rpn=None, rcnn=dict(max_per_img=num_proposals))) # augmentation strategy originates from DETR. train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[[ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', scales=[(400, 1333), (500, 1333), (600, 1333)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ]]), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco.py' num_proposals = 300 model = dict( rpn_head=dict(num_proposals=num_proposals), test_cfg=dict( _delete_=True, rpn=None, rcnn=dict(max_per_img=num_proposals))) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR. train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomFlip', flip_ratio=0.5), dict( type='AutoAugment', policies=[[ dict( type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict( type='Resize', img_scale=[(400, 1333), (500, 1333), (600, 1333)], multiscale_mode='value', keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ]]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] data = dict(train=dict(pipeline=train_pipeline))
import grpc from grpc_health.v1 import health, health_pb2, health_pb2_grpc from grpc_reflection.v1alpha import reflection from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway from jina.constants import __default_host__ from jina.proto import jina_pb2, jina_pb2_grpc class DummyResponseModel(BaseModel): protocol: str class MultiProtocolGateway(Gateway): def __init__(self, **kwargs): super().__init__(**kwargs) self.http_port = self.ports[0] self.grpc_port = self.ports[1] self.health_servicer = health.HealthServicer(experimental_non_blocking=True) async def _setup_http_server(self): from fastapi import FastAPI app = FastAPI( title='HTTP Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return {'protocol': 'http'} self.http_server = Server( Config(app, host=__default_host__, port=self.http_port) ) async def _setup_grpc_server(self): self.grpc_server = grpc.aio.server() jina_pb2_grpc.add_JinaRPCServicer_to_server( self.streamer._streamer, self.grpc_server ) jina_pb2_grpc.add_JinaSingleDataRequestRPCServicer_to_server( self.streamer._streamer, self.grpc_server ) service_names = ( jina_pb2.DESCRIPTOR.services_by_name['JinaRPC'].full_name, reflection.SERVICE_NAME, ) # Mark all services as healthy. health_pb2_grpc.add_HealthServicer_to_server( self.health_servicer, self.grpc_server ) for service in service_names: self.health_servicer.set(service, health_pb2.HealthCheckResponse.SERVING) reflection.enable_server_reflection(service_names, self.grpc_server) self.grpc_server.add_insecure_port(f'{__default_host__}:{self.grpc_port}') await self.grpc_server.start() async def setup_server(self): await self._setup_http_server() await self._setup_grpc_server() async def run_server(self): await self.http_server.serve() await self.grpc_server.wait_for_termination() async def shutdown(self): self.http_server.should_exit = True await self.grpc_server.stop(0) await self.http_server.shutdown() self.health_servicer.enter_graceful_shutdown() @property def _should_exit(self) -> bool: return self.http_server.should_exit
import grpc from grpc_health.v1 import health, health_pb2, health_pb2_grpc from grpc_reflection.v1alpha import reflection from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.proto import jina_pb2, jina_pb2_grpc class DummyResponseModel(BaseModel): protocol: str class MultiProtocolGateway(Gateway): def __init__(self, **kwargs): super().__init__(**kwargs) self.http_port = self.ports[0] self.grpc_port = self.ports[1] self.health_servicer = health.HealthServicer(experimental_non_blocking=True) async def _setup_http_server(self): from fastapi import FastAPI app = FastAPI( title='HTTP Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return {'protocol': 'http'} self.http_server = Server( Config(app, host=__default_host__, port=self.http_port) ) async def _setup_grpc_server(self): self.grpc_server = grpc.aio.server() jina_pb2_grpc.add_JinaRPCServicer_to_server( self.streamer._streamer, self.grpc_server ) service_names = ( jina_pb2.DESCRIPTOR.services_by_name['JinaRPC'].full_name, reflection.SERVICE_NAME, ) # Mark all services as healthy. health_pb2_grpc.add_HealthServicer_to_server( self.health_servicer, self.grpc_server ) for service in service_names: self.health_servicer.set(service, health_pb2.HealthCheckResponse.SERVING) reflection.enable_server_reflection(service_names, self.grpc_server) self.grpc_server.add_insecure_port(f'{__default_host__}:{self.grpc_port}') await self.grpc_server.start() async def setup_server(self): await self._setup_http_server() await self._setup_grpc_server() async def run_server(self): await self.http_server.serve() await self.grpc_server.wait_for_termination() async def shutdown(self): self.http_server.should_exit = True await self.grpc_server.stop(0) await self.http_server.shutdown() self.health_servicer.enter_graceful_shutdown() @property def _should_exit(self) -> bool: return self.http_server.should_exit
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '2.24.1' short_version = __version__ def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '2.24.0' short_version = __version__ def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
from __future__ import annotations import tempfile class SafeTemporaryDirectory(tempfile.TemporaryDirectory): """ The GitHub Actions CI on Windows sometimes raises a NotADirectoryError when cleaning up the temporary directory. This class is a workaround to avoid the error. Unlike tempfile.TemporaryDirectory(ignore_cleanup_errors=True), this also works on Python 3.9. """ def __init__(self, *args, **kwargs) -> None: kwargs["ignore_cleanup_errors"] = True try: super().__init__(*args, **kwargs) except TypeError: del kwargs["ignore_cleanup_errors"] super().__init__(*args, **kwargs) def __exit__(self, *args, **kwargs): try: super().__exit__(*args, **kwargs) except NotADirectoryError: pass
from __future__ import annotations import tempfile class SafeTemporaryDirectory(tempfile.TemporaryDirectory): """ The GitHub Actions CI on Windows sometimes raises a NotADirectoryError when cleaning up the temporary directory. This class is a workaround to avoid the error. Unlike tempfile.TemporaryDirectory(ignore_cleanup_errors=True), this also works on Python 3.8 and 3.9. """ def __init__(self, *args, **kwargs) -> None: kwargs["ignore_cleanup_errors"] = True try: super().__init__(*args, **kwargs) except TypeError: del kwargs["ignore_cleanup_errors"] super().__init__(*args, **kwargs) def __exit__(self, *args, **kwargs): try: super().__exit__(*args, **kwargs) except NotADirectoryError: pass
import subprocess import pytest from flair_text import FlairTextEncoder from jina import Document, DocumentArray, Flow _EMBEDDING_DIM = 100 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=FlairTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, )
import subprocess import pytest from jina import Document, DocumentArray, Flow from ...flair_text import FlairTextEncoder _EMBEDDING_DIM = 100 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=FlairTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, )
from PIL import Image from sentence_transformers import SentenceTransformer, models, util ########### image = Image.open("two_dogs_in_snow.jpg") from transformers import CLIPModel, CLIPProcessor model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") inputs = processor(texts=["a cat", "a dog"], images=[image], return_tensors="pt", padding=True) output = model(**inputs) # vision_outputs = model.vision_model(pixel_values=inputs['pixel_values']) # image_embeds = model.visual_projection(vision_outputs[1]) # print(image_embeds.shape) # exit() # Load CLIP model clip = models.CLIPModel() model = SentenceTransformer(modules=[clip]) model.save("tmp-clip-model") model = SentenceTransformer("tmp-clip-model") # Encode an image: img_emb = model.encode(Image.open("two_dogs_in_snow.jpg")) # Encode text descriptions text_emb = model.encode(["Two dogs in the snow", "A cat on a table", "A picture of London at night"]) # Compute cosine similarities cos_scores = util.cos_sim(img_emb, text_emb) print(cos_scores)
from sentence_transformers import SentenceTransformer, util, models from PIL import Image ########### image = Image.open("two_dogs_in_snow.jpg") from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") inputs = processor(texts=["a cat", "a dog"], images=[image], return_tensors="pt", padding=True) output = model(**inputs) # vision_outputs = model.vision_model(pixel_values=inputs['pixel_values']) # image_embeds = model.visual_projection(vision_outputs[1]) # print(image_embeds.shape) # exit() # Load CLIP model clip = models.CLIPModel() model = SentenceTransformer(modules=[clip]) model.save("tmp-clip-model") model = SentenceTransformer("tmp-clip-model") # Encode an image: img_emb = model.encode(Image.open("two_dogs_in_snow.jpg")) # Encode text descriptions text_emb = model.encode(["Two dogs in the snow", "A cat on a table", "A picture of London at night"]) # Compute cosine similarities cos_scores = util.cos_sim(img_emb, text_emb) print(cos_scores)
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.utils.sequence_utils import pad_sequences """DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.legacy.preprocessing.sequence import TimeseriesGenerator from keras.src.legacy.preprocessing.sequence import make_sampling_table from keras.src.legacy.preprocessing.sequence import skipgrams
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.utils.sequence_utils import pad_sequences
import importlib.util import os import warnings from functools import wraps from typing import Optional def eval_env(var, default): """Check if environment varable has True-y value""" if var not in os.environ: return default val = os.environ.get(var, "0") trues = ["1", "true", "TRUE", "on", "ON", "yes", "YES"] falses = ["0", "false", "FALSE", "off", "OFF", "no", "NO"] if val in trues: return True if val not in falses: # fmt: off raise RuntimeError( f"Unexpected environment variable value `{var}={val}`. " f"Expected one of {trues + falses}") # fmt: on return False def is_module_available(*modules: str) -> bool: r"""Returns if a top-level module with :attr:`name` exists *without** importing it. This is generally safer than try-catch block around a `import X`. It avoids third party libraries breaking assumptions of some of our tests, e.g., setting multiprocessing start method when imported (see librosa/#747, torchvision/#544). """ return all(importlib.util.find_spec(m) is not None for m in modules) def requires_module(*modules: str): """Decorate function to give error message if invoked without required optional modules. This decorator is to give better error message to users rather than raising ``NameError: name 'module' is not defined`` at random places. """ missing = [m for m in modules if not is_module_available(m)] if not missing: # fall through. If all the modules are available, no need to decorate def decorator(func): return func else: req = f"module: {missing[0]}" if len(missing) == 1 else f"modules: {missing}" def decorator(func): @wraps(func) def wrapped(*args, **kwargs): raise RuntimeError(f"{func.__module__}.{func.__name__} requires {req}") return wrapped return decorator def deprecated(direction: str, version: Optional[str] = None, remove: bool = False): """Decorator to add deprecation message Args: direction (str): Migration steps to be given to users. version (str or int): The version when the object will be removed remove (bool): If enabled, append future removal message. """ def decorator(func): @wraps(func) def wrapped(*args, **kwargs): message = f"{func.__module__}.{func.__name__} has been deprecated. {direction}" if remove: message += f' It will be removed from {"future" if version is None else version} release. ' warnings.warn(message, stacklevel=2) return func(*args, **kwargs) message = "This function has been deprecated. " if remove: message += f'It will be removed from {"future" if version is None else version} release. ' wrapped.__doc__ = f"""DEPRECATED: {func.__doc__} .. warning:: {message} {direction} """ return wrapped return decorator def fail_with_message(message): """Generate decorator to give users message about missing TorchAudio extension.""" def decorator(func): @wraps(func) def wrapped(*args, **kwargs): raise RuntimeError(f"{func.__module__}.{func.__name__} {message}") return wrapped return decorator def no_op(func): """Op-op decorator. Used in place of fail_with_message when a functionality that requires extension works fine.""" return func
import importlib.util import os import warnings from functools import wraps from typing import Optional def eval_env(var, default): """Check if environment varable has True-y value""" if var not in os.environ: return default val = os.environ.get(var, "0") trues = ["1", "true", "TRUE", "on", "ON", "yes", "YES"] falses = ["0", "false", "FALSE", "off", "OFF", "no", "NO"] if val in trues: return True if val not in falses: # fmt: off raise RuntimeError( f"Unexpected environment variable value `{var}={val}`. " f"Expected one of {trues + falses}") # fmt: on return False def is_module_available(*modules: str) -> bool: r"""Returns if a top-level module with :attr:`name` exists *without** importing it. This is generally safer than try-catch block around a `import X`. It avoids third party libraries breaking assumptions of some of our tests, e.g., setting multiprocessing start method when imported (see librosa/#747, torchvision/#544). """ return all(importlib.util.find_spec(m) is not None for m in modules) def requires_module(*modules: str): """Decorate function to give error message if invoked without required optional modules. This decorator is to give better error message to users rather than raising ``NameError: name 'module' is not defined`` at random places. """ missing = [m for m in modules if not is_module_available(m)] if not missing: # fall through. If all the modules are available, no need to decorate def decorator(func): return func else: req = f"module: {missing[0]}" if len(missing) == 1 else f"modules: {missing}" def decorator(func): @wraps(func) def wrapped(*args, **kwargs): raise RuntimeError(f"{func.__module__}.{func.__name__} requires {req}") return wrapped return decorator def deprecated(direction: str, version: Optional[str] = None, remove: bool = False): """Decorator to add deprecation message Args: direction (str): Migration steps to be given to users. version (str or int): The version when the object will be removed remove (bool): If enabled, append future removal message. """ def decorator(func): @wraps(func) def wrapped(*args, **kwargs): message = f"{func.__module__}.{func.__name__} has been deprecated. {direction}" if remove: message += f' It will be removed from {"future" if version is None else version} release. ' warnings.warn(message, stacklevel=2) return func(*args, **kwargs) return wrapped return decorator def fail_with_message(message): """Generate decorator to give users message about missing TorchAudio extension.""" def decorator(func): @wraps(func) def wrapped(*args, **kwargs): raise RuntimeError(f"{func.__module__}.{func.__name__} {message}") return wrapped return decorator def no_op(func): """Op-op decorator. Used in place of fail_with_message when a functionality that requires extension works fine.""" return func
"""DeepLake reader.""" from typing import List, Optional, Union import numpy as np from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document distance_metric_map = { "l2": lambda a, b: np.linalg.norm(a - b, axis=1, ord=2), "l1": lambda a, b: np.linalg.norm(a - b, axis=1, ord=1), "max": lambda a, b: np.linalg.norm(a - b, axis=1, ord=np.inf), "cos": lambda a, b: np.dot(a, b.T) / (np.linalg.norm(a) * np.linalg.norm(b, axis=1)), "dot": lambda a, b: np.dot(a, b.T), } def vector_search( query_vector: Union[List, np.ndarray], data_vectors: np.ndarray, distance_metric: str = "l2", limit: Optional[int] = 4, ) -> List: """ Naive search for nearest neighbors args: query_vector: Union[List, np.ndarray] data_vectors: np.ndarray limit (int): number of nearest neighbors distance_metric: distance function 'L2' for Euclidean, 'L1' for Nuclear, 'Max' l-infinity distance, 'cos' for cosine similarity, 'dot' for dot product returns: nearest_indices: List, indices of nearest neighbors. """ # Calculate the distance between the query_vector and all data_vectors if isinstance(query_vector, list): query_vector = np.array(query_vector) query_vector = query_vector.reshape(1, -1) distances = distance_metric_map[distance_metric](query_vector, data_vectors) nearest_indices = np.argsort(distances) nearest_indices = ( nearest_indices[::-1][:limit] if distance_metric in ["cos"] else nearest_indices[:limit] ) return nearest_indices.tolist() class DeepLakeReader(BaseReader): """ DeepLake reader. Retrieve documents from existing DeepLake datasets. Args: dataset_name: Name of the deeplake dataset. """ def __init__( self, token: Optional[str] = None, ): """Initializing the deepLake reader.""" import_err_msg = ( "`deeplake` package not found, please run `pip install deeplake`" ) try: import deeplake # noqa except ImportError: raise ImportError(import_err_msg) self.token = token def load_data( self, query_vector: List[float], dataset_path: str, limit: int = 4, distance_metric: str = "l2", ) -> List[Document]: """ Load data from DeepLake. Args: dataset_name (str): Name of the DeepLake dataset. query_vector (List[float]): Query vector. limit (int): Number of results to return. Returns: List[Document]: A list of documents. """ import deeplake from deeplake.util.exceptions import TensorDoesNotExistError dataset = deeplake.load(dataset_path, token=self.token) try: embeddings = dataset.embedding.numpy(fetch_chunks=True) except Exception: raise TensorDoesNotExistError("embedding") indices = vector_search( query_vector, embeddings, distance_metric=distance_metric, limit=limit ) documents = [] for idx in indices: document = Document( text=str(dataset[idx].text.numpy().tolist()[0]), id_=dataset[idx].ids.numpy().tolist()[0], ) documents.append(document) return documents
"""DeepLake reader.""" from typing import List, Optional, Union import numpy as np from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document distance_metric_map = { "l2": lambda a, b: np.linalg.norm(a - b, axis=1, ord=2), "l1": lambda a, b: np.linalg.norm(a - b, axis=1, ord=1), "max": lambda a, b: np.linalg.norm(a - b, axis=1, ord=np.inf), "cos": lambda a, b: np.dot(a, b.T) / (np.linalg.norm(a) * np.linalg.norm(b, axis=1)), "dot": lambda a, b: np.dot(a, b.T), } def vector_search( query_vector: Union[List, np.ndarray], data_vectors: np.ndarray, distance_metric: str = "l2", limit: Optional[int] = 4, ) -> List: """Naive search for nearest neighbors args: query_vector: Union[List, np.ndarray] data_vectors: np.ndarray limit (int): number of nearest neighbors distance_metric: distance function 'L2' for Euclidean, 'L1' for Nuclear, 'Max' l-infinity distance, 'cos' for cosine similarity, 'dot' for dot product returns: nearest_indices: List, indices of nearest neighbors. """ # Calculate the distance between the query_vector and all data_vectors if isinstance(query_vector, list): query_vector = np.array(query_vector) query_vector = query_vector.reshape(1, -1) distances = distance_metric_map[distance_metric](query_vector, data_vectors) nearest_indices = np.argsort(distances) nearest_indices = ( nearest_indices[::-1][:limit] if distance_metric in ["cos"] else nearest_indices[:limit] ) return nearest_indices.tolist() class DeepLakeReader(BaseReader): """DeepLake reader. Retrieve documents from existing DeepLake datasets. Args: dataset_name: Name of the deeplake dataset. """ def __init__( self, token: Optional[str] = None, ): """Initializing the deepLake reader.""" import_err_msg = ( "`deeplake` package not found, please run `pip install deeplake`" ) try: import deeplake # noqa except ImportError: raise ImportError(import_err_msg) self.token = token def load_data( self, query_vector: List[float], dataset_path: str, limit: int = 4, distance_metric: str = "l2", ) -> List[Document]: """Load data from DeepLake. Args: dataset_name (str): Name of the DeepLake dataset. query_vector (List[float]): Query vector. limit (int): Number of results to return. Returns: List[Document]: A list of documents. """ import deeplake from deeplake.util.exceptions import TensorDoesNotExistError dataset = deeplake.load(dataset_path, token=self.token) try: embeddings = dataset.embedding.numpy(fetch_chunks=True) except Exception: raise TensorDoesNotExistError("embedding") indices = vector_search( query_vector, embeddings, distance_metric=distance_metric, limit=limit ) documents = [] for idx in indices: document = Document( text=str(dataset[idx].text.numpy().tolist()[0]), id_=dataset[idx].ids.numpy().tolist()[0], ) documents.append(document) return documents
""" This script contains an example how to perform semantic search with Qdrant. You need Qdrant up and running locally: https://qdrant.tech/documentation/quickstart/ Further, you need the Python Qdrant Client installed: https://python-client.qdrant.tech/, e.g.: ``` pip install qdrant-client ``` This script was created for `qdrant-client` v1.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_qdrant # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train", trust_remote_code=True) corpus = dataset["answer"] # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model sparse_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # 5. Encode the corpus corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=16, show_progress_bar=True) # Initially, we don't have a qdrant index yet corpus_index = None while True: # 6. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 7. Perform semantic search using qdrant results, search_time, corpus_index = semantic_search_qdrant( query_embeddings, corpus_index=corpus_index, corpus_embeddings=corpus_embeddings if corpus_index is None else None, top_k=5, output_index=True, ) # 8. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 10. Prompt for more queries queries = [input("Please enter a question: ")]
import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_qdrant # 1. Load the quora corpus with questions dataset = load_dataset("quora", split="train", trust_remote_code=True).map( lambda batch: {"text": [text for sample in batch["questions"] for text in sample["text"]]}, batched=True, remove_columns=["questions", "is_duplicate"], ) max_corpus_size = 100_000 corpus = dataset["text"][:max_corpus_size] # 2. Come up with some queries queries = [ "How do I become a good programmer?", "How do I become a good data scientist?", ] # 3. Load the model sparse_model = SparseEncoder("sparse-embedding/splade_example") # 5. Encode the corpus corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=32, show_progress_bar=True) # Initially, we don't have a qdrant index yet corpus_index = None while True: # 6. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 7. Perform semantic search using qdrant results, search_time, corpus_index = semantic_search_qdrant( query_embeddings, corpus_index=corpus_index, corpus_embeddings=corpus_embeddings if corpus_index is None else None, top_k=10, output_index=True, ) # 8. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 10. Prompt for more queries queries = [input("Please enter a question: ")]
import pytest from jina.importer import ImportExtensions from jina.logging.predefined import default_logger def test_bad_import(): from jina.logging.predefined import default_logger with pytest.raises(ModuleNotFoundError): with ImportExtensions(required=True, logger=default_logger): import abcdefg # no install and unlist with pytest.raises(ModuleNotFoundError): with ImportExtensions(required=True, logger=default_logger): import ngt # list but no install fake_tags = ['ngt', 'index', 'py37'] with ImportExtensions(required=False, logger=default_logger) as ie: ie._tags = fake_tags import ngt assert ie._tags == fake_tags with ImportExtensions(required=False, logger=default_logger) as ie: ie._tags = fake_tags import ngt.abc.edf assert ie._tags == fake_tags with ImportExtensions(required=False, logger=default_logger) as ie: ie._tags = fake_tags from ngt.abc import edf assert ie._tags == fake_tags with ImportExtensions(required=False, logger=default_logger) as ie: import abcdefg assert not ie._tags def test_no_suppress_other_exception(): with pytest.raises(Exception): with ImportExtensions(required=False, logger=default_logger): raise Exception with pytest.raises(Exception): with ImportExtensions(required=True, logger=default_logger): raise Exception def test_path_importer(tmpdir): tmpmodule = f'package.py' with open(tmpdir / tmpmodule, 'w') as f: f.write("raise ImportError") from jina.importer import PathImporter with pytest.raises(ImportError): PathImporter.add_modules(tmpdir / tmpmodule) with pytest.raises(FileNotFoundError): PathImporter.add_modules('some_package.py')
import pytest from jina.importer import ImportExtensions from jina.logging.predefined import default_logger def test_bad_import(): from jina.logging.predefined import default_logger with pytest.raises(ModuleNotFoundError): with ImportExtensions(required=True, logger=default_logger): import abcdefg # no install and unlist with pytest.raises(ModuleNotFoundError): with ImportExtensions(required=True, logger=default_logger): import ngt # list but no install fake_tags = ['ngt', 'index', 'py37'] with ImportExtensions(required=False, logger=default_logger) as ie: ie._tags = fake_tags import ngt assert ie._tags == fake_tags with ImportExtensions(required=False, logger=default_logger) as ie: ie._tags = fake_tags import ngt.abc.edf assert ie._tags == fake_tags with ImportExtensions(required=False, logger=default_logger) as ie: ie._tags = fake_tags from ngt.abc import edf assert ie._tags == fake_tags with ImportExtensions(required=False, logger=default_logger) as ie: import abcdefg assert not ie._tags def test_no_suppress_other_exception(): with pytest.raises(Exception): with ImportExtensions(required=False, logger=default_logger): raise Exception with pytest.raises(Exception): with ImportExtensions(required=True, logger=default_logger): raise Exception def test_path_importer(tmpdir): tmpmodule = f'package.py' with open(tmpdir / tmpmodule, 'w') as f: f.write("raise ImportError") from jina.importer import PathImporter with pytest.raises(ImportError): PathImporter.add_modules(tmpdir / tmpmodule) with pytest.raises(FileNotFoundError): PathImporter.add_modules('some_package.py')
import ipaddress import socket from typing import Callable from urllib.parse import urlparse import requests as req from backend.util.settings import Config # List of IP networks to block BLOCKED_IP_NETWORKS = [ # --8<-- [start:BLOCKED_IP_NETWORKS] ipaddress.ip_network("0.0.0.0/8"), # "This" Network ipaddress.ip_network("10.0.0.0/8"), # Private-Use ipaddress.ip_network("127.0.0.0/8"), # Loopback ipaddress.ip_network("169.254.0.0/16"), # Link Local ipaddress.ip_network("172.16.0.0/12"), # Private-Use ipaddress.ip_network("192.168.0.0/16"), # Private-Use ipaddress.ip_network("224.0.0.0/4"), # Multicast ipaddress.ip_network("240.0.0.0/4"), # Reserved for Future Use # --8<-- [end:BLOCKED_IP_NETWORKS] ] def is_ip_blocked(ip: str) -> bool: """ Checks if the IP address is in a blocked network. """ ip_addr = ipaddress.ip_address(ip) return any(ip_addr in network for network in BLOCKED_IP_NETWORKS) def validate_url(url: str, trusted_origins: list[str]) -> str: """ Validates the URL to prevent SSRF attacks by ensuring it does not point to a private or untrusted IP address, unless whitelisted. """ url = url.strip().strip("/") if not url.startswith(("http://", "https://")): url = "http://" + url parsed_url = urlparse(url) hostname = parsed_url.hostname if not hostname: raise ValueError(f"Invalid URL: Unable to determine hostname from {url}") if any(hostname == origin for origin in trusted_origins): return url # Resolve all IP addresses for the hostname ip_addresses = {result[4][0] for result in socket.getaddrinfo(hostname, None)} if not ip_addresses: raise ValueError(f"Unable to resolve IP address for {hostname}") # Check if all IP addresses are global for ip in ip_addresses: if is_ip_blocked(ip): raise ValueError( f"Access to private IP address at {hostname}: {ip} is not allowed." ) return url class Requests: """ A wrapper around the requests library that validates URLs before making requests. """ def __init__( self, trusted_origins: list[str] | None = None, raise_for_status: bool = True, extra_url_validator: Callable[[str], str] | None = None, extra_headers: dict[str, str] | None = None, ): self.trusted_origins = [] for url in trusted_origins or []: hostname = urlparse(url).hostname if not hostname: raise ValueError(f"Invalid URL: Unable to determine hostname of {url}") self.trusted_origins.append(hostname) self.raise_for_status = raise_for_status self.extra_url_validator = extra_url_validator self.extra_headers = extra_headers def request( self, method, url, headers=None, allow_redirects=False, *args, **kwargs ) -> req.Response: if self.extra_headers is not None: headers = {**(headers or {}), **self.extra_headers} url = validate_url(url, self.trusted_origins) if self.extra_url_validator is not None: url = self.extra_url_validator(url) response = req.request( method, url, headers=headers, allow_redirects=allow_redirects, *args, **kwargs, ) if self.raise_for_status: response.raise_for_status() return response def get(self, url, *args, **kwargs) -> req.Response: return self.request("GET", url, *args, **kwargs) def post(self, url, *args, **kwargs) -> req.Response: return self.request("POST", url, *args, **kwargs) def put(self, url, *args, **kwargs) -> req.Response: return self.request("PUT", url, *args, **kwargs) def delete(self, url, *args, **kwargs) -> req.Response: return self.request("DELETE", url, *args, **kwargs) def head(self, url, *args, **kwargs) -> req.Response: return self.request("HEAD", url, *args, **kwargs) def options(self, url, *args, **kwargs) -> req.Response: return self.request("OPTIONS", url, *args, **kwargs) def patch(self, url, *args, **kwargs) -> req.Response: return self.request("PATCH", url, *args, **kwargs) requests = Requests(trusted_origins=Config().trust_endpoints_for_requests)
import ipaddress import socket from typing import Callable from urllib.parse import urlparse import requests as req from backend.util.settings import Config # List of IP networks to block BLOCKED_IP_NETWORKS = [ ipaddress.ip_network("0.0.0.0/8"), # "This" Network ipaddress.ip_network("10.0.0.0/8"), # Private-Use ipaddress.ip_network("127.0.0.0/8"), # Loopback ipaddress.ip_network("169.254.0.0/16"), # Link Local ipaddress.ip_network("172.16.0.0/12"), # Private-Use ipaddress.ip_network("192.168.0.0/16"), # Private-Use ipaddress.ip_network("224.0.0.0/4"), # Multicast ipaddress.ip_network("240.0.0.0/4"), # Reserved for Future Use ] def is_ip_blocked(ip: str) -> bool: """ Checks if the IP address is in a blocked network. """ ip_addr = ipaddress.ip_address(ip) return any(ip_addr in network for network in BLOCKED_IP_NETWORKS) def validate_url(url: str, trusted_origins: list[str]) -> str: """ Validates the URL to prevent SSRF attacks by ensuring it does not point to a private or untrusted IP address, unless whitelisted. """ url = url.strip().strip("/") if not url.startswith(("http://", "https://")): url = "http://" + url parsed_url = urlparse(url) hostname = parsed_url.hostname if not hostname: raise ValueError(f"Invalid URL: Unable to determine hostname from {url}") if any(hostname == origin for origin in trusted_origins): return url # Resolve all IP addresses for the hostname ip_addresses = {result[4][0] for result in socket.getaddrinfo(hostname, None)} if not ip_addresses: raise ValueError(f"Unable to resolve IP address for {hostname}") # Check if all IP addresses are global for ip in ip_addresses: if is_ip_blocked(ip): raise ValueError( f"Access to private IP address at {hostname}: {ip} is not allowed." ) return url class Requests: """ A wrapper around the requests library that validates URLs before making requests. """ def __init__( self, trusted_origins: list[str] | None = None, raise_for_status: bool = True, extra_url_validator: Callable[[str], str] | None = None, extra_headers: dict[str, str] | None = None, ): self.trusted_origins = [] for url in trusted_origins or []: hostname = urlparse(url).hostname if not hostname: raise ValueError(f"Invalid URL: Unable to determine hostname of {url}") self.trusted_origins.append(hostname) self.raise_for_status = raise_for_status self.extra_url_validator = extra_url_validator self.extra_headers = extra_headers def request( self, method, url, headers=None, allow_redirects=False, *args, **kwargs ) -> req.Response: if self.extra_headers is not None: headers = {**(headers or {}), **self.extra_headers} url = validate_url(url, self.trusted_origins) if self.extra_url_validator is not None: url = self.extra_url_validator(url) response = req.request( method, url, headers=headers, allow_redirects=allow_redirects, *args, **kwargs, ) if self.raise_for_status: response.raise_for_status() return response def get(self, url, *args, **kwargs) -> req.Response: return self.request("GET", url, *args, **kwargs) def post(self, url, *args, **kwargs) -> req.Response: return self.request("POST", url, *args, **kwargs) def put(self, url, *args, **kwargs) -> req.Response: return self.request("PUT", url, *args, **kwargs) def delete(self, url, *args, **kwargs) -> req.Response: return self.request("DELETE", url, *args, **kwargs) def head(self, url, *args, **kwargs) -> req.Response: return self.request("HEAD", url, *args, **kwargs) def options(self, url, *args, **kwargs) -> req.Response: return self.request("OPTIONS", url, *args, **kwargs) def patch(self, url, *args, **kwargs) -> req.Response: return self.request("PATCH", url, *args, **kwargs) requests = Requests(trusted_origins=Config().trust_endpoints_for_requests)
"""PDF Table reader.""" from pathlib import Path from typing import Any, Dict, List, Optional import pandas as pd from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class PDFTableReader(BaseReader): """ PDF Table Reader. Reads table from PDF. Args: row_separator (str): Row separator used to join rows of a DataFrame. col_separator (str): Col separator used to join columns of a DataFrame. """ def __init__( self, *args: Any, row_separator: str = "\n", col_separator: str = ", ", **kwargs: Any ) -> None: super().__init__(*args, **kwargs) self._row_separator = row_separator self._col_separator = col_separator def load_data( self, file: Path, pages: str = "1", extra_info: Optional[Dict] = None ) -> List[Document]: """ Load data and extract table from PDF file. Args: file (Path): Path for the PDF file. pages (str): Pages to read tables from. extra_info (Optional[Dict]): Extra information. Returns: List[Document]: List of documents. """ import camelot results = [] tables = camelot.read_pdf(filepath=str(file), pages=pages) for table in tables: document = self._dataframe_to_document(df=table.df, extra_info=extra_info) results.append(document) return results def _dataframe_to_document( self, df: pd.DataFrame, extra_info: Optional[Dict] = None ) -> Document: df_list = df.apply( lambda row: (self._col_separator).join(row.astype(str).tolist()), axis=1 ).tolist() return Document( text=self._row_separator.join(df_list), extra_info=extra_info or {} )
"""PDF Table reader.""" from pathlib import Path from typing import Any, Dict, List, Optional import pandas as pd from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class PDFTableReader(BaseReader): """PDF Table Reader. Reads table from PDF. Args: row_separator (str): Row separator used to join rows of a DataFrame. col_separator (str): Col separator used to join columns of a DataFrame. """ def __init__( self, *args: Any, row_separator: str = "\n", col_separator: str = ", ", **kwargs: Any ) -> None: super().__init__(*args, **kwargs) self._row_separator = row_separator self._col_separator = col_separator def load_data( self, file: Path, pages: str = "1", extra_info: Optional[Dict] = None ) -> List[Document]: """Load data and extract table from PDF file. Args: file (Path): Path for the PDF file. pages (str): Pages to read tables from. extra_info (Optional[Dict]): Extra information. Returns: List[Document]: List of documents. """ import camelot results = [] tables = camelot.read_pdf(filepath=str(file), pages=pages) for table in tables: document = self._dataframe_to_document(df=table.df, extra_info=extra_info) results.append(document) return results def _dataframe_to_document( self, df: pd.DataFrame, extra_info: Optional[Dict] = None ) -> Document: df_list = df.apply( lambda row: (self._col_separator).join(row.astype(str).tolist()), axis=1 ).tolist() return Document( text=self._row_separator.join(df_list), extra_info=extra_info or {} )
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # https://github.com/pytorch/fairseq/blob/265df7144c79446f5ea8d835bda6e727f54dad9d/LICENSE """ Data pre-processing: create tsv files for training (and valiation). """ import logging import re from pathlib import Path from typing import Dict, Tuple, Union import torch import torchaudio _LG = logging.getLogger(__name__) def create_tsv( root_dir: Union[str, Path], out_dir: Union[str, Path], dataset: str = "librispeech", valid_percent: float = 0.01, seed: int = 0, extension: str = "flac", ) -> None: """Create file lists for training and validation. Args: root_dir (str or Path): The directory of the dataset. out_dir (str or Path): The directory to store the file lists. dataset (str, optional): The dataset to use. Options: [``librispeech``, ``libri-light``]. (Default: ``librispeech``) valid_percent (float, optional): The percentage of data for validation. (Default: 0.01) seed (int): The seed for randomly selecting the validation files. extension (str, optional): The extension of audio files. (Default: ``flac``) Returns: None """ assert valid_percent >= 0 and valid_percent <= 1.0 torch.manual_seed(seed) root_dir = Path(root_dir) out_dir = Path(out_dir) if not out_dir.exists(): out_dir.mkdir() valid_f = open(out_dir / f"{dataset}_valid.tsv", "w") if valid_percent > 0 else None search_pattern = ".*train.*" with open(out_dir / f"{dataset}_train.tsv", "w") as train_f: print(root_dir, file=train_f) if valid_f is not None: print(root_dir, file=valid_f) for fname in root_dir.glob(f"**/*.{extension}"): if re.match(search_pattern, str(fname)): frames = torchaudio.info(fname).num_frames dest = train_f if torch.rand(1) > valid_percent else valid_f print(f"{fname.relative_to(root_dir)}\t{frames}", file=dest) if valid_f is not None: valid_f.close() _LG.info("Finished creating the file lists successfully") def _get_feat_lens_paths(feat_dir: Path, split: str, rank: int, num_rank: int) -> Tuple[Path, Path]: r"""Get the feature and lengths paths based on feature directory, data split, rank, and number of ranks. Args: feat_dir (Path): The directory that stores the feature and lengths tensors. split (str): The split of data. Options: [``train``, ``valid``]. rank (int): The rank in the multi-processing. num_rank (int): The number of ranks for multi-processing in feature extraction. Returns: (Path, Path) Path: The file path of the feature tensor for the current rank. Path: The file path of the lengths tensor for the current rank. """ feat_path = feat_dir / f"{split}_{rank}_{num_rank}.pt" len_path = feat_dir / f"len_{split}_{rank}_{num_rank}.pt" return feat_path, len_path def _get_model_path(km_dir: Path) -> Path: r"""Get the file path of the KMeans clustering model Args: km_dir (Path): The directory to store the KMeans clustering model. Returns: Path: The file path of the model. """ return km_dir / "model.pt" def _get_id2label() -> Dict: """Get the dictionary that maps indices of ASR model's last layer dimension to the corresponding labels.""" bundle = torchaudio.pipelines.HUBERT_ASR_LARGE labels = bundle.get_labels() return {i: char.lower() for i, char in enumerate(labels)} def _get_label2id() -> Dict: """Get the dictionary that maps the labels to the corresponding indices in ASR model's last dimension.""" bundle = torchaudio.pipelines.HUBERT_ASR_LARGE labels = bundle.get_labels() return {char: i for i, char in enumerate(labels)}
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # https://github.com/pytorch/fairseq/blob/265df7144c79446f5ea8d835bda6e727f54dad9d/LICENSE """ Data pre-processing: create tsv files for training (and valiation). """ import logging import re from pathlib import Path from typing import Tuple, Union import torch import torchaudio _LG = logging.getLogger(__name__) def create_tsv( root_dir: Union[str, Path], out_dir: Union[str, Path], dataset: str = "librispeech", valid_percent: float = 0.01, seed: int = 0, extension: str = "flac", ) -> None: """Create file lists for training and validation. Args: root_dir (str or Path): The directory of the dataset. out_dir (str or Path): The directory to store the file lists. dataset (str, optional): The dataset to use. Options: [``librispeech``, ``libri-light``]. (Default: ``librispeech``) valid_percent (float, optional): The percentage of data for validation. (Default: 0.01) seed (int): The seed for randomly selecting the validation files. extension (str, optional): The extension of audio files. (Default: ``flac``) Returns: None """ assert valid_percent >= 0 and valid_percent <= 1.0 torch.manual_seed(seed) root_dir = Path(root_dir) out_dir = Path(out_dir) if not out_dir.exists(): out_dir.mkdir() valid_f = open(out_dir / f"{dataset}_valid.tsv", "w") if valid_percent > 0 else None search_pattern = ".*train.*" with open(out_dir / f"{dataset}_train.tsv", "w") as train_f: print(root_dir, file=train_f) if valid_f is not None: print(root_dir, file=valid_f) for fname in root_dir.glob(f"**/*.{extension}"): if re.match(search_pattern, str(fname)): frames = torchaudio.info(fname).num_frames dest = train_f if torch.rand(1) > valid_percent else valid_f print(f"{fname.relative_to(root_dir)}\t{frames}", file=dest) if valid_f is not None: valid_f.close() _LG.info("Finished creating the file lists successfully") def _get_feat_lens_paths(feat_dir: Path, split: str, rank: int, num_rank: int) -> Tuple[Path, Path]: r"""Get the feature and lengths paths based on feature directory, data split, rank, and number of ranks. Args: feat_dir (Path): The directory that stores the feature and lengths tensors. split (str): The split of data. Options: [``train``, ``valid``]. rank (int): The rank in the multi-processing. num_rank (int): The number of ranks for multi-processing in feature extraction. Returns: (Path, Path) Path: The file path of the feature tensor for the current rank. Path: The file path of the lengths tensor for the current rank. """ feat_path = feat_dir / f"{split}_{rank}_{num_rank}.pt" len_path = feat_dir / f"len_{split}_{rank}_{num_rank}.pt" return feat_path, len_path def _get_model_path(km_dir: Path) -> Path: r"""Get the file path of the KMeans clustering model Args: km_dir (Path): The directory to store the KMeans clustering model. Returns: Path: The file path of the model. """ return km_dir / "model.pt"
from typing import List, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field from langchain_community.tools.office365.base import O365BaseTool class SendMessageSchema(BaseModel): """Input for SendMessageTool.""" body: str = Field( ..., description="The message body to be sent.", ) to: List[str] = Field( ..., description="The list of recipients.", ) subject: str = Field( ..., description="The subject of the message.", ) cc: Optional[List[str]] = Field( None, description="The list of CC recipients.", ) bcc: Optional[List[str]] = Field( None, description="The list of BCC recipients.", ) class O365SendMessage(O365BaseTool): """Send an email in Office 365.""" name: str = "send_email" description: str = ( "Use this tool to send an email with the provided message fields." ) args_schema: Type[SendMessageSchema] = SendMessageSchema def _run( self, body: str, to: List[str], subject: str, cc: Optional[List[str]] = None, bcc: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: # Get mailbox object mailbox = self.account.mailbox() message = mailbox.new_message() # Assign message values message.body = body message.subject = subject message.to.add(to) if cc is not None: message.cc.add(cc) if bcc is not None: message.bcc.add(bcc) message.send() output = "Message sent: " + str(message) return output
from typing import List, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field from langchain_community.tools.office365.base import O365BaseTool class SendMessageSchema(BaseModel): """Input for SendMessageTool.""" body: str = Field( ..., description="The message body to be sent.", ) to: List[str] = Field( ..., description="The list of recipients.", ) subject: str = Field( ..., description="The subject of the message.", ) cc: Optional[List[str]] = Field( None, description="The list of CC recipients.", ) bcc: Optional[List[str]] = Field( None, description="The list of BCC recipients.", ) class O365SendMessage(O365BaseTool): # type: ignore[override, override] """Send an email in Office 365.""" name: str = "send_email" description: str = ( "Use this tool to send an email with the provided message fields." ) args_schema: Type[SendMessageSchema] = SendMessageSchema def _run( self, body: str, to: List[str], subject: str, cc: Optional[List[str]] = None, bcc: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: # Get mailbox object mailbox = self.account.mailbox() message = mailbox.new_message() # Assign message values message.body = body message.subject = subject message.to.add(to) if cc is not None: message.cc.add(cc) if bcc is not None: message.bcc.add(bcc) message.send() output = "Message sent: " + str(message) return output
import numpy as np from docarray import BaseDoc, DocList from docarray.typing import NdArray from pydantic import Field from jina import Executor, requests class TextDoc(BaseDoc): text: str class EmbeddingResponseModel(BaseDoc): embeddings: NdArray = Field(description="The embedding of the texts", default=[]) class Config(BaseDoc.Config): allow_population_by_field_name = True arbitrary_types_allowed = True json_encoders = {NdArray: lambda v: v.tolist()} class SampleExecutor(Executor): @requests(on="/encode") def foo(self, docs: DocList[TextDoc], **kwargs) -> DocList[EmbeddingResponseModel]: ret = [] for doc in docs: ret.append( EmbeddingResponseModel(id=doc.id, embeddings=np.random.random((1, 64))) ) return DocList[EmbeddingResponseModel](ret)
import numpy as np from docarray import BaseDoc, DocList from docarray.typing import NdArray from pydantic import Field from jina import Executor, requests class TextDoc(BaseDoc): text: str class EmbeddingResponseModel(BaseDoc): embeddings: NdArray = Field(description="The embedding of the texts", default=[]) class Config(BaseDoc.Config): allow_population_by_field_name = True arbitrary_types_allowed = True json_encoders = {NdArray: lambda v: v.tolist()} class SampleExecutor(Executor): @requests(on="/encode") def foo(self, docs: DocList[TextDoc], **kwargs) -> DocList[EmbeddingResponseModel]: ret = [] for doc in docs: ret.append(EmbeddingResponseModel(embeddings=np.random.random((1, 64)))) return DocList[EmbeddingResponseModel](ret)
from functools import partial from typing import Any, Optional import torch import torch.nn as nn from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = ["AlexNet", "AlexNet_Weights", "alexnet"] class AlexNet(nn.Module): def __init__(self, num_classes: int = 1000, dropout: float = 0.5) -> None: super().__init__() _log_api_usage_once(self) self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.classifier = nn.Sequential( nn.Dropout(p=dropout), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(p=dropout), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x class AlexNet_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/alexnet-owt-7be5be79.pth", transforms=partial(ImageClassification, crop_size=224), meta={ "num_params": 61100840, "min_size": (63, 63), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#alexnet-and-vgg", "_metrics": { "ImageNet-1K": { "acc@1": 56.522, "acc@5": 79.066, } }, "_ops": 0.714, "_file_size": 233.087, "_docs": """ These weights reproduce closely the results of the paper using a simplified training recipe. """, }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", AlexNet_Weights.IMAGENET1K_V1)) def alexnet(*, weights: Optional[AlexNet_Weights] = None, progress: bool = True, **kwargs: Any) -> AlexNet: """AlexNet model architecture from `One weird trick for parallelizing convolutional neural networks <https://arxiv.org/abs/1404.5997>`__. .. note:: AlexNet was originally introduced in the `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html>`__ paper. Our implementation is based instead on the "One weird trick" paper above. Args: weights (:class:`~torchvision.models.AlexNet_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.AlexNet_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.squeezenet.AlexNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/alexnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.AlexNet_Weights :members: """ weights = AlexNet_Weights.verify(weights) if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = AlexNet(**kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model
from functools import partial from typing import Any, Optional import torch import torch.nn as nn from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = ["AlexNet", "AlexNet_Weights", "alexnet"] class AlexNet(nn.Module): def __init__(self, num_classes: int = 1000, dropout: float = 0.5) -> None: super().__init__() _log_api_usage_once(self) self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.classifier = nn.Sequential( nn.Dropout(p=dropout), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(p=dropout), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x class AlexNet_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/alexnet-owt-7be5be79.pth", transforms=partial(ImageClassification, crop_size=224), meta={ "num_params": 61100840, "min_size": (63, 63), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#alexnet-and-vgg", "_metrics": { "ImageNet-1K": { "acc@1": 56.522, "acc@5": 79.066, } }, "_ops": 0.714, "_file_size": 233.087, "_docs": """ These weights reproduce closely the results of the paper using a simplified training recipe. """, }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", AlexNet_Weights.IMAGENET1K_V1)) def alexnet(*, weights: Optional[AlexNet_Weights] = None, progress: bool = True, **kwargs: Any) -> AlexNet: """AlexNet model architecture from `One weird trick for parallelizing convolutional neural networks <https://arxiv.org/abs/1404.5997>`__. .. note:: AlexNet was originally introduced in the `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html>`__ paper. Our implementation is based instead on the "One weird trick" paper above. Args: weights (:class:`~torchvision.models.AlexNet_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.AlexNet_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.squeezenet.AlexNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/alexnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.AlexNet_Weights :members: """ weights = AlexNet_Weights.verify(weights) if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = AlexNet(**kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress)) return model
from __future__ import annotations from typing import Any, Optional from langchain_core.outputs import LLMResult from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler DEFAULT_ANSWER_PREFIX_TOKENS = ["Final", "Answer", ":"] class AsyncFinalIteratorCallbackHandler(AsyncIteratorCallbackHandler): """Callback handler that returns an async iterator. Only the final output of the agent will be iterated. """ def append_to_last_tokens(self, token: str) -> None: self.last_tokens.append(token) self.last_tokens_stripped.append(token.strip()) if len(self.last_tokens) > len(self.answer_prefix_tokens): self.last_tokens.pop(0) self.last_tokens_stripped.pop(0) def check_if_answer_reached(self) -> bool: if self.strip_tokens: return self.last_tokens_stripped == self.answer_prefix_tokens_stripped return self.last_tokens == self.answer_prefix_tokens def __init__( self, *, answer_prefix_tokens: Optional[list[str]] = None, strip_tokens: bool = True, stream_prefix: bool = False, ) -> None: """Instantiate AsyncFinalIteratorCallbackHandler. Args: answer_prefix_tokens: Token sequence that prefixes the answer. Default is ["Final", "Answer", ":"] strip_tokens: Ignore white spaces and new lines when comparing answer_prefix_tokens to last tokens? (to determine if answer has been reached) stream_prefix: Should answer prefix itself also be streamed? """ super().__init__() if answer_prefix_tokens is None: self.answer_prefix_tokens = DEFAULT_ANSWER_PREFIX_TOKENS else: self.answer_prefix_tokens = answer_prefix_tokens if strip_tokens: self.answer_prefix_tokens_stripped = [ token.strip() for token in self.answer_prefix_tokens ] else: self.answer_prefix_tokens_stripped = self.answer_prefix_tokens self.last_tokens = [""] * len(self.answer_prefix_tokens) self.last_tokens_stripped = [""] * len(self.answer_prefix_tokens) self.strip_tokens = strip_tokens self.stream_prefix = stream_prefix self.answer_reached = False async def on_llm_start( self, serialized: dict[str, Any], prompts: list[str], **kwargs: Any, ) -> None: # If two calls are made in a row, this resets the state self.done.clear() self.answer_reached = False async def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: if self.answer_reached: self.done.set() async def on_llm_new_token(self, token: str, **kwargs: Any) -> None: # Remember the last n tokens, where n = len(answer_prefix_tokens) self.append_to_last_tokens(token) # Check if the last n tokens match the answer_prefix_tokens list ... if self.check_if_answer_reached(): self.answer_reached = True if self.stream_prefix: for t in self.last_tokens: self.queue.put_nowait(t) return # If yes, then put tokens from now on if self.answer_reached: self.queue.put_nowait(token)
from __future__ import annotations from typing import Any, Optional from langchain_core.outputs import LLMResult from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler DEFAULT_ANSWER_PREFIX_TOKENS = ["Final", "Answer", ":"] class AsyncFinalIteratorCallbackHandler(AsyncIteratorCallbackHandler): """Callback handler that returns an async iterator. Only the final output of the agent will be iterated. """ def append_to_last_tokens(self, token: str) -> None: self.last_tokens.append(token) self.last_tokens_stripped.append(token.strip()) if len(self.last_tokens) > len(self.answer_prefix_tokens): self.last_tokens.pop(0) self.last_tokens_stripped.pop(0) def check_if_answer_reached(self) -> bool: if self.strip_tokens: return self.last_tokens_stripped == self.answer_prefix_tokens_stripped return self.last_tokens == self.answer_prefix_tokens def __init__( self, *, answer_prefix_tokens: Optional[list[str]] = None, strip_tokens: bool = True, stream_prefix: bool = False, ) -> None: """Instantiate AsyncFinalIteratorCallbackHandler. Args: answer_prefix_tokens: Token sequence that prefixes the answer. Default is ["Final", "Answer", ":"] strip_tokens: Ignore white spaces and new lines when comparing answer_prefix_tokens to last tokens? (to determine if answer has been reached) stream_prefix: Should answer prefix itself also be streamed? """ super().__init__() if answer_prefix_tokens is None: self.answer_prefix_tokens = DEFAULT_ANSWER_PREFIX_TOKENS else: self.answer_prefix_tokens = answer_prefix_tokens if strip_tokens: self.answer_prefix_tokens_stripped = [ token.strip() for token in self.answer_prefix_tokens ] else: self.answer_prefix_tokens_stripped = self.answer_prefix_tokens self.last_tokens = [""] * len(self.answer_prefix_tokens) self.last_tokens_stripped = [""] * len(self.answer_prefix_tokens) self.strip_tokens = strip_tokens self.stream_prefix = stream_prefix self.answer_reached = False async def on_llm_start( self, serialized: dict[str, Any], prompts: list[str], **kwargs: Any ) -> None: # If two calls are made in a row, this resets the state self.done.clear() self.answer_reached = False async def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: if self.answer_reached: self.done.set() async def on_llm_new_token(self, token: str, **kwargs: Any) -> None: # Remember the last n tokens, where n = len(answer_prefix_tokens) self.append_to_last_tokens(token) # Check if the last n tokens match the answer_prefix_tokens list ... if self.check_if_answer_reached(): self.answer_reached = True if self.stream_prefix: for t in self.last_tokens: self.queue.put_nowait(t) return # If yes, then put tokens from now on if self.answer_reached: self.queue.put_nowait(token)
# Copyright (c) OpenMMLab. All rights reserved. import itertools from typing import Dict, Optional from mmengine.model import is_model_wrapper from mmengine.registry import HOOKS, MODELS from .hook import DATA_BATCH, Hook @HOOKS.register_module() class EMAHook(Hook): """A Hook to apply Exponential Moving Average (EMA) on the model during training. Note: - EMAHook takes priority over CheckpointHook. - The original model parameters are actually saved in ema field after train. Args: ema_type (str): The type of EMA strategy to use. You can find the supported strategies in ``mmengine.model.averaged_model``. Defaults to 'ExponentialMovingAverage' """ priority = 'NORMAL' def __init__(self, ema_type: str = 'ExponentialMovingAverage', **kwargs): self.ema_cfg = dict(type=ema_type, **kwargs) def before_run(self, runner) -> None: """Create an ema copy of the model.""" model = runner.model if is_model_wrapper(model): model = model.module self.src_model = model self.ema_model = MODELS.build( self.ema_cfg, default_args=dict(model=self.src_model)) def after_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """Update ema parameter.""" self.ema_model.update_parameters(self.src_model) def before_val_epoch(self, runner) -> None: """We load parameter values from ema model to source model before validation.""" self._swap_ema_parameters() def after_val_epoch(self, runner, metrics: Optional[Dict[str, float]] = None) -> None: """We recover source model's parameter from ema model after validation.""" self._swap_ema_parameters() def before_test_epoch(self, runner) -> None: """We load parameter values from ema model to source model before test.""" self._swap_ema_parameters() def after_test_epoch(self, runner, metrics: Optional[Dict[str, float]] = None) -> None: """We recover source model's parameter from ema model after test.""" self._swap_ema_parameters() def before_save_checkpoint(self, runner, checkpoint: dict) -> None: """Save ema parameters to checkpoint.""" # save ema parameters to the source model's state dict so that we can # directly load the averaged model weights for deployment. self._swap_ema_parameters() checkpoint['ema_state_dict'] = self.ema_model.state_dict() self._swap_ema_parameters() def after_load_checkpoint(self, runner, checkpoint: dict) -> None: """Resume ema parameters from checkpoint.""" self.ema_model.load_state_dict(checkpoint['ema_state_dict']) # The original model parameters are actually saved in ema field. # swap the weights back to resume ema state. self._swap_ema_parameters() def _swap_ema_parameters(self) -> None: """Swap the parameter of model with ema_model.""" avg_param = ( itertools.chain(self.ema_model.module.parameters(), self.ema_model.module.buffers()) if self.ema_model.update_buffers else self.ema_model.module.parameters()) src_param = ( itertools.chain(self.src_model.parameters(), self.src_model.buffers()) if self.ema_model.update_buffers else self.src_model.parameters()) for p_avg, p_src in zip(avg_param, src_param): tmp = p_avg.data.clone() p_avg.data.copy_(p_src.data) p_src.data.copy_(tmp)
# Copyright (c) OpenMMLab. All rights reserved. import itertools from typing import Optional from mmengine.model import is_model_wrapper from mmengine.registry import HOOKS, MODELS from .hook import DATA_BATCH, Hook @HOOKS.register_module() class EMAHook(Hook): """A Hook to apply Exponential Moving Average (EMA) on the model during training. Note: - EMAHook takes priority over CheckpointHook. - The original model parameters are actually saved in ema field after train. Args: ema_type (str): The type of EMA strategy to use. You can find the supported strategies in ``mmengine.model.averaged_model``. Defaults to 'ExponentialMovingAverage' """ def __init__(self, ema_type: str = 'ExponentialMovingAverage', **kwargs): self.ema_cfg = dict(type=ema_type, **kwargs) def before_run(self, runner) -> None: """Create an ema copy of the model.""" model = runner.model if is_model_wrapper(model): model = model.module self.src_model = model self.ema_model = MODELS.build( self.ema_cfg, default_args=dict(model=self.src_model)) def after_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """Update ema parameter.""" self.ema_model.update_parameters(self.src_model) def before_val_epoch(self, runner) -> None: """We load parameter values from ema model to source model before validation.""" self._swap_ema_parameters() def after_val_epoch(self, runner) -> None: """We recover source model's parameter from ema model after validation.""" self._swap_ema_parameters() def before_test_epoch(self, runner) -> None: """We load parameter values from ema model to source model before test.""" self._swap_ema_parameters() def after_test_epoch(self, runner) -> None: """We recover source model's parameter from ema model after test.""" self._swap_ema_parameters() def before_save_checkpoint(self, runner, checkpoint: dict) -> None: """Save ema parameters to checkpoint.""" # save ema parameters to the source model's state dict so that we can # directly load the averaged model weights for deployment. self._swap_ema_parameters() checkpoint['ema_state_dict'] = self.ema_model.state_dict() self._swap_ema_parameters() def after_load_checkpoint(self, runner, checkpoint: dict) -> None: """Resume ema parameters from checkpoint.""" self.ema_model.load_state_dict(checkpoint['ema_state_dict']) # The original model parameters are actually saved in ema field. # swap the weights back to resume ema state. self._swap_ema_parameters() def _swap_ema_parameters(self) -> None: """Swap the parameter of model with ema_model.""" avg_param = ( itertools.chain(self.ema_model.module.parameters(), self.ema_model.module.buffers()) if self.ema_model.update_buffers else self.ema_model.module.parameters()) src_param = ( itertools.chain(self.src_model.parameters(), self.src_model.buffers()) if self.ema_model.update_buffers else self.src_model.parameters()) for p_avg, p_src in zip(avg_param, src_param): tmp = p_avg.data.clone() p_avg.data.copy_(p_src.data) p_src.data.copy_(tmp)
from __future__ import annotations from torch import Tensor, nn from sentence_transformers.models.Module import Module class Dropout(Module): """Dropout layer. Args: dropout: Sets a dropout value for dense layer. """ config_keys: list[str] = ["dropout"] def __init__(self, dropout: float = 0.2): super().__init__() self.dropout = dropout self.dropout_layer = nn.Dropout(self.dropout) def forward(self, features: dict[str, Tensor]): features.update({"sentence_embedding": self.dropout_layer(features["sentence_embedding"])}) return features def save(self, output_path: str, *args, safe_serialization: bool = True, **kwargs) -> None: self.save_config(output_path)
from __future__ import annotations import json import os from torch import Tensor, nn class Dropout(nn.Module): """Dropout layer. Args: dropout: Sets a dropout value for dense layer. """ def __init__(self, dropout: float = 0.2): super().__init__() self.dropout = dropout self.dropout_layer = nn.Dropout(self.dropout) def forward(self, features: dict[str, Tensor]): features.update({"sentence_embedding": self.dropout_layer(features["sentence_embedding"])}) return features def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump({"dropout": self.dropout}, fOut) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) model = Dropout(**config) return model
import json import logging import os from typing import Dict, List, Literal import torch from torch import Tensor, nn from .tokenizer import WhitespaceTokenizer logger = logging.getLogger(__name__) class BoW(nn.Module): """Implements a Bag-of-Words (BoW) model to derive sentence embeddings. A weighting can be added to allow the generation of tf-idf vectors. The output vector has the size of the vocab. """ def __init__( self, vocab: List[str], word_weights: Dict[str, float] = {}, unknown_word_weight: float = 1, cumulative_term_frequency: bool = True, ): super(BoW, self).__init__() vocab = list(set(vocab)) # Ensure vocab is unique self.config_keys = ["vocab", "word_weights", "unknown_word_weight", "cumulative_term_frequency"] self.vocab = vocab self.word_weights = word_weights self.unknown_word_weight = unknown_word_weight self.cumulative_term_frequency = cumulative_term_frequency # Maps wordIdx -> word weight self.weights = [] num_unknown_words = 0 for word in vocab: weight = unknown_word_weight if word in word_weights: weight = word_weights[word] elif word.lower() in word_weights: weight = word_weights[word.lower()] else: num_unknown_words += 1 self.weights.append(weight) logger.info( "{} out of {} words without a weighting value. Set weight to {}".format( num_unknown_words, len(vocab), unknown_word_weight ) ) self.tokenizer = WhitespaceTokenizer(vocab, stop_words=set(), do_lower_case=False) self.sentence_embedding_dimension = len(vocab) def forward(self, features: Dict[str, Tensor]): # Nothing to do, everything is done in get_sentence_features return features def tokenize(self, texts: List[str], **kwargs) -> List[int]: tokenized = [self.tokenizer.tokenize(text, **kwargs) for text in texts] return self.get_sentence_features(tokenized) def get_sentence_embedding_dimension(self): return self.sentence_embedding_dimension def get_sentence_features( self, tokenized_texts: List[List[int]], pad_seq_length: int = 0 ) -> Dict[Literal["sentence_embedding"], torch.Tensor]: vectors = [] for tokens in tokenized_texts: vector = torch.zeros(self.get_sentence_embedding_dimension(), dtype=torch.float32) for token in tokens: if self.cumulative_term_frequency: vector[token] += self.weights[token] else: vector[token] = self.weights[token] vectors.append(vector) return {"sentence_embedding": torch.stack(vectors)} def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return BoW(**config)
import json import logging import os from typing import Dict, List import torch from torch import Tensor, nn from .tokenizer import WhitespaceTokenizer logger = logging.getLogger(__name__) class BoW(nn.Module): """Implements a Bag-of-Words (BoW) model to derive sentence embeddings. A weighting can be added to allow the generation of tf-idf vectors. The output vector has the size of the vocab. """ def __init__( self, vocab: List[str], word_weights: Dict[str, float] = {}, unknown_word_weight: float = 1, cumulative_term_frequency: bool = True, ): super(BoW, self).__init__() vocab = list(set(vocab)) # Ensure vocab is unique self.config_keys = ["vocab", "word_weights", "unknown_word_weight", "cumulative_term_frequency"] self.vocab = vocab self.word_weights = word_weights self.unknown_word_weight = unknown_word_weight self.cumulative_term_frequency = cumulative_term_frequency # Maps wordIdx -> word weight self.weights = [] num_unknown_words = 0 for word in vocab: weight = unknown_word_weight if word in word_weights: weight = word_weights[word] elif word.lower() in word_weights: weight = word_weights[word.lower()] else: num_unknown_words += 1 self.weights.append(weight) logger.info( "{} out of {} words without a weighting value. Set weight to {}".format( num_unknown_words, len(vocab), unknown_word_weight ) ) self.tokenizer = WhitespaceTokenizer(vocab, stop_words=set(), do_lower_case=False) self.sentence_embedding_dimension = len(vocab) def forward(self, features: Dict[str, Tensor]): # Nothing to do, everything is done in get_sentence_features return features def tokenize(self, texts: List[str], **kwargs) -> List[int]: tokenized = [self.tokenizer.tokenize(text, **kwargs) for text in texts] return self.get_sentence_features(tokenized) def get_sentence_embedding_dimension(self): return self.sentence_embedding_dimension def get_sentence_features(self, tokenized_texts: List[List[int]], pad_seq_length: int = 0): vectors = [] for tokens in tokenized_texts: vector = torch.zeros(self.get_sentence_embedding_dimension(), dtype=torch.float32) for token in tokens: if self.cumulative_term_frequency: vector[token] += self.weights[token] else: vector[token] = self.weights[token] vectors.append(vector) return {"sentence_embedding": torch.stack(vectors)} def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return BoW(**config)
from keras.src.export.onnx import export_onnx from keras.src.export.saved_model import ExportArchive from keras.src.export.saved_model import export_saved_model from keras.src.export.tfsm_layer import TFSMLayer
from keras.src.export.export_lib import ExportArchive
from typing import ( TYPE_CHECKING, TypeVar, Sequence, List, Dict, Optional, ) import numpy as np from .... import Document, DocumentArray from ....math import ndarray from ....math.helper import EPSILON from ....math.ndarray import to_numpy_array from ....score import NamedScore if TYPE_CHECKING: import tensorflow import torch WeaviateArrayType = TypeVar( 'WeaviateArrayType', np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float], ) class FindMixin: def _find_similar_vectors( self, query: 'WeaviateArrayType', limit=10, filter: Optional[Dict] = None ): query = to_numpy_array(query) is_all_zero = np.all(query == 0) if is_all_zero: query = query + EPSILON query_dict = {'vector': query} query_builder = ( self._client.query.get(self._class_name, '_serialized') .with_additional(['id', 'certainty']) .with_limit(limit) .with_near_vector(query_dict) ) if filter: query_builder = query_builder.with_where(filter) results = query_builder.do() docs = [] if 'errors' in results: errors = '\n'.join(map(lambda error: error['message'], results['errors'])) raise ValueError( f'find failed, please check your filter query. Errors: \n{errors}' ) found_results = results.get('data', {}).get('Get', {}).get(self._class_name, []) # The serialized document is stored in results['data']['Get'][self._class_name] for result in found_results: doc = Document.from_base64(result['_serialized'], **self._serialize_config) certainty = result['_additional']['certainty'] doc.scores['weaviate_certainty'] = NamedScore(value=certainty) if certainty is None: doc.scores['cosine_similarity'] = NamedScore(value=None) else: doc.scores['cosine_similarity'] = NamedScore(value=2 * certainty - 1) doc.tags['wid'] = result['_additional']['id'] docs.append(doc) return DocumentArray(docs) def _filter( self, filter: Dict, ) -> 'DocumentArray': """Returns a subset of documents by filtering by the given filter (Weaviate `where` filter). :param filter: the input filter to apply in each stored document :return: a `DocumentArray` containing the `Document` objects that verify the filter. """ if not filter: return self results = ( self._client.query.get(self._class_name, '_serialized') .with_additional('id') .with_where(filter) .do() ) docs = [] if 'errors' in results: errors = '\n'.join(map(lambda error: error['message'], results['errors'])) raise ValueError( f'filter failed, please check your filter query. Errors: \n{errors}' ) found_results = results.get('data', {}).get('Get', {}).get(self._class_name, []) # The serialized document is stored in results['data']['Get'][self._class_name] for result in found_results: doc = Document.from_base64(result['_serialized'], **self._serialize_config) doc.tags['wid'] = result['_additional']['id'] docs.append(doc) return DocumentArray(docs) def _find( self, query: 'WeaviateArrayType', limit: int = 10, filter: Optional[Dict] = None, **kwargs, ) -> List['DocumentArray']: """Returns approximate nearest neighbors given a batch of input queries. :param query: input supported to be stored in Weaviate. This includes any from the list '[np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float]]' :param limit: number of retrieved items :param filter: filter query used for pre-filtering :return: DocumentArray containing the closest documents to the query if it is a single query, otherwise a list of DocumentArrays containing the closest Document objects for each of the queries in `query`. Note: Weaviate returns `certainty` values. To get cosine similarities one needs to use `cosine_sim = 2*certainty - 1` as explained here: https://weaviate.io/developers/weaviate/current/more-resources/faq.html#q-how-do-i-get-the-cosine-similarity-from-weaviates-certainty """ num_rows, _ = ndarray.get_array_rows(query) if num_rows == 1: return [self._find_similar_vectors(query, limit=limit, filter=filter)] else: closest_docs = [] for q in query: da = self._find_similar_vectors(q, limit=limit, filter=filter) closest_docs.append(da) return closest_docs
from typing import ( TYPE_CHECKING, TypeVar, Sequence, List, Dict, Optional, ) import numpy as np from .... import Document, DocumentArray from ....math import ndarray from ....math.helper import EPSILON from ....math.ndarray import to_numpy_array from ....score import NamedScore if TYPE_CHECKING: import tensorflow import torch WeaviateArrayType = TypeVar( 'WeaviateArrayType', np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float], ) class FindMixin: def _find_similar_vectors( self, query: 'WeaviateArrayType', limit=10, filter: Optional[Dict] = None ): query = to_numpy_array(query) is_all_zero = np.all(query == 0) if is_all_zero: query = query + EPSILON query_dict = {'vector': query} query_builder = ( self._client.query.get(self._class_name, '_serialized') .with_additional(['id', 'certainty']) .with_limit(limit) .with_near_vector(query_dict) ) if filter: query_builder = query_builder.with_where(filter) results = query_builder.do() docs = [] if 'errors' in results: errors = '\n'.join(map(lambda error: error['message'], results['errors'])) raise ValueError( f'find failed, please check your filter query. Errors: \n{errors}' ) found_results = results.get('data', {}).get('Get', {}).get(self._class_name, []) # The serialized document is stored in results['data']['Get'][self._class_name] for result in found_results: doc = Document.from_base64(result['_serialized'], **self._serialize_config) certainty = result['_additional']['certainty'] doc.scores['weaviate_certainty'] = NamedScore(value=certainty) if certainty is None: doc.scores['cosine_similarity'] = NamedScore(value=None) else: doc.scores['cosine_similarity'] = NamedScore(value=2 * certainty - 1) doc.tags['wid'] = result['_additional']['id'] docs.append(doc) return DocumentArray(docs) def _filter( self, filter: Dict, ) -> 'DocumentArray': """Returns a subset of documents by filtering by the given filter (Weaviate `where` filter). :param filter: the input filter to apply in each stored document :return: a `DocumentArray` containing the `Document` objects that verify the filter. """ if not filter: return self results = ( self._client.query.get(self._class_name, '_serialized') .with_additional('id') .with_where(filter) .do() ) docs = [] if 'errors' in results: errors = '\n'.join(map(lambda error: error['message'], results['errors'])) raise ValueError( f'filter failed, please check your filter query. Errors: \n{errors}' ) found_results = results.get('data', {}).get('Get', {}).get(self._class_name, []) # The serialized document is stored in results['data']['Get'][self._class_name] for result in found_results: doc = Document.from_base64(result['_serialized'], **self._serialize_config) doc.tags['wid'] = result['_additional']['id'] docs.append(doc) return DocumentArray(docs) def _find( self, query: 'WeaviateArrayType', limit: int = 10, filter: Optional[Dict] = None, **kwargs, ) -> List['DocumentArray']: """Returns approximate nearest neighbors given a batch of input queries. :param query: input supported to be stored in Weaviate. This includes any from the list '[np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float]]' :param limit: number of retrieved items :param filter: filter query used for pre-filtering :return: DocumentArray containing the closest documents to the query if it is a single query, otherwise a list of DocumentArrays containing the closest Document objects for each of the queries in `query`. Note: Weaviate returns `certainty` values. To get cosine similarities one needs to use `cosine_sim = 2*certainty - 1` as explained here: https://www.semi.technology/developers/weaviate/current/more-resources/faq.html#q-how-do-i-get-the-cosine-similarity-from-weaviates-certainty """ num_rows, _ = ndarray.get_array_rows(query) if num_rows == 1: return [self._find_similar_vectors(query, limit=limit, filter=filter)] else: closest_docs = [] for q in query: da = self._find_similar_vectors(q, limit=limit, filter=filter) closest_docs.append(da) return closest_docs
import pytest from jina.excepts import NoAvailablePortError
import pytest from jina.excepts import NoAvailablePortError @pytest.fixture(scope='function', autouse=True) def patched_random_port(mocker): print('using random port fixture...') used_ports = set() from jina.helper import random_port def _random_port(): for i in range(10): _port = random_port() if _port is not None and _port not in used_ports: used_ports.add(_port) return _port raise NoAvailablePortError mocker.patch('jina.helper.random_port', new_callable=lambda: _random_port)
"""Run smoke tests""" import sys from pathlib import Path import torch import torchvision from torchvision.io import decode_jpeg, read_file, read_image from torchvision.models import resnet50, ResNet50_Weights SCRIPT_DIR = Path(__file__).parent def smoke_test_torchvision() -> None: print( "Is torchvision usable?", all(x is not None for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]), ) def smoke_test_torchvision_read_decode() -> None: img_jpg = read_image(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) if img_jpg.shape != (3, 606, 517): raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") img_png = read_image(str(SCRIPT_DIR / "assets" / "interlaced_png" / "wizard_low.png")) if img_png.shape != (4, 471, 354): raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}") def smoke_test_torchvision_decode_jpeg_cuda(): img_jpg_data = read_file(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) img_jpg = decode_jpeg(img_jpg_data, device="cuda") if img_jpg.shape != (3, 606, 517): raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") def smoke_test_compile() -> None: try: model = resnet50().cuda() model = torch.compile(model) x = torch.randn(1, 3, 224, 224, device="cuda") out = model(x) print(f"torch.compile model output: {out.shape}") except RuntimeError: if sys.platform == "win32": print("Successfully caught torch.compile RuntimeError on win") elif sys.version_info >= (3, 11, 0): print("Successfully caught torch.compile RuntimeError on Python 3.11") else: raise def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None: img = read_image(str(SCRIPT_DIR / ".." / "gallery" / "assets" / "dog2.jpg")).to(device) # Step 1: Initialize model with the best available weights weights = ResNet50_Weights.DEFAULT model = resnet50(weights=weights).to(device) model.eval() # Step 2: Initialize the inference transforms preprocess = weights.transforms() # Step 3: Apply inference preprocessing transforms batch = preprocess(img).unsqueeze(0) # Step 4: Use the model and print the predicted category prediction = model(batch).squeeze(0).softmax(0) class_id = prediction.argmax().item() score = prediction[class_id].item() category_name = weights.meta["categories"][class_id] expected_category = "German shepherd" print(f"{category_name} ({device}): {100 * score:.1f}%") if category_name != expected_category: raise RuntimeError(f"Failed ResNet50 classify {category_name} Expected: {expected_category}") def main() -> None: print(f"torchvision: {torchvision.__version__}") print(f"torch.cuda.is_available: {torch.cuda.is_available()}") smoke_test_torchvision() smoke_test_torchvision_read_decode() smoke_test_torchvision_resnet50_classify() if torch.cuda.is_available(): smoke_test_torchvision_decode_jpeg_cuda() smoke_test_torchvision_resnet50_classify("cuda") smoke_test_compile() if torch.backends.mps.is_available(): smoke_test_torchvision_resnet50_classify("mps") if __name__ == "__main__": main()
"""Run smoke tests""" import os import sys from pathlib import Path import torch import torch.nn as nn import torchvision from torchvision.io import read_image from torchvision.models import resnet50, ResNet50_Weights SCRIPT_DIR = Path(__file__).parent def smoke_test_torchvision() -> None: print( "Is torchvision usable?", all(x is not None for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]), ) def smoke_test_torchvision_read_decode() -> None: img_jpg = read_image(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) if img_jpg.ndim != 3 or img_jpg.numel() < 100: raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") img_png = read_image(str(SCRIPT_DIR / "assets" / "interlaced_png" / "wizard_low.png")) if img_png.ndim != 3 or img_png.numel() < 100: raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}") def smoke_test_compile() -> None: try: model = resnet50().cuda() model = torch.compile(model) x = torch.randn(1, 3, 224, 224, device="cuda") out = model(x) print(f"torch.compile model output: {out.shape}") except RuntimeError: if sys.platform == "win32": print("Successfully caught torch.compile RuntimeError on win") elif sys.version_info >= (3, 11, 0): print("Successfully caught torch.compile RuntimeError on Python 3.11") else: raise def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None: img = read_image(str(SCRIPT_DIR / ".." / "gallery" / "assets" / "dog2.jpg")).to(device) # Step 1: Initialize model with the best available weights weights = ResNet50_Weights.DEFAULT model = resnet50(weights=weights).to(device) model.eval() # Step 2: Initialize the inference transforms preprocess = weights.transforms() # Step 3: Apply inference preprocessing transforms batch = preprocess(img).unsqueeze(0) # Step 4: Use the model and print the predicted category prediction = model(batch).squeeze(0).softmax(0) class_id = prediction.argmax().item() score = prediction[class_id].item() category_name = weights.meta["categories"][class_id] expected_category = "German shepherd" print(f"{category_name} ({device}): {100 * score:.1f}%") if category_name != expected_category: raise RuntimeError(f"Failed ResNet50 classify {category_name} Expected: {expected_category}") def main() -> None: print(f"torchvision: {torchvision.__version__}") print(f"torch.cuda.is_available: {torch.cuda.is_available()}") smoke_test_torchvision() smoke_test_torchvision_read_decode() smoke_test_torchvision_resnet50_classify() if torch.cuda.is_available(): smoke_test_torchvision_resnet50_classify("cuda") smoke_test_compile() if torch.backends.mps.is_available(): smoke_test_torchvision_resnet50_classify("mps") if __name__ == "__main__": main()
# mypy: allow-untyped-defs __all__ = ["hashable", "transitive_get", "raises", "reverse_dict", "xfail", "freeze"] def hashable(x): try: hash(x) return True except TypeError: return False def transitive_get(key, d): """Transitive dict.get >>> d = {1: 2, 2: 3, 3: 4} >>> d.get(1) 2 >>> transitive_get(1, d) 4 """ while hashable(key) and key in d: key = d[key] return key def raises(err, lamda): # codespell:ignore lamda try: lamda() # codespell:ignore lamda return False except err: return True # Taken from theano/theano/gof/sched.py # Avoids licensing issues because this was written by Matthew Rocklin def _toposort(edges): """Topological sort algorithm by Kahn [1] - O(nodes + vertices) inputs: edges - a dict of the form {a: {b, c}} where b and c depend on a outputs: L - an ordered list of nodes that satisfy the dependencies of edges >>> # xdoctest: +SKIP >>> _toposort({1: (2, 3), 2: (3,)}) [1, 2, 3] Closely follows the wikipedia page [2] [1] Kahn, Arthur B. (1962), "Topological sorting of large networks", Communications of the ACM [2] http://en.wikipedia.org/wiki/Toposort#Algorithms """ incoming_edges = reverse_dict(edges) incoming_edges = {k: set(val) for k, val in incoming_edges.items()} S = {v for v in edges if v not in incoming_edges} L = [] while S: n = S.pop() L.append(n) for m in edges.get(n, ()): assert n in incoming_edges[m] incoming_edges[m].remove(n) if not incoming_edges[m]: S.add(m) if any(incoming_edges.get(v, None) for v in edges): raise ValueError("Input has cycles") return L def reverse_dict(d): """Reverses direction of dependence dict >>> d = {"a": (1, 2), "b": (2, 3), "c": ()} >>> reverse_dict(d) # doctest: +SKIP {1: ('a',), 2: ('a', 'b'), 3: ('b',)} :note: dict order are not deterministic. As we iterate on the input dict, it make the output of this function depend on the dict order. So this function output order should be considered as undeterministic. """ result = {} # type: ignore[var-annotated] for key in d: for val in d[key]: result[val] = result.get(val, ()) + (key,) return result def xfail(func): try: func() raise Exception("XFailed test passed") # pragma:nocover # noqa: TRY002 except Exception: pass def freeze(d): """Freeze container to hashable form >>> freeze(1) 1 >>> freeze([1, 2]) (1, 2) >>> freeze({1: 2}) # doctest: +SKIP frozenset([(1, 2)]) """ if isinstance(d, dict): return frozenset(map(freeze, d.items())) if isinstance(d, set): return frozenset(map(freeze, d)) if isinstance(d, (tuple, list)): return tuple(map(freeze, d)) return d
# mypy: allow-untyped-defs __all__ = ["hashable", "transitive_get", "raises", "reverse_dict", "xfail", "freeze"] def hashable(x): try: hash(x) return True except TypeError: return False def transitive_get(key, d): """Transitive dict.get >>> d = {1: 2, 2: 3, 3: 4} >>> d.get(1) 2 >>> transitive_get(1, d) 4 """ while hashable(key) and key in d: key = d[key] return key def raises(err, lamda): try: lamda() return False except err: return True # Taken from theano/theano/gof/sched.py # Avoids licensing issues because this was written by Matthew Rocklin def _toposort(edges): """Topological sort algorithm by Kahn [1] - O(nodes + vertices) inputs: edges - a dict of the form {a: {b, c}} where b and c depend on a outputs: L - an ordered list of nodes that satisfy the dependencies of edges >>> # xdoctest: +SKIP >>> _toposort({1: (2, 3), 2: (3,)}) [1, 2, 3] Closely follows the wikipedia page [2] [1] Kahn, Arthur B. (1962), "Topological sorting of large networks", Communications of the ACM [2] http://en.wikipedia.org/wiki/Toposort#Algorithms """ incoming_edges = reverse_dict(edges) incoming_edges = {k: set(val) for k, val in incoming_edges.items()} S = {v for v in edges if v not in incoming_edges} L = [] while S: n = S.pop() L.append(n) for m in edges.get(n, ()): assert n in incoming_edges[m] incoming_edges[m].remove(n) if not incoming_edges[m]: S.add(m) if any(incoming_edges.get(v, None) for v in edges): raise ValueError("Input has cycles") return L def reverse_dict(d): """Reverses direction of dependence dict >>> d = {"a": (1, 2), "b": (2, 3), "c": ()} >>> reverse_dict(d) # doctest: +SKIP {1: ('a',), 2: ('a', 'b'), 3: ('b',)} :note: dict order are not deterministic. As we iterate on the input dict, it make the output of this function depend on the dict order. So this function output order should be considered as undeterministic. """ result = {} # type: ignore[var-annotated] for key in d: for val in d[key]: result[val] = result.get(val, ()) + (key,) return result def xfail(func): try: func() raise Exception("XFailed test passed") # pragma:nocover # noqa: TRY002 except Exception: pass def freeze(d): """Freeze container to hashable form >>> freeze(1) 1 >>> freeze([1, 2]) (1, 2) >>> freeze({1: 2}) # doctest: +SKIP frozenset([(1, 2)]) """ if isinstance(d, dict): return frozenset(map(freeze, d.items())) if isinstance(d, set): return frozenset(map(freeze, d)) if isinstance(d, (tuple, list)): return tuple(map(freeze, d)) return d
import os import urllib import pytest from pydantic import parse_obj_as, schema_json_of from docarray.document.io.json import orjson_dumps from docarray.typing import TextUrl REMOTE_TXT = 'https://de.wikipedia.org/wiki/Brixen' CUR_DIR = os.path.dirname(os.path.abspath(__file__)) LOCAL_TXT = os.path.join(CUR_DIR, '..', '..', '..', 'toydata', 'penal_colony.txt') @pytest.mark.parametrize( 'url,expected_beginning', [(REMOTE_TXT, '<!DOCTYPE html>'), (LOCAL_TXT, '“It’s a peculiar apparatus,”')], ) def test_load(url, expected_beginning): uri = parse_obj_as(TextUrl, url) txt = uri.load() assert txt.startswith(expected_beginning) @pytest.mark.parametrize('url', [REMOTE_TXT, LOCAL_TXT]) def test_load_to_bytes(url): uri = parse_obj_as(TextUrl, url) txt_bytes = uri.load_to_bytes() assert isinstance(txt_bytes, bytes) def test_proto_text_url(): uri = parse_obj_as(TextUrl, LOCAL_TXT) uri._to_node_protobuf() def test_load_timeout(): url = parse_obj_as(TextUrl, REMOTE_TXT) with pytest.raises(urllib.error.URLError): _ = url.load(timeout=0.001) with pytest.raises(urllib.error.URLError): _ = url.load_to_bytes(timeout=0.001) def test_json_schema(): schema_json_of(TextUrl) def test_dump_json(): url = parse_obj_as(TextUrl, REMOTE_TXT) orjson_dumps(url)
import os import urllib import pytest from pydantic import parse_obj_as from docarray.typing import TextUrl REMOTE_TXT = 'https://de.wikipedia.org/wiki/Brixen' CUR_DIR = os.path.dirname(os.path.abspath(__file__)) LOCAL_TXT = os.path.join(CUR_DIR, '..', '..', '..', 'toydata', 'penal_colony.txt') @pytest.mark.parametrize( 'url,expected_beginning', [(REMOTE_TXT, '<!DOCTYPE html>'), (LOCAL_TXT, '“It’s a peculiar apparatus,”')], ) def test_load(url, expected_beginning): uri = parse_obj_as(TextUrl, url) txt = uri.load() assert txt.startswith(expected_beginning) @pytest.mark.parametrize('url', [REMOTE_TXT, LOCAL_TXT]) def test_load_to_bytes(url): uri = parse_obj_as(TextUrl, url) txt_bytes = uri.load_to_bytes() assert isinstance(txt_bytes, bytes) def test_proto_text_url(): uri = parse_obj_as(TextUrl, LOCAL_TXT) uri._to_node_protobuf() def test_load_timeout(): url = parse_obj_as(TextUrl, REMOTE_TXT) with pytest.raises(urllib.error.URLError): _ = url.load(timeout=0.001) with pytest.raises(urllib.error.URLError): _ = url.load_to_bytes(timeout=0.001)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from pathlib import Path import pytest @pytest.fixture(scope='session') def docker_image_name() -> str: return Path(__file__).parents[1].stem.lower() @pytest.fixture(scope='session') def build_docker_image(docker_image_name: str) -> str: subprocess.run(['docker', 'build', '-t', docker_image_name, '.'], check=True) return docker_image_name @pytest.fixture(scope='session') def build_docker_image_gpu(docker_image_name: str) -> str: image_name = f'{docker_image_name}:gpu' subprocess.run( ['docker', 'build', '-t', image_name, '-f', 'Dockerfile.gpu', '.'], check=True ) return image_name
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from pathlib import Path import pytest @pytest.fixture(scope='session') def docker_image_name() -> str: return Path(__file__).parents[1].stem.lower() @pytest.fixture(scope='session') def build_docker_image(docker_image_name: str) -> str: subprocess.run(['docker', 'build', '-t', docker_image_name, '.'], check=True) return docker_image_name @pytest.fixture(scope='session') def build_docker_image_gpu(docker_image_name: str) -> str: image_name = f'{docker_image_name}:gpu' subprocess.run( ['docker', 'build', '-t', image_name, '-f', 'Dockerfile.gpu', '.'], check=True ) return image_name
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import pytest from jina import Document, DocumentArray from ...laser_encoder import LaserEncoder @pytest.fixture() def docs_generator(): return DocumentArray((Document(text='random text') for _ in range(30))) def test_flair_batch(docs_generator): encoder = LaserEncoder() docs = docs_generator encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['r']}) assert len(docs.get_attributes('embedding')) == 30 assert docs[0].embedding.shape == (1024,) def test_traversal_path(): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text) ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] encoder = LaserEncoder() encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['c']}) for path, count in [[['r'], 0], [['c'], 3], [['cc'], 0]]: assert len(docs.traverse_flat(path).get_attributes('embedding')) == count if count > 0: assert docs.traverse_flat(path).get_attributes('embedding')[0].shape == (1024,) encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['cc']}) for path, count in [[['r'], 0], [['c'], 3], [['cc'], 2]]: assert len(docs.traverse_flat(path).get_attributes('embedding')) == count if count > 0: assert docs.traverse_flat(path).get_attributes('embedding')[0].shape == (1024,) def test_no_documents(): encoder = LaserEncoder() docs = [] encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['r']}) assert not docs
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import pytest from jina import Document, DocumentArray from jinahub.encoder.laser_encoder import LaserEncoder @pytest.fixture() def docs_generator(): return DocumentArray((Document(text='random text') for _ in range(30))) def test_flair_batch(docs_generator): encoder = LaserEncoder() docs = docs_generator encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['r']}) assert len(docs.get_attributes('embedding')) == 30 assert docs[0].embedding.shape == (1024,) def test_traversal_path(): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text) ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] encoder = LaserEncoder() encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['c']}) for path, count in [[['r'], 0], [['c'], 3], [['cc'], 0]]: assert len(docs.traverse_flat(path).get_attributes('embedding')) == count if count > 0: assert docs.traverse_flat(path).get_attributes('embedding')[0].shape == (1024,) encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['cc']}) for path, count in [[['r'], 0], [['c'], 3], [['cc'], 2]]: assert len(docs.traverse_flat(path).get_attributes('embedding')) == count if count > 0: assert docs.traverse_flat(path).get_attributes('embedding')[0].shape == (1024,) def test_no_documents(): encoder = LaserEncoder() docs = [] encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['r']}) assert not docs
# Copyright (c) OpenMMLab. All rights reserved. import pickle from collections import OrderedDict import numpy as np import pytest import torch from mmengine import MessageHub class TestMessageHub: def test_init(self): message_hub = MessageHub('name') assert message_hub.instance_name == 'name' assert len(message_hub.log_scalars) == 0 assert len(message_hub.log_scalars) == 0 # The type of log_scalars's value must be `HistoryBuffer`. with pytest.raises(AssertionError): MessageHub('hello', log_scalars=OrderedDict(a=1)) # `Resumed_keys` with pytest.raises(AssertionError): MessageHub( 'hello', runtime_info=OrderedDict(iter=1), resumed_keys=OrderedDict(iters=False)) def test_update_scalar(self): message_hub = MessageHub.get_instance('mmengine') # test create target `HistoryBuffer` by name message_hub.update_scalar('name', 1) log_buffer = message_hub.log_scalars['name'] assert (log_buffer._log_history == np.array([1])).all() # test update target `HistoryBuffer` by name message_hub.update_scalar('name', 1) assert (log_buffer._log_history == np.array([1, 1])).all() # unmatched string will raise a key error def test_update_info(self): message_hub = MessageHub.get_instance('mmengine') # test runtime value can be overwritten. message_hub.update_info('key', 2) assert message_hub.runtime_info['key'] == 2 message_hub.update_info('key', 1) assert message_hub.runtime_info['key'] == 1 def test_get_scalar(self): message_hub = MessageHub.get_instance('mmengine') # Get undefined key will raise error with pytest.raises(KeyError): message_hub.get_scalar('unknown') # test get log_buffer as wished log_history = np.array([1, 2, 3, 4, 5]) count = np.array([1, 1, 1, 1, 1]) for i in range(len(log_history)): message_hub.update_scalar('test_value', float(log_history[i]), int(count[i])) recorded_history, recorded_count = \ message_hub.get_scalar('test_value').data assert (log_history == recorded_history).all() assert (recorded_count == count).all() def test_get_runtime(self): message_hub = MessageHub.get_instance('mmengine') with pytest.raises(KeyError): message_hub.get_info('unknown') recorded_dict = dict(a=1, b=2) message_hub.update_info('test_value', recorded_dict) assert message_hub.get_info('test_value') == recorded_dict def test_get_scalars(self): message_hub = MessageHub.get_instance('mmengine') log_dict = dict( loss=1, loss_cls=torch.tensor(2), loss_bbox=np.array(3), loss_iou=dict(value=1, count=2)) message_hub.update_scalars(log_dict) loss = message_hub.get_scalar('loss') loss_cls = message_hub.get_scalar('loss_cls') loss_bbox = message_hub.get_scalar('loss_bbox') loss_iou = message_hub.get_scalar('loss_iou') assert loss.current() == 1 assert loss_cls.current() == 2 assert loss_bbox.current() == 3 assert loss_iou.mean() == 0.5 with pytest.raises(TypeError): loss_dict = dict(error_type=[]) message_hub.update_scalars(loss_dict) with pytest.raises(AssertionError): loss_dict = dict(error_type=dict(count=1)) message_hub.update_scalars(loss_dict) def test_getstate(self): message_hub = MessageHub.get_instance('name') # update log_scalars. message_hub.update_scalar('loss', 0.1) message_hub.update_scalar('lr', 0.1, resumed=False) # update runtime information message_hub.update_info('iter', 1, resumed=True) message_hub.update_info('feat', [1, 2, 3], resumed=False) obj = pickle.dumps(message_hub) instance = pickle.loads(obj) with pytest.raises(KeyError): instance.get_info('feat') with pytest.raises(KeyError): instance.get_info('lr') instance.get_info('iter') instance.get_scalar('loss')
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest import torch from mmengine import MessageHub class TestMessageHub: def test_init(self): message_hub = MessageHub('name') assert message_hub.instance_name == 'name' assert len(message_hub.log_buffers) == 0 assert len(message_hub.log_buffers) == 0 def test_update_log(self): message_hub = MessageHub.get_instance('mmengine') # test create target `LogBuffer` by name message_hub.update_log('name', 1) log_buffer = message_hub.log_buffers['name'] assert (log_buffer._log_history == np.array([1])).all() # test update target `LogBuffer` by name message_hub.update_log('name', 1) assert (log_buffer._log_history == np.array([1, 1])).all() # unmatched string will raise a key error def test_update_info(self): message_hub = MessageHub.get_instance('mmengine') # test runtime value can be overwritten. message_hub.update_info('key', 2) assert message_hub.runtime_info['key'] == 2 message_hub.update_info('key', 1) assert message_hub.runtime_info['key'] == 1 def test_get_log_buffers(self): message_hub = MessageHub.get_instance('mmengine') # Get undefined key will raise error with pytest.raises(KeyError): message_hub.get_log('unknown') # test get log_buffer as wished log_history = np.array([1, 2, 3, 4, 5]) count = np.array([1, 1, 1, 1, 1]) for i in range(len(log_history)): message_hub.update_log('test_value', float(log_history[i]), int(count[i])) recorded_history, recorded_count = \ message_hub.get_log('test_value').data assert (log_history == recorded_history).all() assert (recorded_count == count).all() def test_get_runtime(self): message_hub = MessageHub.get_instance('mmengine') with pytest.raises(KeyError): message_hub.get_info('unknown') recorded_dict = dict(a=1, b=2) message_hub.update_info('test_value', recorded_dict) assert message_hub.get_info('test_value') == recorded_dict def test_get_log_vars(self): message_hub = MessageHub.get_instance('mmengine') log_dict = dict( loss=1, loss_cls=torch.tensor(2), loss_bbox=np.array(3), loss_iou=dict(value=1, count=2)) message_hub.update_log_vars(log_dict) loss = message_hub.get_log('loss') loss_cls = message_hub.get_log('loss_cls') loss_bbox = message_hub.get_log('loss_bbox') loss_iou = message_hub.get_log('loss_iou') assert loss.current() == 1 assert loss_cls.current() == 2 assert loss_bbox.current() == 3 assert loss_iou.mean() == 0.5 with pytest.raises(TypeError): loss_dict = dict(error_type=[]) message_hub.update_log_vars(loss_dict) with pytest.raises(AssertionError): loss_dict = dict(error_type=dict(count=1)) message_hub.update_log_vars(loss_dict)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders.parsers.pdf import ( AmazonTextractPDFParser, DocumentIntelligenceParser, PDFMinerParser, PDFPlumberParser, PyMuPDFParser, PyPDFium2Parser, PyPDFParser, extract_from_images_with_rapidocr, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "extract_from_images_with_rapidocr": ( "langchain_community.document_loaders.parsers.pdf" ), "PyPDFParser": "langchain_community.document_loaders.parsers.pdf", "PDFMinerParser": "langchain_community.document_loaders.parsers.pdf", "PyMuPDFParser": "langchain_community.document_loaders.parsers.pdf", "PyPDFium2Parser": "langchain_community.document_loaders.parsers.pdf", "PDFPlumberParser": "langchain_community.document_loaders.parsers.pdf", "AmazonTextractPDFParser": "langchain_community.document_loaders.parsers.pdf", "DocumentIntelligenceParser": "langchain_community.document_loaders.parsers.pdf", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AmazonTextractPDFParser", "DocumentIntelligenceParser", "PDFMinerParser", "PDFPlumberParser", "PyMuPDFParser", "PyPDFParser", "PyPDFium2Parser", "extract_from_images_with_rapidocr", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders.parsers.pdf import ( AmazonTextractPDFParser, DocumentIntelligenceParser, PDFMinerParser, PDFPlumberParser, PyMuPDFParser, PyPDFium2Parser, PyPDFParser, extract_from_images_with_rapidocr, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "extract_from_images_with_rapidocr": ( "langchain_community.document_loaders.parsers.pdf" ), "PyPDFParser": "langchain_community.document_loaders.parsers.pdf", "PDFMinerParser": "langchain_community.document_loaders.parsers.pdf", "PyMuPDFParser": "langchain_community.document_loaders.parsers.pdf", "PyPDFium2Parser": "langchain_community.document_loaders.parsers.pdf", "PDFPlumberParser": "langchain_community.document_loaders.parsers.pdf", "AmazonTextractPDFParser": "langchain_community.document_loaders.parsers.pdf", "DocumentIntelligenceParser": "langchain_community.document_loaders.parsers.pdf", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "extract_from_images_with_rapidocr", "PyPDFParser", "PDFMinerParser", "PyMuPDFParser", "PyPDFium2Parser", "PDFPlumberParser", "AmazonTextractPDFParser", "DocumentIntelligenceParser", ]
""" Slides parser. Contains parsers for .pptx files. """ import os import tempfile from pathlib import Path from typing import Dict, List, Optional from fsspec import AbstractFileSystem from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document from llama_index.core.utils import infer_torch_device class PptxReader(BaseReader): """ Powerpoint parser. Extract text, caption images, and specify slides. """ def __init__(self) -> None: """Init parser.""" try: import torch # noqa from PIL import Image # noqa from pptx import Presentation # noqa from transformers import ( AutoTokenizer, VisionEncoderDecoderModel, ViTFeatureExtractor, ) except ImportError: raise ImportError( "Please install extra dependencies that are required for " "the PptxReader: " "`pip install torch transformers python-pptx Pillow`" ) model = VisionEncoderDecoderModel.from_pretrained( "nlpconnect/vit-gpt2-image-captioning" ) feature_extractor = ViTFeatureExtractor.from_pretrained( "nlpconnect/vit-gpt2-image-captioning" ) tokenizer = AutoTokenizer.from_pretrained( "nlpconnect/vit-gpt2-image-captioning" ) self.parser_config = { "feature_extractor": feature_extractor, "model": model, "tokenizer": tokenizer, } def caption_image(self, tmp_image_file: str) -> str: """Generate text caption of image.""" from PIL import Image model = self.parser_config["model"] feature_extractor = self.parser_config["feature_extractor"] tokenizer = self.parser_config["tokenizer"] device = infer_torch_device() model.to(device) max_length = 16 num_beams = 4 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} i_image = Image.open(tmp_image_file) if i_image.mode != "RGB": i_image = i_image.convert(mode="RGB") pixel_values = feature_extractor( images=[i_image], return_tensors="pt" ).pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) return preds[0].strip() def load_data( self, file: Path, extra_info: Optional[Dict] = None, fs: Optional[AbstractFileSystem] = None, ) -> List[Document]: """Parse file.""" from pptx import Presentation if fs: with fs.open(file) as f: presentation = Presentation(f) else: presentation = Presentation(file) result = "" for i, slide in enumerate(presentation.slides): result += f"\n\nSlide #{i}: \n" for shape in slide.shapes: if hasattr(shape, "image"): image = shape.image # get image "file" contents image_bytes = image.blob # temporarily save the image to feed into model f = tempfile.NamedTemporaryFile("wb", delete=False) try: f.write(image_bytes) f.close() result += f"\n Image: {self.caption_image(f.name)}\n\n" finally: os.unlink(f.name) if hasattr(shape, "text"): result += f"{shape.text}\n" return [Document(text=result, metadata=extra_info or {})]
"""Slides parser. Contains parsers for .pptx files. """ import os import tempfile from pathlib import Path from typing import Dict, List, Optional from fsspec import AbstractFileSystem from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document from llama_index.core.utils import infer_torch_device class PptxReader(BaseReader): """Powerpoint parser. Extract text, caption images, and specify slides. """ def __init__(self) -> None: """Init parser.""" try: import torch # noqa from PIL import Image # noqa from pptx import Presentation # noqa from transformers import ( AutoTokenizer, VisionEncoderDecoderModel, ViTFeatureExtractor, ) except ImportError: raise ImportError( "Please install extra dependencies that are required for " "the PptxReader: " "`pip install torch transformers python-pptx Pillow`" ) model = VisionEncoderDecoderModel.from_pretrained( "nlpconnect/vit-gpt2-image-captioning" ) feature_extractor = ViTFeatureExtractor.from_pretrained( "nlpconnect/vit-gpt2-image-captioning" ) tokenizer = AutoTokenizer.from_pretrained( "nlpconnect/vit-gpt2-image-captioning" ) self.parser_config = { "feature_extractor": feature_extractor, "model": model, "tokenizer": tokenizer, } def caption_image(self, tmp_image_file: str) -> str: """Generate text caption of image.""" from PIL import Image model = self.parser_config["model"] feature_extractor = self.parser_config["feature_extractor"] tokenizer = self.parser_config["tokenizer"] device = infer_torch_device() model.to(device) max_length = 16 num_beams = 4 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} i_image = Image.open(tmp_image_file) if i_image.mode != "RGB": i_image = i_image.convert(mode="RGB") pixel_values = feature_extractor( images=[i_image], return_tensors="pt" ).pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) return preds[0].strip() def load_data( self, file: Path, extra_info: Optional[Dict] = None, fs: Optional[AbstractFileSystem] = None, ) -> List[Document]: """Parse file.""" from pptx import Presentation if fs: with fs.open(file) as f: presentation = Presentation(f) else: presentation = Presentation(file) result = "" for i, slide in enumerate(presentation.slides): result += f"\n\nSlide #{i}: \n" for shape in slide.shapes: if hasattr(shape, "image"): image = shape.image # get image "file" contents image_bytes = image.blob # temporarily save the image to feed into model f = tempfile.NamedTemporaryFile("wb", delete=False) try: f.write(image_bytes) f.close() result += f"\n Image: {self.caption_image(f.name)}\n\n" finally: os.unlink(f.name) if hasattr(shape, "text"): result += f"{shape.text}\n" return [Document(text=result, metadata=extra_info or {})]
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update`` deps = { "Pillow": "Pillow>=10.0.1,<=15.0", "accelerate": "accelerate>=0.26.0", "av": "av", "beautifulsoup4": "beautifulsoup4", "blobfile": "blobfile", "codecarbon": "codecarbon>=2.8.1", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "hf_xet": "hf_xet", "huggingface-hub": "huggingface-hub>=0.30.0,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.4.1,<=0.4.13", "jaxlib": "jaxlib>=0.4.1,<=0.4.13", "jieba": "jieba", "jinja2": "jinja2>=3.1.0", "kenlm@git+https://github.com/ydshieh/kenlm@78f664fb3dafe1468d868d71faf19534530698d5": "kenlm@git+https://github.com/ydshieh/kenlm@78f664fb3dafe1468d868d71faf19534530698d5", "keras": "keras>2.9,<2.16", "keras-nlp": "keras-nlp>=0.3.1,<0.14.0", "kernels": "kernels>=0.4.4,<0.5", "librosa": "librosa", "natten": "natten>=0.14.6,<0.15.0", "nltk": "nltk<=3.8.1", "num2words": "num2words", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optimum-benchmark": "optimum-benchmark>=0.3.0", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic", "pytest": "pytest>=7.2.0,<8.0.0", "pytest-asyncio": "pytest-asyncio", "pytest-rerunfailures": "pytest-rerunfailures", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "pytest-order": "pytest-order", "python": "python>=3.9.0", "ray[tune]": "ray[tune]>=2.7.0", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff==0.11.2", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.4.3", "sagemaker": "sagemaker>=2.31.0", "schedulefree": "schedulefree>=1.2.6", "scikit-learn": "scikit-learn", "scipy": "scipy<1.13.0", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorboard": "tensorboard", "tensorflow-cpu": "tensorflow-cpu>2.9,<2.16", "tensorflow": "tensorflow>2.9,<2.16", "tensorflow-text": "tensorflow-text<2.16", "tensorflow-probability": "tensorflow-probability<0.24", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "tiktoken": "tiktoken", "timm": "timm<=1.0.11", "tokenizers": "tokenizers>=0.21,<0.22", "torch": "torch>=2.1", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", "pytest-rich": "pytest-rich", "libcst": "libcst", "rich": "rich", }
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update`` deps = { "Pillow": "Pillow>=10.0.1,<=15.0", "accelerate": "accelerate>=0.26.0", "av": "av", "beautifulsoup4": "beautifulsoup4", "blobfile": "blobfile", "codecarbon": "codecarbon>=2.8.1", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "fsspec": "fsspec<2023.10.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "hf_xet": "hf_xet", "huggingface-hub": "huggingface-hub>=0.30.0,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.4.1,<=0.4.13", "jaxlib": "jaxlib>=0.4.1,<=0.4.13", "jieba": "jieba", "jinja2": "jinja2>=3.1.0", "kenlm@git+https://github.com/ydshieh/kenlm@78f664fb3dafe1468d868d71faf19534530698d5": "kenlm@git+https://github.com/ydshieh/kenlm@78f664fb3dafe1468d868d71faf19534530698d5", "keras": "keras>2.9,<2.16", "keras-nlp": "keras-nlp>=0.3.1,<0.14.0", "kernels": "kernels>=0.4.4,<0.5", "librosa": "librosa", "natten": "natten>=0.14.6,<0.15.0", "nltk": "nltk<=3.8.1", "num2words": "num2words", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optimum-benchmark": "optimum-benchmark>=0.3.0", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic", "pytest": "pytest>=7.2.0,<8.0.0", "pytest-asyncio": "pytest-asyncio", "pytest-rerunfailures": "pytest-rerunfailures", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "pytest-order": "pytest-order", "python": "python>=3.9.0", "ray[tune]": "ray[tune]>=2.7.0", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff==0.11.2", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.4.3", "sagemaker": "sagemaker>=2.31.0", "schedulefree": "schedulefree>=1.2.6", "scikit-learn": "scikit-learn", "scipy": "scipy<1.13.0", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorboard": "tensorboard", "tensorflow-cpu": "tensorflow-cpu>2.9,<2.16", "tensorflow": "tensorflow>2.9,<2.16", "tensorflow-text": "tensorflow-text<2.16", "tensorflow-probability": "tensorflow-probability<0.24", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "tiktoken": "tiktoken", "timm": "timm<=1.0.11", "tokenizers": "tokenizers>=0.21,<0.22", "torch": "torch>=2.1", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", "pytest-rich": "pytest-rich", "libcst": "libcst", "rich": "rich", }
import pytest import os from llama_index.embeddings.nvidia import NVIDIAEmbedding as Interface from llama_index.embeddings.nvidia.base import DEFAULT_MODEL from typing import Generator # this fixture is used to mask the NVIDIA_API_KEY environment variable and restore it # after the test. it also returns the value of the NVIDIA_API_KEY environment variable # before it was masked so that it can be used in the test. @pytest.fixture() def masked_env_var() -> Generator[str, None, None]: var = "NVIDIA_API_KEY" try: if val := os.environ.get(var, None): del os.environ[var] yield val finally: if val: os.environ[var] = val @pytest.fixture(params=[Interface]) def public_class(request: pytest.FixtureRequest) -> type: return request.param def pytest_collection_modifyitems(config, items): if "NVIDIA_API_KEY" not in os.environ: skip_marker = pytest.mark.skip( reason="requires NVIDIA_API_KEY environment variable or --nim-endpoint option" ) for item in items: if "integration" in item.keywords and not config.getoption( "--nim-endpoint" ): item.add_marker(skip_marker) def pytest_addoption(parser: pytest.Parser) -> None: parser.addoption( "--all-models", action="store_true", help="Run tests across all models", ) parser.addoption( "--model-id", action="store", help="Run tests for a specific chat model", ) parser.addoption( "--nim-endpoint", type=str, help="Run tests using NIM mode", ) def get_mode(config: pytest.Config) -> dict: nim_endpoint = config.getoption("--nim-endpoint") if nim_endpoint: return {"base_url": nim_endpoint} return {} def pytest_generate_tests(metafunc: pytest.Metafunc) -> None: mode = get_mode(metafunc.config) if "model" in metafunc.fixturenames: models = [DEFAULT_MODEL] if model := metafunc.config.getoption("--model-id"): models = [model] elif metafunc.config.getoption("--all-models"): models = [model.id for model in Interface(**mode).available_models] metafunc.parametrize("model", models, ids=models) @pytest.fixture() def mode(request: pytest.FixtureRequest) -> dict: return get_mode(request.config)
import pytest import os from llama_index.embeddings.nvidia import NVIDIAEmbedding as Interface from llama_index.embeddings.nvidia.base import DEFAULT_MODEL from typing import Generator # this fixture is used to mask the NVIDIA_API_KEY environment variable and restore it # after the test. it also returns the value of the NVIDIA_API_KEY environment variable # before it was masked so that it can be used in the test. @pytest.fixture() def masked_env_var() -> Generator[str, None, None]: var = "NVIDIA_API_KEY" try: if val := os.environ.get(var, None): del os.environ[var] yield val finally: if val: os.environ[var] = val def pytest_collection_modifyitems(config, items): if "NVIDIA_API_KEY" not in os.environ: skip_marker = pytest.mark.skip( reason="requires NVIDIA_API_KEY environment variable or --nim-endpoint option" ) for item in items: if "integration" in item.keywords and not config.getoption( "--nim-endpoint" ): item.add_marker(skip_marker) def pytest_addoption(parser: pytest.Parser) -> None: parser.addoption( "--all-models", action="store_true", help="Run tests across all models", ) parser.addoption( "--model-id", action="store", help="Run tests for a specific chat model", ) parser.addoption( "--nim-endpoint", type=str, help="Run tests using NIM mode", ) def get_mode(config: pytest.Config) -> dict: nim_endpoint = config.getoption("--nim-endpoint") if nim_endpoint: return {"base_url": nim_endpoint} return {} def pytest_generate_tests(metafunc: pytest.Metafunc) -> None: mode = get_mode(metafunc.config) if "model" in metafunc.fixturenames: models = [DEFAULT_MODEL] if model := metafunc.config.getoption("--model-id"): models = [model] elif metafunc.config.getoption("--all-models"): models = [model.id for model in Interface(**mode).available_models] metafunc.parametrize("model", models, ids=models) @pytest.fixture() def mode(request: pytest.FixtureRequest) -> dict: return get_mode(request.config)
import glob import os import pytest from jina import Document, Flow from jina.constants import __uptime__, __windows__ from jina.enums import LogVerbosity from jina.helper import colored from jina.logging.logger import JinaLogger cur_dir = os.path.dirname(os.path.abspath(__file__)) def log(logger: JinaLogger): logger.debug('this is test debug message') logger.info('this is test info message') logger.success('this is test success message') logger.warning('this is test warning message') logger.error('this is test error message') logger.critical('this is test critical message') def test_color_log(): with JinaLogger('test_logger') as logger: logger.debug('this is test debug message') logger.info('this is test info message') logger.info(f'this is test {colored("color", "red")} message') logger.success('this is test success message') logger.warning('this is test warning message') logger.error('this is test error message') logger.critical('this is test critical message') def test_logging_syslog(): with JinaLogger( 'test_logger', log_config=os.path.join(cur_dir, 'yaml/syslog.yml') ) as logger: log(logger) assert len(logger.handlers) == 0 if __windows__ else 1 def test_logging_default(): import logging import sys with JinaLogger('test_logger') as logger: log(logger) assert len(logger.handlers) == 1 # test whether suppress root handlers logging.root.handlers.append(logging.StreamHandler(sys.stdout)) with JinaLogger('test_logger', suppress_root_logging=False) as logger: log(logger) assert len(logging.root.handlers) > 0 def test_logging_level_yaml(monkeypatch): monkeypatch.delenv('JINA_LOG_LEVEL', raising=True) # ignore global env fn = os.path.join(cur_dir, f'jina-{__uptime__}.log') with JinaLogger( 'test_file_logger', log_config=os.path.join(cur_dir, 'yaml/file.yml') ) as file_logger: if os.path.exists(fn): os.remove(fn) log(file_logger) assert file_logger.logger.level == LogVerbosity.from_string('INFO') for f in glob.glob(cur_dir + '/*.log'): os.remove(f) def test_logging_file(monkeypatch): monkeypatch.delenv('JINA_LOG_LEVEL', raising=True) # ignore global env uptime = __uptime__.replace(':', '.') if __windows__ else __uptime__ fn = os.path.join(cur_dir, f'jina-{uptime}.log') with JinaLogger( 'test_file_logger', log_config=os.path.join(cur_dir, 'yaml/file.yml') ) as file_logger: log(file_logger) assert os.path.exists(fn) with open(fn, encoding='utf-8') as fp: assert len(fp.readlines()) == 5 for f in glob.glob(cur_dir + '/*.log'): os.remove(f) @pytest.mark.slow def test_logging_quiet(caplog): # no way to capture logs in multiprocessing # see discussion here: https://github.com/pytest-dev/pytest/issues/3037#issuecomment-745050393 f = Flow().add(quiet=True).add() with f: f.index(Document())
import glob import os import pytest from jina import Document, Flow from jina.constants import __uptime__, __windows__ from jina.enums import LogVerbosity from jina.helper import colored from jina.logging.logger import JinaLogger cur_dir = os.path.dirname(os.path.abspath(__file__)) def log(logger: JinaLogger): logger.debug('this is test debug message') logger.info('this is test info message') logger.success('this is test success message') logger.warning('this is test warning message') logger.error('this is test error message') logger.critical('this is test critical message') def test_color_log(): with JinaLogger('test_logger') as logger: logger.debug('this is test debug message') logger.info('this is test info message') logger.info(f'this is test {colored("color", "red")} message') logger.success('this is test success message') logger.warning('this is test warning message') logger.error('this is test error message') logger.critical('this is test critical message') def test_logging_syslog(): with JinaLogger( 'test_logger', log_config=os.path.join(cur_dir, 'yaml/syslog.yml') ) as logger: log(logger) assert len(logger.handlers) == 0 if __windows__ else 1 def test_logging_default(): import logging import sys with JinaLogger('test_logger') as logger: log(logger) assert len(logger.handlers) == 1 # test whether suppress root handlers logging.root.handlers.append(logging.StreamHandler(sys.stdout)) with JinaLogger('test_logger', suppress_root_logging=False) as logger: log(logger) assert len(logging.root.handlers) > 0 def test_logging_level_yaml(monkeypatch): monkeypatch.delenv('JINA_LOG_LEVEL', raising=True) # ignore global env fn = os.path.join(cur_dir, f'jina-{__uptime__}.log') with JinaLogger( 'test_file_logger', log_config=os.path.join(cur_dir, 'yaml/file.yml') ) as file_logger: if os.path.exists(fn): os.remove(fn) log(file_logger) assert file_logger.logger.level == LogVerbosity.from_string('INFO') for f in glob.glob(cur_dir + '/*.log'): os.remove(f) def test_logging_file(monkeypatch): monkeypatch.delenv('JINA_LOG_LEVEL', raising=True) # ignore global env uptime = __uptime__.replace(':', '.') if __windows__ else __uptime__ fn = os.path.join(cur_dir, f'jina-{uptime}.log') with JinaLogger( 'test_file_logger', log_config=os.path.join(cur_dir, 'yaml/file.yml') ) as file_logger: log(file_logger) assert os.path.exists(fn) with open(fn) as fp: assert len(fp.readlines()) == 5 for f in glob.glob(cur_dir + '/*.log'): os.remove(f) @pytest.mark.slow def test_logging_quiet(caplog): # no way to capture logs in multiprocessing # see discussion here: https://github.com/pytest-dev/pytest/issues/3037#issuecomment-745050393 f = Flow().add(quiet=True).add() with f: f.index(Document())
import numpy as np from mmdet.core.evaluation.mean_ap import (eval_map, tpfp_default, tpfp_imagenet, tpfp_openimages) det_bboxes = np.array([ [0, 0, 10, 10], [10, 10, 20, 20], [32, 32, 38, 42], ]) gt_bboxes = np.array([[0, 0, 10, 20], [0, 10, 10, 19], [10, 10, 20, 20]]) gt_ignore = np.array([[5, 5, 10, 20], [6, 10, 10, 19]]) def test_tpfp_imagenet(): result = tpfp_imagenet( det_bboxes, gt_bboxes, gt_bboxes_ignore=gt_ignore, use_legacy_coordinate=True) tp = result[0] fp = result[1] assert tp.shape == (1, 3) assert fp.shape == (1, 3) assert (tp == np.array([[1, 1, 0]])).all() assert (fp == np.array([[0, 0, 1]])).all() result = tpfp_imagenet( det_bboxes, gt_bboxes, gt_bboxes_ignore=gt_ignore, use_legacy_coordinate=False) tp = result[0] fp = result[1] assert tp.shape == (1, 3) assert fp.shape == (1, 3) assert (tp == np.array([[1, 1, 0]])).all() assert (fp == np.array([[0, 0, 1]])).all() def test_tpfp_default(): result = tpfp_default( det_bboxes, gt_bboxes, gt_bboxes_ignore=gt_ignore, use_legacy_coordinate=True) tp = result[0] fp = result[1] assert tp.shape == (1, 3) assert fp.shape == (1, 3) assert (tp == np.array([[1, 1, 0]])).all() assert (fp == np.array([[0, 0, 1]])).all() result = tpfp_default( det_bboxes, gt_bboxes, gt_bboxes_ignore=gt_ignore, use_legacy_coordinate=False) tp = result[0] fp = result[1] assert tp.shape == (1, 3) assert fp.shape == (1, 3) assert (tp == np.array([[1, 1, 0]])).all() assert (fp == np.array([[0, 0, 1]])).all() def test_eval_map(): # 2 image and 2 classes det_results = [[det_bboxes, det_bboxes], [det_bboxes, det_bboxes]] labels = np.array([0, 1, 1]) labels_ignore = np.array([0, 1]) gt_info = { 'bboxes': gt_bboxes, 'bboxes_ignore': gt_ignore, 'labels': labels, 'labels_ignore': labels_ignore } annotations = [gt_info, gt_info] mean_ap, eval_results = eval_map( det_results, annotations, use_legacy_coordinate=True) assert 0.291 < mean_ap < 0.293 eval_map(det_results, annotations, use_legacy_coordinate=False) assert 0.291 < mean_ap < 0.293 def test_tpfp_openimages(): det_bboxes = np.array([[10, 10, 15, 15, 1.0], [15, 15, 30, 30, 0.98], [10, 10, 25, 25, 0.98], [28, 28, 35, 35, 0.97], [30, 30, 51, 51, 0.96], [100, 110, 120, 130, 0.15]]) gt_bboxes = np.array([[10., 10., 30., 30.], [30., 30., 50., 50.]]) gt_groups_of = np.array([True, False], dtype=np.bool) gt_ignore = np.zeros((0, 4)) # Open Images evaluation using group of. result = tpfp_openimages( det_bboxes, gt_bboxes, gt_bboxes_ignore=gt_ignore, gt_bboxes_group_of=gt_groups_of, use_group_of=True, ioa_thr=0.5) tp = result[0] fp = result[1] cls_dets = result[2] assert tp.shape == (1, 4) assert fp.shape == (1, 4) assert cls_dets.shape == (4, 5) assert (tp == np.array([[0, 1, 0, 1]])).all() assert (fp == np.array([[1, 0, 1, 0]])).all() cls_dets_gt = np.array([[28., 28., 35., 35., 0.97], [30., 30., 51., 51., 0.96], [100., 110., 120., 130., 0.15], [10., 10., 15., 15., 1.]]) assert (cls_dets == cls_dets_gt).all() # Open Images evaluation not using group of. result = tpfp_openimages( det_bboxes, gt_bboxes, gt_bboxes_ignore=gt_ignore, gt_bboxes_group_of=gt_groups_of, use_group_of=False, ioa_thr=0.5) tp = result[0] fp = result[1] cls_dets = result[2] assert tp.shape == (1, 6) assert fp.shape == (1, 6) assert cls_dets.shape == (6, 5) # Open Images evaluation using group of, and gt is all group of bboxes. gt_groups_of = np.array([True, True], dtype=np.bool) result = tpfp_openimages( det_bboxes, gt_bboxes, gt_bboxes_ignore=gt_ignore, gt_bboxes_group_of=gt_groups_of, use_group_of=True, ioa_thr=0.5) tp = result[0] fp = result[1] cls_dets = result[2] assert tp.shape == (1, 3) assert fp.shape == (1, 3) assert cls_dets.shape == (3, 5) # Open Images evaluation with empty gt. gt_bboxes = np.zeros((0, 4)) gt_groups_of = np.empty((0)) result = tpfp_openimages( det_bboxes, gt_bboxes, gt_bboxes_ignore=gt_ignore, gt_bboxes_group_of=gt_groups_of, use_group_of=True, ioa_thr=0.5) fp = result[1] assert (fp == np.array([[1, 1, 1, 1, 1, 1]])).all()
import numpy as np from mmdet.core.evaluation.mean_ap import eval_map, tpfp_default, tpfp_imagenet det_bboxes = np.array([ [0, 0, 10, 10], [10, 10, 20, 20], [32, 32, 38, 42], ]) gt_bboxes = np.array([[0, 0, 10, 20], [0, 10, 10, 19], [10, 10, 20, 20]]) gt_ignore = np.array([[5, 5, 10, 20], [6, 10, 10, 19]]) def test_tpfp_imagenet(): result = tpfp_imagenet( det_bboxes, gt_bboxes, gt_bboxes_ignore=gt_ignore, use_legacy_coordinate=True) tp = result[0] fp = result[1] assert tp.shape == (1, 3) assert fp.shape == (1, 3) assert (tp == np.array([[1, 1, 0]])).all() assert (fp == np.array([[0, 0, 1]])).all() result = tpfp_imagenet( det_bboxes, gt_bboxes, gt_bboxes_ignore=gt_ignore, use_legacy_coordinate=False) tp = result[0] fp = result[1] assert tp.shape == (1, 3) assert fp.shape == (1, 3) assert (tp == np.array([[1, 1, 0]])).all() assert (fp == np.array([[0, 0, 1]])).all() def test_tpfp_default(): result = tpfp_default( det_bboxes, gt_bboxes, gt_bboxes_ignore=gt_ignore, use_legacy_coordinate=True) tp = result[0] fp = result[1] assert tp.shape == (1, 3) assert fp.shape == (1, 3) assert (tp == np.array([[1, 1, 0]])).all() assert (fp == np.array([[0, 0, 1]])).all() result = tpfp_default( det_bboxes, gt_bboxes, gt_bboxes_ignore=gt_ignore, use_legacy_coordinate=False) tp = result[0] fp = result[1] assert tp.shape == (1, 3) assert fp.shape == (1, 3) assert (tp == np.array([[1, 1, 0]])).all() assert (fp == np.array([[0, 0, 1]])).all() def test_eval_map(): # 2 image and 2 classes det_results = [[det_bboxes, det_bboxes], [det_bboxes, det_bboxes]] labels = np.array([0, 1, 1]) labels_ignore = np.array([0, 1]) gt_info = { 'bboxes': gt_bboxes, 'bboxes_ignore': gt_ignore, 'labels': labels, 'labels_ignore': labels_ignore } annotations = [gt_info, gt_info] mean_ap, eval_results = eval_map( det_results, annotations, use_legacy_coordinate=True) assert 0.291 < mean_ap < 0.293 eval_map(det_results, annotations, use_legacy_coordinate=False) assert 0.291 < mean_ap < 0.293
""" This script runs the evaluation of an SBERT msmarco model on the MS MARCO dev dataset and reports different performances metrices for cossine similarity & dot-product. Usage: python eval_msmarco.py model_name [max_corpus_size_in_thousands] """ import logging import os import sys import tarfile from sentence_transformers import LoggingHandler, SentenceTransformer, evaluation, util #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Name of the SBERT model model_name = sys.argv[1] # You can limit the approx. max size of the corpus. Pass 100 as second parameter and the corpus has a size of approx 100k docs corpus_max_size = int(sys.argv[2]) * 1000 if len(sys.argv) >= 3 else 0 #### Load model model = SentenceTransformer(model_name) ### Data files data_folder = "msmarco-data" os.makedirs(data_folder, exist_ok=True) collection_filepath = os.path.join(data_folder, "collection.tsv") dev_queries_file = os.path.join(data_folder, "queries.dev.small.tsv") qrels_filepath = os.path.join(data_folder, "qrels.dev.tsv") ### Download files if needed if not os.path.exists(collection_filepath) or not os.path.exists(dev_queries_file): tar_filepath = os.path.join(data_folder, "collectionandqueries.tar.gz") if not os.path.exists(tar_filepath): logging.info("Download: " + tar_filepath) util.http_get( "https://msmarco.z22.web.core.windows.net/msmarcoranking/collectionandqueries.tar.gz", tar_filepath ) with tarfile.open(tar_filepath, "r:gz") as tar: tar.extractall(path=data_folder) if not os.path.exists(qrels_filepath): util.http_get("https://msmarco.z22.web.core.windows.net/msmarcoranking/qrels.dev.tsv", qrels_filepath) ### Load data corpus = {} # Our corpus pid => passage dev_queries = {} # Our dev queries. qid => query dev_rel_docs = {} # Mapping qid => set with relevant pids needed_pids = set() # Passage IDs we need needed_qids = set() # Query IDs we need # Load the 6980 dev queries with open(dev_queries_file, encoding="utf8") as fIn: for line in fIn: qid, query = line.strip().split("\t") dev_queries[qid] = query.strip() # Load which passages are relevant for which queries with open(qrels_filepath) as fIn: for line in fIn: qid, _, pid, _ = line.strip().split("\t") if qid not in dev_queries: continue if qid not in dev_rel_docs: dev_rel_docs[qid] = set() dev_rel_docs[qid].add(pid) needed_pids.add(pid) needed_qids.add(qid) # Read passages with open(collection_filepath, encoding="utf8") as fIn: for line in fIn: pid, passage = line.strip().split("\t") passage = passage if pid in needed_pids or corpus_max_size <= 0 or len(corpus) <= corpus_max_size: corpus[pid] = passage.strip() ## Run evaluator logging.info("Queries: {}".format(len(dev_queries))) logging.info("Corpus: {}".format(len(corpus))) ir_evaluator = evaluation.InformationRetrievalEvaluator( dev_queries, corpus, dev_rel_docs, show_progress_bar=True, corpus_chunk_size=100000, precision_recall_at_k=[10, 100], name="msmarco dev", ) ir_evaluator(model)
""" This script runs the evaluation of an SBERT msmarco model on the MS MARCO dev dataset and reports different performances metrices for cossine similarity & dot-product. Usage: python eval_msmarco.py model_name [max_corpus_size_in_thousands] """ from sentence_transformers import LoggingHandler, SentenceTransformer, evaluation, util, models import logging import sys import os import tarfile #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout #Name of the SBERT model model_name = sys.argv[1] # You can limit the approx. max size of the corpus. Pass 100 as second parameter and the corpus has a size of approx 100k docs corpus_max_size = int(sys.argv[2])*1000 if len(sys.argv) >= 3 else 0 #### Load model model = SentenceTransformer(model_name) ### Data files data_folder = 'msmarco-data' os.makedirs(data_folder, exist_ok=True) collection_filepath = os.path.join(data_folder, 'collection.tsv') dev_queries_file = os.path.join(data_folder, 'queries.dev.small.tsv') qrels_filepath = os.path.join(data_folder, 'qrels.dev.tsv') ### Download files if needed if not os.path.exists(collection_filepath) or not os.path.exists(dev_queries_file): tar_filepath = os.path.join(data_folder, 'collectionandqueries.tar.gz') if not os.path.exists(tar_filepath): logging.info("Download: "+tar_filepath) util.http_get('https://msmarco.blob.core.windows.net/msmarcoranking/collectionandqueries.tar.gz', tar_filepath) with tarfile.open(tar_filepath, "r:gz") as tar: tar.extractall(path=data_folder) if not os.path.exists(qrels_filepath): util.http_get('https://msmarco.blob.core.windows.net/msmarcoranking/qrels.dev.tsv', qrels_filepath) ### Load data corpus = {} #Our corpus pid => passage dev_queries = {} #Our dev queries. qid => query dev_rel_docs = {} #Mapping qid => set with relevant pids needed_pids = set() #Passage IDs we need needed_qids = set() #Query IDs we need # Load the 6980 dev queries with open(dev_queries_file, encoding='utf8') as fIn: for line in fIn: qid, query = line.strip().split("\t") dev_queries[qid] = query.strip() # Load which passages are relevant for which queries with open(qrels_filepath) as fIn: for line in fIn: qid, _, pid, _ = line.strip().split('\t') if qid not in dev_queries: continue if qid not in dev_rel_docs: dev_rel_docs[qid] = set() dev_rel_docs[qid].add(pid) needed_pids.add(pid) needed_qids.add(qid) # Read passages with open(collection_filepath, encoding='utf8') as fIn: for line in fIn: pid, passage = line.strip().split("\t") passage = passage if pid in needed_pids or corpus_max_size <= 0 or len(corpus) <= corpus_max_size: corpus[pid] = passage.strip() ## Run evaluator logging.info("Queries: {}".format(len(dev_queries))) logging.info("Corpus: {}".format(len(corpus))) ir_evaluator = evaluation.InformationRetrievalEvaluator(dev_queries, corpus, dev_rel_docs, show_progress_bar=True, corpus_chunk_size=100000, precision_recall_at_k=[10, 100], name="msmarco dev") ir_evaluator(model)
from docarray.typing.tensor.embedding.embedding import AnyEmbedding from docarray.typing.tensor.embedding.ndarray import NdArrayEmbedding __all__ = ['NdArrayEmbedding', 'AnyEmbedding'] from docarray.utils._internal.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.embedding.torch import TorchEmbedding # noqa F401 __all__.append('TorchEmbedding') tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.embedding.tensorflow import ( # noqa F401 TensorFlowEmbedding, ) __all__.append('TensorFlowEmbedding')
from docarray.typing.tensor.embedding.embedding import AnyEmbedding from docarray.typing.tensor.embedding.ndarray import NdArrayEmbedding __all__ = ['NdArrayEmbedding', 'AnyEmbedding'] from docarray.utils.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.embedding.torch import TorchEmbedding # noqa F401 __all__.append('TorchEmbedding') tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.embedding.tensorflow import ( # noqa F401 TensorFlowEmbedding, ) __all__.append('TensorFlowEmbedding')
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from docarray.array.any_array import AnyDocArray from docarray.array.doc_list.doc_list import DocList from docarray.array.doc_vec.doc_vec import DocVec __all__ = ['DocList', 'DocVec', 'AnyDocArray']
from docarray.array.any_array import AnyDocArray from docarray.array.doc_list.doc_list import DocList from docarray.array.doc_vec.doc_vec import DocVec __all__ = ['DocList', 'DocVec', 'AnyDocArray']
import pytest from typing import Dict, List from docarray import BaseDoc, DocList from docarray.documents import ImageDoc from docarray.typing import NdArray class MyDoc(BaseDoc): embedding: NdArray text: str image: ImageDoc class MySimpleDoc(BaseDoc): title: str class MyComplexDoc(BaseDoc): content_dict_doclist: Dict[str, DocList[MySimpleDoc]] content_dict_list: Dict[str, List[MySimpleDoc]] aux_dict: Dict[str, int] @pytest.mark.parametrize('protocol', ['protobuf', 'pickle']) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) def test_to_from_bytes(protocol, compress): d = MyDoc(embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png')) assert d.text == 'hello' assert d.embedding.tolist() == [1, 2, 3, 4, 5] assert d.image.url == 'aux.png' bstr = d.to_bytes(protocol=protocol, compress=compress) d2 = MyDoc.from_bytes(bstr, protocol=protocol, compress=compress) assert d2.text == 'hello' assert d2.embedding.tolist() == [1, 2, 3, 4, 5] assert d2.image.url == 'aux.png' @pytest.mark.parametrize('protocol', ['protobuf', 'pickle']) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) def test_to_from_base64(protocol, compress): d = MyDoc(embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png')) assert d.text == 'hello' assert d.embedding.tolist() == [1, 2, 3, 4, 5] assert d.image.url == 'aux.png' bstr = d.to_base64(protocol=protocol, compress=compress) d2 = MyDoc.from_base64(bstr, protocol=protocol, compress=compress) assert d2.text == 'hello' assert d2.embedding.tolist() == [1, 2, 3, 4, 5] assert d2.image.url == 'aux.png' @pytest.mark.parametrize('protocol', ['protobuf', 'pickle']) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) def test_to_from_bytes_complex(protocol, compress): d = MyComplexDoc( content_dict_doclist={ 'test1': DocList[MySimpleDoc]( [MySimpleDoc(title='123'), MySimpleDoc(title='456')] ) }, content_dict_list={ 'test1': [MySimpleDoc(title='123'), MySimpleDoc(title='456')] }, aux_dict={'a': 0}, ) bstr = d.to_bytes(protocol=protocol, compress=compress) d2 = MyComplexDoc.from_bytes(bstr, protocol=protocol, compress=compress) assert d2.aux_dict == {'a': 0} assert len(d2.content_dict_doclist['test1']) == 2 assert d2.content_dict_doclist['test1'][0].title == '123' assert d2.content_dict_doclist['test1'][1].title == '456' assert len(d2.content_dict_list['test1']) == 2 assert d2.content_dict_list['test1'][0].title == '123' assert d2.content_dict_list['test1'][1].title == '456' @pytest.mark.parametrize('protocol', ['protobuf', 'pickle']) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) def test_to_from_base64_complex(protocol, compress): d = MyComplexDoc( content_dict_doclist={ 'test1': DocList[MySimpleDoc]( [MySimpleDoc(title='123'), MySimpleDoc(title='456')] ) }, content_dict_list={ 'test1': [MySimpleDoc(title='123'), MySimpleDoc(title='456')] }, aux_dict={'a': 0}, ) bstr = d.to_base64(protocol=protocol, compress=compress) d2 = MyComplexDoc.from_base64(bstr, protocol=protocol, compress=compress) assert d2.aux_dict == {'a': 0} assert len(d2.content_dict_doclist['test1']) == 2 assert d2.content_dict_doclist['test1'][0].title == '123' assert d2.content_dict_doclist['test1'][1].title == '456' assert len(d2.content_dict_list['test1']) == 2 assert d2.content_dict_list['test1'][0].title == '123' assert d2.content_dict_list['test1'][1].title == '456'
import pytest from docarray import BaseDoc from docarray.documents import ImageDoc from docarray.typing import NdArray class MyDoc(BaseDoc): embedding: NdArray text: str image: ImageDoc @pytest.mark.parametrize('protocol', ['protobuf', 'pickle']) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) def test_to_from_bytes(protocol, compress): d = MyDoc(embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png')) assert d.text == 'hello' assert d.embedding.tolist() == [1, 2, 3, 4, 5] assert d.image.url == 'aux.png' bstr = d.to_bytes(protocol=protocol, compress=compress) d2 = MyDoc.from_bytes(bstr, protocol=protocol, compress=compress) assert d2.text == 'hello' assert d2.embedding.tolist() == [1, 2, 3, 4, 5] assert d2.image.url == 'aux.png' @pytest.mark.parametrize('protocol', ['protobuf', 'pickle']) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) def test_to_from_base64(protocol, compress): d = MyDoc(embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png')) assert d.text == 'hello' assert d.embedding.tolist() == [1, 2, 3, 4, 5] assert d.image.url == 'aux.png' bstr = d.to_base64(protocol=protocol, compress=compress) d2 = MyDoc.from_base64(bstr, protocol=protocol, compress=compress) assert d2.text == 'hello' assert d2.embedding.tolist() == [1, 2, 3, 4, 5] assert d2.image.url == 'aux.png'
import os import time import uuid from contextlib import contextmanager from typing import Optional import pytest import requests from huggingface_hub.hf_api import HfApi, RepositoryNotFoundError CI_HUB_USER = "__DUMMY_TRANSFORMERS_USER__" CI_HUB_USER_FULL_NAME = "Dummy User" CI_HUB_USER_TOKEN = "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" CI_HUB_ENDPOINT = "https://hub-ci.huggingface.co" CI_HUB_DATASETS_URL = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" @pytest.fixture def ci_hfh_hf_hub_url(monkeypatch): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE ) @pytest.fixture def ci_hub_config(monkeypatch): monkeypatch.setattr("datasets.config.HF_ENDPOINT", CI_HUB_ENDPOINT) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", CI_HUB_DATASETS_URL) @pytest.fixture def set_ci_hub_access_token(ci_hub_config): old_environ = dict(os.environ) os.environ["HF_TOKEN"] = CI_HUB_USER_TOKEN yield os.environ.clear() os.environ.update(old_environ) @pytest.fixture(scope="session") def hf_api(): return HfApi(endpoint=CI_HUB_ENDPOINT) @pytest.fixture(scope="session") def hf_token(): yield CI_HUB_USER_TOKEN @pytest.fixture def cleanup_repo(hf_api): def _cleanup_repo(repo_id): hf_api.delete_repo(repo_id, token=CI_HUB_USER_TOKEN, repo_type="dataset") return _cleanup_repo @pytest.fixture def temporary_repo(cleanup_repo): @contextmanager def _temporary_repo(repo_id: Optional[str] = None): repo_id = repo_id or f"{CI_HUB_USER}/test-dataset-{uuid.uuid4().hex[:6]}-{int(time.time() * 10e3)}" try: yield repo_id finally: try: cleanup_repo(repo_id) except RepositoryNotFoundError: pass return _temporary_repo @pytest.fixture(scope="session") def hf_private_dataset_repo_txt_data_(hf_api: HfApi, hf_token, text_file): repo_name = f"repo_txt_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(text_file), path_in_repo="data/text_data.txt", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_txt_data(hf_private_dataset_repo_txt_data_, ci_hub_config, ci_hfh_hf_hub_url): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_txt_data_(hf_api: HfApi, hf_token, zip_csv_with_dir_path): repo_name = f"repo_zipped_txt_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_csv_with_dir_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_txt_data( hf_private_dataset_repo_zipped_txt_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_img_data_(hf_api: HfApi, hf_token, zip_image_path): repo_name = f"repo_zipped_img_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_image_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_img_data( hf_private_dataset_repo_zipped_img_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_img_data_
import time import uuid from contextlib import contextmanager from pathlib import Path from typing import Optional import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder, RepositoryNotFoundError CI_HUB_USER = "__DUMMY_TRANSFORMERS_USER__" CI_HUB_USER_FULL_NAME = "Dummy User" CI_HUB_USER_TOKEN = "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" CI_HUB_ENDPOINT = "https://hub-ci.huggingface.co" CI_HUB_DATASETS_URL = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" CI_HUB_TOKEN_PATH = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def ci_hfh_hf_hub_url(monkeypatch): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE ) @pytest.fixture def ci_hub_config(monkeypatch): monkeypatch.setattr("datasets.config.HF_ENDPOINT", CI_HUB_ENDPOINT) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", CI_HUB_DATASETS_URL) @pytest.fixture def ci_hub_token_path(monkeypatch): monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", CI_HUB_TOKEN_PATH) @pytest.fixture def set_ci_hub_access_token(ci_hub_config, ci_hub_token_path): HfFolder.save_token(CI_HUB_USER_TOKEN) yield HfFolder.delete_token() @pytest.fixture(scope="session") def hf_api(): return HfApi(endpoint=CI_HUB_ENDPOINT) @pytest.fixture(scope="session") def hf_token(): yield CI_HUB_USER_TOKEN @pytest.fixture def cleanup_repo(hf_api): def _cleanup_repo(repo_id): hf_api.delete_repo(repo_id, token=CI_HUB_USER_TOKEN, repo_type="dataset") return _cleanup_repo @pytest.fixture def temporary_repo(cleanup_repo): @contextmanager def _temporary_repo(repo_id: Optional[str] = None): repo_id = repo_id or f"{CI_HUB_USER}/test-dataset-{uuid.uuid4().hex[:6]}-{int(time.time() * 10e3)}" try: yield repo_id finally: try: cleanup_repo(repo_id) except RepositoryNotFoundError: pass return _temporary_repo @pytest.fixture(scope="session") def hf_private_dataset_repo_txt_data_(hf_api: HfApi, hf_token, text_file): repo_name = f"repo_txt_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(text_file), path_in_repo="data/text_data.txt", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_txt_data(hf_private_dataset_repo_txt_data_, ci_hub_config, ci_hfh_hf_hub_url): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_txt_data_(hf_api: HfApi, hf_token, zip_csv_with_dir_path): repo_name = f"repo_zipped_txt_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_csv_with_dir_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_txt_data( hf_private_dataset_repo_zipped_txt_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_img_data_(hf_api: HfApi, hf_token, zip_image_path): repo_name = f"repo_zipped_img_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_image_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_img_data( hf_private_dataset_repo_zipped_img_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_img_data_
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import List import numpy as np import pytest from jina import Flow, Document, DocumentArray from ...torch_encoder import ImageTorchEncoder @pytest.mark.parametrize('arr_in', [ (np.ones((224, 224, 3), dtype=np.uint8)), (np.ones((100, 100, 3), dtype=np.uint8)), (np.ones((50, 40, 3), dtype=np.uint8)) ]) def test_no_batch(arr_in: np.ndarray): flow = Flow().add(uses=ImageTorchEncoder) with flow: resp = flow.post( on='/test', inputs=[Document(blob=arr_in)], return_results=True ) results_arr = DocumentArray(resp[0].data.docs) assert len(results_arr) == 1 assert results_arr[0].embedding is not None assert results_arr[0].embedding.shape == (512, ) def test_with_batch(): flow = Flow().add(uses=ImageTorchEncoder) with flow: resp = flow.post( on='/test', inputs=(Document(blob=np.ones((224, 224, 3), dtype=np.uint8)) for _ in range(25)), return_results=True ) assert len(resp[0].docs.get_attributes('embedding')) == 25 @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_paths'], [ (pytest.lazy_fixture('docs_with_blobs'), [['r', 11], ['c', 0], ['cc', 0]], 'r'), (pytest.lazy_fixture('docs_with_chunk_blobs'), [['r', 0], ['c', 11], ['cc', 0]], 'c'), (pytest.lazy_fixture('docs_with_chunk_chunk_blobs'), [['r', 0], ['c', 0], ['cc', 11]], 'cc') ] ) def test_traversal_paths(docs: DocumentArray, docs_per_path: List[List[str]], traversal_paths: str): def validate_traversal(expected_docs_per_path: List[List[str]]): def validate(res): for path, count in expected_docs_per_path: return len(DocumentArray(res[0].docs).traverse_flat([path]).get_attributes('embedding')) == count return validate flow = Flow().add(uses=ImageTorchEncoder) with flow: resp = flow.post( on='/test', inputs=docs, parameters={'traversal_paths': [traversal_paths]}, return_results=True ) assert validate_traversal(docs_per_path)(resp)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import List import numpy as np import pytest from jina import Flow, Document, DocumentArray try: from torch_encoder import ImageTorchEncoder except: from jinahub.image.encoder.torch_encoder import ImageTorchEncoder @pytest.mark.parametrize('arr_in', [ (np.ones((224, 224, 3), dtype=np.uint8)), (np.ones((100, 100, 3), dtype=np.uint8)), (np.ones((50, 40, 3), dtype=np.uint8)) ]) def test_no_batch(arr_in: np.ndarray): flow = Flow().add(uses=ImageTorchEncoder) with flow: resp = flow.post( on='/test', inputs=[Document(blob=arr_in)], return_results=True ) results_arr = DocumentArray(resp[0].data.docs) assert len(results_arr) == 1 assert results_arr[0].embedding is not None assert results_arr[0].embedding.shape == (512, ) def test_with_batch(): flow = Flow().add(uses=ImageTorchEncoder) with flow: resp = flow.post( on='/test', inputs=(Document(blob=np.ones((224, 224, 3), dtype=np.uint8)) for _ in range(25)), return_results=True ) assert len(resp[0].docs.get_attributes('embedding')) == 25 @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_paths'], [ (pytest.lazy_fixture('docs_with_blobs'), [['r', 11], ['c', 0], ['cc', 0]], 'r'), (pytest.lazy_fixture('docs_with_chunk_blobs'), [['r', 0], ['c', 11], ['cc', 0]], 'c'), (pytest.lazy_fixture('docs_with_chunk_chunk_blobs'), [['r', 0], ['c', 0], ['cc', 11]], 'cc') ] ) def test_traversal_paths(docs: DocumentArray, docs_per_path: List[List[str]], traversal_paths: str): def validate_traversal(expected_docs_per_path: List[List[str]]): def validate(res): for path, count in expected_docs_per_path: return len(DocumentArray(res[0].docs).traverse_flat([path]).get_attributes('embedding')) == count return validate flow = Flow().add(uses=ImageTorchEncoder) with flow: resp = flow.post( on='/test', inputs=docs, parameters={'traversal_paths': [traversal_paths]}, return_results=True ) assert validate_traversal(docs_per_path)(resp)
import csv import gzip import logging import os from datetime import datetime import torch from sentence_transformers import InputExample, LoggingHandler, SentenceTransformer, losses, models, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout ## Training parameters model_name = "distilbert-base-uncased" batch_size = 16 pos_neg_ratio = 8 # batch_size must be divisible by pos_neg_ratio epochs = 1 max_seq_length = 75 # Save path to store our model model_save_path = "output/train_stsb_ct-{}-{}".format(model_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) ################# Train sentences ################# # We use 1 Million sentences from Wikipedia to train our model wikipedia_dataset_path = "data/wiki1m_for_simcse.txt" if not os.path.exists(wikipedia_dataset_path): util.http_get( "https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt", wikipedia_dataset_path, ) # train_sentences are simply your list of sentences train_sentences = [] with open(wikipedia_dataset_path, encoding="utf8") as fIn: for line in fIn: line = line.strip() if len(line) >= 10: train_sentences.append(line) ################# Download and load STSb ################# data_folder = "data/stsbenchmark" sts_dataset_path = f"{data_folder}/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test") ################# Initialize an SBERT model ################# word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # For ContrastiveTension we need a special data loader to construct batches with the desired properties train_dataloader = losses.ContrastiveTensionDataLoader( train_sentences, batch_size=batch_size, pos_neg_ratio=pos_neg_ratio ) # As loss, we losses.ContrastiveTensionLoss train_loss = losses.ContrastiveTensionLoss(model) model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=1, evaluation_steps=1000, weight_decay=0, warmup_steps=0, optimizer_class=torch.optim.RMSprop, optimizer_params={"lr": 1e-5}, output_path=model_save_path, use_amp=False, # Set to True, if your GPU has optimized FP16 cores ) ########### Load the model and evaluate on test set model = SentenceTransformer(model_save_path) test_evaluator(model)
import csv import gzip import logging import os from datetime import datetime import torch from sentence_transformers import InputExample, LoggingHandler, SentenceTransformer, losses, models, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout ## Training parameters model_name = "distilbert-base-uncased" batch_size = 16 pos_neg_ratio = 8 # batch_size must be divisible by pos_neg_ratio epochs = 1 max_seq_length = 75 # Save path to store our model model_save_path = "output/train_stsb_ct-{}-{}".format(model_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) ################# Train sentences ################# # We use 1 Million sentences from Wikipedia to train our model wikipedia_dataset_path = "data/wiki1m_for_simcse.txt" if not os.path.exists(wikipedia_dataset_path): util.http_get( "https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt", wikipedia_dataset_path, ) # train_sentences are simply your list of sentences train_sentences = [] with open(wikipedia_dataset_path, "r", encoding="utf8") as fIn: for line in fIn: line = line.strip() if len(line) >= 10: train_sentences.append(line) ################# Download and load STSb ################# data_folder = "data/stsbenchmark" sts_dataset_path = f"{data_folder}/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test") ################# Initialize an SBERT model ################# word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # For ContrastiveTension we need a special data loader to construct batches with the desired properties train_dataloader = losses.ContrastiveTensionDataLoader( train_sentences, batch_size=batch_size, pos_neg_ratio=pos_neg_ratio ) # As loss, we losses.ContrastiveTensionLoss train_loss = losses.ContrastiveTensionLoss(model) model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=1, evaluation_steps=1000, weight_decay=0, warmup_steps=0, optimizer_class=torch.optim.RMSprop, optimizer_params={"lr": 1e-5}, output_path=model_save_path, use_amp=False, # Set to True, if your GPU has optimized FP16 cores ) ########### Load the model and evaluate on test set model = SentenceTransformer(model_save_path) test_evaluator(model)
# Copyright (c) OpenMMLab. All rights reserved. from .hub import load_url from .manager import ManagerMeta, ManagerMixin from .misc import (check_prerequisites, concat_list, deprecated_api_warning, find_latest_checkpoint, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, mmcv_full_available, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .parrots_wrapper import TORCH_VERSION from .path import (check_file_exist, fopen, is_filepath, mkdir_or_exist, scandir, symlink) from .version_utils import digit_version, get_git_hash __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_method_overridden', 'has_method', 'mmcv_full_available', 'digit_version', 'get_git_hash', 'TORCH_VERSION', 'load_url', 'find_latest_checkpoint', 'ManagerMeta', 'ManagerMixin' ]
# Copyright (c) OpenMMLab. All rights reserved. from .hub import load_url from .misc import (check_prerequisites, concat_list, deprecated_api_warning, find_latest_checkpoint, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, mmcv_full_available, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .parrots_wrapper import TORCH_VERSION from .path import (check_file_exist, fopen, is_filepath, mkdir_or_exist, scandir, symlink) from .version_utils import digit_version, get_git_hash __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_method_overridden', 'has_method', 'mmcv_full_available', 'digit_version', 'get_git_hash', 'TORCH_VERSION', 'load_url', 'find_latest_checkpoint' ]
from typing import Iterable, Dict, Sequence import math import numpy as np from docarray.array.storage.base.getsetdel import BaseGetSetDelMixin from docarray.array.storage.base.helper import Offset2ID from docarray import Document class GetSetDelMixin(BaseGetSetDelMixin): """Provide concrete implementation for ``__getitem__``, ``__setitem__``, and ``__delitem__`` for ``DocumentArrayElastic``""" MAX_ES_RETURNED_DOCS = 10000 def _document_to_elastic(self, doc: 'Document') -> Dict: extra_columns = {col: doc.tags.get(col) for col, _ in self._config.columns} request = { '_op_type': 'index', '_id': doc.id, '_index': self._config.index_name, 'embedding': self._map_embedding(doc.embedding), 'blob': doc.to_base64(), **extra_columns, } if self._config.tag_indices: for index in self._config.tag_indices: request[index] = doc.tags.get(index) if doc.text: request['text'] = doc.text return request def _getitem(self, doc_id: str) -> 'Document': """Helper method for getting item with elastic as storage :param doc_id: id of the document :raises KeyError: raise error when elastic id does not exist in storage :return: Document """ try: result = self._client.get(index=self._config.index_name, id=doc_id) doc = Document.from_base64(result['_source']['blob']) return doc except Exception as ex: raise KeyError(doc_id) from ex def _get_doc_by_id(self, _id: str) -> 'Document': """Concrete implementation of base class' ``_get_doc_by_id`` :param _id: the id of the document :return: the retrieved document from elastic """ return self._getitem(_id) def _get_docs_by_ids(self, ids: Sequence[str]) -> Iterable['Document']: """Concrete implementation of base class' ``_get_docs_by_ids`` :param ids: ids of the document :return: Iterable[Document] """ accumulated_docs = [] accumulated_docs_id_not_found = [] if not ids: return accumulated_docs # Handle if doc len is more than MAX_ES_RETURNED_DOCS nrof_arr_split = math.ceil(len(ids) / self.MAX_ES_RETURNED_DOCS) split_ids = np.array_split(ids, nrof_arr_split) for split in split_ids: es_docs = self._client.mget(index=self._config.index_name, ids=split)[ 'docs' ] docs = [ Document.from_base64(doc['_source']['blob']) for doc in es_docs if doc['found'] is True ] docs_id_not_found = [doc['_id'] for doc in es_docs if doc['found'] is False] accumulated_docs.extend(docs) accumulated_docs_id_not_found.extend(docs_id_not_found) if len(accumulated_docs_id_not_found) > 0: raise KeyError(accumulated_docs_id_not_found, accumulated_docs) return accumulated_docs def _set_doc_by_id(self, _id: str, value: 'Document'): """Concrete implementation of base class' ``_set_doc_by_id`` :param _id: the id of doc to update :param value: the document to update to """ if _id != value.id: self._del_doc_by_id(_id) request = [self._document_to_elastic(value)] self._send_requests(request) self._refresh(self._config.index_name) def _set_docs_by_ids(self, ids, docs: Iterable['Document'], mismatch_ids: Dict): """Overridden implementation of _set_docs_by_ids in order to add docs in batches and flush at the end :param ids: the ids used for indexing """ for _id, doc in zip(ids, docs): self._set_doc_by_id(_id, doc) self._refresh(self._config.index_name) def _del_doc_by_id(self, _id: str): """Concrete implementation of base class' ``_del_doc_by_id`` :param _id: the id of the document to delete """ if self._doc_id_exists(_id): self._client.delete(index=self._config.index_name, id=_id) self._refresh(self._config.index_name) def _clear_storage(self): """Concrete implementation of base class' ``_clear_storage``""" self._client.indices.delete(index=self._config.index_name) def _load_offset2ids(self): ids = self._get_offset2ids_meta() self._offset2ids = Offset2ID(ids) def _save_offset2ids(self): self._update_offset2ids_meta()
from typing import Iterable, Dict from docarray.array.storage.base.getsetdel import BaseGetSetDelMixin from docarray.array.storage.base.helper import Offset2ID from docarray import Document class GetSetDelMixin(BaseGetSetDelMixin): """Provide concrete implementation for ``__getitem__``, ``__setitem__``, and ``__delitem__`` for ``DocumentArrayElastic``""" def _document_to_elastic(self, doc: 'Document') -> Dict: extra_columns = {col: doc.tags.get(col) for col, _ in self._config.columns} request = { '_op_type': 'index', '_id': doc.id, '_index': self._config.index_name, 'embedding': self._map_embedding(doc.embedding), 'blob': doc.to_base64(), **extra_columns, } if self._config.tag_indices: for index in self._config.tag_indices: request[index] = doc.tags.get(index) if doc.text: request['text'] = doc.text return request def _getitem(self, doc_id: str) -> 'Document': """Helper method for getting item with elastic as storage :param doc_id: id of the document :raises KeyError: raise error when elastic id does not exist in storage :return: Document """ try: result = self._client.get(index=self._config.index_name, id=doc_id) doc = Document.from_base64(result['_source']['blob']) return doc except Exception as ex: raise KeyError(doc_id) from ex def _get_doc_by_id(self, _id: str) -> 'Document': """Concrete implementation of base class' ``_get_doc_by_id`` :param _id: the id of the document :return: the retrieved document from elastic """ return self._getitem(_id) def _set_doc_by_id(self, _id: str, value: 'Document'): """Concrete implementation of base class' ``_set_doc_by_id`` :param _id: the id of doc to update :param value: the document to update to """ if _id != value.id: self._del_doc_by_id(_id) request = [self._document_to_elastic(value)] self._send_requests(request) self._refresh(self._config.index_name) def _set_docs_by_ids(self, ids, docs: Iterable['Document'], mismatch_ids: Dict): """Overridden implementation of _set_docs_by_ids in order to add docs in batches and flush at the end :param ids: the ids used for indexing """ for _id, doc in zip(ids, docs): self._set_doc_by_id(_id, doc) self._refresh(self._config.index_name) def _del_doc_by_id(self, _id: str): """Concrete implementation of base class' ``_del_doc_by_id`` :param _id: the id of the document to delete """ if self._doc_id_exists(_id): self._client.delete(index=self._config.index_name, id=_id) self._refresh(self._config.index_name) def _clear_storage(self): """Concrete implementation of base class' ``_clear_storage``""" self._client.indices.delete(index=self._config.index_name) def _load_offset2ids(self): ids = self._get_offset2ids_meta() self._offset2ids = Offset2ID(ids) def _save_offset2ids(self): self._update_offset2ids_meta()
from ...utils import is_torch_available if is_torch_available(): from .auraflow_transformer_2d import AuraFlowTransformer2DModel from .cogvideox_transformer_3d import CogVideoXTransformer3DModel from .consisid_transformer_3d import ConsisIDTransformer3DModel from .dit_transformer_2d import DiTTransformer2DModel from .dual_transformer_2d import DualTransformer2DModel from .hunyuan_transformer_2d import HunyuanDiT2DModel from .latte_transformer_3d import LatteTransformer3DModel from .lumina_nextdit2d import LuminaNextDiT2DModel from .pixart_transformer_2d import PixArtTransformer2DModel from .prior_transformer import PriorTransformer from .sana_transformer import SanaTransformer2DModel from .stable_audio_transformer import StableAudioDiTModel from .t5_film_transformer import T5FilmDecoder from .transformer_2d import Transformer2DModel from .transformer_allegro import AllegroTransformer3DModel from .transformer_cogview3plus import CogView3PlusTransformer2DModel from .transformer_cogview4 import CogView4Transformer2DModel from .transformer_cosmos import CosmosTransformer3DModel from .transformer_easyanimate import EasyAnimateTransformer3DModel from .transformer_flux import FluxTransformer2DModel from .transformer_hidream_image import HiDreamImageTransformer2DModel from .transformer_hunyuan_video import HunyuanVideoTransformer3DModel from .transformer_hunyuan_video_framepack import HunyuanVideoFramepackTransformer3DModel from .transformer_ltx import LTXVideoTransformer3DModel from .transformer_lumina2 import Lumina2Transformer2DModel from .transformer_mochi import MochiTransformer3DModel from .transformer_omnigen import OmniGenTransformer2DModel from .transformer_sd3 import SD3Transformer2DModel from .transformer_temporal import TransformerTemporalModel from .transformer_wan import WanTransformer3DModel
from ...utils import is_torch_available if is_torch_available(): from .auraflow_transformer_2d import AuraFlowTransformer2DModel from .cogvideox_transformer_3d import CogVideoXTransformer3DModel from .consisid_transformer_3d import ConsisIDTransformer3DModel from .dit_transformer_2d import DiTTransformer2DModel from .dual_transformer_2d import DualTransformer2DModel from .hunyuan_transformer_2d import HunyuanDiT2DModel from .latte_transformer_3d import LatteTransformer3DModel from .lumina_nextdit2d import LuminaNextDiT2DModel from .pixart_transformer_2d import PixArtTransformer2DModel from .prior_transformer import PriorTransformer from .sana_transformer import SanaTransformer2DModel from .stable_audio_transformer import StableAudioDiTModel from .t5_film_transformer import T5FilmDecoder from .transformer_2d import Transformer2DModel from .transformer_allegro import AllegroTransformer3DModel from .transformer_cogview3plus import CogView3PlusTransformer2DModel from .transformer_cogview4 import CogView4Transformer2DModel from .transformer_easyanimate import EasyAnimateTransformer3DModel from .transformer_flux import FluxTransformer2DModel from .transformer_hidream_image import HiDreamImageTransformer2DModel from .transformer_hunyuan_video import HunyuanVideoTransformer3DModel from .transformer_hunyuan_video_framepack import HunyuanVideoFramepackTransformer3DModel from .transformer_ltx import LTXVideoTransformer3DModel from .transformer_lumina2 import Lumina2Transformer2DModel from .transformer_mochi import MochiTransformer3DModel from .transformer_omnigen import OmniGenTransformer2DModel from .transformer_sd3 import SD3Transformer2DModel from .transformer_temporal import TransformerTemporalModel from .transformer_wan import WanTransformer3DModel
from backend.data.credit import get_user_credit_model from backend.data.execution import ( ExecutionResult, NodeExecutionEntry, RedisExecutionEventBus, create_graph_execution, get_execution_results, get_incomplete_executions, get_latest_execution, update_execution_status, update_execution_status_batch, update_graph_execution_start_time, update_graph_execution_stats, update_node_execution_stats, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import ( get_connected_output_nodes, get_graph, get_graph_metadata, get_node, ) from backend.data.notifications import ( create_or_add_to_user_notification_batch, empty_user_notification_batch, get_all_batches_by_type, get_user_notification_batch, get_user_notification_oldest_message_in_batch, ) from backend.data.user import ( get_active_user_ids_in_timerange, get_user_email_by_id, get_user_email_verification, get_user_integrations, get_user_metadata, get_user_notification_preference, update_user_integrations, update_user_metadata, ) from backend.util.service import AppService, expose, exposed_run_and_wait from backend.util.settings import Config config = Config() _user_credit_model = get_user_credit_model() async def _spend_credits(entry: NodeExecutionEntry) -> int: return await _user_credit_model.spend_credits(entry, 0, 0) class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.event_queue = RedisExecutionEventBus() @classmethod def get_port(cls) -> int: return config.database_api_port @expose def send_execution_update(self, execution_result: ExecutionResult): self.event_queue.publish(execution_result) # Executions create_graph_execution = exposed_run_and_wait(create_graph_execution) get_execution_results = exposed_run_and_wait(get_execution_results) get_incomplete_executions = exposed_run_and_wait(get_incomplete_executions) get_latest_execution = exposed_run_and_wait(get_latest_execution) update_execution_status = exposed_run_and_wait(update_execution_status) update_execution_status_batch = exposed_run_and_wait(update_execution_status_batch) update_graph_execution_start_time = exposed_run_and_wait( update_graph_execution_start_time ) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) get_connected_output_nodes = exposed_run_and_wait(get_connected_output_nodes) get_graph_metadata = exposed_run_and_wait(get_graph_metadata) # Credits spend_credits = exposed_run_and_wait(_spend_credits) # User + User Metadata + User Integrations get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata) get_user_integrations = exposed_run_and_wait(get_user_integrations) update_user_integrations = exposed_run_and_wait(update_user_integrations) # User Comms - async get_active_user_ids_in_timerange = exposed_run_and_wait( get_active_user_ids_in_timerange ) get_user_email_by_id = exposed_run_and_wait(get_user_email_by_id) get_user_email_verification = exposed_run_and_wait(get_user_email_verification) get_user_notification_preference = exposed_run_and_wait( get_user_notification_preference ) # Notifications - async create_or_add_to_user_notification_batch = exposed_run_and_wait( create_or_add_to_user_notification_batch ) empty_user_notification_batch = exposed_run_and_wait(empty_user_notification_batch) get_all_batches_by_type = exposed_run_and_wait(get_all_batches_by_type) get_user_notification_batch = exposed_run_and_wait(get_user_notification_batch) get_user_notification_oldest_message_in_batch = exposed_run_and_wait( get_user_notification_oldest_message_in_batch )
from backend.data.credit import get_user_credit_model from backend.data.execution import ( ExecutionResult, NodeExecutionEntry, RedisExecutionEventBus, create_graph_execution, get_execution_results, get_incomplete_executions, get_latest_execution, update_execution_status, update_graph_execution_start_time, update_graph_execution_stats, update_node_execution_stats, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import ( get_connected_output_nodes, get_graph, get_graph_metadata, get_node, ) from backend.data.notifications import ( create_or_add_to_user_notification_batch, empty_user_notification_batch, get_all_batches_by_type, get_user_notification_batch, get_user_notification_oldest_message_in_batch, ) from backend.data.user import ( get_active_user_ids_in_timerange, get_user_email_by_id, get_user_email_verification, get_user_integrations, get_user_metadata, get_user_notification_preference, update_user_integrations, update_user_metadata, ) from backend.util.service import AppService, expose, exposed_run_and_wait from backend.util.settings import Config config = Config() _user_credit_model = get_user_credit_model() async def _spend_credits(entry: NodeExecutionEntry) -> int: return await _user_credit_model.spend_credits(entry, 0, 0) class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.event_queue = RedisExecutionEventBus() @classmethod def get_port(cls) -> int: return config.database_api_port @expose def send_execution_update(self, execution_result: ExecutionResult): self.event_queue.publish(execution_result) # Executions create_graph_execution = exposed_run_and_wait(create_graph_execution) get_execution_results = exposed_run_and_wait(get_execution_results) get_incomplete_executions = exposed_run_and_wait(get_incomplete_executions) get_latest_execution = exposed_run_and_wait(get_latest_execution) update_execution_status = exposed_run_and_wait(update_execution_status) update_graph_execution_start_time = exposed_run_and_wait( update_graph_execution_start_time ) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) get_connected_output_nodes = exposed_run_and_wait(get_connected_output_nodes) get_graph_metadata = exposed_run_and_wait(get_graph_metadata) # Credits spend_credits = exposed_run_and_wait(_spend_credits) # User + User Metadata + User Integrations get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata) get_user_integrations = exposed_run_and_wait(get_user_integrations) update_user_integrations = exposed_run_and_wait(update_user_integrations) # User Comms - async get_active_user_ids_in_timerange = exposed_run_and_wait( get_active_user_ids_in_timerange ) get_user_email_by_id = exposed_run_and_wait(get_user_email_by_id) get_user_email_verification = exposed_run_and_wait(get_user_email_verification) get_user_notification_preference = exposed_run_and_wait( get_user_notification_preference ) # Notifications - async create_or_add_to_user_notification_batch = exposed_run_and_wait( create_or_add_to_user_notification_batch ) empty_user_notification_batch = exposed_run_and_wait(empty_user_notification_batch) get_all_batches_by_type = exposed_run_and_wait(get_all_batches_by_type) get_user_notification_batch = exposed_run_and_wait(get_user_notification_batch) get_user_notification_oldest_message_in_batch = exposed_run_and_wait( get_user_notification_oldest_message_in_batch )
"""Rayyan review reader.""" import logging from typing import List from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class RayyanReader(BaseReader): """ Rayyan reader. Reads articles from a Rayyan review. Args: credentials_path (str): Rayyan credentials path. rayyan_url (str, optional): Rayyan URL. Defaults to https://rayyan.ai. Set to an alternative URL if you are using a non-production Rayyan instance. """ def __init__( self, credentials_path: str, rayyan_url: str = "https://rayyan.ai" ) -> None: """Initialize Rayyan reader.""" from rayyan import Rayyan from rayyan.user import User logging.debug("Initializing Rayyan reader...") self.rayyan = Rayyan(credentials_path, url=rayyan_url) user = User(self.rayyan).get_info() logging.info(f"Signed in successfully to Rayyan as: {user['displayName']}!") def load_data(self, review_id: str, filters: dict = {}) -> List[Document]: """ Load articles from a review. Args: review_id (int): Rayyan review ID. filters (dict, optional): Filters to apply to the review. Defaults to None. Passed to the Rayyan review results method as is. Returns: List[Document]: List of documents. """ from tenacity import ( retry, stop_after_attempt, stop_after_delay, stop_all, wait_random_exponential, ) from tqdm import tqdm from rayyan.review import Review rayyan_review = Review(self.rayyan) my_review = rayyan_review.get(review_id) logging.info( f"Working on review: '{my_review['title']}' with {my_review['total_articles']} total articles." ) result_params = {"start": 0, "length": 100} result_params.update(filters) @retry( wait=wait_random_exponential(min=1, max=10), stop=stop_all(stop_after_attempt(3), stop_after_delay(30)), ) def fetch_results_with_retry(): logging.debug("Fetch parameters: %s", result_params) return rayyan_review.results(review_id, result_params) articles = [] logging.info("Fetching articles from Rayyan...") total = my_review["total_articles"] with tqdm(total=total) as pbar: while len(articles) < total: # retrieve articles in batches review_results = fetch_results_with_retry() fetched_articles = review_results["data"] articles.extend(fetched_articles) # update total in case filters are applied if total != review_results["recordsFiltered"]: total = review_results["recordsFiltered"] pbar.total = total result_params["start"] += len(fetched_articles) pbar.update(len(fetched_articles)) results = [] for article in articles: # iterate over all abstracts abstracts = "" if article["abstracts"] is not None: abstracts_arr = [ abstract["content"] for abstract in article["abstracts"] ] if len(abstracts_arr) > 0: # map array into a string abstracts = "\n".join(abstracts_arr)[0:1024].strip() title = article["title"] if title is not None: title = title.strip() body = f"{title}\n{abstracts}" if body.strip() == "": continue extra_info = {"id": article["id"], "title": title} results.append( Document( text=body, extra_info=extra_info, ) ) return results
"""Rayyan review reader.""" import logging from typing import List from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class RayyanReader(BaseReader): """Rayyan reader. Reads articles from a Rayyan review. Args: credentials_path (str): Rayyan credentials path. rayyan_url (str, optional): Rayyan URL. Defaults to https://rayyan.ai. Set to an alternative URL if you are using a non-production Rayyan instance. """ def __init__( self, credentials_path: str, rayyan_url: str = "https://rayyan.ai" ) -> None: """Initialize Rayyan reader.""" from rayyan import Rayyan from rayyan.user import User logging.debug("Initializing Rayyan reader...") self.rayyan = Rayyan(credentials_path, url=rayyan_url) user = User(self.rayyan).get_info() logging.info(f"Signed in successfully to Rayyan as: {user['displayName']}!") def load_data(self, review_id: str, filters: dict = {}) -> List[Document]: """Load articles from a review. Args: review_id (int): Rayyan review ID. filters (dict, optional): Filters to apply to the review. Defaults to None. Passed to the Rayyan review results method as is. Returns: List[Document]: List of documents. """ from tenacity import ( retry, stop_after_attempt, stop_after_delay, stop_all, wait_random_exponential, ) from tqdm import tqdm from rayyan.review import Review rayyan_review = Review(self.rayyan) my_review = rayyan_review.get(review_id) logging.info( f"Working on review: '{my_review['title']}' with {my_review['total_articles']} total articles." ) result_params = {"start": 0, "length": 100} result_params.update(filters) @retry( wait=wait_random_exponential(min=1, max=10), stop=stop_all(stop_after_attempt(3), stop_after_delay(30)), ) def fetch_results_with_retry(): logging.debug("Fetch parameters: %s", result_params) return rayyan_review.results(review_id, result_params) articles = [] logging.info("Fetching articles from Rayyan...") total = my_review["total_articles"] with tqdm(total=total) as pbar: while len(articles) < total: # retrieve articles in batches review_results = fetch_results_with_retry() fetched_articles = review_results["data"] articles.extend(fetched_articles) # update total in case filters are applied if total != review_results["recordsFiltered"]: total = review_results["recordsFiltered"] pbar.total = total result_params["start"] += len(fetched_articles) pbar.update(len(fetched_articles)) results = [] for article in articles: # iterate over all abstracts abstracts = "" if article["abstracts"] is not None: abstracts_arr = [ abstract["content"] for abstract in article["abstracts"] ] if len(abstracts_arr) > 0: # map array into a string abstracts = "\n".join(abstracts_arr)[0:1024].strip() title = article["title"] if title is not None: title = title.strip() body = f"{title}\n{abstracts}" if body.strip() == "": continue extra_info = {"id": article["id"], "title": title} results.append( Document( text=body, extra_info=extra_info, ) ) return results
# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # """ Utility that checks that modules like attention processors are listed in the documentation file. ```bash python utils/check_support_list.py ``` It has no auto-fix mode. """ import os import re # All paths are set with the intent that you run this script from the root of the repo REPO_PATH = "." def read_documented_classes(doc_path, autodoc_regex=r"\[\[autodoc\]\]\s([^\n]+)"): """ Reads documented classes from a doc file using a regex to find lines like [[autodoc]] my.module.Class. Returns a list of documented class names (just the class name portion). """ with open(os.path.join(REPO_PATH, doc_path), "r") as f: doctext = f.read() matches = re.findall(autodoc_regex, doctext) return [match.split(".")[-1] for match in matches] def read_source_classes(src_path, class_regex, exclude_conditions=None): """ Reads class names from a source file using a regex that captures class definitions. Optionally exclude classes based on a list of conditions (functions that take class name and return bool). """ if exclude_conditions is None: exclude_conditions = [] with open(os.path.join(REPO_PATH, src_path), "r") as f: doctext = f.read() classes = re.findall(class_regex, doctext) # Filter out classes that meet any of the exclude conditions filtered_classes = [c for c in classes if not any(cond(c) for cond in exclude_conditions)] return filtered_classes def check_documentation(doc_path, src_path, doc_regex, src_regex, exclude_conditions=None): """ Generic function to check if all classes defined in `src_path` are documented in `doc_path`. Returns a set of undocumented class names. """ documented = set(read_documented_classes(doc_path, doc_regex)) source_classes = set(read_source_classes(src_path, src_regex, exclude_conditions=exclude_conditions)) # Find which classes in source are not documented in a deterministic way. undocumented = sorted(source_classes - documented) return undocumented if __name__ == "__main__": # Define the checks we need to perform checks = { "Attention Processors": { "doc_path": "docs/source/en/api/attnprocessor.md", "src_path": "src/diffusers/models/attention_processor.py", "doc_regex": r"\[\[autodoc\]\]\s([^\n]+)", "src_regex": r"class\s+(\w+Processor(?:\d*_?\d*))[:(]", "exclude_conditions": [lambda c: "LoRA" in c, lambda c: c == "Attention"], }, "Image Processors": { "doc_path": "docs/source/en/api/image_processor.md", "src_path": "src/diffusers/image_processor.py", "doc_regex": r"\[\[autodoc\]\]\s([^\n]+)", "src_regex": r"class\s+(\w+Processor(?:\d*_?\d*))[:(]", }, "Activations": { "doc_path": "docs/source/en/api/activations.md", "src_path": "src/diffusers/models/activations.py", "doc_regex": r"\[\[autodoc\]\]\s([^\n]+)", "src_regex": r"class\s+(\w+)\s*\(.*?nn\.Module.*?\):", }, "Normalizations": { "doc_path": "docs/source/en/api/normalization.md", "src_path": "src/diffusers/models/normalization.py", "doc_regex": r"\[\[autodoc\]\]\s([^\n]+)", "src_regex": r"class\s+(\w+)\s*\(.*?nn\.Module.*?\):", "exclude_conditions": [ # Exclude LayerNorm as it's an intentional exception lambda c: c == "LayerNorm" ], }, "LoRA Mixins": { "doc_path": "docs/source/en/api/loaders/lora.md", "src_path": "src/diffusers/loaders/lora_pipeline.py", "doc_regex": r"\[\[autodoc\]\]\s([^\n]+)", "src_regex": r"class\s+(\w+LoraLoaderMixin(?:\d*_?\d*))[:(]", }, } missing_items = {} for category, params in checks.items(): undocumented = check_documentation( doc_path=params["doc_path"], src_path=params["src_path"], doc_regex=params["doc_regex"], src_regex=params["src_regex"], exclude_conditions=params.get("exclude_conditions"), ) if undocumented: missing_items[category] = undocumented # If we have any missing items, raise a single combined error if missing_items: error_msg = ["Some classes are not documented properly:\n"] for category, classes in missing_items.items(): error_msg.append(f"- {category}: {', '.join(sorted(classes))}") raise ValueError("\n".join(error_msg))
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # """ Utility that checks that modules like attention processors are listed in the documentation file. ```bash python utils/check_support_list.py ``` It has no auto-fix mode. """ import os import re # All paths are set with the intent that you run this script from the root of the repo REPO_PATH = "." def read_documented_classes(doc_path, autodoc_regex=r"\[\[autodoc\]\]\s([^\n]+)"): """ Reads documented classes from a doc file using a regex to find lines like [[autodoc]] my.module.Class. Returns a list of documented class names (just the class name portion). """ with open(os.path.join(REPO_PATH, doc_path), "r") as f: doctext = f.read() matches = re.findall(autodoc_regex, doctext) return [match.split(".")[-1] for match in matches] def read_source_classes(src_path, class_regex, exclude_conditions=None): """ Reads class names from a source file using a regex that captures class definitions. Optionally exclude classes based on a list of conditions (functions that take class name and return bool). """ if exclude_conditions is None: exclude_conditions = [] with open(os.path.join(REPO_PATH, src_path), "r") as f: doctext = f.read() classes = re.findall(class_regex, doctext) # Filter out classes that meet any of the exclude conditions filtered_classes = [c for c in classes if not any(cond(c) for cond in exclude_conditions)] return filtered_classes def check_documentation(doc_path, src_path, doc_regex, src_regex, exclude_conditions=None): """ Generic function to check if all classes defined in `src_path` are documented in `doc_path`. Returns a set of undocumented class names. """ documented = set(read_documented_classes(doc_path, doc_regex)) source_classes = set(read_source_classes(src_path, src_regex, exclude_conditions=exclude_conditions)) # Find which classes in source are not documented in a deterministic way. undocumented = sorted(source_classes - documented) return undocumented if __name__ == "__main__": # Define the checks we need to perform checks = { "Attention Processors": { "doc_path": "docs/source/en/api/attnprocessor.md", "src_path": "src/diffusers/models/attention_processor.py", "doc_regex": r"\[\[autodoc\]\]\s([^\n]+)", "src_regex": r"class\s+(\w+Processor(?:\d*_?\d*))[:(]", "exclude_conditions": [lambda c: "LoRA" in c, lambda c: c == "Attention"], }, "Image Processors": { "doc_path": "docs/source/en/api/image_processor.md", "src_path": "src/diffusers/image_processor.py", "doc_regex": r"\[\[autodoc\]\]\s([^\n]+)", "src_regex": r"class\s+(\w+Processor(?:\d*_?\d*))[:(]", }, "Activations": { "doc_path": "docs/source/en/api/activations.md", "src_path": "src/diffusers/models/activations.py", "doc_regex": r"\[\[autodoc\]\]\s([^\n]+)", "src_regex": r"class\s+(\w+)\s*\(.*?nn\.Module.*?\):", }, "Normalizations": { "doc_path": "docs/source/en/api/normalization.md", "src_path": "src/diffusers/models/normalization.py", "doc_regex": r"\[\[autodoc\]\]\s([^\n]+)", "src_regex": r"class\s+(\w+)\s*\(.*?nn\.Module.*?\):", "exclude_conditions": [ # Exclude LayerNorm as it's an intentional exception lambda c: c == "LayerNorm" ], }, "LoRA Mixins": { "doc_path": "docs/source/en/api/loaders/lora.md", "src_path": "src/diffusers/loaders/lora_pipeline.py", "doc_regex": r"\[\[autodoc\]\]\s([^\n]+)", "src_regex": r"class\s+(\w+LoraLoaderMixin(?:\d*_?\d*))[:(]", }, } missing_items = {} for category, params in checks.items(): undocumented = check_documentation( doc_path=params["doc_path"], src_path=params["src_path"], doc_regex=params["doc_regex"], src_regex=params["src_regex"], exclude_conditions=params.get("exclude_conditions"), ) if undocumented: missing_items[category] = undocumented # If we have any missing items, raise a single combined error if missing_items: error_msg = ["Some classes are not documented properly:\n"] for category, classes in missing_items.items(): error_msg.append(f"- {category}: {', '.join(sorted(classes))}") raise ValueError("\n".join(error_msg))
""" Compute image embeddings """ import os from PIL import Image from sentence_transformers import SentenceTransformer, util def test_simple_encode(clip_vit_b_32_model: SentenceTransformer) -> None: model = clip_vit_b_32_model # Encode an image: image_filepath = os.path.join( os.path.dirname(os.path.realpath(__file__)), "../examples/applications/image-search/two_dogs_in_snow.jpg", ) img_emb = model.encode(Image.open(image_filepath)) # Encode text descriptions text_emb = model.encode(["Two dogs in the snow", "A cat on a table", "A picture of London at night"]) # Compute cosine similarities cos_scores = util.cos_sim(img_emb, text_emb)[0] assert abs(cos_scores[0] - 0.3069) < 0.01 assert abs(cos_scores[1] - 0.1010) < 0.01 assert abs(cos_scores[2] - 0.1086) < 0.01
""" Compute image embeddings """ import os from PIL import Image from sentence_transformers import util, SentenceTransformer def test_simple_encode(clip_vit_b_32_model: SentenceTransformer) -> None: model = clip_vit_b_32_model # Encode an image: image_filepath = os.path.join( os.path.dirname(os.path.realpath(__file__)), "../examples/applications/image-search/two_dogs_in_snow.jpg", ) img_emb = model.encode(Image.open(image_filepath)) # Encode text descriptions text_emb = model.encode(["Two dogs in the snow", "A cat on a table", "A picture of London at night"]) # Compute cosine similarities cos_scores = util.cos_sim(img_emb, text_emb)[0] assert abs(cos_scores[0] - 0.3069) < 0.01 assert abs(cos_scores[1] - 0.1010) < 0.01 assert abs(cos_scores[2] - 0.1086) < 0.01
import sys import pytest from hypothesis import given, settings, strategies import xgboost as xgb from xgboost import testing as tm from xgboost.testing import no_cupy from xgboost.testing.updater import check_extmem_qdm, check_quantile_loss_extmem sys.path.append("tests/python") from test_data_iterator import run_data_iterator from test_data_iterator import test_single_batch as cpu_single_batch def test_gpu_single_batch() -> None: cpu_single_batch("hist", "cuda") @pytest.mark.skipif(**no_cupy()) @given( strategies.integers(0, 1024), strategies.integers(1, 7), strategies.integers(0, 8), strategies.booleans(), strategies.booleans(), strategies.booleans(), ) @settings(deadline=None, max_examples=16, print_blob=True) def test_gpu_data_iterator( n_samples_per_batch: int, n_features: int, n_batches: int, subsample: bool, use_cupy: bool, on_host: bool, ) -> None: run_data_iterator( n_samples_per_batch, n_features, n_batches, "hist", subsample=subsample, device="cuda", use_cupy=use_cupy, on_host=on_host, ) def test_cpu_data_iterator() -> None: """Make sure CPU algorithm can handle GPU inputs""" run_data_iterator( 1024, 2, 3, "approx", device="cuda", subsample=False, use_cupy=True, on_host=False, ) @given( strategies.integers(1, 2048), strategies.integers(1, 8), strategies.integers(1, 4), strategies.booleans(), ) @settings(deadline=None, max_examples=10, print_blob=True) def test_extmem_qdm( n_samples_per_batch: int, n_features: int, n_batches: int, on_host: bool ) -> None: check_extmem_qdm(n_samples_per_batch, n_features, n_batches, "cuda", on_host) def test_concat_pages() -> None: it = tm.IteratorForTest(*tm.make_batches(64, 16, 4, use_cupy=True), cache=None) Xy = xgb.ExtMemQuantileDMatrix(it) with pytest.raises(ValueError, match="can not be used with concatenated pages"): booster = xgb.train( { "device": "cuda", "subsample": 0.5, "sampling_method": "gradient_based", "extmem_concat_pages": True, "objective": "reg:absoluteerror", }, Xy, ) @given( strategies.integers(1, 64), strategies.integers(1, 8), strategies.integers(1, 4), ) @settings(deadline=None, max_examples=10, print_blob=True) def test_quantile_objective( n_samples_per_batch: int, n_features: int, n_batches: int ) -> None: check_quantile_loss_extmem( n_samples_per_batch, n_features, n_batches, "hist", "cuda", ) check_quantile_loss_extmem( n_samples_per_batch, n_features, n_batches, "approx", "cuda", )
import sys import pytest from hypothesis import given, settings, strategies from xgboost.testing import no_cupy from xgboost.testing.updater import check_extmem_qdm, check_quantile_loss_extmem sys.path.append("tests/python") from test_data_iterator import run_data_iterator from test_data_iterator import test_single_batch as cpu_single_batch def test_gpu_single_batch() -> None: cpu_single_batch("hist", "cuda") @pytest.mark.skipif(**no_cupy()) @given( strategies.integers(0, 1024), strategies.integers(1, 7), strategies.integers(0, 8), strategies.booleans(), strategies.booleans(), strategies.booleans(), ) @settings(deadline=None, max_examples=16, print_blob=True) def test_gpu_data_iterator( n_samples_per_batch: int, n_features: int, n_batches: int, subsample: bool, use_cupy: bool, on_host: bool, ) -> None: run_data_iterator( n_samples_per_batch, n_features, n_batches, "hist", subsample=subsample, device="cuda", use_cupy=use_cupy, on_host=on_host, ) def test_cpu_data_iterator() -> None: """Make sure CPU algorithm can handle GPU inputs""" run_data_iterator( 1024, 2, 3, "approx", device="cuda", subsample=False, use_cupy=True, on_host=False, ) @given( strategies.integers(1, 2048), strategies.integers(1, 8), strategies.integers(1, 4), strategies.booleans(), ) @settings(deadline=None, max_examples=10, print_blob=True) def test_extmem_qdm( n_samples_per_batch: int, n_features: int, n_batches: int, on_host: bool ) -> None: check_extmem_qdm(n_samples_per_batch, n_features, n_batches, "cuda", on_host) @given( strategies.integers(1, 64), strategies.integers(1, 8), strategies.integers(1, 4), ) @settings(deadline=None, max_examples=10, print_blob=True) def test_quantile_objective( n_samples_per_batch: int, n_features: int, n_batches: int ) -> None: check_quantile_loss_extmem( n_samples_per_batch, n_features, n_batches, "hist", "cuda", ) check_quantile_loss_extmem( n_samples_per_batch, n_features, n_batches, "approx", "cuda", )
import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from pydantic import BaseModel, ConfigDict from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import BlockSecret, SchemaField, SecretField class EmailCredentials(BaseModel): smtp_server: str = SchemaField( default="smtp.gmail.com", description="SMTP server address" ) smtp_port: int = SchemaField(default=25, description="SMTP port number") smtp_username: BlockSecret = SecretField(key="smtp_username") smtp_password: BlockSecret = SecretField(key="smtp_password") model_config = ConfigDict(title="Email Credentials") class SendEmailBlock(Block): class Input(BlockSchema): to_email: str = SchemaField( description="Recipient email address", placeholder="recipient@example.com" ) subject: str = SchemaField( description="Subject of the email", placeholder="Enter the email subject" ) body: str = SchemaField( description="Body of the email", placeholder="Enter the email body" ) creds: EmailCredentials = SchemaField( description="SMTP credentials", default=EmailCredentials(), ) class Output(BlockSchema): status: str = SchemaField(description="Status of the email sending operation") error: str = SchemaField( description="Error message if the email sending failed" ) def __init__(self): super().__init__( disabled=True, id="4335878a-394e-4e67-adf2-919877ff49ae", description="This block sends an email using the provided SMTP credentials.", categories={BlockCategory.OUTPUT}, input_schema=SendEmailBlock.Input, output_schema=SendEmailBlock.Output, test_input={ "to_email": "recipient@example.com", "subject": "Test Email", "body": "This is a test email.", "creds": { "smtp_server": "smtp.gmail.com", "smtp_port": 25, "smtp_username": "your-email@gmail.com", "smtp_password": "your-gmail-password", }, }, test_output=[("status", "Email sent successfully")], test_mock={"send_email": lambda *args, **kwargs: "Email sent successfully"}, ) @staticmethod def send_email( creds: EmailCredentials, to_email: str, subject: str, body: str ) -> str: smtp_server = creds.smtp_server smtp_port = creds.smtp_port smtp_username = creds.smtp_username.get_secret_value() smtp_password = creds.smtp_password.get_secret_value() msg = MIMEMultipart() msg["From"] = smtp_username msg["To"] = to_email msg["Subject"] = subject msg.attach(MIMEText(body, "plain")) with smtplib.SMTP(smtp_server, smtp_port) as server: server.starttls() server.login(smtp_username, smtp_password) server.sendmail(smtp_username, to_email, msg.as_string()) return "Email sent successfully" def run(self, input_data: Input, **kwargs) -> BlockOutput: yield "status", self.send_email( input_data.creds, input_data.to_email, input_data.subject, input_data.body, )
import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from pydantic import BaseModel, ConfigDict from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import BlockSecret, SchemaField, SecretField class EmailCredentials(BaseModel): smtp_server: str = SchemaField( default="smtp.gmail.com", description="SMTP server address" ) smtp_port: int = SchemaField(default=25, description="SMTP port number") smtp_username: BlockSecret = SecretField(key="smtp_username") smtp_password: BlockSecret = SecretField(key="smtp_password") model_config = ConfigDict(title="Email Credentials") class SendEmailBlock(Block): class Input(BlockSchema): to_email: str = SchemaField( description="Recipient email address", placeholder="recipient@example.com" ) subject: str = SchemaField( description="Subject of the email", placeholder="Enter the email subject" ) body: str = SchemaField( description="Body of the email", placeholder="Enter the email body" ) creds: EmailCredentials = SchemaField( description="SMTP credentials", default=EmailCredentials(), ) class Output(BlockSchema): status: str = SchemaField(description="Status of the email sending operation") error: str = SchemaField( description="Error message if the email sending failed" ) def __init__(self): super().__init__( id="4335878a-394e-4e67-adf2-919877ff49ae", description="This block sends an email using the provided SMTP credentials.", categories={BlockCategory.OUTPUT}, input_schema=SendEmailBlock.Input, output_schema=SendEmailBlock.Output, test_input={ "to_email": "recipient@example.com", "subject": "Test Email", "body": "This is a test email.", "creds": { "smtp_server": "smtp.gmail.com", "smtp_port": 25, "smtp_username": "your-email@gmail.com", "smtp_password": "your-gmail-password", }, }, test_output=[("status", "Email sent successfully")], test_mock={"send_email": lambda *args, **kwargs: "Email sent successfully"}, ) @staticmethod def send_email( creds: EmailCredentials, to_email: str, subject: str, body: str ) -> str: smtp_server = creds.smtp_server smtp_port = creds.smtp_port smtp_username = creds.smtp_username.get_secret_value() smtp_password = creds.smtp_password.get_secret_value() msg = MIMEMultipart() msg["From"] = smtp_username msg["To"] = to_email msg["Subject"] = subject msg.attach(MIMEText(body, "plain")) with smtplib.SMTP(smtp_server, smtp_port) as server: server.starttls() server.login(smtp_username, smtp_password) server.sendmail(smtp_username, to_email, msg.as_string()) return "Email sent successfully" def run(self, input_data: Input, **kwargs) -> BlockOutput: yield "status", self.send_email( input_data.creds, input_data.to_email, input_data.subject, input_data.body, )
from langchain_core.utils.function_calling import convert_to_openai_function from langchain.chains.openai_functions.base import ( create_openai_fn_chain, create_structured_output_chain, ) from langchain.chains.openai_functions.citation_fuzzy_match import ( create_citation_fuzzy_match_chain, create_citation_fuzzy_match_runnable, ) from langchain.chains.openai_functions.extraction import ( create_extraction_chain, create_extraction_chain_pydantic, ) from langchain.chains.openai_functions.qa_with_structure import ( create_qa_with_sources_chain, create_qa_with_structure_chain, ) from langchain.chains.openai_functions.tagging import ( create_tagging_chain, create_tagging_chain_pydantic, ) from langchain.chains.structured_output.base import ( create_openai_fn_runnable, create_structured_output_runnable, get_openai_output_parser, ) __all__ = [ "convert_to_openai_function", "create_citation_fuzzy_match_chain", "create_citation_fuzzy_match_runnable", "create_extraction_chain", "create_extraction_chain_pydantic", "create_openai_fn_chain", "create_openai_fn_runnable", # backwards compatibility "create_qa_with_sources_chain", "create_qa_with_structure_chain", "create_structured_output_chain", "create_structured_output_runnable", # backwards compatibility "create_tagging_chain", "create_tagging_chain_pydantic", "get_openai_output_parser", # backwards compatibility ]
from langchain_core.utils.function_calling import convert_to_openai_function from langchain.chains.openai_functions.base import ( create_openai_fn_chain, create_structured_output_chain, ) from langchain.chains.openai_functions.citation_fuzzy_match import ( create_citation_fuzzy_match_chain, create_citation_fuzzy_match_runnable, ) from langchain.chains.openai_functions.extraction import ( create_extraction_chain, create_extraction_chain_pydantic, ) from langchain.chains.openai_functions.qa_with_structure import ( create_qa_with_sources_chain, create_qa_with_structure_chain, ) from langchain.chains.openai_functions.tagging import ( create_tagging_chain, create_tagging_chain_pydantic, ) from langchain.chains.structured_output.base import ( create_openai_fn_runnable, create_structured_output_runnable, get_openai_output_parser, ) __all__ = [ "convert_to_openai_function", "create_tagging_chain", "create_tagging_chain_pydantic", "create_extraction_chain_pydantic", "create_extraction_chain", "create_citation_fuzzy_match_chain", "create_citation_fuzzy_match_runnable", "create_qa_with_structure_chain", "create_qa_with_sources_chain", "create_structured_output_chain", "create_openai_fn_chain", "create_structured_output_runnable", # backwards compatibility "create_openai_fn_runnable", # backwards compatibility "get_openai_output_parser", # backwards compatibility ]
from llama_index.vector_stores.couchbase.base import ( CouchbaseVectorStore, CouchbaseSearchVectorStore, ) __all__ = ["CouchbaseVectorStore", "CouchbaseSearchVectorStore"]
from llama_index.vector_stores.couchbase.base import CouchbaseVectorStore, CouchbaseSearchVectorStore __all__ = ["CouchbaseVectorStore", "CouchbaseSearchVectorStore"]
import numpy as np import pytest from tensorflow import data as tf_data from keras.src import backend from keras.src import layers from keras.src import testing class CanaryLayer(layers.Layer): def __init__(self): super().__init__() self.training = None self.received_mask = False def call(self, x, training=False, mask=None): self.training = training if mask is not None: self.received_mask = True return x def compute_mask(self, x, mask=None): return x def compute_output_shape(self, input_shape): return input_shape class PipelineTest(testing.TestCase): def test_basics(self): run_training_check = False if backend.backend() == "numpy" else True self.run_layer_test( layers.Pipeline, init_kwargs={ "layers": [layers.AutoContrast(), layers.RandomBrightness(0.1)], }, input_shape=(8, 3, 4, 3), supports_masking=False, expected_output_shape=(8, 3, 4, 3), run_mixed_precision_check=False, run_training_check=run_training_check, ) @pytest.mark.skipif( backend.backend() == "numpy", reason="masking not working in numpy" ) def test_correctness(self): pipeline = layers.Pipeline([CanaryLayer(), CanaryLayer()]) x = np.array([0]) mask = np.array([0]) pipeline(x, training=True, mask=mask) self.assertTrue(pipeline.layers[0].training) self.assertTrue(pipeline.layers[0].received_mask) self.assertTrue(pipeline.layers[1].training) self.assertTrue(pipeline.layers[1].received_mask) def test_tf_data_compatibility(self): if backend.config.image_data_format() == "channels_last": input_shape = (2, 10, 12, 3) output_shape = (2, 8, 9, 3) else: input_shape = (2, 3, 10, 12) output_shape = (2, 3, 8, 9) layer = layers.Pipeline( [ layers.AutoContrast(), layers.CenterCrop(8, 9), ] ) input_data = np.random.random(input_shape) ds = tf_data.Dataset.from_tensor_slices(input_data).batch(2).map(layer) for output in ds.take(1): output = output.numpy() self.assertEqual(tuple(output.shape), output_shape)
import numpy as np from tensorflow import data as tf_data from keras.src import backend from keras.src import layers from keras.src import testing class CanaryLayer(layers.Layer): def __init__(self): super().__init__() self.training = None self.received_mask = False def call(self, x, training=False, mask=None): self.training = training if mask is not None: self.received_mask = True return x def compute_mask(self, x, mask=None): return x def compute_output_shape(self, input_shape): return input_shape class PipelineTest(testing.TestCase): def test_basics(self): self.run_layer_test( layers.Pipeline, init_kwargs={ "layers": [layers.AutoContrast(), layers.RandomBrightness(0.1)], }, input_shape=(8, 3, 4, 3), supports_masking=False, expected_output_shape=(8, 3, 4, 3), run_mixed_precision_check=False, ) def test_correctness(self): pipeline = layers.Pipeline([CanaryLayer(), CanaryLayer()]) x = np.array([0]) mask = np.array([0]) pipeline(x, training=True, mask=mask) self.assertTrue(pipeline.layers[0].training) self.assertTrue(pipeline.layers[0].received_mask) self.assertTrue(pipeline.layers[1].training) self.assertTrue(pipeline.layers[1].received_mask) def test_tf_data_compatibility(self): if backend.config.image_data_format() == "channels_last": input_shape = (2, 10, 12, 3) output_shape = (2, 8, 9, 3) else: input_shape = (2, 3, 10, 12) output_shape = (2, 3, 8, 9) layer = layers.Pipeline( [ layers.AutoContrast(), layers.CenterCrop(8, 9), ] ) input_data = np.random.random(input_shape) ds = tf_data.Dataset.from_tensor_slices(input_data).batch(2).map(layer) for output in ds.take(1): output = output.numpy() self.assertEqual(tuple(output.shape), output_shape)
import pytest # type: ignore[import-not-found, import-not-found] @pytest.mark.compile def test_placeholder() -> None: """Used for compiling integration tests without running any real tests."""
import pytest # type: ignore[import-not-found, import-not-found] @pytest.mark.compile def test_placeholder() -> None: """Used for compiling integration tests without running any real tests.""" pass
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', 'jina-hubble-sdk>=0.10.0', ], 'full': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'jina-hubble-sdk>=0.10.0', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', 'weaviate-client~=3.3.0', 'annlite>=0.3.2', 'qdrant-client~=0.7.3', 'elasticsearch>=8.2.0', ], 'qdrant': [ 'qdrant-client~=0.7.3', ], 'annlite': [ 'annlite>=0.3.2', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.2', 'elasticsearch>=8.2.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0,<=3.20.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', 'weaviate-client~=3.3.0', 'annlite>=0.3.2', 'qdrant-client~=0.7.3', 'elasticsearch>=8.2.0', ], 'qdrant': [ 'qdrant-client~=0.7.3', ], 'annlite': [ 'annlite>=0.3.2', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.2', 'elasticsearch>=8.2.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
# Copyright (c) OpenMMLab. All rights reserved. import argparse import numpy as np import torch from mmengine.config import Config, DictAction from mmdet.models import build_detector try: from mmcv.cnn import get_model_complexity_info except ImportError: raise ImportError('Please upgrade mmcv to >0.6.2') def parse_args(): parser = argparse.ArgumentParser(description='Train a detector') parser.add_argument('config', help='train config file path') parser.add_argument( '--shape', type=int, nargs='+', default=[1280, 800], help='input image size') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--size-divisor', type=int, default=32, help='Pad the input image, the minimum size that is divisible ' 'by size_divisor, -1 means do not pad the image.') args = parser.parse_args() return args def main(): args = parse_args() if len(args.shape) == 1: h = w = args.shape[0] elif len(args.shape) == 2: h, w = args.shape else: raise ValueError('invalid input shape') ori_shape = (3, h, w) divisor = args.size_divisor if divisor > 0: h = int(np.ceil(h / divisor)) * divisor w = int(np.ceil(w / divisor)) * divisor input_shape = (3, h, w) cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) model = build_detector( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) if torch.cuda.is_available(): model.cuda() model.eval() if hasattr(model, 'forward_dummy'): model.forward = model.forward_dummy else: raise NotImplementedError( 'FLOPs counter is currently not currently supported with {}'. format(model.__class__.__name__)) flops, params = get_model_complexity_info(model, input_shape) split_line = '=' * 30 if divisor > 0 and \ input_shape != ori_shape: print(f'{split_line}\nUse size divisor set input shape ' f'from {ori_shape} to {input_shape}\n') print(f'{split_line}\nInput shape: {input_shape}\n' f'Flops: {flops}\nParams: {params}\n{split_line}') print('!!!Please be cautious if you use the results in papers. ' 'You may need to check if all ops are supported and verify that the ' 'flops computation is correct.') if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import numpy as np import torch from mmcv import Config, DictAction from mmdet.models import build_detector try: from mmcv.cnn import get_model_complexity_info except ImportError: raise ImportError('Please upgrade mmcv to >0.6.2') def parse_args(): parser = argparse.ArgumentParser(description='Train a detector') parser.add_argument('config', help='train config file path') parser.add_argument( '--shape', type=int, nargs='+', default=[1280, 800], help='input image size') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--size-divisor', type=int, default=32, help='Pad the input image, the minimum size that is divisible ' 'by size_divisor, -1 means do not pad the image.') args = parser.parse_args() return args def main(): args = parse_args() if len(args.shape) == 1: h = w = args.shape[0] elif len(args.shape) == 2: h, w = args.shape else: raise ValueError('invalid input shape') ori_shape = (3, h, w) divisor = args.size_divisor if divisor > 0: h = int(np.ceil(h / divisor)) * divisor w = int(np.ceil(w / divisor)) * divisor input_shape = (3, h, w) cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) model = build_detector( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) if torch.cuda.is_available(): model.cuda() model.eval() if hasattr(model, 'forward_dummy'): model.forward = model.forward_dummy else: raise NotImplementedError( 'FLOPs counter is currently not currently supported with {}'. format(model.__class__.__name__)) flops, params = get_model_complexity_info(model, input_shape) split_line = '=' * 30 if divisor > 0 and \ input_shape != ori_shape: print(f'{split_line}\nUse size divisor set input shape ' f'from {ori_shape} to {input_shape}\n') print(f'{split_line}\nInput shape: {input_shape}\n' f'Flops: {flops}\nParams: {params}\n{split_line}') print('!!!Please be cautious if you use the results in papers. ' 'You may need to check if all ops are supported and verify that the ' 'flops computation is correct.') if __name__ == '__main__': main()
from urllib.parse import quote import pytest from datasets.utils.hub import hf_dataset_url @pytest.mark.parametrize("repo_id", ["canonical_dataset_name", "org-name/dataset-name"]) @pytest.mark.parametrize("filename", ["filename.csv", "filename with blanks.csv"]) @pytest.mark.parametrize("revision", [None, "v2"]) def test_dataset_url(repo_id, filename, revision): url = hf_dataset_url(repo_id=repo_id, filename=filename, revision=revision) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(filename)}"
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id", ["canonical_dataset_name", "org-name/dataset-name"]) @pytest.mark.parametrize("filename", ["filename.csv", "filename with blanks.csv"]) @pytest.mark.parametrize("revision", [None, "v2"]) def test_hf_hub_url(repo_id, filename, revision): url = hf_hub_url(repo_id=repo_id, filename=filename, revision=revision) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(filename)}"
# Copyright (c) OpenMMLab. All rights reserved. from .dropblock import DropBlock from .pixel_decoder import PixelDecoder, TransformerEncoderPixelDecoder __all__ = ['DropBlock', 'PixelDecoder', 'TransformerEncoderPixelDecoder']
# Copyright (c) OpenMMLab. All rights reserved. from .dropblock import DropBlock __all__ = ['DropBlock']
def split_package(package: str) -> tuple[str, str]: """Split a package name into the containing package and the final name.""" parts = package.split(".") return ".".join(parts[:-1]), parts[-1] def dump_migrations_as_grit(name: str, migration_pairs: list[tuple[str, str]]) -> str: """Dump the migration pairs as a Grit file.""" remapped = ",\n".join( [ f""" [ `{split_package(from_module)[0]}`, `{split_package(from_module)[1]}`, `{split_package(to_module)[0]}`, `{split_package(to_module)[1]}` ] """ for from_module, to_module in migration_pairs ], ) pattern_name = f"langchain_migrate_{name}" return f""" language python // This migration is generated automatically - do not manually edit this file pattern {pattern_name}() {{ find_replace_imports(list=[ {remapped} ]) }} // Add this for invoking directly {pattern_name}() """
def split_package(package: str) -> tuple[str, str]: """Split a package name into the containing package and the final name.""" parts = package.split(".") return ".".join(parts[:-1]), parts[-1] def dump_migrations_as_grit(name: str, migration_pairs: list[tuple[str, str]]) -> str: """Dump the migration pairs as a Grit file.""" remapped = ",\n".join( [ f""" [ `{split_package(from_module)[0]}`, `{split_package(from_module)[1]}`, `{split_package(to_module)[0]}`, `{split_package(to_module)[1]}` ] """ for from_module, to_module in migration_pairs ] ) pattern_name = f"langchain_migrate_{name}" return f""" language python // This migration is generated automatically - do not manually edit this file pattern {pattern_name}() {{ find_replace_imports(list=[ {remapped} ]) }} // Add this for invoking directly {pattern_name}() """
from torchaudio._internal.module_utils import dropping_support from ._alignment import forced_align as _forced_align, merge_tokens, TokenSpan from .filtering import ( allpass_biquad, band_biquad, bandpass_biquad, bandreject_biquad, bass_biquad, biquad, contrast, dcshift, deemph_biquad, dither, equalizer_biquad, filtfilt, flanger, gain, highpass_biquad, lfilter, lowpass_biquad, overdrive, phaser, riaa_biquad, treble_biquad, vad, ) forced_align = dropping_support(_forced_align) from .functional import ( add_noise, amplitude_to_DB, apply_beamforming, apply_codec, compute_deltas, convolve, create_dct, DB_to_amplitude, deemphasis, detect_pitch_frequency, edit_distance, fftconvolve, frechet_distance, griffinlim, inverse_spectrogram, linear_fbanks, loudness, mask_along_axis, mask_along_axis_iid, melscale_fbanks, mu_law_decoding, mu_law_encoding, mvdr_weights_rtf, mvdr_weights_souden, phase_vocoder, pitch_shift, preemphasis, psd, resample, rnnt_loss as _rnnt_loss, rtf_evd, rtf_power, sliding_window_cmn, spectral_centroid, spectrogram, speed, ) rnnt_loss = dropping_support(_rnnt_loss) __all__ = [ "amplitude_to_DB", "compute_deltas", "create_dct", "melscale_fbanks", "linear_fbanks", "DB_to_amplitude", "loudness", "detect_pitch_frequency", "griffinlim", "mask_along_axis", "mask_along_axis_iid", "mu_law_encoding", "mu_law_decoding", "phase_vocoder", "sliding_window_cmn", "spectrogram", "inverse_spectrogram", "spectral_centroid", "allpass_biquad", "band_biquad", "bandpass_biquad", "bandreject_biquad", "bass_biquad", "biquad", "contrast", "dither", "dcshift", "deemph_biquad", "equalizer_biquad", "filtfilt", "flanger", "forced_align", "merge_tokens", "TokenSpan", "gain", "highpass_biquad", "lfilter", "lowpass_biquad", "overdrive", "phaser", "riaa_biquad", "treble_biquad", "vad", "apply_codec", "resample", "edit_distance", "pitch_shift", "rnnt_loss", "psd", "mvdr_weights_souden", "mvdr_weights_rtf", "rtf_evd", "rtf_power", "apply_beamforming", "fftconvolve", "convolve", "add_noise", "speed", "preemphasis", "deemphasis", "frechet_distance", ]
from torchaudio._internal.module_utils import dropping_support from ._alignment import forced_align as _forced_align, merge_tokens, TokenSpan from .filtering import ( allpass_biquad, band_biquad, bandpass_biquad, bandreject_biquad, bass_biquad, biquad, contrast, dcshift, deemph_biquad, dither, equalizer_biquad, filtfilt, flanger, gain, highpass_biquad, lfilter, lowpass_biquad, overdrive, phaser, riaa_biquad, treble_biquad, vad, ) forced_align = dropping_support(_forced_align) from .functional import ( add_noise, amplitude_to_DB, apply_beamforming, apply_codec, compute_deltas, convolve, create_dct, DB_to_amplitude, deemphasis, detect_pitch_frequency, edit_distance, fftconvolve, frechet_distance, griffinlim, inverse_spectrogram, linear_fbanks, loudness, mask_along_axis, mask_along_axis_iid, melscale_fbanks, mu_law_decoding, mu_law_encoding, mvdr_weights_rtf, mvdr_weights_souden, phase_vocoder, pitch_shift, preemphasis, psd, resample, rnnt_loss as _rnnt_loss, rtf_evd, rtf_power, sliding_window_cmn, spectral_centroid, spectrogram, speed, ) rnnt_loss = dropping_support(_rnnt_loss) __all__ = [ "amplitude_to_DB", "compute_deltas", "create_dct", "melscale_fbanks", "linear_fbanks", "DB_to_amplitude", "loudness", "detect_pitch_frequency", "griffinlim", "mask_along_axis", "mask_along_axis_iid", "mu_law_encoding", "mu_law_decoding", "phase_vocoder", "sliding_window_cmn", "spectrogram", "inverse_spectrogram", "spectral_centroid", "allpass_biquad", "band_biquad", "bandpass_biquad", "bandreject_biquad", "bass_biquad", "biquad", "contrast", "dither", "dcshift", "deemph_biquad", "equalizer_biquad", "filtfilt", "flanger", "forced_align", "merge_tokens", "TokenSpan", "gain", "highpass_biquad", "lfilter", "lowpass_biquad", "overdrive", "phaser", "riaa_biquad", "treble_biquad", "vad", "apply_codec", "resample", "edit_distance", "pitch_shift", "rnnt_loss", "psd", "mvdr_weights_souden", "mvdr_weights_rtf", "rtf_evd", "rtf_power", "apply_beamforming", "fftconvolve", "convolve", "add_noise", "speed", "preemphasis", "deemphasis", "frechet_distance", ]
# Copyright (c) OpenMMLab. All rights reserved. from .ade20k import (ADE20KInstanceDataset, ADE20KPanopticDataset, ADE20KSegDataset) from .base_det_dataset import BaseDetDataset from .base_semseg_dataset import BaseSegDataset from .base_video_dataset import BaseVideoDataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_caption import CocoCaptionDataset from .coco_panoptic import CocoPanopticDataset from .coco_semantic import CocoSegDataset from .crowdhuman import CrowdHumanDataset from .dataset_wrappers import ConcatDataset, MultiImageMixDataset from .deepfashion import DeepFashionDataset from .dod import DODDataset from .dsdl import DSDLDetDataset from .flickr30k import Flickr30kDataset from .isaid import iSAIDDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .mdetr_style_refcoco import MDETRStyleRefCocoDataset from .mot_challenge_dataset import MOTChallengeDataset from .objects365 import Objects365V1Dataset, Objects365V2Dataset from .odvg import ODVGDataset from .openimages import OpenImagesChallengeDataset, OpenImagesDataset from .refcoco import RefCocoDataset from .reid_dataset import ReIDDataset from .samplers import (AspectRatioBatchSampler, ClassAwareSampler, CustomSampleSizeSampler, GroupMultiSourceSampler, MultiSourceSampler, TrackAspectRatioBatchSampler, TrackImgSampler) from .utils import get_loading_pipeline from .v3det import V3DetDataset from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset from .youtube_vis_dataset import YouTubeVISDataset __all__ = [ 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'WIDERFaceDataset', 'get_loading_pipeline', 'CocoPanopticDataset', 'MultiImageMixDataset', 'OpenImagesDataset', 'OpenImagesChallengeDataset', 'AspectRatioBatchSampler', 'ClassAwareSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler', 'BaseDetDataset', 'CrowdHumanDataset', 'Objects365V1Dataset', 'Objects365V2Dataset', 'DSDLDetDataset', 'BaseVideoDataset', 'MOTChallengeDataset', 'TrackImgSampler', 'ReIDDataset', 'YouTubeVISDataset', 'TrackAspectRatioBatchSampler', 'ADE20KPanopticDataset', 'CocoCaptionDataset', 'RefCocoDataset', 'BaseSegDataset', 'ADE20KSegDataset', 'CocoSegDataset', 'ADE20KInstanceDataset', 'iSAIDDataset', 'V3DetDataset', 'ConcatDataset', 'ODVGDataset', 'MDETRStyleRefCocoDataset', 'DODDataset', 'CustomSampleSizeSampler', 'Flickr30kDataset' ]
# Copyright (c) OpenMMLab. All rights reserved. from .ade20k import (ADE20KInstanceDataset, ADE20KPanopticDataset, ADE20KSegDataset) from .base_det_dataset import BaseDetDataset from .base_semseg_dataset import BaseSegDataset from .base_video_dataset import BaseVideoDataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_caption import CocoCaptionDataset from .coco_panoptic import CocoPanopticDataset from .coco_semantic import CocoSegDataset from .crowdhuman import CrowdHumanDataset from .dataset_wrappers import ConcatDataset, MultiImageMixDataset from .deepfashion import DeepFashionDataset from .dsdl import DSDLDetDataset from .isaid import iSAIDDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .mot_challenge_dataset import MOTChallengeDataset from .objects365 import Objects365V1Dataset, Objects365V2Dataset from .openimages import OpenImagesChallengeDataset, OpenImagesDataset from .refcoco import RefCocoDataset from .reid_dataset import ReIDDataset from .samplers import (AspectRatioBatchSampler, ClassAwareSampler, GroupMultiSourceSampler, MultiSourceSampler, TrackAspectRatioBatchSampler, TrackImgSampler) from .utils import get_loading_pipeline from .v3det import V3DetDataset from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset from .youtube_vis_dataset import YouTubeVISDataset __all__ = [ 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'WIDERFaceDataset', 'get_loading_pipeline', 'CocoPanopticDataset', 'MultiImageMixDataset', 'OpenImagesDataset', 'OpenImagesChallengeDataset', 'AspectRatioBatchSampler', 'ClassAwareSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler', 'BaseDetDataset', 'CrowdHumanDataset', 'Objects365V1Dataset', 'Objects365V2Dataset', 'DSDLDetDataset', 'BaseVideoDataset', 'MOTChallengeDataset', 'TrackImgSampler', 'ReIDDataset', 'YouTubeVISDataset', 'TrackAspectRatioBatchSampler', 'ADE20KPanopticDataset', 'CocoCaptionDataset', 'RefCocoDataset', 'BaseSegDataset', 'ADE20KSegDataset', 'CocoSegDataset', 'ADE20KInstanceDataset', 'iSAIDDataset', 'V3DetDataset', 'ConcatDataset' ]
import io from typing import TYPE_CHECKING, Any, Tuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio import AudioNdArray from docarray.utils._internal.misc import import_library if TYPE_CHECKING: from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='AudioBytes') @_register_proto(proto_type_name='audio_bytes') class AudioBytes(bytes, AbstractType): """ Bytes that store an audio and that can be load into an Audio tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load(self) -> Tuple[AudioNdArray, int]: """ Load the Audio from the [`AudioBytes`][docarray.typing.AudioBytes] into an [`AudioNdArray`][docarray.typing.AudioNdArray]. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import AudioBytes, AudioNdArray, AudioUrl class MyAudio(BaseDoc): url: AudioUrl tensor: Optional[AudioNdArray] bytes_: Optional[AudioBytes] frame_rate: Optional[float] doc = MyAudio(url='https://www.kozco.com/tech/piano2.wav') doc.bytes_ = doc.url.load_bytes() doc.tensor, doc.frame_rate = doc.bytes_.load() # Note this is equivalent to do doc.tensor, doc.frame_rate = doc.url.load() assert isinstance(doc.tensor, AudioNdArray) ``` --- :return: tuple of an [`AudioNdArray`][docarray.typing.AudioNdArray] representing the audio bytes content, and an integer representing the frame rate. """ pydub = import_library('pydub', raise_error=True) # noqa: F841 from pydub import AudioSegment segment = AudioSegment.from_file(io.BytesIO(self)) # Convert to float32 using NumPy samples = np.array(segment.get_array_of_samples()) # Normalise float32 array so that values are between -1.0 and +1.0 samples_norm = samples / 2 ** (segment.sample_width * 8 - 1) return parse_obj_as(AudioNdArray, samples_norm), segment.frame_rate
import io from typing import TYPE_CHECKING, Any, Tuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio import AudioNdArray from docarray.utils._internal.misc import import_library if TYPE_CHECKING: from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='AudioBytes') @_register_proto(proto_type_name='audio_bytes') class AudioBytes(bytes, AbstractType): """ Bytes that store an audio and that can be load into an Audio tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load(self) -> Tuple[AudioNdArray, int]: """ Load the Audio from the [`AudioBytes`][docarray.typing.AudioBytes] into an [`AudioNdArray`][docarray.typing.AudioNdArray]. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import AudioBytes, AudioNdArray, AudioUrl class MyAudio(BaseDoc): url: AudioUrl tensor: Optional[AudioNdArray] bytes_: Optional[AudioBytes] frame_rate: Optional[float] doc = MyAudio(url='https://www.kozco.com/tech/piano2.wav') doc.bytes_ = doc.url.load_bytes() doc.tensor, doc.frame_rate = doc.bytes_.load() # Note this is equivalent to do doc.tensor, doc.frame_rate = doc.url.load() assert isinstance(doc.tensor, AudioNdArray) ``` --- :return: tuple of an [`AudioNdArray`][docarray.typing.AudioNdArray] representing the audio bytes content, and an integer representing the frame rate. """ pydub = import_library('pydub', raise_error=True) # noqa: F841 from pydub import AudioSegment segment = AudioSegment.from_file(io.BytesIO(self)) # Convert to float32 using NumPy samples = np.array(segment.get_array_of_samples()) # Normalise float32 array so that values are between -1.0 and +1.0 samples_norm = samples / 2 ** (segment.sample_width * 8 - 1) return parse_obj_as(AudioNdArray, samples_norm), segment.frame_rate
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from unittest.mock import MagicMock, Mock, patch from mmengine.hooks import IterTimerHook from mmengine.logging import MessageHub def time_patch(): if not hasattr(time_patch, 'time'): time_patch.time = 0 else: time_patch.time += 1 return time_patch.time class TestIterTimerHook(TestCase): def setUp(self) -> None: self.hook = IterTimerHook() def test_init(self): assert self.hook.time_sec_tot == 0 assert self.hook.start_iter == 0 def test_before_run(self): runner = MagicMock() runner.iter = 1 self.hook.before_run(runner) assert self.hook.start_iter == 1 def test_before_epoch(self): runner = Mock() self.hook._before_epoch(runner) assert isinstance(self.hook.t, float) @patch('time.time', MagicMock(return_value=1)) def test_before_iter(self): runner = MagicMock() runner.log_buffer = dict() self.hook._before_epoch(runner) for mode in ('train', 'val', 'test'): self.hook._before_iter(runner, batch_idx=1, mode=mode) runner.message_hub.update_scalar.assert_called_with( f'{mode}/data_time', 0) @patch('time.time', time_patch) def test_after_iter(self): runner = MagicMock() runner.log_buffer = dict() runner.log_processor.window_size = 10 runner.train_loop.max_iters = 100 runner.iter = 0 runner.test_loop.dataloader = [0] * 20 runner.val_loop.dataloader = [0] * 20 self.hook._before_epoch(runner) self.hook.before_run(runner) self.hook._after_iter(runner, batch_idx=1) runner.message_hub.update_scalar.assert_called() runner.message_hub.get_log.assert_not_called() runner.message_hub.update_info.assert_not_called() runner.message_hub = MessageHub.get_instance('test_iter_timer_hook') runner.iter = 9 # eta = (100 - 10) / 1 self.hook._after_iter(runner, batch_idx=89) assert runner.message_hub.get_info('eta') == 90 self.hook._after_iter(runner, batch_idx=9, mode='val') assert runner.message_hub.get_info('eta') == 10 self.hook._after_iter(runner, batch_idx=19, mode='test') assert runner.message_hub.get_info('eta') == 0
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import IterTimerHook class TestIterTimerHook: def test_before_epoch(self): hook = IterTimerHook() runner = Mock() hook._before_epoch(runner) assert isinstance(hook.t, float) def test_before_iter(self): hook = IterTimerHook() runner = Mock() runner.log_buffer = dict() hook._before_epoch(runner) hook._before_iter(runner, 0) runner.message_hub.update_scalar.assert_called() def test_after_iter(self): hook = IterTimerHook() runner = Mock() runner.log_buffer = dict() hook._before_epoch(runner) hook._after_iter(runner, 0) runner.message_hub.update_scalar.assert_called()
from llama_index.llms.huggingface.base import ( HuggingFaceLLM, ) __all__ = ["HuggingFaceLLM"]
from llama_index.llms.huggingface.base import ( HuggingFaceInferenceAPI, HuggingFaceLLM, TextGenerationInference, ) __all__ = ["HuggingFaceLLM", "HuggingFaceInferenceAPI", "TextGenerationInference"]
# Copyright (c) OpenMMLab. All rights reserved. import logging from typing import List, Optional, Sequence import torch from torch.nn.parameter import Parameter from torch.nn.utils import clip_grad from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[dict]] @HOOKS.register_module() class OptimizerHook(Hook): """A hook contains custom operations for the optimizer. Args: grad_clip (dict, optional): A config dict to control the clip_grad. Defaults to None. detect_anomalous_params (bool): This option is only used for debugging which will slow down the training speed. Detect anomalous parameters that are not included in the computational graph with ``loss`` as the root. There are two cases - Parameters were not used during forward pass. - Parameters were not used to produce loss. Defaults to False. """ priority = 'HIGH' def __init__(self, grad_clip: Optional[dict] = None, detect_anomalous_params: bool = False) -> None: self.grad_clip = grad_clip self.detect_anomalous_params = detect_anomalous_params def clip_grads(self, params: List[Parameter]) -> Optional[torch.Tensor]: """Clip the gradients of parameters. Args: params (list[Parameter]): Model's parameters. Returns: Optional[torch.Tensor]: Total norm of the parameters if there is at least one param requiring gradient, else None. """ params = list( filter(lambda p: p.requires_grad and p.grad is not None, params)) if len(params) > 0: return clip_grad.clip_grad_norm_(params, **self.grad_clip) return None def after_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """All operations need to be finished after each training iteration. This function will finish following 3 operations: - Detect any anomalous parameters which are not included in the training graph. (optional) - Compute the gradient of model parameters. - Clip the gradients of each parameter. (optional) - Update model parameters with gradients. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the train loop. data_batch (Sequence[dict], optional): Data from dataloader. In order to keep this interface consistent with other hooks, we keep ``data_batch`` here. Defaults to None. outputs (dict, optional): Outputs from model. In order to keep this interface consistent with other hooks, we keep ``outputs`` here. Defaults to None. """ runner.optimizer.zero_grad() if self.detect_anomalous_params: self.detect_anomalous_parameters(runner.outputs['loss'], runner) runner.outputs['loss'].backward() if self.grad_clip is not None: grad_norm = self.clip_grads(runner.model.parameters()) if grad_norm is not None: # Add grad norm to the logger runner.log_buffer.update({'grad_norm': float(grad_norm)}, runner.outputs['num_samples']) runner.optimizer.step() def detect_anomalous_parameters(self, loss: torch.Tensor, runner) -> None: """Detect anomalous parameters that are not included in the graph. Args: loss (torch.Tensor): The loss of current iteration. runner (Runner): The runner of the training process. """ logger = runner.logger parameters_in_graph = set() visited = set() def traverse(grad_fn): if grad_fn is None: return if grad_fn not in visited: visited.add(grad_fn) if hasattr(grad_fn, 'variable'): parameters_in_graph.add(grad_fn.variable) parents = grad_fn.next_functions if parents is not None: for parent in parents: grad_fn = parent[0] traverse(grad_fn) traverse(loss.grad_fn) for n, p in runner.model.named_parameters(): if p not in parameters_in_graph and p.requires_grad: logger.log( level=logging.ERROR, msg=f'{n} with shape {p.size()} is not ' f'in the computational graph \n')
# Copyright (c) OpenMMLab. All rights reserved. import logging from typing import Any, List, Optional, Sequence, Tuple import torch from torch.nn.parameter import Parameter from torch.nn.utils import clip_grad from mmengine.data import BaseDataElement from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[Tuple[Any, BaseDataElement]]] @HOOKS.register_module() class OptimizerHook(Hook): """A hook contains custom operations for the optimizer. Args: grad_clip (dict, optional): A config dict to control the clip_grad. Defaults to None. detect_anomalous_params (bool): This option is only used for debugging which will slow down the training speed. Detect anomalous parameters that are not included in the computational graph with ``loss`` as the root. There are two cases - Parameters were not used during forward pass. - Parameters were not used to produce loss. Defaults to False. """ priority = 'HIGH' def __init__(self, grad_clip: Optional[dict] = None, detect_anomalous_params: bool = False) -> None: self.grad_clip = grad_clip self.detect_anomalous_params = detect_anomalous_params def clip_grads(self, params: List[Parameter]) -> Optional[torch.Tensor]: """Clip the gradients of parameters. Args: params (list[Parameter]): Model's parameters. Returns: Optional[torch.Tensor]: Total norm of the parameters if there is at least one param requiring gradient, else None. """ params = list( filter(lambda p: p.requires_grad and p.grad is not None, params)) if len(params) > 0: return clip_grad.clip_grad_norm_(params, **self.grad_clip) return None def after_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """All operations need to be finished after each training iteration. This function will finish following 3 operations: - Detect any anomalous parameters which are not included in the training graph. (optional) - Compute the gradient of model parameters. - Clip the gradients of each parameter. (optional) - Update model parameters with gradients. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the train loop. data_batch (Sequence[Tuple[Any, BaseDataElement]], optional): Data from dataloader. In order to keep this interface consistent with other hooks, we keep ``data_batch`` here. Defaults to None. outputs (dict, optional): Outputs from model. In order to keep this interface consistent with other hooks, we keep ``outputs`` here. Defaults to None. """ runner.optimizer.zero_grad() if self.detect_anomalous_params: self.detect_anomalous_parameters(runner.outputs['loss'], runner) runner.outputs['loss'].backward() if self.grad_clip is not None: grad_norm = self.clip_grads(runner.model.parameters()) if grad_norm is not None: # Add grad norm to the logger runner.log_buffer.update({'grad_norm': float(grad_norm)}, runner.outputs['num_samples']) runner.optimizer.step() def detect_anomalous_parameters(self, loss: torch.Tensor, runner) -> None: """Detect anomalous parameters that are not included in the graph. Args: loss (torch.Tensor): The loss of current iteration. runner (Runner): The runner of the training process. """ logger = runner.logger parameters_in_graph = set() visited = set() def traverse(grad_fn): if grad_fn is None: return if grad_fn not in visited: visited.add(grad_fn) if hasattr(grad_fn, 'variable'): parameters_in_graph.add(grad_fn.variable) parents = grad_fn.next_functions if parents is not None: for parent in parents: grad_fn = parent[0] traverse(grad_fn) traverse(loss.grad_fn) for n, p in runner.model.named_parameters(): if p not in parameters_in_graph and p.requires_grad: logger.log( level=logging.ERROR, msg=f'{n} with shape {p.size()} is not ' f'in the computational graph \n')
import asyncio import logging import os from jina import __default_host__ from jina.importer import ImportExtensions from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.gateway.websocket.app import get_fastapi_app __all__ = ['WebSocketGatewayRuntime'] class WebSocketGatewayRuntime(GatewayRuntime): """Runtime for Websocket interface.""" async def async_setup(self): """ The async method setup the runtime. Setup the uvicorn server. """ with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) self.install_signal_handlers() await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) from jina.helper import extend_rest_interface uvicorn_kwargs = self.args.uvicorn_kwargs or {} for ssl_file in ['ssl_keyfile', 'ssl_certfile']: if getattr(self.args, ssl_file): if ssl_file not in uvicorn_kwargs.keys(): uvicorn_kwargs[ssl_file] = getattr(self.args, ssl_file) self._set_topology_graph() self._set_connection_pool() self._server = UviServer( config=Config( app=extend_rest_interface( get_fastapi_app( self.args, topology_graph=self._topology_graph, connection_pool=self._connection_pool, logger=self.logger, metrics_registry=self.metrics_registry, ) ), host=__default_host__, port=self.args.port, ws_max_size=1024 * 1024 * 1024, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **uvicorn_kwargs ) ) await self._server.setup() async def async_run_forever(self): """Running method of ther server.""" await self._server.serve() async def _wait_for_cancel(self): """Do NOT override this method when inheriting from :class:`GatewayPod`""" # handle terminate signals while not self.is_cancel.is_set() and not self._server.should_exit: await asyncio.sleep(0.1) await self.async_cancel() async def async_teardown(self): """Shutdown the server.""" await self._server.shutdown() await self._connection_pool.close() async def async_cancel(self): """Stop the server.""" self._server.should_exit = True
import asyncio import logging import os from jina import __default_host__ from jina.importer import ImportExtensions from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.gateway.websocket.app import get_fastapi_app __all__ = ['WebSocketGatewayRuntime'] class WebSocketGatewayRuntime(GatewayRuntime): """Runtime for Websocket interface.""" async def async_setup(self): """ The async method setup the runtime. Setup the uvicorn server. """ with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) self.install_signal_handlers() await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) from jina.helper import extend_rest_interface uvicorn_kwargs = self.args.uvicorn_kwargs or {} for ssl_file in ['ssl_keyfile', 'ssl_certfile']: if getattr(self.args, ssl_file): if ssl_file not in uvicorn_kwargs.keys(): uvicorn_kwargs[ssl_file] = getattr(self.args, ssl_file) self._set_topology_graph() self._set_connection_pool() self._server = UviServer( config=Config( app=extend_rest_interface( get_fastapi_app( self.args, topology_graph=self._topology_graph, connection_pool=self._connection_pool, logger=self.logger, metrics_registry=self.metrics_registry, ) ), host=__default_host__, port=self.args.port, ws_max_size=1024 * 1024 * 1024, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **uvicorn_kwargs ) ) await self._server.setup() async def async_run_forever(self): """Running method of ther server.""" self._connection_pool.start() await self._server.serve() async def _wait_for_cancel(self): """Do NOT override this method when inheriting from :class:`GatewayPod`""" # handle terminate signals while not self.is_cancel.is_set() and not self._server.should_exit: await asyncio.sleep(0.1) await self.async_cancel() async def async_teardown(self): """Shutdown the server.""" await self._server.shutdown() await self._connection_pool.close() async def async_cancel(self): """Stop the server.""" self._server.should_exit = True
from __future__ import annotations import json from typing import Any, Optional from langchain_core._api import deprecated from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate from langchain_text_splitters import RecursiveCharacterTextSplitter, TextSplitter from pydantic import Field from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.qa_generation.prompt import PROMPT_SELECTOR @deprecated( since="0.2.7", alternative=( "example in API reference with more detail: " "https://api.python.langchain.com/en/latest/chains/langchain.chains.qa_generation.base.QAGenerationChain.html" ), removal="1.0", ) class QAGenerationChain(Chain): """Base class for question-answer generation chains. This class is deprecated. See below for an alternative implementation. Advantages of this implementation include: - Supports async and streaming; - Surfaces prompt and text splitter for easier customization; - Use of JsonOutputParser supports JSONPatch operations in streaming mode, as well as robustness to markdown. .. code-block:: python from langchain.chains.qa_generation.prompt import CHAT_PROMPT as prompt # Note: import PROMPT if using a legacy non-chat model. from langchain_core.output_parsers import JsonOutputParser from langchain_core.runnables import ( RunnableLambda, RunnableParallel, RunnablePassthrough, ) from langchain_core.runnables.base import RunnableEach from langchain_openai import ChatOpenAI from langchain_text_splitters import RecursiveCharacterTextSplitter llm = ChatOpenAI() text_splitter = RecursiveCharacterTextSplitter(chunk_overlap=500) split_text = RunnableLambda( lambda x: text_splitter.create_documents([x]) ) chain = RunnableParallel( text=RunnablePassthrough(), questions=( split_text | RunnableEach(bound=prompt | llm | JsonOutputParser()) ) ) """ llm_chain: LLMChain """LLM Chain that generates responses from user input and context.""" text_splitter: TextSplitter = Field( default=RecursiveCharacterTextSplitter(chunk_overlap=500), ) """Text splitter that splits the input into chunks.""" input_key: str = "text" """Key of the input to the chain.""" output_key: str = "questions" """Key of the output of the chain.""" k: Optional[int] = None """Number of questions to generate.""" @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: Optional[BasePromptTemplate] = None, **kwargs: Any, ) -> QAGenerationChain: """ Create a QAGenerationChain from a language model. Args: llm: a language model prompt: a prompt template **kwargs: additional arguments Returns: a QAGenerationChain class """ _prompt = prompt or PROMPT_SELECTOR.get_prompt(llm) chain = LLMChain(llm=llm, prompt=_prompt) return cls(llm_chain=chain, **kwargs) @property def _chain_type(self) -> str: raise NotImplementedError @property def input_keys(self) -> list[str]: return [self.input_key] @property def output_keys(self) -> list[str]: return [self.output_key] def _call( self, inputs: dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, list]: docs = self.text_splitter.create_documents([inputs[self.input_key]]) results = self.llm_chain.generate( [{"text": d.page_content} for d in docs], run_manager=run_manager, ) qa = [json.loads(res[0].text) for res in results.generations] return {self.output_key: qa}
from __future__ import annotations import json from typing import Any, Optional from langchain_core._api import deprecated from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate from langchain_text_splitters import RecursiveCharacterTextSplitter, TextSplitter from pydantic import Field from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.qa_generation.prompt import PROMPT_SELECTOR @deprecated( since="0.2.7", alternative=( "example in API reference with more detail: " "https://api.python.langchain.com/en/latest/chains/langchain.chains.qa_generation.base.QAGenerationChain.html" ), removal="1.0", ) class QAGenerationChain(Chain): """Base class for question-answer generation chains. This class is deprecated. See below for an alternative implementation. Advantages of this implementation include: - Supports async and streaming; - Surfaces prompt and text splitter for easier customization; - Use of JsonOutputParser supports JSONPatch operations in streaming mode, as well as robustness to markdown. .. code-block:: python from langchain.chains.qa_generation.prompt import CHAT_PROMPT as prompt # Note: import PROMPT if using a legacy non-chat model. from langchain_core.output_parsers import JsonOutputParser from langchain_core.runnables import ( RunnableLambda, RunnableParallel, RunnablePassthrough, ) from langchain_core.runnables.base import RunnableEach from langchain_openai import ChatOpenAI from langchain_text_splitters import RecursiveCharacterTextSplitter llm = ChatOpenAI() text_splitter = RecursiveCharacterTextSplitter(chunk_overlap=500) split_text = RunnableLambda( lambda x: text_splitter.create_documents([x]) ) chain = RunnableParallel( text=RunnablePassthrough(), questions=( split_text | RunnableEach(bound=prompt | llm | JsonOutputParser()) ) ) """ llm_chain: LLMChain """LLM Chain that generates responses from user input and context.""" text_splitter: TextSplitter = Field( default=RecursiveCharacterTextSplitter(chunk_overlap=500) ) """Text splitter that splits the input into chunks.""" input_key: str = "text" """Key of the input to the chain.""" output_key: str = "questions" """Key of the output of the chain.""" k: Optional[int] = None """Number of questions to generate.""" @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: Optional[BasePromptTemplate] = None, **kwargs: Any, ) -> QAGenerationChain: """ Create a QAGenerationChain from a language model. Args: llm: a language model prompt: a prompt template **kwargs: additional arguments Returns: a QAGenerationChain class """ _prompt = prompt or PROMPT_SELECTOR.get_prompt(llm) chain = LLMChain(llm=llm, prompt=_prompt) return cls(llm_chain=chain, **kwargs) @property def _chain_type(self) -> str: raise NotImplementedError @property def input_keys(self) -> list[str]: return [self.input_key] @property def output_keys(self) -> list[str]: return [self.output_key] def _call( self, inputs: dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, list]: docs = self.text_splitter.create_documents([inputs[self.input_key]]) results = self.llm_chain.generate( [{"text": d.page_content} for d in docs], run_manager=run_manager ) qa = [json.loads(res[0].text) for res in results.generations] return {self.output_key: qa}
import numpy as np from docarray import Image REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) def test_image(): image = Image(url=REMOTE_JPG) image.tensor = image.url.load() assert isinstance(image.tensor, np.ndarray)
import numpy as np from docarray import Image def test_image(): image = Image(url='http://jina.ai') image.tensor = image.url.load() assert isinstance(image.tensor, np.ndarray)
# Copyright (c) OpenMMLab. All rights reserved. import random import torch from mmcv.runner import get_dist_info from mmcv.runner.hooks import HOOKS, Hook from torch import distributed as dist @HOOKS.register_module() class SyncRandomSizeHook(Hook): """Change and synchronize the random image size across ranks, currently used in YOLOX. Args: ratio_range (tuple[int]): Random ratio range. It will be multiplied by 32, and then change the dataset output image size. Default: (14, 26). img_scale (tuple[int]): Size of input image. Default: (640, 640). interval (int): The interval of change image size. Default: 10. device (torch.device | str): device for returned tensors. Default: 'cuda'. """ def __init__(self, ratio_range=(14, 26), img_scale=(640, 640), interval=10, device='cuda'): self.rank, world_size = get_dist_info() self.is_distributed = world_size > 1 self.ratio_range = ratio_range self.img_scale = img_scale self.interval = interval self.device = device def after_train_iter(self, runner): """Change the dataset output image size.""" if self.ratio_range is not None and (runner.iter + 1) % self.interval == 0: # Due to DDP and DP get the device behavior inconsistent, # so we did not get the device from runner.model. tensor = torch.LongTensor(2).to(self.device) if self.rank == 0: size_factor = self.img_scale[1] * 1. / self.img_scale[0] size = random.randint(*self.ratio_range) size = (int(32 * size), 32 * int(size * size_factor)) tensor[0] = size[0] tensor[1] = size[1] if self.is_distributed: dist.barrier() dist.broadcast(tensor, 0) runner.data_loader.dataset.update_dynamic_scale( (tensor[0].item(), tensor[1].item()))
import random import torch from mmcv.runner import get_dist_info from mmcv.runner.hooks import HOOKS, Hook from torch import distributed as dist @HOOKS.register_module() class SyncRandomSizeHook(Hook): """Change and synchronize the random image size across ranks, currently used in YOLOX. Args: ratio_range (tuple[int]): Random ratio range. It will be multiplied by 32, and then change the dataset output image size. Default: (14, 26). img_scale (tuple[int]): Size of input image. Default: (640, 640). interval (int): The interval of change image size. Default: 10. device (torch.device | str): device for returned tensors. Default: 'cuda'. """ def __init__(self, ratio_range=(14, 26), img_scale=(640, 640), interval=10, device='cuda'): self.rank, world_size = get_dist_info() self.is_distributed = world_size > 1 self.ratio_range = ratio_range self.img_scale = img_scale self.interval = interval self.device = device def after_train_iter(self, runner): """Change the dataset output image size.""" if self.ratio_range is not None and (runner.iter + 1) % self.interval == 0: # Due to DDP and DP get the device behavior inconsistent, # so we did not get the device from runner.model. tensor = torch.LongTensor(2).to(self.device) if self.rank == 0: size_factor = self.img_scale[1] * 1. / self.img_scale[0] size = random.randint(*self.ratio_range) size = (int(32 * size), 32 * int(size * size_factor)) tensor[0] = size[0] tensor[1] = size[1] if self.is_distributed: dist.barrier() dist.broadcast(tensor, 0) runner.data_loader.dataset.update_dynamic_scale( (tensor[0].item(), tensor[1].item()))
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.callbacks.llmonitor_callback import ( LLMonitorCallbackHandler, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "LLMonitorCallbackHandler": "langchain_community.callbacks.llmonitor_callback", } _import_attribute = create_importer(__file__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "LLMonitorCallbackHandler", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.callbacks.llmonitor_callback import ( LLMonitorCallbackHandler, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "LLMonitorCallbackHandler": "langchain_community.callbacks.llmonitor_callback" } _import_attribute = create_importer(__file__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "LLMonitorCallbackHandler", ]
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1x_coco/paa_r50_fpn_1x_coco_20200821-936edec3.pth' # noqa model = dict( type='LAD', # student backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # teacher teacher_ckpt=teacher_ckpt, teacher_backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), teacher_neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), teacher_bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.1, neg_iou_thr=0.1, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, score_voting=True, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) data = dict(samples_per_gpu=8, workers_per_gpu=4) optimizer = dict(lr=0.01) fp16 = dict(loss_scale=512.) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] teacher_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1x_coco/paa_r50_fpn_1x_coco_20200821-936edec3.pth' # noqa model = dict( type='LAD', # student backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # teacher teacher_ckpt=teacher_ckpt, teacher_backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), teacher_neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), teacher_bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.1, neg_iou_thr=0.1, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, score_voting=True, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) data = dict(samples_per_gpu=8, workers_per_gpu=4) optimizer = dict(lr=0.01) fp16 = dict(loss_scale=512.)
"""Loading a pickled model generated by test_pickling.py, only used by `test_gpu_with_dask.py`""" import json import os import numpy as np import pytest from test_gpu_pickling import build_dataset, load_pickle, model_path import xgboost as xgb class TestLoadPickle: def test_load_pkl(self) -> None: """Test whether prediction is correct.""" assert os.environ["CUDA_VISIBLE_DEVICES"] == "-1" bst = load_pickle(model_path) x, y = build_dataset() if isinstance(bst, xgb.Booster): test_x = xgb.DMatrix(x) res = bst.predict(test_x) else: res = bst.predict(x) assert len(res) == 10 bst.set_params(n_jobs=1) # triggers a re-configuration res = bst.predict(x) assert len(res) == 10 def test_context_is_removed(self) -> None: """Under invalid CUDA_VISIBLE_DEVICES, context should reset""" assert os.environ["CUDA_VISIBLE_DEVICES"] == "-1" bst = load_pickle(model_path) config = bst.save_config() config = json.loads(config) assert config["learner"]["generic_param"]["device"] == "cpu" def test_context_is_preserved(self) -> None: """Test the device context is preserved after pickling.""" assert "CUDA_VISIBLE_DEVICES" not in os.environ.keys() bst = load_pickle(model_path) config = bst.save_config() config = json.loads(config) assert config["learner"]["generic_param"]["device"] == "cuda:0" def test_wrap_gpu_id(self) -> None: assert os.environ["CUDA_VISIBLE_DEVICES"] == "0" bst = load_pickle(model_path) config = bst.save_config() config = json.loads(config) assert config["learner"]["generic_param"]["device"] == "cuda:0" x, y = build_dataset() test_x = xgb.DMatrix(x) res = bst.predict(test_x) assert len(res) == 10 def test_training_on_cpu_only_env(self) -> None: assert os.environ["CUDA_VISIBLE_DEVICES"] == "-1" rng = np.random.RandomState(1994) X = rng.randn(10, 10) y = rng.randn(10) with pytest.warns(UserWarning, match="No visible GPU is found"): xgb.train({"device": "cuda"}, xgb.DMatrix(X, y))
"""Loading a pickled model generated by test_pickling.py, only used by `test_gpu_with_dask.py`""" import json import os import numpy as np import pytest from test_gpu_pickling import build_dataset, load_pickle, model_path import xgboost as xgb from xgboost import testing as tm class TestLoadPickle: def test_load_pkl(self) -> None: """Test whether prediction is correct.""" assert os.environ["CUDA_VISIBLE_DEVICES"] == "-1" bst = load_pickle(model_path) x, y = build_dataset() if isinstance(bst, xgb.Booster): test_x = xgb.DMatrix(x) res = bst.predict(test_x) else: res = bst.predict(x) assert len(res) == 10 bst.set_params(n_jobs=1) # triggers a re-configuration res = bst.predict(x) assert len(res) == 10 def test_context_is_removed(self) -> None: """Under invalid CUDA_VISIBLE_DEVICES, context should reset""" assert os.environ["CUDA_VISIBLE_DEVICES"] == "-1" bst = load_pickle(model_path) config = bst.save_config() config = json.loads(config) assert config["learner"]["generic_param"]["device"] == "cpu" def test_context_is_preserved(self) -> None: """Test the device context is preserved after pickling.""" assert "CUDA_VISIBLE_DEVICES" not in os.environ.keys() bst = load_pickle(model_path) config = bst.save_config() config = json.loads(config) assert config["learner"]["generic_param"]["device"] == "cuda:0" def test_wrap_gpu_id(self) -> None: assert os.environ["CUDA_VISIBLE_DEVICES"] == "0" bst = load_pickle(model_path) config = bst.save_config() config = json.loads(config) assert config["learner"]["generic_param"]["device"] == "cuda:0" x, y = build_dataset() test_x = xgb.DMatrix(x) res = bst.predict(test_x) assert len(res) == 10 def test_training_on_cpu_only_env(self) -> None: assert os.environ["CUDA_VISIBLE_DEVICES"] == "-1" rng = np.random.RandomState(1994) X = rng.randn(10, 10) y = rng.randn(10) with pytest.warns(UserWarning, match="No visible GPU is found"): # Test no thrust exception is thrown with pytest.raises(xgb.core.XGBoostError, match="have at least one device"): xgb.train({"tree_method": "gpu_hist"}, xgb.DMatrix(X, y))
_base_ = '../mask_rcnn/mask-rcnn_r101_fpn_1x_coco.py' model = dict( backbone=dict( norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, plugins=[ dict( cfg=dict(type='ContextBlock', ratio=1. / 4), stages=(False, True, True, True), position='after_conv3') ]))
_base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py' model = dict( backbone=dict( norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, plugins=[ dict( cfg=dict(type='ContextBlock', ratio=1. / 4), stages=(False, True, True, True), position='after_conv3') ]))
from typing import cast import prisma.enums import prisma.types from backend.blocks.io import IO_BLOCK_IDs from backend.util.type import typed_cast AGENT_NODE_INCLUDE: prisma.types.AgentNodeInclude = { "Input": True, "Output": True, "Webhook": True, "AgentBlock": True, } AGENT_GRAPH_INCLUDE: prisma.types.AgentGraphInclude = { "Nodes": { "include": typed_cast( prisma.types.AgentNodeIncludeFromAgentNodeRecursive1, prisma.types.AgentNodeIncludeFromAgentNode, AGENT_NODE_INCLUDE, ) } } EXECUTION_RESULT_INCLUDE: prisma.types.AgentNodeExecutionInclude = { "Input": True, "Output": True, "Node": True, "GraphExecution": True, } MAX_NODE_EXECUTIONS_FETCH = 1000 GRAPH_EXECUTION_INCLUDE_WITH_NODES: prisma.types.AgentGraphExecutionInclude = { "NodeExecutions": { "include": { "Input": True, "Output": True, "Node": True, "GraphExecution": True, }, "order_by": [ {"queuedTime": "desc"}, # Fallback: Incomplete execs has no queuedTime. {"addedTime": "desc"}, ], "take": MAX_NODE_EXECUTIONS_FETCH, # Avoid loading excessive node executions. } } GRAPH_EXECUTION_INCLUDE: prisma.types.AgentGraphExecutionInclude = { "NodeExecutions": { **cast( prisma.types.FindManyAgentNodeExecutionArgsFromAgentGraphExecution, GRAPH_EXECUTION_INCLUDE_WITH_NODES["NodeExecutions"], ), "where": { "Node": typed_cast( prisma.types.AgentNodeRelationFilter, prisma.types.AgentNodeWhereInput, { "AgentBlock": {"id": {"in": IO_BLOCK_IDs}}, }, ), "NOT": [{"executionStatus": prisma.enums.AgentExecutionStatus.INCOMPLETE}], }, } } INTEGRATION_WEBHOOK_INCLUDE: prisma.types.IntegrationWebhookInclude = { "AgentNodes": { "include": typed_cast( prisma.types.AgentNodeIncludeFromAgentNodeRecursive1, prisma.types.AgentNodeInclude, AGENT_NODE_INCLUDE, ) } } def library_agent_include(user_id: str) -> prisma.types.LibraryAgentInclude: return { "AgentGraph": { "include": { **AGENT_GRAPH_INCLUDE, "Executions": {"where": {"userId": user_id}}, } }, "Creator": True, }
import prisma.enums import prisma.types from backend.blocks.io import IO_BLOCK_IDs AGENT_NODE_INCLUDE: prisma.types.AgentNodeInclude = { "Input": True, "Output": True, "Webhook": True, "AgentBlock": True, } AGENT_GRAPH_INCLUDE: prisma.types.AgentGraphInclude = { "AgentNodes": {"include": AGENT_NODE_INCLUDE} # type: ignore } EXECUTION_RESULT_INCLUDE: prisma.types.AgentNodeExecutionInclude = { "Input": True, "Output": True, "AgentNode": True, "AgentGraphExecution": True, } MAX_NODE_EXECUTIONS_FETCH = 1000 GRAPH_EXECUTION_INCLUDE_WITH_NODES: prisma.types.AgentGraphExecutionInclude = { "AgentNodeExecutions": { "include": { "Input": True, "Output": True, "AgentNode": True, "AgentGraphExecution": True, }, "order_by": [ {"queuedTime": "desc"}, # Fallback: Incomplete execs has no queuedTime. {"addedTime": "desc"}, ], "take": MAX_NODE_EXECUTIONS_FETCH, # Avoid loading excessive node executions. } } GRAPH_EXECUTION_INCLUDE: prisma.types.AgentGraphExecutionInclude = { "AgentNodeExecutions": { **GRAPH_EXECUTION_INCLUDE_WITH_NODES["AgentNodeExecutions"], # type: ignore "where": { "AgentNode": { "AgentBlock": {"id": {"in": IO_BLOCK_IDs}}, # type: ignore }, "NOT": { "executionStatus": prisma.enums.AgentExecutionStatus.INCOMPLETE, }, }, } } INTEGRATION_WEBHOOK_INCLUDE: prisma.types.IntegrationWebhookInclude = { "AgentNodes": {"include": AGENT_NODE_INCLUDE} # type: ignore } def library_agent_include(user_id: str) -> prisma.types.LibraryAgentInclude: return { "Agent": { "include": { **AGENT_GRAPH_INCLUDE, "AgentGraphExecution": {"where": {"userId": user_id}}, } }, "Creator": True, }
from keras.src import backend from keras.src import layers from keras.src import ops from keras.src.api_export import keras_export @keras_export("keras.layers.GaussianNoise") class GaussianNoise(layers.Layer): """Apply additive zero-centered Gaussian noise. This is useful to mitigate overfitting (you could see it as a form of random data augmentation). Gaussian Noise (GS) is a natural choice as corruption process for real valued inputs. As it is a regularization layer, it is only active at training time. Args: stddev: Float, standard deviation of the noise distribution. seed: Integer, optional random seed to enable deterministic behavior. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding noise) or in inference mode (doing nothing). """ def __init__(self, stddev, seed=None, **kwargs): super().__init__(**kwargs) if not 0 <= stddev <= 1: raise ValueError( f"Invalid value received for argument " "`stddev`. Expected a float value between 0 and 1. " f"Received: stddev={stddev}" ) self.stddev = stddev self.seed = seed if stddev > 0: self.seed_generator = backend.random.SeedGenerator(seed) self.supports_masking = True self._build_at_init() def call(self, inputs, training=False): if training and self.stddev > 0: return inputs + backend.random.normal( shape=ops.shape(inputs), mean=0.0, stddev=self.stddev, dtype=self.compute_dtype, seed=self.seed_generator, ) return inputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() config = { "stddev": self.stddev, "seed": self.seed, } return {**base_config, **config}
from keras.src import backend from keras.src import layers from keras.src import ops from keras.src.api_export import keras_export @keras_export("keras.layers.GaussianNoise") class GaussianNoise(layers.Layer): """Apply additive zero-centered Gaussian noise. This is useful to mitigate overfitting (you could see it as a form of random data augmentation). Gaussian Noise (GS) is a natural choice as corruption process for real valued inputs. As it is a regularization layer, it is only active at training time. Args: stddev: Float, standard deviation of the noise distribution. seed: Integer, optional random seed to enable deterministic behavior. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding noise) or in inference mode (doing nothing). """ def __init__(self, stddev, seed=None, **kwargs): super().__init__(**kwargs) if not 0 <= stddev <= 1: raise ValueError( f"Invalid value received for argument " "`stddev`. Expected a float value between 0 and 1. " f"Received: stddev={stddev}" ) self.stddev = stddev self.seed = seed if stddev > 0: self.seed_generator = backend.random.SeedGenerator(seed) self.supports_masking = True self.built = True def call(self, inputs, training=False): if training and self.stddev > 0: return inputs + backend.random.normal( shape=ops.shape(inputs), mean=0.0, stddev=self.stddev, dtype=self.compute_dtype, seed=self.seed_generator, ) return inputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() config = { "stddev": self.stddev, "seed": self.seed, } return {**base_config, **config}
_base_ = ['./cascade_mask_rcnn_r50_fpn_1x_coco.py'] preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) model = dict( preprocess_cfg=preprocess_cfg, backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
_base_ = ['./cascade_mask_rcnn_r50_fpn_1x_coco.py'] model = dict( backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe'))) img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox', backend_args=backend_args) test_evaluator = val_evaluator # training schedule for 3x with `RepeatDataset` train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate # Experiments show that using milestones=[9, 11] has higher performance param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[9, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox') test_evaluator = val_evaluator # training schedule for 3x with `RepeatDataset` train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate # Experiments show that using milestones=[9, 11] has higher performance param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[9, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)
"""This module contains the core type definitions and protocols used throughout Dynamo. The types defined here fall into several categories: - Guard related types (GuardFn, GuardFail, GuardedCode): Used for tracking and managing guards that protect compiled code - Frame and cache types (FrameState, CacheEntry): Used for managing interpreter frame state and caching - Callback protocols (DynamoCallbackFn): Define the interface for frame evaluation callbacks - Hook protocols (DynamoGuardHook, ProfilerStartHook, ProfilerEndHook, BytecodeHook): Define various hook points for instrumentation and customization These types provide the foundational interfaces that enable Dynamo's dynamic compilation and optimization system, ensuring type safety and clear contracts between different components of the system. """ import dataclasses import types from typing import Any, Callable, NamedTuple, Optional, Protocol, Union # CacheEntry has a `guard_manager` field for the guard, and a `code` field for the code object. from torch._C._dynamo.eval_frame import ( _CacheEntry as CacheEntry, _ExtraState as ExtraState, _FrameAction as FrameAction, _FrameExecStrategy as FrameExecStrategy, _PyInterpreterFrame as DynamoFrameType, ) from torch._guards import CompileId, Guard # We use a dict to store additional data per frame. FrameState = dict[Any, Any] class GuardFail(NamedTuple): # A string repr of the piece of failed guard code we eval-ed reason: str # A code object where we failed a guard orig_code: types.CodeType @dataclasses.dataclass(frozen=True) class GuardFilterEntry: name: str has_value: bool value: object guard_type: str derived_guard_types: tuple[str, ...] is_global: bool orig_guard: Guard class GuardFn(Protocol): closure_vars: dict[str, object] args: list[str] code_parts: list[str] verbose_code_parts: list[str] global_scope: dict[str, object] guard_fail_fn: Optional[Callable[[GuardFail], None]] cache_entry: Optional[CacheEntry] extra_state: Optional[ExtraState] # maps locals of user function to bool def __call__(self, f_locals: dict[str, object]) -> bool: ... @dataclasses.dataclass class GuardedCode: code: types.CodeType guard_manager: GuardFn compile_id: CompileId trace_annotation: str = "Unknown" @dataclasses.dataclass class ConvertFrameReturn: # default return is no compiled code (i.e. `return None`): # strategy is to skip non-recursively, for all future intercepted frames too # eval frame execution strategy for this frame frame_exec_strategy: FrameExecStrategy = dataclasses.field( default_factory=lambda: FrameExecStrategy(FrameAction.SKIP, FrameAction.DEFAULT) ) # also apply frame_exec strategy to future frames with same code apply_to_code: bool = True guarded_code: Optional[GuardedCode] = None def wrap_guarded_code(guarded_code: GuardedCode) -> ConvertFrameReturn: return ConvertFrameReturn( frame_exec_strategy=FrameExecStrategy(FrameAction.DEFAULT, FrameAction.DEFAULT), guarded_code=guarded_code, ) class DynamoCallbackFn(Protocol): def __call__( self, frame: DynamoFrameType, cache_entry: Optional[CacheEntry], frame_state: FrameState, ) -> ConvertFrameReturn: ... DynamoCallback = Union[DynamoCallbackFn, None, bool] class DynamoGuardHook(Protocol): def __call__( self, guard_manager: GuardFn, code: types.CodeType, f_locals: dict[str, object], index: int, last: bool, ) -> None: ... class DynamoGuardCompleteHook(Protocol): def __call__( self, cache_hit: bool, ) -> bool: ... class ProfilerStartHook(Protocol): def __call__( self, name: str, # TODO(whc) how do I annotate a _RecordFunction here? ) -> Any: ... class ProfilerEndHook(Protocol): def __call__(self, record: Any) -> None: ... class BytecodeHook(Protocol): def __call__( self, code: types.CodeType, new_code: types.CodeType ) -> Optional[types.CodeType]: ...
"""This module contains the core type definitions and protocols used throughout Dynamo. The types defined here fall into several categories: - Guard related types (GuardFn, GuardFail, GuardedCode): Used for tracking and managing guards that protect compiled code - Frame and cache types (FrameState, CacheEntry): Used for managing interpreter frame state and caching - Callback protocols (DynamoCallbackFn): Define the interface for frame evaluation callbacks - Hook protocols (DynamoGuardHook, ProfilerStartHook, ProfilerEndHook, BytecodeHook): Define various hook points for instrumentation and customization These types provide the foundational interfaces that enable Dynamo's dynamic compilation and optimization system, ensuring type safety and clear contracts between different components of the system. """ import dataclasses import types from typing import Any, Callable, NamedTuple, Optional, Protocol, Union # CacheEntry has a `guard_manager` field for the guard, and a `code` field for the code object. from torch._C._dynamo.eval_frame import ( _CacheEntry as CacheEntry, _ExtraState as ExtraState, _FrameAction as FrameAction, _FrameExecStrategy as FrameExecStrategy, _PyInterpreterFrame as DynamoFrameType, ) from torch._guards import CompileId, Guard # We use a dict to store additional data per frame. FrameState = dict[Any, Any] class GuardFail(NamedTuple): # A string repr of the piece of failed guard code we eval-ed reason: str # A code object where we failed a guard orig_code: types.CodeType @dataclasses.dataclass(frozen=True) class GuardFilterEntry: name: str has_value: bool value: object guard_type: str derived_guard_types: tuple[str, ...] is_global: bool orig_guard: Guard class GuardFn(Protocol): closure_vars: dict[str, object] args: list[str] code_parts: list[str] verbose_code_parts: list[str] global_scope: dict[str, object] guard_fail_fn: Optional[Callable[[GuardFail], None]] cache_entry: Optional[CacheEntry] extra_state: Optional[ExtraState] # maps locals of user function to bool def __call__(self, f_locals: dict[str, object]) -> bool: ... @dataclasses.dataclass class GuardedCode: code: types.CodeType guard_manager: GuardFn compile_id: CompileId trace_annotation: str = "Unknown" @dataclasses.dataclass class ConvertFrameReturn: # default return is no compiled code (i.e. `return None`): # strategy is to skip non-recursively, for all future intercepted frames too # eval frame execution strategy for this frame frame_exec_strategy: FrameExecStrategy = dataclasses.field( default_factory=lambda: FrameExecStrategy(FrameAction.SKIP, FrameAction.DEFAULT) ) # also apply frame_exec strategy to future frames with same code apply_to_code: bool = True guarded_code: Optional[GuardedCode] = None def wrap_guarded_code(guarded_code: GuardedCode) -> ConvertFrameReturn: return ConvertFrameReturn( frame_exec_strategy=FrameExecStrategy(FrameAction.DEFAULT, FrameAction.DEFAULT), guarded_code=guarded_code, ) class DynamoCallbackFn(Protocol): def __call__( self, frame: DynamoFrameType, cache_entry: Optional[CacheEntry], frame_state: FrameState, ) -> ConvertFrameReturn: ... DynamoCallback = Union[DynamoCallbackFn, None, bool] class DynamoGuardHook(Protocol): def __call__( self, guard_manager: GuardFn, code: types.CodeType, f_locals: dict[str, object], index: int, last: bool, ) -> None: ... class ProfilerStartHook(Protocol): def __call__( self, name: str, # TODO(whc) how do I annotate a _RecordFunction here? ) -> Any: ... class ProfilerEndHook(Protocol): def __call__(self, record: Any) -> None: ... class BytecodeHook(Protocol): def __call__( self, code: types.CodeType, new_code: types.CodeType ) -> Optional[types.CodeType]: ...
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.9.1.dev0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 6: raise ImportWarning( "To use `datasets`, the module `pyarrow>=6.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.9.0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 6: raise ImportWarning( "To use `datasets`, the module `pyarrow>=6.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
_base_ = './paa_r50_fpn_1x_coco.py' max_epochs = 36 # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[28, 34], gamma=0.1) ] # training schedule for 3x train_cfg = dict(max_epochs=max_epochs) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './paa_r50_fpn_1x_coco.py' max_epochs = 36 # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[28, 34], gamma=0.1) ] # training schedule for 3x train_cfg = dict(max_epochs=max_epochs) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] teacher_ckpt = 'http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_1x_coco/paa_r101_fpn_1x_coco_20200821-0a1825a4.pth' # noqa preprocess_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True, pad_size_divisor=32) model = dict( preprocess_cfg=preprocess_cfg, type='LAD', # student backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # teacher teacher_ckpt=teacher_ckpt, teacher_backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), teacher_neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), teacher_bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.1, neg_iou_thr=0.1, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, score_voting=True, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) train_dataloader = dict(batch_size=8, num_workers=4) optim_wrapper = dict(optimizer=dict(lr=0.01)) # TODO: MMEngine does not support fp16 yet. # fp16 = dict(loss_scale=512.) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] teacher_ckpt = 'http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_1x_coco/paa_r101_fpn_1x_coco_20200821-0a1825a4.pth' # noqa model = dict( type='LAD', # student backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # teacher teacher_ckpt=teacher_ckpt, teacher_backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), teacher_neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), teacher_bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.1, neg_iou_thr=0.1, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, score_voting=True, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) data = dict(samples_per_gpu=8, workers_per_gpu=4) optimizer = dict(lr=0.01) fp16 = dict(loss_scale=512.) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)