input
stringlengths
33
5k
output
stringlengths
32
5k
from ..utils import is_torch_available if is_torch_available(): from .group_offloading import apply_group_offloading from .hooks import HookRegistry, ModelHook from .layerwise_casting import apply_layerwise_casting, apply_layerwise_casting_hook from .pyramid_attention_broadcast import PyramidAttentionBroadcastConfig, apply_pyramid_attention_broadcast
from ..utils import is_torch_available if is_torch_available(): from .hooks import HookRegistry, ModelHook from .layerwise_casting import apply_layerwise_casting, apply_layerwise_casting_hook from .pyramid_attention_broadcast import PyramidAttentionBroadcastConfig, apply_pyramid_attention_broadcast
from typing import Optional import torch from docarray import BaseDoc, DocList from docarray.typing import TorchTensor def test_torch_train(): class Mmdoc(BaseDoc): text: str tensor: Optional[TorchTensor[3, 224, 224]] N = 10 batch = DocList[Mmdoc](Mmdoc(text=f'hello{i}') for i in range(N)) batch.tensor = torch.zeros(N, 3, 224, 224) batch = batch.to_doc_vec() class Model(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(3, 16, 3) def forward(self, x): return self.conv(x) model = Model() opt = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9) for _ in range(2): loss = model(batch.tensor).sum() loss.backward() opt.step()
from typing import Optional import torch from docarray import BaseDoc, DocList from docarray.typing import TorchTensor def test_torch_train(): class Mmdoc(BaseDoc): text: str tensor: Optional[TorchTensor[3, 224, 224]] N = 10 batch = DocList[Mmdoc](Mmdoc(text=f'hello{i}') for i in range(N)) batch.tensor = torch.zeros(N, 3, 224, 224) batch = batch.stack() class Model(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(3, 16, 3) def forward(self, x): return self.conv(x) model = Model() opt = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9) for _ in range(2): loss = model(batch.tensor).sum() loss.backward() opt.step()
"""DeepInfra API base URL.""" API_BASE = "https://api.deepinfra.com" """DeepInfra Inference API endpoint.""" INFERENCE_ENDPOINT = "v1/openai/completions" """Chat API endpoint for DeepInfra.""" CHAT_API_ENDPOINT = "v1/openai/chat/completions" """Environment variable name of DeepInfra API token.""" ENV_VARIABLE = "DEEPINFRA_API_TOKEN" """Default model name for DeepInfra embeddings.""" DEFAULT_MODEL_NAME = "mistralai/Mixtral-8x22B-Instruct-v0.1" """Default max tokens. DeepInfra documentation constant is set.""" DEFAULT_MAX_TOKENS = 512 """Tool choice is auto.""" TOOL_CHOICE = "auto" """User agent""" USER_AGENT = "llama-index-llms-deepinfra"
"""DeepInfra API base URL.""" API_BASE = "https://api.deepinfra.com" """DeepInfra Inference API endpoint.""" INFERENCE_ENDPOINT = "v1/openai/completions" """Chat API endpoint for DeepInfra.""" CHAT_API_ENDPOINT = "v1/openai/chat/completions" """Environment variable name of DeepInfra API token.""" ENV_VARIABLE = "DEEPINFRA_API_TOKEN" """Default model name for DeepInfra embeddings.""" DEFAULT_MODEL_NAME = "mistralai/Mixtral-8x22B-Instruct-v0.1" """Default max tokens. DeepInfra documentation constant is set.""" DEFAULT_MAX_TOKENS = 512 """Tool choice is auto.""" TOOL_CHOICE = "auto" """User agent""" USER_AGENT = "llama-index-llms-deepinfra"
from .tensor import Tensor Embedding = Tensor
import numpy as np from .tensor import Tensor Embedding = Tensor
import inspect from keras.src.api_export import keras_export from keras.src.quantizers.quantizers import AbsMaxQuantizer from keras.src.quantizers.quantizers import Quantizer from keras.src.quantizers.quantizers import abs_max_quantize from keras.src.quantizers.quantizers import compute_float8_amax_history from keras.src.quantizers.quantizers import compute_float8_scale from keras.src.quantizers.quantizers import fake_quant_with_min_max_vars from keras.src.quantizers.quantizers import pack_int4 from keras.src.quantizers.quantizers import quantize_and_dequantize from keras.src.quantizers.quantizers import unpack_int4 from keras.src.saving import serialization_lib from keras.src.utils.naming import to_snake_case ALL_OBJECTS = {Quantizer, AbsMaxQuantizer} ALL_OBJECTS_DICT = {cls.__name__: cls for cls in ALL_OBJECTS} ALL_OBJECTS_DICT.update( {to_snake_case(cls.__name__): cls for cls in ALL_OBJECTS} ) @keras_export("keras.quantizers.serialize") def serialize(initializer): return serialization_lib.serialize_keras_object(initializer) @keras_export("keras.quantizers.deserialize") def deserialize(config, custom_objects=None): """Return a Keras quantizer object via its config.""" return serialization_lib.deserialize_keras_object( config, module_objects=ALL_OBJECTS_DICT, custom_objects=custom_objects, ) @keras_export("keras.quantizers.get") def get(identifier, **kwargs): """Retrieve a Keras quantizer object via an identifier.""" if identifier is None: return None if isinstance(identifier, dict): obj = deserialize(identifier) elif isinstance(identifier, str): obj = ALL_OBJECTS_DICT.get(identifier, None) else: obj = identifier if callable(obj): if inspect.isclass(obj): obj = obj(kwargs) return obj else: raise ValueError( f"Could not interpret quantizer identifier: {identifier}" )
import inspect from keras.src.api_export import keras_export from keras.src.quantizers.quantizers import AbsMaxQuantizer from keras.src.quantizers.quantizers import Quantizer from keras.src.quantizers.quantizers import abs_max_quantize from keras.src.quantizers.quantizers import compute_float8_amax_history from keras.src.quantizers.quantizers import compute_float8_scale from keras.src.quantizers.quantizers import fake_quant_with_min_max_vars from keras.src.quantizers.quantizers import quantize_and_dequantize from keras.src.saving import serialization_lib from keras.src.utils.naming import to_snake_case ALL_OBJECTS = {Quantizer, AbsMaxQuantizer} ALL_OBJECTS_DICT = {cls.__name__: cls for cls in ALL_OBJECTS} ALL_OBJECTS_DICT.update( {to_snake_case(cls.__name__): cls for cls in ALL_OBJECTS} ) @keras_export("keras.quantizers.serialize") def serialize(initializer): return serialization_lib.serialize_keras_object(initializer) @keras_export("keras.quantizers.deserialize") def deserialize(config, custom_objects=None): """Return a Keras quantizer object via its config.""" return serialization_lib.deserialize_keras_object( config, module_objects=ALL_OBJECTS_DICT, custom_objects=custom_objects, ) @keras_export("keras.quantizers.get") def get(identifier, **kwargs): """Retrieve a Keras quantizer object via an identifier.""" if identifier is None: return None if isinstance(identifier, dict): obj = deserialize(identifier) elif isinstance(identifier, str): obj = ALL_OBJECTS_DICT.get(identifier, None) else: obj = identifier if callable(obj): if inspect.isclass(obj): obj = obj(kwargs) return obj else: raise ValueError( f"Could not interpret quantizer identifier: {identifier}" )
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_transformers import NucliaTextTransformer # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "NucliaTextTransformer": "langchain_community.document_transformers", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "NucliaTextTransformer", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_transformers import NucliaTextTransformer # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "NucliaTextTransformer": "langchain_community.document_transformers" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "NucliaTextTransformer", ]
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import shutil import subprocess from pathlib import Path import pytest @pytest.fixture(scope="session", autouse=True) def download_cache(): subprocess.run( 'scripts/download_full.sh', cwd=Path(__file__).parents[1], check=True, stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT, ) yield shutil.rmtree(Path(__file__).parents[1] / '.cache') @pytest.fixture(scope='session') def docker_image_name() -> str: return Path(__file__).parents[1].stem.lower() @pytest.fixture(scope='session') def build_docker_image(docker_image_name: str) -> str: subprocess.run(['docker', 'build', '-t', docker_image_name, '.'], check=True) return docker_image_name @pytest.fixture(scope='session') def build_docker_image_gpu(docker_image_name: str) -> str: image_name = f'{docker_image_name}:gpu' subprocess.run( ['docker', 'build', '-t', image_name, '-f', 'Dockerfile.gpu', '.'], check=True ) return image_name
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import shutil import subprocess from pathlib import Path import pytest @pytest.fixture(scope="session", autouse=True) def download_cache(): subprocess.run( 'scripts/download_full.sh', cwd=Path(__file__).parents[1], check=True, stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT, ) yield shutil.rmtree(Path(__file__).parents[1] / '.cache') @pytest.fixture(scope='session') def docker_image_name() -> str: return Path(__file__).parents[1].stem.lower() @pytest.fixture(scope='session') def build_docker_image(docker_image_name: str) -> str: subprocess.run(['docker', 'build', '-t', docker_image_name, '.'], check=True) return docker_image_name
from ._conformer_wav2vec2 import ( conformer_wav2vec2_base, conformer_wav2vec2_model, conformer_wav2vec2_pretrain_base, conformer_wav2vec2_pretrain_large, conformer_wav2vec2_pretrain_model, ConformerWav2Vec2PretrainModel, ) from ._emformer_hubert import emformer_hubert_base, emformer_hubert_model from .conv_emformer import ConvEmformer from .hifi_gan import ( hifigan_generator, hifigan_generator_v1, hifigan_generator_v2, hifigan_generator_v3, HiFiGANGenerator, ) from .rnnt import conformer_rnnt_base, conformer_rnnt_model __all__ = [ "conformer_rnnt_base", "conformer_rnnt_model", "ConvEmformer", "conformer_wav2vec2_model", "conformer_wav2vec2_base", "conformer_wav2vec2_pretrain_model", "conformer_wav2vec2_pretrain_base", "conformer_wav2vec2_pretrain_large", "ConformerWav2Vec2PretrainModel", "emformer_hubert_base", "emformer_hubert_model", "HiFiGANGenerator", "hifigan_generator_v1", "hifigan_generator_v2", "hifigan_generator_v3", "hifigan_generator", ]
from ._conformer_wav2vec2 import ( conformer_wav2vec2_base, conformer_wav2vec2_model, conformer_wav2vec2_pretrain_base, conformer_wav2vec2_pretrain_large, conformer_wav2vec2_pretrain_model, ConformerWav2Vec2PretrainModel, ) from ._emformer_hubert import emformer_hubert_base, emformer_hubert_model from .conv_emformer import ConvEmformer from .rnnt import conformer_rnnt_base, conformer_rnnt_model __all__ = [ "conformer_rnnt_base", "conformer_rnnt_model", "ConvEmformer", "conformer_wav2vec2_model", "conformer_wav2vec2_base", "conformer_wav2vec2_pretrain_model", "conformer_wav2vec2_pretrain_base", "conformer_wav2vec2_pretrain_large", "ConformerWav2Vec2PretrainModel", "emformer_hubert_base", "emformer_hubert_model", ]
from __future__ import annotations import logging import os from datasets import load_dataset from sentence_transformers import SparseEncoder, SparseEncoderTrainer, SparseEncoderTrainingArguments, losses from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator from sentence_transformers.training_args import BatchSamplers # Set up logging logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) def main(): # Initialize the SPLADE model model_name = "sparse-embedding/splade-distilbert-base-uncased-init" model = SparseEncoder(model_name) # 2a. Load the NQ dataset: https://huggingface.co/datasets/sentence-transformers/natural-questions logging.info("Read the Natural Questions training dataset") full_dataset = load_dataset("sentence-transformers/natural-questions", split="train").select(range(100_000)) dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12) train_dataset = dataset_dict["train"] eval_dataset = dataset_dict["test"] logging.info(train_dataset) logging.info(eval_dataset) # 3. Initialize the loss lambda_query = 5e-5 lambda_corpus = 3e-5 loss = losses.SpladeLoss( model=model, main_loss=losses.SparseMultipleNegativesRankingLoss(model=model, scale=20, similarity_fct=model.similarity), lambda_query=lambda_query, # Weight for query loss lambda_corpus=lambda_corpus, ) # Weight for document loss run_name = f"splade-distilbert-nq-fresh-lq{lambda_query}-lc{lambda_corpus}" os.makedirs(f"runs/{run_name}", exist_ok=True) dev_evaluator = SparseNanoBEIREvaluator(show_progress_bar=True, batch_size=16) os.makedirs(f"runs/{run_name}/eval", exist_ok=True) # Set up training arguments training_args = SparseEncoderTrainingArguments( output_dir=f"runs/{run_name}", num_train_epochs=1, per_device_train_batch_size=12, per_device_eval_batch_size=16, bf16=True, logging_steps=200, eval_strategy="steps", eval_steps=1650, save_strategy="steps", save_steps=1650, learning_rate=4e-5, run_name=run_name, seed=42, batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch load_best_model_at_end=True, metric_for_best_model="eval_NanoBEIR_mean_dot_ndcg@10", ) # Initialize trainer trainer = SparseEncoderTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, ) # Train model trainer.train() # 7. Evaluate the model performance again after training dev_evaluator(model, output_path=f"runs/{run_name}/eval", epoch=1) # 8. Save the trained & evaluated model locally os.makedirs(f"runs/{run_name}/final", exist_ok=True) model.save_pretrained(f"runs/{run_name}/final") model.push_to_hub(f"sparse-embedding/{run_name}", private=True) if __name__ == "__main__": main()
from __future__ import annotations import logging import os from datasets import load_dataset from sentence_transformers.sparse_encoder import ( SparseEncoder, ) from sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator import SparseNanoBEIREvaluator from sentence_transformers.sparse_encoder.losses import SparseMultipleNegativesRankingLoss, SpladeLoss from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import SparseEncoderTrainingArguments from sentence_transformers.training_args import BatchSamplers # Set up logging logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) def main(): # Initialize the SPLADE model model_name = "sparse-embedding/splade-distilbert-base-uncased-init" model = SparseEncoder(model_name) # 2a. Load the NQ dataset: https://huggingface.co/datasets/sentence-transformers/natural-questions logging.info("Read the Natural Questions training dataset") full_dataset = load_dataset("sentence-transformers/natural-questions", split="train").select(range(100_000)) dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12) train_dataset = dataset_dict["train"] eval_dataset = dataset_dict["test"] logging.info(train_dataset) logging.info(eval_dataset) # 3. Initialize the loss lambda_query = 5e-5 lambda_corpus = 3e-5 loss = SpladeLoss( model=model, main_loss=SparseMultipleNegativesRankingLoss(model=model, scale=20, similarity_fct=model.similarity), lambda_query=lambda_query, # Weight for query loss lambda_corpus=lambda_corpus, ) # Weight for document loss run_name = f"splade-distilbert-nq-fresh-lq{lambda_query}-lc{lambda_corpus}" os.makedirs(f"runs/{run_name}", exist_ok=True) dev_evaluator = SparseNanoBEIREvaluator(show_progress_bar=True, batch_size=16) os.makedirs(f"runs/{run_name}/eval", exist_ok=True) # Set up training arguments training_args = SparseEncoderTrainingArguments( output_dir=f"runs/{run_name}", num_train_epochs=1, per_device_train_batch_size=12, per_device_eval_batch_size=16, bf16=True, logging_steps=200, eval_strategy="steps", eval_steps=1650, save_strategy="steps", save_steps=1650, learning_rate=4e-5, run_name=run_name, seed=42, batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch load_best_model_at_end=True, metric_for_best_model="eval_NanoBEIR_mean_dot_ndcg@10", ) # Initialize trainer trainer = SparseEncoderTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, ) # Train model trainer.train() # 7. Evaluate the model performance again after training dev_evaluator(model, output_path=f"runs/{run_name}/eval", epoch=1) # 8. Save the trained & evaluated model locally os.makedirs(f"runs/{run_name}/final", exist_ok=True) model.save_pretrained(f"runs/{run_name}/final") model.push_to_hub(f"sparse-embedding/{run_name}", private=True) if __name__ == "__main__": main()
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.embedding.embedding_mixin import EmbeddingMixin from docarray.typing.tensor.ndarray import NdArray @_register_proto(proto_type_name='ndarray_embedding') class NdArrayEmbedding(NdArray, EmbeddingMixin): alternative_type = NdArray
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.embedding.embedding_mixin import EmbeddingMixin from docarray.typing.tensor.ndarray import NdArray @_register_proto(proto_type_name='ndarray_embedding') class NdArrayEmbedding(NdArray, EmbeddingMixin): alternative_type = NdArray
from typing import Any, Union from ..utils import add_end_docstrings, is_vision_available from .base import GenericTensor, Pipeline, build_pipeline_init_args if is_vision_available(): from PIL import Image from ..image_utils import load_image @add_end_docstrings( build_pipeline_init_args(has_image_processor=True), """ image_processor_kwargs (`dict`, *optional*): Additional dictionary of keyword arguments passed along to the image processor e.g. {"size": {"height": 100, "width": 100}} pool (`bool`, *optional*, defaults to `False`): Whether or not to return the pooled output. If `False`, the model will return the raw hidden states. """, ) class ImageFeatureExtractionPipeline(Pipeline): """ Image feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks. Example: ```python >>> from transformers import pipeline >>> extractor = pipeline(model="google/vit-base-patch16-224", task="image-feature-extraction") >>> result = extractor("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", return_tensors=True) >>> result.shape # This is a tensor of shape [1, sequence_lenth, hidden_dimension] representing the input image. torch.Size([1, 197, 768]) ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This image feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier: `"image-feature-extraction"`. All vision models may be used for this pipeline. See a list of all models, including community-contributed models on [huggingface.co/models](https://huggingface.co/models). """ def _sanitize_parameters(self, image_processor_kwargs=None, return_tensors=None, pool=None, **kwargs): preprocess_params = {} if image_processor_kwargs is None else image_processor_kwargs postprocess_params = {} if pool is not None: postprocess_params["pool"] = pool if return_tensors is not None: postprocess_params["return_tensors"] = return_tensors if "timeout" in kwargs: preprocess_params["timeout"] = kwargs["timeout"] return preprocess_params, {}, postprocess_params def preprocess(self, image, timeout=None, **image_processor_kwargs) -> dict[str, GenericTensor]: image = load_image(image, timeout=timeout) model_inputs = self.image_processor(image, return_tensors=self.framework, **image_processor_kwargs) if self.framework == "pt": model_inputs = model_inputs.to(self.torch_dtype) return model_inputs def _forward(self, model_inputs): model_outputs = self.model(**model_inputs) return model_outputs def postprocess(self, model_outputs, pool=None, return_tensors=False): pool = pool if pool is not None else False if pool: if "pooler_output" not in model_outputs: raise ValueError( "No pooled output was returned. Make sure the model has a `pooler` layer when using the `pool` option." ) outputs = model_outputs["pooler_output"] else: # [0] is the first available tensor, logits or last_hidden_state. outputs = model_outputs[0] if return_tensors: return outputs if self.framework == "pt": return outputs.tolist() elif self.framework == "tf": return outputs.numpy().tolist() def __call__(self, *args: Union[str, "Image.Image", list["Image.Image"], list[str]], **kwargs: Any) -> list[Any]: """ Extract the features of the input(s). Args: images (`str`, `list[str]`, `PIL.Image` or `list[PIL.Image]`): The pipeline handles three types of images: - A string containing a http link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images, which must then be passed as a string. Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL images. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and the call may block forever. Return: A nested list of `float`: The features computed by the model. """ return super().__call__(*args, **kwargs)
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_vision_available from .base import GenericTensor, Pipeline, build_pipeline_init_args if is_vision_available(): from PIL import Image from ..image_utils import load_image @add_end_docstrings( build_pipeline_init_args(has_image_processor=True), """ image_processor_kwargs (`dict`, *optional*): Additional dictionary of keyword arguments passed along to the image processor e.g. {"size": {"height": 100, "width": 100}} pool (`bool`, *optional*, defaults to `False`): Whether or not to return the pooled output. If `False`, the model will return the raw hidden states. """, ) class ImageFeatureExtractionPipeline(Pipeline): """ Image feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks. Example: ```python >>> from transformers import pipeline >>> extractor = pipeline(model="google/vit-base-patch16-224", task="image-feature-extraction") >>> result = extractor("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", return_tensors=True) >>> result.shape # This is a tensor of shape [1, sequence_lenth, hidden_dimension] representing the input image. torch.Size([1, 197, 768]) ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This image feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier: `"image-feature-extraction"`. All vision models may be used for this pipeline. See a list of all models, including community-contributed models on [huggingface.co/models](https://huggingface.co/models). """ def _sanitize_parameters(self, image_processor_kwargs=None, return_tensors=None, pool=None, **kwargs): preprocess_params = {} if image_processor_kwargs is None else image_processor_kwargs postprocess_params = {} if pool is not None: postprocess_params["pool"] = pool if return_tensors is not None: postprocess_params["return_tensors"] = return_tensors if "timeout" in kwargs: preprocess_params["timeout"] = kwargs["timeout"] return preprocess_params, {}, postprocess_params def preprocess(self, image, timeout=None, **image_processor_kwargs) -> Dict[str, GenericTensor]: image = load_image(image, timeout=timeout) model_inputs = self.image_processor(image, return_tensors=self.framework, **image_processor_kwargs) if self.framework == "pt": model_inputs = model_inputs.to(self.torch_dtype) return model_inputs def _forward(self, model_inputs): model_outputs = self.model(**model_inputs) return model_outputs def postprocess(self, model_outputs, pool=None, return_tensors=False): pool = pool if pool is not None else False if pool: if "pooler_output" not in model_outputs: raise ValueError( "No pooled output was returned. Make sure the model has a `pooler` layer when using the `pool` option." ) outputs = model_outputs["pooler_output"] else: # [0] is the first available tensor, logits or last_hidden_state. outputs = model_outputs[0] if return_tensors: return outputs if self.framework == "pt": return outputs.tolist() elif self.framework == "tf": return outputs.numpy().tolist() def __call__(self, *args: Union[str, "Image.Image", List["Image.Image"], List[str]], **kwargs: Any) -> List[Any]: """ Extract the features of the input(s). Args: images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): The pipeline handles three types of images: - A string containing a http link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images, which must then be passed as a string. Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL images. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and the call may block forever. Return: A nested list of `float`: The features computed by the model. """ return super().__call__(*args, **kwargs)
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(300, 300), keep_ratio=False), dict(type='RandomFlip', flip_ratio=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(300, 300), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=3, train=dict( _delete_=True, type='RepeatDataset', times=5, dataset=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4) optimizer_config = dict(_delete_=True) custom_hooks = [ dict(type='NumClassCheckHook'), dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW') ]
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(300, 300), keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='RandomFlip', flip_ratio=0.5), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(300, 300), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=3, train=dict( _delete_=True, type='RepeatDataset', times=5, dataset=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4) optimizer_config = dict(_delete_=True) custom_hooks = [ dict(type='NumClassCheckHook'), dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW') ]
from torch import nn, Tensor from typing import Iterable, Dict import torch.nn.functional as F from enum import Enum from ..SentenceTransformer import SentenceTransformer class TripletDistanceMetric(Enum): """The metric for the triplet loss""" COSINE = lambda x, y: 1 - F.cosine_similarity(x, y) EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2) MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1) class TripletLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ): """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. Args: model: SentenceTransformerModel distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], "negative": ["It's quite rainy, sadly.", "She walked to the store."], }) loss = losses.TripletLoss(model=model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(TripletLoss, self).__init__() self.model = model self.distance_metric = distance_metric self.triplet_margin = triplet_margin def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor): reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] rep_anchor, rep_pos, rep_neg = reps distance_pos = self.distance_metric(rep_anchor, rep_pos) distance_neg = self.distance_metric(rep_anchor, rep_neg) losses = F.relu(distance_pos - distance_neg + self.triplet_margin) return losses.mean() def get_config_dict(self): distance_metric_name = self.distance_metric.__name__ for name, value in vars(TripletDistanceMetric).items(): if value == self.distance_metric: distance_metric_name = "TripletDistanceMetric.{}".format(name) break return {"distance_metric": distance_metric_name, "triplet_margin": self.triplet_margin} @property def citation(self) -> str: return """ @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } """
from torch import nn, Tensor from typing import Iterable, Dict import torch.nn.functional as F from enum import Enum from ..SentenceTransformer import SentenceTransformer class TripletDistanceMetric(Enum): """ The metric for the triplet loss """ COSINE = lambda x, y: 1 - F.cosine_similarity(x, y) EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2) MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1) class TripletLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ): """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. :param model: SentenceTransformerModel :param distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. :param triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from sentence_transformers import SentenceTransformer, SentencesDataset, losses from sentence_transformers.readers import InputExample from torch.utils.data import DataLoader model = SentenceTransformer('distilbert-base-nli-mean-tokens') train_examples = [ InputExample(texts=['Anchor 1', 'Positive 1', 'Negative 1']), InputExample(texts=['Anchor 2', 'Positive 2', 'Negative 2']), ] train_batch_size = 1 train_dataset = SentencesDataset(train_examples, model) train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=train_batch_size) train_loss = losses.TripletLoss(model=model) model.fit( [(train_dataloader, train_loss)], epochs=10, ) """ super(TripletLoss, self).__init__() self.model = model self.distance_metric = distance_metric self.triplet_margin = triplet_margin def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor): reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] rep_anchor, rep_pos, rep_neg = reps distance_pos = self.distance_metric(rep_anchor, rep_pos) distance_neg = self.distance_metric(rep_anchor, rep_neg) losses = F.relu(distance_pos - distance_neg + self.triplet_margin) return losses.mean() def get_config_dict(self): distance_metric_name = self.distance_metric.__name__ for name, value in vars(TripletDistanceMetric).items(): if value == self.distance_metric: distance_metric_name = "TripletDistanceMetric.{}".format(name) break return {"distance_metric": distance_metric_name, "triplet_margin": self.triplet_margin} @property def citation(self) -> str: return """ @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } """
from langchain_core.language_models import ( BaseLanguageModel, LanguageModelInput, LanguageModelOutput, get_tokenizer, ) from langchain_core.language_models.base import _get_token_ids_default_method __all__ = [ "BaseLanguageModel", "LanguageModelInput", "LanguageModelOutput", "_get_token_ids_default_method", "get_tokenizer", ]
from langchain_core.language_models import ( BaseLanguageModel, LanguageModelInput, LanguageModelOutput, get_tokenizer, ) from langchain_core.language_models.base import _get_token_ids_default_method __all__ = [ "get_tokenizer", "BaseLanguageModel", "_get_token_ids_default_method", "LanguageModelInput", "LanguageModelOutput", ]
_base_ = './mask-rcnn_r50-contrib_fpn_gn-all_2x_coco.py' # learning policy max_epochs = 36 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[28, 34], gamma=0.1) ]
_base_ = './mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py' # learning policy max_epochs = 36 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[28, 34], gamma=0.1) ]
import subprocess import pytest from jina import Document, DocumentArray, Flow from ...dpr_text import DPRTextEncoder _EMBEDDING_DIM = 768 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=DPRTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, )
import subprocess import pytest from jina import Document, DocumentArray, Flow from ...dpr_text import DPRTextEncoder _EMBEDDING_DIM = 768 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=DPRTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', '--volumes=.cache:/workspace/.cache', ], timeout=30, check=True, )
import warnings from typing import TYPE_CHECKING, Any, Optional, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.utils.misc import is_notebook if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='ImageUrl') IMAGE_FILE_FORMATS = ('png', 'jpeg', 'jpg') @_register_proto(proto_type_name='image_url') class ImageUrl(AnyUrl): """ URL to a .png, .jpeg, or .jpg file. Can be remote (web) URL, or a local file path. """ @classmethod def validate( cls: Type[T], value: Union[T, str, Any], field: 'ModelField', config: 'BaseConfig', ) -> T: url = super().validate(value, field, config) # basic url validation has_image_extension = any(url.endswith(ext) for ext in IMAGE_FILE_FORMATS) if not has_image_extension: raise ValueError( f'Image URL must have one of the following extensions:' f'{IMAGE_FILE_FORMATS}' ) return cls(str(url), scheme=None) def load( self, width: Optional[int] = None, height: Optional[int] = None, axis_layout: Tuple[str, str, str] = ('H', 'W', 'C'), timeout: Optional[float] = None, ) -> np.ndarray: """ Load the data from the url into a numpy.ndarray image tensor EXAMPLE USAGE .. code-block:: python from docarray import BaseDocument from docarray.typing import ImageUrl import numpy as np class MyDoc(BaseDocument): img_url: ImageUrl doc = MyDoc( img_url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg" ) img_tensor = doc.img_url.load() assert isinstance(img_tensor, np.ndarray) img_tensor = doc.img_url.load(height=224, width=224) assert img_tensor.shape == (224, 224, 3) layout = ('C', 'W', 'H') img_tensor = doc.img_url.load(height=100, width=200, axis_layout=layout) assert img_tensor.shape == (3, 200, 100) :param width: width of the image tensor. :param height: height of the image tensor. :param axis_layout: ordering of the different image axes. 'H' = height, 'W' = width, 'C' = color channel :param timeout: timeout (sec) for urlopen network request. Only relevant if URL is not local :return: np.ndarray representing the image as RGB values """ from docarray.typing.bytes.image_bytes import ImageBytes buffer = ImageBytes(self.load_bytes(timeout=timeout)) return buffer.load(width, height, axis_layout) def display(self) -> None: """ Display image data from url in notebook. """ if is_notebook(): from IPython.display import Image, display remote_url = True if self.startswith('http') else False if remote_url: display(Image(url=self)) else: display(Image(filename=self)) else: warnings.warn('Display of image is only possible in a notebook.')
import warnings from typing import TYPE_CHECKING, Any, Optional, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.utils.misc import is_notebook if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='ImageUrl') IMAGE_FILE_FORMATS = ('png', 'jpeg', 'jpg') @_register_proto(proto_type_name='image_url') class ImageUrl(AnyUrl): """ URL to a .png, .jpeg, or .jpg file. Can be remote (web) URL, or a local file path. """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, Any], field: 'ModelField', config: 'BaseConfig', ) -> T: url = super().validate(value, field, config) # basic url validation has_image_extension = any(url.endswith(ext) for ext in IMAGE_FILE_FORMATS) if not has_image_extension: raise ValueError( f'Image URL must have one of the following extensions:' f'{IMAGE_FILE_FORMATS}' ) return cls(str(url), scheme=None) def load( self, width: Optional[int] = None, height: Optional[int] = None, axis_layout: Tuple[str, str, str] = ('H', 'W', 'C'), timeout: Optional[float] = None, ) -> np.ndarray: """ Load the data from the url into a numpy.ndarray image tensor EXAMPLE USAGE .. code-block:: python from docarray import BaseDocument from docarray.typing import ImageUrl import numpy as np class MyDoc(BaseDocument): img_url: ImageUrl doc = MyDoc( img_url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg" ) img_tensor = doc.img_url.load() assert isinstance(img_tensor, np.ndarray) img_tensor = doc.img_url.load(height=224, width=224) assert img_tensor.shape == (224, 224, 3) layout = ('C', 'W', 'H') img_tensor = doc.img_url.load(height=100, width=200, axis_layout=layout) assert img_tensor.shape == (3, 200, 100) :param width: width of the image tensor. :param height: height of the image tensor. :param axis_layout: ordering of the different image axes. 'H' = height, 'W' = width, 'C' = color channel :param timeout: timeout (sec) for urlopen network request. Only relevant if URL is not local :return: np.ndarray representing the image as RGB values """ from docarray.typing.bytes.image_bytes import ImageBytes buffer = ImageBytes(self.load_bytes(timeout=timeout)) return buffer.load(width, height, axis_layout) def display(self) -> None: """ Display image data from url in notebook. """ if is_notebook(): from IPython.display import Image, display remote_url = True if self.startswith('http') else False if remote_url: display(Image(url=self)) else: display(Image(filename=self)) else: warnings.warn('Display of image is only possible in a notebook.')
import pytest from xgboost.testing.federated import run_federated_learning @pytest.mark.parametrize("with_ssl", [True, False]) def test_federated_learning(with_ssl: bool) -> None: run_federated_learning(with_ssl, False, __file__)
#!/usr/bin/python import multiprocessing import sys import time import xgboost as xgb import xgboost.federated SERVER_KEY = 'server-key.pem' SERVER_CERT = 'server-cert.pem' CLIENT_KEY = 'client-key.pem' CLIENT_CERT = 'client-cert.pem' def run_server(port: int, world_size: int, with_ssl: bool) -> None: if with_ssl: xgboost.federated.run_federated_server(port, world_size, SERVER_KEY, SERVER_CERT, CLIENT_CERT) else: xgboost.federated.run_federated_server(port, world_size) def run_worker(port: int, world_size: int, rank: int, with_ssl: bool, with_gpu: bool) -> None: communicator_env = { 'xgboost_communicator': 'federated', 'federated_server_address': f'localhost:{port}', 'federated_world_size': world_size, 'federated_rank': rank } if with_ssl: communicator_env['federated_server_cert'] = SERVER_CERT communicator_env['federated_client_key'] = CLIENT_KEY communicator_env['federated_client_cert'] = CLIENT_CERT # Always call this before using distributed module with xgb.collective.CommunicatorContext(**communicator_env): # Load file, file will not be sharded in federated mode. dtrain = xgb.DMatrix('agaricus.txt.train-%02d?format=libsvm' % rank) dtest = xgb.DMatrix('agaricus.txt.test-%02d?format=libsvm' % rank) # Specify parameters via map, definition are same as c++ version param = {'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic'} if with_gpu: param['tree_method'] = 'hist' param['device'] = f"cuda:{rank}" # Specify validations set to watch performance watchlist = [(dtest, 'eval'), (dtrain, 'train')] num_round = 20 # Run training, all the features in training API is available. bst = xgb.train(param, dtrain, num_round, evals=watchlist, early_stopping_rounds=2) # Save the model, only ask process 0 to save the model. if xgb.collective.get_rank() == 0: bst.save_model("test.model.json") xgb.collective.communicator_print("Finished training\n") def run_federated(with_ssl: bool = True, with_gpu: bool = False) -> None: port = 9091 world_size = int(sys.argv[1]) server = multiprocessing.Process(target=run_server, args=(port, world_size, with_ssl)) server.start() time.sleep(1) if not server.is_alive(): raise Exception("Error starting Federated Learning server") workers = [] for rank in range(world_size): worker = multiprocessing.Process(target=run_worker, args=(port, world_size, rank, with_ssl, with_gpu)) workers.append(worker) worker.start() for worker in workers: worker.join() server.terminate() if __name__ == '__main__': run_federated(with_ssl=True, with_gpu=False) run_federated(with_ssl=False, with_gpu=False) run_federated(with_ssl=True, with_gpu=True) run_federated(with_ssl=False, with_gpu=True)
_base_ = '../retinanet/retinanet_r50_caffe_fpn_1x_coco.py' model = dict( bbox_head=dict( _delete_=True, type='GARetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), anchor_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loc_filter_thr=0.01, loss_loc=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=0.04, loss_weight=1.0)), # training and testing settings train_cfg=dict( ga_assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.4, ignore_iof_thr=-1), ga_sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), assigner=dict(neg_iou_thr=0.5, min_pos_iou=0.0), center_ratio=0.2, ignore_ratio=0.5)) optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2))
_base_ = '../retinanet/retinanet_r50_caffe_fpn_1x_coco.py' model = dict( bbox_head=dict( _delete_=True, type='GARetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), anchor_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loc_filter_thr=0.01, loss_loc=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=0.04, loss_weight=1.0)), # training and testing settings train_cfg=dict( ga_assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.4, ignore_iof_thr=-1), ga_sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), assigner=dict(neg_iou_thr=0.5, min_pos_iou=0.0), center_ratio=0.2, ignore_ratio=0.5)) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict(plugins=[ dict( cfg=dict(type='ContextBlock', ratio=1. / 16), stages=(False, True, True, True), position='after_conv3') ]))
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict(plugins=[ dict( cfg=dict(type='ContextBlock', ratio=1. / 16), stages=(False, True, True, True), position='after_conv3') ]))
from llama_index.core import Document, MockEmbedding, global_tokenizer from llama_index.core.llms import MockLLM from llama_index.packs.raptor.base import RaptorRetriever import pytest @pytest.mark.skipif( condition=(global_tokenizer is None), reason="No global tokenizer set" ) def test_raptor() -> None: retriever = RaptorRetriever( [ Document(text="one"), Document(text="two"), Document(text="three"), Document(text="four"), Document(text="five"), Document(text="six"), Document(text="seven"), Document(text="eight"), Document(text="nine"), Document(text="ten"), ], embed_model=MockEmbedding(embed_dim=1536), llm=MockLLM(), ) assert len(retriever.index.docstore.docs) == 13 nodes = retriever.retrieve("test", mode="collapsed") assert len(nodes) == 2 nodes = retriever.retrieve("text", mode="tree_traversal") assert len(nodes) == 5
from llama_index.core import Document, MockEmbedding, global_tokenizer from llama_index.core.llms import MockLLM from llama_index.packs.raptor.base import RaptorRetriever import pytest @pytest.mark.skipif( condition = (global_tokenizer is None), reason="No global tokenizer set" ) def test_raptor() -> None: retriever = RaptorRetriever( [ Document(text="one"), Document(text="two"), Document(text="three"), Document(text="four"), Document(text="five"), Document(text="six"), Document(text="seven"), Document(text="eight"), Document(text="nine"), Document(text="ten"), ], embed_model=MockEmbedding(embed_dim=1536), llm=MockLLM(), ) assert len(retriever.index.docstore.docs) == 13 nodes = retriever.retrieve("test", mode="collapsed") assert len(nodes) == 2 nodes = retriever.retrieve("text", mode="tree_traversal") assert len(nodes) == 5
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig from .single_stage import SingleStageDetector @MODELS.register_module() class AutoAssign(SingleStageDetector): """Implementation of `AutoAssign: Differentiable Label Assignment for Dense Object Detection <https://arxiv.org/abs/2007.03496>`_ Args: backbone (:obj:`ConfigDict` or dict): The backbone config. neck (:obj:`ConfigDict` or dict): The neck config. bbox_head (:obj:`ConfigDict` or dict): The bbox head config. train_cfg (:obj:`ConfigDict` or dict, optional): The training config of AutoAssign. Defaults to None. test_cfg (:obj:`ConfigDict` or dict, optional): The testing config of AutoAssign. Defaults to None. data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of :class:`DetDataPreprocessor` to process the input data. Defaults to None. init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or list[dict], optional): Initialization config dict. Defaults to None. """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class AutoAssign(SingleStageDetector): """Implementation of `AutoAssign: Differentiable Label Assignment for Dense Object Detection <https://arxiv.org/abs/2007.03496>`_ Args: backbone (:obj:`ConfigDict` or dict): The backbone config. neck (:obj:`ConfigDict` or dict): The neck config. bbox_head (:obj:`ConfigDict` or dict): The bbox head config. train_cfg (:obj:`ConfigDict` or dict, optional): The training config of AutoAssign. Defaults to None. test_cfg (:obj:`ConfigDict` or dict, optional): The testing config of AutoAssign. Defaults to None. data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of :class:`DetDataPreprocessor` to process the input data. Defaults to None. init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or list[dict], optional): Initialization config dict. Defaults to None. """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
"""Standard LangChain interface tests""" from langchain_core.language_models import BaseChatModel from langchain_tests.unit_tests import ChatModelUnitTests from langchain_openai import ChatOpenAI class TestOpenAIResponses(ChatModelUnitTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatOpenAI @property def chat_model_params(self) -> dict: return {"use_responses_api": True} @property def init_from_env_params(self) -> tuple[dict, dict, dict]: return ( { "OPENAI_API_KEY": "api_key", "OPENAI_ORG_ID": "org_id", "OPENAI_API_BASE": "api_base", "OPENAI_PROXY": "https://proxy.com", }, {}, { "openai_api_key": "api_key", "openai_organization": "org_id", "openai_api_base": "api_base", "openai_proxy": "https://proxy.com", }, )
"""Standard LangChain interface tests""" from typing import Tuple, Type from langchain_core.language_models import BaseChatModel from langchain_tests.unit_tests import ChatModelUnitTests from langchain_openai import ChatOpenAI class TestOpenAIResponses(ChatModelUnitTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return ChatOpenAI @property def chat_model_params(self) -> dict: return {"use_responses_api": True} @property def init_from_env_params(self) -> Tuple[dict, dict, dict]: return ( { "OPENAI_API_KEY": "api_key", "OPENAI_ORG_ID": "org_id", "OPENAI_API_BASE": "api_base", "OPENAI_PROXY": "https://proxy.com", }, {}, { "openai_api_key": "api_key", "openai_organization": "org_id", "openai_api_base": "api_base", "openai_proxy": "https://proxy.com", }, )
# training schedule for 1x train_cfg = dict(by_epoch=True, max_epochs=12) val_cfg = dict(interval=1) test_cfg = dict() # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
# optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[8, 11]) runner = dict(type='EpochBasedRunner', max_epochs=12)
from __future__ import annotations from torch import Tensor, nn from sentence_transformers.cross_encoder.CrossEncoder import CrossEncoder class CrossEntropyLoss(nn.Module): def __init__(self, model: CrossEncoder, activation_fct: nn.Module = nn.Identity(), **kwargs) -> None: """ Computes the Cross Entropy Loss for a CrossEncoder model. This loss is used to train a model to predict the correct class label for a given pair of sentences. The number of classes should be equal to the number of model output labels. Args: model (:class:`~sentence_transformers.cross_encoder.CrossEncoder`): A CrossEncoder model to be trained. activation_fct (:class:`~torch.nn.Module`): Activation function applied to the logits before computing the loss. Defaults to :class:`~torch.nn.Identity`. **kwargs: Additional keyword arguments passed to the underlying :class:`torch.nn.CrossEntropyLoss`. References: - :class:`torch.nn.CrossEntropyLoss` Requirements: 1. Your model can be initialized with `num_labels > 1` to predict multiple classes. 2. The number of dataset classes should be equal to the number of model output labels (`model.num_labels`). Inputs: +-------------------------------------------------+--------+-------------------------------+ | Texts | Labels | Number of Model Output Labels | +=================================================+========+===============================+ | (sentence_A, sentence_B) pairs | class | `num_classes` | +-------------------------------------------------+--------+-------------------------------+ Example: :: from sentence_transformers.cross_encoder import CrossEncoder, CrossEncoderTrainer, losses from datasets import Dataset model = CrossEncoder("microsoft/mpnet-base", num_labels=2) train_dataset = Dataset.from_dict({ "sentence1": ["How can I be a good geologist?", "What is the capital of France?"], "sentence2": ["What should I do to be a great geologist?", "What is the capital of Germany?"], "label": [1, 0], # 1: duplicate, 0: not duplicate }) loss = losses.CrossEntropyLoss(model) trainer = CrossEncoderTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.model = model self.activation_fct = activation_fct self.ce_loss = nn.CrossEntropyLoss(**kwargs) if not isinstance(self.model, CrossEncoder): raise ValueError( f"{self.__class__.__name__} expects a model of type CrossEncoder, " f"but got a model of type {type(self.model)}." ) def forward(self, inputs: list[list[str]], labels: Tensor) -> Tensor: if len(inputs) != 2: raise ValueError( f"CrossEntropyLoss expects a dataset with two non-label columns, but got a dataset with {len(inputs)} columns." ) pairs = list(zip(inputs[0], inputs[1])) tokens = self.model.tokenizer( pairs, padding=True, truncation=True, return_tensors="pt", ) tokens.to(self.model.device) logits = self.model(**tokens)[0] logits = self.activation_fct(logits) loss = self.ce_loss(logits, labels) return loss
from __future__ import annotations from torch import Tensor, nn from sentence_transformers.cross_encoder import CrossEncoder # TODO: Consider the naming of this class class CrossEntropyLoss(nn.Module): def __init__(self, model: CrossEncoder, activation_fct: nn.Module = nn.Identity(), **kwargs) -> None: super().__init__() self.model = model self.activation_fct = activation_fct self.ce_loss = nn.CrossEntropyLoss(**kwargs) def forward(self, inputs: list[list[str]], labels: Tensor) -> Tensor: if len(inputs) != 2: raise ValueError( f"CrossEntropyLoss expects a dataset with two non-label columns, but got a dataset with {len(inputs)} columns." ) pairs = list(zip(inputs[0], inputs[1])) tokens = self.model.tokenizer( pairs, padding=True, truncation=True, return_tensors="pt", ) tokens.to(self.model.device) logits = self.model(**tokens)[0] logits = self.activation_fct(logits) loss = self.ce_loss(logits, labels) return loss
# Copyright (c) OpenMMLab. All rights reserved. from .hub import load_url from .manager import ManagerMeta, ManagerMixin from .misc import (check_prerequisites, concat_list, deprecated_api_warning, find_latest_checkpoint, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, mmcv_full_available, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .parrots_wrapper import TORCH_VERSION from .path import (check_file_exist, fopen, is_filepath, mkdir_or_exist, scandir, symlink) from .setup_env import set_multi_processing from .version_utils import digit_version, get_git_hash __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_method_overridden', 'has_method', 'mmcv_full_available', 'digit_version', 'get_git_hash', 'TORCH_VERSION', 'load_url', 'find_latest_checkpoint', 'ManagerMeta', 'ManagerMixin', 'set_multi_processing' ]
# Copyright (c) OpenMMLab. All rights reserved. from .hub import load_url from .manager import ManagerMeta, ManagerMixin from .misc import (check_prerequisites, concat_list, deprecated_api_warning, find_latest_checkpoint, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, mmcv_full_available, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .parrots_wrapper import TORCH_VERSION from .path import (check_file_exist, fopen, is_filepath, mkdir_or_exist, scandir, symlink) from .version_utils import digit_version, get_git_hash __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_method_overridden', 'has_method', 'mmcv_full_available', 'digit_version', 'get_git_hash', 'TORCH_VERSION', 'load_url', 'find_latest_checkpoint', 'ManagerMeta', 'ManagerMixin' ]
import numpy as np import pytest from pydantic import Field from docarray import BaseDoc from docarray.index import MongoDBAtlasDocumentIndex from docarray.typing import NdArray from . import NestedDoc, SimpleDoc, SimpleSchema, assert_when_ready def test_find_simple_schema(simple_index_with_docs, n_dim): # noqa: F811 simple_index, random_simple_documents = simple_index_with_docs # noqa: F811 query = np.ones(n_dim) # Insert one doc that identically matches query's embedding expected_matching_document = SimpleSchema(embedding=query, text="other", number=10) simple_index.index(expected_matching_document) def pred(): docs, scores = simple_index.find(query, search_field='embedding', limit=5) assert len(docs) == 5 assert len(scores) == 5 assert np.allclose(docs[0].embedding, expected_matching_document.embedding) assert_when_ready(pred) def test_find_empty_index(simple_index, n_dim): # noqa: F811 query = np.random.rand(n_dim) def pred(): docs, scores = simple_index.find(query, search_field='embedding', limit=5) assert len(docs) == 0 assert len(scores) == 0 assert_when_ready(pred) def test_find_limit_larger_than_index(simple_index_with_docs, n_dim): # noqa: F811 simple_index, random_simple_documents = simple_index_with_docs # noqa: F811 query = np.ones(n_dim) new_doc = SimpleSchema(embedding=query, text="other", number=10) simple_index.index(new_doc) def pred(): docs, scores = simple_index.find(query, search_field='embedding', limit=20) assert len(docs) == 11 assert len(scores) == 11 assert_when_ready(pred) def test_find_flat_schema(mongodb_index_config, n_dim): # noqa: F811 class FlatSchema(BaseDoc): embedding1: NdArray = Field(dim=n_dim, index_name="vector_index_1") # the dim and n_dim are setted different on propouse. to check the correct handling of n_dim embedding2: NdArray[50] = Field(dim=n_dim, index_name="vector_index_2") index = MongoDBAtlasDocumentIndex[FlatSchema](**mongodb_index_config) index._collection.delete_many({}) index_docs = [ FlatSchema(embedding1=np.random.rand(n_dim), embedding2=np.random.rand(50)) for _ in range(10) ] index_docs.append(FlatSchema(embedding1=np.zeros(n_dim), embedding2=np.ones(50))) index_docs.append(FlatSchema(embedding1=np.ones(n_dim), embedding2=np.zeros(50))) index.index(index_docs) def pred1(): # find on embedding1 query = np.ones(n_dim) docs, scores = index.find(query, search_field='embedding1', limit=5) assert len(docs) == 5 assert len(scores) == 5 assert np.allclose(docs[0].embedding1, index_docs[-1].embedding1) assert np.allclose(docs[0].embedding2, index_docs[-1].embedding2) assert_when_ready(pred1) def pred2(): # find on embedding2 query = np.ones(50) docs, scores = index.find(query, search_field='embedding2', limit=5) assert len(docs) == 5 assert len(scores) == 5 assert np.allclose(docs[0].embedding1, index_docs[-2].embedding1) assert np.allclose(docs[0].embedding2, index_docs[-2].embedding2) assert_when_ready(pred2) def test_find_batches(simple_index_with_docs): # noqa: F811 simple_index, docs = simple_index_with_docs # noqa: F811 queries = np.array([np.random.rand(10) for _ in range(3)]) def pred(): resp = simple_index.find_batched( queries=queries, search_field='embedding', limit=10 ) docs_responses = resp.documents assert len(docs_responses) == 3 for matches in docs_responses: assert len(matches) == 10 assert_when_ready(pred) def test_find_nested_schema(nested_index_with_docs, n_dim): # noqa: F811 db, base_docs = nested_index_with_docs query = NestedDoc(d=SimpleDoc(embedding=np.ones(n_dim)), embedding=np.ones(n_dim)) # find on root level def pred(): docs, scores = db.find(query, search_field='embedding', limit=5) assert len(docs) == 5 assert len(scores) == 5 assert np.allclose(docs[0].embedding, base_docs[-1].embedding) # find on first nesting level docs, scores = db.find(query, search_field='d__embedding', limit=5) assert len(docs) == 5 assert len(scores) == 5 assert np.allclose(docs[0].d.embedding, base_docs[-2].d.embedding) assert_when_ready(pred) def test_find_schema_without_index(mongodb_index_config, n_dim): # noqa: F811 class Schema(BaseDoc): vec: NdArray = Field(dim=n_dim) index = MongoDBAtlasDocumentIndex[Schema](**mongodb_index_config) query = np.ones(n_dim) with pytest.raises(ValueError): index.find(query, search_field='vec', limit=2)
import numpy as np import pytest from pydantic import Field from docarray import BaseDoc from docarray.index import MongoDBAtlasDocumentIndex from docarray.typing import NdArray from . import NestedDoc, SimpleDoc, SimpleSchema, assert_when_ready N_DIM = 10 def test_find_simple_schema(simple_index_with_docs): # noqa: F811 simple_index, random_simple_documents = simple_index_with_docs # noqa: F811 query = np.ones(N_DIM) # Insert one doc that identically matches query's embedding expected_matching_document = SimpleSchema(embedding=query, text="other", number=10) simple_index.index(expected_matching_document) def pred(): docs, scores = simple_index.find(query, search_field='embedding', limit=5) assert len(docs) == 5 assert len(scores) == 5 assert np.allclose(docs[0].embedding, expected_matching_document.embedding) assert_when_ready(pred) def test_find_empty_index(simple_index): # noqa: F811 query = np.random.rand(N_DIM) def pred(): docs, scores = simple_index.find(query, search_field='embedding', limit=5) assert len(docs) == 0 assert len(scores) == 0 assert_when_ready(pred) def test_find_limit_larger_than_index(simple_index_with_docs): # noqa: F811 simple_index, random_simple_documents = simple_index_with_docs # noqa: F811 query = np.ones(N_DIM) new_doc = SimpleSchema(embedding=query, text="other", number=10) simple_index.index(new_doc) def pred(): docs, scores = simple_index.find(query, search_field='embedding', limit=20) assert len(docs) == 11 assert len(scores) == 11 assert_when_ready(pred) def test_find_flat_schema(mongodb_index_config): # noqa: F811 class FlatSchema(BaseDoc): embedding1: NdArray = Field(dim=N_DIM, index_name="vector_index_1") # the dim and N_DIM are setted different on propouse. to check the correct handling of n_dim embedding2: NdArray[50] = Field(dim=N_DIM, index_name="vector_index_2") index = MongoDBAtlasDocumentIndex[FlatSchema](**mongodb_index_config) index._doc_collection.delete_many({}) index_docs = [ FlatSchema(embedding1=np.random.rand(N_DIM), embedding2=np.random.rand(50)) for _ in range(10) ] index_docs.append(FlatSchema(embedding1=np.zeros(N_DIM), embedding2=np.ones(50))) index_docs.append(FlatSchema(embedding1=np.ones(N_DIM), embedding2=np.zeros(50))) index.index(index_docs) def pred1(): # find on embedding1 query = np.ones(N_DIM) docs, scores = index.find(query, search_field='embedding1', limit=5) assert len(docs) == 5 assert len(scores) == 5 assert np.allclose(docs[0].embedding1, index_docs[-1].embedding1) assert np.allclose(docs[0].embedding2, index_docs[-1].embedding2) assert_when_ready(pred1) def pred2(): # find on embedding2 query = np.ones(50) docs, scores = index.find(query, search_field='embedding2', limit=5) assert len(docs) == 5 assert len(scores) == 5 assert np.allclose(docs[0].embedding1, index_docs[-2].embedding1) assert np.allclose(docs[0].embedding2, index_docs[-2].embedding2) assert_when_ready(pred2) def test_find_batches(simple_index_with_docs): # noqa: F811 simple_index, docs = simple_index_with_docs # noqa: F811 queries = np.array([np.random.rand(10) for _ in range(3)]) def pred(): resp = simple_index.find_batched( queries=queries, search_field='embedding', limit=10 ) docs_responses = resp.documents assert len(docs_responses) == 3 for matches in docs_responses: assert len(matches) == 10 assert_when_ready(pred) def test_find_nested_schema(nested_index_with_docs): # noqa: F811 db, base_docs = nested_index_with_docs query = NestedDoc(d=SimpleDoc(embedding=np.ones(N_DIM)), embedding=np.ones(N_DIM)) # find on root level def pred(): docs, scores = db.find(query, search_field='embedding', limit=5) assert len(docs) == 5 assert len(scores) == 5 assert np.allclose(docs[0].embedding, base_docs[-1].embedding) # find on first nesting level docs, scores = db.find(query, search_field='d__embedding', limit=5) assert len(docs) == 5 assert len(scores) == 5 assert np.allclose(docs[0].d.embedding, base_docs[-2].d.embedding) assert_when_ready(pred) def test_find_schema_without_index(mongodb_index_config): # noqa: F811 class Schema(BaseDoc): vec: NdArray = Field(dim=N_DIM) index = MongoDBAtlasDocumentIndex[Schema](**mongodb_index_config) query = np.ones(N_DIM) with pytest.raises(ValueError): index.find(query, search_field='vec', limit=2)
from enum import Enum from typing import Any, Dict, Iterable import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer class TripletDistanceMetric(Enum): """The metric for the triplet loss""" COSINE = lambda x, y: 1 - F.cosine_similarity(x, y) EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2) MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1) class TripletLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ) -> None: """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. Args: model: SentenceTransformerModel distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], "negative": ["It's quite rainy, sadly.", "She walked to the store."], }) loss = losses.TripletLoss(model=model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(TripletLoss, self).__init__() self.model = model self.distance_metric = distance_metric self.triplet_margin = triplet_margin def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor) -> Tensor: reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] rep_anchor, rep_pos, rep_neg = reps distance_pos = self.distance_metric(rep_anchor, rep_pos) distance_neg = self.distance_metric(rep_anchor, rep_neg) losses = F.relu(distance_pos - distance_neg + self.triplet_margin) return losses.mean() def get_config_dict(self) -> Dict[str, Any]: distance_metric_name = self.distance_metric.__name__ for name, value in vars(TripletDistanceMetric).items(): if value == self.distance_metric: distance_metric_name = "TripletDistanceMetric.{}".format(name) break return {"distance_metric": distance_metric_name, "triplet_margin": self.triplet_margin} @property def citation(self) -> str: return """ @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } """
from enum import Enum from typing import Any, Dict, Iterable import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer class TripletDistanceMetric(Enum): """The metric for the triplet loss""" COSINE = lambda x, y: 1 - F.cosine_similarity(x, y) EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2) MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1) class TripletLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ) -> None: """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. Args: model: SentenceTransformerModel distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], "negative": ["It's quite rainy, sadly.", "She walked to the store."], }) loss = losses.TripletLoss(model=model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(TripletLoss, self).__init__() self.model = model self.distance_metric = distance_metric self.triplet_margin = triplet_margin def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor) -> Tensor: reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] rep_anchor, rep_pos, rep_neg = reps distance_pos = self.distance_metric(rep_anchor, rep_pos) distance_neg = self.distance_metric(rep_anchor, rep_neg) losses = F.relu(distance_pos - distance_neg + self.triplet_margin) return losses.mean() def get_config_dict(self) -> Dict[str, Any]: distance_metric_name = self.distance_metric.__name__ for name, value in vars(TripletDistanceMetric).items(): if value == self.distance_metric: distance_metric_name = "TripletDistanceMetric.{}".format(name) break return {"distance_metric": distance_metric_name, "triplet_margin": self.triplet_margin} @property def citation(self) -> str: return """ @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } """
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders import ( AmazonTextractPDFLoader, MathpixPDFLoader, OnlinePDFLoader, PagedPDFSplitter, PDFMinerLoader, PDFMinerPDFasHTMLLoader, PDFPlumberLoader, PyMuPDFLoader, PyPDFDirectoryLoader, PyPDFium2Loader, UnstructuredPDFLoader, ) from langchain_community.document_loaders.pdf import ( BasePDFLoader, DocumentIntelligenceLoader, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "UnstructuredPDFLoader": "langchain_community.document_loaders", "BasePDFLoader": "langchain_community.document_loaders.pdf", "OnlinePDFLoader": "langchain_community.document_loaders", "PagedPDFSplitter": "langchain_community.document_loaders", "PyPDFium2Loader": "langchain_community.document_loaders", "PyPDFDirectoryLoader": "langchain_community.document_loaders", "PDFMinerLoader": "langchain_community.document_loaders", "PDFMinerPDFasHTMLLoader": "langchain_community.document_loaders", "PyMuPDFLoader": "langchain_community.document_loaders", "MathpixPDFLoader": "langchain_community.document_loaders", "PDFPlumberLoader": "langchain_community.document_loaders", "AmazonTextractPDFLoader": "langchain_community.document_loaders", "DocumentIntelligenceLoader": "langchain_community.document_loaders.pdf", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AmazonTextractPDFLoader", "BasePDFLoader", "DocumentIntelligenceLoader", "MathpixPDFLoader", "OnlinePDFLoader", "PDFMinerLoader", "PDFMinerPDFasHTMLLoader", "PDFPlumberLoader", "PagedPDFSplitter", "PyMuPDFLoader", "PyPDFDirectoryLoader", "PyPDFium2Loader", "UnstructuredPDFLoader", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders import ( AmazonTextractPDFLoader, MathpixPDFLoader, OnlinePDFLoader, PagedPDFSplitter, PDFMinerLoader, PDFMinerPDFasHTMLLoader, PDFPlumberLoader, PyMuPDFLoader, PyPDFDirectoryLoader, PyPDFium2Loader, UnstructuredPDFLoader, ) from langchain_community.document_loaders.pdf import ( BasePDFLoader, DocumentIntelligenceLoader, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "UnstructuredPDFLoader": "langchain_community.document_loaders", "BasePDFLoader": "langchain_community.document_loaders.pdf", "OnlinePDFLoader": "langchain_community.document_loaders", "PagedPDFSplitter": "langchain_community.document_loaders", "PyPDFium2Loader": "langchain_community.document_loaders", "PyPDFDirectoryLoader": "langchain_community.document_loaders", "PDFMinerLoader": "langchain_community.document_loaders", "PDFMinerPDFasHTMLLoader": "langchain_community.document_loaders", "PyMuPDFLoader": "langchain_community.document_loaders", "MathpixPDFLoader": "langchain_community.document_loaders", "PDFPlumberLoader": "langchain_community.document_loaders", "AmazonTextractPDFLoader": "langchain_community.document_loaders", "DocumentIntelligenceLoader": "langchain_community.document_loaders.pdf", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "UnstructuredPDFLoader", "BasePDFLoader", "OnlinePDFLoader", "PagedPDFSplitter", "PyPDFium2Loader", "PyPDFDirectoryLoader", "PDFMinerLoader", "PDFMinerPDFasHTMLLoader", "PyMuPDFLoader", "MathpixPDFLoader", "PDFPlumberLoader", "AmazonTextractPDFLoader", "DocumentIntelligenceLoader", ]
import PIL.Image import pytest import torch import torchvision.transforms.v2._utils from common_utils import DEFAULT_SIZE, make_bounding_boxes, make_detection_mask, make_image from torchvision import tv_tensors from torchvision.transforms.v2._utils import has_all, has_any from torchvision.transforms.v2.functional import to_pil_image IMAGE = make_image(DEFAULT_SIZE, color_space="RGB") BOUNDING_BOX = make_bounding_boxes(DEFAULT_SIZE, format=tv_tensors.BoundingBoxFormat.XYXY) MASK = make_detection_mask(DEFAULT_SIZE) @pytest.mark.parametrize( ("sample", "types", "expected"), [ ((IMAGE, BOUNDING_BOX, MASK), (tv_tensors.Image,), True), ((IMAGE, BOUNDING_BOX, MASK), (tv_tensors.BoundingBoxes,), True), ((IMAGE, BOUNDING_BOX, MASK), (tv_tensors.Mask,), True), ((IMAGE, BOUNDING_BOX, MASK), (tv_tensors.Image, tv_tensors.BoundingBoxes), True), ((IMAGE, BOUNDING_BOX, MASK), (tv_tensors.Image, tv_tensors.Mask), True), ((IMAGE, BOUNDING_BOX, MASK), (tv_tensors.BoundingBoxes, tv_tensors.Mask), True), ((MASK,), (tv_tensors.Image, tv_tensors.BoundingBoxes), False), ((BOUNDING_BOX,), (tv_tensors.Image, tv_tensors.Mask), False), ((IMAGE,), (tv_tensors.BoundingBoxes, tv_tensors.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (tv_tensors.Image, tv_tensors.BoundingBoxes, tv_tensors.Mask), True, ), ((), (tv_tensors.Image, tv_tensors.BoundingBoxes, tv_tensors.Mask), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda obj: isinstance(obj, tv_tensors.Image),), True), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: False,), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: True,), True), ((IMAGE,), (tv_tensors.Image, PIL.Image.Image, torchvision.transforms.v2._utils.is_pure_tensor), True), ( (torch.Tensor(IMAGE),), (tv_tensors.Image, PIL.Image.Image, torchvision.transforms.v2._utils.is_pure_tensor), True, ), ( (to_pil_image(IMAGE),), (tv_tensors.Image, PIL.Image.Image, torchvision.transforms.v2._utils.is_pure_tensor), True, ), ], ) def test_has_any(sample, types, expected): assert has_any(sample, *types) is expected @pytest.mark.parametrize( ("sample", "types", "expected"), [ ((IMAGE, BOUNDING_BOX, MASK), (tv_tensors.Image,), True), ((IMAGE, BOUNDING_BOX, MASK), (tv_tensors.BoundingBoxes,), True), ((IMAGE, BOUNDING_BOX, MASK), (tv_tensors.Mask,), True), ((IMAGE, BOUNDING_BOX, MASK), (tv_tensors.Image, tv_tensors.BoundingBoxes), True), ((IMAGE, BOUNDING_BOX, MASK), (tv_tensors.Image, tv_tensors.Mask), True), ((IMAGE, BOUNDING_BOX, MASK), (tv_tensors.BoundingBoxes, tv_tensors.Mask), True), ( (IMAGE, BOUNDING_BOX, MASK), (tv_tensors.Image, tv_tensors.BoundingBoxes, tv_tensors.Mask), True, ), ((BOUNDING_BOX, MASK), (tv_tensors.Image, tv_tensors.BoundingBoxes), False), ((BOUNDING_BOX, MASK), (tv_tensors.Image, tv_tensors.Mask), False), ((IMAGE, MASK), (tv_tensors.BoundingBoxes, tv_tensors.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (tv_tensors.Image, tv_tensors.BoundingBoxes, tv_tensors.Mask), True, ), ((BOUNDING_BOX, MASK), (tv_tensors.Image, tv_tensors.BoundingBoxes, tv_tensors.Mask), False), ((IMAGE, MASK), (tv_tensors.Image, tv_tensors.BoundingBoxes, tv_tensors.Mask), False), ((IMAGE, BOUNDING_BOX), (tv_tensors.Image, tv_tensors.BoundingBoxes, tv_tensors.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (lambda obj: isinstance(obj, (tv_tensors.Image, tv_tensors.BoundingBoxes, tv_tensors.Mask)),), True, ), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: False,), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: True,), True), ], ) def test_has_all(sample, types, expected): assert has_all(sample, *types) is expected
import PIL.Image import pytest import torch import torchvision.transforms.v2._utils from common_utils import DEFAULT_SIZE, make_bounding_boxes, make_detection_mask, make_image from torchvision import datapoints from torchvision.transforms.v2._utils import has_all, has_any from torchvision.transforms.v2.functional import to_pil_image IMAGE = make_image(DEFAULT_SIZE, color_space="RGB") BOUNDING_BOX = make_bounding_boxes(DEFAULT_SIZE, format=datapoints.BoundingBoxFormat.XYXY) MASK = make_detection_mask(DEFAULT_SIZE) @pytest.mark.parametrize( ("sample", "types", "expected"), [ ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBoxes,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Mask,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBoxes), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBoxes, datapoints.Mask), True), ((MASK,), (datapoints.Image, datapoints.BoundingBoxes), False), ((BOUNDING_BOX,), (datapoints.Image, datapoints.Mask), False), ((IMAGE,), (datapoints.BoundingBoxes, datapoints.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBoxes, datapoints.Mask), True, ), ((), (datapoints.Image, datapoints.BoundingBoxes, datapoints.Mask), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda obj: isinstance(obj, datapoints.Image),), True), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: False,), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: True,), True), ((IMAGE,), (datapoints.Image, PIL.Image.Image, torchvision.transforms.v2._utils.is_pure_tensor), True), ( (torch.Tensor(IMAGE),), (datapoints.Image, PIL.Image.Image, torchvision.transforms.v2._utils.is_pure_tensor), True, ), ( (to_pil_image(IMAGE),), (datapoints.Image, PIL.Image.Image, torchvision.transforms.v2._utils.is_pure_tensor), True, ), ], ) def test_has_any(sample, types, expected): assert has_any(sample, *types) is expected @pytest.mark.parametrize( ("sample", "types", "expected"), [ ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBoxes,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Mask,), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBoxes), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), True), ((IMAGE, BOUNDING_BOX, MASK), (datapoints.BoundingBoxes, datapoints.Mask), True), ( (IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBoxes, datapoints.Mask), True, ), ((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBoxes), False), ((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.Mask), False), ((IMAGE, MASK), (datapoints.BoundingBoxes, datapoints.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBoxes, datapoints.Mask), True, ), ((BOUNDING_BOX, MASK), (datapoints.Image, datapoints.BoundingBoxes, datapoints.Mask), False), ((IMAGE, MASK), (datapoints.Image, datapoints.BoundingBoxes, datapoints.Mask), False), ((IMAGE, BOUNDING_BOX), (datapoints.Image, datapoints.BoundingBoxes, datapoints.Mask), False), ( (IMAGE, BOUNDING_BOX, MASK), (lambda obj: isinstance(obj, (datapoints.Image, datapoints.BoundingBoxes, datapoints.Mask)),), True, ), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: False,), False), ((IMAGE, BOUNDING_BOX, MASK), (lambda _: True,), True), ], ) def test_has_all(sample, types, expected): assert has_all(sample, *types) is expected
"""Test ChatDeepSeek chat model.""" from __future__ import annotations from typing import Optional import pytest from langchain_core.language_models import BaseChatModel from langchain_core.messages import AIMessageChunk, BaseMessageChunk from langchain_core.tools import BaseTool from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_deepseek.chat_models import ChatDeepSeek class TestChatDeepSeek(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[ChatDeepSeek]: return ChatDeepSeek @property def chat_model_params(self) -> dict: # These should be parameters used to initialize your integration for testing return { "model": "deepseek-chat", "temperature": 0, } @property def supports_json_mode(self) -> bool: """(bool) whether the chat model supports JSON mode.""" return True @pytest.mark.xfail(reason="Not yet supported.") def test_tool_message_histories_list_content( self, model: BaseChatModel, my_adder_tool: BaseTool, ) -> None: super().test_tool_message_histories_list_content(model, my_adder_tool) @pytest.mark.xfail(reason="Takes > 30s to run.") def test_reasoning_content() -> None: """Test reasoning content.""" chat_model = ChatDeepSeek(model="deepseek-reasoner") response = chat_model.invoke("What is 3^3?") assert response.content assert response.additional_kwargs["reasoning_content"] raise ValueError @pytest.mark.xfail(reason="Takes > 30s to run.") def test_reasoning_content_streaming() -> None: chat_model = ChatDeepSeek(model="deepseek-reasoner") full: Optional[BaseMessageChunk] = None for chunk in chat_model.stream("What is 3^3?"): full = chunk if full is None else full + chunk assert isinstance(full, AIMessageChunk) assert full.additional_kwargs["reasoning_content"]
"""Test ChatDeepSeek chat model.""" from typing import Optional import pytest from langchain_core.language_models import BaseChatModel from langchain_core.messages import AIMessageChunk, BaseMessageChunk from langchain_core.tools import BaseTool from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_deepseek.chat_models import ChatDeepSeek class TestChatDeepSeek(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[ChatDeepSeek]: return ChatDeepSeek @property def chat_model_params(self) -> dict: # These should be parameters used to initialize your integration for testing return { "model": "deepseek-chat", "temperature": 0, } @property def supports_json_mode(self) -> bool: """(bool) whether the chat model supports JSON mode.""" return True @pytest.mark.xfail(reason="Not yet supported.") def test_tool_message_histories_list_content( self, model: BaseChatModel, my_adder_tool: BaseTool ) -> None: super().test_tool_message_histories_list_content(model, my_adder_tool) @pytest.mark.xfail(reason="Takes > 30s to run.") def test_reasoning_content() -> None: """Test reasoning content.""" chat_model = ChatDeepSeek(model="deepseek-reasoner") response = chat_model.invoke("What is 3^3?") assert response.content assert response.additional_kwargs["reasoning_content"] raise ValueError() @pytest.mark.xfail(reason="Takes > 30s to run.") def test_reasoning_content_streaming() -> None: chat_model = ChatDeepSeek(model="deepseek-reasoner") full: Optional[BaseMessageChunk] = None for chunk in chat_model.stream("What is 3^3?"): full = chunk if full is None else full + chunk assert isinstance(full, AIMessageChunk) assert full.additional_kwargs["reasoning_content"]
from typing import TYPE_CHECKING from backend.integrations.oauth.todoist import TodoistOAuthHandler from .github import GitHubOAuthHandler from .google import GoogleOAuthHandler from .linear import LinearOAuthHandler from .notion import NotionOAuthHandler from .twitter import TwitterOAuthHandler if TYPE_CHECKING: from ..providers import ProviderName from .base import BaseOAuthHandler # --8<-- [start:HANDLERS_BY_NAMEExample] HANDLERS_BY_NAME: dict["ProviderName", type["BaseOAuthHandler"]] = { handler.PROVIDER_NAME: handler for handler in [ GitHubOAuthHandler, GoogleOAuthHandler, NotionOAuthHandler, TwitterOAuthHandler, LinearOAuthHandler, TodoistOAuthHandler, ] } # --8<-- [end:HANDLERS_BY_NAMEExample] __all__ = ["HANDLERS_BY_NAME"]
from typing import TYPE_CHECKING from .github import GitHubOAuthHandler from .google import GoogleOAuthHandler from .linear import LinearOAuthHandler from .notion import NotionOAuthHandler from .twitter import TwitterOAuthHandler if TYPE_CHECKING: from ..providers import ProviderName from .base import BaseOAuthHandler # --8<-- [start:HANDLERS_BY_NAMEExample] HANDLERS_BY_NAME: dict["ProviderName", type["BaseOAuthHandler"]] = { handler.PROVIDER_NAME: handler for handler in [ GitHubOAuthHandler, GoogleOAuthHandler, NotionOAuthHandler, TwitterOAuthHandler, LinearOAuthHandler, ] } # --8<-- [end:HANDLERS_BY_NAMEExample] __all__ = ["HANDLERS_BY_NAME"]
import logging from datasets import load_dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEmbeddingSimilarityEvaluator, SparseEncoder, SpladePooling, ) logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Load the STSB dataset (https://huggingface.co/datasets/sentence-transformers/stsb) eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") # Initialize the evaluator dev_evaluator = SparseEmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], name="sts_dev", ) results = dev_evaluator(model) # Print the results print(f"Primary metric: {dev_evaluator.primary_metric}") print(f"Primary metric value: {results[dev_evaluator.primary_metric]:.4f}")
from datasets import load_dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEmbeddingSimilarityEvaluator, SparseEncoder, SpladePooling, ) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Load the STSB dataset (https://huggingface.co/datasets/sentence-transformers/stsb) eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") # Initialize the evaluator dev_evaluator = SparseEmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], name="sts_dev", ) results = dev_evaluator(model) print(dev_evaluator.primary_metric) print(results[dev_evaluator.primary_metric])
_base_ = './fovea_r50_fpn_4xb4-1x_coco.py' model = dict( bbox_head=dict( with_deform=True, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # learning policy max_epochs = 24 param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs)
_base_ = './fovea_r50_fpn_4x4_1x_coco.py' model = dict( bbox_head=dict( with_deform=True, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # learning policy max_epochs = 24 param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs)
_base_ = './faster-rcnn_r50-caffe_fpn_ms-1x_coco.py' # learning policy lr_config = dict(step=[16, 23]) runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py' # learning policy lr_config = dict(step=[16, 23]) runner = dict(type='EpochBasedRunner', max_epochs=24)
from PIL import Image from sentence_transformers import SentenceTransformer, models, util ########### image = Image.open("two_dogs_in_snow.jpg") from transformers import CLIPModel, CLIPProcessor model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") inputs = processor(text=["a cat", "a dog"], images=[image], return_tensors="pt", padding=True) output = model(**inputs) # vision_outputs = model.vision_model(pixel_values=inputs['pixel_values']) # image_embeds = model.visual_projection(vision_outputs[1]) # print(image_embeds.shape) # exit() # Load CLIP model clip = models.CLIPModel() model = SentenceTransformer(modules=[clip]) model.save("tmp-clip-model") model = SentenceTransformer("tmp-clip-model") # Encode an image: img_emb = model.encode(Image.open("two_dogs_in_snow.jpg")) # Encode text descriptions text_emb = model.encode(["Two dogs in the snow", "A cat on a table", "A picture of London at night"]) # Compute cosine similarities cos_scores = util.cos_sim(img_emb, text_emb) print(cos_scores)
from PIL import Image from sentence_transformers import SentenceTransformer, models, util ########### image = Image.open("two_dogs_in_snow.jpg") from transformers import CLIPModel, CLIPProcessor model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") inputs = processor(texts=["a cat", "a dog"], images=[image], return_tensors="pt", padding=True) output = model(**inputs) # vision_outputs = model.vision_model(pixel_values=inputs['pixel_values']) # image_embeds = model.visual_projection(vision_outputs[1]) # print(image_embeds.shape) # exit() # Load CLIP model clip = models.CLIPModel() model = SentenceTransformer(modules=[clip]) model.save("tmp-clip-model") model = SentenceTransformer("tmp-clip-model") # Encode an image: img_emb = model.encode(Image.open("two_dogs_in_snow.jpg")) # Encode text descriptions text_emb = model.encode(["Two dogs in the snow", "A cat on a table", "A picture of London at night"]) # Compute cosine similarities cos_scores = util.cos_sim(img_emb, text_emb) print(cos_scores)
from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.url.url_3d.url_3d import Url3D if TYPE_CHECKING: from docarray.documents.point_cloud.points_and_colors import PointsAndColors T = TypeVar('T', bound='PointCloud3DUrl') @_register_proto(proto_type_name='point_cloud_url') class PointCloud3DUrl(Url3D): """ URL to a file containing point cloud information. Can be remote (web) URL, or a local file path. """ def load( self: T, samples: int, multiple_geometries: bool = False, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> 'PointsAndColors': """ Load the data from the url into an NdArray containing point cloud information. --- ```python import numpy as np from docarray import BaseDoc from docarray.typing import PointCloud3DUrl class MyDoc(BaseDoc): point_cloud_url: PointCloud3DUrl doc = MyDoc(point_cloud_url="toydata/tetrahedron.obj") # point_cloud = doc.point_cloud_url.load(samples=100) # assert isinstance(point_cloud, np.ndarray) # assert point_cloud.shape == (100, 3) ``` --- :param samples: number of points to sample from the mesh :param multiple_geometries: if False, store point cloud in 2D np.ndarray. If True, store point clouds from multiple geometries in 3D np.ndarray. :param skip_materials: Skip materials if True, else load. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: np.ndarray representing the point cloud """ from docarray.documents.point_cloud.points_and_colors import PointsAndColors if not trimesh_args: trimesh_args = {} if multiple_geometries: # try to coerce everything into a scene scene = self._load_trimesh_instance( force='scene', skip_materials=skip_materials, **trimesh_args ) point_cloud = np.stack( [np.array(geo.sample(samples)) for geo in scene.geometry.values()], axis=0, ) else: # combine a scene into a single mesh mesh = self._load_trimesh_instance(force='mesh', **trimesh_args) point_cloud = np.array(mesh.sample(samples)) points = parse_obj_as(NdArray, point_cloud) return PointsAndColors(points=points, colors=None) def display( self, samples: int = 10000, ) -> None: """ Plot point cloud from url. First, it loads the point cloud into a :class:`PointsAndColors` object, and then calls display on it. The following is therefore equivalent: .. code-block:: python import numpy as np from docarray import BaseDoc from docarray.documents import PointCloud3D pc = PointCloud3D("toydata/tetrahedron.obj") # option 1 pc.url.display() # option 2 (equivalent) pc.url.load(samples=10000).display() :param samples: number of points to sample from the mesh. """ self.load(samples=samples, skip_materials=False).display()
from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.url.url_3d.url_3d import Url3D if TYPE_CHECKING: from docarray.documents.point_cloud.points_and_colors import PointsAndColors T = TypeVar('T', bound='PointCloud3DUrl') @_register_proto(proto_type_name='point_cloud_url') class PointCloud3DUrl(Url3D): """ URL to a .obj, .glb, or .ply file containing point cloud information. Can be remote (web) URL, or a local file path. """ def load( self: T, samples: int, multiple_geometries: bool = False, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> 'PointsAndColors': """ Load the data from the url into an NdArray containing point cloud information. --- ```python import numpy as np from docarray import BaseDoc from docarray.typing import PointCloud3DUrl class MyDoc(BaseDoc): point_cloud_url: PointCloud3DUrl doc = MyDoc(point_cloud_url="toydata/tetrahedron.obj") # point_cloud = doc.point_cloud_url.load(samples=100) # assert isinstance(point_cloud, np.ndarray) # assert point_cloud.shape == (100, 3) ``` --- :param samples: number of points to sample from the mesh :param multiple_geometries: if False, store point cloud in 2D np.ndarray. If True, store point clouds from multiple geometries in 3D np.ndarray. :param skip_materials: Skip materials if True, else load. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: np.ndarray representing the point cloud """ from docarray.documents.point_cloud.points_and_colors import PointsAndColors if not trimesh_args: trimesh_args = {} if multiple_geometries: # try to coerce everything into a scene scene = self._load_trimesh_instance( force='scene', skip_materials=skip_materials, **trimesh_args ) point_cloud = np.stack( [np.array(geo.sample(samples)) for geo in scene.geometry.values()], axis=0, ) else: # combine a scene into a single mesh mesh = self._load_trimesh_instance(force='mesh', **trimesh_args) point_cloud = np.array(mesh.sample(samples)) points = parse_obj_as(NdArray, point_cloud) return PointsAndColors(points=points, colors=None) def display( self, samples: int = 10000, ) -> None: """ Plot point cloud from url. First, it loads the point cloud into a :class:`PointsAndColors` object, and then calls display on it. The following is therefore equivalent: .. code-block:: python import numpy as np from docarray import BaseDoc from docarray.documents import PointCloud3D pc = PointCloud3D("toydata/tetrahedron.obj") # option 1 pc.url.display() # option 2 (equivalent) pc.url.load(samples=10000).display() :param samples: number of points to sample from the mesh. """ self.load(samples=samples, skip_materials=False).display()
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import GoogleSerperResults, GoogleSerperRun """Google Serper API Toolkit.""" """Tool for the Serer.dev Google Search API.""" # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GoogleSerperRun": "langchain_community.tools", "GoogleSerperResults": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GoogleSerperResults", "GoogleSerperRun", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import GoogleSerperResults, GoogleSerperRun """Google Serper API Toolkit.""" """Tool for the Serer.dev Google Search API.""" # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GoogleSerperRun": "langchain_community.tools", "GoogleSerperResults": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GoogleSerperRun", "GoogleSerperResults", ]
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any from sentence_transformers.evaluation import TranslationEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseTranslationEvaluator(TranslationEvaluator): def __init__( self, source_sentences: list[str], target_sentences: list[str], show_progress_bar: bool = False, batch_size: int = 16, name: str = "", print_wrong_matches: bool = False, write_csv: bool = True, truncate_dim: int | None = None, ): return super().__init__( source_sentences, target_sentences, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, print_wrong_matches=print_wrong_matches, write_csv=write_csv, truncate_dim=truncate_dim, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model, output_path=output_path, epoch=epoch, steps=steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> list[Tensor]: return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any from sentence_transformers.evaluation import TranslationEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseTranslationEvaluator(TranslationEvaluator): def __init__( self, source_sentences: list[str], target_sentences: list[str], show_progress_bar: bool = False, batch_size: int = 16, name: str = "", print_wrong_matches: bool = False, write_csv: bool = True, truncate_dim: int | None = None, ): super().__init__( source_sentences, target_sentences, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, print_wrong_matches=print_wrong_matches, write_csv=write_csv, truncate_dim=truncate_dim, ) assert len(self.source_sentences) == len(self.target_sentences) if name: name = "_" + name self.csv_file = "translation_evaluation" + name + "_results.csv" self.csv_headers = ["epoch", "steps", "src2trg", "trg2src"] self.primary_metric = "mean_accuracy" def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model, output_path, epoch, steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> list[Tensor]: return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch, step)
"""Standard LangChain interface tests""" import base64 from pathlib import Path from typing import Literal, cast import httpx import pytest from langchain_core.language_models import BaseChatModel from langchain_core.messages import AIMessage, HumanMessage from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_openai import ChatOpenAI REPO_ROOT_DIR = Path(__file__).parents[6] class TestOpenAIStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatOpenAI @property def chat_model_params(self) -> dict: return {"model": "gpt-4o-mini", "stream_usage": True} @property def supports_image_inputs(self) -> bool: return True @property def supports_image_urls(self) -> bool: return True @property def supports_json_mode(self) -> bool: return True @property def supports_anthropic_inputs(self) -> bool: return True @property def supported_usage_metadata_details( self, ) -> dict[ Literal["invoke", "stream"], list[ Literal[ "audio_input", "audio_output", "reasoning_output", "cache_read_input", "cache_creation_input", ] ], ]: return {"invoke": ["reasoning_output", "cache_read_input"], "stream": []} def invoke_with_cache_read_input(self, *, stream: bool = False) -> AIMessage: with open(REPO_ROOT_DIR / "README.md") as f: readme = f.read() input_ = f"""What's langchain? Here's the langchain README: {readme} """ llm = ChatOpenAI(model="gpt-4o-mini", stream_usage=True) _invoke(llm, input_, stream) # invoke twice so first invocation is cached return _invoke(llm, input_, stream) def invoke_with_reasoning_output(self, *, stream: bool = False) -> AIMessage: llm = ChatOpenAI(model="o1-mini", stream_usage=True, temperature=1) input_ = ( "explain the relationship between the 2008/9 economic crisis and the " "startup ecosystem in the early 2010s" ) return _invoke(llm, input_, stream) @property def supports_pdf_inputs(self) -> bool: # OpenAI requires a filename for PDF inputs # For now, we test with filename in OpenAI-specific tests return False def test_openai_pdf_inputs(self, model: BaseChatModel) -> None: """Test that the model can process PDF inputs.""" url = "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf" pdf_data = base64.b64encode(httpx.get(url).content).decode("utf-8") message = HumanMessage( [ {"type": "text", "text": "Summarize this document:"}, { "type": "file", "source_type": "base64", "mime_type": "application/pdf", "data": pdf_data, "filename": "my-pdf", # OpenAI requires a filename }, ] ) _ = model.invoke([message]) def _invoke(llm: ChatOpenAI, input_: str, stream: bool) -> AIMessage: if stream: full = None for chunk in llm.stream(input_): full = full + chunk if full else chunk # type: ignore[operator] return cast(AIMessage, full) else: return cast(AIMessage, llm.invoke(input_)) @pytest.mark.skip() # Test either finishes in 5 seconds or 5 minutes. def test_audio_model() -> None: class AudioModelTests(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[ChatOpenAI]: return ChatOpenAI @property def chat_model_params(self) -> dict: return { "model": "gpt-4o-audio-preview", "temperature": 0, "model_kwargs": { "modalities": ["text", "audio"], "audio": {"voice": "alloy", "format": "wav"}, }, } @property def supports_audio_inputs(self) -> bool: return True test_instance = AudioModelTests() model = test_instance.chat_model_class(**test_instance.chat_model_params) AudioModelTests().test_audio_inputs(model)
"""Standard LangChain interface tests""" import base64 from pathlib import Path from typing import Literal, cast import httpx from langchain_core.language_models import BaseChatModel from langchain_core.messages import AIMessage, HumanMessage from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_openai import ChatOpenAI REPO_ROOT_DIR = Path(__file__).parents[6] class TestOpenAIStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatOpenAI @property def chat_model_params(self) -> dict: return {"model": "gpt-4o-mini", "stream_usage": True} @property def supports_image_inputs(self) -> bool: return True @property def supports_image_urls(self) -> bool: return True @property def supports_json_mode(self) -> bool: return True @property def supports_anthropic_inputs(self) -> bool: return True @property def supported_usage_metadata_details( self, ) -> dict[ Literal["invoke", "stream"], list[ Literal[ "audio_input", "audio_output", "reasoning_output", "cache_read_input", "cache_creation_input", ] ], ]: return {"invoke": ["reasoning_output", "cache_read_input"], "stream": []} def invoke_with_cache_read_input(self, *, stream: bool = False) -> AIMessage: with open(REPO_ROOT_DIR / "README.md") as f: readme = f.read() input_ = f"""What's langchain? Here's the langchain README: {readme} """ llm = ChatOpenAI(model="gpt-4o-mini", stream_usage=True) _invoke(llm, input_, stream) # invoke twice so first invocation is cached return _invoke(llm, input_, stream) def invoke_with_reasoning_output(self, *, stream: bool = False) -> AIMessage: llm = ChatOpenAI(model="o1-mini", stream_usage=True, temperature=1) input_ = ( "explain the relationship between the 2008/9 economic crisis and the " "startup ecosystem in the early 2010s" ) return _invoke(llm, input_, stream) @property def supports_pdf_inputs(self) -> bool: # OpenAI requires a filename for PDF inputs # For now, we test with filename in OpenAI-specific tests return False def test_openai_pdf_inputs(self, model: BaseChatModel) -> None: """Test that the model can process PDF inputs.""" url = "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf" pdf_data = base64.b64encode(httpx.get(url).content).decode("utf-8") message = HumanMessage( [ {"type": "text", "text": "Summarize this document:"}, { "type": "file", "source_type": "base64", "mime_type": "application/pdf", "data": pdf_data, "filename": "my-pdf", # OpenAI requires a filename }, ] ) _ = model.invoke([message]) def _invoke(llm: ChatOpenAI, input_: str, stream: bool) -> AIMessage: if stream: full = None for chunk in llm.stream(input_): full = full + chunk if full else chunk # type: ignore[operator] return cast(AIMessage, full) else: return cast(AIMessage, llm.invoke(input_))
from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.url.url_3d.url_3d import Url3D if TYPE_CHECKING: from docarray.documents.point_cloud.points_and_colors import PointsAndColors T = TypeVar('T', bound='PointCloud3DUrl') @_register_proto(proto_type_name='point_cloud_url') class PointCloud3DUrl(Url3D): """ URL to a .obj, .glb, or .ply file containing point cloud information. Can be remote (web) URL, or a local file path. """ def load( self: T, samples: int, multiple_geometries: bool = False, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> 'PointsAndColors': """ Load the data from the url into an NdArray containing point cloud information. --- ```python import numpy as np from docarray import BaseDoc from docarray.typing import PointCloud3DUrl class MyDoc(BaseDoc): point_cloud_url: PointCloud3DUrl doc = MyDoc(point_cloud_url="toydata/tetrahedron.obj") # point_cloud = doc.point_cloud_url.load(samples=100) # assert isinstance(point_cloud, np.ndarray) # assert point_cloud.shape == (100, 3) ``` --- :param samples: number of points to sample from the mesh :param multiple_geometries: if False, store point cloud in 2D np.ndarray. If True, store point clouds from multiple geometries in 3D np.ndarray. :param skip_materials: Skip materials if True, else load. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: np.ndarray representing the point cloud """ from docarray.documents.point_cloud.points_and_colors import PointsAndColors if not trimesh_args: trimesh_args = {} if multiple_geometries: # try to coerce everything into a scene scene = self._load_trimesh_instance( force='scene', skip_materials=skip_materials, **trimesh_args ) point_cloud = np.stack( [np.array(geo.sample(samples)) for geo in scene.geometry.values()], axis=0, ) else: # combine a scene into a single mesh mesh = self._load_trimesh_instance(force='mesh', **trimesh_args) point_cloud = np.array(mesh.sample(samples)) points = parse_obj_as(NdArray, point_cloud) return PointsAndColors(points=points, colors=None) def display( self, samples: int = 10000, ) -> None: """ Plot point cloud from url. First, it loads the point cloud into a :class:`PointsAndColors` object, and then calls display on it. The following is therefore equivalent: .. code-block:: python import numpy as np from docarray import BaseDoc from docarray.documents import PointCloud3D pc = PointCloud3D("toydata/tetrahedron.obj") # option 1 pc.url.display() # option 2 (equivalent) pc.url.load(samples=10000).display() :param samples: number of points to sample from the mesh. """ self.load(samples=samples, skip_materials=False).display()
from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.url.url_3d.url_3d import Url3D if TYPE_CHECKING: from docarray.documents.point_cloud.points_and_colors import PointsAndColors T = TypeVar('T', bound='PointCloud3DUrl') @_register_proto(proto_type_name='point_cloud_url') class PointCloud3DUrl(Url3D): """ URL to a .obj, .glb, or .ply file containing point cloud information. Can be remote (web) URL, or a local file path. """ def load( self: T, samples: int, multiple_geometries: bool = False, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> 'PointsAndColors': """ Load the data from the url into an NdArray containing point cloud information. --- ```python import numpy as np from docarray import BaseDoc from docarray.typing import PointCloud3DUrl class MyDoc(BaseDoc): point_cloud_url: PointCloud3DUrl doc = MyDoc(point_cloud_url="toydata/tetrahedron.obj") # point_cloud = doc.point_cloud_url.load(samples=100) # assert isinstance(point_cloud, np.ndarray) # assert point_cloud.shape == (100, 3) ``` --- :param samples: number of points to sample from the mesh :param multiple_geometries: if False, store point cloud in 2D np.ndarray. If True, store point clouds from multiple geometries in 3D np.ndarray. :param skip_materials: Skip materials if True, else load. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: np.ndarray representing the point cloud """ from docarray.documents.point_cloud.points_and_colors import PointsAndColors if not trimesh_args: trimesh_args = {} if multiple_geometries: # try to coerce everything into a scene scene = self._load_trimesh_instance( force='scene', skip_materials=skip_materials, **trimesh_args ) point_cloud = np.stack( [np.array(geo.sample(samples)) for geo in scene.geometry.values()], axis=0, ) else: # combine a scene into a single mesh mesh = self._load_trimesh_instance(force='mesh', **trimesh_args) point_cloud = np.array(mesh.sample(samples)) points = parse_obj_as(NdArray, point_cloud) return PointsAndColors(points=points, colors=None) def display( self, samples: int = 10000, ) -> None: """ Plot point cloud from url. To use this you need to install trimesh[easy]: `pip install 'trimesh[easy]'`. First, it loads the point cloud into a :class:`PointsAndColors` object, and then calls display on it. The following is therefore equivalent: .. code-block:: python import numpy as np from docarray import BaseDoc from docarray.documents import PointCloud3D pc = PointCloud3D("toydata/tetrahedron.obj") # option 1 pc.url.display() # option 2 (equivalent) pc.url.load(samples=10000).display() :param samples: number of points to sample from the mesh. """ self.load(samples=samples, skip_materials=False).display()
import json import os import subprocess import pytest from jina.checker import NetworkChecker from jina.jaml import JAML from jina.orchestrate.pods.factory import PodFactory from jina.parsers import set_deployment_parser from jina.parsers.ping import set_ping_parser from jina_cli.autocomplete import ac_table from jina_cli.export import api_to_dict from jina_cli.lookup import _build_lookup_table, lookup_and_print from tests.helper import _generate_pod_args def test_export_api(tmpdir): with open(tmpdir / 'test.yml', 'w', encoding='utf8') as fp: JAML.dump(api_to_dict(), fp) with open(tmpdir / 'test.json', 'w', encoding='utf8') as fp: json.dump(api_to_dict(), fp) @pytest.mark.parametrize('cli', ac_table['commands']) def test_help_lookup(cli, capsys): nkw2kw, kw2info = _build_lookup_table() if cli not in {'--help', '--version', '--version-full'}: assert cli in nkw2kw lookup_and_print(cli) captured = capsys.readouterr() assert 'Traceback (most recent call last)' not in captured.out def test_main_cli(): subprocess.check_call(['jina']) def test_cli_help(): subprocess.check_call(['jina', 'help', 'deployment']) @pytest.mark.parametrize( 'uses', ['jinaai://jina-ai/DummyHubExecutor'] ) def test_cli_hub(uses): subprocess.check_call(['jina', 'hub', '--help']) for cmd in ['new', 'status', 'pull', 'push']: subprocess.check_call(['jina', 'hub', cmd, '--help']) subprocess.check_call(['jina', 'hub', 'pull', uses]) def test_cli_warn_unknown_args(): subprocess.check_call(['jina', 'help', 'deployment', '--abcdefg']) @pytest.mark.parametrize('cli', ac_table['commands']) def test_all_cli(cli): subprocess.check_call(['jina', cli, '--help']) @pytest.mark.parametrize('smethod', ['fork', 'spawn']) def test_all_start_method(smethod): s = subprocess.check_output( ['jina', '-v'], env=dict(os.environ, JINA_MP_START_METHOD=smethod), stderr=subprocess.STDOUT, ) assert 'UserWarning' in s.decode() assert smethod in s.decode() def test_help_non_exist(): s = subprocess.check_output( ['jina', 'help', 'abcdefg'], stderr=subprocess.STDOUT, ) assert 'misspelling' in s.decode() def test_help_exist(): s = subprocess.check_output( ['jina', 'help', 'port'], stderr=subprocess.STDOUT, ) assert 'a CLI argument of Jina' in s.decode() def test_parse_env_map(): a = set_deployment_parser().parse_args( ['--env', 'key1=value1', '--env', 'key2=value2'] ) assert a.env == {'key1': 'value1', 'key2': 'value2'} a = set_deployment_parser().parse_args( ['--env', 'key1=value1', 'key2=value2', 'key3=3'] ) assert a.env == {'key1': 'value1', 'key2': 'value2', 'key3': 3} @pytest.mark.slow def test_ping(): a1 = _generate_pod_args() a2 = set_ping_parser().parse_args(['executor', f'0.0.0.0:{a1.port[0]}']) a3 = set_ping_parser().parse_args( ['executor', f'0.0.0.1:{a1.port[0]}', '--timeout', '1000'] ) with pytest.raises(SystemExit) as cm: with PodFactory.build_pod(a1): NetworkChecker(a2) assert cm.value.code == 0 # test with bad address with pytest.raises(SystemExit) as cm: with PodFactory.build_pod(a1): NetworkChecker(a3) assert cm.value.code == 1 @pytest.mark.parametrize( 'cmd', [ ['jina', 'ping', 'flow', '127.0.0.1:8080'], ['jina', 'help', 'port'], ['jina', 'hub'], ], ) def test_logo_silence(cmd): from jina.constants import __resources_path__ with open(os.path.join(__resources_path__, 'jina.logo')) as fp: logo_str = fp.read() s = subprocess.run( cmd, stdout=subprocess.PIPE, ) assert logo_str not in s.stdout.decode()
import json import os import subprocess import pytest from jina.checker import NetworkChecker from jina.jaml import JAML from jina.orchestrate.pods.factory import PodFactory from jina.parsers import set_deployment_parser from jina.parsers.ping import set_ping_parser from jina_cli.autocomplete import ac_table from jina_cli.export import api_to_dict from jina_cli.lookup import _build_lookup_table, lookup_and_print from tests.helper import _generate_pod_args def test_export_api(tmpdir): with open(tmpdir / 'test.yml', 'w', encoding='utf8') as fp: JAML.dump(api_to_dict(), fp) with open(tmpdir / 'test.json', 'w', encoding='utf8') as fp: json.dump(api_to_dict(), fp) @pytest.mark.parametrize('cli', ac_table['commands']) def test_help_lookup(cli, capsys): nkw2kw, kw2info = _build_lookup_table() if cli not in {'--help', '--version', '--version-full'}: assert cli in nkw2kw lookup_and_print(cli) captured = capsys.readouterr() assert 'Traceback (most recent call last)' not in captured.out def test_main_cli(): subprocess.check_call(['jina']) def test_cli_help(): subprocess.check_call(['jina', 'help', 'deployment']) @pytest.mark.parametrize( 'uses', ['jinaai://jina-ai/DummyHubExecutor'] ) def test_cli_hub(uses): subprocess.check_call(['jina', 'hub', '--help']) for cmd in ['new', 'status', 'pull', 'push']: subprocess.check_call(['jina', 'hub', cmd, '--help']) subprocess.check_call(['jina', 'hub', 'pull', uses]) def test_cli_warn_unknown_args(): subprocess.check_call(['jina', 'help', 'deployment', '--abcdefg']) @pytest.mark.parametrize('cli', ac_table['commands']) def test_all_cli(cli): subprocess.check_call(['jina', cli, '--help']) @pytest.mark.parametrize('smethod', ['fork', 'spawn']) def test_all_start_method(smethod): s = subprocess.check_output( ['jina', '-v'], env=dict(os.environ, JINA_MP_START_METHOD=smethod), stderr=subprocess.STDOUT, ) assert 'UserWarning' in s.decode() assert smethod in s.decode() def test_help_non_exist(): s = subprocess.check_output( ['jina', 'help', 'abcdefg'], stderr=subprocess.STDOUT, ) assert 'misspelling' in s.decode() def test_help_exist(): s = subprocess.check_output( ['jina', 'help', 'port'], stderr=subprocess.STDOUT, ) assert 'a CLI argument of Jina' in s.decode() def test_parse_env_map(): a = set_deployment_parser().parse_args( ['--env', 'key1=value1', '--env', 'key2=value2'] ) assert a.env == {'key1': 'value1', 'key2': 'value2'} a = set_deployment_parser().parse_args( ['--env', 'key1=value1', 'key2=value2', 'key3=3'] ) assert a.env == {'key1': 'value1', 'key2': 'value2', 'key3': 3} @pytest.mark.slow def test_ping(): a1 = _generate_pod_args() a2 = set_ping_parser().parse_args(['executor', f'0.0.0.0:{a1.port}']) a3 = set_ping_parser().parse_args( ['executor', f'0.0.0.1:{a1.port}', '--timeout', '1000'] ) with pytest.raises(SystemExit) as cm: with PodFactory.build_pod(a1): NetworkChecker(a2) assert cm.value.code == 0 # test with bad address with pytest.raises(SystemExit) as cm: with PodFactory.build_pod(a1): NetworkChecker(a3) assert cm.value.code == 1 @pytest.mark.parametrize( 'cmd', [ ['jina', 'ping', 'flow', '127.0.0.1:8080'], ['jina', 'help', 'port'], ['jina', 'hub'], ], ) def test_logo_silence(cmd): from jina.constants import __resources_path__ with open(os.path.join(__resources_path__, 'jina.logo')) as fp: logo_str = fp.read() s = subprocess.run( cmd, stdout=subprocess.PIPE, ) assert logo_str not in s.stdout.decode()
# Copyright (c) OpenMMLab. All rights reserved. from .checkpoint_hook import CheckpointHook from .ema_hook import EMAHook from .empty_cache_hook import EmptyCacheHook from .hook import Hook from .iter_timer_hook import IterTimerHook from .logger_hook import LoggerHook from .naive_visualization_hook import NaiveVisualizationHook from .param_scheduler_hook import ParamSchedulerHook from .profiler_hook import ProfilerHook from .runtime_info_hook import RuntimeInfoHook from .sampler_seed_hook import DistSamplerSeedHook from .sync_buffer_hook import SyncBuffersHook from .test_time_aug_hook import PrepareTTAHook __all__ = [ 'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook', 'SyncBuffersHook', 'EmptyCacheHook', 'CheckpointHook', 'LoggerHook', 'NaiveVisualizationHook', 'EMAHook', 'RuntimeInfoHook', 'ProfilerHook', 'PrepareTTAHook' ]
# Copyright (c) OpenMMLab. All rights reserved. from .checkpoint_hook import CheckpointHook from .ema_hook import EMAHook from .empty_cache_hook import EmptyCacheHook from .hook import Hook from .iter_timer_hook import IterTimerHook from .logger_hook import LoggerHook from .naive_visualization_hook import NaiveVisualizationHook from .param_scheduler_hook import ParamSchedulerHook from .profiler_hook import ProfilerHook from .runtime_info_hook import RuntimeInfoHook from .sampler_seed_hook import DistSamplerSeedHook from .sync_buffer_hook import SyncBuffersHook __all__ = [ 'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook', 'SyncBuffersHook', 'EmptyCacheHook', 'CheckpointHook', 'LoggerHook', 'NaiveVisualizationHook', 'EMAHook', 'RuntimeInfoHook', 'ProfilerHook' ]
from __future__ import annotations from collections.abc import Iterable from typing import TYPE_CHECKING from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SequentialEvaluator(SentenceEvaluator): """ This evaluator allows that multiple sub-evaluators are passed. When the model is evaluated, the data is passed sequentially to all sub-evaluators. All scores are passed to 'main_score_function', which derives one final score value Args: evaluators (Iterable[SentenceEvaluator]): A collection of SentenceEvaluator objects. main_score_function (function, optional): A function that takes a list of scores and returns the main score. Defaults to selecting the last score in the list. Example: :: evaluator1 = BinaryClassificationEvaluator(...) evaluator2 = InformationRetrievalEvaluator(...) evaluator3 = MSEEvaluator(...) seq_evaluator = SequentialEvaluator([evaluator1, evaluator2, evaluator3]) """ def __init__(self, evaluators: Iterable[SentenceEvaluator], main_score_function=lambda scores: scores[-1]): super().__init__() self.evaluators = evaluators self.main_score_function = main_score_function def __call__( self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: evaluations = [] scores = [] for evaluator_idx, evaluator in enumerate(self.evaluators): evaluation = evaluator(model, output_path, epoch, steps) if not isinstance(evaluation, dict): scores.append(evaluation) evaluation = {f"evaluator_{evaluator_idx}": evaluation} else: if hasattr(evaluator, "primary_metric"): scores.append(evaluation[evaluator.primary_metric]) else: scores.append(evaluation[list(evaluation.keys())[0]]) evaluations.append(evaluation) self.primary_metric = "sequential_score" main_score = self.main_score_function(scores) results = {key: value for evaluation in evaluations for key, value in evaluation.items()} results["sequential_score"] = main_score return results
from __future__ import annotations from collections.abc import Iterable from typing import TYPE_CHECKING from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SequentialEvaluator(SentenceEvaluator): """ This evaluator allows that multiple sub-evaluators are passed. When the model is evaluated, the data is passed sequentially to all sub-evaluators. All scores are passed to 'main_score_function', which derives one final score value """ def __init__(self, evaluators: Iterable[SentenceEvaluator], main_score_function=lambda scores: scores[-1]): """ Initializes a SequentialEvaluator object. Args: evaluators (Iterable[SentenceEvaluator]): A collection of SentenceEvaluator objects. main_score_function (function, optional): A function that takes a list of scores and returns the main score. Defaults to selecting the last score in the list. Example: :: evaluator1 = BinaryClassificationEvaluator(...) evaluator2 = InformationRetrievalEvaluator(...) evaluator3 = MSEEvaluator(...) seq_evaluator = SequentialEvaluator([evaluator1, evaluator2, evaluator3]) """ super().__init__() self.evaluators = evaluators self.main_score_function = main_score_function def __call__( self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: evaluations = [] scores = [] for evaluator_idx, evaluator in enumerate(self.evaluators): evaluation = evaluator(model, output_path, epoch, steps) if not isinstance(evaluation, dict): scores.append(evaluation) evaluation = {f"evaluator_{evaluator_idx}": evaluation} else: if hasattr(evaluator, "primary_metric"): scores.append(evaluation[evaluator.primary_metric]) else: scores.append(evaluation[list(evaluation.keys())[0]]) evaluations.append(evaluation) self.primary_metric = "sequential_score" main_score = self.main_score_function(scores) results = {key: value for evaluation in evaluations for key, value in evaluation.items()} results["sequential_score"] = main_score return results
from typing import Any import pytest from langchain_tests.conftest import CustomPersister, CustomSerializer from langchain_tests.conftest import _base_vcr_config as _base_vcr_config from vcr import VCR # type: ignore[import-untyped] _EXTRA_HEADERS = [ ("openai-organization", "PLACEHOLDER"), ("user-agent", "PLACEHOLDER"), ("x-openai-client-user-agent", "PLACEHOLDER"), ] def remove_request_headers(request: Any) -> Any: """Remove sensitive headers from the request.""" for k in request.headers: request.headers[k] = "**REDACTED**" request.uri = "**REDACTED**" return request def remove_response_headers(response: dict) -> dict: """Remove sensitive headers from the response.""" for k in response["headers"]: response["headers"][k] = "**REDACTED**" return response @pytest.fixture(scope="session") def vcr_config(_base_vcr_config: dict) -> dict: # noqa: F811 """Extend the default configuration coming from langchain_tests.""" config = _base_vcr_config.copy() config.setdefault("filter_headers", []).extend(_EXTRA_HEADERS) config["before_record_request"] = remove_request_headers config["before_record_response"] = remove_response_headers config["serializer"] = "yaml.gz" config["path_transformer"] = VCR.ensure_suffix(".yaml.gz") return config def pytest_recording_configure(config: dict, vcr: VCR) -> None: vcr.register_persister(CustomPersister()) vcr.register_serializer("yaml.gz", CustomSerializer())
from typing import Any import pytest from langchain_tests.conftest import YamlGzipSerializer from langchain_tests.conftest import _base_vcr_config as _base_vcr_config from vcr import VCR # type: ignore[import-untyped] _EXTRA_HEADERS = [ ("openai-organization", "PLACEHOLDER"), ("user-agent", "PLACEHOLDER"), ("x-openai-client-user-agent", "PLACEHOLDER"), ] def remove_request_headers(request: Any) -> Any: for k in request.headers: request.headers[k] = "**REDACTED**" request.uri = "**REDACTED**" return request def remove_response_headers(response: dict) -> dict: for k in response["headers"]: response["headers"][k] = "**REDACTED**" return response @pytest.fixture(scope="session") def vcr_config(_base_vcr_config: dict) -> dict: # noqa: F811 """ Extend the default configuration coming from langchain_tests. """ config = _base_vcr_config.copy() config.setdefault("filter_headers", []).extend(_EXTRA_HEADERS) config["before_record_request"] = remove_request_headers config["before_record_response"] = remove_response_headers config["serializer"] = "yaml.gz" config["path_transformer"] = VCR.ensure_suffix(".yaml.gz") return config @pytest.fixture def vcr(vcr_config: dict) -> VCR: """Override the default vcr fixture to include custom serializers""" my_vcr = VCR(**vcr_config) my_vcr.register_serializer("yaml.gz", YamlGzipSerializer) return my_vcr
# Copyright (c) OpenMMLab. All rights reserved. import warnings from abc import ABCMeta, abstractmethod from typing import Any, List, Optional, Sequence, Tuple, Union from mmengine.data import BaseDataSample from mmengine.dist import (broadcast_object_list, collect_results, is_main_process) class BaseEvaluator(metaclass=ABCMeta): """Base class for an evaluator. The evaluator first processes each batch of data_samples and predictions, and appends the processed results in to the results list. Then it collects all results together from all ranks if distributed training is used. Finally, it computes the metrics of the entire dataset. A subclass of class:`BaseEvaluator` should assign a meaningful value to the class attribute `default_prefix`. See the argument `prefix` for details. Args: collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Default: None """ default_prefix: Optional[str] = None def __init__(self, collect_device: str = 'cpu', prefix: Optional[str] = None) -> None: self._dataset_meta: Union[None, dict] = None self.collect_device = collect_device self.results: List[Any] = [] self.prefix = prefix or self.default_prefix if self.prefix is None: warnings.warn('The prefix is not set in evaluator class ' f'{self.__class__.__name__}.') @property def dataset_meta(self) -> Optional[dict]: return self._dataset_meta @dataset_meta.setter def dataset_meta(self, dataset_meta: dict) -> None: self._dataset_meta = dataset_meta @abstractmethod def process(self, data_batch: Sequence[Tuple[Any, BaseDataSample]], predictions: Sequence[BaseDataSample]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (Sequence[Tuple[Any, BaseDataSample]]): A batch of data from the dataloader. predictions (Sequence[BaseDataSample]): A batch of outputs from the model. """ @abstractmethod def compute_metrics(self, results: list) -> dict: """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ def evaluate(self, size: int) -> dict: """Evaluate the model performance of the whole dataset after processing all batches. Args: size (int): Length of the entire validation dataset. When batch size > 1, the dataloader may pad some data samples to make sure all ranks have the same length of dataset slice. The ``collect_results`` function will drop the padded data base on this size. Returns: dict: Evaluation metrics dict on the val dataset. The keys are the names of the metrics, and the values are corresponding results. """ if len(self.results) == 0: warnings.warn( f'{self.__class__.__name__} got empty `self._results`. Please ' 'ensure that the processed results are properly added into ' '`self._results` in `process` method.') results = collect_results(self.results, size, self.collect_device) if is_main_process(): _metrics = self.compute_metrics(results) # type: ignore # Add prefix to metric names if self.prefix: _metrics = { '/'.join((self.prefix, k)): v for k, v in _metrics.items() } metrics = [_metrics] else: metrics = [None] # type: ignore broadcast_object_list(metrics) # reset the results list self.results.clear() return metrics[0]
# Copyright (c) OpenMMLab. All rights reserved. import warnings from abc import ABCMeta, abstractmethod from typing import Any, List, Optional, Sequence, Tuple, Union from mmengine.data import BaseDataSample from mmengine.dist import (broadcast_object_list, collect_results, is_main_process) class BaseEvaluator(metaclass=ABCMeta): """Base class for an evaluator. The evaluator first processes each batch of data_samples and predictions, and appends the processed results in to the results list. Then it collects all results together from all ranks if distributed training is used. Finally, it computes the metrics of the entire dataset. A subclass of class:`BaseEvaluator` should assign a meanful value to the class attribute `default_prefix`. See the argument `prefix` for details. Args: collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Default: None """ default_prefix: Optional[str] = None def __init__(self, collect_device: str = 'cpu', prefix: Optional[str] = None) -> None: self._dataset_meta: Union[None, dict] = None self.collect_device = collect_device self.results: List[Any] = [] self.prefix = prefix or self.default_prefix if self.prefix is None: warnings.warn('The prefix is not set in evaluator class ' f'{self.__class__.__name__}.') @property def dataset_meta(self) -> Optional[dict]: return self._dataset_meta @dataset_meta.setter def dataset_meta(self, dataset_meta: dict) -> None: self._dataset_meta = dataset_meta @abstractmethod def process(self, data_batch: Sequence[Tuple[Any, BaseDataSample]], predictions: Sequence[BaseDataSample]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (Sequence[Tuple[Any, BaseDataSample]]): A batch of data from the dataloader. predictions (Sequence[BaseDataSample]): A batch of outputs from the model. """ @abstractmethod def compute_metrics(self, results: list) -> dict: """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ def evaluate(self, size: int) -> dict: """Evaluate the model performance of the whole dataset after processing all batches. Args: size (int): Length of the entire validation dataset. When batch size > 1, the dataloader may pad some data samples to make sure all ranks have the same length of dataset slice. The ``collect_results`` function will drop the padded data base on this size. Returns: dict: Evaluation metrics dict on the val dataset. The keys are the names of the metrics, and the values are corresponding results. """ if len(self.results) == 0: warnings.warn( f'{self.__class__.__name__} got empty `self._results`. Please ' 'ensure that the processed results are properly added into ' '`self._results` in `process` method.') results = collect_results(self.results, size, self.collect_device) if is_main_process(): _metrics = self.compute_metrics(results) # type: ignore # Add prefix to metric names if self.prefix: _metrics = { '/'.join((self.prefix, k)): v for k, v in _metrics.items() } metrics = [_metrics] else: metrics = [None] # type: ignore broadcast_object_list(metrics) # reset the results list self.results.clear() return metrics[0]
"""A unit test meant to catch accidental introduction of non-optional dependencies.""" from collections.abc import Mapping from pathlib import Path from typing import Any import pytest import toml from packaging.requirements import Requirement HERE = Path(__file__).parent PYPROJECT_TOML = HERE / "../../pyproject.toml" @pytest.fixture() def uv_conf() -> dict[str, Any]: """Load the pyproject.toml file.""" with open(PYPROJECT_TOML) as f: return toml.load(f) def test_required_dependencies(uv_conf: Mapping[str, Any]) -> None: """A test that checks if a new non-optional dependency is being introduced. If this test is triggered, it means that a contributor is trying to introduce a new required dependency. This should be avoided in most situations. """ # Get the dependencies from the [tool.poetry.dependencies] section dependencies = uv_conf["project"]["dependencies"] required_dependencies = set(Requirement(dep).name for dep in dependencies) assert sorted(required_dependencies) == sorted( [ "PyYAML", "SQLAlchemy", "async-timeout", "langchain-core", "langchain-text-splitters", "langsmith", "pydantic", "requests", ] ) def test_test_group_dependencies(uv_conf: Mapping[str, Any]) -> None: """Check if someone is attempting to add additional test dependencies. Only dependencies associated with test running infrastructure should be added to the test group; e.g., pytest, pytest-cov etc. Examples of dependencies that should NOT be included: boto3, azure, postgres, etc. """ dependencies = uv_conf["dependency-groups"]["test"] test_group_deps = set(Requirement(dep).name for dep in dependencies) assert sorted(test_group_deps) == sorted( [ "duckdb-engine", "freezegun", "langchain-core", "langchain-tests", "langchain-text-splitters", "langchain-openai", "lark", "packaging", "pandas", "pytest", "pytest-asyncio", "pytest-cov", "pytest-dotenv", "pytest-mock", "pytest-socket", "pytest-watcher", "pytest-xdist", "blockbuster", "responses", "syrupy", "toml", "requests-mock", # TODO: temporary hack since cffi 1.17.1 doesn't work with py 3.9. "cffi", "numpy", ] )
"""A unit test meant to catch accidental introduction of non-optional dependencies.""" from pathlib import Path from typing import Any, Dict, Mapping import pytest import toml from packaging.requirements import Requirement HERE = Path(__file__).parent PYPROJECT_TOML = HERE / "../../pyproject.toml" @pytest.fixture() def uv_conf() -> Dict[str, Any]: """Load the pyproject.toml file.""" with open(PYPROJECT_TOML) as f: return toml.load(f) def test_required_dependencies(uv_conf: Mapping[str, Any]) -> None: """A test that checks if a new non-optional dependency is being introduced. If this test is triggered, it means that a contributor is trying to introduce a new required dependency. This should be avoided in most situations. """ # Get the dependencies from the [tool.poetry.dependencies] section dependencies = uv_conf["project"]["dependencies"] required_dependencies = set(Requirement(dep).name for dep in dependencies) assert sorted(required_dependencies) == sorted( [ "PyYAML", "SQLAlchemy", "async-timeout", "langchain-core", "langchain-text-splitters", "langsmith", "pydantic", "requests", ] ) def test_test_group_dependencies(uv_conf: Mapping[str, Any]) -> None: """Check if someone is attempting to add additional test dependencies. Only dependencies associated with test running infrastructure should be added to the test group; e.g., pytest, pytest-cov etc. Examples of dependencies that should NOT be included: boto3, azure, postgres, etc. """ dependencies = uv_conf["dependency-groups"]["test"] test_group_deps = set(Requirement(dep).name for dep in dependencies) assert sorted(test_group_deps) == sorted( [ "duckdb-engine", "freezegun", "langchain-core", "langchain-tests", "langchain-text-splitters", "langchain-openai", "lark", "packaging", "pandas", "pytest", "pytest-asyncio", "pytest-cov", "pytest-dotenv", "pytest-mock", "pytest-socket", "pytest-watcher", "pytest-xdist", "blockbuster", "responses", "syrupy", "toml", "requests-mock", # TODO: temporary hack since cffi 1.17.1 doesn't work with py 3.9. "cffi", "numpy", ] )
from abc import ABC from docarray.array.storage.sqlite.backend import BackendMixin, SqliteConfig from docarray.array.storage.sqlite.getsetdel import GetSetDelMixin from docarray.array.storage.sqlite.seqlike import SequenceLikeMixin from docarray.array.storage.memory.find import ( FindMixin, ) # temporary delegate to in-memory find API __all__ = ['StorageMixins', 'SqliteConfig'] class StorageMixins(FindMixin, BackendMixin, GetSetDelMixin, SequenceLikeMixin, ABC): ...
from abc import ABC from .backend import BackendMixin, SqliteConfig from .getsetdel import GetSetDelMixin from .seqlike import SequenceLikeMixin from ..memory.find import FindMixin # temporary delegate to in-memory find API __all__ = ['StorageMixins', 'SqliteConfig'] class StorageMixins(FindMixin, BackendMixin, GetSetDelMixin, SequenceLikeMixin, ABC): ...
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders import UnstructuredOrgModeLoader # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "UnstructuredOrgModeLoader": "langchain_community.document_loaders", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "UnstructuredOrgModeLoader", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders import UnstructuredOrgModeLoader # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "UnstructuredOrgModeLoader": "langchain_community.document_loaders" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "UnstructuredOrgModeLoader", ]
_base_ = 'ssd300_voc0712.py' input_size = 512 model = dict( neck=dict( out_channels=(512, 1024, 512, 256, 256, 256, 256), level_strides=(2, 2, 2, 2, 1), level_paddings=(1, 1, 1, 1, 1), last_kernel_size=4), bbox_head=dict( in_channels=(512, 1024, 512, 256, 256, 256, 256), anchor_generator=dict( input_size=input_size, strides=[8, 16, 32, 64, 128, 256, 512], basesize_ratio_range=(0.15, 0.9), ratios=([2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2])))) img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(512, 512), keep_ratio=False), dict(type='RandomFlip', flip_ratio=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(512, 512), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(dataset=dict(pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
_base_ = 'ssd300_voc0712.py' input_size = 512 model = dict( neck=dict( out_channels=(512, 1024, 512, 256, 256, 256, 256), level_strides=(2, 2, 2, 2, 1), level_paddings=(1, 1, 1, 1, 1), last_kernel_size=4), bbox_head=dict( in_channels=(512, 1024, 512, 256, 256, 256, 256), anchor_generator=dict( input_size=input_size, strides=[8, 16, 32, 64, 128, 256, 512], basesize_ratio_range=(0.15, 0.9), ratios=([2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2])))) img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(512, 512), keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='RandomFlip', flip_ratio=0.5), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(512, 512), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(dataset=dict(pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
from typing import TYPE_CHECKING, Any, Dict, Type, TypeVar from docarray.base_document.abstract_document import AbstractDocument from docarray.base_document.base_node import BaseNode from docarray.typing.proto_register import _PROTO_TYPE_NAME_TO_CLASS if TYPE_CHECKING: from docarray.proto import DocumentProto, NodeProto try: import torch # noqa: F401 except ImportError: torch_imported = False else: torch_imported = True T = TypeVar('T', bound='ProtoMixin') class ProtoMixin(AbstractDocument, BaseNode): @classmethod def from_protobuf(cls: Type[T], pb_msg: 'DocumentProto') -> T: """create a Document from a protobuf message""" fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type_dict = _PROTO_TYPE_NAME_TO_CLASS content_key = value.WhichOneof('content') content_type = ( value.type if value.WhichOneof('docarray_type') is not None else None ) if torch_imported: from docarray.typing import TorchEmbedding from docarray.typing.tensor.torch_tensor import TorchTensor content_type_dict['torch'] = TorchTensor content_type_dict['torch_embedding'] = TorchEmbedding if content_type in content_type_dict: fields[field] = content_type_dict[content_type].from_protobuf( getattr(value, content_key) ) elif content_key == 'document': fields[field] = cls._get_field_type(field).from_protobuf( value.document ) # we get to the parent class elif content_key == 'document_array': from docarray import DocumentArray fields[field] = DocumentArray.from_protobuf( value.document_array ) # we get to the parent class elif content_key is None: fields[field] = None elif content_type is None: if content_key == 'text': fields[field] = value.text elif content_key == 'blob': fields[field] = value.blob else: raise ValueError( f'type {content_type}, with key {content_key} is not supported for' f' deserialization' ) return cls.construct(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ from docarray.proto import DocumentProto, NodeProto data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif type(value) is str: nested_item = NodeProto(text=value) elif type(value) is bytes: nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> 'NodeProto': from docarray.proto import NodeProto """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(document=self.to_protobuf())
from typing import TYPE_CHECKING, Any, Dict, Type, TypeVar from docarray.base_document.abstract_document import AbstractDocument from docarray.base_document.base_node import BaseNode if TYPE_CHECKING: from docarray.proto import DocumentProto, NodeProto try: import torch # noqa: F401 except ImportError: torch_imported = False else: from docarray.typing.tensor.torch_tensor import TorchTensor torch_imported = True T = TypeVar('T', bound='ProtoMixin') class ProtoMixin(AbstractDocument, BaseNode): @classmethod def from_protobuf(cls: Type[T], pb_msg: 'DocumentProto') -> T: """create a Document from a protobuf message""" from docarray.typing import ( # TorchTensor, ID, AnyEmbedding, AnyUrl, ImageUrl, Mesh3DUrl, NdArray, PointCloud3DUrl, TextUrl, ) fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type = value.WhichOneof('content') # this if else statement need to be refactored it is too long # the check should be delegated to the type level content_type_dict = dict( ndarray=NdArray, embedding=AnyEmbedding, any_url=AnyUrl, text_url=TextUrl, image_url=ImageUrl, mesh_url=Mesh3DUrl, point_cloud_url=PointCloud3DUrl, id=ID, ) if torch_imported: content_type_dict['torch_tensor'] = TorchTensor if content_type in content_type_dict: fields[field] = content_type_dict[content_type].from_protobuf( getattr(value, content_type) ) elif content_type == 'text': fields[field] = value.text elif content_type == 'nested': fields[field] = cls._get_field_type(field).from_protobuf( value.nested ) # we get to the parent class elif content_type == 'chunks': from docarray import DocumentArray fields[field] = DocumentArray.from_protobuf( value.chunks ) # we get to the parent class elif content_type is None: fields[field] = None else: raise ValueError( f'type {content_type} is not supported for deserialization' ) return cls.construct(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ from docarray.proto import DocumentProto, NodeProto data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif type(value) is str: nested_item = NodeProto(text=value) elif type(value) is bytes: nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> 'NodeProto': from docarray.proto import NodeProto """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(nested=self.to_protobuf())
_base_ = 'faster-rcnn_r50_fpn_crop640-50e_coco.py' norm_cfg = dict(type='BN', requires_grad=True) model = dict( neck=dict( type='FPG', in_channels=[256, 512, 1024, 2048], out_channels=256, inter_channels=256, num_outs=5, stack_times=9, paths=['bu'] * 9, same_down_trans=None, same_up_trans=dict( type='conv', kernel_size=3, stride=2, padding=1, norm_cfg=norm_cfg, inplace=False, order=('act', 'conv', 'norm')), across_lateral_trans=dict( type='conv', kernel_size=1, norm_cfg=norm_cfg, inplace=False, order=('act', 'conv', 'norm')), across_down_trans=dict( type='interpolation_conv', mode='nearest', kernel_size=3, norm_cfg=norm_cfg, order=('act', 'conv', 'norm'), inplace=False), across_up_trans=None, across_skip_trans=dict( type='conv', kernel_size=1, norm_cfg=norm_cfg, inplace=False, order=('act', 'conv', 'norm')), output_trans=dict( type='last_conv', kernel_size=3, order=('act', 'conv', 'norm'), inplace=False), norm_cfg=norm_cfg, skip_inds=[(0, 1, 2, 3), (0, 1, 2), (0, 1), (0, ), ()]))
_base_ = 'faster_rcnn_r50_fpn_crop640_50e_coco.py' norm_cfg = dict(type='BN', requires_grad=True) model = dict( neck=dict( type='FPG', in_channels=[256, 512, 1024, 2048], out_channels=256, inter_channels=256, num_outs=5, stack_times=9, paths=['bu'] * 9, same_down_trans=None, same_up_trans=dict( type='conv', kernel_size=3, stride=2, padding=1, norm_cfg=norm_cfg, inplace=False, order=('act', 'conv', 'norm')), across_lateral_trans=dict( type='conv', kernel_size=1, norm_cfg=norm_cfg, inplace=False, order=('act', 'conv', 'norm')), across_down_trans=dict( type='interpolation_conv', mode='nearest', kernel_size=3, norm_cfg=norm_cfg, order=('act', 'conv', 'norm'), inplace=False), across_up_trans=None, across_skip_trans=dict( type='conv', kernel_size=1, norm_cfg=norm_cfg, inplace=False, order=('act', 'conv', 'norm')), output_trans=dict( type='last_conv', kernel_size=3, order=('act', 'conv', 'norm'), inplace=False), norm_cfg=norm_cfg, skip_inds=[(0, 1, 2, 3), (0, 1, 2), (0, 1), (0, ), ()]))
"""**sys_info** prints information about the system and langchain packages for debugging purposes.""" # noqa: E501 from collections.abc import Sequence def _get_sub_deps(packages: Sequence[str]) -> list[str]: """Get any specified sub-dependencies.""" from importlib import metadata sub_deps = set() _underscored_packages = {pkg.replace("-", "_") for pkg in packages} for pkg in packages: try: required = metadata.requires(pkg) except metadata.PackageNotFoundError: continue if not required: continue for req in required: cleaned_req = req.split(" ")[0] if cleaned_req.replace("-", "_") not in _underscored_packages: sub_deps.add(cleaned_req) return sorted(sub_deps, key=lambda x: x.lower()) def print_sys_info(*, additional_pkgs: Sequence[str] = ()) -> None: """Print information about the environment for debugging purposes. Args: additional_pkgs: Additional packages to include in the output. """ import pkgutil import platform import sys from importlib import metadata, util # Packages that do not start with "langchain" prefix. other_langchain_packages = [ "langserve", "langsmith", ] langchain_pkgs = [ name for _, name, _ in pkgutil.iter_modules() if name.startswith("langchain") ] langgraph_pkgs = [ name for _, name, _ in pkgutil.iter_modules() if name.startswith("langgraph") ] all_packages = sorted( set( langchain_pkgs + langgraph_pkgs + other_langchain_packages + list(additional_pkgs) ) ) # Always surface these packages to the top order_by = ["langchain_core", "langchain", "langchain_community", "langsmith"] for pkg in reversed(order_by): if pkg in all_packages: all_packages.remove(pkg) all_packages = [pkg] + list(all_packages) system_info = { "OS": platform.system(), "OS Version": platform.version(), "Python Version": sys.version, } print() # noqa: T201 print("System Information") # noqa: T201 print("------------------") # noqa: T201 print("> OS: ", system_info["OS"]) # noqa: T201 print("> OS Version: ", system_info["OS Version"]) # noqa: T201 print("> Python Version: ", system_info["Python Version"]) # noqa: T201 # Print out only langchain packages print() # noqa: T201 print("Package Information") # noqa: T201 print("-------------------") # noqa: T201 not_installed = [] for pkg in all_packages: try: found_package = util.find_spec(pkg) except Exception: found_package = None if found_package is None: not_installed.append(pkg) continue # Package version try: package_version = metadata.version(pkg) except Exception: package_version = None # Print package with version if package_version is not None: print(f"> {pkg}: {package_version}") # noqa: T201 else: print(f"> {pkg}: Installed. No version info available.") # noqa: T201 if not_installed: print() # noqa: T201 print("Optional packages not installed") # noqa: T201 print("-------------------------------") # noqa: T201 for pkg in not_installed: print(f"> {pkg}") # noqa: T201 sub_dependencies = _get_sub_deps(all_packages) if sub_dependencies: print() # noqa: T201 print("Other Dependencies") # noqa: T201 print("------------------") # noqa: T201 for dep in sub_dependencies: try: dep_version = metadata.version(dep) print(f"> {dep}: {dep_version}") # noqa: T201 except Exception: print(f"> {dep}: Installed. No version info available.") # noqa: T201 if __name__ == "__main__": print_sys_info()
"""**sys_info** prints information about the system and langchain packages for debugging purposes.""" # noqa: E501 from collections.abc import Sequence def _get_sub_deps(packages: Sequence[str]) -> list[str]: """Get any specified sub-dependencies.""" from importlib import metadata sub_deps = set() _underscored_packages = {pkg.replace("-", "_") for pkg in packages} for pkg in packages: try: required = metadata.requires(pkg) except metadata.PackageNotFoundError: continue if not required: continue for req in required: try: cleaned_req = req.split(" ")[0] except Exception: # In case parsing of requirement spec fails continue if cleaned_req.replace("-", "_") not in _underscored_packages: sub_deps.add(cleaned_req) return sorted(sub_deps, key=lambda x: x.lower()) def print_sys_info(*, additional_pkgs: Sequence[str] = ()) -> None: """Print information about the environment for debugging purposes. Args: additional_pkgs: Additional packages to include in the output. """ import pkgutil import platform import sys from importlib import metadata, util # Packages that do not start with "langchain" prefix. other_langchain_packages = [ "langserve", "langsmith", ] langchain_pkgs = [ name for _, name, _ in pkgutil.iter_modules() if name.startswith("langchain") ] langgraph_pkgs = [ name for _, name, _ in pkgutil.iter_modules() if name.startswith("langgraph") ] all_packages = sorted( set( langchain_pkgs + langgraph_pkgs + other_langchain_packages + list(additional_pkgs) ) ) # Always surface these packages to the top order_by = ["langchain_core", "langchain", "langchain_community", "langsmith"] for pkg in reversed(order_by): if pkg in all_packages: all_packages.remove(pkg) all_packages = [pkg] + list(all_packages) system_info = { "OS": platform.system(), "OS Version": platform.version(), "Python Version": sys.version, } print() # noqa: T201 print("System Information") # noqa: T201 print("------------------") # noqa: T201 print("> OS: ", system_info["OS"]) # noqa: T201 print("> OS Version: ", system_info["OS Version"]) # noqa: T201 print("> Python Version: ", system_info["Python Version"]) # noqa: T201 # Print out only langchain packages print() # noqa: T201 print("Package Information") # noqa: T201 print("-------------------") # noqa: T201 not_installed = [] for pkg in all_packages: try: found_package = util.find_spec(pkg) except Exception: found_package = None if found_package is None: not_installed.append(pkg) continue # Package version try: package_version = metadata.version(pkg) except Exception: package_version = None # Print package with version if package_version is not None: print(f"> {pkg}: {package_version}") # noqa: T201 else: print(f"> {pkg}: Installed. No version info available.") # noqa: T201 if not_installed: print() # noqa: T201 print("Optional packages not installed") # noqa: T201 print("-------------------------------") # noqa: T201 for pkg in not_installed: print(f"> {pkg}") # noqa: T201 sub_dependencies = _get_sub_deps(all_packages) if sub_dependencies: print() # noqa: T201 print("Other Dependencies") # noqa: T201 print("------------------") # noqa: T201 for dep in sub_dependencies: try: dep_version = metadata.version(dep) print(f"> {dep}: {dep_version}") # noqa: T201 except Exception: print(f"> {dep}: Installed. No version info available.") # noqa: T201 if __name__ == "__main__": print_sys_info()
import os from unittest import TestCase import cv2 import numpy as np import torch from mmengine.structures import InstanceData, PixelData from mmdet.evaluation import INSTANCE_OFFSET from mmdet.structures import DetDataSample from mmdet.visualization import DetLocalVisualizer def _rand_bboxes(num_boxes, h, w): cx, cy, bw, bh = torch.rand(num_boxes, 4).T tl_x = ((cx * w) - (w * bw / 2)).clamp(0, w) tl_y = ((cy * h) - (h * bh / 2)).clamp(0, h) br_x = ((cx * w) + (w * bw / 2)).clamp(0, w) br_y = ((cy * h) + (h * bh / 2)).clamp(0, h) bboxes = torch.stack([tl_x, tl_y, br_x, br_y], dim=0).T return bboxes def _create_panoptic_data(num_boxes, h, w): sem_seg = np.zeros((h, w), dtype=np.int64) + 2 bboxes = _rand_bboxes(num_boxes, h, w).int() labels = torch.randint(2, (num_boxes, )) for i in range(num_boxes): x, y, w, h = bboxes[i] sem_seg[y:y + h, x:x + w] = (i + 1) * INSTANCE_OFFSET + labels[i] return sem_seg[None] class TestDetLocalVisualizer(TestCase): def test_add_datasample(self): h = 12 w = 10 num_class = 3 num_bboxes = 5 out_file = 'out_file.jpg' image = np.random.randint(0, 256, size=(h, w, 3)).astype('uint8') # test gt_instances gt_instances = InstanceData() gt_instances.bboxes = _rand_bboxes(num_bboxes, h, w) gt_instances.labels = torch.randint(0, num_class, (num_bboxes, )) det_data_sample = DetDataSample() det_data_sample.gt_instances = gt_instances det_local_visualizer = DetLocalVisualizer() det_local_visualizer.add_datasample( 'image', image, det_data_sample, draw_pred=False) # test out_file det_local_visualizer.add_datasample( 'image', image, det_data_sample, draw_pred=False, out_file=out_file) assert os.path.exists(out_file) drawn_img = cv2.imread(out_file) assert drawn_img.shape == (h, w, 3) os.remove(out_file) # test gt_instances and pred_instances pred_instances = InstanceData() pred_instances.bboxes = _rand_bboxes(num_bboxes, h, w) pred_instances.labels = torch.randint(0, num_class, (num_bboxes, )) pred_instances.scores = torch.rand((num_bboxes, )) det_data_sample.pred_instances = pred_instances det_local_visualizer.add_datasample( 'image', image, det_data_sample, out_file=out_file) self._assert_image_and_shape(out_file, (h, w * 2, 3)) det_local_visualizer.add_datasample( 'image', image, det_data_sample, draw_gt=False, out_file=out_file) self._assert_image_and_shape(out_file, (h, w, 3)) det_local_visualizer.add_datasample( 'image', image, det_data_sample, draw_pred=False, out_file=out_file) self._assert_image_and_shape(out_file, (h, w, 3)) # test gt_panoptic_seg and pred_panoptic_seg det_local_visualizer.dataset_meta = dict(classes=('1', '2')) gt_sem_seg = _create_panoptic_data(num_bboxes, h, w) panoptic_seg = PixelData(sem_seg=gt_sem_seg) det_data_sample = DetDataSample() det_data_sample.gt_panoptic_seg = panoptic_seg pred_sem_seg = _create_panoptic_data(num_bboxes, h, w) panoptic_seg = PixelData(sem_seg=pred_sem_seg) det_data_sample.pred_panoptic_seg = panoptic_seg det_local_visualizer.add_datasample( 'image', image, det_data_sample, out_file=out_file) self._assert_image_and_shape(out_file, (h, w * 2, 3)) # class information must be provided det_local_visualizer.dataset_meta = {} with self.assertRaises(AssertionError): det_local_visualizer.add_datasample( 'image', image, det_data_sample, out_file=out_file) def _assert_image_and_shape(self, out_file, out_shape): assert os.path.exists(out_file) drawn_img = cv2.imread(out_file) assert drawn_img.shape == out_shape os.remove(out_file)
import os from unittest import TestCase import cv2 import numpy as np import torch from mmengine.structures import InstanceData, PixelData from mmdet.evaluation import INSTANCE_OFFSET from mmdet.structures import DetDataSample from mmdet.visualization import DetLocalVisualizer def _rand_bboxes(num_boxes, h, w): cx, cy, bw, bh = torch.rand(num_boxes, 4).T tl_x = ((cx * w) - (w * bw / 2)).clamp(0, w) tl_y = ((cy * h) - (h * bh / 2)).clamp(0, h) br_x = ((cx * w) + (w * bw / 2)).clamp(0, w) br_y = ((cy * h) + (h * bh / 2)).clamp(0, h) bboxes = torch.stack([tl_x, tl_y, br_x, br_y], dim=0).T return bboxes def _create_panoptic_data(num_boxes, h, w): sem_seg = np.zeros((h, w), dtype=np.int64) + 2 bboxes = _rand_bboxes(num_boxes, h, w).int() labels = torch.randint(2, (num_boxes, )) for i in range(num_boxes): x, y, w, h = bboxes[i] sem_seg[y:y + h, x:x + w] = (i + 1) * INSTANCE_OFFSET + labels[i] return sem_seg[None] class TestDetLocalVisualizer(TestCase): def test_add_datasample(self): h = 12 w = 10 num_class = 3 num_bboxes = 5 out_file = 'out_file.jpg' image = np.random.randint(0, 256, size=(h, w, 3)).astype('uint8') # test gt_instances gt_instances = InstanceData() gt_instances.bboxes = _rand_bboxes(num_bboxes, h, w) gt_instances.labels = torch.randint(0, num_class, (num_bboxes, )) det_data_sample = DetDataSample() det_data_sample.gt_instances = gt_instances det_local_visualizer = DetLocalVisualizer() det_local_visualizer.add_datasample( 'image', image, det_data_sample, draw_pred=False) # test out_file det_local_visualizer.add_datasample( 'image', image, det_data_sample, draw_pred=False, out_file=out_file) assert os.path.exists(out_file) drawn_img = cv2.imread(out_file) assert drawn_img.shape == (h, w, 3) os.remove(out_file) # test gt_instances and pred_instances pred_instances = InstanceData() pred_instances.bboxes = _rand_bboxes(num_bboxes, h, w) pred_instances.labels = torch.randint(0, num_class, (num_bboxes, )) pred_instances.scores = torch.rand((num_bboxes, )) det_data_sample.pred_instances = pred_instances det_local_visualizer.add_datasample( 'image', image, det_data_sample, out_file=out_file) self._assert_image_and_shape(out_file, (h, w * 2, 3)) det_local_visualizer.add_datasample( 'image', image, det_data_sample, draw_gt=False, out_file=out_file) self._assert_image_and_shape(out_file, (h, w, 3)) det_local_visualizer.add_datasample( 'image', image, det_data_sample, draw_pred=False, out_file=out_file) self._assert_image_and_shape(out_file, (h, w, 3)) # test gt_panoptic_seg and pred_panoptic_seg det_local_visualizer.dataset_meta = dict(CLASSES=('1', '2')) gt_sem_seg = _create_panoptic_data(num_bboxes, h, w) panoptic_seg = PixelData(sem_seg=gt_sem_seg) det_data_sample = DetDataSample() det_data_sample.gt_panoptic_seg = panoptic_seg pred_sem_seg = _create_panoptic_data(num_bboxes, h, w) panoptic_seg = PixelData(sem_seg=pred_sem_seg) det_data_sample.pred_panoptic_seg = panoptic_seg det_local_visualizer.add_datasample( 'image', image, det_data_sample, out_file=out_file) self._assert_image_and_shape(out_file, (h, w * 2, 3)) # class information must be provided det_local_visualizer.dataset_meta = {} with self.assertRaises(AssertionError): det_local_visualizer.add_datasample( 'image', image, det_data_sample, out_file=out_file) def _assert_image_and_shape(self, out_file, out_shape): assert os.path.exists(out_file) drawn_img = cv2.imread(out_file) assert drawn_img.shape == out_shape os.remove(out_file)
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.distribution.distribution_lib import DataParallel as DataParallel from keras.src.distribution.distribution_lib import DeviceMesh as DeviceMesh from keras.src.distribution.distribution_lib import LayoutMap as LayoutMap from keras.src.distribution.distribution_lib import ( ModelParallel as ModelParallel, ) from keras.src.distribution.distribution_lib import TensorLayout as TensorLayout from keras.src.distribution.distribution_lib import ( distribute_tensor as distribute_tensor, ) from keras.src.distribution.distribution_lib import distribution as distribution from keras.src.distribution.distribution_lib import initialize as initialize from keras.src.distribution.distribution_lib import list_devices as list_devices from keras.src.distribution.distribution_lib import ( set_distribution as set_distribution, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.distribution.distribution_lib import DataParallel from keras.src.distribution.distribution_lib import DeviceMesh from keras.src.distribution.distribution_lib import LayoutMap from keras.src.distribution.distribution_lib import ModelParallel from keras.src.distribution.distribution_lib import TensorLayout from keras.src.distribution.distribution_lib import distribute_tensor from keras.src.distribution.distribution_lib import distribution from keras.src.distribution.distribution_lib import initialize from keras.src.distribution.distribution_lib import list_devices from keras.src.distribution.distribution_lib import set_distribution
from __future__ import annotations try: from typing import Self except ImportError: from typing_extensions import Self import torch from torch import Tensor, nn from sentence_transformers.models.Module import Module class WeightedLayerPooling(Module): """Token embeddings are weighted mean of their different hidden layer representations""" config_keys: list[str] = ["word_embedding_dimension", "layer_start", "num_hidden_layers"] def __init__( self, word_embedding_dimension, num_hidden_layers: int = 12, layer_start: int = 4, layer_weights=None ): super().__init__() self.word_embedding_dimension = word_embedding_dimension self.layer_start = layer_start self.num_hidden_layers = num_hidden_layers self.layer_weights = ( layer_weights if layer_weights is not None else nn.Parameter(torch.tensor([1] * (num_hidden_layers + 1 - layer_start), dtype=torch.float)) ) def forward(self, features: dict[str, Tensor]): ft_all_layers = features["all_layer_embeddings"] all_layer_embedding = torch.stack(ft_all_layers) all_layer_embedding = all_layer_embedding[self.layer_start :, :, :, :] # Start from 4th layers output weight_factor = self.layer_weights.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(all_layer_embedding.size()) weighted_average = (weight_factor * all_layer_embedding).sum(dim=0) / self.layer_weights.sum() features.update({"token_embeddings": weighted_average}) return features def get_word_embedding_dimension(self): return self.word_embedding_dimension def save(self, output_path: str, *args, safe_serialization: bool = True, **kwargs) -> None: self.save_config(output_path) self.save_torch_weights(output_path, safe_serialization=safe_serialization) @classmethod def load( cls, model_name_or_path: str, subfolder: str = "", token: bool | str | None = None, cache_folder: str | None = None, revision: str | None = None, local_files_only: bool = False, **kwargs, ) -> Self: hub_kwargs = { "subfolder": subfolder, "token": token, "cache_folder": cache_folder, "revision": revision, "local_files_only": local_files_only, } config = cls.load_config(model_name_or_path=model_name_or_path, **hub_kwargs) model = cls(**config) model = cls.load_torch_weights(model_name_or_path=model_name_or_path, model=model, **hub_kwargs) return model
from __future__ import annotations import json import os import torch from safetensors.torch import load_model as load_safetensors_model from safetensors.torch import save_model as save_safetensors_model from torch import Tensor, nn class WeightedLayerPooling(nn.Module): """Token embeddings are weighted mean of their different hidden layer representations""" def __init__( self, word_embedding_dimension, num_hidden_layers: int = 12, layer_start: int = 4, layer_weights=None ): super().__init__() self.config_keys = ["word_embedding_dimension", "layer_start", "num_hidden_layers"] self.word_embedding_dimension = word_embedding_dimension self.layer_start = layer_start self.num_hidden_layers = num_hidden_layers self.layer_weights = ( layer_weights if layer_weights is not None else nn.Parameter(torch.tensor([1] * (num_hidden_layers + 1 - layer_start), dtype=torch.float)) ) def forward(self, features: dict[str, Tensor]): ft_all_layers = features["all_layer_embeddings"] all_layer_embedding = torch.stack(ft_all_layers) all_layer_embedding = all_layer_embedding[self.layer_start :, :, :, :] # Start from 4th layers output weight_factor = self.layer_weights.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(all_layer_embedding.size()) weighted_average = (weight_factor * all_layer_embedding).sum(dim=0) / self.layer_weights.sum() features.update({"token_embeddings": weighted_average}) return features def get_word_embedding_dimension(self): return self.word_embedding_dimension def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path: str, safe_serialization: bool = True): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) if safe_serialization: save_safetensors_model(self, os.path.join(output_path, "model.safetensors")) else: torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) model = WeightedLayerPooling(**config) if os.path.exists(os.path.join(input_path, "model.safetensors")): load_safetensors_model(model, os.path.join(input_path, "model.safetensors")) else: model.load_state_dict( torch.load( os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu"), weights_only=True ) ) return model
from typing import TYPE_CHECKING if TYPE_CHECKING: # pragma: no cover from docarray.typing import T class ContentPropertyMixin: """Provide helper functions for :class:`Document` to allow universal content property access.""" @property def content_hash(self) -> int: """Get the document hash according to its content. :return: the unique hash code to represent this Document """ return hash(self) def convert_content_to_datauri(self: 'T') -> 'T': """Convert :attr:`.content` in :attr:`.uri` inplace with best effort :return: itself after processed """ if self.text: self.convert_text_to_datauri() elif self.blob: self.convert_blob_to_datauri() elif self.content_type: raise NotImplementedError return self
from typing import TYPE_CHECKING if TYPE_CHECKING: from docarray.typing import T class ContentPropertyMixin: """Provide helper functions for :class:`Document` to allow universal content property access.""" @property def content_hash(self) -> int: """Get the document hash according to its content. :return: the unique hash code to represent this Document """ return hash(self) def convert_content_to_datauri(self: 'T') -> 'T': """Convert :attr:`.content` in :attr:`.uri` inplace with best effort :return: itself after processed """ if self.text: self.convert_text_to_datauri() elif self.blob: self.convert_blob_to_datauri() elif self.content_type: raise NotImplementedError return self
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import mmengine from mmengine.utils import digit_version from .version import __version__, version_info mmcv_minimum_version = '2.0.0rc0' mmcv_maximum_version = '2.1.0' mmcv_version = digit_version(mmcv.__version__) mmengine_minimum_version = '0.1.0' mmengine_maximum_version = '1.0.0' mmengine_version = digit_version(mmengine.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version < digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <{mmcv_maximum_version}.' assert (mmengine_version >= digit_version(mmengine_minimum_version) and mmengine_version < digit_version(mmengine_maximum_version)), \ f'MMEngine=={mmengine.__version__} is used but incompatible. ' \ f'Please install mmengine>={mmengine_minimum_version}, ' \ f'<{mmengine_maximum_version}.' __all__ = ['__version__', 'version_info', 'digit_version']
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import mmengine from mmengine.utils import digit_version from .version import __version__, version_info mmcv_minimum_version = '2.0.0rc0' mmcv_maximum_version = '2.1.0' mmcv_version = digit_version(mmcv.__version__) mmengine_minimum_version = '0.0.0' mmengine_maximum_version = '0.2.0' mmengine_version = digit_version(mmengine.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version < digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <{mmcv_maximum_version}.' assert (mmengine_version >= digit_version(mmengine_minimum_version) and mmengine_version < digit_version(mmengine_maximum_version)), \ f'MMEngine=={mmengine.__version__} is used but incompatible. ' \ f'Please install mmengine>={mmengine_minimum_version}, ' \ f'<{mmengine_maximum_version}.' __all__ = ['__version__', 'version_info', 'digit_version']
from . import dataset, dist_utils, metrics __all__ = ["dataset", "dist_utils", "metrics"]
from . import ( dataset, dist_utils, metrics, ) __all__ = ["dataset", "dist_utils", "metrics"]
__version__ = '0.13.19' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
__version__ = '0.13.19' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.mobilenet import MobileNet as MobileNet from keras.src.applications.mobilenet import ( decode_predictions as decode_predictions, ) from keras.src.applications.mobilenet import ( preprocess_input as preprocess_input, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.mobilenet import MobileNet from keras.src.applications.mobilenet import decode_predictions from keras.src.applications.mobilenet import preprocess_input
_base_ = '../ssd/ssd300_coco.py' model = dict( bbox_head=dict(type='PISASSDHead'), train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2))) optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2))
_base_ = '../ssd/ssd300_coco.py' model = dict( bbox_head=dict(type='PISASSDHead'), train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2))) default_hooks = dict( optimizer=dict( _delete_=True, type='OptimizerHook', grad_clip=dict(max_norm=35, norm_type=2)))
from docarray import BaseDocument from docarray.typing import PointCloud3DUrl def test_set_point_cloud_url(): class MyDocument(BaseDocument): point_cloud_url: PointCloud3DUrl d = MyDocument(point_cloud_url="https://jina.ai/mesh.obj") assert isinstance(d.point_cloud_url, PointCloud3DUrl) assert d.point_cloud_url == "https://jina.ai/mesh.obj"
from docarray import Document from docarray.typing import PointCloud3DUrl def test_set_point_cloud_url(): class MyDocument(Document): point_cloud_url: PointCloud3DUrl d = MyDocument(point_cloud_url="https://jina.ai/mesh.obj") assert isinstance(d.point_cloud_url, PointCloud3DUrl) assert d.point_cloud_url == "https://jina.ai/mesh.obj"
"""Standard LangChain interface tests""" from typing import Type import pytest # type: ignore[import-not-found] from langchain_core.language_models import BaseChatModel from langchain_core.rate_limiters import InMemoryRateLimiter from langchain_tests.integration_tests import ( # type: ignore[import-not-found] ChatModelIntegrationTests, # type: ignore[import-not-found] ) from langchain_xai import ChatXAI # Initialize the rate limiter in global scope, so it can be re-used # across tests. rate_limiter = InMemoryRateLimiter( requests_per_second=0.5, ) class TestXAIStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return ChatXAI @property def chat_model_params(self) -> dict: return { "model": "grok-2", "rate_limiter": rate_limiter, } @pytest.mark.xfail(reason="Not yet supported.") def test_usage_metadata_streaming(self, model: BaseChatModel) -> None: super().test_usage_metadata_streaming(model)
"""Standard LangChain interface tests""" from typing import Optional, Type import pytest # type: ignore[import-not-found] from langchain_core.language_models import BaseChatModel from langchain_core.rate_limiters import InMemoryRateLimiter from langchain_tests.integration_tests import ( # type: ignore[import-not-found] ChatModelIntegrationTests, # type: ignore[import-not-found] ) from langchain_xai import ChatXAI # Initialize the rate limiter in global scope, so it can be re-used # across tests. rate_limiter = InMemoryRateLimiter( requests_per_second=0.5, ) class TestXAIStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return ChatXAI @property def chat_model_params(self) -> dict: return { "model": "grok-2", "rate_limiter": rate_limiter, } @property def tool_choice_value(self) -> Optional[str]: """Value to use for tool choice when used in tests.""" return "tool_name" @pytest.mark.xfail(reason="Not yet supported.") def test_usage_metadata_streaming(self, model: BaseChatModel) -> None: super().test_usage_metadata_streaming(model)
"""Generate migrations for partner packages.""" import importlib from langchain_core.documents import BaseDocumentCompressor, BaseDocumentTransformer from langchain_core.embeddings import Embeddings from langchain_core.language_models import BaseLanguageModel from langchain_core.retrievers import BaseRetriever from langchain_core.vectorstores import VectorStore from langchain_cli.namespaces.migrate.generate.utils import ( COMMUNITY_PKG, find_subclasses_in_module, list_classes_by_package, list_init_imports_by_package, ) # PUBLIC API def get_migrations_for_partner_package(pkg_name: str) -> list[tuple[str, str]]: """Generate migrations from community package to partner package. This code works Args: pkg_name (str): The name of the partner package. Returns: List of 2-tuples containing old and new import paths. """ package = importlib.import_module(pkg_name) classes_ = find_subclasses_in_module( package, [ BaseLanguageModel, Embeddings, BaseRetriever, VectorStore, BaseDocumentTransformer, BaseDocumentCompressor, ], ) community_classes = list_classes_by_package(str(COMMUNITY_PKG)) imports_for_pkg = list_init_imports_by_package(str(COMMUNITY_PKG)) old_paths = community_classes + imports_for_pkg return [ (f"{module}.{item}", f"{pkg_name}.{item}") for module, item in old_paths if item in classes_ ]
"""Generate migrations for partner packages.""" import importlib from langchain_core.documents import BaseDocumentCompressor, BaseDocumentTransformer from langchain_core.embeddings import Embeddings from langchain_core.language_models import BaseLanguageModel from langchain_core.retrievers import BaseRetriever from langchain_core.vectorstores import VectorStore from langchain_cli.namespaces.migrate.generate.utils import ( COMMUNITY_PKG, find_subclasses_in_module, list_classes_by_package, list_init_imports_by_package, ) # PUBLIC API def get_migrations_for_partner_package(pkg_name: str) -> list[tuple[str, str]]: """Generate migrations from community package to partner package. This code works Args: pkg_name (str): The name of the partner package. Returns: List of 2-tuples containing old and new import paths. """ package = importlib.import_module(pkg_name) classes_ = find_subclasses_in_module( package, [ BaseLanguageModel, Embeddings, BaseRetriever, VectorStore, BaseDocumentTransformer, BaseDocumentCompressor, ], ) community_classes = list_classes_by_package(str(COMMUNITY_PKG)) imports_for_pkg = list_init_imports_by_package(str(COMMUNITY_PKG)) old_paths = community_classes + imports_for_pkg migrations = [ (f"{module}.{item}", f"{pkg_name}.{item}") for module, item in old_paths if item in classes_ ] return migrations
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDoc from docarray.documents import ImageDoc from docarray.typing import ImageBytes from docarray.utils._internal.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image(): image = ImageDoc(url=REMOTE_JPG) image.tensor = image.url.load() assert isinstance(image.tensor, np.ndarray) def test_image_str(): image = parse_obj_as(ImageDoc, 'http://myurl.jpg') assert image.url == 'http://myurl.jpg' def test_image_np(): image = parse_obj_as(ImageDoc, np.zeros((10, 10, 3))) assert (image.tensor == np.zeros((10, 10, 3))).all() def test_image_torch(): image = parse_obj_as(ImageDoc, torch.zeros(10, 10, 3)) assert (image.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_image_tensorflow(): image = ImageDoc(tensor=tf.zeros((10, 10, 3))) assert tnp.allclose(image.tensor.tensor, tf.zeros((10, 10, 3))) def test_image_shortcut_doc(): class MyDoc(BaseDoc): image: ImageDoc image2: ImageDoc image3: ImageDoc doc = MyDoc( image='http://myurl.jpg', image2=np.zeros((10, 10, 3)), image3=torch.zeros(10, 10, 3), ) assert doc.image.url == 'http://myurl.jpg' assert (doc.image2.tensor == np.zeros((10, 10, 3))).all() assert (doc.image3.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.slow @pytest.mark.internet def test_byte(): img = ImageDoc(url=REMOTE_JPG) img.bytes_ = img.url.load_bytes() assert isinstance(img.bytes_, ImageBytes) @pytest.mark.slow @pytest.mark.internet def test_byte_from_tensor(): img = ImageDoc(url=REMOTE_JPG) img.tensor = img.url.load() img.bytes_ = img.tensor.to_bytes() assert isinstance(img.bytes_, bytes) assert isinstance(img.bytes_, ImageBytes) assert len(img.bytes_) > 0
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDoc from docarray.documents import ImageDoc from docarray.typing import ImageBytes from docarray.utils._internal.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image(): image = ImageDoc(url=REMOTE_JPG) image.tensor = image.url.load() assert isinstance(image.tensor, np.ndarray) def test_image_str(): image = parse_obj_as(ImageDoc, 'http://myurl.jpg') assert image.url == 'http://myurl.jpg' def test_image_np(): image = parse_obj_as(ImageDoc, np.zeros((10, 10, 3))) assert (image.tensor == np.zeros((10, 10, 3))).all() def test_image_torch(): image = parse_obj_as(ImageDoc, torch.zeros(10, 10, 3)) assert (image.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_image_tensorflow(): image = ImageDoc(tensor=tf.zeros((10, 10, 3))) assert tnp.allclose(image.tensor.tensor, tf.zeros((10, 10, 3))) def test_image_shortcut_doc(): class MyDoc(BaseDoc): image: ImageDoc image2: ImageDoc image3: ImageDoc doc = MyDoc( image='http://myurl.jpg', image2=np.zeros((10, 10, 3)), image3=torch.zeros(10, 10, 3), ) assert doc.image.url == 'http://myurl.jpg' assert (doc.image2.tensor == np.zeros((10, 10, 3))).all() assert (doc.image3.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.slow @pytest.mark.internet def test_byte(): img = ImageDoc(url=REMOTE_JPG) img.bytes_ = img.url.load_bytes() assert isinstance(img.bytes_, ImageBytes) @pytest.mark.slow @pytest.mark.internet def test_byte_from_tensor(): img = ImageDoc(url=REMOTE_JPG) img.tensor = img.url.load() img.bytes_ = img.tensor.to_bytes() assert isinstance(img.bytes_, bytes) assert len(img.bytes_) > 0
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 11 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from .registry import Registry # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner') # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model') # mangage all kinds of model wrappers like 'MMDistributedDataParallel' MODEL_WRAPPERS = Registry('model_wrapper') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage constructors that customize the optimization hyperparameters. OPTIMIZER_CONSTRUCTORS = Registry('optimizer constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry('parameter scheduler') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util') # manage all kinds of evaluators for computing metrics EVALUATORS = Registry('evaluator') # manage visualizer VISUALIZERS = Registry('visualizer')
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 11 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from .registry import Registry # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner') # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model') # mangage all kinds of model wrappers like 'MMDistributedDataParallel' MODEL_WRAPPERS = Registry('model_wrapper') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage constructors that customize the optimization hyperparameters. OPTIMIZER_CONSTRUCTORS = Registry('optimizer constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry('parameter scheduler') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util') # manage all kinds of evaluators for computing metrics EVALUATORS = Registry('evaluator')
from typing import BinaryIO, Dict, Optional, Tuple import torch import torchaudio from torchaudio.backend.common import AudioMetaData # Note: need to comply TorchScript syntax -- need annotation and no f-string nor global def _info_audio( s: torch.classes.torchaudio.ffmpeg_StreamReader, ): i = s.find_best_audio_stream() sinfo = s.get_src_stream_info(i) if sinfo[5] == 0: waveform, _ = _load_audio(s) num_frames = waveform.size(1) else: num_frames = sinfo[5] return AudioMetaData( int(sinfo[8]), num_frames, sinfo[9], sinfo[6], sinfo[1].upper(), ) def info_audio( src: str, format: Optional[str], ) -> AudioMetaData: s = torch.classes.torchaudio.ffmpeg_StreamReader(src, format, None) return _info_audio(s) def info_audio_fileobj( src, format: Optional[str], buffer_size: int = 4096, ) -> AudioMetaData: s = torchaudio._torchaudio_ffmpeg.StreamReaderFileObj(src, format, None, buffer_size) return _info_audio(s) def _get_load_filter( frame_offset: int = 0, num_frames: int = -1, convert: bool = True, ) -> Optional[str]: if frame_offset < 0: raise RuntimeError("Invalid argument: frame_offset must be non-negative. Found: {}".format(frame_offset)) if num_frames == 0 or num_frames < -1: raise RuntimeError("Invalid argument: num_frames must be -1 or greater than 0. Found: {}".format(num_frames)) # All default values -> no filter if frame_offset == 0 and num_frames == -1 and not convert: return None # Only convert aformat = "aformat=sample_fmts=fltp" if frame_offset == 0 and num_frames == -1 and convert: return aformat # At least one of frame_offset or num_frames has non-default value if num_frames > 0: atrim = "atrim=start_sample={}:end_sample={}".format(frame_offset, frame_offset + num_frames) else: atrim = "atrim=start_sample={}".format(frame_offset) if not convert: return atrim return "{},{}".format(atrim, aformat) # Note: need to comply TorchScript syntax -- need annotation and no f-string nor global def _load_audio( s: torch.classes.torchaudio.ffmpeg_StreamReader, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, ) -> Tuple[torch.Tensor, int]: i = s.find_best_audio_stream() sinfo = s.get_src_stream_info(i) sample_rate = int(sinfo[8]) option: Dict[str, str] = {} s.add_audio_stream(i, -1, -1, _get_load_filter(frame_offset, num_frames, convert), None, option) s.process_all_packets() waveform = s.pop_chunks()[0] if waveform is None: raise RuntimeError("Failed to decode audio.") assert waveform is not None if channels_first: waveform = waveform.T return waveform, sample_rate def load_audio( src: str, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, format: Optional[str] = None, ) -> Tuple[torch.Tensor, int]: s = torch.classes.torchaudio.ffmpeg_StreamReader(src, format, None) return _load_audio(s, frame_offset, num_frames, convert, channels_first) def load_audio_fileobj( src: BinaryIO, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, format: Optional[str] = None, buffer_size: int = 4096, ) -> Tuple[torch.Tensor, int]: s = torchaudio._torchaudio_ffmpeg.StreamReaderFileObj(src, format, None, buffer_size) return _load_audio(s, frame_offset, num_frames, convert, channels_first)
from typing import Dict, Optional, Tuple import torch import torchaudio from torchaudio.backend.common import AudioMetaData # Note: need to comply TorchScript syntax -- need annotation and no f-string nor global def _info_audio( s: torch.classes.torchaudio.ffmpeg_StreamReader, ): i = s.find_best_audio_stream() sinfo = s.get_src_stream_info(i) if sinfo[5] == 0: waveform, _ = _load_audio(s) num_frames = waveform.size(1) else: num_frames = sinfo[5] return AudioMetaData( int(sinfo[8]), num_frames, sinfo[9], sinfo[6], sinfo[1].upper(), ) def info_audio( src: str, format: Optional[str], ) -> AudioMetaData: s = torch.classes.torchaudio.ffmpeg_StreamReader(src, format, None) return _info_audio(s) def info_audio_fileobj( src, format: Optional[str], buffer_size: int = 4096, ) -> AudioMetaData: s = torchaudio._torchaudio_ffmpeg.StreamReaderFileObj(src, format, None, buffer_size) return _info_audio(s) def _get_load_filter( frame_offset: int = 0, num_frames: int = -1, convert: bool = True, ) -> Optional[str]: if frame_offset < 0: raise RuntimeError("Invalid argument: frame_offset must be non-negative. Found: {}".format(frame_offset)) if num_frames == 0 or num_frames < -1: raise RuntimeError("Invalid argument: num_frames must be -1 or greater than 0. Found: {}".format(num_frames)) # All default values -> no filter if frame_offset == 0 and num_frames == -1 and not convert: return None # Only convert aformat = "aformat=sample_fmts=fltp" if frame_offset == 0 and num_frames == -1 and convert: return aformat # At least one of frame_offset or num_frames has non-default value if num_frames > 0: atrim = "atrim=start_sample={}:end_sample={}".format(frame_offset, frame_offset + num_frames) else: atrim = "atrim=start_sample={}".format(frame_offset) if not convert: return atrim return "{},{}".format(atrim, aformat) # Note: need to comply TorchScript syntax -- need annotation and no f-string nor global def _load_audio( s: torch.classes.torchaudio.ffmpeg_StreamReader, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, ) -> Tuple[torch.Tensor, int]: i = s.find_best_audio_stream() sinfo = s.get_src_stream_info(i) sample_rate = int(sinfo[8]) option: Dict[str, str] = {} s.add_audio_stream(i, -1, -1, _get_load_filter(frame_offset, num_frames, convert), None, option) s.process_all_packets() waveform = s.pop_chunks()[0] if waveform is None: raise RuntimeError("Failed to decode audio.") assert waveform is not None if channels_first: waveform = waveform.T return waveform, sample_rate def load_audio( src: str, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, format: Optional[str] = None, ) -> Tuple[torch.Tensor, int]: s = torch.classes.torchaudio.ffmpeg_StreamReader(src, format, None) return _load_audio(s, frame_offset, num_frames, convert, channels_first) def load_audio_fileobj( src: str, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, format: Optional[str] = None, buffer_size: int = 4096, ) -> Tuple[torch.Tensor, int]: s = torchaudio._torchaudio_ffmpeg.StreamReaderFileObj(src, format, None, buffer_size) return _load_audio(s, frame_offset, num_frames, convert, channels_first)
# Copyright (c) OpenMMLab. All rights reserved. from .accuracy import Accuracy, accuracy from .ae_loss import AssociativeEmbeddingLoss from .balanced_l1_loss import BalancedL1Loss, balanced_l1_loss from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy) from .dice_loss import DiceLoss from .focal_loss import FocalLoss, sigmoid_focal_loss from .gaussian_focal_loss import GaussianFocalLoss from .gfocal_loss import DistributionFocalLoss, QualityFocalLoss from .ghm_loss import GHMC, GHMR from .iou_loss import (BoundedIoULoss, CIoULoss, DIoULoss, GIoULoss, IoULoss, bounded_iou_loss, iou_loss) from .kd_loss import KnowledgeDistillationKLDivLoss from .mse_loss import MSELoss, mse_loss from .pisa_loss import carl_loss, isr_p from .seesaw_loss import SeesawLoss from .smooth_l1_loss import L1Loss, SmoothL1Loss, l1_loss, smooth_l1_loss from .utils import reduce_loss, weight_reduce_loss, weighted_loss from .varifocal_loss import VarifocalLoss __all__ = [ 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', 'mask_cross_entropy', 'CrossEntropyLoss', 'sigmoid_focal_loss', 'FocalLoss', 'smooth_l1_loss', 'SmoothL1Loss', 'balanced_l1_loss', 'BalancedL1Loss', 'mse_loss', 'MSELoss', 'iou_loss', 'bounded_iou_loss', 'IoULoss', 'BoundedIoULoss', 'GIoULoss', 'DIoULoss', 'CIoULoss', 'GHMC', 'GHMR', 'reduce_loss', 'weight_reduce_loss', 'weighted_loss', 'L1Loss', 'l1_loss', 'isr_p', 'carl_loss', 'AssociativeEmbeddingLoss', 'GaussianFocalLoss', 'QualityFocalLoss', 'DistributionFocalLoss', 'VarifocalLoss', 'KnowledgeDistillationKLDivLoss', 'SeesawLoss', 'DiceLoss' ]
# Copyright (c) OpenMMLab. All rights reserved. from .accuracy import Accuracy, accuracy from .ae_loss import AssociativeEmbeddingLoss from .balanced_l1_loss import BalancedL1Loss, balanced_l1_loss from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy) from .focal_loss import FocalLoss, sigmoid_focal_loss from .gaussian_focal_loss import GaussianFocalLoss from .gfocal_loss import DistributionFocalLoss, QualityFocalLoss from .ghm_loss import GHMC, GHMR from .iou_loss import (BoundedIoULoss, CIoULoss, DIoULoss, GIoULoss, IoULoss, bounded_iou_loss, iou_loss) from .kd_loss import KnowledgeDistillationKLDivLoss from .mse_loss import MSELoss, mse_loss from .pisa_loss import carl_loss, isr_p from .seesaw_loss import SeesawLoss from .smooth_l1_loss import L1Loss, SmoothL1Loss, l1_loss, smooth_l1_loss from .utils import reduce_loss, weight_reduce_loss, weighted_loss from .varifocal_loss import VarifocalLoss __all__ = [ 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', 'mask_cross_entropy', 'CrossEntropyLoss', 'sigmoid_focal_loss', 'FocalLoss', 'smooth_l1_loss', 'SmoothL1Loss', 'balanced_l1_loss', 'BalancedL1Loss', 'mse_loss', 'MSELoss', 'iou_loss', 'bounded_iou_loss', 'IoULoss', 'BoundedIoULoss', 'GIoULoss', 'DIoULoss', 'CIoULoss', 'GHMC', 'GHMR', 'reduce_loss', 'weight_reduce_loss', 'weighted_loss', 'L1Loss', 'l1_loss', 'isr_p', 'carl_loss', 'AssociativeEmbeddingLoss', 'GaussianFocalLoss', 'QualityFocalLoss', 'DistributionFocalLoss', 'VarifocalLoss', 'KnowledgeDistillationKLDivLoss', 'SeesawLoss' ]
import argparse import os from typing import List from jina.parsers.helper import CastHostAction def api_to_dict(show_all_args: bool = False): """Convert Jina API to a dict :param show_all_args: if set, then hidden args are also exported :return: dict """ if show_all_args: from jina.parsers import helper helper._SHOW_ALL_ARGS, old_val = True, helper._SHOW_ALL_ARGS from jina import __version__ from jina.parsers import get_main_parser all_d = { 'name': 'Jina', 'description': 'Build multimodal AI services via cloud native technologies', 'license': 'Apache 2.0', 'vendor': 'Jina AI Limited', 'source': 'https://github.com/jina-ai/jina/tree/' + os.environ.get('JINA_VCS_VERSION', 'master'), 'url': 'https://jina.ai', 'docs': 'https://docs.jina.ai', 'authors': 'dev-team@jina.ai', 'version': __version__, 'methods': [], 'revision': os.environ.get('JINA_VCS_VERSION'), } def get_p(p, parent_d): parsers = p()._actions[-1].choices if parsers: for p_name in parsers.keys(): d = {'name': p_name, 'options': [], 'help': parsers[p_name].description} for ddd in _export_parser_args( lambda *x: p()._actions[-1].choices[p_name], type_as_str=True ): d['options'].append(ddd) if not d['options']: d['methods'] = [] get_p(lambda *x: parsers[p_name], d) parent_d['methods'].append(d) get_p(get_main_parser, all_d) if show_all_args: helper._SHOW_ALL_ARGS = old_val return all_d def _export_parser_args(parser_fn, type_as_str: bool = False, **kwargs): from argparse import _StoreAction, _StoreTrueAction from jina.enums import BetterEnum from jina.parsers.helper import _SHOW_ALL_ARGS, CastToIntAction, KVAppendAction port_attr = ('help', 'choices', 'default', 'required', 'option_strings', 'dest') parser = parser_fn(**kwargs) parser2 = parser_fn(**kwargs) random_dest = set() for a, b in zip(parser._actions, parser2._actions): if a.default != b.default: random_dest.add(a.dest) for a in parser._actions: if isinstance( a, ( _StoreAction, _StoreTrueAction, KVAppendAction, CastToIntAction, CastHostAction, ), ): if not _SHOW_ALL_ARGS and a.help == argparse.SUPPRESS: continue ddd = {p: getattr(a, p) for p in port_attr} if isinstance(a, _StoreTrueAction): ddd['type'] = bool elif isinstance(a, KVAppendAction): ddd['type'] = dict elif isinstance(a, CastToIntAction): ddd['type'] = int elif isinstance(a, CastHostAction): ddd['type'] = str else: ddd['type'] = a.type if ddd['choices']: ddd['choices'] = [ str(k) if isinstance(k, BetterEnum) else k for k in ddd['choices'] ] ddd['type'] = str if isinstance(ddd['default'], BetterEnum): ddd['default'] = str(ddd['default']) ddd['type'] = str if ddd['type'] == str and (a.nargs == '*' or a.nargs == '+'): ddd['type'] = List[str] else: continue if a.dest in random_dest: ddd['default_random'] = True from jina.helper import random_identity, random_port if isinstance(a.default, str): ddd['default_factory'] = random_identity.__name__ elif isinstance(a.default, int): ddd['default_factory'] = random_port.__name__ else: ddd['default_random'] = False if type_as_str: ddd['type'] = getattr(ddd['type'], '__name__', str(ddd['type'])) ddd['name'] = ddd.pop('dest') yield ddd
import argparse import os from typing import List, Union from jina.parsers.helper import CastHostAction def api_to_dict(show_all_args: bool = False): """Convert Jina API to a dict :param show_all_args: if set, then hidden args are also exported :return: dict """ if show_all_args: from jina.parsers import helper helper._SHOW_ALL_ARGS, old_val = True, helper._SHOW_ALL_ARGS from jina import __version__ from jina.parsers import get_main_parser all_d = { 'name': 'Jina', 'description': 'Build multimodal AI services via cloud native technologies', 'license': 'Apache 2.0', 'vendor': 'Jina AI Limited', 'source': 'https://github.com/jina-ai/jina/tree/' + os.environ.get('JINA_VCS_VERSION', 'master'), 'url': 'https://jina.ai', 'docs': 'https://docs.jina.ai', 'authors': 'dev-team@jina.ai', 'version': __version__, 'methods': [], 'revision': os.environ.get('JINA_VCS_VERSION'), } def get_p(p, parent_d): parsers = p()._actions[-1].choices if parsers: for p_name in parsers.keys(): d = {'name': p_name, 'options': [], 'help': parsers[p_name].description} for ddd in _export_parser_args( lambda *x: p()._actions[-1].choices[p_name], type_as_str=True ): d['options'].append(ddd) if not d['options']: d['methods'] = [] get_p(lambda *x: parsers[p_name], d) parent_d['methods'].append(d) get_p(get_main_parser, all_d) if show_all_args: helper._SHOW_ALL_ARGS = old_val return all_d def _export_parser_args(parser_fn, type_as_str: bool = False, **kwargs): from argparse import _StoreAction, _StoreTrueAction from jina.enums import BetterEnum from jina.parsers.helper import _SHOW_ALL_ARGS, CastToIntAction, KVAppendAction port_attr = ('help', 'choices', 'default', 'required', 'option_strings', 'dest') parser = parser_fn(**kwargs) parser2 = parser_fn(**kwargs) random_dest = set() for a, b in zip(parser._actions, parser2._actions): if a.default != b.default: random_dest.add(a.dest) for a in parser._actions: if isinstance( a, ( _StoreAction, _StoreTrueAction, KVAppendAction, CastToIntAction, CastHostAction, ), ): if not _SHOW_ALL_ARGS and a.help == argparse.SUPPRESS: continue ddd = {p: getattr(a, p) for p in port_attr} if isinstance(a, _StoreTrueAction): ddd['type'] = bool elif isinstance(a, KVAppendAction): ddd['type'] = dict elif isinstance(a, CastToIntAction): ddd['type'] = int elif isinstance(a, CastHostAction): ddd['type'] = str else: ddd['type'] = a.type if ddd['choices']: ddd['choices'] = [ str(k) if isinstance(k, BetterEnum) else k for k in ddd['choices'] ] ddd['type'] = str if isinstance(ddd['default'], BetterEnum): ddd['default'] = str(ddd['default']) ddd['type'] = str if ddd['type'] == str and (a.nargs == '*' or a.nargs == '+'): ddd['type'] = List[str] else: continue if a.dest in random_dest: ddd['default_random'] = True from jina.helper import random_identity, random_port if isinstance(a.default, str): ddd['default_factory'] = random_identity.__name__ elif isinstance(a.default, int): ddd['default_factory'] = random_port.__name__ else: ddd['default_random'] = False if type_as_str: ddd['type'] = getattr(ddd['type'], '__name__', str(ddd['type'])) ddd['name'] = ddd.pop('dest') yield ddd
import enum import pathlib from typing import Any, BinaryIO, Dict, List, Optional, Tuple, Union from torchdata.datapipes.iter import CSVParser, Demultiplexer, Filter, IterDataPipe, IterKeyZipper, LineReader, Mapper from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( getitem, hint_sharding, hint_shuffling, INFINITE_BUFFER_SIZE, path_comparator, read_categories_file, ) from torchvision.prototype.tv_tensors import Label from .._api import register_dataset, register_info NAME = "dtd" class DTDDemux(enum.IntEnum): SPLIT = 0 JOINT_CATEGORIES = 1 IMAGES = 2 @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=read_categories_file(NAME)) @register_dataset(NAME) class DTD(Dataset): """DTD Dataset. homepage="https://www.robots.ox.ac.uk/~vgg/data/dtd/", """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", fold: int = 1, skip_validation_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "val", "test"}) if not (1 <= fold <= 10): raise ValueError(f"The fold parameter should be an integer in [1, 10]. Got {fold}") self._fold = fold self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_validation_check) def _resources(self) -> List[OnlineResource]: archive = HttpResource( "https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz", sha256="e42855a52a4950a3b59612834602aa253914755c95b0cff9ead6d07395f8e205", preprocess="decompress", ) return [archive] def _classify_archive(self, data: Tuple[str, Any]) -> Optional[int]: path = pathlib.Path(data[0]) if path.parent.name == "labels": if path.name == "labels_joint_anno.txt": return DTDDemux.JOINT_CATEGORIES return DTDDemux.SPLIT elif path.parents[1].name == "images": return DTDDemux.IMAGES else: return None def _image_key_fn(self, data: Tuple[str, Any]) -> str: path = pathlib.Path(data[0]) # The split files contain hardcoded posix paths for the images, e.g. banded/banded_0001.jpg return str(path.relative_to(path.parents[1]).as_posix()) def _prepare_sample(self, data: Tuple[Tuple[str, List[str]], Tuple[str, BinaryIO]]) -> Dict[str, Any]: (_, joint_categories_data), image_data = data _, *joint_categories = joint_categories_data path, buffer = image_data category = pathlib.Path(path).parent.name return dict( joint_categories={category for category in joint_categories if category}, label=Label.from_category(category, categories=self._categories), path=path, image=EncodedImage.from_file(buffer), ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: archive_dp = resource_dps[0] splits_dp, joint_categories_dp, images_dp = Demultiplexer( archive_dp, 3, self._classify_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE ) splits_dp = Filter(splits_dp, path_comparator("name", f"{self._split}{self._fold}.txt")) splits_dp = LineReader(splits_dp, decode=True, return_path=False) splits_dp = hint_shuffling(splits_dp) splits_dp = hint_sharding(splits_dp) joint_categories_dp = CSVParser(joint_categories_dp, delimiter=" ") dp = IterKeyZipper( splits_dp, joint_categories_dp, key_fn=getitem(), ref_key_fn=getitem(0), buffer_size=INFINITE_BUFFER_SIZE, ) dp = IterKeyZipper( dp, images_dp, key_fn=getitem(0), ref_key_fn=self._image_key_fn, buffer_size=INFINITE_BUFFER_SIZE, ) return Mapper(dp, self._prepare_sample) def _filter_images(self, data: Tuple[str, Any]) -> bool: return self._classify_archive(data) == DTDDemux.IMAGES def _generate_categories(self) -> List[str]: resources = self._resources() dp = resources[0].load(self._root) dp = Filter(dp, self._filter_images) return sorted({pathlib.Path(path).parent.name for path, _ in dp}) def __len__(self) -> int: return 1_880 # All splits have the same length
import enum import pathlib from typing import Any, BinaryIO, Dict, List, Optional, Tuple, Union from torchdata.datapipes.iter import CSVParser, Demultiplexer, Filter, IterDataPipe, IterKeyZipper, LineReader, Mapper from torchvision.prototype.datapoints import Label from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( getitem, hint_sharding, hint_shuffling, INFINITE_BUFFER_SIZE, path_comparator, read_categories_file, ) from .._api import register_dataset, register_info NAME = "dtd" class DTDDemux(enum.IntEnum): SPLIT = 0 JOINT_CATEGORIES = 1 IMAGES = 2 @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=read_categories_file(NAME)) @register_dataset(NAME) class DTD(Dataset): """DTD Dataset. homepage="https://www.robots.ox.ac.uk/~vgg/data/dtd/", """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", fold: int = 1, skip_validation_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "val", "test"}) if not (1 <= fold <= 10): raise ValueError(f"The fold parameter should be an integer in [1, 10]. Got {fold}") self._fold = fold self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_validation_check) def _resources(self) -> List[OnlineResource]: archive = HttpResource( "https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz", sha256="e42855a52a4950a3b59612834602aa253914755c95b0cff9ead6d07395f8e205", preprocess="decompress", ) return [archive] def _classify_archive(self, data: Tuple[str, Any]) -> Optional[int]: path = pathlib.Path(data[0]) if path.parent.name == "labels": if path.name == "labels_joint_anno.txt": return DTDDemux.JOINT_CATEGORIES return DTDDemux.SPLIT elif path.parents[1].name == "images": return DTDDemux.IMAGES else: return None def _image_key_fn(self, data: Tuple[str, Any]) -> str: path = pathlib.Path(data[0]) # The split files contain hardcoded posix paths for the images, e.g. banded/banded_0001.jpg return str(path.relative_to(path.parents[1]).as_posix()) def _prepare_sample(self, data: Tuple[Tuple[str, List[str]], Tuple[str, BinaryIO]]) -> Dict[str, Any]: (_, joint_categories_data), image_data = data _, *joint_categories = joint_categories_data path, buffer = image_data category = pathlib.Path(path).parent.name return dict( joint_categories={category for category in joint_categories if category}, label=Label.from_category(category, categories=self._categories), path=path, image=EncodedImage.from_file(buffer), ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: archive_dp = resource_dps[0] splits_dp, joint_categories_dp, images_dp = Demultiplexer( archive_dp, 3, self._classify_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE ) splits_dp = Filter(splits_dp, path_comparator("name", f"{self._split}{self._fold}.txt")) splits_dp = LineReader(splits_dp, decode=True, return_path=False) splits_dp = hint_shuffling(splits_dp) splits_dp = hint_sharding(splits_dp) joint_categories_dp = CSVParser(joint_categories_dp, delimiter=" ") dp = IterKeyZipper( splits_dp, joint_categories_dp, key_fn=getitem(), ref_key_fn=getitem(0), buffer_size=INFINITE_BUFFER_SIZE, ) dp = IterKeyZipper( dp, images_dp, key_fn=getitem(0), ref_key_fn=self._image_key_fn, buffer_size=INFINITE_BUFFER_SIZE, ) return Mapper(dp, self._prepare_sample) def _filter_images(self, data: Tuple[str, Any]) -> bool: return self._classify_archive(data) == DTDDemux.IMAGES def _generate_categories(self) -> List[str]: resources = self._resources() dp = resources[0].load(self._root) dp = Filter(dp, self._filter_images) return sorted({pathlib.Path(path).parent.name for path, _ in dp}) def __len__(self) -> int: return 1_880 # All splits have the same length
class MissingConfigError(Exception): """The attempted operation requires configuration which is not available""" class NeedConfirmation(Exception): """The user must explicitly confirm that they want to proceed""" class InsufficientBalanceError(ValueError): user_id: str message: str balance: float amount: float def __init__(self, message: str, user_id: str, balance: float, amount: float): super().__init__(message) self.args = (message, user_id, balance, amount) self.message = message self.user_id = user_id self.balance = balance self.amount = amount def __str__(self): """Used to display the error message in the frontend, because we str() the error when sending the execution update""" return self.message
class MissingConfigError(Exception): """The attempted operation requires configuration which is not available""" class NeedConfirmation(Exception): """The user must explicitly confirm that they want to proceed"""
# Copyright (c) OpenMMLab. All rights reserved. from .base_video_metric import BaseVideoMetric from .cityscapes_metric import CityScapesMetric from .coco_metric import CocoMetric from .coco_occluded_metric import CocoOccludedSeparatedMetric from .coco_panoptic_metric import CocoPanopticMetric from .coco_video_metric import CocoVideoMetric from .crowdhuman_metric import CrowdHumanMetric from .dump_det_results import DumpDetResults from .dump_proposals_metric import DumpProposals from .lvis_metric import LVISMetric from .mot_challenge_metric import MOTChallengeMetric from .openimages_metric import OpenImagesMetric from .voc_metric import VOCMetric __all__ = [ 'CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric', 'OpenImagesMetric', 'VOCMetric', 'LVISMetric', 'CrowdHumanMetric', 'DumpProposals', 'CocoOccludedSeparatedMetric', 'DumpDetResults', 'BaseVideoMetric', 'MOTChallengeMetric', 'CocoVideoMetric' ]
# Copyright (c) OpenMMLab. All rights reserved. from .cityscapes_metric import CityScapesMetric from .coco_metric import CocoMetric from .coco_occluded_metric import CocoOccludedSeparatedMetric from .coco_panoptic_metric import CocoPanopticMetric from .crowdhuman_metric import CrowdHumanMetric from .dump_det_results import DumpDetResults from .dump_proposals_metric import DumpProposals from .lvis_metric import LVISMetric from .openimages_metric import OpenImagesMetric from .voc_metric import VOCMetric __all__ = [ 'CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric', 'OpenImagesMetric', 'VOCMetric', 'LVISMetric', 'CrowdHumanMetric', 'DumpProposals', 'CocoOccludedSeparatedMetric', 'DumpDetResults' ]
""" Prompts for implementing Chain of Abstraction. While official prompts are not given (and the paper finetunes models for the task), we can take inspiration and use few-shot prompting to generate a prompt for implementing chain of abstraction in an LLM agent. """ REASONING_PROMPT_TEMPALTE = """Generate an abstract plan of reasoning using placeholders for the specific values and function calls needed. The placeholders should be labeled y1, y2, etc. Function calls should be represented as inline strings like [FUNC {{function_name}}({{input1}}, {{input2}}, ...) = {{output_placeholder}}]. Assume someone will read the plan after the functions have been executed in order to make a final response. Not every question will require function calls to answer. If you do invoke a function, only use the available functions, do not make up functions. Example: ----------- Available functions: ```python def add(a: int, b: int) -> int: \"\"\"Add two numbers together.\"\"\" ... def multiply(a: int, b: int) -> int: \"\"\"Multiply two numbers together.\"\"\" ... ``` Question: Sally has 3 apples and buys 2 more. Then magically, a wizard casts a spell that multiplies the number of apples by 3. How many apples does Sally have now? Abstract plan of reasoning: After buying the apples, Sally has [FUNC add(3, 2) = y1] apples. Then, the wizard casts a spell to multiply the number of apples by 3, resulting in [FUNC multiply("y1", 3) = y2] apples. Your Turn: ----------- Available functions: ```python {functions} ``` Question: {question} Abstract plan of reasoning: """ REFINE_REASONING_PROMPT_TEMPALTE = """Generate a response to a question by using a previous abstract plan of reasoning. Use the previous reasoning as context to write a response to the question. Example: ----------- Question: Sally has 3 apples and buys 2 more. Then magically, a wizard casts a spell that multiplies the number of apples by 3. How many apples does Sally have now? Previous reasoning: After buying the apples, Sally has [FUNC add(3, 2) = 5] apples. Then, the wizard casts a spell to multiply the number of apples by 3, resulting in [FUNC multiply(5, 3) = 15] apples. Response: After the wizard casts the spell, Sally has 15 apples. Your Turn: ----------- Question: {question} Previous reasoning: {prev_reasoning} Response: """
""" Prompts for implementing Chain of Abstraction. While official prompts are not given (and the paper finetunes models for the task), we can take inspiration and use few-shot prompting to generate a prompt for implementing chain of abstraction in an LLM agent. """ REASONING_PROMPT_TEMPALTE = """Generate an abstract plan of reasoning using placeholders for the specific values and function calls needed. The placeholders should be labeled y1, y2, etc. Function calls should be represented as inline strings like [FUNC {{function_name}}({{input1}}, {{input2}}, ...) = {{output_placeholder}}]. Assume someone will read the plan after the functions have been executed in order to make a final response. Not every question will require function calls to answer. If you do invoke a function, only use the available functions, do not make up functions. Example: ----------- Available functions: ```python def add(a: int, b: int) -> int: \"\"\"Add two numbers together.\"\"\" ... def multiply(a: int, b: int) -> int: \"\"\"Multiply two numbers together.\"\"\" ... ``` Question: Sally has 3 apples and buys 2 more. Then magically, a wizard casts a spell that multiplies the number of apples by 3. How many apples does Sally have now? Abstract plan of reasoning: After buying the apples, Sally has [FUNC add(3, 2) = y1] apples. Then, the wizard casts a spell to multiply the number of apples by 3, resulting in [FUNC multiply(y1, 3) = y2] apples. Your Turn: ----------- Available functions: ```python {functions} ``` Question: {question} Abstract plan of reasoning: """ REFINE_REASONING_PROMPT_TEMPALTE = """Generate a response to a question by using a previous abstract plan of reasoning. Use the previous reasoning as context to write a response to the question. Example: ----------- Question: Sally has 3 apples and buys 2 more. Then magically, a wizard casts a spell that multiplies the number of apples by 3. How many apples does Sally have now? Previous reasoning: After buying the apples, Sally has [FUNC add(3, 2) = 5] apples. Then, the wizard casts a spell to multiply the number of apples by 3, resulting in [FUNC multiply(5, 3) = 15] apples. Response: After the wizard casts the spell, Sally has 15 apples. Your Turn: ----------- Question: {question} Previous reasoning: {prev_reasoning} Response: """
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock import torch from torch import nn from mmengine.hooks import OptimizerHook class TestOptimizerHook: def test_after_train_iter(self): class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d( in_channels=1, out_channels=2, kernel_size=3, stride=1, padding=1, dilation=1) self.conv2 = nn.Conv2d( in_channels=2, out_channels=2, kernel_size=3, stride=1, padding=1, dilation=1) self.conv3 = nn.Conv2d( in_channels=1, out_channels=2, kernel_size=3, stride=1, padding=1, dilation=1) def forward(self, x): x1 = self.conv1(x) x2 = self.conv2(x1) return x1, x2 model = Model() x = torch.rand(1, 1, 3, 3) dummy_runner = Mock() dummy_runner.optimizer.zero_grad = Mock(return_value=None) dummy_runner.optimizer.step = Mock(return_value=None) dummy_runner.model = model dummy_runner.outputs = dict() dummy_runner.outputs['num_samples'] = 0 class DummyLogger(): def __init__(self): self.msg = '' def log(self, msg=None, **kwargs): self.msg += msg dummy_runner.logger = DummyLogger() optimizer_hook = OptimizerHook( dict(max_norm=2), detect_anomalous_params=True) dummy_runner.outputs['loss'] = model(x)[0].sum() dummy_runner.outputs['loss'].backward = Mock( wraps=dummy_runner.outputs['loss'].backward) optimizer_hook.detect_anomalous_parameters = Mock( wraps=optimizer_hook.detect_anomalous_parameters) optimizer_hook.clip_grads = Mock(wraps=optimizer_hook.clip_grads) optimizer_hook.after_train_iter(dummy_runner, 0) # assert the parameters of conv2 and conv3 are not in the # computational graph which is with x1.sum() as root. assert 'conv2.weight' in dummy_runner.logger.msg assert 'conv2.bias' in dummy_runner.logger.msg assert 'conv3.weight' in dummy_runner.logger.msg assert 'conv3.bias' in dummy_runner.logger.msg assert 'conv1.weight' not in dummy_runner.logger.msg assert 'conv1.bias' not in dummy_runner.logger.msg dummy_runner.optimizer.step.assert_called() dummy_runner.outputs['loss'].backward.assert_called() optimizer_hook.clip_grads.assert_called() optimizer_hook.detect_anomalous_parameters.assert_called() dummy_runner.outputs['loss'] = model(x)[1].sum() dummy_runner.logger.msg = '' optimizer_hook.after_train_iter(dummy_runner, 0) # assert the parameters of conv3 are not in the computational graph assert 'conv3.weight' in dummy_runner.logger.msg assert 'conv3.bias' in dummy_runner.logger.msg assert 'conv2.weight' not in dummy_runner.logger.msg assert 'conv2.bias' not in dummy_runner.logger.msg assert 'conv1.weight' not in dummy_runner.logger.msg assert 'conv1.bias' not in dummy_runner.logger.msg # grad_clip is None and detect_anomalous_parameters is False optimizer_hook = OptimizerHook(detect_anomalous_params=False) optimizer_hook.detect_anomalous_parameters = Mock( wraps=optimizer_hook.detect_anomalous_parameters) optimizer_hook.clip_grads = Mock(wraps=optimizer_hook.clip_grads) dummy_runner.outputs['loss'] = model(x)[0].sum() dummy_runner.outputs['loss'].backward = Mock( wraps=dummy_runner.outputs['loss'].backward) optimizer_hook.after_train_iter(dummy_runner, 0) dummy_runner.optimizer.step.assert_called() dummy_runner.outputs['loss'].backward.assert_called() optimizer_hook.clip_grads.assert_not_called() optimizer_hook.detect_anomalous_parameters.assert_not_called()
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock import torch from torch import nn from mmengine.hooks import OptimizerHook class TestOptimizerHook: def test_after_train_iter(self): class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d( in_channels=1, out_channels=2, kernel_size=3, stride=1, padding=1, dilation=1) self.conv2 = nn.Conv2d( in_channels=2, out_channels=2, kernel_size=3, stride=1, padding=1, dilation=1) self.conv3 = nn.Conv2d( in_channels=1, out_channels=2, kernel_size=3, stride=1, padding=1, dilation=1) def forward(self, x): x1 = self.conv1(x) x2 = self.conv2(x1) return x1, x2 model = Model() x = torch.rand(1, 1, 3, 3) dummy_runner = Mock() dummy_runner.optimizer.zero_grad = Mock(return_value=None) dummy_runner.optimizer.step = Mock(return_value=None) dummy_runner.model = model dummy_runner.outputs = dict() dummy_runner.outputs['num_samples'] = 0 class DummyLogger(): def __init__(self): self.msg = '' def log(self, msg=None, **kwargs): self.msg += msg dummy_runner.logger = DummyLogger() optimizer_hook = OptimizerHook( dict(max_norm=2), detect_anomalous_params=True) dummy_runner.outputs['loss'] = model(x)[0].sum() dummy_runner.outputs['loss'].backward = Mock( wraps=dummy_runner.outputs['loss'].backward) optimizer_hook.detect_anomalous_parameters = Mock( wraps=optimizer_hook.detect_anomalous_parameters) optimizer_hook.clip_grads = Mock(wraps=optimizer_hook.clip_grads) optimizer_hook.after_train_iter(dummy_runner) # assert the parameters of conv2 and conv3 are not in the # computational graph which is with x1.sum() as root. assert 'conv2.weight' in dummy_runner.logger.msg assert 'conv2.bias' in dummy_runner.logger.msg assert 'conv3.weight' in dummy_runner.logger.msg assert 'conv3.bias' in dummy_runner.logger.msg assert 'conv1.weight' not in dummy_runner.logger.msg assert 'conv1.bias' not in dummy_runner.logger.msg dummy_runner.optimizer.step.assert_called() dummy_runner.outputs['loss'].backward.assert_called() optimizer_hook.clip_grads.assert_called() optimizer_hook.detect_anomalous_parameters.assert_called() dummy_runner.outputs['loss'] = model(x)[1].sum() dummy_runner.logger.msg = '' optimizer_hook.after_train_iter(dummy_runner) # assert the parameters of conv3 are not in the computational graph assert 'conv3.weight' in dummy_runner.logger.msg assert 'conv3.bias' in dummy_runner.logger.msg assert 'conv2.weight' not in dummy_runner.logger.msg assert 'conv2.bias' not in dummy_runner.logger.msg assert 'conv1.weight' not in dummy_runner.logger.msg assert 'conv1.bias' not in dummy_runner.logger.msg # grad_clip is None and detect_anomalous_parameters is False optimizer_hook = OptimizerHook(detect_anomalous_params=False) optimizer_hook.detect_anomalous_parameters = Mock( wraps=optimizer_hook.detect_anomalous_parameters) optimizer_hook.clip_grads = Mock(wraps=optimizer_hook.clip_grads) dummy_runner.outputs['loss'] = model(x)[0].sum() dummy_runner.outputs['loss'].backward = Mock( wraps=dummy_runner.outputs['loss'].backward) optimizer_hook.after_train_iter(dummy_runner) dummy_runner.optimizer.step.assert_called() dummy_runner.outputs['loss'].backward.assert_called() optimizer_hook.clip_grads.assert_not_called() optimizer_hook.detect_anomalous_parameters.assert_not_called()
"""You Retriever.""" import logging import os import warnings from typing import Any, Dict, List, Literal, Optional import requests from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.callbacks.base import CallbackManager from llama_index.core.schema import NodeWithScore, QueryBundle, TextNode logger = logging.getLogger(__name__) class YouRetriever(BaseRetriever): """ Retriever for You.com's Search and News API. [API reference](https://documentation.you.com/api-reference/) Args: api_key: you.com API key, if `YDC_API_KEY` is not set in the environment endpoint: you.com endpoints num_web_results: The max number of web results to return, must be under 20 safesearch: Safesearch settings, one of "off", "moderate", "strict", defaults to moderate country: Country code, ex: 'US' for United States, see API reference for more info search_lang: (News API) Language codes, ex: 'en' for English, see API reference for more info ui_lang: (News API) User interface language for the response, ex: 'en' for English, see API reference for more info spellcheck: (News API) Whether to spell check query or not, defaults to True """ def __init__( self, api_key: Optional[str] = None, callback_manager: Optional[CallbackManager] = None, endpoint: Literal["search", "news"] = "search", num_web_results: Optional[int] = None, safesearch: Optional[Literal["off", "moderate", "strict"]] = None, country: Optional[str] = None, search_lang: Optional[str] = None, ui_lang: Optional[str] = None, spellcheck: Optional[bool] = None, ) -> None: """Init params.""" # Should deprecate `YOU_API_KEY` in favour of `YDC_API_KEY` for standardization purposes self._api_key = api_key or os.getenv("YOU_API_KEY") or os.environ["YDC_API_KEY"] super().__init__(callback_manager) if endpoint not in ("search", "news"): raise ValueError('`endpoint` must be either "search" or "news"') # Raise warning if News API-specific fields are set but endpoint is not "news" if endpoint != "news": news_api_fields = (search_lang, ui_lang, spellcheck) for field in news_api_fields: if field: warnings.warn( ( f"News API-specific field '{field}' is set but `{endpoint=}`. " "This will have no effect." ), UserWarning, ) self.endpoint = endpoint self.num_web_results = num_web_results self.safesearch = safesearch self.country = country self.search_lang = search_lang self.ui_lang = ui_lang self.spellcheck = spellcheck def _generate_params(self, query: str) -> Dict[str, Any]: params = {"safesearch": self.safesearch, "country": self.country} if self.endpoint == "search": params.update( query=query, num_web_results=self.num_web_results, ) elif self.endpoint == "news": params.update( q=query, count=self.num_web_results, search_lang=self.search_lang, ui_lang=self.ui_lang, spellcheck=self.spellcheck, ) # Remove `None` values return {k: v for k, v in params.items() if v is not None} def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Retrieve.""" headers = {"X-API-Key": self._api_key} params = self._generate_params(query_bundle.query_str) response = requests.get( f"https://api.ydc-index.io/{self.endpoint}", params=params, headers=headers, ) response.raise_for_status() results = response.json() nodes: List[TextNode] = [] if self.endpoint == "search": for hit in results["hits"]: nodes.append( TextNode( text="\n".join(hit["snippets"]), ) ) else: # news endpoint for article in results["news"]["results"]: node = TextNode( text=article["description"], extra_info={"url": article["url"], "age": article["age"]}, ) nodes.append(node) return [NodeWithScore(node=node, score=1.0) for node in nodes]
"""You Retriever.""" import logging import os import warnings from typing import Any, Dict, List, Literal, Optional import requests from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.callbacks.base import CallbackManager from llama_index.core.schema import NodeWithScore, QueryBundle, TextNode logger = logging.getLogger(__name__) class YouRetriever(BaseRetriever): """ Retriever for You.com's Search and News API. [API reference](https://documentation.you.com/api-reference/) Args: api_key: you.com API key, if `YDC_API_KEY` is not set in the environment endpoint: you.com endpoints num_web_results: The max number of web results to return, must be under 20 safesearch: Safesearch settings, one of "off", "moderate", "strict", defaults to moderate country: Country code, ex: 'US' for United States, see API reference for more info search_lang: (News API) Language codes, ex: 'en' for English, see API reference for more info ui_lang: (News API) User interface language for the response, ex: 'en' for English, see API reference for more info spellcheck: (News API) Whether to spell check query or not, defaults to True """ def __init__( self, api_key: Optional[str] = None, callback_manager: Optional[CallbackManager] = None, endpoint: Literal["search", "news"] = "search", num_web_results: Optional[int] = None, safesearch: Optional[Literal["off", "moderate", "strict"]] = None, country: Optional[str] = None, search_lang: Optional[str] = None, ui_lang: Optional[str] = None, spellcheck: Optional[bool] = None, ) -> None: """Init params.""" # Should deprecate `YOU_API_KEY` in favour of `YDC_API_KEY` for standardization purposes self._api_key = api_key or os.getenv("YOU_API_KEY") or os.environ["YDC_API_KEY"] super().__init__(callback_manager) if endpoint not in ("search", "news"): raise ValueError('`endpoint` must be either "search" or "news"') # Raise warning if News API-specific fields are set but endpoint is not "news" if endpoint != "news": news_api_fields = (search_lang, ui_lang, spellcheck) for field in news_api_fields: if field: warnings.warn( ( f"News API-specific field '{field}' is set but `{endpoint=}`. " "This will have no effect." ), UserWarning, ) self.endpoint = endpoint self.num_web_results = num_web_results self.safesearch = safesearch self.country = country self.search_lang = search_lang self.ui_lang = ui_lang self.spellcheck = spellcheck def _generate_params(self, query: str) -> Dict[str, Any]: params = {"safesearch": self.safesearch, "country": self.country} if self.endpoint == "search": params.update( query=query, num_web_results=self.num_web_results, ) elif self.endpoint == "news": params.update( q=query, count=self.num_web_results, search_lang=self.search_lang, ui_lang=self.ui_lang, spellcheck=self.spellcheck, ) # Remove `None` values return {k: v for k, v in params.items() if v is not None} def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Retrieve.""" headers = {"X-API-Key": self._api_key} params = self._generate_params(query_bundle.query_str) response = requests.get( f"https://api.ydc-index.io/{self.endpoint}", params=params, headers=headers, ) response.raise_for_status() results = response.json() nodes: List[TextNode] = [] if self.endpoint == "search": for hit in results["hits"]: nodes.append( TextNode( text="\n".join(hit["snippets"]), ) ) else: # news endpoint for article in results["news"]["results"]: node = TextNode( text=article["description"], extra_info={"url": article["url"], "age": article["age"]}, ) nodes.append(node) return [NodeWithScore(node=node, score=1.0) for node in nodes]
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fill examples with bitext up to max_tokens without breaking up examples. [['I went', 'yo fui'], ['to the store', 'a la tienda'] ] => ['I went to the store', 'yo fui a la tienda'] """ import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def pack_examples(tok, src_examples, tgt_examples, max_tokens=1024): finished_src, finished_tgt = [], [] sorted_examples = list(zip(src_examples, tgt_examples)) new_src, new_tgt = sorted_examples[0] def is_too_big(strang): return tok(strang, return_tensors="pt").input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:]): cand_src = new_src + " " + src cand_tgt = new_tgt + " " + tgt if is_too_big(cand_src) or is_too_big(cand_tgt): # can't fit, finalize example finished_src.append(new_src) finished_tgt.append(new_tgt) new_src, new_tgt = src, tgt else: # can fit, keep adding new_src, new_tgt = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(new_src) finished_tgt.append(new_tgt) return finished_src, finished_tgt def pack_data_dir(tok, data_dir: Path, max_tokens, save_path): save_path = Path(save_path) save_path.mkdir(exist_ok=True) for split in ["train"]: src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target" src_docs = [x.rstrip() for x in Path(src_path).open().readlines()] tgt_docs = [x.rstrip() for x in Path(tgt_path).open().readlines()] packed_src, packed_tgt = pack_examples(tok, src_docs, tgt_docs, max_tokens) print(f"packed {split} split from {len(src_docs)} examples -> {len(packed_src)}.") Path(save_path / f"{split}.source").open("w").write("\n".join(packed_src)) Path(save_path / f"{split}.target").open("w").write("\n".join(packed_tgt)) for split in ["val", "test"]: src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target" shutil.copyfile(src_path, save_path / f"{split}.source") shutil.copyfile(tgt_path, save_path / f"{split}.target") def packer_cli(): parser = argparse.ArgumentParser() parser.add_argument("--tok_name", type=str, help="like facebook/bart-large-cnn,google-t5/t5-base, etc.") parser.add_argument("--max_seq_len", type=int, default=128) parser.add_argument("--data_dir", type=str) parser.add_argument("--save_path", type=str) args = parser.parse_args() tokenizer = AutoTokenizer.from_pretrained(args.tok_name) return pack_data_dir(tokenizer, Path(args.data_dir), args.max_seq_len, args.save_path) if __name__ == "__main__": packer_cli()
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fill examples with bitext up to max_tokens without breaking up examples. [['I went', 'yo fui'], ['to the store', 'a la tienda'] ] => ['I went to the store', 'yo fui a la tienda'] """ import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def pack_examples(tok, src_examples, tgt_examples, max_tokens=1024): finished_src, finished_tgt = [], [] sorted_examples = list(zip(src_examples, tgt_examples)) new_src, new_tgt = sorted_examples[0] def is_too_big(strang): return tok(strang, return_tensors="pt").input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:]): cand_src = new_src + " " + src cand_tgt = new_tgt + " " + tgt if is_too_big(cand_src) or is_too_big(cand_tgt): # cant fit, finalize example finished_src.append(new_src) finished_tgt.append(new_tgt) new_src, new_tgt = src, tgt else: # can fit, keep adding new_src, new_tgt = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(new_src) finished_tgt.append(new_tgt) return finished_src, finished_tgt def pack_data_dir(tok, data_dir: Path, max_tokens, save_path): save_path = Path(save_path) save_path.mkdir(exist_ok=True) for split in ["train"]: src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target" src_docs = [x.rstrip() for x in Path(src_path).open().readlines()] tgt_docs = [x.rstrip() for x in Path(tgt_path).open().readlines()] packed_src, packed_tgt = pack_examples(tok, src_docs, tgt_docs, max_tokens) print(f"packed {split} split from {len(src_docs)} examples -> {len(packed_src)}.") Path(save_path / f"{split}.source").open("w").write("\n".join(packed_src)) Path(save_path / f"{split}.target").open("w").write("\n".join(packed_tgt)) for split in ["val", "test"]: src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target" shutil.copyfile(src_path, save_path / f"{split}.source") shutil.copyfile(tgt_path, save_path / f"{split}.target") def packer_cli(): parser = argparse.ArgumentParser() parser.add_argument("--tok_name", type=str, help="like facebook/bart-large-cnn,google-t5/t5-base, etc.") parser.add_argument("--max_seq_len", type=int, default=128) parser.add_argument("--data_dir", type=str) parser.add_argument("--save_path", type=str) args = parser.parse_args() tokenizer = AutoTokenizer.from_pretrained(args.tok_name) return pack_data_dir(tokenizer, Path(args.data_dir), args.max_seq_len, args.save_path) if __name__ == "__main__": packer_cli()
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional, utils # usort: skip from ._transform import Transform # usort: skip from ._augment import Cutmix, Mixup, RandomErasing from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, Grayscale, RandomAdjustSharpness, RandomAutocontrast, RandomEqualize, RandomGrayscale, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat from ._misc import ( ConvertImageDtype, GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, SanitizeBoundingBoxes, ToDtype, ) from ._temporal import UniformTemporalSubsample from ._type_conversion import PILToTensor, ToImagePIL, ToImageTensor, ToPILImage from ._deprecated import ToTensor # usort: skip from torchvision import _BETA_TRANSFORMS_WARNING, _WARN_ABOUT_BETA_TRANSFORMS if _WARN_ABOUT_BETA_TRANSFORMS: import warnings warnings.warn(_BETA_TRANSFORMS_WARNING)
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional, utils # usort: skip from ._transform import Transform # usort: skip from ._augment import Cutmix, Mixup, RandomErasing from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, Grayscale, RandomAdjustSharpness, RandomAutocontrast, RandomEqualize, RandomGrayscale, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBox, ConvertBoundingBoxFormat from ._misc import ( ConvertImageDtype, GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, SanitizeBoundingBox, ToDtype, ) from ._temporal import UniformTemporalSubsample from ._type_conversion import PILToTensor, ToImagePIL, ToImageTensor, ToPILImage from ._deprecated import ToTensor # usort: skip from torchvision import _BETA_TRANSFORMS_WARNING, _WARN_ABOUT_BETA_TRANSFORMS if _WARN_ABOUT_BETA_TRANSFORMS: import warnings warnings.warn(_BETA_TRANSFORMS_WARNING)
import tempfile import os import time from typing import Dict import pytest cur_dir = os.path.dirname(os.path.abspath(__file__)) compose_yml = os.path.abspath( os.path.join(cur_dir, 'unit', 'array', 'docker-compose.yml') ) milvus_compose_yml = os.path.abspath( os.path.join(cur_dir, 'unit', 'array', 'milvus-docker-compose.yml') ) @pytest.fixture(autouse=True) def tmpfile(tmpdir): tmpfile = f'docarray_test_{next(tempfile._get_candidate_names())}.db' return tmpdir / tmpfile @pytest.fixture(scope='module') def start_storage(): os.system( f"docker-compose -f {compose_yml} --project-directory . up --build -d " f"--remove-orphans" ) os.system( f"docker-compose -f {milvus_compose_yml} --project-directory . up --build -d" ) _wait_for_es() _wait_for_milvus() yield os.system( f"docker-compose -f {compose_yml} --project-directory . down " f"--remove-orphans" ) os.system( f"docker-compose -f {milvus_compose_yml} --project-directory . down " f"--remove-orphans" ) def restart_milvus(): os.system(f"docker-compose -f {milvus_compose_yml} --project-directory . down") os.system( f"docker-compose -f {milvus_compose_yml} --project-directory . up --build -d" ) _wait_for_milvus(restart_on_failure=False) def _wait_for_es(): from elasticsearch import Elasticsearch es = Elasticsearch(hosts='http://localhost:9200/') while not es.ping(): time.sleep(0.5) def _wait_for_milvus(restart_on_failure=True): from pymilvus import connections, has_collection from pymilvus.exceptions import MilvusUnavailableException, MilvusException milvus_conn_alias = f'pytest_localhost_19530' try: connections.connect(alias=milvus_conn_alias, host='localhost', port=19530) milvus_ready = False while not milvus_ready: try: has_collection('ping', using=milvus_conn_alias) milvus_ready = True except MilvusUnavailableException: # Milvus is not ready yet, just wait time.sleep(0.5) except MilvusException as e: if e.code == 1 and restart_on_failure: # something went wrong with the docker container, restart and retry once restart_milvus() else: raise e @pytest.fixture(scope='session') def set_env_vars(request): _old_environ = dict(os.environ) os.environ.update(request.param) yield os.environ.clear() os.environ.update(_old_environ)
import tempfile import os import time from typing import Dict import pytest cur_dir = os.path.dirname(os.path.abspath(__file__)) compose_yml = os.path.abspath( os.path.join(cur_dir, 'unit', 'array', 'docker-compose.yml') ) @pytest.fixture(autouse=True) def tmpfile(tmpdir): tmpfile = f'docarray_test_{next(tempfile._get_candidate_names())}.db' return tmpdir / tmpfile @pytest.fixture(scope='module') def start_storage(): os.system( f"docker-compose -f {compose_yml} --project-directory . up --build -d " f"--remove-orphans" ) from elasticsearch import Elasticsearch es = Elasticsearch(hosts='http://localhost:9200/') while not es.ping(): time.sleep(0.5) yield os.system( f"docker-compose -f {compose_yml} --project-directory . down " f"--remove-orphans" ) @pytest.fixture(scope='session') def set_env_vars(request): _old_environ = dict(os.environ) os.environ.update(request.param) yield os.environ.clear() os.environ.update(_old_environ)
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/lic enses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Optional from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..integrations import replace_with_spqr_linear from ..utils import is_accelerate_available, is_spqr_available, is_torch_available, logging from ..utils.quantization_config import QuantizationConfigMixin if is_torch_available(): import torch logger = logging.get_logger(__name__) class SpQRHfQuantizer(HfQuantizer): """ Quantizer of the SpQR method. Enables the loading of prequantized models. """ requires_calibration = True def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not torch.cuda.is_available(): raise RuntimeError("GPU is required to run SpQR quantized model.") if not is_accelerate_available(): raise ImportError("Using `spqr` quantization requires Accelerate: `pip install accelerate`") if not is_spqr_available(): raise ImportError("Using `spqr` quantization requires SpQR: `pip install spqr_quant[gpu]`") def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: torch_dtype = torch.float16 logger.info("Assuming SpQR inference on GPU and loading the model in `torch.float16`.") elif torch_dtype != torch.float16: raise ValueError( "You cannot use any type other than torch.float16 for SpQR. Please either leave it None or set it to" "torch.float16 explicitly." ) return torch_dtype def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[list[str]] = None, **kwargs, ): self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) replace_with_spqr_linear( model, quantization_config=self.quantization_config, modules_to_not_convert=self.modules_to_not_convert, ) model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): return False def is_serializable(self, safe_serialization=None): return True
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/lic enses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, List, Optional from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..integrations import replace_with_spqr_linear from ..utils import is_accelerate_available, is_spqr_available, is_torch_available, logging from ..utils.quantization_config import QuantizationConfigMixin if is_torch_available(): import torch logger = logging.get_logger(__name__) class SpQRHfQuantizer(HfQuantizer): """ Quantizer of the SpQR method. Enables the loading of prequantized models. """ requires_calibration = True def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not torch.cuda.is_available(): raise RuntimeError("GPU is required to run SpQR quantized model.") if not is_accelerate_available(): raise ImportError("Using `spqr` quantization requires Accelerate: `pip install accelerate`") if not is_spqr_available(): raise ImportError("Using `spqr` quantization requires SpQR: `pip install spqr_quant[gpu]`") def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: torch_dtype = torch.float16 logger.info("Assuming SpQR inference on GPU and loading the model in `torch.float16`.") elif torch_dtype != torch.float16: raise ValueError( "You cannot use any type other than torch.float16 for SpQR. Please either leave it None or set it to" "torch.float16 explicitly." ) return torch_dtype def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[List[str]] = None, **kwargs, ): self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) replace_with_spqr_linear( model, quantization_config=self.quantization_config, modules_to_not_convert=self.modules_to_not_convert, ) model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): return False def is_serializable(self, safe_serialization=None): return True
"""Quip reader.""" from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document from typing import Any, Dict, List, Optional import requests # type: ignore import time from pydantic import Field BASE_URL = "https://platform.quip.com" class QuipReader(BasePydanticReader): access_token: str = Field(description="Quip API access token") request_timeout: Optional[float] = Field( default=None, description="Request timeout in seconds" ) headers: Dict[str, str] = Field( default=None, description="Headers to be sent with the request" ) def __init__( self, access_token: str, request_timeout: Optional[float] = None, headers: Optional[Dict[str, str]] = None, ) -> None: headers = headers or {} if "Authorization" not in headers: headers["Authorization"] = "Bearer " + access_token super().__init__( access_token=access_token, request_timeout=request_timeout, headers=headers, ) @classmethod def class_name(cls) -> str: return "QuipReader" def load_data(self, thread_ids: List[str]) -> List[Document]: """Load data from Quip.""" documents = [] thread_contents = self._get_threads(thread_ids) for i, content in enumerate(thread_contents): doc = Document( text=content, id_=thread_ids[i], extra_info={"thread_id": thread_ids[i]} ) documents.append(doc) return documents def _get_threads(self, ids: List[str]) -> List[str]: """Returns a dictionary of threads for the given IDs.""" threads = [] for id in ids: thread_content = self._get_thread(id) threads.append(thread_content) return threads def _get_thread(self, id) -> str: """Returns the thread with the given ID.""" url = BASE_URL + "/2/" + "threads/" + id + "/html" return self._request_with_retry("GET", url, headers=self.headers).get( "html", "" ) def _request_with_retry( self, method: str, url: str, headers: Dict[str, str], json: Optional[Dict[str, Any]] = None, ) -> Dict[str, Any]: """Make a request with retry and rate limit handling.""" max_retries = 5 backoff_factor = 1 for attempt in range(max_retries): try: response = requests.request(method, url, headers=headers, json=json) response.raise_for_status() return response.json() except requests.exceptions.HTTPError: if response.status_code == 429: # Rate limit exceeded retry_after = int(response.headers.get("Retry-After", 1)) time.sleep(backoff_factor * (2**attempt) + retry_after) else: raise requests.exceptions.HTTPError( f"Request failed: {response.text}" ) except requests.exceptions.RequestException as err: raise requests.exceptions.RequestException(f"Request failed: {err}") raise Exception("Maximum retries exceeded")
"""Quip reader.""" from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document from typing import Any, Dict, List, Optional import requests # type: ignore import time from pydantic import Field BASE_URL = "https://platform.quip.com" class QuipReader(BasePydanticReader): access_token: str = Field(description="Quip API access token") request_timeout: Optional[float] = Field( default=None, description="Request timeout in seconds" ) headers: Dict[str, str] = Field( default=None, description="Headers to be sent with the request" ) def __init__( self, access_token: str, request_timeout: Optional[float] = None, headers: Optional[Dict[str, str]] = None, ) -> None: headers = headers or {} if "Authorization" not in headers: headers["Authorization"] = "Bearer " + access_token super().__init__( access_token=access_token, request_timeout=request_timeout, headers=headers, ) @classmethod def class_name(cls) -> str: return "QuipReader" def load_data(self, thread_ids: List[str]) -> List[Document]: """Load data from Quip.""" documents = [] thread_contents = self._get_threads(thread_ids) for i, content in enumerate(thread_contents): doc = Document( text=content, id_=thread_ids[i], extra_info={"thread_id": thread_ids[i]} ) documents.append(doc) return documents def _get_threads(self, ids: List[str]) -> List[str]: """Returns a dictionary of threads for the given IDs.""" threads = [] for id in ids: thread_content = self._get_thread(id) threads.append(thread_content) return threads def _get_thread(self, id) -> str: """Returns the thread with the given ID.""" url = BASE_URL + "/2/" + "threads/" + id + "/html" return self._request_with_retry("GET", url, headers=self.headers).get( "html", "" ) def _request_with_retry( self, method: str, url: str, headers: Dict[str, str], json: Optional[Dict[str, Any]] = None, ) -> Dict[str, Any]: """Make a request with retry and rate limit handling.""" max_retries = 5 backoff_factor = 1 for attempt in range(max_retries): try: response = requests.request(method, url, headers=headers, json=json) response.raise_for_status() return response.json() except requests.exceptions.HTTPError: if response.status_code == 429: # Rate limit exceeded retry_after = int(response.headers.get("Retry-After", 1)) time.sleep(backoff_factor * (2**attempt) + retry_after) else: raise requests.exceptions.HTTPError( f"Request failed: {response.text}" ) except requests.exceptions.RequestException as err: raise requests.exceptions.RequestException(f"Request failed: {err}") raise Exception("Maximum retries exceeded")
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None # Align with Detectron2 backend = 'pillow' train_pipeline = [ dict( type='LoadImageFromFile', backend_args=backend_args, imdecode_backend=backend), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True, backend=backend), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', backend_args=backend_args, imdecode_backend=backend), dict(type='Resize', scale=(1333, 800), keep_ratio=True, backend=backend), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, pin_memory=True, sampler=dict(type='InfiniteSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, pin_memory=True, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric=['bbox', 'segm'], format_only=False, backend_args=backend_args) test_evaluator = val_evaluator # training schedule for 90k max_iter = 90000 train_cfg = dict( type='IterBasedTrainLoop', max_iters=max_iter, val_interval=10000) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_iter, by_epoch=False, milestones=[60000, 80000], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16) default_hooks = dict(checkpoint=dict(by_epoch=False, interval=10000)) log_processor = dict(by_epoch=False)
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') # Align with Detectron2 backend = 'pillow' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args=file_client_args, imdecode_backend=backend), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True, backend=backend), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args=file_client_args, imdecode_backend=backend), dict(type='Resize', scale=(1333, 800), keep_ratio=True, backend=backend), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, pin_memory=True, sampler=dict(type='InfiniteSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, pin_memory=True, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric=['bbox', 'segm'], format_only=False) test_evaluator = val_evaluator # training schedule for 90k max_iter = 90000 train_cfg = dict( type='IterBasedTrainLoop', max_iters=max_iter, val_interval=10000) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_iter, by_epoch=False, milestones=[60000, 80000], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16) default_hooks = dict(checkpoint=dict(by_epoch=False, interval=10000)) log_processor = dict(by_epoch=False)
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 11 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from .registry import Registry # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner') # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage constructors that customize the optimization hyperparameters. OPTIMIZER_CONSTRUCTORS = Registry('optimizer constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry('parameter scheduler') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util') # manage all kinds of evaluators for computing metrics EVALUATORS = Registry('evaluator')
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 11 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from .registry import Registry # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner') # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage constructors that customize the optimization hyperparameters. OPTIMIZER_CONSTRUCTORS = Registry('optimizer constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry('parameter scheduler') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util')
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.activations import deserialize as deserialize from keras.src.activations import get as get from keras.src.activations import serialize as serialize from keras.src.activations.activations import celu as celu from keras.src.activations.activations import elu as elu from keras.src.activations.activations import exponential as exponential from keras.src.activations.activations import gelu as gelu from keras.src.activations.activations import glu as glu from keras.src.activations.activations import hard_shrink as hard_shrink from keras.src.activations.activations import hard_sigmoid as hard_sigmoid from keras.src.activations.activations import hard_silu as hard_silu from keras.src.activations.activations import hard_silu as hard_swish from keras.src.activations.activations import hard_tanh as hard_tanh from keras.src.activations.activations import leaky_relu as leaky_relu from keras.src.activations.activations import linear as linear from keras.src.activations.activations import log_sigmoid as log_sigmoid from keras.src.activations.activations import log_softmax as log_softmax from keras.src.activations.activations import mish as mish from keras.src.activations.activations import relu as relu from keras.src.activations.activations import relu6 as relu6 from keras.src.activations.activations import selu as selu from keras.src.activations.activations import sigmoid as sigmoid from keras.src.activations.activations import silu as silu from keras.src.activations.activations import silu as swish from keras.src.activations.activations import soft_shrink as soft_shrink from keras.src.activations.activations import softmax as softmax from keras.src.activations.activations import softplus as softplus from keras.src.activations.activations import softsign as softsign from keras.src.activations.activations import sparse_plus as sparse_plus from keras.src.activations.activations import sparse_sigmoid as sparse_sigmoid from keras.src.activations.activations import sparsemax as sparsemax from keras.src.activations.activations import squareplus as squareplus from keras.src.activations.activations import tanh as tanh from keras.src.activations.activations import tanh_shrink as tanh_shrink from keras.src.activations.activations import threshold as threshold
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.activations import deserialize from keras.src.activations import get from keras.src.activations import serialize from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_shrink from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_silu as hard_swish from keras.src.activations.activations import hard_tanh from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_sigmoid from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import silu as swish from keras.src.activations.activations import soft_shrink from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import sparse_plus from keras.src.activations.activations import sparse_sigmoid from keras.src.activations.activations import sparsemax from keras.src.activations.activations import squareplus from keras.src.activations.activations import tanh from keras.src.activations.activations import tanh_shrink from keras.src.activations.activations import threshold
from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDocument from docarray.base_document.io.json import orjson_dumps from docarray.typing import ( AudioNdArray, NdArray, VideoNdArray, VideoTorchTensor, VideoUrl, ) from tests import TOYDATA_DIR LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load(file_url): url = parse_obj_as(VideoUrl, file_url) video, audio, indices = url.load() assert isinstance(audio, np.ndarray) assert isinstance(audio, AudioNdArray) assert isinstance(video, np.ndarray) assert isinstance(video, VideoNdArray) assert isinstance(indices, np.ndarray) assert isinstance(indices, NdArray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) @pytest.mark.parametrize( 'field, attr_cls', [ ('video', VideoNdArray), ('audio', AudioNdArray), ('key_frame_indices', NdArray), ], ) def test_load_one_of_named_tuple_results(file_url, field, attr_cls): url = parse_obj_as(VideoUrl, file_url) result = getattr(url.load(), field) assert isinstance(result, np.ndarray) assert isinstance(result, attr_cls) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load_video_url_to_video_torch_tensor_field(file_url): class MyVideoDoc(BaseDocument): video_url: VideoUrl tensor: Optional[VideoTorchTensor] doc = MyVideoDoc(video_url=file_url) doc.tensor = doc.video_url.load().video assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, VideoTorchTensor) def test_json_schema(): schema_json_of(VideoUrl) def test_dump_json(): url = parse_obj_as(VideoUrl, REMOTE_VIDEO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_validation(path_to_file): url = parse_obj_as(VideoUrl, path_to_file) assert isinstance(url, VideoUrl) assert isinstance(url, str) @pytest.mark.parametrize( 'path_to_file', [ 'illegal', 'https://www.google.com', 'my/local/text/file.txt', 'my/local/text/file.png', 'my/local/file.mp3', ], ) def test_illegal_validation(path_to_file): with pytest.raises(ValueError, match='VideoUrl'): parse_obj_as(VideoUrl, path_to_file) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_proto_video_url(file_url): uri = parse_obj_as(VideoUrl, file_url) proto = uri._to_node_protobuf() assert 'video_url' in str(proto) def test_load_bytes(): file_url = LOCAL_VIDEO_FILE uri = parse_obj_as(VideoUrl, file_url) video_bytes = uri.load_bytes() assert isinstance(video_bytes, bytes) assert len(video_bytes) > 0
from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDocument from docarray.base_document.io.json import orjson_dumps from docarray.typing import ( AudioNdArray, NdArray, VideoNdArray, VideoTorchTensor, VideoUrl, ) from tests import TOYDATA_DIR LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load(file_url): url = parse_obj_as(VideoUrl, file_url) video, audio, indices = url.load() assert isinstance(audio, np.ndarray) assert isinstance(audio, AudioNdArray) assert isinstance(video, np.ndarray) assert isinstance(video, VideoNdArray) assert isinstance(indices, np.ndarray) assert isinstance(indices, NdArray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) @pytest.mark.parametrize( 'field, attr_cls', [ ('video', VideoNdArray), ('audio', AudioNdArray), ('key_frame_indices', NdArray), ], ) def test_load_one_of_named_tuple_results(file_url, field, attr_cls): url = parse_obj_as(VideoUrl, file_url) result = getattr(url.load(), field) assert isinstance(result, np.ndarray) assert isinstance(result, attr_cls) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load_video_url_to_video_torch_tensor_field(file_url): class MyVideoDoc(BaseDocument): video_url: VideoUrl tensor: Optional[VideoTorchTensor] doc = MyVideoDoc(video_url=file_url) doc.tensor = doc.video_url.load().video assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, VideoTorchTensor) def test_json_schema(): schema_json_of(VideoUrl) def test_dump_json(): url = parse_obj_as(VideoUrl, REMOTE_VIDEO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_validation(path_to_file): url = parse_obj_as(VideoUrl, path_to_file) assert isinstance(url, VideoUrl) assert isinstance(url, str) @pytest.mark.parametrize( 'path_to_file', [ 'illegal', 'https://www.google.com', 'my/local/text/file.txt', 'my/local/text/file.png', 'my/local/file.mp3', ], ) def test_illegal_validation(path_to_file): with pytest.raises(ValueError, match='VideoUrl'): parse_obj_as(VideoUrl, path_to_file) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_proto_video_url(file_url): uri = parse_obj_as(VideoUrl, file_url) proto = uri._to_node_protobuf() assert 'video_url' in str(proto)
from __future__ import annotations from sentence_transformers.sparse_encoder.data_collator import SparseEncoderDataCollator from sentence_transformers.sparse_encoder.evaluation import ( SparseBinaryClassificationEvaluator, SparseEmbeddingSimilarityEvaluator, SparseInformationRetrievalEvaluator, SparseMSEEvaluator, SparseNanoBEIREvaluator, SparseTripletEvaluator, ) from sentence_transformers.sparse_encoder.losses import ( CSRLoss, ReconstructionLoss, SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.models import CSRSparsity, MLMTransformer, SpladePooling, TopKActivation from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import ( SparseEncoderTrainingArguments, ) __all__ = [ # Core components "SparseEncoder", "SparseEncoderDataCollator", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", # Models "CSRSparsity", "TopKActivation", "MLMTransformer", "SpladePooling", # Losses "CSRLoss", "ReconstructionLoss", "SparseMultipleNegativesRankingLoss", # Evaluators "SparseBinaryClassificationEvaluator", "SparseEmbeddingSimilarityEvaluator", "SparseInformationRetrievalEvaluator", "SparseMSEEvaluator", "SparseNanoBEIREvaluator", "SparseTripletEvaluator", ] # TODO : Complete the SparseEncoder class # TODO : Add tests for all the components # TODO : Add in models the possibility to have the MLM head(for splade) # TODO : Check for every loss if compatible with the SparseEncoder but should have some minor modifications for the ones not using the utils similarity function # TODO : Same for the evaluator # TODO : Add the equivalent of the quantization file for the sparse encoder
from __future__ import annotations from sentence_transformers.sparse_encoder.data_collator import SparseEncoderDataCollator from sentence_transformers.sparse_encoder.evaluation import ( SparseBinaryClassificationEvaluator, SparseEmbeddingSimilarityEvaluator, SparseInformationRetrievalEvaluator, SparseMSEEvaluator, SparseNanoBEIREvaluator, SparseTripletEvaluator, ) from sentence_transformers.sparse_encoder.losses import ( CSRLoss, ReconstructionLoss, SparseMultipleNegativesRankingLoss, ) from sentence_transformers.sparse_encoder.models import CSRSparsity, TopKActivation from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import ( SparseEncoderTrainingArguments, ) __all__ = [ # Core components "SparseEncoder", "SparseEncoderDataCollator", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", # Models "CSRSparsity", "TopKActivation", # Losses "CSRLoss", "ReconstructionLoss", "SparseMultipleNegativesRankingLoss", # Evaluators "SparseBinaryClassificationEvaluator", "SparseEmbeddingSimilarityEvaluator", "SparseInformationRetrievalEvaluator", "SparseMSEEvaluator", "SparseNanoBEIREvaluator", "SparseTripletEvaluator", ] # TODO : Complete the SparseEncoder class # TODO : Add tests for all the components # TODO : Add in models the possibility to have the MLM head(for splade) # TODO : Check for every loss if compatible with the SparseEncoder but should have some minor modifications for the ones not using the utils similarity function # TODO : Same for the evaluator # TODO : Add the equivalent of the quantization file for the sparse encoder
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import xml.etree.ElementTree as ET import mmcv from .builder import DATASETS from .xml_style import XMLDataset @DATASETS.register_module() class WIDERFaceDataset(XMLDataset): """Reader for the WIDER Face dataset in PASCAL VOC format. Conversion scripts can be found in https://github.com/sovrasov/wider-face-pascal-voc-annotations """ CLASSES = ('face', ) PALETTE = [(0, 255, 0)] def __init__(self, **kwargs): super(WIDERFaceDataset, self).__init__(**kwargs) def load_annotations(self, ann_file): """Load annotation from WIDERFace XML style annotation file. Args: ann_file (str): Path of XML file. Returns: list[dict]: Annotation info from XML file. """ data_infos = [] img_ids = mmcv.list_from_file(ann_file) for img_id in img_ids: filename = f'{img_id}.jpg' xml_path = osp.join(self.img_prefix, 'Annotations', f'{img_id}.xml') tree = ET.parse(xml_path) root = tree.getroot() size = root.find('size') width = int(size.find('width').text) height = int(size.find('height').text) folder = root.find('folder').text data_infos.append( dict( id=img_id, filename=osp.join(folder, filename), width=width, height=height)) return data_infos
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import xml.etree.ElementTree as ET import mmcv from .builder import DATASETS from .xml_style import XMLDataset @DATASETS.register_module() class WIDERFaceDataset(XMLDataset): """Reader for the WIDER Face dataset in PASCAL VOC format. Conversion scripts can be found in https://github.com/sovrasov/wider-face-pascal-voc-annotations """ CLASSES = ('face', ) def __init__(self, **kwargs): super(WIDERFaceDataset, self).__init__(**kwargs) def load_annotations(self, ann_file): """Load annotation from WIDERFace XML style annotation file. Args: ann_file (str): Path of XML file. Returns: list[dict]: Annotation info from XML file. """ data_infos = [] img_ids = mmcv.list_from_file(ann_file) for img_id in img_ids: filename = f'{img_id}.jpg' xml_path = osp.join(self.img_prefix, 'Annotations', f'{img_id}.xml') tree = ET.parse(xml_path) root = tree.getroot() size = root.find('size') width = int(size.find('width').text) height = int(size.find('height').text) folder = root.find('folder').text data_infos.append( dict( id=img_id, filename=osp.join(folder, filename), width=width, height=height)) return data_infos
import logging import os from typing import Optional from jina import __default_host__ from jina.importer import ImportExtensions from jina.serve.gateway import BaseGateway from jina.serve.runtimes.gateway.websocket.app import get_fastapi_app class WebSocketGateway(BaseGateway): """WebSocket Gateway implementation""" def __init__( self, port: Optional[int] = None, ssl_keyfile: Optional[str] = None, ssl_certfile: Optional[str] = None, uvicorn_kwargs: Optional[dict] = None, proxy: Optional[bool] = None, **kwargs ): """Initialize the gateway :param port: The port of the Gateway, which the client should connect to. :param ssl_keyfile: the path to the key file :param ssl_certfile: the path to the certificate file :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server :param proxy: If set, respect the http_proxy and https_proxy environment variables, otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param kwargs: keyword args """ super().__init__(**kwargs) self.port = port self.ssl_keyfile = ssl_keyfile self.ssl_certfile = ssl_certfile self.uvicorn_kwargs = uvicorn_kwargs if not proxy and os.name != 'nt': os.unsetenv('http_proxy') os.unsetenv('https_proxy') async def setup_server(self): """ Setup WebSocket Server """ from jina.helper import extend_rest_interface self.app = extend_rest_interface( get_fastapi_app( streamer=self.streamer, logger=self.logger, tracing=self.tracing, tracer_provider=self.tracer_provider, ) ) with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'CICD_JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) uvicorn_kwargs = self.uvicorn_kwargs or {} if self.ssl_keyfile and 'ssl_keyfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_keyfile'] = self.ssl_keyfile if self.ssl_certfile and 'ssl_certfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_certfile'] = self.ssl_certfile self.server = UviServer( config=Config( app=self.app, host=__default_host__, port=self.port, ws_max_size=1024 * 1024 * 1024, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **uvicorn_kwargs, ) ) await self.server.setup() async def teardown(self): """Free other resources allocated with the server, e.g, gateway object, ...""" await super().teardown() await self.server.shutdown() async def stop_server(self): """ Stop WebSocket server """ self.server.should_exit = True async def run_server(self): """Run WebSocket server forever""" await self.server.serve()
import logging import os from typing import Optional from jina import __default_host__ from jina.importer import ImportExtensions from jina.serve.gateway import BaseGateway from jina.serve.runtimes.gateway.websocket.app import get_fastapi_app class WebSocketGateway(BaseGateway): """WebSocket Gateway implementation""" def __init__( self, port: Optional[int] = None, ssl_keyfile: Optional[str] = None, ssl_certfile: Optional[str] = None, uvicorn_kwargs: Optional[dict] = None, proxy: Optional[bool] = None, **kwargs ): """Initialize the gateway :param port: The port of the Gateway, which the client should connect to. :param ssl_keyfile: the path to the key file :param ssl_certfile: the path to the certificate file :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server :param proxy: If set, respect the http_proxy and https_proxy environment variables, otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param kwargs: keyword args """ super().__init__(**kwargs) self.port = port self.ssl_keyfile = ssl_keyfile self.ssl_certfile = ssl_certfile self.uvicorn_kwargs = uvicorn_kwargs if not proxy and os.name != 'nt': os.unsetenv('http_proxy') os.unsetenv('https_proxy') async def setup_server(self): """ Setup WebSocket Server """ from jina.helper import extend_rest_interface self.app = extend_rest_interface( get_fastapi_app( streamer=self.streamer, logger=self.logger, tracing=self.tracing, tracer_provider=self.tracer_provider, ) ) with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) self.install_signal_handlers() await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'CICD_JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) uvicorn_kwargs = self.uvicorn_kwargs or {} if self.ssl_keyfile and 'ssl_keyfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_keyfile'] = self.ssl_keyfile if self.ssl_certfile and 'ssl_certfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_certfile'] = self.ssl_certfile self.server = UviServer( config=Config( app=self.app, host=__default_host__, port=self.port, ws_max_size=1024 * 1024 * 1024, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **uvicorn_kwargs, ) ) await self.server.setup() async def teardown(self): """Free other resources allocated with the server, e.g, gateway object, ...""" await super().teardown() await self.server.shutdown() async def stop_server(self): """ Stop WebSocket server """ self.server.should_exit = True async def run_server(self): """Run WebSocket server forever""" await self.server.serve() @property def should_exit(self) -> bool: """ Boolean flag that indicates whether the gateway server should exit or not :return: boolean flag """ return self.server.should_exit
import threading from typing import Optional __all__ = ["LinearBlockSparsePattern"] def _is_valid_linear_block_sparse_pattern( row_block_size: int, col_block_size: int ) -> bool: return (row_block_size == 1 and col_block_size == 4) or ( row_block_size == 8 and col_block_size == 1 ) # This is a stop-gap measure as current flow does not allow module # specific block sparse pattern. # In fact there is no way to convey sparse pattern via module config # of quantization flow. Thus using the global context to convey # sparsity pattern. # Once the flow supports it, this should be removed. class LinearBlockSparsePattern: rlock = threading.RLock() row_block_size: int = 1 col_block_size: int = 4 prev_row_block_size: int = 1 prev_col_block_size: int = 4 def __init__(self, row_block_size: int = 1, col_block_size: int = 4): assert _is_valid_linear_block_sparse_pattern(row_block_size, col_block_size) LinearBlockSparsePattern.rlock.acquire() LinearBlockSparsePattern.prev_row_block_size = ( LinearBlockSparsePattern.row_block_size ) LinearBlockSparsePattern.prev_col_block_size = ( LinearBlockSparsePattern.col_block_size ) LinearBlockSparsePattern.row_block_size = row_block_size LinearBlockSparsePattern.col_block_size = col_block_size def __enter__(self) -> None: pass def __exit__( self, exc_type: Optional[type[BaseException]], exc_value: Optional[BaseException], backtrace: Optional[object], ) -> None: LinearBlockSparsePattern.row_block_size = ( LinearBlockSparsePattern.prev_row_block_size ) LinearBlockSparsePattern.col_block_size = ( LinearBlockSparsePattern.prev_col_block_size ) LinearBlockSparsePattern.rlock.release() @staticmethod def block_size() -> tuple[int, int]: return ( LinearBlockSparsePattern.row_block_size, LinearBlockSparsePattern.col_block_size, )
import threading from typing import Optional __all__ = ["LinearBlockSparsePattern"] def _is_valid_linear_block_sparse_pattern( row_block_size: int, col_block_size: int ) -> bool: return (row_block_size == 1 and col_block_size == 4) or ( row_block_size == 8 and col_block_size == 1 ) # This is a stop-gap measure as current flow does not allow module # specific block sparse pattern. # Infact there is no way to convey sparse pattern via module config # of quantization flow. Thus using the global context to convey # sparsity pattern. # Once the flow supports it, this should be removed. class LinearBlockSparsePattern: rlock = threading.RLock() row_block_size: int = 1 col_block_size: int = 4 prev_row_block_size: int = 1 prev_col_block_size: int = 4 def __init__(self, row_block_size: int = 1, col_block_size: int = 4): assert _is_valid_linear_block_sparse_pattern(row_block_size, col_block_size) LinearBlockSparsePattern.rlock.acquire() LinearBlockSparsePattern.prev_row_block_size = ( LinearBlockSparsePattern.row_block_size ) LinearBlockSparsePattern.prev_col_block_size = ( LinearBlockSparsePattern.col_block_size ) LinearBlockSparsePattern.row_block_size = row_block_size LinearBlockSparsePattern.col_block_size = col_block_size def __enter__(self) -> None: pass def __exit__( self, exc_type: Optional[type[BaseException]], exc_value: Optional[BaseException], backtrace: Optional[object], ) -> None: LinearBlockSparsePattern.row_block_size = ( LinearBlockSparsePattern.prev_row_block_size ) LinearBlockSparsePattern.col_block_size = ( LinearBlockSparsePattern.prev_col_block_size ) LinearBlockSparsePattern.rlock.release() @staticmethod def block_size() -> tuple[int, int]: return ( LinearBlockSparsePattern.row_block_size, LinearBlockSparsePattern.col_block_size, )
from io import BytesIO from typing import TYPE_CHECKING, Any, Optional, Tuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto if TYPE_CHECKING: from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='ImageBytes') @_register_proto(proto_type_name='image_bytes') class ImageBytes(bytes, AbstractType): """ Bytes that store an image and that can be load into an image tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load( self, width: Optional[int] = None, height: Optional[int] = None, axis_layout: Tuple[str, str, str] = ('H', 'W', 'C'), ) -> np.ndarray: """ Load the image from the bytes into a numpy.ndarray image tensor --- ```python from docarray import BaseDoc from docarray.typing import ImageUrl import numpy as np class MyDoc(BaseDoc): img_url: ImageUrl doc = MyDoc( img_url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg" ) img_tensor = doc.img_url.load() assert isinstance(img_tensor, np.ndarray) img_tensor = doc.img_url.load(height=224, width=224) assert img_tensor.shape == (224, 224, 3) layout = ('C', 'W', 'H') img_tensor = doc.img_url.load(height=100, width=200, axis_layout=layout) assert img_tensor.shape == (3, 200, 100) ``` --- :param width: width of the image tensor. :param height: height of the image tensor. :param axis_layout: ordering of the different image axes. 'H' = height, 'W' = width, 'C' = color channel :return: np.ndarray representing the image as RGB values """ from PIL import Image as PILImage raw_img = PILImage.open(BytesIO(self)) if width or height: new_width = width or raw_img.width new_height = height or raw_img.height raw_img = raw_img.resize((new_width, new_height)) try: tensor = np.array(raw_img.convert('RGB')) except Exception: tensor = np.array(raw_img) return self._move_channel_axis(tensor, axis_layout=axis_layout) @staticmethod def _move_channel_axis( tensor: np.ndarray, axis_layout: Tuple[str, str, str] = ('H', 'W', 'C') ) -> np.ndarray: """Moves channel axis around.""" channel_to_offset = {'H': 0, 'W': 1, 'C': 2} permutation = tuple(channel_to_offset[axis] for axis in axis_layout) return np.transpose(tensor, permutation)
from io import BytesIO from typing import TYPE_CHECKING, Any, Optional, Tuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto if TYPE_CHECKING: from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='ImageBytes') @_register_proto(proto_type_name='image_bytes') class ImageBytes(bytes, AbstractType): """ Bytes that store an image and that can be load into an image tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load( self, width: Optional[int] = None, height: Optional[int] = None, axis_layout: Tuple[str, str, str] = ('H', 'W', 'C'), ) -> np.ndarray: """ Load the image from the bytes into a numpy.ndarray image tensor EXAMPLE USAGE .. code-block:: python from docarray import BaseDoc from docarray.typing import ImageUrl import numpy as np class MyDoc(BaseDoc): img_url: ImageUrl doc = MyDoc( img_url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg" ) img_tensor = doc.img_url.load() assert isinstance(img_tensor, np.ndarray) img_tensor = doc.img_url.load(height=224, width=224) assert img_tensor.shape == (224, 224, 3) layout = ('C', 'W', 'H') img_tensor = doc.img_url.load(height=100, width=200, axis_layout=layout) assert img_tensor.shape == (3, 200, 100) :param width: width of the image tensor. :param height: height of the image tensor. :param axis_layout: ordering of the different image axes. 'H' = height, 'W' = width, 'C' = color channel :return: np.ndarray representing the image as RGB values """ from PIL import Image as PILImage raw_img = PILImage.open(BytesIO(self)) if width or height: new_width = width or raw_img.width new_height = height or raw_img.height raw_img = raw_img.resize((new_width, new_height)) try: tensor = np.array(raw_img.convert('RGB')) except Exception: tensor = np.array(raw_img) return self._move_channel_axis(tensor, axis_layout=axis_layout) @staticmethod def _move_channel_axis( tensor: np.ndarray, axis_layout: Tuple[str, str, str] = ('H', 'W', 'C') ) -> np.ndarray: """Moves channel axis around.""" channel_to_offset = {'H': 0, 'W': 1, 'C': 2} permutation = tuple(channel_to_offset[axis] for axis in axis_layout) return np.transpose(tensor, permutation)
import logging from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseNanoBEIREvaluator, SpladePooling, ) logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Create evaluator for some NanoBEIR datasets evaluator = SparseNanoBEIREvaluator( dataset_names=["QuoraRetrieval", "MSMARCO"], show_progress_bar=True, batch_size=32, ) # Run evaluation results = evaluator(model) # Print the results print(f"Primary metric: {evaluator.primary_metric}") print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}")
from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseNanoBEIREvaluator, SpladePooling, ) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Create evaluator for some NanoBEIR datasets evaluator = SparseNanoBEIREvaluator( dataset_names=["QuoraRetrieval", "MSMARCO"], show_progress_bar=True, batch_size=32, ) # Run evaluation print("Starting evaluation on all NanoBEIR datasets") results = evaluator(model) print(f"Primary metric: {evaluator.primary_metric}") print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # Print results for each dataset for key, value in results.items(): if key.startswith("Nano"): print(f"{key}: {value:.4f}")
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update` deps = { "Pillow": "Pillow", "accelerate": "accelerate>=0.31.0", "compel": "compel==0.1.8", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.27.0", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark>=0.2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.4.1", "jaxlib": "jaxlib>=0.4.1", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "parameterized": "parameterized", "peft": "peft>=0.6.0", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ruff": "ruff==0.1.5", "safetensors": "safetensors>=0.3.1", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "GitPython": "GitPython<3.1.19", "scipy": "scipy", "onnx": "onnx", "optimum_quanto": "optimum_quanto>=0.2.6", "gguf": "gguf>=0.10.0", "torchao": "torchao>=0.7.0", "bitsandbytes": "bitsandbytes>=0.43.3", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "tiktoken": "tiktoken>=0.7.0", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.41.2", "urllib3": "urllib3<=2.0.0", "black": "black", "phonemizer": "phonemizer", }
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update` deps = { "Pillow": "Pillow", "accelerate": "accelerate>=0.31.0", "compel": "compel==0.1.8", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.27.0", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark>=0.2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.4.1", "jaxlib": "jaxlib>=0.4.1", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "parameterized": "parameterized", "peft": "peft>=0.6.0", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ruff": "ruff==0.1.5", "safetensors": "safetensors>=0.3.1", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "GitPython": "GitPython<3.1.19", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "tiktoken": "tiktoken>=0.7.0", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.41.2", "urllib3": "urllib3<=2.0.0", "black": "black", "phonemizer": "phonemizer", }
_base_ = './retinanet_r50_caffe_fpn_1x_coco.py' train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)]), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './retinanet_r50_fpn_1x_coco.py' model = dict( backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe'))) # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from docarray.computation.numpy_backend import NumpyCompBackend def test_topk_numpy(): top_k = NumpyCompBackend.Retrieval.top_k a = np.array([1, 4, 2, 7, 4, 9, 2]) vals, indices = top_k(a, 3) assert vals.shape == (1, 3) assert indices.shape == (1, 3) assert (vals.squeeze() == np.array([1, 2, 2])).all() assert (indices.squeeze() == np.array([0, 2, 6])).all() or ( indices.squeeze() == np.array([0, 6, 2]) ).all() a = np.array([[1, 4, 2, 7, 4, 9, 2], [11, 6, 2, 7, 3, 10, 4]]) vals, indices = top_k(a, 3) assert vals.shape == (2, 3) assert indices.shape == (2, 3) assert (vals[0] == np.array([1, 2, 2])).all() assert (indices[0] == np.array([0, 2, 6])).all() or ( indices[0] == np.array([0, 6, 2]) ).all() assert (vals[1] == np.array([2, 3, 4])).all() assert (indices[1] == np.array([2, 4, 6])).all()
import numpy as np from docarray.computation.numpy_backend import NumpyCompBackend def test_topk_numpy(): top_k = NumpyCompBackend.Retrieval.top_k a = np.array([1, 4, 2, 7, 4, 9, 2]) vals, indices = top_k(a, 3) assert vals.shape == (1, 3) assert indices.shape == (1, 3) assert (vals.squeeze() == np.array([1, 2, 2])).all() assert (indices.squeeze() == np.array([0, 2, 6])).all() or ( indices.squeeze() == np.array([0, 6, 2]) ).all() a = np.array([[1, 4, 2, 7, 4, 9, 2], [11, 6, 2, 7, 3, 10, 4]]) vals, indices = top_k(a, 3) assert vals.shape == (2, 3) assert indices.shape == (2, 3) assert (vals[0] == np.array([1, 2, 2])).all() assert (indices[0] == np.array([0, 2, 6])).all() or ( indices[0] == np.array([0, 6, 2]) ).all() assert (vals[1] == np.array([2, 3, 4])).all() assert (indices[1] == np.array([2, 4, 6])).all()
import abc import io import pathlib import pickle from collections.abc import Iterator from typing import Any, BinaryIO, cast, Optional, Union import numpy as np from torchdata.datapipes.iter import Filter, IterDataPipe, Mapper from torchvision.prototype.datasets.utils import Dataset, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, path_comparator, read_categories_file, ) from torchvision.prototype.tv_tensors import Label from torchvision.tv_tensors import Image from .._api import register_dataset, register_info class CifarFileReader(IterDataPipe[tuple[np.ndarray, int]]): def __init__(self, datapipe: IterDataPipe[dict[str, Any]], *, labels_key: str) -> None: self.datapipe = datapipe self.labels_key = labels_key def __iter__(self) -> Iterator[tuple[np.ndarray, int]]: for mapping in self.datapipe: image_arrays = mapping["data"].reshape((-1, 3, 32, 32)) category_idcs = mapping[self.labels_key] yield from iter(zip(image_arrays, category_idcs)) class _CifarBase(Dataset): _FILE_NAME: str _SHA256: str _LABELS_KEY: str _META_FILE_NAME: str _CATEGORIES_KEY: str _categories: list[str] def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", ("train", "test")) super().__init__(root, skip_integrity_check=skip_integrity_check) @abc.abstractmethod def _is_data_file(self, data: tuple[str, BinaryIO]) -> Optional[int]: pass def _resources(self) -> list[OnlineResource]: return [ HttpResource( f"https://www.cs.toronto.edu/~kriz/{self._FILE_NAME}", sha256=self._SHA256, ) ] def _unpickle(self, data: tuple[str, io.BytesIO]) -> dict[str, Any]: _, file = data content = cast(dict[str, Any], pickle.load(file, encoding="latin1")) file.close() return content def _prepare_sample(self, data: tuple[np.ndarray, int]) -> dict[str, Any]: image_array, category_idx = data return dict( image=Image(image_array), label=Label(category_idx, categories=self._categories), ) def _datapipe(self, resource_dps: list[IterDataPipe]) -> IterDataPipe[dict[str, Any]]: dp = resource_dps[0] dp = Filter(dp, self._is_data_file) dp = Mapper(dp, self._unpickle) dp = CifarFileReader(dp, labels_key=self._LABELS_KEY) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 50_000 if self._split == "train" else 10_000 def _generate_categories(self) -> list[str]: resources = self._resources() dp = resources[0].load(self._root) dp = Filter(dp, path_comparator("name", self._META_FILE_NAME)) dp = Mapper(dp, self._unpickle) return cast(list[str], next(iter(dp))[self._CATEGORIES_KEY]) @register_info("cifar10") def _cifar10_info() -> dict[str, Any]: return dict(categories=read_categories_file("cifar10")) @register_dataset("cifar10") class Cifar10(_CifarBase): """ - **homepage**: https://www.cs.toronto.edu/~kriz/cifar.html """ _FILE_NAME = "cifar-10-python.tar.gz" _SHA256 = "6d958be074577803d12ecdefd02955f39262c83c16fe9348329d7fe0b5c001ce" _LABELS_KEY = "labels" _META_FILE_NAME = "batches.meta" _CATEGORIES_KEY = "label_names" _categories = _cifar10_info()["categories"] def _is_data_file(self, data: tuple[str, Any]) -> bool: path = pathlib.Path(data[0]) return path.name.startswith("data" if self._split == "train" else "test") @register_info("cifar100") def _cifar100_info() -> dict[str, Any]: return dict(categories=read_categories_file("cifar100")) @register_dataset("cifar100") class Cifar100(_CifarBase): """ - **homepage**: https://www.cs.toronto.edu/~kriz/cifar.html """ _FILE_NAME = "cifar-100-python.tar.gz" _SHA256 = "85cd44d02ba6437773c5bbd22e183051d648de2e7d6b014e1ef29b855ba677a7" _LABELS_KEY = "fine_labels" _META_FILE_NAME = "meta" _CATEGORIES_KEY = "fine_label_names" _categories = _cifar100_info()["categories"] def _is_data_file(self, data: tuple[str, Any]) -> bool: path = pathlib.Path(data[0]) return path.name == self._split
import abc import io import pathlib import pickle from typing import Any, BinaryIO, cast, Dict, Iterator, List, Optional, Tuple, Union import numpy as np from torchdata.datapipes.iter import Filter, IterDataPipe, Mapper from torchvision.prototype.datasets.utils import Dataset, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, path_comparator, read_categories_file, ) from torchvision.prototype.tv_tensors import Label from torchvision.tv_tensors import Image from .._api import register_dataset, register_info class CifarFileReader(IterDataPipe[Tuple[np.ndarray, int]]): def __init__(self, datapipe: IterDataPipe[Dict[str, Any]], *, labels_key: str) -> None: self.datapipe = datapipe self.labels_key = labels_key def __iter__(self) -> Iterator[Tuple[np.ndarray, int]]: for mapping in self.datapipe: image_arrays = mapping["data"].reshape((-1, 3, 32, 32)) category_idcs = mapping[self.labels_key] yield from iter(zip(image_arrays, category_idcs)) class _CifarBase(Dataset): _FILE_NAME: str _SHA256: str _LABELS_KEY: str _META_FILE_NAME: str _CATEGORIES_KEY: str _categories: List[str] def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", ("train", "test")) super().__init__(root, skip_integrity_check=skip_integrity_check) @abc.abstractmethod def _is_data_file(self, data: Tuple[str, BinaryIO]) -> Optional[int]: pass def _resources(self) -> List[OnlineResource]: return [ HttpResource( f"https://www.cs.toronto.edu/~kriz/{self._FILE_NAME}", sha256=self._SHA256, ) ] def _unpickle(self, data: Tuple[str, io.BytesIO]) -> Dict[str, Any]: _, file = data content = cast(Dict[str, Any], pickle.load(file, encoding="latin1")) file.close() return content def _prepare_sample(self, data: Tuple[np.ndarray, int]) -> Dict[str, Any]: image_array, category_idx = data return dict( image=Image(image_array), label=Label(category_idx, categories=self._categories), ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = resource_dps[0] dp = Filter(dp, self._is_data_file) dp = Mapper(dp, self._unpickle) dp = CifarFileReader(dp, labels_key=self._LABELS_KEY) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 50_000 if self._split == "train" else 10_000 def _generate_categories(self) -> List[str]: resources = self._resources() dp = resources[0].load(self._root) dp = Filter(dp, path_comparator("name", self._META_FILE_NAME)) dp = Mapper(dp, self._unpickle) return cast(List[str], next(iter(dp))[self._CATEGORIES_KEY]) @register_info("cifar10") def _cifar10_info() -> Dict[str, Any]: return dict(categories=read_categories_file("cifar10")) @register_dataset("cifar10") class Cifar10(_CifarBase): """ - **homepage**: https://www.cs.toronto.edu/~kriz/cifar.html """ _FILE_NAME = "cifar-10-python.tar.gz" _SHA256 = "6d958be074577803d12ecdefd02955f39262c83c16fe9348329d7fe0b5c001ce" _LABELS_KEY = "labels" _META_FILE_NAME = "batches.meta" _CATEGORIES_KEY = "label_names" _categories = _cifar10_info()["categories"] def _is_data_file(self, data: Tuple[str, Any]) -> bool: path = pathlib.Path(data[0]) return path.name.startswith("data" if self._split == "train" else "test") @register_info("cifar100") def _cifar100_info() -> Dict[str, Any]: return dict(categories=read_categories_file("cifar100")) @register_dataset("cifar100") class Cifar100(_CifarBase): """ - **homepage**: https://www.cs.toronto.edu/~kriz/cifar.html """ _FILE_NAME = "cifar-100-python.tar.gz" _SHA256 = "85cd44d02ba6437773c5bbd22e183051d648de2e7d6b014e1ef29b855ba677a7" _LABELS_KEY = "fine_labels" _META_FILE_NAME = "meta" _CATEGORIES_KEY = "fine_label_names" _categories = _cifar100_info()["categories"] def _is_data_file(self, data: Tuple[str, Any]) -> bool: path = pathlib.Path(data[0]) return path.name == self._split
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from torch.nn.modules.batchnorm import _BatchNorm from mmdet.models.backbones.csp_darknet import CSPDarknet from .utils import check_norm_state, is_norm def test_csp_darknet_backbone(): with pytest.raises(ValueError): # frozen_stages must in range(-1, len(arch_setting) + 1) CSPDarknet(frozen_stages=6) with pytest.raises(AssertionError): # out_indices in range(len(arch_setting) + 1) CSPDarknet(out_indices=[6]) # Test CSPDarknet with first stage frozen frozen_stages = 1 model = CSPDarknet(frozen_stages=frozen_stages) model.init_weights() model.train() for mod in model.stem.modules(): for param in mod.parameters(): assert param.requires_grad is False for i in range(1, frozen_stages + 1): layer = getattr(model, f'stage{i}') for mod in layer.modules(): if isinstance(mod, _BatchNorm): assert mod.training is False for param in layer.parameters(): assert param.requires_grad is False # Test CSPDarknet with norm_eval=True model = CSPDarknet(norm_eval=True) model.init_weights() model.train() assert check_norm_state(model.modules(), False) # Test CSPDarknet-P5 forward with widen_factor=1.0 model = CSPDarknet(arch='P5', widen_factor=1.0, out_indices=range(0, 5)) model.init_weights() model.train() assert check_norm_state(model.modules(), True) imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 5 assert feat[0].shape == torch.Size((1, 64, 112, 112)) assert feat[1].shape == torch.Size((1, 128, 56, 56)) assert feat[2].shape == torch.Size((1, 256, 28, 28)) assert feat[3].shape == torch.Size((1, 512, 14, 14)) assert feat[4].shape == torch.Size((1, 1024, 7, 7)) # Test CSPDarknet-P5 forward with widen_factor=0.5 model = CSPDarknet(arch='P5', widen_factor=0.5, out_indices=range(0, 5)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 5 assert feat[0].shape == torch.Size((1, 32, 112, 112)) assert feat[1].shape == torch.Size((1, 64, 56, 56)) assert feat[2].shape == torch.Size((1, 128, 28, 28)) assert feat[3].shape == torch.Size((1, 256, 14, 14)) assert feat[4].shape == torch.Size((1, 512, 7, 7)) # Test CSPDarknet-P6 forward with widen_factor=1.5 model = CSPDarknet( arch='P6', widen_factor=1.5, out_indices=range(0, 6), spp_kernal_sizes=(3, 5, 7)) model.init_weights() model.train() imgs = torch.randn(1, 3, 320, 320) feat = model(imgs) assert feat[0].shape == torch.Size((1, 96, 160, 160)) assert feat[1].shape == torch.Size((1, 192, 80, 80)) assert feat[2].shape == torch.Size((1, 384, 40, 40)) assert feat[3].shape == torch.Size((1, 768, 20, 20)) assert feat[4].shape == torch.Size((1, 1152, 10, 10)) assert feat[5].shape == torch.Size((1, 1536, 5, 5)) # Test CSPDarknet forward with dict(type='ReLU') model = CSPDarknet( widen_factor=1.0, act_cfg=dict(type='ReLU'), out_indices=range(0, 5)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 5 assert feat[0].shape == torch.Size((1, 64, 112, 112)) assert feat[1].shape == torch.Size((1, 128, 56, 56)) assert feat[2].shape == torch.Size((1, 256, 28, 28)) assert feat[3].shape == torch.Size((1, 512, 14, 14)) assert feat[4].shape == torch.Size((1, 1024, 7, 7)) # Test CSPDarknet with BatchNorm forward model = CSPDarknet(widen_factor=1.0, out_indices=range(0, 5)) for m in model.modules(): if is_norm(m): assert isinstance(m, _BatchNorm) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 5 assert feat[0].shape == torch.Size((1, 64, 112, 112)) assert feat[1].shape == torch.Size((1, 128, 56, 56)) assert feat[2].shape == torch.Size((1, 256, 28, 28)) assert feat[3].shape == torch.Size((1, 512, 14, 14)) assert feat[4].shape == torch.Size((1, 1024, 7, 7)) # Test CSPDarknet with custom arch forward arch_ovewrite = [[32, 56, 3, True, False], [56, 224, 2, True, False], [224, 512, 1, True, False]] model = CSPDarknet( arch_ovewrite=arch_ovewrite, widen_factor=1.0, out_indices=(0, 1, 2, 3)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size((1, 32, 112, 112)) assert feat[1].shape == torch.Size((1, 56, 56, 56)) assert feat[2].shape == torch.Size((1, 224, 28, 28)) assert feat[3].shape == torch.Size((1, 512, 14, 14))
import pytest import torch from torch.nn.modules.batchnorm import _BatchNorm from mmdet.models.backbones.csp_darknet import CSPDarknet from .utils import check_norm_state, is_norm def test_csp_darknet_backbone(): with pytest.raises(ValueError): # frozen_stages must in range(-1, len(arch_setting) + 1) CSPDarknet(frozen_stages=6) with pytest.raises(AssertionError): # out_indices in range(len(arch_setting) + 1) CSPDarknet(out_indices=[6]) # Test CSPDarknet with first stage frozen frozen_stages = 1 model = CSPDarknet(frozen_stages=frozen_stages) model.init_weights() model.train() for mod in model.stem.modules(): for param in mod.parameters(): assert param.requires_grad is False for i in range(1, frozen_stages + 1): layer = getattr(model, f'stage{i}') for mod in layer.modules(): if isinstance(mod, _BatchNorm): assert mod.training is False for param in layer.parameters(): assert param.requires_grad is False # Test CSPDarknet with norm_eval=True model = CSPDarknet(norm_eval=True) model.init_weights() model.train() assert check_norm_state(model.modules(), False) # Test CSPDarknet-P5 forward with widen_factor=1.0 model = CSPDarknet(arch='P5', widen_factor=1.0, out_indices=range(0, 5)) model.init_weights() model.train() assert check_norm_state(model.modules(), True) imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 5 assert feat[0].shape == torch.Size((1, 64, 112, 112)) assert feat[1].shape == torch.Size((1, 128, 56, 56)) assert feat[2].shape == torch.Size((1, 256, 28, 28)) assert feat[3].shape == torch.Size((1, 512, 14, 14)) assert feat[4].shape == torch.Size((1, 1024, 7, 7)) # Test CSPDarknet-P5 forward with widen_factor=0.5 model = CSPDarknet(arch='P5', widen_factor=0.5, out_indices=range(0, 5)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 5 assert feat[0].shape == torch.Size((1, 32, 112, 112)) assert feat[1].shape == torch.Size((1, 64, 56, 56)) assert feat[2].shape == torch.Size((1, 128, 28, 28)) assert feat[3].shape == torch.Size((1, 256, 14, 14)) assert feat[4].shape == torch.Size((1, 512, 7, 7)) # Test CSPDarknet-P6 forward with widen_factor=1.5 model = CSPDarknet( arch='P6', widen_factor=1.5, out_indices=range(0, 6), spp_kernal_sizes=(3, 5, 7)) model.init_weights() model.train() imgs = torch.randn(1, 3, 320, 320) feat = model(imgs) assert feat[0].shape == torch.Size((1, 96, 160, 160)) assert feat[1].shape == torch.Size((1, 192, 80, 80)) assert feat[2].shape == torch.Size((1, 384, 40, 40)) assert feat[3].shape == torch.Size((1, 768, 20, 20)) assert feat[4].shape == torch.Size((1, 1152, 10, 10)) assert feat[5].shape == torch.Size((1, 1536, 5, 5)) # Test CSPDarknet forward with dict(type='ReLU') model = CSPDarknet( widen_factor=1.0, act_cfg=dict(type='ReLU'), out_indices=range(0, 5)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 5 assert feat[0].shape == torch.Size((1, 64, 112, 112)) assert feat[1].shape == torch.Size((1, 128, 56, 56)) assert feat[2].shape == torch.Size((1, 256, 28, 28)) assert feat[3].shape == torch.Size((1, 512, 14, 14)) assert feat[4].shape == torch.Size((1, 1024, 7, 7)) # Test CSPDarknet with BatchNorm forward model = CSPDarknet(widen_factor=1.0, out_indices=range(0, 5)) for m in model.modules(): if is_norm(m): assert isinstance(m, _BatchNorm) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 5 assert feat[0].shape == torch.Size((1, 64, 112, 112)) assert feat[1].shape == torch.Size((1, 128, 56, 56)) assert feat[2].shape == torch.Size((1, 256, 28, 28)) assert feat[3].shape == torch.Size((1, 512, 14, 14)) assert feat[4].shape == torch.Size((1, 1024, 7, 7)) # Test CSPDarknet with custom arch forward arch_ovewrite = [[32, 56, 3, True, False], [56, 224, 2, True, False], [224, 512, 1, True, False]] model = CSPDarknet( arch_ovewrite=arch_ovewrite, widen_factor=1.0, out_indices=(0, 1, 2, 3)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size((1, 32, 112, 112)) assert feat[1].shape == torch.Size((1, 56, 56, 56)) assert feat[2].shape == torch.Size((1, 224, 28, 28)) assert feat[3].shape == torch.Size((1, 512, 14, 14))
import autogpt_libs.auth.depends import autogpt_libs.auth.middleware import fastapi import fastapi.testclient import pytest import pytest_mock import backend.server.v2.library.db import backend.server.v2.library.model import backend.server.v2.library.routes app = fastapi.FastAPI() app.include_router(backend.server.v2.library.routes.router) client = fastapi.testclient.TestClient(app) def override_auth_middleware(): """Override auth middleware for testing""" return {"sub": "test-user-id"} def override_get_user_id(): """Override get_user_id for testing""" return "test-user-id" app.dependency_overrides[autogpt_libs.auth.middleware.auth_middleware] = ( override_auth_middleware ) app.dependency_overrides[autogpt_libs.auth.depends.get_user_id] = override_get_user_id def test_get_library_agents_success(mocker: pytest_mock.MockFixture): mocked_value = [ backend.server.v2.library.model.LibraryAgent( id="test-agent-1", version=1, is_active=True, name="Test Agent 1", description="Test Description 1", isCreatedByUser=True, input_schema={"type": "object", "properties": {}}, output_schema={"type": "object", "properties": {}}, ), backend.server.v2.library.model.LibraryAgent( id="test-agent-2", version=1, is_active=True, name="Test Agent 2", description="Test Description 2", isCreatedByUser=False, input_schema={"type": "object", "properties": {}}, output_schema={"type": "object", "properties": {}}, ), ] mock_db_call = mocker.patch("backend.server.v2.library.db.get_library_agents") mock_db_call.return_value = mocked_value response = client.get("/agents") assert response.status_code == 200 data = [ backend.server.v2.library.model.LibraryAgent.model_validate(agent) for agent in response.json() ] assert len(data) == 2 assert data[0].id == "test-agent-1" assert data[0].isCreatedByUser is True assert data[1].id == "test-agent-2" assert data[1].isCreatedByUser is False mock_db_call.assert_called_once_with("test-user-id") def test_get_library_agents_error(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.get_library_agents") mock_db_call.side_effect = Exception("Test error") response = client.get("/agents") assert response.status_code == 500 mock_db_call.assert_called_once_with("test-user-id") @pytest.mark.skip(reason="Mocker Not implemented") def test_add_agent_to_library_success(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.add_agent_to_library") mock_db_call.return_value = None response = client.post("/agents/test-version-id") assert response.status_code == 201 mock_db_call.assert_called_once_with( store_listing_version_id="test-version-id", user_id="test-user-id" ) @pytest.mark.skip(reason="Mocker Not implemented") def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.add_agent_to_library") mock_db_call.side_effect = Exception("Test error") response = client.post("/agents/test-version-id") assert response.status_code == 500 assert response.json()["detail"] == "Failed to add agent to library" mock_db_call.assert_called_once_with( store_listing_version_id="test-version-id", user_id="test-user-id" )
import autogpt_libs.auth.depends import autogpt_libs.auth.middleware import fastapi import fastapi.testclient import pytest_mock import backend.server.v2.library.db import backend.server.v2.library.model import backend.server.v2.library.routes app = fastapi.FastAPI() app.include_router(backend.server.v2.library.routes.router) client = fastapi.testclient.TestClient(app) def override_auth_middleware(): """Override auth middleware for testing""" return {"sub": "test-user-id"} def override_get_user_id(): """Override get_user_id for testing""" return "test-user-id" app.dependency_overrides[autogpt_libs.auth.middleware.auth_middleware] = ( override_auth_middleware ) app.dependency_overrides[autogpt_libs.auth.depends.get_user_id] = override_get_user_id def test_get_library_agents_success(mocker: pytest_mock.MockFixture): mocked_value = [ backend.server.v2.library.model.LibraryAgent( id="test-agent-1", version=1, is_active=True, name="Test Agent 1", description="Test Description 1", isCreatedByUser=True, input_schema={"type": "object", "properties": {}}, output_schema={"type": "object", "properties": {}}, ), backend.server.v2.library.model.LibraryAgent( id="test-agent-2", version=1, is_active=True, name="Test Agent 2", description="Test Description 2", isCreatedByUser=False, input_schema={"type": "object", "properties": {}}, output_schema={"type": "object", "properties": {}}, ), ] mock_db_call = mocker.patch("backend.server.v2.library.db.get_library_agents") mock_db_call.return_value = mocked_value response = client.get("/agents") assert response.status_code == 200 data = [ backend.server.v2.library.model.LibraryAgent.model_validate(agent) for agent in response.json() ] assert len(data) == 2 assert data[0].id == "test-agent-1" assert data[0].isCreatedByUser is True assert data[1].id == "test-agent-2" assert data[1].isCreatedByUser is False mock_db_call.assert_called_once_with("test-user-id") def test_get_library_agents_error(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.get_library_agents") mock_db_call.side_effect = Exception("Test error") response = client.get("/agents") assert response.status_code == 500 mock_db_call.assert_called_once_with("test-user-id") def test_add_agent_to_library_success(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.add_agent_to_library") mock_db_call.return_value = None response = client.post("/agents/test-version-id") assert response.status_code == 201 mock_db_call.assert_called_once_with( store_listing_version_id="test-version-id", user_id="test-user-id" ) def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.add_agent_to_library") mock_db_call.side_effect = Exception("Test error") response = client.post("/agents/test-version-id") assert response.status_code == 500 assert response.json()["detail"] == "Failed to add agent to library" mock_db_call.assert_called_once_with( store_listing_version_id="test-version-id", user_id="test-user-id" )
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.config import read_base with read_base(): from ...config.py_config.test_base_variables import *
# Copyright (c) OpenMMLab. All rights reserved. if '_base_': from ...config.py_config.test_base_variables import *
# Copyright (c) OpenMMLab. All rights reserved. from typing import Any, Dict def get_metric_value(indicator: str, metrics: Dict) -> Any: """Get the metric value specified by an indicator, which can be either a metric name or a full name with evaluator prefix. Args: indicator (str): The metric indicator, which can be the metric name (e.g. 'AP') or the full name with prefix (e.g. 'COCO/AP') metrics (dict): The evaluation results output by the evaluator Returns: Any: The specified metric value """ if '/' in indicator: # The indicator is a full name if indicator in metrics: return metrics[indicator] else: raise ValueError( f'The indicator "{indicator}" can not match any metric in ' f'{list(metrics.keys())}') else: # The indicator is metric name without prefix matched = [k for k in metrics.keys() if k.split('/')[-1] == indicator] if not matched: raise ValueError( f'The indicator {indicator} can not match any metric in ' f'{list(metrics.keys())}') elif len(matched) > 1: raise ValueError(f'The indicator "{indicator}" matches multiple ' f'metrics {matched}') else: return metrics[matched[0]]
from typing import Any, Dict def get_metric_value(indicator: str, metrics: Dict) -> Any: """Get the metric value specified by an indicator, which can be either a metric name or a full name with evaluator prefix. Args: indicator (str): The metric indicator, which can be the metric name (e.g. 'AP') or the full name with prefix (e.g. 'COCO/AP') metrics (dict): The evaluation results output by the evaluator Returns: Any: The specified metric value """ if '/' in indicator: # The indicator is a full name if indicator in metrics: return metrics[indicator] else: raise ValueError( f'The indicator "{indicator}" can not match any metric in ' f'{list(metrics.keys())}') else: # The indicator is metric name without prefix matched = [k for k in metrics.keys() if k.split('/')[-1] == indicator] if not matched: raise ValueError( f'The indicator {indicator} can not match any metric in ' f'{list(metrics.keys())}') elif len(matched) > 1: raise ValueError(f'The indicator "{indicator}" matches multiple ' f'metrics {matched}') else: return metrics[matched[0]]
import io from typing import TYPE_CHECKING, Any, Tuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio import AudioNdArray from docarray.utils._internal.misc import import_library if TYPE_CHECKING: from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='AudioBytes') @_register_proto(proto_type_name='audio_bytes') class AudioBytes(bytes, AbstractType): """ Bytes that store an audio and that can be load into an Audio tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load(self) -> Tuple[AudioNdArray, int]: """ Load the Audio from the AudioBytes into an AudioNdArray --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import AudioBytes, AudioNdArray, AudioUrl class MyAudio(BaseDoc): url: AudioUrl tensor: Optional[AudioNdArray] bytes_: Optional[AudioBytes] frame_rate: Optional[float] doc = MyAudio(url='https://www.kozco.com/tech/piano2.wav') doc.bytes_ = doc.url.load_bytes() doc.tensor, doc.frame_rate = doc.bytes_.load() # Note this is equivalent to do doc.tensor, doc.frame_rate = doc.url.load() assert isinstance(doc.tensor, AudioNdArray) ``` --- :return: tuple of an AudioNdArray representing the audio bytes content, and an integer representing the frame rate. """ pydub = import_library('pydub', raise_error=True) # noqa: F841 from pydub import AudioSegment segment = AudioSegment.from_file(io.BytesIO(self)) # Convert to float32 using NumPy samples = np.array(segment.get_array_of_samples()) # Normalise float32 array so that values are between -1.0 and +1.0 samples_norm = samples / 2 ** (segment.sample_width * 8 - 1) return parse_obj_as(AudioNdArray, samples_norm), segment.frame_rate
import io from typing import TYPE_CHECKING, Any, Tuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto from docarray.utils._internal.misc import import_library if TYPE_CHECKING: from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='AudioBytes') @_register_proto(proto_type_name='audio_bytes') class AudioBytes(bytes, AbstractType): """ Bytes that store an audio and that can be load into an Audio tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load(self) -> Tuple[np.ndarray, int]: """ Load the Audio from the bytes into a numpy.ndarray Audio tensor --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import AudioUrl, NdArray, AudioBytes import numpy as np class MyAudio(BaseDoc): url: AudioUrl tensor: Optional[NdArray] bytes: Optional[AudioBytes] frame_rate: Optional[float] doc = MyAudio(url='https://www.kozco.com/tech/piano2.wav') doc.bytes = doc.url.load_bytes() doc.tensor, doc.frame_rate = doc.bytes.load() # Note this is equivalent to do doc.tensor, doc.frame_rate = doc.url.load() assert isinstance(doc.tensor, np.ndarray) ``` --- :return: np.ndarray representing the Audio as RGB values """ if TYPE_CHECKING: import pydub else: pydub = import_library('pydub', raise_error=True) segment = pydub.AudioSegment.from_file(io.BytesIO(self)) # Convert to float32 using NumPy samples = np.array(segment.get_array_of_samples()) # Normalise float32 array so that values are between -1.0 and +1.0 samples_norm = samples / 2 ** (segment.sample_width * 8 - 1) return samples_norm, segment.frame_rate