input
stringlengths
33
5k
output
stringlengths
32
5k
""" Prompts for implementing Chain of Abstraction. While official prompts are not given (and the paper finetunes models for the task), we can take inspiration and use few-shot prompting to generate a prompt for implementing chain of abstraction in an LLM agent. """ REASONING_PROMPT_TEMPALTE = """Generate an abstract plan of reasoning using placeholders for the specific values and function calls needed. The placeholders should be labeled y1, y2, etc. Function calls should be represented as inline strings like [FUNC {{function_name}}({{input1}}, {{input2}}, ...) = {{output_placeholder}}]. Assume someone will read the plan after the functions have been executed in order to make a final response. Not every question will require function calls to answer. If you do invoke a function, only use the available functions, do not make up functions. Example: ----------- Available functions: ```python def add(a: int, b: int) -> int: \"\"\"Add two numbers together.\"\"\" ... def multiply(a: int, b: int) -> int: \"\"\"Multiply two numbers together.\"\"\" ... ``` Question: Sally has 3 apples and buys 2 more. Then magically, a wizard casts a spell that multiplies the number of apples by 3. How many apples does Sally have now? Abstract plan of reasoning: After buying the apples, Sally has [FUNC add(3, 2) = y1] apples. Then, the wizard casts a spell to multiply the number of apples by 3, resulting in [FUNC multiply(y1, 3) = y2] apples. Your Turn: ----------- Available functions: ```python {functions} ``` Question: {question} Abstract plan of reasoning: """ REFINE_REASONING_PROMPT_TEMPALTE = """Generate a response to a question by using a previous abstract plan of reasoning. Use the previous reasoning as context to write a response to the question. Example: ----------- Question: Sally has 3 apples and buys 2 more. Then magically, a wizard casts a spell that multiplies the number of apples by 3. How many apples does Sally have now? Previous reasoning: After buying the apples, Sally has [FUNC add(3, 2) = 5] apples. Then, the wizard casts a spell to multiply the number of apples by 3, resulting in [FUNC multiply(5, 3) = 15] apples. Response: After the wizard casts the spell, Sally has 15 apples. Your Turn: ----------- Question: {question} Previous reasoning: {prev_reasoning} Response: """
"""Prompts for implementing Chain of Abstraction. While official prompts are not given (and the paper finetunes models for the task), we can take inspiration and use few-shot prompting to generate a prompt for implementing chain of abstraction in an LLM agent. """ REASONING_PROMPT_TEMPALTE = """Generate an abstract plan of reasoning using placeholders for the specific values and function calls needed. The placeholders should be labeled y1, y2, etc. Function calls should be represented as inline strings like [FUNC {{function_name}}({{input1}}, {{input2}}, ...) = {{output_placeholder}}]. Assume someone will read the plan after the functions have been executed in order to make a final response. Not every question will require function calls to answer. If you do invoke a function, only use the available functions, do not make up functions. Example: ----------- Available functions: ```python def add(a: int, b: int) -> int: \"\"\"Add two numbers together.\"\"\" ... def multiply(a: int, b: int) -> int: \"\"\"Multiply two numbers together.\"\"\" ... ``` Question: Sally has 3 apples and buys 2 more. Then magically, a wizard casts a spell that multiplies the number of apples by 3. How many apples does Sally have now? Abstract plan of reasoning: After buying the apples, Sally has [FUNC add(3, 2) = y1] apples. Then, the wizard casts a spell to multiply the number of apples by 3, resulting in [FUNC multiply(y1, 3) = y2] apples. Your Turn: ----------- Available functions: ```python {functions} ``` Question: {question} Abstract plan of reasoning: """ REFINE_REASONING_PROMPT_TEMPALTE = """Generate a response to a question by using a previous abstract plan of reasoning. Use the previous reasoning as context to write a response to the question. Example: ----------- Question: Sally has 3 apples and buys 2 more. Then magically, a wizard casts a spell that multiplies the number of apples by 3. How many apples does Sally have now? Previous reasoning: After buying the apples, Sally has [FUNC add(3, 2) = 5] apples. Then, the wizard casts a spell to multiply the number of apples by 3, resulting in [FUNC multiply(5, 3) = 15] apples. Response: After the wizard casts the spell, Sally has 15 apples. Your Turn: ----------- Question: {question} Previous reasoning: {prev_reasoning} Response: """
from typing import TYPE_CHECKING import numpy as np from docarray.dataclasses.enums import DocumentMetadata, ImageType if TYPE_CHECKING: # pragma: no cover from docarray import Document def image_setter(value) -> 'Document': from docarray import Document doc = Document(modality='image') if isinstance(value, str): doc.uri = value doc._metadata[DocumentMetadata.IMAGE_TYPE] = ImageType.URI doc.load_uri_to_image_tensor() elif isinstance(value, np.ndarray): doc.tensor = value doc._metadata[DocumentMetadata.IMAGE_TYPE] = ImageType.NDARRAY else: from PIL.Image import Image if isinstance(value, Image): doc.tensor = np.array(value) doc._metadata[DocumentMetadata.IMAGE_TYPE] = ImageType.PIL return doc def text_setter(value) -> 'Document': from docarray import Document return Document(text=value, modality='text') def uri_setter(value) -> 'Document': from docarray import Document return Document(uri=value) def audio_setter(value) -> 'Document': from docarray import Document if isinstance(value, np.ndarray): return Document( tensor=value, _metadata={DocumentMetadata.AUDIO_TYPE: 'ndarray'} ) else: return Document( uri=value, modality='audio', _metadata={DocumentMetadata.AUDIO_TYPE: 'uri'} ).load_uri_to_audio_tensor() def video_setter(value) -> 'Document': from docarray import Document if isinstance(value, np.ndarray): return Document( tensor=value, _metadata={DocumentMetadata.VIDEO_TYPE: 'ndarray'} ) else: return Document( uri=value, modality='video', _metadata={DocumentMetadata.VIDEO_TYPE: 'uri'} ).load_uri_to_video_tensor() def mesh_setter(value) -> 'Document': from docarray import Document if isinstance(value, np.ndarray): return Document(tensor=value, _metadata={DocumentMetadata.MESH_TYPE: 'ndarray'}) else: return Document( uri=value, modality='mesh', _metadata={DocumentMetadata.MESH_TYPE: 'uri'} ).load_uri_to_point_cloud_tensor(1000) def blob_setter(value) -> 'Document': from docarray import Document if isinstance(value, bytes): return Document(blob=value, _metadata={DocumentMetadata.BLOB_TYPE: 'bytes'}) else: return Document( uri=value, _metadata={DocumentMetadata.BLOB_TYPE: 'uri'} ).load_uri_to_blob() def json_setter(value) -> 'Document': from docarray import Document return Document(modality='json', tags=value) def tabular_setter(value) -> 'Document': from docarray import Document, DocumentArray return Document(uri=value, chunks=DocumentArray.from_csv(value), modality='tabular')
from typing import TYPE_CHECKING import numpy as np if TYPE_CHECKING: # pragma: no cover from docarray import Document def image_setter(value) -> 'Document': from docarray import Document doc = Document(modality='image') if isinstance(value, str): doc.uri = value doc._metadata['image_type'] = 'uri' doc.load_uri_to_image_tensor() elif isinstance(value, np.ndarray): doc.tensor = value doc._metadata['image_type'] = 'ndarray' else: from PIL.Image import Image if isinstance(value, Image): doc.tensor = np.array(value) doc._metadata['image_type'] = 'PIL' return doc def text_setter(value) -> 'Document': from docarray import Document return Document(text=value, modality='text') def uri_setter(value) -> 'Document': from docarray import Document return Document(uri=value) def audio_setter(value) -> 'Document': from docarray import Document if isinstance(value, np.ndarray): return Document(tensor=value, _metadata={'audio_type': 'ndarray'}) else: return Document( uri=value, modality='audio', _metadata={'audio_type': 'uri'} ).load_uri_to_audio_tensor() def video_setter(value) -> 'Document': from docarray import Document if isinstance(value, np.ndarray): return Document(tensor=value, _metadata={'video_type': 'ndarray'}) else: return Document( uri=value, modality='video', _metadata={'video_type': 'uri'} ).load_uri_to_video_tensor() def mesh_setter(value) -> 'Document': from docarray import Document if isinstance(value, np.ndarray): return Document(tensor=value, _metadata={'mesh_type': 'ndarray'}) else: return Document( uri=value, modality='mesh', _metadata={'mesh_type': 'uri'} ).load_uri_to_point_cloud_tensor(1000) def blob_setter(value) -> 'Document': from docarray import Document if isinstance(value, bytes): return Document(blob=value, _metadata={'blob_type': 'bytes'}) else: return Document(uri=value, _metadata={'blob_type': 'uri'}).load_uri_to_blob() def json_setter(value) -> 'Document': from docarray import Document return Document(modality='json', tags=value) def tabular_setter(value) -> 'Document': from docarray import Document, DocumentArray return Document(uri=value, chunks=DocumentArray.from_csv(value), modality='tabular')
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.storage import UpstashRedisByteStore, UpstashRedisStore # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "UpstashRedisStore": "langchain_community.storage", "UpstashRedisByteStore": "langchain_community.storage", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "UpstashRedisByteStore", "UpstashRedisStore", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.storage import UpstashRedisByteStore, UpstashRedisStore # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "UpstashRedisStore": "langchain_community.storage", "UpstashRedisByteStore": "langchain_community.storage", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "UpstashRedisStore", "UpstashRedisByteStore", ]
import torch from ._bounding_boxes import BoundingBoxes, BoundingBoxFormat, is_rotated_bounding_format from ._image import Image from ._keypoints import KeyPoints from ._mask import Mask from ._torch_function_helpers import set_return_type from ._tv_tensor import TVTensor from ._video import Video # TODO: Fix this. We skip this method as it leads to # RecursionError: maximum recursion depth exceeded while calling a Python object # Until `disable` is removed, there will be graph breaks after all calls to functional transforms @torch.compiler.disable def wrap(wrappee, *, like, **kwargs): """Convert a :class:`torch.Tensor` (``wrappee``) into the same :class:`~torchvision.tv_tensors.TVTensor` subclass as ``like``. If ``like`` is a :class:`~torchvision.tv_tensors.BoundingBoxes`, the ``format`` and ``canvas_size`` of ``like`` are assigned to ``wrappee``, unless they are passed as ``kwargs``. Args: wrappee (Tensor): The tensor to convert. like (:class:`~torchvision.tv_tensors.TVTensor`): The reference. ``wrappee`` will be converted into the same subclass as ``like``. kwargs: Can contain "format" and "canvas_size" if ``like`` is a :class:`~torchvision.tv_tensor.BoundingBoxes`. Ignored otherwise. """ if isinstance(like, BoundingBoxes): return BoundingBoxes._wrap( wrappee, format=kwargs.get("format", like.format), canvas_size=kwargs.get("canvas_size", like.canvas_size), ) elif isinstance(like, KeyPoints): return KeyPoints._wrap(wrappee, canvas_size=kwargs.get("canvas_size", like.canvas_size)) else: return wrappee.as_subclass(type(like))
import torch from ._bounding_boxes import BoundingBoxes, BoundingBoxFormat, is_rotated_bounding_format from ._image import Image from ._mask import Mask from ._torch_function_helpers import set_return_type from ._tv_tensor import TVTensor from ._video import Video # TODO: Fix this. We skip this method as it leads to # RecursionError: maximum recursion depth exceeded while calling a Python object # Until `disable` is removed, there will be graph breaks after all calls to functional transforms @torch.compiler.disable def wrap(wrappee, *, like, **kwargs): """Convert a :class:`torch.Tensor` (``wrappee``) into the same :class:`~torchvision.tv_tensors.TVTensor` subclass as ``like``. If ``like`` is a :class:`~torchvision.tv_tensors.BoundingBoxes`, the ``format`` and ``canvas_size`` of ``like`` are assigned to ``wrappee``, unless they are passed as ``kwargs``. Args: wrappee (Tensor): The tensor to convert. like (:class:`~torchvision.tv_tensors.TVTensor`): The reference. ``wrappee`` will be converted into the same subclass as ``like``. kwargs: Can contain "format" and "canvas_size" if ``like`` is a :class:`~torchvision.tv_tensor.BoundingBoxes`. Ignored otherwise. """ if isinstance(like, BoundingBoxes): return BoundingBoxes._wrap( wrappee, format=kwargs.get("format", like.format), canvas_size=kwargs.get("canvas_size", like.canvas_size), ) else: return wrappee.as_subclass(type(like))
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.structures import InstanceData from mmdet.models import build_detector from mmdet.structures import DetDataSample from mmdet.testing import get_detector_cfg from mmdet.utils import register_all_modules class TestDeformableDETR(TestCase): def setUp(self): register_all_modules() def test_deformable_detr_head_loss(self): """Tests transformer head loss when truth is empty and non-empty.""" s = 256 metainfo = { 'img_shape': (s, s), 'scale_factor': (1, 1), 'pad_shape': (s, s), 'batch_input_shape': (s, s) } img_metas = DetDataSample() img_metas.set_metainfo(metainfo) batch_data_samples = [] batch_data_samples.append(img_metas) configs = [ get_detector_cfg( 'deformable_detr/deformable-detr_r50_16xb2-50e_coco.py'), get_detector_cfg( 'deformable_detr/deformable-detr_refine_r50_16xb2-50e_coco.py' # noqa ), get_detector_cfg( 'deformable_detr/deformable-detr_refine_twostage_r50_16xb2-50e_coco.py' # noqa ) ] for config in configs: model = build_detector(config) model.init_weights() random_image = torch.rand(1, 3, s, s) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) img_metas.gt_instances = gt_instances batch_data_samples1 = [] batch_data_samples1.append(img_metas) empty_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples1) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. for key, loss in empty_gt_losses.items(): if 'cls' in key: self.assertGreater(loss.item(), 0, 'cls loss should be non-zero') elif 'bbox' in key: self.assertEqual( loss.item(), 0, 'there should be no box loss when no ground true boxes' ) elif 'iou' in key: self.assertEqual( loss.item(), 0, 'there should be no iou loss when no ground true boxes' ) # When truth is non-empty then both cls and box loss should # be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) img_metas.gt_instances = gt_instances batch_data_samples2 = [] batch_data_samples2.append(img_metas) one_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples2) for loss in one_gt_losses.values(): self.assertGreater( loss.item(), 0, 'cls loss, or box loss, or iou loss should be non-zero') model.eval() # test _forward model._forward( random_image, batch_data_samples=batch_data_samples2) # test only predict model.predict( random_image, batch_data_samples=batch_data_samples2, rescale=True)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.structures import InstanceData from mmdet.models import build_detector from mmdet.structures import DetDataSample from mmdet.testing import get_detector_cfg from mmdet.utils import register_all_modules class TestDeformableDETR(TestCase): def setUp(self): register_all_modules() def test_detr_head_loss(self): """Tests transformer head loss when truth is empty and non-empty.""" s = 256 metainfo = { 'img_shape': (s, s), 'scale_factor': (1, 1), 'pad_shape': (s, s), 'batch_input_shape': (s, s) } img_metas = DetDataSample() img_metas.set_metainfo(metainfo) batch_data_samples = [] batch_data_samples.append(img_metas) configs = [ get_detector_cfg( 'deformable_detr/deformable-detr_r50_16xb2-50e_coco.py'), get_detector_cfg( 'deformable_detr/deformable-detr_refine_r50_16xb2-50e_coco.py' # noqa ), get_detector_cfg( 'deformable_detr/deformable-detr_refine_twostage_r50_16xb2-50e_coco.py' # noqa ) ] for config in configs: model = build_detector(config) model.init_weights() random_image = torch.rand(1, 3, s, s) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) img_metas.gt_instances = gt_instances batch_data_samples1 = [] batch_data_samples1.append(img_metas) empty_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples1) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. for key, loss in empty_gt_losses.items(): if 'cls' in key: self.assertGreater(loss.item(), 0, 'cls loss should be non-zero') elif 'bbox' in key: self.assertEqual( loss.item(), 0, 'there should be no box loss when no ground true boxes' ) elif 'iou' in key: self.assertEqual( loss.item(), 0, 'there should be no iou loss when no ground true boxes' ) # When truth is non-empty then both cls and box loss should # be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) img_metas.gt_instances = gt_instances batch_data_samples2 = [] batch_data_samples2.append(img_metas) one_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples2) for loss in one_gt_losses.values(): self.assertGreater( loss.item(), 0, 'cls loss, or box loss, or iou loss should be non-zero') # test _forward model._forward( random_image, batch_data_samples=batch_data_samples2) # test only predict model.predict( random_image, batch_data_samples=batch_data_samples2, rescale=True)
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, LDMSuperResolutionPipeline, UNet2DModel, VQModel from diffusers.utils import PIL_INTERPOLATION from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, nightly, require_accelerator, require_torch, torch_device, ) enable_full_determinism() class LDMSuperResolutionPipelineFastTests(unittest.TestCase): @property def dummy_image(self): batch_size = 1 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) return image @property def dummy_uncond_unet(self): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=6, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model @property def dummy_vq_model(self): torch.manual_seed(0) model = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=3, ) return model def test_inference_superresolution(self): device = "cpu" unet = self.dummy_uncond_unet scheduler = DDIMScheduler() vqvae = self.dummy_vq_model ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) ldm.to(device) ldm.set_progress_bar_config(disable=None) init_image = self.dummy_image.to(device) generator = torch.Generator(device=device).manual_seed(0) image = ldm(image=init_image, generator=generator, num_inference_steps=2, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.8678, 0.8245, 0.6381, 0.6830, 0.4385, 0.5599, 0.4641, 0.6201, 0.5150]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @require_accelerator def test_inference_superresolution_fp16(self): unet = self.dummy_uncond_unet scheduler = DDIMScheduler() vqvae = self.dummy_vq_model # put models in fp16 unet = unet.half() vqvae = vqvae.half() ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) ldm.to(torch_device) ldm.set_progress_bar_config(disable=None) init_image = self.dummy_image.to(torch_device) image = ldm(init_image, num_inference_steps=2, output_type="np").images assert image.shape == (1, 64, 64, 3) @nightly @require_torch class LDMSuperResolutionPipelineIntegrationTests(unittest.TestCase): def test_inference_superresolution(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool.png" ) init_image = init_image.resize((64, 64), resample=PIL_INTERPOLATION["lanczos"]) ldm = LDMSuperResolutionPipeline.from_pretrained("duongna/ldm-super-resolution") ldm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ldm(image=init_image, generator=generator, num_inference_steps=20, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.7644, 0.7679, 0.7642, 0.7633, 0.7666, 0.7560, 0.7425, 0.7257, 0.6907]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, LDMSuperResolutionPipeline, UNet2DModel, VQModel from diffusers.utils import PIL_INTERPOLATION from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, nightly, require_torch, torch_device, ) enable_full_determinism() class LDMSuperResolutionPipelineFastTests(unittest.TestCase): @property def dummy_image(self): batch_size = 1 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) return image @property def dummy_uncond_unet(self): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=6, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model @property def dummy_vq_model(self): torch.manual_seed(0) model = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=3, ) return model def test_inference_superresolution(self): device = "cpu" unet = self.dummy_uncond_unet scheduler = DDIMScheduler() vqvae = self.dummy_vq_model ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) ldm.to(device) ldm.set_progress_bar_config(disable=None) init_image = self.dummy_image.to(device) generator = torch.Generator(device=device).manual_seed(0) image = ldm(image=init_image, generator=generator, num_inference_steps=2, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.8678, 0.8245, 0.6381, 0.6830, 0.4385, 0.5599, 0.4641, 0.6201, 0.5150]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @unittest.skipIf(torch_device != "cuda", "This test requires a GPU") def test_inference_superresolution_fp16(self): unet = self.dummy_uncond_unet scheduler = DDIMScheduler() vqvae = self.dummy_vq_model # put models in fp16 unet = unet.half() vqvae = vqvae.half() ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) ldm.to(torch_device) ldm.set_progress_bar_config(disable=None) init_image = self.dummy_image.to(torch_device) image = ldm(init_image, num_inference_steps=2, output_type="np").images assert image.shape == (1, 64, 64, 3) @nightly @require_torch class LDMSuperResolutionPipelineIntegrationTests(unittest.TestCase): def test_inference_superresolution(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool.png" ) init_image = init_image.resize((64, 64), resample=PIL_INTERPOLATION["lanczos"]) ldm = LDMSuperResolutionPipeline.from_pretrained("duongna/ldm-super-resolution") ldm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ldm(image=init_image, generator=generator, num_inference_steps=20, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.7644, 0.7679, 0.7642, 0.7633, 0.7666, 0.7560, 0.7425, 0.7257, 0.6907]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
from typing import Literal from pydantic import SecretStr from backend.data.model import APIKeyCredentials, CredentialsField, CredentialsMetaInput HubSpotCredentials = APIKeyCredentials HubSpotCredentialsInput = CredentialsMetaInput[ Literal["hubspot"], Literal["api_key"], ] def HubSpotCredentialsField() -> HubSpotCredentialsInput: """Creates a HubSpot credentials input on a block.""" return CredentialsField( provider="hubspot", supported_credential_types={"api_key"}, description="The HubSpot integration requires an API Key.", ) TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="hubspot", api_key=SecretStr("mock-hubspot-api-key"), title="Mock HubSpot API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.title, }
from typing import Literal from autogpt_libs.supabase_integration_credentials_store.types import APIKeyCredentials from pydantic import SecretStr from backend.data.model import CredentialsField, CredentialsMetaInput HubSpotCredentials = APIKeyCredentials HubSpotCredentialsInput = CredentialsMetaInput[ Literal["hubspot"], Literal["api_key"], ] def HubSpotCredentialsField() -> HubSpotCredentialsInput: """Creates a HubSpot credentials input on a block.""" return CredentialsField( provider="hubspot", supported_credential_types={"api_key"}, description="The HubSpot integration requires an API Key.", ) TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="hubspot", api_key=SecretStr("mock-hubspot-api-key"), title="Mock HubSpot API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.title, }
import pathlib from typing import Any, Callable, Optional, Tuple from PIL import Image from .utils import download_and_extract_archive, download_url, verify_str_arg from .vision import VisionDataset class StanfordCars(VisionDataset): """`Stanford Cars <https://ai.stanford.edu/~jkrause/cars/car_dataset.html>`_ Dataset The Cars dataset contains 16,185 images of 196 classes of cars. The data is split into 8,144 training images and 8,041 testing images, where each class has been split roughly in a 50-50 split .. note:: This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format. Args: root (string): Root directory of dataset split (string, optional): The dataset split, supports ``"train"`` (default) or ``"test"``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again.""" def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: try: import scipy.io as sio except ImportError: raise RuntimeError("Scipy is not found. This dataset needs to have scipy installed: pip install scipy") super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "test")) self._base_folder = pathlib.Path(root) / "stanford_cars" devkit = self._base_folder / "devkit" if self._split == "train": self._annotations_mat_path = devkit / "cars_train_annos.mat" self._images_base_path = self._base_folder / "cars_train" else: self._annotations_mat_path = self._base_folder / "cars_test_annos_withlabels.mat" self._images_base_path = self._base_folder / "cars_test" if download: self.download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") self._samples = [ ( str(self._images_base_path / annotation["fname"]), annotation["class"] - 1, # Original target mapping starts from 1, hence -1 ) for annotation in sio.loadmat(self._annotations_mat_path, squeeze_me=True)["annotations"] ] self.classes = sio.loadmat(str(devkit / "cars_meta.mat"), squeeze_me=True)["class_names"].tolist() self.class_to_idx = {cls: i for i, cls in enumerate(self.classes)} def __len__(self) -> int: return len(self._samples) def __getitem__(self, idx: int) -> Tuple[Any, Any]: """Returns pil_image and class_id for given index""" image_path, target = self._samples[idx] pil_image = Image.open(image_path).convert("RGB") if self.transform is not None: pil_image = self.transform(pil_image) if self.target_transform is not None: target = self.target_transform(target) return pil_image, target def download(self) -> None: if self._check_exists(): return download_and_extract_archive( url="https://ai.stanford.edu/~jkrause/cars/car_devkit.tgz", download_root=str(self._base_folder), md5="c3b158d763b6e2245038c8ad08e45376", ) if self._split == "train": download_and_extract_archive( url="https://ai.stanford.edu/~jkrause/car196/cars_train.tgz", download_root=str(self._base_folder), md5="065e5b463ae28d29e77c1b4b166cfe61", ) else: download_and_extract_archive( url="https://ai.stanford.edu/~jkrause/car196/cars_test.tgz", download_root=str(self._base_folder), md5="4ce7ebf6a94d07f1952d94dd34c4d501", ) download_url( url="https://ai.stanford.edu/~jkrause/car196/cars_test_annos_withlabels.mat", root=str(self._base_folder), md5="b0a2b23655a3edd16d84508592a98d10", ) def _check_exists(self) -> bool: if not (self._base_folder / "devkit").is_dir(): return False return self._annotations_mat_path.exists() and self._images_base_path.is_dir()
import pathlib from typing import Any, Callable, Optional, Tuple from PIL import Image from .utils import download_and_extract_archive, download_url, verify_str_arg from .vision import VisionDataset class StanfordCars(VisionDataset): """`Stanford Cars <https://ai.stanford.edu/~jkrause/cars/car_dataset.html>`_ Dataset The Cars dataset contains 16,185 images of 196 classes of cars. The data is split into 8,144 training images and 8,041 testing images, where each class has been split roughly in a 50-50 split .. note:: This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format. Args: root (string): Root directory of dataset split (string, optional): The dataset split, supports ``"train"`` (default) or ``"test"``. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again.""" def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: try: import scipy.io as sio except ImportError: raise RuntimeError("Scipy is not found. This dataset needs to have scipy installed: pip install scipy") super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "test")) self._base_folder = pathlib.Path(root) / "stanford_cars" devkit = self._base_folder / "devkit" if self._split == "train": self._annotations_mat_path = devkit / "cars_train_annos.mat" self._images_base_path = self._base_folder / "cars_train" else: self._annotations_mat_path = self._base_folder / "cars_test_annos_withlabels.mat" self._images_base_path = self._base_folder / "cars_test" if download: self.download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") self._samples = [ ( str(self._images_base_path / annotation["fname"]), annotation["class"] - 1, # Original target mapping starts from 1, hence -1 ) for annotation in sio.loadmat(self._annotations_mat_path, squeeze_me=True)["annotations"] ] self.classes = sio.loadmat(str(devkit / "cars_meta.mat"), squeeze_me=True)["class_names"].tolist() self.class_to_idx = {cls: i for i, cls in enumerate(self.classes)} def __len__(self) -> int: return len(self._samples) def __getitem__(self, idx: int) -> Tuple[Any, Any]: """Returns pil_image and class_id for given index""" image_path, target = self._samples[idx] pil_image = Image.open(image_path).convert("RGB") if self.transform is not None: pil_image = self.transform(pil_image) if self.target_transform is not None: target = self.target_transform(target) return pil_image, target def download(self) -> None: if self._check_exists(): return download_and_extract_archive( url="https://ai.stanford.edu/~jkrause/cars/car_devkit.tgz", download_root=str(self._base_folder), md5="c3b158d763b6e2245038c8ad08e45376", ) if self._split == "train": download_and_extract_archive( url="https://ai.stanford.edu/~jkrause/car196/cars_train.tgz", download_root=str(self._base_folder), md5="065e5b463ae28d29e77c1b4b166cfe61", ) else: download_and_extract_archive( url="https://ai.stanford.edu/~jkrause/car196/cars_test.tgz", download_root=str(self._base_folder), md5="4ce7ebf6a94d07f1952d94dd34c4d501", ) download_url( url="https://ai.stanford.edu/~jkrause/car196/cars_test_annos_withlabels.mat", root=str(self._base_folder), md5="b0a2b23655a3edd16d84508592a98d10", ) def _check_exists(self) -> bool: if not (self._base_folder / "devkit").is_dir(): return False return self._annotations_mat_path.exists() and self._images_base_path.is_dir()
import os import pytest import respx from llama_index.postprocessor.nvidia_rerank import NVIDIARerank as Interface from llama_index.core.schema import NodeWithScore, Document from typing import Any @pytest.fixture() def mock_local_models(respx_mock: respx.MockRouter) -> None: respx_mock.get("https://test_url/v1/models").respond( json={"data": [{"id": "model1"}]} ) def get_api_key(instance: Any) -> str: return instance._api_key def test_create_default_url_without_api_key(masked_env_var: str) -> None: with pytest.raises(ValueError) as e: Interface() assert "API key is required" in str(e.value) @pytest.mark.usefixtures("mock_local_models") def test_create_unknown_url_without_api_key(masked_env_var: str) -> None: Interface(base_url="https://test_url/v1") @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_create_with_api_key(param: str, masked_env_var: str) -> None: instance = Interface(**{param: "just testing no failure"}) assert get_api_key(instance) == "just testing no failure" def test_api_key_priority(masked_env_var: str) -> None: try: os.environ["NVIDIA_API_KEY"] = "ENV" assert get_api_key(Interface()) == "ENV" assert get_api_key(Interface(nvidia_api_key="PARAM")) == "PARAM" assert get_api_key(Interface(api_key="PARAM")) == "PARAM" assert get_api_key(Interface(api_key="LOW", nvidia_api_key="HIGH")) == "HIGH" finally: # we must clean up environ or it may impact other tests del os.environ["NVIDIA_API_KEY"] @pytest.mark.integration def test_bogus_api_key_error(masked_env_var: str) -> None: client = Interface(nvidia_api_key="BOGUS") with pytest.raises(Exception) as exc_info: client.postprocess_nodes( [NodeWithScore(node=Document(text="Hello, world!"))], query_str="Hello, world!", ) message = str(exc_info.value) assert "401" in message @pytest.mark.integration @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_api_key(model: str, mode: dict, param: str, masked_env_var: str) -> None: client = Interface(model=model, **{**mode, **{param: masked_env_var}}) assert client.postprocess_nodes( [NodeWithScore(node=Document(text="Hello, world!"))], query_str="Hello, world!", )
import os import pytest import respx from llama_index.postprocessor.nvidia_rerank import NVIDIARerank as Interface from llama_index.core.schema import NodeWithScore, Document from typing import Any @pytest.fixture() def mock_local_models(respx_mock: respx.MockRouter) -> None: respx_mock.get("https://test_url/v1/models").respond( json={"data": [{"id": "model1"}]} ) def get_api_key(instance: Any) -> str: return instance._api_key def test_create_default_url_without_api_key(masked_env_var: str) -> None: with pytest.raises(ValueError) as e: Interface() assert "API key is required" in str(e.value) @pytest.mark.usefixtures("mock_local_models") def test_create_unknown_url_without_api_key(masked_env_var: str) -> None: Interface(base_url="https://test_url/v1") @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_create_with_api_key(param: str, masked_env_var: str) -> None: instance = Interface(**{param: "just testing no failure"}) assert get_api_key(instance) == "just testing no failure" def test_api_key_priority(masked_env_var: str) -> None: try: os.environ["NVIDIA_API_KEY"] = "ENV" assert get_api_key(Interface()) == "ENV" assert get_api_key(Interface(nvidia_api_key="PARAM")) == "PARAM" assert get_api_key(Interface(api_key="PARAM")) == "PARAM" assert get_api_key(Interface(api_key="LOW", nvidia_api_key="HIGH")) == "HIGH" finally: # we must clean up environ or it may impact other tests del os.environ["NVIDIA_API_KEY"] @pytest.mark.integration() def test_bogus_api_key_error(masked_env_var: str) -> None: client = Interface(nvidia_api_key="BOGUS") with pytest.raises(Exception) as exc_info: client.postprocess_nodes( [NodeWithScore(node=Document(text="Hello, world!"))], query_str="Hello, world!", ) message = str(exc_info.value) assert "401" in message @pytest.mark.integration() @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_api_key(model: str, mode: dict, param: str, masked_env_var: str) -> None: client = Interface(model=model, **{**mode, **{param: masked_env_var}}) assert client.postprocess_nodes( [NodeWithScore(node=Document(text="Hello, world!"))], query_str="Hello, world!", )
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.cnn import VGG from mmengine.hooks import Hook from mmengine.runner import Runner from mmdet.registry import HOOKS @HOOKS.register_module() class NumClassCheckHook(Hook): """Check whether the `num_classes` in head matches the length of `CLASSES` in `dataset.metainfo`.""" def _check_head(self, runner: Runner, mode: str) -> None: """Check whether the `num_classes` in head matches the length of `CLASSES` in `dataset.metainfo`. Args: runner (:obj:`Runner`): The runner of the training or evaluation process. """ assert mode in ['train', 'val'] model = runner.model dataset = runner.train_dataloader.dataset if mode == 'train' else \ runner.val_dataloader.dataset if dataset.metainfo.get('CLASSES', None) is None: runner.logger.warning( f'Please set `CLASSES` ' f'in the {dataset.__class__.__name__} `metainfo` and' f'check if it is consistent with the `num_classes` ' f'of head') else: CLASSES = dataset.metainfo['CLASSES'] assert type(CLASSES) is not str, \ (f'`CLASSES` in {dataset.__class__.__name__}' f'should be a tuple of str.' f'Add comma if number of classes is 1 as ' f'CLASSES = ({CLASSES},)') from mmdet.models.roi_heads.mask_heads import FusedSemanticHead for name, module in model.named_modules(): if hasattr(module, 'num_classes') and not name.endswith( 'rpn_head') and not isinstance( module, (VGG, FusedSemanticHead)): assert module.num_classes == len(CLASSES), \ (f'The `num_classes` ({module.num_classes}) in ' f'{module.__class__.__name__} of ' f'{model.__class__.__name__} does not matches ' f'the length of `CLASSES` ' f'{len(CLASSES)}) in ' f'{dataset.__class__.__name__}') def before_train_epoch(self, runner: Runner) -> None: """Check whether the training dataset is compatible with head. Args: runner (:obj:`Runner`): The runner of the training or evaluation process. """ self._check_head(runner, 'train') def before_val_epoch(self, runner: Runner) -> None: """Check whether the dataset in val epoch is compatible with head. Args: runner (:obj:`Runner`): The runner of the training or evaluation process. """ self._check_head(runner, 'val')
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.cnn import VGG from mmengine.hooks import Hook from mmengine.runner import Runner from mmdet.registry import HOOKS @HOOKS.register_module() class NumClassCheckHook(Hook): """Check whether the `num_classes` in head matches the length of `CLASSES` in `dataset.metainfo`.""" def _check_head(self, runner: Runner, mode: str) -> None: """Check whether the `num_classes` in head matches the length of `CLASSES` in `dataset.metainfo`. Args: runner (:obj:`Runner`): The runner of the training or evaluation process. """ assert mode in ['train', 'val'] model = runner.model dataset = runner.train_dataloader.dataset if mode == 'train' else \ runner.val_dataloader.dataset if dataset.metainfo.get('CLASSES', None) is None: runner.logger.warning( f'Please set `CLASSES` ' f'in the {dataset.__class__.__name__} `metainfo` and' f'check if it is consistent with the `num_classes` ' f'of head') else: CLASSES = dataset.metainfo['CLASSES'] assert type(CLASSES) is not str, \ (f'`CLASSES` in {dataset.__class__.__name__}' f'should be a tuple of str.' f'Add comma if number of classes is 1 as ' f'CLASSES = ({CLASSES},)') from mmdet.models.roi_heads.mask_heads import FusedSemanticHead for name, module in model.named_modules(): if hasattr(module, 'num_classes' ) and name != 'rpn_head' and not isinstance( module, (VGG, FusedSemanticHead)): assert module.num_classes == len(CLASSES), \ (f'The `num_classes` ({module.num_classes}) in ' f'{module.__class__.__name__} of ' f'{model.__class__.__name__} does not matches ' f'the length of `CLASSES` ' f'{len(CLASSES)}) in ' f'{dataset.__class__.__name__}') def before_train_epoch(self, runner: Runner) -> None: """Check whether the training dataset is compatible with head. Args: runner (:obj:`Runner`): The runner of the training or evaluation process. """ self._check_head(runner, 'train') def before_val_epoch(self, runner: Runner) -> None: """Check whether the dataset in val epoch is compatible with head. Args: runner (:obj:`Runner`): The runner of the training or evaluation process. """ self._check_head(runner, 'val')
from __future__ import annotations from collections.abc import Iterable from typing import Any import torch from torch import Tensor, nn from sentence_transformers import util from sentence_transformers.SentenceTransformer import SentenceTransformer class CoSENTLoss(nn.Module): def __init__(self, model: SentenceTransformer, scale: float = 20.0, similarity_fct=util.pairwise_cos_sim) -> None: """ This class implements CoSENT (Cosine Sentence) loss. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(i,j)-s(k,l))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Anecdotal experiments show that this loss function produces a more powerful training signal than :class:`CosineSimilarityLoss`, resulting in faster convergence and a final model with superior performance. Consequently, CoSENTLoss may be used as a drop-in replacement for :class:`CosineSimilarityLoss` in any training script. Args: model: SentenceTransformerModel similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`AnglELoss` is CoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than CoSENTLoss. In our experiments, CoSENTLoss is recommended. Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.CoSENTLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.model = model self.similarity_fct = similarity_fct self.scale = scale def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] scores = self.similarity_fct(embeddings[0], embeddings[1]) scores = scores * self.scale scores = scores[:, None] - scores[None, :] # label matrix indicating which pairs are relevant labels = labels[:, None] < labels[None, :] labels = labels.float() # mask out irrelevant pairs so they are negligible after exp() scores = scores - (1 - labels) * 1e12 # append a zero as e^0 = 1 scores = torch.cat((torch.zeros(1).to(scores.device), scores.view(-1)), dim=0) loss = torch.logsumexp(scores, dim=0) return loss def get_config_dict(self) -> dict[str, Any]: return {"scale": self.scale, "similarity_fct": self.similarity_fct.__name__} @property def citation(self) -> str: return """ @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } """
from __future__ import annotations from collections.abc import Iterable from typing import Any import torch from torch import Tensor, nn from sentence_transformers import util from sentence_transformers.SentenceTransformer import SentenceTransformer class CoSENTLoss(nn.Module): def __init__(self, model: SentenceTransformer, scale: float = 20.0, similarity_fct=util.pairwise_cos_sim) -> None: """ This class implements CoSENT (Cosine Sentence) loss. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Anecdotal experiments show that this loss function produces a more powerful training signal than :class:`CosineSimilarityLoss`, resulting in faster convergence and a final model with superior performance. Consequently, CoSENTLoss may be used as a drop-in replacement for :class:`CosineSimilarityLoss` in any training script. Args: model: SentenceTransformerModel similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`AnglELoss` is CoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than CoSENTLoss. In our experiments, CoSENTLoss is recommended. Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.CoSENTLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.model = model self.similarity_fct = similarity_fct self.scale = scale def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] scores = self.similarity_fct(embeddings[0], embeddings[1]) scores = scores * self.scale scores = scores[:, None] - scores[None, :] # label matrix indicating which pairs are relevant labels = labels[:, None] < labels[None, :] labels = labels.float() # mask out irrelevant pairs so they are negligible after exp() scores = scores - (1 - labels) * 1e12 # append a zero as e^0 = 1 scores = torch.cat((torch.zeros(1).to(scores.device), scores.view(-1)), dim=0) loss = torch.logsumexp(scores, dim=0) return loss def get_config_dict(self) -> dict[str, Any]: return {"scale": self.scale, "similarity_fct": self.similarity_fct.__name__} @property def citation(self) -> str: return """ @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } """
"""Base tool spec class.""" import asyncio from inspect import signature from typing import Any, Awaitable, Callable, Dict, List, Optional, Tuple, Type, Union from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.tools.function_tool import FunctionTool from llama_index.core.tools.types import ToolMetadata AsyncCallable = Callable[..., Awaitable[Any]] # TODO: deprecate the Tuple (there's no use for it) SPEC_FUNCTION_TYPE = Union[str, Tuple[str, str]] class BaseToolSpec: """Base tool spec class.""" # list of functions that you'd want to convert to spec spec_functions: List[SPEC_FUNCTION_TYPE] def get_fn_schema_from_fn_name( self, fn_name: str, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None ) -> Optional[Type[BaseModel]]: """ NOTE: This function is deprecated and kept only for backwards compatibility. Return map from function name. Return type is Optional, meaning that the schema can be None. In this case, it's up to the downstream tool implementation to infer the schema. """ return None def get_metadata_from_fn_name( self, fn_name: str, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None ) -> Optional[ToolMetadata]: """ NOTE: This function is deprecated and kept only for backwards compatibility. Return map from function name. Return type is Optional, meaning that the schema can be None. In this case, it's up to the downstream tool implementation to infer the schema. """ schema = self.get_fn_schema_from_fn_name(fn_name, spec_functions=spec_functions) if schema is None: return None func = getattr(self, fn_name) name = fn_name docstring = func.__doc__ or "" description = f"{name}{signature(func)}\n{docstring}" fn_schema = self.get_fn_schema_from_fn_name( fn_name, spec_functions=spec_functions ) return ToolMetadata(name=name, description=description, fn_schema=fn_schema) def to_tool_list( self, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None, func_to_metadata_mapping: Optional[Dict[str, ToolMetadata]] = None, ) -> List[FunctionTool]: """Convert tool spec to list of tools.""" spec_functions = spec_functions or self.spec_functions func_to_metadata_mapping = func_to_metadata_mapping or {} tool_list = [] for func_spec in spec_functions: func_sync = None func_async = None if isinstance(func_spec, str): func = getattr(self, func_spec) if asyncio.iscoroutinefunction(func): func_async = func else: func_sync = func metadata = func_to_metadata_mapping.get(func_spec, None) if metadata is None: metadata = self.get_metadata_from_fn_name(func_spec) elif isinstance(func_spec, tuple) and len(func_spec) == 2: func_sync = getattr(self, func_spec[0]) func_async = getattr(self, func_spec[1]) metadata = func_to_metadata_mapping.get(func_spec[0], None) if metadata is None: metadata = func_to_metadata_mapping.get(func_spec[1], None) if metadata is None: metadata = self.get_metadata_from_fn_name(func_spec[0]) else: raise ValueError( "spec_functions must be of type: List[Union[str, Tuple[str, str]]]" ) if func_sync is None: if func_async is not None: func_sync = patch_sync(func_async) else: raise ValueError( f"Could not retrieve a function for spec: {func_spec}" ) tool = FunctionTool.from_defaults( fn=func_sync, async_fn=func_async, tool_metadata=metadata, ) tool_list.append(tool) return tool_list def patch_sync(func_async: AsyncCallable) -> Callable: """Patch sync function from async function.""" def patched_sync(*args: Any, **kwargs: Any) -> Any: try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) return loop.run_until_complete(func_async(*args, **kwargs)) return patched_sync
"""Base tool spec class.""" import asyncio from inspect import signature from typing import Any, Awaitable, Callable, Dict, List, Optional, Tuple, Type, Union from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.tools.function_tool import FunctionTool from llama_index.core.tools.types import ToolMetadata AsyncCallable = Callable[..., Awaitable[Any]] # TODO: deprecate the Tuple (there's no use for it) SPEC_FUNCTION_TYPE = Union[str, Tuple[str, str]] class BaseToolSpec: """Base tool spec class.""" # list of functions that you'd want to convert to spec spec_functions: List[SPEC_FUNCTION_TYPE] def get_fn_schema_from_fn_name( self, fn_name: str, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None ) -> Optional[Type[BaseModel]]: """ NOTE: This function is deprecated and kept only for backwards compatibility. Return map from function name. Return type is Optional, meaning that the schema can be None. In this case, it's up to the downstream tool implementation to infer the schema. """ return None def get_metadata_from_fn_name( self, fn_name: str, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None ) -> Optional[ToolMetadata]: """ NOTE: This function is deprecated and kept only for backwards compatibility. Return map from function name. Return type is Optional, meaning that the schema can be None. In this case, it's up to the downstream tool implementation to infer the schema. """ schema = self.get_fn_schema_from_fn_name(fn_name, spec_functions=spec_functions) if schema is None: return None func = getattr(self, fn_name) name = fn_name docstring = func.__doc__ or "" description = f"{name}{signature(func)}\n{docstring}" fn_schema = self.get_fn_schema_from_fn_name( fn_name, spec_functions=spec_functions ) return ToolMetadata(name=name, description=description, fn_schema=fn_schema) def to_tool_list( self, spec_functions: Optional[List[SPEC_FUNCTION_TYPE]] = None, func_to_metadata_mapping: Optional[Dict[str, ToolMetadata]] = None, ) -> List[FunctionTool]: """Convert tool spec to list of tools.""" spec_functions = spec_functions or self.spec_functions func_to_metadata_mapping = func_to_metadata_mapping or {} tool_list = [] for func_spec in spec_functions: func_sync = None func_async = None if isinstance(func_spec, str): func = getattr(self, func_spec) if asyncio.iscoroutinefunction(func): func_async = func else: func_sync = func metadata = func_to_metadata_mapping.get(func_spec, None) if metadata is None: metadata = self.get_metadata_from_fn_name(func_spec) elif isinstance(func_spec, tuple) and len(func_spec) == 2: func_sync = getattr(self, func_spec[0]) func_async = getattr(self, func_spec[1]) metadata = func_to_metadata_mapping.get(func_spec[0], None) if metadata is None: metadata = func_to_metadata_mapping.get(func_spec[1], None) if metadata is None: metadata = self.get_metadata_from_fn_name(func_spec[0]) else: raise ValueError( "spec_functions must be of type: List[Union[str, Tuple[str, str]]]" ) if func_sync is None: if func_async is not None: func_sync = patch_sync(func_async) else: raise ValueError( f"Could not retrieve a function for spec: {func_spec}" ) tool = FunctionTool.from_defaults( fn=func_sync, async_fn=func_async, tool_metadata=metadata, ) tool_list.append(tool) return tool_list def patch_sync(func_async: AsyncCallable) -> Callable: """Patch sync function from async function.""" def patched_sync(*args: Any, **kwargs: Any) -> Any: try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) return loop.run_until_complete(func_async(*args, **kwargs)) return patched_sync
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.datasets.cifar100 import load_data as load_data
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.datasets.cifar100 import load_data
""" Separation of concerns: DataAdapter: - x, y - sample_weight - class_weight - shuffle - batch_size - steps, as it relates to batch_size for array data EpochIterator: - whether to yield numpy or tf data - steps - most argument validation Trainer: - steps_per_execution - validation_split - validation_data - callbacks - validation_freq - epochs - initial_epoch - any backend-specific concern such as distribution PyDataset: - num_workers - use_multiprocessing - max_queue_size EpochIterator steps: 1. Look at data type and select correct DataHandler 2. Instantiate DataHandler with correct arguments 3. Raise or warn on unused arguments 4. in __iter__, iterate, either for a fixed number of steps or until there is no data """ import contextlib import warnings from keras.src.trainers import data_adapters class EpochIterator: def __init__( self, x, y=None, sample_weight=None, batch_size=None, steps_per_epoch=None, shuffle=False, class_weight=None, steps_per_execution=1, ): self.steps_per_epoch = steps_per_epoch self.steps_per_execution = steps_per_execution self._current_iterator = None self._epoch_iterator = None self._steps_seen = 0 self.data_adapter = data_adapters.get_data_adapter( x=x, y=y, sample_weight=sample_weight, batch_size=batch_size, steps_per_epoch=steps_per_epoch, shuffle=shuffle, class_weight=class_weight, ) self._num_batches = self.data_adapter.num_batches def _get_iterator(self): return self.data_adapter.get_numpy_iterator() def _interrupted_warning(self): warnings.warn( "Your input ran out of data; interrupting training. " "Make sure that your dataset or generator can generate " "at least `steps_per_epoch * epochs` batches. " "You may need to use the `.repeat()` " "function when building your dataset.", stacklevel=2, ) def reset(self): self._current_iterator = None self._num_batches = self.data_adapter.num_batches self._steps_seen = 0 self._epoch_iterator = None def _enumerate_iterator(self): self.data_adapter.on_epoch_begin() steps_per_epoch = self.steps_per_epoch or self._num_batches or -1 if steps_per_epoch > 0: if self._current_iterator is None or self.steps_per_epoch is None: self._current_iterator = iter(self._get_iterator()) self._steps_seen = 0 for step in range(0, steps_per_epoch, self.steps_per_execution): if self._num_batches and self._steps_seen >= self._num_batches: if self.steps_per_epoch: self._interrupted_warning() break self._steps_seen += self.steps_per_execution yield step, self._current_iterator if self._num_batches and self._steps_seen >= self._num_batches: self._current_iterator = iter(self._get_iterator()) self._steps_seen = 0 else: iterator = iter(self._get_iterator()) step = -self.steps_per_execution while True: step += self.steps_per_execution self._steps_seen = step + self.steps_per_execution yield step, iterator self.data_adapter.on_epoch_end() def __iter__(self): self._epoch_iterator = self._enumerate_iterator() return self def __next__(self): buffer = [] step, iterator = next(self._epoch_iterator) with self.catch_stop_iteration(): for _ in range(self.steps_per_execution): data = next(iterator) buffer.append(data) return step, buffer if buffer: return step, buffer raise StopIteration def enumerate_epoch(self): for step, data in self: yield step, data @contextlib.contextmanager def catch_stop_iteration(self): """Catches errors when an iterator runs out of data.""" try: yield except StopIteration: if self._num_batches is None: self._num_batches = self._steps_seen self._interrupted_warning() self._current_iterator = None self.data_adapter.on_epoch_end() @property def num_batches(self): if self.steps_per_epoch: return self.steps_per_epoch # Either copied from the data_adapter, or # inferred at the end of an iteration. return self._num_batches
""" Separation of concerns: DataAdapter: - x, y - sample_weight - class_weight - shuffle - batch_size - steps, as it relates to batch_size for array data EpochIterator: - whether to yield numpy or tf data - steps - most argument validation Trainer: - steps_per_execution - validation_split - validation_data - callbacks - validation_freq - epochs - initial_epoch - any backend-specific concern such as distribution PyDataset: - num_workers - use_multiprocessing - max_queue_size EpochIterator steps: 1. Look at data type and select correct DataHandler 2. Instantiate DataHandler with correct arguments 3. Raise or warn on unused arguments 4. in __iter__, iterate, either for a fixed number of steps or until there is no data """ import warnings from keras.src.trainers import data_adapters class EpochIterator: def __init__( self, x, y=None, sample_weight=None, batch_size=None, steps_per_epoch=None, shuffle=False, class_weight=None, steps_per_execution=1, ): self.steps_per_epoch = steps_per_epoch self.steps_per_execution = steps_per_execution if steps_per_epoch: self._current_iterator = None self._insufficient_data = False self.data_adapter = data_adapters.get_data_adapter( x=x, y=y, sample_weight=sample_weight, batch_size=batch_size, steps_per_epoch=steps_per_epoch, shuffle=shuffle, class_weight=class_weight, ) self._num_batches = self.data_adapter.num_batches def _get_iterator(self): return self.data_adapter.get_numpy_iterator() def enumerate_epoch(self): buffer = [] self.data_adapter.on_epoch_begin() if self.steps_per_epoch: if self._current_iterator is None: self._current_iterator = iter(self._get_iterator()) self._insufficient_data = False for step in range(self.steps_per_epoch): if self._insufficient_data: break try: data = next(self._current_iterator) buffer.append(data) if len(buffer) == self.steps_per_execution: yield step - len(buffer) + 1, buffer buffer = [] except (StopIteration,): warnings.warn( "Your input ran out of data; interrupting epoch. " "Make sure that your dataset or generator can generate " "at least `steps_per_epoch * epochs` batches. " "You may need to use the `.repeat()` " "function when building your dataset.", stacklevel=2, ) self._current_iterator = None self._insufficient_data = True if buffer: yield step - len(buffer) + 1, buffer else: for step, data in enumerate(self._get_iterator()): buffer.append(data) if len(buffer) == self.steps_per_execution: yield step - len(buffer) + 1, buffer buffer = [] if buffer: yield step - len(buffer) + 1, buffer if not self._num_batches: # Infer the number of batches returned by the data_adapter. # Assumed static. self._num_batches = step + 1 self.data_adapter.on_epoch_end() @property def num_batches(self): if self.steps_per_epoch: return self.steps_per_epoch # Either copied from the data_adapter, or # inferred at the end of an iteration. return self._num_batches
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "SQLDatabaseToolkit": "langchain_community.agent_toolkits.sql.toolkit", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "SQLDatabaseToolkit", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "SQLDatabaseToolkit": "langchain_community.agent_toolkits.sql.toolkit" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "SQLDatabaseToolkit", ]
"""Azure Cognitive Vision tool spec.""" from typing import List, Optional import requests from llama_index.core.tools.tool_spec.base import BaseToolSpec CV_URL_TMPL = "https://{resource}.cognitiveservices.azure.com/computervision/imageanalysis:analyze" class AzureCVToolSpec(BaseToolSpec): """Azure Cognitive Vision tool spec.""" spec_functions = ["process_image"] def __init__( self, resource: str, api_key: str, language: Optional[str] = "en", api_version: Optional[str] = "2023-04-01-preview", ) -> None: """Initialize with parameters.""" self.api_key = api_key self.cv_url = CV_URL_TMPL.format(resource=resource) self.language = language self.api_version = api_version def process_image(self, url: str, features: List[str]): """ This tool accepts an image url or file and can process and return a variety of text depending on the use case. You can use the features argument to configure what text you want returned. Args: url (str): The url for the image to caption features (List[str]): Instructions on how to process the image. Valid keys are tags, objects, read, caption """ response = requests.post( f'{self.cv_url}?features={",".join(features)}&language={self.language}&api-version={self.api_version}', headers={"Ocp-Apim-Subscription-Key": self.api_key}, json={"url": url}, ) response_json = response.json() if "read" in features: response_json["readResult"] = response_json["readResult"]["content"] return response_json
"""Azure Cognitive Vision tool spec.""" from typing import List, Optional import requests from llama_index.core.tools.tool_spec.base import BaseToolSpec CV_URL_TMPL = "https://{resource}.cognitiveservices.azure.com/computervision/imageanalysis:analyze" class AzureCVToolSpec(BaseToolSpec): """Azure Cognitive Vision tool spec.""" spec_functions = ["process_image"] def __init__( self, resource: str, api_key: str, language: Optional[str] = "en", api_version: Optional[str] = "2023-04-01-preview", ) -> None: """Initialize with parameters.""" self.api_key = api_key self.cv_url = CV_URL_TMPL.format(resource=resource) self.language = language self.api_version = api_version def process_image(self, url: str, features: List[str]): """ This tool accepts an image url or file and can process and return a variety of text depending on the use case. You can use the features argument to configure what text you want returned. Args: url (str): The url for the image to caption features (List[str]): Instructions on how to process the image. Valid keys are tags, objects, read, caption """ response = requests.post( f'{self.cv_url}?features={",".join(features)}&language={self.language}&api-version={self.api_version}', headers={"Ocp-Apim-Subscription-Key": self.api_key}, json={"url": url}, ) response_json = response.json() if "read" in features: response_json["readResult"] = response_json["readResult"]["content"] return response_json
import os import pytest from unittest import mock from zhipuai.types.chat.chat_completion import ( Completion, CompletionChoice, CompletionMessage, CompletionUsage, ) from llama_index.core.base.llms.types import CompletionResponse from llama_index.core.base.llms.base import BaseLLM from llama_index.llms.zhipuai import ZhipuAI def test_llm_class(): names_of_base_classes = [b.__name__ for b in ZhipuAI.__mro__] assert BaseLLM.__name__ in names_of_base_classes def test_zhipuai_llm_model_alias(): model = "glm-test" api_key = "api_key_test" llm = ZhipuAI(model=model, api_key=api_key) assert llm.model == model assert llm.model_kwargs is not None def test_zhipuai_llm_metadata(): api_key = "api_key_test" llm = ZhipuAI(model="glm-4", api_key=api_key) assert llm.metadata.is_function_calling_model is True llm = ZhipuAI(model="glm-4v", api_key=api_key) assert llm.metadata.is_function_calling_model is False def test_zhipuai_completions_with_stop(): mock_response = Completion( model="glm-4", created=1703487403, choices=[ CompletionChoice( index=0, finish_reason="stop", message=CompletionMessage( role="assistant", content="MOCK_RESPONSE", ), ) ], usage=CompletionUsage( prompt_tokens=31, completion_tokens=217, total_tokens=248 ), ) predict_response = CompletionResponse( text="MOCK_RESPONSE", additional_kwargs={"tool_calls": []}, raw=mock_response, ) llm = ZhipuAI(model="glm-4", api_key="__fake_key__") with mock.patch.object( llm._client.chat.completions, "create", return_value=mock_response ): actual_chat = llm.complete("__query__", stop=["stop_words"]) assert actual_chat == predict_response @pytest.mark.skipif( os.getenv("ZHIPUAI_API_KEY") is None, reason="ZHIPUAI_API_KEY not set" ) def test_completion(): model = "glm-4" api_key = os.getenv("ZHIPUAI_API_KEY") llm = ZhipuAI(model=model, api_key=api_key) assert llm.complete("who are you") @pytest.mark.asyncio @pytest.mark.skipif( os.getenv("ZHIPUAI_API_KEY") is None, reason="ZHIPUAI_API_KEY not set" ) async def test_async_completion(): model = "glm-4" api_key = os.getenv("ZHIPUAI_API_KEY") llm = ZhipuAI(model=model, api_key=api_key) assert await llm.acomplete("who are you")
import os import pytest from unittest import mock from zhipuai.types.chat.chat_completion import ( Completion, CompletionChoice, CompletionMessage, CompletionUsage, ) from llama_index.core.base.llms.types import CompletionResponse from llama_index.core.base.llms.base import BaseLLM from llama_index.llms.zhipuai import ZhipuAI def test_llm_class(): names_of_base_classes = [b.__name__ for b in ZhipuAI.__mro__] assert BaseLLM.__name__ in names_of_base_classes def test_zhipuai_llm_model_alias(): model = "glm-test" api_key = "api_key_test" llm = ZhipuAI(model=model, api_key=api_key) assert llm.model == model assert llm.model_kwargs is not None def test_zhipuai_llm_metadata(): api_key = "api_key_test" llm = ZhipuAI(model="glm-4", api_key=api_key) assert llm.metadata.is_function_calling_model is True llm = ZhipuAI(model="glm-4v", api_key=api_key) assert llm.metadata.is_function_calling_model is False def test_zhipuai_completions_with_stop(): mock_response = Completion( model="glm-4", created=1703487403, choices=[ CompletionChoice( index=0, finish_reason="stop", message=CompletionMessage( role="assistant", content="MOCK_RESPONSE", ), ) ], usage=CompletionUsage( prompt_tokens=31, completion_tokens=217, total_tokens=248 ), ) predict_response = CompletionResponse( text="MOCK_RESPONSE", additional_kwargs={"tool_calls": []}, raw=mock_response, ) llm = ZhipuAI(model="glm-4", api_key="__fake_key__") with mock.patch.object( llm._client.chat.completions, "create", return_value=mock_response ): actual_chat = llm.complete("__query__", stop=["stop_words"]) assert actual_chat == predict_response @pytest.mark.skipif( os.getenv("ZHIPUAI_API_KEY") is None, reason="ZHIPUAI_API_KEY not set" ) def test_completion(): model = "glm-4" api_key = os.getenv("ZHIPUAI_API_KEY") llm = ZhipuAI(model=model, api_key=api_key) assert llm.complete("who are you") @pytest.mark.asyncio() @pytest.mark.skipif( os.getenv("ZHIPUAI_API_KEY") is None, reason="ZHIPUAI_API_KEY not set" ) async def test_async_completion(): model = "glm-4" api_key = os.getenv("ZHIPUAI_API_KEY") llm = ZhipuAI(model=model, api_key=api_key) assert await llm.acomplete("who are you")
import json import re from re import Pattern from typing import Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain.agents.agent import AgentOutputParser from langchain.agents.chat.prompt import FORMAT_INSTRUCTIONS FINAL_ANSWER_ACTION = "Final Answer:" class ReActJsonSingleInputOutputParser(AgentOutputParser): """Parses ReAct-style LLM calls that have a single tool input in json format. Expects output to be in one of two formats. If the output signals that an action should be taken, should be in the below format. This will result in an AgentAction being returned. ``` Thought: agent thought here Action: ``` { "action": "search", "action_input": "what is the temperature in SF" } ``` ``` If the output signals that a final answer should be given, should be in the below format. This will result in an AgentFinish being returned. ``` Thought: agent thought here Final Answer: The temperature is 100 degrees ``` """ pattern: Pattern = re.compile(r"^.*?`{3}(?:json)?\n?(.*?)`{3}.*?$", re.DOTALL) """Regex pattern to parse the output.""" def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: includes_answer = FINAL_ANSWER_ACTION in text try: found = self.pattern.search(text) if not found: # Fast fail to parse Final Answer. msg = "action not found" raise ValueError(msg) action = found.group(1) response = json.loads(action.strip()) includes_action = "action" in response if includes_answer and includes_action: msg = ( "Parsing LLM output produced a final answer " f"and a parse-able action: {text}" ) raise OutputParserException(msg) return AgentAction( response["action"], response.get("action_input", {}), text, ) except Exception: if not includes_answer: msg = f"Could not parse LLM output: {text}" raise OutputParserException(msg) output = text.split(FINAL_ANSWER_ACTION)[-1].strip() return AgentFinish({"output": output}, text) @property def _type(self) -> str: return "react-json-single-input"
import json import re from re import Pattern from typing import Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain.agents.agent import AgentOutputParser from langchain.agents.chat.prompt import FORMAT_INSTRUCTIONS FINAL_ANSWER_ACTION = "Final Answer:" class ReActJsonSingleInputOutputParser(AgentOutputParser): """Parses ReAct-style LLM calls that have a single tool input in json format. Expects output to be in one of two formats. If the output signals that an action should be taken, should be in the below format. This will result in an AgentAction being returned. ``` Thought: agent thought here Action: ``` { "action": "search", "action_input": "what is the temperature in SF" } ``` ``` If the output signals that a final answer should be given, should be in the below format. This will result in an AgentFinish being returned. ``` Thought: agent thought here Final Answer: The temperature is 100 degrees ``` """ pattern: Pattern = re.compile(r"^.*?`{3}(?:json)?\n?(.*?)`{3}.*?$", re.DOTALL) """Regex pattern to parse the output.""" def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: includes_answer = FINAL_ANSWER_ACTION in text try: found = self.pattern.search(text) if not found: # Fast fail to parse Final Answer. msg = "action not found" raise ValueError(msg) action = found.group(1) response = json.loads(action.strip()) includes_action = "action" in response if includes_answer and includes_action: msg = ( "Parsing LLM output produced a final answer " f"and a parse-able action: {text}" ) raise OutputParserException(msg) return AgentAction( response["action"], response.get("action_input", {}), text ) except Exception: if not includes_answer: msg = f"Could not parse LLM output: {text}" raise OutputParserException(msg) output = text.split(FINAL_ANSWER_ACTION)[-1].strip() return AgentFinish({"output": output}, text) @property def _type(self) -> str: return "react-json-single-input"
import logging from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") evaluator = SparseNanoBEIREvaluator( dataset_names=None, # None means evaluate on all datasets show_progress_bar=True, batch_size=16, ) # Run evaluation results = evaluator(model) """ Average Queries: 49.92307692307692 Average Corpus: 4334.7692307692305 Aggregated for Score Function: dot Accuracy@1: 58.72% Accuracy@3: 75.37% Accuracy@5: 80.76% Accuracy@10: 87.07% Precision@1: 58.72% Recall@1: 35.61% Precision@3: 36.31% Recall@3: 50.84% Precision@5: 27.72% Recall@5: 56.55% Precision@10: 19.18% Recall@10: 64.21% MRR@10: 0.6822 NDCG@10: 0.6204 Model Query Sparsity: Active Dimensions: 74.9, Sparsity Ratio: 0.9975 Model Corpus Sparsity: Active Dimensions: 174.8, Sparsity Ratio: 0.9943 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6204
import logging from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") evaluator = SparseNanoBEIREvaluator( dataset_names=None, # None means evaluate on all datasets show_progress_bar=True, batch_size=16, ) # Run evaluation results = evaluator(model) """ Average Queries: 49.92307692307692 Average Corpus: 4334.7692307692305 Aggregated for Score Function: dot Accuracy@1: 58.72% Accuracy@3: 75.37% Accuracy@5: 80.76% Accuracy@10: 87.07% Precision@1: 58.72% Recall@1: 35.61% Precision@3: 36.31% Recall@3: 50.84% Precision@5: 27.72% Recall@5: 56.55% Precision@10: 19.18% Recall@10: 64.21% MRR@10: 0.6822 NDCG@10: 0.6204 Model Sparsity Stats Query : Row Non-Zero Mean: 74.93406589214618, Row Sparsity Mean: 0.9975449305314285 Model Sparsity Stats Corpus : Row Non-Zero Mean: 174.8070262028621, Row Sparsity Mean: 0.9942727547425491 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6204
_base_ = './maskformer_r50_ms-16xb1-75e_coco.py' pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth' # noqa depths = [2, 2, 18, 2] model = dict( backbone=dict( _delete_=True, type='SwinTransformer', pretrain_img_size=384, embed_dims=192, patch_size=4, window_size=12, mlp_ratio=4, depths=depths, num_heads=[6, 12, 24, 48], qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), panoptic_head=dict( in_channels=[192, 384, 768, 1536], # pass to pixel_decoder inside pixel_decoder=dict( _delete_=True, type='PixelDecoder', norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU')), enforce_decoder_input_project=True)) # optimizer # weight_decay = 0.01 # norm_weight_decay = 0.0 # embed_weight_decay = 0.0 embed_multi = dict(lr_mult=1.0, decay_mult=0.0) norm_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'norm': norm_multi, 'absolute_pos_embed': embed_multi, 'relative_position_bias_table': embed_multi, 'query_embed': embed_multi } optim_wrapper = dict( optimizer=dict(lr=6e-5, weight_decay=0.01), paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0)) max_epochs = 300 # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[250], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (64 GPUs) x (1 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = './maskformer_r50_mstrain_16x1_75e_coco.py' pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth' # noqa depths = [2, 2, 18, 2] model = dict( backbone=dict( _delete_=True, type='SwinTransformer', pretrain_img_size=384, embed_dims=192, patch_size=4, window_size=12, mlp_ratio=4, depths=depths, num_heads=[6, 12, 24, 48], qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), panoptic_head=dict( in_channels=[192, 384, 768, 1536], # pass to pixel_decoder inside pixel_decoder=dict( _delete_=True, type='PixelDecoder', norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU')), enforce_decoder_input_project=True)) # optimizer # weight_decay = 0.01 # norm_weight_decay = 0.0 # embed_weight_decay = 0.0 embed_multi = dict(lr_mult=1.0, decay_mult=0.0) norm_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'norm': norm_multi, 'absolute_pos_embed': embed_multi, 'relative_position_bias_table': embed_multi, 'query_embed': embed_multi } optim_wrapper = dict( optimizer=dict(lr=6e-5, weight_decay=0.01), paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0)) max_epochs = 300 # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[250], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (64 GPUs) x (1 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import shutil import tempfile import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import ( AutoProcessor, LlavaOnevisionImageProcessor, LlavaOnevisionProcessor, Qwen2TokenizerFast, ) if is_torchvision_available(): from transformers import LlavaOnevisionVideoProcessor if is_torch_available: pass @require_vision @require_torch class LlavaOnevisionProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = LlavaOnevisionProcessor @classmethod def setUpClass(cls): cls.tmpdirname = tempfile.mkdtemp() image_processor = LlavaOnevisionImageProcessor() video_processor = LlavaOnevisionVideoProcessor() tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen2-0.5B-Instruct") tokenizer.add_special_tokens({"additional_special_tokens": ["<image>", "<video>"]}) processor_kwargs = cls.prepare_processor_dict() processor = LlavaOnevisionProcessor( video_processor=video_processor, image_processor=image_processor, tokenizer=tokenizer, **processor_kwargs ) processor.save_pretrained(cls.tmpdirname) cls.image_token = processor.image_token cls.video_token = processor.video_token def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor def get_video_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).video_processor @classmethod def tearDownClass(cls): shutil.rmtree(cls.tmpdirname, ignore_errors=True) @staticmethod def prepare_processor_dict(): return { "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + ' '}}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>' }}{% endfor %}{# Render all video then #}{% for content in message['content'] | selectattr('type', 'equalto', 'video') %}{{ '<video>' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ '\n' + content['text'] }}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ '\n' + content['text'] }}{% endgeneration %}{% endfor %}{% endif %}{{'<|im_end|>'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}", "num_image_tokens": 6, "vision_feature_select_strategy": "default" } # fmt: skip # Copied from tests.models.llava.test_processor_llava.LlavaProcessorTest.test_chat_template_is_saved def test_chat_template_is_saved(self): processor_loaded = self.processor_class.from_pretrained(self.tmpdirname) processor_dict_loaded = json.loads(processor_loaded.to_json_string()) # chat templates aren't serialized to json in processors self.assertFalse("chat_template" in processor_dict_loaded.keys()) # they have to be saved as separate file and loaded back from that file # so we check if the same template is loaded processor_dict = self.prepare_processor_dict() self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None))
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import shutil import tempfile import unittest from transformers.testing_utils import require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import ( AutoProcessor, LlavaOnevisionImageProcessor, LlavaOnevisionProcessor, LlavaOnevisionVideoProcessor, Qwen2TokenizerFast, ) if is_torch_available: pass @require_vision class LlavaOnevisionProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = LlavaOnevisionProcessor @classmethod def setUpClass(cls): cls.tmpdirname = tempfile.mkdtemp() image_processor = LlavaOnevisionImageProcessor() video_processor = LlavaOnevisionVideoProcessor() tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen2-0.5B-Instruct") tokenizer.add_special_tokens({"additional_special_tokens": ["<image>", "<video>"]}) processor_kwargs = cls.prepare_processor_dict() processor = LlavaOnevisionProcessor( video_processor=video_processor, image_processor=image_processor, tokenizer=tokenizer, **processor_kwargs ) processor.save_pretrained(cls.tmpdirname) cls.image_token = processor.image_token cls.video_token = processor.video_token def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor def get_video_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).video_processor @classmethod def tearDownClass(cls): shutil.rmtree(cls.tmpdirname, ignore_errors=True) @staticmethod def prepare_processor_dict(): return { "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + ' '}}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>' }}{% endfor %}{# Render all video then #}{% for content in message['content'] | selectattr('type', 'equalto', 'video') %}{{ '<video>' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ '\n' + content['text'] }}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ '\n' + content['text'] }}{% endgeneration %}{% endfor %}{% endif %}{{'<|im_end|>'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}", "num_image_tokens": 6, "vision_feature_select_strategy": "default" } # fmt: skip # Copied from tests.models.llava.test_processor_llava.LlavaProcessorTest.test_chat_template_is_saved def test_chat_template_is_saved(self): processor_loaded = self.processor_class.from_pretrained(self.tmpdirname) processor_dict_loaded = json.loads(processor_loaded.to_json_string()) # chat templates aren't serialized to json in processors self.assertFalse("chat_template" in processor_dict_loaded.keys()) # they have to be saved as separate file and loaded back from that file # so we check if the same template is loaded processor_dict = self.prepare_processor_dict() self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None))
import os import sys import warnings from pathlib import Path import torch from torchaudio._internal import module_utils as _mod_utils # noqa: F401 _LIB_DIR = Path(__file__).parent / "lib" def _get_lib_path(lib: str): suffix = "pyd" if os.name == "nt" else "so" path = _LIB_DIR / f"{lib}.{suffix}" return path def _load_lib(lib: str) -> bool: """Load extension module Note: In case `torchaudio` is deployed with `pex` format, the library file is not in a standard location. In this case, we expect that `libtorchaudio` is available somewhere in the search path of dynamic loading mechanism, so that importing `_torchaudio` will have library loader find and load `libtorchaudio`. This is the reason why the function should not raising an error when the library file is not found. Returns: bool: True if the library file is found AND the library loaded without failure. False if the library file is not found (like in the case where torchaudio is deployed with pex format, thus the shared library file is in a non-standard location.). If the library file is found but there is an issue loading the library, (such as missing dependency) then this function raises the exception as-is. Raises: Exception: If the library file is found, but there is an issue loading the library file, (when underlying `ctype.DLL` throws an exception), this function will pass the exception as-is, instead of catching it and returning bool. The expected case is `OSError` thrown by `ctype.DLL` when a dynamic dependency is not found. This behavior was chosen because the expected failure case is not recoverable. If a dependency is missing, then users have to install it. """ path = _get_lib_path(lib) if not path.exists(): return False torch.ops.load_library(path) torch.classes.load_library(path) return True _FFMPEG_INITIALIZED = False def _init_ffmpeg(): global _FFMPEG_INITIALIZED if _FFMPEG_INITIALIZED: return if not torch.ops.torchaudio.is_ffmpeg_available(): raise RuntimeError( "torchaudio is not compiled with FFmpeg integration. Please set USE_FFMPEG=1 when compiling torchaudio." ) try: _load_lib("libtorchaudio_ffmpeg") except OSError as err: raise ImportError("FFmpeg libraries are not found. Please install FFmpeg.") from err import torchaudio._torchaudio_ffmpeg # noqa torch.ops.torchaudio.ffmpeg_init() if torch.ops.torchaudio.ffmpeg_get_log_level() > 8: torch.ops.torchaudio.ffmpeg_set_log_level(8) _FFMPEG_INITIALIZED = True def _init_extension(): if not _mod_utils.is_module_available("torchaudio._torchaudio"): warnings.warn("torchaudio C++ extension is not available.") return # On Windows Python-3.8+ has `os.add_dll_directory` call, # which is called to configure dll search path. # To find cuda related dlls we need to make sure the # conda environment/bin path is configured Please take a look: # https://stackoverflow.com/questions/59330863/cant-import-dll-module-in-python if os.name == "nt" and sys.version_info >= (3, 8) and sys.version_info < (3, 9): env_path = os.environ["PATH"] path_arr = env_path.split(";") for path in path_arr: if os.path.exists(path): os.add_dll_directory(path) _load_lib("libtorchaudio") # This import is for initializing the methods registered via PyBind11 # This has to happen after the base library is loaded from torchaudio import _torchaudio # noqa # Because this part is executed as part of `import torchaudio`, we ignore the # initialization failure. # If the FFmpeg integration is not properly initialized, then detailed error # will be raised when client code attempts to import the dedicated feature. try: _init_ffmpeg() except Exception: pass def _check_cuda_version(): version = torch.ops.torchaudio.cuda_version() if version is not None and torch.version.cuda is not None: version_str = str(version) ta_version = f"{version_str[:-3]}.{version_str[-2]}" t_version = torch.version.cuda.split(".") t_version = f"{t_version[0]}.{t_version[1]}" if ta_version != t_version: raise RuntimeError( "Detected that PyTorch and TorchAudio were compiled with different CUDA versions. " f"PyTorch has CUDA version {t_version} whereas TorchAudio has CUDA version {ta_version}. " "Please install the TorchAudio version that matches your PyTorch version." ) _init_extension() _check_cuda_version()
import os import warnings from pathlib import Path import torch from torchaudio._internal import module_utils as _mod_utils # noqa: F401 _LIB_DIR = Path(__file__).parent / "lib" def _get_lib_path(lib: str): suffix = "pyd" if os.name == "nt" else "so" path = _LIB_DIR / f"{lib}.{suffix}" return path def _load_lib(lib: str) -> bool: """Load extension module Note: In case `torchaudio` is deployed with `pex` format, the library file is not in a standard location. In this case, we expect that `libtorchaudio` is available somewhere in the search path of dynamic loading mechanism, so that importing `_torchaudio` will have library loader find and load `libtorchaudio`. This is the reason why the function should not raising an error when the library file is not found. Returns: bool: True if the library file is found AND the library loaded without failure. False if the library file is not found (like in the case where torchaudio is deployed with pex format, thus the shared library file is in a non-standard location.). If the library file is found but there is an issue loading the library, (such as missing dependency) then this function raises the exception as-is. Raises: Exception: If the library file is found, but there is an issue loading the library file, (when underlying `ctype.DLL` throws an exception), this function will pass the exception as-is, instead of catching it and returning bool. The expected case is `OSError` thrown by `ctype.DLL` when a dynamic dependency is not found. This behavior was chosen because the expected failure case is not recoverable. If a dependency is missing, then users have to install it. """ path = _get_lib_path(lib) if not path.exists(): return False torch.ops.load_library(path) torch.classes.load_library(path) return True _FFMPEG_INITIALIZED = False def _init_ffmpeg(): global _FFMPEG_INITIALIZED if _FFMPEG_INITIALIZED: return if not torch.ops.torchaudio.is_ffmpeg_available(): raise RuntimeError( "torchaudio is not compiled with FFmpeg integration. Please set USE_FFMPEG=1 when compiling torchaudio." ) try: _load_lib("libtorchaudio_ffmpeg") except OSError as err: raise ImportError("FFmpeg libraries are not found. Please install FFmpeg.") from err import torchaudio._torchaudio_ffmpeg # noqa torch.ops.torchaudio.ffmpeg_init() if torch.ops.torchaudio.ffmpeg_get_log_level() > 8: torch.ops.torchaudio.ffmpeg_set_log_level(8) _FFMPEG_INITIALIZED = True def _init_extension(): if not _mod_utils.is_module_available("torchaudio._torchaudio"): warnings.warn("torchaudio C++ extension is not available.") return _load_lib("libtorchaudio") # This import is for initializing the methods registered via PyBind11 # This has to happen after the base library is loaded from torchaudio import _torchaudio # noqa # Because this part is executed as part of `import torchaudio`, we ignore the # initialization failure. # If the FFmpeg integration is not properly initialized, then detailed error # will be raised when client code attempts to import the dedicated feature. try: _init_ffmpeg() except Exception: pass def _check_cuda_version(): version = torch.ops.torchaudio.cuda_version() if version is not None and torch.version.cuda is not None: version_str = str(version) ta_version = f"{version_str[:-3]}.{version_str[-2]}" t_version = torch.version.cuda.split(".") t_version = f"{t_version[0]}.{t_version[1]}" if ta_version != t_version: raise RuntimeError( "Detected that PyTorch and TorchAudio were compiled with different CUDA versions. " f"PyTorch has CUDA version {t_version} whereas TorchAudio has CUDA version {ta_version}. " "Please install the TorchAudio version that matches your PyTorch version." ) _init_extension() _check_cuda_version()
from __future__ import annotations import json from typing import TYPE_CHECKING from unittest.mock import MagicMock, patch import pytest from langchain_community.utilities.jira import JiraAPIWrapper if TYPE_CHECKING: from collections.abc import Iterator @pytest.fixture def mock_jira() -> Iterator[MagicMock]: with patch("atlassian.Jira") as mock_jira: yield mock_jira @pytest.mark.requires("atlassian") class TestJiraAPIWrapper: def test_jira_api_wrapper(self, mock_jira: MagicMock) -> None: """Test for Jira API Wrapper using mocks""" # Configure the mock instance mock_jira_instance = mock_jira.return_value # Mock projects method to return mock projects mock_project1 = MagicMock(key="PROJ1") mock_project2 = MagicMock(key="PROJ2") # Set up the mock to return our mock projects mock_jira_instance.projects.return_value = [mock_project1, mock_project2] # Initialize wrapper with mocks in place jira_wrapper = JiraAPIWrapper( jira_username="test_user", jira_api_token="test_token", jira_instance_url="https://test.atlassian.net", jira_cloud=True, ) mock_jira.assert_called_once_with( url="https://test.atlassian.net", username="test_user", password="test_token", cloud=True, ) # Test get_projects function result = jira_wrapper.run("get_projects", "") # Verify the mock was called and the result contains expected info mock_jira_instance.projects.assert_called_once() assert result.startswith("Found 2 projects") def test_jira_api_wrapper_with_cloud_false(self, mock_jira: MagicMock) -> None: JiraAPIWrapper( jira_username="test_user", jira_api_token="test_token", jira_instance_url="https://test.atlassian.net", jira_cloud=False, ) mock_jira.assert_called_once_with( url="https://test.atlassian.net", username="test_user", password="test_token", cloud=False, ) def test_jira_api_wrapper_with_oauth_dict(self, mock_jira: MagicMock) -> None: oauth_dict = { "client_id": "test_client_id", "token": { "access_token": "test_access_token", "token_type": "test_token_type", }, } oauth_string = json.dumps(oauth_dict) JiraAPIWrapper( jira_oauth2=oauth_string, jira_instance_url="https://test.atlassian.net", jira_cloud=False, ) mock_jira.assert_called_once_with( url="https://test.atlassian.net", oauth2={"client": None, **oauth_dict}, cloud=False, )
import json from unittest.mock import MagicMock, patch import pytest from langchain_community.utilities.jira import JiraAPIWrapper @pytest.fixture def mock_jira(): # type: ignore with patch("atlassian.Jira") as mock_jira: yield mock_jira @pytest.mark.requires("atlassian") class TestJiraAPIWrapper: def test_jira_api_wrapper(self, mock_jira: MagicMock) -> None: """Test for Jira API Wrapper using mocks""" # Configure the mock instance mock_jira_instance = mock_jira.return_value # Mock projects method to return mock projects mock_project1 = MagicMock(key="PROJ1") mock_project2 = MagicMock(key="PROJ2") # Set up the mock to return our mock projects mock_jira_instance.projects.return_value = [mock_project1, mock_project2] # Initialize wrapper with mocks in place jira_wrapper = JiraAPIWrapper( jira_username="test_user", jira_api_token="test_token", jira_instance_url="https://test.atlassian.net", jira_cloud=True, ) mock_jira.assert_called_once_with( url="https://test.atlassian.net", username="test_user", password="test_token", cloud=True, ) # Test get_projects function result = jira_wrapper.run("get_projects", "") # Verify the mock was called and the result contains expected info mock_jira_instance.projects.assert_called_once() assert result.startswith("Found 2 projects") def test_jira_api_wrapper_with_cloud_false(self, mock_jira: MagicMock) -> None: JiraAPIWrapper( jira_username="test_user", jira_api_token="test_token", jira_instance_url="https://test.atlassian.net", jira_cloud=False, ) mock_jira.assert_called_once_with( url="https://test.atlassian.net", username="test_user", password="test_token", cloud=False, ) def test_jira_api_wrapper_with_oauth_dict(self, mock_jira: MagicMock) -> None: oauth_dict = { "client_id": "test_client_id", "token": { "access_token": "test_access_token", "token_type": "test_token_type", }, } oauth_string = json.dumps(oauth_dict) JiraAPIWrapper( jira_oauth2=oauth_string, jira_instance_url="https://test.atlassian.net", jira_cloud=False, ) mock_jira.assert_called_once_with( url="https://test.atlassian.net", oauth2={"client": None, **oauth_dict}, cloud=False, )
import json import logging from typing import List, Optional from langchain_core.chat_history import BaseChatMessageHistory from langchain_core.messages import ( BaseMessage, message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) class UpstashRedisChatMessageHistory(BaseChatMessageHistory): """Chat message history stored in an Upstash Redis database.""" def __init__( self, session_id: str, url: str = "", token: str = "", key_prefix: str = "message_store:", ttl: Optional[int] = None, ): try: from upstash_redis import Redis except ImportError: raise ImportError( "Could not import upstash redis python package. " "Please install it with `pip install upstash_redis`." ) if url == "" or token == "": raise ValueError( "UPSTASH_REDIS_REST_URL and UPSTASH_REDIS_REST_TOKEN are needed." ) try: self.redis_client = Redis(url=url, token=token) except Exception: logger.error("Upstash Redis instance could not be initiated.") self.session_id = session_id self.key_prefix = key_prefix self.ttl = ttl @property def key(self) -> str: """Construct the record key to use""" return self.key_prefix + self.session_id @property def messages(self) -> List[BaseMessage]: # type: ignore[override] """Retrieve the messages from Upstash Redis""" _items = self.redis_client.lrange(self.key, 0, -1) items = [json.loads(m) for m in _items[::-1]] messages = messages_from_dict(items) return messages def add_message(self, message: BaseMessage) -> None: """Append the message to the record in Upstash Redis""" self.redis_client.lpush(self.key, json.dumps(message_to_dict(message))) if self.ttl: self.redis_client.expire(self.key, self.ttl) def clear(self) -> None: """Clear session memory from Upstash Redis""" self.redis_client.delete(self.key)
import json import logging from typing import List, Optional from langchain_core.chat_history import BaseChatMessageHistory from langchain_core.messages import ( BaseMessage, message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) class UpstashRedisChatMessageHistory(BaseChatMessageHistory): """Chat message history stored in an Upstash Redis database.""" def __init__( self, session_id: str, url: str = "", token: str = "", key_prefix: str = "message_store:", ttl: Optional[int] = None, ): try: from upstash_redis import Redis except ImportError: raise ImportError( "Could not import upstash redis python package. " "Please install it with `pip install upstash_redis`." ) if url == "" or token == "": raise ValueError( "UPSTASH_REDIS_REST_URL and UPSTASH_REDIS_REST_TOKEN are needed." ) try: self.redis_client = Redis(url=url, token=token) except Exception: logger.error("Upstash Redis instance could not be initiated.") self.session_id = session_id self.key_prefix = key_prefix self.ttl = ttl @property def key(self) -> str: """Construct the record key to use""" return self.key_prefix + self.session_id @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from Upstash Redis""" _items = self.redis_client.lrange(self.key, 0, -1) items = [json.loads(m) for m in _items[::-1]] messages = messages_from_dict(items) return messages def add_message(self, message: BaseMessage) -> None: """Append the message to the record in Upstash Redis""" self.redis_client.lpush(self.key, json.dumps(message_to_dict(message))) if self.ttl: self.redis_client.expire(self.key, self.ttl) def clear(self) -> None: """Clear session memory from Upstash Redis""" self.redis_client.delete(self.key)
import binascii import codecs import marshal import os import types as python_types def default(method): """Decorates a method to detect overrides in subclasses.""" method._is_default = True return method def is_default(method): """Check if a method is decorated with the `default` wrapper.""" return getattr(method, "_is_default", False) def func_dump(func): """Serializes a user-defined function. Args: func: the function to serialize. Returns: A tuple `(code, defaults, closure)`. """ if os.name == "nt": raw_code = marshal.dumps(func.__code__).replace(b"\\", b"/") code = codecs.encode(raw_code, "base64").decode("ascii") else: raw_code = marshal.dumps(func.__code__) code = codecs.encode(raw_code, "base64").decode("ascii") defaults = func.__defaults__ if func.__closure__: closure = tuple(c.cell_contents for c in func.__closure__) else: closure = None return code, defaults, closure def func_load(code, defaults=None, closure=None, globs=None): """Deserializes a user defined function. Args: code: bytecode of the function. defaults: defaults of the function. closure: closure of the function. globs: dictionary of global objects. Returns: A function object. """ if isinstance(code, (tuple, list)): # unpack previous dump code, defaults, closure = code if isinstance(defaults, list): defaults = tuple(defaults) def ensure_value_to_cell(value): """Ensures that a value is converted to a python cell object. Args: value: Any value that needs to be casted to the cell type Returns: A value wrapped as a cell object (see function "func_load") """ def dummy_fn(): value # just access it so it gets captured in .__closure__ cell_value = dummy_fn.__closure__[0] if not isinstance(value, type(cell_value)): return cell_value return value if closure is not None: closure = tuple(ensure_value_to_cell(_) for _ in closure) try: raw_code = codecs.decode(code.encode("ascii"), "base64") except (UnicodeEncodeError, binascii.Error): raw_code = code.encode("raw_unicode_escape") code = marshal.loads(raw_code) if globs is None: globs = globals() return python_types.FunctionType( code, globs, name=code.co_name, argdefs=defaults, closure=closure ) def to_list(x): """Normalizes a list/tensor into a list. If a tensor is passed, we return a list of size 1 containing the tensor. Args: x: target object to be normalized. Returns: A list. """ if isinstance(x, list): return x return [x] def remove_long_seq(maxlen, seq, label): """Removes sequences that exceed the maximum length. Args: maxlen: Int, maximum length of the output sequences. seq: List of lists, where each sublist is a sequence. label: List where each element is an integer. Returns: new_seq, new_label: shortened lists for `seq` and `label`. """ new_seq, new_label = [], [] for x, y in zip(seq, label): if len(x) < maxlen: new_seq.append(x) new_label.append(y) return new_seq, new_label def removeprefix(x, prefix): """Backport of `removeprefix` from PEP-616 (Python 3.9+)""" if len(prefix) > 0 and x.startswith(prefix): return x[len(prefix) :] else: return x def removesuffix(x, suffix): """Backport of `removesuffix` from PEP-616 (Python 3.9+)""" if len(suffix) > 0 and x.endswith(suffix): return x[: -len(suffix)] else: return x def remove_by_id(lst, value): """Remove a value from a list by id.""" for i, v in enumerate(lst): if id(v) == id(value): del lst[i] return def pythonify_logs(logs): """Flatten and convert log values to Python-native types. This function attempts to convert dict value by `float(value)` and skips the conversion if it fails. Args: logs: A dict containing log values. Returns: A flattened dict with values converted to Python-native types if possible. """ logs = logs or {} result = {} for key, value in sorted(logs.items()): if isinstance(value, dict): result.update(pythonify_logs(value)) else: try: value = float(value) except: pass result[key] = value return result
import binascii import codecs import marshal import os import types as python_types def default(method): """Decorates a method to detect overrides in subclasses.""" method._is_default = True return method def is_default(method): """Check if a method is decorated with the `default` wrapper.""" return getattr(method, "_is_default", False) def func_dump(func): """Serializes a user-defined function. Args: func: the function to serialize. Returns: A tuple `(code, defaults, closure)`. """ if os.name == "nt": raw_code = marshal.dumps(func.__code__).replace(b"\\", b"/") code = codecs.encode(raw_code, "base64").decode("ascii") else: raw_code = marshal.dumps(func.__code__) code = codecs.encode(raw_code, "base64").decode("ascii") defaults = func.__defaults__ if func.__closure__: closure = tuple(c.cell_contents for c in func.__closure__) else: closure = None return code, defaults, closure def func_load(code, defaults=None, closure=None, globs=None): """Deserializes a user defined function. Args: code: bytecode of the function. defaults: defaults of the function. closure: closure of the function. globs: dictionary of global objects. Returns: A function object. """ if isinstance(code, (tuple, list)): # unpack previous dump code, defaults, closure = code if isinstance(defaults, list): defaults = tuple(defaults) def ensure_value_to_cell(value): """Ensures that a value is converted to a python cell object. Args: value: Any value that needs to be casted to the cell type Returns: A value wrapped as a cell object (see function "func_load") """ def dummy_fn(): value # just access it so it gets captured in .__closure__ cell_value = dummy_fn.__closure__[0] if not isinstance(value, type(cell_value)): return cell_value return value if closure is not None: closure = tuple(ensure_value_to_cell(_) for _ in closure) try: raw_code = codecs.decode(code.encode("ascii"), "base64") except (UnicodeEncodeError, binascii.Error): raw_code = code.encode("raw_unicode_escape") code = marshal.loads(raw_code) if globs is None: globs = globals() return python_types.FunctionType( code, globs, name=code.co_name, argdefs=defaults, closure=closure ) def to_list(x): """Normalizes a list/tensor into a list. If a tensor is passed, we return a list of size 1 containing the tensor. Args: x: target object to be normalized. Returns: A list. """ if isinstance(x, list): return x return [x] def remove_long_seq(maxlen, seq, label): """Removes sequences that exceed the maximum length. Args: maxlen: Int, maximum length of the output sequences. seq: List of lists, where each sublist is a sequence. label: List where each element is an integer. Returns: new_seq, new_label: shortened lists for `seq` and `label`. """ new_seq, new_label = [], [] for x, y in zip(seq, label): if len(x) < maxlen: new_seq.append(x) new_label.append(y) return new_seq, new_label def removeprefix(x, prefix): """Backport of `removeprefix` from PEP-616 (Python 3.9+)""" if len(prefix) > 0 and x.startswith(prefix): return x[len(prefix) :] else: return x def removesuffix(x, suffix): """Backport of `removesuffix` from PEP-616 (Python 3.9+)""" if len(suffix) > 0 and x.endswith(suffix): return x[: -len(suffix)] else: return x def remove_by_id(lst, value): """Remove a value from a list by id.""" for i, v in enumerate(lst): if id(v) == id(value): del lst[i] return
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py' # model settings model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron/resnet101_caffe'))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scale=[(1333, 640), (1333, 800)], resize_cfg=dict(type='Resize', keep_ratio=True)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 2x train_cfg = dict(by_epoch=True, max_epochs=24) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron/resnet101_caffe'))) img_norm_cfg = dict( mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 640), (1333, 800)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # learning policy lr_config = dict(step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24)
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.typing import AnyEmbedding, AudioUrl from docarray.typing.bytes.audio_bytes import AudioBytes from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.audio.audio_tensor import AudioTensor from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: torch = import_library('torch', raise_error=False) tf = import_library('tensorflow', raise_error=False) T = TypeVar('T', bound='AudioDoc') class AudioDoc(BaseDoc): """ Document for handling audios. The Audio Document can contain: - an [`AudioUrl`][docarray.typing.url.AudioUrl] (`AudioDoc.url`) - an [`AudioTensor`](../../../api_references/typing/tensor/audio) (`AudioDoc.tensor`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`AudioDoc.embedding`) - an [`AudioBytes`][docarray.typing.bytes.AudioBytes] (`AudioDoc.bytes_`) object - an integer representing the frame_rate (`AudioDoc.frame_rate`) You can use this Document directly: ```python from docarray.documents import AudioDoc # use it directly audio = AudioDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/hello.wav?raw=true' ) audio.tensor, audio.frame_rate = audio.url.load() # model = MyEmbeddingModel() # audio.embedding = model(audio.tensor) ``` You can extend this Document: ```python from docarray.documents import AudioDoc, TextDoc from typing import Optional # extend it class MyAudio(AudioDoc): name: Optional[TextDoc] audio = MyAudio( url='https://github.com/docarray/docarray/blob/main/tests/toydata/hello.wav?raw=true' ) audio.name = TextDoc(text='my first audio') audio.tensor, audio.frame_rate = audio.url.load() # model = MyEmbeddingModel() # audio.embedding = model(audio.tensor) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import AudioDoc, TextDoc # compose it class MultiModalDoc(BaseDoc): audio: AudioDoc text: TextDoc mmdoc = MultiModalDoc( audio=AudioDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/hello.wav?raw=true' ), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.audio.tensor, mmdoc.audio.frame_rate = mmdoc.audio.url.load() # equivalent to mmdoc.audio.bytes_ = mmdoc.audio.url.load_bytes() mmdoc.audio.tensor, mmdoc.audio.frame_rate = mmdoc.audio.bytes_.load() ``` """ url: Optional[AudioUrl] = None tensor: Optional[AudioTensor] = None embedding: Optional[AnyEmbedding] = None bytes_: Optional[AudioBytes] = None frame_rate: Optional[int] = None @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch is not None and isinstance(value, torch.Tensor) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) return super().validate(value)
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.typing import AnyEmbedding, AudioUrl from docarray.typing.bytes.audio_bytes import AudioBytes from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.audio.audio_tensor import AudioTensor from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: torch = import_library('torch', raise_error=False) tf = import_library('tensorflow', raise_error=False) T = TypeVar('T', bound='AudioDoc') class AudioDoc(BaseDoc): """ Document for handling audios. The Audio Document can contain: - an [`AudioUrl`][docarray.typing.url.AudioUrl] (`AudioDoc.url`) - an [`AudioTensor`](../../../api_references/typing/tensor/audio) (`AudioDoc.tensor`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`AudioDoc.embedding`) - an [`AudioBytes`][docarray.typing.bytes.AudioBytes] (`AudioDoc.bytes_`) object - an integer representing the frame_rate (`AudioDoc.frame_rate`) You can use this Document directly: ```python from docarray.documents import AudioDoc # use it directly audio = AudioDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/hello.wav?raw=true' ) audio.tensor, audio.frame_rate = audio.url.load() # model = MyEmbeddingModel() # audio.embedding = model(audio.tensor) ``` You can extend this Document: ```python from docarray.documents import AudioDoc, TextDoc from typing import Optional # extend it class MyAudio(AudioDoc): name: Optional[TextDoc] audio = MyAudio( url='https://github.com/docarray/docarray/blob/main/tests/toydata/hello.wav?raw=true' ) audio.name = TextDoc(text='my first audio') audio.tensor, audio.frame_rate = audio.url.load() # model = MyEmbeddingModel() # audio.embedding = model(audio.tensor) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import AudioDoc, TextDoc # compose it class MultiModalDoc(BaseDoc): audio: AudioDoc text: TextDoc mmdoc = MultiModalDoc( audio=AudioDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/hello.wav?raw=true' ), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.audio.tensor, mmdoc.audio.frame_rate = mmdoc.audio.url.load() # equivalent to mmdoc.audio.bytes_ = mmdoc.audio.url.load_bytes() mmdoc.audio.tensor, mmdoc.audio.frame_rate = mmdoc.audio.bytes_.load() ``` """ url: Optional[AudioUrl] tensor: Optional[AudioTensor] embedding: Optional[AnyEmbedding] bytes_: Optional[AudioBytes] frame_rate: Optional[int] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch is not None and isinstance(value, torch.Tensor) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) return super().validate(value)
# Copyright (c) OpenMMLab. All rights reserved. from .base_video_metric import BaseVideoMetric from .cityscapes_metric import CityScapesMetric from .coco_caption_metric import COCOCaptionMetric from .coco_metric import CocoMetric from .coco_occluded_metric import CocoOccludedSeparatedMetric from .coco_panoptic_metric import CocoPanopticMetric from .coco_video_metric import CocoVideoMetric from .crowdhuman_metric import CrowdHumanMetric from .dump_det_results import DumpDetResults from .dump_proposals_metric import DumpProposals from .lvis_metric import LVISMetric from .mot_challenge_metric import MOTChallengeMetric from .openimages_metric import OpenImagesMetric from .refseg_metric import RefSegMetric from .reid_metric import ReIDMetrics from .semseg_metric import SemSegMetric from .voc_metric import VOCMetric from .youtube_vis_metric import YouTubeVISMetric __all__ = [ 'CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric', 'OpenImagesMetric', 'VOCMetric', 'LVISMetric', 'CrowdHumanMetric', 'DumpProposals', 'CocoOccludedSeparatedMetric', 'DumpDetResults', 'BaseVideoMetric', 'MOTChallengeMetric', 'CocoVideoMetric', 'ReIDMetrics', 'YouTubeVISMetric', 'COCOCaptionMetric', 'SemSegMetric', 'RefSegMetric' ]
# Copyright (c) OpenMMLab. All rights reserved. from .cityscapes_metric import CityScapesMetric from .coco_metric import CocoMetric from .coco_occluded_metric import CocoOccludedSeparatedMetric from .coco_panoptic_metric import CocoPanopticMetric from .crowdhuman_metric import CrowdHumanMetric from .dump_det_results import DumpDetResults from .dump_proposals_metric import DumpProposals from .lvis_metric import LVISMetric from .openimages_metric import OpenImagesMetric from .voc_metric import VOCMetric __all__ = [ 'CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric', 'OpenImagesMetric', 'VOCMetric', 'LVISMetric', 'CrowdHumanMetric', 'DumpProposals', 'CocoOccludedSeparatedMetric', 'DumpDetResults' ]
"""**OutputParser** classes parse the output of an LLM call. **Class hierarchy:** .. code-block:: BaseLLMOutputParser --> BaseOutputParser --> <name>OutputParser # ListOutputParser, PydanticOutputParser **Main helpers:** .. code-block:: Serializable, Generation, PromptValue """ # noqa: E501 from typing import TYPE_CHECKING, Any from langchain_core.output_parsers import ( CommaSeparatedListOutputParser, ListOutputParser, MarkdownListOutputParser, NumberedListOutputParser, PydanticOutputParser, XMLOutputParser, ) from langchain_core.output_parsers.openai_tools import ( JsonOutputKeyToolsParser, JsonOutputToolsParser, PydanticToolsParser, ) from langchain._api import create_importer from langchain.output_parsers.boolean import BooleanOutputParser from langchain.output_parsers.combining import CombiningOutputParser from langchain.output_parsers.datetime import DatetimeOutputParser from langchain.output_parsers.enum import EnumOutputParser from langchain.output_parsers.fix import OutputFixingParser from langchain.output_parsers.pandas_dataframe import PandasDataFrameOutputParser from langchain.output_parsers.regex import RegexParser from langchain.output_parsers.regex_dict import RegexDictParser from langchain.output_parsers.retry import RetryOutputParser, RetryWithErrorOutputParser from langchain.output_parsers.structured import ResponseSchema, StructuredOutputParser from langchain.output_parsers.yaml import YamlOutputParser if TYPE_CHECKING: from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GuardrailsOutputParser": "langchain_community.output_parsers.rail_parser", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "BooleanOutputParser", "CombiningOutputParser", "CommaSeparatedListOutputParser", "DatetimeOutputParser", "EnumOutputParser", "GuardrailsOutputParser", "JsonOutputKeyToolsParser", "JsonOutputToolsParser", "ListOutputParser", "MarkdownListOutputParser", "NumberedListOutputParser", "OutputFixingParser", "PandasDataFrameOutputParser", "PydanticOutputParser", "PydanticToolsParser", "RegexDictParser", "RegexParser", "ResponseSchema", "RetryOutputParser", "RetryWithErrorOutputParser", "StructuredOutputParser", "XMLOutputParser", "YamlOutputParser", ]
"""**OutputParser** classes parse the output of an LLM call. **Class hierarchy:** .. code-block:: BaseLLMOutputParser --> BaseOutputParser --> <name>OutputParser # ListOutputParser, PydanticOutputParser **Main helpers:** .. code-block:: Serializable, Generation, PromptValue """ # noqa: E501 from typing import TYPE_CHECKING, Any from langchain_core.output_parsers import ( CommaSeparatedListOutputParser, ListOutputParser, MarkdownListOutputParser, NumberedListOutputParser, PydanticOutputParser, XMLOutputParser, ) from langchain_core.output_parsers.openai_tools import ( JsonOutputKeyToolsParser, JsonOutputToolsParser, PydanticToolsParser, ) from langchain._api import create_importer from langchain.output_parsers.boolean import BooleanOutputParser from langchain.output_parsers.combining import CombiningOutputParser from langchain.output_parsers.datetime import DatetimeOutputParser from langchain.output_parsers.enum import EnumOutputParser from langchain.output_parsers.fix import OutputFixingParser from langchain.output_parsers.pandas_dataframe import PandasDataFrameOutputParser from langchain.output_parsers.regex import RegexParser from langchain.output_parsers.regex_dict import RegexDictParser from langchain.output_parsers.retry import RetryOutputParser, RetryWithErrorOutputParser from langchain.output_parsers.structured import ResponseSchema, StructuredOutputParser from langchain.output_parsers.yaml import YamlOutputParser if TYPE_CHECKING: from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GuardrailsOutputParser": "langchain_community.output_parsers.rail_parser" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "BooleanOutputParser", "CombiningOutputParser", "CommaSeparatedListOutputParser", "DatetimeOutputParser", "EnumOutputParser", "GuardrailsOutputParser", "JsonOutputKeyToolsParser", "JsonOutputToolsParser", "ListOutputParser", "MarkdownListOutputParser", "NumberedListOutputParser", "OutputFixingParser", "PandasDataFrameOutputParser", "PydanticOutputParser", "PydanticToolsParser", "RegexDictParser", "RegexParser", "ResponseSchema", "RetryOutputParser", "RetryWithErrorOutputParser", "StructuredOutputParser", "XMLOutputParser", "YamlOutputParser", ]
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmengine.structures import InstanceData from mmdet.registry import TASK_UTILS from ..assigners import AssignResult from .base_sampler import BaseSampler from .sampling_result import SamplingResult @TASK_UTILS.register_module() class PseudoSampler(BaseSampler): """A pseudo sampler that does not do sampling actually.""" def __init__(self, **kwargs): pass def _sample_pos(self, **kwargs): """Sample positive samples.""" raise NotImplementedError def _sample_neg(self, **kwargs): """Sample negative samples.""" raise NotImplementedError def sample(self, assign_result: AssignResult, pred_instances: InstanceData, gt_instances: InstanceData, *args, **kwargs): """Directly returns the positive and negative indices of samples. Args: assign_result (:obj:`AssignResult`): Bbox assigning results. pred_instances (:obj:`InstanceData`): Instances of model predictions. It includes ``priors``, and the priors can be anchors, points, or bboxes predicted by the model, shape(n, 4). gt_instances (:obj:`InstanceData`): Ground truth of instance annotations. It usually includes ``bboxes`` and ``labels`` attributes. Returns: :obj:`SamplingResult`: sampler results """ gt_bboxes = gt_instances.bboxes priors = pred_instances.priors pos_inds = torch.nonzero( assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique() neg_inds = torch.nonzero( assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique() gt_flags = priors.new_zeros(priors.shape[0], dtype=torch.uint8) sampling_result = SamplingResult( pos_inds=pos_inds, neg_inds=neg_inds, priors=priors, gt_bboxes=gt_bboxes, assign_result=assign_result, gt_flags=gt_flags, avg_factor_with_neg=False) return sampling_result
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmengine.data import InstanceData from mmdet.registry import TASK_UTILS from ..assigners import AssignResult from .base_sampler import BaseSampler from .sampling_result import SamplingResult @TASK_UTILS.register_module() class PseudoSampler(BaseSampler): """A pseudo sampler that does not do sampling actually.""" def __init__(self, **kwargs): pass def _sample_pos(self, **kwargs): """Sample positive samples.""" raise NotImplementedError def _sample_neg(self, **kwargs): """Sample negative samples.""" raise NotImplementedError def sample(self, assign_result: AssignResult, pred_instances: InstanceData, gt_instances: InstanceData, *args, **kwargs): """Directly returns the positive and negative indices of samples. Args: assign_result (:obj:`AssignResult`): Bbox assigning results. pred_instances (:obj:`InstanceData`): Instances of model predictions. It includes ``priors``, and the priors can be anchors, points, or bboxes predicted by the model, shape(n, 4). gt_instances (:obj:`InstanceData`): Ground truth of instance annotations. It usually includes ``bboxes`` and ``labels`` attributes. Returns: :obj:`SamplingResult`: sampler results """ gt_bboxes = gt_instances.bboxes priors = pred_instances.priors pos_inds = torch.nonzero( assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique() neg_inds = torch.nonzero( assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique() gt_flags = priors.new_zeros(priors.shape[0], dtype=torch.uint8) sampling_result = SamplingResult( pos_inds=pos_inds, neg_inds=neg_inds, priors=priors, gt_bboxes=gt_bboxes, assign_result=assign_result, gt_flags=gt_flags, avg_factor_with_neg=False) return sampling_result
_base_ = ['./mask2former_r50_lsj_8x2_50e_coco-panoptic.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa depths = [2, 2, 6, 2] model = dict( type='Mask2Former', backbone=dict( _delete_=True, type='SwinTransformer', embed_dims=96, depths=depths, num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, frozen_stages=-1, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), panoptic_head=dict( type='Mask2FormerHead', in_channels=[96, 192, 384, 768]), init_cfg=None) # set all layers in backbone to lr_mult=0.1 # set all norm layers, position_embeding, # query_embeding, level_embeding to decay_multi=0.0 backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0) backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0) embed_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'backbone': dict(lr_mult=0.1, decay_mult=1.0), 'backbone.patch_embed.norm': backbone_norm_multi, 'backbone.norm': backbone_norm_multi, 'absolute_pos_embed': backbone_embed_multi, 'relative_position_bias_table': backbone_embed_multi, 'query_embed': embed_multi, 'query_feat': embed_multi, 'level_embed': embed_multi } custom_keys.update({ f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi for stage_id, num_blocks in enumerate(depths) for block_id in range(num_blocks) }) custom_keys.update({ f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi for stage_id in range(len(depths) - 1) }) # optimizer optim_wrapper = dict( paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))
_base_ = ['./mask2former_r50_lsj_8x2_50e_coco-panoptic.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa depths = [2, 2, 6, 2] model = dict( type='Mask2Former', backbone=dict( _delete_=True, type='SwinTransformer', embed_dims=96, depths=depths, num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, frozen_stages=-1, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), panoptic_head=dict( type='Mask2FormerHead', in_channels=[96, 192, 384, 768]), init_cfg=None) # set all layers in backbone to lr_mult=0.1 # set all norm layers, position_embeding, # query_embeding, level_embeding to decay_multi=0.0 backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0) backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0) embed_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'backbone': dict(lr_mult=0.1, decay_mult=1.0), 'backbone.patch_embed.norm': backbone_norm_multi, 'backbone.norm': backbone_norm_multi, 'absolute_pos_embed': backbone_embed_multi, 'relative_position_bias_table': backbone_embed_multi, 'query_embed': embed_multi, 'query_feat': embed_multi, 'level_embed': embed_multi } custom_keys.update({ f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi for stage_id, num_blocks in enumerate(depths) for block_id in range(num_blocks) }) custom_keys.update({ f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi for stage_id in range(len(depths) - 1) }) # optimizer optimizer = dict( type='AdamW', lr=0.0001, weight_decay=0.05, eps=1e-8, betas=(0.9, 0.999), paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))
from langchain_core.documents import Document from langchain_core.language_models import FakeListLLM from langchain_core.prompts import PromptTemplate from langchain.chains import create_history_aware_retriever from tests.unit_tests.retrievers.parrot_retriever import FakeParrotRetriever def test_create() -> None: answer = "I know the answer!" llm = FakeListLLM(responses=[answer]) retriever = FakeParrotRetriever() question_gen_prompt = PromptTemplate.from_template("hi! {input} {chat_history}") chain = create_history_aware_retriever(llm, retriever, question_gen_prompt) expected_output = [Document(page_content="What is the answer?")] output = chain.invoke({"input": "What is the answer?", "chat_history": []}) assert output == expected_output output = chain.invoke({"input": "What is the answer?"}) assert output == expected_output expected_output = [Document(page_content="I know the answer!")] output = chain.invoke( { "input": "What is the answer?", "chat_history": ["hi", "hi"], }, ) assert output == expected_output
from langchain_core.documents import Document from langchain_core.language_models import FakeListLLM from langchain_core.prompts import PromptTemplate from langchain.chains import create_history_aware_retriever from tests.unit_tests.retrievers.parrot_retriever import FakeParrotRetriever def test_create() -> None: answer = "I know the answer!" llm = FakeListLLM(responses=[answer]) retriever = FakeParrotRetriever() question_gen_prompt = PromptTemplate.from_template("hi! {input} {chat_history}") chain = create_history_aware_retriever(llm, retriever, question_gen_prompt) expected_output = [Document(page_content="What is the answer?")] output = chain.invoke({"input": "What is the answer?", "chat_history": []}) assert output == expected_output output = chain.invoke({"input": "What is the answer?"}) assert output == expected_output expected_output = [Document(page_content="I know the answer!")] output = chain.invoke( { "input": "What is the answer?", "chat_history": ["hi", "hi"], } ) assert output == expected_output
# Copyright (c) OpenMMLab. All rights reserved. """This module defines the :class:`NiceRepr` mixin class, which defines a ``__repr__`` and ``__str__`` method that only depend on a custom ``__nice__`` method, which you must define. This means you only have to overload one function instead of two. Furthermore, if the object defines a ``__len__`` method, then the ``__nice__`` method defaults to something sensible, otherwise it is treated as abstract and raises ``NotImplementedError``. To use simply have your object inherit from :class:`NiceRepr` (multi-inheritance should be ok). This code was copied from the ubelt library: https://github.com/Erotemic/ubelt Example: >>> # Objects that define __nice__ have a default __str__ and __repr__ >>> class Student(NiceRepr): ... def __init__(self, name): ... self.name = name ... def __nice__(self): ... return self.name >>> s1 = Student('Alice') >>> s2 = Student('Bob') >>> print(f's1 = {s1}') >>> print(f's2 = {s2}') s1 = <Student(Alice)> s2 = <Student(Bob)> Example: >>> # Objects that define __len__ have a default __nice__ >>> class Group(NiceRepr): ... def __init__(self, data): ... self.data = data ... def __len__(self): ... return len(self.data) >>> g = Group([1, 2, 3]) >>> print(f'g = {g}') g = <Group(3)> """ import warnings class NiceRepr: """Inherit from this class and define ``__nice__`` to "nicely" print your objects. Defines ``__str__`` and ``__repr__`` in terms of ``__nice__`` function Classes that inherit from :class:`NiceRepr` should redefine ``__nice__``. If the inheriting class has a ``__len__``, method then the default ``__nice__`` method will return its length. Example: >>> class Foo(NiceRepr): ... def __nice__(self): ... return 'info' >>> foo = Foo() >>> assert str(foo) == '<Foo(info)>' >>> assert repr(foo).startswith('<Foo(info) at ') Example: >>> class Bar(NiceRepr): ... pass >>> bar = Bar() >>> import pytest >>> with pytest.warns(None) as record: >>> assert 'object at' in str(bar) >>> assert 'object at' in repr(bar) Example: >>> class Baz(NiceRepr): ... def __len__(self): ... return 5 >>> baz = Baz() >>> assert str(baz) == '<Baz(5)>' """ def __nice__(self): """str: a "nice" summary string describing this module""" if hasattr(self, '__len__'): # It is a common pattern for objects to use __len__ in __nice__ # As a convenience we define a default __nice__ for these objects return str(len(self)) else: # In all other cases force the subclass to overload __nice__ raise NotImplementedError( f'Define the __nice__ method for {self.__class__!r}') def __repr__(self): """str: the string of the module""" try: nice = self.__nice__() classname = self.__class__.__name__ return f'<{classname}({nice}) at {hex(id(self))}>' except NotImplementedError as ex: warnings.warn(str(ex), category=RuntimeWarning) return object.__repr__(self) def __str__(self): """str: the string of the module""" try: classname = self.__class__.__name__ nice = self.__nice__() return f'<{classname}({nice})>' except NotImplementedError as ex: warnings.warn(str(ex), category=RuntimeWarning) return object.__repr__(self)
"""This module defines the :class:`NiceRepr` mixin class, which defines a ``__repr__`` and ``__str__`` method that only depend on a custom ``__nice__`` method, which you must define. This means you only have to overload one function instead of two. Furthermore, if the object defines a ``__len__`` method, then the ``__nice__`` method defaults to something sensible, otherwise it is treated as abstract and raises ``NotImplementedError``. To use simply have your object inherit from :class:`NiceRepr` (multi-inheritance should be ok). This code was copied from the ubelt library: https://github.com/Erotemic/ubelt Example: >>> # Objects that define __nice__ have a default __str__ and __repr__ >>> class Student(NiceRepr): ... def __init__(self, name): ... self.name = name ... def __nice__(self): ... return self.name >>> s1 = Student('Alice') >>> s2 = Student('Bob') >>> print(f's1 = {s1}') >>> print(f's2 = {s2}') s1 = <Student(Alice)> s2 = <Student(Bob)> Example: >>> # Objects that define __len__ have a default __nice__ >>> class Group(NiceRepr): ... def __init__(self, data): ... self.data = data ... def __len__(self): ... return len(self.data) >>> g = Group([1, 2, 3]) >>> print(f'g = {g}') g = <Group(3)> """ import warnings class NiceRepr: """Inherit from this class and define ``__nice__`` to "nicely" print your objects. Defines ``__str__`` and ``__repr__`` in terms of ``__nice__`` function Classes that inherit from :class:`NiceRepr` should redefine ``__nice__``. If the inheriting class has a ``__len__``, method then the default ``__nice__`` method will return its length. Example: >>> class Foo(NiceRepr): ... def __nice__(self): ... return 'info' >>> foo = Foo() >>> assert str(foo) == '<Foo(info)>' >>> assert repr(foo).startswith('<Foo(info) at ') Example: >>> class Bar(NiceRepr): ... pass >>> bar = Bar() >>> import pytest >>> with pytest.warns(None) as record: >>> assert 'object at' in str(bar) >>> assert 'object at' in repr(bar) Example: >>> class Baz(NiceRepr): ... def __len__(self): ... return 5 >>> baz = Baz() >>> assert str(baz) == '<Baz(5)>' """ def __nice__(self): """str: a "nice" summary string describing this module""" if hasattr(self, '__len__'): # It is a common pattern for objects to use __len__ in __nice__ # As a convenience we define a default __nice__ for these objects return str(len(self)) else: # In all other cases force the subclass to overload __nice__ raise NotImplementedError( f'Define the __nice__ method for {self.__class__!r}') def __repr__(self): """str: the string of the module""" try: nice = self.__nice__() classname = self.__class__.__name__ return f'<{classname}({nice}) at {hex(id(self))}>' except NotImplementedError as ex: warnings.warn(str(ex), category=RuntimeWarning) return object.__repr__(self) def __str__(self): """str: the string of the module""" try: classname = self.__class__.__name__ nice = self.__nice__() return f'<{classname}({nice})>' except NotImplementedError as ex: warnings.warn(str(ex), category=RuntimeWarning) return object.__repr__(self)
# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import Formatter if TYPE_CHECKING: import tensorflow as tf class TFFormatter(Formatter[Mapping, "tf.Tensor", Mapping]): def __init__(self, features=None, **tf_tensor_kwargs): super().__init__(features=features) self.tf_tensor_kwargs = tf_tensor_kwargs import tensorflow as tf # noqa: import tf at initialization def _consolidate(self, column): import tensorflow as tf if isinstance(column, list) and column: if all( isinstance(x, tf.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return tf.stack(column) elif all( isinstance(x, (tf.Tensor, tf.RaggedTensor)) and x.ndim == 1 and x.dtype == column[0].dtype for x in column ): # only rag 1-D tensors, otherwise some dimensions become ragged even though they were consolidated return tf.ragged.stack(column) return column def _tensorize(self, value): import tensorflow as tf if value is None: return value default_dtype = {} if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): default_dtype = {"dtype": tf.int64} elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": tf.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): value = np.asarray(value) return tf.convert_to_tensor(value, **{**default_dtype, **self.tf_tensor_kwargs}) def _recursive_tensorize(self, data_struct: dict): # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: # tf tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct) def format_row(self, pa_table: pa.Table) -> Mapping: row = self.numpy_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> "tf.Tensor": column = self.numpy_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> Mapping: batch = self.numpy_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import sys from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import Formatter if TYPE_CHECKING: import tensorflow as tf class TFFormatter(Formatter[dict, "tf.Tensor", dict]): def __init__(self, features=None, decoded=True, **tf_tensor_kwargs): super().__init__(features=features, decoded=decoded) self.tf_tensor_kwargs = tf_tensor_kwargs import tensorflow as tf # noqa: import tf at initialization def _consolidate(self, column): import tensorflow as tf if isinstance(column, list) and column: if all( isinstance(x, tf.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return tf.stack(column) elif all( isinstance(x, (tf.Tensor, tf.RaggedTensor)) and x.ndim == 1 and x.dtype == column[0].dtype for x in column ): # only rag 1-D tensors, otherwise some dimensions become ragged even though they were consolidated return tf.ragged.stack(column) return column def _tensorize(self, value): import tensorflow as tf if value is None: return value default_dtype = {} if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): default_dtype = {"dtype": tf.int64} elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": tf.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): value = np.asarray(value) return tf.convert_to_tensor(value, **{**default_dtype, **self.tf_tensor_kwargs}) def _recursive_tensorize(self, data_struct: dict): # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: # tf tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct) def format_row(self, pa_table: pa.Table) -> dict: row = self.numpy_arrow_extractor().extract_row(pa_table) if self.decoded: row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> "tf.Tensor": column = self.numpy_arrow_extractor().extract_column(pa_table) if self.decoded: column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> dict: batch = self.numpy_arrow_extractor().extract_batch(pa_table) if self.decoded: batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
from keras.src.backend.numpy import core from keras.src.backend.numpy import image from keras.src.backend.numpy import linalg from keras.src.backend.numpy import math from keras.src.backend.numpy import nn from keras.src.backend.numpy import numpy from keras.src.backend.numpy import random from keras.src.backend.numpy.core import SUPPORTS_SPARSE_TENSORS from keras.src.backend.numpy.core import Variable from keras.src.backend.numpy.core import cast from keras.src.backend.numpy.core import compute_output_spec from keras.src.backend.numpy.core import cond from keras.src.backend.numpy.core import convert_to_numpy from keras.src.backend.numpy.core import convert_to_tensor from keras.src.backend.numpy.core import is_tensor from keras.src.backend.numpy.core import random_seed_dtype from keras.src.backend.numpy.core import shape from keras.src.backend.numpy.core import vectorized_map from keras.src.backend.numpy.rnn import cudnn_ok from keras.src.backend.numpy.rnn import gru from keras.src.backend.numpy.rnn import lstm from keras.src.backend.numpy.rnn import rnn
from keras.src.backend.numpy import core from keras.src.backend.numpy import image from keras.src.backend.numpy import linalg from keras.src.backend.numpy import math from keras.src.backend.numpy import nn from keras.src.backend.numpy import numpy from keras.src.backend.numpy import random from keras.src.backend.numpy.core import SUPPORTS_SPARSE_TENSORS from keras.src.backend.numpy.core import Variable from keras.src.backend.numpy.core import cast from keras.src.backend.numpy.core import compute_output_spec from keras.src.backend.numpy.core import cond from keras.src.backend.numpy.core import convert_to_numpy from keras.src.backend.numpy.core import convert_to_tensor from keras.src.backend.numpy.core import is_tensor from keras.src.backend.numpy.core import shape from keras.src.backend.numpy.core import vectorized_map from keras.src.backend.numpy.rnn import cudnn_ok from keras.src.backend.numpy.rnn import gru from keras.src.backend.numpy.rnn import lstm from keras.src.backend.numpy.rnn import rnn
_base_ = './faster-rcnn_r50-caffe_c4-1x_coco.py' # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
_base_ = './faster_rcnn_r50_caffe_c4_1x_coco.py' # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
from dataclasses import dataclass from functools import partial from typing import Callable import torch import torchaudio from torchaudio.models import conv_tasnet_base, hdemucs_high @dataclass class SourceSeparationBundle: """Dataclass that bundles components for performing source separation. Example >>> import torchaudio >>> from torchaudio.pipelines import CONVTASNET_BASE_LIBRI2MIX >>> import torch >>> >>> # Build the separation model. >>> model = CONVTASNET_BASE_LIBRI2MIX.get_model() >>> 100%|███████████████████████████████|19.1M/19.1M [00:04<00:00, 4.93MB/s] >>> >>> # Instantiate the test set of Libri2Mix dataset. >>> dataset = torchaudio.datasets.LibriMix("/home/datasets/", subset="test") >>> >>> # Apply source separation on mixture audio. >>> for i, data in enumerate(dataset): >>> sample_rate, mixture, clean_sources = data >>> # Make sure the shape of input suits the model requirement. >>> mixture = mixture.reshape(1, 1, -1) >>> estimated_sources = model(mixture) >>> score = si_snr_pit(estimated_sources, clean_sources) # for demonstration >>> print(f"Si-SNR score is : {score}.) >>> break >>> Si-SNR score is : 16.24. >>> """ _model_path: str _model_factory_func: Callable[[], torch.nn.Module] _sample_rate: int @property def sample_rate(self) -> int: """Sample rate of the audio that the model is trained on. :type: int """ return self._sample_rate def get_model(self) -> torch.nn.Module: """Construct the model and load the pretrained weight.""" model = self._model_factory_func() path = torchaudio.utils.download_asset(self._model_path) state_dict = torch.load(path) model.load_state_dict(state_dict) model.eval() return model CONVTASNET_BASE_LIBRI2MIX = SourceSeparationBundle( _model_path="models/conv_tasnet_base_libri2mix.pt", _model_factory_func=partial(conv_tasnet_base, num_sources=2), _sample_rate=8000, ) CONVTASNET_BASE_LIBRI2MIX.__doc__ = """Pre-trained Source Separation pipeline with *ConvTasNet* :cite:`Luo_2019` trained on *Libri2Mix dataset* :cite:`cosentino2020librimix`. The source separation model is constructed by :func:`~torchaudio.models.conv_tasnet_base` and is trained using the training script ``lightning_train.py`` `here <https://github.com/pytorch/audio/tree/release/0.12/examples/source_separation/>`__ with default arguments. Please refer to :class:`SourceSeparationBundle` for usage instructions. """ HDEMUCS_HIGH_MUSDB_PLUS = SourceSeparationBundle( _model_path="models/hdemucs_high_trained.pt", _model_factory_func=partial(hdemucs_high, sources=["drums", "bass", "other", "vocals"]), _sample_rate=44100, ) HDEMUCS_HIGH_MUSDB_PLUS.__doc__ = """Pre-trained music source separation pipeline with *Hybrid Demucs* :cite:`defossez2021hybrid` trained on MUSDB-HQ :cite:`MUSDB18HQ` and additional internal training data. The model is constructed by :func:`~torchaudio.models.hdemucs_high`. Training was performed in the original HDemucs repository `here <https://github.com/facebookresearch/demucs/>`__. Please refer to :class:`SourceSeparationBundle` for usage instructions. """ HDEMUCS_HIGH_MUSDB = SourceSeparationBundle( _model_path="models/hdemucs_high_musdbhq_only.pt", _model_factory_func=partial(hdemucs_high, sources=["drums", "bass", "other", "vocals"]), _sample_rate=44100, ) HDEMUCS_HIGH_MUSDB.__doc__ = """Pre-trained music source separation pipeline with *Hybrid Demucs* :cite:`defossez2021hybrid` trained on MUSDB-HQ :cite:`MUSDB18HQ`. The model is constructed by :func:`~torchaudio.models.hdemucs_high`. Training was performed in the original HDemucs repository `here <https://github.com/facebookresearch/demucs/>`__. Please refer to :class:`SourceSeparationBundle` for usage instructions. """
from dataclasses import dataclass from functools import partial from typing import Callable import torch import torchaudio from torchaudio.models import conv_tasnet_base, hdemucs_high @dataclass class SourceSeparationBundle: """torchaudio.pipelines.SourceSeparationBundle() Dataclass that bundles components for performing source separation. Example >>> import torchaudio >>> from torchaudio.pipelines import CONVTASNET_BASE_LIBRI2MIX >>> import torch >>> >>> # Build the separation model. >>> model = CONVTASNET_BASE_LIBRI2MIX.get_model() >>> 100%|███████████████████████████████|19.1M/19.1M [00:04<00:00, 4.93MB/s] >>> >>> # Instantiate the test set of Libri2Mix dataset. >>> dataset = torchaudio.datasets.LibriMix("/home/datasets/", subset="test") >>> >>> # Apply source separation on mixture audio. >>> for i, data in enumerate(dataset): >>> sample_rate, mixture, clean_sources = data >>> # Make sure the shape of input suits the model requirement. >>> mixture = mixture.reshape(1, 1, -1) >>> estimated_sources = model(mixture) >>> score = si_snr_pit(estimated_sources, clean_sources) # for demonstration >>> print(f"Si-SNR score is : {score}.) >>> break >>> Si-SNR score is : 16.24. >>> """ _model_path: str _model_factory_func: Callable[[], torch.nn.Module] _sample_rate: int @property def sample_rate(self) -> int: """Sample rate of the audio that the model is trained on. :type: int """ return self._sample_rate def get_model(self) -> torch.nn.Module: """Construct the model and load the pretrained weight.""" model = self._model_factory_func() path = torchaudio.utils.download_asset(self._model_path) state_dict = torch.load(path) model.load_state_dict(state_dict) model.eval() return model CONVTASNET_BASE_LIBRI2MIX = SourceSeparationBundle( _model_path="models/conv_tasnet_base_libri2mix.pt", _model_factory_func=partial(conv_tasnet_base, num_sources=2), _sample_rate=8000, ) CONVTASNET_BASE_LIBRI2MIX.__doc__ = """Pre-trained Source Separation pipeline with *ConvTasNet* :cite:`Luo_2019` trained on *Libri2Mix dataset* :cite:`cosentino2020librimix`. The source separation model is constructed by :py:func:`torchaudio.models.conv_tasnet_base` and is trained using the training script ``lightning_train.py`` `here <https://github.com/pytorch/audio/tree/release/0.12/examples/source_separation/>`__ with default arguments. Please refer to :py:class:`SourceSeparationBundle` for usage instructions. """ HDEMUCS_HIGH_MUSDB_PLUS = SourceSeparationBundle( _model_path="models/hdemucs_high_trained.pt", _model_factory_func=partial(hdemucs_high, sources=["drums", "bass", "other", "vocals"]), _sample_rate=44100, ) HDEMUCS_HIGH_MUSDB_PLUS.__doc__ = """Pre-trained *Hybrid Demucs* :cite:`defossez2021hybrid` pipeline for music source separation trained on MUSDB-HQ :cite:`MUSDB18HQ` and additional internal training data. The model is constructed by :py:func:`torchaudio.prototype.models.hdemucs_high`. Training was performed in the original HDemucs repository `here <https://github.com/facebookresearch/demucs/>`__. Please refer to :py:class:`SourceSeparationBundle` for usage instructions. """ HDEMUCS_HIGH_MUSDB = SourceSeparationBundle( _model_path="models/hdemucs_high_musdbhq_only.pt", _model_factory_func=partial(hdemucs_high, sources=["drums", "bass", "other", "vocals"]), _sample_rate=44100, ) HDEMUCS_HIGH_MUSDB.__doc__ = """Pre-trained *Hybrid Demucs* :cite:`defossez2021hybrid` pipeline for music source separation trained on MUSDB-HQ :cite:`MUSDB18HQ`. The model is constructed by :py:func:`torchaudio.prototype.models.hdemucs_high`. Training was performed in the original HDemucs repository `here <https://github.com/facebookresearch/demucs/>`__. Please refer to :py:class:`SourceSeparationBundle` for usage instructions. """
# coding: utf-8 """Script for generating files with NuGet package metadata.""" import datetime import sys from pathlib import Path from shutil import copyfile if __name__ == "__main__": source = Path(sys.argv[1]) current_dir = Path(__file__).absolute().parent linux_folder_path = current_dir / "runtimes" / "linux-x64" / "native" linux_folder_path.mkdir(parents=True, exist_ok=True) osx_folder_path = current_dir / "runtimes" / "osx-x64" / "native" osx_folder_path.mkdir(parents=True, exist_ok=True) windows_folder_path = current_dir / "runtimes" / "win-x64" / "native" windows_folder_path.mkdir(parents=True, exist_ok=True) build_folder_path = current_dir / "build" build_folder_path.mkdir(parents=True, exist_ok=True) copyfile(source / "lib_lightgbm.so", linux_folder_path / "lib_lightgbm.so") copyfile(source / "lib_lightgbm.dylib", osx_folder_path / "lib_lightgbm.dylib") copyfile(source / "lib_lightgbm.dll", windows_folder_path / "lib_lightgbm.dll") copyfile(source / "lightgbm.exe", windows_folder_path / "lightgbm.exe") version = (current_dir.parent / "VERSION.txt").read_text(encoding="utf-8").strip().replace("rc", "-rc") nuget_str = rf"""<?xml version="1.0"?> <package xmlns="http://schemas.microsoft.com/packaging/2013/05/nuspec.xsd"> <metadata> <id>LightGBM</id> <version>{version}</version> <authors>Guolin Ke</authors> <owners>Guolin Ke</owners> <license type="expression">MIT</license> <projectUrl>https://github.com/microsoft/LightGBM</projectUrl> <requireLicenseAcceptance>false</requireLicenseAcceptance> <description>A fast, distributed, high performance gradient boosting framework</description> <copyright>Copyright {datetime.datetime.now().year} @ Microsoft</copyright> <tags>machine-learning data-mining distributed native boosting gbdt</tags> <dependencies> </dependencies> </metadata> <files> <file src="build\**" target="build"/> <file src="runtimes\**" target="runtimes"/> </files> </package> """ prop_str = r""" <Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"> <ItemGroup Condition="Exists('packages.config') OR Exists('$(MSBuildProjectName).packages.config') OR Exists('packages.$(MSBuildProjectName).config')"> <Content Include="$(MSBuildThisFileDirectory)/../runtimes/win-x64/native/*.dll" Condition="'$(PlatformTarget)' == 'x64'"> <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory> <Visible>false</Visible> </Content> <Content Include="$(MSBuildThisFileDirectory)/../runtimes/win-x64/native/*.exe" Condition="'$(PlatformTarget)' == 'x64'"> <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory> <Visible>false</Visible> </Content> </ItemGroup> </Project> """ target_str = r""" <Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"> <PropertyGroup> <EnableLightGBMUnsupportedPlatformTargetCheck Condition="'$(EnableLightGBMUnsupportedPlatformTargetCheck)' == ''">true</EnableLightGBMUnsupportedPlatformTargetCheck> </PropertyGroup> <Target Name="_LightGBMCheckForUnsupportedPlatformTarget" Condition="'$(EnableLightGBMUnsupportedPlatformTargetCheck)' == 'true'" AfterTargets="_CheckForInvalidConfigurationAndPlatform"> <Error Condition="'$(PlatformTarget)' != 'x64' AND ('$(OutputType)' == 'Exe' OR '$(OutputType)'=='WinExe') AND !('$(TargetFrameworkIdentifier)' == '.NETCoreApp' AND '$(PlatformTarget)' == '')" Text="LightGBM currently supports 'x64' processor architectures. Please ensure your application is targeting 'x64'." /> </Target> </Project> """ (current_dir / "LightGBM.nuspec").write_text(nuget_str, encoding="utf-8") (current_dir / "build" / "LightGBM.props").write_text(prop_str, encoding="utf-8") (current_dir / "build" / "LightGBM.targets").write_text(target_str, encoding="utf-8")
# coding: utf-8 """Script for generating files with NuGet package metadata.""" import datetime import sys from pathlib import Path from shutil import copyfile if __name__ == "__main__": source = Path(sys.argv[1]) current_dir = Path(__file__).absolute().parent linux_folder_path = current_dir / "runtimes" / "linux-x64" / "native" linux_folder_path.mkdir(parents=True, exist_ok=True) osx_folder_path = current_dir / "runtimes" / "osx-x64" / "native" osx_folder_path.mkdir(parents=True, exist_ok=True) windows_folder_path = current_dir / "runtimes" / "win-x64" / "native" windows_folder_path.mkdir(parents=True, exist_ok=True) build_folder_path = current_dir / "build" build_folder_path.mkdir(parents=True, exist_ok=True) copyfile(source / "lib_lightgbm.so", linux_folder_path / "lib_lightgbm.so") copyfile(source / "lib_lightgbm.dylib", osx_folder_path / "lib_lightgbm.dylib") copyfile(source / "lib_lightgbm.dll", windows_folder_path / "lib_lightgbm.dll") copyfile(source / "lightgbm.exe", windows_folder_path / "lightgbm.exe") version = (current_dir.parent / 'VERSION.txt').read_text(encoding='utf-8').strip().replace('rc', '-rc') nuget_str = rf"""<?xml version="1.0"?> <package xmlns="http://schemas.microsoft.com/packaging/2013/05/nuspec.xsd"> <metadata> <id>LightGBM</id> <version>{version}</version> <authors>Guolin Ke</authors> <owners>Guolin Ke</owners> <license type="expression">MIT</license> <projectUrl>https://github.com/microsoft/LightGBM</projectUrl> <requireLicenseAcceptance>false</requireLicenseAcceptance> <description>A fast, distributed, high performance gradient boosting framework</description> <copyright>Copyright {datetime.datetime.now().year} @ Microsoft</copyright> <tags>machine-learning data-mining distributed native boosting gbdt</tags> <dependencies> </dependencies> </metadata> <files> <file src="build\**" target="build"/> <file src="runtimes\**" target="runtimes"/> </files> </package> """ prop_str = r""" <Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"> <ItemGroup Condition="Exists('packages.config') OR Exists('$(MSBuildProjectName).packages.config') OR Exists('packages.$(MSBuildProjectName).config')"> <Content Include="$(MSBuildThisFileDirectory)/../runtimes/win-x64/native/*.dll" Condition="'$(PlatformTarget)' == 'x64'"> <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory> <Visible>false</Visible> </Content> <Content Include="$(MSBuildThisFileDirectory)/../runtimes/win-x64/native/*.exe" Condition="'$(PlatformTarget)' == 'x64'"> <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory> <Visible>false</Visible> </Content> </ItemGroup> </Project> """ target_str = r""" <Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003"> <PropertyGroup> <EnableLightGBMUnsupportedPlatformTargetCheck Condition="'$(EnableLightGBMUnsupportedPlatformTargetCheck)' == ''">true</EnableLightGBMUnsupportedPlatformTargetCheck> </PropertyGroup> <Target Name="_LightGBMCheckForUnsupportedPlatformTarget" Condition="'$(EnableLightGBMUnsupportedPlatformTargetCheck)' == 'true'" AfterTargets="_CheckForInvalidConfigurationAndPlatform"> <Error Condition="'$(PlatformTarget)' != 'x64' AND ('$(OutputType)' == 'Exe' OR '$(OutputType)'=='WinExe') AND !('$(TargetFrameworkIdentifier)' == '.NETCoreApp' AND '$(PlatformTarget)' == '')" Text="LightGBM currently supports 'x64' processor architectures. Please ensure your application is targeting 'x64'." /> </Target> </Project> """ (current_dir / "LightGBM.nuspec").write_text(nuget_str, encoding='utf-8') (current_dir / "build" / "LightGBM.props").write_text(prop_str, encoding='utf-8') (current_dir / "build" / "LightGBM.targets").write_text(target_str, encoding='utf-8')
# Copyright (c) OpenMMLab. All rights reserved. import time from typing import Optional, Union import torch from mmengine.device import is_cuda_available, is_musa_available from mmengine.dist.utils import master_only from mmengine.logging import MMLogger, print_log class TimeCounter: """A tool that counts the average running time of a function or a method. Users can use it as a decorator or context manager to calculate the average running time of code blocks. Args: log_interval (int): The interval of logging. Defaults to 1. warmup_interval (int): The interval of warmup. Defaults to 1. with_sync (bool): Whether to synchronize cuda. Defaults to True. tag (str, optional): Function tag. Used to distinguish between different functions or methods being called. Defaults to None. logger (MMLogger, optional): Formatted logger used to record messages. Defaults to None. Examples: >>> import time >>> from mmengine.utils.dl_utils import TimeCounter >>> @TimeCounter() ... def fun1(): ... time.sleep(0.1) ... fun1() [fun1]-time per run averaged in the past 1 runs: 100.0 ms >>> @@TimeCounter(log_interval=2, tag='fun') ... def fun2(): ... time.sleep(0.2) >>> for _ in range(3): ... fun2() [fun]-time per run averaged in the past 2 runs: 200.0 ms >>> with TimeCounter(tag='fun3'): ... time.sleep(0.3) [fun3]-time per run averaged in the past 1 runs: 300.0 ms """ instance_dict: dict = dict() log_interval: int warmup_interval: int logger: Optional[MMLogger] __count: int __pure_inf_time: float def __new__(cls, log_interval: int = 1, warmup_interval: int = 1, with_sync: bool = True, tag: Optional[str] = None, logger: Optional[MMLogger] = None): assert warmup_interval >= 1 if tag is not None and tag in cls.instance_dict: return cls.instance_dict[tag] instance = super().__new__(cls) cls.instance_dict[tag] = instance instance.log_interval = log_interval instance.warmup_interval = warmup_interval instance.with_sync = with_sync instance.tag = tag instance.logger = logger instance.__count = 0 instance.__pure_inf_time = 0. instance.__start_time = 0. return instance @master_only def __call__(self, fn): if self.tag is None: self.tag = fn.__name__ def wrapper(*args, **kwargs): self.__count += 1 if self.with_sync: if is_cuda_available(): torch.cuda.synchronize() elif is_musa_available(): torch.musa.synchronize() start_time = time.perf_counter() result = fn(*args, **kwargs) if self.with_sync: if is_cuda_available(): torch.cuda.synchronize() elif is_musa_available(): torch.musa.synchronize() elapsed = time.perf_counter() - start_time self.print_time(elapsed) return result return wrapper @master_only def __enter__(self): assert self.tag is not None, 'In order to clearly distinguish ' \ 'printing information in different ' \ 'contexts, please specify the ' \ 'tag parameter' self.__count += 1 if self.with_sync and torch.cuda.is_available(): torch.cuda.synchronize() self.__start_time = time.perf_counter() @master_only def __exit__(self, exc_type, exc_val, exc_tb): if self.with_sync and torch.cuda.is_available(): torch.cuda.synchronize() elapsed = time.perf_counter() - self.__start_time self.print_time(elapsed) def print_time(self, elapsed: Union[int, float]) -> None: """print times per count.""" if self.__count >= self.warmup_interval: self.__pure_inf_time += elapsed if self.__count % self.log_interval == 0: times_per_count = 1000 * self.__pure_inf_time / ( self.__count - self.warmup_interval + 1) print_log( f'[{self.tag}]-time per run averaged in the past ' f'{self.__count} runs: {times_per_count:.1f} ms', self.logger)
# Copyright (c) OpenMMLab. All rights reserved. import time from typing import Optional, Union import torch from mmengine.dist.utils import master_only from mmengine.logging import MMLogger, print_log class TimeCounter: """A tool that counts the average running time of a function or a method. Users can use it as a decorator or context manager to calculate the average running time of code blocks. Args: log_interval (int): The interval of logging. Defaults to 1. warmup_interval (int): The interval of warmup. Defaults to 1. with_sync (bool): Whether to synchronize cuda. Defaults to True. tag (str, optional): Function tag. Used to distinguish between different functions or methods being called. Defaults to None. logger (MMLogger, optional): Formatted logger used to record messages. Defaults to None. Examples: >>> import time >>> from mmengine.utils.dl_utils import TimeCounter >>> @TimeCounter() ... def fun1(): ... time.sleep(0.1) ... fun1() [fun1]-time per run averaged in the past 1 runs: 100.0 ms >>> @@TimeCounter(log_interval=2, tag='fun') ... def fun2(): ... time.sleep(0.2) >>> for _ in range(3): ... fun2() [fun]-time per run averaged in the past 2 runs: 200.0 ms >>> with TimeCounter(tag='fun3'): ... time.sleep(0.3) [fun3]-time per run averaged in the past 1 runs: 300.0 ms """ instance_dict: dict = dict() log_interval: int warmup_interval: int logger: Optional[MMLogger] __count: int __pure_inf_time: float def __new__(cls, log_interval: int = 1, warmup_interval: int = 1, with_sync: bool = True, tag: Optional[str] = None, logger: Optional[MMLogger] = None): assert warmup_interval >= 1 if tag is not None and tag in cls.instance_dict: return cls.instance_dict[tag] instance = super().__new__(cls) cls.instance_dict[tag] = instance instance.log_interval = log_interval instance.warmup_interval = warmup_interval instance.with_sync = with_sync instance.tag = tag instance.logger = logger instance.__count = 0 instance.__pure_inf_time = 0. instance.__start_time = 0. return instance @master_only def __call__(self, fn): if self.tag is None: self.tag = fn.__name__ def wrapper(*args, **kwargs): self.__count += 1 if self.with_sync and torch.cuda.is_available(): torch.cuda.synchronize() start_time = time.perf_counter() result = fn(*args, **kwargs) if self.with_sync and torch.cuda.is_available(): torch.cuda.synchronize() elapsed = time.perf_counter() - start_time self.print_time(elapsed) return result return wrapper @master_only def __enter__(self): assert self.tag is not None, 'In order to clearly distinguish ' \ 'printing information in different ' \ 'contexts, please specify the ' \ 'tag parameter' self.__count += 1 if self.with_sync and torch.cuda.is_available(): torch.cuda.synchronize() self.__start_time = time.perf_counter() @master_only def __exit__(self, exc_type, exc_val, exc_tb): if self.with_sync and torch.cuda.is_available(): torch.cuda.synchronize() elapsed = time.perf_counter() - self.__start_time self.print_time(elapsed) def print_time(self, elapsed: Union[int, float]) -> None: """print times per count.""" if self.__count >= self.warmup_interval: self.__pure_inf_time += elapsed if self.__count % self.log_interval == 0: times_per_count = 1000 * self.__pure_inf_time / ( self.__count - self.warmup_interval + 1) print_log( f'[{self.tag}]-time per run averaged in the past ' f'{self.__count} runs: {times_per_count:.1f} ms', self.logger)
"""**Utility functions** for LangChain. These functions do not depend on any other LangChain module. """ from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: # for type checking and IDE support, we include the imports here # but we don't want to eagerly import them at runtime from langchain_core.utils import image from langchain_core.utils.aiter import abatch_iterate from langchain_core.utils.env import get_from_dict_or_env, get_from_env from langchain_core.utils.formatting import StrictFormatter, formatter from langchain_core.utils.input import ( get_bolded_text, get_color_mapping, get_colored_text, print_text, ) from langchain_core.utils.iter import batch_iterate from langchain_core.utils.loading import try_load_from_hub from langchain_core.utils.pydantic import pre_init from langchain_core.utils.strings import comma_list, stringify_dict, stringify_value from langchain_core.utils.utils import ( build_extra_kwargs, check_package_version, convert_to_secret_str, from_env, get_pydantic_field_names, guard_import, mock_now, raise_for_status_with_text, secret_from_env, xor_args, ) __all__ = [ "build_extra_kwargs", "StrictFormatter", "check_package_version", "convert_to_secret_str", "formatter", "get_bolded_text", "get_color_mapping", "get_colored_text", "get_pydantic_field_names", "guard_import", "mock_now", "print_text", "raise_for_status_with_text", "xor_args", "try_load_from_hub", "image", "get_from_env", "get_from_dict_or_env", "stringify_dict", "comma_list", "stringify_value", "pre_init", "batch_iterate", "abatch_iterate", "from_env", "secret_from_env", ] _dynamic_imports = { "image": "__module__", "abatch_iterate": "aiter", "get_from_dict_or_env": "env", "get_from_env": "env", "StrictFormatter": "formatting", "formatter": "formatting", "get_bolded_text": "input", "get_color_mapping": "input", "get_colored_text": "input", "print_text": "input", "batch_iterate": "iter", "try_load_from_hub": "loading", "pre_init": "pydantic", "comma_list": "strings", "stringify_dict": "strings", "stringify_value": "strings", "build_extra_kwargs": "utils", "check_package_version": "utils", "convert_to_secret_str": "utils", "from_env": "utils", "get_pydantic_field_names": "utils", "guard_import": "utils", "mock_now": "utils", "secret_from_env": "utils", "xor_args": "utils", "raise_for_status_with_text": "utils", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""**Utility functions** for LangChain. These functions do not depend on any other LangChain module. """ from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: # for type checking and IDE support, we include the imports here # but we don't want to eagerly import them at runtime from langchain_core.utils import image from langchain_core.utils.aiter import abatch_iterate from langchain_core.utils.env import get_from_dict_or_env, get_from_env from langchain_core.utils.formatting import StrictFormatter, formatter from langchain_core.utils.input import ( get_bolded_text, get_color_mapping, get_colored_text, print_text, ) from langchain_core.utils.iter import batch_iterate from langchain_core.utils.loading import try_load_from_hub from langchain_core.utils.pydantic import pre_init from langchain_core.utils.strings import comma_list, stringify_dict, stringify_value from langchain_core.utils.utils import ( build_extra_kwargs, check_package_version, convert_to_secret_str, from_env, get_pydantic_field_names, guard_import, mock_now, raise_for_status_with_text, secret_from_env, xor_args, ) __all__ = [ "build_extra_kwargs", "StrictFormatter", "check_package_version", "convert_to_secret_str", "formatter", "get_bolded_text", "get_color_mapping", "get_colored_text", "get_pydantic_field_names", "guard_import", "mock_now", "print_text", "raise_for_status_with_text", "xor_args", "try_load_from_hub", "image", "get_from_env", "get_from_dict_or_env", "stringify_dict", "comma_list", "stringify_value", "pre_init", "batch_iterate", "abatch_iterate", "from_env", "secret_from_env", ] _dynamic_imports = { "image": "__module__", "abatch_iterate": "aiter", "get_from_dict_or_env": "env", "get_from_env": "env", "StrictFormatter": "formatting", "formatter": "formatting", "get_bolded_text": "input", "get_color_mapping": "input", "get_colored_text": "input", "print_text": "input", "batch_iterate": "iter", "try_load_from_hub": "loading", "pre_init": "pydantic", "comma_list": "strings", "stringify_dict": "strings", "stringify_value": "strings", "build_extra_kwargs": "utils", "check_package_version": "utils", "convert_to_secret_str": "utils", "from_env": "utils", "get_pydantic_field_names": "utils", "guard_import": "utils", "mock_now": "utils", "secret_from_env": "utils", "xor_args": "utils", "raise_for_status_with_text": "utils", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
import glob import os import pytest from jina import Document, Flow from jina.constants import __uptime__, __windows__ from jina.enums import LogVerbosity from jina.helper import colored from jina.logging.logger import JinaLogger cur_dir = os.path.dirname(os.path.abspath(__file__)) def log(logger: JinaLogger): logger.debug('this is test debug message') logger.info('this is test info message') logger.success('this is test success message') logger.warning('this is test warning message') logger.error('this is test error message') logger.critical('this is test critical message') def test_color_log(): with JinaLogger('test_logger') as logger: logger.debug('this is test debug message') logger.info('this is test info message') logger.info(f'this is test {colored("color", "red")} message') logger.success('this is test success message') logger.warning('this is test warning message') logger.error('this is test error message') logger.critical('this is test critical message') def test_logging_syslog(): with JinaLogger( 'test_logger', log_config=os.path.join(cur_dir, 'yaml/syslog.yml') ) as logger: log(logger) assert len(logger.handlers) == 0 if __windows__ else 1 def test_logging_default(): import logging import sys with JinaLogger('test_logger') as logger: log(logger) assert len(logger.handlers) == 1 # test whether suppress root handlers logging.root.handlers.append(logging.StreamHandler(sys.stdout)) with JinaLogger('test_logger', suppress_root_logging=False) as logger: log(logger) assert len(logging.root.handlers) > 0 with JinaLogger('test_logger') as logger: log(logger) assert len(logging.root.handlers) == 0 def test_logging_level_yaml(monkeypatch): monkeypatch.delenv('JINA_LOG_LEVEL', raising=True) # ignore global env fn = os.path.join(cur_dir, f'jina-{__uptime__}.log') with JinaLogger( 'test_file_logger', log_config=os.path.join(cur_dir, 'yaml/file.yml') ) as file_logger: if os.path.exists(fn): os.remove(fn) log(file_logger) assert file_logger.logger.level == LogVerbosity.from_string('INFO') for f in glob.glob(cur_dir + '/*.log'): os.remove(f) def test_logging_file(monkeypatch): monkeypatch.delenv('JINA_LOG_LEVEL', raising=True) # ignore global env uptime = __uptime__.replace(':', '.') if __windows__ else __uptime__ fn = os.path.join(cur_dir, f'jina-{uptime}.log') with JinaLogger( 'test_file_logger', log_config=os.path.join(cur_dir, 'yaml/file.yml') ) as file_logger: log(file_logger) assert os.path.exists(fn) with open(fn) as fp: assert len(fp.readlines()) == 5 for f in glob.glob(cur_dir + '/*.log'): os.remove(f) @pytest.mark.slow def test_logging_quiet(caplog): # no way to capture logs in multiprocessing # see discussion here: https://github.com/pytest-dev/pytest/issues/3037#issuecomment-745050393 f = Flow().add(quiet=True).add() with f: f.index(Document())
import glob import os import pytest from jina import Document, Flow from jina.constants import __uptime__, __windows__ from jina.enums import LogVerbosity from jina.helper import colored from jina.logging.logger import JinaLogger cur_dir = os.path.dirname(os.path.abspath(__file__)) def log(logger: JinaLogger): logger.debug('this is test debug message') logger.info('this is test info message') logger.success('this is test success message') logger.warning('this is test warning message') logger.error('this is test error message') logger.critical('this is test critical message') def test_color_log(): with JinaLogger('test_logger') as logger: logger.debug('this is test debug message') logger.info('this is test info message') logger.info(f'this is test {colored("color", "red")} message') logger.success('this is test success message') logger.warning('this is test warning message') logger.error('this is test error message') logger.critical('this is test critical message') def test_logging_syslog(): with JinaLogger( 'test_logger', log_config=os.path.join(cur_dir, 'yaml/syslog.yml') ) as logger: log(logger) assert len(logger.handlers) == 0 if __windows__ else 1 def test_logging_default(): with JinaLogger('test_logger') as logger: log(logger) assert len(logger.handlers) == 1 def test_logging_level_yaml(monkeypatch): monkeypatch.delenv('JINA_LOG_LEVEL', raising=True) # ignore global env fn = os.path.join(cur_dir, f'jina-{__uptime__}.log') with JinaLogger( 'test_file_logger', log_config=os.path.join(cur_dir, 'yaml/file.yml') ) as file_logger: if os.path.exists(fn): os.remove(fn) log(file_logger) assert file_logger.logger.level == LogVerbosity.from_string('INFO') for f in glob.glob(cur_dir + '/*.log'): os.remove(f) def test_logging_file(monkeypatch): monkeypatch.delenv('JINA_LOG_LEVEL', raising=True) # ignore global env uptime = __uptime__.replace(':', '.') if __windows__ else __uptime__ fn = os.path.join(cur_dir, f'jina-{uptime}.log') with JinaLogger( 'test_file_logger', log_config=os.path.join(cur_dir, 'yaml/file.yml') ) as file_logger: log(file_logger) assert os.path.exists(fn) with open(fn) as fp: assert len(fp.readlines()) == 5 for f in glob.glob(cur_dir + '/*.log'): os.remove(f) @pytest.mark.slow def test_logging_quiet(caplog): # no way to capture logs in multiprocessing # see discussion here: https://github.com/pytest-dev/pytest/issues/3037#issuecomment-745050393 f = Flow().add(quiet=True).add() with f: f.index(Document())
from typing import List import numpy as np from torch.utils.data import Dataset from transformers.utils.import_utils import NLTK_IMPORT_ERROR, is_nltk_available from sentence_transformers.readers.InputExample import InputExample class DenoisingAutoEncoderDataset(Dataset): """ The DenoisingAutoEncoderDataset returns InputExamples in the format: texts=[noise_fn(sentence), sentence] It is used in combination with the DenoisingAutoEncoderLoss: Here, a decoder tries to re-construct the sentence without noise. Args: sentences: A list of sentences noise_fn: A noise function: Given a string, it returns a string with noise, e.g. deleted words """ def __init__(self, sentences: List[str], noise_fn=lambda s: DenoisingAutoEncoderDataset.delete(s)): if not is_nltk_available(): raise ImportError(NLTK_IMPORT_ERROR.format(self.__class__.__name__)) self.sentences = sentences self.noise_fn = noise_fn def __getitem__(self, item): sent = self.sentences[item] return InputExample(texts=[self.noise_fn(sent), sent]) def __len__(self): return len(self.sentences) # Deletion noise. @staticmethod def delete(text, del_ratio=0.6): from nltk import TreebankWordDetokenizer, word_tokenize words = word_tokenize(text) n = len(words) if n == 0: return text keep_or_not = np.random.rand(n) > del_ratio if sum(keep_or_not) == 0: keep_or_not[np.random.choice(n)] = True # guarantee that at least one word remains words_processed = TreebankWordDetokenizer().detokenize(np.array(words)[keep_or_not]) return words_processed
from torch.utils.data import Dataset from typing import List from ..readers.InputExample import InputExample import numpy as np from transformers.utils.import_utils import is_nltk_available, NLTK_IMPORT_ERROR class DenoisingAutoEncoderDataset(Dataset): """ The DenoisingAutoEncoderDataset returns InputExamples in the format: texts=[noise_fn(sentence), sentence] It is used in combination with the DenoisingAutoEncoderLoss: Here, a decoder tries to re-construct the sentence without noise. :param sentences: A list of sentences :param noise_fn: A noise function: Given a string, it returns a string with noise, e.g. deleted words """ def __init__(self, sentences: List[str], noise_fn=lambda s: DenoisingAutoEncoderDataset.delete(s)): if not is_nltk_available(): raise ImportError(NLTK_IMPORT_ERROR.format(self.__class__.__name__)) self.sentences = sentences self.noise_fn = noise_fn def __getitem__(self, item): sent = self.sentences[item] return InputExample(texts=[self.noise_fn(sent), sent]) def __len__(self): return len(self.sentences) # Deletion noise. @staticmethod def delete(text, del_ratio=0.6): from nltk import word_tokenize, TreebankWordDetokenizer words = word_tokenize(text) n = len(words) if n == 0: return text keep_or_not = np.random.rand(n) > del_ratio if sum(keep_or_not) == 0: keep_or_not[np.random.choice(n)] = True # guarantee that at least one word remains words_processed = TreebankWordDetokenizer().detokenize(np.array(words)[keep_or_not]) return words_processed
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class UnusableObjectError(NotImplementedError): ...
class UnusableObjectError(NotImplementedError): ...
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.optimizers.schedules.learning_rate_schedule import ( CosineDecay as CosineDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( CosineDecayRestarts as CosineDecayRestarts, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( ExponentialDecay as ExponentialDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( InverseTimeDecay as InverseTimeDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( LearningRateSchedule as LearningRateSchedule, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( PiecewiseConstantDecay as PiecewiseConstantDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( PolynomialDecay as PolynomialDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( deserialize as deserialize, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( serialize as serialize, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.optimizers.schedules.learning_rate_schedule import CosineDecay from keras.src.optimizers.schedules.learning_rate_schedule import ( CosineDecayRestarts, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( ExponentialDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( InverseTimeDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( LearningRateSchedule, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( PiecewiseConstantDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( PolynomialDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import deserialize from keras.src.optimizers.schedules.learning_rate_schedule import serialize
import pytest from llama_index.core import MockEmbedding from llama_index.core.chat_engine.condense_plus_context import ( CondensePlusContextChatEngine, ) from llama_index.core.indices import VectorStoreIndex from llama_index.core.llms.mock import MockLLM from llama_index.core.schema import Document SYSTEM_PROMPT = "Talk like a pirate." @pytest.fixture() def chat_engine() -> CondensePlusContextChatEngine: index = VectorStoreIndex.from_documents( [Document.example()], embed_model=MockEmbedding(embed_dim=3) ) retriever = index.as_retriever() return CondensePlusContextChatEngine.from_defaults( retriever, llm=MockLLM(), system_prompt=SYSTEM_PROMPT ) def test_chat(chat_engine: CondensePlusContextChatEngine): response = chat_engine.chat("Hello World!") assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert len(chat_engine.chat_history) == 2 response = chat_engine.chat("What is the capital of the moon?") assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert "What is the capital of the moon?" in str(response) assert len(chat_engine.chat_history) == 4 def test_chat_stream(chat_engine: CondensePlusContextChatEngine): response = chat_engine.stream_chat("Hello World!") num_iters = 0 for _ in response.response_gen: num_iters += 1 assert num_iters > 10 assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert len(chat_engine.chat_history) == 2 response = chat_engine.stream_chat("What is the capital of the moon?") num_iters = 0 for _ in response.response_gen: num_iters += 1 assert num_iters > 10 assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert "What is the capital of the moon?" in str(response) assert len(chat_engine.chat_history) == 4 @pytest.mark.asyncio async def test_achat(chat_engine: CondensePlusContextChatEngine): response = await chat_engine.achat("Hello World!") assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert len(chat_engine.chat_history) == 2 response = await chat_engine.achat("What is the capital of the moon?") assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert "What is the capital of the moon?" in str(response) assert len(chat_engine.chat_history) == 4 @pytest.mark.asyncio async def test_chat_astream(chat_engine: CondensePlusContextChatEngine): response = await chat_engine.astream_chat("Hello World!") num_iters = 0 async for _ in response.async_response_gen(): num_iters += 1 assert num_iters > 10 assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert len(chat_engine.chat_history) == 2 response = await chat_engine.astream_chat("What is the capital of the moon?") num_iters = 0 async for _ in response.async_response_gen(): num_iters += 1 assert num_iters > 10 assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert "What is the capital of the moon?" in str(response) assert len(chat_engine.chat_history) == 4
import pytest from llama_index.core import MockEmbedding from llama_index.core.chat_engine.condense_plus_context import ( CondensePlusContextChatEngine, ) from llama_index.core.indices import VectorStoreIndex from llama_index.core.llms.mock import MockLLM from llama_index.core.schema import Document SYSTEM_PROMPT = "Talk like a pirate." @pytest.fixture() def chat_engine() -> CondensePlusContextChatEngine: index = VectorStoreIndex.from_documents( [Document.example()], embed_model=MockEmbedding(embed_dim=3) ) retriever = index.as_retriever() return CondensePlusContextChatEngine.from_defaults( retriever, llm=MockLLM(), system_prompt=SYSTEM_PROMPT ) def test_chat(chat_engine: CondensePlusContextChatEngine): response = chat_engine.chat("Hello World!") assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert len(chat_engine.chat_history) == 2 response = chat_engine.chat("What is the capital of the moon?") assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert "What is the capital of the moon?" in str(response) assert len(chat_engine.chat_history) == 4 def test_chat_stream(chat_engine: CondensePlusContextChatEngine): response = chat_engine.stream_chat("Hello World!") num_iters = 0 for _ in response.response_gen: num_iters += 1 assert num_iters > 10 assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert len(chat_engine.chat_history) == 2 response = chat_engine.stream_chat("What is the capital of the moon?") num_iters = 0 for _ in response.response_gen: num_iters += 1 assert num_iters > 10 assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert "What is the capital of the moon?" in str(response) assert len(chat_engine.chat_history) == 4 @pytest.mark.asyncio() async def test_achat(chat_engine: CondensePlusContextChatEngine): response = await chat_engine.achat("Hello World!") assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert len(chat_engine.chat_history) == 2 response = await chat_engine.achat("What is the capital of the moon?") assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert "What is the capital of the moon?" in str(response) assert len(chat_engine.chat_history) == 4 @pytest.mark.asyncio() async def test_chat_astream(chat_engine: CondensePlusContextChatEngine): response = await chat_engine.astream_chat("Hello World!") num_iters = 0 async for _ in response.async_response_gen(): num_iters += 1 assert num_iters > 10 assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert len(chat_engine.chat_history) == 2 response = await chat_engine.astream_chat("What is the capital of the moon?") num_iters = 0 async for _ in response.async_response_gen(): num_iters += 1 assert num_iters > 10 assert SYSTEM_PROMPT in str(response) assert "Hello World!" in str(response) assert "What is the capital of the moon?" in str(response) assert len(chat_engine.chat_history) == 4
# Copyright (c) OpenMMLab. All rights reserved. from ._deepspeed import DeepSpeedOptimWrapper from .amp_optimizer_wrapper import AmpOptimWrapper from .apex_optimizer_wrapper import ApexOptimWrapper from .base import BaseOptimWrapper from .builder import (OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS, build_optim_wrapper) from .default_constructor import DefaultOptimWrapperConstructor from .optimizer_wrapper import OptimWrapper from .optimizer_wrapper_dict import OptimWrapperDict from .zero_optimizer import ZeroRedundancyOptimizer __all__ = [ 'OPTIM_WRAPPER_CONSTRUCTORS', 'OPTIMIZERS', 'DefaultOptimWrapperConstructor', 'build_optim_wrapper', 'OptimWrapper', 'AmpOptimWrapper', 'ApexOptimWrapper', 'OptimWrapperDict', 'ZeroRedundancyOptimizer', 'BaseOptimWrapper', 'DeepSpeedOptimWrapper' ]
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.utils import is_installed from .amp_optimizer_wrapper import AmpOptimWrapper from .apex_optimizer_wrapper import ApexOptimWrapper from .base import BaseOptimWrapper from .builder import (OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS, build_optim_wrapper) from .default_constructor import DefaultOptimWrapperConstructor from .optimizer_wrapper import OptimWrapper from .optimizer_wrapper_dict import OptimWrapperDict from .zero_optimizer import ZeroRedundancyOptimizer __all__ = [ 'OPTIM_WRAPPER_CONSTRUCTORS', 'OPTIMIZERS', 'DefaultOptimWrapperConstructor', 'build_optim_wrapper', 'OptimWrapper', 'AmpOptimWrapper', 'ApexOptimWrapper', 'OptimWrapperDict', 'ZeroRedundancyOptimizer', 'BaseOptimWrapper' ] if is_installed('deepspeed'): from ._deepspeed import DeepSpeedOptimWrapper # noqa:F401 __all__.append('DeepSpeedOptimWrapper')
from typing import Literal from pydantic import SecretStr from backend.data.model import ( APIKeyCredentials, CredentialsField, CredentialsMetaInput, OAuth2Credentials, ) from backend.integrations.providers import ProviderName from backend.util.settings import Secrets secrets = Secrets() GITHUB_OAUTH_IS_CONFIGURED = bool( secrets.github_client_id and secrets.github_client_secret ) GithubCredentials = APIKeyCredentials | OAuth2Credentials GithubCredentialsInput = CredentialsMetaInput[ Literal[ProviderName.GITHUB], Literal["api_key", "oauth2"] if GITHUB_OAUTH_IS_CONFIGURED else Literal["api_key"], ] GithubFineGrainedAPICredentials = APIKeyCredentials GithubFineGrainedAPICredentialsInput = CredentialsMetaInput[ Literal[ProviderName.GITHUB], Literal["api_key"] ] def GithubCredentialsField(scope: str) -> GithubCredentialsInput: """ Creates a GitHub credentials input on a block. Params: scope: The authorization scope needed for the block to work. ([list of available scopes](https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps#available-scopes)) """ # noqa return CredentialsField( required_scopes={scope}, description="The GitHub integration can be used with OAuth, " "or any API key with sufficient permissions for the blocks it is used on.", ) def GithubFineGrainedAPICredentialsField( scope: str, ) -> GithubFineGrainedAPICredentialsInput: return CredentialsField( required_scopes={scope}, description="The GitHub integration can be used with OAuth, " "or any API key with sufficient permissions for the blocks it is used on.", ) TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="github", api_key=SecretStr("mock-github-api-key"), title="Mock GitHub API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.type, } TEST_FINE_GRAINED_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="github", api_key=SecretStr("mock-github-api-key"), title="Mock GitHub API key", expires_at=None, ) TEST_FINE_GRAINED_CREDENTIALS_INPUT = { "provider": TEST_FINE_GRAINED_CREDENTIALS.provider, "id": TEST_FINE_GRAINED_CREDENTIALS.id, "type": TEST_FINE_GRAINED_CREDENTIALS.type, "title": TEST_FINE_GRAINED_CREDENTIALS.type, }
from typing import Literal from pydantic import SecretStr from backend.data.model import ( APIKeyCredentials, CredentialsField, CredentialsMetaInput, OAuth2Credentials, ) from backend.integrations.providers import ProviderName from backend.util.settings import Secrets secrets = Secrets() GITHUB_OAUTH_IS_CONFIGURED = bool( secrets.github_client_id and secrets.github_client_secret ) GithubCredentials = APIKeyCredentials | OAuth2Credentials GithubCredentialsInput = CredentialsMetaInput[ Literal[ProviderName.GITHUB], Literal["api_key", "oauth2"] if GITHUB_OAUTH_IS_CONFIGURED else Literal["api_key"], ] def GithubCredentialsField(scope: str) -> GithubCredentialsInput: """ Creates a GitHub credentials input on a block. Params: scope: The authorization scope needed for the block to work. ([list of available scopes](https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps#available-scopes)) """ # noqa return CredentialsField( required_scopes={scope}, description="The GitHub integration can be used with OAuth, " "or any API key with sufficient permissions for the blocks it is used on.", ) TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="github", api_key=SecretStr("mock-github-api-key"), title="Mock GitHub API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.type, }
from typing import Any, Optional, Union import torch from torch import nn def _replace_relu(module: nn.Module) -> None: reassign = {} for name, mod in module.named_children(): _replace_relu(mod) # Checking for explicit type instead of instance # as we only want to replace modules of the exact type # not inherited classes if type(mod) is nn.ReLU or type(mod) is nn.ReLU6: reassign[name] = nn.ReLU(inplace=False) for key, value in reassign.items(): module._modules[key] = value def quantize_model(model: nn.Module, backend: str) -> None: _dummy_input_data = torch.rand(1, 3, 299, 299) if backend not in torch.backends.quantized.supported_engines: raise RuntimeError("Quantized backend not supported ") torch.backends.quantized.engine = backend model.eval() # Make sure that weight qconfig matches that of the serialized models if backend == "fbgemm": model.qconfig = torch.ao.quantization.QConfig( # type: ignore[assignment] activation=torch.ao.quantization.default_observer, weight=torch.ao.quantization.default_per_channel_weight_observer, ) elif backend == "qnnpack": model.qconfig = torch.ao.quantization.QConfig( # type: ignore[assignment] activation=torch.ao.quantization.default_observer, weight=torch.ao.quantization.default_weight_observer ) # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 model.fuse_model() # type: ignore[operator] torch.ao.quantization.prepare(model, inplace=True) model(_dummy_input_data) torch.ao.quantization.convert(model, inplace=True) def _fuse_modules( model: nn.Module, modules_to_fuse: Union[list[str], list[list[str]]], is_qat: Optional[bool], **kwargs: Any ): if is_qat is None: is_qat = model.training method = torch.ao.quantization.fuse_modules_qat if is_qat else torch.ao.quantization.fuse_modules return method(model, modules_to_fuse, **kwargs)
from typing import Any, List, Optional, Union import torch from torch import nn def _replace_relu(module: nn.Module) -> None: reassign = {} for name, mod in module.named_children(): _replace_relu(mod) # Checking for explicit type instead of instance # as we only want to replace modules of the exact type # not inherited classes if type(mod) is nn.ReLU or type(mod) is nn.ReLU6: reassign[name] = nn.ReLU(inplace=False) for key, value in reassign.items(): module._modules[key] = value def quantize_model(model: nn.Module, backend: str) -> None: _dummy_input_data = torch.rand(1, 3, 299, 299) if backend not in torch.backends.quantized.supported_engines: raise RuntimeError("Quantized backend not supported ") torch.backends.quantized.engine = backend model.eval() # Make sure that weight qconfig matches that of the serialized models if backend == "fbgemm": model.qconfig = torch.ao.quantization.QConfig( # type: ignore[assignment] activation=torch.ao.quantization.default_observer, weight=torch.ao.quantization.default_per_channel_weight_observer, ) elif backend == "qnnpack": model.qconfig = torch.ao.quantization.QConfig( # type: ignore[assignment] activation=torch.ao.quantization.default_observer, weight=torch.ao.quantization.default_weight_observer ) # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 model.fuse_model() # type: ignore[operator] torch.ao.quantization.prepare(model, inplace=True) model(_dummy_input_data) torch.ao.quantization.convert(model, inplace=True) def _fuse_modules( model: nn.Module, modules_to_fuse: Union[List[str], List[List[str]]], is_qat: Optional[bool], **kwargs: Any ): if is_qat is None: is_qat = model.training method = torch.ao.quantization.fuse_modules_qat if is_qat else torch.ao.quantization.fuse_modules return method(model, modules_to_fuse, **kwargs)
_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( # use ResNeSt img_norm data_preprocessor=dict( mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='ResNeSt', stem_channels=64, depth=50, radix=2, reduction_factor=4, avg_down_stride=True, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=False, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest50')), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg))) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( # use ResNeSt img_norm data_preprocessor=dict( mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='ResNeSt', stem_channels=64, depth=50, radix=2, reduction_factor=4, avg_down_stride=True, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=False, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest50')), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=True) class LanguageModeling(TaskTemplate): task: str = field(default="language-modeling", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"text": Value("string")}) label_schema: ClassVar[Features] = Features({}) text_column: str = "text" @property def column_mapping(self) -> Dict[str, str]: return {self.text_column: "text"}
from dataclasses import dataclass from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=True) class LanguageModeling(TaskTemplate): task: str = "language-modeling" input_schema: ClassVar[Features] = Features({"text": Value("string")}) label_schema: ClassVar[Features] = Features({}) text_column: str = "text" @property def column_mapping(self) -> Dict[str, str]: return {self.text_column: "text"}
from __future__ import annotations import logging from dataclasses import dataclass, field from pathlib import Path from typing import TYPE_CHECKING, Any from sentence_transformers.model_card import SentenceTransformerModelCardCallback, SentenceTransformerModelCardData from sentence_transformers.util import is_datasets_available if is_datasets_available(): pass logger = logging.getLogger(__name__) if TYPE_CHECKING: from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseEncoderModelCardCallback(SentenceTransformerModelCardCallback): pass @dataclass class SparseEncoderModelCardData(SentenceTransformerModelCardData): """A dataclass storing data used in the model card. Args: language (`Optional[Union[str, List[str]]]`): The model language, either a string or a list, e.g. "en" or ["en", "de", "nl"] license (`Optional[str]`): The license of the model, e.g. "apache-2.0", "mit", or "cc-by-nc-sa-4.0" model_name (`Optional[str]`): The pretty name of the model, e.g. "SparseEncoder based on answerdotai/ModernBERT-base". model_id (`Optional[str]`): The model ID when pushing the model to the Hub, e.g. "tomaarsen/se-mpnet-base-ms-marco". train_datasets (`List[Dict[str, str]]`): A list of the names and/or Hugging Face dataset IDs of the training datasets. e.g. [{"name": "SNLI", "id": "stanfordnlp/snli"}, {"name": "MultiNLI", "id": "nyu-mll/multi_nli"}, {"name": "STSB"}] eval_datasets (`List[Dict[str, str]]`): A list of the names and/or Hugging Face dataset IDs of the evaluation datasets. e.g. [{"name": "SNLI", "id": "stanfordnlp/snli"}, {"id": "mteb/stsbenchmark-sts"}] task_name (`str`): The human-readable task the model is trained on, e.g. "semantic search and sparse retrieval". tags (`Optional[List[str]]`): A list of tags for the model, e.g. ["sentence-transformers", "sparse-encoder"]. .. tip:: Install `codecarbon <https://github.com/mlco2/codecarbon>`_ to automatically track carbon emission usage and include it in your model cards. Example:: >>> model = SparseEncoder( ... "microsoft/mpnet-base", ... model_card_data=SparseEncoderModelCardData( ... model_id="tomaarsen/se-mpnet-base-allnli", ... train_datasets=[{"name": "SNLI", "id": "stanfordnlp/snli"}, {"name": "MultiNLI", "id": "nyu-mll/multi_nli"}], ... eval_datasets=[{"name": "SNLI", "id": "stanfordnlp/snli"}, {"name": "MultiNLI", "id": "nyu-mll/multi_nli"}], ... license="apache-2.0", ... language="en", ... ), ... ) """ # Potentially provided by the user task_name: str = field(default=None) tags: list[str] | None = field( default_factory=lambda: [ "sentence-transformers", "sparse-encoder", ] ) # Automatically filled by `SparseEncoderModelCardCallback` and the Trainer directly predict_example: list[list[str]] | None = field(default=None, init=False) # Computed once, always unchanged pipeline_tag: str = field(default=None, init=False) template_path: Path = field(default=Path(__file__).parent / "model_card_template.md", init=False) # Passed via `register_model` only model: SparseEncoder | None = field(default=None, init=False, repr=False) def register_model(self, model: SparseEncoder) -> None: self.model = model if self.task_name is None: self.task_name = "semantic search and sparse retrieval" if self.pipeline_tag is None: self.pipeline_tag = "feature-extraction" def tokenize(self, text: str | list[str]) -> dict[str, Any]: return self.model.tokenizer(text) def get_model_specific_metadata(self) -> dict[str, Any]: similarity_fn_name = "Dot Product" if self.model.similarity_fn_name: similarity_fn_name = { "cosine": "Cosine Similarity", "dot": "Dot Product", "euclidean": "Euclidean Distance", "manhattan": "Manhattan Distance", }.get(self.model.similarity_fn_name, self.model.similarity_fn_name.replace("_", " ").title()) return { "model_max_length": self.model.get_max_seq_length(), "output_dimensionality": self.model.get_sentence_embedding_dimension(), "model_string": str(self.model), "similarity_fn_name": similarity_fn_name, }
from __future__ import annotations import logging from dataclasses import dataclass, field from pathlib import Path from typing import TYPE_CHECKING, Any from sentence_transformers.model_card import SentenceTransformerModelCardCallback, SentenceTransformerModelCardData from sentence_transformers.util import is_datasets_available if is_datasets_available(): pass logger = logging.getLogger(__name__) if TYPE_CHECKING: from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseEncoderModelCardCallback(SentenceTransformerModelCardCallback): pass @dataclass class SparseEncoderModelCardData(SentenceTransformerModelCardData): """A dataclass storing data used in the model card. Args: language (`Optional[Union[str, List[str]]]`): The model language, either a string or a list, e.g. "en" or ["en", "de", "nl"] license (`Optional[str]`): The license of the model, e.g. "apache-2.0", "mit", or "cc-by-nc-sa-4.0" model_name (`Optional[str]`): The pretty name of the model, e.g. "SparseEncoder based on answerdotai/ModernBERT-base". model_id (`Optional[str]`): The model ID when pushing the model to the Hub, e.g. "tomaarsen/se-mpnet-base-ms-marco". train_datasets (`List[Dict[str, str]]`): A list of the names and/or Hugging Face dataset IDs of the training datasets. e.g. [{"name": "SNLI", "id": "stanfordnlp/snli"}, {"name": "MultiNLI", "id": "nyu-mll/multi_nli"}, {"name": "STSB"}] eval_datasets (`List[Dict[str, str]]`): A list of the names and/or Hugging Face dataset IDs of the evaluation datasets. e.g. [{"name": "SNLI", "id": "stanfordnlp/snli"}, {"id": "mteb/stsbenchmark-sts"}] task_name (`str`): The human-readable task the model is trained on, e.g. "semantic search and sparse retrieval". tags (`Optional[List[str]]`): A list of tags for the model, e.g. ["sentence-transformers", "sparse-encoder"]. .. tip:: Install `codecarbon <https://github.com/mlco2/codecarbon>`_ to automatically track carbon emission usage and include it in your model cards. Example:: >>> model = SparseEncoder( ... "microsoft/mpnet-base", ... model_card_data=SparseEncoderModelCardData( ... model_id="tomaarsen/se-mpnet-base-allnli", ... train_datasets=[{"name": "SNLI", "id": "stanfordnlp/snli"}, {"name": "MultiNLI", "id": "nyu-mll/multi_nli"}], ... eval_datasets=[{"name": "SNLI", "id": "stanfordnlp/snli"}, {"name": "MultiNLI", "id": "nyu-mll/multi_nli"}], ... license="apache-2.0", ... language="en", ... ), ... ) """ # Potentially provided by the user task_name: str = field(default=None) tags: list[str] | None = field( default_factory=lambda: [ "sentence-transformers", "sparse-encoder", ] ) # Automatically filled by `SparseEncoderModelCardCallback` and the Trainer directly predict_example: list[list[str]] | None = field(default=None, init=False) # Computed once, always unchanged pipeline_tag: str = field(default=None, init=False) template_path: Path = field(default=Path(__file__).parent / "model_card_template.md", init=False) # Passed via `register_model` only model: SparseEncoder | None = field(default=None, init=False, repr=False) def register_model(self, model: SparseEncoder) -> None: self.model = model if self.task_name is None: self.task_name = "semantic search and sparse retrieval" if self.pipeline_tag is None: self.pipeline_tag = "feature-extraction" def tokenize(self, text: str | list[str]) -> dict[str, Any]: return self.model.tokenizer(text) def get_model_specific_metadata(self) -> dict[str, Any]: return { "model_max_length": self.model.get_max_seq_length(), "output_dimensionality": self.model.get_sentence_embedding_dimension(), }
# Copyright (c) Meta Platforms, Inc. and affiliates import os from typing import Any, Optional from llama_index.llms.openai_like import OpenAILike class LlamaLLM(OpenAILike): """ Llama LLM. Examples: `pip install llama-index-llms-meta` ```python from llama_index.llms.meta import LlamaLLM # set api key in env or in llm # import os # os.environ["LLAMA_API_KEY"] = "your api key" llm = LlamaLLM( model="Llama-3.3-8B-Instruct", api_key="your_api_key" ) resp = llm.complete("Who is Paul Graham?") print(resp) ``` """ def __init__( self, model: str = "Llama-3.3-8B-Instruct", api_key: Optional[str] = None, api_base: str = "https://api.llama.com/compat/v1", is_chat_model: bool = True, # Slightly lower to account for tokenization defaults context_window: int = 120000, **kwargs: Any, ) -> None: api_key = api_key or os.environ.get("LLAMA_API_KEY", None) super().__init__( model=model, api_key=api_key, api_base=api_base, is_chat_model=is_chat_model, context_window=context_window, **kwargs, ) @classmethod def class_name(cls) -> str: """Get class name.""" return "LlamaLLM"
import os from typing import Any, Optional from llama_index.llms.openai_like import OpenAILike class LlamaLLM(OpenAILike): """ Llama LLM. Examples: `pip install llama-index-llms-meta` ```python from llama_index.llms.meta import LlamaLLM # set api key in env or in llm # import os # os.environ["LLAMA_API_KEY"] = "your api key" llm = LlamaLLM( model="Llama-3.3-8B-Instruct", api_key="your_api_key" ) resp = llm.complete("Who is Paul Graham?") print(resp) ``` """ def __init__( self, model: str = "Llama-3.3-8B-Instruct", api_key: Optional[str] = None, api_base: str = "https://api.llama.com/compat/v1", is_chat_model: bool = True, # Slightly lower to account for tokenization defaults context_window: int = 120000, **kwargs: Any, ) -> None: api_key = api_key or os.environ.get("LLAMA_API_KEY", None) super().__init__( model=model, api_key=api_key, api_base=api_base, is_chat_model=is_chat_model, context_window=context_window, **kwargs, ) @classmethod def class_name(cls) -> str: """Get class name.""" return "LlamaLLM"
from typing import TYPE_CHECKING, Optional, Dict if TYPE_CHECKING: from ... import DocumentArray class PostMixin: """Helper functions for posting DocumentArray to Jina Flow.""" def post( self, host: str, show_progress: bool = False, batch_size: Optional[int] = None, parameters: Optional[Dict] = None, **kwargs, ) -> 'DocumentArray': """Posting itself to a remote Flow/Sandbox and get the modified DocumentArray back :param host: a host string. Can be one of the following: - `grpc://192.168.0.123:8080/endpoint` - `ws://192.168.0.123:8080/endpoint` - `http://192.168.0.123:8080/endpoint` - `jinahub://Hello/endpoint` - `jinahub+docker://Hello/endpoint` - `jinahub+sandbox://Hello/endpoint` :param show_progress: if to show a progressbar :param batch_size: number of Document on each request :param parameters: parameters to send in the request :return: the new DocumentArray returned from remote """ if not self: return from urllib.parse import urlparse r = urlparse(host) _on = r.path or '/' _port = r.port or None standardized_host = ( r._replace(netloc=r.netloc.replace(f':{r.port}', '')) ._replace(path='') .geturl() ) batch_size = batch_size or len(self) _scheme = r.scheme _tls = False if _scheme in ('grpcs', 'https', 'wss'): _scheme = _scheme[:-1] _tls = True if _scheme == 'ws': _scheme = 'websocket' # temp fix for the core if _scheme.startswith('jinahub'): from jina import Flow f = Flow(quiet=True, prefetch=1).add(uses=standardized_host) with f: return f.post( _on, inputs=self, show_progress=show_progress, request_size=batch_size, parameters=parameters, **kwargs, ) elif _scheme in ('grpc', 'http', 'ws', 'websocket'): from jina import Client if _port: standardized_host += f':{_port}' c = Client(host=standardized_host) return c.post( _on, inputs=self, show_progress=show_progress, request_size=batch_size, parameters=parameters, **kwargs, ) else: raise ValueError(f'unsupported scheme: {r.scheme}')
from typing import TYPE_CHECKING, Optional, Dict if TYPE_CHECKING: from ... import DocumentArray class PostMixin: """Helper functions for posting DocumentArray to Jina Flow.""" def post( self, host: str, show_progress: bool = False, batch_size: Optional[int] = None, parameters: Optional[Dict] = None, **kwargs, ) -> 'DocumentArray': """Posting itself to a remote Flow/Sandbox and get the modified DocumentArray back :param host: a host string. Can be one of the following: - `grpc://192.168.0.123:8080/endpoint` - `ws://192.168.0.123:8080/endpoint` - `http://192.168.0.123:8080/endpoint` - `jinahub://Hello/endpoint` - `jinahub+docker://Hello/endpoint` - `jinahub+sandbox://Hello/endpoint` :param show_progress: if to show a progressbar :param batch_size: number of Document on each request :param parameters: parameters to send in the request :return: the new DocumentArray returned from remote """ if not self: return from urllib.parse import urlparse r = urlparse(host) _on = r.path or '/' _port = r.port or None standardized_host = ( r._replace(netloc=r.netloc.replace(f':{r.port}', '')) ._replace(path='') .geturl() ) batch_size = batch_size or len(self) _scheme = r.scheme _tls = False if _scheme in ('grpcs', 'https', 'wss'): _scheme = _scheme[:-1] _tls = True if _scheme == 'ws': _scheme = 'websocket' # temp fix for the core if _scheme.startswith('jinahub'): from jina import Flow f = Flow(quiet=True, prefetch=1).add(uses=standardized_host) with f: return f.post( _on, inputs=self, show_progress=show_progress, request_size=batch_size, parameters=parameters, **kwargs, ) elif _scheme in ('grpc', 'http', 'ws', 'websocket'): from jina import Client if _port: standardized_host += f':{_port}' c = Client(host=standardized_host) return c.post( _on, inputs=self, show_progress=show_progress, request_size=batch_size, parameters=parameters, ) else: raise ValueError(f'unsupported scheme: {r.scheme}')
import logging import typing import autogpt_libs.auth.depends import autogpt_libs.auth.middleware import fastapi import prisma import backend.data.graph import backend.integrations.creds_manager import backend.integrations.webhooks.graph_lifecycle_hooks import backend.server.v2.library.db import backend.server.v2.library.model logger = logging.getLogger(__name__) router = fastapi.APIRouter() integration_creds_manager = ( backend.integrations.creds_manager.IntegrationCredentialsManager() ) @router.get( "/agents", tags=["library", "private"], dependencies=[fastapi.Depends(autogpt_libs.auth.middleware.auth_middleware)], ) async def get_library_agents( user_id: typing.Annotated[ str, fastapi.Depends(autogpt_libs.auth.depends.get_user_id) ] ) -> typing.Sequence[backend.server.v2.library.model.LibraryAgent]: """ Get all agents in the user's library, including both created and saved agents. """ try: agents = await backend.server.v2.library.db.get_library_agents(user_id) return agents except Exception: logger.exception("Exception occurred whilst getting library agents") raise fastapi.HTTPException( status_code=500, detail="Failed to get library agents" ) @router.post( "/agents/{store_listing_version_id}", tags=["library", "private"], dependencies=[fastapi.Depends(autogpt_libs.auth.middleware.auth_middleware)], status_code=201, ) async def add_agent_to_library( store_listing_version_id: str, user_id: typing.Annotated[ str, fastapi.Depends(autogpt_libs.auth.depends.get_user_id) ], ) -> fastapi.Response: """ Add an agent from the store to the user's library. Args: store_listing_version_id (str): ID of the store listing version to add user_id (str): ID of the authenticated user Returns: fastapi.Response: 201 status code on success Raises: HTTPException: If there is an error adding the agent to the library """ try: # Get the graph from the store listing store_listing_version = ( await prisma.models.StoreListingVersion.prisma().find_unique( where={"id": store_listing_version_id}, include={"Agent": True} ) ) if not store_listing_version or not store_listing_version.Agent: raise fastapi.HTTPException( status_code=404, detail=f"Store listing version {store_listing_version_id} not found", ) agent = store_listing_version.Agent if agent.userId == user_id: raise fastapi.HTTPException( status_code=400, detail="Cannot add own agent to library" ) # Create a new graph from the template graph = await backend.data.graph.get_graph( agent.id, agent.version, template=True, user_id=user_id ) if not graph: raise fastapi.HTTPException( status_code=404, detail=f"Agent {agent.id} not found" ) # Create a deep copy with new IDs graph.version = 1 graph.is_template = False graph.is_active = True graph.reassign_ids(user_id=user_id, reassign_graph_id=True) # Save the new graph graph = await backend.data.graph.create_graph(graph, user_id=user_id) graph = ( await backend.integrations.webhooks.graph_lifecycle_hooks.on_graph_activate( graph, get_credentials=lambda id: integration_creds_manager.get(user_id, id), ) ) return fastapi.Response(status_code=201) except Exception: logger.exception("Exception occurred whilst adding agent to library") raise fastapi.HTTPException( status_code=500, detail="Failed to add agent to library" )
import logging import typing import autogpt_libs.auth.depends import autogpt_libs.auth.middleware import fastapi import backend.data.graph import backend.server.v2.library.db import backend.server.v2.library.model logger = logging.getLogger(__name__) router = fastapi.APIRouter() @router.get( "/agents", tags=["library", "private"], dependencies=[fastapi.Depends(autogpt_libs.auth.middleware.auth_middleware)], ) async def get_library_agents( user_id: typing.Annotated[ str, fastapi.Depends(autogpt_libs.auth.depends.get_user_id) ] ) -> typing.Sequence[backend.server.v2.library.model.LibraryAgent]: """ Get all agents in the user's library, including both created and saved agents. """ try: agents = await backend.server.v2.library.db.get_library_agents(user_id) return agents except Exception: logger.exception("Exception occurred whilst getting library agents") raise fastapi.HTTPException( status_code=500, detail="Failed to get library agents" ) @router.post( "/agents/{store_listing_version_id}", tags=["library", "private"], dependencies=[fastapi.Depends(autogpt_libs.auth.middleware.auth_middleware)], status_code=201, ) async def add_agent_to_library( store_listing_version_id: str, user_id: typing.Annotated[ str, fastapi.Depends(autogpt_libs.auth.depends.get_user_id) ], ) -> fastapi.Response: """ Add an agent from the store to the user's library. Args: store_listing_version_id (str): ID of the store listing version to add user_id (str): ID of the authenticated user Returns: fastapi.Response: 201 status code on success Raises: HTTPException: If there is an error adding the agent to the library """ try: await backend.server.v2.library.db.add_agent_to_library( store_listing_version_id=store_listing_version_id, user_id=user_id ) return fastapi.Response(status_code=201) except Exception: logger.exception("Exception occurred whilst adding agent to library") raise fastapi.HTTPException( status_code=500, detail="Failed to add agent to library" )
import abc from abc import ABC from typing import TYPE_CHECKING, Any, Generic, List, Tuple, Type, TypeVar, Union from docarray.typing.abstract_type import AbstractType if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='AbstractTensor') ShapeT = TypeVar('ShapeT') class AbstractTensor(AbstractType, Generic[ShapeT], ABC): __parametrized_meta__ = type @classmethod @abc.abstractmethod def __docarray_validate_shape__(cls, t: T, shape: Tuple[int]) -> T: """Every tensor has to implement this method in order to enable syntax of the form Tensor[shape]. It is called when a tensor is assigned to a field of this type. i.e. when a tensor is passed to a Document field of type Tensor[shape]. The intended behaviour is as follows: - If the shape of `t` is equal to `shape`, return `t`. - If the shape of `t` is not equal to `shape`, but can be reshaped to `shape`, return `t` reshaped to `shape`. - If the shape of `t` is not equal to `shape` and cannot be reshaped to `shape`, raise a ValueError. :param t: The tensor to validate. :param shape: The shape to validate against. :return: The validated tensor. """ ... @classmethod def __docarray_validate_getitem__(cls, item: Any) -> Tuple[int]: """This method validates the input to __class_getitem__. It is called at "class creation time", i.e. when a class is created with syntax of the form Tensor[shape]. The default implementation tries to cast any `item` to a tuple of ints. A subclass can override this method to implement custom validation logic. The output of this is eventually passed to {ref}`AbstractTensor.__validate_shape__` as its `shape` argument. Raises `ValueError` if the input `item` does not pass validation. :param item: The item to validate, passed to __class_getitem__ (`Tensor[item]`). :return: The validated item == the target shape of this tensor. """ if isinstance(item, int): item = (item,) try: item = tuple(item) except TypeError: raise TypeError(f'{item} is not a valid tensor shape.') return item @classmethod def _docarray_create_parametrized_type(cls: Type[T], shape: Tuple[int]): shape_str = ', '.join([str(s) for s in shape]) class _ParametrizedTensor( cls, # type: ignore metaclass=cls.__parametrized_meta__, # type: ignore ): _docarray_target_shape = shape __name__ = f'{cls.__name__}[{shape_str}]' __qualname__ = f'{cls.__qualname__}[{shape_str}]' @classmethod def validate( _cls, value: Any, field: 'ModelField', config: 'BaseConfig', ): t = super().validate(value, field, config) return _cls.__docarray_validate_shape__(t, _cls._docarray_target_shape) return _ParametrizedTensor def __class_getitem__(cls, item: Any): target_shape = cls.__docarray_validate_getitem__(item) return cls._docarray_create_parametrized_type(target_shape) @classmethod @abc.abstractmethod def __docarray_stack__(cls: Type[T], seq: Union[List[T], Tuple[T]]) -> T: """Stack a sequence of tensors into a single tensor.""" ...
import abc from abc import ABC from typing import TYPE_CHECKING, Any, Generic, List, Tuple, Type, TypeVar, Union from docarray.typing.abstract_type import AbstractType if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='AbstractTensor') ShapeT = TypeVar('ShapeT') class AbstractTensor(AbstractType, Generic[ShapeT], ABC): __parametrized_meta__ = type @classmethod @abc.abstractmethod def __validate_shape__(cls, t: T, shape: Tuple[int]) -> T: """Every tensor has to implement this method in order to enable syntax of the form Tensor[shape]. It is called when a tensor is assigned to a field of this type. i.e. when a tensor is passed to a Document field of type Tensor[shape]. The intended behaviour is as follows: - If the shape of `t` is equal to `shape`, return `t`. - If the shape of `t` is not equal to `shape`, but can be reshaped to `shape`, return `t` reshaped to `shape`. - If the shape of `t` is not equal to `shape` and cannot be reshaped to `shape`, raise a ValueError. :param t: The tensor to validate. :param shape: The shape to validate against. :return: The validated tensor. """ ... @classmethod def __validate_getitem__(cls, item: Any) -> Tuple[int]: """This method validates the input to __class_getitem__. It is called at "class creation time", i.e. when a class is created with syntax of the form Tensor[shape]. The default implementation tries to cast any `item` to a tuple of ints. A subclass can override this method to implement custom validation logic. The output of this is eventually passed to {ref}`AbstractTensor.__validate_shape__` as its `shape` argument. Raises `ValueError` if the input `item` does not pass validation. :param item: The item to validate, passed to __class_getitem__ (`Tensor[item]`). :return: The validated item == the target shape of this tensor. """ if isinstance(item, int): item = (item,) try: item = tuple(item) except TypeError: raise TypeError(f'{item} is not a valid tensor shape.') return item @classmethod def _create_parametrized_type(cls: Type[T], shape: Tuple[int]): shape_str = ', '.join([str(s) for s in shape]) class _ParametrizedTensor( cls, # type: ignore metaclass=cls.__parametrized_meta__, # type: ignore ): _docarray_target_shape = shape __name__ = f'{cls.__name__}[{shape_str}]' __qualname__ = f'{cls.__qualname__}[{shape_str}]' @classmethod def validate( _cls, value: Any, field: 'ModelField', config: 'BaseConfig', ): t = super().validate(value, field, config) return _cls.__validate_shape__(t, _cls._docarray_target_shape) return _ParametrizedTensor def __class_getitem__(cls, item: Any): target_shape = cls.__validate_getitem__(item) return cls._create_parametrized_type(target_shape) @classmethod @abc.abstractmethod def __docarray_stack__(cls: Type[T], seq: Union[List[T], Tuple[T]]) -> T: """Stack a sequence of tensors into a single tensor.""" ...
from typing import Type, TYPE_CHECKING from docarray import Document if TYPE_CHECKING: from docarray.typing import T class EmptyMixin: """Helper functions for building arrays with empty Document.""" @classmethod def empty(cls: Type['T'], size: int = 0, *args, **kwargs) -> 'T': """Create a :class:`DocumentArray` object with :attr:`size` empty :class:`Document` objects. :param size: the number of empty Documents in this container :return: a :class:`DocumentArray` object """ return cls((Document() for _ in range(size)), *args, **kwargs)
from typing import Type, TYPE_CHECKING from ... import Document if TYPE_CHECKING: from ...typing import T class EmptyMixin: """Helper functions for building arrays with empty Document.""" @classmethod def empty(cls: Type['T'], size: int = 0, *args, **kwargs) -> 'T': """Create a :class:`DocumentArray` object with :attr:`size` empty :class:`Document` objects. :param size: the number of empty Documents in this container :return: a :class:`DocumentArray` object """ return cls((Document() for _ in range(size)), *args, **kwargs)
# Copyright (c) OpenMMLab. All rights reserved. from .cityscapes_metric import CityScapesMetric from .coco_metric import CocoMetric from .coco_panoptic_metric import CocoPanopticMetric from .lvis_metric import LVISMetric from .openimages_metric import OpenImagesMetric from .voc_metric import VOCMetric __all__ = [ 'CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric', 'OpenImagesMetric', 'VOCMetric', 'LVISMetric' ]
# Copyright (c) OpenMMLab. All rights reserved. from .cityscapes_metric import CityScapesMetric from .coco_metric import CocoMetric from .coco_panoptic_metric import CocoPanopticMetric from .openimages_metric import OpenImagesMetric from .voc_metric import VOCMetric __all__ = [ 'CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric', 'OpenImagesMetric', 'VOCMetric' ]
from typing import List from pydantic import BaseModel from backend.blocks.exa._auth import ( ExaCredentials, ExaCredentialsField, ExaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests class ContentRetrievalSettings(BaseModel): text: dict = SchemaField( description="Text content settings", default={"maxCharacters": 1000, "includeHtmlTags": False}, advanced=True, ) highlights: dict = SchemaField( description="Highlight settings", default={ "numSentences": 3, "highlightsPerUrl": 3, "query": "", }, advanced=True, ) summary: dict = SchemaField( description="Summary settings", default={"query": ""}, advanced=True, ) class ExaContentsBlock(Block): class Input(BlockSchema): credentials: ExaCredentialsInput = ExaCredentialsField() ids: List[str] = SchemaField( description="Array of document IDs obtained from searches", ) contents: ContentRetrievalSettings = SchemaField( description="Content retrieval settings", default=ContentRetrievalSettings(), advanced=True, ) class Output(BlockSchema): results: list = SchemaField( description="List of document contents", default_factory=list, ) error: str = SchemaField(description="Error message if the request failed") def __init__(self): super().__init__( id="c52be83f-f8cd-4180-b243-af35f986b461", description="Retrieves document contents using Exa's contents API", categories={BlockCategory.SEARCH}, input_schema=ExaContentsBlock.Input, output_schema=ExaContentsBlock.Output, ) def run( self, input_data: Input, *, credentials: ExaCredentials, **kwargs ) -> BlockOutput: url = "https://api.exa.ai/contents" headers = { "Content-Type": "application/json", "x-api-key": credentials.api_key.get_secret_value(), } payload = { "ids": input_data.ids, "text": input_data.contents.text, "highlights": input_data.contents.highlights, "summary": input_data.contents.summary, } try: response = requests.post(url, headers=headers, json=payload) response.raise_for_status() data = response.json() yield "results", data.get("results", []) except Exception as e: yield "error", str(e) yield "results", []
from typing import List from pydantic import BaseModel from backend.blocks.exa._auth import ( ExaCredentials, ExaCredentialsField, ExaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests class ContentRetrievalSettings(BaseModel): text: dict = SchemaField( description="Text content settings", default={"maxCharacters": 1000, "includeHtmlTags": False}, advanced=True, ) highlights: dict = SchemaField( description="Highlight settings", default={ "numSentences": 3, "highlightsPerUrl": 3, "query": "", }, advanced=True, ) summary: dict = SchemaField( description="Summary settings", default={"query": ""}, advanced=True, ) class ExaContentsBlock(Block): class Input(BlockSchema): credentials: ExaCredentialsInput = ExaCredentialsField() ids: List[str] = SchemaField( description="Array of document IDs obtained from searches", ) contents: ContentRetrievalSettings = SchemaField( description="Content retrieval settings", default=ContentRetrievalSettings(), advanced=True, ) class Output(BlockSchema): results: list = SchemaField( description="List of document contents", default=[], ) error: str = SchemaField(description="Error message if the request failed") def __init__(self): super().__init__( id="c52be83f-f8cd-4180-b243-af35f986b461", description="Retrieves document contents using Exa's contents API", categories={BlockCategory.SEARCH}, input_schema=ExaContentsBlock.Input, output_schema=ExaContentsBlock.Output, ) def run( self, input_data: Input, *, credentials: ExaCredentials, **kwargs ) -> BlockOutput: url = "https://api.exa.ai/contents" headers = { "Content-Type": "application/json", "x-api-key": credentials.api_key.get_secret_value(), } payload = { "ids": input_data.ids, "text": input_data.contents.text, "highlights": input_data.contents.highlights, "summary": input_data.contents.summary, } try: response = requests.post(url, headers=headers, json=payload) response.raise_for_status() data = response.json() yield "results", data.get("results", []) except Exception as e: yield "error", str(e) yield "results", []
""" Example of training with Dask on CPU ==================================== """ from dask import array as da from dask.distributed import Client, LocalCluster from xgboost import dask as dxgb from xgboost.dask import DaskDMatrix def main(client): # generate some random data for demonstration m = 100000 n = 100 X = da.random.random(size=(m, n), chunks=100) y = da.random.random(size=(m,), chunks=100) # DaskDMatrix acts like normal DMatrix, works as a proxy for local # DMatrix scatter around workers. dtrain = DaskDMatrix(client, X, y) # Use train method from xgboost.dask instead of xgboost. This # distributed version of train returns a dictionary containing the # resulting booster and evaluation history obtained from # evaluation metrics. output = dxgb.train( client, {"verbosity": 1, "tree_method": "hist"}, dtrain, num_boost_round=4, evals=[(dtrain, "train")], ) bst = output["booster"] history = output["history"] # you can pass output directly into `predict` too. prediction = dxgb.predict(client, bst, dtrain) print("Evaluation history:", history) return prediction if __name__ == "__main__": # or use other clusters for scaling with LocalCluster(n_workers=7, threads_per_worker=4) as cluster: with Client(cluster) as client: main(client)
""" Example of training with Dask on CPU ==================================== """ from dask import array as da from dask.distributed import Client, LocalCluster import xgboost as xgb from xgboost.dask import DaskDMatrix def main(client): # generate some random data for demonstration m = 100000 n = 100 X = da.random.random(size=(m, n), chunks=100) y = da.random.random(size=(m,), chunks=100) # DaskDMatrix acts like normal DMatrix, works as a proxy for local # DMatrix scatter around workers. dtrain = DaskDMatrix(client, X, y) # Use train method from xgboost.dask instead of xgboost. This # distributed version of train returns a dictionary containing the # resulting booster and evaluation history obtained from # evaluation metrics. output = xgb.dask.train( client, {"verbosity": 1, "tree_method": "hist"}, dtrain, num_boost_round=4, evals=[(dtrain, "train")], ) bst = output["booster"] history = output["history"] # you can pass output directly into `predict` too. prediction = xgb.dask.predict(client, bst, dtrain) print("Evaluation history:", history) return prediction if __name__ == "__main__": # or use other clusters for scaling with LocalCluster(n_workers=7, threads_per_worker=4) as cluster: with Client(cluster) as client: main(client)
"""Guideline evaluation.""" import asyncio import logging from typing import Any, Optional, Sequence, Union, cast from llama_index.core.bridge.pydantic import BaseModel, Field from llama_index.core.evaluation.base import BaseEvaluator, EvaluationResult from llama_index.core.llms.llm import LLM from llama_index.core.output_parsers import PydanticOutputParser from llama_index.core.prompts import BasePromptTemplate, PromptTemplate from llama_index.core.prompts.mixin import PromptDictType from llama_index.core.settings import Settings logger = logging.getLogger(__name__) DEFAULT_GUIDELINES = ( "The response should fully answer the query.\n" "The response should avoid being vague or ambiguous.\n" "The response should be specific and use statistics or numbers when possible.\n" ) DEFAULT_EVAL_TEMPLATE = PromptTemplate( "Here is the original query:\n" "Query: {query}\n" "Critique the following response based on the guidelines below:\n" "Response: {response}\n" "Guidelines: {guidelines}\n" "Now please provide constructive criticism.\n" ) class EvaluationData(BaseModel): passing: bool = Field(description="Whether the response passes the guidelines.") feedback: str = Field( description="The feedback for the response based on the guidelines." ) class GuidelineEvaluator(BaseEvaluator): """ Guideline evaluator. Evaluates whether a query and response pair passes the given guidelines. This evaluator only considers the query string and the response string. Args: guidelines(Optional[str]): User-added guidelines to use for evaluation. Defaults to None, which uses the default guidelines. eval_template(Optional[Union[str, BasePromptTemplate]] ): The template to use for evaluation. """ def __init__( self, llm: Optional[LLM] = None, guidelines: Optional[str] = None, eval_template: Optional[Union[str, BasePromptTemplate]] = None, output_parser: Optional[PydanticOutputParser] = None, ) -> None: self._llm = llm or Settings.llm self._guidelines = guidelines or DEFAULT_GUIDELINES self._eval_template: BasePromptTemplate if isinstance(eval_template, str): self._eval_template = PromptTemplate(eval_template) else: self._eval_template = eval_template or DEFAULT_EVAL_TEMPLATE self._output_parser = output_parser or PydanticOutputParser( output_cls=EvaluationData ) self._eval_template.output_parser = self._output_parser def _get_prompts(self) -> PromptDictType: """Get prompts.""" return { "eval_template": self._eval_template, } def _update_prompts(self, prompts: PromptDictType) -> None: """Update prompts.""" if "eval_template" in prompts: self._eval_template = prompts["eval_template"] async def aevaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, sleep_time_in_seconds: int = 0, **kwargs: Any, ) -> EvaluationResult: """Evaluate whether the query and response pair passes the guidelines.""" del contexts # Unused del kwargs # Unused if query is None or response is None: raise ValueError("query and response must be provided") logger.debug("prompt: %s", self._eval_template) logger.debug("query: %s", query) logger.debug("response: %s", response) logger.debug("guidelines: %s", self._guidelines) await asyncio.sleep(sleep_time_in_seconds) eval_response = await self._llm.apredict( self._eval_template, query=query, response=response, guidelines=self._guidelines, ) eval_data = self._output_parser.parse(eval_response) eval_data = cast(EvaluationData, eval_data) return EvaluationResult( query=query, response=response, passing=eval_data.passing, score=1.0 if eval_data.passing else 0.0, feedback=eval_data.feedback, )
"""Guideline evaluation.""" import asyncio import logging from typing import Any, Optional, Sequence, Union, cast from llama_index.core.bridge.pydantic import BaseModel, Field from llama_index.core.evaluation.base import BaseEvaluator, EvaluationResult from llama_index.core.llms.llm import LLM from llama_index.core.output_parsers import PydanticOutputParser from llama_index.core.prompts import BasePromptTemplate, PromptTemplate from llama_index.core.prompts.mixin import PromptDictType from llama_index.core.settings import Settings logger = logging.getLogger(__name__) DEFAULT_GUIDELINES = ( "The response should fully answer the query.\n" "The response should avoid being vague or ambiguous.\n" "The response should be specific and use statistics or numbers when possible.\n" ) DEFAULT_EVAL_TEMPLATE = PromptTemplate( "Here is the original query:\n" "Query: {query}\n" "Critique the following response based on the guidelines below:\n" "Response: {response}\n" "Guidelines: {guidelines}\n" "Now please provide constructive criticism.\n" ) class EvaluationData(BaseModel): passing: bool = Field(description="Whether the response passes the guidelines.") feedback: str = Field( description="The feedback for the response based on the guidelines." ) class GuidelineEvaluator(BaseEvaluator): """Guideline evaluator. Evaluates whether a query and response pair passes the given guidelines. This evaluator only considers the query string and the response string. Args: guidelines(Optional[str]): User-added guidelines to use for evaluation. Defaults to None, which uses the default guidelines. eval_template(Optional[Union[str, BasePromptTemplate]] ): The template to use for evaluation. """ def __init__( self, llm: Optional[LLM] = None, guidelines: Optional[str] = None, eval_template: Optional[Union[str, BasePromptTemplate]] = None, output_parser: Optional[PydanticOutputParser] = None, ) -> None: self._llm = llm or Settings.llm self._guidelines = guidelines or DEFAULT_GUIDELINES self._eval_template: BasePromptTemplate if isinstance(eval_template, str): self._eval_template = PromptTemplate(eval_template) else: self._eval_template = eval_template or DEFAULT_EVAL_TEMPLATE self._output_parser = output_parser or PydanticOutputParser( output_cls=EvaluationData ) self._eval_template.output_parser = self._output_parser def _get_prompts(self) -> PromptDictType: """Get prompts.""" return { "eval_template": self._eval_template, } def _update_prompts(self, prompts: PromptDictType) -> None: """Update prompts.""" if "eval_template" in prompts: self._eval_template = prompts["eval_template"] async def aevaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, sleep_time_in_seconds: int = 0, **kwargs: Any, ) -> EvaluationResult: """Evaluate whether the query and response pair passes the guidelines.""" del contexts # Unused del kwargs # Unused if query is None or response is None: raise ValueError("query and response must be provided") logger.debug("prompt: %s", self._eval_template) logger.debug("query: %s", query) logger.debug("response: %s", response) logger.debug("guidelines: %s", self._guidelines) await asyncio.sleep(sleep_time_in_seconds) eval_response = await self._llm.apredict( self._eval_template, query=query, response=response, guidelines=self._guidelines, ) eval_data = self._output_parser.parse(eval_response) eval_data = cast(EvaluationData, eval_data) return EvaluationResult( query=query, response=response, passing=eval_data.passing, score=1.0 if eval_data.passing else 0.0, feedback=eval_data.feedback, )
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # data train_dataloader = dict(batch_size=8) # model model = dict( backbone=dict( depth=18, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict(in_channels=[64, 128, 256, 512])) # Note: If the learning rate is set to 0.0025, the mAP will be 32.4. optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0001) # TODO: support auto scaling lr # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (1 GPUs) x (8 samples per GPU) # auto_scale_lr = dict(base_batch_size=8)
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # data data = dict(samples_per_gpu=8) # optimizer model = dict( backbone=dict( depth=18, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict(in_channels=[64, 128, 256, 512])) # Note: If the learning rate is set to 0.0025, the mAP will be 32.4. optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0001) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (1 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=8)
# Owner(s): ["oncall: distributed"] import json import logging import re import sys from functools import partial, wraps import torch import torch.distributed as dist from torch.distributed.c10d_logger import _c10d_logger, _exception_logger if not dist.is_available(): print("Distributed not available, skipping tests", file=sys.stderr) sys.exit(0) from torch.testing._internal.common_distributed import DistributedTestBase, TEST_SKIPS from torch.testing._internal.common_fsdp import get_devtype from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN device_type = str(get_devtype()) if TEST_WITH_DEV_DBG_ASAN: print( "Skip dev-asan as torch + multiprocessing spawn have known issues", file=sys.stderr, ) sys.exit(0) WORLD_SIZE = min(4, max(2, torch.get_device_module(device_type).device_count())) def with_comms(func=None): if func is None: return partial( with_comms, ) @wraps(func) def wrapper(self, *args, **kwargs): if torch.get_device_module(device_type).device_count() < self.world_size: sys.exit(TEST_SKIPS[f"multi-gpu-{self.world_size}"].exit_code) self.create_pg(device_type) func(self) self.destroy_comms() return wrapper class C10dErrorLoggerTest(DistributedTestBase): @property def world_size(self): return WORLD_SIZE @property def process_group(self): return dist.group.WORLD def destroy_comms(self): # Wait for all ranks to reach here before starting shutdown. dist.barrier() dist.destroy_process_group() def test_get_or_create_logger(self): self.assertIsNotNone(_c10d_logger) self.assertEqual(1, len(_c10d_logger.handlers)) self.assertIsInstance(_c10d_logger.handlers[0], logging.NullHandler) @_exception_logger def _failed_broadcast_raise_exception(self): tensor = torch.arange(2, dtype=torch.int64) dist.broadcast(tensor, self.world_size + 1) @_exception_logger def _failed_broadcast_not_raise_exception(self): try: tensor = torch.arange(2, dtype=torch.int64) dist.broadcast(tensor, self.world_size + 1) except Exception: pass @with_comms def test_exception_logger(self) -> None: with self.assertRaises(Exception): self._failed_broadcast_raise_exception() with self.assertLogs(_c10d_logger, level="DEBUG") as captured: self._failed_broadcast_not_raise_exception() error_msg_dict = json.loads( re.search("({.+})", captured.output[0]).group(0).replace("'", '"') ) # NCCL adds additional nccl_version data to the error_msg_dict if self.backend(device_type) == dist.Backend.NCCL: self.assertEqual(len(error_msg_dict), 9) else: self.assertEqual(len(error_msg_dict), 8) self.assertIn("pg_name", error_msg_dict.keys()) self.assertEqual("None", error_msg_dict["pg_name"]) self.assertIn("func_name", error_msg_dict.keys()) self.assertEqual("broadcast", error_msg_dict["func_name"]) self.assertIn("backend", error_msg_dict.keys()) self.assertEqual(self.backend(device_type), error_msg_dict["backend"]) if self.backend(device_type) == dist.Backend.NCCL: self.assertIn("nccl_version", error_msg_dict.keys()) nccl_ver = torch.cuda.nccl.version() self.assertEqual( ".".join(str(v) for v in nccl_ver), error_msg_dict["nccl_version"] ) # In this test case, group_size = world_size, since we don't have multiple processes on one node. self.assertIn("group_size", error_msg_dict.keys()) self.assertEqual(str(self.world_size), error_msg_dict["group_size"]) self.assertIn("world_size", error_msg_dict.keys()) self.assertEqual(str(self.world_size), error_msg_dict["world_size"]) self.assertIn("global_rank", error_msg_dict.keys()) self.assertIn(str(dist.get_rank()), error_msg_dict["global_rank"]) # In this test case, local_rank = global_rank, since we don't have multiple processes on one node. self.assertIn("local_rank", error_msg_dict.keys()) self.assertIn(str(dist.get_rank()), error_msg_dict["local_rank"]) if __name__ == "__main__": run_tests()
# Owner(s): ["oncall: distributed"] import json import logging import os import re import sys from functools import partial, wraps import torch import torch.distributed as dist from torch.distributed.c10d_logger import _c10d_logger, _exception_logger if not dist.is_available(): print("Distributed not available, skipping tests", file=sys.stderr) sys.exit(0) from torch.testing._internal.common_distributed import MultiProcessTestCase, TEST_SKIPS from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN if TEST_WITH_DEV_DBG_ASAN: print( "Skip dev-asan as torch + multiprocessing spawn have known issues", file=sys.stderr, ) sys.exit(0) BACKEND = dist.Backend.NCCL WORLD_SIZE = min(4, max(2, torch.cuda.device_count())) def with_comms(func=None): if func is None: return partial( with_comms, ) @wraps(func) def wrapper(self, *args, **kwargs): if BACKEND == dist.Backend.NCCL and torch.cuda.device_count() < self.world_size: sys.exit(TEST_SKIPS[f"multi-gpu-{self.world_size}"].exit_code) self.dist_init() func(self) self.destroy_comms() return wrapper class C10dErrorLoggerTest(MultiProcessTestCase): def setUp(self): super().setUp() os.environ["WORLD_SIZE"] = str(self.world_size) os.environ["BACKEND"] = BACKEND self._spawn_processes() @property def device(self): return ( torch.device(self.rank) if BACKEND == dist.Backend.NCCL else torch.device("cpu") ) @property def world_size(self): return WORLD_SIZE @property def process_group(self): return dist.group.WORLD def destroy_comms(self): # Wait for all ranks to reach here before starting shutdown. dist.barrier() dist.destroy_process_group() def dist_init(self): dist.init_process_group( backend=BACKEND, world_size=self.world_size, rank=self.rank, init_method=f"file://{self.file_name}", ) # set device for nccl pg for collectives if BACKEND == "nccl": torch.cuda.set_device(self.rank) def test_get_or_create_logger(self): self.assertIsNotNone(_c10d_logger) self.assertEqual(1, len(_c10d_logger.handlers)) self.assertIsInstance(_c10d_logger.handlers[0], logging.NullHandler) @_exception_logger def _failed_broadcast_raise_exception(self): tensor = torch.arange(2, dtype=torch.int64) dist.broadcast(tensor, self.world_size + 1) @_exception_logger def _failed_broadcast_not_raise_exception(self): try: tensor = torch.arange(2, dtype=torch.int64) dist.broadcast(tensor, self.world_size + 1) except Exception: pass @with_comms def test_exception_logger(self) -> None: with self.assertRaises(Exception): self._failed_broadcast_raise_exception() with self.assertLogs(_c10d_logger, level="DEBUG") as captured: self._failed_broadcast_not_raise_exception() error_msg_dict = json.loads( re.search("({.+})", captured.output[0]).group(0).replace("'", '"') ) self.assertEqual(len(error_msg_dict), 9) self.assertIn("pg_name", error_msg_dict.keys()) self.assertEqual("None", error_msg_dict["pg_name"]) self.assertIn("func_name", error_msg_dict.keys()) self.assertEqual("broadcast", error_msg_dict["func_name"]) self.assertIn("backend", error_msg_dict.keys()) self.assertEqual("nccl", error_msg_dict["backend"]) self.assertIn("nccl_version", error_msg_dict.keys()) nccl_ver = torch.cuda.nccl.version() self.assertEqual( ".".join(str(v) for v in nccl_ver), error_msg_dict["nccl_version"] ) # In this test case, group_size = world_size, since we don't have multiple processes on one node. self.assertIn("group_size", error_msg_dict.keys()) self.assertEqual(str(self.world_size), error_msg_dict["group_size"]) self.assertIn("world_size", error_msg_dict.keys()) self.assertEqual(str(self.world_size), error_msg_dict["world_size"]) self.assertIn("global_rank", error_msg_dict.keys()) self.assertIn(str(dist.get_rank()), error_msg_dict["global_rank"]) # In this test case, local_rank = global_rank, since we don't have multiple processes on one node. self.assertIn("local_rank", error_msg_dict.keys()) self.assertIn(str(dist.get_rank()), error_msg_dict["local_rank"]) if __name__ == "__main__": run_tests()
__all__ = ['filter_docs'] import json from typing import Dict, List, Union from docarray.array.abstract_array import AnyDocArray from docarray.array.array.array import DocArray def filter_docs( docs: AnyDocArray, query: Union[str, Dict, List[Dict]], ) -> AnyDocArray: """ Filter the Documents in the index according to the given filter query. --- ```python from docarray import DocArray, BaseDoc from docarray.documents import TextDoc, ImageDoc from docarray.utils.filter import filter_docs class MyDocument(BaseDoc): caption: TextDoc ImageDoc: ImageDoc price: int docs = DocArray[MyDocument]( [ MyDocument( caption='A tiger in the jungle', ImageDoc=ImageDoc(url='tigerphoto.png'), price=100, ), MyDocument( caption='A swimming turtle', ImageDoc=ImageDoc(url='turtlepic.png'), price=50, ), MyDocument( caption='A couple birdwatching with binoculars', ImageDoc=ImageDoc(url='binocularsphoto.png'), price=30, ), ] ) query = { '$and': { 'ImageDoc__url': {'$regex': 'photo'}, 'price': {'$lte': 50}, } } results = filter_docs(docs, query) assert len(results) == 1 assert results[0].price == 30 assert results[0].caption == 'A couple birdwatching with binoculars' assert results[0].ImageDoc.url == 'binocularsphoto.png' ``` --- :param docs: the DocArray where to apply the filter :param query: the query to filter by :return: A DocArray containing the Documents in `docs` that fulfill the filter conditions in the `query` """ from docarray.utils._internal.query_language.query_parser import QueryParser if query: query = query if not isinstance(query, str) else json.loads(query) parser = QueryParser(query) return DocArray.__class_getitem__(docs.document_type)( d for d in docs if parser.evaluate(d) ) else: return docs
import json from typing import Dict, List, Union from docarray.array.abstract_array import AnyDocArray from docarray.array.array.array import DocArray def filter_docs( docs: AnyDocArray, query: Union[str, Dict, List[Dict]], ) -> AnyDocArray: """ Filter the Documents in the index according to the given filter query. EXAMPLE USAGE .. code-block:: python from docarray import DocArray, BaseDoc from docarray.documents import Text, Image from docarray.util.filter import filter_docs class MyDocument(BaseDoc): caption: Text image: Image price: int docs = DocArray[MyDocument]( [ MyDocument( caption='A tiger in the jungle', image=Image(url='tigerphoto.png'), price=100, ), MyDocument( caption='A swimming turtle', image=Image(url='turtlepic.png'), price=50 ), MyDocument( caption='A couple birdwatching with binoculars', image=Image(url='binocularsphoto.png'), price=30, ), ] ) query = { '$and': { 'image__url': {'$regex': 'photo'}, 'price': {'$lte': 50}, } } results = filter_docs(docs, query) assert len(results) == 1 assert results[0].price == 30 assert results[0].caption == 'A couple birdwatching with binoculars' assert results[0].image.url == 'binocularsphoto.png' :param docs: the DocArray where to apply the filter :param query: the query to filter by :return: A DocArray containing the Documents in `docs` that fulfill the filter conditions in the `query` """ from docarray.utils._internal.query_language.query_parser import QueryParser if query: query = query if not isinstance(query, str) else json.loads(query) parser = QueryParser(query) return DocArray.__class_getitem__(docs.document_type)( d for d in docs if parser.evaluate(d) ) else: return docs
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDoc from docarray.documents import ImageDoc from docarray.typing import ImageBytes from docarray.utils._internal.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image(): image = ImageDoc(url=REMOTE_JPG) image.tensor = image.url.load() assert isinstance(image.tensor, np.ndarray) def test_image_str(): image = parse_obj_as(ImageDoc, 'http://myurl.jpg') assert image.url == 'http://myurl.jpg' def test_image_np(): image = parse_obj_as(ImageDoc, np.zeros((10, 10, 3))) assert (image.tensor == np.zeros((10, 10, 3))).all() def test_image_torch(): image = parse_obj_as(ImageDoc, torch.zeros(10, 10, 3)) assert (image.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_image_tensorflow(): image = ImageDoc(tensor=tf.zeros((10, 10, 3))) assert tnp.allclose(image.tensor.tensor, tf.zeros((10, 10, 3))) def test_image_shortcut_doc(): class MyDoc(BaseDoc): image: ImageDoc image2: ImageDoc image3: ImageDoc doc = MyDoc( image='http://myurl.jpg', image2=np.zeros((10, 10, 3)), image3=torch.zeros(10, 10, 3), ) assert doc.image.url == 'http://myurl.jpg' assert (doc.image2.tensor == np.zeros((10, 10, 3))).all() assert (doc.image3.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.slow @pytest.mark.internet def test_byte(): img = ImageDoc(url=REMOTE_JPG) img.bytes_ = img.url.load_bytes() assert isinstance(img.bytes_, ImageBytes) @pytest.mark.slow @pytest.mark.internet def test_byte_from_tensor(): img = ImageDoc(url=REMOTE_JPG) img.tensor = img.url.load() img.bytes_ = img.tensor.to_bytes() assert isinstance(img.bytes_, bytes) assert len(img.bytes_) > 0
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDoc from docarray.documents import ImageDoc from docarray.utils._internal.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image(): image = ImageDoc(url=REMOTE_JPG) image.tensor = image.url.load() assert isinstance(image.tensor, np.ndarray) def test_image_str(): image = parse_obj_as(ImageDoc, 'http://myurl.jpg') assert image.url == 'http://myurl.jpg' def test_image_np(): image = parse_obj_as(ImageDoc, np.zeros((10, 10, 3))) assert (image.tensor == np.zeros((10, 10, 3))).all() def test_image_torch(): image = parse_obj_as(ImageDoc, torch.zeros(10, 10, 3)) assert (image.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_image_tensorflow(): image = ImageDoc(tensor=tf.zeros((10, 10, 3))) assert tnp.allclose(image.tensor.tensor, tf.zeros((10, 10, 3))) def test_image_shortcut_doc(): class MyDoc(BaseDoc): image: ImageDoc image2: ImageDoc image3: ImageDoc doc = MyDoc( image='http://myurl.jpg', image2=np.zeros((10, 10, 3)), image3=torch.zeros(10, 10, 3), ) assert doc.image.url == 'http://myurl.jpg' assert (doc.image2.tensor == np.zeros((10, 10, 3))).all() assert (doc.image3.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.slow @pytest.mark.internet def test_byte(): img = ImageDoc(url=REMOTE_JPG) img.bytes_ = img.url.load_bytes() @pytest.mark.slow @pytest.mark.internet def test_byte_from_tensor(): img = ImageDoc(url=REMOTE_JPG) img.tensor = img.url.load() img.bytes_ = img.tensor.to_bytes() assert isinstance(img.bytes_, bytes) assert len(img.bytes_) > 0
"""Math utils.""" import logging from typing import List, Optional, Tuple, Union import numpy as np logger = logging.getLogger(__name__) Matrix = Union[List[List[float]], List[np.ndarray], np.ndarray] def cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray: """Row-wise cosine similarity between two equal-width matrices.""" if len(X) == 0 or len(Y) == 0: return np.array([]) X = np.array(X) Y = np.array(Y) if X.shape[1] != Y.shape[1]: raise ValueError( f"Number of columns in X and Y must be the same. X has shape {X.shape} " f"and Y has shape {Y.shape}." ) try: import simsimd as simd X = np.array(X, dtype=np.float32) Y = np.array(Y, dtype=np.float32) Z = 1 - np.array(simd.cdist(X, Y, metric="cosine")) return Z except ImportError: logger.debug( "Unable to import simsimd, defaulting to NumPy implementation. If you want " "to use simsimd please install with `pip install simsimd`." ) X_norm = np.linalg.norm(X, axis=1) Y_norm = np.linalg.norm(Y, axis=1) # Ignore divide by zero errors run time warnings as those are handled below. with np.errstate(divide="ignore", invalid="ignore"): similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm) similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0 return similarity def cosine_similarity_top_k( X: Matrix, Y: Matrix, top_k: Optional[int] = 5, score_threshold: Optional[float] = None, ) -> Tuple[List[Tuple[int, int]], List[float]]: """Row-wise cosine similarity with optional top-k and score threshold filtering. Args: X: Matrix. Y: Matrix, same width as X. top_k: Max number of results to return. score_threshold: Minimum cosine similarity of results. Returns: Tuple of two lists. First contains two-tuples of indices (X_idx, Y_idx), second contains corresponding cosine similarities. """ if len(X) == 0 or len(Y) == 0: return [], [] score_array = cosine_similarity(X, Y) score_threshold = score_threshold or -1.0 score_array[score_array < score_threshold] = 0 top_k = min(top_k or len(score_array), np.count_nonzero(score_array)) top_k_idxs = np.argpartition(score_array, -top_k, axis=None)[-top_k:] top_k_idxs = top_k_idxs[np.argsort(score_array.ravel()[top_k_idxs])][::-1] ret_idxs = np.unravel_index(top_k_idxs, score_array.shape) scores = score_array.ravel()[top_k_idxs].tolist() return list(zip(*ret_idxs)), scores # type: ignore[return-value,unused-ignore]
"""Math utils.""" import logging from typing import List, Optional, Tuple, Union import numpy as np logger = logging.getLogger(__name__) Matrix = Union[List[List[float]], List[np.ndarray], np.ndarray] def cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray: """Row-wise cosine similarity between two equal-width matrices.""" if len(X) == 0 or len(Y) == 0: return np.array([]) X = np.array(X) Y = np.array(Y) if X.shape[1] != Y.shape[1]: raise ValueError( f"Number of columns in X and Y must be the same. X has shape {X.shape} " f"and Y has shape {Y.shape}." ) try: import simsimd as simd X = np.array(X, dtype=np.float32) Y = np.array(Y, dtype=np.float32) Z = 1 - np.array(simd.cdist(X, Y, metric="cosine")) return Z except ImportError: logger.debug( "Unable to import simsimd, defaulting to NumPy implementation. If you want " "to use simsimd please install with `pip install simsimd`." ) X_norm = np.linalg.norm(X, axis=1) Y_norm = np.linalg.norm(Y, axis=1) # Ignore divide by zero errors run time warnings as those are handled below. with np.errstate(divide="ignore", invalid="ignore"): similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm) similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0 return similarity def cosine_similarity_top_k( X: Matrix, Y: Matrix, top_k: Optional[int] = 5, score_threshold: Optional[float] = None, ) -> Tuple[List[Tuple[int, int]], List[float]]: """Row-wise cosine similarity with optional top-k and score threshold filtering. Args: X: Matrix. Y: Matrix, same width as X. top_k: Max number of results to return. score_threshold: Minimum cosine similarity of results. Returns: Tuple of two lists. First contains two-tuples of indices (X_idx, Y_idx), second contains corresponding cosine similarities. """ if len(X) == 0 or len(Y) == 0: return [], [] score_array = cosine_similarity(X, Y) score_threshold = score_threshold or -1.0 score_array[score_array < score_threshold] = 0 top_k = min(top_k or len(score_array), np.count_nonzero(score_array)) top_k_idxs = np.argpartition(score_array, -top_k, axis=None)[-top_k:] top_k_idxs = top_k_idxs[np.argsort(score_array.ravel()[top_k_idxs])][::-1] ret_idxs = np.unravel_index(top_k_idxs, score_array.shape) scores = score_array.ravel()[top_k_idxs].tolist() return list(zip(*ret_idxs)), scores # type: ignore[return-value]
import logging import sentry_sdk from sentry_sdk.integrations.anthropic import AnthropicIntegration from sentry_sdk.integrations.logging import LoggingIntegration from backend.util.settings import Settings def sentry_init(): sentry_dsn = Settings().secrets.sentry_dsn sentry_sdk.init( dsn=sentry_dsn, traces_sample_rate=1.0, profiles_sample_rate=1.0, environment=f"app:{Settings().config.app_env.value}-behave:{Settings().config.behave_as.value}", _experiments={ "enable_logs": True, }, integrations=[ LoggingIntegration(sentry_logs_level=logging.INFO), AnthropicIntegration( include_prompts=False, ), ], )
import logging import sentry_sdk from backend.util.settings import Settings from sentry_sdk.integrations.anthropic import AnthropicIntegration from sentry_sdk.integrations.launchdarkly import LaunchDarklyIntegration from sentry_sdk.integrations.logging import LoggingIntegration def sentry_init(): sentry_dsn = Settings().secrets.sentry_dsn sentry_sdk.init( dsn=sentry_dsn, traces_sample_rate=1.0, profiles_sample_rate=1.0, environment=f"app:{Settings().config.app_env.value}-behave:{Settings().config.behave_as.value}", _experiments={ "enable_logs": True, }, integrations=[ LoggingIntegration(sentry_logs_level=logging.INFO), AnthropicIntegration( include_prompts=False, ), ], )
import os from pathlib import Path import numpy as np import pytest from jina import Document, DocumentArray, Executor, Flow from jina_commons.indexers.dump import import_metas, import_vectors from ..mongo_storage import doc_without_embedding NUM_DOCS = 10 cur_dir = os.path.dirname(os.path.abspath(__file__)) compose_yml = os.path.abspath(os.path.join(cur_dir, 'docker-compose.yml')) def test_config(): config_path = Path(__file__).parents[1] / 'config.yml' storage = Executor.load_config(str(config_path)) assert storage._traversal_paths == ['r'] @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_mongo_add(docs_to_index, storage, docker_compose): storage.add(docs=docs_to_index, parameters={}) assert storage.size == NUM_DOCS @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_mongo_update(docs_to_index, storage, docker_compose): storage.add(docs=docs_to_index, parameters={}) doc_id_to_update = docs_to_index[0].id storage.update( docs=DocumentArray([Document(id=doc_id_to_update, text='hello test')]) ) docs_to_search = DocumentArray([Document(id=doc_id_to_update)]) storage.search(docs=docs_to_search) assert docs_to_search[0].text == 'hello test' @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_mongo_search(docs_to_index, storage, docker_compose): storage.add(docs=docs_to_index, parameters={}) docs_to_search = DocumentArray([Document(id=docs_to_index[0].id)]) storage.search(docs=docs_to_search) assert docs_to_search[0].text == docs_to_index[0].text @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_mongo_search_without_embedding( docs_to_index_no_embedding, storage, docker_compose ): storage.add(docs=docs_to_index_no_embedding, parameters={}) docs_to_search = DocumentArray([Document(id=docs_to_index_no_embedding[0].id)]) storage.search(docs=docs_to_search) assert docs_to_search[0].text == docs_to_index_no_embedding[0].text @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_mongo_delete(docs_to_index, storage, docker_compose): doc_id_to_delete = docs_to_index[0].id storage.delete(docs=DocumentArray([Document(id=doc_id_to_delete)])) docs_to_search = DocumentArray([Document(id=doc_id_to_delete)]) assert len(docs_to_search) == 1 assert docs_to_search[0].text == '' @pytest.mark.parametrize('num_shards', [1, 3, 5]) @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_mongo_dump(docs_to_index, storage, tmpdir, num_shards, docker_compose): metas = {'workspace': str(tmpdir), 'name': 'storage'} dump_path = os.path.join(tmpdir, 'dump_dir') with Flow().add( uses={ 'jtype': 'MongoDBStorage', 'with': {}, 'metas': metas, } ) as f: f.index(inputs=docs_to_index) f.post(on='/dump', parameters={'dump_path': dump_path, 'shards': num_shards}) assert os.path.exists(dump_path) # recover dumped files and assert identical all_ids = [] all_vecs = [] all_metas = [] for pea_id in range(num_shards): ids, vecs = import_vectors(dump_path, pea_id=str(pea_id)) _, metas = import_metas(dump_path, pea_id=str(pea_id)) all_ids.extend(ids) all_vecs.extend(vecs) all_metas.extend(metas) assert all_ids == docs_to_index.get_attributes('id') assert ( np.asarray(all_vecs) == np.asarray(docs_to_index.get_attributes('embedding')) ).all() for idx, meta in enumerate(all_metas): assert meta == doc_without_embedding(docs_to_index[idx]) storage.delete(docs_to_index)
import os from pathlib import Path import pytest import numpy as np from jina import Document, DocumentArray, Flow, Executor from jina_commons.indexers.dump import import_vectors, import_metas from ..mongo_storage import doc_without_embedding NUM_DOCS = 10 cur_dir = os.path.dirname(os.path.abspath(__file__)) compose_yml = os.path.abspath(os.path.join(cur_dir, 'docker-compose.yml')) def test_config(): config_path = Path(__file__).parents[1] / 'config.yml' storage = Executor.load_config(str(config_path)) assert storage._traversal_paths == ['r'] @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_mongo_add(docs_to_index, storage, docker_compose): storage.add(docs=docs_to_index, parameters={}) assert storage.size == NUM_DOCS @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_mongo_update(docs_to_index, storage, docker_compose): storage.add(docs=docs_to_index, parameters={}) doc_id_to_update = docs_to_index[0].id storage.update( docs=DocumentArray([Document(id=doc_id_to_update, text='hello test')]) ) docs_to_search = DocumentArray([Document(id=doc_id_to_update)]) storage.search(docs=docs_to_search) assert docs_to_search[0].text == 'hello test' @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_mongo_search(docs_to_index, storage, docker_compose): storage.add(docs=docs_to_index, parameters={}) docs_to_search = DocumentArray([Document(id=docs_to_index[0].id)]) storage.search(docs=docs_to_search) assert docs_to_search[0].text == docs_to_index[0].text @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_mongo_delete(docs_to_index, storage, docker_compose): doc_id_to_delete = docs_to_index[0].id storage.delete(docs=DocumentArray([Document(id=doc_id_to_delete)])) docs_to_search = DocumentArray([Document(id=doc_id_to_delete)]) assert len(docs_to_search) == 1 assert docs_to_search[0].text == '' @pytest.mark.parametrize('num_shards', [1, 3, 5]) @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_mongo_dump(docs_to_index, storage, tmpdir, num_shards, docker_compose): metas = {'workspace': str(tmpdir), 'name': 'storage'} dump_path = os.path.join(tmpdir, 'dump_dir') with Flow().add( uses={ 'jtype': 'MongoDBStorage', 'with': {}, 'metas': metas, } ) as f: f.index(inputs=docs_to_index) f.post(on='/dump', parameters={'dump_path': dump_path, 'shards': num_shards}) assert os.path.exists(dump_path) # recover dumped files and assert identical all_ids = [] all_vecs = [] all_metas = [] for pea_id in range(num_shards): ids, vecs = import_vectors(dump_path, pea_id=str(pea_id)) _, metas = import_metas(dump_path, pea_id=str(pea_id)) all_ids.extend(ids) all_vecs.extend(vecs) all_metas.extend(metas) assert all_ids == docs_to_index.get_attributes('id') assert ( np.asarray(all_vecs) == np.asarray(docs_to_index.get_attributes('embedding')) ).all() for idx, meta in enumerate(all_metas): assert meta == doc_without_embedding(docs_to_index[idx]) storage.delete(docs_to_index)
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTranslationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model, not mutilingual but hope to see some on the hub soon model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a parallel sentences dataset dataset = load_dataset("sentence-transformers/parallel-sentences-news-commentary", "en-nl", split="train[:1000]") # Initialize the TranslationEvaluator using the same texts from two languages translation_evaluator = SparseTranslationEvaluator( source_sentences=dataset["english"], target_sentences=dataset["non_english"], name="news-commentary-en-nl", ) results = translation_evaluator(model) """ Evaluating translation matching Accuracy of the model on the news-commentary-en-nl dataset: Accuracy src2trg: 41.40 Accuracy trg2src: 47.60 Model Sparsity: Active Dimensions: 112.3, Sparsity Ratio: 0.9963 """ # Print the results print(f"Primary metric: {translation_evaluator.primary_metric}") # => Primary metric: news-commentary-en-nl_mean_accuracy print(f"Primary metric value: {results[translation_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.4450
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTranslationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model, not mutilingual but hope to see some on the hub soon model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a parallel sentences dataset dataset = load_dataset("sentence-transformers/parallel-sentences-news-commentary", "en-nl", split="train[:1000]") # Initialize the TranslationEvaluator using the same texts from two languages translation_evaluator = SparseTranslationEvaluator( source_sentences=dataset["english"], target_sentences=dataset["non_english"], name="news-commentary-en-nl", ) results = translation_evaluator(model) """ Evaluating translation matching Accuracy of the model on the news-commentary-en-nl dataset: Accuracy src2trg: 41.40 Accuracy trg2src: 47.70 Model Sparsity: Active Dimensions: 113.6, Sparsity Ratio: 0.9963 """ # Print the results print(f"Primary metric: {translation_evaluator.primary_metric}") # => Primary metric: news-commentary-en-nl_mean_accuracy print(f"Primary metric value: {results[translation_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.4455
import os import urllib import numpy as np import pytest from PIL import Image from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_document.io.json import orjson_dumps from docarray.typing import ImageUrl CUR_DIR = os.path.dirname(os.path.abspath(__file__)) PATH_TO_IMAGE_DATA = os.path.join(CUR_DIR, '..', '..', '..', 'toydata', 'image-data') IMAGE_PATHS = { 'png': os.path.join(PATH_TO_IMAGE_DATA, 'so_good.png'), 'jpg': os.path.join(PATH_TO_IMAGE_DATA, '05984.jpg'), 'jpeg': os.path.join(PATH_TO_IMAGE_DATA, '05984-2.jpeg'), } REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image_url(): uri = parse_obj_as(ImageUrl, REMOTE_JPG) tensor = uri.load() assert isinstance(tensor, np.ndarray) def test_proto_image_url(): uri = parse_obj_as(ImageUrl, REMOTE_JPG) uri._to_node_protobuf() def test_json_schema(): schema_json_of(ImageUrl) def test_dump_json(): url = parse_obj_as(ImageUrl, 'http://jina.ai/img.png') orjson_dumps(url) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) def test_load(image_format, path_to_img): url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load() assert isinstance(tensor, np.ndarray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) @pytest.mark.parametrize('width,height', [(224, None), (None, 224), (224, 224)]) def test_load_width_height(image_format, path_to_img, width, height): url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load(width=width, height=height) assert isinstance(tensor, np.ndarray) shape = tensor.shape if width: assert shape[1] == width if height: assert shape[0] == height @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) @pytest.mark.parametrize( 'axis_layout', [ ('H', 'W', 'C'), ('H', 'C', 'W'), ('C', 'H', 'W'), ('C', 'W', 'H'), ('W', 'C', 'H'), ('W', 'H', 'C'), ], ) def test_load_channel_axis(image_format, path_to_img, axis_layout): sizes = {'H': 100, 'W': 200, 'C': 3} url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load(axis_layout=axis_layout, height=sizes['H'], width=sizes['W']) assert isinstance(tensor, np.ndarray) shape = tensor.shape for axis, axis_name in enumerate(axis_layout): assert shape[axis] == sizes[axis_name] @pytest.mark.internet def test_load_timeout(): url = parse_obj_as(ImageUrl, REMOTE_JPG) with pytest.raises(urllib.error.URLError): _ = url.load(timeout=0.001) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('jpg', REMOTE_JPG), ], ) def test_load_to_bytes(image_format, path_to_img): url = parse_obj_as(ImageUrl, path_to_img) _bytes = url.load_bytes() assert isinstance(_bytes, bytes) img = Image.frombytes(mode='1', size=(224, 224), data=_bytes) assert isinstance(img, Image.Image) @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('jpg', REMOTE_JPG), ('illegal', 'illegal'), ('illegal', 'https://www.google.com'), ('illegal', 'my/local/text/file.txt'), ], ) def test_validation(image_format, path_to_img): if image_format == 'illegal': with pytest.raises(ValueError): parse_obj_as(ImageUrl, path_to_img) else: url = parse_obj_as(ImageUrl, path_to_img) assert isinstance(url, ImageUrl) assert isinstance(url, str)
import os import urllib import numpy as np import PIL import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_document.io.json import orjson_dumps from docarray.typing import ImageUrl CUR_DIR = os.path.dirname(os.path.abspath(__file__)) PATH_TO_IMAGE_DATA = os.path.join(CUR_DIR, '..', '..', '..', 'toydata', 'image-data') IMAGE_PATHS = { 'png': os.path.join(PATH_TO_IMAGE_DATA, 'so_good.png'), 'jpg': os.path.join(PATH_TO_IMAGE_DATA, '05984.jpg'), 'jpeg': os.path.join(PATH_TO_IMAGE_DATA, '05984-2.jpeg'), } REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image_url(): uri = parse_obj_as(ImageUrl, REMOTE_JPG) tensor = uri.load() assert isinstance(tensor, np.ndarray) def test_proto_image_url(): uri = parse_obj_as(ImageUrl, REMOTE_JPG) uri._to_node_protobuf() def test_json_schema(): schema_json_of(ImageUrl) def test_dump_json(): url = parse_obj_as(ImageUrl, 'http://jina.ai/img.png') orjson_dumps(url) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) def test_load(image_format, path_to_img): url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load() assert isinstance(tensor, np.ndarray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) @pytest.mark.parametrize('width,height', [(224, None), (None, 224), (224, 224)]) def test_load_width_height(image_format, path_to_img, width, height): url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load(width=width, height=height) assert isinstance(tensor, np.ndarray) shape = tensor.shape if width: assert shape[1] == width if height: assert shape[0] == height @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('remote-jpg', REMOTE_JPG), ], ) @pytest.mark.parametrize( 'axis_layout', [ ('H', 'W', 'C'), ('H', 'C', 'W'), ('C', 'H', 'W'), ('C', 'W', 'H'), ('W', 'C', 'H'), ('W', 'H', 'C'), ], ) def test_load_channel_axis(image_format, path_to_img, axis_layout): sizes = {'H': 100, 'W': 200, 'C': 3} url = parse_obj_as(ImageUrl, path_to_img) tensor = url.load(axis_layout=axis_layout, height=sizes['H'], width=sizes['W']) assert isinstance(tensor, np.ndarray) shape = tensor.shape for axis, axis_name in enumerate(axis_layout): assert shape[axis] == sizes[axis_name] @pytest.mark.internet def test_load_timeout(): url = parse_obj_as(ImageUrl, REMOTE_JPG) with pytest.raises(urllib.error.URLError): _ = url.load(timeout=0.001) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('jpg', REMOTE_JPG), ], ) def test_load_to_bytes(image_format, path_to_img): w, h = 224, 224 url = parse_obj_as(ImageUrl, path_to_img) _bytes = url.load_to_bytes(width=w, height=h) assert isinstance(_bytes, bytes) img = PIL.Image.frombytes(mode='1', size=(w, h), data=_bytes) assert isinstance(img, PIL.Image.Image) @pytest.mark.parametrize( 'image_format,path_to_img', [ ('png', IMAGE_PATHS['png']), ('jpg', IMAGE_PATHS['jpg']), ('jpeg', IMAGE_PATHS['jpeg']), ('jpg', REMOTE_JPG), ('illegal', 'illegal'), ('illegal', 'https://www.google.com'), ('illegal', 'my/local/text/file.txt'), ], ) def test_validation(image_format, path_to_img): if image_format == 'illegal': with pytest.raises(ValueError): parse_obj_as(ImageUrl, path_to_img) else: url = parse_obj_as(ImageUrl, path_to_img) assert isinstance(url, ImageUrl) assert isinstance(url, str)
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import mmengine from mmengine.utils import digit_version from .version import __version__, version_info mmcv_minimum_version = '2.0.0rc4' mmcv_maximum_version = '2.1.0' mmcv_version = digit_version(mmcv.__version__) mmengine_minimum_version = '0.7.1' mmengine_maximum_version = '1.0.0' mmengine_version = digit_version(mmengine.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version < digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <{mmcv_maximum_version}.' assert (mmengine_version >= digit_version(mmengine_minimum_version) and mmengine_version < digit_version(mmengine_maximum_version)), \ f'MMEngine=={mmengine.__version__} is used but incompatible. ' \ f'Please install mmengine>={mmengine_minimum_version}, ' \ f'<{mmengine_maximum_version}.' __all__ = ['__version__', 'version_info', 'digit_version']
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import mmengine from mmengine.utils import digit_version from .version import __version__, version_info mmcv_minimum_version = '2.0.0rc4' mmcv_maximum_version = '2.1.0' mmcv_version = digit_version(mmcv.__version__) mmengine_minimum_version = '0.6.0' mmengine_maximum_version = '1.0.0' mmengine_version = digit_version(mmengine.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version < digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <{mmcv_maximum_version}.' assert (mmengine_version >= digit_version(mmengine_minimum_version) and mmengine_version < digit_version(mmengine_maximum_version)), \ f'MMEngine=={mmengine.__version__} is used but incompatible. ' \ f'Please install mmengine>={mmengine_minimum_version}, ' \ f'<{mmengine_maximum_version}.' __all__ = ['__version__', 'version_info', 'digit_version']
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Union from mmengine.config import ConfigDict from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class RetinaNet(SingleStageDetector): """Implementation of `RetinaNet <https://arxiv.org/abs/1708.02002>`_""" def __init__(self, backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, preprocess_cfg: Optional[Union[ConfigDict, dict]] = None, pretrained: Optional[str] = None, init_cfg: Optional[Union[ConfigDict, dict]] = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg, preprocess_cfg=preprocess_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class RetinaNet(SingleStageDetector): """Implementation of `RetinaNet <https://arxiv.org/abs/1708.02002>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, preprocess_cfg=None, pretrained=None, init_cfg=None): super(RetinaNet, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, preprocess_cfg, pretrained, init_cfg)
r""" PyTorch Profiler is a tool that allows the collection of performance metrics during training and inference. Profiler's context manager API can be used to better understand what model operators are the most expensive, examine their input shapes and stack traces, study device kernel activity and visualize the execution trace. .. note:: An earlier version of the API in :mod:`torch.autograd` module is considered legacy and will be deprecated. """ import os from typing import Any from typing_extensions import TypeVarTuple, Unpack from torch._C._autograd import _supported_activities, DeviceType, kineto_available from torch._C._profiler import _ExperimentalConfig, ProfilerActivity, RecordScope from torch._environment import is_fbcode from torch.autograd.profiler import KinetoStepTracker, record_function from torch.optim.optimizer import Optimizer, register_optimizer_step_post_hook from .profiler import ( _KinetoProfile, ExecutionTraceObserver, profile, ProfilerAction, schedule, supported_activities, tensorboard_trace_handler, ) __all__ = [ "profile", "schedule", "supported_activities", "tensorboard_trace_handler", "ProfilerAction", "ProfilerActivity", "kineto_available", "DeviceType", "record_function", "ExecutionTraceObserver", ] from . import itt _Ts = TypeVarTuple("_Ts") def _optimizer_post_hook( optimizer: Optimizer, args: tuple[Unpack[_Ts]], kwargs: dict[str, Any] ) -> None: KinetoStepTracker.increment_step("Optimizer") if os.environ.get("KINETO_USE_DAEMON", "") or ( is_fbcode() and os.environ.get("KINETO_FORCE_OPTIMIZER_HOOK", "") ): _ = register_optimizer_step_post_hook(_optimizer_post_hook)
# mypy: allow-untyped-defs r""" PyTorch Profiler is a tool that allows the collection of performance metrics during training and inference. Profiler's context manager API can be used to better understand what model operators are the most expensive, examine their input shapes and stack traces, study device kernel activity and visualize the execution trace. .. note:: An earlier version of the API in :mod:`torch.autograd` module is considered legacy and will be deprecated. """ import os from torch._C._autograd import _supported_activities, DeviceType, kineto_available from torch._C._profiler import _ExperimentalConfig, ProfilerActivity, RecordScope from torch._environment import is_fbcode from torch.autograd.profiler import KinetoStepTracker, record_function from torch.optim.optimizer import register_optimizer_step_post_hook from .profiler import ( _KinetoProfile, ExecutionTraceObserver, profile, ProfilerAction, schedule, supported_activities, tensorboard_trace_handler, ) __all__ = [ "profile", "schedule", "supported_activities", "tensorboard_trace_handler", "ProfilerAction", "ProfilerActivity", "kineto_available", "DeviceType", "record_function", "ExecutionTraceObserver", ] from . import itt def _optimizer_post_hook(optimizer, args, kwargs): KinetoStepTracker.increment_step("Optimizer") if os.environ.get("KINETO_USE_DAEMON", "") or ( is_fbcode() and os.environ.get("KINETO_FORCE_OPTIMIZER_HOOK", "") ): _ = register_optimizer_step_post_hook(_optimizer_post_hook)
""" This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It generates sentence embeddings that can be compared using cosine-similarity to measure the similarity. Usage: python training_nli.py OR python training_nli.py pretrained_transformer_model_name """ import logging import sys import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers import SentenceTransformer, losses from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any Hugging Face pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "distilbert-base-uncased" train_batch_size = 16 num_epochs = 4 output_dir = ( "output/training_stsbenchmark_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # 1. Here we define our SentenceTransformer model. If not already a Sentence Transformer model, it will automatically # create one with "mean" pooling. model = SentenceTransformer(model_name) # 2. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 3. Define our training loss # CosineSimilarityLoss (https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) needs two text columns and one # similarity score column (between 0 and 1) train_loss = losses.CosineSimilarityLoss(model=model) # train_loss = losses.CoSENTLoss(model=model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: evaluation_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="sts", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-sts") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-sts')`." )
""" This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It generates sentence embeddings that can be compared using cosine-similarity to measure the similarity. Usage: python training_nli.py OR python training_nli.py pretrained_transformer_model_name """ import logging import sys import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers import SentenceTransformer, losses from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any Hugging Face pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "distilbert-base-uncased" train_batch_size = 16 num_epochs = 4 output_dir = ( "output/training_stsbenchmark_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # 1. Here we define our SentenceTransformer model. If not already a Sentence Transformer model, it will automatically # create one with "mean" pooling. model = SentenceTransformer(model_name) # 2. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 3. Define our training loss # CosineSimilarityLoss (https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) needs two text columns and one # similarity score column (between 0 and 1) train_loss = losses.CosineSimilarityLoss(model=model) # train_loss = losses.CoSENTLoss(model=model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="sts", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-sts") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-sts')`." )
# Copyright (c) OpenMMLab. All rights reserved. import mmcv from .version import __version__, short_version def digit_version(version_str): digit_version = [] for x in version_str.split('.'): if x.isdigit(): digit_version.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') digit_version.append(int(patch_version[0]) - 1) digit_version.append(int(patch_version[1])) return digit_version mmcv_minimum_version = '1.3.17' mmcv_maximum_version = '1.5.0' mmcv_version = digit_version(mmcv.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version <= digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.' __all__ = ['__version__', 'short_version']
# Copyright (c) OpenMMLab. All rights reserved. import mmcv from .version import __version__, short_version def digit_version(version_str): digit_version = [] for x in version_str.split('.'): if x.isdigit(): digit_version.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') digit_version.append(int(patch_version[0]) - 1) digit_version.append(int(patch_version[1])) return digit_version mmcv_minimum_version = '1.3.8' mmcv_maximum_version = '1.5.0' mmcv_version = digit_version(mmcv.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version <= digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.' __all__ = ['__version__', 'short_version']
# Copyright (c) OpenMMLab. All rights reserved. from .gaussian_target import (gather_feat, gaussian_radius, gen_gaussian_target, get_local_maximum, get_topk_from_heatmap, transpose_and_gather_feat) from .make_divisible import make_divisible from .misc import (center_of_mass, empty_instances, filter_scores_and_topk, flip_tensor, generate_coordinate, images_to_levels, interpolate_as, levels_to_images, mask2ndarray, multi_apply, select_single_mlvl, sigmoid_geometric_mean, unmap, unpack_gt_instances) from .panoptic_gt_processing import preprocess_panoptic_gt from .point_sample import (get_uncertain_point_coords_with_randomness, get_uncertainty) __all__ = [ 'gaussian_radius', 'gen_gaussian_target', 'make_divisible', 'get_local_maximum', 'get_topk_from_heatmap', 'transpose_and_gather_feat', 'interpolate_as', 'sigmoid_geometric_mean', 'gather_feat', 'preprocess_panoptic_gt', 'get_uncertain_point_coords_with_randomness', 'get_uncertainty', 'unpack_gt_instances', 'empty_instances', 'center_of_mass', 'filter_scores_and_topk', 'flip_tensor', 'generate_coordinate', 'levels_to_images', 'mask2ndarray', 'multi_apply', 'select_single_mlvl', 'unmap', 'images_to_levels' ]
# Copyright (c) OpenMMLab. All rights reserved. from .brick_wrappers import AdaptiveAvgPool2d, adaptive_avg_pool2d from .builder import build_linear_layer, build_transformer from .ckpt_convert import pvt_convert from .conv_upsample import ConvUpsample from .csp_layer import CSPLayer from .ema import ExpMomentumEMA from .gaussian_target import gaussian_radius, gen_gaussian_target from .inverted_residual import InvertedResidual from .make_divisible import make_divisible from .misc import (empty_instances, interpolate_as, sigmoid_geometric_mean, unpack_gt_instances) from .normed_predictor import NormedConv2d, NormedLinear from .panoptic_gt_processing import preprocess_panoptic_gt from .point_sample import (get_uncertain_point_coords_with_randomness, get_uncertainty) from .positional_encoding import (LearnedPositionalEncoding, SinePositionalEncoding) from .res_layer import ResLayer, SimplifiedBasicBlock from .se_layer import DyReLU, SELayer from .transformer import (DetrTransformerDecoder, DetrTransformerDecoderLayer, DynamicConv, PatchEmbed, Transformer, nchw_to_nlc, nlc_to_nchw) __all__ = [ 'ResLayer', 'gaussian_radius', 'gen_gaussian_target', 'DetrTransformerDecoderLayer', 'DetrTransformerDecoder', 'Transformer', 'build_transformer', 'build_linear_layer', 'SinePositionalEncoding', 'LearnedPositionalEncoding', 'DynamicConv', 'SimplifiedBasicBlock', 'NormedLinear', 'NormedConv2d', 'make_divisible', 'InvertedResidual', 'SELayer', 'interpolate_as', 'ConvUpsample', 'CSPLayer', 'adaptive_avg_pool2d', 'AdaptiveAvgPool2d', 'PatchEmbed', 'nchw_to_nlc', 'nlc_to_nchw', 'pvt_convert', 'sigmoid_geometric_mean', 'preprocess_panoptic_gt', 'DyReLU', 'get_uncertain_point_coords_with_randomness', 'get_uncertainty', 'ExpMomentumEMA', 'unpack_gt_instances', 'empty_instances' ]
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.core import DetDataSample from mmdet.testing import demo_mm_inputs, get_detector_cfg from mmdet.utils import register_all_modules register_all_modules() class TestSingleStageInstanceSegmentor(TestCase): @parameterized.expand([ 'solo/solo_r50_fpn_1x_coco.py', 'solo/decoupled_solo_r50_fpn_1x_coco.py', 'solo/decoupled_solo_light_r50_fpn_3x_coco.py', 'solov2/solov2_r50_fpn_1x_coco.py', 'solov2/solov2_light_r18_fpn_3x_coco.py' ]) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) self.assertTrue(detector.backbone) self.assertTrue(detector.neck) self.assertTrue(detector.mask_head) @parameterized.expand([ ('solo/solo_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solo/decoupled_solo_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solo/decoupled_solo_light_r50_fpn_3x_coco.py', ('cpu', 'cuda')), ('solov2/solov2_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solov2/solov2_light_r18_fpn_3x_coco.py', ('cpu', 'cuda')), ]) def test_single_stage_forward_loss_mode(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) detector.init_weights() if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs( 2, [[3, 128, 128], [3, 125, 130]], with_mask=True) batch_inputs, data_samples = detector.data_preprocessor( packed_inputs, True) losses = detector.forward(batch_inputs, data_samples, mode='loss') self.assertIsInstance(losses, dict) @parameterized.expand([ ('solo/solo_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solo/decoupled_solo_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solo/decoupled_solo_light_r50_fpn_3x_coco.py', ('cpu', 'cuda')), ('solov2/solov2_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solov2/solov2_light_r18_fpn_3x_coco.py', ('cpu', 'cuda')), ]) def test_single_stage_forward_predict_mode(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs( 2, [[3, 128, 128], [3, 125, 130]], with_mask=True) batch_inputs, data_samples = detector.data_preprocessor( packed_inputs, False) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward( batch_inputs, data_samples, mode='predict') self.assertEqual(len(batch_results), 2) self.assertIsInstance(batch_results[0], DetDataSample)
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet import * # noqa from mmdet.core import DetDataSample from mmdet.testing import demo_mm_inputs, get_detector_cfg class TestSingleStageInstanceSegmentor(TestCase): @parameterized.expand([ 'solo/solo_r50_fpn_1x_coco.py', 'solo/decoupled_solo_r50_fpn_1x_coco.py', 'solo/decoupled_solo_light_r50_fpn_3x_coco.py' ]) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) self.assertTrue(detector.backbone) self.assertTrue(detector.neck) self.assertTrue(detector.mask_head) self.assertEqual(detector.device.type, 'cpu') @parameterized.expand([ ('solo/solo_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solo/decoupled_solo_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solo/decoupled_solo_light_r50_fpn_3x_coco.py', ('cpu', 'cuda')) ]) def test_single_stage_forward_train(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) detector.init_weights() if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() assert detector.device.type == device packed_inputs = demo_mm_inputs( 2, [[3, 128, 128], [3, 125, 130]], with_mask=True) # Test forward train losses = detector.forward(packed_inputs, return_loss=True) assert isinstance(losses, dict) # Test forward_dummy batch = torch.ones((1, 3, 64, 64)).to(device=device) out = detector.forward_dummy(batch) assert isinstance(out, tuple) @parameterized.expand([ ('solo/solo_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solo/decoupled_solo_r50_fpn_1x_coco.py', ('cpu', 'cuda')), ('solo/decoupled_solo_light_r50_fpn_3x_coco.py', ('cpu', 'cuda')) ]) def test_single_stage_forward_test(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() assert detector.device.type == device packed_inputs = demo_mm_inputs( 2, [[3, 128, 128], [3, 125, 130]], with_mask=True) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward( packed_inputs, return_loss=False) assert len(batch_results) == 2 assert isinstance(batch_results[0], DetDataSample)
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.jaxarray import JaxArray, metaJax MAX_INT_16 = 2**15 @_register_proto(proto_type_name='image_jaxarray') class ImageJaxArray(JaxArray, AbstractImageTensor, metaclass=metaJax): ...
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.jaxarray import JaxArray, metaJax MAX_INT_16 = 2**15 @_register_proto(proto_type_name='image_jaxarray') class ImageJaxArray(JaxArray, AbstractImageTensor, metaclass=metaJax): ...
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmcv.runner.hooks import Hook from mmdet.registry import HOOKS @HOOKS.register_module() class CheckInvalidLossHook(Hook): """Check invalid loss hook. This hook will regularly check whether the loss is valid during training. Args: interval (int): Checking interval (every k iterations). Default: 50. """ def __init__(self, interval=50): self.interval = interval def after_train_iter(self, runner): if self.every_n_iters(runner, self.interval): assert torch.isfinite(runner.outputs['loss']), \ runner.logger.info('loss become infinite or NaN!')
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmcv.runner.hooks import HOOKS, Hook @HOOKS.register_module() class CheckInvalidLossHook(Hook): """Check invalid loss hook. This hook will regularly check whether the loss is valid during training. Args: interval (int): Checking interval (every k iterations). Default: 50. """ def __init__(self, interval=50): self.interval = interval def after_train_iter(self, runner): if self.every_n_iters(runner, self.interval): assert torch.isfinite(runner.outputs['loss']), \ runner.logger.info('loss become infinite or NaN!')
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "2.20.1.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # isort: split # Deprecated modules from . import arrow_dataset as _arrow_dataset from . import utils as _utils from .exceptions import ExpectedMoreDownloadedFiles, ExpectedMoreSplits, UnexpectedDownloadedFile, UnexpectedSplits from .utils import download_manager as _deprecated_download_manager from .utils import info_utils as _deprecated_info_utils _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager _deprecated_info_utils.ExpectedMoreDownloadedFiles = ExpectedMoreDownloadedFiles _deprecated_info_utils.ExpectedMoreSplits = ExpectedMoreSplits _deprecated_info_utils.UnexpectedDownloadedFile = UnexpectedDownloadedFile _deprecated_info_utils.UnexpectedSplits = UnexpectedSplits del _arrow_dataset, _utils, _deprecated_download_manager del _deprecated_info_utils, ExpectedMoreDownloadedFiles, ExpectedMoreSplits, UnexpectedDownloadedFile, UnexpectedSplits
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "2.20.0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # isort: split # Deprecated modules from . import arrow_dataset as _arrow_dataset from . import utils as _utils from .exceptions import ExpectedMoreDownloadedFiles, ExpectedMoreSplits, UnexpectedDownloadedFile, UnexpectedSplits from .utils import download_manager as _deprecated_download_manager from .utils import info_utils as _deprecated_info_utils _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager _deprecated_info_utils.ExpectedMoreDownloadedFiles = ExpectedMoreDownloadedFiles _deprecated_info_utils.ExpectedMoreSplits = ExpectedMoreSplits _deprecated_info_utils.UnexpectedDownloadedFile = UnexpectedDownloadedFile _deprecated_info_utils.UnexpectedSplits = UnexpectedSplits del _arrow_dataset, _utils, _deprecated_download_manager del _deprecated_info_utils, ExpectedMoreDownloadedFiles, ExpectedMoreSplits, UnexpectedDownloadedFile, UnexpectedSplits
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class GFL(SingleStageDetector): def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(GFL, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class GFL(SingleStageDetector): def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(GFL, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
"""Xgboost training summary integration submodule.""" from dataclasses import dataclass, field from typing import Dict, List @dataclass class XGBoostTrainingSummary: """ A class that holds the training and validation objective history of an XGBoost model during its training process. """ train_objective_history: Dict[str, List[float]] = field(default_factory=dict) validation_objective_history: Dict[str, List[float]] = field(default_factory=dict) @staticmethod def from_metrics( metrics: Dict[str, Dict[str, List[float]]], ) -> "XGBoostTrainingSummary": """ Create an XGBoostTrainingSummary instance from a nested dictionary of metrics. Parameters ---------- metrics : dict of str to dict of str to list of float A dictionary containing training and validation metrics. Example format: { "training": {"logloss": [0.1, 0.08]}, "validation": {"logloss": [0.12, 0.1]} } Returns ------- A new instance of XGBoostTrainingSummary. """ train_objective_history = metrics.get("training", {}) validation_objective_history = metrics.get("validation", {}) return XGBoostTrainingSummary( train_objective_history, validation_objective_history )
"""Xgboost training summary integration submodule.""" from dataclasses import dataclass, field from typing import Dict, List @dataclass class XGBoostTrainingSummary: """ A class that holds the training and validation objective history of an XGBoost model during its training process. """ train_objective_history: Dict[str, List[float]] = field(default_factory=dict) validation_objective_history: Dict[str, List[float]] = field(default_factory=dict) @staticmethod def from_metrics( metrics: Dict[str, Dict[str, List[float]]] ) -> "XGBoostTrainingSummary": """ Create an XGBoostTrainingSummary instance from a nested dictionary of metrics. Parameters ---------- metrics : dict of str to dict of str to list of float A dictionary containing training and validation metrics. Example format: { "training": {"logloss": [0.1, 0.08]}, "validation": {"logloss": [0.12, 0.1]} } Returns ------- A new instance of XGBoostTrainingSummary. """ train_objective_history = metrics.get("training", {}) validation_objective_history = metrics.get("validation", {}) return XGBoostTrainingSummary( train_objective_history, validation_objective_history )
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.13.2.dev1" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.13.2.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
_base_ = '../grounding_dino_swin-t_pretrain_obj365.py' data_root = 'data/coco/' model = dict(test_cfg=dict( max_per_img=300, chunked_size=40, )) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[ [ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', # The radio of all image in train dataset < 7 # follow the original implement scales=[(400, 4200), (500, 4200), (600, 4200)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ] ]), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict( type='RandomSamplingNegPos', tokenizer_name=_base_.lang_model_name, num_sample_negative=85, # change this label_map_file='data/coco/annotations/lvis_v1_label_map_norare.json', max_tokens=256), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction', 'text', 'custom_entities', 'tokens_positive', 'dataset_mode')) ] train_dataloader = dict( dataset=dict( _delete_=True, type='ClassBalancedDataset', oversample_thr=1e-3, dataset=dict( type='ODVGDataset', data_root=data_root, need_text=False, label_map_file='annotations/lvis_v1_label_map_norare.json', ann_file='annotations/lvis_v1_train_od_norare.json', data_prefix=dict(img=''), filter_cfg=dict(filter_empty_gt=False, min_size=32), return_classes=True, pipeline=train_pipeline))) val_dataloader = dict( dataset=dict( data_root=data_root, type='LVISV1Dataset', ann_file='annotations/lvis_v1_minival_inserted_image_name.json', data_prefix=dict(img=''))) test_dataloader = val_dataloader val_evaluator = dict( _delete_=True, type='LVISFixedAPMetric', ann_file=data_root + 'annotations/lvis_v1_minival_inserted_image_name.json') test_evaluator = val_evaluator optim_wrapper = dict( _delete_=True, type='OptimWrapper', optimizer=dict(type='AdamW', lr=0.00005, weight_decay=0.0001), clip_grad=dict(max_norm=0.1, norm_type=2), paramwise_cfg=dict( custom_keys={ 'absolute_pos_embed': dict(decay_mult=0.), 'backbone': dict(lr_mult=0.1), # 'language_model': dict(lr_mult=0), })) # learning policy max_epochs = 12 param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[8, 11], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs, val_interval=3) default_hooks = dict( checkpoint=dict( max_keep_ckpts=3, save_best='lvis_fixed_ap/AP', rule='greater')) load_from = 'https://download.openmmlab.com/mmdetection/v3.0/mm_grounding_dino/grounding_dino_swin-t_pretrain_obj365_goldg_grit9m_v3det/grounding_dino_swin-t_pretrain_obj365_goldg_grit9m_v3det_20231204_095047-b448804b.pth' # noqa
_base_ = '../grounding_dino_swin-t_pretrain_obj365.py' data_root = 'data/lvis/' model = dict(test_cfg=dict( max_per_img=300, chunked_size=40, )) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[ [ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', # The radio of all image in train dataset < 7 # follow the original implement scales=[(400, 4200), (500, 4200), (600, 4200)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ] ]), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict( type='RandomSamplingNegPos', tokenizer_name=_base_.lang_model_name, num_sample_negative=85, # change this label_map_file='data/lvis/annotations/lvis_v1_label_map_norare.json', max_tokens=256), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction', 'text', 'custom_entities', 'tokens_positive', 'dataset_mode')) ] train_dataloader = dict( dataset=dict( _delete_=True, type='ClassBalancedDataset', oversample_thr=1e-3, dataset=dict( type='ODVGDataset', data_root=data_root, need_text=False, label_map_file='annotations/lvis_v1_label_map_norare.json', ann_file='annotations/lvis_v1_train_od_norare.json', data_prefix=dict(img=''), filter_cfg=dict(filter_empty_gt=False, min_size=32), return_classes=True, pipeline=train_pipeline))) val_dataloader = dict( dataset=dict( data_root=data_root, type='LVISV1Dataset', ann_file='annotations/lvis_v1_minival_inserted_image_name.json', data_prefix=dict(img=''))) test_dataloader = val_dataloader val_evaluator = dict( _delete_=True, type='LVISFixedAPMetric', ann_file=data_root + 'annotations/lvis_v1_minival_inserted_image_name.json') test_evaluator = val_evaluator optim_wrapper = dict( _delete_=True, type='OptimWrapper', optimizer=dict(type='AdamW', lr=0.00005, weight_decay=0.0001), clip_grad=dict(max_norm=0.1, norm_type=2), paramwise_cfg=dict( custom_keys={ 'absolute_pos_embed': dict(decay_mult=0.), 'backbone': dict(lr_mult=0.1), # 'language_model': dict(lr_mult=0), })) # learning policy max_epochs = 12 param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[8, 11], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs, val_interval=3) default_hooks = dict( checkpoint=dict( max_keep_ckpts=3, save_best='lvis_fixed_ap/AP', rule='greater')) load_from = 'epoch_30.pth'
# Copyright (c) OpenMMLab. All rights reserved. from .checkpoint_hook import CheckpointHook from .ema_hook import EMAHook from .empty_cache_hook import EmptyCacheHook from .hook import Hook from .iter_timer_hook import IterTimerHook from .logger_hook import LoggerHook from .naive_visualization_hook import NaiveVisualizationHook from .param_scheduler_hook import ParamSchedulerHook from .runtime_info_hook import RuntimeInfoHook from .sampler_seed_hook import DistSamplerSeedHook from .sync_buffer_hook import SyncBuffersHook __all__ = [ 'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook', 'SyncBuffersHook', 'EmptyCacheHook', 'CheckpointHook', 'LoggerHook', 'NaiveVisualizationHook', 'EMAHook', 'RuntimeInfoHook' ]
# Copyright (c) OpenMMLab. All rights reserved. from .checkpoint_hook import CheckpointHook from .ema_hook import EMAHook from .empty_cache_hook import EmptyCacheHook from .hook import Hook from .iter_timer_hook import IterTimerHook from .logger_hook import LoggerHook from .naive_visualization_hook import NaiveVisualizationHook from .optimizer_hook import OptimizerHook from .param_scheduler_hook import ParamSchedulerHook from .runtime_info_hook import RuntimeInfoHook from .sampler_seed_hook import DistSamplerSeedHook from .sync_buffer_hook import SyncBuffersHook __all__ = [ 'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook', 'OptimizerHook', 'SyncBuffersHook', 'EmptyCacheHook', 'CheckpointHook', 'LoggerHook', 'NaiveVisualizationHook', 'EMAHook', 'RuntimeInfoHook' ]
import os from pathlib import Path from typing import List, Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import ( extract_archive, ) _RELEASE_CONFIGS = { "release1": { "folder_in_archive": "waves_yesno", "url": "http://www.openslr.org/resources/1/waves_yesno.tar.gz", "checksum": "c3f49e0cca421f96b75b41640749167b52118f232498667ca7a5f9416aef8e73", } } class YESNO(Dataset): """Create a Dataset for *YesNo* [:footcite:`YesNo`]. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. url (str, optional): The URL to download the dataset from. (default: ``"http://www.openslr.org/resources/1/waves_yesno.tar.gz"``) folder_in_archive (str, optional): The top-level directory of the dataset. (default: ``"waves_yesno"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ def __init__( self, root: Union[str, Path], url: str = _RELEASE_CONFIGS["release1"]["url"], folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"], download: bool = False, ) -> None: self._parse_filesystem(root, url, folder_in_archive, download) def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None: root = Path(root) archive = os.path.basename(url) archive = root / archive self._path = root / folder_in_archive if download: if not os.path.isdir(self._path): if not os.path.isfile(archive): checksum = _RELEASE_CONFIGS["release1"]["checksum"] download_url_to_file(url, archive, hash_prefix=checksum) extract_archive(archive) if not os.path.isdir(self._path): raise RuntimeError("Dataset not found. Please use `download=True` to download it.") self._walker = sorted(str(p.stem) for p in Path(self._path).glob("*.wav")) def _load_item(self, fileid: str, path: str): labels = [int(c) for c in fileid.split("_")] file_audio = os.path.join(path, fileid + ".wav") waveform, sample_rate = torchaudio.load(file_audio) return waveform, sample_rate, labels def __getitem__(self, n: int) -> Tuple[Tensor, int, List[int]]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, List[int]): ``(waveform, sample_rate, labels)`` """ fileid = self._walker[n] item = self._load_item(fileid, self._path) return item def __len__(self) -> int: return len(self._walker)
import os from pathlib import Path from typing import List, Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import ( extract_archive, ) _RELEASE_CONFIGS = { "release1": { "folder_in_archive": "waves_yesno", "url": "http://www.openslr.org/resources/1/waves_yesno.tar.gz", "checksum": "c3f49e0cca421f96b75b41640749167b52118f232498667ca7a5f9416aef8e73", } } class YESNO(Dataset): """Create a Dataset for YesNo. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. url (str, optional): The URL to download the dataset from. (default: ``"http://www.openslr.org/resources/1/waves_yesno.tar.gz"``) folder_in_archive (str, optional): The top-level directory of the dataset. (default: ``"waves_yesno"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ def __init__( self, root: Union[str, Path], url: str = _RELEASE_CONFIGS["release1"]["url"], folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"], download: bool = False, ) -> None: self._parse_filesystem(root, url, folder_in_archive, download) def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None: root = Path(root) archive = os.path.basename(url) archive = root / archive self._path = root / folder_in_archive if download: if not os.path.isdir(self._path): if not os.path.isfile(archive): checksum = _RELEASE_CONFIGS["release1"]["checksum"] download_url_to_file(url, archive, hash_prefix=checksum) extract_archive(archive) if not os.path.isdir(self._path): raise RuntimeError("Dataset not found. Please use `download=True` to download it.") self._walker = sorted(str(p.stem) for p in Path(self._path).glob("*.wav")) def _load_item(self, fileid: str, path: str): labels = [int(c) for c in fileid.split("_")] file_audio = os.path.join(path, fileid + ".wav") waveform, sample_rate = torchaudio.load(file_audio) return waveform, sample_rate, labels def __getitem__(self, n: int) -> Tuple[Tensor, int, List[int]]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, List[int]): ``(waveform, sample_rate, labels)`` """ fileid = self._walker[n] item = self._load_item(fileid, self._path) return item def __len__(self) -> int: return len(self._walker)
# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Doc utilities: Utilities related to documentation """ import re def replace_example_docstring(example_docstring): def docstring_decorator(fn): func_doc = fn.__doc__ lines = func_doc.split("\n") i = 0 while i < len(lines) and re.search(r"^\s*Examples?:\s*$", lines[i]) is None: i += 1 if i < len(lines): lines[i] = example_docstring func_doc = "\n".join(lines) else: raise ValueError( f"The function {fn} should have an empty 'Examples:' in its docstring as placeholder, " f"current docstring is:\n{func_doc}" ) fn.__doc__ = func_doc return fn return docstring_decorator
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Doc utilities: Utilities related to documentation """ import re def replace_example_docstring(example_docstring): def docstring_decorator(fn): func_doc = fn.__doc__ lines = func_doc.split("\n") i = 0 while i < len(lines) and re.search(r"^\s*Examples?:\s*$", lines[i]) is None: i += 1 if i < len(lines): lines[i] = example_docstring func_doc = "\n".join(lines) else: raise ValueError( f"The function {fn} should have an empty 'Examples:' in its docstring as placeholder, " f"current docstring is:\n{func_doc}" ) fn.__doc__ = func_doc return fn return docstring_decorator
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers.losses.TripletLoss import TripletDistanceMetric, TripletLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseTripletLoss(TripletLoss): def __init__( self, model: SparseEncoder, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ) -> None: """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. Args: model: SparseEncoder distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. Need to be used in SpladeLoss or CSRLoss as a loss function. 2. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], "negative": ["It's quite rainy, sadly.", "She walked to the store."], } ) loss = losses.SpladeLoss( model=model, loss=losses.SparseTripletLoss(model), document_regularizer_weight=3e-5, query_regularizer_weight=5e-5 ) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ super().__init__(model, distance_metric=distance_metric, triplet_margin=triplet_margin) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError("SparseTripletLoss should not be used alone. Use it with SpladeLoss or CSRLoss.")
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers.losses.TripletLoss import TripletDistanceMetric, TripletLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseTripletLoss(TripletLoss): def __init__( self, model: SparseEncoder, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ) -> None: """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. Args: model: SparseEncoder distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. Need to be used in SpladeLoss or CSRLoss as a loss function. 2. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], "negative": ["It's quite rainy, sadly.", "She walked to the store."], } ) loss = losses.SpladeLoss( model=model, loss=losses.SparseTripletLoss(model), corpus_regularizer_weight=3e-5, query_regularizer_weight=5e-5 ) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ super().__init__(model, distance_metric=distance_metric, triplet_margin=triplet_margin) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError("SparseTripletLoss should not be used alone. Use it with SpladeLoss or CSRLoss.")
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.ndarray import NdArray MAX_INT_16 = 2**15 @_register_proto(proto_type_name='image_ndarray') class ImageNdArray(AbstractImageTensor, NdArray): """ Subclass of [`NdArray`][docarray.typing.NdArray], to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to image bytes which are optimized to send over the wire. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import ImageBytes, ImageNdArray, ImageUrl class MyImageDoc(BaseDoc): title: str tensor: Optional[ImageNdArray] = None url: Optional[ImageUrl] = None bytes: Optional[ImageBytes] = None # from url doc = MyImageDoc( title='my_second_audio_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() ``` --- """ ...
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.ndarray import NdArray MAX_INT_16 = 2**15 @_register_proto(proto_type_name='image_ndarray') class ImageNdArray(AbstractImageTensor, NdArray): """ Subclass of [`NdArray`][docarray.typing.NdArray], to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to image bytes which are optimized to send over the wire. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import ImageBytes, ImageNdArray, ImageUrl class MyImageDoc(BaseDoc): title: str tensor: Optional[ImageNdArray] url: Optional[ImageUrl] bytes: Optional[ImageBytes] # from url doc = MyImageDoc( title='my_second_audio_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() ``` --- """ ...
"""**Callback handlers** allow listening to events in LangChain. **Class hierarchy:** .. code-block:: BaseCallbackHandler --> <name>CallbackHandler # Example: AimCallbackHandler """ from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from langchain_core.callbacks.base import ( AsyncCallbackHandler, BaseCallbackHandler, BaseCallbackManager, CallbackManagerMixin, Callbacks, ChainManagerMixin, LLMManagerMixin, RetrieverManagerMixin, RunManagerMixin, ToolManagerMixin, ) from langchain_core.callbacks.file import FileCallbackHandler from langchain_core.callbacks.manager import ( AsyncCallbackManager, AsyncCallbackManagerForChainGroup, AsyncCallbackManagerForChainRun, AsyncCallbackManagerForLLMRun, AsyncCallbackManagerForRetrieverRun, AsyncCallbackManagerForToolRun, AsyncParentRunManager, AsyncRunManager, BaseRunManager, CallbackManager, CallbackManagerForChainGroup, CallbackManagerForChainRun, CallbackManagerForLLMRun, CallbackManagerForRetrieverRun, CallbackManagerForToolRun, ParentRunManager, RunManager, adispatch_custom_event, dispatch_custom_event, ) from langchain_core.callbacks.stdout import StdOutCallbackHandler from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain_core.callbacks.usage import ( UsageMetadataCallbackHandler, get_usage_metadata_callback, ) __all__ = ( "dispatch_custom_event", "adispatch_custom_event", "RetrieverManagerMixin", "LLMManagerMixin", "ChainManagerMixin", "ToolManagerMixin", "Callbacks", "CallbackManagerMixin", "RunManagerMixin", "BaseCallbackHandler", "AsyncCallbackHandler", "BaseCallbackManager", "BaseRunManager", "RunManager", "ParentRunManager", "AsyncRunManager", "AsyncParentRunManager", "CallbackManagerForLLMRun", "AsyncCallbackManagerForLLMRun", "CallbackManagerForChainRun", "AsyncCallbackManagerForChainRun", "CallbackManagerForToolRun", "AsyncCallbackManagerForToolRun", "CallbackManagerForRetrieverRun", "AsyncCallbackManagerForRetrieverRun", "CallbackManager", "CallbackManagerForChainGroup", "AsyncCallbackManager", "AsyncCallbackManagerForChainGroup", "StdOutCallbackHandler", "StreamingStdOutCallbackHandler", "FileCallbackHandler", "UsageMetadataCallbackHandler", "get_usage_metadata_callback", ) _dynamic_imports = { "AsyncCallbackHandler": "base", "BaseCallbackHandler": "base", "BaseCallbackManager": "base", "CallbackManagerMixin": "base", "Callbacks": "base", "ChainManagerMixin": "base", "LLMManagerMixin": "base", "RetrieverManagerMixin": "base", "RunManagerMixin": "base", "ToolManagerMixin": "base", "FileCallbackHandler": "file", "AsyncCallbackManager": "manager", "AsyncCallbackManagerForChainGroup": "manager", "AsyncCallbackManagerForChainRun": "manager", "AsyncCallbackManagerForLLMRun": "manager", "AsyncCallbackManagerForRetrieverRun": "manager", "AsyncCallbackManagerForToolRun": "manager", "AsyncParentRunManager": "manager", "AsyncRunManager": "manager", "BaseRunManager": "manager", "CallbackManager": "manager", "CallbackManagerForChainGroup": "manager", "CallbackManagerForChainRun": "manager", "CallbackManagerForLLMRun": "manager", "CallbackManagerForRetrieverRun": "manager", "CallbackManagerForToolRun": "manager", "ParentRunManager": "manager", "RunManager": "manager", "adispatch_custom_event": "manager", "dispatch_custom_event": "manager", "StdOutCallbackHandler": "stdout", "StreamingStdOutCallbackHandler": "streaming_stdout", "UsageMetadataCallbackHandler": "usage", "get_usage_metadata_callback": "usage", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""**Callback handlers** allow listening to events in LangChain. **Class hierarchy:** .. code-block:: BaseCallbackHandler --> <name>CallbackHandler # Example: AimCallbackHandler """ from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.callbacks.base import ( AsyncCallbackHandler, BaseCallbackHandler, BaseCallbackManager, CallbackManagerMixin, Callbacks, ChainManagerMixin, LLMManagerMixin, RetrieverManagerMixin, RunManagerMixin, ToolManagerMixin, ) from langchain_core.callbacks.file import FileCallbackHandler from langchain_core.callbacks.manager import ( AsyncCallbackManager, AsyncCallbackManagerForChainGroup, AsyncCallbackManagerForChainRun, AsyncCallbackManagerForLLMRun, AsyncCallbackManagerForRetrieverRun, AsyncCallbackManagerForToolRun, AsyncParentRunManager, AsyncRunManager, BaseRunManager, CallbackManager, CallbackManagerForChainGroup, CallbackManagerForChainRun, CallbackManagerForLLMRun, CallbackManagerForRetrieverRun, CallbackManagerForToolRun, ParentRunManager, RunManager, adispatch_custom_event, dispatch_custom_event, ) from langchain_core.callbacks.stdout import StdOutCallbackHandler from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain_core.callbacks.usage import ( UsageMetadataCallbackHandler, get_usage_metadata_callback, ) __all__ = [ "dispatch_custom_event", "adispatch_custom_event", "RetrieverManagerMixin", "LLMManagerMixin", "ChainManagerMixin", "ToolManagerMixin", "Callbacks", "CallbackManagerMixin", "RunManagerMixin", "BaseCallbackHandler", "AsyncCallbackHandler", "BaseCallbackManager", "BaseRunManager", "RunManager", "ParentRunManager", "AsyncRunManager", "AsyncParentRunManager", "CallbackManagerForLLMRun", "AsyncCallbackManagerForLLMRun", "CallbackManagerForChainRun", "AsyncCallbackManagerForChainRun", "CallbackManagerForToolRun", "AsyncCallbackManagerForToolRun", "CallbackManagerForRetrieverRun", "AsyncCallbackManagerForRetrieverRun", "CallbackManager", "CallbackManagerForChainGroup", "AsyncCallbackManager", "AsyncCallbackManagerForChainGroup", "StdOutCallbackHandler", "StreamingStdOutCallbackHandler", "FileCallbackHandler", "UsageMetadataCallbackHandler", "get_usage_metadata_callback", ] _dynamic_imports = { "AsyncCallbackHandler": "base", "BaseCallbackHandler": "base", "BaseCallbackManager": "base", "CallbackManagerMixin": "base", "Callbacks": "base", "ChainManagerMixin": "base", "LLMManagerMixin": "base", "RetrieverManagerMixin": "base", "RunManagerMixin": "base", "ToolManagerMixin": "base", "FileCallbackHandler": "file", "AsyncCallbackManager": "manager", "AsyncCallbackManagerForChainGroup": "manager", "AsyncCallbackManagerForChainRun": "manager", "AsyncCallbackManagerForLLMRun": "manager", "AsyncCallbackManagerForRetrieverRun": "manager", "AsyncCallbackManagerForToolRun": "manager", "AsyncParentRunManager": "manager", "AsyncRunManager": "manager", "BaseRunManager": "manager", "CallbackManager": "manager", "CallbackManagerForChainGroup": "manager", "CallbackManagerForChainRun": "manager", "CallbackManagerForLLMRun": "manager", "CallbackManagerForRetrieverRun": "manager", "CallbackManagerForToolRun": "manager", "ParentRunManager": "manager", "RunManager": "manager", "adispatch_custom_event": "manager", "dispatch_custom_event": "manager", "StdOutCallbackHandler": "stdout", "StreamingStdOutCallbackHandler": "streaming_stdout", "UsageMetadataCallbackHandler": "usage", "get_usage_metadata_callback": "usage", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging logger = logging.get_logger(__name__) # pylint: disable=invalid-name class PaintByExampleImageEncoder(CLIPPreTrainedModel): def __init__(self, config, proj_size=None): super().__init__(config) self.proj_size = proj_size or getattr(config, "projection_dim", 768) self.model = CLIPVisionModel(config) self.mapper = PaintByExampleMapper(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size) self.proj_out = nn.Linear(config.hidden_size, self.proj_size) # uncondition for scaling self.uncond_vector = nn.Parameter(torch.randn((1, 1, self.proj_size))) def forward(self, pixel_values, return_uncond_vector=False): clip_output = self.model(pixel_values=pixel_values) latent_states = clip_output.pooler_output latent_states = self.mapper(latent_states[:, None]) latent_states = self.final_layer_norm(latent_states) latent_states = self.proj_out(latent_states) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class PaintByExampleMapper(nn.Module): def __init__(self, config): super().__init__() num_layers = (config.num_hidden_layers + 1) // 5 hid_size = config.hidden_size num_heads = 1 self.blocks = nn.ModuleList( [ BasicTransformerBlock(hid_size, num_heads, hid_size, activation_fn="gelu", attention_bias=True) for _ in range(num_layers) ] ) def forward(self, hidden_states): for block in self.blocks: hidden_states = block(hidden_states) return hidden_states
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging logger = logging.get_logger(__name__) # pylint: disable=invalid-name class PaintByExampleImageEncoder(CLIPPreTrainedModel): def __init__(self, config, proj_size=None): super().__init__(config) self.proj_size = proj_size or getattr(config, "projection_dim", 768) self.model = CLIPVisionModel(config) self.mapper = PaintByExampleMapper(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size) self.proj_out = nn.Linear(config.hidden_size, self.proj_size) # uncondition for scaling self.uncond_vector = nn.Parameter(torch.randn((1, 1, self.proj_size))) def forward(self, pixel_values, return_uncond_vector=False): clip_output = self.model(pixel_values=pixel_values) latent_states = clip_output.pooler_output latent_states = self.mapper(latent_states[:, None]) latent_states = self.final_layer_norm(latent_states) latent_states = self.proj_out(latent_states) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class PaintByExampleMapper(nn.Module): def __init__(self, config): super().__init__() num_layers = (config.num_hidden_layers + 1) // 5 hid_size = config.hidden_size num_heads = 1 self.blocks = nn.ModuleList( [ BasicTransformerBlock(hid_size, num_heads, hid_size, activation_fn="gelu", attention_bias=True) for _ in range(num_layers) ] ) def forward(self, hidden_states): for block in self.blocks: hidden_states = block(hidden_states) return hidden_states
"""Fake LLM wrapper for testing purposes.""" from collections.abc import Mapping from typing import Any, Optional, cast from langchain_core.callbacks.manager import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from pydantic import model_validator class FakeLLM(LLM): """Fake LLM wrapper for testing purposes.""" queries: Optional[Mapping] = None sequential_responses: Optional[bool] = False response_index: int = 0 @model_validator(mode="before") @classmethod def check_queries_required(cls, values: dict) -> dict: if values.get("sequential_response") and not values.get("queries"): msg = "queries is required when sequential_response is set to True" raise ValueError(msg) return values def get_num_tokens(self, text: str) -> int: """Return number of tokens.""" return len(text.split()) @property def _llm_type(self) -> str: """Return type of llm.""" return "fake" def _call( self, prompt: str, stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: if self.sequential_responses: return self._get_next_response_in_sequence if self.queries is not None: return self.queries[prompt] if stop is None: return "foo" else: return "bar" @property def _identifying_params(self) -> dict[str, Any]: return {} @property def _get_next_response_in_sequence(self) -> str: queries = cast(Mapping, self.queries) response = queries[list(queries.keys())[self.response_index]] self.response_index = self.response_index + 1 return response
"""Fake LLM wrapper for testing purposes.""" from collections.abc import Mapping from typing import Any, Optional, cast from langchain_core.callbacks.manager import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from pydantic import model_validator class FakeLLM(LLM): """Fake LLM wrapper for testing purposes.""" queries: Optional[Mapping] = None sequential_responses: Optional[bool] = False response_index: int = 0 @model_validator(mode="before") @classmethod def check_queries_required(cls, values: dict) -> dict: if values.get("sequential_response") and not values.get("queries"): raise ValueError( "queries is required when sequential_response is set to True" ) return values def get_num_tokens(self, text: str) -> int: """Return number of tokens.""" return len(text.split()) @property def _llm_type(self) -> str: """Return type of llm.""" return "fake" def _call( self, prompt: str, stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: if self.sequential_responses: return self._get_next_response_in_sequence if self.queries is not None: return self.queries[prompt] if stop is None: return "foo" else: return "bar" @property def _identifying_params(self) -> dict[str, Any]: return {} @property def _get_next_response_in_sequence(self) -> str: queries = cast(Mapping, self.queries) response = queries[list(queries.keys())[self.response_index]] self.response_index = self.response_index + 1 return response
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py' # model settings model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron/resnet101_caffe'))) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 2x max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py' # model settings model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron/resnet101_caffe'))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scale=[(1333, 640), (1333, 800)], resize_cfg=dict(type='Resize', keep_ratio=True)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 2x train_cfg = dict(max_epochs=24) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
"""Question-answering with sources over a vector database.""" import warnings from typing import Any from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.documents import Document from langchain_core.vectorstores import VectorStore from pydantic import Field, model_validator from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over a vector database.""" vectorstore: VectorStore = Field(exclude=True) """Vector Database to connect to.""" k: int = 4 """Number of results to return from store""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" search_kwargs: dict[str, Any] = Field(default_factory=dict) """Extra search args.""" def _reduce_tokens_below_limit(self, docs: list[Document]) -> list[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain ): tokens = [ self.combine_documents_chain.llm_chain._get_num_tokens(doc.page_content) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs( self, inputs: dict[str, Any], *, run_manager: CallbackManagerForChainRun ) -> list[Document]: question = inputs[self.question_key] docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs ) return self._reduce_tokens_below_limit(docs) async def _aget_docs( self, inputs: dict[str, Any], *, run_manager: AsyncCallbackManagerForChainRun ) -> list[Document]: raise NotImplementedError("VectorDBQAWithSourcesChain does not support async") @model_validator(mode="before") @classmethod def raise_deprecation(cls, values: dict) -> Any: warnings.warn( "`VectorDBQAWithSourcesChain` is deprecated - " "please use `from langchain.chains import RetrievalQAWithSourcesChain`" ) return values @property def _chain_type(self) -> str: return "vector_db_qa_with_sources_chain"
"""Question-answering with sources over a vector database.""" import warnings from typing import Any, Dict, List from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.documents import Document from langchain_core.vectorstores import VectorStore from pydantic import Field, model_validator from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over a vector database.""" vectorstore: VectorStore = Field(exclude=True) """Vector Database to connect to.""" k: int = 4 """Number of results to return from store""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" search_kwargs: Dict[str, Any] = Field(default_factory=dict) """Extra search args.""" def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain ): tokens = [ self.combine_documents_chain.llm_chain._get_num_tokens(doc.page_content) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs( self, inputs: Dict[str, Any], *, run_manager: CallbackManagerForChainRun ) -> List[Document]: question = inputs[self.question_key] docs = self.vectorstore.similarity_search( question, k=self.k, **self.search_kwargs ) return self._reduce_tokens_below_limit(docs) async def _aget_docs( self, inputs: Dict[str, Any], *, run_manager: AsyncCallbackManagerForChainRun ) -> List[Document]: raise NotImplementedError("VectorDBQAWithSourcesChain does not support async") @model_validator(mode="before") @classmethod def raise_deprecation(cls, values: Dict) -> Any: warnings.warn( "`VectorDBQAWithSourcesChain` is deprecated - " "please use `from langchain.chains import RetrievalQAWithSourcesChain`" ) return values @property def _chain_type(self) -> str: return "vector_db_qa_with_sources_chain"
import torch import torchaudio.prototype.functional as F from parameterized import parameterized from torch.autograd import gradcheck, gradgradcheck from torchaudio_unittest.common_utils import nested_params, TestBaseMixin class AutogradTestImpl(TestBaseMixin): @nested_params( [F.convolve, F.fftconvolve], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (4, 3, 2) L_x, L_y = 23, 40 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device, requires_grad=True) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device, requires_grad=True) self.assertTrue(gradcheck(fn, (x, y, mode))) self.assertTrue(gradgradcheck(fn, (x, y, mode))) def test_add_noise(self): leading_dims = (5, 2, 3) L = 51 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 self.assertTrue(gradcheck(F.add_noise, (waveform, noise, lengths, snr))) self.assertTrue(gradgradcheck(F.add_noise, (waveform, noise, lengths, snr))) @parameterized.expand( [ (8000, (2, 3, 5, 7)), (8000, (8000, 1)), ] ) def test_oscillator_bank(self, sample_rate, shape): # can be replaced with math.prod when we drop 3.7 support def prod(iterable): ret = 1 for item in iterable: ret *= item return ret numel = prod(shape) # use 1.9 instead of 2 so as to include values above nyquist frequency fmax = sample_rate / 1.9 freq = torch.linspace(-fmax, fmax, numel, dtype=self.dtype, device=self.device, requires_grad=True).reshape( shape ) amps = torch.linspace(-5, 5, numel, dtype=self.dtype, device=self.device, requires_grad=True).reshape(shape) assert gradcheck(F.oscillator_bank, (freq, amps, sample_rate)) def test_extend_pitch(self): num_frames, num_pitches = 5, 7 input = torch.ones((num_frames, 1), device=self.device, dtype=self.dtype, requires_grad=True) pattern = torch.linspace(1, num_pitches, num_pitches, device=self.device, dtype=self.dtype, requires_grad=True) assert gradcheck(F.extend_pitch, (input, num_pitches)) assert gradcheck(F.extend_pitch, (input, pattern)) def test_sinc_ir(self): cutoff = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype, requires_grad=True) assert gradcheck(F.sinc_impulse_response, (cutoff, 513, False)) assert gradcheck(F.sinc_impulse_response, (cutoff, 513, True))
import torch import torchaudio.prototype.functional as F from parameterized import parameterized from torch.autograd import gradcheck, gradgradcheck from torchaudio_unittest.common_utils import nested_params, TestBaseMixin class AutogradTestImpl(TestBaseMixin): @nested_params( [F.convolve, F.fftconvolve], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (4, 3, 2) L_x, L_y = 23, 40 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device, requires_grad=True) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device, requires_grad=True) self.assertTrue(gradcheck(fn, (x, y, mode))) self.assertTrue(gradgradcheck(fn, (x, y, mode))) def test_add_noise(self): leading_dims = (5, 2, 3) L = 51 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 self.assertTrue(gradcheck(F.add_noise, (waveform, noise, lengths, snr))) self.assertTrue(gradgradcheck(F.add_noise, (waveform, noise, lengths, snr))) @parameterized.expand( [ (8000, (2, 3, 5, 7)), (8000, (8000, 1)), ] ) def test_oscillator_bank(self, sample_rate, shape): # can be replaced with math.prod when we drop 3.7 support def prod(iterable): ret = 1 for item in iterable: ret *= item return ret numel = prod(shape) # use 1.9 instead of 2 so as to include values above nyquist frequency fmax = sample_rate / 1.9 freq = torch.linspace(-fmax, fmax, numel, dtype=self.dtype, device=self.device, requires_grad=True).reshape( shape ) amps = torch.linspace(-5, 5, numel, dtype=self.dtype, device=self.device, requires_grad=True).reshape(shape) assert gradcheck(F.oscillator_bank, (freq, amps, sample_rate)) def test_extend_pitch(self): num_frames, num_pitches = 5, 7 input = torch.ones((num_frames, 1), device=self.device, dtype=self.dtype, requires_grad=True) pattern = torch.linspace(1, num_pitches, num_pitches, device=self.device, dtype=self.dtype, requires_grad=True) assert gradcheck(F.extend_pitch, (input, num_pitches)) assert gradcheck(F.extend_pitch, (input, pattern))
from __future__ import annotations import csv import gzip import os from collections.abc import Generator import pytest from torch.utils.data import DataLoader from sentence_transformers import CrossEncoder, util from sentence_transformers.cross_encoder.evaluation import CrossEncoderCorrelationEvaluator from sentence_transformers.readers import InputExample from sentence_transformers.util import is_training_available if not is_training_available(): pytest.skip( reason='Sentence Transformers was not installed with the `["train"]` extra.', allow_module_level=True, ) @pytest.fixture() def sts_resource() -> Generator[tuple[list[InputExample], list[InputExample]], None, None]: sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) stsb_train_samples = [] stsb_test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "test": stsb_test_samples.append(inp_example) elif row["split"] == "train": stsb_train_samples.append(inp_example) yield stsb_train_samples, stsb_test_samples def evaluate_stsb_test( distilroberta_base_ce_model: CrossEncoder, expected_score: float, test_samples: list[InputExample], num_test_samples: int = -1, ) -> None: model = distilroberta_base_ce_model evaluator = CrossEncoderCorrelationEvaluator.from_input_examples(test_samples[:num_test_samples], name="sts-test") scores = evaluator(model) score = scores[evaluator.primary_metric] * 100 print(f"STS-Test Performance: {score:.2f} vs. exp: {expected_score:.2f}") assert score > expected_score or abs(score - expected_score) < 0.1 def test_pretrained_stsb(sts_resource: tuple[list[InputExample], list[InputExample]]): _, sts_test_samples = sts_resource model = CrossEncoder("cross-encoder/stsb-distilroberta-base") evaluate_stsb_test(model, 87.92, sts_test_samples) @pytest.mark.slow def test_train_stsb_slow( distilroberta_base_ce_model: CrossEncoder, sts_resource: tuple[list[InputExample], list[InputExample]] ) -> None: model = distilroberta_base_ce_model sts_train_samples, sts_test_samples = sts_resource train_dataloader = DataLoader(sts_train_samples, shuffle=True, batch_size=16) model.fit( train_dataloader=train_dataloader, epochs=1, warmup_steps=int(len(train_dataloader) * 0.1), ) evaluate_stsb_test(model, 75, sts_test_samples) def test_train_stsb( distilroberta_base_ce_model: CrossEncoder, sts_resource: tuple[list[InputExample], list[InputExample]] ) -> None: model = distilroberta_base_ce_model sts_train_samples, sts_test_samples = sts_resource train_dataloader = DataLoader(sts_train_samples[:500], shuffle=True, batch_size=16) model.fit( train_dataloader=train_dataloader, epochs=1, warmup_steps=int(len(train_dataloader) * 0.1), ) evaluate_stsb_test(model, 50, sts_test_samples, num_test_samples=100)
from __future__ import annotations import csv import gzip import os from collections.abc import Generator import pytest from torch.utils.data import DataLoader from sentence_transformers import CrossEncoder, util from sentence_transformers.cross_encoder.evaluation import CrossEncoderCorrelationEvaluator from sentence_transformers.readers import InputExample @pytest.fixture() def sts_resource() -> Generator[tuple[list[InputExample], list[InputExample]], None, None]: sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) stsb_train_samples = [] stsb_test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "test": stsb_test_samples.append(inp_example) elif row["split"] == "train": stsb_train_samples.append(inp_example) yield stsb_train_samples, stsb_test_samples def evaluate_stsb_test( distilroberta_base_ce_model: CrossEncoder, expected_score: float, test_samples: list[InputExample], num_test_samples: int = -1, ) -> None: model = distilroberta_base_ce_model evaluator = CrossEncoderCorrelationEvaluator.from_input_examples(test_samples[:num_test_samples], name="sts-test") scores = evaluator(model) score = scores[evaluator.primary_metric] * 100 print(f"STS-Test Performance: {score:.2f} vs. exp: {expected_score:.2f}") assert score > expected_score or abs(score - expected_score) < 0.1 def test_pretrained_stsb(sts_resource: tuple[list[InputExample], list[InputExample]]): _, sts_test_samples = sts_resource model = CrossEncoder("cross-encoder/stsb-distilroberta-base") evaluate_stsb_test(model, 87.92, sts_test_samples) @pytest.mark.slow def test_train_stsb_slow( distilroberta_base_ce_model: CrossEncoder, sts_resource: tuple[list[InputExample], list[InputExample]] ) -> None: model = distilroberta_base_ce_model sts_train_samples, sts_test_samples = sts_resource train_dataloader = DataLoader(sts_train_samples, shuffle=True, batch_size=16) model.fit( train_dataloader=train_dataloader, epochs=1, warmup_steps=int(len(train_dataloader) * 0.1), ) evaluate_stsb_test(model, 75, sts_test_samples) def test_train_stsb( distilroberta_base_ce_model: CrossEncoder, sts_resource: tuple[list[InputExample], list[InputExample]] ) -> None: model = distilroberta_base_ce_model sts_train_samples, sts_test_samples = sts_resource train_dataloader = DataLoader(sts_train_samples[:500], shuffle=True, batch_size=16) model.fit( train_dataloader=train_dataloader, epochs=1, warmup_steps=int(len(train_dataloader) * 0.1), ) evaluate_stsb_test(model, 50, sts_test_samples, num_test_samples=100)
"""Standard LangChain interface tests for Responses API""" import pytest from langchain_core.language_models import BaseChatModel from langchain_openai import ChatOpenAI from tests.integration_tests.chat_models.test_base_standard import TestOpenAIStandard class TestOpenAIResponses(TestOpenAIStandard): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatOpenAI @property def chat_model_params(self) -> dict: return {"model": "gpt-4o-mini", "use_responses_api": True} @pytest.mark.xfail(reason="Unsupported.") def test_stop_sequence(self, model: BaseChatModel) -> None: super().test_stop_sequence(model)
"""Standard LangChain interface tests for Responses API""" from typing import Type import pytest from langchain_core.language_models import BaseChatModel from langchain_openai import ChatOpenAI from tests.integration_tests.chat_models.test_base_standard import TestOpenAIStandard class TestOpenAIResponses(TestOpenAIStandard): @property def chat_model_class(self) -> Type[BaseChatModel]: return ChatOpenAI @property def chat_model_params(self) -> dict: return {"model": "gpt-4o-mini", "use_responses_api": True} @pytest.mark.xfail(reason="Unsupported.") def test_stop_sequence(self, model: BaseChatModel) -> None: super().test_stop_sequence(model)
"""Various utilities to help with development.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import platform import warnings from collections.abc import Sequence import numpy as np from ..exceptions import DataConversionWarning from . import _joblib, metadata_routing from ._bunch import Bunch from ._chunking import gen_batches, gen_even_slices from ._estimator_html_repr import estimator_html_repr # Make _safe_indexing importable from here for backward compat as this particular # helper is considered semi-private and typically very useful for third-party # libraries that want to comply with scikit-learn's estimator API. In particular, # _safe_indexing was included in our public API documentation despite the leading # `_` in its name. from ._indexing import ( _safe_indexing, # noqa resample, shuffle, ) from ._mask import safe_mask from ._tags import ( ClassifierTags, InputTags, RegressorTags, Tags, TargetTags, TransformerTags, get_tags, ) from .class_weight import compute_class_weight, compute_sample_weight from .deprecation import deprecated from .discovery import all_estimators from .extmath import safe_sqr from .murmurhash import murmurhash3_32 from .validation import ( as_float_array, assert_all_finite, check_array, check_consistent_length, check_random_state, check_scalar, check_symmetric, check_X_y, column_or_1d, indexable, ) # TODO(1.7): remove parallel_backend and register_parallel_backend msg = "deprecated in 1.5 to be removed in 1.7. Use joblib.{} instead." register_parallel_backend = deprecated(msg)(_joblib.register_parallel_backend) # if a class, deprecated will change the object in _joblib module so we need to subclass @deprecated(msg) class parallel_backend(_joblib.parallel_backend): pass __all__ = [ "Bunch", "ClassifierTags", "DataConversionWarning", "InputTags", "RegressorTags", "Tags", "TargetTags", "TransformerTags", "all_estimators", "as_float_array", "assert_all_finite", "check_X_y", "check_array", "check_consistent_length", "check_random_state", "check_scalar", "check_symmetric", "column_or_1d", "compute_class_weight", "compute_sample_weight", "deprecated", "estimator_html_repr", "gen_batches", "gen_even_slices", "get_tags", "indexable", "metadata_routing", "murmurhash3_32", "parallel_backend", "register_parallel_backend", "resample", "safe_mask", "safe_sqr", "shuffle", ] # TODO(1.7): remove def __getattr__(name): if name == "IS_PYPY": warnings.warn( "IS_PYPY is deprecated and will be removed in 1.7.", FutureWarning, ) return platform.python_implementation() == "PyPy" raise AttributeError(f"module {__name__} has no attribute {name}") # TODO(1.7): remove tosequence @deprecated("tosequence was deprecated in 1.5 and will be removed in 1.7") def tosequence(x): """Cast iterable x to a Sequence, avoiding a copy if possible. Parameters ---------- x : iterable The iterable to be converted. Returns ------- x : Sequence If `x` is a NumPy array, it returns it as a `ndarray`. If `x` is a `Sequence`, `x` is returned as-is. If `x` is from any other type, `x` is returned casted as a list. """ if isinstance(x, np.ndarray): return np.asarray(x) elif isinstance(x, Sequence): return x else: return list(x)
"""Various utilities to help with development.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import platform import warnings from collections.abc import Sequence import numpy as np from ..exceptions import DataConversionWarning from . import _joblib, metadata_routing from ._bunch import Bunch from ._chunking import gen_batches, gen_even_slices from ._estimator_html_repr import estimator_html_repr # Make _safe_indexing importable from here for backward compat as this particular # helper is considered semi-private and typically very useful for third-party # libraries that want to comply with scikit-learn's estimator API. In particular, # _safe_indexing was included in our public API documentation despite the leading # `_` in its name. from ._indexing import ( _safe_indexing, # noqa resample, shuffle, ) from ._mask import safe_mask from ._tags import ( ClassifierTags, InputTags, RegressorTags, Tags, TargetTags, TransformerTags, get_tags, ) from .class_weight import compute_class_weight, compute_sample_weight from .deprecation import deprecated from .discovery import all_estimators from .extmath import safe_sqr from .murmurhash import murmurhash3_32 from .validation import ( as_float_array, assert_all_finite, check_array, check_consistent_length, check_random_state, check_scalar, check_symmetric, check_X_y, column_or_1d, indexable, ) # TODO(1.7): remove parallel_backend and register_parallel_backend msg = "deprecated in 1.5 to be removed in 1.7. Use joblib.{} instead." register_parallel_backend = deprecated(msg)(_joblib.register_parallel_backend) # if a class, deprecated will change the object in _joblib module so we need to subclass @deprecated(msg) class parallel_backend(_joblib.parallel_backend): pass __all__ = [ "murmurhash3_32", "as_float_array", "assert_all_finite", "check_array", "check_random_state", "compute_class_weight", "compute_sample_weight", "column_or_1d", "check_consistent_length", "check_X_y", "check_scalar", "indexable", "check_symmetric", "deprecated", "parallel_backend", "register_parallel_backend", "resample", "shuffle", "all_estimators", "DataConversionWarning", "estimator_html_repr", "Bunch", "metadata_routing", "safe_sqr", "safe_mask", "gen_batches", "gen_even_slices", "Tags", "InputTags", "TargetTags", "ClassifierTags", "RegressorTags", "TransformerTags", "get_tags", ] # TODO(1.7): remove def __getattr__(name): if name == "IS_PYPY": warnings.warn( "IS_PYPY is deprecated and will be removed in 1.7.", FutureWarning, ) return platform.python_implementation() == "PyPy" raise AttributeError(f"module {__name__} has no attribute {name}") # TODO(1.7): remove tosequence @deprecated("tosequence was deprecated in 1.5 and will be removed in 1.7") def tosequence(x): """Cast iterable x to a Sequence, avoiding a copy if possible. Parameters ---------- x : iterable The iterable to be converted. Returns ------- x : Sequence If `x` is a NumPy array, it returns it as a `ndarray`. If `x` is a `Sequence`, `x` is returned as-is. If `x` is from any other type, `x` is returned casted as a list. """ if isinstance(x, np.ndarray): return np.asarray(x) elif isinstance(x, Sequence): return x else: return list(x)
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch from ..builder import BBOX_CODERS from .base_bbox_coder import BaseBBoxCoder @BBOX_CODERS.register_module() class YOLOBBoxCoder(BaseBBoxCoder): """YOLO BBox coder. Following `YOLO <https://arxiv.org/abs/1506.02640>`_, this coder divide image into grids, and encode bbox (x1, y1, x2, y2) into (cx, cy, dw, dh). cx, cy in [0., 1.], denotes relative center position w.r.t the center of bboxes. dw, dh are the same as :obj:`DeltaXYWHBBoxCoder`. Args: eps (float): Min value of cx, cy when encoding. """ def __init__(self, eps=1e-6): super(BaseBBoxCoder, self).__init__() self.eps = eps @mmcv.jit(coderize=True) def encode(self, bboxes, gt_bboxes, stride): """Get box regression transformation deltas that can be used to transform the ``bboxes`` into the ``gt_bboxes``. Args: bboxes (torch.Tensor): Source boxes, e.g., anchors. gt_bboxes (torch.Tensor): Target of the transformation, e.g., ground-truth boxes. stride (torch.Tensor | int): Stride of bboxes. Returns: torch.Tensor: Box transformation deltas """ assert bboxes.size(0) == gt_bboxes.size(0) assert bboxes.size(-1) == gt_bboxes.size(-1) == 4 x_center_gt = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) * 0.5 y_center_gt = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) * 0.5 w_gt = gt_bboxes[..., 2] - gt_bboxes[..., 0] h_gt = gt_bboxes[..., 3] - gt_bboxes[..., 1] x_center = (bboxes[..., 0] + bboxes[..., 2]) * 0.5 y_center = (bboxes[..., 1] + bboxes[..., 3]) * 0.5 w = bboxes[..., 2] - bboxes[..., 0] h = bboxes[..., 3] - bboxes[..., 1] w_target = torch.log((w_gt / w).clamp(min=self.eps)) h_target = torch.log((h_gt / h).clamp(min=self.eps)) x_center_target = ((x_center_gt - x_center) / stride + 0.5).clamp( self.eps, 1 - self.eps) y_center_target = ((y_center_gt - y_center) / stride + 0.5).clamp( self.eps, 1 - self.eps) encoded_bboxes = torch.stack( [x_center_target, y_center_target, w_target, h_target], dim=-1) return encoded_bboxes @mmcv.jit(coderize=True) def decode(self, bboxes, pred_bboxes, stride): """Apply transformation `pred_bboxes` to `boxes`. Args: boxes (torch.Tensor): Basic boxes, e.g. anchors. pred_bboxes (torch.Tensor): Encoded boxes with shape stride (torch.Tensor | int): Strides of bboxes. Returns: torch.Tensor: Decoded boxes. """ assert pred_bboxes.size(0) == bboxes.size(0) assert pred_bboxes.size(-1) == bboxes.size(-1) == 4 x_center = (bboxes[..., 0] + bboxes[..., 2]) * 0.5 y_center = (bboxes[..., 1] + bboxes[..., 3]) * 0.5 w = bboxes[..., 2] - bboxes[..., 0] h = bboxes[..., 3] - bboxes[..., 1] # Get outputs x, y x_center_pred = (pred_bboxes[..., 0] - 0.5) * stride + x_center y_center_pred = (pred_bboxes[..., 1] - 0.5) * stride + y_center w_pred = torch.exp(pred_bboxes[..., 2]) * w h_pred = torch.exp(pred_bboxes[..., 3]) * h decoded_bboxes = torch.stack( (x_center_pred - w_pred / 2, y_center_pred - h_pred / 2, x_center_pred + w_pred / 2, y_center_pred + h_pred / 2), dim=-1) return decoded_bboxes
import mmcv import torch from ..builder import BBOX_CODERS from .base_bbox_coder import BaseBBoxCoder @BBOX_CODERS.register_module() class YOLOBBoxCoder(BaseBBoxCoder): """YOLO BBox coder. Following `YOLO <https://arxiv.org/abs/1506.02640>`_, this coder divide image into grids, and encode bbox (x1, y1, x2, y2) into (cx, cy, dw, dh). cx, cy in [0., 1.], denotes relative center position w.r.t the center of bboxes. dw, dh are the same as :obj:`DeltaXYWHBBoxCoder`. Args: eps (float): Min value of cx, cy when encoding. """ def __init__(self, eps=1e-6): super(BaseBBoxCoder, self).__init__() self.eps = eps @mmcv.jit(coderize=True) def encode(self, bboxes, gt_bboxes, stride): """Get box regression transformation deltas that can be used to transform the ``bboxes`` into the ``gt_bboxes``. Args: bboxes (torch.Tensor): Source boxes, e.g., anchors. gt_bboxes (torch.Tensor): Target of the transformation, e.g., ground-truth boxes. stride (torch.Tensor | int): Stride of bboxes. Returns: torch.Tensor: Box transformation deltas """ assert bboxes.size(0) == gt_bboxes.size(0) assert bboxes.size(-1) == gt_bboxes.size(-1) == 4 x_center_gt = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) * 0.5 y_center_gt = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) * 0.5 w_gt = gt_bboxes[..., 2] - gt_bboxes[..., 0] h_gt = gt_bboxes[..., 3] - gt_bboxes[..., 1] x_center = (bboxes[..., 0] + bboxes[..., 2]) * 0.5 y_center = (bboxes[..., 1] + bboxes[..., 3]) * 0.5 w = bboxes[..., 2] - bboxes[..., 0] h = bboxes[..., 3] - bboxes[..., 1] w_target = torch.log((w_gt / w).clamp(min=self.eps)) h_target = torch.log((h_gt / h).clamp(min=self.eps)) x_center_target = ((x_center_gt - x_center) / stride + 0.5).clamp( self.eps, 1 - self.eps) y_center_target = ((y_center_gt - y_center) / stride + 0.5).clamp( self.eps, 1 - self.eps) encoded_bboxes = torch.stack( [x_center_target, y_center_target, w_target, h_target], dim=-1) return encoded_bboxes @mmcv.jit(coderize=True) def decode(self, bboxes, pred_bboxes, stride): """Apply transformation `pred_bboxes` to `boxes`. Args: boxes (torch.Tensor): Basic boxes, e.g. anchors. pred_bboxes (torch.Tensor): Encoded boxes with shape stride (torch.Tensor | int): Strides of bboxes. Returns: torch.Tensor: Decoded boxes. """ assert pred_bboxes.size(0) == bboxes.size(0) assert pred_bboxes.size(-1) == bboxes.size(-1) == 4 x_center = (bboxes[..., 0] + bboxes[..., 2]) * 0.5 y_center = (bboxes[..., 1] + bboxes[..., 3]) * 0.5 w = bboxes[..., 2] - bboxes[..., 0] h = bboxes[..., 3] - bboxes[..., 1] # Get outputs x, y x_center_pred = (pred_bboxes[..., 0] - 0.5) * stride + x_center y_center_pred = (pred_bboxes[..., 1] - 0.5) * stride + y_center w_pred = torch.exp(pred_bboxes[..., 2]) * w h_pred = torch.exp(pred_bboxes[..., 3]) * h decoded_bboxes = torch.stack( (x_center_pred - w_pred / 2, y_center_pred - h_pred / 2, x_center_pred + w_pred / 2, y_center_pred + h_pred / 2), dim=-1) return decoded_bboxes
import logging import os from typing import Optional from jina import __default_host__ from jina.importer import ImportExtensions from jina.serve.gateway import BaseGateway from jina.serve.runtimes.gateway.websocket.app import get_fastapi_app class WebSocketGateway(BaseGateway): """WebSocket Gateway implementation""" def __init__( self, ssl_keyfile: Optional[str] = None, ssl_certfile: Optional[str] = None, uvicorn_kwargs: Optional[dict] = None, proxy: Optional[bool] = None, **kwargs ): """Initialize the gateway :param ssl_keyfile: the path to the key file :param ssl_certfile: the path to the certificate file :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server :param proxy: If set, respect the http_proxy and https_proxy environment variables, otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param kwargs: keyword args """ super().__init__(**kwargs) self._set_single_port_protocol() self.ssl_keyfile = ssl_keyfile self.ssl_certfile = ssl_certfile self.uvicorn_kwargs = uvicorn_kwargs if not proxy and os.name != 'nt': os.unsetenv('http_proxy') os.unsetenv('https_proxy') async def setup_server(self): """ Setup WebSocket Server """ from jina.helper import extend_rest_interface self.app = extend_rest_interface( get_fastapi_app( streamer=self.streamer, logger=self.logger, tracing=self.tracing, tracer_provider=self.tracer_provider, ) ) with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'CICD_JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) uvicorn_kwargs = self.uvicorn_kwargs or {} if self.ssl_keyfile and 'ssl_keyfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_keyfile'] = self.ssl_keyfile if self.ssl_certfile and 'ssl_certfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_certfile'] = self.ssl_certfile self.server = UviServer( config=Config( app=self.app, host=__default_host__, port=self.port, ws_max_size=1024 * 1024 * 1024, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **uvicorn_kwargs, ) ) await self.server.setup() async def teardown(self): """Free other resources allocated with the server, e.g, gateway object, ...""" await super().teardown() await self.server.shutdown() async def stop_server(self): """ Stop WebSocket server """ self.server.should_exit = True async def run_server(self): """Run WebSocket server forever""" await self.server.serve()
import logging import os from typing import Optional from jina import __default_host__ from jina.importer import ImportExtensions from jina.serve.gateway import BaseGateway from jina.serve.runtimes.gateway.websocket.app import get_fastapi_app class WebSocketGateway(BaseGateway): """WebSocket Gateway implementation""" def __init__( self, port: Optional[int] = None, ssl_keyfile: Optional[str] = None, ssl_certfile: Optional[str] = None, uvicorn_kwargs: Optional[dict] = None, proxy: Optional[bool] = None, **kwargs ): """Initialize the gateway :param port: The port of the Gateway, which the client should connect to. :param ssl_keyfile: the path to the key file :param ssl_certfile: the path to the certificate file :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server :param proxy: If set, respect the http_proxy and https_proxy environment variables, otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param kwargs: keyword args """ super().__init__(**kwargs) self.port = port self.ssl_keyfile = ssl_keyfile self.ssl_certfile = ssl_certfile self.uvicorn_kwargs = uvicorn_kwargs if not proxy and os.name != 'nt': os.unsetenv('http_proxy') os.unsetenv('https_proxy') async def setup_server(self): """ Setup WebSocket Server """ from jina.helper import extend_rest_interface self.app = extend_rest_interface( get_fastapi_app( streamer=self.streamer, logger=self.logger, tracing=self.tracing, tracer_provider=self.tracer_provider, ) ) with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'CICD_JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) uvicorn_kwargs = self.uvicorn_kwargs or {} if self.ssl_keyfile and 'ssl_keyfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_keyfile'] = self.ssl_keyfile if self.ssl_certfile and 'ssl_certfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_certfile'] = self.ssl_certfile self.server = UviServer( config=Config( app=self.app, host=__default_host__, port=self.port, ws_max_size=1024 * 1024 * 1024, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **uvicorn_kwargs, ) ) await self.server.setup() async def teardown(self): """Free other resources allocated with the server, e.g, gateway object, ...""" await super().teardown() await self.server.shutdown() async def stop_server(self): """ Stop WebSocket server """ self.server.should_exit = True async def run_server(self): """Run WebSocket server forever""" await self.server.serve()
import os import docker import pytest from jina.logging.logger import JinaLogger client = docker.from_env() cur_dir = os.path.dirname(__file__) @pytest.fixture() def test_dir() -> str: return cur_dir @pytest.fixture def logger(): return JinaLogger('docker-compose-testing') @pytest.fixture def image_name_tag_map(): return { 'reload-executor': '0.13.1', 'test-executor': '0.13.1', 'executor-merger': '0.1.1', 'custom-gateway': '0.1.1', 'jinaai/jina': 'test-pip', } def build_docker_image(image_name, image_name_tag_map): logger = JinaLogger('docker-compose-testing') image_tag = image_name + ':' + image_name_tag_map[image_name] image, build_logs = client.images.build( path=os.path.join(cur_dir, image_name), tag=image_tag ) for chunk in build_logs: if 'stream' in chunk: for line in chunk['stream'].splitlines(): logger.debug(line) return image.tags[-1] @pytest.fixture(autouse=True) def set_test_pip_version(): os.environ['JINA_GATEWAY_IMAGE'] = 'jinaai/jina:test-pip' yield del os.environ['JINA_GATEWAY_IMAGE'] @pytest.fixture(autouse=True) def build_images(image_name_tag_map): for image in image_name_tag_map.keys(): if image != 'jinaai/jina': build_docker_image(image, image_name_tag_map) @pytest.fixture def docker_images(request, image_name_tag_map): image_names = request.param images = [ image_name + ':' + image_name_tag_map[image_name] for image_name in image_names ] return images
import os import docker import pytest from jina.logging.logger import JinaLogger client = docker.from_env() cur_dir = os.path.dirname(__file__) @pytest.fixture() def test_dir() -> str: return cur_dir @pytest.fixture def logger(): return JinaLogger('docker-compose-testing') @pytest.fixture def image_name_tag_map(): return { 'reload-executor': '0.13.1', 'test-executor': '0.13.1', 'executor-merger': '0.1.1', 'jinaai/jina': 'test-pip', } def build_docker_image(image_name, image_name_tag_map): logger = JinaLogger('docker-compose-testing') image_tag = image_name + ':' + image_name_tag_map[image_name] image, build_logs = client.images.build( path=os.path.join(cur_dir, image_name), tag=image_tag ) for chunk in build_logs: if 'stream' in chunk: for line in chunk['stream'].splitlines(): logger.debug(line) return image.tags[-1] @pytest.fixture(autouse=True) def set_test_pip_version(): os.environ['JINA_GATEWAY_IMAGE'] = 'jinaai/jina:test-pip' yield del os.environ['JINA_GATEWAY_IMAGE'] @pytest.fixture(autouse=True) def build_images(image_name_tag_map): for image in image_name_tag_map.keys(): if image != 'jinaai/jina': build_docker_image(image, image_name_tag_map) @pytest.fixture def docker_images(request, image_name_tag_map): image_names = request.param images = [ image_name + ':' + image_name_tag_map[image_name] for image_name in image_names ] return images