input
stringlengths
33
5k
output
stringlengths
32
5k
from collections.abc import Sequence from inspect import signature from typing import Optional, Union from langchain_core.callbacks.manager import Callbacks from langchain_core.documents import ( BaseDocumentCompressor, BaseDocumentTransformer, Document, ) from pydantic import ConfigDict class DocumentCompressorPipeline(BaseDocumentCompressor): """Document compressor that uses a pipeline of Transformers.""" transformers: list[Union[BaseDocumentTransformer, BaseDocumentCompressor]] """List of document filters that are chained together and run in sequence.""" model_config = ConfigDict( arbitrary_types_allowed=True, ) def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Transform a list of documents.""" for _transformer in self.transformers: if isinstance(_transformer, BaseDocumentCompressor): accepts_callbacks = ( signature(_transformer.compress_documents).parameters.get( "callbacks" ) is not None ) if accepts_callbacks: documents = _transformer.compress_documents( documents, query, callbacks=callbacks ) else: documents = _transformer.compress_documents(documents, query) elif isinstance(_transformer, BaseDocumentTransformer): documents = _transformer.transform_documents(documents) else: raise ValueError(f"Got unexpected transformer type: {_transformer}") return documents async def acompress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Compress retrieved documents given the query context.""" for _transformer in self.transformers: if isinstance(_transformer, BaseDocumentCompressor): accepts_callbacks = ( signature(_transformer.acompress_documents).parameters.get( "callbacks" ) is not None ) if accepts_callbacks: documents = await _transformer.acompress_documents( documents, query, callbacks=callbacks ) else: documents = await _transformer.acompress_documents(documents, query) elif isinstance(_transformer, BaseDocumentTransformer): documents = await _transformer.atransform_documents(documents) else: raise ValueError(f"Got unexpected transformer type: {_transformer}") return documents
from inspect import signature from typing import List, Optional, Sequence, Union from langchain_core.callbacks.manager import Callbacks from langchain_core.documents import ( BaseDocumentCompressor, BaseDocumentTransformer, Document, ) from pydantic import ConfigDict class DocumentCompressorPipeline(BaseDocumentCompressor): """Document compressor that uses a pipeline of Transformers.""" transformers: List[Union[BaseDocumentTransformer, BaseDocumentCompressor]] """List of document filters that are chained together and run in sequence.""" model_config = ConfigDict( arbitrary_types_allowed=True, ) def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Transform a list of documents.""" for _transformer in self.transformers: if isinstance(_transformer, BaseDocumentCompressor): accepts_callbacks = ( signature(_transformer.compress_documents).parameters.get( "callbacks" ) is not None ) if accepts_callbacks: documents = _transformer.compress_documents( documents, query, callbacks=callbacks ) else: documents = _transformer.compress_documents(documents, query) elif isinstance(_transformer, BaseDocumentTransformer): documents = _transformer.transform_documents(documents) else: raise ValueError(f"Got unexpected transformer type: {_transformer}") return documents async def acompress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Compress retrieved documents given the query context.""" for _transformer in self.transformers: if isinstance(_transformer, BaseDocumentCompressor): accepts_callbacks = ( signature(_transformer.acompress_documents).parameters.get( "callbacks" ) is not None ) if accepts_callbacks: documents = await _transformer.acompress_documents( documents, query, callbacks=callbacks ) else: documents = await _transformer.acompress_documents(documents, query) elif isinstance(_transformer, BaseDocumentTransformer): documents = await _transformer.atransform_documents(documents) else: raise ValueError(f"Got unexpected transformer type: {_transformer}") return documents
# Copyright (c) OpenMMLab. All rights reserved. from .builder import build_match_cost from .match_cost import (BBoxL1Cost, ClassificationCost, DiceCost, FocalLossCost, IoUCost) __all__ = [ 'build_match_cost', 'ClassificationCost', 'BBoxL1Cost', 'IoUCost', 'FocalLossCost', 'DiceCost' ]
# Copyright (c) OpenMMLab. All rights reserved. from .builder import build_match_cost from .match_cost import BBoxL1Cost, ClassificationCost, FocalLossCost, IoUCost __all__ = [ 'build_match_cost', 'ClassificationCost', 'BBoxL1Cost', 'IoUCost', 'FocalLossCost' ]
"""Base argparser module for Pod and Deployment runtime""" import argparse import os from jina.enums import PollingType from jina.helper import random_identity from jina.parsers.helper import _SHOW_ALL_ARGS, add_arg_group def mixin_essential_parser(parser): """Mixing in arguments required by every module into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Essential') gp.add_argument( '--name', type=str, help=''' The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. ''', ) gp.add_argument( '--workspace', type=str, default=None, help='The working directory for any IO operations in this object. ' 'If not set, then derive from its parent `workspace`.', ) gp.add_argument( '--log-config', type=str, default='default', help='The YAML config of the logger used in this object.', ) gp.add_argument( '--quiet', action='store_true', default=False, help='If set, then no log will be emitted from this object.', ) gp.add_argument( '--quiet-error', action='store_true', default=False, help='If set, then exception stack information will not be added to the log', ) gp.add_argument( '--workspace-id', type=str, default=random_identity(), help='the UUID for identifying the workspace. When not given a random id will be assigned.' 'Multiple Pod/Deployment/Flow will work under the same workspace if they share the same ' '`workspace-id`.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) def mixin_base_deployment_parser(parser, title='Base Deployment'): """Mixing in arguments required by a deployment into the given parser. The Deployment doesn't have scalable features like shards, replicas and polling :param parser: the parser instance to which we add arguments :param title: the title of the create args group :return: returns the created arg group """ mixin_essential_parser(parser) gp = add_arg_group(parser, title=title) gp.add_argument( '--extra-search-paths', type=str, default=[], nargs='*', help='Extra search paths to be used when loading modules and finding YAML config files.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--timeout-ctrl', type=int, default=int(os.getenv('JINA_DEFAULT_TIMEOUT_CTRL', '60')), help='The timeout in milliseconds of the control request, -1 for waiting forever', ) gp.add_argument( '--k8s-namespace', type=str, help='Name of the namespace where Kubernetes deployment should be deployed, to be filled by flow name' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) return gp def mixin_scalable_deployment_parser(parser): """Mixing in arguments required by a scalable deployment into the given parser. The deployment is scalable and can have shards, replicas and polling :param parser: the parser instance to which we add arguments """ gp = mixin_base_deployment_parser(parser, title='Scalable Deployment') gp.add_argument( '--polling', type=str, default=PollingType.ANY.name, help=''' The polling strategy of the Deployment and its endpoints (when `shards>1`). Can be defined for all endpoints of a Deployment or by endpoint. Define per Deployment: - ANY: only one (whoever is idle) Pod polls the message - ALL: all Pods poll the message (like a broadcast) Define per Endpoint: JSON dict, {endpoint: PollingType} {'/custom': 'ALL', '/search': 'ANY', '*': 'ANY'} ''', ) gp.add_argument( '--shards', type=int, default=1, help='The number of shards in the deployment running at the same time. For more details check ' 'https://docs.jina.ai/fundamentals/flow/create-flow/#complex-flow-topologies', ) gp.add_argument( '--replicas', type=int, default=1, help='The number of replicas in the deployment', ) gp.add_argument( '--native', action='store_true', default=False, help='If set, only native Executors is allowed, and the Executor is always run inside WorkerRuntime.', )
"""Base argparser module for Pod and Deployment runtime""" import argparse import os from jina.enums import PollingType from jina.helper import random_identity from jina.parsers.helper import _SHOW_ALL_ARGS, add_arg_group def mixin_essential_parser(parser): """Mixing in arguments required by every module into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Essential') gp.add_argument( '--name', type=str, help=''' The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. ''', ) gp.add_argument( '--workspace', type=str, default=None, help='The working directory for any IO operations in this object. ' 'If not set, then derive from its parent `workspace`.', ) gp.add_argument( '--log-config', type=str, default='default', help='The YAML config of the logger used in this object.', ) gp.add_argument( '--quiet', action='store_true', default=False, help='If set, then no log will be emitted from this object.', ) gp.add_argument( '--quiet-error', action='store_true', default=False, help='If set, then exception stack information will not be added to the log', ) gp.add_argument( '--workspace-id', type=str, default=random_identity(), help='the UUID for identifying the workspace. When not given a random id will be assigned.' 'Multiple Pod/Deployment/Flow will work under the same workspace if they share the same ' '`workspace-id`.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) def mixin_base_ppr_parser(parser): """Mixing in arguments required by pod/deployment/runtime module into the given parser. :param parser: the parser instance to which we add arguments """ mixin_essential_parser(parser) gp = add_arg_group(parser, title='Base Deployment') gp.add_argument( '--extra-search-paths', type=str, default=[], nargs='*', help='Extra search paths to be used when loading modules and finding YAML config files.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--timeout-ctrl', type=int, default=int(os.getenv('JINA_DEFAULT_TIMEOUT_CTRL', '60')), help='The timeout in milliseconds of the control request, -1 for waiting forever', ) parser.add_argument( '--k8s-namespace', type=str, help='Name of the namespace where Kubernetes deployment should be deployed, to be filled by flow name' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--polling', type=str, default=PollingType.ANY.name, help=''' The polling strategy of the Deployment and its endpoints (when `shards>1`). Can be defined for all endpoints of a Deployment or by endpoint. Define per Deployment: - ANY: only one (whoever is idle) Pod polls the message - ALL: all Pods poll the message (like a broadcast) Define per Endpoint: JSON dict, {endpoint: PollingType} {'/custom': 'ALL', '/search': 'ANY', '*': 'ANY'} ''', )
from docarray import BaseDoc from docarray.typing import ID def test_set_id(): class MyDocument(BaseDoc): id: ID d = MyDocument(id="123") assert isinstance(d.id, ID) assert d.id == "123"
from docarray import BaseDocument from docarray.typing import ID def test_set_id(): class MyDocument(BaseDocument): id: ID d = MyDocument(id="123") assert isinstance(d.id, ID) assert d.id == "123"
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp from mmengine.config import Config, DictAction from mmengine.evaluator import DumpResults from mmengine.runner import Runner from mmdet.engine.hooks.utils import trigger_visualization_hook from mmdet.registry import RUNNERS # TODO: support fuse_conv_bn and format_only def parse_args(): parser = argparse.ArgumentParser( description='MMDet test (and eval) a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--work-dir', help='the directory to save the file containing evaluation metrics') parser.add_argument( '--out', type=str, help='dump predictions to a pickle file for offline evaluation') parser.add_argument( '--show', action='store_true', help='show prediction results') parser.add_argument( '--show-dir', help='directory where painted images will be saved. ' 'If specified, it will be automatically saved ' 'to the work_dir/timestamp/show_dir') parser.add_argument( '--wait-time', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() # load config cfg = Config.fromfile(args.config) cfg.launcher = args.launcher if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) cfg.load_from = args.checkpoint if args.show or args.show_dir: cfg = trigger_visualization_hook(cfg, args) # build the runner from config if 'runner_type' not in cfg: # build the default runner runner = Runner.from_cfg(cfg) else: # build customized runner from the registry # if 'runner_type' is set in the cfg runner = RUNNERS.build(cfg) # add `DumpResults` dummy metric if args.out is not None: assert args.out.endswith(('.pkl', '.pickle')), \ 'The dump file must be a pkl file.' runner.test_evaluator.metrics.append( DumpResults(out_file_path=args.out)) # start testing runner.test() if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp from mmengine.config import Config, DictAction from mmengine.evaluator import DumpResults from mmengine.runner import Runner from mmdet.engine.hooks.utils import trigger_visualization_hook from mmdet.registry import RUNNERS from mmdet.utils import register_all_modules # TODO: support fuse_conv_bn and format_only def parse_args(): parser = argparse.ArgumentParser( description='MMDet test (and eval) a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--work-dir', help='the directory to save the file containing evaluation metrics') parser.add_argument( '--out', type=str, help='dump predictions to a pickle file for offline evaluation') parser.add_argument( '--show', action='store_true', help='show prediction results') parser.add_argument( '--show-dir', help='directory where painted images will be saved. ' 'If specified, it will be automatically saved ' 'to the work_dir/timestamp/show_dir') parser.add_argument( '--wait-time', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() # register all modules in mmdet into the registries # do not init the default scope here because it will be init in the runner register_all_modules(init_default_scope=False) # load config cfg = Config.fromfile(args.config) cfg.launcher = args.launcher if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) cfg.load_from = args.checkpoint if args.show or args.show_dir: cfg = trigger_visualization_hook(cfg, args) # build the runner from config if 'runner_type' not in cfg: # build the default runner runner = Runner.from_cfg(cfg) else: # build customized runner from the registry # if 'runner_type' is set in the cfg runner = RUNNERS.build(cfg) # add `DumpResults` dummy metric if args.out is not None: assert args.out.endswith(('.pkl', '.pickle')), \ 'The dump file must be a pkl file.' runner.test_evaluator.metrics.append( DumpResults(out_file_path=args.out)) # start testing runner.test() if __name__ == '__main__': main()
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import shutil import tempfile import unittest import torch from transformers import LlamaTokenizerFast, LlavaNextProcessor from transformers.testing_utils import ( require_vision, ) from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import LlavaNextImageProcessor @require_vision class LlavaNextProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = LlavaNextProcessor @classmethod def setUpClass(cls): cls.tmpdirname = tempfile.mkdtemp() image_processor = LlavaNextImageProcessor() tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b") tokenizer.add_special_tokens({"additional_special_tokens": ["<image>"]}) processor_kwargs = cls.prepare_processor_dict() processor = LlavaNextProcessor(image_processor, tokenizer, **processor_kwargs) processor.save_pretrained(cls.tmpdirname) cls.image_token = processor.image_token def get_tokenizer(self, **kwargs): return LlavaNextProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return LlavaNextProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor @classmethod def tearDownClass(cls): shutil.rmtree(cls.tmpdirname, ignore_errors=True) @staticmethod def prepare_processor_dict(): return { "chat_template": "{% for message in messages %}{% if message['role'] != 'system' %}{{ message['role'].upper() + ': '}}{% endif %}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>\n' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] + ' '}}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] + ' '}}{% endgeneration %}{% endfor %}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'ASSISTANT:' }}{% endif %}", "patch_size": 128, "vision_feature_select_strategy": "default" } # fmt: skip # Copied from tests.models.llava.test_processor_llava.LlavaProcessorTest.test_chat_template_is_saved def test_chat_template_is_saved(self): processor_loaded = self.processor_class.from_pretrained(self.tmpdirname) processor_dict_loaded = json.loads(processor_loaded.to_json_string()) # chat templates aren't serialized to json in processors self.assertFalse("chat_template" in processor_dict_loaded.keys()) # they have to be saved as separate file and loaded back from that file # so we check if the same template is loaded processor_dict = self.prepare_processor_dict() self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None)) def test_image_token_filling(self): processor = self.processor_class.from_pretrained(self.tmpdirname) processor.patch_size = 14 processor.vision_feature_select_strategy = "default" processor.image_processor.crop_size = {"height": 336, "width": 336} processor.image_processor.size = {"shortest_edge": 336} processor.image_processor.image_grid_pinpoints = [[672, 336]] # Important to check with non square image image = torch.randint(0, 2, (3, 503, 316)) expected_image_tokens = 1525 image_token_index = processor.image_token_id messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] inputs = processor( text=[processor.apply_chat_template(messages)], images=[image], return_tensors="pt", ) image_tokens = (inputs["input_ids"] == image_token_index).sum().item() self.assertEqual(expected_image_tokens, image_tokens)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import tempfile import unittest import torch from transformers import AutoProcessor, LlamaTokenizerFast, LlavaNextProcessor from transformers.testing_utils import ( require_vision, ) from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import LlavaNextImageProcessor @require_vision class LlavaNextProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = LlavaNextProcessor @classmethod def setUpClass(cls): cls.tmpdirname = tempfile.mkdtemp() image_processor = LlavaNextImageProcessor() tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b") tokenizer.add_special_tokens({"additional_special_tokens": ["<image>"]}) processor_kwargs = cls.prepare_processor_dict() processor = LlavaNextProcessor(image_processor, tokenizer, **processor_kwargs) processor.save_pretrained(cls.tmpdirname) cls.image_token = processor.image_token def get_tokenizer(self, **kwargs): return LlavaNextProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return LlavaNextProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor @staticmethod def prepare_processor_dict(): return { "chat_template": "{% for message in messages %}{% if message['role'] != 'system' %}{{ message['role'].upper() + ': '}}{% endif %}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>\n' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] + ' '}}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] + ' '}}{% endgeneration %}{% endfor %}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'ASSISTANT:' }}{% endif %}", "patch_size": 128, "vision_feature_select_strategy": "default" } # fmt: skip # Copied from tests.models.llava.test_processor_llava.LlavaProcessorTest.test_chat_template_is_saved def test_chat_template_is_saved(self): processor_loaded = self.processor_class.from_pretrained(self.tmpdirname) processor_dict_loaded = json.loads(processor_loaded.to_json_string()) # chat templates aren't serialized to json in processors self.assertFalse("chat_template" in processor_dict_loaded.keys()) # they have to be saved as separate file and loaded back from that file # so we check if the same template is loaded processor_dict = self.prepare_processor_dict() self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None)) def test_image_token_filling(self): processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-vicuna-7b-hf") processor.patch_size = 14 processor.vision_feature_select_strategy = "default" # Important to check with non square image image = torch.randint(0, 2, (3, 500, 316)) expected_image_tokens = 1526 image_token_index = 32000 messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] inputs = processor( text=[processor.apply_chat_template(messages)], images=[image], return_tensors="pt", ) image_tokens = (inputs["input_ids"] == image_token_index).sum().item() self.assertEqual(expected_image_tokens, image_tokens)
from typing import Optional import pytest from docarray import BaseDoc, DocList from docarray.documents import ImageDoc from docarray.helper import ( _access_path_dict_to_nested_dict, _access_path_to_dict, _dict_to_access_paths, _is_access_path_valid, _update_nested_dicts, get_paths, ) @pytest.fixture() def nested_doc(): class Inner(BaseDoc): img: Optional[ImageDoc] class Middle(BaseDoc): img: Optional[ImageDoc] inner: Optional[Inner] class Outer(BaseDoc): img: Optional[ImageDoc] middle: Optional[Middle] da: DocList[Inner] doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())), da=DocList[Inner]([Inner(img=ImageDoc(url='test.png'))]), ) return doc def test_is_access_path_valid(nested_doc): assert _is_access_path_valid(nested_doc.__class__, 'img') assert _is_access_path_valid(nested_doc.__class__, 'middle__img') assert _is_access_path_valid(nested_doc.__class__, 'middle__inner__img') assert _is_access_path_valid(nested_doc.__class__, 'middle') assert _is_access_path_valid(nested_doc.__class__, 'da__img__url') def test_is_access_path_not_valid(nested_doc): assert not _is_access_path_valid(nested_doc.__class__, 'inner') assert not _is_access_path_valid(nested_doc.__class__, 'some__other__path') assert not _is_access_path_valid(nested_doc.__class__, 'middle.inner') def test_get_access_paths(): class Painting(BaseDoc): title: str img: ImageDoc access_paths = Painting._get_access_paths() assert access_paths == [ 'id', 'title', 'img__id', 'img__url', 'img__tensor', 'img__embedding', 'img__bytes_', ] def test_dict_to_access_paths(): d = { 'a0': {'b0': {'c0': 0}, 'b1': {'c0': 1}}, 'a1': {'b0': {'c0': 2, 'c1': 3}, 'b1': 4}, } casted = _dict_to_access_paths(d) assert casted == { 'a0__b0__c0': 0, 'a0__b1__c0': 1, 'a1__b0__c0': 2, 'a1__b0__c1': 3, 'a1__b1': 4, } def test_access_path_to_dict(): access_path = 'a__b__c__d__e' value = 1 result = {'a': {'b': {'c': {'d': {'e': value}}}}} assert _access_path_to_dict(access_path, value) == result def test_access_path_dict_to_nested_dict(): d = { 'a0__b0__c0': 0, 'a0__b1__c0': 1, 'a1__b0__c0': 2, 'a1__b0__c1': 3, 'a1__b1': 4, } casted = _access_path_dict_to_nested_dict(d) assert casted == { 'a0': {'b0': {'c0': 0}, 'b1': {'c0': 1}}, 'a1': {'b0': {'c0': 2, 'c1': 3}, 'b1': 4}, } def test_update_nested_dict(): d1 = {'text': 'hello', 'image': {'tensor': None}} d2 = {'image': {'url': 'some.png'}} _update_nested_dicts(d1, d2) assert d1 == {'text': 'hello', 'image': {'tensor': None, 'url': 'some.png'}} def test_get_paths(): paths = list(get_paths(patterns='*.py')) for path in paths: assert path.endswith('.py') def test_get_paths_recursive(): paths_rec = list(get_paths(patterns='**', recursive=True)) paths_not_rec = list(get_paths(patterns='**', recursive=False)) assert len(paths_rec) > len(paths_not_rec) def test_get_paths_exclude(): paths = list(get_paths(patterns='*.py')) paths_wo_init = list(get_paths(patterns='*.py', exclude_regex='__init__.[a-z]*')) assert len(paths_wo_init) <= len(paths) assert '__init__.py' not in paths_wo_init def test_shallow_copy(): from torch import rand from docarray import BaseDoc from docarray.helper import _shallow_copy_doc from docarray.typing import TorchTensor, VideoUrl class VideoDoc(BaseDoc): url: VideoUrl tensor_video: TorchTensor class MyDoc(BaseDoc): docs: DocList[VideoDoc] tensor: TorchTensor doc_ori = MyDoc( docs=DocList[VideoDoc]( [ VideoDoc( url=f'http://example.ai/videos/{i}', tensor_video=rand(256), ) for i in range(10) ] ), tensor=rand(256), ) doc_copy = _shallow_copy_doc(doc_ori) assert doc_copy == doc_ori
from typing import Optional import pytest from docarray import BaseDoc, DocList from docarray.documents import ImageDoc from docarray.helper import ( _access_path_dict_to_nested_dict, _access_path_to_dict, _dict_to_access_paths, _is_access_path_valid, _update_nested_dicts, get_paths, ) @pytest.fixture() def nested_doc(): class Inner(BaseDoc): img: Optional[ImageDoc] class Middle(BaseDoc): img: Optional[ImageDoc] inner: Optional[Inner] class Outer(BaseDoc): img: Optional[ImageDoc] middle: Optional[Middle] da: DocList[Inner] doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())), da=DocList[Inner]([Inner(img=ImageDoc(url='test.png'))]), ) return doc def test_is_access_path_valid(nested_doc): assert _is_access_path_valid(nested_doc.__class__, 'img') assert _is_access_path_valid(nested_doc.__class__, 'middle__img') assert _is_access_path_valid(nested_doc.__class__, 'middle__inner__img') assert _is_access_path_valid(nested_doc.__class__, 'middle') assert _is_access_path_valid(nested_doc.__class__, 'da__img__url') def test_is_access_path_not_valid(nested_doc): assert not _is_access_path_valid(nested_doc.__class__, 'inner') assert not _is_access_path_valid(nested_doc.__class__, 'some__other__path') assert not _is_access_path_valid(nested_doc.__class__, 'middle.inner') def test_get_access_paths(): class Painting(BaseDoc): title: str img: ImageDoc access_paths = Painting._get_access_paths() assert access_paths == [ 'id', 'title', 'img__id', 'img__url', 'img__tensor', 'img__embedding', 'img__bytes_', ] def test_dict_to_access_paths(): d = { 'a0': {'b0': {'c0': 0}, 'b1': {'c0': 1}}, 'a1': {'b0': {'c0': 2, 'c1': 3}, 'b1': 4}, } casted = _dict_to_access_paths(d) assert casted == { 'a0__b0__c0': 0, 'a0__b1__c0': 1, 'a1__b0__c0': 2, 'a1__b0__c1': 3, 'a1__b1': 4, } def test_access_path_to_dict(): access_path = 'a__b__c__d__e' value = 1 result = {'a': {'b': {'c': {'d': {'e': value}}}}} assert _access_path_to_dict(access_path, value) == result def test_access_path_dict_to_nested_dict(): d = { 'a0__b0__c0': 0, 'a0__b1__c0': 1, 'a1__b0__c0': 2, 'a1__b0__c1': 3, 'a1__b1': 4, } casted = _access_path_dict_to_nested_dict(d) assert casted == { 'a0': {'b0': {'c0': 0}, 'b1': {'c0': 1}}, 'a1': {'b0': {'c0': 2, 'c1': 3}, 'b1': 4}, } def test_update_nested_dict(): d1 = {'text': 'hello', 'image': {'tensor': None}} d2 = {'image': {'url': 'some.png'}} _update_nested_dicts(d1, d2) assert d1 == {'text': 'hello', 'image': {'tensor': None, 'url': 'some.png'}} def test_get_paths(): paths = list(get_paths(patterns='*.py')) for path in paths: assert path.endswith('.py') def test_get_paths_recursive(): paths_rec = list(get_paths(patterns='**', recursive=True)) paths_not_rec = list(get_paths(patterns='**', recursive=False)) assert len(paths_rec) > len(paths_not_rec) def test_get_paths_exclude(): paths = list(get_paths(patterns='*.py')) paths_wo_init = list(get_paths(patterns='*.py', exclude_regex='__init__.[a-z]*')) assert len(paths_wo_init) <= len(paths) assert '__init__.py' not in paths_wo_init
import asyncio import datetime from typing import List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document from llama_index.readers.toggl.dto import TogglTrackItem, TogglOutFormat class TogglReader(BaseReader): def __init__( self, api_token: str, user_agent: str = "llama_index_toggl_reader" ) -> None: """Initialize with parameters.""" super().__init__() self.api_token = api_token self.user_agent = user_agent self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) def load_data( self, workspace_id: str, project_id: str, start_date: Optional[datetime.datetime] = None, end_date: Optional[datetime.datetime] = datetime.datetime.now(), out_format: TogglOutFormat = TogglOutFormat.json, ) -> List[Document]: """ Load data from Toggl. Args: workspace_id (str): The workspace ID. project_id (str): The project ID. start_date (Optional[datetime.datetime]): The start date. end_date (Optional[datetime.datetime]): The end date. out_format (TogglOutFormat): The output format. """ return self.loop.run_until_complete( self.aload_data(workspace_id, project_id, start_date, end_date, out_format) ) async def aload_data( self, workspace_id: str, project_id: str, start_date: Optional[datetime.datetime], end_date: Optional[datetime.datetime], out_format: TogglOutFormat, ) -> List[Document]: """Load time entries from Toggl.""" from toggl.api_client import TogglClientApi client = TogglClientApi( { "token": self.api_token, "workspace_id": workspace_id, "user_agent": self.user_agent, } ) project_times = client.get_project_times(project_id, start_date, end_date) raw_items = [ TogglTrackItem.model_validate(raw_item) for raw_item in project_times["data"] ] items = [] for item in raw_items: if out_format == TogglOutFormat.json: text = item.model_dump_json() elif out_format == TogglOutFormat.markdown: text = f"""# {item.description} **Start:** {item.start:%Y-%m-%d %H:%M:%S%z} **End:** {item.end:%Y-%m-%d %H:%M:%S%z} **Duration:** {self.milliseconds_to_postgresql_interval(item.dur)} **Tags:** {",".join(item.tags)} """ doc = Document(text=text) doc.metadata = {**doc.metadata, **item.dict()} items.append(doc) return items def milliseconds_to_postgresql_interval(self, milliseconds): seconds, milliseconds = divmod(milliseconds, 1000) minutes, seconds = divmod(seconds, 60) hours, minutes = divmod(minutes, 60) days, hours = divmod(hours, 24) interval = "" if days > 0: interval += f"{days}d" if hours > 0: interval += f"{hours}h" if minutes > 0: interval += f"{minutes}m" if seconds > 0 or milliseconds > 0: interval += f"{seconds}s" if milliseconds > 0: interval += f"{milliseconds}ms" return interval
import asyncio import datetime from typing import List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document from llama_index.readers.toggl.dto import TogglTrackItem, TogglOutFormat class TogglReader(BaseReader): def __init__( self, api_token: str, user_agent: str = "llama_index_toggl_reader" ) -> None: """Initialize with parameters.""" super().__init__() self.api_token = api_token self.user_agent = user_agent self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) def load_data( self, workspace_id: str, project_id: str, start_date: Optional[datetime.datetime] = None, end_date: Optional[datetime.datetime] = datetime.datetime.now(), out_format: TogglOutFormat = TogglOutFormat.json, ) -> List[Document]: """Load data from Toggl. Args: workspace_id (str): The workspace ID. project_id (str): The project ID. start_date (Optional[datetime.datetime]): The start date. end_date (Optional[datetime.datetime]): The end date. out_format (TogglOutFormat): The output format. """ return self.loop.run_until_complete( self.aload_data(workspace_id, project_id, start_date, end_date, out_format) ) async def aload_data( self, workspace_id: str, project_id: str, start_date: Optional[datetime.datetime], end_date: Optional[datetime.datetime], out_format: TogglOutFormat, ) -> List[Document]: """Load time entries from Toggl.""" from toggl.api_client import TogglClientApi client = TogglClientApi( { "token": self.api_token, "workspace_id": workspace_id, "user_agent": self.user_agent, } ) project_times = client.get_project_times(project_id, start_date, end_date) raw_items = [ TogglTrackItem.model_validate(raw_item) for raw_item in project_times["data"] ] items = [] for item in raw_items: if out_format == TogglOutFormat.json: text = item.model_dump_json() elif out_format == TogglOutFormat.markdown: text = f"""# {item.description} **Start:** {item.start:%Y-%m-%d %H:%M:%S%z} **End:** {item.end:%Y-%m-%d %H:%M:%S%z} **Duration:** {self.milliseconds_to_postgresql_interval(item.dur)} **Tags:** {",".join(item.tags)} """ doc = Document(text=text) doc.metadata = {**doc.metadata, **item.dict()} items.append(doc) return items def milliseconds_to_postgresql_interval(self, milliseconds): seconds, milliseconds = divmod(milliseconds, 1000) minutes, seconds = divmod(seconds, 60) hours, minutes = divmod(minutes, 60) days, hours = divmod(hours, 24) interval = "" if days > 0: interval += f"{days}d" if hours > 0: interval += f"{hours}h" if minutes > 0: interval += f"{minutes}m" if seconds > 0 or milliseconds > 0: interval += f"{seconds}s" if milliseconds > 0: interval += f"{milliseconds}ms" return interval
from pathlib import Path import numpy as np import paddlehub as hub import pytest from jina import Document, DocumentArray, Executor from ...text_paddle import TextPaddleEncoder @pytest.fixture(scope='function') def model(): return hub.Module(name='ernie_tiny') @pytest.fixture(scope='function') def content(): return 'hello world' @pytest.fixture(scope='function') def document_array(content): return DocumentArray([Document(content=content)]) @pytest.fixture(scope='function') def parameters(): return {'traverse_paths': ['r'], 'batch_size': 10} def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.default_batch_size == 32 def test_text_paddle(model, document_array, content, parameters): ex = TextPaddleEncoder() assert ex.on_gpu is False ex.encode(document_array, parameters) for doc in document_array: assert isinstance(doc.embedding, np.ndarray) assert doc.embedding.shape == (1024,) embeds = model.get_embedding([[content]]) pooled_features = [] for embed in embeds: pooled_feature, _ = embed pooled_features.append(pooled_feature) assert (pooled_features == document_array[0].embedding).all()
from pathlib import Path import pytest import numpy as np import paddlehub as hub from jina import Document, DocumentArray, Executor from ...text_paddle import TextPaddleEncoder @pytest.fixture(scope='function') def model(): return hub.Module(name='ernie_tiny') @pytest.fixture(scope='function') def content(): return 'hello world' @pytest.fixture(scope='function') def document_array(content): return DocumentArray([Document(content=content)]) @pytest.fixture(scope='function') def parameters(): return {'traverse_paths': ['r'], 'batch_size': 10} def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.default_batch_size == 32 def test_text_paddle(model, document_array, content, parameters): ex = TextPaddleEncoder() assert ex.on_gpu is False ex.encode(document_array, parameters) for doc in document_array: assert isinstance(doc.embedding, np.ndarray) assert doc.embedding.shape == (1024,) embeds = model.get_embedding([[content]]) pooled_features = [] for embed in embeds: pooled_feature, _ = embed pooled_features.append(pooled_feature) assert (pooled_features == document_array[0].embedding).all()
import warnings from typing import Any, Dict, Union import numpy as np import PIL.Image import torch from torchvision.prototype.transforms import Transform from torchvision.transforms import functional as _F class ToTensor(Transform): _transformed_types = (PIL.Image.Image, np.ndarray) def __init__(self) -> None: warnings.warn( "The transform `ToTensor()` is deprecated and will be removed in a future release. " "Instead, please use `transforms.Compose([transforms.ToImageTensor(), transforms.ConvertImageDtype()])`." ) super().__init__() def _transform(self, inpt: Union[PIL.Image.Image, np.ndarray], params: Dict[str, Any]) -> torch.Tensor: return _F.to_tensor(inpt)
import warnings from typing import Any, Dict, List, Union import numpy as np import PIL.Image import torch from torchvision.prototype import datapoints from torchvision.prototype.transforms import Transform from torchvision.transforms import functional as _F from typing_extensions import Literal from ._transform import _RandomApplyTransform from .utils import is_simple_tensor, query_chw class ToTensor(Transform): _transformed_types = (PIL.Image.Image, np.ndarray) def __init__(self) -> None: warnings.warn( "The transform `ToTensor()` is deprecated and will be removed in a future release. " "Instead, please use `transforms.Compose([transforms.ToImageTensor(), transforms.ConvertImageDtype()])`." ) super().__init__() def _transform(self, inpt: Union[PIL.Image.Image, np.ndarray], params: Dict[str, Any]) -> torch.Tensor: return _F.to_tensor(inpt) # TODO: in other PR (?) undeprecate those and make them use _rgb_to_gray? class Grayscale(Transform): _transformed_types = ( datapoints.Image, PIL.Image.Image, is_simple_tensor, datapoints.Video, ) def __init__(self, num_output_channels: Literal[1, 3] = 1) -> None: deprecation_msg = ( f"The transform `Grayscale(num_output_channels={num_output_channels})` " f"is deprecated and will be removed in a future release." ) if num_output_channels == 1: replacement_msg = ( "transforms.ConvertImageColorSpace(old_color_space=ColorSpace.RGB, color_space=ColorSpace.GRAY)" ) else: replacement_msg = ( "transforms.Compose(\n" " transforms.ConvertImageColorSpace(old_color_space=ColorSpace.RGB, color_space=ColorSpace.GRAY),\n" " transforms.ConvertImageColorSpace(old_color_space=ColorSpace.GRAY, color_space=ColorSpace.RGB),\n" ")" ) warnings.warn(f"{deprecation_msg} Instead, please use\n\n{replacement_msg}") super().__init__() self.num_output_channels = num_output_channels def _transform( self, inpt: Union[datapoints.ImageType, datapoints.VideoType], params: Dict[str, Any] ) -> Union[datapoints.ImageType, datapoints.VideoType]: output = _F.rgb_to_grayscale(inpt, num_output_channels=self.num_output_channels) if isinstance(inpt, (datapoints.Image, datapoints.Video)): output = inpt.wrap_like(inpt, output) # type: ignore[arg-type] return output class RandomGrayscale(_RandomApplyTransform): _transformed_types = ( datapoints.Image, PIL.Image.Image, is_simple_tensor, datapoints.Video, ) def __init__(self, p: float = 0.1) -> None: warnings.warn( "The transform `RandomGrayscale(p=...)` is deprecated and will be removed in a future release. " "Instead, please use\n\n" "transforms.RandomApply(\n" " transforms.Compose(\n" " transforms.ConvertImageColorSpace(old_color_space=ColorSpace.RGB, color_space=ColorSpace.GRAY),\n" " transforms.ConvertImageColorSpace(old_color_space=ColorSpace.GRAY, color_space=ColorSpace.RGB),\n" " )\n" " p=...,\n" ")" ) super().__init__(p=p) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: num_input_channels, *_ = query_chw(flat_inputs) return dict(num_input_channels=num_input_channels) def _transform( self, inpt: Union[datapoints.ImageType, datapoints.VideoType], params: Dict[str, Any] ) -> Union[datapoints.ImageType, datapoints.VideoType]: output = _F.rgb_to_grayscale(inpt, num_output_channels=params["num_input_channels"]) if isinstance(inpt, (datapoints.Image, datapoints.Video)): output = inpt.wrap_like(inpt, output) # type: ignore[arg-type] return output
from .audio_clip_encoder import AudioCLIPEncoder
from .audio_clip_encoder import AudioCLIPEncoder
_base_ = './fcos_r50-caffe_fpn_gn-head_1x_coco.py' # model settings model = dict( data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), backbone=dict( type='ResNeXt', depth=101, groups=64, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d'))) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 2x max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py' # model settings model = dict( data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), backbone=dict( type='ResNeXt', depth=101, groups=64, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d'))) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 2x max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
import argparse from jina.enums import GatewayProtocolType from jina.helper import parse_host_scheme from jina.logging.predefined import default_logger class NetworkChecker: """Check if a BaseDeployment is running or not.""" def __init__(self, args: 'argparse.Namespace'): """ Create a new :class:`NetworkChecker`. :param args: args provided by the CLI. """ import time from jina import Client from jina.logging.profile import TimeContext from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime try: total_time = 0 total_success = 0 for j in range(args.attempts): with TimeContext( f'ping {args.target} on {args.host} at {j} round', default_logger ) as tc: if args.target == 'executor': hostname, port, protocol, _ = parse_host_scheme(args.host) r = WorkerRuntime.is_ready(f'{hostname}:{port}') elif args.target == 'gateway': hostname, port, protocol, _ = parse_host_scheme(args.host) r = GatewayRuntime.is_ready( f'{hostname}:{port}', protocol=GatewayProtocolType.from_string(protocol), ) elif args.target == 'flow': r = Client(host=args.host).is_flow_ready(timeout=args.timeout) if not r: default_logger.warning( 'not responding, attempt (%d/%d) in 1s' % (j + 1, args.attempts) ) else: total_success += 1 total_time += tc.duration if args.attempts > 0: time.sleep(1) if total_success < args.attempts: default_logger.debug( 'message lost %.0f%% (%d/%d) ' % ( (1 - total_success / args.attempts) * 100, args.attempts - total_success, args.attempts, ) ) if total_success > 0: default_logger.debug( 'avg. latency: %.0f ms' % (total_time / total_success * 1000) ) if total_success >= args.min_successful_attempts: default_logger.debug( f'readiness check succeeded {total_success} times!!!' ) exit(0) else: default_logger.debug( f'readiness check succeeded {total_success} times, less than {args.min_successful_attempts}' ) except KeyboardInterrupt: pass # returns 1 (anomaly) when it comes to here exit(1)
import argparse from jina.enums import GatewayProtocolType from jina.helper import parse_host_scheme from jina.logging.predefined import default_logger class NetworkChecker: """Check if a BaseDeployment is running or not.""" def __init__(self, args: 'argparse.Namespace'): """ Create a new :class:`NetworkChecker`. :param args: args provided by the CLI. """ import time from jina import Client from jina.logging.profile import TimeContext from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime try: total_time = 0 total_success = 0 for j in range(args.attempts): with TimeContext( f'ping {args.target} on {args.host} at {j} round', default_logger ) as tc: if args.target == 'executor': hostname, port, protocol, _ = parse_host_scheme(args.host) r = WorkerRuntime.is_ready(f'{hostname}:{port}') elif args.target == 'gateway': hostname, port, protocol, _ = parse_host_scheme(args.host) r = GatewayRuntime.is_ready( f'{hostname}:{port}', protocol=GatewayProtocolType.from_string(protocol), ) elif args.target == 'flow': r = Client(host=args.host).is_flow_ready(timeout=args.timeout) if not r: default_logger.warning( 'not responding, attempt (%d/%d) in 1s' % (j + 1, args.attempts) ) else: total_success += 1 total_time += tc.duration if args.attempts > 0: time.sleep(1) if total_success < args.attempts: default_logger.warning( 'message lost %.0f%% (%d/%d) ' % ( (1 - total_success / args.attempts) * 100, args.attempts - total_success, args.attempts, ) ) if total_success > 0: default_logger.info( 'avg. latency: %.0f ms' % (total_time / total_success * 1000) ) if total_success >= args.min_successful_attempts: default_logger.info( f'readiness check succeeded {total_success} times!!!' ) exit(0) else: default_logger.info( f'readiness check succeeded {total_success} times, less than {args.min_successful_attempts}' ) except KeyboardInterrupt: pass # returns 1 (anomaly) when it comes to here exit(1)
"""(Unofficial) Google Keep reader using gkeepapi.""" import json import os from typing import Any, List from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class GoogleKeepReader(BaseReader): """ Google Keep reader. Reads notes from Google Keep """ def load_data(self, document_ids: List[str]) -> List[Document]: """ Load data from the document_ids. Args: document_ids (List[str]): a list of note ids. """ keep = self._get_keep() if document_ids is None: raise ValueError('Must specify a "document_ids" in `load_kwargs`.') results = [] for note_id in document_ids: note = keep.get(note_id) if note is None: raise ValueError(f"Note with id {note_id} not found.") text = f"Title: {note.title}\nContent: {note.text}" results.append(Document(text=text, extra_info={"note_id": note_id})) return results def load_all_notes(self) -> List[Document]: """Load all notes from Google Keep.""" keep = self._get_keep() notes = keep.all() results = [] for note in notes: text = f"Title: {note.title}\nContent: {note.text}" results.append(Document(text=text, extra_info={"note_id": note.id})) return results def _get_keep(self) -> Any: import gkeepapi """Get a Google Keep object with login.""" # Read username and password from keep_credentials.json if os.path.exists("keep_credentials.json"): with open("keep_credentials.json") as f: credentials = json.load(f) else: raise RuntimeError("Failed to load keep_credentials.json.") keep = gkeepapi.Keep() success = keep.login(credentials["username"], credentials["password"]) if not success: raise RuntimeError("Failed to login to Google Keep.") return keep if __name__ == "__main__": reader = GoogleKeepReader() print( reader.load_data( document_ids=[ "1eKU7kGn8eJCErZ52OC7vCzHDSQaspFYGHHCiTX_IvhFOc7ZQZVJhTIDFMdTJOPiejOk" ] ) )
"""(Unofficial) Google Keep reader using gkeepapi.""" import json import os from typing import Any, List from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class GoogleKeepReader(BaseReader): """Google Keep reader. Reads notes from Google Keep """ def load_data(self, document_ids: List[str]) -> List[Document]: """Load data from the document_ids. Args: document_ids (List[str]): a list of note ids. """ keep = self._get_keep() if document_ids is None: raise ValueError('Must specify a "document_ids" in `load_kwargs`.') results = [] for note_id in document_ids: note = keep.get(note_id) if note is None: raise ValueError(f"Note with id {note_id} not found.") text = f"Title: {note.title}\nContent: {note.text}" results.append(Document(text=text, extra_info={"note_id": note_id})) return results def load_all_notes(self) -> List[Document]: """Load all notes from Google Keep.""" keep = self._get_keep() notes = keep.all() results = [] for note in notes: text = f"Title: {note.title}\nContent: {note.text}" results.append(Document(text=text, extra_info={"note_id": note.id})) return results def _get_keep(self) -> Any: import gkeepapi """Get a Google Keep object with login.""" # Read username and password from keep_credentials.json if os.path.exists("keep_credentials.json"): with open("keep_credentials.json") as f: credentials = json.load(f) else: raise RuntimeError("Failed to load keep_credentials.json.") keep = gkeepapi.Keep() success = keep.login(credentials["username"], credentials["password"]) if not success: raise RuntimeError("Failed to login to Google Keep.") return keep if __name__ == "__main__": reader = GoogleKeepReader() print( reader.load_data( document_ids=[ "1eKU7kGn8eJCErZ52OC7vCzHDSQaspFYGHHCiTX_IvhFOc7ZQZVJhTIDFMdTJOPiejOk" ] ) )
# Copyright (c) OpenMMLab. All rights reserved. import argparse from typing import Tuple import cv2 import mmcv import numpy as np import torch import torch.nn as nn from mmcv.transforms import Compose from mmengine.utils import track_iter_progress from mmdet.apis import init_detector from mmdet.registry import VISUALIZERS from mmdet.structures import DetDataSample from mmdet.utils import register_all_modules try: import ffmpegcv except ImportError: raise ImportError( 'Please install ffmpegcv with:\n\n pip install ffmpegcv') def parse_args(): parser = argparse.ArgumentParser( description='MMDetection video demo with GPU acceleration') parser.add_argument('video', help='Video file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='Bbox score threshold') parser.add_argument('--out', type=str, help='Output video file') parser.add_argument('--show', action='store_true', help='Show video') parser.add_argument( '--nvdecode', action='store_true', help='Use NVIDIA decoder') parser.add_argument( '--wait-time', type=float, default=1, help='The interval of show (s), 0 is block') args = parser.parse_args() return args def prefetch_batch_input_shape(model: nn.Module, ori_wh: Tuple[int, int]) -> dict: cfg = model.cfg w, h = ori_wh cfg.test_dataloader.dataset.pipeline[0].type = 'LoadImageFromNDArray' test_pipeline = Compose(cfg.test_dataloader.dataset.pipeline) data = {'img': np.zeros((h, w, 3), dtype=np.uint8), 'img_id': 0} data = test_pipeline(data) _, data_sample = model.data_preprocessor([data], False) batch_input_shape = data_sample[0].batch_input_shape return batch_input_shape def pack_data(frame_resize: np.ndarray, batch_input_shape: Tuple[int, int], ori_shape: Tuple[int, int]) -> dict: assert frame_resize.shape[:2] == batch_input_shape data_sample = DetDataSample() data_sample.set_metainfo({ 'img_shape': batch_input_shape, 'ori_shape': ori_shape, 'scale_factor': (batch_input_shape[0] / ori_shape[0], batch_input_shape[1] / ori_shape[1]) }) frame_resize = torch.from_numpy(frame_resize).permute((2, 0, 1)) data = {'inputs': frame_resize, 'data_sample': data_sample} return data def main(): args = parse_args() assert args.out or args.show, \ ('Please specify at least one operation (save/show the ' 'video) with the argument "--out" or "--show"') # register all modules in mmdet into the registries register_all_modules() model = init_detector(args.config, args.checkpoint, device=args.device) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) # the dataset_meta is loaded from the checkpoint and # then pass to the model in init_detector visualizer.dataset_meta = model.dataset_meta if args.nvdecode: VideoCapture = ffmpegcv.VideoCaptureNV else: VideoCapture = ffmpegcv.VideoCapture video_origin = VideoCapture(args.video) batch_input_shape = prefetch_batch_input_shape( model, (video_origin.width, video_origin.height)) ori_shape = (video_origin.height, video_origin.width) resize_wh = batch_input_shape[::-1] video_resize = VideoCapture( args.video, resize=resize_wh, resize_keepratio=True, resize_keepratioalign='topleft') video_writer = None if args.out: video_writer = ffmpegcv.VideoWriter(args.out, fps=video_origin.fps) with torch.no_grad(): for i, (frame_resize, frame_origin) in enumerate( zip(track_iter_progress(video_resize), video_origin)): data = pack_data(frame_resize, batch_input_shape, ori_shape) result = model.test_step([data])[0] visualizer.add_datasample( name='video', image=frame_origin, data_sample=result, draw_gt=False, show=False, pred_score_thr=args.score_thr) frame_mask = visualizer.get_image() if args.show: cv2.namedWindow('video', 0) mmcv.imshow(frame_mask, 'video', args.wait_time) if args.out: video_writer.write(frame_mask) if video_writer: video_writer.release() video_origin.release() video_resize.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import cv2 import mmcv import numpy as np import torch import torch.nn as nn from mmcv.transforms import Compose from mmengine.utils import track_iter_progress from mmdet.apis import init_detector from mmdet.registry import VISUALIZERS from mmdet.structures import DetDataSample from mmdet.utils import register_all_modules from mmdet.utils.typing import Tuple try: import ffmpegcv except ImportError: raise ImportError( 'Please install ffmpegcv with:\n\n pip install ffmpegcv') def parse_args(): parser = argparse.ArgumentParser( description='MMDetection video demo with GPU acceleration') parser.add_argument('video', help='Video file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='Bbox score threshold') parser.add_argument('--out', type=str, help='Output video file') parser.add_argument('--show', action='store_true', help='Show video') parser.add_argument( '--nvdecode', action='store_true', help='Use NVIDIA decoder') parser.add_argument( '--wait-time', type=float, default=1, help='The interval of show (s), 0 is block') args = parser.parse_args() return args def prefetch_batch_input_shape(model: nn.Module, ori_wh: Tuple[int, int]) -> dict: cfg = model.cfg w, h = ori_wh cfg.test_dataloader.dataset.pipeline[0].type = 'LoadImageFromNDArray' test_pipeline = Compose(cfg.test_dataloader.dataset.pipeline) data = {'img': np.zeros((h, w, 3), dtype=np.uint8), 'img_id': 0} data = test_pipeline(data) _, data_sample = model.data_preprocessor([data], False) batch_input_shape = data_sample[0].batch_input_shape return batch_input_shape def pack_data(frame_resize: np.ndarray, batch_input_shape: Tuple[int, int], ori_shape: Tuple[int, int]) -> dict: assert frame_resize.shape[:2] == batch_input_shape data_sample = DetDataSample() data_sample.set_metainfo({ 'img_shape': batch_input_shape, 'ori_shape': ori_shape, 'scale_factor': (batch_input_shape[0] / ori_shape[0], batch_input_shape[1] / ori_shape[1]) }) frame_resize = torch.from_numpy(frame_resize).permute((2, 0, 1)) data = {'inputs': frame_resize, 'data_sample': data_sample} return data def main(): args = parse_args() assert args.out or args.show, \ ('Please specify at least one operation (save/show the ' 'video) with the argument "--out" or "--show"') # register all modules in mmdet into the registries register_all_modules() model = init_detector(args.config, args.checkpoint, device=args.device) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) # the dataset_meta is loaded from the checkpoint and # then pass to the model in init_detector visualizer.dataset_meta = model.dataset_meta if args.nvdecode: VideoCapture = ffmpegcv.VideoCaptureNV else: VideoCapture = ffmpegcv.VideoCapture video_origin = VideoCapture(args.video) batch_input_shape = prefetch_batch_input_shape( model, (video_origin.width, video_origin.height)) ori_shape = (video_origin.height, video_origin.width) resize_wh = batch_input_shape[::-1] video_resize = VideoCapture( args.video, resize=resize_wh, resize_keepratio=True, resize_keepratioalign='topleft') video_writer = None if args.out: video_writer = ffmpegcv.VideoWriter(args.out, fps=video_origin.fps) with torch.no_grad(): for i, (frame_resize, frame_origin) in enumerate( zip(track_iter_progress(video_resize), video_origin)): data = pack_data(frame_resize, batch_input_shape, ori_shape) result = model.test_step([data])[0] visualizer.add_datasample( name='video', image=frame_origin, data_sample=result, draw_gt=False, show=False, pred_score_thr=args.score_thr) frame_mask = visualizer.get_image() if args.show: cv2.namedWindow('video', 0) mmcv.imshow(frame_mask, 'video', args.wait_time) if args.out: video_writer.write(frame_mask) if video_writer: video_writer.release() video_origin.release() video_resize.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Sequence, Union from torch import Tensor from mmdet.registry import TASK_UTILS from mmdet.structures.bbox import (BaseBoxes, HorizontalBoxes, bbox2distance, distance2bbox, get_box_tensor) from .base_bbox_coder import BaseBBoxCoder @TASK_UTILS.register_module() class DistancePointBBoxCoder(BaseBBoxCoder): """Distance Point BBox coder. This coder encodes gt bboxes (x1, y1, x2, y2) into (top, bottom, left, right) and decode it back to the original. Args: clip_border (bool, optional): Whether clip the objects outside the border of the image. Defaults to True. """ def __init__(self, clip_border: Optional[bool] = True, **kwargs) -> None: super().__init__(**kwargs) self.clip_border = clip_border def encode(self, points: Tensor, gt_bboxes: Union[Tensor, BaseBoxes], max_dis: Optional[float] = None, eps: float = 0.1) -> Tensor: """Encode bounding box to distances. Args: points (Tensor): Shape (N, 2), The format is [x, y]. gt_bboxes (Tensor or :obj:`BaseBoxes`): Shape (N, 4), The format is "xyxy" max_dis (float): Upper bound of the distance. Default None. eps (float): a small value to ensure target < max_dis, instead <=. Default 0.1. Returns: Tensor: Box transformation deltas. The shape is (N, 4). """ gt_bboxes = get_box_tensor(gt_bboxes) assert points.size(0) == gt_bboxes.size(0) assert points.size(-1) == 2 assert gt_bboxes.size(-1) == 4 return bbox2distance(points, gt_bboxes, max_dis, eps) def decode( self, points: Tensor, pred_bboxes: Tensor, max_shape: Optional[Union[Sequence[int], Tensor, Sequence[Sequence[int]]]] = None ) -> Union[Tensor, BaseBoxes]: """Decode distance prediction to bounding box. Args: points (Tensor): Shape (B, N, 2) or (N, 2). pred_bboxes (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4) max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]], and the length of max_shape should also be B. Default None. Returns: Union[Tensor, :obj:`BaseBoxes`]: Boxes with shape (N, 4) or (B, N, 4) """ assert points.size(0) == pred_bboxes.size(0) assert points.size(-1) == 2 assert pred_bboxes.size(-1) == 4 if self.clip_border is False: max_shape = None bboxes = distance2bbox(points, pred_bboxes, max_shape) if self.use_box_type: bboxes = HorizontalBoxes(bboxes) return bboxes
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import TASK_UTILS from mmdet.structures.bbox import (HorizontalBoxes, bbox2distance, distance2bbox, get_box_tensor) from .base_bbox_coder import BaseBBoxCoder @TASK_UTILS.register_module() class DistancePointBBoxCoder(BaseBBoxCoder): """Distance Point BBox coder. This coder encodes gt bboxes (x1, y1, x2, y2) into (top, bottom, left, right) and decode it back to the original. Args: clip_border (bool, optional): Whether clip the objects outside the border of the image. Defaults to True. """ def __init__(self, clip_border=True, **kwargs): super().__init__(**kwargs) self.clip_border = clip_border def encode(self, points, gt_bboxes, max_dis=None, eps=0.1): """Encode bounding box to distances. Args: points (Tensor): Shape (N, 2), The format is [x, y]. gt_bboxes (Tensor or :obj:`BaseBoxes`): Shape (N, 4), The format is "xyxy" max_dis (float): Upper bound of the distance. Default None. eps (float): a small value to ensure target < max_dis, instead <=. Default 0.1. Returns: Tensor: Box transformation deltas. The shape is (N, 4). """ gt_bboxes = get_box_tensor(gt_bboxes) assert points.size(0) == gt_bboxes.size(0) assert points.size(-1) == 2 assert gt_bboxes.size(-1) == 4 return bbox2distance(points, gt_bboxes, max_dis, eps) def decode(self, points, pred_bboxes, max_shape=None): """Decode distance prediction to bounding box. Args: points (Tensor): Shape (B, N, 2) or (N, 2). pred_bboxes (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4) max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]], and the length of max_shape should also be B. Default None. Returns: Union[Tensor, :obj:`BaseBoxes`]: Boxes with shape (N, 4) or (B, N, 4) """ assert points.size(0) == pred_bboxes.size(0) assert points.size(-1) == 2 assert pred_bboxes.size(-1) == 4 if self.clip_border is False: max_shape = None bboxes = distance2bbox(points, pred_bboxes, max_shape) if self.use_box_type: bboxes = HorizontalBoxes(bboxes) return bboxes
import logging from datasets import load_dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEmbeddingSimilarityEvaluator, SparseEncoder, SpladePooling, ) logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Load the STSB dataset (https://huggingface.co/datasets/sentence-transformers/stsb) eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") # Initialize the evaluator dev_evaluator = SparseEmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], name="sts_dev", ) results = dev_evaluator(model) # Print the results print(f"Primary metric: {dev_evaluator.primary_metric}") print(f"Primary metric value: {results[dev_evaluator.primary_metric]:.4f}")
from datasets import load_dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEmbeddingSimilarityEvaluator, SparseEncoder, SpladePooling, ) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Load the STSB dataset (https://huggingface.co/datasets/sentence-transformers/stsb) eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") # Initialize the evaluator dev_evaluator = SparseEmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], name="sts_dev", ) results = dev_evaluator(model) print(dev_evaluator.primary_metric) print(results[dev_evaluator.primary_metric])
# Copyright (c) OpenMMLab. All rights reserved. import argparse from collections import OrderedDict import torch from mmengine.fileio import load arch_settings = {50: (3, 4, 6, 3), 101: (3, 4, 23, 3)} def convert_bn(blobs, state_dict, caffe_name, torch_name, converted_names): # detectron replace bn with affine channel layer state_dict[torch_name + '.bias'] = torch.from_numpy(blobs[caffe_name + '_b']) state_dict[torch_name + '.weight'] = torch.from_numpy(blobs[caffe_name + '_s']) bn_size = state_dict[torch_name + '.weight'].size() state_dict[torch_name + '.running_mean'] = torch.zeros(bn_size) state_dict[torch_name + '.running_var'] = torch.ones(bn_size) converted_names.add(caffe_name + '_b') converted_names.add(caffe_name + '_s') def convert_conv_fc(blobs, state_dict, caffe_name, torch_name, converted_names): state_dict[torch_name + '.weight'] = torch.from_numpy(blobs[caffe_name + '_w']) converted_names.add(caffe_name + '_w') if caffe_name + '_b' in blobs: state_dict[torch_name + '.bias'] = torch.from_numpy(blobs[caffe_name + '_b']) converted_names.add(caffe_name + '_b') def convert(src, dst, depth): """Convert keys in detectron pretrained ResNet models to pytorch style.""" # load arch_settings if depth not in arch_settings: raise ValueError('Only support ResNet-50 and ResNet-101 currently') block_nums = arch_settings[depth] # load caffe model caffe_model = load(src, encoding='latin1') blobs = caffe_model['blobs'] if 'blobs' in caffe_model else caffe_model # convert to pytorch style state_dict = OrderedDict() converted_names = set() convert_conv_fc(blobs, state_dict, 'conv1', 'conv1', converted_names) convert_bn(blobs, state_dict, 'res_conv1_bn', 'bn1', converted_names) for i in range(1, len(block_nums) + 1): for j in range(block_nums[i - 1]): if j == 0: convert_conv_fc(blobs, state_dict, f'res{i + 1}_{j}_branch1', f'layer{i}.{j}.downsample.0', converted_names) convert_bn(blobs, state_dict, f'res{i + 1}_{j}_branch1_bn', f'layer{i}.{j}.downsample.1', converted_names) for k, letter in enumerate(['a', 'b', 'c']): convert_conv_fc(blobs, state_dict, f'res{i + 1}_{j}_branch2{letter}', f'layer{i}.{j}.conv{k+1}', converted_names) convert_bn(blobs, state_dict, f'res{i + 1}_{j}_branch2{letter}_bn', f'layer{i}.{j}.bn{k + 1}', converted_names) # check if all layers are converted for key in blobs: if key not in converted_names: print(f'Not Convert: {key}') # save checkpoint checkpoint = dict() checkpoint['state_dict'] = state_dict torch.save(checkpoint, dst) def main(): parser = argparse.ArgumentParser(description='Convert model keys') parser.add_argument('src', help='src detectron model path') parser.add_argument('dst', help='save path') parser.add_argument('depth', type=int, help='ResNet model depth') args = parser.parse_args() convert(args.src, args.dst, args.depth) if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse from collections import OrderedDict import mmcv import torch arch_settings = {50: (3, 4, 6, 3), 101: (3, 4, 23, 3)} def convert_bn(blobs, state_dict, caffe_name, torch_name, converted_names): # detectron replace bn with affine channel layer state_dict[torch_name + '.bias'] = torch.from_numpy(blobs[caffe_name + '_b']) state_dict[torch_name + '.weight'] = torch.from_numpy(blobs[caffe_name + '_s']) bn_size = state_dict[torch_name + '.weight'].size() state_dict[torch_name + '.running_mean'] = torch.zeros(bn_size) state_dict[torch_name + '.running_var'] = torch.ones(bn_size) converted_names.add(caffe_name + '_b') converted_names.add(caffe_name + '_s') def convert_conv_fc(blobs, state_dict, caffe_name, torch_name, converted_names): state_dict[torch_name + '.weight'] = torch.from_numpy(blobs[caffe_name + '_w']) converted_names.add(caffe_name + '_w') if caffe_name + '_b' in blobs: state_dict[torch_name + '.bias'] = torch.from_numpy(blobs[caffe_name + '_b']) converted_names.add(caffe_name + '_b') def convert(src, dst, depth): """Convert keys in detectron pretrained ResNet models to pytorch style.""" # load arch_settings if depth not in arch_settings: raise ValueError('Only support ResNet-50 and ResNet-101 currently') block_nums = arch_settings[depth] # load caffe model caffe_model = mmcv.load(src, encoding='latin1') blobs = caffe_model['blobs'] if 'blobs' in caffe_model else caffe_model # convert to pytorch style state_dict = OrderedDict() converted_names = set() convert_conv_fc(blobs, state_dict, 'conv1', 'conv1', converted_names) convert_bn(blobs, state_dict, 'res_conv1_bn', 'bn1', converted_names) for i in range(1, len(block_nums) + 1): for j in range(block_nums[i - 1]): if j == 0: convert_conv_fc(blobs, state_dict, f'res{i + 1}_{j}_branch1', f'layer{i}.{j}.downsample.0', converted_names) convert_bn(blobs, state_dict, f'res{i + 1}_{j}_branch1_bn', f'layer{i}.{j}.downsample.1', converted_names) for k, letter in enumerate(['a', 'b', 'c']): convert_conv_fc(blobs, state_dict, f'res{i + 1}_{j}_branch2{letter}', f'layer{i}.{j}.conv{k+1}', converted_names) convert_bn(blobs, state_dict, f'res{i + 1}_{j}_branch2{letter}_bn', f'layer{i}.{j}.bn{k + 1}', converted_names) # check if all layers are converted for key in blobs: if key not in converted_names: print(f'Not Convert: {key}') # save checkpoint checkpoint = dict() checkpoint['state_dict'] = state_dict torch.save(checkpoint, dst) def main(): parser = argparse.ArgumentParser(description='Convert model keys') parser.add_argument('src', help='src detectron model path') parser.add_argument('dst', help='save path') parser.add_argument('depth', type=int, help='ResNet model depth') args = parser.parse_args() convert(args.src, args.dst, args.depth) if __name__ == '__main__': main()
_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' model = dict( data_preprocessor=dict(pad_size_divisor=64), neck=dict( type='FPN_CARAFE', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5, start_level=0, end_level=-1, norm_cfg=None, act_cfg=None, order=('conv', 'norm', 'act'), upsample_cfg=dict( type='carafe', up_kernel=5, up_group=1, encoder_kernel=3, encoder_dilation=1, compressed_channels=64)))
_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' model = dict( neck=dict( type='FPN_CARAFE', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5, start_level=0, end_level=-1, norm_cfg=None, act_cfg=None, order=('conv', 'norm', 'act'), upsample_cfg=dict( type='carafe', up_kernel=5, up_group=1, encoder_kernel=3, encoder_dilation=1, compressed_channels=64))) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=64), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=64), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
import os import pickle from pathlib import Path from typing import Optional, Tuple from jina import DocumentArray, Executor, requests from jina.excepts import PretrainedModelFileDoesNotExist from jina_commons.batching import get_docs_batch_generator class TFIDFTextEncoder(Executor): """ Encode text into tf-idf sparse embeddings :param path_vectorizer: path of the pre-trained tfidf sklearn vectorizer :param default_batch_size: Default batch size, used if ``batch_size`` is not provided as a parameter in the request :param default_traversal_paths: Default traversal paths, used if ``traversal_paths`` are not provided as a parameter in the request. """ def __init__( self, path_vectorizer: Optional[str] = None, default_batch_size: int = 2048, default_traversal_paths: Tuple[str] = ('r',), *args, **kwargs, ): super().__init__(*args, **kwargs) if path_vectorizer is None: path_vectorizer = str( Path(__file__).parent / 'model/tfidf_vectorizer.pickle' ) self.path_vectorizer = path_vectorizer self.default_batch_size = default_batch_size self.default_traversal_paths = default_traversal_paths if os.path.exists(self.path_vectorizer): self.tfidf_vectorizer = pickle.load(open(self.path_vectorizer, 'rb')) else: raise PretrainedModelFileDoesNotExist( f'{self.path_vectorizer} not found, cannot find a fitted tfidf_vectorizer' ) @requests def encode(self, docs: Optional[DocumentArray], parameters: dict, **kwargs): """ Generate the TF-IDF feature vector for all text documents. :param docs: documents sent to the encoder. The docs must have `text`. By default, the input `text` must be a `list` of `str`. :param parameters: dictionary to define the `traversal_paths` and the `batch_size`. For example, `parameters={'traversal_paths': ['r'], 'batch_size': 10}`. """ if docs: document_batches_generator = get_docs_batch_generator( docs, traversal_path=parameters.get( 'traversal_paths', self.default_traversal_paths ), batch_size=parameters.get('batch_size', self.default_batch_size), needs_attr='text', ) for document_batch in document_batches_generator: iterable_of_texts = [d.text for d in document_batch] embedding_matrix = self.tfidf_vectorizer.transform(iterable_of_texts) for doc, doc_embedding in zip(document_batch, embedding_matrix): doc.embedding = doc_embedding
import os import pickle from typing import Optional, Iterable, Tuple from jina import Executor, requests, DocumentArray from jina.excepts import PretrainedModelFileDoesNotExist from jina_commons.batching import get_docs_batch_generator class TFIDFTextEncoder(Executor): """ Encode text into tf-idf sparse embeddings :param path_vectorizer: path of the pre-trained tfidf sklearn vectorizer :param default_traversal_paths: fallback traversal path in case there is not traversal path sent in the request :param default_batch_size: fallback batch size in case there is not batch size sent in the request """ def __init__( self, path_vectorizer: str = 'model/tfidf_vectorizer.pickle', default_batch_size: int = 2048, default_traversal_paths: Tuple[str] = ('r', ), *args, **kwargs, ): super().__init__(*args, **kwargs) self.path_vectorizer = path_vectorizer self.default_batch_size = default_batch_size self.default_traversal_paths = default_traversal_paths if os.path.exists(self.path_vectorizer): self.tfidf_vectorizer = pickle.load(open(self.path_vectorizer, 'rb')) else: raise PretrainedModelFileDoesNotExist( f'{self.path_vectorizer} not found, cannot find a fitted tfidf_vectorizer' ) @requests def encode(self, docs: Optional[DocumentArray], parameters: dict, *args, **kwargs): """ Generate the TF-IDF feature vector and store it in `doc.embedding` for each `doc` in `docs`. :param docs: documents sent to the encoder. The docs must have `text`. By default, the input `text` must be a `list` of `str`. :param parameters: dictionary to define the `traversal_paths` and the `batch_size`. For example, `parameters={'traversal_paths': ['r'], 'batch_size': 10}`. :param kwargs: Additional key value arguments. """ if docs: document_batches_generator = get_docs_batch_generator( docs, traversal_path=parameters.get('traversal_paths', self.default_traversal_paths), batch_size=parameters.get('batch_size', self.default_batch_size), needs_attr='text' ) self._create_embeddings(document_batches_generator) def _create_embeddings(self, document_batches_generator: Iterable): """Update the documents with the embeddings generated by a tfidf""" for document_batch in document_batches_generator: iterable_of_texts = [d.text for d in document_batch] embedding_matrix = self.tfidf_vectorizer.transform(iterable_of_texts) for doc, doc_embedding in zip(document_batch, embedding_matrix): doc.embedding = doc_embedding
import numpy as np from docarray import BaseDoc from docarray.array import DocVec from docarray.array.doc_vec.column_storage import ColumnStorageView from docarray.typing import AnyTensor def test_document_view(): class MyDoc(BaseDoc): tensor: AnyTensor name: str docs = [MyDoc(tensor=np.zeros((10, 10)), name='hello', id=i) for i in range(4)] storage = DocVec[MyDoc](docs)._storage doc = MyDoc.from_view(ColumnStorageView(0, storage)) assert doc.is_view() assert doc.id == '0' assert (doc.tensor == np.zeros(10)).all() assert doc.name == 'hello' storage.columns['id'][0] = '12345' storage.columns['tensor'][0] = np.ones(10) storage.columns['name'][0] = 'byebye' assert doc.id == '12345' assert (doc.tensor == np.ones(10)).all() assert doc.name == 'byebye'
import numpy as np from docarray import BaseDoc from docarray.array import DocArrayStacked from docarray.array.stacked.column_storage import ColumnStorageView from docarray.typing import AnyTensor def test_document_view(): class MyDoc(BaseDoc): tensor: AnyTensor name: str docs = [MyDoc(tensor=np.zeros((10, 10)), name='hello', id=i) for i in range(4)] storage = DocArrayStacked[MyDoc](docs)._storage doc = MyDoc.from_view(ColumnStorageView(0, storage)) assert doc.is_view() assert doc.id == '0' assert (doc.tensor == np.zeros(10)).all() assert doc.name == 'hello' storage.columns['id'][0] = '12345' storage.columns['tensor'][0] = np.ones(10) storage.columns['name'][0] = 'byebye' assert doc.id == '12345' assert (doc.tensor == np.ones(10)).all() assert doc.name == 'byebye'
from cupy import * # noqa: F403 # from cupy import * doesn't overwrite these builtin names from cupy import abs, max, min, round # noqa: F401 # These imports may overwrite names from the import * above. from ._aliases import * # noqa: F403 # See the comment in the numpy __init__.py __import__(__package__ + '.linalg') __import__(__package__ + '.fft') __array_api_version__ = '2024.12'
from cupy import * # noqa: F403 # from cupy import * doesn't overwrite these builtin names from cupy import abs, max, min, round # noqa: F401 # These imports may overwrite names from the import * above. from ._aliases import * # noqa: F403 # See the comment in the numpy __init__.py __import__(__package__ + '.linalg') __import__(__package__ + '.fft') from ..common._helpers import * # noqa: F401,F403 __array_api_version__ = '2024.12'
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, port: int = None, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.port = port self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=__default_host__, port=self.port)) async def run_server(self): await self.server.serve() async def teardown(self): await super().teardown() await self.server.shutdown() async def stop_server(self): self.server.should_exit = True
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, port: int = None, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.port = port self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=__default_host__, port=self.port)) async def run_server(self): await self.server.serve() async def teardown(self): await super().teardown() await self.server.shutdown() async def stop_server(self): self.server.should_exit = True @property def should_exit(self) -> bool: return self.server.should_exit
# CoSENTLoss must be imported before AnglELoss from __future__ import annotations from .CoSENTLoss import CoSENTLoss # isort: skip from .AdaptiveLayerLoss import AdaptiveLayerLoss from .AnglELoss import AnglELoss from .BatchAllTripletLoss import BatchAllTripletLoss from .BatchHardSoftMarginTripletLoss import BatchHardSoftMarginTripletLoss from .BatchHardTripletLoss import ( BatchHardTripletLoss, BatchHardTripletLossDistanceFunction, ) from .BatchSemiHardTripletLoss import BatchSemiHardTripletLoss from .CachedGISTEmbedLoss import CachedGISTEmbedLoss from .CachedMultipleNegativesRankingLoss import CachedMultipleNegativesRankingLoss from .CachedMultipleNegativesSymmetricRankingLoss import ( CachedMultipleNegativesSymmetricRankingLoss, ) from .ContrastiveLoss import ContrastiveLoss, SiameseDistanceMetric from .ContrastiveTensionLoss import ( ContrastiveTensionDataLoader, ContrastiveTensionLoss, ContrastiveTensionLossInBatchNegatives, ) from .CosineSimilarityLoss import CosineSimilarityLoss from .DenoisingAutoEncoderLoss import DenoisingAutoEncoderLoss from .DistillKLDivLoss import DistillKLDivLoss from .GISTEmbedLoss import GISTEmbedLoss from .MarginMSELoss import MarginMSELoss from .Matryoshka2dLoss import Matryoshka2dLoss from .MatryoshkaLoss import MatryoshkaLoss from .MegaBatchMarginLoss import MegaBatchMarginLoss from .MSELoss import MSELoss from .MultipleNegativesRankingLoss import MultipleNegativesRankingLoss from .MultipleNegativesSymmetricRankingLoss import MultipleNegativesSymmetricRankingLoss from .OnlineContrastiveLoss import OnlineContrastiveLoss from .SoftmaxLoss import SoftmaxLoss from .TripletLoss import TripletDistanceMetric, TripletLoss __all__ = [ "AdaptiveLayerLoss", "CosineSimilarityLoss", "SoftmaxLoss", "MultipleNegativesRankingLoss", "MultipleNegativesSymmetricRankingLoss", "TripletLoss", "TripletDistanceMetric", "MarginMSELoss", "MatryoshkaLoss", "Matryoshka2dLoss", "MSELoss", "ContrastiveLoss", "SiameseDistanceMetric", "CachedGISTEmbedLoss", "CachedMultipleNegativesRankingLoss", "CachedMultipleNegativesSymmetricRankingLoss", "ContrastiveTensionLoss", "ContrastiveTensionLossInBatchNegatives", "ContrastiveTensionDataLoader", "CoSENTLoss", "AnglELoss", "OnlineContrastiveLoss", "MegaBatchMarginLoss", "DenoisingAutoEncoderLoss", "GISTEmbedLoss", "BatchHardTripletLoss", "BatchHardTripletLossDistanceFunction", "BatchHardSoftMarginTripletLoss", "BatchSemiHardTripletLoss", "BatchAllTripletLoss", "DistillKLDivLoss", ]
# CoSENTLoss must be imported before AnglELoss from __future__ import annotations from .CoSENTLoss import CoSENTLoss # isort: skip from .AdaptiveLayerLoss import AdaptiveLayerLoss from .AnglELoss import AnglELoss from .BatchAllTripletLoss import BatchAllTripletLoss from .BatchHardSoftMarginTripletLoss import BatchHardSoftMarginTripletLoss from .BatchHardTripletLoss import BatchHardTripletLoss, BatchHardTripletLossDistanceFunction from .BatchSemiHardTripletLoss import BatchSemiHardTripletLoss from .CachedGISTEmbedLoss import CachedGISTEmbedLoss from .CachedMultipleNegativesRankingLoss import CachedMultipleNegativesRankingLoss from .CachedMultipleNegativesSymmetricRankingLoss import CachedMultipleNegativesSymmetricRankingLoss from .ContrastiveLoss import ContrastiveLoss, SiameseDistanceMetric from .ContrastiveTensionLoss import ( ContrastiveTensionDataLoader, ContrastiveTensionLoss, ContrastiveTensionLossInBatchNegatives, ) from .CosineSimilarityLoss import CosineSimilarityLoss from .DenoisingAutoEncoderLoss import DenoisingAutoEncoderLoss from .GISTEmbedLoss import GISTEmbedLoss from .MarginMSELoss import MarginMSELoss from .Matryoshka2dLoss import Matryoshka2dLoss from .MatryoshkaLoss import MatryoshkaLoss from .MegaBatchMarginLoss import MegaBatchMarginLoss from .MSELoss import MSELoss from .MultipleNegativesRankingLoss import MultipleNegativesRankingLoss from .MultipleNegativesSymmetricRankingLoss import MultipleNegativesSymmetricRankingLoss from .OnlineContrastiveLoss import OnlineContrastiveLoss from .SoftmaxLoss import SoftmaxLoss from .TripletLoss import TripletDistanceMetric, TripletLoss __all__ = [ "AdaptiveLayerLoss", "CosineSimilarityLoss", "SoftmaxLoss", "MultipleNegativesRankingLoss", "MultipleNegativesSymmetricRankingLoss", "TripletLoss", "TripletDistanceMetric", "MarginMSELoss", "MatryoshkaLoss", "Matryoshka2dLoss", "MSELoss", "ContrastiveLoss", "SiameseDistanceMetric", "CachedGISTEmbedLoss", "CachedMultipleNegativesRankingLoss", "CachedMultipleNegativesSymmetricRankingLoss", "ContrastiveTensionLoss", "ContrastiveTensionLossInBatchNegatives", "ContrastiveTensionDataLoader", "CoSENTLoss", "AnglELoss", "OnlineContrastiveLoss", "MegaBatchMarginLoss", "DenoisingAutoEncoderLoss", "GISTEmbedLoss", "BatchHardTripletLoss", "BatchHardTripletLossDistanceFunction", "BatchHardSoftMarginTripletLoss", "BatchSemiHardTripletLoss", "BatchAllTripletLoss", ]
from dataclasses import dataclass, asdict, field from typing import ( Union, Dict, Optional, TYPE_CHECKING, Iterable, List, Tuple, ) import numpy as np from docarray.array.storage.base.backend import BaseBackendMixin, TypeMap from docarray.helper import dataclass_from_dict, filter_dict, _safe_cast_int if TYPE_CHECKING: from docarray.typing import DocumentArraySourceType, ArrayType @dataclass class AnnliteConfig: n_dim: int metric: str = 'cosine' serialize_config: Dict = field(default_factory=dict) data_path: Optional[str] = None ef_construction: Optional[int] = None ef_search: Optional[int] = None max_connection: Optional[int] = None columns: Optional[List[Tuple[str, str]]] = None class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" TYPE_MAP = { 'str': TypeMap(type='TEXT', converter=str), 'float': TypeMap(type='float', converter=float), 'int': TypeMap(type='integer', converter=_safe_cast_int), } def _map_embedding(self, embedding: 'ArrayType') -> 'ArrayType': if embedding is None: embedding = np.zeros(self.n_dim, dtype=np.float32) elif isinstance(embedding, list): from docarray.math.ndarray import to_numpy_array embedding = to_numpy_array(embedding) if embedding.ndim > 1: embedding = np.asarray(embedding).squeeze() return embedding def _normalize_columns(self, columns): columns = super()._normalize_columns(columns) for i in range(len(columns)): columns[i] = ( columns[i][0], self._map_type(columns[i][1]), ) return columns def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, config: Optional[Union[AnnliteConfig, Dict]] = None, **kwargs, ): if not config: raise ValueError('Config object must be specified') elif isinstance(config, dict): config = dataclass_from_dict(AnnliteConfig, config) self._persist = bool(config.data_path) if not self._persist: from tempfile import TemporaryDirectory config.data_path = TemporaryDirectory().name self._config = config self._config.columns = self._normalize_columns(self._config.columns) config = asdict(config) self.n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(self.n_dim, lock=False, **filter_dict(config)) from docarray import Document super()._init_storage() if _docs is None: return self.clear() if isinstance(_docs, Iterable): self.extend(_docs) elif isinstance(_docs, Document): self.append(_docs) def __getstate__(self): state = dict(self.__dict__) del state['_annlite'] del state['_offsetmapping'] return state def __setstate__(self, state): self.__dict__ = state config = state['_config'] config = asdict(config) n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(n_dim, lock=False, **filter_dict(config)) def __len__(self): return self._annlite.index_size
from dataclasses import dataclass, asdict, field from typing import ( Union, Dict, Optional, TYPE_CHECKING, Iterable, List, Tuple, ) import numpy as np from ..base.backend import BaseBackendMixin, TypeMap from ....helper import dataclass_from_dict, filter_dict, _safe_cast_int if TYPE_CHECKING: from ....typing import DocumentArraySourceType, ArrayType @dataclass class AnnliteConfig: n_dim: int metric: str = 'cosine' serialize_config: Dict = field(default_factory=dict) data_path: Optional[str] = None ef_construction: Optional[int] = None ef_search: Optional[int] = None max_connection: Optional[int] = None columns: Optional[List[Tuple[str, str]]] = None class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" TYPE_MAP = { 'str': TypeMap(type='TEXT', converter=str), 'float': TypeMap(type='float', converter=float), 'int': TypeMap(type='integer', converter=_safe_cast_int), } def _map_embedding(self, embedding: 'ArrayType') -> 'ArrayType': if embedding is None: embedding = np.zeros(self.n_dim, dtype=np.float32) elif isinstance(embedding, list): from ....math.ndarray import to_numpy_array embedding = to_numpy_array(embedding) if embedding.ndim > 1: embedding = np.asarray(embedding).squeeze() return embedding def _normalize_columns(self, columns): columns = super()._normalize_columns(columns) for i in range(len(columns)): columns[i] = ( columns[i][0], self._map_type(columns[i][1]), ) return columns def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, config: Optional[Union[AnnliteConfig, Dict]] = None, **kwargs, ): if not config: raise ValueError('Config object must be specified') elif isinstance(config, dict): config = dataclass_from_dict(AnnliteConfig, config) self._persist = bool(config.data_path) if not self._persist: from tempfile import TemporaryDirectory config.data_path = TemporaryDirectory().name self._config = config self._config.columns = self._normalize_columns(self._config.columns) config = asdict(config) self.n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(self.n_dim, lock=False, **filter_dict(config)) from .... import Document super()._init_storage() if _docs is None: return self.clear() if isinstance(_docs, Iterable): self.extend(_docs) elif isinstance(_docs, Document): self.append(_docs) def __getstate__(self): state = dict(self.__dict__) del state['_annlite'] del state['_offsetmapping'] return state def __setstate__(self, state): self.__dict__ = state config = state['_config'] config = asdict(config) n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(n_dim, lock=False, **filter_dict(config)) def __len__(self): return self._annlite.index_size
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool as average_pool from keras.src.ops.nn import batch_normalization as batch_normalization from keras.src.ops.nn import binary_crossentropy as binary_crossentropy from keras.src.ops.nn import ( categorical_crossentropy as categorical_crossentropy, ) from keras.src.ops.nn import celu as celu from keras.src.ops.nn import conv as conv from keras.src.ops.nn import conv_transpose as conv_transpose from keras.src.ops.nn import ctc_decode as ctc_decode from keras.src.ops.nn import ctc_loss as ctc_loss from keras.src.ops.nn import depthwise_conv as depthwise_conv from keras.src.ops.nn import dot_product_attention as dot_product_attention from keras.src.ops.nn import elu as elu from keras.src.ops.nn import gelu as gelu from keras.src.ops.nn import glu as glu from keras.src.ops.nn import hard_shrink as hard_shrink from keras.src.ops.nn import hard_sigmoid as hard_sigmoid from keras.src.ops.nn import hard_silu as hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh as hard_tanh from keras.src.ops.nn import leaky_relu as leaky_relu from keras.src.ops.nn import log_sigmoid as log_sigmoid from keras.src.ops.nn import log_softmax as log_softmax from keras.src.ops.nn import max_pool as max_pool from keras.src.ops.nn import moments as moments from keras.src.ops.nn import multi_hot as multi_hot from keras.src.ops.nn import normalize as normalize from keras.src.ops.nn import one_hot as one_hot from keras.src.ops.nn import polar as polar from keras.src.ops.nn import psnr as psnr from keras.src.ops.nn import relu as relu from keras.src.ops.nn import relu6 as relu6 from keras.src.ops.nn import rms_normalization as rms_normalization from keras.src.ops.nn import selu as selu from keras.src.ops.nn import separable_conv as separable_conv from keras.src.ops.nn import sigmoid as sigmoid from keras.src.ops.nn import silu as silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink as soft_shrink from keras.src.ops.nn import softmax as softmax from keras.src.ops.nn import softplus as softplus from keras.src.ops.nn import softsign as softsign from keras.src.ops.nn import ( sparse_categorical_crossentropy as sparse_categorical_crossentropy, ) from keras.src.ops.nn import sparse_plus as sparse_plus from keras.src.ops.nn import sparse_sigmoid as sparse_sigmoid from keras.src.ops.nn import sparsemax as sparsemax from keras.src.ops.nn import squareplus as squareplus from keras.src.ops.nn import tanh_shrink as tanh_shrink from keras.src.ops.nn import threshold as threshold
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import polar from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import rms_normalization from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy from keras.src.ops.nn import sparse_plus from keras.src.ops.nn import sparse_sigmoid from keras.src.ops.nn import sparsemax from keras.src.ops.nn import squareplus from keras.src.ops.nn import tanh_shrink from keras.src.ops.nn import threshold
"""This module is deprecated and will be removed in a future release. Please use LangChainTracer instead. """ from typing import Any def get_headers(*args: Any, **kwargs: Any) -> Any: # noqa: ARG001 """Throw an error because this has been replaced by get_headers.""" msg = ( "get_headers for LangChainTracerV1 is no longer supported. " "Please use LangChainTracer instead." ) raise RuntimeError(msg) def LangChainTracerV1(*args: Any, **kwargs: Any) -> Any: # noqa: N802,ARG001 """Throw an error because this has been replaced by LangChainTracer.""" msg = ( "LangChainTracerV1 is no longer supported. Please use LangChainTracer instead." ) raise RuntimeError(msg)
"""This module is deprecated and will be removed in a future release. Please use LangChainTracer instead. """ from typing import Any def get_headers(*args: Any, **kwargs: Any) -> Any: """Throw an error because this has been replaced by get_headers.""" msg = ( "get_headers for LangChainTracerV1 is no longer supported. " "Please use LangChainTracer instead." ) raise RuntimeError(msg) def LangChainTracerV1(*args: Any, **kwargs: Any) -> Any: # noqa: N802 """Throw an error because this has been replaced by LangChainTracer.""" msg = ( "LangChainTracerV1 is no longer supported. Please use LangChainTracer instead." ) raise RuntimeError(msg)
import os import time import uuid from contextlib import contextmanager from typing import Optional import pytest import requests from huggingface_hub.hf_api import HfApi, RepositoryNotFoundError CI_HUB_USER = "__DUMMY_TRANSFORMERS_USER__" CI_HUB_USER_FULL_NAME = "Dummy User" CI_HUB_USER_TOKEN = "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" CI_HUB_ENDPOINT = "https://hub-ci.huggingface.co" CI_HUB_DATASETS_URL = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" @pytest.fixture def ci_hfh_hf_hub_url(monkeypatch): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE ) @pytest.fixture def ci_hub_config(monkeypatch): monkeypatch.setattr("datasets.config.HF_ENDPOINT", CI_HUB_ENDPOINT) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", CI_HUB_DATASETS_URL) @pytest.fixture def set_ci_hub_access_token(ci_hub_config): old_environ = dict(os.environ) os.environ["HF_TOKEN"] = CI_HUB_USER_TOKEN yield os.environ.clear() os.environ.update(old_environ) @pytest.fixture(scope="session") def hf_api(): return HfApi(endpoint=CI_HUB_ENDPOINT) @pytest.fixture(scope="session") def hf_token(): yield CI_HUB_USER_TOKEN @pytest.fixture def cleanup_repo(hf_api): def _cleanup_repo(repo_id): hf_api.delete_repo(repo_id, token=CI_HUB_USER_TOKEN, repo_type="dataset") return _cleanup_repo @pytest.fixture def temporary_repo(cleanup_repo): @contextmanager def _temporary_repo(repo_id: Optional[str] = None): repo_id = repo_id or f"{CI_HUB_USER}/test-dataset-{uuid.uuid4().hex[:6]}-{int(time.time() * 10e3)}" try: yield repo_id finally: try: cleanup_repo(repo_id) except RepositoryNotFoundError: pass return _temporary_repo @pytest.fixture(scope="session") def hf_private_dataset_repo_txt_data_(hf_api: HfApi, hf_token, text_file_content): repo_name = f"repo_txt_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=text_file_content.encode(), path_in_repo="data/text_data.txt", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_txt_data(hf_private_dataset_repo_txt_data_, ci_hub_config, ci_hfh_hf_hub_url): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_txt_data_(hf_api: HfApi, hf_token, zip_csv_with_dir_path): repo_name = f"repo_zipped_txt_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_csv_with_dir_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_txt_data( hf_private_dataset_repo_zipped_txt_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_img_data_(hf_api: HfApi, hf_token, zip_image_path): repo_name = f"repo_zipped_img_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_image_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_img_data( hf_private_dataset_repo_zipped_img_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_img_data_
import os import time import uuid from contextlib import contextmanager from typing import Optional import pytest import requests from huggingface_hub.hf_api import HfApi, RepositoryNotFoundError CI_HUB_USER = "DSUser" CI_HUB_USER_FULL_NAME = "Dummy Datasets User" CI_HUB_USER_TOKEN = "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" CI_HUB_ENDPOINT = "https://hub-ci.huggingface.co" CI_HUB_DATASETS_URL = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" @pytest.fixture def ci_hfh_hf_hub_url(monkeypatch): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE ) @pytest.fixture def ci_hub_config(monkeypatch): monkeypatch.setattr("datasets.config.HF_ENDPOINT", CI_HUB_ENDPOINT) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", CI_HUB_DATASETS_URL) @pytest.fixture def set_ci_hub_access_token(ci_hub_config): old_environ = dict(os.environ) os.environ["HF_TOKEN"] = CI_HUB_USER_TOKEN yield os.environ.clear() os.environ.update(old_environ) @pytest.fixture(scope="session") def hf_api(): return HfApi(endpoint=CI_HUB_ENDPOINT) @pytest.fixture(scope="session") def hf_token(): yield CI_HUB_USER_TOKEN @pytest.fixture def cleanup_repo(hf_api): def _cleanup_repo(repo_id): hf_api.delete_repo(repo_id, token=CI_HUB_USER_TOKEN, repo_type="dataset") return _cleanup_repo @pytest.fixture def temporary_repo(cleanup_repo): @contextmanager def _temporary_repo(repo_id: Optional[str] = None): repo_id = repo_id or f"{CI_HUB_USER}/test-dataset-{uuid.uuid4().hex[:6]}-{int(time.time() * 10e3)}" try: yield repo_id finally: try: cleanup_repo(repo_id) except RepositoryNotFoundError: pass return _temporary_repo @pytest.fixture(scope="session") def hf_private_dataset_repo_txt_data_(hf_api: HfApi, hf_token, text_file_content): repo_name = f"repo_txt_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=text_file_content.encode(), path_in_repo="data/text_data.txt", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_txt_data(hf_private_dataset_repo_txt_data_, ci_hub_config, ci_hfh_hf_hub_url): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_txt_data_(hf_api: HfApi, hf_token, zip_csv_with_dir_path): repo_name = f"repo_zipped_txt_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_csv_with_dir_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_txt_data( hf_private_dataset_repo_zipped_txt_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_img_data_(hf_api: HfApi, hf_token, zip_image_path): repo_name = f"repo_zipped_img_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_image_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_img_data( hf_private_dataset_repo_zipped_img_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_img_data_
_base_ = './mask-rcnn_r101_fpn_2x_coco.py' model = dict( backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
_base_ = './mask_rcnn_r101_fpn_2x_coco.py' model = dict( backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.vectorstores import ElasticKnnSearch, ElasticVectorSearch # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "ElasticVectorSearch": "langchain_community.vectorstores", "ElasticKnnSearch": "langchain_community.vectorstores", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "ElasticKnnSearch", "ElasticVectorSearch", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.vectorstores import ElasticKnnSearch, ElasticVectorSearch # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "ElasticVectorSearch": "langchain_community.vectorstores", "ElasticKnnSearch": "langchain_community.vectorstores", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "ElasticVectorSearch", "ElasticKnnSearch", ]
from abc import ABC, abstractmethod from langchain_core.runnables.config import run_in_executor from pydantic import BaseModel, Field class SparseVector(BaseModel, extra="forbid"): """ Sparse vector structure """ indices: list[int] = Field(..., description="indices must be unique") values: list[float] = Field( ..., description="values and indices must be the same length" ) class SparseEmbeddings(ABC): """An interface for sparse embedding models to use with Qdrant.""" @abstractmethod def embed_documents(self, texts: list[str]) -> list[SparseVector]: """Embed search docs.""" @abstractmethod def embed_query(self, text: str) -> SparseVector: """Embed query text.""" async def aembed_documents(self, texts: list[str]) -> list[SparseVector]: """Asynchronous Embed search docs.""" return await run_in_executor(None, self.embed_documents, texts) async def aembed_query(self, text: str) -> SparseVector: """Asynchronous Embed query text.""" return await run_in_executor(None, self.embed_query, text)
from abc import ABC, abstractmethod from typing import List from langchain_core.runnables.config import run_in_executor from pydantic import BaseModel, Field class SparseVector(BaseModel, extra="forbid"): """ Sparse vector structure """ indices: List[int] = Field(..., description="indices must be unique") values: List[float] = Field( ..., description="values and indices must be the same length" ) class SparseEmbeddings(ABC): """An interface for sparse embedding models to use with Qdrant.""" @abstractmethod def embed_documents(self, texts: List[str]) -> List[SparseVector]: """Embed search docs.""" @abstractmethod def embed_query(self, text: str) -> SparseVector: """Embed query text.""" async def aembed_documents(self, texts: List[str]) -> List[SparseVector]: """Asynchronous Embed search docs.""" return await run_in_executor(None, self.embed_documents, texts) async def aembed_query(self, text: str) -> SparseVector: """Asynchronous Embed query text.""" return await run_in_executor(None, self.embed_query, text)
_base_ = '../_base_/default_runtime.py' # model settings model = dict( type='YOLOV3', backbone=dict( type='Darknet', depth=53, out_indices=(3, 4, 5), init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://darknet53')), neck=dict( type='YOLOV3Neck', num_scales=3, in_channels=[1024, 512, 256], out_channels=[512, 256, 128]), bbox_head=dict( type='YOLOV3Head', num_classes=80, in_channels=[512, 256, 128], out_channels=[1024, 512, 256], anchor_generator=dict( type='YOLOAnchorGenerator', base_sizes=[[(116, 90), (156, 198), (373, 326)], [(30, 61), (62, 45), (59, 119)], [(10, 13), (16, 30), (33, 23)]], strides=[32, 16, 8]), bbox_coder=dict(type='YOLOBBoxCoder'), featmap_strides=[32, 16, 8], loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0, reduction='sum'), loss_conf=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0, reduction='sum'), loss_xy=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=2.0, reduction='sum'), loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum')), # training and testing settings train_cfg=dict( assigner=dict( type='GridAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0)), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, conf_thr=0.005, nms=dict(type='nms', iou_threshold=0.45), max_per_img=100)) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 2)), dict( type='MinIoURandomCrop', min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=[(320, 320), (608, 608)], keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(608, 608), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=4, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0005) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=2000, # same as burn-in in darknet warmup_ratio=0.1, step=[218, 246]) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=273) evaluation = dict(interval=1, metric=['bbox'])
_base_ = '../_base_/default_runtime.py' # model settings model = dict( type='YOLOV3', backbone=dict( type='Darknet', depth=53, out_indices=(3, 4, 5), init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://darknet53')), neck=dict( type='YOLOV3Neck', num_scales=3, in_channels=[1024, 512, 256], out_channels=[512, 256, 128]), bbox_head=dict( type='YOLOV3Head', num_classes=80, in_channels=[512, 256, 128], out_channels=[1024, 512, 256], anchor_generator=dict( type='YOLOAnchorGenerator', base_sizes=[[(116, 90), (156, 198), (373, 326)], [(30, 61), (62, 45), (59, 119)], [(10, 13), (16, 30), (33, 23)]], strides=[32, 16, 8]), bbox_coder=dict(type='YOLOBBoxCoder'), featmap_strides=[32, 16, 8], loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0, reduction='sum'), loss_conf=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0, reduction='sum'), loss_xy=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=2.0, reduction='sum'), loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum')), # training and testing settings train_cfg=dict( assigner=dict( type='GridAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0)), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, conf_thr=0.005, nms=dict(type='nms', iou_threshold=0.45), max_per_img=100)) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict(type='PhotoMetricDistortion'), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 2)), dict( type='MinIoURandomCrop', min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=[(320, 320), (608, 608)], keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(608, 608), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=4, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0005) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=2000, # same as burn-in in darknet warmup_ratio=0.1, step=[218, 246]) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=273) evaluation = dict(interval=1, metric=['bbox'])
from langchain_core.embeddings import Embeddings from langchain_tests.unit_tests.embeddings import EmbeddingsUnitTests from langchain_openai import AzureOpenAIEmbeddings class TestAzureOpenAIStandard(EmbeddingsUnitTests): @property def embeddings_class(self) -> type[Embeddings]: return AzureOpenAIEmbeddings @property def embedding_model_params(self) -> dict: return {"api_key": "api_key", "azure_endpoint": "https://endpoint.com"} @property def init_from_env_params(self) -> tuple[dict, dict, dict]: return ( { "AZURE_OPENAI_API_KEY": "api_key", "AZURE_OPENAI_ENDPOINT": "https://endpoint.com", "AZURE_OPENAI_AD_TOKEN": "token", "OPENAI_ORG_ID": "org_id", "OPENAI_API_VERSION": "yyyy-mm-dd", "OPENAI_API_TYPE": "type", }, {}, { "openai_api_key": "api_key", "azure_endpoint": "https://endpoint.com", "azure_ad_token": "token", "openai_organization": "org_id", "openai_api_version": "yyyy-mm-dd", "openai_api_type": "type", }, )
from typing import Tuple, Type from langchain_core.embeddings import Embeddings from langchain_tests.unit_tests.embeddings import EmbeddingsUnitTests from langchain_openai import AzureOpenAIEmbeddings class TestAzureOpenAIStandard(EmbeddingsUnitTests): @property def embeddings_class(self) -> Type[Embeddings]: return AzureOpenAIEmbeddings @property def embedding_model_params(self) -> dict: return {"api_key": "api_key", "azure_endpoint": "https://endpoint.com"} @property def init_from_env_params(self) -> Tuple[dict, dict, dict]: return ( { "AZURE_OPENAI_API_KEY": "api_key", "AZURE_OPENAI_ENDPOINT": "https://endpoint.com", "AZURE_OPENAI_AD_TOKEN": "token", "OPENAI_ORG_ID": "org_id", "OPENAI_API_VERSION": "yyyy-mm-dd", "OPENAI_API_TYPE": "type", }, {}, { "openai_api_key": "api_key", "azure_endpoint": "https://endpoint.com", "azure_ad_token": "token", "openai_organization": "org_id", "openai_api_version": "yyyy-mm-dd", "openai_api_type": "type", }, )
"""Argparser module for WorkerRuntime""" from jina import __default_host__, helper from jina.parsers.helper import KVAppendAction, add_arg_group def mixin_worker_runtime_parser(parser): """Mixing in arguments required by :class:`WorkerRuntime` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='WorkerRuntime') from jina import __default_executor__ gp.add_argument( '--uses', type=str, default=__default_executor__, help=''' The config of the executor, it could be one of the followings: * the string literal of an Executor class name * an Executor YAML file (.yml, .yaml, .jaml) * a Jina Hub Executor (must start with `jinahub://` or `jinahub+docker://`) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface ''', ) gp.add_argument( '--uses-with', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `with` configuration in `uses` ''', ) gp.add_argument( '--uses-metas', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `metas` configuration in `uses` ''', ) gp.add_argument( '--uses-requests', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `requests` configuration in `uses` ''', ) gp.add_argument( '--py-modules', type=str, nargs='*', metavar='PATH', help=''' The customized python modules need to be imported before loading the executor Note that the recommended way is to only import a single module - a simple python file, if your executor can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. For more details, please see the `Executor cookbook <https://docs.jina.ai/fundamentals/executor/executor-files/>`__ ''', ) gp.add_argument( '--port-in', type=int, default=helper.random_port(), dest='port', help='The port for input data to bind to, default a random port between [49152, 65535]', ) gp.add_argument( '--host-in', type=str, default=__default_host__, help=f'The host address for binding to, by default it is {__default_host__}', ) gp.add_argument( '--native', action='store_true', default=False, help='If set, only native Executors is allowed, and the Executor is always run inside WorkerRuntime.', ) gp.add_argument( '--output-array-type', type=str, default=None, help=''' The type of array `tensor` and `embedding` will be serialized to. Supports the same types as `docarray.to_protobuf(.., ndarray_type=...)`, which can be found `here <https://docarray.jina.ai/fundamentals/document/serialization/#from-to-protobuf>`. Defaults to retaining whatever type is returned by the Executor. ''', ) gp.add_argument( '--grpc-server-options', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help="Dictionary of kwargs arguments that will be passed to the grpc server as options when starting the server, example : {'grpc.max_send_message_length': -1}", default=None, ) gp.add_argument( '--exit-on-exceptions', type=str, default=[], nargs='*', help='List of exceptions that will cause the Executor to shut down.', )
"""Argparser module for WorkerRuntime""" from jina import __default_host__, helper from jina.parsers.helper import KVAppendAction, add_arg_group def mixin_worker_runtime_parser(parser): """Mixing in arguments required by :class:`WorkerRuntime` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='WorkerRuntime') from jina import __default_executor__ gp.add_argument( '--uses', type=str, default=__default_executor__, help=''' The config of the executor, it could be one of the followings: * the string literal of an Executor class name * an Executor YAML file (.yml, .yaml, .jaml) * a Jina Hub Executor (must start with `jinahub://` or `jinahub+docker://`) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface ''', ) gp.add_argument( '--uses-with', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `with` configuration in `uses` ''', ) gp.add_argument( '--uses-metas', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `metas` configuration in `uses` ''', ) gp.add_argument( '--uses-requests', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `requests` configuration in `uses` ''', ) gp.add_argument( '--py-modules', type=str, nargs='*', metavar='PATH', help=''' The customized python modules need to be imported before loading the executor Note that the recommended way is to only import a single module - a simple python file, if your executor can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. For more details, please see the `Executor cookbook <https://docs.jina.ai/fundamentals/executor/executor-files/>`__ ''', ) gp.add_argument( '--port-in', type=int, default=helper.random_port(), dest='port', help='The port for input data to bind to, default a random port between [49152, 65535]', ) gp.add_argument( '--host-in', type=str, default=__default_host__, help=f'The host address for binding to, by default it is {__default_host__}', ) gp.add_argument( '--native', action='store_true', default=False, help='If set, only native Executors is allowed, and the Executor is always run inside WorkerRuntime.', ) gp.add_argument( '--output-array-type', type=str, default=None, help=''' The type of array `tensor` and `embedding` will be serialized to. Supports the same types as `docarray.to_protobuf(.., ndarray_type=...)`, which can be found `here <https://docarray.jina.ai/fundamentals/document/serialization/#from-to-protobuf>`. Defaults to retaining whatever type is returned by the Executor. ''', ) gp.add_argument( '--grpc-server-options', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help="Dictionary of kwargs arguments that will be passed to the grpc server as options when starting the server, example : {'grpc.max_send_message_length': -1}", default=None, )
"""Google Search tool spec.""" import json import httpx import urllib.parse from typing import Dict, List, Optional, Union from llama_index.core.tools.tool_spec.base import BaseToolSpec QUERY_URL_TMPL = ( "https://www.googleapis.com/customsearch/v1?key={key}&cx={engine}&q={query}" ) class GoogleSearchToolSpec(BaseToolSpec): """Google Search tool spec.""" spec_functions = [("google_search", "agoogle_search")] def __init__(self, key: str, engine: str, num: Optional[int] = None) -> None: """Initialize with parameters.""" self.key = key self.engine = engine self.num = num def _get_url(self, query: str) -> str: url = QUERY_URL_TMPL.format( key=self.key, engine=self.engine, query=urllib.parse.quote_plus(query) ) if self.num is not None: if not 1 <= self.num <= 10: raise ValueError("num should be an integer between 1 and 10, inclusive") url += f"&num={self.num}" return url def _parse_results(self, results: List[Dict]) -> Union[List[Dict], str]: cleaned_results = [] if len(results) == 0: return "No search results available" for result in results: if "snippet" in result: cleaned_results.append( { "title": result["title"], "link": result["link"], "snippet": result["snippet"], } ) return cleaned_results def google_search(self, query: str): """ Make a query to the Google search engine to receive a list of results. Args: query (str): The query to be passed to Google search. num (int, optional): The number of search results to return. Defaults to None. Raises: ValueError: If the 'num' is not an integer between 1 and 10. """ url = self._get_url(query) with httpx.Client() as client: response = client.get(url) results = json.loads(response.text).get("items", []) return self._parse_results(results) async def agoogle_search(self, query: str): """ Make a query to the Google search engine to receive a list of results. Args: query (str): The query to be passed to Google search. num (int, optional): The number of search results to return. Defaults to None. Raises: ValueError: If the 'num' is not an integer between 1 and 10. """ url = self._get_url(query) async with httpx.AsyncClient() as client: response = await client.get(url) results = json.loads(response.text).get("items", []) return self._parse_results(results)
"""Google Search tool spec.""" import json import urllib.parse from typing import Optional import requests from llama_index.core.schema import Document from llama_index.core.tools.tool_spec.base import BaseToolSpec QUERY_URL_TMPL = ( "https://www.googleapis.com/customsearch/v1?key={key}&cx={engine}&q={query}" ) class GoogleSearchToolSpec(BaseToolSpec): """Google Search tool spec.""" spec_functions = ["google_search"] def __init__(self, key: str, engine: str, num: Optional[int] = None) -> None: """Initialize with parameters.""" self.key = key self.engine = engine self.num = num def google_search(self, query: str): """ Make a query to the Google search engine to receive a list of results. Args: query (str): The query to be passed to Google search. num (int, optional): The number of search results to return. Defaults to None. Raises: ValueError: If the 'num' is not an integer between 1 and 10. """ url = QUERY_URL_TMPL.format( key=self.key, engine=self.engine, query=urllib.parse.quote_plus(query) ) if self.num is not None: if not 1 <= self.num <= 10: raise ValueError("num should be an integer between 1 and 10, inclusive") url += f"&num={self.num}" response = requests.get(url) results = json.loads(response.text).get("items", []) documents = [] if len(results) == 0: return "No search results available" for result in results: if "snippet" in result: documents.append( Document( text=result["snippet"], metadata={"title": result["title"], "link": result["link"]}, ) ) return documents
""" Helper module to manage torch vision models """ from typing import Optional import numpy as np import torch import torch.nn as nn import torchvision.models as models from torchvision.models.alexnet import __all__ as all_alexnet_models from torchvision.models.densenet import __all__ as all_densenet_models from torchvision.models.googlenet import __all__ as all_googlenet_models from torchvision.models.mnasnet import __all__ as all_mnasnet_models from torchvision.models.mobilenet import __all__ as all_mobilenet_models from torchvision.models.resnet import __all__ as all_resnet_models from torchvision.models.squeezenet import __all__ as all_squeezenet_models from torchvision.models.vgg import __all__ as all_vgg_models class EmbeddingModelWrapper: """ The ``EmbeddingModelWrapper`` acts as an unified interface to the `torchvision` models. It hides the model specific logic for computing embeddings from the user. :param model_name: Name of the `torchvision` model. Classnames are not allowed, i.e. use `resnet_18` instead of `ResNet`. :param device: Which device the model runs on. Can be 'cpu' or 'cuda' """ def __init__(self, model_name: str, device: Optional[str] = None): if not device: device = 'cuda' if torch.cuda.is_available() else 'cpu' self.device = device self._layer_name = _ModelCatalogue.get_layer_name(model_name) self._model = getattr(models, model_name)(pretrained=True) self._model.to(torch.device(self.device)) self._pooling_layer = nn.AdaptiveAvgPool2d(output_size=(1, 1)) self._pooling_layer.to(torch.device(self.device)) def _pooling_function(self, tensor_in: 'torch.Tensor') -> 'torch.Tensor': return torch.flatten(self._pooling_layer(tensor_in), 1) def get_features(self, content: 'torch.Tensor') -> 'torch.Tensor': feature_map = None def get_activations(model, model_input, output): nonlocal feature_map feature_map = output.detach() layer = getattr(self._model, self._layer_name) handle = layer.register_forward_hook(get_activations) self._model(content) handle.remove() return feature_map def compute_embeddings(self, images: 'np.ndarray') -> 'np.ndarray': tensor = torch.from_numpy(images).to(self.device) features = self.get_features(tensor) features = self._pooling_function(features) features = features.detach().cpu().numpy() return features class _ModelCatalogue: # maps the tuple of available model names to the layer from which we want to # extract the embedding. Removes the first entry because it the model class # not the factory method. all_supported_models_to_layer_mapping = { tuple(all_resnet_models[1:]): 'layer4', tuple(all_alexnet_models[1:]): 'features', tuple(all_vgg_models[1:]): 'features', tuple(all_squeezenet_models[1:]): 'features', tuple(all_densenet_models[1:]): 'features', tuple(all_mnasnet_models[1:]): 'layers', tuple(all_mobilenet_models[1:]): 'features', tuple(all_googlenet_models[1:]): 'inception5b', } @classmethod def is_model_supported(cls, model_name: str): return any([model_name in m for m in cls.all_supported_models_to_layer_mapping]) @classmethod def get_layer_name(cls, model_name: str) -> str: """ Checks if model is supported and returns the lookup on the layer name. :param model_name: Name of the layer """ if not cls.is_model_supported(model_name): raise ValueError( f'Model with name {model_name} is not supported. ' f'Supported models are: {cls.all_supported_models_to_layer_mapping.keys()}' ) for ( model_names, layer_name, ) in cls.all_supported_models_to_layer_mapping.items(): if model_name in model_names: return layer_name
""" Helper module to manage torch vision models """ from typing import Optional import torch import torchvision.models as models import torch.nn as nn import numpy as np from torchvision.models.resnet import __all__ as all_resnet_models from torchvision.models.alexnet import __all__ as all_alexnet_models from torchvision.models.vgg import __all__ as all_vgg_models from torchvision.models.squeezenet import __all__ as all_squeezenet_models from torchvision.models.densenet import __all__ as all_densenet_models from torchvision.models.mnasnet import __all__ as all_mnasnet_models from torchvision.models.mobilenet import __all__ as all_mobilenet_models from torchvision.models.googlenet import __all__ as all_googlenet_models class EmbeddingModelWrapper: """ The ``EmbeddingModelWrapper`` acts as an unified interface to the `torchvision` models. It hides the model specific logic for computing embeddings from the user. :param model_name: Name of the `torchvision` model. Classnames are not allowed, i.e. use `resnet_18` instead of `ResNet`. :param device: Which device the model runs on. Can be 'cpu' or 'cuda' """ def __init__(self, model_name: str, device: Optional[str] = None): if not device: device = 'cuda' if torch.cuda.is_available() else 'cpu' self._layer_name = _ModelCatalogue.get_layer_name(model_name) self._model = getattr(models, model_name)(pretrained=True) self.device = device self._pooling_layer = nn.AdaptiveAvgPool2d(output_size=(1, 1)) self._pooling_layer.to(torch.device(self.device)) def _pooling_function(self, tensor_in: 'torch.Tensor') -> 'torch.Tensor': return torch.flatten(self._pooling_layer(tensor_in), 1) def get_features(self, content: 'torch.Tensor') -> 'torch.Tensor': feature_map = None def get_activations(model, model_input, output): nonlocal feature_map feature_map = output.detach() layer = getattr(self._model, self._layer_name) handle = layer.register_forward_hook(get_activations) self._model(content) handle.remove() return feature_map def compute_embeddings(self, images: 'np.ndarray') -> 'np.ndarray': tensor = torch.from_numpy(images).to(self.device) features = self.get_features(tensor) features = self._pooling_function(features) features = features.detach().numpy() return features class _ModelCatalogue: # maps the tuple of available model names to the layer from which we want to # extract the embedding. Removes the first entry because it the model class # not the factory method. all_supported_models_to_layer_mapping = { tuple(all_resnet_models[1:]): 'layer4', tuple(all_alexnet_models[1:]): 'features', tuple(all_vgg_models[1:]): 'features', tuple(all_squeezenet_models[1:]): 'features', tuple(all_densenet_models[1:]): 'features', tuple(all_mnasnet_models[1:]): 'layers', tuple(all_mobilenet_models[1:]): 'features', tuple(all_googlenet_models[1:]): 'inception5b', } @classmethod def is_model_supported(cls, model_name: str): return any([model_name in m for m in cls.all_supported_models_to_layer_mapping]) @classmethod def get_layer_name(cls, model_name: str) -> str: """ Checks if model is supported and returns the lookup on the layer name. :param model_name: Name of the layer """ if not cls.is_model_supported(model_name): raise ValueError(f'Model with name {model_name} is not supported. ' f'Supported models are: {cls.all_supported_models_to_layer_mapping.keys()}') for model_names, layer_name in cls.all_supported_models_to_layer_mapping.items(): if model_name in model_names: return layer_name
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import numpy as np import pycocotools.mask as mask_util import torch def split_combined_polys(polys, poly_lens, polys_per_mask): """Split the combined 1-D polys into masks. A mask is represented as a list of polys, and a poly is represented as a 1-D array. In dataset, all masks are concatenated into a single 1-D tensor. Here we need to split the tensor into original representations. Args: polys (list): a list (length = image num) of 1-D tensors poly_lens (list): a list (length = image num) of poly length polys_per_mask (list): a list (length = image num) of poly number of each mask Returns: list: a list (length = image num) of list (length = mask num) of \ list (length = poly num) of numpy array. """ mask_polys_list = [] for img_id in range(len(polys)): polys_single = polys[img_id] polys_lens_single = poly_lens[img_id].tolist() polys_per_mask_single = polys_per_mask[img_id].tolist() split_polys = mmcv.slice_list(polys_single, polys_lens_single) mask_polys = mmcv.slice_list(split_polys, polys_per_mask_single) mask_polys_list.append(mask_polys) return mask_polys_list # TODO: move this function to more proper place def encode_mask_results(mask_results): """Encode bitmap mask to RLE code. Args: mask_results (list): bitmap mask results. Returns: list | tuple: RLE encoded mask. """ encoded_mask_results = [] for mask in mask_results: encoded_mask_results.append( mask_util.encode( np.array(mask[:, :, np.newaxis], order='F', dtype='uint8'))[0]) # encoded with RLE return encoded_mask_results def mask2bbox(masks): """Obtain tight bounding boxes of binary masks. Args: masks (Tensor): Binary mask of shape (n, h, w). Returns: Tensor: Bboxe with shape (n, 4) of \ positive region in binary mask. """ N = masks.shape[0] bboxes = masks.new_zeros((N, 4), dtype=torch.float32) x_any = torch.any(masks, dim=1) y_any = torch.any(masks, dim=2) for i in range(N): x = torch.where(x_any[i, :])[0] y = torch.where(y_any[i, :])[0] if len(x) > 0 and len(y) > 0: bboxes[i, :] = bboxes.new_tensor( [x[0], y[0], x[-1] + 1, y[-1] + 1]) return bboxes
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import numpy as np import pycocotools.mask as mask_util import torch def split_combined_polys(polys, poly_lens, polys_per_mask): """Split the combined 1-D polys into masks. A mask is represented as a list of polys, and a poly is represented as a 1-D array. In dataset, all masks are concatenated into a single 1-D tensor. Here we need to split the tensor into original representations. Args: polys (list): a list (length = image num) of 1-D tensors poly_lens (list): a list (length = image num) of poly length polys_per_mask (list): a list (length = image num) of poly number of each mask Returns: list: a list (length = image num) of list (length = mask num) of \ list (length = poly num) of numpy array. """ mask_polys_list = [] for img_id in range(len(polys)): polys_single = polys[img_id] polys_lens_single = poly_lens[img_id].tolist() polys_per_mask_single = polys_per_mask[img_id].tolist() split_polys = mmcv.slice_list(polys_single, polys_lens_single) mask_polys = mmcv.slice_list(split_polys, polys_per_mask_single) mask_polys_list.append(mask_polys) return mask_polys_list # TODO: move this function to more proper place def encode_mask_results(mask_results): """Encode bitmap mask to RLE code. Args: mask_results (list | tuple[list]): bitmap mask results. In mask scoring rcnn, mask_results is a tuple of (segm_results, segm_cls_score). Returns: list | tuple: RLE encoded mask. """ if isinstance(mask_results, tuple): # mask scoring cls_segms, cls_mask_scores = mask_results else: cls_segms = mask_results num_classes = len(cls_segms) encoded_mask_results = [[] for _ in range(num_classes)] for i in range(len(cls_segms)): for cls_segm in cls_segms[i]: encoded_mask_results[i].append( mask_util.encode( np.array( cls_segm[:, :, np.newaxis], order='F', dtype='uint8'))[0]) # encoded with RLE if isinstance(mask_results, tuple): return encoded_mask_results, cls_mask_scores else: return encoded_mask_results def mask2bbox(masks): """Obtain tight bounding boxes of binary masks. Args: masks (Tensor): Binary mask of shape (n, h, w). Returns: Tensor: Bboxe with shape (n, 4) of \ positive region in binary mask. """ N = masks.shape[0] bboxes = masks.new_zeros((N, 4), dtype=torch.float32) x_any = torch.any(masks, dim=1) y_any = torch.any(masks, dim=2) for i in range(N): x = torch.where(x_any[i, :])[0] y = torch.where(y_any[i, :])[0] if len(x) > 0 and len(y) > 0: bboxes[i, :] = bboxes.new_tensor( [x[0], y[0], x[-1] + 1, y[-1] + 1]) return bboxes
from typing import Any, Callable, Dict, Type import orjson from docarray.utils._internal.pydantic import is_pydantic_v2 if not is_pydantic_v2: from pydantic.json import ENCODERS_BY_TYPE else: ENCODERS_BY_TYPE: Dict[Type[Any], Callable[[Any], Any]] = { bytes: lambda o: o.decode(), frozenset: list, set: list, } def _default_orjson(obj): """ default option for orjson dumps. :param obj: :return: return a json compatible object """ from docarray.base_doc import BaseNode if isinstance(obj, BaseNode): return obj._docarray_to_json_compatible() else: for cls_, encoder in ENCODERS_BY_TYPE.items(): if isinstance(obj, cls_): return encoder(obj) return obj def orjson_dumps(v, *, default=None) -> bytes: # dumps to bytes using orjson return orjson.dumps(v, default=_default_orjson, option=orjson.OPT_SERIALIZE_NUMPY) def orjson_dumps_and_decode(v, *, default=None) -> str: # dumps to str using orjson return orjson_dumps(v, default=default).decode()
import orjson from pydantic.json import ENCODERS_BY_TYPE def _default_orjson(obj): """ default option for orjson dumps. :param obj: :return: return a json compatible object """ from docarray.base_doc import BaseNode if isinstance(obj, BaseNode): return obj._docarray_to_json_compatible() else: for cls_, encoder in ENCODERS_BY_TYPE.items(): if isinstance(obj, cls_): return encoder(obj) return obj def orjson_dumps(v, *, default=None) -> bytes: # dumps to bytes using orjson return orjson.dumps(v, default=_default_orjson, option=orjson.OPT_SERIALIZE_NUMPY) def orjson_dumps_and_decode(v, *, default=None) -> str: # dumps to bytes using orjson return orjson_dumps(v, default=default).decode()
import hashlib import io import os import urllib import warnings from typing import List, Optional, Union import torch from tqdm import tqdm from .audio import load_audio, log_mel_spectrogram, pad_or_trim from .decoding import DecodingOptions, DecodingResult, decode, detect_language from .model import Whisper, ModelDimensions from .transcribe import transcribe _MODELS = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", } def _download(url: str, root: str, in_memory: bool) -> Union[bytes, str]: os.makedirs(root, exist_ok=True) expected_sha256 = url.split("/")[-2] download_target = os.path.join(root, os.path.basename(url)) if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError(f"{download_target} exists and is not a regular file") if os.path.isfile(download_target): model_bytes = open(download_target, "rb").read() if hashlib.sha256(model_bytes).hexdigest() == expected_sha256: return model_bytes if in_memory else download_target else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop: while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) model_bytes = open(download_target, "rb").read() if hashlib.sha256(model_bytes).hexdigest() != expected_sha256: raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.") return model_bytes if in_memory else download_target def available_models() -> List[str]: """Returns the names of available models""" return list(_MODELS.keys()) def load_model(name: str, device: Optional[Union[str, torch.device]] = None, download_root: str = None, in_memory: bool = False) -> Whisper: """ Load a Whisper ASR model Parameters ---------- name : str one of the official model names listed by `whisper.available_models()`, or path to a model checkpoint containing the model dimensions and the model state_dict. device : Union[str, torch.device] the PyTorch device to put the model into download_root: str path to download the model files; by default, it uses "~/.cache/whisper" in_memory: bool whether to preload the model weights into host memory Returns ------- model : Whisper The Whisper ASR model instance """ if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" if download_root is None: download_root = os.path.join(os.path.expanduser("~"), ".cache", "whisper") if name in _MODELS: checkpoint_file = _download(_MODELS[name], download_root, in_memory) elif os.path.isfile(name): checkpoint_file = open(name, "rb").read() if in_memory else name else: raise RuntimeError(f"Model {name} not found; available models = {available_models()}") with (io.BytesIO(checkpoint_file) if in_memory else open(checkpoint_file, "rb")) as fp: checkpoint = torch.load(fp, map_location=device) del checkpoint_file dims = ModelDimensions(**checkpoint["dims"]) model = Whisper(dims) model.load_state_dict(checkpoint["model_state_dict"]) return model.to(device)
import hashlib import io import os import urllib import warnings from typing import List, Optional, Union import torch from tqdm import tqdm from .audio import load_audio, log_mel_spectrogram, pad_or_trim from .decoding import DecodingOptions, DecodingResult, decode, detect_language from .model import Whisper, ModelDimensions from .transcribe import transcribe _MODELS = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", } def _download(url: str, root: str) -> bytes: os.makedirs(root, exist_ok=True) filename = os.path.basename(url) expected_sha256 = url.split("/")[-2] download_target = os.path.join(root, filename) if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError(f"{download_target} exists and is not a regular file") if os.path.isfile(download_target): model_bytes = open(download_target, "rb").read() if hashlib.sha256(model_bytes).hexdigest() == expected_sha256: return model_bytes else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop: while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) model_bytes = open(download_target, "rb").read() if hashlib.sha256(model_bytes).hexdigest() != expected_sha256: raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.") return model_bytes def available_models() -> List[str]: """Returns the names of available models""" return list(_MODELS.keys()) def load_model(name: str, device: Optional[Union[str, torch.device]] = None, download_root: str = None) -> Whisper: """ Load a Whisper ASR model Parameters ---------- name : str one of the official model names listed by `whisper.available_models()`, or path to a model checkpoint containing the model dimensions and the model state_dict. device : Union[str, torch.device] the PyTorch device to put the model into download_root: str path to download the model files; by default, it uses "~/.cache/whisper" Returns ------- model : Whisper The Whisper ASR model instance """ if name in _MODELS: model_bytes = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/whisper")) elif os.path.isfile(name): model_bytes = open(name, "rb").read() else: raise RuntimeError(f"Model {name} not found; available models = {available_models()}") with io.BytesIO(model_bytes) as fp: checkpoint = torch.load(fp, map_location="cpu") dims = ModelDimensions(**checkpoint["dims"]) state_dict = checkpoint["model_state_dict"] model = Whisper(dims) model.load_state_dict(state_dict) if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" return model.to(device)
import re from typing import Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain.agents.agent import AgentOutputParser from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS FINAL_ANSWER_ACTION = "Final Answer:" MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE = ( "Invalid Format: Missing 'Action:' after 'Thought:'" ) MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE = ( "Invalid Format: Missing 'Action Input:' after 'Action:'" ) FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE = ( "Parsing LLM output produced both a final answer and a parse-able action:" ) class ReActSingleInputOutputParser(AgentOutputParser): """Parses ReAct-style LLM calls that have a single tool input. Expects output to be in one of two formats. If the output signals that an action should be taken, should be in the below format. This will result in an AgentAction being returned. ``` Thought: agent thought here Action: search Action Input: what is the temperature in SF? ``` If the output signals that a final answer should be given, should be in the below format. This will result in an AgentFinish being returned. ``` Thought: agent thought here Final Answer: The temperature is 100 degrees ``` """ def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: includes_answer = FINAL_ANSWER_ACTION in text regex = ( r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)" ) action_match = re.search(regex, text, re.DOTALL) if action_match: if includes_answer: msg = f"{FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}: {text}" raise OutputParserException(msg) action = action_match.group(1).strip() action_input = action_match.group(2) tool_input = action_input.strip(" ") tool_input = tool_input.strip('"') return AgentAction(action, tool_input, text) if includes_answer: return AgentFinish( {"output": text.split(FINAL_ANSWER_ACTION)[-1].strip()}, text, ) if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL): msg = f"Could not parse LLM output: `{text}`" raise OutputParserException( msg, observation=MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE, llm_output=text, send_to_llm=True, ) if not re.search( r"[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)", text, re.DOTALL, ): msg = f"Could not parse LLM output: `{text}`" raise OutputParserException( msg, observation=MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE, llm_output=text, send_to_llm=True, ) msg = f"Could not parse LLM output: `{text}`" raise OutputParserException(msg) @property def _type(self) -> str: return "react-single-input"
import re from typing import Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain.agents.agent import AgentOutputParser from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS FINAL_ANSWER_ACTION = "Final Answer:" MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE = ( "Invalid Format: Missing 'Action:' after 'Thought:'" ) MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE = ( "Invalid Format: Missing 'Action Input:' after 'Action:'" ) FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE = ( "Parsing LLM output produced both a final answer and a parse-able action:" ) class ReActSingleInputOutputParser(AgentOutputParser): """Parses ReAct-style LLM calls that have a single tool input. Expects output to be in one of two formats. If the output signals that an action should be taken, should be in the below format. This will result in an AgentAction being returned. ``` Thought: agent thought here Action: search Action Input: what is the temperature in SF? ``` If the output signals that a final answer should be given, should be in the below format. This will result in an AgentFinish being returned. ``` Thought: agent thought here Final Answer: The temperature is 100 degrees ``` """ def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: includes_answer = FINAL_ANSWER_ACTION in text regex = ( r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)" ) action_match = re.search(regex, text, re.DOTALL) if action_match: if includes_answer: msg = f"{FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}: {text}" raise OutputParserException(msg) action = action_match.group(1).strip() action_input = action_match.group(2) tool_input = action_input.strip(" ") tool_input = tool_input.strip('"') return AgentAction(action, tool_input, text) if includes_answer: return AgentFinish( {"output": text.split(FINAL_ANSWER_ACTION)[-1].strip()}, text ) if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL): msg = f"Could not parse LLM output: `{text}`" raise OutputParserException( msg, observation=MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE, llm_output=text, send_to_llm=True, ) if not re.search( r"[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)", text, re.DOTALL ): msg = f"Could not parse LLM output: `{text}`" raise OutputParserException( msg, observation=MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE, llm_output=text, send_to_llm=True, ) msg = f"Could not parse LLM output: `{text}`" raise OutputParserException(msg) @property def _type(self) -> str: return "react-single-input"
PREFIX = """Assistant is a large language model trained by OpenAI. Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics. Overall, Assistant is a powerful system that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.""" # noqa: E501 FORMAT_INSTRUCTIONS = """RESPONSE FORMAT INSTRUCTIONS ---------------------------- When responding to me, please output a response in one of two formats: **Option 1:** Use this if you want the human to use a tool. Markdown code snippet formatted in the following schema: ```json {{{{ "action": string, \\\\ The action to take. Must be one of {tool_names} "action_input": string \\\\ The input to the action }}}} ``` **Option #2:** Use this if you want to respond directly to the human. Markdown code snippet formatted in the following schema: ```json {{{{ "action": "Final Answer", "action_input": string \\\\ You should put what you want to return to use here }}}} ```""" # noqa: E501 SUFFIX = """TOOLS ------ Assistant can ask the user to use tools to look up information that may be helpful in answering the users original question. The tools the human can use are: {{tools}} {format_instructions} USER'S INPUT -------------------- Here is the user's input (remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else): {{{{input}}}}""" # noqa: E501 TEMPLATE_TOOL_RESPONSE = """TOOL RESPONSE: --------------------- {observation} USER'S INPUT -------------------- Okay, so what is the response to my last comment? If using information obtained from the tools you must mention it explicitly without mentioning the tool names - I have forgotten all TOOL RESPONSES! Remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else.""" # noqa: E501
# flake8: noqa PREFIX = """Assistant is a large language model trained by OpenAI. Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics. Overall, Assistant is a powerful system that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.""" FORMAT_INSTRUCTIONS = """RESPONSE FORMAT INSTRUCTIONS ---------------------------- When responding to me, please output a response in one of two formats: **Option 1:** Use this if you want the human to use a tool. Markdown code snippet formatted in the following schema: ```json {{{{ "action": string, \\\\ The action to take. Must be one of {tool_names} "action_input": string \\\\ The input to the action }}}} ``` **Option #2:** Use this if you want to respond directly to the human. Markdown code snippet formatted in the following schema: ```json {{{{ "action": "Final Answer", "action_input": string \\\\ You should put what you want to return to use here }}}} ```""" SUFFIX = """TOOLS ------ Assistant can ask the user to use tools to look up information that may be helpful in answering the users original question. The tools the human can use are: {{tools}} {format_instructions} USER'S INPUT -------------------- Here is the user's input (remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else): {{{{input}}}}""" TEMPLATE_TOOL_RESPONSE = """TOOL RESPONSE: --------------------- {observation} USER'S INPUT -------------------- Okay, so what is the response to my last comment? If using information obtained from the tools you must mention it explicitly without mentioning the tool names - I have forgotten all TOOL RESPONSES! Remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else."""
import multiprocessing import pytest from jina import Client from jina.parsers import set_gateway_parser from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.servers import BaseServer from jina.serve.runtimes.worker.request_handling import WorkerRequestHandler from jina.serve.runtimes.gateway.request_handling import GatewayRequestHandler from tests.helper import _generate_pod_args def _create_worker_runtime(port, name='', executor=None): args = _generate_pod_args() args.port = [port] args.name = name if executor: args.uses = executor with AsyncNewLoopRuntime(args, req_handler_cls=WorkerRequestHandler) as runtime: runtime.run_forever() def _create_gateway_runtime(graph_description, pod_addresses, port, protocol='grpc'): with AsyncNewLoopRuntime( set_gateway_parser().parse_args( [ '--graph-description', graph_description, '--deployments-addresses', pod_addresses, '--port', str(port), '--protocol', protocol, ] ), req_handler_cls=GatewayRequestHandler ) as runtime: runtime.run_forever() def _setup(worker_port, port, protocol): graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{worker_port}"]}}' # create a single worker runtime worker_process = multiprocessing.Process( target=_create_worker_runtime, args=(worker_port,) ) worker_process.start() # create a single gateway runtime gateway_process = multiprocessing.Process( target=_create_gateway_runtime, args=(graph_description, pod_addresses, port, protocol), ) gateway_process.start() BaseServer.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{worker_port}', ready_or_shutdown_event=multiprocessing.Event(), ) BaseServer.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) return worker_process, gateway_process @pytest.mark.parametrize('protocol', ['http']) def test_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', port=port, protocol=protocol) dry_run_alive = c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0 @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) async def test_async_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', asyncio=True, port=port, protocol=protocol) dry_run_alive = await c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = await c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0
import multiprocessing import pytest from jina import Client from jina.parsers import set_gateway_parser from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime from tests.helper import _generate_pod_args def _create_worker_runtime(port, name='', executor=None): args = _generate_pod_args() args.port = port args.name = name if executor: args.uses = executor with WorkerRuntime(args) as runtime: runtime.run_forever() def _create_gateway_runtime(graph_description, pod_addresses, port, protocol='grpc'): with GatewayRuntime( set_gateway_parser().parse_args( [ '--graph-description', graph_description, '--deployments-addresses', pod_addresses, '--port', str(port), '--protocol', protocol, ] ) ) as runtime: runtime.run_forever() def _setup(worker_port, port, protocol): graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{worker_port}"]}}' # create a single worker runtime worker_process = multiprocessing.Process( target=_create_worker_runtime, args=(worker_port,) ) worker_process.start() # create a single gateway runtime gateway_process = multiprocessing.Process( target=_create_gateway_runtime, args=(graph_description, pod_addresses, port, protocol), ) gateway_process.start() AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{worker_port}', ready_or_shutdown_event=multiprocessing.Event(), ) AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) return worker_process, gateway_process @pytest.mark.parametrize('protocol', ['http']) def test_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', port=port, protocol=protocol) dry_run_alive = c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0 @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) async def test_async_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', asyncio=True, port=port, protocol=protocol) dry_run_alive = await c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = await c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0
_base_ = './cornernet_hourglass104_8xb6-210e-mstest_coco.py' train_dataloader = dict(batch_size=3) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (3 samples per GPU) auto_scale_lr = dict(base_batch_size=96)
_base_ = './cornernet_hourglass104_mstest_8x6_210e_coco.py' train_dataloader = dict(batch_size=3) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (3 samples per GPU) auto_scale_lr = dict(base_batch_size=96)
import json import re from datetime import datetime from typing import List import requests from tenacity import retry, stop_after_attempt, wait_random_exponential def correct_date(yr, dt): """ Some transcripts have incorrect date, correcting it. Args: yr (int): actual dt (datetime): given date Returns: datetime: corrected date """ dt = datetime.strptime(dt, "%Y-%m-%d %H:%M:%S") if dt.year != yr: dt = dt.replace(year=yr) return dt.strftime("%Y-%m-%d %H:%M:%S") def extract_speakers(cont: str) -> List[str]: """ Extract the list of speakers. Args: cont (str): transcript content Returns: List[str]: list of speakers """ pattern = re.compile(r"\n(.*?):") matches = pattern.findall(cont) return list(set(matches)) @retry(wait=wait_random_exponential(min=1, max=5), stop=stop_after_attempt(2)) def get_earnings_transcript(quarter: str, ticker: str, year: int): """ Get the earnings transcripts. Args: quarter (str) ticker (str) year (int) """ response = requests.get( f"https://discountingcashflows.com/api/transcript/{ticker}/{quarter}/{year}/", auth=("user", "pass"), ) resp_text = json.loads(response.text) speakers_list = extract_speakers(resp_text[0]["content"]) corrected_date = correct_date(resp_text[0]["year"], resp_text[0]["date"]) resp_text[0]["date"] = corrected_date return resp_text[0], speakers_list
import json import re from datetime import datetime from typing import List import requests from tenacity import retry, stop_after_attempt, wait_random_exponential def correct_date(yr, dt): """Some transcripts have incorrect date, correcting it. Args: yr (int): actual dt (datetime): given date Returns: datetime: corrected date """ dt = datetime.strptime(dt, "%Y-%m-%d %H:%M:%S") if dt.year != yr: dt = dt.replace(year=yr) return dt.strftime("%Y-%m-%d %H:%M:%S") def extract_speakers(cont: str) -> List[str]: """Extract the list of speakers. Args: cont (str): transcript content Returns: List[str]: list of speakers """ pattern = re.compile(r"\n(.*?):") matches = pattern.findall(cont) return list(set(matches)) @retry(wait=wait_random_exponential(min=1, max=5), stop=stop_after_attempt(2)) def get_earnings_transcript(quarter: str, ticker: str, year: int): """Get the earnings transcripts. Args: quarter (str) ticker (str) year (int) """ response = requests.get( f"https://discountingcashflows.com/api/transcript/{ticker}/{quarter}/{year}/", auth=("user", "pass"), ) resp_text = json.loads(response.text) speakers_list = extract_speakers(resp_text[0]["content"]) corrected_date = correct_date(resp_text[0]["year"], resp_text[0]["date"]) resp_text[0]["date"] = corrected_date return resp_text[0], speakers_list
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from unittest.mock import MagicMock, patch import pytest import torch import torch.nn as nn from torch.nn.parallel import DataParallel from torch.nn.parallel.distributed import DistributedDataParallel from mmengine.model.wrappers import (MMDataParallel, MMDistributedDataParallel, is_model_wrapper) from mmengine.registry import MODEL_WRAPPERS def mock(*args, **kwargs): pass @patch('torch.distributed._broadcast_coalesced', mock) @patch('torch.distributed.broadcast', mock) @patch('torch.nn.parallel.DistributedDataParallel._ddp_init_helper', mock) def test_is_model_wrapper(): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(2, 2, 1) def forward(self, x): return self.conv(x) # _verify_model_across_ranks is added in torch1.9.0 so we should check # whether _verify_model_across_ranks is the member of torch.distributed # before mocking if hasattr(torch.distributed, '_verify_model_across_ranks'): torch.distributed._verify_model_across_ranks = mock # _verify_model_across_ranks is added in torch1.11.0 so we should check # whether _verify_params_across_processes is the member of # torch.distributed before mocking if hasattr(torch.distributed, '_verify_params_across_processes'): torch.distributed._verify_params_across_processes = mock model = Model() assert not is_model_wrapper(model) mmdp = MMDataParallel(model) assert is_model_wrapper(mmdp) mmddp = MMDistributedDataParallel(model, process_group=MagicMock()) assert is_model_wrapper(mmddp) torch_dp = DataParallel(model) assert is_model_wrapper(torch_dp) torch_ddp = DistributedDataParallel(model, process_group=MagicMock()) assert is_model_wrapper(torch_ddp) # test model wrapper registry @MODEL_WRAPPERS.register_module() class ModelWrapper: def __init__(self, module): self.module = module def forward(self, *args, **kwargs): return self.module(*args, **kwargs) model_wrapper = ModelWrapper(model) assert is_model_wrapper(model_wrapper) class TestMMDataParallel(TestCase): def setUp(self): """Setup the demo image in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x): return self.conv(x) def train_step(self, x): return self.forward(x) def val_step(self, x): return self.forward(x) self.model = Model() def test_train_step(self): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x): return self.conv(x) model = Model() mmdp = MMDataParallel(model) # test without train_step attribute with pytest.raises(AssertionError): mmdp.train_step(torch.zeros([1, 1, 3, 3])) out = self.model.train_step(torch.zeros([1, 1, 3, 3])) assert out.shape == (1, 2, 3, 3) def test_val_step(self): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x): return self.conv(x) model = Model() mmdp = MMDataParallel(model) # test without val_step attribute with pytest.raises(AssertionError): mmdp.val_step(torch.zeros([1, 1, 3, 3])) out = self.model.val_step(torch.zeros([1, 1, 3, 3])) assert out.shape == (1, 2, 3, 3)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from unittest.mock import MagicMock, patch import pytest import torch import torch.nn as nn from torch.nn.parallel import DataParallel from torch.nn.parallel.distributed import DistributedDataParallel from mmengine.model.wrappers import (MMDataParallel, MMDistributedDataParallel, is_model_wrapper) from mmengine.registry import MODEL_WRAPPERS def mock(*args, **kwargs): pass @patch('torch.distributed._broadcast_coalesced', mock) @patch('torch.distributed.broadcast', mock) @patch('torch.nn.parallel.DistributedDataParallel._ddp_init_helper', mock) def test_is_model_wrapper(): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(2, 2, 1) def forward(self, x): return self.conv(x) # _verify_model_across_ranks is added in torch1.9.0 so we should check # whether _verify_model_across_ranks is the member of torch.distributed # before mocking if hasattr(torch.distributed, '_verify_model_across_ranks'): torch.distributed._verify_model_across_ranks = mock model = Model() assert not is_model_wrapper(model) mmdp = MMDataParallel(model) assert is_model_wrapper(mmdp) mmddp = MMDistributedDataParallel(model, process_group=MagicMock()) assert is_model_wrapper(mmddp) torch_dp = DataParallel(model) assert is_model_wrapper(torch_dp) torch_ddp = DistributedDataParallel(model, process_group=MagicMock()) assert is_model_wrapper(torch_ddp) # test model wrapper registry @MODEL_WRAPPERS.register_module() class ModelWrapper: def __init__(self, module): self.module = module def forward(self, *args, **kwargs): return self.module(*args, **kwargs) model_wrapper = ModelWrapper(model) assert is_model_wrapper(model_wrapper) class TestMMDataParallel(TestCase): def setUp(self): """Setup the demo image in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x): return self.conv(x) def train_step(self, x): return self.forward(x) def val_step(self, x): return self.forward(x) self.model = Model() def test_train_step(self): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x): return self.conv(x) model = Model() mmdp = MMDataParallel(model) # test without train_step attribute with pytest.raises(AssertionError): mmdp.train_step(torch.zeros([1, 1, 3, 3])) out = self.model.train_step(torch.zeros([1, 1, 3, 3])) assert out.shape == (1, 2, 3, 3) def test_val_step(self): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x): return self.conv(x) model = Model() mmdp = MMDataParallel(model) # test without val_step attribute with pytest.raises(AssertionError): mmdp.val_step(torch.zeros([1, 1, 3, 3])) out = self.model.val_step(torch.zeros([1, 1, 3, 3])) assert out.shape == (1, 2, 3, 3)
import wave from typing import TYPE_CHECKING, Any, Type, TypeVar, Union import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.audio_ndarray import MAX_INT_16, AudioNdArray from docarray.typing.url.any_url import AnyUrl if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='AudioUrl') AUDIO_FILE_FORMATS = ['wav'] @_register_proto(proto_type_name='audio_url') class AudioUrl(AnyUrl): """ URL to a .wav file. Can be remote (web) URL, or a local file path. """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, Any], field: 'ModelField', config: 'BaseConfig', ) -> T: url = super().validate(value, field, config) # basic url validation has_audio_extension = any(ext in url for ext in AUDIO_FILE_FORMATS) if not has_audio_extension: raise ValueError( f'Audio URL must have one of the following extensions:' f'{AUDIO_FILE_FORMATS}' ) return cls(str(url), scheme=None) def load(self: T, dtype: str = 'float32') -> AudioNdArray: """ Load the data from the url into an AudioNdArray. :param dtype: Data-type of the returned array; default: float32. :return: AudioNdArray representing the audio file content. EXAMPLE USAGE .. code-block:: python from docarray import BaseDocument import numpy as np from docarray.typing import AudioUrl class MyDoc(Document): audio_url: AudioUrl audio_tensor: AudioNdArray doc = MyDoc(audio_url="toydata/hello.wav") doc.audio_tensor = doc.audio_url.load() assert isinstance(doc.audio_tensor, np.ndarray) """ import io file: Union[io.BytesIO, T] if self.startswith('http'): import requests resp = requests.get(self) resp.raise_for_status() file = io.BytesIO() file.write(resp.content) file.seek(0) else: file = self # note wave is Python built-in mod. https://docs.python.org/3/library/wave.html with wave.open(file) as ifile: samples = ifile.getnframes() audio = ifile.readframes(samples) # Convert buffer to float32 using NumPy audio_as_np_int16 = np.frombuffer(audio, dtype=np.int16) audio_as_np_float32 = audio_as_np_int16.astype(dtype=dtype) # Normalise float32 array so that values are between -1.0 and +1.0 audio_norm = audio_as_np_float32 / MAX_INT_16 channels = ifile.getnchannels() if channels == 2: # 1 for mono, 2 for stereo audio_stereo = np.empty((int(len(audio_norm) / channels), channels)) audio_stereo[:, 0] = audio_norm[range(0, len(audio_norm), 2)] audio_stereo[:, 1] = audio_norm[range(1, len(audio_norm), 2)] return parse_obj_as(AudioNdArray, audio_stereo) else: return parse_obj_as(AudioNdArray, audio_norm)
import wave from typing import TYPE_CHECKING, Any, Type, TypeVar, Union import numpy as np from pydantic import parse_obj_as from docarray.typing.tensor.audio.audio_ndarray import MAX_INT_16, AudioNdArray from docarray.typing.url.any_url import AnyUrl if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='AudioUrl') AUDIO_FILE_FORMATS = ['wav'] class AudioUrl(AnyUrl): """ URL to a .wav file. Can be remote (web) URL, or a local file path. """ def _to_node_protobuf(self: T) -> 'NodeProto': """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nested into another Document that needs to be converted into a protobuf :return: the nested item protobuf message """ from docarray.proto import NodeProto return NodeProto(audio_url=str(self)) @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, Any], field: 'ModelField', config: 'BaseConfig', ) -> T: url = super().validate(value, field, config) # basic url validation has_audio_extension = any(ext in url for ext in AUDIO_FILE_FORMATS) if not has_audio_extension: raise ValueError( f'Audio URL must have one of the following extensions:' f'{AUDIO_FILE_FORMATS}' ) return cls(str(url), scheme=None) def load(self: T, dtype: str = 'float32') -> AudioNdArray: """ Load the data from the url into an AudioNdArray. :param dtype: Data-type of the returned array; default: float32. :return: AudioNdArray representing the audio file content. EXAMPLE USAGE .. code-block:: python from docarray import BaseDocument import numpy as np from docarray.typing import AudioUrl class MyDoc(Document): audio_url: AudioUrl audio_tensor: AudioNdArray doc = MyDoc(audio_url="toydata/hello.wav") doc.audio_tensor = doc.audio_url.load() assert isinstance(doc.audio_tensor, np.ndarray) """ import io file: Union[io.BytesIO, T] if self.startswith('http'): import requests resp = requests.get(self) resp.raise_for_status() file = io.BytesIO() file.write(resp.content) file.seek(0) else: file = self # note wave is Python built-in mod. https://docs.python.org/3/library/wave.html with wave.open(file) as ifile: samples = ifile.getnframes() audio = ifile.readframes(samples) # Convert buffer to float32 using NumPy audio_as_np_int16 = np.frombuffer(audio, dtype=np.int16) audio_as_np_float32 = audio_as_np_int16.astype(dtype=dtype) # Normalise float32 array so that values are between -1.0 and +1.0 audio_norm = audio_as_np_float32 / MAX_INT_16 channels = ifile.getnchannels() if channels == 2: # 1 for mono, 2 for stereo audio_stereo = np.empty((int(len(audio_norm) / channels), channels)) audio_stereo[:, 0] = audio_norm[range(0, len(audio_norm), 2)] audio_stereo[:, 1] = audio_norm[range(1, len(audio_norm), 2)] return parse_obj_as(AudioNdArray, audio_stereo) else: return parse_obj_as(AudioNdArray, audio_norm)
import pytest from docarray import BaseDoc, DocList, DocVec from docarray.documents import ImageDoc from docarray.typing import NdArray class MyDoc(BaseDoc): embedding: NdArray text: str image: ImageDoc @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) @pytest.mark.parametrize('array_cls', [DocList, DocVec]) def test_from_to_bytes(protocol, compress, show_progress, array_cls): da = array_cls[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) bytes_da = da.to_bytes( protocol=protocol, compress=compress, show_progress=show_progress ) da2 = array_cls[MyDoc].from_bytes( bytes_da, protocol=protocol, compress=compress, show_progress=show_progress ) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) @pytest.mark.parametrize('array_cls', [DocList, DocVec]) def test_from_to_base64(protocol, compress, show_progress, array_cls): da = array_cls[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) bytes_da = da.to_base64( protocol=protocol, compress=compress, show_progress=show_progress ) da2 = array_cls[MyDoc].from_base64( bytes_da, protocol=protocol, compress=compress, show_progress=show_progress ) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None def test_union_type_error(tmp_path): from typing import Union from docarray.documents import TextDoc class CustomDoc(BaseDoc): ud: Union[TextDoc, ImageDoc] = TextDoc(text='union type') docs = DocList[CustomDoc]([CustomDoc(ud=TextDoc(text='union type'))]) with pytest.raises(ValueError): docs.from_bytes(docs.to_bytes()) class BasisUnion(BaseDoc): ud: Union[int, str] docs_basic = DocList[BasisUnion]([BasisUnion(ud="hello")]) docs_copy = DocList[BasisUnion].from_bytes(docs_basic.to_bytes()) assert docs_copy == docs_basic
import pytest from docarray import BaseDoc, DocList from docarray.documents import ImageDoc from docarray.typing import NdArray class MyDoc(BaseDoc): embedding: NdArray text: str image: ImageDoc @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) def test_from_to_bytes(protocol, compress, show_progress): da = DocList[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) bytes_da = da.to_bytes( protocol=protocol, compress=compress, show_progress=show_progress ) da2 = DocList[MyDoc].from_bytes( bytes_da, protocol=protocol, compress=compress, show_progress=show_progress ) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None @pytest.mark.parametrize( 'protocol', ['pickle-array', 'protobuf-array', 'protobuf', 'pickle'] ) @pytest.mark.parametrize('compress', ['lz4', 'bz2', 'lzma', 'zlib', 'gzip', None]) @pytest.mark.parametrize('show_progress', [False, True]) def test_from_to_base64(protocol, compress, show_progress): da = DocList[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) bytes_da = da.to_base64( protocol=protocol, compress=compress, show_progress=show_progress ) da2 = DocList[MyDoc].from_base64( bytes_da, protocol=protocol, compress=compress, show_progress=show_progress ) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None def test_union_type_error(tmp_path): from typing import Union from docarray.documents import TextDoc class CustomDoc(BaseDoc): ud: Union[TextDoc, ImageDoc] = TextDoc(text='union type') docs = DocList[CustomDoc]([CustomDoc(ud=TextDoc(text='union type'))]) with pytest.raises(ValueError): docs.from_bytes(docs.to_bytes()) class BasisUnion(BaseDoc): ud: Union[int, str] docs_basic = DocList[BasisUnion]([BasisUnion(ud="hello")]) docs_copy = DocList[BasisUnion].from_bytes(docs_basic.to_bytes()) assert docs_copy == docs_basic
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import pytest import requests import weaviate HOST = "http://localhost:8080" cur_dir = os.path.dirname(os.path.abspath(__file__)) weaviate_yml = os.path.abspath(os.path.join(cur_dir, "docker-compose.yml")) @pytest.fixture(scope="session", autouse=True) def start_storage(): os.system(f"docker compose -f {weaviate_yml} up -d --remove-orphans") _wait_for_weaviate() yield os.system(f"docker compose -f {weaviate_yml} down --remove-orphans") def _wait_for_weaviate(): while True: try: response = requests.get(f"{HOST}/v1/.well-known/ready") if response.status_code == 200: return else: time.sleep(0.5) except requests.exceptions.ConnectionError: time.sleep(1) @pytest.fixture def weaviate_client(start_storage): client = weaviate.Client(HOST) client.schema.delete_all() yield client client.schema.delete_all()
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import pytest import requests import weaviate HOST = "http://localhost:8080" cur_dir = os.path.dirname(os.path.abspath(__file__)) weaviate_yml = os.path.abspath(os.path.join(cur_dir, 'docker-compose.yml')) @pytest.fixture(scope='session', autouse=True) def start_storage(): os.system(f"docker-compose -f {weaviate_yml} up -d --remove-orphans") _wait_for_weaviate() yield os.system(f"docker-compose -f {weaviate_yml} down --remove-orphans") def _wait_for_weaviate(): while True: try: response = requests.get(f"{HOST}/v1/.well-known/ready") if response.status_code == 200: return else: time.sleep(0.5) except requests.exceptions.ConnectionError: time.sleep(1) @pytest.fixture def weaviate_client(start_storage): client = weaviate.Client(HOST) client.schema.delete_all() yield client client.schema.delete_all()
from typing import Any, Callable, Optional import torch from .. import transforms from .vision import VisionDataset class FakeData(VisionDataset): """A fake dataset that returns randomly generated images and returns them as PIL images Args: size (int, optional): Size of the dataset. Default: 1000 images image_size(tuple, optional): Size if the returned images. Default: (3, 224, 224) num_classes(int, optional): Number of classes in the dataset. Default: 10 transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. random_offset (int): Offsets the index-based random seed used to generate each image. Default: 0 """ def __init__( self, size: int = 1000, image_size: tuple[int, int, int] = (3, 224, 224), num_classes: int = 10, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, random_offset: int = 0, ) -> None: super().__init__(transform=transform, target_transform=target_transform) self.size = size self.num_classes = num_classes self.image_size = image_size self.random_offset = random_offset def __getitem__(self, index: int) -> tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is class_index of the target class. """ # create random image that is consistent with the index id if index >= len(self): raise IndexError(f"{self.__class__.__name__} index out of range") rng_state = torch.get_rng_state() torch.manual_seed(index + self.random_offset) img = torch.randn(*self.image_size) target = torch.randint(0, self.num_classes, size=(1,), dtype=torch.long)[0] torch.set_rng_state(rng_state) # convert to PIL Image img = transforms.ToPILImage()(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target.item() def __len__(self) -> int: return self.size
from typing import Any, Callable, Optional, Tuple import torch from .. import transforms from .vision import VisionDataset class FakeData(VisionDataset): """A fake dataset that returns randomly generated images and returns them as PIL images Args: size (int, optional): Size of the dataset. Default: 1000 images image_size(tuple, optional): Size if the returned images. Default: (3, 224, 224) num_classes(int, optional): Number of classes in the dataset. Default: 10 transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. random_offset (int): Offsets the index-based random seed used to generate each image. Default: 0 """ def __init__( self, size: int = 1000, image_size: Tuple[int, int, int] = (3, 224, 224), num_classes: int = 10, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, random_offset: int = 0, ) -> None: super().__init__(transform=transform, target_transform=target_transform) self.size = size self.num_classes = num_classes self.image_size = image_size self.random_offset = random_offset def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is class_index of the target class. """ # create random image that is consistent with the index id if index >= len(self): raise IndexError(f"{self.__class__.__name__} index out of range") rng_state = torch.get_rng_state() torch.manual_seed(index + self.random_offset) img = torch.randn(*self.image_size) target = torch.randint(0, self.num_classes, size=(1,), dtype=torch.long)[0] torch.set_rng_state(rng_state) # convert to PIL Image img = transforms.ToPILImage()(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target.item() def __len__(self) -> int: return self.size
from __future__ import annotations from contextlib import nullcontext import pytest import torch import tqdm from torch.optim import Adam from transformers import set_seed from sentence_transformers import InputExample, SentenceTransformer, losses @pytest.mark.parametrize( ["train_samples_mnrl", "train_samples_cmnrl", "same_grad", "scaler", "precision"], [ ( [ InputExample(texts=[q, p, n]) for q, p, n in zip( ["aaa", "bbb", "ccc", "ddd", "eee"], ["aas", "bbs", "ccs", "dds", "ees"], ["xxx", "yyy", "zzz", "kkk", "fff"], ) ], [ InputExample(texts=[q, p, n]) for q, p, n in zip( ["aaa", "bbb", "ccc", "ddd", "eee"], ["aas", "bbs", "ccs", "dds", "ees"], ["xxx", "yyy", "zzz", "kkk", "fff"], ) ], True, 1.0, 1e-6, ), ( [ InputExample(texts=[q, p, n]) for q, p, n in zip( ["adsa", "czx", "dsada"], ["b", "fas", "xcz"], ["c", "yyy", "asdas"], ) ], [ InputExample(texts=[q, p, n]) for q, p, n in zip( ["aaa", "bbb", "ccc", "ddd", "eee"], ["aas", "bbs", "ccs", "dds", "ees"], ["xxx", "yyy", "zzz", "kkk", "fff"], ) ], False, 1.0, 1e-6, ), ( [ InputExample(texts=[q, p, n]) for q, p, n in zip( ["aaa", "bbb", "ccc", "ddd", "eee"], ["aas", "bbs", "ccs", "dds", "ees"], ["xxx", "yyy", "zzz", "kkk", "fff"], ) ], [ InputExample(texts=[q, p, n]) for q, p, n in zip( ["aaa", "bbb", "ccc", "ddd", "eee"], ["aas", "bbs", "ccs", "dds", "ees"], ["xxx", "yyy", "zzz", "kkk", "fff"], ) ], True, 1000.0, 1e-3, ), ], ) def test_cmnrl_same_grad( train_samples_mnrl: list[InputExample], train_samples_cmnrl: list[InputExample], same_grad: bool, scaler: float, precision: float, ): # Given: sbert = SentenceTransformer("distilbert-base-uncased") sbert.to("cpu") optimizer = Adam(sbert.parameters()) # train_samples_mnrl # train_samples_cmnrl # same_grad # scaler # This simulates AMP scenarios # precision # When: # First run with MNRL set_seed(42) optimizer.zero_grad() loss_mnrl = losses.MultipleNegativesRankingLoss(sbert) loss_mnrl_value: torch.Tensor = loss_mnrl.forward(*sbert.smart_batching_collate(train_samples_mnrl)) * scaler loss_mnrl_value.backward() grad_expected = {name: p.grad.clone() for name, p in loss_mnrl.named_parameters() if p.grad is not None} # Then run with this cached version: set_seed(42) optimizer.zero_grad() loss_cmnrl = losses.CachedMultipleNegativesRankingLoss(sbert, mini_batch_size=2) loss_cmnrl_value = loss_cmnrl.forward(*sbert.smart_batching_collate(train_samples_cmnrl)) * scaler loss_cmnrl_value.backward() grad = {name: p.grad.clone() for name, p in loss_cmnrl.named_parameters() if p.grad is not None} # Then: if same_grad: assert pytest.approx(loss_mnrl_value.item()) == loss_cmnrl_value.item() else: assert pytest.approx(loss_mnrl_value.item()) != loss_cmnrl_value.item() nclose = 0 for name in tqdm.tqdm(grad_expected): nclose += torch.allclose(grad[name], grad_expected[name], precision, precision) if same_grad: assert nclose == len(grad_expected) else: assert nclose != len(grad_expected) @pytest.mark.parametrize("use_rand_context", [True, False]) def test_rand_context_working(use_rand_context: bool): # Given: from sentence_transformers.losses.CachedMultipleNegativesRankingLoss import ( RandContext, ) a = torch.Tensor(1) b = torch.Tensor(1) random_state = RandContext(a, b) if use_rand_context else nullcontext() expected = torch.rand(1000) precision = 1e-6 # When: with random_state: # Then: if use_rand_context: assert torch.allclose(torch.rand(1000), expected, precision, precision) else: assert not torch.allclose(torch.rand(1000), expected, precision, precision)
from contextlib import nullcontext from typing import List import pytest import torch import tqdm from torch.optim import Adam from transformers import set_seed from sentence_transformers import InputExample, SentenceTransformer, losses @pytest.mark.parametrize( ["train_samples_mnrl", "train_samples_cmnrl", "same_grad", "scaler", "precision"], [ ( [ InputExample(texts=[q, p, n]) for q, p, n in zip( ["aaa", "bbb", "ccc", "ddd", "eee"], ["aas", "bbs", "ccs", "dds", "ees"], ["xxx", "yyy", "zzz", "kkk", "fff"], ) ], [ InputExample(texts=[q, p, n]) for q, p, n in zip( ["aaa", "bbb", "ccc", "ddd", "eee"], ["aas", "bbs", "ccs", "dds", "ees"], ["xxx", "yyy", "zzz", "kkk", "fff"], ) ], True, 1.0, 1e-6, ), ( [ InputExample(texts=[q, p, n]) for q, p, n in zip( ["adsa", "czx", "dsada"], ["b", "fas", "xcz"], ["c", "yyy", "asdas"], ) ], [ InputExample(texts=[q, p, n]) for q, p, n in zip( ["aaa", "bbb", "ccc", "ddd", "eee"], ["aas", "bbs", "ccs", "dds", "ees"], ["xxx", "yyy", "zzz", "kkk", "fff"], ) ], False, 1.0, 1e-6, ), ( [ InputExample(texts=[q, p, n]) for q, p, n in zip( ["aaa", "bbb", "ccc", "ddd", "eee"], ["aas", "bbs", "ccs", "dds", "ees"], ["xxx", "yyy", "zzz", "kkk", "fff"], ) ], [ InputExample(texts=[q, p, n]) for q, p, n in zip( ["aaa", "bbb", "ccc", "ddd", "eee"], ["aas", "bbs", "ccs", "dds", "ees"], ["xxx", "yyy", "zzz", "kkk", "fff"], ) ], True, 1000.0, 1e-3, ), ], ) def test_cmnrl_same_grad( train_samples_mnrl: List[InputExample], train_samples_cmnrl: List[InputExample], same_grad: bool, scaler: float, precision: float, ): # Given: sbert = SentenceTransformer("distilbert-base-uncased") sbert.to("cpu") optimizer = Adam(sbert.parameters()) # train_samples_mnrl # train_samples_cmnrl # same_grad # scaler # This simulates AMP scenarios # precision # When: # First run with MNRL set_seed(42) optimizer.zero_grad() loss_mnrl = losses.MultipleNegativesRankingLoss(sbert) loss_mnrl_value: torch.Tensor = loss_mnrl.forward(*sbert.smart_batching_collate(train_samples_mnrl)) * scaler loss_mnrl_value.backward() grad_expected = {name: p.grad.clone() for name, p in loss_mnrl.named_parameters() if p.grad is not None} # Then run with this cached version: set_seed(42) optimizer.zero_grad() loss_cmnrl = losses.CachedMultipleNegativesRankingLoss(sbert, mini_batch_size=2) loss_cmnrl_value = loss_cmnrl.forward(*sbert.smart_batching_collate(train_samples_cmnrl)) * scaler loss_cmnrl_value.backward() grad = {name: p.grad.clone() for name, p in loss_cmnrl.named_parameters() if p.grad is not None} # Then: if same_grad: assert pytest.approx(loss_mnrl_value.item()) == loss_cmnrl_value.item() else: assert pytest.approx(loss_mnrl_value.item()) != loss_cmnrl_value.item() nclose = 0 for name in tqdm.tqdm(grad_expected): nclose += torch.allclose(grad[name], grad_expected[name], precision, precision) if same_grad: assert nclose == len(grad_expected) else: assert nclose != len(grad_expected) @pytest.mark.parametrize("use_rand_context", [True, False]) def test_rand_context_working(use_rand_context: bool): # Given: from sentence_transformers.losses.CachedMultipleNegativesRankingLoss import ( RandContext, ) a = torch.Tensor(1) b = torch.Tensor(1) random_state = RandContext(a, b) if use_rand_context else nullcontext() expected = torch.rand(1000) precision = 1e-6 # When: with random_state: # Then: if use_rand_context: assert torch.allclose(torch.rand(1000), expected, precision, precision) else: assert not torch.allclose(torch.rand(1000), expected, precision, precision)
"""Init file.""" from llama_index.tools.zapier.base import ( ACTION_URL_TMPL, ZapierToolSpec, ) __all__ = ["ACTION_URL_TMPL", "ZapierToolSpec"]
"""Init file.""" from llama_index.tools.zapier.base import ( ACTION_URL_TMPL, ZapierToolSpec, ) __all__ = ["ACTION_URL_TMPL", "ZapierToolSpec"]
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.documents import AudioDoc from docarray.typing import AnyEmbedding, AnyTensor, VideoBytes from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: tf = import_library('tensorflow', raise_error=False) torch = import_library('torch', raise_error=False) T = TypeVar('T', bound='VideoDoc') class VideoDoc(BaseDoc): """ Document for handling video. The Video Document can contain: - a [`VideoUrl`][docarray.typing.url.VideoUrl] (`VideoDoc.url`) - an [`AudioDoc`][docarray.documents.AudioDoc] (`VideoDoc.audio`) - a [`VideoTensor`](../../../api_references/typing/tensor/video) (`VideoDoc.tensor`) - an [`AnyTensor`](../../../api_references/typing/tensor/tensor) representing the indices of the video's key frames (`VideoDoc.key_frame_indices`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`VideoDoc.embedding`) - a [`VideoBytes`][docarray.typing.bytes.VideoBytes] object (`VideoDoc.bytes_`) You can use this Document directly: ```python from docarray.documents import VideoDoc # use it directly vid = VideoDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ) vid.tensor, vid.audio.tensor, vid.key_frame_indices = vid.url.load() # model = MyEmbeddingModel() # vid.embedding = model(vid.tensor) ``` You can extend this Document: ```python from typing import Optional from docarray.documents import TextDoc, VideoDoc # extend it class MyVideo(VideoDoc): name: Optional[TextDoc] video = MyVideo( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ) video.name = TextDoc(text='my first video') video.tensor = video.url.load().video # model = MyEmbeddingModel() # video.embedding = model(video.tensor) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import TextDoc, VideoDoc # compose it class MultiModalDoc(BaseDoc): video: VideoDoc text: TextDoc mmdoc = MultiModalDoc( video=VideoDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' ), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.video.tensor = mmdoc.video.url.load().video # or mmdoc.video.bytes_ = mmdoc.video.url.load_bytes() mmdoc.video.tensor = mmdoc.video.bytes_.load().video ``` """ url: Optional[VideoUrl] audio: Optional[AudioDoc] = AudioDoc() tensor: Optional[VideoTensor] key_frame_indices: Optional[AnyTensor] embedding: Optional[AnyEmbedding] bytes_: Optional[VideoBytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch is not None and isinstance(value, torch.Tensor) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) return super().validate(value)
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.documents import AudioDoc from docarray.typing import AnyEmbedding, AnyTensor, VideoBytes from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: tf = import_library('tensorflow', raise_error=False) torch = import_library('torch', raise_error=False) T = TypeVar('T', bound='VideoDoc') class VideoDoc(BaseDoc): """ Document for handling video. The Video Document can contain: - a [`VideoUrl`][docarray.typing.url.VideoUrl] (`VideoDoc.url`) - an [`AudioDoc`][docarray.documents.AudioDoc] (`VideoDoc.audio`) - a [`VideoTensor`](../../../api_references/typing/tensor/video) (`VideoDoc.tensor`) - an [`AnyTensor`](../../../api_references/typing/tensor/tensor) representing the indices of the video's key frames (`VideoDoc.key_frame_indices`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`VideoDoc.embedding`) - a [`VideoBytes`][docarray.typing.bytes.VideoBytes] object (`VideoDoc.bytes_`) You can use this Document directly: ```python from docarray.documents import VideoDoc # use it directly vid = VideoDoc( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) vid.tensor, vid.audio.tensor, vid.key_frame_indices = vid.url.load() # model = MyEmbeddingModel() # vid.embedding = model(vid.tensor) ``` You can extend this Document: ```python from typing import Optional from docarray.documents import TextDoc, VideoDoc # extend it class MyVideo(VideoDoc): name: Optional[TextDoc] video = MyVideo( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video.name = TextDoc(text='my first video') video.tensor = video.url.load().video # model = MyEmbeddingModel() # video.embedding = model(video.tensor) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import TextDoc, VideoDoc # compose it class MultiModalDoc(BaseDoc): video: VideoDoc text: TextDoc mmdoc = MultiModalDoc( video=VideoDoc( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.video.tensor = mmdoc.video.url.load().video # or mmdoc.video.bytes_ = mmdoc.video.url.load_bytes() mmdoc.video.tensor = mmdoc.video.bytes_.load().video ``` """ url: Optional[VideoUrl] audio: Optional[AudioDoc] = AudioDoc() tensor: Optional[VideoTensor] key_frame_indices: Optional[AnyTensor] embedding: Optional[AnyEmbedding] bytes_: Optional[VideoBytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch is not None and isinstance(value, torch.Tensor) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) return super().validate(value)
# coding: utf-8 import pytest import lightgbm as lgb from .utils import SERIALIZERS, pickle_and_unpickle_object def reset_feature_fraction(boosting_round): return 0.6 if boosting_round < 15 else 0.8 @pytest.mark.parametrize('serializer', SERIALIZERS) def test_early_stopping_callback_is_picklable(serializer): rounds = 5 callback = lgb.early_stopping(stopping_rounds=rounds) callback_from_disk = pickle_and_unpickle_object(obj=callback, serializer=serializer) assert callback_from_disk.order == 30 assert callback_from_disk.before_iteration is False assert callback.stopping_rounds == callback_from_disk.stopping_rounds assert callback.stopping_rounds == rounds def test_early_stopping_callback_rejects_invalid_stopping_rounds_with_informative_errors(): with pytest.raises(ValueError, match="stopping_rounds should be an integer and greater than 0. got: 0"): lgb.early_stopping(stopping_rounds=0) with pytest.raises(ValueError, match="stopping_rounds should be an integer and greater than 0. got: -1"): lgb.early_stopping(stopping_rounds=-1) with pytest.raises(ValueError, match="stopping_rounds should be an integer and greater than 0. got: neverrrr"): lgb.early_stopping(stopping_rounds="neverrrr") @pytest.mark.parametrize('serializer', SERIALIZERS) def test_log_evaluation_callback_is_picklable(serializer): periods = 42 callback = lgb.log_evaluation(period=periods) callback_from_disk = pickle_and_unpickle_object(obj=callback, serializer=serializer) assert callback_from_disk.order == 10 assert callback_from_disk.before_iteration is False assert callback.period == callback_from_disk.period assert callback.period == periods @pytest.mark.parametrize('serializer', SERIALIZERS) def test_record_evaluation_callback_is_picklable(serializer): results = {} callback = lgb.record_evaluation(eval_result=results) callback_from_disk = pickle_and_unpickle_object(obj=callback, serializer=serializer) assert callback_from_disk.order == 20 assert callback_from_disk.before_iteration is False assert callback.eval_result == callback_from_disk.eval_result assert callback.eval_result is results @pytest.mark.parametrize('serializer', SERIALIZERS) def test_reset_parameter_callback_is_picklable(serializer): params = { 'bagging_fraction': [0.7] * 5 + [0.6] * 5, 'feature_fraction': reset_feature_fraction } callback = lgb.reset_parameter(**params) callback_from_disk = pickle_and_unpickle_object(obj=callback, serializer=serializer) assert callback_from_disk.order == 10 assert callback_from_disk.before_iteration is True assert callback.kwargs == callback_from_disk.kwargs assert callback.kwargs == params
# coding: utf-8 import pytest import lightgbm as lgb from .utils import SERIALIZERS, pickle_and_unpickle_object def reset_feature_fraction(boosting_round): return 0.6 if boosting_round < 15 else 0.8 @pytest.mark.parametrize('serializer', SERIALIZERS) def test_early_stopping_callback_is_picklable(serializer): rounds = 5 callback = lgb.early_stopping(stopping_rounds=rounds) callback_from_disk = pickle_and_unpickle_object(obj=callback, serializer=serializer) assert callback_from_disk.order == 30 assert callback_from_disk.before_iteration is False assert callback.stopping_rounds == callback_from_disk.stopping_rounds assert callback.stopping_rounds == rounds @pytest.mark.parametrize('serializer', SERIALIZERS) def test_log_evaluation_callback_is_picklable(serializer): periods = 42 callback = lgb.log_evaluation(period=periods) callback_from_disk = pickle_and_unpickle_object(obj=callback, serializer=serializer) assert callback_from_disk.order == 10 assert callback_from_disk.before_iteration is False assert callback.period == callback_from_disk.period assert callback.period == periods @pytest.mark.parametrize('serializer', SERIALIZERS) def test_record_evaluation_callback_is_picklable(serializer): results = {} callback = lgb.record_evaluation(eval_result=results) callback_from_disk = pickle_and_unpickle_object(obj=callback, serializer=serializer) assert callback_from_disk.order == 20 assert callback_from_disk.before_iteration is False assert callback.eval_result == callback_from_disk.eval_result assert callback.eval_result is results @pytest.mark.parametrize('serializer', SERIALIZERS) def test_reset_parameter_callback_is_picklable(serializer): params = { 'bagging_fraction': [0.7] * 5 + [0.6] * 5, 'feature_fraction': reset_feature_fraction } callback = lgb.reset_parameter(**params) callback_from_disk = pickle_and_unpickle_object(obj=callback, serializer=serializer) assert callback_from_disk.order == 10 assert callback_from_disk.before_iteration is True assert callback.kwargs == callback_from_disk.kwargs assert callback.kwargs == params
import numpy as np import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_doc.io.json import orjson_dumps from docarray.typing import NdArray, PointCloud3DUrl from tests import TOYDATA_DIR MESH_FILES = { 'obj': str(TOYDATA_DIR / 'tetrahedron.obj'), 'glb': str(TOYDATA_DIR / 'test.glb'), 'ply': str(TOYDATA_DIR / 'cube.ply'), } REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_format, file_path', [ ('obj', MESH_FILES['obj']), ('glb', MESH_FILES['glb']), ('ply', MESH_FILES['ply']), ('remote-obj', REMOTE_OBJ_FILE), ], ) def test_load(file_format, file_path): n_samples = 100 url = parse_obj_as(PointCloud3DUrl, file_path) tensors = url.load(samples=n_samples) assert isinstance(tensors.points, np.ndarray) assert isinstance(tensors.points, NdArray) assert tensors.points.shape == (n_samples, 3) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_format, file_path', [ ('obj', MESH_FILES['obj']), ('glb', MESH_FILES['glb']), ('ply', MESH_FILES['ply']), ('remote-obj', REMOTE_OBJ_FILE), ], ) def test_load_with_multiple_geometries_true(file_format, file_path): n_samples = 100 url = parse_obj_as(PointCloud3DUrl, file_path) tensors = url.load(samples=n_samples, multiple_geometries=True) assert isinstance(tensors.points, np.ndarray) assert len(tensors.points.shape) == 3 assert tensors.points.shape[1:] == (100, 3) def test_json_schema(): schema_json_of(PointCloud3DUrl) def test_dump_json(): url = parse_obj_as(PointCloud3DUrl, REMOTE_OBJ_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'file_format,path_to_file', [ ('obj', MESH_FILES['obj']), ('glb', MESH_FILES['glb']), ('ply', MESH_FILES['ply']), ('obj', REMOTE_OBJ_FILE), ('illegal', 'illegal'), ('illegal', 'https://www.google.com'), ('illegal', 'my/local/text/file.txt'), ('illegal', 'my/local/text/file.png'), ], ) def test_validation(file_format, path_to_file): if file_format == 'illegal': with pytest.raises(ValueError, match='PointCloud3DUrl'): parse_obj_as(PointCloud3DUrl, path_to_file) else: url = parse_obj_as(PointCloud3DUrl, path_to_file) assert isinstance(url, PointCloud3DUrl) assert isinstance(url, str) @pytest.mark.proto def test_proto_point_cloud_url(): uri = parse_obj_as(PointCloud3DUrl, REMOTE_OBJ_FILE) uri._to_node_protobuf()
import numpy as np import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_document.io.json import orjson_dumps from docarray.typing import NdArray, PointCloud3DUrl from tests import TOYDATA_DIR MESH_FILES = { 'obj': str(TOYDATA_DIR / 'tetrahedron.obj'), 'glb': str(TOYDATA_DIR / 'test.glb'), 'ply': str(TOYDATA_DIR / 'cube.ply'), } REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_format, file_path', [ ('obj', MESH_FILES['obj']), ('glb', MESH_FILES['glb']), ('ply', MESH_FILES['ply']), ('remote-obj', REMOTE_OBJ_FILE), ], ) def test_load(file_format, file_path): n_samples = 100 url = parse_obj_as(PointCloud3DUrl, file_path) tensors = url.load(samples=n_samples) assert isinstance(tensors.points, np.ndarray) assert isinstance(tensors.points, NdArray) assert tensors.points.shape == (n_samples, 3) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_format, file_path', [ ('obj', MESH_FILES['obj']), ('glb', MESH_FILES['glb']), ('ply', MESH_FILES['ply']), ('remote-obj', REMOTE_OBJ_FILE), ], ) def test_load_with_multiple_geometries_true(file_format, file_path): n_samples = 100 url = parse_obj_as(PointCloud3DUrl, file_path) tensors = url.load(samples=n_samples, multiple_geometries=True) assert isinstance(tensors.points, np.ndarray) assert len(tensors.points.shape) == 3 assert tensors.points.shape[1:] == (100, 3) def test_json_schema(): schema_json_of(PointCloud3DUrl) def test_dump_json(): url = parse_obj_as(PointCloud3DUrl, REMOTE_OBJ_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'file_format,path_to_file', [ ('obj', MESH_FILES['obj']), ('glb', MESH_FILES['glb']), ('ply', MESH_FILES['ply']), ('obj', REMOTE_OBJ_FILE), ('illegal', 'illegal'), ('illegal', 'https://www.google.com'), ('illegal', 'my/local/text/file.txt'), ('illegal', 'my/local/text/file.png'), ], ) def test_validation(file_format, path_to_file): if file_format == 'illegal': with pytest.raises(ValueError, match='PointCloud3DUrl'): parse_obj_as(PointCloud3DUrl, path_to_file) else: url = parse_obj_as(PointCloud3DUrl, path_to_file) assert isinstance(url, PointCloud3DUrl) assert isinstance(url, str) @pytest.mark.proto def test_proto_point_cloud_url(): uri = parse_obj_as(PointCloud3DUrl, REMOTE_OBJ_FILE) uri._to_node_protobuf()
_base_ = './reppoints-moment_r50_fpn-gn_head-gn_2x_coco.py' model = dict( backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), style='pytorch', dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
_base_ = './reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py' model = dict( backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), style='pytorch', dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
"""**Tools** are classes that an Agent uses to interact with the world. Each tool has a **description**. Agent uses the description to choose the right tool for the job. **Class hierarchy:** .. code-block:: RunnableSerializable --> BaseTool --> <name>Tool # Examples: AIPluginTool, BaseGraphQLTool <name> # Examples: BraveSearch, HumanInputRun **Main helpers:** .. code-block:: CallbackManagerForToolRun, AsyncCallbackManagerForToolRun """ # noqa: E501 from __future__ import annotations from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from langchain_core.tools.base import ( FILTERED_ARGS, ArgsSchema, BaseTool, BaseToolkit, InjectedToolArg, InjectedToolCallId, SchemaAnnotationError, ToolException, _get_runnable_config_param, create_schema_from_function, ) from langchain_core.tools.convert import ( convert_runnable_to_tool, tool, ) from langchain_core.tools.render import ( ToolsRenderer, render_text_description, render_text_description_and_args, ) from langchain_core.tools.retriever import ( RetrieverInput, create_retriever_tool, ) from langchain_core.tools.simple import Tool from langchain_core.tools.structured import StructuredTool __all__ = ( "ArgsSchema", "BaseTool", "BaseToolkit", "FILTERED_ARGS", "SchemaAnnotationError", "ToolException", "InjectedToolArg", "InjectedToolCallId", "_get_runnable_config_param", "create_schema_from_function", "convert_runnable_to_tool", "tool", "ToolsRenderer", "render_text_description", "render_text_description_and_args", "RetrieverInput", "create_retriever_tool", "Tool", "StructuredTool", ) _dynamic_imports = { "FILTERED_ARGS": "base", "ArgsSchema": "base", "BaseTool": "base", "BaseToolkit": "base", "InjectedToolArg": "base", "InjectedToolCallId": "base", "SchemaAnnotationError": "base", "ToolException": "base", "_get_runnable_config_param": "base", "create_schema_from_function": "base", "convert_runnable_to_tool": "convert", "tool": "convert", "ToolsRenderer": "render", "render_text_description": "render", "render_text_description_and_args": "render", "RetrieverInput": "retriever", "create_retriever_tool": "retriever", "Tool": "simple", "StructuredTool": "structured", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""**Tools** are classes that an Agent uses to interact with the world. Each tool has a **description**. Agent uses the description to choose the right tool for the job. **Class hierarchy:** .. code-block:: RunnableSerializable --> BaseTool --> <name>Tool # Examples: AIPluginTool, BaseGraphQLTool <name> # Examples: BraveSearch, HumanInputRun **Main helpers:** .. code-block:: CallbackManagerForToolRun, AsyncCallbackManagerForToolRun """ # noqa: E501 from __future__ import annotations from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.tools.base import ( FILTERED_ARGS, ArgsSchema, BaseTool, BaseToolkit, InjectedToolArg, InjectedToolCallId, SchemaAnnotationError, ToolException, _get_runnable_config_param, create_schema_from_function, ) from langchain_core.tools.convert import ( convert_runnable_to_tool, tool, ) from langchain_core.tools.render import ( ToolsRenderer, render_text_description, render_text_description_and_args, ) from langchain_core.tools.retriever import ( RetrieverInput, create_retriever_tool, ) from langchain_core.tools.simple import Tool from langchain_core.tools.structured import StructuredTool __all__ = [ "ArgsSchema", "BaseTool", "BaseToolkit", "FILTERED_ARGS", "SchemaAnnotationError", "ToolException", "InjectedToolArg", "InjectedToolCallId", "_get_runnable_config_param", "create_schema_from_function", "convert_runnable_to_tool", "tool", "ToolsRenderer", "render_text_description", "render_text_description_and_args", "RetrieverInput", "create_retriever_tool", "Tool", "StructuredTool", ] _dynamic_imports = { "FILTERED_ARGS": "base", "ArgsSchema": "base", "BaseTool": "base", "BaseToolkit": "base", "InjectedToolArg": "base", "InjectedToolCallId": "base", "SchemaAnnotationError": "base", "ToolException": "base", "_get_runnable_config_param": "base", "create_schema_from_function": "base", "convert_runnable_to_tool": "convert", "tool": "convert", "ToolsRenderer": "render", "render_text_description": "render", "render_text_description_and_args": "render", "RetrieverInput": "retriever", "create_retriever_tool": "retriever", "Tool": "simple", "StructuredTool": "structured", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
from typing import Any, Dict, List, Optional, Sequence, Tuple from llama_index.core.base.llms.types import ChatMessage, MessageRole from llama_index.core.base.llms.generic_utils import get_from_param_or_env DEFAULT_ANYSCALE_API_BASE = "https://api.endpoints.anyscale.com/v1" DEFAULT_ANYSCALE_API_VERSION = "" LLAMA_MODELS = { "meta-llama/Meta-Llama-3-70B-Instruct": 8192, "meta-llama/Meta-Llama-3-8B-Instruct": 8192, "meta-llama/Llama-2-7b-chat-hf": 4096, "meta-llama/Llama-2-13b-chat-hf": 4096, "meta-llama/Llama-2-70b-chat-hf": 4096, "codellama/CodeLlama-34b-Instruct-hf": 16384, "Meta-Llama/Llama-Guard-7b": 4096, } MISTRAL_MODELS = { "mistralai/Mistral-7B-Instruct-v0.1": 16384, "Open-Orca/Mistral-7B-OpenOrca": 8192, "mistralai/Mixtral-8x7B-Instruct-v0.1": 32768, } ZEPHYR_MODELS = { "HuggingFaceH4/zephyr-7b-beta": 16384, } ALL_AVAILABLE_MODELS = { **LLAMA_MODELS, **MISTRAL_MODELS, **ZEPHYR_MODELS, } DISCONTINUED_MODELS: Dict[str, int] = {} def anyscale_modelname_to_contextsize(modelname: str) -> int: """ Calculate the maximum number of tokens possible to generate for a model. Args: modelname: The modelname we want to know the context size for. Returns: The maximum context size Example: .. code-block:: python max_tokens = anyscale_modelname_to_contextsize(model_name) """ # handling finetuned models # TO BE FILLED if modelname in DISCONTINUED_MODELS: raise ValueError( f"Anyscale hosted model {modelname} has been discontinued. " "Please choose another model." ) context_size = ALL_AVAILABLE_MODELS.get(modelname) if context_size is None: raise ValueError( f"Unknown model: {modelname}. Please provide a valid Anyscale model name." "Known models are: " + ", ".join(ALL_AVAILABLE_MODELS.keys()) ) return context_size def _message_to_anyscale_prompt(message: ChatMessage) -> Dict[str, Any]: if message.role == MessageRole.USER: prompt = {"role": "user", "content": message.content} elif message.role == MessageRole.ASSISTANT: prompt = {"role": "assistant", "content": message.content} elif message.role == MessageRole.SYSTEM: prompt = {"role": "system", "content": message.content} elif message.role == MessageRole.FUNCTION: raise ValueError(f"Message role {MessageRole.FUNCTION} is not supported.") else: raise ValueError(f"Unknown message role: {message.role}") return prompt def messages_to_anyscale_prompt(messages: Sequence[ChatMessage]) -> List[Dict]: if len(messages) == 0: raise ValueError("Got empty list of messages.") return [_message_to_anyscale_prompt(message) for message in messages] def resolve_anyscale_credentials( api_key: Optional[str] = None, api_base: Optional[str] = None, api_version: Optional[str] = None, ) -> Tuple[Optional[str], str, str]: """ "Resolve OpenAI credentials. The order of precedence is: 1. param 2. env 3. openai module 4. default """ # resolve from param or env api_key = get_from_param_or_env("api_key", api_key, "ANYSCALE_API_KEY", "") api_base = get_from_param_or_env("api_base", api_base, "ANYSCALE_API_BASE", "") api_version = get_from_param_or_env( "api_version", api_version, "ANYSCALE_API_VERSION", "" ) # resolve from openai module or default final_api_key = api_key or "" final_api_base = api_base or DEFAULT_ANYSCALE_API_BASE final_api_version = api_version or DEFAULT_ANYSCALE_API_VERSION return final_api_key, str(final_api_base), final_api_version
from typing import Any, Dict, List, Optional, Sequence, Tuple from llama_index.core.base.llms.types import ChatMessage, MessageRole from llama_index.core.base.llms.generic_utils import get_from_param_or_env DEFAULT_ANYSCALE_API_BASE = "https://api.endpoints.anyscale.com/v1" DEFAULT_ANYSCALE_API_VERSION = "" LLAMA_MODELS = { "meta-llama/Meta-Llama-3-70B-Instruct": 8192, "meta-llama/Meta-Llama-3-8B-Instruct": 8192, "meta-llama/Llama-2-7b-chat-hf": 4096, "meta-llama/Llama-2-13b-chat-hf": 4096, "meta-llama/Llama-2-70b-chat-hf": 4096, "codellama/CodeLlama-34b-Instruct-hf": 16384, "Meta-Llama/Llama-Guard-7b": 4096, } MISTRAL_MODELS = { "mistralai/Mistral-7B-Instruct-v0.1": 16384, "Open-Orca/Mistral-7B-OpenOrca": 8192, "mistralai/Mixtral-8x7B-Instruct-v0.1": 32768, } ZEPHYR_MODELS = { "HuggingFaceH4/zephyr-7b-beta": 16384, } ALL_AVAILABLE_MODELS = { **LLAMA_MODELS, **MISTRAL_MODELS, **ZEPHYR_MODELS, } DISCONTINUED_MODELS: Dict[str, int] = {} def anyscale_modelname_to_contextsize(modelname: str) -> int: """ Calculate the maximum number of tokens possible to generate for a model. Args: modelname: The modelname we want to know the context size for. Returns: The maximum context size Example: .. code-block:: python max_tokens = anyscale_modelname_to_contextsize(model_name) """ # handling finetuned models # TO BE FILLED if modelname in DISCONTINUED_MODELS: raise ValueError( f"Anyscale hosted model {modelname} has been discontinued. " "Please choose another model." ) context_size = ALL_AVAILABLE_MODELS.get(modelname, None) if context_size is None: raise ValueError( f"Unknown model: {modelname}. Please provide a valid Anyscale model name." "Known models are: " + ", ".join(ALL_AVAILABLE_MODELS.keys()) ) return context_size def _message_to_anyscale_prompt(message: ChatMessage) -> Dict[str, Any]: if message.role == MessageRole.USER: prompt = {"role": "user", "content": message.content} elif message.role == MessageRole.ASSISTANT: prompt = {"role": "assistant", "content": message.content} elif message.role == MessageRole.SYSTEM: prompt = {"role": "system", "content": message.content} elif message.role == MessageRole.FUNCTION: raise ValueError(f"Message role {MessageRole.FUNCTION} is not supported.") else: raise ValueError(f"Unknown message role: {message.role}") return prompt def messages_to_anyscale_prompt(messages: Sequence[ChatMessage]) -> List[Dict]: if len(messages) == 0: raise ValueError("Got empty list of messages.") return [_message_to_anyscale_prompt(message) for message in messages] def resolve_anyscale_credentials( api_key: Optional[str] = None, api_base: Optional[str] = None, api_version: Optional[str] = None, ) -> Tuple[Optional[str], str, str]: """ "Resolve OpenAI credentials. The order of precedence is: 1. param 2. env 3. openai module 4. default """ # resolve from param or env api_key = get_from_param_or_env("api_key", api_key, "ANYSCALE_API_KEY", "") api_base = get_from_param_or_env("api_base", api_base, "ANYSCALE_API_BASE", "") api_version = get_from_param_or_env( "api_version", api_version, "ANYSCALE_API_VERSION", "" ) # resolve from openai module or default final_api_key = api_key or "" final_api_base = api_base or DEFAULT_ANYSCALE_API_BASE final_api_version = api_version or DEFAULT_ANYSCALE_API_VERSION return final_api_key, str(final_api_base), final_api_version
# Copyright (c) OpenMMLab. All rights reserved. from .manager import ManagerMeta, ManagerMixin from .misc import (check_prerequisites, concat_list, deprecated_api_warning, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .package_utils import (call_command, check_install_package, get_installed_path, is_installed) from .path import (check_file_exist, fopen, is_abs, is_filepath, mkdir_or_exist, scandir, symlink) from .progressbar import (ProgressBar, track_iter_progress, track_parallel_progress, track_progress) from .timer import Timer, TimerError, check_time from .version_utils import digit_version, get_git_hash __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_installed', 'call_command', 'get_installed_path', 'check_install_package', 'is_abs', 'is_method_overridden', 'has_method', 'digit_version', 'get_git_hash', 'ManagerMeta', 'ManagerMixin', 'Timer', 'check_time', 'TimerError', 'ProgressBar', 'track_iter_progress', 'track_parallel_progress', 'track_progress' ]
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .hub import load_url from .manager import ManagerMeta, ManagerMixin from .misc import (check_prerequisites, concat_list, deprecated_api_warning, has_batch_norm, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, mmcv_full_available, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .package_utils import (call_command, check_install_package, get_installed_path, is_installed) from .parrots_wrapper import TORCH_VERSION from .path import (check_file_exist, fopen, is_abs, is_filepath, mkdir_or_exist, scandir, symlink) from .progressbar import (ProgressBar, track_iter_progress, track_parallel_progress, track_progress) from .setup_env import set_multi_processing from .sync_bn import revert_sync_batchnorm from .timer import Timer, TimerError, check_time from .torch_ops import torch_meshgrid from .trace import is_jit_tracing from .version_utils import digit_version, get_git_hash # TODO: creates intractable circular import issues # from .time_counter import TimeCounter __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_method_overridden', 'has_method', 'mmcv_full_available', 'digit_version', 'get_git_hash', 'TORCH_VERSION', 'load_url', 'ManagerMeta', 'ManagerMixin', 'set_multi_processing', 'has_batch_norm', 'is_abs', 'is_installed', 'call_command', 'get_installed_path', 'check_install_package', 'is_abs', 'revert_sync_batchnorm', 'collect_env', 'Timer', 'check_time', 'TimerError', 'ProgressBar', 'track_iter_progress', 'track_parallel_progress', 'track_progress', 'torch_meshgrid', 'is_jit_tracing' ]
# Copyright (c) OpenMMLab. All rights reserved. import torch from torch.distributed.rpc import is_available from mmengine.dist import is_main_process from mmengine.utils import digit_version from mmengine.utils.dl_utils import TORCH_VERSION try: from torch.distributed.optim import \ ZeroRedundancyOptimizer as _ZeroRedundancyOptimizer except ImportError: _ZeroRedundancyOptimizer = object from .builder import OPTIMIZERS @OPTIMIZERS.register_module() class ZeroRedundancyOptimizer(_ZeroRedundancyOptimizer): """A wrapper class of :class:`ZeroRedundancyOptimizer` that gets a optimizer type as string. This class wraps an arbitrary :class:`torch.optim.Optimizer` and shards its states across ranks in the group as described by ZeRO_. The local optimizer instance in each rank is only responsible for updating approximately ``1 / world_size`` parameters and hence only needs to keep ``1 / world_size`` optimizer states. After parameters are updated locally, each rank will broadcast its parameters to all other peers to keep all model replicas in the same state. ``ZeroRedundancyOptimizer`` can be used in conjunction with :class:`torch.nn.parallel.DistributedDataParallel` to reduce per-rank peak memory consumption. ``ZeroRedundancyOptimizer`` uses a sorted-greedy algorithm to pack a number of parameters at each rank. Each parameter belongs to a single rank and is not divided among ranks. The partition is arbitrary and might not match the the parameter registration or usage order. Warnings: ``ZeroRedundancyOptimizer`` requires PyTorch >= 1.8. Warnings: ``ZeroRedundancyOptimizer`` requires PyTorch >= 1.12 to enable param groups. Args: params (``Iterable``): an ``Iterable`` of :class:`torch.Tensor` s or :class:`dict` s giving all parameters, which will be sharded across ranks. optimizer_type (str): the string of the local optimizer class. .. _ZeRO: https://arxiv.org/abs/1910.02054 """ def __init__(self, params, optimizer_type: str, **kwargs): assert digit_version(TORCH_VERSION) >= digit_version('1.8.0'), ( '`torch.distributed.optim.ZeroReundancyOptimizer` is only ' 'available when pytorch version >= 1.8.') assert is_available(), 'torch.distributed.rpc is not available.' # Avoid the generator becoming empty after the following check params = list(params) assert ( all(isinstance(p, torch.Tensor) for p in params) or digit_version(TORCH_VERSION) >= digit_version('1.12.0')), ( 'PyTorch ZeroRedundancyOptimizer started to support param ' 'groups since 1.12.0. Please update your pytorch version to ' 'enable this feature, or disable param groups by deleting ' '`paramwise_cfg` filed in config file.') optimizer_class = getattr(torch.optim, optimizer_type) # TODO: Register a DDP communication hook for `overlap_with_ddp=True`. # Currently only `overlap_with_ddp=False` is supported. For more # details, please refer to the pytorch's official documentation. super().__init__(params, optimizer_class, **kwargs) def state_dict(self): """Consolidate `state_dict`s from ranks to save the `state_dict`.""" self.consolidate_state_dict() state_dict = super().state_dict() if is_main_process() else dict() return state_dict
# Copyright (c) OpenMMLab. All rights reserved. import torch from torch.distributed.rpc import is_available from mmengine.dist import is_main_process from mmengine.utils import digit_version from mmengine.utils.dl_utils import TORCH_VERSION try: from torch.distributed.optim import \ ZeroRedundancyOptimizer as _ZeroRedundancyOptimizer except ImportError: _ZeroRedundancyOptimizer = object from .builder import OPTIMIZERS @OPTIMIZERS.register_module() class ZeroRedundancyOptimizer(_ZeroRedundancyOptimizer): """A wrapper class of :class:`ZeroRedundancyOptimizer` that gets a optimizer type as string. This class wraps an arbitrary :class:`torch.optim.Optimizer` and shards its states across ranks in the group as described by ZeRO_. The local optimizer instance in each rank is only responsible for updating approximately ``1 / world_size`` parameters and hence only needs to keep ``1 / world_size`` optimizer states. After parameters are updated locally, each rank will broadcast its parameters to all other peers to keep all model replicas in the same state. ``ZeroRedundancyOptimizer`` can be used in conjunction with :class:`torch.nn.parallel.DistributedDataParallel` to reduce per-rank peak memory consumption. ``ZeroRedundancyOptimizer`` uses a sorted-greedy algorithm to pack a number of parameters at each rank. Each parameter belongs to a single rank and is not divided among ranks. The partition is arbitrary and might not match the the parameter registration or usage order. Warnings: ``ZeroRedundancyOptimizer`` requires PyTorch >= 1.8. Args: params (``Iterable``): an ``Iterable`` of :class:`torch.Tensor` s or :class:`dict` s giving all parameters, which will be sharded across ranks. optimizer_type (str): the string of the local optimizer class. .. _ZeRO: https://arxiv.org/abs/1910.02054 """ def __init__(self, params, optimizer_type: str, **kwargs): assert digit_version(TORCH_VERSION) >= digit_version('1.8.0'), ( '`torch.distributed.optim.ZeroReundancyOptimizer` is only ' 'available when pytorch version >= 1.8.') assert is_available(), 'torch.distributed.rpc is not available.' optimizer_class = getattr(torch.optim, optimizer_type) # TODO: Register a DDP communication hook for `overlap_with_ddp=True`. # Currently only `overlap_with_ddp=False` is supported. For more # details, please refer to the pytorch's official documentation. super().__init__(params, optimizer_class, **kwargs) def state_dict(self): """Consolidate `state_dict`s from ranks to save the `state_dict`.""" self.consolidate_state_dict() state_dict = super().state_dict() if is_main_process() else dict() return state_dict
import pytest @pytest.mark.parametrize( "model,expected", [ ("librispeech", ["the", "captain", "shook", "his", "head"]), ("librispeech-3-gram", ["the", "captain", "shook", "his", "head"]), ], ) def test_decoder_from_pretrained(model, expected, emissions): from torchaudio.prototype.ctc_decoder import ctc_decoder, download_pretrained_files pretrained_files = download_pretrained_files(model) decoder = ctc_decoder( lexicon=pretrained_files.lexicon, tokens=pretrained_files.tokens, lm=pretrained_files.lm, ) result = decoder(emissions) assert result[0][0].words == expected
import pytest @pytest.mark.parametrize( "model,expected", [ ("librispeech", ["the", "captain", "shook", "his", "head"]), ("librispeech-3-gram", ["the", "captain", "shook", "his", "head"]), ], ) def test_decoder_from_pretrained(model, expected, emissions): from torchaudio.prototype.ctc_decoder import lexicon_decoder, download_pretrained_files pretrained_files = download_pretrained_files(model) decoder = lexicon_decoder( lexicon=pretrained_files.lexicon, tokens=pretrained_files.tokens, lm=pretrained_files.lm, ) result = decoder(emissions) assert result[0][0].words == expected
"""Pathway reader.""" import json from typing import List, Optional import requests from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document # Copied from https://github.com/pathwaycom/pathway/blob/main/python/pathway/xpacks/llm/vector_store.py # to remove dependency on Pathway library when only the client is used. class _VectorStoreClient: def __init__( self, host: Optional[str] = None, port: Optional[int] = None, url: Optional[str] = None, ): """ A client you can use to query :py:class:`VectorStoreServer`. Please provide either the `url`, or `host` and `port`. Args: - host: host on which `:py:class:`VectorStoreServer` listens - port: port on which `:py:class:`VectorStoreServer` listens - url: url at which `:py:class:`VectorStoreServer` listens """ err = "Either (`host` and `port`) or `url` must be provided, but not both." if url is not None: if host or port: raise ValueError(err) self.url = url else: if host is None: raise ValueError(err) port = port or 80 self.url = f"http://{host}:{port}" def query( self, query: str, k: int = 3, metadata_filter: Optional[str] = None ) -> List[dict]: """ Perform a query to the vector store and fetch results. Args: - query: - k: number of documents to be returned - metadata_filter: optional string representing the metadata filtering query in the JMESPath format. The search will happen only for documents satisfying this filtering. """ data = {"query": query, "k": k} if metadata_filter is not None: data["metadata_filter"] = metadata_filter url = self.url + "/v1/retrieve" response = requests.post( url, data=json.dumps(data), headers={"Content-Type": "application/json"}, timeout=3, ) return response.json() # Make an alias __call__ = query def get_vectorstore_statistics(self) -> dict: """Fetch basic statistics about the vector store.""" url = self.url + "/v1/statistics" response = requests.post( url, json={}, headers={"Content-Type": "application/json"}, ) return response.json() def get_input_files( self, metadata_filter: Optional[str] = None, filepath_globpattern: Optional[str] = None, ) -> list: """ Fetch information on documents in the vector store. Args: metadata_filter: optional string representing the metadata filtering query in the JMESPath format. The search will happen only for documents satisfying this filtering. filepath_globpattern: optional glob pattern specifying which documents will be searched for this query. """ url = self.url + "/v1/inputs" response = requests.post( url, json={ "metadata_filter": metadata_filter, "filepath_globpattern": filepath_globpattern, }, headers={"Content-Type": "application/json"}, ) return response.json() class PathwayReader(BaseReader): """ Pathway reader. Retrieve documents from Pathway data indexing pipeline. Args: host (str): The URI where Pathway is currently hosted. port (str | int): The port number on which Pathway is listening. See Also: llamaindex.retriever.pathway.PathwayRetriever and, llamaindex.retriever.pathway.PathwayVectorServer """ def __init__( self, host: Optional[str] = None, port: Optional[int] = None, url: Optional[str] = None, ): """Initializing the Pathway reader client.""" self.client = _VectorStoreClient(host, port, url) def load_data( self, query_text: str, k: Optional[int] = 4, metadata_filter: Optional[str] = None, ) -> List[Document]: """ Load data from Pathway. Args: query_text (str): The text to get the closest neighbors of. k (int): Number of results to return. metadata_filter (str): Filter to be applied. Returns: List[Document]: A list of documents. """ results = self.client(query_text, k, metadata_filter) documents = [] for return_elem in results: document = Document( text=return_elem["text"], extra_info=return_elem["metadata"], ) documents.append(document) return documents
"""Pathway reader.""" import json from typing import List, Optional import requests from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document # Copied from https://github.com/pathwaycom/pathway/blob/main/python/pathway/xpacks/llm/vector_store.py # to remove dependency on Pathway library when only the client is used. class _VectorStoreClient: def __init__( self, host: Optional[str] = None, port: Optional[int] = None, url: Optional[str] = None, ): """ A client you can use to query :py:class:`VectorStoreServer`. Please provide either the `url`, or `host` and `port`. Args: - host: host on which `:py:class:`VectorStoreServer` listens - port: port on which `:py:class:`VectorStoreServer` listens - url: url at which `:py:class:`VectorStoreServer` listens """ err = "Either (`host` and `port`) or `url` must be provided, but not both." if url is not None: if host or port: raise ValueError(err) self.url = url else: if host is None: raise ValueError(err) port = port or 80 self.url = f"http://{host}:{port}" def query( self, query: str, k: int = 3, metadata_filter: Optional[str] = None ) -> List[dict]: """ Perform a query to the vector store and fetch results. Args: - query: - k: number of documents to be returned - metadata_filter: optional string representing the metadata filtering query in the JMESPath format. The search will happen only for documents satisfying this filtering. """ data = {"query": query, "k": k} if metadata_filter is not None: data["metadata_filter"] = metadata_filter url = self.url + "/v1/retrieve" response = requests.post( url, data=json.dumps(data), headers={"Content-Type": "application/json"}, timeout=3, ) return response.json() # Make an alias __call__ = query def get_vectorstore_statistics(self) -> dict: """Fetch basic statistics about the vector store.""" url = self.url + "/v1/statistics" response = requests.post( url, json={}, headers={"Content-Type": "application/json"}, ) return response.json() def get_input_files( self, metadata_filter: Optional[str] = None, filepath_globpattern: Optional[str] = None, ) -> list: """ Fetch information on documents in the vector store. Args: metadata_filter: optional string representing the metadata filtering query in the JMESPath format. The search will happen only for documents satisfying this filtering. filepath_globpattern: optional glob pattern specifying which documents will be searched for this query. """ url = self.url + "/v1/inputs" response = requests.post( url, json={ "metadata_filter": metadata_filter, "filepath_globpattern": filepath_globpattern, }, headers={"Content-Type": "application/json"}, ) return response.json() class PathwayReader(BaseReader): """Pathway reader. Retrieve documents from Pathway data indexing pipeline. Args: host (str): The URI where Pathway is currently hosted. port (str | int): The port number on which Pathway is listening. See Also: llamaindex.retriever.pathway.PathwayRetriever and, llamaindex.retriever.pathway.PathwayVectorServer """ def __init__( self, host: Optional[str] = None, port: Optional[int] = None, url: Optional[str] = None, ): """Initializing the Pathway reader client.""" self.client = _VectorStoreClient(host, port, url) def load_data( self, query_text: str, k: Optional[int] = 4, metadata_filter: Optional[str] = None, ) -> List[Document]: """Load data from Pathway. Args: query_text (str): The text to get the closest neighbors of. k (int): Number of results to return. metadata_filter (str): Filter to be applied. Returns: List[Document]: A list of documents. """ results = self.client(query_text, k, metadata_filter) documents = [] for return_elem in results: document = Document( text=return_elem["text"], extra_info=return_elem["metadata"], ) documents.append(document) return documents
"""Tool for the Dataherald Hosted API""" from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel, Field from langchain_community.utilities.dataherald import DataheraldAPIWrapper class DataheraldTextToSQLInput(BaseModel): prompt: str = Field( description="Natural language query to be translated to a SQL query." ) class DataheraldTextToSQL(BaseTool): """Tool that queries using the Dataherald SDK.""" name: str = "dataherald" description: str = ( "A wrapper around Dataherald. " "Text to SQL. " "Input should be a prompt and an existing db_connection_id" ) api_wrapper: DataheraldAPIWrapper args_schema: Type[BaseModel] = DataheraldTextToSQLInput def _run( self, prompt: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Dataherald tool.""" return self.api_wrapper.run(prompt)
"""Tool for the Dataherald Hosted API""" from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel, Field from langchain_community.utilities.dataherald import DataheraldAPIWrapper class DataheraldTextToSQLInput(BaseModel): prompt: str = Field( description="Natural language query to be translated to a SQL query." ) class DataheraldTextToSQL(BaseTool): # type: ignore[override, override] """Tool that queries using the Dataherald SDK.""" name: str = "dataherald" description: str = ( "A wrapper around Dataherald. " "Text to SQL. " "Input should be a prompt and an existing db_connection_id" ) api_wrapper: DataheraldAPIWrapper args_schema: Type[BaseModel] = DataheraldTextToSQLInput def _run( self, prompt: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Dataherald tool.""" return self.api_wrapper.run(prompt)
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional, utils # usort: skip from ._transform import Transform # usort: skip from ._presets import StereoMatching # usort: skip from ._augment import RandomCutmix, RandomErasing, RandomMixup, SimpleCopyPaste from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, Grayscale, RandomAdjustSharpness, RandomAutocontrast, RandomEqualize, RandomGrayscale, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, FixedSizeCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat, ConvertDtype, ConvertImageDtype from ._misc import ( GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, PermuteDimensions, RemoveSmallBoundingBoxes, ToDtype, TransposeDimensions, ) from ._temporal import UniformTemporalSubsample from ._type_conversion import LabelToOneHot, PILToTensor, ToImagePIL, ToImageTensor, ToPILImage from ._deprecated import ToTensor # usort: skip
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional, utils # usort: skip from ._transform import Transform # usort: skip from ._presets import StereoMatching # usort: skip from ._augment import RandomCutmix, RandomErasing, RandomMixup, SimpleCopyPaste from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, RandomAdjustSharpness, RandomAutocontrast, RandomEqualize, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, FixedSizeCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat, ConvertDtype, ConvertImageDtype from ._misc import ( GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, PermuteDimensions, RemoveSmallBoundingBoxes, ToDtype, TransposeDimensions, ) from ._temporal import UniformTemporalSubsample from ._type_conversion import LabelToOneHot, PILToTensor, ToImagePIL, ToImageTensor, ToPILImage from ._deprecated import Grayscale, RandomGrayscale, ToTensor # usort: skip
import datetime import uuid from unittest.mock import MagicMock, patch from langsmith.schemas import Example from langchain_core.document_loaders import LangSmithLoader from langchain_core.documents import Document def test_init() -> None: LangSmithLoader(api_key="secret") EXAMPLES = [ Example( inputs={"first": {"second": "foo"}}, outputs={"res": "a"}, dataset_id=uuid.uuid4(), id=uuid.uuid4(), created_at=datetime.datetime.now(datetime.timezone.utc), ), Example( inputs={"first": {"second": "bar"}}, outputs={"res": "b"}, dataset_id=uuid.uuid4(), id=uuid.uuid4(), created_at=datetime.datetime.now(datetime.timezone.utc), ), Example( inputs={"first": {"second": "baz"}}, outputs={"res": "c"}, dataset_id=uuid.uuid4(), id=uuid.uuid4(), created_at=datetime.datetime.now(datetime.timezone.utc), ), ] @patch("langsmith.Client.list_examples", MagicMock(return_value=iter(EXAMPLES))) def test_lazy_load() -> None: loader = LangSmithLoader( api_key="dummy", dataset_id="mock", content_key="first.second", format_content=(lambda x: x.upper()), ) expected = [] for example in EXAMPLES: metadata = { k: v if not v or isinstance(v, dict) else str(v) for k, v in example.dict().items() } expected.append( Document(example.inputs["first"]["second"].upper(), metadata=metadata) if example.inputs else None ) actual = list(loader.lazy_load()) assert expected == actual
import datetime import uuid from unittest.mock import MagicMock, patch from langsmith.schemas import Example from langchain_core.document_loaders import LangSmithLoader from langchain_core.documents import Document def test_init() -> None: LangSmithLoader(api_key="secret") EXAMPLES = [ Example( inputs={"first": {"second": "foo"}}, outputs={"res": "a"}, dataset_id=uuid.uuid4(), id=uuid.uuid4(), created_at=datetime.datetime.now(datetime.timezone.utc), ), Example( inputs={"first": {"second": "bar"}}, outputs={"res": "b"}, dataset_id=uuid.uuid4(), id=uuid.uuid4(), created_at=datetime.datetime.now(datetime.timezone.utc), ), Example( inputs={"first": {"second": "baz"}}, outputs={"res": "c"}, dataset_id=uuid.uuid4(), id=uuid.uuid4(), created_at=datetime.datetime.now(datetime.timezone.utc), ), ] @patch("langsmith.Client.list_examples", MagicMock(return_value=iter(EXAMPLES))) def test_lazy_load() -> None: loader = LangSmithLoader( api_key="dummy", dataset_id="mock", content_key="first.second", format_content=(lambda x: x.upper()), ) expected = [] for example in EXAMPLES: metadata = { k: v if not v or isinstance(v, dict) else str(v) for k, v in example.dict().items() } expected.append( Document(example.inputs["first"]["second"].upper(), metadata=metadata) ) actual = list(loader.lazy_load()) assert expected == actual
import pytest from llama_index.core.node_parser.text.semantic_double_merging_splitter import ( SemanticDoubleMergingSplitterNodeParser, LanguageConfig, ) from llama_index.core.schema import Document doc = Document( text="Warsaw: Warsaw, the capital city of Poland, is a bustling metropolis located on the banks of the Vistula River. " "It is known for its rich history, vibrant culture, and resilient spirit. Warsaw's skyline is characterized by a mix of historic architecture and modern skyscrapers. " "The Old Town, with its cobblestone streets and colorful buildings, is a UNESCO World Heritage Site.\n\n" "Football: Football, also known as soccer, is a popular sport played by millions of people worldwide. " "It is a team sport that involves two teams of eleven players each. The objective of the game is to score goals by kicking the ball into the opposing team's goal. " "Football matches are typically played on a rectangular field called a pitch, with goals at each end. " "The game is governed by a set of rules known as the Laws of the Game. Football is known for its passionate fanbase and intense rivalries between clubs and countries. " "The FIFA World Cup is the most prestigious international football tournament.\n\n" "Mathematics: Mathematics is a fundamental discipline that deals with the study of numbers, quantities, and shapes. " "Its branches include algebra, calculus, geometry, and statistics." ) doc_same = Document( text="Krakow is one of the oldest and largest cities in Poland, located in the southern part of the country on the Vistula River. " * 20 ) try: splitter = SemanticDoubleMergingSplitterNodeParser( initial_threshold=0.7, appending_threshold=0.8, merging_threshold=0.7, max_chunk_size=1000, ) splitter.language_config.load_model() spacy_available = True except Exception: spacy_available = False @pytest.mark.skipif(not spacy_available, reason="Spacy model not available") def test_number_of_returned_nodes() -> None: nodes = splitter.get_nodes_from_documents([doc]) assert len(nodes) == 2 @pytest.mark.skipif(not spacy_available, reason="Spacy model not available") def test_creating_initial_chunks() -> None: text = doc.text sentences = splitter.sentence_splitter(text) initial_chunks = splitter._create_initial_chunks(sentences) assert len(initial_chunks) == 4 @pytest.mark.skipif(not spacy_available, reason="Spacy model not available") def test_config_models() -> None: with pytest.raises(ValueError): LanguageConfig(language="polish") with pytest.raises(ValueError): LanguageConfig(language="polish", spacy_model="en_core_web_md") with pytest.raises(ValueError): LanguageConfig(language="french", spacy_model="en_core_web_md") with pytest.raises(ValueError): LanguageConfig(language="empty", spacy_model="empty") LanguageConfig(language="english", spacy_model="en_core_web_md") @pytest.mark.skipif(not spacy_available, reason="Spacy model not available") def test_chunk_size_1() -> None: splitter.max_chunk_size = 0 nodes = splitter.get_nodes_from_documents([doc]) # length of each sentence assert len(nodes) == 13 assert len(nodes[0].get_content()) == 111 assert len(nodes[1].get_content()) == 72 assert len(nodes[2].get_content()) == 91 assert len(nodes[3].get_content()) == 99 assert len(nodes[4].get_content()) == 100 assert len(nodes[5].get_content()) == 66 assert len(nodes[6].get_content()) == 94 assert len(nodes[7].get_content()) == 100 assert len(nodes[8].get_content()) == 69 assert len(nodes[9].get_content()) == 95 assert len(nodes[10].get_content()) == 77 assert len(nodes[11].get_content()) == 114 assert len(nodes[12].get_content()) == 65 @pytest.mark.skipif(not spacy_available, reason="Spacy model not available") def test_chunk_size_2() -> None: splitter.max_chunk_size = 200 nodes = splitter.get_nodes_from_documents([doc]) for node in nodes: assert len(node.get_content()) < 200 @pytest.mark.skipif(not spacy_available, reason="Spacy model not available") def test_chunk_size_3() -> None: splitter.max_chunk_size = 500 nodes = splitter.get_nodes_from_documents([doc_same]) for node in nodes: assert len(node.get_content()) < 500
import pytest from llama_index.core.node_parser.text.semantic_double_merging_splitter import ( SemanticDoubleMergingSplitterNodeParser, LanguageConfig, ) from llama_index.core.schema import Document doc = Document( text="Warsaw: Warsaw, the capital city of Poland, is a bustling metropolis located on the banks of the Vistula River. " "It is known for its rich history, vibrant culture, and resilient spirit. Warsaw's skyline is characterized by a mix of historic architecture and modern skyscrapers. " "The Old Town, with its cobblestone streets and colorful buildings, is a UNESCO World Heritage Site.\n\n" "Football: Football, also known as soccer, is a popular sport played by millions of people worldwide. " "It is a team sport that involves two teams of eleven players each. The objective of the game is to score goals by kicking the ball into the opposing team's goal. " "Football matches are typically played on a rectangular field called a pitch, with goals at each end. " "The game is governed by a set of rules known as the Laws of the Game. Football is known for its passionate fanbase and intense rivalries between clubs and countries. " "The FIFA World Cup is the most prestigious international football tournament.\n\n" "Mathematics: Mathematics is a fundamental discipline that deals with the study of numbers, quantities, and shapes. " "Its branches include algebra, calculus, geometry, and statistics." ) doc_same = Document( text="Krakow is one of the oldest and largest cities in Poland, located in the southern part of the country on the Vistula River. " * 20 ) try: splitter = SemanticDoubleMergingSplitterNodeParser( initial_threshold=0.7, appending_threshold=0.8, merging_threshold=0.7, max_chunk_size=1000, ) splitter.language_config.load_model() spacy_available = True except Exception: spacy_available = False @pytest.mark.skipif(not spacy_available, reason="Spacy model not available") def test_number_of_returned_nodes() -> None: nodes = splitter.get_nodes_from_documents([doc]) assert len(nodes) == 4 @pytest.mark.skipif(not spacy_available, reason="Spacy model not available") def test_creating_initial_chunks() -> None: text = doc.text sentences = splitter.sentence_splitter(text) initial_chunks = splitter._create_initial_chunks(sentences) assert len(initial_chunks) == 9 @pytest.mark.skipif(not spacy_available, reason="Spacy model not available") def test_config_models() -> None: with pytest.raises(ValueError): LanguageConfig(language="polish") with pytest.raises(ValueError): LanguageConfig(language="polish", spacy_model="en_core_web_md") with pytest.raises(ValueError): LanguageConfig(language="french", spacy_model="en_core_web_md") with pytest.raises(ValueError): LanguageConfig(language="empty", spacy_model="empty") LanguageConfig(language="english", spacy_model="en_core_web_md") @pytest.mark.skipif(not spacy_available, reason="Spacy model not available") def test_chunk_size_1() -> None: splitter.max_chunk_size = 0 nodes = splitter.get_nodes_from_documents([doc]) # length of each sentence assert len(nodes) == 13 assert len(nodes[0].get_content()) == 111 assert len(nodes[1].get_content()) == 72 assert len(nodes[2].get_content()) == 91 assert len(nodes[3].get_content()) == 99 assert len(nodes[4].get_content()) == 100 assert len(nodes[5].get_content()) == 66 assert len(nodes[6].get_content()) == 94 assert len(nodes[7].get_content()) == 100 assert len(nodes[8].get_content()) == 69 assert len(nodes[9].get_content()) == 95 assert len(nodes[10].get_content()) == 77 assert len(nodes[11].get_content()) == 114 assert len(nodes[12].get_content()) == 65 @pytest.mark.skipif(not spacy_available, reason="Spacy model not available") def test_chunk_size_2() -> None: splitter.max_chunk_size = 200 nodes = splitter.get_nodes_from_documents([doc]) for node in nodes: assert len(node.get_content()) < 200 @pytest.mark.skipif(not spacy_available, reason="Spacy model not available") def test_chunk_size_3() -> None: splitter.max_chunk_size = 500 nodes = splitter.get_nodes_from_documents([doc_same]) for node in nodes: assert len(node.get_content()) < 500
from keras.src.api_export import keras_export from keras.src.optimizers import adam from keras.src.optimizers import optimizer @keras_export(["keras.optimizers.AdamW"]) class AdamW(adam.Adam): """Optimizer that implements the AdamW algorithm. AdamW optimization is a stochastic gradient descent method that is based on adaptive estimation of first-order and second-order moments with an added method to decay weights per the techniques discussed in the paper, 'Decoupled Weight Decay Regularization' by [Loshchilov, Hutter et al., 2019](https://arxiv.org/abs/1711.05101). According to [Kingma et al., 2014](http://arxiv.org/abs/1412.6980), the underlying Adam method is "*computationally efficient, has little memory requirement, invariant to diagonal rescaling of gradients, and is well suited for problems that are large in terms of data/parameters*". Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.001`. beta_1: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 1st moment estimates. Defaults to `0.9`. beta_2: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 2nd moment estimates. Defaults to `0.999`. epsilon: A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to 1e-7. amsgrad: Boolean. Whether to apply AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and beyond". Defaults to `False`. {{base_optimizer_keyword_args}} References: - [Loshchilov et al., 2019](https://arxiv.org/abs/1711.05101) - [Kingma et al., 2014](http://arxiv.org/abs/1412.6980) for `adam` - [Reddi et al., 2018]( https://openreview.net/pdf?id=ryQu7f-RZ) for `amsgrad`. """ def __init__( self, learning_rate=0.001, weight_decay=0.004, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=False, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, loss_scale_factor=None, gradient_accumulation_steps=None, name="adamw", **kwargs, ): super().__init__( learning_rate=learning_rate, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, amsgrad=amsgrad, name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, loss_scale_factor=loss_scale_factor, gradient_accumulation_steps=gradient_accumulation_steps, **kwargs, ) if self.weight_decay is None: raise ValueError( "Argument `weight_decay` must be a float. Received: " "weight_decay=None" ) AdamW.__doc__ = AdamW.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
from keras.src.api_export import keras_export from keras.src.optimizers import adam from keras.src.optimizers import optimizer @keras_export(["keras.optimizers.AdamW"]) class AdamW(adam.Adam): """Optimizer that implements the AdamW algorithm. AdamW optimization is a stochastic gradient descent method that is based on adaptive estimation of first-order and second-order moments with an added method to decay weights per the techniques discussed in the paper, 'Decoupled Weight Decay Regularization' by [Loshchilov, Hutter et al., 2019](https://arxiv.org/abs/1711.05101). According to [Kingma et al., 2014](http://arxiv.org/abs/1412.6980), the underying Adam method is "*computationally efficient, has little memory requirement, invariant to diagonal rescaling of gradients, and is well suited for problems that are large in terms of data/parameters*". Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.001`. beta_1: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 1st moment estimates. Defaults to `0.9`. beta_2: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 2nd moment estimates. Defaults to `0.999`. epsilon: A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to 1e-7. amsgrad: Boolean. Whether to apply AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and beyond". Defaults to `False`. {{base_optimizer_keyword_args}} References: - [Loshchilov et al., 2019](https://arxiv.org/abs/1711.05101) - [Kingma et al., 2014](http://arxiv.org/abs/1412.6980) for `adam` - [Reddi et al., 2018]( https://openreview.net/pdf?id=ryQu7f-RZ) for `amsgrad`. """ def __init__( self, learning_rate=0.001, weight_decay=0.004, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=False, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, loss_scale_factor=None, gradient_accumulation_steps=None, name="adamw", **kwargs, ): super().__init__( learning_rate=learning_rate, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, amsgrad=amsgrad, name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, loss_scale_factor=loss_scale_factor, gradient_accumulation_steps=gradient_accumulation_steps, **kwargs, ) if self.weight_decay is None: raise ValueError( "Argument `weight_decay` must be a float. Received: " "weight_decay=None" ) AdamW.__doc__ = AdamW.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
_base_ = 'grounding_dino_swin-t_pretrain_obj365.py' o365v1_od_dataset = dict( type='ODVGDataset', data_root='data/objects365v1/', ann_file='o365v1_train_odvg.json', label_map_file='o365v1_label_map.json', data_prefix=dict(img='train/'), filter_cfg=dict(filter_empty_gt=False), pipeline=_base_.train_pipeline, return_classes=True, backend_args=None, ) flickr30k_dataset = dict( type='ODVGDataset', data_root='data/flickr30k_entities/', ann_file='final_flickr_separateGT_train_vg.json', label_map_file=None, data_prefix=dict(img='flickr30k_images/'), filter_cfg=dict(filter_empty_gt=False), pipeline=_base_.train_pipeline, return_classes=True, backend_args=None) gqa_dataset = dict( type='ODVGDataset', data_root='data/gqa/', ann_file='final_mixed_train_no_coco_vg.json', label_map_file=None, data_prefix=dict(img='images/'), filter_cfg=dict(filter_empty_gt=False), pipeline=_base_.train_pipeline, return_classes=True, backend_args=None) v3d_train_pipeline = [ dict(type='LoadImageFromFile', backend_args=_base_.backend_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[ [ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', # The radio of all image in train dataset < 7 # follow the original implement scales=[(400, 4200), (500, 4200), (600, 4200)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ] ]), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict( type='RandomSamplingNegPos', tokenizer_name=_base_.lang_model_name, num_sample_negative=85, # change this label_map_file='data/V3Det/annotations/v3det_2023_v1_label_map.json', max_tokens=256), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction', 'text', 'custom_entities', 'tokens_positive', 'dataset_mode')) ] v3det_dataset = dict( type='ODVGDataset', data_root='data/V3Det/', ann_file='annotations/v3det_2023_v1_train_od.json', label_map_file='annotations/v3det_2023_v1_label_map.json', data_prefix=dict(img=''), filter_cfg=dict(filter_empty_gt=False), need_text=False, # change this pipeline=v3d_train_pipeline, return_classes=True, backend_args=None) grit_dataset = dict( type='ODVGDataset', data_root='grit_processed/', ann_file='grit20m_vg.json', label_map_file=None, data_prefix=dict(img=''), filter_cfg=dict(filter_empty_gt=False), pipeline=_base_.train_pipeline, return_classes=True, backend_args=None) train_dataloader = dict( sampler=dict( _delete_=True, type='CustomSampleSizeSampler', dataset_size=[-1, -1, -1, -1, 500000]), dataset=dict(datasets=[ o365v1_od_dataset, flickr30k_dataset, gqa_dataset, v3det_dataset, grit_dataset ]))
_base_ = 'grounding_dino_swin-t_pretrain_obj365.py' o365v1_od_dataset = dict( type='ODVGDataset', data_root='data/objects365v1/', ann_file='o365v1_train_odvg.jsonl', label_map_file='o365v1_label_map.json', data_prefix=dict(img='train/'), filter_cfg=dict(filter_empty_gt=False), pipeline=_base_.train_pipeline, return_classes=True, backend_args=None, ) flickr30k_dataset = dict( type='ODVGDataset', data_root='data/flickr30k_entities/', ann_file='final_flickr_separateGT_train_vg.json', label_map_file=None, data_prefix=dict(img='flickr30k_images/'), filter_cfg=dict(filter_empty_gt=False), pipeline=_base_.train_pipeline, return_classes=True, backend_args=None) gqa_dataset = dict( type='ODVGDataset', data_root='data/gqa/', ann_file='final_mixed_train_no_coco_vg.json', label_map_file=None, data_prefix=dict(img='images/'), filter_cfg=dict(filter_empty_gt=False), pipeline=_base_.train_pipeline, return_classes=True, backend_args=None) v3d_train_pipeline = [ dict(type='LoadImageFromFile', backend_args=_base_.backend_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[ [ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', # The radio of all image in train dataset < 7 # follow the original implement scales=[(400, 4200), (500, 4200), (600, 4200)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ] ]), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict( type='RandomSamplingNegPos', tokenizer_name=_base_.lang_model_name, num_sample_negative=85, # change this label_map_file='data/V3Det/annotations/v3det_2023_v1_label_map.json', max_tokens=256), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction', 'text', 'custom_entities', 'tokens_positive', 'dataset_mode')) ] v3det_dataset = dict( type='ODVGDataset', data_root='data/V3Det/', ann_file='annotations/v3det_2023_v1_train_od.json', label_map_file='annotations/v3det_2023_v1_label_map.json', data_prefix=dict(img=''), filter_cfg=dict(filter_empty_gt=False), need_text=False, # change this pipeline=v3d_train_pipeline, return_classes=True, backend_args=None) grit_dataset = dict( type='ODVGDataset', data_root='grit_processed/', ann_file='grit20m_vg.json', label_map_file=None, data_prefix=dict(img=''), filter_cfg=dict(filter_empty_gt=False), pipeline=_base_.train_pipeline, return_classes=True, backend_args=None) train_dataloader = dict( sampler=dict( _delete_=True, type='CustomSampleSizeSampler', dataset_size=[-1, -1, -1, -1, 500000]), dataset=dict(datasets=[ o365v1_od_dataset, flickr30k_dataset, gqa_dataset, v3det_dataset, grit_dataset ]))
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from typing import Dict, Optional import spacy from docarray import DocumentArray from jina import Executor, requests _EXCLUDE_COMPONENTS = [ 'tagger', 'parser', 'ner', 'senter', 'lemmatizer', 'attribute_ruler', ] class SpacyTextEncoder(Executor): """ :class:`SpacyTextEncoder` encodes ``Document`` using models offered by Spacy """ def __init__( self, model_name: str = 'en_core_web_sm', download_data: bool = True, traversal_paths: str = '@r', batch_size: int = 32, device: str = 'cpu', *args, **kwargs, ): """ :param model_name: pre-trained spaCy language pipeline name :param traversal_paths: fallback traversal path in case there is not traversal path sent in the request :param batch_size: fallback batch size in case there is not batch size sent in the request :param device: device to use for encoding. ['cuda', 'cpu', 'cuda:2'] """ super().__init__(*args, **kwargs) self.batch_size = batch_size self.traversal_paths = traversal_paths self.device = device if device.startswith('cuda'): spacy.require_gpu() if download_data: subprocess.run( ['python3', '-m', 'spacy', 'download', model_name], check=True ) self.spacy_model = spacy.load(model_name, exclude=_EXCLUDE_COMPONENTS) @requests def encode( self, docs: Optional[DocumentArray] = None, parameters: Dict = {}, **kwargs ): """ Encode all docs with text and store the encodings in the embedding attribute of the docs. :param docs: documents sent to the encoder. The docs must have the ``text`` attribute. :param parameters: dictionary to define the ``traversal_path`` and the ``batch_size``. For example, ``parameters={'traversal_paths': '@r', 'batch_size': 10}`` """ if self.device.startswith('cuda'): from cupy import asnumpy if docs: trav_path = parameters.get('traversal_paths', self.traversal_paths) batch_size = parameters.get('batch_size', self.batch_size) docs_batch_generator = DocumentArray( filter( lambda x: bool(x.text), docs[trav_path], ) ).batch(batch_size=parameters.get('batch_size', self.batch_size)) for document_batch in docs_batch_generator: texts = [doc.text for doc in document_batch] for doc, spacy_doc in zip( document_batch, self.spacy_model.pipe(texts, batch_size=batch_size) ): if self.device.startswith('cuda'): doc.embedding = asnumpy(spacy_doc.vector) else: doc.embedding = spacy_doc.vector
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from typing import Dict, Iterable, Optional import spacy from jina import DocumentArray, Executor, requests _EXCLUDE_COMPONENTS = [ 'tagger', 'parser', 'ner', 'senter', 'lemmatizer', 'attribute_ruler', ] class SpacyTextEncoder(Executor): """ :class:`SpacyTextEncoder` encodes ``Document`` using models offered by Spacy """ def __init__( self, model_name: str = 'en_core_web_sm', download_data: bool = True, traversal_paths: Iterable[str] = ('r',), batch_size: int = 32, device: str = 'cpu', *args, **kwargs, ): """ :param model_name: pre-trained spaCy language pipeline name :param traversal_paths: fallback traversal path in case there is not traversal path sent in the request :param batch_size: fallback batch size in case there is not batch size sent in the request :param device: device to use for encoding. ['cuda', 'cpu', 'cuda:2'] """ super().__init__(*args, **kwargs) self.batch_size = batch_size self.traversal_paths = traversal_paths self.device = device if device.startswith('cuda'): spacy.require_gpu() if download_data: subprocess.run( ['python3', '-m', 'spacy', 'download', model_name], check=True ) self.spacy_model = spacy.load(model_name, exclude=_EXCLUDE_COMPONENTS) @requests def encode( self, docs: Optional[DocumentArray] = None, parameters: Dict = {}, **kwargs ): """ Encode all docs with text and store the encodings in the embedding attribute of the docs. :param docs: documents sent to the encoder. The docs must have the ``text`` attribute. :param parameters: dictionary to define the ``traversal_path`` and the ``batch_size``. For example, ``parameters={'traversal_paths': ['r'], 'batch_size': 10}`` """ if self.device.startswith('cuda'): from cupy import asnumpy if docs: batch_size = parameters.get('batch_size', self.batch_size) document_batches_generator = docs.traverse_flat( traversal_paths=parameters.get('traversal_paths', self.traversal_paths), filter_fn=lambda doc: len(doc.text) > 0, ).batch( batch_size=batch_size, ) for document_batch in document_batches_generator: texts = [doc.text for doc in document_batch] for doc, spacy_doc in zip( document_batch, self.spacy_model.pipe(texts, batch_size=batch_size) ): if self.device.startswith('cuda'): doc.embedding = asnumpy(spacy_doc.vector) else: doc.embedding = spacy_doc.vector
from typing import Optional import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import ImageDoc from docarray.helper import ( _access_path_dict_to_nested_dict, _access_path_to_dict, _dict_to_access_paths, _is_access_path_valid, _update_nested_dicts, ) @pytest.fixture() def nested_doc(): class Inner(BaseDocument): img: Optional[ImageDoc] class Middle(BaseDocument): img: Optional[ImageDoc] inner: Optional[Inner] class Outer(BaseDocument): img: Optional[ImageDoc] middle: Optional[Middle] da: DocumentArray[Inner] doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())), da=DocumentArray[Inner]([Inner(img=ImageDoc(url='test.png'))]), ) return doc def test_is_access_path_valid(nested_doc): assert _is_access_path_valid(nested_doc.__class__, 'img') assert _is_access_path_valid(nested_doc.__class__, 'middle__img') assert _is_access_path_valid(nested_doc.__class__, 'middle__inner__img') assert _is_access_path_valid(nested_doc.__class__, 'middle') assert _is_access_path_valid(nested_doc.__class__, 'da__img__url') def test_is_access_path_not_valid(nested_doc): assert not _is_access_path_valid(nested_doc.__class__, 'inner') assert not _is_access_path_valid(nested_doc.__class__, 'some__other__path') assert not _is_access_path_valid(nested_doc.__class__, 'middle.inner') def test_get_access_paths(): class Painting(BaseDocument): title: str img: ImageDoc access_paths = Painting._get_access_paths() assert access_paths == [ 'id', 'title', 'img__id', 'img__url', 'img__tensor', 'img__embedding', 'img__bytes', ] def test_dict_to_access_paths(): d = { 'a0': {'b0': {'c0': 0}, 'b1': {'c0': 1}}, 'a1': {'b0': {'c0': 2, 'c1': 3}, 'b1': 4}, } casted = _dict_to_access_paths(d) assert casted == { 'a0__b0__c0': 0, 'a0__b1__c0': 1, 'a1__b0__c0': 2, 'a1__b0__c1': 3, 'a1__b1': 4, } def test_access_path_to_dict(): access_path = 'a__b__c__d__e' value = 1 result = {'a': {'b': {'c': {'d': {'e': value}}}}} assert _access_path_to_dict(access_path, value) == result def test_access_path_dict_to_nested_dict(): d = { 'a0__b0__c0': 0, 'a0__b1__c0': 1, 'a1__b0__c0': 2, 'a1__b0__c1': 3, 'a1__b1': 4, } casted = _access_path_dict_to_nested_dict(d) assert casted == { 'a0': {'b0': {'c0': 0}, 'b1': {'c0': 1}}, 'a1': {'b0': {'c0': 2, 'c1': 3}, 'b1': 4}, } def test_update_nested_dict(): d1 = {'text': 'hello', 'image': {'tensor': None}} d2 = {'image': {'url': 'some.png'}} _update_nested_dicts(d1, d2) assert d1 == {'text': 'hello', 'image': {'tensor': None, 'url': 'some.png'}}
from typing import Optional import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import Image from docarray.helper import ( _access_path_dict_to_nested_dict, _access_path_to_dict, _dict_to_access_paths, _is_access_path_valid, _update_nested_dicts, ) @pytest.fixture() def nested_doc(): class Inner(BaseDocument): img: Optional[Image] class Middle(BaseDocument): img: Optional[Image] inner: Optional[Inner] class Outer(BaseDocument): img: Optional[Image] middle: Optional[Middle] da: DocumentArray[Inner] doc = Outer( img=Image(), middle=Middle(img=Image(), inner=Inner(img=Image())), da=DocumentArray[Inner]([Inner(img=Image(url='test.png'))]), ) return doc def test_is_access_path_valid(nested_doc): assert _is_access_path_valid(nested_doc.__class__, 'img') assert _is_access_path_valid(nested_doc.__class__, 'middle__img') assert _is_access_path_valid(nested_doc.__class__, 'middle__inner__img') assert _is_access_path_valid(nested_doc.__class__, 'middle') assert _is_access_path_valid(nested_doc.__class__, 'da__img__url') def test_is_access_path_not_valid(nested_doc): assert not _is_access_path_valid(nested_doc.__class__, 'inner') assert not _is_access_path_valid(nested_doc.__class__, 'some__other__path') assert not _is_access_path_valid(nested_doc.__class__, 'middle.inner') def test_get_access_paths(): class Painting(BaseDocument): title: str img: Image access_paths = Painting._get_access_paths() assert access_paths == [ 'id', 'title', 'img__id', 'img__url', 'img__tensor', 'img__embedding', 'img__bytes', ] def test_dict_to_access_paths(): d = { 'a0': {'b0': {'c0': 0}, 'b1': {'c0': 1}}, 'a1': {'b0': {'c0': 2, 'c1': 3}, 'b1': 4}, } casted = _dict_to_access_paths(d) assert casted == { 'a0__b0__c0': 0, 'a0__b1__c0': 1, 'a1__b0__c0': 2, 'a1__b0__c1': 3, 'a1__b1': 4, } def test_access_path_to_dict(): access_path = 'a__b__c__d__e' value = 1 result = {'a': {'b': {'c': {'d': {'e': value}}}}} assert _access_path_to_dict(access_path, value) == result def test_access_path_dict_to_nested_dict(): d = { 'a0__b0__c0': 0, 'a0__b1__c0': 1, 'a1__b0__c0': 2, 'a1__b0__c1': 3, 'a1__b1': 4, } casted = _access_path_dict_to_nested_dict(d) assert casted == { 'a0': {'b0': {'c0': 0}, 'b1': {'c0': 1}}, 'a1': {'b0': {'c0': 2, 'c1': 3}, 'b1': 4}, } def test_update_nested_dict(): d1 = {'text': 'hello', 'image': {'tensor': None}} d2 = {'image': {'url': 'some.png'}} _update_nested_dicts(d1, d2) assert d1 == {'text': 'hello', 'image': {'tensor': None, 'url': 'some.png'}}
import os import urllib import numpy as np import PIL import pytest from PIL import Image from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_doc.io.json import orjson_dumps from docarray.typing import ImageUrl CUR_DIR = os.path.dirname(os.path.abspath(__file__)) PATH_TO_IMAGE_DATA = os.path.join(CUR_DIR, '..', '..', '..', 'toydata', 'image-data') IMAGE_PATHS = { 'png': os.path.join(PATH_TO_IMAGE_DATA, 'so_good.png'), 'jpg': os.path.join(PATH_TO_IMAGE_DATA, '05984.jpg'), 'jpeg': os.path.join(PATH_TO_IMAGE_DATA, '05984-2.jpeg'), } REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image_url(): uri = parse_obj_as(ImageUrl, REMOTE_JPG) tensor = uri.load() assert isinstance(tensor, np.ndarray) @pytest.mark.proto def test_proto_image_url(): uri = parse_obj_as(ImageUrl, REMOTE_JPG) uri._to_node_protobuf() def test_json_schema(): schema_json_of(ImageUrl) def test_dump_json(): url = parse_obj_as(ImageUrl, 'http://jina.ai/img.png') orjson_dumps(url) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) def test_load(image_format, path_to_img): url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load() assert isinstance(tensor, np.ndarray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) def test_load_pil(image_format, path_to_img): url = parse_obj_as(ImageUrl, path_to_img) img = url.load_pil() assert isinstance(img, PIL.Image.Image) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) @pytest.mark.parametrize('width,height', [(224, None), (None, 224), (224, 224)]) def test_load_width_height(image_format, path_to_img, width, height): url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load(width=width, height=height) assert isinstance(tensor, np.ndarray) shape = tensor.shape if width: assert shape[1] == width if height: assert shape[0] == height @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) @pytest.mark.parametrize( 'axis_layout', [ ('H', 'W', 'C'), ('H', 'C', 'W'), ('C', 'H', 'W'), ('C', 'W', 'H'), ('W', 'C', 'H'), ('W', 'H', 'C'), ], ) def test_load_channel_axis(image_format, path_to_img, axis_layout): sizes = {'H': 100, 'W': 200, 'C': 3} url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load(axis_layout=axis_layout, height=sizes['H'], width=sizes['W']) assert isinstance(tensor, np.ndarray) shape = tensor.shape for axis, axis_name in enumerate(axis_layout): assert shape[axis] == sizes[axis_name] @pytest.mark.internet def test_load_timeout(): url = parse_obj_as(ImageUrl, REMOTE_JPG) with pytest.raises(urllib.error.URLError): _ = url.load(timeout=0.001) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('jpg', REMOTE_JPG), ], ) def test_load_to_bytes(image_format, path_to_img): url = parse_obj_as(ImageUrl, path_to_img) _bytes = url.load_bytes() assert isinstance(_bytes, bytes) img = Image.frombytes(mode='1', size=(224, 224), data=_bytes) assert isinstance(img, Image.Image) @pytest.mark.parametrize( 'path_to_img', [*IMAGE_PATHS.values(), REMOTE_JPG], ) def test_validation(path_to_img): url = parse_obj_as(ImageUrl, path_to_img) assert isinstance(url, ImageUrl) assert isinstance(url, str)
import os import urllib import numpy as np import PIL import pytest from PIL import Image from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_doc.io.json import orjson_dumps from docarray.typing import ImageUrl CUR_DIR = os.path.dirname(os.path.abspath(__file__)) PATH_TO_IMAGE_DATA = os.path.join(CUR_DIR, '..', '..', '..', 'toydata', 'image-data') IMAGE_PATHS = { 'png': os.path.join(PATH_TO_IMAGE_DATA, 'so_good.png'), 'jpg': os.path.join(PATH_TO_IMAGE_DATA, '05984.jpg'), 'jpeg': os.path.join(PATH_TO_IMAGE_DATA, '05984-2.jpeg'), } REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image_url(): uri = parse_obj_as(ImageUrl, REMOTE_JPG) tensor = uri.load() assert isinstance(tensor, np.ndarray) @pytest.mark.proto def test_proto_image_url(): uri = parse_obj_as(ImageUrl, REMOTE_JPG) uri._to_node_protobuf() def test_json_schema(): schema_json_of(ImageUrl) def test_dump_json(): url = parse_obj_as(ImageUrl, 'http://jina.ai/img.png') orjson_dumps(url) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) def test_load(image_format, path_to_img): url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load() assert isinstance(tensor, np.ndarray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) def test_load_pil(image_format, path_to_img): url = parse_obj_as(ImageUrl, path_to_img) img = url.load_pil() assert isinstance(img, PIL.Image.Image) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) @pytest.mark.parametrize('width,height', [(224, None), (None, 224), (224, 224)]) def test_load_width_height(image_format, path_to_img, width, height): url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load(width=width, height=height) assert isinstance(tensor, np.ndarray) shape = tensor.shape if width: assert shape[1] == width if height: assert shape[0] == height @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) @pytest.mark.parametrize( 'axis_layout', [ ('H', 'W', 'C'), ('H', 'C', 'W'), ('C', 'H', 'W'), ('C', 'W', 'H'), ('W', 'C', 'H'), ('W', 'H', 'C'), ], ) def test_load_channel_axis(image_format, path_to_img, axis_layout): sizes = {'H': 100, 'W': 200, 'C': 3} url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load(axis_layout=axis_layout, height=sizes['H'], width=sizes['W']) assert isinstance(tensor, np.ndarray) shape = tensor.shape for axis, axis_name in enumerate(axis_layout): assert shape[axis] == sizes[axis_name] @pytest.mark.internet def test_load_timeout(): url = parse_obj_as(ImageUrl, REMOTE_JPG) with pytest.raises(urllib.error.URLError): _ = url.load(timeout=0.001) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('jpg', REMOTE_JPG), ], ) def test_load_to_bytes(image_format, path_to_img): url = parse_obj_as(ImageUrl, path_to_img) _bytes = url.load_bytes() assert isinstance(_bytes, bytes) img = Image.frombytes(mode='1', size=(224, 224), data=_bytes) assert isinstance(img, Image.Image) @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('jpg', REMOTE_JPG), ('illegal', 'illegal'), ('illegal', 'https://www.google.com'), ('illegal', 'my/local/text/file.txt'), ], ) def test_validation(image_format, path_to_img): if image_format == 'illegal': with pytest.raises(ValueError): parse_obj_as(ImageUrl, path_to_img) else: url = parse_obj_as(ImageUrl, path_to_img) assert isinstance(url, ImageUrl) assert isinstance(url, str)
# Copyright (c) OpenMMLab. All rights reserved. from .auto_augment import (AutoAugment, BrightnessTransform, ColorTransform, ContrastTransform, EqualizeTransform, Rotate, Shear, Translate) from .compose import Compose from .formatting import (Collect, DefaultFormatBundle, ImageToTensor, ToDataContainer, ToTensor, Transpose, to_tensor) from .instaboost import InstaBoost from .loading import (LoadAnnotations, LoadImageFromFile, LoadImageFromWebcam, LoadMultiChannelImageFromFiles, LoadProposals) from .test_time_aug import MultiScaleFlipAug from .transforms import (Albu, CutOut, Expand, MinIoURandomCrop, MixUp, Mosaic, Normalize, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) __all__ = [ 'Compose', 'to_tensor', 'ToTensor', 'ImageToTensor', 'ToDataContainer', 'Transpose', 'Collect', 'DefaultFormatBundle', 'LoadAnnotations', 'LoadImageFromFile', 'LoadImageFromWebcam', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'MultiScaleFlipAug', 'Resize', 'RandomFlip', 'Pad', 'RandomCrop', 'Normalize', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'Shear', 'Rotate', 'ColorTransform', 'EqualizeTransform', 'BrightnessTransform', 'ContrastTransform', 'Translate', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug' ]
# Copyright (c) OpenMMLab. All rights reserved. from .auto_augment import (AutoAugment, BrightnessTransform, ColorTransform, ContrastTransform, EqualizeTransform, Rotate, Shear, Translate) from .compose import Compose from .formating import (Collect, DefaultFormatBundle, ImageToTensor, ToDataContainer, ToTensor, Transpose, to_tensor) from .instaboost import InstaBoost from .loading import (LoadAnnotations, LoadImageFromFile, LoadImageFromWebcam, LoadMultiChannelImageFromFiles, LoadProposals) from .test_time_aug import MultiScaleFlipAug from .transforms import (Albu, CutOut, Expand, MinIoURandomCrop, MixUp, Mosaic, Normalize, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) __all__ = [ 'Compose', 'to_tensor', 'ToTensor', 'ImageToTensor', 'ToDataContainer', 'Transpose', 'Collect', 'DefaultFormatBundle', 'LoadAnnotations', 'LoadImageFromFile', 'LoadImageFromWebcam', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'MultiScaleFlipAug', 'Resize', 'RandomFlip', 'Pad', 'RandomCrop', 'Normalize', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'Shear', 'Rotate', 'ColorTransform', 'EqualizeTransform', 'BrightnessTransform', 'ContrastTransform', 'Translate', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug' ]
"""**Text Splitters** are classes for splitting text. **Class hierarchy:** .. code-block:: BaseDocumentTransformer --> TextSplitter --> <name>TextSplitter # Example: CharacterTextSplitter RecursiveCharacterTextSplitter --> <name>TextSplitter Note: **MarkdownHeaderTextSplitter** and **HTMLHeaderTextSplitter do not derive from TextSplitter. **Main helpers:** .. code-block:: Document, Tokenizer, Language, LineType, HeaderType """ # noqa: E501 from langchain_text_splitters.base import ( Language, TextSplitter, Tokenizer, TokenTextSplitter, split_text_on_tokens, ) from langchain_text_splitters.character import ( CharacterTextSplitter, RecursiveCharacterTextSplitter, ) from langchain_text_splitters.html import ( ElementType, HTMLHeaderTextSplitter, HTMLSectionSplitter, HTMLSemanticPreservingSplitter, ) from langchain_text_splitters.json import RecursiveJsonSplitter from langchain_text_splitters.jsx import JSFrameworkTextSplitter from langchain_text_splitters.konlpy import KonlpyTextSplitter from langchain_text_splitters.latex import LatexTextSplitter from langchain_text_splitters.markdown import ( ExperimentalMarkdownSyntaxTextSplitter, HeaderType, LineType, MarkdownHeaderTextSplitter, MarkdownTextSplitter, ) from langchain_text_splitters.nltk import NLTKTextSplitter from langchain_text_splitters.python import PythonCodeTextSplitter from langchain_text_splitters.sentence_transformers import ( SentenceTransformersTokenTextSplitter, ) from langchain_text_splitters.spacy import SpacyTextSplitter __all__ = [ "TokenTextSplitter", "TextSplitter", "Tokenizer", "Language", "RecursiveCharacterTextSplitter", "RecursiveJsonSplitter", "LatexTextSplitter", "JSFrameworkTextSplitter", "PythonCodeTextSplitter", "KonlpyTextSplitter", "SpacyTextSplitter", "NLTKTextSplitter", "split_text_on_tokens", "SentenceTransformersTokenTextSplitter", "ElementType", "HeaderType", "LineType", "HTMLHeaderTextSplitter", "HTMLSectionSplitter", "HTMLSemanticPreservingSplitter", "MarkdownHeaderTextSplitter", "MarkdownTextSplitter", "CharacterTextSplitter", "ExperimentalMarkdownSyntaxTextSplitter", ]
"""**Text Splitters** are classes for splitting text. **Class hierarchy:** .. code-block:: BaseDocumentTransformer --> TextSplitter --> <name>TextSplitter # Example: CharacterTextSplitter RecursiveCharacterTextSplitter --> <name>TextSplitter Note: **MarkdownHeaderTextSplitter** and **HTMLHeaderTextSplitter do not derive from TextSplitter. **Main helpers:** .. code-block:: Document, Tokenizer, Language, LineType, HeaderType """ # noqa: E501 from langchain_text_splitters.base import ( Language, TextSplitter, Tokenizer, TokenTextSplitter, split_text_on_tokens, ) from langchain_text_splitters.character import ( CharacterTextSplitter, RecursiveCharacterTextSplitter, ) from langchain_text_splitters.html import ( ElementType, HTMLHeaderTextSplitter, HTMLSectionSplitter, HTMLSemanticPreservingSplitter, ) from langchain_text_splitters.json import RecursiveJsonSplitter from langchain_text_splitters.konlpy import KonlpyTextSplitter from langchain_text_splitters.latex import LatexTextSplitter from langchain_text_splitters.markdown import ( ExperimentalMarkdownSyntaxTextSplitter, HeaderType, LineType, MarkdownHeaderTextSplitter, MarkdownTextSplitter, ) from langchain_text_splitters.nltk import NLTKTextSplitter from langchain_text_splitters.python import PythonCodeTextSplitter from langchain_text_splitters.sentence_transformers import ( SentenceTransformersTokenTextSplitter, ) from langchain_text_splitters.spacy import SpacyTextSplitter __all__ = [ "TokenTextSplitter", "TextSplitter", "Tokenizer", "Language", "RecursiveCharacterTextSplitter", "RecursiveJsonSplitter", "LatexTextSplitter", "PythonCodeTextSplitter", "KonlpyTextSplitter", "SpacyTextSplitter", "NLTKTextSplitter", "split_text_on_tokens", "SentenceTransformersTokenTextSplitter", "ElementType", "HeaderType", "LineType", "HTMLHeaderTextSplitter", "HTMLSectionSplitter", "HTMLSemanticPreservingSplitter", "MarkdownHeaderTextSplitter", "MarkdownTextSplitter", "CharacterTextSplitter", "ExperimentalMarkdownSyntaxTextSplitter", ]
"""Test for Serializable base class""" import json import os from typing import Any from unittest.mock import patch import pytest from langchain_core.load.dump import dumps from langchain_core.load.serializable import Serializable from pydantic import ConfigDict, Field, model_validator class Person(Serializable): secret: str you_can_see_me: str = "hello" @classmethod def is_lc_serializable(cls) -> bool: return True @property def lc_secrets(self) -> dict[str, str]: return {"secret": "SECRET"} @property def lc_attributes(self) -> dict[str, str]: return {"you_can_see_me": self.you_can_see_me} class SpecialPerson(Person): another_secret: str another_visible: str = "bye" @classmethod def get_lc_namespace(cls) -> list[str]: return ["my", "special", "namespace"] # Gets merged with parent class's secrets @property def lc_secrets(self) -> dict[str, str]: return {"another_secret": "ANOTHER_SECRET"} # Gets merged with parent class's attributes @property def lc_attributes(self) -> dict[str, str]: return {"another_visible": self.another_visible} class NotSerializable: pass def test_person(snapshot: Any) -> None: p = Person(secret="parrot party") # noqa: S106 assert dumps(p, pretty=True) == snapshot sp = SpecialPerson(another_secret="Wooo", secret="Hmm") # noqa: S106 assert dumps(sp, pretty=True) == snapshot assert Person.lc_id() == ["tests", "unit_tests", "load", "test_dump", "Person"] assert SpecialPerson.lc_id() == ["my", "special", "namespace", "SpecialPerson"] def test_typeerror() -> None: assert ( dumps({(1, 2): 3}) == """{"lc": 1, "type": "not_implemented", "id": ["builtins", "dict"], "repr": "{(1, 2): 3}"}""" # noqa: E501 ) def test_person_with_kwargs(snapshot: Any) -> None: person = Person(secret="parrot party") # noqa: S106 assert dumps(person, separators=(",", ":")) == snapshot def test_person_with_invalid_kwargs() -> None: person = Person(secret="parrot party") # noqa: S106 with pytest.raises(TypeError): dumps(person, invalid_kwarg="hello") class TestClass(Serializable): my_favorite_secret: str = Field(alias="my_favorite_secret_alias") my_other_secret: str = Field() model_config = ConfigDict( populate_by_name=True, ) @model_validator(mode="before") @classmethod def get_from_env(cls, values: dict) -> Any: """Get the values from the environment.""" if "my_favorite_secret" not in values: values["my_favorite_secret"] = os.getenv("MY_FAVORITE_SECRET") if "my_other_secret" not in values: values["my_other_secret"] = os.getenv("MY_OTHER_SECRET") return values @classmethod def is_lc_serializable(cls) -> bool: return True @classmethod def get_lc_namespace(cls) -> list[str]: return ["my", "special", "namespace"] @property def lc_secrets(self) -> dict[str, str]: return { "my_favorite_secret": "MY_FAVORITE_SECRET", "my_other_secret": "MY_OTHER_SECRET", } def test_aliases_hidden() -> None: test_class = TestClass( my_favorite_secret="hello", # noqa: S106 # type: ignore[call-arg] my_other_secret="world", # noqa: S106 ) # type: ignore[call-arg] dumped = json.loads(dumps(test_class, pretty=True)) expected_dump = { "lc": 1, "type": "constructor", "id": ["my", "special", "namespace", "TestClass"], "kwargs": { "my_favorite_secret": { "lc": 1, "type": "secret", "id": ["MY_FAVORITE_SECRET"], }, "my_other_secret": {"lc": 1, "type": "secret", "id": ["MY_OTHER_SECRET"]}, }, } assert dumped == expected_dump # Check while patching the os environment with patch.dict( os.environ, {"MY_FAVORITE_SECRET": "hello", "MY_OTHER_SECRET": "world"} ): test_class = TestClass() # type: ignore[call-arg] dumped = json.loads(dumps(test_class, pretty=True)) # Check by alias test_class = TestClass( my_favorite_secret_alias="hello", # noqa: S106 my_other_secret="parrot party", # noqa: S106 ) dumped = json.loads(dumps(test_class, pretty=True)) expected_dump = { "lc": 1, "type": "constructor", "id": ["my", "special", "namespace", "TestClass"], "kwargs": { "my_favorite_secret": { "lc": 1, "type": "secret", "id": ["MY_FAVORITE_SECRET"], }, "my_other_secret": {"lc": 1, "type": "secret", "id": ["MY_OTHER_SECRET"]}, }, } assert dumped == expected_dump
"""Test for Serializable base class""" import json import os from typing import Any from unittest.mock import patch import pytest from langchain_core.load.dump import dumps from langchain_core.load.serializable import Serializable from pydantic import ConfigDict, Field, model_validator class Person(Serializable): secret: str you_can_see_me: str = "hello" @classmethod def is_lc_serializable(cls) -> bool: return True @property def lc_secrets(self) -> dict[str, str]: return {"secret": "SECRET"} @property def lc_attributes(self) -> dict[str, str]: return {"you_can_see_me": self.you_can_see_me} class SpecialPerson(Person): another_secret: str another_visible: str = "bye" @classmethod def get_lc_namespace(cls) -> list[str]: return ["my", "special", "namespace"] # Gets merged with parent class's secrets @property def lc_secrets(self) -> dict[str, str]: return {"another_secret": "ANOTHER_SECRET"} # Gets merged with parent class's attributes @property def lc_attributes(self) -> dict[str, str]: return {"another_visible": self.another_visible} class NotSerializable: pass def test_person(snapshot: Any) -> None: p = Person(secret="hello") assert dumps(p, pretty=True) == snapshot sp = SpecialPerson(another_secret="Wooo", secret="Hmm") assert dumps(sp, pretty=True) == snapshot assert Person.lc_id() == ["tests", "unit_tests", "load", "test_dump", "Person"] assert SpecialPerson.lc_id() == ["my", "special", "namespace", "SpecialPerson"] def test_typeerror() -> None: assert ( dumps({(1, 2): 3}) == """{"lc": 1, "type": "not_implemented", "id": ["builtins", "dict"], "repr": "{(1, 2): 3}"}""" # noqa: E501 ) def test_person_with_kwargs(snapshot: Any) -> None: person = Person(secret="hello") assert dumps(person, separators=(",", ":")) == snapshot def test_person_with_invalid_kwargs() -> None: person = Person(secret="hello") with pytest.raises(TypeError): dumps(person, invalid_kwarg="hello") class TestClass(Serializable): my_favorite_secret: str = Field(alias="my_favorite_secret_alias") my_other_secret: str = Field() model_config = ConfigDict( populate_by_name=True, ) @model_validator(mode="before") @classmethod def get_from_env(cls, values: dict) -> Any: """Get the values from the environment.""" if "my_favorite_secret" not in values: values["my_favorite_secret"] = os.getenv("MY_FAVORITE_SECRET") if "my_other_secret" not in values: values["my_other_secret"] = os.getenv("MY_OTHER_SECRET") return values @classmethod def is_lc_serializable(cls) -> bool: return True @classmethod def get_lc_namespace(cls) -> list[str]: return ["my", "special", "namespace"] @property def lc_secrets(self) -> dict[str, str]: return { "my_favorite_secret": "MY_FAVORITE_SECRET", "my_other_secret": "MY_OTHER_SECRET", } def test_aliases_hidden() -> None: test_class = TestClass(my_favorite_secret="hello", my_other_secret="world") # type: ignore[call-arg] dumped = json.loads(dumps(test_class, pretty=True)) expected_dump = { "lc": 1, "type": "constructor", "id": ["my", "special", "namespace", "TestClass"], "kwargs": { "my_favorite_secret": { "lc": 1, "type": "secret", "id": ["MY_FAVORITE_SECRET"], }, "my_other_secret": {"lc": 1, "type": "secret", "id": ["MY_OTHER_SECRET"]}, }, } assert dumped == expected_dump # Check while patching the os environment with patch.dict( os.environ, {"MY_FAVORITE_SECRET": "hello", "MY_OTHER_SECRET": "world"} ): test_class = TestClass() # type: ignore[call-arg] dumped = json.loads(dumps(test_class, pretty=True)) # Check by alias test_class = TestClass(my_favorite_secret_alias="hello", my_other_secret="world") dumped = json.loads(dumps(test_class, pretty=True)) expected_dump = { "lc": 1, "type": "constructor", "id": ["my", "special", "namespace", "TestClass"], "kwargs": { "my_favorite_secret": { "lc": 1, "type": "secret", "id": ["MY_FAVORITE_SECRET"], }, "my_other_secret": {"lc": 1, "type": "secret", "id": ["MY_OTHER_SECRET"]}, }, } assert dumped == expected_dump
import pytest from importlib.util import find_spec from llama_index.core.storage.kvstore.types import BaseKVStore from llama_index.storage.kvstore.postgres import PostgresKVStore no_packages = ( find_spec("psycopg2") is None or find_spec("sqlalchemy") is None or find_spec("asyncpg") is None ) def test_class(): names_of_base_classes = [b.__name__ for b in PostgresKVStore.__mro__] assert BaseKVStore.__name__ in names_of_base_classes @pytest.mark.skipif( no_packages, reason="asyncpg, pscopg2-binary and sqlalchemy not installed" ) def test_initialization(): errors = [] try: pgstore1 = PostgresKVStore(table_name="mytable") errors.append(0) except ValueError: errors.append(1) try: pgstore2 = PostgresKVStore( table_name="mytable", connection_string="connection_string" ) errors.append(0) except ValueError: errors.append(1) try: pgstore3 = PostgresKVStore( table_name="mytable", async_connection_string="async_connection_string" ) errors.append(0) except ValueError: errors.append(1) try: pgstore4 = PostgresKVStore( table_name="mytable", connection_string="connection_string", async_connection_string="async_connection_string", ) errors.append(0) except ValueError: errors.append(1) assert sum(errors) == 3 assert pgstore4._engine is None assert pgstore4._async_engine is None
import pytest from importlib.util import find_spec from llama_index.core.storage.kvstore.types import BaseKVStore from llama_index.storage.kvstore.postgres import PostgresKVStore no_packages = find_spec("psycopg2") is None or find_spec("sqlalchemy") is None or find_spec("asyncpg") is None def test_class(): names_of_base_classes = [b.__name__ for b in PostgresKVStore.__mro__] assert BaseKVStore.__name__ in names_of_base_classes @pytest.mark.skipif( no_packages, reason="asyncpg, pscopg2-binary and sqlalchemy not installed" ) def test_initialization(): errors = [] try: pgstore1 = PostgresKVStore(table_name="mytable") errors.append(0) except ValueError: errors.append(1) try: pgstore2 = PostgresKVStore(table_name="mytable", connection_string="connection_string") errors.append(0) except ValueError: errors.append(1) try: pgstore3 = PostgresKVStore(table_name="mytable", async_connection_string="async_connection_string") errors.append(0) except ValueError: errors.append(1) try: pgstore4 = PostgresKVStore(table_name="mytable", connection_string="connection_string", async_connection_string="async_connection_string") errors.append(0) except ValueError: errors.append(1) assert sum(errors) == 3 assert pgstore4._engine is None assert pgstore4._async_engine is None
import re from collections.abc import Sequence from typing import Optional from langchain_core.messages import BaseMessage def _is_openai_data_block(block: dict) -> bool: """Check if the block contains multimodal data in OpenAI Chat Completions format.""" if block.get("type") == "image_url": if ( (set(block.keys()) <= {"type", "image_url", "detail"}) and (image_url := block.get("image_url")) and isinstance(image_url, dict) ): url = image_url.get("url") if isinstance(url, str): return True elif block.get("type") == "file": if (file := block.get("file")) and isinstance(file, dict): file_data = file.get("file_data") if isinstance(file_data, str): return True elif block.get("type") == "input_audio": if (input_audio := block.get("input_audio")) and isinstance(input_audio, dict): audio_data = input_audio.get("data") audio_format = input_audio.get("format") if isinstance(audio_data, str) and isinstance(audio_format, str): return True else: return False return False def _parse_data_uri(uri: str) -> Optional[dict]: """Parse a data URI into its components. If parsing fails, return None. Example: .. code-block:: python data_uri = "..." parsed = _parse_data_uri(data_uri) assert parsed == { "source_type": "base64", "mime_type": "image/jpeg", "data": "/9j/4AAQSkZJRg...", } """ regex = r"^data:(?P<mime_type>[^;]+);base64,(?P<data>.+)$" match = re.match(regex, uri) if match is None: return None return { "source_type": "base64", "data": match.group("data"), "mime_type": match.group("mime_type"), } def _convert_openai_format_to_data_block(block: dict) -> dict: """Convert OpenAI image content block to standard data content block. If parsing fails, pass-through. Args: block: The OpenAI image content block to convert. Returns: The converted standard data content block. """ if block["type"] == "image_url": parsed = _parse_data_uri(block["image_url"]["url"]) if parsed is not None: parsed["type"] = "image" return parsed return block if block["type"] == "file": parsed = _parse_data_uri(block["file"]["file_data"]) if parsed is not None: parsed["type"] = "file" if filename := block["file"].get("filename"): parsed["filename"] = filename return parsed return block if block["type"] == "input_audio": data = block["input_audio"].get("data") audio_format = block["input_audio"].get("format") if data and audio_format: return { "type": "audio", "source_type": "base64", "data": data, "mime_type": f"audio/{audio_format}", } return block return block def _normalize_messages(messages: Sequence[BaseMessage]) -> list[BaseMessage]: """Extend support for message formats. Chat models implement support for images in OpenAI Chat Completions format, as well as other multimodal data as standard data blocks. This function extends support to audio and file data in OpenAI Chat Completions format by converting them to standard data blocks. """ formatted_messages = [] for message in messages: formatted_message = message if isinstance(message.content, list): for idx, block in enumerate(message.content): if ( isinstance(block, dict) # Subset to (PDF) files and audio, as most relevant chat models # support images in OAI format (and some may not yet support the # standard data block format) and block.get("type") in ("file", "input_audio") and _is_openai_data_block(block) ): if formatted_message is message: formatted_message = message.model_copy() # Also shallow-copy content formatted_message.content = list(formatted_message.content) formatted_message.content[idx] = ( # type: ignore[index] # mypy confused by .model_copy _convert_openai_format_to_data_block(block) ) formatted_messages.append(formatted_message) return formatted_messages
import re from collections.abc import Sequence from typing import Optional from langchain_core.messages import BaseMessage def _is_openai_data_block(block: dict) -> bool: """Check if the block contains multimodal data in OpenAI Chat Completions format.""" if block.get("type") == "image_url": if ( (set(block.keys()) <= {"type", "image_url", "detail"}) and (image_url := block.get("image_url")) and isinstance(image_url, dict) ): url = image_url.get("url") if isinstance(url, str): return True elif block.get("type") == "file": if (file := block.get("file")) and isinstance(file, dict): file_data = file.get("file_data") if isinstance(file_data, str): return True elif block.get("type") == "input_audio": if (input_audio := block.get("input_audio")) and isinstance(input_audio, dict): audio_data = input_audio.get("data") audio_format = input_audio.get("format") if isinstance(audio_data, str) and isinstance(audio_format, str): return True else: return False return False def _parse_data_uri(uri: str) -> Optional[dict]: """Parse a data URI into its components. If parsing fails, return None. Example: .. code-block:: python data_uri = "..." parsed = _parse_data_uri(data_uri) assert parsed == { "source_type": "base64", "mime_type": "image/jpeg", "data": "/9j/4AAQSkZJRg...", } """ regex = r"^data:(?P<mime_type>[^;]+);base64,(?P<data>.+)$" match = re.match(regex, uri) if match is None: return None return { "source_type": "base64", "data": match.group("data"), "mime_type": match.group("mime_type"), } def _convert_openai_format_to_data_block(block: dict) -> dict: """Convert OpenAI image content block to standard data content block. If parsing fails, pass-through. Args: block: The OpenAI image content block to convert. Returns: The converted standard data content block. """ if block["type"] == "image_url": parsed = _parse_data_uri(block["image_url"]["url"]) if parsed is not None: parsed["type"] = "image" return parsed return block if block["type"] == "file": parsed = _parse_data_uri(block["file"]["file_data"]) if parsed is not None: parsed["type"] = "file" if filename := block["file"].get("filename"): parsed["filename"] = filename return parsed return block if block["type"] == "input_audio": data = block["input_audio"].get("data") format = block["input_audio"].get("format") if data and format: return { "type": "audio", "source_type": "base64", "data": data, "mime_type": f"audio/{format}", } return block return block def _normalize_messages(messages: Sequence[BaseMessage]) -> list[BaseMessage]: """Extend support for message formats. Chat models implement support for images in OpenAI Chat Completions format, as well as other multimodal data as standard data blocks. This function extends support to audio and file data in OpenAI Chat Completions format by converting them to standard data blocks. """ formatted_messages = [] for message in messages: formatted_message = message if isinstance(message.content, list): for idx, block in enumerate(message.content): if ( isinstance(block, dict) # Subset to (PDF) files and audio, as most relevant chat models # support images in OAI format (and some may not yet support the # standard data block format) and block.get("type") in ("file", "input_audio") and _is_openai_data_block(block) ): if formatted_message is message: formatted_message = message.model_copy() # Also shallow-copy content formatted_message.content = list(formatted_message.content) formatted_message.content[idx] = ( # type: ignore[index] # mypy confused by .model_copy _convert_openai_format_to_data_block(block) ) formatted_messages.append(formatted_message) return formatted_messages
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import List import numpy as np import pytest from jina import Flow, Document, DocumentArray from ...paddle_image import ImagePaddlehubEncoder @pytest.mark.parametrize('arr_in', [ (np.ones((3, 224, 224), dtype=np.float32)), (np.ones((3, 100, 100), dtype=np.float32)), (np.ones((3, 50, 40), dtype=np.float32)) ]) def test_paddle_no_batch(arr_in: np.ndarray): flow = Flow().add(uses=ImagePaddlehubEncoder) with flow: results = flow.post( on='/test', inputs=DocumentArray([Document(blob=arr_in)]), return_results=True ) assert len(results[0].docs) == 1 assert results[0].docs[0].embedding.shape == (2048,) def test_paddle_batch(): flow = Flow().add(uses=ImagePaddlehubEncoder) with flow: results = flow.post( on='/test', inputs=(Document(blob=np.ones((3, 224, 224), dtype=np.float32)) for _ in range(25)), return_results=True ) assert len(results[0].docs.get_attributes('embedding')) == 25 assert results[0].docs.get_attributes('embedding')[0].shape == (2048,) @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_paths'], [ (pytest.lazy_fixture('docs_with_blobs'), [['r', 10], ['c', 0], ['cc', 0]], 'r'), (pytest.lazy_fixture('docs_with_chunk_blobs'), [['r', 0], ['c', 10], ['cc', 0]], 'c'), (pytest.lazy_fixture('docs_with_chunk_chunk_blobs'), [['r', 0], ['c', 0], ['cc', 10]], 'cc') ] ) def test_traversal_path(docs: DocumentArray, docs_per_path: List[List[str]], traversal_paths: str): flow = Flow().add(uses=ImagePaddlehubEncoder) with flow: results = flow.post( on='/test', inputs=docs, parameters={'traversal_paths': [traversal_paths]}, return_results=True ) for path, count in docs_per_path: assert len(DocumentArray(results[0].docs).traverse_flat([path]).get_attributes('embedding')) == count
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import List import numpy as np import pytest from jina import Flow, Document, DocumentArray from jinahub.encoder.paddle_image import ImagePaddlehubEncoder @pytest.mark.parametrize('arr_in', [ (np.ones((3, 224, 224), dtype=np.float32)), (np.ones((3, 100, 100), dtype=np.float32)), (np.ones((3, 50, 40), dtype=np.float32)) ]) def test_paddle_no_batch(arr_in: np.ndarray): flow = Flow().add(uses=ImagePaddlehubEncoder) with flow: results = flow.post( on='/test', inputs=DocumentArray([Document(blob=arr_in)]), return_results=True ) assert len(results[0].docs) == 1 assert results[0].docs[0].embedding.shape == (2048,) def test_paddle_batch(): flow = Flow().add(uses=ImagePaddlehubEncoder) with flow: results = flow.post( on='/test', inputs=(Document(blob=np.ones((3, 224, 224), dtype=np.float32)) for _ in range(25)), return_results=True ) assert len(results[0].docs.get_attributes('embedding')) == 25 assert results[0].docs.get_attributes('embedding')[0].shape == (2048,) @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_paths'], [ (pytest.lazy_fixture('docs_with_blobs'), [['r', 10], ['c', 0], ['cc', 0]], 'r'), (pytest.lazy_fixture('docs_with_chunk_blobs'), [['r', 0], ['c', 10], ['cc', 0]], 'c'), (pytest.lazy_fixture('docs_with_chunk_chunk_blobs'), [['r', 0], ['c', 0], ['cc', 10]], 'cc') ] ) def test_traversal_path(docs: DocumentArray, docs_per_path: List[List[str]], traversal_paths: str): flow = Flow().add(uses=ImagePaddlehubEncoder) with flow: results = flow.post( on='/test', inputs=docs, parameters={'traversal_paths': [traversal_paths]}, return_results=True ) for path, count in docs_per_path: assert len(DocumentArray(results[0].docs).traverse_flat([path]).get_attributes('embedding')) == count
from operator import itemgetter from typing import Sequence, Iterable from docarray.array.storage.base.getsetdel import BaseGetSetDelMixin from docarray.array.storage.base.helper import Offset2ID from docarray import Document class GetSetDelMixin(BaseGetSetDelMixin): """Implement required and derived functions that power `getitem`, `setitem`, `delitem`""" # essential methods start def _del_doc_by_id(self, _id: str): self._sql(f'DELETE FROM {self._table_name} WHERE doc_id=?', (_id,)) self._save_offset2ids() self._commit() def _set_doc_by_id(self, _id: str, value: 'Document'): self._sql( f'UPDATE {self._table_name} SET serialized_value=?, doc_id=? WHERE doc_id=?', (value, value.id, _id), ) self._commit() def _get_doc_by_id(self, id: str) -> 'Document': r = self._sql( f'SELECT serialized_value FROM {self._table_name} WHERE doc_id = ?', (id,) ) res = r.fetchone() if res is None: raise KeyError(f'Can not find Document with id=`{id}`') return res[0] # essentials end here # now start the optimized bulk methods def _get_docs_by_offsets(self, offsets: Sequence[int]) -> Iterable['Document']: ids = [self._offset2ids.get_id(offset) for offset in offsets] return self._get_docs_by_ids(ids) def _clear_storage(self): self._sql(f'DELETE FROM {self._table_name}') self._commit() def _del_docs_by_ids(self, ids: str) -> Iterable['Document']: self._sql( f"DELETE FROM {self._table_name} WHERE doc_id in ({','.join(['?'] * len(ids))})", ids, ) self._save_offset2ids() self._commit() def _load_offset2ids(self): if self._list_like: r = self._sql( f"SELECT doc_id FROM {self._table_name} ORDER BY item_order", ) self._offset2ids = Offset2ID( list(map(itemgetter(0), r)), list_like=self._list_like ) else: self._offset2ids = Offset2ID([], list_like=self._list_like) def _save_offset2ids(self): if self._list_like: for offset, doc_id in enumerate(self._offset2ids): self._sql( f""" UPDATE {self._table_name} SET item_order = ? WHERE {self._table_name}.doc_id = ? """, (offset, doc_id), ) self._commit() def _del_docs(self, ids): super()._del_docs(ids) self._save_offset2ids() def _del_doc_by_offset(self, offset: int): super()._del_doc_by_offset(offset) self._save_offset2ids()
from operator import itemgetter from typing import Sequence, Iterable from docarray.array.storage.base.getsetdel import BaseGetSetDelMixin from docarray.array.storage.base.helper import Offset2ID from docarray import Document class GetSetDelMixin(BaseGetSetDelMixin): """Implement required and derived functions that power `getitem`, `setitem`, `delitem`""" # essential methods start def _del_doc_by_id(self, _id: str): self._sql(f'DELETE FROM {self._table_name} WHERE doc_id=?', (_id,)) self._save_offset2ids() self._commit() def _set_doc_by_id(self, _id: str, value: 'Document'): self._sql( f'UPDATE {self._table_name} SET serialized_value=?, doc_id=? WHERE doc_id=?', (value, value.id, _id), ) self._commit() def _get_doc_by_id(self, id: str) -> 'Document': r = self._sql( f'SELECT serialized_value FROM {self._table_name} WHERE doc_id = ?', (id,) ) res = r.fetchone() if res is None: raise KeyError(f'Can not find Document with id=`{id}`') return res[0] # essentials end here # now start the optimized bulk methods def _get_docs_by_offsets(self, offsets: Sequence[int]) -> Iterable['Document']: ids = [self._offset2ids.get_id(offset) for offset in offsets] return self._get_docs_by_ids(ids) def _clear_storage(self): self._sql(f'DELETE FROM {self._table_name}') self._commit() def _del_docs_by_ids(self, ids: str) -> Iterable['Document']: self._sql( f"DELETE FROM {self._table_name} WHERE doc_id in ({','.join(['?'] * len(ids))})", ids, ) self._save_offset2ids() self._commit() def _load_offset2ids(self): r = self._sql( f"SELECT doc_id FROM {self._table_name} ORDER BY item_order", ) self._offset2ids = Offset2ID(list(map(itemgetter(0), r))) def _save_offset2ids(self): for offset, doc_id in enumerate(self._offset2ids): self._sql( f""" UPDATE {self._table_name} SET item_order = ? WHERE {self._table_name}.doc_id = ? """, (offset, doc_id), ) self._commit() def _del_docs(self, ids): super()._del_docs(ids) self._save_offset2ids() def _del_doc_by_offset(self, offset: int): super()._del_doc_by_offset(offset) self._save_offset2ids()
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.torch_tensor import TorchTensor, metaTorchAndNode @_register_proto(proto_type_name='audio_torch_tensor') class AudioTorchTensor(AbstractAudioTensor, TorchTensor, metaclass=metaTorchAndNode): """ Subclass of TorchTensor, to represent an audio tensor. Adds audio-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional import torch from docarray import BaseDoc from docarray.typing import AudioTorchTensor, AudioUrl class MyAudioDoc(BaseDoc): title: str audio_tensor: Optional[AudioTorchTensor] url: Optional[AudioUrl] bytes_: Optional[bytes] doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=torch.randn(size=(1000, 2)), ) doc_1.audio_tensor.save(file_path='path/to/file_1.wav') doc_1.bytes_ = doc_1.audio_tensor.to_bytes() doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor = doc_2.url.load() doc_2.audio_tensor.save(file_path='path/to/file_2.wav') doc_2.bytes_ = doc_1.audio_tensor.to_bytes() """ ...
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.torch_tensor import TorchTensor, metaTorchAndNode @_register_proto(proto_type_name='audio_torch_tensor') class AudioTorchTensor(AbstractAudioTensor, TorchTensor, metaclass=metaTorchAndNode): """ Subclass of TorchTensor, to represent an audio tensor. Adds audio-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional import torch from docarray import BaseDocument from docarray.typing import AudioTorchTensor, AudioUrl class MyAudioDoc(BaseDocument): title: str audio_tensor: Optional[AudioTorchTensor] url: Optional[AudioUrl] bytes_: Optional[bytes] doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=torch.randn(size=(1000, 2)), ) doc_1.audio_tensor.save(file_path='path/to/file_1.wav') doc_1.bytes_ = doc_1.audio_tensor.to_bytes() doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor = doc_2.url.load() doc_2.audio_tensor.save(file_path='path/to/file_2.wav') doc_2.bytes_ = doc_1.audio_tensor.to_bytes() """ ...
from pydantic import Field from pydantic_settings import BaseSettings, SettingsConfigDict class Settings(BaseSettings): launch_darkly_sdk_key: str = Field( default="", description="The Launch Darkly SDK key", validation_alias="LAUNCH_DARKLY_SDK_KEY", ) model_config = SettingsConfigDict(case_sensitive=True, extra="ignore") SETTINGS = Settings()
from pydantic import Field from pydantic_settings import BaseSettings, SettingsConfigDict class Settings(BaseSettings): launch_darkly_sdk_key: str = Field( default="", description="The Launch Darkly SDK key", validation_alias="LAUNCH_DARKLY_SDK_KEY" ) model_config = SettingsConfigDict(case_sensitive=True, extra="ignore") SETTINGS = Settings()
"""Mixture modeling algorithms.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._bayesian_mixture import BayesianGaussianMixture from ._gaussian_mixture import GaussianMixture __all__ = ["BayesianGaussianMixture", "GaussianMixture"]
"""Mixture modeling algorithms.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._bayesian_mixture import BayesianGaussianMixture from ._gaussian_mixture import GaussianMixture __all__ = ["GaussianMixture", "BayesianGaussianMixture"]
from typing import TYPE_CHECKING, Any, Dict, List, Optional, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.url.mimetypes import POINT_CLOUD_EXTRA_EXTENSIONS from docarray.typing.url.url_3d.url_3d import Url3D if TYPE_CHECKING: from docarray.documents.point_cloud.points_and_colors import PointsAndColors T = TypeVar('T', bound='PointCloud3DUrl') @_register_proto(proto_type_name='point_cloud_url') class PointCloud3DUrl(Url3D): """ URL to a file containing point cloud information. Can be remote (web) URL, or a local file path. """ @classmethod def extra_extensions(cls) -> List[str]: """ Returns a list of additional file extensions that are valid for this class but cannot be identified by the mimetypes library. """ return POINT_CLOUD_EXTRA_EXTENSIONS def load( self: T, samples: int, multiple_geometries: bool = False, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> 'PointsAndColors': """ Load the data from the url into an `NdArray` containing point cloud information. --- ```python import numpy as np from docarray import BaseDoc from docarray.typing import PointCloud3DUrl class MyDoc(BaseDoc): point_cloud_url: PointCloud3DUrl doc = MyDoc(point_cloud_url="thttps://people.sc.fsu.edu/~jburkardt/data/obj/al.obj") # point_cloud = doc.point_cloud_url.load(samples=100) # assert isinstance(point_cloud, np.ndarray) # assert point_cloud.shape == (100, 3) ``` --- :param samples: number of points to sample from the mesh :param multiple_geometries: if False, store point cloud in 2D np.ndarray. If True, store point clouds from multiple geometries in 3D np.ndarray. :param skip_materials: Skip materials if True, else load. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: np.ndarray representing the point cloud """ from docarray.documents.point_cloud.points_and_colors import PointsAndColors if not trimesh_args: trimesh_args = {} if multiple_geometries: # try to coerce everything into a scene scene = self._load_trimesh_instance( force='scene', skip_materials=skip_materials, **trimesh_args ) point_cloud = np.stack( [np.array(geo.sample(samples)) for geo in scene.geometry.values()], axis=0, ) else: # combine a scene into a single mesh mesh = self._load_trimesh_instance(force='mesh', **trimesh_args) point_cloud = np.array(mesh.sample(samples)) points = parse_obj_as(NdArray, point_cloud) return PointsAndColors(points=points, colors=None) def display( self, samples: int = 10000, ) -> None: """ Plot point cloud from url. First, it loads the point cloud into a `PointsAndColors` object, and then calls display on it. The following is therefore equivalent: --- ```python import numpy as np from docarray import BaseDoc from docarray.documents import PointCloud3D pc = PointCloud3D(url="https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj") # option 1 # pc.url.display() # option 2 (equivalent) # pc.url.load(samples=10000).display() ``` --- :param samples: number of points to sample from the mesh. """ self.load(samples=samples, skip_materials=False).display()
from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.url.url_3d.url_3d import Url3D if TYPE_CHECKING: from docarray.documents.point_cloud.points_and_colors import PointsAndColors T = TypeVar('T', bound='PointCloud3DUrl') @_register_proto(proto_type_name='point_cloud_url') class PointCloud3DUrl(Url3D): """ URL to a file containing point cloud information. Can be remote (web) URL, or a local file path. """ def load( self: T, samples: int, multiple_geometries: bool = False, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> 'PointsAndColors': """ Load the data from the url into an `NdArray` containing point cloud information. --- ```python import numpy as np from docarray import BaseDoc from docarray.typing import PointCloud3DUrl class MyDoc(BaseDoc): point_cloud_url: PointCloud3DUrl doc = MyDoc(point_cloud_url="thttps://people.sc.fsu.edu/~jburkardt/data/obj/al.obj") # point_cloud = doc.point_cloud_url.load(samples=100) # assert isinstance(point_cloud, np.ndarray) # assert point_cloud.shape == (100, 3) ``` --- :param samples: number of points to sample from the mesh :param multiple_geometries: if False, store point cloud in 2D np.ndarray. If True, store point clouds from multiple geometries in 3D np.ndarray. :param skip_materials: Skip materials if True, else load. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: np.ndarray representing the point cloud """ from docarray.documents.point_cloud.points_and_colors import PointsAndColors if not trimesh_args: trimesh_args = {} if multiple_geometries: # try to coerce everything into a scene scene = self._load_trimesh_instance( force='scene', skip_materials=skip_materials, **trimesh_args ) point_cloud = np.stack( [np.array(geo.sample(samples)) for geo in scene.geometry.values()], axis=0, ) else: # combine a scene into a single mesh mesh = self._load_trimesh_instance(force='mesh', **trimesh_args) point_cloud = np.array(mesh.sample(samples)) points = parse_obj_as(NdArray, point_cloud) return PointsAndColors(points=points, colors=None) def display( self, samples: int = 10000, ) -> None: """ Plot point cloud from url. First, it loads the point cloud into a `PointsAndColors` object, and then calls display on it. The following is therefore equivalent: --- ```python import numpy as np from docarray import BaseDoc from docarray.documents import PointCloud3D pc = PointCloud3D(url="https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj") # option 1 # pc.url.display() # option 2 (equivalent) # pc.url.load(samples=10000).display() ``` --- :param samples: number of points to sample from the mesh. """ self.load(samples=samples, skip_materials=False).display()
from . import utils from .model import ( hubert_base, hubert_large, hubert_pretrain_base, hubert_pretrain_large, hubert_pretrain_model, hubert_pretrain_xlarge, hubert_xlarge, HuBERTPretrainModel, wav2vec2_base, wav2vec2_large, wav2vec2_large_lv60k, wav2vec2_model, wav2vec2_xlsr_1b, wav2vec2_xlsr_2b, wav2vec2_xlsr_300m, Wav2Vec2Model, wavlm_base, wavlm_large, wavlm_model, ) __all__ = [ "Wav2Vec2Model", "HuBERTPretrainModel", "wavlm_model", "wavlm_base", "wavlm_large", "wav2vec2_model", "wav2vec2_base", "wav2vec2_large", "wav2vec2_large_lv60k", "hubert_base", "hubert_large", "hubert_xlarge", "hubert_pretrain_model", "hubert_pretrain_base", "hubert_pretrain_large", "hubert_pretrain_xlarge", "utils", "wav2vec2_xlsr_300m", "wav2vec2_xlsr_1b", "wav2vec2_xlsr_2b", ]
from . import utils from .model import ( hubert_base, hubert_large, hubert_pretrain_base, hubert_pretrain_large, hubert_pretrain_model, hubert_pretrain_xlarge, hubert_xlarge, HuBERTPretrainModel, wav2vec2_base, wav2vec2_large, wav2vec2_large_lv60k, wav2vec2_model, Wav2Vec2Model, wavlm_base, wavlm_large, wavlm_model, ) __all__ = [ "Wav2Vec2Model", "HuBERTPretrainModel", "wavlm_model", "wavlm_base", "wavlm_large", "wav2vec2_model", "wav2vec2_base", "wav2vec2_large", "wav2vec2_large_lv60k", "hubert_base", "hubert_large", "hubert_xlarge", "hubert_pretrain_model", "hubert_pretrain_base", "hubert_pretrain_large", "hubert_pretrain_xlarge", "utils", ]
"""Data struct for document summary index.""" from dataclasses import dataclass, field from typing import Dict, List from llama_index.core.data_structs.data_structs import IndexStruct from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.schema import BaseNode @dataclass class IndexDocumentSummary(IndexStruct): """ A simple struct containing a mapping from summary node_id to doc node_ids. Also mapping vice versa. """ summary_id_to_node_ids: Dict[str, List[str]] = field(default_factory=dict) node_id_to_summary_id: Dict[str, str] = field(default_factory=dict) # track mapping from doc id to node summary id doc_id_to_summary_id: Dict[str, str] = field(default_factory=dict) def add_summary_and_nodes( self, summary_node: BaseNode, nodes: List[BaseNode], ) -> str: """Add node and summary.""" summary_id = summary_node.node_id ref_doc_id = summary_node.ref_doc_id if ref_doc_id is None: raise ValueError( "ref_doc_id of node cannot be None when building a document " "summary index" ) self.doc_id_to_summary_id[ref_doc_id] = summary_id for node in nodes: node_id = node.node_id if summary_id not in self.summary_id_to_node_ids: self.summary_id_to_node_ids[summary_id] = [] self.summary_id_to_node_ids[summary_id].append(node_id) self.node_id_to_summary_id[node_id] = summary_id return summary_id @property def summary_ids(self) -> List[str]: """Get summary ids.""" return list(self.summary_id_to_node_ids.keys()) def delete(self, doc_id: str) -> None: """Delete a document and its nodes.""" summary_id = self.doc_id_to_summary_id[doc_id] del self.doc_id_to_summary_id[doc_id] node_ids = self.summary_id_to_node_ids[summary_id] for node_id in node_ids: del self.node_id_to_summary_id[node_id] del self.summary_id_to_node_ids[summary_id] def delete_nodes(self, node_ids: List[str]) -> None: for node_id in node_ids: summary_id = self.node_id_to_summary_id[node_id] self.summary_id_to_node_ids[summary_id].remove(node_id) del self.node_id_to_summary_id[node_id] @classmethod def get_type(cls) -> IndexStructType: """Get type.""" return IndexStructType.DOCUMENT_SUMMARY
"""Data struct for document summary index.""" from dataclasses import dataclass, field from typing import Dict, List from llama_index.core.data_structs.data_structs import IndexStruct from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.schema import BaseNode @dataclass class IndexDocumentSummary(IndexStruct): """A simple struct containing a mapping from summary node_id to doc node_ids. Also mapping vice versa. """ summary_id_to_node_ids: Dict[str, List[str]] = field(default_factory=dict) node_id_to_summary_id: Dict[str, str] = field(default_factory=dict) # track mapping from doc id to node summary id doc_id_to_summary_id: Dict[str, str] = field(default_factory=dict) def add_summary_and_nodes( self, summary_node: BaseNode, nodes: List[BaseNode], ) -> str: """Add node and summary.""" summary_id = summary_node.node_id ref_doc_id = summary_node.ref_doc_id if ref_doc_id is None: raise ValueError( "ref_doc_id of node cannot be None when building a document " "summary index" ) self.doc_id_to_summary_id[ref_doc_id] = summary_id for node in nodes: node_id = node.node_id if summary_id not in self.summary_id_to_node_ids: self.summary_id_to_node_ids[summary_id] = [] self.summary_id_to_node_ids[summary_id].append(node_id) self.node_id_to_summary_id[node_id] = summary_id return summary_id @property def summary_ids(self) -> List[str]: """Get summary ids.""" return list(self.summary_id_to_node_ids.keys()) def delete(self, doc_id: str) -> None: """Delete a document and its nodes.""" summary_id = self.doc_id_to_summary_id[doc_id] del self.doc_id_to_summary_id[doc_id] node_ids = self.summary_id_to_node_ids[summary_id] for node_id in node_ids: del self.node_id_to_summary_id[node_id] del self.summary_id_to_node_ids[summary_id] def delete_nodes(self, node_ids: List[str]) -> None: for node_id in node_ids: summary_id = self.node_id_to_summary_id[node_id] self.summary_id_to_node_ids[summary_id].remove(node_id) del self.node_id_to_summary_id[node_id] @classmethod def get_type(cls) -> IndexStructType: """Get type.""" return IndexStructType.DOCUMENT_SUMMARY
from typing import Union, TypeVar, Any, TYPE_CHECKING, Type, cast import numpy as np if TYPE_CHECKING: from pydantic.fields import ModelField from pydantic import BaseConfig from docarray.document.base_node import BaseNode from docarray.proto import NdArrayProto, NodeProto T = TypeVar('T', bound='Tensor') class Tensor(np.ndarray, BaseNode): @classmethod def __get_validators__(cls): # one or more validators may be yielded which will be called in the # order to validate the input, each validator will receive as an input # the value returned from the previous validator yield cls.validate @classmethod def validate( cls: Type[T], value: Union[T, Any], field: 'ModelField', config: 'BaseConfig' ) -> T: if isinstance(value, np.ndarray): return cls.from_ndarray(value) elif isinstance(value, Tensor): return cast(T, value) else: try: arr: np.ndarray = np.ndarray(value) return cls.from_ndarray(arr) except Exception: pass # handled below raise ValueError(f'Expected a numpy.ndarray, got {type(value)}') @classmethod def from_ndarray(cls: Type[T], value: np.ndarray) -> T: return value.view(cls) def _to_nested_item_protobuf(self: T) -> 'NodeProto': """Convert Document into a nested item protobuf message. This function should be called when the Document is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ nd_proto = NdArrayProto() self.flush_ndarray(nd_proto, value=self) NodeProto(tensor=nd_proto) return NodeProto(tensor=nd_proto) @classmethod def read_ndarray(cls: Type[T], pb_msg: 'NdArrayProto') -> 'T': """ read ndarray from a proto msg :param pb_msg: :return: a numpy array """ source = pb_msg.dense if source.buffer: x = np.frombuffer(source.buffer, dtype=source.dtype) return cls.from_ndarray(x.reshape(source.shape)) elif len(source.shape) > 0: return cls.from_ndarray(np.zeros(source.shape)) else: raise ValueError(f'proto message {pb_msg} cannot be cast to a Tensor') @staticmethod def flush_ndarray(pb_msg: 'NdArrayProto', value: 'Tensor'): pb_msg.dense.buffer = value.tobytes() pb_msg.dense.ClearField('shape') pb_msg.dense.shape.extend(list(value.shape)) pb_msg.dense.dtype = value.dtype.str
from typing import Union, TypeVar, Any, TYPE_CHECKING, Type, cast import numpy as np if TYPE_CHECKING: from pydantic.fields import ModelField from pydantic import BaseConfig, PydanticValueError from docarray.document.base_node import BaseNode from docarray.proto import DocumentProto, NdArrayProto, NodeProto T = TypeVar('T', bound='Tensor') class Tensor(np.ndarray, BaseNode): @classmethod def __get_validators__(cls): # one or more validators may be yielded which will be called in the # order to validate the input, each validator will receive as an input # the value returned from the previous validator yield cls.validate @classmethod def validate(cls: Type[T], value: Union[T, Any], field: 'ModelField', config: 'BaseConfig') -> T: if isinstance(value, np.ndarray): return cls.from_ndarray(value) elif isinstance(value, Tensor): return cast(T, value) else: try: arr: np.ndarray = np.ndarray(value) return cls.from_ndarray(arr) except Exception: pass # handled below raise ValueError(f'Expected a numpy.ndarray, got {type(value)}') @classmethod def from_ndarray(cls: Type[T], value: np.ndarray) -> T: return value.view(cls) def _to_nested_item_protobuf(self: T) -> 'NodeProto': """Convert Document into a nested item protobuf message. This function should be called when the Document is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ nd_proto = NdArrayProto() self.flush_ndarray(nd_proto, value=self) NodeProto(tensor=nd_proto) return NodeProto(tensor=nd_proto) @classmethod def read_ndarray(cls: Type[T], pb_msg: 'NdArrayProto') -> 'T': """ read ndarray from a proto msg :param pb_msg: :return: a numpy array """ source = pb_msg.dense if source.buffer: x = np.frombuffer(source.buffer, dtype=source.dtype) return cls.from_ndarray(x.reshape(source.shape)) elif len(source.shape) > 0: return cls.from_ndarray(np.zeros(source.shape)) else: raise ValueError(f'proto message {pb_msg} cannot be cast to a Tensor') @staticmethod def flush_ndarray(pb_msg: 'NdArrayProto', value: 'Tensor'): pb_msg.dense.buffer = value.tobytes() pb_msg.dense.ClearField('shape') pb_msg.dense.shape.extend(list(value.shape)) pb_msg.dense.dtype = value.dtype.str
# Copyright (c) OpenMMLab. All rights reserved. from .default_scope import DefaultScope from .registry import Registry, build_from_cfg from .root import (DATA_SAMPLERS, DATASETS, HOOKS, LOG_PROCESSOR, LOOPS, METRICS, MODEL_WRAPPERS, MODELS, OPTIMIZER_CONSTRUCTORS, OPTIMIZERS, PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS, TRANSFORMS, VISBACKENDS, VISUALIZERS, WEIGHT_INITIALIZERS) from .utils import count_registered_modules, traverse_registry_tree __all__ = [ 'Registry', 'build_from_cfg', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIMIZER_CONSTRUCTORS', 'TASK_UTILS', 'PARAM_SCHEDULERS', 'METRICS', 'MODEL_WRAPPERS', 'LOOPS', 'VISBACKENDS', 'VISUALIZERS', 'LOG_PROCESSOR', 'DefaultScope', 'traverse_registry_tree', 'count_registered_modules' ]
# Copyright (c) OpenMMLab. All rights reserved. from .default_scope import DefaultScope from .registry import Registry, build_from_cfg from .root import (DATA_SAMPLERS, DATASETS, HOOKS, LOOPS, METRICS, MODEL_WRAPPERS, MODELS, OPTIMIZER_CONSTRUCTORS, OPTIMIZERS, PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS, TRANSFORMS, VISBACKENDS, VISUALIZERS, WEIGHT_INITIALIZERS) from .utils import count_registered_modules, traverse_registry_tree __all__ = [ 'Registry', 'build_from_cfg', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIMIZER_CONSTRUCTORS', 'TASK_UTILS', 'PARAM_SCHEDULERS', 'METRICS', 'MODEL_WRAPPERS', 'LOOPS', 'VISBACKENDS', 'VISUALIZERS', 'DefaultScope', 'traverse_registry_tree', 'count_registered_modules' ]
"""Build configuration""" import dataclasses from typing import Any, Dict, List, Optional @dataclasses.dataclass class BuildConfiguration: # pylint: disable=R0902 """Configurations use when building libxgboost""" # Whether to hide C++ symbols in libxgboost.so hide_cxx_symbols: bool = True # Whether to enable OpenMP use_openmp: bool = True # Whether to enable CUDA use_cuda: bool = False # Whether to enable NCCL use_nccl: bool = False # Whether to load nccl dynamically use_dlopen_nccl: bool = False # Whether to enable federated learning plugin_federated: bool = False # Whether to enable rmm support plugin_rmm: bool = False # Special option: See explanation below use_system_libxgboost: bool = False def _set_config_setting(self, config_settings: Dict[str, Any]) -> None: for field_name in config_settings: setattr( self, field_name, (config_settings[field_name].lower() in ["true", "1", "on"]), ) def update(self, config_settings: Optional[Dict[str, Any]]) -> None: """Parse config_settings from Pip (or other PEP 517 frontend)""" if config_settings is not None: self._set_config_setting(config_settings) def get_cmake_args(self) -> List[str]: """Convert build configuration to CMake args""" cmake_args = [] for field_name in [x.name for x in dataclasses.fields(self)]: if field_name in ["use_system_libxgboost"]: continue cmake_option = field_name.upper() cmake_value = "ON" if getattr(self, field_name) is True else "OFF" cmake_args.append(f"-D{cmake_option}={cmake_value}") return cmake_args
"""Build configuration""" import dataclasses from typing import Any, Dict, List, Optional @dataclasses.dataclass class BuildConfiguration: # pylint: disable=R0902 """Configurations use when building libxgboost""" # Whether to hide C++ symbols in libxgboost.so hide_cxx_symbols: bool = True # Whether to enable OpenMP use_openmp: bool = True # Whether to enable CUDA use_cuda: bool = False # Whether to enable NCCL use_nccl: bool = False # Whether to load nccl dynamically use_dlopen_nccl: bool = False # Whether to enable federated learning plugin_federated: bool = False # Whether to enable rmm support plugin_rmm: bool = False # Special option: See explanation below use_system_libxgboost: bool = False def _set_config_setting(self, config_settings: Dict[str, Any]) -> None: for field_name in config_settings: setattr( self, field_name, (config_settings[field_name].lower() in ["true", "1", "on"]), ) def update(self, config_settings: Optional[Dict[str, Any]]) -> None: """Parse config_settings from Pip (or other PEP 517 frontend)""" if config_settings is not None: self._set_config_setting(config_settings) def get_cmake_args(self) -> List[str]: """Convert build configuration to CMake args""" cmake_args = [] for field_name in [x.name for x in dataclasses.fields(self)]: if field_name in ["use_system_libxgboost"]: continue cmake_option = field_name.upper() cmake_value = "ON" if getattr(self, field_name) is True else "OFF" cmake_args.append(f"-D{cmake_option}={cmake_value}") return cmake_args
from typing import Any, Dict, List, Optional, Union from docarray.utils._internal.query_language.lookup import ( LookupLeaf, LookupNode, LookupTreeElem, Q, ) LOGICAL_OPERATORS: Dict[str, Union[str, bool]] = { '$and': 'and', '$or': 'or', '$not': True, } COMPARISON_OPERATORS = { '$lt': 'lt', '$gt': 'gt', '$lte': 'lte', '$gte': 'gte', '$eq': 'exact', '$neq': 'neq', '$exists': 'exists', } REGEX_OPERATORS = {'$regex': 'regex'} ARRAY_OPERATORS = {'$size': 'size'} MEMBERSHIP_OPERATORS = {'$in': 'in', '$nin': 'nin'} SUPPORTED_OPERATORS = { **COMPARISON_OPERATORS, **ARRAY_OPERATORS, **REGEX_OPERATORS, **MEMBERSHIP_OPERATORS, } def _parse_lookups( data: Union[Dict, List] = {}, root_node: Optional[LookupTreeElem] = None ) -> Optional[LookupTreeElem]: if isinstance(data, dict): for key, value in data.items(): node: Optional[LookupTreeElem] = None if isinstance(root_node, LookupLeaf): root = LookupNode() root.add_child(root_node) root_node = root if key in LOGICAL_OPERATORS: if key == '$not': node = LookupNode(negate=True) else: node = LookupNode(op=LOGICAL_OPERATORS[key]) node = _parse_lookups(value, root_node=node) elif key.startswith('$'): raise ValueError( f'The operator {key} is not supported yet,' f' please double check the given filters!' ) else: if not value or not isinstance(value, dict): raise ValueError( '''Not a valid query. It should follow the format: { <field1>: { <operator1>: <value1> }, ... } ''' ) items = list(value.items()) if len(items) == 1: op, val = items[0] if op in LOGICAL_OPERATORS: if op == '$not': node = LookupNode(negate=True) else: node = LookupNode(op=LOGICAL_OPERATORS[op]) node = _parse_lookups(val, root_node=node) elif op in SUPPORTED_OPERATORS: node = Q(**{f'{key}.{SUPPORTED_OPERATORS[op]}': val}) else: raise ValueError( f'The operator {op} is not supported yet, ' f'please double check the given filters!' ) else: node = LookupNode() for op, val in items: _node = _parse_lookups({key: {op: val}}) node.add_child(_node) if root_node and node: if isinstance(root_node, LookupNode): root_node.add_child(node) elif node: root_node = node elif isinstance(data, list): for d in data: node = _parse_lookups(d) if root_node and node: if isinstance(root_node, LookupNode): root_node.add_child(node) elif node: root_node = node else: raise ValueError(f'The query is illegal: `{data}`') return root_node class QueryParser: """A class to parse dict condition to lookup query.""" def __init__(self, conditions: Union[Dict, List] = {}): self.conditions = conditions self.lookup_groups = _parse_lookups(self.conditions) def evaluate(self, doc: Any) -> bool: return self.lookup_groups.evaluate(doc) if self.lookup_groups else True def __call__(self, doc: Any) -> bool: return self.evaluate(doc)
from typing import Any, Dict, List, Optional, Union from docarray.utils._internal.query_language.lookup import ( LookupLeaf, LookupNode, LookupTreeElem, Q, ) LOGICAL_OPERATORS: Dict[str, Union[str, bool]] = { '$and': 'and', '$or': 'or', '$not': True, } COMPARISON_OPERATORS = { '$lt': 'lt', '$gt': 'gt', '$lte': 'lte', '$gte': 'gte', '$eq': 'exact', '$neq': 'neq', '$exists': 'exists', } REGEX_OPERATORS = {'$regex': 'regex'} ARRAY_OPERATORS = {'$size': 'size'} MEMBERSHIP_OPERATORS = {'$in': 'in', '$nin': 'nin'} SUPPORTED_OPERATORS = { **COMPARISON_OPERATORS, **ARRAY_OPERATORS, **REGEX_OPERATORS, **MEMBERSHIP_OPERATORS, } def _parse_lookups( data: Union[Dict, List] = {}, root_node: Optional[LookupTreeElem] = None ) -> Optional[LookupTreeElem]: if isinstance(data, dict): for key, value in data.items(): node: Optional[LookupTreeElem] = None if isinstance(root_node, LookupLeaf): root = LookupNode() root.add_child(root_node) root_node = root if key in LOGICAL_OPERATORS: if key == '$not': node = LookupNode(negate=True) else: node = LookupNode(op=LOGICAL_OPERATORS[key]) node = _parse_lookups(value, root_node=node) elif key.startswith('$'): raise ValueError( f'The operator {key} is not supported yet,' f' please double check the given filters!' ) else: if not value or not isinstance(value, dict): raise ValueError( '''Not a valid query. It should follow the format: { <field1>: { <operator1>: <value1> }, ... } ''' ) items = list(value.items()) if len(items) == 1: op, val = items[0] if op in LOGICAL_OPERATORS: if op == '$not': node = LookupNode(negate=True) else: node = LookupNode(op=LOGICAL_OPERATORS[op]) node = _parse_lookups(val, root_node=node) elif op in SUPPORTED_OPERATORS: node = Q(**{f'{key}.{SUPPORTED_OPERATORS[op]}': val}) else: raise ValueError( f'The operator {op} is not supported yet, ' f'please double check the given filters!' ) else: node = LookupNode() for op, val in items: _node = _parse_lookups({key: {op: val}}) node.add_child(_node) if root_node and node: if isinstance(root_node, LookupNode): root_node.add_child(node) elif node: root_node = node elif isinstance(data, list): for d in data: node = _parse_lookups(d) if root_node and node: if isinstance(root_node, LookupNode): root_node.add_child(node) elif node: root_node = node else: raise ValueError(f'The query is illegal: `{data}`') return root_node class QueryParser: """A class to parse dict condition to lookup query.""" def __init__(self, conditions: Union[Dict, List] = {}): self.conditions = conditions self.lookup_groups = _parse_lookups(self.conditions) def evaluate(self, doc: Any) -> bool: return self.lookup_groups.evaluate(doc) if self.lookup_groups else True def __call__(self, doc: Any) -> bool: return self.evaluate(doc)
import os from deprecated import deprecated from typing import Any, Optional from llama_index.multi_modal_llms.openai import OpenAIMultiModal DEFAULT_API_BASE = "https://api.studio.nebius.ai/v1" @deprecated( reason="This class has been deprecated and will no longer be maintained. Please use llama-index-llms-nebius instead. See Multi Modal LLMs documentation for a complete guide on migration: https://docs.llamaindex.ai/en/stable/understanding/using_llms/using_llms/#multi-modal-llms", version="0.4.1", ) class NebiusMultiModal(OpenAIMultiModal): """ Nebius AI Studio Multimodal class. """ def __init__( self, model: str, api_key: Optional[str] = None, api_base: str = DEFAULT_API_BASE, **kwargs: Any, ) -> None: api_key = api_key or os.environ.get("NEBIUS_API_KEY", None) super().__init__( model=model, api_key=api_key, api_base=api_base, **kwargs, ) @classmethod def class_name(cls) -> str: """Get class name.""" return "nebius_multi_modal_llm" def _get_model_kwargs(self, **kwargs: Any) -> dict[str, Any]: base_kwargs = {"model": self.model, "temperature": self.temperature, **kwargs} if self.max_new_tokens is not None: base_kwargs["max_tokens"] = self.max_new_tokens return {**base_kwargs, **self.additional_kwargs}
import os from typing import Any, Optional from llama_index.multi_modal_llms.openai import OpenAIMultiModal DEFAULT_API_BASE = "https://api.studio.nebius.ai/v1" class NebiusMultiModal(OpenAIMultiModal): """ Nebius AI Studio Multimodal class. """ def __init__( self, model: str, api_key: Optional[str] = None, api_base: str = DEFAULT_API_BASE, **kwargs: Any, ) -> None: api_key = api_key or os.environ.get("NEBIUS_API_KEY", None) super().__init__( model=model, api_key=api_key, api_base=api_base, **kwargs, ) @classmethod def class_name(cls) -> str: """Get class name.""" return "nebius_multi_modal_llm" def _get_model_kwargs(self, **kwargs: Any) -> dict[str, Any]: base_kwargs = {"model": self.model, "temperature": self.temperature, **kwargs} if self.max_new_tokens is not None: base_kwargs["max_tokens"] = self.max_new_tokens return {**base_kwargs, **self.additional_kwargs}
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.activations import deserialize from keras.src.activations import get from keras.src.activations import serialize from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_shrink from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_silu as hard_swish from keras.src.activations.activations import hard_tanh from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_sigmoid from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import silu as swish from keras.src.activations.activations import soft_shrink from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import sparse_plus from keras.src.activations.activations import sparse_sigmoid from keras.src.activations.activations import sparsemax from keras.src.activations.activations import squareplus from keras.src.activations.activations import tanh from keras.src.activations.activations import tanh_shrink from keras.src.activations.activations import threshold
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.activations import deserialize from keras.src.activations import get from keras.src.activations import serialize from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_shrink from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_silu as hard_swish from keras.src.activations.activations import hard_tanh from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_sigmoid from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import silu as swish from keras.src.activations.activations import soft_shrink from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import sparse_plus from keras.src.activations.activations import sparsemax from keras.src.activations.activations import squareplus from keras.src.activations.activations import tanh from keras.src.activations.activations import tanh_shrink from keras.src.activations.activations import threshold
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule from mmengine.model import BaseModule from torch.utils.checkpoint import checkpoint from mmdet.registry import MODELS @MODELS.register_module() class HRFPN(BaseModule): """HRFPN (High Resolution Feature Pyramids) paper: `High-Resolution Representations for Labeling Pixels and Regions <https://arxiv.org/abs/1904.04514>`_. Args: in_channels (list): number of channels for each branch. out_channels (int): output channels of feature pyramids. num_outs (int): number of output stages. pooling_type (str): pooling for generating feature pyramids from {MAX, AVG}. conv_cfg (dict): dictionary to construct and config conv layer. norm_cfg (dict): dictionary to construct and config norm layer. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. stride (int): stride of 3x3 convolutional layers init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, in_channels, out_channels, num_outs=5, pooling_type='AVG', conv_cfg=None, norm_cfg=None, with_cp=False, stride=1, init_cfg=dict(type='Caffe2Xavier', layer='Conv2d')): super(HRFPN, self).__init__(init_cfg) assert isinstance(in_channels, list) self.in_channels = in_channels self.out_channels = out_channels self.num_ins = len(in_channels) self.num_outs = num_outs self.with_cp = with_cp self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.reduction_conv = ConvModule( sum(in_channels), out_channels, kernel_size=1, conv_cfg=self.conv_cfg, act_cfg=None) self.fpn_convs = nn.ModuleList() for i in range(self.num_outs): self.fpn_convs.append( ConvModule( out_channels, out_channels, kernel_size=3, padding=1, stride=stride, conv_cfg=self.conv_cfg, act_cfg=None)) if pooling_type == 'MAX': self.pooling = F.max_pool2d else: self.pooling = F.avg_pool2d def forward(self, inputs): """Forward function.""" assert len(inputs) == self.num_ins outs = [inputs[0]] for i in range(1, self.num_ins): outs.append( F.interpolate(inputs[i], scale_factor=2**i, mode='bilinear')) out = torch.cat(outs, dim=1) if out.requires_grad and self.with_cp: out = checkpoint(self.reduction_conv, out) else: out = self.reduction_conv(out) outs = [out] for i in range(1, self.num_outs): outs.append(self.pooling(out, kernel_size=2**i, stride=2**i)) outputs = [] for i in range(self.num_outs): if outs[i].requires_grad and self.with_cp: tmp_out = checkpoint(self.fpn_convs[i], outs[i]) else: tmp_out = self.fpn_convs[i](outs[i]) outputs.append(tmp_out) return tuple(outputs)
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule from mmcv.runner import BaseModule from torch.utils.checkpoint import checkpoint from mmdet.registry import MODELS @MODELS.register_module() class HRFPN(BaseModule): """HRFPN (High Resolution Feature Pyramids) paper: `High-Resolution Representations for Labeling Pixels and Regions <https://arxiv.org/abs/1904.04514>`_. Args: in_channels (list): number of channels for each branch. out_channels (int): output channels of feature pyramids. num_outs (int): number of output stages. pooling_type (str): pooling for generating feature pyramids from {MAX, AVG}. conv_cfg (dict): dictionary to construct and config conv layer. norm_cfg (dict): dictionary to construct and config norm layer. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. stride (int): stride of 3x3 convolutional layers init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, in_channels, out_channels, num_outs=5, pooling_type='AVG', conv_cfg=None, norm_cfg=None, with_cp=False, stride=1, init_cfg=dict(type='Caffe2Xavier', layer='Conv2d')): super(HRFPN, self).__init__(init_cfg) assert isinstance(in_channels, list) self.in_channels = in_channels self.out_channels = out_channels self.num_ins = len(in_channels) self.num_outs = num_outs self.with_cp = with_cp self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.reduction_conv = ConvModule( sum(in_channels), out_channels, kernel_size=1, conv_cfg=self.conv_cfg, act_cfg=None) self.fpn_convs = nn.ModuleList() for i in range(self.num_outs): self.fpn_convs.append( ConvModule( out_channels, out_channels, kernel_size=3, padding=1, stride=stride, conv_cfg=self.conv_cfg, act_cfg=None)) if pooling_type == 'MAX': self.pooling = F.max_pool2d else: self.pooling = F.avg_pool2d def forward(self, inputs): """Forward function.""" assert len(inputs) == self.num_ins outs = [inputs[0]] for i in range(1, self.num_ins): outs.append( F.interpolate(inputs[i], scale_factor=2**i, mode='bilinear')) out = torch.cat(outs, dim=1) if out.requires_grad and self.with_cp: out = checkpoint(self.reduction_conv, out) else: out = self.reduction_conv(out) outs = [out] for i in range(1, self.num_outs): outs.append(self.pooling(out, kernel_size=2**i, stride=2**i)) outputs = [] for i in range(self.num_outs): if outs[i].requires_grad and self.with_cp: tmp_out = checkpoint(self.fpn_convs[i], outs[i]) else: tmp_out = self.fpn_convs[i](outs[i]) outputs.append(tmp_out) return tuple(outputs)
from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.url.url_3d.url_3d import Url3D if TYPE_CHECKING: from docarray.documents.point_cloud.points_and_colors import PointsAndColors T = TypeVar('T', bound='PointCloud3DUrl') @_register_proto(proto_type_name='point_cloud_url') class PointCloud3DUrl(Url3D): """ URL to a .obj, .glb, or .ply file containing point cloud information. Can be remote (web) URL, or a local file path. """ def load( self: T, samples: int, multiple_geometries: bool = False, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> 'PointsAndColors': """ Load the data from the url into an NdArray containing point cloud information. EXAMPLE USAGE .. code-block:: python import numpy as np from docarray import BaseDoc from docarray.typing import PointCloud3DUrl class MyDoc(BaseDoc): point_cloud_url: PointCloud3DUrl doc = MyDoc(point_cloud_url="toydata/tetrahedron.obj") point_cloud = doc.point_cloud_url.load(samples=100) assert isinstance(point_cloud, np.ndarray) assert point_cloud.shape == (100, 3) :param samples: number of points to sample from the mesh :param multiple_geometries: if False, store point cloud in 2D np.ndarray. If True, store point clouds from multiple geometries in 3D np.ndarray. :param skip_materials: Skip materials if True, else load. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: np.ndarray representing the point cloud """ from docarray.documents.point_cloud.points_and_colors import PointsAndColors if not trimesh_args: trimesh_args = {} if multiple_geometries: # try to coerce everything into a scene scene = self._load_trimesh_instance( force='scene', skip_materials=skip_materials, **trimesh_args ) point_cloud = np.stack( [np.array(geo.sample(samples)) for geo in scene.geometry.values()], axis=0, ) else: # combine a scene into a single mesh mesh = self._load_trimesh_instance(force='mesh', **trimesh_args) point_cloud = np.array(mesh.sample(samples)) points = parse_obj_as(NdArray, point_cloud) return PointsAndColors(points=points, colors=None) def display( self, samples: int = 10000, ) -> None: """ Plot point cloud from url. To use this you need to install trimesh[easy]: `pip install 'trimesh[easy]'`. First, it loads the point cloud into a :class:`PointsAndColors` object, and then calls display on it. The following is therefore equivalent: .. code-block:: python import numpy as np from docarray import BaseDoc from docarray.documents import PointCloud3D pc = PointCloud3D("toydata/tetrahedron.obj") # option 1 pc.url.display() # option 2 (equivalent) pc.url.load(samples=10000).display() :param samples: number of points to sample from the mesh. """ self.load(samples=samples, skip_materials=False).display()
from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.url.url_3d.url_3d import Url3D if TYPE_CHECKING: from docarray.documents.point_cloud.points_and_colors import PointsAndColors T = TypeVar('T', bound='PointCloud3DUrl') @_register_proto(proto_type_name='point_cloud_url') class PointCloud3DUrl(Url3D): """ URL to a .obj, .glb, or .ply file containing point cloud information. Can be remote (web) URL, or a local file path. """ def load( self: T, samples: int, multiple_geometries: bool = False, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> 'PointsAndColors': """ Load the data from the url into an NdArray containing point cloud information. EXAMPLE USAGE .. code-block:: python import numpy as np from docarray import BaseDocument from docarray.typing import PointCloud3DUrl class MyDoc(BaseDocument): point_cloud_url: PointCloud3DUrl doc = MyDoc(point_cloud_url="toydata/tetrahedron.obj") point_cloud = doc.point_cloud_url.load(samples=100) assert isinstance(point_cloud, np.ndarray) assert point_cloud.shape == (100, 3) :param samples: number of points to sample from the mesh :param multiple_geometries: if False, store point cloud in 2D np.ndarray. If True, store point clouds from multiple geometries in 3D np.ndarray. :param skip_materials: Skip materials if True, else load. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: np.ndarray representing the point cloud """ from docarray.documents.point_cloud.points_and_colors import PointsAndColors if not trimesh_args: trimesh_args = {} if multiple_geometries: # try to coerce everything into a scene scene = self._load_trimesh_instance( force='scene', skip_materials=skip_materials, **trimesh_args ) point_cloud = np.stack( [np.array(geo.sample(samples)) for geo in scene.geometry.values()], axis=0, ) else: # combine a scene into a single mesh mesh = self._load_trimesh_instance(force='mesh', **trimesh_args) point_cloud = np.array(mesh.sample(samples)) points = parse_obj_as(NdArray, point_cloud) return PointsAndColors(points=points, colors=None) def display( self, samples: int = 10000, ) -> None: """ Plot point cloud from url. To use this you need to install trimesh[easy]: `pip install 'trimesh[easy]'`. First, it loads the point cloud into a :class:`PointsAndColors` object, and then calls display on it. The following is therefore equivalent: .. code-block:: python import numpy as np from docarray import BaseDocument from docarray.documents import PointCloud3D pc = PointCloud3D("toydata/tetrahedron.obj") # option 1 pc.url.display() # option 2 (equivalent) pc.url.load(samples=10000).display() :param samples: number of points to sample from the mesh. """ self.load(samples=samples, skip_materials=False).display()
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import polar from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy from keras.src.ops.nn import sparse_plus from keras.src.ops.nn import sparsemax from keras.src.ops.nn import squareplus from keras.src.ops.nn import tanh_shrink from keras.src.ops.nn import threshold
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy from keras.src.ops.nn import sparse_plus from keras.src.ops.nn import sparsemax from keras.src.ops.nn import squareplus from keras.src.ops.nn import tanh_shrink from keras.src.ops.nn import threshold
import warnings from abc import abstractmethod from typing import Iterable, Iterator, MutableSequence from docarray import Document, DocumentArray class BaseSequenceLikeMixin(MutableSequence[Document]): """Implement sequence-like methods""" def _update_subindices_append_extend(self, value): if getattr(self, '_subindices', None): for selector, da in self._subindices.items(): value = DocumentArray(value) if getattr(da, '_config', None) and da._config.root_id: for v in value: for doc in DocumentArray(v)[selector]: doc.tags['_root_id_'] = v.id docs_selector = value[selector] if len(docs_selector) > 0: da.extend(docs_selector) def insert(self, index: int, value: 'Document', **kwargs): """Insert `doc` at `index`. :param index: Position of the insertion. :param value: The doc needs to be inserted. :param kwargs: Additional Arguments that are passed to the Document Store. This has no effect for in-memory DocumentArray. """ self._set_doc_by_id(value.id, value, **kwargs) self._offset2ids.insert(index, value.id) def append(self, value: 'Document', **kwargs): """Append `doc` to the end of the array. :param value: The doc needs to be appended. """ self._append(value, **kwargs) self._update_subindices_append_extend(value) def _append(self, value, **kwargs): self._set_doc_by_id(value.id, value) self._offset2ids.append(value.id) @abstractmethod def __eq__(self, other): ... def __len__(self): ... def __iter__(self) -> Iterator['Document']: for _id in self._offset2ids: yield self._get_doc_by_id(_id) @abstractmethod def __contains__(self, other): ... def clear(self): """Clear the data of :class:`DocumentArray`""" self._del_all_docs() def __bool__(self): """To simulate ```l = []; if l: ...``` :return: returns true if the length of the array is larger than 0 """ return len(self) > 0 def extend(self, values: Iterable['Document'], **kwargs) -> None: from docarray.helper import check_root_id if self._is_subindex: check_root_id(self, values) self._extend(values, **kwargs) self._update_subindices_append_extend(values) def _extend(self, values, **kwargs): for value in values: self._append(value, **kwargs)
import warnings from abc import abstractmethod from typing import Iterable, Iterator, MutableSequence from docarray import Document, DocumentArray class BaseSequenceLikeMixin(MutableSequence[Document]): """Implement sequence-like methods""" def _update_subindices_append_extend(self, value): if getattr(self, '_subindices', None): for selector, da in self._subindices.items(): value = DocumentArray(value) if getattr(da, '_config', None) and da._config.root_id: for v in value: for doc in DocumentArray(v)[selector]: doc.tags['_root_id_'] = v.id docs_selector = value[selector] if len(docs_selector) > 0: da.extend(docs_selector) def insert(self, index: int, value: 'Document', **kwargs): """Insert `doc` at `index`. :param index: Position of the insertion. :param value: The doc needs to be inserted. :param kwargs: Additional Arguments that are passed to the Document Store. This has no effect for in-memory DocumentArray. """ self._set_doc_by_id(value.id, value, **kwargs) self._offset2ids.insert(index, value.id) def append(self, value: 'Document', **kwargs): """Append `doc` to the end of the array. :param value: The doc needs to be appended. """ self._append(value, **kwargs) self._update_subindices_append_extend(value) def _append(self, value, **kwargs): self._set_doc_by_id(value.id, value) self._offset2ids.append(value.id) @abstractmethod def __eq__(self, other): ... def __len__(self): return len(self._offset2ids) def __iter__(self) -> Iterator['Document']: for _id in self._offset2ids: yield self._get_doc_by_id(_id) @abstractmethod def __contains__(self, other): ... def clear(self): """Clear the data of :class:`DocumentArray`""" self._del_all_docs() def __bool__(self): """To simulate ```l = []; if l: ...``` :return: returns true if the length of the array is larger than 0 """ return len(self) > 0 def extend(self, values: Iterable['Document'], **kwargs) -> None: from docarray.helper import check_root_id if self._is_subindex: check_root_id(self, values) self._extend(values, **kwargs) self._update_subindices_append_extend(values) def _extend(self, values, **kwargs): for value in values: self._append(value, **kwargs)
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp from typing import Optional, Sequence, Tuple, Union import cv2 import numpy as np from mmengine.hooks import Hook from mmengine.registry import HOOKS from mmengine.utils.dl_utils import tensor2imgs DATA_BATCH = Optional[Union[dict, tuple, list]] # TODO: Due to interface changes, the current class # functions incorrectly @HOOKS.register_module() class NaiveVisualizationHook(Hook): """Show or Write the predicted results during the process of testing. Args: interval (int): Visualization interval. Defaults to 1. draw_gt (bool): Whether to draw the ground truth. Default to True. draw_pred (bool): Whether to draw the predicted result. Default to True. """ priority = 'NORMAL' def __init__(self, interval: int = 1, draw_gt: bool = True, draw_pred: bool = True): self.draw_gt = draw_gt self.draw_pred = draw_pred self._interval = interval def _unpad(self, input: np.ndarray, unpad_shape: Tuple[int, int]) -> np.ndarray: """Unpad the input image. Args: input (np.ndarray): The image to unpad. unpad_shape (tuple): The shape of image before padding. Returns: np.ndarray: The image before padding. """ unpad_width, unpad_height = unpad_shape unpad_image = input[:unpad_height, :unpad_width] return unpad_image def after_test_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Sequence] = None) -> None: """Show or Write the predicted results. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the test loop. data_batch (dict or tuple or list, optional): Data from dataloader. outputs (Sequence, optional): Outputs from model. """ if self.every_n_inner_iters(batch_idx, self._interval): for data, output in zip(data_batch, outputs): # type: ignore input = data['inputs'] data_sample = data['data_sample'] input = tensor2imgs(input, **data_sample.get('img_norm_cfg', dict()))[0] # TODO We will implement a function to revert the augmentation # in the future. ori_shape = (data_sample.ori_width, data_sample.ori_height) if 'pad_shape' in data_sample: input = self._unpad(input, data_sample.get('scale', ori_shape)) origin_image = cv2.resize(input, ori_shape) name = osp.basename(data_sample.img_path) runner.visualizer.add_datasample(name, origin_image, data_sample, output, self.draw_gt, self.draw_pred)
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp from typing import Optional, Sequence, Tuple import cv2 import numpy as np from mmengine.hooks import Hook from mmengine.registry import HOOKS from mmengine.structures import BaseDataElement from mmengine.utils.dl_utils import tensor2imgs # TODO: Due to interface changes, the current class # functions incorrectly @HOOKS.register_module() class NaiveVisualizationHook(Hook): """Show or Write the predicted results during the process of testing. Args: interval (int): Visualization interval. Defaults to 1. draw_gt (bool): Whether to draw the ground truth. Default to True. draw_pred (bool): Whether to draw the predicted result. Default to True. """ priority = 'NORMAL' def __init__(self, interval: int = 1, draw_gt: bool = True, draw_pred: bool = True): self.draw_gt = draw_gt self.draw_pred = draw_pred self._interval = interval def _unpad(self, input: np.ndarray, unpad_shape: Tuple[int, int]) -> np.ndarray: """Unpad the input image. Args: input (np.ndarray): The image to unpad. unpad_shape (tuple): The shape of image before padding. Returns: np.ndarray: The image before padding. """ unpad_width, unpad_height = unpad_shape unpad_image = input[:unpad_height, :unpad_width] return unpad_image def after_test_iter( self, runner, batch_idx: int, data_batch: Optional[Sequence[dict]] = None, outputs: Optional[Sequence[BaseDataElement]] = None) -> None: """Show or Write the predicted results. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the test loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (Sequence[BaseDataElement], optional): Outputs from model. Defaults to None. """ if self.every_n_inner_iters(batch_idx, self._interval): for data, output in zip(data_batch, outputs): # type: ignore input = data['inputs'] data_sample = data['data_sample'] input = tensor2imgs(input, **data_sample.get('img_norm_cfg', dict()))[0] # TODO We will implement a function to revert the augmentation # in the future. ori_shape = (data_sample.ori_width, data_sample.ori_height) if 'pad_shape' in data_sample: input = self._unpad(input, data_sample.get('scale', ori_shape)) origin_image = cv2.resize(input, ori_shape) name = osp.basename(data_sample.img_path) runner.visualizer.add_datasample(name, origin_image, data_sample, output, self.draw_gt, self.draw_pred)
from jina import Flow, Document, DocumentArray from ...flair_text import FlairTextEncoder def data_generator(num_docs): for i in range(num_docs): doc = Document( text='it is a good day! the dog sits on the floor.') yield doc def test_use_in_flow(): with Flow.load_config('flow.yml') as flow: data = flow.post(on='/encode', inputs=data_generator(5), return_results=True) docs = data[0].docs for doc in docs: assert doc.embedding.shape == (100,)
from jina import Flow, Document, DocumentArray from jinahub.encoder.flair_text import FlairTextEncoder def data_generator(num_docs): for i in range(num_docs): doc = Document( text='it is a good day! the dog sits on the floor.') yield doc def test_use_in_flow(): with Flow.load_config('flow.yml') as flow: data = flow.post(on='/encode', inputs=data_generator(5), return_results=True) docs = data[0].docs for doc in docs: assert doc.embedding.shape == (100,)
"""Code to help indexing data into a vectorstore. This package contains helper logic to help deal with indexing data into a vectorstore while avoiding duplicated content and over-writing content if it's unchanged. """ from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.indexing.api import IndexingResult, aindex, index from langchain_core.indexing.base import ( DeleteResponse, DocumentIndex, InMemoryRecordManager, RecordManager, UpsertResponse, ) __all__ = [ "aindex", "DeleteResponse", "DocumentIndex", "index", "IndexingResult", "InMemoryRecordManager", "RecordManager", "UpsertResponse", ] _dynamic_imports = { "aindex": "api", "index": "api", "IndexingResult": "api", "DeleteResponse": "base", "DocumentIndex": "base", "InMemoryRecordManager": "base", "RecordManager": "base", "UpsertResponse": "base", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""Code to help indexing data into a vectorstore. This package contains helper logic to help deal with indexing data into a vectorstore while avoiding duplicated content and over-writing content if it's unchanged. """ from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.indexing.api import IndexingResult, aindex, index from langchain_core.indexing.base import ( DeleteResponse, DocumentIndex, InMemoryRecordManager, RecordManager, UpsertResponse, ) __all__ = [ "aindex", "DeleteResponse", "DocumentIndex", "index", "IndexingResult", "InMemoryRecordManager", "RecordManager", "UpsertResponse", ] _dynamic_imports = { "aindex": "api", "index": "api", "IndexingResult": "api", "DeleteResponse": "base", "DocumentIndex": "base", "InMemoryRecordManager": "base", "RecordManager": "base", "UpsertResponse": "base", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
# Copyright (c) OpenMMLab. All rights reserved. from .layer_decay_optimizer_constructor import \ LearningRateDecayOptimizerConstructor __all__ = ['LearningRateDecayOptimizerConstructor']
# Copyright (c) OpenMMLab. All rights reserved. from .builder import OPTIMIZER_BUILDERS, build_optimizer from .layer_decay_optimizer_constructor import \ LearningRateDecayOptimizerConstructor __all__ = [ 'LearningRateDecayOptimizerConstructor', 'OPTIMIZER_BUILDERS', 'build_optimizer' ]
from pathlib import Path from typing import TYPE_CHECKING, Optional, Union from docarray.array.mixins import ParallelMixin, GroupMixin from docarray.helper import protocol_and_compress_from_file_path if TYPE_CHECKING: from docarray import Document, DocumentArray class DocumentArrayLoader(ParallelMixin, GroupMixin): def __init__( self, path: Union[str, Path], protocol: str = 'protobuf', compress: Optional[str] = None, show_progress: bool = False, ): self._show_progress = show_progress self._filename = path self._protocol, self._compress = protocol_and_compress_from_file_path( path, protocol, compress ) with open(path, 'rb') as f: version_numdocs_lendoc0 = f.read(9) # 8 bytes (uint64) self._len = int.from_bytes( version_numdocs_lendoc0[1:9], 'big', signed=False ) self._iter = iter(self) def __iter__(self): from docarray import Document from docarray.array.mixins.io.pbar import get_progressbar from rich import filesize with open(self._filename, 'rb') as f: f.read(9) pbar, t = get_progressbar( 'Deserializing', disable=not self._show_progress, total=self._len ) with pbar: _total_size = 0 pbar.start_task(t) for _ in range(self._len): # 4 bytes (uint32) len_current_doc_in_bytes = int.from_bytes( f.read(4), 'big', signed=False ) _total_size += len_current_doc_in_bytes yield Document.from_bytes( f.read(len_current_doc_in_bytes), protocol=self._protocol, compress=self._compress, ) pbar.update( t, advance=1, total_size=str(filesize.decimal(_total_size)) ) def __len__(self): return self._len def __getitem__(self, item: list) -> 'DocumentArray': from docarray import DocumentArray da = DocumentArray() for _ in item: da.append(next(self._iter)) return da
from pathlib import Path from typing import TYPE_CHECKING, Optional, Union from .. import ParallelMixin, GroupMixin from ....helper import protocol_and_compress_from_file_path if TYPE_CHECKING: from docarray import Document, DocumentArray class DocumentArrayLoader(ParallelMixin, GroupMixin): def __init__( self, path: Union[str, Path], protocol: str = 'protobuf', compress: Optional[str] = None, show_progress: bool = False, ): self._show_progress = show_progress self._filename = path self._protocol, self._compress = protocol_and_compress_from_file_path( path, protocol, compress ) with open(path, 'rb') as f: version_numdocs_lendoc0 = f.read(9) # 8 bytes (uint64) self._len = int.from_bytes( version_numdocs_lendoc0[1:9], 'big', signed=False ) self._iter = iter(self) def __iter__(self): from docarray import Document from ..io.pbar import get_progressbar from rich import filesize with open(self._filename, 'rb') as f: f.read(9) pbar, t = get_progressbar( 'Deserializing', disable=not self._show_progress, total=self._len ) with pbar: _total_size = 0 pbar.start_task(t) for _ in range(self._len): # 4 bytes (uint32) len_current_doc_in_bytes = int.from_bytes( f.read(4), 'big', signed=False ) _total_size += len_current_doc_in_bytes yield Document.from_bytes( f.read(len_current_doc_in_bytes), protocol=self._protocol, compress=self._compress, ) pbar.update( t, advance=1, total_size=str(filesize.decimal(_total_size)) ) def __len__(self): return self._len def __getitem__(self, item: list) -> 'DocumentArray': from docarray import DocumentArray da = DocumentArray() for _ in item: da.append(next(self._iter)) return da
#!/usr/bin/env python3 # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import argparse import os from Cython import Tempita as tempita # XXX: If this import ever fails (does it really?), vendor either # cython.tempita or numpy/npy_tempita. def process_tempita(fromfile, outfile=None): """Process tempita templated file and write out the result. The template file is expected to end in `.c.tp` or `.pyx.tp`: E.g. processing `template.c.in` generates `template.c`. """ with open(fromfile, "r", encoding="utf-8") as f: template_content = f.read() template = tempita.Template(template_content) content = template.substitute() with open(outfile, "w", encoding="utf-8") as f: f.write(content) def main(): parser = argparse.ArgumentParser() parser.add_argument("infile", type=str, help="Path to the input file") parser.add_argument("-o", "--outdir", type=str, help="Path to the output directory") parser.add_argument( "-i", "--ignore", type=str, help=( "An ignored input - may be useful to add a " "dependency between custom targets" ), ) args = parser.parse_args() if not args.infile.endswith(".tp"): raise ValueError(f"Unexpected extension: {args.infile}") if not args.outdir: raise ValueError("Missing `--outdir` argument to tempita.py") outdir_abs = os.path.join(os.getcwd(), args.outdir) outfile = os.path.join( outdir_abs, os.path.splitext(os.path.split(args.infile)[1])[0] ) process_tempita(args.infile, outfile) if __name__ == "__main__": main()
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import argparse import os from Cython import Tempita as tempita # XXX: If this import ever fails (does it really?), vendor either # cython.tempita or numpy/npy_tempita. def process_tempita(fromfile, outfile=None): """Process tempita templated file and write out the result. The template file is expected to end in `.c.tp` or `.pyx.tp`: E.g. processing `template.c.in` generates `template.c`. """ with open(fromfile, "r", encoding="utf-8") as f: template_content = f.read() template = tempita.Template(template_content) content = template.substitute() with open(outfile, "w", encoding="utf-8") as f: f.write(content) def main(): parser = argparse.ArgumentParser() parser.add_argument("infile", type=str, help="Path to the input file") parser.add_argument("-o", "--outdir", type=str, help="Path to the output directory") parser.add_argument( "-i", "--ignore", type=str, help=( "An ignored input - may be useful to add a " "dependency between custom targets" ), ) args = parser.parse_args() if not args.infile.endswith(".tp"): raise ValueError(f"Unexpected extension: {args.infile}") if not args.outdir: raise ValueError("Missing `--outdir` argument to tempita.py") outdir_abs = os.path.join(os.getcwd(), args.outdir) outfile = os.path.join( outdir_abs, os.path.splitext(os.path.split(args.infile)[1])[0] ) process_tempita(args.infile, outfile) if __name__ == "__main__": main()
import pytest from backend.util.request import validate_url def test_validate_url(): # Rejected IP ranges with pytest.raises(ValueError): validate_url("localhost", []) with pytest.raises(ValueError): validate_url("192.168.1.1", []) with pytest.raises(ValueError): validate_url("127.0.0.1", []) with pytest.raises(ValueError): validate_url("0.0.0.0", []) # Normal URLs assert validate_url("google.com/a?b=c", []) == "http://google.com/a?b=c" assert validate_url("github.com?key=!@!@", []) == "http://github.com?key=!@!@" # Scheme Enforcement with pytest.raises(ValueError): validate_url("ftp://example.com", []) with pytest.raises(ValueError): validate_url("file://example.com", []) # International domain that converts to punycode - should be allowed if public assert validate_url("http://xn--exmple-cua.com", []) == "http://xn--exmple-cua.com" # If the domain fails IDNA encoding or is invalid, it should raise an error with pytest.raises(ValueError): validate_url("http://exa◌mple.com", []) # IPv6 Addresses with pytest.raises(ValueError): validate_url("::1", []) # IPv6 loopback should be blocked with pytest.raises(ValueError): validate_url("http://[::1]", []) # IPv6 loopback in URL form # Suspicious Characters in Hostname with pytest.raises(ValueError): validate_url("http://example_underscore.com", []) with pytest.raises(ValueError): validate_url("http://exa mple.com", []) # Space in hostname # Malformed URLs with pytest.raises(ValueError): validate_url("http://", []) # No hostname with pytest.raises(ValueError): validate_url("://missing-scheme", []) # Missing proper scheme # Trusted Origins trusted = ["internal-api.company.com", "10.0.0.5"] assert ( validate_url("internal-api.company.com", trusted) == "http://internal-api.company.com" ) assert validate_url("10.0.0.5", ["10.0.0.5"]) == "http://10.0.0.5" # Special Characters in Path or Query assert ( validate_url("example.com/path%20with%20spaces", []) == "http://example.com/path%20with%20spaces" ) # Backslashes should be replaced with forward slashes assert ( validate_url("http://example.com\\backslash", []) == "http://example.com/backslash" ) # Check defaulting scheme behavior for valid domains assert validate_url("example.com", []) == "http://example.com" assert validate_url("https://secure.com", []) == "https://secure.com" # Non-ASCII Characters in Query/Fragment assert validate_url("example.com?param=äöü", []) == "http://example.com?param=äöü"
import pytest from backend.util.request import validate_url def test_validate_url(): with pytest.raises(ValueError): validate_url("localhost", []) with pytest.raises(ValueError): validate_url("192.168.1.1", []) with pytest.raises(ValueError): validate_url("127.0.0.1", []) with pytest.raises(ValueError): validate_url("0.0.0.0", []) validate_url("google.com", []) validate_url("github.com", []) validate_url("http://github.com", [])