input
stringlengths
33
5k
output
stringlengths
32
5k
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( type='FCOS', data_preprocessor=dict( type='DetDataPreprocessor', mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron/resnet50_caffe')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', # use P5 num_outs=5, relu_before_extra_convs=True), bbox_head=dict( type='FCOSHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='IoULoss', loss_weight=1.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), # testing settings test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( optimizer=dict(lr=0.01), paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.), clip_grad=dict(max_norm=35, norm_type=2))
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings preprocess_cfg = dict( mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) model = dict( type='FCOS', preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron/resnet50_caffe')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', # use P5 num_outs=5, relu_before_extra_convs=True), bbox_head=dict( type='FCOSHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='IoULoss', loss_weight=1.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), # testing settings test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( optimizer=dict(lr=0.01), paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.)) default_hooks = dict( optimizer=dict( _delete_=True, type='OptimizerHook', grad_clip=dict(max_norm=35, norm_type=2)))
_base_ = './mask-rcnn_r50_fpn_1x_coco.py' model = dict( # use caffe img_norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False), backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
_base_ = './mask_rcnn_r50_fpn_1x_coco.py' model = dict( # use caffe img_norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False), backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
# Copyright (c) OpenMMLab. All rights reserved. from .det_data_sample import DetDataSample, OptSampleList, SampleList from .reid_data_sample import ReIDDataSample from .track_data_sample import (OptTrackSampleList, TrackDataSample, TrackSampleList) __all__ = [ 'DetDataSample', 'SampleList', 'OptSampleList', 'TrackDataSample', 'TrackSampleList', 'OptTrackSampleList', 'ReIDDataSample' ]
# Copyright (c) OpenMMLab. All rights reserved. from .det_data_sample import DetDataSample, OptSampleList, SampleList __all__ = ['DetDataSample', 'SampleList', 'OptSampleList']
from typing import ( Union, Optional, TYPE_CHECKING, List, Dict, ) if TYPE_CHECKING: import numpy as np from docarray import DocumentArray class FindMixin: def _find( self, query: 'np.ndarray', limit: Optional[Union[int, float]] = 20, only_id: bool = False, filter: Optional[Dict] = None, **kwargs, ) -> List['DocumentArray']: """Returns approximate nearest neighbors given an input query. :param query: the query documents to search. :param limit: the number of results to get for each query document in search. :param only_id: if set, then returning matches will only contain ``id`` :param filter: filter query used for pre-filtering :param kwargs: other kwargs. :return: a list of DocumentArrays containing the closest Document objects for each of the queries in `query`. """ from docarray.math import ndarray n_rows, _ = ndarray.get_array_rows(query) if n_rows == 1: query = query.reshape(1, -1) _, match_docs = self._annlite._search_documents( query, limit=limit, filter=filter or {}, include_metadata=not only_id ) return match_docs def _filter( self, filter: Dict, limit: Optional[Union[int, float]] = 20, only_id: bool = False, ) -> 'DocumentArray': """Returns a subset of documents by filtering by the given filter (`Annlite` filter). :param filter: the input filter to apply in each stored document :param limit: the number of results to get for each query document in search. :param only_id: if set, then returning matches will only contain ``id`` :return: a `DocumentArray` containing the `Document` objects that verify the filter. """ docs = self._annlite.filter( filter=filter, limit=limit, include_metadata=not only_id, ) return DocumentArray(docs)
from typing import ( Union, Optional, TYPE_CHECKING, List, Dict, ) if TYPE_CHECKING: import numpy as np from docarray import DocumentArray class FindMixin: def _find( self, query: 'np.ndarray', limit: Optional[Union[int, float]] = 20, only_id: bool = False, filter: Optional[Dict] = None, **kwargs, ) -> List['DocumentArray']: """Returns approximate nearest neighbors given an input query. :param query: the query documents to search. :param limit: the number of results to get for each query document in search. :param only_id: if set, then returning matches will only contain ``id`` :param filter: filter query used for pre-filtering :param kwargs: other kwargs. :return: a list of DocumentArrays containing the closest Document objects for each of the queries in `query`. """ from docarray.math import ndarray n_rows, _ = ndarray.get_array_rows(query) if n_rows == 1: query = query.reshape(1, -1) _, match_docs = self._annlite._search_documents( query, limit=limit, filter=filter or {}, include_metadata=not only_id ) return match_docs def _filter( self, filter: Dict, limit: Optional[Union[int, float]] = 20, only_id: bool = False, ) -> 'DocumentArray': """Returns a subset of documents by filtering by the given filter (`Annlite` filter). :param filter: the input filter to apply in each stored document :param limit: the number of results to get for each query document in search. :param only_id: if set, then returning matches will only contain ``id`` :return: a `DocumentArray` containing the `Document` objects that verify the filter. """ docs = self._annlite.filter( filter=filter, limit=limit, include_metadata=not only_id ) return DocumentArray(docs)
from abc import abstractmethod from typing import Iterable, Union from qdrant_client import QdrantClient from docarray.array.storage.base.seqlike import BaseSequenceLikeMixin from docarray import Document class SequenceLikeMixin(BaseSequenceLikeMixin): @property @abstractmethod def client(self) -> QdrantClient: raise NotImplementedError() @property @abstractmethod def collection_name(self) -> str: raise NotImplementedError() @property @abstractmethod def config(self): raise NotImplementedError() @abstractmethod def _upload_batch(self, docs: Iterable['Document']): raise NotImplementedError() def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self.client.openapi_client.client.host == other.openapi_client.client.host and self.config == other.config ) def __len__(self): return self.client.http.collections_api.get_collection( self.collection_name ).result.vectors_count def __contains__(self, x: Union[str, 'Document']): if isinstance(x, str): return self._id_exists(x) elif isinstance(x, Document): return self._id_exists(x.id) else: return False def _id_exists(self, x: str): try: self._get_doc_by_id(x) return True except KeyError: return False def __repr__(self): return f'<DocumentArray[Qdrant] (length={len(self)}) at {id(self)}>' def _extend(self, docs: Iterable['Document'], **kwargs): docs = list(docs) self._upload_batch(docs) self._offset2ids.extend([doc.id for doc in docs])
from abc import abstractmethod from typing import Iterable, Union from qdrant_client import QdrantClient from docarray.array.storage.base.seqlike import BaseSequenceLikeMixin from docarray import Document class SequenceLikeMixin(BaseSequenceLikeMixin): @property @abstractmethod def client(self) -> QdrantClient: raise NotImplementedError() @property @abstractmethod def collection_name(self) -> str: raise NotImplementedError() @property @abstractmethod def config(self): raise NotImplementedError() @abstractmethod def _upload_batch(self, docs: Iterable['Document']): raise NotImplementedError() def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self.client.openapi_client.client.host == other.openapi_client.client.host and self.config == other.config ) def __len__(self): return self.client.http.collections_api.get_collection( self.collection_name ).result.vectors_count def __contains__(self, x: Union[str, 'Document']): if isinstance(x, str): return self._id_exists(x) elif isinstance(x, Document): return self._id_exists(x.id) else: return False def _id_exists(self, x: str): try: self._get_doc_by_id(x) return True except KeyError: return False def __repr__(self): return f'<DocumentArray[Qdrant] (length={len(self)}) at {id(self)}>' def extend(self, docs: Iterable['Document']): docs = list(docs) self._upload_batch(docs) self._offset2ids.extend([doc.id for doc in docs])
from docarray import BaseDoc from docarray.typing import PointCloud3DUrl def test_set_point_cloud_url(): class MyDocument(BaseDoc): point_cloud_url: PointCloud3DUrl d = MyDocument(point_cloud_url="https://jina.ai/mesh.obj") assert isinstance(d.point_cloud_url, PointCloud3DUrl) assert d.point_cloud_url == "https://jina.ai/mesh.obj"
from docarray import BaseDocument from docarray.typing import PointCloud3DUrl def test_set_point_cloud_url(): class MyDocument(BaseDocument): point_cloud_url: PointCloud3DUrl d = MyDocument(point_cloud_url="https://jina.ai/mesh.obj") assert isinstance(d.point_cloud_url, PointCloud3DUrl) assert d.point_cloud_url == "https://jina.ai/mesh.obj"
__all__ = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import Array2D, Array3D, Array4D, Array5D, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
# ruff: noqa __all__ = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import Array2D, Array3D, Array4D, Array5D, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
from typing import Iterable, Dict, Sequence from docarray.array.storage.base.getsetdel import BaseGetSetDelMixin from docarray.array.storage.base.helper import Offset2ID from docarray import Document class GetSetDelMixin(BaseGetSetDelMixin): """Provide concrete implementation for ``__getitem__``, ``__setitem__``, and ``__delitem__`` for ``DocumentArrayElastic``""" MAX_ES_RETURNED_DOCS = 10000 def _document_to_elastic(self, doc: 'Document') -> Dict: extra_columns = { col: doc.tags.get(col) for col, _ in self._config.columns.items() } request = { '_op_type': 'index', '_id': doc.id, '_index': self._config.index_name, 'embedding': self._map_embedding(doc.embedding), 'blob': doc.to_base64(), **extra_columns, } if self._config.tag_indices: for index in self._config.tag_indices: request[index] = doc.tags.get(index) if doc.text: request['text'] = doc.text return request def _getitem(self, doc_id: str) -> 'Document': """Helper method for getting item with elastic as storage :param doc_id: id of the document :raises KeyError: raise error when elastic id does not exist in storage :return: Document """ try: result = self._client.get(index=self._config.index_name, id=doc_id) doc = Document.from_base64(result['_source']['blob']) return doc except Exception as ex: raise KeyError(doc_id) from ex def _get_doc_by_id(self, _id: str) -> 'Document': """Concrete implementation of base class' ``_get_doc_by_id`` :param _id: the id of the document :return: the retrieved document from elastic """ return self._getitem(_id) def _get_docs_by_ids(self, ids: Sequence[str]) -> Iterable['Document']: """Concrete implementation of base class' ``_get_docs_by_ids`` :param ids: ids of the document :return: Iterable[Document] """ accumulated_docs = [] accumulated_docs_id_not_found = [] if not ids: return accumulated_docs # Handle if doc len is more than MAX_ES_RETURNED_DOCS for pos in range(0, len(ids), self.MAX_ES_RETURNED_DOCS): es_docs = self._client.mget( index=self._config.index_name, ids=ids[pos : pos + self.MAX_ES_RETURNED_DOCS], )['docs'] for doc in es_docs: if doc['found']: accumulated_docs.append( Document.from_base64(doc['_source']['blob']) ) else: accumulated_docs_id_not_found.append(doc['_id']) if accumulated_docs_id_not_found: raise KeyError(accumulated_docs_id_not_found, accumulated_docs) return accumulated_docs def _set_doc_by_id(self, _id: str, value: 'Document'): """Concrete implementation of base class' ``_set_doc_by_id`` :param _id: the id of doc to update :param value: the document to update to """ if _id != value.id: self._del_doc_by_id(_id) request = [self._document_to_elastic(value)] self._send_requests(request) self._refresh(self._config.index_name) def _set_docs_by_ids(self, ids, docs: Iterable['Document'], mismatch_ids: Dict): """Overridden implementation of _set_docs_by_ids in order to add docs in batches and flush at the end :param ids: the ids used for indexing """ for _id, doc in zip(ids, docs): self._set_doc_by_id(_id, doc) self._refresh(self._config.index_name) def _del_doc_by_id(self, _id: str): """Concrete implementation of base class' ``_del_doc_by_id`` :param _id: the id of the document to delete """ if self._doc_id_exists(_id): self._client.delete(index=self._config.index_name, id=_id) self._refresh(self._config.index_name) def _clear_storage(self): """Concrete implementation of base class' ``_clear_storage``""" self._client.indices.delete(index=self._config.index_name) self._build_index() def _load_offset2ids(self): if self._list_like: ids = self._get_offset2ids_meta() self._offset2ids = Offset2ID(ids, list_like=self._list_like) else: self._offset2ids = Offset2ID([], list_like=self._list_like) def _save_offset2ids(self): if self._list_like: self._update_offset2ids_meta()
from typing import Iterable, Dict, Sequence from docarray.array.storage.base.getsetdel import BaseGetSetDelMixin from docarray.array.storage.base.helper import Offset2ID from docarray import Document class GetSetDelMixin(BaseGetSetDelMixin): """Provide concrete implementation for ``__getitem__``, ``__setitem__``, and ``__delitem__`` for ``DocumentArrayElastic``""" MAX_ES_RETURNED_DOCS = 10000 def _document_to_elastic(self, doc: 'Document') -> Dict: extra_columns = { col: doc.tags.get(col) for col, _ in self._config.columns.items() } request = { '_op_type': 'index', '_id': doc.id, '_index': self._config.index_name, 'embedding': self._map_embedding(doc.embedding), 'blob': doc.to_base64(), **extra_columns, } if self._config.tag_indices: for index in self._config.tag_indices: request[index] = doc.tags.get(index) if doc.text: request['text'] = doc.text return request def _getitem(self, doc_id: str) -> 'Document': """Helper method for getting item with elastic as storage :param doc_id: id of the document :raises KeyError: raise error when elastic id does not exist in storage :return: Document """ try: result = self._client.get(index=self._config.index_name, id=doc_id) doc = Document.from_base64(result['_source']['blob']) return doc except Exception as ex: raise KeyError(doc_id) from ex def _get_doc_by_id(self, _id: str) -> 'Document': """Concrete implementation of base class' ``_get_doc_by_id`` :param _id: the id of the document :return: the retrieved document from elastic """ return self._getitem(_id) def _get_docs_by_ids(self, ids: Sequence[str]) -> Iterable['Document']: """Concrete implementation of base class' ``_get_docs_by_ids`` :param ids: ids of the document :return: Iterable[Document] """ accumulated_docs = [] accumulated_docs_id_not_found = [] if not ids: return accumulated_docs # Handle if doc len is more than MAX_ES_RETURNED_DOCS for pos in range(0, len(ids), self.MAX_ES_RETURNED_DOCS): es_docs = self._client.mget( index=self._config.index_name, ids=ids[pos : pos + self.MAX_ES_RETURNED_DOCS], )['docs'] for doc in es_docs: if doc['found']: accumulated_docs.append( Document.from_base64(doc['_source']['blob']) ) else: accumulated_docs_id_not_found.append(doc['_id']) if accumulated_docs_id_not_found: raise KeyError(accumulated_docs_id_not_found, accumulated_docs) return accumulated_docs def _set_doc_by_id(self, _id: str, value: 'Document'): """Concrete implementation of base class' ``_set_doc_by_id`` :param _id: the id of doc to update :param value: the document to update to """ if _id != value.id: self._del_doc_by_id(_id) request = [self._document_to_elastic(value)] self._send_requests(request) self._refresh(self._config.index_name) def _set_docs_by_ids(self, ids, docs: Iterable['Document'], mismatch_ids: Dict): """Overridden implementation of _set_docs_by_ids in order to add docs in batches and flush at the end :param ids: the ids used for indexing """ for _id, doc in zip(ids, docs): self._set_doc_by_id(_id, doc) self._refresh(self._config.index_name) def _del_doc_by_id(self, _id: str): """Concrete implementation of base class' ``_del_doc_by_id`` :param _id: the id of the document to delete """ if self._doc_id_exists(_id): self._client.delete(index=self._config.index_name, id=_id) self._refresh(self._config.index_name) def _clear_storage(self): """Concrete implementation of base class' ``_clear_storage``""" self._client.indices.delete(index=self._config.index_name) def _load_offset2ids(self): if self._list_like: ids = self._get_offset2ids_meta() self._offset2ids = Offset2ID(ids, list_like=self._list_like) else: self._offset2ids = Offset2ID([], list_like=self._list_like) def _save_offset2ids(self): if self._list_like: self._update_offset2ids_meta()
"""Tests related to the `DataIter` interface.""" from typing import Callable, Optional import numpy as np from xgboost import testing as tm from ..compat import import_cupy from ..core import DataIter, DMatrix, ExtMemQuantileDMatrix, QuantileDMatrix def run_mixed_sparsity(device: str) -> None: """Check QDM with mixed batches.""" X_0, y_0, _ = tm.make_regression(128, 16, False) if device.startswith("cuda"): X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, True) else: X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, False) X_2, y_2 = tm.make_sparse_regression(512, 16, 0.9, True) X = [X_0, X_1, X_2] y = [y_0, y_1, y_2] if device.startswith("cuda"): cp = import_cupy() X = [cp.array(batch) for batch in X] it = tm.IteratorForTest(X, y, None, cache=None, on_host=False) Xy_0 = QuantileDMatrix(it) X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, True) X = [X_0, X_1, X_2] y = [y_0, y_1, y_2] X_arr = np.concatenate(X, axis=0) y_arr = np.concatenate(y, axis=0) Xy_1 = QuantileDMatrix(X_arr, y_arr) assert tm.predictor_equal(Xy_0, Xy_1) def check_invalid_cat_batches(device: str) -> None: """Check error message for inconsistent feature types.""" class _InvalidCatIter(DataIter): def __init__(self) -> None: super().__init__(cache_prefix=None) self._it = 0 def next(self, input_data: Callable) -> bool: if self._it == 2: return False X, y = tm.make_categorical( 64, 12, 4, onehot=False, sparsity=0.5, cat_ratio=1.0 if self._it == 0 else 0.5, ) if device == "cuda": import cudf import cupy X = cudf.DataFrame(X) y = cupy.array(y) input_data(data=X, label=y) self._it += 1 return True def reset(self) -> None: self._it = 0 it = _InvalidCatIter() import pytest with pytest.raises(ValueError, match="Inconsistent feature types between batches"): ExtMemQuantileDMatrix(it, enable_categorical=True) def check_uneven_sizes(device: str) -> None: """Tests for having irregular data shapes.""" batches = [ tm.make_regression(n_samples, 16, use_cupy=device == "cuda") for n_samples in [512, 256, 1024] ] unzip = list(zip(*batches)) it = tm.IteratorForTest(unzip[0], unzip[1], None, cache="cache", on_host=True) Xy = DMatrix(it) assert Xy.num_col() == 16 assert Xy.num_row() == sum(x.shape[0] for x in unzip[0]) Xy = ExtMemQuantileDMatrix(it) assert Xy.num_col() == 16 assert Xy.num_row() == sum(x.shape[0] for x in unzip[0]) class CatIter(DataIter): # pylint: disable=too-many-instance-attributes """An iterator for testing categorical features.""" def __init__( # pylint: disable=too-many-arguments,too-many-locals self, n_samples_per_batch: int, n_features: int, *, n_batches: int, n_cats: int, sparsity: float, cat_ratio: float, onehot: bool, device: str, cache: Optional[str], ) -> None: super().__init__(cache_prefix=cache) self.n_batches = n_batches self.device = device n_samples = n_samples_per_batch * n_batches cat, y = tm.make_categorical( n_samples, n_features, n_categories=n_cats, onehot=onehot, cat_ratio=cat_ratio, sparsity=sparsity, ) xs, ys = [], [] prev = 0 for _ in range(n_batches): n = min(n_samples_per_batch, n_samples - prev) X = cat.iloc[prev : prev + n, :] xs.append(X) ys.append(y[prev : prev + n]) prev += n_samples_per_batch self.xs = xs self.ys = ys self.x = cat self.y = y self._it = 0 def xy(self) -> tuple: """Return the concatenated data.""" return self.x, self.y def next(self, input_data: Callable) -> bool: if self._it == self.n_batches: return False X, y = self.xs[self._it], self.ys[self._it] if self.device == "cuda": import cudf import cupy X = cudf.DataFrame(X) y = cupy.array(y) input_data(data=X, label=y) self._it += 1 return True def reset(self) -> None: self._it = 0
"""Tests related to the `DataIter` interface.""" from typing import Callable, Optional import numpy as np from xgboost import testing as tm from ..core import DataIter, DMatrix, ExtMemQuantileDMatrix, QuantileDMatrix def run_mixed_sparsity(device: str) -> None: """Check QDM with mixed batches.""" X_0, y_0, _ = tm.make_regression(128, 16, False) if device.startswith("cuda"): X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, True) else: X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, False) X_2, y_2 = tm.make_sparse_regression(512, 16, 0.9, True) X = [X_0, X_1, X_2] y = [y_0, y_1, y_2] if device.startswith("cuda"): import cupy as cp # pylint: disable=import-error X = [cp.array(batch) for batch in X] it = tm.IteratorForTest(X, y, None, cache=None, on_host=False) Xy_0 = QuantileDMatrix(it) X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, True) X = [X_0, X_1, X_2] y = [y_0, y_1, y_2] X_arr = np.concatenate(X, axis=0) y_arr = np.concatenate(y, axis=0) Xy_1 = QuantileDMatrix(X_arr, y_arr) assert tm.predictor_equal(Xy_0, Xy_1) def check_invalid_cat_batches(device: str) -> None: """Check error message for inconsistent feature types.""" class _InvalidCatIter(DataIter): def __init__(self) -> None: super().__init__(cache_prefix=None) self._it = 0 def next(self, input_data: Callable) -> bool: if self._it == 2: return False X, y = tm.make_categorical( 64, 12, 4, onehot=False, sparsity=0.5, cat_ratio=1.0 if self._it == 0 else 0.5, ) if device == "cuda": import cudf # pylint: disable=import-error import cupy # pylint: disable=import-error X = cudf.DataFrame(X) y = cupy.array(y) input_data(data=X, label=y) self._it += 1 return True def reset(self) -> None: self._it = 0 it = _InvalidCatIter() import pytest with pytest.raises(ValueError, match="Inconsistent feature types between batches"): ExtMemQuantileDMatrix(it, enable_categorical=True) def check_uneven_sizes(device: str) -> None: """Tests for having irregular data shapes.""" batches = [ tm.make_regression(n_samples, 16, use_cupy=device == "cuda") for n_samples in [512, 256, 1024] ] unzip = list(zip(*batches)) it = tm.IteratorForTest(unzip[0], unzip[1], None, cache="cache", on_host=True) Xy = DMatrix(it) assert Xy.num_col() == 16 assert Xy.num_row() == sum(x.shape[0] for x in unzip[0]) Xy = ExtMemQuantileDMatrix(it) assert Xy.num_col() == 16 assert Xy.num_row() == sum(x.shape[0] for x in unzip[0]) class CatIter(DataIter): # pylint: disable=too-many-instance-attributes """An iterator for testing categorical features.""" def __init__( # pylint: disable=too-many-arguments,too-many-locals self, n_samples_per_batch: int, n_features: int, *, n_batches: int, n_cats: int, sparsity: float, cat_ratio: float, onehot: bool, device: str, cache: Optional[str], ) -> None: super().__init__(cache_prefix=cache) self.n_batches = n_batches self.device = device n_samples = n_samples_per_batch * n_batches cat, y = tm.make_categorical( n_samples, n_features, n_categories=n_cats, onehot=onehot, cat_ratio=cat_ratio, sparsity=sparsity, ) xs, ys = [], [] prev = 0 for _ in range(n_batches): n = min(n_samples_per_batch, n_samples - prev) X = cat.iloc[prev : prev + n, :] xs.append(X) ys.append(y[prev : prev + n]) prev += n_samples_per_batch self.xs = xs self.ys = ys self.x = cat self.y = y self._it = 0 def xy(self) -> tuple: """Return the concatenated data.""" return self.x, self.y def next(self, input_data: Callable) -> bool: if self._it == self.n_batches: return False X, y = self.xs[self._it], self.ys[self._it] if self.device == "cuda": import cudf # pylint: disable=import-error import cupy # pylint: disable=import-error X = cudf.DataFrame(X) y = cupy.array(y) input_data(data=X, label=y) self._it += 1 return True def reset(self) -> None: self._it = 0
import requests import urllib.parse from typing import Dict from llama_index.core.schema import Document from llama_index.core.tools.tool_spec.base import BaseToolSpec SEARCH_URL_TMPL = "https://api.search.brave.com/res/v1/web/search?{params}" class BraveSearchToolSpec(BaseToolSpec): """ Brave Search tool spec. """ spec_functions = ["brave_search"] def __init__(self, api_key: str) -> None: """ Initialize with parameters. """ self.api_key = api_key def _make_request(self, params: Dict) -> requests.Response: """ Make a request to the Brave Search API. Args: params (dict): The parameters to be passed to the API. Returns: requests.Response: The response from the API. """ headers = { "Accept": "application/json", "Accept-Encoding": "gzip", "X-Subscription-Token": self.api_key, } url = SEARCH_URL_TMPL.format(params=urllib.parse.urlencode(params)) response = requests.get(url, headers=headers) response.raise_for_status() return response def brave_search( self, query: str, search_lang: str = "en", num_results: int = 5 ) -> [Document]: """ Make a query to the Brave Search engine to receive a list of results. Args: query (str): The query to be passed to Brave Search. search_lang (str): The search language preference (ISO 639-1), default is "en". num_results (int): The number of search results returned in response, default is 5. Returns: [Document]: A list of documents containing search results. """ search_params = { "q": query, "search_lang": search_lang, "count": num_results, } response = self._make_request(search_params) return [Document(text=response.text)]
import requests import urllib.parse from typing import Dict from llama_index.core.schema import Document from llama_index.core.tools.tool_spec.base import BaseToolSpec SEARCH_URL_TMPL = "https://api.search.brave.com/res/v1/web/search?{params}" class BraveSearchToolSpec(BaseToolSpec): """ Brave Search tool spec. """ spec_functions = ["brave_search"] def __init__(self, api_key: str) -> None: """ Initialize with parameters. """ self.api_key = api_key def _make_request(self, params: Dict) -> requests.Response: """ Make a request to the Brave Search API. Args: params (dict): The parameters to be passed to the API. Returns: requests.Response: The response from the API. """ headers = { "Accept": "application/json", "Accept-Encoding": "gzip", "X-Subscription-Token": self.api_key, } url = SEARCH_URL_TMPL.format(params=urllib.parse.urlencode(params)) response = requests.get(url, headers=headers) response.raise_for_status() return response def brave_search( self, query: str, search_lang: str = "en", num_results: int = 5 ) -> [Document]: """ Make a query to the Brave Search engine to receive a list of results. Args: query (str): The query to be passed to Brave Search. search_lang (str): The search language preference (ISO 639-1), default is "en". num_results (int): The number of search results returned in response, default is 5. Returns: [Document]: A list of documents containing search results. """ search_params = { "q": query, "search_lang": search_lang, "count": num_results, } response = self._make_request(search_params) return [Document(text=response.text)]
from datasets import load_dataset from sentence_transformers import ( SentenceTransformer, SentenceTransformerTrainer, SentenceTransformerTrainingArguments, losses, ) from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator, SimilarityFunction from sentence_transformers.training_args import BatchSamplers # 1. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli, 10k samples train_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="train[:10000]") eval_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev[:1000]") # 2. Create an evaluator to perform useful HPO stsb_eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=stsb_eval_dataset["sentence1"], sentences2=stsb_eval_dataset["sentence2"], scores=stsb_eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 3. Define the Hyperparameter Search Space def hpo_search_space(trial): return { "num_train_epochs": trial.suggest_int("num_train_epochs", 1, 2), "per_device_train_batch_size": trial.suggest_int("per_device_train_batch_size", 32, 128), "warmup_ratio": trial.suggest_float("warmup_ratio", 0, 0.3), "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True), } # 4. Define the Model Initialization def hpo_model_init(trial): return SentenceTransformer("distilbert-base-uncased") # 5. Define the Loss Initialization def hpo_loss_init(model): return losses.MultipleNegativesRankingLoss(model) # 6. Define the Objective Function def hpo_compute_objective(metrics): """ Valid keys are: 'eval_loss', 'eval_sts-dev_pearson_cosine', 'eval_sts-dev_spearman_cosine', 'eval_sts-dev_pearson_manhattan', 'eval_sts-dev_spearman_manhattan', 'eval_sts-dev_pearson_euclidean', 'eval_sts-dev_spearman_euclidean', 'eval_sts-dev_pearson_dot', 'eval_sts-dev_spearman_dot', 'eval_sts-dev_pearson_max', 'eval_sts-dev_spearman_max', 'eval_runtime', 'eval_samples_per_second', 'eval_steps_per_second', 'epoch' due to the evaluator that we're using. """ return metrics["eval_sts-dev_spearman_cosine"] # 7. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir="checkpoints", # Optional training parameters: # max_steps=10000, # We might want to limit the number of steps for HPO fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch # Optional tracking/debugging parameters: eval_strategy="no", # We don't need to evaluate/save during HPO save_strategy="no", logging_steps=10, run_name="hpo", # Will be used in W&B if `wandb` is installed ) # 8. Create the trainer with model_init rather than model trainer = SentenceTransformerTrainer( model=None, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, evaluator=dev_evaluator, model_init=hpo_model_init, loss=hpo_loss_init, ) # 9. Perform the HPO best_trial = trainer.hyperparameter_search( hp_space=hpo_search_space, compute_objective=hpo_compute_objective, n_trials=20, direction="maximize", backend="optuna", ) print(best_trial) # Alternatively, to just train normally: # trainer.train() # print(dev_evaluator(trainer.model))
from datasets import load_dataset from sentence_transformers import ( SentenceTransformer, SentenceTransformerTrainer, SentenceTransformerTrainingArguments, losses, ) from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator, SimilarityFunction from sentence_transformers.training_args import BatchSamplers # 1. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli, 10k samples train_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="train[:10000]") eval_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev[:1000]") # 2. Create an evaluator to perform useful HPO stsb_eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=stsb_eval_dataset["sentence1"], sentences2=stsb_eval_dataset["sentence2"], scores=stsb_eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 3. Define the Hyperparameter Search Space def hpo_search_space(trial): return { "num_train_epochs": trial.suggest_int("num_train_epochs", 1, 2), "per_device_train_batch_size": trial.suggest_int("per_device_train_batch_size", 32, 128), "warmup_ratio": trial.suggest_float("warmup_ratio", 0, 0.3), "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True), } # 4. Define the Model Initialization def hpo_model_init(trial): return SentenceTransformer("distilbert-base-uncased") # 5. Define the Loss Initialization def hpo_loss_init(model): return losses.MultipleNegativesRankingLoss(model) # 6. Define the Objective Function def hpo_compute_objective(metrics): """ Valid keys are: 'eval_loss', 'eval_sts-dev_pearson_cosine', 'eval_sts-dev_spearman_cosine', 'eval_sts-dev_pearson_manhattan', 'eval_sts-dev_spearman_manhattan', 'eval_sts-dev_pearson_euclidean', 'eval_sts-dev_spearman_euclidean', 'eval_sts-dev_pearson_dot', 'eval_sts-dev_spearman_dot', 'eval_sts-dev_pearson_max', 'eval_sts-dev_spearman_max', 'eval_runtime', 'eval_samples_per_second', 'eval_steps_per_second', 'epoch' due to the evaluator that we're using. """ return metrics["eval_sts-dev_spearman_cosine"] # 7. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir="checkpoints", # Optional training parameters: # max_steps=10000, # We might want to limit the number of steps for HPO fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch # Optional tracking/debugging parameters: eval_strategy="no", # We don't need to evaluate/save during HPO save_strategy="no", logging_steps=10, run_name="hpo", # Will be used in W&B if `wandb` is installed ) # 8. Create the trainer with model_init rather than model trainer = SentenceTransformerTrainer( model=None, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, evaluator=dev_evaluator, model_init=hpo_model_init, loss=hpo_loss_init, ) # 9. Perform the HPO best_trial = trainer.hyperparameter_search( hp_space=hpo_search_space, compute_objective=hpo_compute_objective, n_trials=20, direction="maximize", backend="optuna", ) print(best_trial) # Alternatively, to just train normally: # trainer.train() # print(dev_evaluator(trainer.model))
""" This examples trains a CrossEncoder for the Quora Duplicate Questions Detection task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continuous labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_quora_duplicate_questions.py """ import csv import logging import math import os from datetime import datetime from zipfile import ZipFile from torch.utils.data import DataLoader from sentence_transformers import LoggingHandler, util from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CEBinaryClassificationEvaluator from sentence_transformers.readers import InputExample #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it dataset_path = "quora-dataset/" if not os.path.exists(dataset_path): logger.info("Dataset not found. Download") zip_save_path = "quora-IR-dataset.zip" util.http_get(url="https://sbert.net/datasets/quora-IR-dataset.zip", path=zip_save_path) with ZipFile(zip_save_path, "r") as zip: zip.extractall(dataset_path) # Read the quora dataset split for classification logger.info("Read train dataset") train_samples = [] with open(os.path.join(dataset_path, "classification", "train_pairs.tsv"), "r", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: train_samples.append(InputExample(texts=[row["question1"], row["question2"]], label=int(row["is_duplicate"]))) train_samples.append(InputExample(texts=[row["question2"], row["question1"]], label=int(row["is_duplicate"]))) logger.info("Read dev dataset") dev_samples = [] with open(os.path.join(dataset_path, "classification", "dev_pairs.tsv"), "r", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: dev_samples.append(InputExample(texts=[row["question1"], row["question2"]], label=int(row["is_duplicate"]))) # Configuration train_batch_size = 16 num_epochs = 4 model_save_path = "output/training_quora-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # We use distilroberta-base with a single label, i.e., it will output a value between 0 and 1 indicating the similarity of the two questions model = CrossEncoder("distilroberta-base", num_labels=1) # We wrap train_samples (which is a List[InputExample]) into a pytorch DataLoader train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) # We add an evaluator, which evaluates the performance during training evaluator = CEBinaryClassificationEvaluator.from_input_examples(dev_samples, name="Quora-dev") # Configure the training warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logger.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, evaluation_steps=5000, warmup_steps=warmup_steps, output_path=model_save_path, )
""" This examples trains a CrossEncoder for the Quora Duplicate Questions Detection task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continious labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_quora_duplicate_questions.py """ from torch.utils.data import DataLoader import math from sentence_transformers import LoggingHandler, util from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CEBinaryClassificationEvaluator from sentence_transformers.readers import InputExample import logging from datetime import datetime import os import gzip import csv from zipfile import ZipFile #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) logger = logging.getLogger(__name__) #### /print debug information to stdout #Check if dataset exsist. If not, download and extract it dataset_path = 'quora-dataset/' if not os.path.exists(dataset_path): logger.info("Dataset not found. Download") zip_save_path = 'quora-IR-dataset.zip' util.http_get(url='https://sbert.net/datasets/quora-IR-dataset.zip', path=zip_save_path) with ZipFile(zip_save_path, 'r') as zip: zip.extractall(dataset_path) # Read the quora dataset split for classification logger.info("Read train dataset") train_samples = [] with open(os.path.join(dataset_path, 'classification', 'train_pairs.tsv'), 'r', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: train_samples.append(InputExample(texts=[row['question1'], row['question2']], label=int(row['is_duplicate']))) train_samples.append(InputExample(texts=[row['question2'], row['question1']], label=int(row['is_duplicate']))) logger.info("Read dev dataset") dev_samples = [] with open(os.path.join(dataset_path, 'classification', 'dev_pairs.tsv'), 'r', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: dev_samples.append(InputExample(texts=[row['question1'], row['question2']], label=int(row['is_duplicate']))) #Configuration train_batch_size = 16 num_epochs = 4 model_save_path = 'output/training_quora-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") #We use distilroberta-base with a single label, i.e., it will output a value between 0 and 1 indicating the similarity of the two questions model = CrossEncoder('distilroberta-base', num_labels=1) # We wrap train_samples (which is a List[InputExample]) into a pytorch DataLoader train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) # We add an evaluator, which evaluates the performance during training evaluator = CEBinaryClassificationEvaluator.from_input_examples(dev_samples, name='Quora-dev') # Configure the training warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up logger.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit(train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, evaluation_steps=5000, warmup_steps=warmup_steps, output_path=model_save_path)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from pathlib import Path from typing import Dict, Tuple import numpy as np import pytest from jina import Document, DocumentArray, Executor from ...torch_encoder import ImageTorchEncoder def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.default_batch_size == 32 @pytest.mark.parametrize( ['content', 'out_shape'], [ ([np.ones((10, 10, 3), dtype=np.uint8), (3, 224, 224)]), ([np.ones((360, 420, 3), dtype=np.uint8), (3, 224, 224)]), ([np.ones((300, 300, 3), dtype=np.uint8), (3, 224, 224)]), ], ) def test_preprocessing_reshape_correct(content: np.ndarray, out_shape: Tuple): encoder = ImageTorchEncoder() reshaped_content = encoder._preprocess(content) assert ( reshaped_content.shape == out_shape ), f'Expected shape {out_shape} but got {reshaped_content.shape}' @pytest.mark.parametrize( 'traversal_paths, docs', [ (('r',), pytest.lazy_fixture('docs_with_blobs')), (('c',), pytest.lazy_fixture('docs_with_chunk_blobs')), ], ) def test_encode_image_returns_correct_length( traversal_paths: Tuple[str], docs: DocumentArray ) -> None: encoder = ImageTorchEncoder(default_traversal_path=traversal_paths) encoder.encode(docs=docs, parameters={}) for doc in docs.traverse_flat(traversal_paths): assert doc.embedding is not None assert doc.embedding.shape == (512,) @pytest.mark.gpu def test_encode_gpu(docs_with_blobs: DocumentArray) -> None: encoder = ImageTorchEncoder(default_traversal_path=('r',), device='cuda') encoder.encode(docs=docs_with_blobs, parameters={}) for doc in docs_with_blobs.traverse_flat(('r',)): assert doc.embedding is not None assert doc.embedding.shape == (512,) @pytest.mark.parametrize('model_name', ['resnet50', 'mobilenet_v3_large', 'googlenet']) def test_encodes_semantic_meaning(test_images: Dict[str, np.array], model_name: str): encoder = ImageTorchEncoder(model_name=model_name) embeddings = {} for name, image_arr in test_images.items(): docs = DocumentArray([Document(blob=image_arr)]) encoder.encode(docs, parameters={}) embeddings[name] = docs[0].embedding def dist(a, b): a_embedding = embeddings[a] b_embedding = embeddings[b] return np.linalg.norm(a_embedding - b_embedding) small_distance = dist('banana1', 'banana2') assert small_distance < dist('banana1', 'airplane') assert small_distance < dist('banana1', 'satellite') assert small_distance < dist('banana1', 'studio') assert small_distance < dist('banana2', 'airplane') assert small_distance < dist('banana2', 'satellite') assert small_distance < dist('banana2', 'studio') assert small_distance < dist('airplane', 'studio') assert small_distance < dist('airplane', 'satellite') assert small_distance < dist('studio', 'satellite') def test_no_preprocessing(): encoder = ImageTorchEncoder(use_default_preprocessing=False) # without pre-processing the user needs to provide the right shape for the model directly arr_in = np.ones((3, 224, 224), dtype=np.float32) docs = DocumentArray([Document(blob=arr_in)]) encoder.encode(docs=docs, parameters={}) assert docs[0].embedding.shape == (512,) def test_empty_doc_array(): docs = DocumentArray() encoder = ImageTorchEncoder() encoder.encode(docs, parameters={}) assert len(docs) == 0 def test_docs_array_with_no_text(): docs = DocumentArray([Document(text='hello world')]) encoder = ImageTorchEncoder() encoder.encode(docs, parameters={}) assert docs[0].embedding is None
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from pathlib import Path from typing import Tuple, Dict import pytest import numpy as np from jina import DocumentArray, Document, Executor from ...torch_encoder import ImageTorchEncoder def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.default_batch_size == 32 @pytest.mark.parametrize( ['content', 'out_shape'], [ ([np.ones((10, 10, 3), dtype=np.uint8), (3, 224, 224)]), ([np.ones((360, 420, 3), dtype=np.uint8), (3, 224, 224)]), ([np.ones((300, 300, 3), dtype=np.uint8), (3, 224, 224)]), ], ) def test_preprocessing_reshape_correct(content: np.ndarray, out_shape: Tuple): encoder = ImageTorchEncoder() reshaped_content = encoder._preprocess(content) assert ( reshaped_content.shape == out_shape ), f'Expected shape {out_shape} but got {reshaped_content.shape}' @pytest.mark.parametrize( 'traversal_paths, docs', [ (('r',), pytest.lazy_fixture('docs_with_blobs')), (('c',), pytest.lazy_fixture('docs_with_chunk_blobs')), ], ) def test_encode_image_returns_correct_length( traversal_paths: Tuple[str], docs: DocumentArray ) -> None: encoder = ImageTorchEncoder(default_traversal_path=traversal_paths) encoder.encode(docs=docs, parameters={}) for doc in docs.traverse_flat(traversal_paths): assert doc.embedding is not None assert doc.embedding.shape == (512,) @pytest.mark.parametrize('model_name', ['resnet50', 'mobilenet_v3_large', 'googlenet']) def test_encodes_semantic_meaning(test_images: Dict[str, np.array], model_name: str): encoder = ImageTorchEncoder(model_name=model_name) embeddings = {} for name, image_arr in test_images.items(): docs = DocumentArray([Document(blob=image_arr)]) encoder.encode(docs, parameters={}) embeddings[name] = docs[0].embedding def dist(a, b): a_embedding = embeddings[a] b_embedding = embeddings[b] return np.linalg.norm(a_embedding - b_embedding) small_distance = dist('banana1', 'banana2') assert small_distance < dist('banana1', 'airplane') assert small_distance < dist('banana1', 'satellite') assert small_distance < dist('banana1', 'studio') assert small_distance < dist('banana2', 'airplane') assert small_distance < dist('banana2', 'satellite') assert small_distance < dist('banana2', 'studio') assert small_distance < dist('airplane', 'studio') assert small_distance < dist('airplane', 'satellite') assert small_distance < dist('studio', 'satellite') def test_no_preprocessing(): encoder = ImageTorchEncoder(use_default_preprocessing=False) # without pre-processing the user needs to provide the right shape for the model directly arr_in = np.ones((3, 224, 224), dtype=np.float32) docs = DocumentArray([Document(blob=arr_in)]) encoder.encode(docs=docs, parameters={}) assert docs[0].embedding.shape == (512,) def test_empty_doc_array(): docs = DocumentArray() encoder = ImageTorchEncoder() encoder.encode(docs, parameters={}) assert len(docs) == 0 def test_docs_array_with_no_text(): docs = DocumentArray([Document(text='hello world')]) encoder = ImageTorchEncoder() encoder.encode(docs, parameters={}) assert docs[0].embedding is None
import os from pydoc import locate import numpy as np import pytest from jina import Document, Flow from PIL.Image import fromarray cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture def numpy_image_uri(tmpdir): blob = np.random.randint(255, size=(96, 96, 3), dtype='uint8') im = fromarray(blob) uri = os.path.join(tmpdir, 'tmp.png') im.save(uri) return uri def data_generator(num_docs, numpy_image_uri): for i in range(num_docs): doc = Document(uri=numpy_image_uri) doc.convert_image_uri_to_blob() yield doc @pytest.fixture() def dtype(request): os.environ['DTYPE'] = request.param yield del os.environ['DTYPE'] @pytest.mark.parametrize( 'dtype', ['numpy.uint8', 'numpy.float32', 'numpy.float64'], indirect=['dtype'] ) def test_use_in_flow(numpy_image_uri, dtype): dtype = os.environ['DTYPE'] with Flow.load_config('flow.yml') as flow: data = flow.post( on='/index', inputs=data_generator(5, numpy_image_uri), return_results=True ) for doc in data[0].docs: assert doc.blob.shape == (64, 64, 3) assert doc.blob.dtype == locate(dtype)
import os from pydoc import locate import numpy as np import pytest from PIL.Image import fromarray from jina import Flow, Document from ...normalizer import ImageNormalizer cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture def numpy_image_uri(tmpdir): blob = np.random.randint(255, size=(96, 96, 3), dtype='uint8') im = fromarray(blob) uri = os.path.join(tmpdir, 'tmp.png') im.save(uri) return uri def data_generator(num_docs, numpy_image_uri): for i in range(num_docs): doc = Document(uri=numpy_image_uri) doc.convert_image_uri_to_blob() yield doc @pytest.fixture() def dtype(request): os.environ['DTYPE'] = request.param yield del os.environ['DTYPE'] @pytest.mark.parametrize('dtype', ['numpy.uint8', 'numpy.float32', 'numpy.float64'], indirect=['dtype']) def test_use_in_flow(numpy_image_uri, dtype): dtype = os.environ['DTYPE'] with Flow.load_config('flow.yml') as flow: data = flow.post( on='/index', inputs=data_generator(5, numpy_image_uri), return_results=True ) for doc in data[0].docs: assert doc.blob.shape == (64, 64, 3) assert doc.blob.dtype == locate(dtype)
from __future__ import annotations from collections.abc import Iterable import torch from torch import Tensor, nn from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class FlopsLoss(nn.Module): def __init__(self, model: SparseEncoder) -> None: """ FlopsLoss implements a regularization technique to promote sparsity in sparse encoder models. It calculates the squared L2 norm of the mean embedding vector, which helps reduce the number of floating-point operations (FLOPs) required during inference by encouraging more zero values in the embeddings. This loss is used as a regularization component within other losses like :class:`SpladeLoss` rather than being used as a standalone loss function. Args: model: SparseEncoder model to be regularized References: - For further details, see: https://arxiv.org/abs/2004.05665 Relations: - Used as a component within :class:`SpladeLoss` to regularize both query and document embeddings Example: - This loss is typically used within the :class:`SpladeLoss` class, which combines it with other loss components. """ super().__init__() self.model = model def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: # Compute the embeddings and distribute them to anchor and candidates (positive and optionally negatives) embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] return self.compute_loss_from_embeddings(embeddings) def compute_loss_from_embeddings(self, embeddings: list[torch.Tensor], embeddings_type: str) -> torch.Tensor: anchors = embeddings[0] # (batch_size, embedding_dim) candidates = torch.cat(embeddings[1:]) # (batch_size * (1 + num_negatives), embedding_dim) if embeddings_type == "query": return torch.sum(torch.mean(anchors, dim=0) ** 2) else: return torch.sum(torch.mean(candidates, dim=0) ** 2) @property def citation(self) -> str: return """ @article{paria2020minimizing, title={Minimizing flops to learn efficient sparse representations}, author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{\'o}czos, Barnab{\'a}s}, journal={arXiv preprint arXiv:2004.05665}, year={2020} } """
from __future__ import annotations from collections.abc import Iterable import torch from torch import Tensor, nn from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class FlopsLoss(nn.Module): def __init__(self, model: SparseEncoder) -> None: """ FlopsLoss implements a regularization technique to promote sparsity in sparse encoder models. It calculates the squared L2 norm of the mean embedding vector, which helps reduce the number of floating-point operations (FLOPs) required during inference by encouraging more zero values in the embeddings. This loss is used as a regularization component within other losses like it's done in SpladeLoss rather than as a standalone loss function. Args: model: SparseEncoder model to be regularized References: - For further details, see: https://arxiv.org/abs/2004.05665 Relations: - Used as a component within :class:`SpladeLoss` to regularize both query and document embeddings Example: This loss is typically used within the :class:`SpladeLoss` class, which combines it with other loss components. """ super().__init__() self.model = model def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: # Compute the embeddings and distribute them to anchor and candidates (positive and optionally negatives) embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] return self.compute_loss_from_embeddings(embeddings) def compute_loss_from_embeddings(self, embeddings: list[torch.Tensor], embeddings_type: str) -> torch.Tensor: anchors = embeddings[0] # (batch_size, embedding_dim) candidates = torch.cat(embeddings[1:]) # (batch_size * (1 + num_negatives), embedding_dim) if embeddings_type == "query": return torch.sum(torch.mean(anchors, dim=0) ** 2) else: return torch.sum(torch.mean(candidates, dim=0) ** 2) @property def citation(self) -> str: return """ @article{paria2020minimizing, title={Minimizing flops to learn efficient sparse representations}, author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{\'o}czos, Barnab{\'a}s}, journal={arXiv preprint arXiv:2004.05665}, year={2020} } """
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.llms.cloudflare_workersai import CloudflareWorkersAI # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "CloudflareWorkersAI": "langchain_community.llms.cloudflare_workersai", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "CloudflareWorkersAI", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.llms.cloudflare_workersai import CloudflareWorkersAI # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "CloudflareWorkersAI": "langchain_community.llms.cloudflare_workersai" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "CloudflareWorkersAI", ]
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoNdArray') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_ndarray') class VideoNdArray(NdArray, VideoTensorMixin): """ Subclass of NdArray, to represent a video tensor. Adds video-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional import numpy as np from pydantic import parse_obj_as from docarray import BaseDoc from docarray.typing import VideoNdArray, VideoUrl class MyVideoDoc(BaseDoc): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoNdArray] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=np.random.random((100, 224, 224, 3)), ) doc_1.video_tensor.save(file_path='file_1.mp4') doc_2 = MyVideoDoc( title='my_second_video_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.video_tensor = parse_obj_as(VideoNdArray, doc_2.url.load().video) doc_2.video_tensor.save(file_path='file_2.mp4') """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoNdArray') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_ndarray') class VideoNdArray(NdArray, VideoTensorMixin): """ Subclass of NdArray, to represent a video tensor. Adds video-specific features to the tensor. EXAMPLE USAGE .. code-block:: python from typing import Optional import numpy as np from pydantic import parse_obj_as from docarray import BaseDocument from docarray.typing import VideoNdArray, VideoUrl class MyVideoDoc(BaseDocument): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoNdArray] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=np.random.random((100, 224, 224, 3)), ) doc_1.video_tensor.save(file_path='file_1.mp4') doc_2 = MyVideoDoc( title='my_second_video_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.video_tensor = parse_obj_as(VideoNdArray, doc_2.url.load().video) doc_2.video_tensor.save(file_path='file_2.mp4') """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
from llama_index.llms.openai_like.base import OpenAILike class OpenLLM(OpenAILike): r""" OpenLLM LLM. A thin wrapper around OpenAI interface to help users interact with OpenLLM's running server. Examples: `pip install llama-index-llms-openllm` ```python from llama_index.llms.openllm import OpenLLM llm = OpenLLM(api_base="https://hostname.com/v1", api_key="na", model="meta-llama/Meta-Llama-3-8B-Instruct") result = llm.complete("Hi, write a short story\n") print(result) ``` """ @classmethod def class_name(cls) -> str: return "OpenLLM"
from llama_index.llms.openai_like.base import OpenAILike class OpenLLM(OpenAILike): r""" OpenLLM LLM. A thin wrapper around OpenAI interface to help users interact with OpenLLM's running server. Examples: `pip install llama-index-llms-openllm` ```python from llama_index.llms.openllm import OpenLLM llm = OpenLLM(api_base="https://hostname.com/v1", api_key="na", model="meta-llama/Meta-Llama-3-8B-Instruct") result = llm.complete("Hi, write a short story\n") print(result) ``` """ @classmethod def class_name(cls) -> str: return "OpenLLM"
"""Argparser module for Deployment runtimes""" import argparse from jina import helper from jina.enums import DeploymentRoleType from jina.parsers.helper import _SHOW_ALL_ARGS, KVAppendAction, add_arg_group def mixin_base_deployment_parser(parser): """Add mixin arguments required by :class:`BaseDeployment` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Deployment') gp.add_argument( '--uses-before', type=str, help='The executor attached before the Pods described by --uses, typically before sending to all ' 'shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--uses-after', type=str, help='The executor attached after the Pods described by --uses, typically used for receiving from ' 'all shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--when', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The condition that the documents need to fulfill before reaching the Executor.' 'The condition can be defined in the form of a `DocArray query condition <https://docarray.jina.ai/fundamentals/documentarray/find/#query-by-conditions>`', ) gp.add_argument( '--external', action='store_true', default=False, help='The Deployment will be considered an external Deployment that has been started independently from the Flow.' 'This Deployment will not be context managed by the Flow.', ) gp.add_argument( '--grpc-metadata', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The metadata to be passed to the gRPC request.', ) # hidden CLI used for internal only gp.add_argument( '--deployment-role', type=DeploymentRoleType.from_string, choices=list(DeploymentRoleType), help='The role of this deployment in the flow' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--tls', action='store_true', default=False, help='If set, connect to deployment using tls encryption', )
"""Argparser module for Deployment runtimes""" import argparse from jina import helper from jina.enums import DeploymentRoleType from jina.parsers.helper import _SHOW_ALL_ARGS, KVAppendAction, add_arg_group def mixin_base_deployment_parser(parser): """Add mixin arguments required by :class:`BaseDeployment` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Deployment') gp.add_argument( '--uses-before', type=str, help='The executor attached before the Pods described by --uses, typically before sending to all ' 'shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--uses-after', type=str, help='The executor attached after the Pods described by --uses, typically used for receiving from ' 'all shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1).', ) gp.add_argument( '--when', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The condition that the documents need to fulfill before reaching the Executor.' 'The condition can be defined in the form of a `DocArray query condition <https://docarray.jina.ai/fundamentals/documentarray/find/#query-by-conditions>`', ) gp.add_argument( '--external', action='store_true', default=False, help='The Deployment will be considered an external Deployment that has been started independently from the Flow.' 'This Deployment will not be context managed by the Flow.', ) # hidden CLI used for internal only gp.add_argument( '--deployment-role', type=DeploymentRoleType.from_string, choices=list(DeploymentRoleType), help='The role of this deployment in the flow' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--tls', action='store_true', default=False, help='If set, connect to deployment using tls encryption', )
"""Module to change the configuration of FFmpeg libraries (such as libavformat). It affects functionalities in :py:mod:`torchaudio.io` (and indirectly :py:func:`torchaudio.load`). """ # This file is just for BC. def __getattr__(item): from torio.utils import ffmpeg_utils return getattr(ffmpeg_utils, item)
def __getattr__(item): from torio.utils import ffmpeg_utils return getattr(ffmpeg_utils, item)
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from typing import List, Optional, Tuple, Union from mmcv.runner import BaseModule from mmengine.config import ConfigDict from mmengine.data import InstanceData from torch import Tensor from mmdet.core import DetDataSample from mmdet.registry import MODELS class BaseRoIHead(BaseModule, metaclass=ABCMeta): """Base class for RoIHeads.""" def __init__(self, bbox_roi_extractor: Optional[Union[ConfigDict, dict]] = None, bbox_head: Optional[Union[ConfigDict, dict]] = None, mask_roi_extractor: Optional[Union[ConfigDict, dict]] = None, mask_head: Optional[Union[ConfigDict, dict]] = None, shared_head: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, pretrained: Optional[str] = None, init_cfg: Optional[Union[ConfigDict, dict]] = None) -> None: super().__init__(init_cfg=init_cfg) self.train_cfg = train_cfg self.test_cfg = test_cfg if shared_head is not None: shared_head.pretrained = pretrained self.shared_head = MODELS.build(shared_head) if bbox_head is not None: self.init_bbox_head(bbox_roi_extractor, bbox_head) if mask_head is not None: self.init_mask_head(mask_roi_extractor, mask_head) self.init_assigner_sampler() @property def with_bbox(self) -> bool: """bool: whether the RoI head contains a `bbox_head`""" return hasattr(self, 'bbox_head') and self.bbox_head is not None @property def with_mask(self) -> bool: """bool: whether the RoI head contains a `mask_head`""" return hasattr(self, 'mask_head') and self.mask_head is not None @property def with_shared_head(self) -> bool: """bool: whether the RoI head contains a `shared_head`""" return hasattr(self, 'shared_head') and self.shared_head is not None @abstractmethod def init_bbox_head(self, *args, **kwargs): """Initialize ``bbox_head``""" pass @abstractmethod def init_mask_head(self, *args, **kwargs): """Initialize ``mask_head``""" pass @abstractmethod def init_assigner_sampler(self, *args, **kwargs): """Initialize assigner and sampler.""" pass @abstractmethod def forward_train(self, x: Tuple[Tensor], proposal_list: List[InstanceData], batch_data_samples: List[DetDataSample], **kwargs): """Forward function during training.""" # TODO: Currently not supported async def async_simple_test(self, x, proposal_list, img_metas, proposals=None, rescale=False, **kwargs): """Asynchronized test function.""" raise NotImplementedError def simple_test(self, x: Tuple[Tensor], proposal_list: List[InstanceData], batch_img_metas: List[dict], rescale: bool = False, **kwargs): """Test without augmentation.""" # TODO: Currently not supported def aug_test(self, x, proposal_list, img_metas, rescale=False, **kwargs): """Test with augmentations. If rescale is False, then returned bboxes and masks will fit the scale of imgs[0]. """
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from mmcv.runner import BaseModule from ..builder import build_shared_head class BaseRoIHead(BaseModule, metaclass=ABCMeta): """Base class for RoIHeads.""" def __init__(self, bbox_roi_extractor=None, bbox_head=None, mask_roi_extractor=None, mask_head=None, shared_head=None, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(BaseRoIHead, self).__init__(init_cfg) self.train_cfg = train_cfg self.test_cfg = test_cfg if shared_head is not None: shared_head.pretrained = pretrained self.shared_head = build_shared_head(shared_head) if bbox_head is not None: self.init_bbox_head(bbox_roi_extractor, bbox_head) if mask_head is not None: self.init_mask_head(mask_roi_extractor, mask_head) self.init_assigner_sampler() @property def with_bbox(self): """bool: whether the RoI head contains a `bbox_head`""" return hasattr(self, 'bbox_head') and self.bbox_head is not None @property def with_mask(self): """bool: whether the RoI head contains a `mask_head`""" return hasattr(self, 'mask_head') and self.mask_head is not None @property def with_shared_head(self): """bool: whether the RoI head contains a `shared_head`""" return hasattr(self, 'shared_head') and self.shared_head is not None @abstractmethod def init_bbox_head(self): """Initialize ``bbox_head``""" pass @abstractmethod def init_mask_head(self): """Initialize ``mask_head``""" pass @abstractmethod def init_assigner_sampler(self): """Initialize assigner and sampler.""" pass @abstractmethod def forward_train(self, x, proposal_list, data_samples, **kwargs): """Forward function during training.""" async def async_simple_test(self, x, proposal_list, img_metas, proposals=None, rescale=False, **kwargs): """Asynchronized test function.""" raise NotImplementedError def simple_test(self, x, proposal_list, img_meta, proposals=None, rescale=False, **kwargs): """Test without augmentation.""" def aug_test(self, x, proposal_list, img_metas, rescale=False, **kwargs): """Test with augmentations. If rescale is False, then returned bboxes and masks will fit the scale of imgs[0]. """
"""Argparser module for Flow""" from jina.parsers.base import set_base_parser from jina.parsers.helper import KVAppendAction, add_arg_group from jina.parsers.orchestrate.base import mixin_essential_parser def mixin_flow_features_parser(parser): """Add the arguments for the Flow features to the parser :param parser: the parser configure """ from jina.enums import FlowInspectType gp = add_arg_group(parser, title='Flow Feature') gp.add_argument( '--uses', type=str, help='The YAML path represents a flow. It can be either a local file path or a URL.', ) gp.add_argument( '--env', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The map of environment variables that are available inside runtime', ) gp.add_argument( '--inspect', type=FlowInspectType.from_string, choices=list(FlowInspectType), default=FlowInspectType.COLLECT, help=''' The strategy on those inspect deployments in the flow. If `REMOVE` is given then all inspect deployments are removed when building the flow. ''', ) def set_flow_parser(parser=None): """Set the parser for the flow :param parser: an (optional) initial parser to build upon :return: the parser """ if not parser: parser = set_base_parser() mixin_essential_parser(parser) mixin_flow_features_parser(parser) return parser
"""Argparser module for Flow""" from jina.parsers.base import set_base_parser from jina.parsers.helper import KVAppendAction, add_arg_group from jina.parsers.orchestrate.base import mixin_essential_parser def mixin_flow_features_parser(parser): """Add the arguments for the Flow features to the parser :param parser: the parser configure """ from jina.enums import FlowInspectType gp = add_arg_group(parser, title='Flow Feature') gp.add_argument( '--uses', type=str, help='The YAML path represents a flow. It can be either a local file path or a URL.', ) gp.add_argument( '--env', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The map of environment variables that are available inside runtime', ) gp.add_argument( '--inspect', type=FlowInspectType.from_string, choices=list(FlowInspectType), default=FlowInspectType.COLLECT, help=''' The strategy on those inspect deployments in the flow. If `REMOVE` is given then all inspect deployments are removed when building the flow. ''', ) def set_flow_parser(parser=None): """Set the parser for the flow :param parser: an (optional) initial parser to build upon :return: the parser """ if not parser: parser = set_base_parser() mixin_essential_parser(parser) mixin_flow_features_parser(parser) return parser
"""Vector stores.""" from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from langchain_core.vectorstores.base import VST, VectorStore, VectorStoreRetriever from langchain_core.vectorstores.in_memory import InMemoryVectorStore __all__ = ( "VectorStore", "VST", "VectorStoreRetriever", "InMemoryVectorStore", ) _dynamic_imports = { "VectorStore": "base", "VST": "base", "VectorStoreRetriever": "base", "InMemoryVectorStore": "in_memory", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""Vector stores.""" from langchain_core.vectorstores.base import VST, VectorStore, VectorStoreRetriever from langchain_core.vectorstores.in_memory import InMemoryVectorStore __all__ = [ "VectorStore", "VST", "VectorStoreRetriever", "InMemoryVectorStore", ]
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.23.5' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.23.4' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
__version__ = '0.12.6' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
__version__ = '0.12.5' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
_base_ = './cascade-mask-rcnn_r50_fpn_ms-3x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = './cascade_mask_rcnn_r50_fpn_mstrain_3x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
"""Mock embedding model.""" from typing import Any, List from llama_index.core.base.embeddings.base import BaseEmbedding class MockEmbedding(BaseEmbedding): """ Mock embedding. Used for token prediction. Args: embed_dim (int): embedding dimension """ embed_dim: int def __init__(self, embed_dim: int, **kwargs: Any) -> None: """Init params.""" super().__init__(embed_dim=embed_dim, **kwargs) @classmethod def class_name(cls) -> str: return "MockEmbedding" def _get_vector(self) -> List[float]: return [0.5] * self.embed_dim async def _aget_text_embedding(self, text: str) -> List[float]: return self._get_vector() async def _aget_query_embedding(self, query: str) -> List[float]: return self._get_vector() def _get_query_embedding(self, query: str) -> List[float]: """Get query embedding.""" return self._get_vector() def _get_text_embedding(self, text: str) -> List[float]: """Get text embedding.""" return self._get_vector()
"""Mock embedding model.""" from typing import Any, List from llama_index.core.base.embeddings.base import BaseEmbedding class MockEmbedding(BaseEmbedding): """Mock embedding. Used for token prediction. Args: embed_dim (int): embedding dimension """ embed_dim: int def __init__(self, embed_dim: int, **kwargs: Any) -> None: """Init params.""" super().__init__(embed_dim=embed_dim, **kwargs) @classmethod def class_name(cls) -> str: return "MockEmbedding" def _get_vector(self) -> List[float]: return [0.5] * self.embed_dim async def _aget_text_embedding(self, text: str) -> List[float]: return self._get_vector() async def _aget_query_embedding(self, query: str) -> List[float]: return self._get_vector() def _get_query_embedding(self, query: str) -> List[float]: """Get query embedding.""" return self._get_vector() def _get_text_embedding(self, text: str) -> List[float]: """Get text embedding.""" return self._get_vector()
from typing import Any, Literal from pydantic import SecretStr from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import ( APIKeyCredentials, CredentialsField, CredentialsMetaInput, SchemaField, ) from backend.integrations.providers import ProviderName from backend.util.request import requests TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="unreal_speech", api_key=SecretStr("mock-unreal-speech-api-key"), title="Mock Unreal Speech API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.type, } class UnrealTextToSpeechBlock(Block): class Input(BlockSchema): text: str = SchemaField( description="The text to be converted to speech", placeholder="Enter the text you want to convert to speech", ) voice_id: str = SchemaField( description="The voice ID to use for text-to-speech conversion", placeholder="Scarlett", default="Scarlett", ) credentials: CredentialsMetaInput[ Literal[ProviderName.UNREAL_SPEECH], Literal["api_key"] ] = CredentialsField( description="The Unreal Speech integration can be used with " "any API key with sufficient permissions for the blocks it is used on.", ) class Output(BlockSchema): mp3_url: str = SchemaField(description="The URL of the generated MP3 file") error: str = SchemaField(description="Error message if the API call failed") def __init__(self): super().__init__( id="4ff1ff6d-cc40-4caa-ae69-011daa20c378", description="Converts text to speech using the Unreal Speech API", categories={BlockCategory.AI, BlockCategory.TEXT, BlockCategory.MULTIMEDIA}, input_schema=UnrealTextToSpeechBlock.Input, output_schema=UnrealTextToSpeechBlock.Output, test_input={ "text": "This is a test of the text to speech API.", "voice_id": "Scarlett", "credentials": TEST_CREDENTIALS_INPUT, }, test_output=[("mp3_url", "https://example.com/test.mp3")], test_mock={ "call_unreal_speech_api": lambda *args, **kwargs: { "OutputUri": "https://example.com/test.mp3" } }, test_credentials=TEST_CREDENTIALS, ) @staticmethod def call_unreal_speech_api( api_key: SecretStr, text: str, voice_id: str ) -> dict[str, Any]: url = "https://api.v7.unrealspeech.com/speech" headers = { "Authorization": f"Bearer {api_key.get_secret_value()}", "Content-Type": "application/json", } data = { "Text": text, "VoiceId": voice_id, "Bitrate": "192k", "Speed": "0", "Pitch": "1", "TimestampType": "sentence", } response = requests.post(url, headers=headers, json=data) return response.json() def run( self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs ) -> BlockOutput: api_response = self.call_unreal_speech_api( credentials.api_key, input_data.text, input_data.voice_id, ) yield "mp3_url", api_response["OutputUri"]
from typing import Any, Literal from pydantic import SecretStr from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import ( APIKeyCredentials, CredentialsField, CredentialsMetaInput, SchemaField, ) from backend.integrations.providers import ProviderName from backend.util.request import requests TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="unreal_speech", api_key=SecretStr("mock-unreal-speech-api-key"), title="Mock Unreal Speech API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.type, } class UnrealTextToSpeechBlock(Block): class Input(BlockSchema): text: str = SchemaField( description="The text to be converted to speech", placeholder="Enter the text you want to convert to speech", ) voice_id: str = SchemaField( description="The voice ID to use for text-to-speech conversion", placeholder="Scarlett", default="Scarlett", ) credentials: CredentialsMetaInput[ Literal[ProviderName.UNREAL_SPEECH], Literal["api_key"] ] = CredentialsField( description="The Unreal Speech integration can be used with " "any API key with sufficient permissions for the blocks it is used on.", ) class Output(BlockSchema): mp3_url: str = SchemaField(description="The URL of the generated MP3 file") error: str = SchemaField(description="Error message if the API call failed") def __init__(self): super().__init__( id="4ff1ff6d-cc40-4caa-ae69-011daa20c378", description="Converts text to speech using the Unreal Speech API", categories={BlockCategory.AI, BlockCategory.TEXT}, input_schema=UnrealTextToSpeechBlock.Input, output_schema=UnrealTextToSpeechBlock.Output, test_input={ "text": "This is a test of the text to speech API.", "voice_id": "Scarlett", "credentials": TEST_CREDENTIALS_INPUT, }, test_output=[("mp3_url", "https://example.com/test.mp3")], test_mock={ "call_unreal_speech_api": lambda *args, **kwargs: { "OutputUri": "https://example.com/test.mp3" } }, test_credentials=TEST_CREDENTIALS, ) @staticmethod def call_unreal_speech_api( api_key: SecretStr, text: str, voice_id: str ) -> dict[str, Any]: url = "https://api.v7.unrealspeech.com/speech" headers = { "Authorization": f"Bearer {api_key.get_secret_value()}", "Content-Type": "application/json", } data = { "Text": text, "VoiceId": voice_id, "Bitrate": "192k", "Speed": "0", "Pitch": "1", "TimestampType": "sentence", } response = requests.post(url, headers=headers, json=data) return response.json() def run( self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs ) -> BlockOutput: api_response = self.call_unreal_speech_api( credentials.api_key, input_data.text, input_data.voice_id, ) yield "mp3_url", api_response["OutputUri"]
# Copyright (c) OpenMMLab. All rights reserved. from .base_video_metric import BaseVideoMetric from .cityscapes_metric import CityScapesMetric from .coco_caption_metric import COCOCaptionMetric from .coco_metric import CocoMetric from .coco_occluded_metric import CocoOccludedSeparatedMetric from .coco_panoptic_metric import CocoPanopticMetric from .coco_video_metric import CocoVideoMetric from .crowdhuman_metric import CrowdHumanMetric from .dod_metric import DODCocoMetric from .dump_det_results import DumpDetResults from .dump_odvg_results import DumpODVGResults from .dump_proposals_metric import DumpProposals from .flickr30k_metric import Flickr30kMetric from .grefcoco_metric import gRefCOCOMetric from .lvis_metric import LVISMetric from .mot_challenge_metric import MOTChallengeMetric from .openimages_metric import OpenImagesMetric from .ov_coco_metric import OVCocoMetric from .refexp_metric import RefExpMetric from .refseg_metric import RefSegMetric from .reid_metric import ReIDMetrics from .semseg_metric import SemSegMetric from .voc_metric import VOCMetric from .youtube_vis_metric import YouTubeVISMetric __all__ = [ 'CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric', 'OpenImagesMetric', 'VOCMetric', 'LVISMetric', 'CrowdHumanMetric', 'DumpProposals', 'CocoOccludedSeparatedMetric', 'DumpDetResults', 'BaseVideoMetric', 'MOTChallengeMetric', 'CocoVideoMetric', 'ReIDMetrics', 'YouTubeVISMetric', 'COCOCaptionMetric', 'SemSegMetric', 'RefSegMetric', 'RefExpMetric', 'gRefCOCOMetric', 'DODCocoMetric', 'DumpODVGResults', 'Flickr30kMetric', 'OVCocoMetric' ]
# Copyright (c) OpenMMLab. All rights reserved. from .base_video_metric import BaseVideoMetric from .cityscapes_metric import CityScapesMetric from .coco_caption_metric import COCOCaptionMetric from .coco_metric import CocoMetric from .coco_occluded_metric import CocoOccludedSeparatedMetric from .coco_panoptic_metric import CocoPanopticMetric from .coco_video_metric import CocoVideoMetric from .crowdhuman_metric import CrowdHumanMetric from .dod_metric import DODCocoMetric from .dump_det_results import DumpDetResults from .dump_odvg_results import DumpODVGResults from .dump_proposals_metric import DumpProposals from .flickr30k_metric import Flickr30kMetric from .grefcoco_metric import gRefCOCOMetric from .lvis_metric import LVISMetric from .mot_challenge_metric import MOTChallengeMetric from .openimages_metric import OpenImagesMetric from .refexp_metric import RefExpMetric from .refseg_metric import RefSegMetric from .reid_metric import ReIDMetrics from .semseg_metric import SemSegMetric from .voc_metric import VOCMetric from .youtube_vis_metric import YouTubeVISMetric __all__ = [ 'CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric', 'OpenImagesMetric', 'VOCMetric', 'LVISMetric', 'CrowdHumanMetric', 'DumpProposals', 'CocoOccludedSeparatedMetric', 'DumpDetResults', 'BaseVideoMetric', 'MOTChallengeMetric', 'CocoVideoMetric', 'ReIDMetrics', 'YouTubeVISMetric', 'COCOCaptionMetric', 'SemSegMetric', 'RefSegMetric', 'RefExpMetric', 'gRefCOCOMetric', 'DODCocoMetric', 'DumpODVGResults', 'Flickr30kMetric' ]
import logging import sys import uuid import pytest from langchain.callbacks.tracers import LoggingCallbackHandler def test_logging( caplog: pytest.LogCaptureFixture, capsys: pytest.CaptureFixture[str], ) -> None: # Set up a Logger and a handler so we can check the Logger's handlers work too logger = logging.getLogger("test_logging") logger.setLevel(logging.INFO) logger.addHandler(logging.StreamHandler(sys.stdout)) handler = LoggingCallbackHandler(logger, extra={"test": "test_extra"}) handler.on_text("test", run_id=uuid.uuid4()) # Assert logging actually took place assert len(caplog.record_tuples) == 1 record = caplog.records[0] assert record.name == logger.name assert record.levelno == logging.INFO assert ( record.msg == "\x1b[36;1m\x1b[1;3m[text]\x1b[0m \x1b[1mNew text:\x1b[0m\ntest" ) # Check the extra shows up assert record.test == "test_extra" # type: ignore[attr-defined] # Assert log handlers worked cap_result = capsys.readouterr() assert ( cap_result.out == "\x1b[36;1m\x1b[1;3m[text]\x1b[0m \x1b[1mNew text:\x1b[0m\ntest\n" )
import logging import sys import uuid import pytest from langchain.callbacks.tracers import LoggingCallbackHandler def test_logging( caplog: pytest.LogCaptureFixture, capsys: pytest.CaptureFixture[str] ) -> None: # Set up a Logger and a handler so we can check the Logger's handlers work too logger = logging.getLogger("test_logging") logger.setLevel(logging.INFO) logger.addHandler(logging.StreamHandler(sys.stdout)) handler = LoggingCallbackHandler(logger, extra={"test": "test_extra"}) handler.on_text("test", run_id=uuid.uuid4()) # Assert logging actually took place assert len(caplog.record_tuples) == 1 record = caplog.records[0] assert record.name == logger.name assert record.levelno == logging.INFO assert ( record.msg == "\x1b[36;1m\x1b[1;3m[text]\x1b[0m \x1b[1mNew text:\x1b[0m\ntest" ) # Check the extra shows up assert record.test == "test_extra" # type: ignore[attr-defined] # Assert log handlers worked cap_result = capsys.readouterr() assert ( cap_result.out == "\x1b[36;1m\x1b[1;3m[text]\x1b[0m \x1b[1mNew text:\x1b[0m\ntest\n" )
""" Train XGBoost with cat_in_the_dat dataset ========================================= A simple demo for categorical data support using dataset from Kaggle categorical data tutorial. The excellent tutorial is at: https://www.kaggle.com/shahules/an-overview-of-encoding-techniques And the data can be found at: https://www.kaggle.com/shahules/an-overview-of-encoding-techniques/data .. versionadded:: 1.6.0 See Also -------- - :doc:`Tutorial </tutorials/categorical>` - :ref:`sphx_glr_python_examples_categorical.py` - :ref:`sphx_glr_python_examples_cat_pipeline.py` """ from __future__ import annotations import os from tempfile import TemporaryDirectory from time import time import pandas as pd from sklearn.metrics import roc_auc_score from sklearn.model_selection import train_test_split import xgboost as xgb def load_cat_in_the_dat() -> tuple[pd.DataFrame, pd.Series]: """Assuming you have already downloaded the data into `input` directory.""" df_train = pd.read_csv("./input/cat-in-the-dat/train.csv") print( "train data set has got {} rows and {} columns".format( df_train.shape[0], df_train.shape[1] ) ) X = df_train.drop(["target"], axis=1) y = df_train["target"] for i in range(0, 5): X["bin_" + str(i)] = X["bin_" + str(i)].astype("category") for i in range(0, 5): X["nom_" + str(i)] = X["nom_" + str(i)].astype("category") for i in range(5, 10): X["nom_" + str(i)] = X["nom_" + str(i)].apply(int, base=16) for i in range(0, 6): X["ord_" + str(i)] = X["ord_" + str(i)].astype("category") print( "train data set has got {} rows and {} columns".format(X.shape[0], X.shape[1]) ) return X, y params = { "tree_method": "hist", "device": "cuda", "n_estimators": 32, "colsample_bylevel": 0.7, } def categorical_model(X: pd.DataFrame, y: pd.Series, output_dir: str) -> None: """Train using builtin categorical data support from XGBoost""" X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=1994, test_size=0.2 ) # Specify `enable_categorical` to True. clf = xgb.XGBClassifier( **params, eval_metric="auc", enable_categorical=True, max_cat_to_onehot=1, # We use optimal partitioning exclusively ) clf.fit(X_train, y_train, eval_set=[(X_test, y_test), (X_train, y_train)]) clf.save_model(os.path.join(output_dir, "categorical.json")) y_score = clf.predict_proba(X_test)[:, 1] # proba of positive samples auc = roc_auc_score(y_test, y_score) print("AUC of using builtin categorical data support:", auc) def onehot_encoding_model(X: pd.DataFrame, y: pd.Series, output_dir: str) -> None: """Train using one-hot encoded data.""" X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=42, test_size=0.2 ) # Specify `enable_categorical` to False as we are using encoded data. clf = xgb.XGBClassifier(**params, eval_metric="auc", enable_categorical=False) clf.fit( X_train, y_train, eval_set=[(X_test, y_test), (X_train, y_train)], ) clf.save_model(os.path.join(output_dir, "one-hot.json")) y_score = clf.predict_proba(X_test)[:, 1] # proba of positive samples auc = roc_auc_score(y_test, y_score) print("AUC of using onehot encoding:", auc) if __name__ == "__main__": X, y = load_cat_in_the_dat() with TemporaryDirectory() as tmpdir: start = time() categorical_model(X, y, tmpdir) end = time() print("Duration:categorical", end - start) X = pd.get_dummies(X) start = time() onehot_encoding_model(X, y, tmpdir) end = time() print("Duration:onehot", end - start)
""" Train XGBoost with cat_in_the_dat dataset ========================================= A simple demo for categorical data support using dataset from Kaggle categorical data tutorial. The excellent tutorial is at: https://www.kaggle.com/shahules/an-overview-of-encoding-techniques And the data can be found at: https://www.kaggle.com/shahules/an-overview-of-encoding-techniques/data Also, see the tutorial for using XGBoost with categorical data: :doc:`/tutorials/categorical`. .. versionadded 1.6.0 """ from __future__ import annotations import os from tempfile import TemporaryDirectory from time import time import pandas as pd from sklearn.metrics import roc_auc_score from sklearn.model_selection import train_test_split import xgboost as xgb def load_cat_in_the_dat() -> tuple[pd.DataFrame, pd.Series]: """Assuming you have already downloaded the data into `input` directory.""" df_train = pd.read_csv("./input/cat-in-the-dat/train.csv") print( "train data set has got {} rows and {} columns".format( df_train.shape[0], df_train.shape[1] ) ) X = df_train.drop(["target"], axis=1) y = df_train["target"] for i in range(0, 5): X["bin_" + str(i)] = X["bin_" + str(i)].astype("category") for i in range(0, 5): X["nom_" + str(i)] = X["nom_" + str(i)].astype("category") for i in range(5, 10): X["nom_" + str(i)] = X["nom_" + str(i)].apply(int, base=16) for i in range(0, 6): X["ord_" + str(i)] = X["ord_" + str(i)].astype("category") print( "train data set has got {} rows and {} columns".format(X.shape[0], X.shape[1]) ) return X, y params = { "tree_method": "hist", "device": "cuda", "n_estimators": 32, "colsample_bylevel": 0.7, } def categorical_model(X: pd.DataFrame, y: pd.Series, output_dir: str) -> None: """Train using builtin categorical data support from XGBoost""" X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=1994, test_size=0.2 ) # Specify `enable_categorical` to True. clf = xgb.XGBClassifier( **params, eval_metric="auc", enable_categorical=True, max_cat_to_onehot=1, # We use optimal partitioning exclusively ) clf.fit(X_train, y_train, eval_set=[(X_test, y_test), (X_train, y_train)]) clf.save_model(os.path.join(output_dir, "categorical.json")) y_score = clf.predict_proba(X_test)[:, 1] # proba of positive samples auc = roc_auc_score(y_test, y_score) print("AUC of using builtin categorical data support:", auc) def onehot_encoding_model(X: pd.DataFrame, y: pd.Series, output_dir: str) -> None: """Train using one-hot encoded data.""" X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=42, test_size=0.2 ) # Specify `enable_categorical` to False as we are using encoded data. clf = xgb.XGBClassifier(**params, eval_metric="auc", enable_categorical=False) clf.fit( X_train, y_train, eval_set=[(X_test, y_test), (X_train, y_train)], ) clf.save_model(os.path.join(output_dir, "one-hot.json")) y_score = clf.predict_proba(X_test)[:, 1] # proba of positive samples auc = roc_auc_score(y_test, y_score) print("AUC of using onehot encoding:", auc) if __name__ == "__main__": X, y = load_cat_in_the_dat() with TemporaryDirectory() as tmpdir: start = time() categorical_model(X, y, tmpdir) end = time() print("Duration:categorical", end - start) X = pd.get_dummies(X) start = time() onehot_encoding_model(X, y, tmpdir) end = time() print("Duration:onehot", end - start)
import pathlib from typing import Optional from langchain_core.callbacks import CallbackManagerForChainRun from langchain.callbacks import FileCallbackHandler from langchain.chains.base import Chain class FakeChain(Chain): """Fake chain class for testing purposes.""" be_correct: bool = True the_input_keys: list[str] = ["foo"] the_output_keys: list[str] = ["bar"] @property def input_keys(self) -> list[str]: """Input keys.""" return self.the_input_keys @property def output_keys(self) -> list[str]: """Output key of bar.""" return self.the_output_keys def _call( self, inputs: dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, str]: return {"bar": "bar"} def test_filecallback(tmp_path: pathlib.Path) -> None: """Test the file callback handler.""" log1 = tmp_path / "output.log" handler = FileCallbackHandler(str(log1)) chain_test = FakeChain(callbacks=[handler]) chain_test.invoke({"foo": "bar"}) handler.close() # Assert the output is as expected assert "Entering new FakeChain chain" in log1.read_text() # Test using a callback manager log2 = tmp_path / "output2.log" with FileCallbackHandler(str(log2)) as handler_cm: chain_test = FakeChain(callbacks=[handler_cm]) chain_test.invoke({"foo": "bar"}) assert "Entering new FakeChain chain" in log2.read_text() # Test passing via invoke callbacks log3 = tmp_path / "output3.log" with FileCallbackHandler(str(log3)) as handler_cm: chain_test.invoke({"foo": "bar"}, {"callbacks": [handler_cm]}) assert "Entering new FakeChain chain" in log3.read_text()
import pathlib from typing import Any, Optional import pytest from langchain_core.callbacks import CallbackManagerForChainRun from langchain.callbacks import FileCallbackHandler from langchain.chains.base import Chain class FakeChain(Chain): """Fake chain class for testing purposes.""" be_correct: bool = True the_input_keys: list[str] = ["foo"] the_output_keys: list[str] = ["bar"] @property def input_keys(self) -> list[str]: """Input keys.""" return self.the_input_keys @property def output_keys(self) -> list[str]: """Output key of bar.""" return self.the_output_keys def _call( self, inputs: dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, str]: return {"bar": "bar"} def test_filecallback(capsys: pytest.CaptureFixture, tmp_path: pathlib.Path) -> Any: """Test the file callback handler.""" p = tmp_path / "output.log" handler = FileCallbackHandler(str(p)) chain_test = FakeChain(callbacks=[handler]) chain_test.invoke({"foo": "bar"}) # Assert the output is as expected assert p.read_text() == ( "\n\n\x1b[1m> Entering new FakeChain " "chain...\x1b[0m\n\n\x1b[1m> Finished chain.\x1b[0m\n" )
"""Init file.""" from llama_index.readers.dad_jokes.base import DadJokesReader __all__ = ["DadJokesReader"]
"""Init file.""" from llama_index.readers.dad_jokes.base import DadJokesReader __all__ = ["DadJokesReader"]
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.4.0' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.3.2' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import DATASETS from .coco import CocoDataset @DATASETS.register_module() class DeepFashionDataset(CocoDataset): """Dataset for DeepFashion.""" METAINFO = { 'CLASSES': ('top', 'skirt', 'leggings', 'dress', 'outer', 'pants', 'bag', 'neckwear', 'headwear', 'eyeglass', 'belt', 'footwear', 'hair', 'skin', 'face'), # PALETTE is a list of color tuples, which is used for visualization. 'PALETTE': [(0, 192, 64), (0, 64, 96), (128, 192, 192), (0, 64, 64), (0, 192, 224), (0, 192, 192), (128, 192, 64), (0, 192, 96), (128, 32, 192), (0, 0, 224), (0, 0, 64), (0, 160, 192), (128, 0, 96), (128, 0, 192), (0, 32, 192)] }
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import DATASETS from .coco import CocoDataset @DATASETS.register_module() class DeepFashionDataset(CocoDataset): CLASSES = ('top', 'skirt', 'leggings', 'dress', 'outer', 'pants', 'bag', 'neckwear', 'headwear', 'eyeglass', 'belt', 'footwear', 'hair', 'skin', 'face') PALETTE = [(0, 192, 64), (0, 64, 96), (128, 192, 192), (0, 64, 64), (0, 192, 224), (0, 192, 192), (128, 192, 64), (0, 192, 96), (128, 32, 192), (0, 0, 224), (0, 0, 64), (0, 160, 192), (128, 0, 96), (128, 0, 192), (0, 32, 192)]
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch import torch.nn as nn from torch.optim import SGD from mmengine.model import BaseDataPreprocessor, BaseModel from mmengine.optim import OptimWrapper from mmengine.registry import MODELS from mmengine.testing import assert_allclose @MODELS.register_module() class CustomDataPreprocessor(BaseDataPreprocessor): def forward(self, data, training=False): if training: return 1 else: return 2 class ToyModel(BaseModel): def __init__(self, data_preprocessor=None): super().__init__(data_preprocessor=data_preprocessor, init_cfg=None) self.conv = nn.Conv2d(3, 1, 1) def forward(self, batch_inputs, data_samples=None, mode='tensor'): if mode == 'loss': out = self.conv(batch_inputs) return dict(loss=out) elif mode == 'predict': out = self.conv(batch_inputs) return out elif mode == 'tensor': out = self.conv(batch_inputs) return out class TestBaseModel(TestCase): def test_init(self): # initiate model without `preprocess_cfg` model = ToyModel() self.assertIsInstance(model.data_preprocessor, BaseDataPreprocessor) data_preprocessor = dict(type='CustomDataPreprocessor') model = ToyModel(data_preprocessor=data_preprocessor) self.assertIsInstance(model.data_preprocessor, CustomDataPreprocessor) self.assertEqual(model.data_preprocessor(1, training=True), 1) self.assertEqual(model.data_preprocessor(1, training=False), 2) # initiate model with built `data_preprocessor`. data_preprocessor = CustomDataPreprocessor() model = ToyModel(data_preprocessor=data_preprocessor) self.assertIs(model.data_preprocessor, data_preprocessor) # initiate model with error type `data_preprocessor`. with self.assertRaisesRegex(TypeError, 'data_preprocessor should be'): ToyModel(data_preprocessor=[data_preprocessor]) def test_parse_losses(self): model = ToyModel() loss_cls = torch.tensor(1, dtype=torch.float32) loss_list = [ torch.tensor(2, dtype=torch.float32), torch.tensor(3, dtype=torch.float32) ] losses = dict(loss_cls=loss_cls, loss_list=loss_list) target_parsed_losses = torch.tensor(6, dtype=torch.float32) targe_log_vars = dict( loss=torch.tensor(6, dtype=torch.float32), loss_cls=torch.tensor(1, dtype=torch.float32), loss_list=torch.tensor(5, dtype=torch.float32)) parse_losses, log_vars = model.parse_losses(losses) assert_allclose(parse_losses, target_parsed_losses) for key in log_vars: self.assertIn(key, targe_log_vars) assert_allclose(log_vars[key], targe_log_vars[key]) with self.assertRaises(TypeError): losses['error_key'] = dict() model.parse_losses(losses) def test_train_step(self): model = ToyModel() optimizer = SGD(model.parameters(), lr=0.1) optim_wrapper = OptimWrapper(optimizer) inputs = torch.randn(3, 1, 1) data = dict(inputs=inputs) # initiate grad. # model.conv.weight.grad = torch.randn(1, 3, 1, 1) log_vars = model.train_step([data], optim_wrapper) self.assertIsNotNone(model.conv.weight.grad) self.assertIsInstance(log_vars['loss'], torch.Tensor) def test_val_step(self): inputs = torch.randn(3, 1, 1) data = dict(inputs=inputs) model = ToyModel() out = model.val_step([data]) self.assertIsInstance(out, torch.Tensor) def test_test_step(self): inputs = torch.randn(3, 1, 1) data = dict(inputs=inputs) model = ToyModel() out = model.val_step([data]) self.assertIsInstance(out, torch.Tensor) @unittest.skipIf(not torch.cuda.is_available(), 'cuda should be available') def test_cuda(self): inputs = torch.randn(3, 1, 1).cuda() data = dict(inputs=inputs) model = ToyModel().cuda() out = model.val_step([data]) self.assertEqual(out.device.type, 'cuda') @unittest.skipIf(not torch.cuda.is_available(), 'cuda should be available') def test_to(self): inputs = torch.randn(3, 1, 1).to('cuda:0') data = dict(inputs=inputs) model = ToyModel().to(torch.cuda.current_device()) out = model.val_step([data]) self.assertEqual(out.device.type, 'cuda')
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch import torch.nn as nn from torch.optim import SGD from mmengine.model import BaseDataPreprocessor, BaseModel from mmengine.optim import OptimWrapper from mmengine.registry import MODELS from mmengine.testing import assert_allclose @MODELS.register_module() class CustomDataPreprocessor(BaseDataPreprocessor): def forward(self, data, training=False): if training: return 1 else: return 2 class ToyModel(BaseModel): def __init__(self, data_preprocessor=None): super().__init__(data_preprocessor=data_preprocessor, init_cfg=None) self.conv = nn.Conv2d(3, 1, 1) def forward(self, batch_inputs, data_samples=None, mode='tensor'): if mode == 'loss': out = self.conv(batch_inputs) return dict(loss=out) elif mode == 'predict': out = self.conv(batch_inputs) return out elif mode == 'tensor': out = self.conv(batch_inputs) return out class TestBaseModel(TestCase): def test_init(self): # initiate model without `preprocess_cfg` model = ToyModel() self.assertIsInstance(model.data_preprocessor, BaseDataPreprocessor) data_preprocessor = dict(type='CustomDataPreprocessor') model = ToyModel(data_preprocessor=data_preprocessor) self.assertIsInstance(model.data_preprocessor, CustomDataPreprocessor) self.assertEqual(model.data_preprocessor(1, training=True), 1) self.assertEqual(model.data_preprocessor(1, training=False), 2) # initiate model with built `data_preprocessor`. data_preprocessor = CustomDataPreprocessor() model = ToyModel(data_preprocessor=data_preprocessor) self.assertIs(model.data_preprocessor, data_preprocessor) # initiate model with error type `data_preprocessor`. with self.assertRaisesRegex(TypeError, 'data_preprocessor should be'): ToyModel(data_preprocessor=[data_preprocessor]) def test_parse_losses(self): model = ToyModel() loss_cls = torch.tensor(1, dtype=torch.float32) loss_list = [ torch.tensor(2, dtype=torch.float32), torch.tensor(3, dtype=torch.float32) ] losses = dict(loss_cls=loss_cls, loss_list=loss_list) target_parsed_losses = torch.tensor(6, dtype=torch.float32) targe_log_vars = dict( loss=torch.tensor(6, dtype=torch.float32), loss_cls=torch.tensor(1, dtype=torch.float32), loss_list=torch.tensor(5, dtype=torch.float32)) parse_losses, log_vars = model.parse_losses(losses) assert_allclose(parse_losses, target_parsed_losses) for key in log_vars: self.assertIn(key, targe_log_vars) assert_allclose(log_vars[key], targe_log_vars[key]) with self.assertRaises(TypeError): losses['error_key'] = dict() model.parse_losses(losses) def test_train_step(self): model = ToyModel() optimizer = SGD(model.parameters(), lr=0.1) optim_wrapper = OptimWrapper(optimizer) inputs = torch.randn(3, 1, 1) data = dict(inputs=inputs) # initiate grad. # model.conv.weight.grad = torch.randn(1, 3, 1, 1) log_vars = model.train_step([data], optim_wrapper) self.assertIsNotNone(model.conv.weight.grad) self.assertIsInstance(log_vars['loss'], torch.Tensor) def test_val_step(self): inputs = torch.randn(3, 1, 1) data = dict(inputs=inputs) model = ToyModel() out = model.val_step([data]) self.assertIsInstance(out, torch.Tensor) def test_test_step(self): inputs = torch.randn(3, 1, 1) data = dict(inputs=inputs) model = ToyModel() out = model.val_step([data]) self.assertIsInstance(out, torch.Tensor) @unittest.skipIf(not torch.cuda.is_available(), 'cuda should be available') def test_cuda(self): inputs = torch.randn(3, 1, 1).cuda() data = dict(inputs=inputs) model = ToyModel().cuda() model.val_step([data]) @unittest.skipIf(not torch.cuda.is_available(), 'cuda should be available') def test_to(self): inputs = torch.randn(3, 1, 1).cuda() data = dict(inputs=inputs) model = ToyModel().to(torch.cuda.current_device()) model.val_step([data])
"""String utilities.""" from typing import Any def stringify_value(val: Any) -> str: """Stringify a value. Args: val: The value to stringify. Returns: str: The stringified value. """ if isinstance(val, str): return val if isinstance(val, dict): return "\n" + stringify_dict(val) if isinstance(val, list): return "\n".join(stringify_value(v) for v in val) return str(val) def stringify_dict(data: dict) -> str: """Stringify a dictionary. Args: data: The dictionary to stringify. Returns: str: The stringified dictionary. """ text = "" for key, value in data.items(): text += key + ": " + stringify_value(value) + "\n" return text def comma_list(items: list[Any]) -> str: """Convert a list to a comma-separated string. Args: items: The list to convert. Returns: str: The comma-separated string. """ return ", ".join(str(item) for item in items)
"""String utilities.""" from typing import Any def stringify_value(val: Any) -> str: """Stringify a value. Args: val: The value to stringify. Returns: str: The stringified value. """ if isinstance(val, str): return val elif isinstance(val, dict): return "\n" + stringify_dict(val) elif isinstance(val, list): return "\n".join(stringify_value(v) for v in val) else: return str(val) def stringify_dict(data: dict) -> str: """Stringify a dictionary. Args: data: The dictionary to stringify. Returns: str: The stringified dictionary. """ text = "" for key, value in data.items(): text += key + ": " + stringify_value(value) + "\n" return text def comma_list(items: list[Any]) -> str: """Convert a list to a comma-separated string. Args: items: The list to convert. Returns: str: The comma-separated string. """ return ", ".join(str(item) for item in items)
from abc import abstractmethod from typing import Iterable, Union from qdrant_client import QdrantClient from docarray.array.storage.base.seqlike import BaseSequenceLikeMixin from docarray import Document class SequenceLikeMixin(BaseSequenceLikeMixin): @property @abstractmethod def client(self) -> QdrantClient: raise NotImplementedError() @property @abstractmethod def collection_name(self) -> str: raise NotImplementedError() @property @abstractmethod def config(self): raise NotImplementedError() @abstractmethod def _upload_batch(self, docs: Iterable['Document']): raise NotImplementedError() def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self.client.openapi_client.client.host == other.openapi_client.client.host and self.config == other.config ) def __len__(self): return self.client.http.collections_api.get_collection( self.collection_name ).result.vectors_count def __contains__(self, x: Union[str, 'Document']): if isinstance(x, str): return self._id_exists(x) elif isinstance(x, Document): return self._id_exists(x.id) else: return False def _id_exists(self, x: str): try: self._get_doc_by_id(x) return True except KeyError: return False def __repr__(self): return f'<DocumentArray[Qdrant] (length={len(self)}) at {id(self)}>' def extend(self, docs: Iterable['Document']): docs = list(docs) self._upload_batch(docs) self._offset2ids.extend([doc.id for doc in docs])
from abc import abstractmethod from typing import Iterable, Union from qdrant_client import QdrantClient from ..base.seqlike import BaseSequenceLikeMixin from .... import Document class SequenceLikeMixin(BaseSequenceLikeMixin): @property @abstractmethod def client(self) -> QdrantClient: raise NotImplementedError() @property @abstractmethod def collection_name(self) -> str: raise NotImplementedError() @property @abstractmethod def config(self): raise NotImplementedError() @abstractmethod def _upload_batch(self, docs: Iterable['Document']): raise NotImplementedError() def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self.client.openapi_client.client.host == other.openapi_client.client.host and self.config == other.config ) def __len__(self): return self.client.http.collections_api.get_collection( self.collection_name ).result.vectors_count def __contains__(self, x: Union[str, 'Document']): if isinstance(x, str): return self._id_exists(x) elif isinstance(x, Document): return self._id_exists(x.id) else: return False def _id_exists(self, x: str): try: self._get_doc_by_id(x) return True except KeyError: return False def __repr__(self): return f'<DocumentArray[Qdrant] (length={len(self)}) at {id(self)}>' def extend(self, docs: Iterable['Document']): docs = list(docs) self._upload_batch(docs) self._offset2ids.extend([doc.id for doc in docs])
from __future__ import annotations from sentence_transformers.sparse_encoder.data_collator import SparseEncoderDataCollator from sentence_transformers.sparse_encoder.evaluation import ( SparseBinaryClassificationEvaluator, SparseEmbeddingSimilarityEvaluator, SparseInformationRetrievalEvaluator, SparseMSEEvaluator, SparseNanoBEIREvaluator, SparseRerankingEvaluator, SparseTranslationEvaluator, SparseTripletEvaluator, ) from sentence_transformers.sparse_encoder.losses import ( CSRLoss, CSRReconstructionLoss, FlopsLoss, SparseAnglELoss, SparseCachedGISTEmbedLoss, SparseCachedMultipleNegativesRankingLoss, SparseCoSENTLoss, SparseCosineSimilarityLoss, SparseDistillKLDivLoss, SparseGISTEmbedLoss, SparseMarginMSELoss, SparseMSELoss, SparseMultipleNegativesRankingLoss, SparseTripletLoss, SpladeLoss, ) from sentence_transformers.sparse_encoder.model_card import SparseEncoderModelCardData from sentence_transformers.sparse_encoder.models import IDF, CSRSparsity, MLMTransformer, SpladePooling from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import ( SparseEncoderTrainingArguments, ) __all__ = [ # Core components "SparseEncoder", "SparseEncoderDataCollator", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", # Models "CSRSparsity", "MLMTransformer", "SpladePooling", "IDF", # Losses "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", "FlopsLoss", "SpladeLoss", # Evaluators "SparseBinaryClassificationEvaluator", "SparseEmbeddingSimilarityEvaluator", "SparseInformationRetrievalEvaluator", "SparseMSEEvaluator", "SparseNanoBEIREvaluator", "SparseTranslationEvaluator", "SparseRerankingEvaluator", "SparseTripletEvaluator", # Model card "SparseEncoderModelCardData", ] # TODO : Add tests for all the components # TODO : Add the equivalent of the quantization file for the sparse encoder # TODO : Watch for similaty default value as rn cosine but dot product might be better for sparse
from __future__ import annotations from sentence_transformers.sparse_encoder.data_collator import SparseEncoderDataCollator from sentence_transformers.sparse_encoder.evaluation import ( SparseBinaryClassificationEvaluator, SparseEmbeddingSimilarityEvaluator, SparseInformationRetrievalEvaluator, SparseMSEEvaluator, SparseNanoBEIREvaluator, SparseRerankingEvaluator, SparseTranslationEvaluator, SparseTripletEvaluator, ) from sentence_transformers.sparse_encoder.losses import ( CSRLoss, CSRReconstructionLoss, FlopsLoss, SparseAnglELoss, SparseCachedGISTEmbedLoss, SparseCachedMultipleNegativesRankingLoss, SparseCoSENTLoss, SparseCosineSimilarityLoss, SparseDistillKLDivLoss, SparseGISTEmbedLoss, SparseMarginMSELoss, SparseMSELoss, SparseMultipleNegativesRankingLoss, SparseTripletLoss, SpladeLoss, ) from sentence_transformers.sparse_encoder.model_card import SparseEncoderModelCardData from sentence_transformers.sparse_encoder.models import CSRSparsity, MLMTransformer, SpladePooling from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import ( SparseEncoderTrainingArguments, ) __all__ = [ # Core components "SparseEncoder", "SparseEncoderDataCollator", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", # Models "CSRSparsity", "MLMTransformer", "SpladePooling", # Losses "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", "FlopsLoss", "SpladeLoss", # Evaluators "SparseBinaryClassificationEvaluator", "SparseEmbeddingSimilarityEvaluator", "SparseInformationRetrievalEvaluator", "SparseMSEEvaluator", "SparseNanoBEIREvaluator", "SparseTranslationEvaluator", "SparseRerankingEvaluator", "SparseTripletEvaluator", # Model card "SparseEncoderModelCardData", ] # TODO : Add tests for all the components # TODO : Add the equivalent of the quantization file for the sparse encoder # TODO : Watch for similaty default value as rn cosine but dot product might be better for sparse
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmdet.models.backbones.hourglass import HourglassNet def test_hourglass_backbone(): with pytest.raises(AssertionError): # HourglassNet's num_stacks should larger than 0 HourglassNet(num_stacks=0) with pytest.raises(AssertionError): # len(stage_channels) should equal len(stage_blocks) HourglassNet( stage_channels=[256, 256, 384, 384, 384], stage_blocks=[2, 2, 2, 2, 2, 4]) with pytest.raises(AssertionError): # len(stage_channels) should lagrer than downsample_times HourglassNet( downsample_times=5, stage_channels=[256, 256, 384, 384, 384], stage_blocks=[2, 2, 2, 2, 2]) # Test HourglassNet-52 model = HourglassNet(num_stacks=1) model.init_weights() model.train() imgs = torch.randn(1, 3, 256, 256) feat = model(imgs) assert len(feat) == 1 assert feat[0].shape == torch.Size([1, 256, 64, 64]) # Test HourglassNet-104 model = HourglassNet(num_stacks=2) model.init_weights() model.train() imgs = torch.randn(1, 3, 256, 256) feat = model(imgs) assert len(feat) == 2 assert feat[0].shape == torch.Size([1, 256, 64, 64]) assert feat[1].shape == torch.Size([1, 256, 64, 64])
import pytest import torch from mmdet.models.backbones.hourglass import HourglassNet def test_hourglass_backbone(): with pytest.raises(AssertionError): # HourglassNet's num_stacks should larger than 0 HourglassNet(num_stacks=0) with pytest.raises(AssertionError): # len(stage_channels) should equal len(stage_blocks) HourglassNet( stage_channels=[256, 256, 384, 384, 384], stage_blocks=[2, 2, 2, 2, 2, 4]) with pytest.raises(AssertionError): # len(stage_channels) should lagrer than downsample_times HourglassNet( downsample_times=5, stage_channels=[256, 256, 384, 384, 384], stage_blocks=[2, 2, 2, 2, 2]) # Test HourglassNet-52 model = HourglassNet(num_stacks=1) model.init_weights() model.train() imgs = torch.randn(1, 3, 256, 256) feat = model(imgs) assert len(feat) == 1 assert feat[0].shape == torch.Size([1, 256, 64, 64]) # Test HourglassNet-104 model = HourglassNet(num_stacks=2) model.init_weights() model.train() imgs = torch.randn(1, 3, 256, 256) feat = model(imgs) assert len(feat) == 2 assert feat[0].shape == torch.Size([1, 256, 64, 64]) assert feat[1].shape == torch.Size([1, 256, 64, 64])
""" This file contains some utilities functions used to find parallel sentences in two monolingual corpora. Code in this file has been adapted from the LASER repository: https://github.com/facebookresearch/LASER """ import gzip import lzma import time import faiss import numpy as np ######## Functions to find and score candidates def score(x, y, fwd_mean, bwd_mean, margin): return margin(x.dot(y), (fwd_mean + bwd_mean) / 2) def score_candidates(x, y, candidate_inds, fwd_mean, bwd_mean, margin): scores = np.zeros(candidate_inds.shape) for i in range(scores.shape[0]): for j in range(scores.shape[1]): k = candidate_inds[i, j] scores[i, j] = score(x[i], y[k], fwd_mean[i], bwd_mean[k], margin) return scores def kNN(x, y, k, use_ann_search=False, ann_num_clusters=32768, ann_num_cluster_probe=3): start_time = time.time() if use_ann_search: print("Perform approx. kNN search") n_cluster = min(ann_num_clusters, int(y.shape[0] / 1000)) quantizer = faiss.IndexFlatIP(y.shape[1]) index = faiss.IndexIVFFlat(quantizer, y.shape[1], n_cluster, faiss.METRIC_INNER_PRODUCT) index.nprobe = ann_num_cluster_probe index.train(y) index.add(y) sim, ind = index.search(x, k) else: print("Perform exact search") idx = faiss.IndexFlatIP(y.shape[1]) idx.add(y) sim, ind = idx.search(x, k) print("Done: {:.2f} sec".format(time.time() - start_time)) return sim, ind def file_open(filepath): # Function to allowing opening files based on file extension if filepath.endswith(".gz"): return gzip.open(filepath, "rt", encoding="utf8") elif filepath.endswith("xz"): return lzma.open(filepath, "rt", encoding="utf8") else: return open(filepath, "r", encoding="utf8")
""" This file contains some utilities functions used to find parallel sentences in two monolingual corpora. Code in this file has been adapted from the LASER repository: https://github.com/facebookresearch/LASER """ import faiss import numpy as np import time import gzip import lzma ######## Functions to find and score candidates def score(x, y, fwd_mean, bwd_mean, margin): return margin(x.dot(y), (fwd_mean + bwd_mean) / 2) def score_candidates(x, y, candidate_inds, fwd_mean, bwd_mean, margin): scores = np.zeros(candidate_inds.shape) for i in range(scores.shape[0]): for j in range(scores.shape[1]): k = candidate_inds[i, j] scores[i, j] = score(x[i], y[k], fwd_mean[i], bwd_mean[k], margin) return scores def kNN(x, y, k, use_ann_search=False, ann_num_clusters=32768, ann_num_cluster_probe=3): start_time = time.time() if use_ann_search: print("Perform approx. kNN search") n_cluster = min(ann_num_clusters, int(y.shape[0] / 1000)) quantizer = faiss.IndexFlatIP(y.shape[1]) index = faiss.IndexIVFFlat(quantizer, y.shape[1], n_cluster, faiss.METRIC_INNER_PRODUCT) index.nprobe = ann_num_cluster_probe index.train(y) index.add(y) sim, ind = index.search(x, k) else: print("Perform exact search") idx = faiss.IndexFlatIP(y.shape[1]) idx.add(y) sim, ind = idx.search(x, k) print("Done: {:.2f} sec".format(time.time() - start_time)) return sim, ind def file_open(filepath): # Function to allowing opening files based on file extension if filepath.endswith(".gz"): return gzip.open(filepath, "rt", encoding="utf8") elif filepath.endswith("xz"): return lzma.open(filepath, "rt", encoding="utf8") else: return open(filepath, "r", encoding="utf8")
_base_ = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
from docarray.documents.text import TextDoc def test_text_document_operators(): doc = TextDoc(text='text', url='http://url.com') assert doc == 'text' assert doc != 'http://url.com' doc2 = TextDoc(id=doc.id, text='text', url='http://url.com') assert doc == doc2 doc3 = TextDoc(id='other-id', text='text', url='http://url.com') assert doc == doc3 assert 't' in doc assert 'a' not in doc t = TextDoc(text='this is my text document') assert 'text' in t assert 'docarray' not in t text = TextDoc() assert text is not None assert text.text is None
from docarray.documents.text import TextDoc def test_text_document_operators(): doc = TextDoc(text='text', url='http://url.com') assert doc == 'text' assert doc != 'http://url.com' doc2 = TextDoc(id=doc.id, text='text', url='http://url.com') assert doc == doc2 doc3 = TextDoc(id='other-id', text='text', url='http://url.com') assert doc != doc3 assert 't' in doc assert 'a' not in doc t = TextDoc(text='this is my text document') assert 'text' in t assert 'docarray' not in t text = TextDoc() assert text is not None assert text.text is None
"""Helpers for creating Anthropic API clients. This module allows for the caching of httpx clients to avoid creating new instances for each instance of ChatAnthropic. Logic is largely replicated from anthropic._base_client. """ import asyncio import os from functools import lru_cache from typing import Any, Optional import anthropic _NOT_GIVEN: Any = object() class _SyncHttpxClientWrapper(anthropic.DefaultHttpxClient): """Borrowed from anthropic._base_client""" def __del__(self) -> None: if self.is_closed: return try: self.close() except Exception: # noqa: S110 pass class _AsyncHttpxClientWrapper(anthropic.DefaultAsyncHttpxClient): """Borrowed from anthropic._base_client""" def __del__(self) -> None: if self.is_closed: return try: # TODO(someday): support non asyncio runtimes here asyncio.get_running_loop().create_task(self.aclose()) except Exception: # noqa: S110 pass @lru_cache def _get_default_httpx_client( *, base_url: Optional[str], timeout: Any = _NOT_GIVEN, ) -> _SyncHttpxClientWrapper: kwargs: dict[str, Any] = { "base_url": base_url or os.environ.get("ANTHROPIC_BASE_URL") or "https://api.anthropic.com", } if timeout is not _NOT_GIVEN: kwargs["timeout"] = timeout return _SyncHttpxClientWrapper(**kwargs) @lru_cache def _get_default_async_httpx_client( *, base_url: Optional[str], timeout: Any = _NOT_GIVEN, ) -> _AsyncHttpxClientWrapper: kwargs: dict[str, Any] = { "base_url": base_url or os.environ.get("ANTHROPIC_BASE_URL") or "https://api.anthropic.com", } if timeout is not _NOT_GIVEN: kwargs["timeout"] = timeout return _AsyncHttpxClientWrapper(**kwargs)
"""Helpers for creating Anthropic API clients. This module allows for the caching of httpx clients to avoid creating new instances for each instance of ChatAnthropic. Logic is largely replicated from anthropic._base_client. """ import asyncio import os from functools import lru_cache from typing import Any, Optional import anthropic _NOT_GIVEN: Any = object() class _SyncHttpxClientWrapper(anthropic.DefaultHttpxClient): """Borrowed from anthropic._base_client""" def __del__(self) -> None: if self.is_closed: return try: self.close() except Exception: pass class _AsyncHttpxClientWrapper(anthropic.DefaultAsyncHttpxClient): """Borrowed from anthropic._base_client""" def __del__(self) -> None: if self.is_closed: return try: # TODO(someday): support non asyncio runtimes here asyncio.get_running_loop().create_task(self.aclose()) except Exception: pass @lru_cache def _get_default_httpx_client( *, base_url: Optional[str], timeout: Any = _NOT_GIVEN, ) -> _SyncHttpxClientWrapper: kwargs: dict[str, Any] = { "base_url": base_url or os.environ.get("ANTHROPIC_BASE_URL") or "https://api.anthropic.com", } if timeout is not _NOT_GIVEN: kwargs["timeout"] = timeout return _SyncHttpxClientWrapper(**kwargs) @lru_cache def _get_default_async_httpx_client( *, base_url: Optional[str], timeout: Any = _NOT_GIVEN, ) -> _AsyncHttpxClientWrapper: kwargs: dict[str, Any] = { "base_url": base_url or os.environ.get("ANTHROPIC_BASE_URL") or "https://api.anthropic.com", } if timeout is not _NOT_GIVEN: kwargs["timeout"] = timeout return _AsyncHttpxClientWrapper(**kwargs)
from sentence_transformers import SentenceTransformer, losses, util class AnglELoss(losses.CoSENTLoss): def __init__(self, model: SentenceTransformer, scale: float = 20.0): """ This class implements AnglE (Angle Optimized) loss. This is a modification of :class:`CoSENTLoss`, designed to address the following issue: The cosine function's gradient approaches 0 as the wave approaches the top or bottom of its form. This can hinder the optimization process, so AnglE proposes to instead optimize the angle difference in complex space in order to mitigate this effect. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. This is the same as CoSENTLoss, with a different similarity function. Args: model: SentenceTransformerModel scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://arxiv.org/abs/2309.12871v1 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Relations: - :class:`CoSENTLoss` is AnglELoss with ``pairwise_cos_sim`` as the metric, rather than ``pairwise_angle_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than ``CoSENTLoss`` or ``AnglELoss``. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.AnglELoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim) @property def citation(self) -> str: return """ @misc{li2023angleoptimized, title={AnglE-optimized Text Embeddings}, author={Xianming Li and Jing Li}, year={2023}, eprint={2309.12871}, archivePrefix={arXiv}, primaryClass={cs.CL} } """
from sentence_transformers import losses, SentenceTransformer, util class AnglELoss(losses.CoSENTLoss): def __init__(self, model: SentenceTransformer, scale: float = 20.0): """ This class implements AnglE (Angle Optimized) loss. This is a modification of :class:`CoSENTLoss`, designed to address the following issue: The cosine function's gradient approaches 0 as the wave approaches the top or bottom of its form. This can hinder the optimization process, so AnglE proposes to instead optimize the angle difference in complex space in order to mitigate this effect. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. This is the same as CoSENTLoss, with a different similarity function. Args: model: SentenceTransformerModel scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://arxiv.org/abs/2309.12871v1 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Relations: - :class:`CoSENTLoss` is AnglELoss with ``pairwise_cos_sim`` as the metric, rather than ``pairwise_angle_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than ``CoSENTLoss`` or ``AnglELoss``. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.AnglELoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim) @property def citation(self) -> str: return """ @misc{li2023angleoptimized, title={AnglE-optimized Text Embeddings}, author={Xianming Li and Jing Li}, year={2023}, eprint={2309.12871}, archivePrefix={arXiv}, primaryClass={cs.CL} } """
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' image_size = (1024, 1024) # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None # Standard Scale Jittering (SSJ) resizes and crops an image # with a resize range of 0.8 to 1.25 of the original image size. train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.8, 1.25), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='InfiniteSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric=['bbox', 'segm'], format_only=False, backend_args=backend_args) test_evaluator = val_evaluator # The model is trained by 270k iterations with batch_size 64, # which is roughly equivalent to 144 epochs. max_iters = 270000 train_cfg = dict( type='IterBasedTrainLoop', max_iters=max_iters, val_interval=10000) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # optimizer assumes bs=64 optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.00004)) # learning rate policy # lr steps at [0.9, 0.95, 0.975] of the maximum iterations param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=270000, by_epoch=False, milestones=[243000, 256500, 263250], gamma=0.1) ] default_hooks = dict(checkpoint=dict(by_epoch=False, interval=10000)) log_processor = dict(by_epoch=False) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' image_size = (1024, 1024) file_client_args = dict(backend='disk') # comment out the code below to use different file client # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) # Standard Scale Jittering (SSJ) resizes and crops an image # with a resize range of 0.8 to 1.25 of the original image size. train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.8, 1.25), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='InfiniteSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric=['bbox', 'segm'], format_only=False) test_evaluator = val_evaluator # The model is trained by 270k iterations with batch_size 64, # which is roughly equivalent to 144 epochs. max_iters = 270000 train_cfg = dict( type='IterBasedTrainLoop', max_iters=max_iters, val_interval=10000) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # optimizer assumes bs=64 optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.00004)) # learning rate policy # lr steps at [0.9, 0.95, 0.975] of the maximum iterations param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=270000, by_epoch=False, milestones=[243000, 256500, 263250], gamma=0.1) ] default_hooks = dict(checkpoint=dict(by_epoch=False, interval=10000)) log_processor = dict(by_epoch=False) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
from .autoencoder_asym_kl import AsymmetricAutoencoderKL from .autoencoder_kl import AutoencoderKL from .autoencoder_kl_allegro import AutoencoderKLAllegro from .autoencoder_kl_cogvideox import AutoencoderKLCogVideoX from .autoencoder_kl_mochi import AutoencoderKLMochi from .autoencoder_kl_temporal_decoder import AutoencoderKLTemporalDecoder from .autoencoder_oobleck import AutoencoderOobleck from .autoencoder_tiny import AutoencoderTiny from .consistency_decoder_vae import ConsistencyDecoderVAE from .vq_model import VQModel
from .autoencoder_asym_kl import AsymmetricAutoencoderKL from .autoencoder_kl import AutoencoderKL from .autoencoder_kl_allegro import AutoencoderKLAllegro from .autoencoder_kl_cogvideox import AutoencoderKLCogVideoX from .autoencoder_kl_temporal_decoder import AutoencoderKLTemporalDecoder from .autoencoder_oobleck import AutoencoderOobleck from .autoencoder_tiny import AutoencoderTiny from .consistency_decoder_vae import ConsistencyDecoderVAE from .vq_model import VQModel
from functools import wraps from typing import Any, Callable, Concatenate, Coroutine, ParamSpec, TypeVar, cast from backend.data.credit import get_user_credit_model from backend.data.execution import ( ExecutionResult, NodeExecutionEntry, RedisExecutionEventBus, create_graph_execution, get_execution_results, get_executions_in_timerange, get_incomplete_executions, get_latest_execution, update_execution_status, update_graph_execution_stats, update_node_execution_stats, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import get_graph, get_node from backend.data.notifications import ( create_or_add_to_user_notification_batch, empty_user_notification_batch, get_user_notification_batch, get_user_notification_last_message_in_batch, ) from backend.data.user import ( get_active_user_ids_in_timerange, get_active_users_ids, get_user_by_id, get_user_email_by_id, get_user_integrations, get_user_metadata, get_user_notification_preference, update_user_integrations, update_user_metadata, ) from backend.util.service import AppService, expose, register_pydantic_serializers from backend.util.settings import Config P = ParamSpec("P") R = TypeVar("R") config = Config() class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.event_queue = RedisExecutionEventBus() @classmethod def get_port(cls) -> int: return config.database_api_port @expose def send_execution_update(self, execution_result: ExecutionResult): self.event_queue.publish(execution_result) @staticmethod def exposed_run_and_wait( f: Callable[P, Coroutine[None, None, R]] ) -> Callable[Concatenate[object, P], R]: @expose @wraps(f) def wrapper(self, *args: P.args, **kwargs: P.kwargs) -> R: coroutine = f(*args, **kwargs) res = self.run_and_wait(coroutine) return res # Register serializers for annotations on bare function register_pydantic_serializers(f) return wrapper # Executions create_graph_execution = exposed_run_and_wait(create_graph_execution) get_execution_results = exposed_run_and_wait(get_execution_results) get_incomplete_executions = exposed_run_and_wait(get_incomplete_executions) get_latest_execution = exposed_run_and_wait(get_latest_execution) update_execution_status = exposed_run_and_wait(update_execution_status) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) get_executions_in_timerange = exposed_run_and_wait(get_executions_in_timerange) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) # Credits user_credit_model = get_user_credit_model() spend_credits = cast( Callable[[Any, NodeExecutionEntry, float, float], int], exposed_run_and_wait(user_credit_model.spend_credits), ) # User + User Metadata + User Integrations + User Notification Preferences get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata) get_user_integrations = exposed_run_and_wait(get_user_integrations) update_user_integrations = exposed_run_and_wait(update_user_integrations) get_active_user_ids_in_timerange = exposed_run_and_wait( get_active_user_ids_in_timerange ) get_user_by_id = exposed_run_and_wait(get_user_by_id) get_user_email_by_id = exposed_run_and_wait(get_user_email_by_id) get_user_notification_preference = exposed_run_and_wait( get_user_notification_preference ) get_active_users_ids = exposed_run_and_wait(get_active_users_ids) # Notifications create_or_add_to_user_notification_batch = exposed_run_and_wait( create_or_add_to_user_notification_batch ) get_user_notification_last_message_in_batch = exposed_run_and_wait( get_user_notification_last_message_in_batch ) empty_user_notification_batch = exposed_run_and_wait(empty_user_notification_batch) get_user_notification_batch = exposed_run_and_wait(get_user_notification_batch)
from functools import wraps from typing import Any, Callable, Concatenate, Coroutine, ParamSpec, TypeVar, cast from backend.data.credit import get_user_credit_model from backend.data.execution import ( ExecutionResult, NodeExecutionEntry, RedisExecutionEventBus, create_graph_execution, get_execution_results, get_executions_in_timerange, get_incomplete_executions, get_latest_execution, update_execution_status, update_graph_execution_stats, update_node_execution_stats, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import get_graph, get_node from backend.data.notifications import ( create_or_add_to_user_notification_batch, empty_user_notification_batch, get_user_notification_batch, get_user_notification_last_message_in_batch, ) from backend.data.user import ( get_active_user_ids_in_timerange, get_active_users_ids, get_user_by_id, get_user_integrations, get_user_metadata, get_user_notification_preference, update_user_integrations, update_user_metadata, ) from backend.util.service import AppService, expose, register_pydantic_serializers from backend.util.settings import Config P = ParamSpec("P") R = TypeVar("R") config = Config() class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.event_queue = RedisExecutionEventBus() @classmethod def get_port(cls) -> int: return config.database_api_port @expose def send_execution_update(self, execution_result: ExecutionResult): self.event_queue.publish(execution_result) @staticmethod def exposed_run_and_wait( f: Callable[P, Coroutine[None, None, R]] ) -> Callable[Concatenate[object, P], R]: @expose @wraps(f) def wrapper(self, *args: P.args, **kwargs: P.kwargs) -> R: coroutine = f(*args, **kwargs) res = self.run_and_wait(coroutine) return res # Register serializers for annotations on bare function register_pydantic_serializers(f) return wrapper # Executions create_graph_execution = exposed_run_and_wait(create_graph_execution) get_execution_results = exposed_run_and_wait(get_execution_results) get_incomplete_executions = exposed_run_and_wait(get_incomplete_executions) get_latest_execution = exposed_run_and_wait(get_latest_execution) update_execution_status = exposed_run_and_wait(update_execution_status) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) get_executions_in_timerange = exposed_run_and_wait(get_executions_in_timerange) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) # Credits user_credit_model = get_user_credit_model() spend_credits = cast( Callable[[Any, NodeExecutionEntry, float, float], int], exposed_run_and_wait(user_credit_model.spend_credits), ) # User + User Metadata + User Integrations + User Notification Preferences get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata) get_user_integrations = exposed_run_and_wait(get_user_integrations) update_user_integrations = exposed_run_and_wait(update_user_integrations) get_active_user_ids_in_timerange = exposed_run_and_wait( get_active_user_ids_in_timerange ) get_user_by_id = exposed_run_and_wait(get_user_by_id) get_user_notification_preference = exposed_run_and_wait( get_user_notification_preference ) get_active_users_ids = exposed_run_and_wait(get_active_users_ids) # Notifications create_or_add_to_user_notification_batch = exposed_run_and_wait( create_or_add_to_user_notification_batch ) get_user_notification_last_message_in_batch = exposed_run_and_wait( get_user_notification_last_message_in_batch ) empty_user_notification_batch = exposed_run_and_wait(empty_user_notification_batch) get_user_notification_batch = exposed_run_and_wait(get_user_notification_batch)
import numpy as np import pytest from fastapi import FastAPI from httpx import AsyncClient from docarray import BaseDocument from docarray.base_document import DocumentResponse from docarray.documents import ImageDoc, TextDoc from docarray.typing import NdArray @pytest.mark.asyncio async def test_fast_api(): class Mmdoc(BaseDocument): img: ImageDoc text: TextDoc title: str input_doc = Mmdoc( img=ImageDoc(tensor=np.zeros((3, 224, 224))), text=TextDoc(), title='hello' ) app = FastAPI() @app.post("/doc/", response_model=Mmdoc, response_class=DocumentResponse) async def create_item(doc: Mmdoc): return doc async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 @pytest.mark.asyncio async def test_image(): class InputDoc(BaseDocument): img: ImageDoc class OutputDoc(BaseDocument): embedding_clip: NdArray embedding_bert: NdArray input_doc = InputDoc(img=ImageDoc(tensor=np.zeros((3, 224, 224)))) app = FastAPI() @app.post("/doc/", response_model=OutputDoc, response_class=DocumentResponse) async def create_item(doc: InputDoc) -> OutputDoc: ## call my fancy model to generate the embeddings doc = OutputDoc( embedding_clip=np.zeros((100, 1)), embedding_bert=np.zeros((100, 1)) ) return doc async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 doc = OutputDoc.parse_raw(response.content.decode()) assert isinstance(doc, OutputDoc) assert doc.embedding_clip.shape == (100, 1) assert doc.embedding_bert.shape == (100, 1) @pytest.mark.asyncio async def test_sentence_to_embeddings(): class InputDoc(BaseDocument): text: str class OutputDoc(BaseDocument): embedding_clip: NdArray embedding_bert: NdArray input_doc = InputDoc(text='hello') app = FastAPI() @app.post("/doc/", response_model=OutputDoc, response_class=DocumentResponse) async def create_item(doc: InputDoc) -> OutputDoc: ## call my fancy model to generate the embeddings return OutputDoc( embedding_clip=np.zeros((100, 1)), embedding_bert=np.zeros((100, 1)) ) async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 doc = OutputDoc.parse_raw(response.content.decode()) assert isinstance(doc, OutputDoc) assert doc.embedding_clip.shape == (100, 1) assert doc.embedding_bert.shape == (100, 1)
import numpy as np import pytest from fastapi import FastAPI from httpx import AsyncClient from docarray import BaseDocument from docarray.base_document import DocumentResponse from docarray.documents import Image, Text from docarray.typing import NdArray @pytest.mark.asyncio async def test_fast_api(): class Mmdoc(BaseDocument): img: Image text: Text title: str input_doc = Mmdoc( img=Image(tensor=np.zeros((3, 224, 224))), text=Text(), title='hello' ) app = FastAPI() @app.post("/doc/", response_model=Mmdoc, response_class=DocumentResponse) async def create_item(doc: Mmdoc): return doc async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 @pytest.mark.asyncio async def test_image(): class InputDoc(BaseDocument): img: Image class OutputDoc(BaseDocument): embedding_clip: NdArray embedding_bert: NdArray input_doc = InputDoc(img=Image(tensor=np.zeros((3, 224, 224)))) app = FastAPI() @app.post("/doc/", response_model=OutputDoc, response_class=DocumentResponse) async def create_item(doc: InputDoc) -> OutputDoc: ## call my fancy model to generate the embeddings doc = OutputDoc( embedding_clip=np.zeros((100, 1)), embedding_bert=np.zeros((100, 1)) ) return doc async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 doc = OutputDoc.parse_raw(response.content.decode()) assert isinstance(doc, OutputDoc) assert doc.embedding_clip.shape == (100, 1) assert doc.embedding_bert.shape == (100, 1) @pytest.mark.asyncio async def test_sentence_to_embeddings(): class InputDoc(BaseDocument): text: str class OutputDoc(BaseDocument): embedding_clip: NdArray embedding_bert: NdArray input_doc = InputDoc(text='hello') app = FastAPI() @app.post("/doc/", response_model=OutputDoc, response_class=DocumentResponse) async def create_item(doc: InputDoc) -> OutputDoc: ## call my fancy model to generate the embeddings return OutputDoc( embedding_clip=np.zeros((100, 1)), embedding_bert=np.zeros((100, 1)) ) async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 doc = OutputDoc.parse_raw(response.content.decode()) assert isinstance(doc, OutputDoc) assert doc.embedding_clip.shape == (100, 1) assert doc.embedding_bert.shape == (100, 1)
import enum from typing import Any, List, Optional, Union import pydantic import backend.data.graph from backend.data.api_key import APIKeyPermission, APIKeyWithoutHash class Methods(enum.Enum): SUBSCRIBE = "subscribe" UNSUBSCRIBE = "unsubscribe" EXECUTION_EVENT = "execution_event" ERROR = "error" HEARTBEAT = "heartbeat" class WsMessage(pydantic.BaseModel): method: Methods data: Optional[Union[dict[str, Any], list[Any], str]] = None success: bool | None = None channel: str | None = None error: str | None = None class ExecutionSubscription(pydantic.BaseModel): graph_id: str class SubscriptionDetails(pydantic.BaseModel): event_type: str channel: str graph_id: str class CreateGraph(pydantic.BaseModel): template_id: str | None = None template_version: int | None = None graph: backend.data.graph.Graph | None = None class CreateAPIKeyRequest(pydantic.BaseModel): name: str permissions: List[APIKeyPermission] description: Optional[str] = None class CreateAPIKeyResponse(pydantic.BaseModel): api_key: APIKeyWithoutHash plain_text_key: str class SetGraphActiveVersion(pydantic.BaseModel): active_graph_version: int class UpdatePermissionsRequest(pydantic.BaseModel): permissions: List[APIKeyPermission] class RequestTopUp(pydantic.BaseModel): credit_amount: int
import enum from typing import Any, List, Optional, Union import pydantic import backend.data.graph from backend.data.api_key import APIKeyPermission, APIKeyWithoutHash class Methods(enum.Enum): SUBSCRIBE = "subscribe" UNSUBSCRIBE = "unsubscribe" EXECUTION_EVENT = "execution_event" ERROR = "error" HEARTBEAT = "heartbeat" class WsMessage(pydantic.BaseModel): method: Methods data: Optional[Union[dict[str, Any], list[Any], str]] = None success: bool | None = None channel: str | None = None error: str | None = None class ExecutionSubscription(pydantic.BaseModel): graph_id: str class SubscriptionDetails(pydantic.BaseModel): event_type: str channel: str graph_id: str class CreateGraph(pydantic.BaseModel): template_id: str | None = None template_version: int | None = None graph: backend.data.graph.Graph | None = None class CreateAPIKeyRequest(pydantic.BaseModel): name: str permissions: List[APIKeyPermission] description: Optional[str] = None class CreateAPIKeyResponse(pydantic.BaseModel): api_key: APIKeyWithoutHash plain_text_key: str class SetGraphActiveVersion(pydantic.BaseModel): active_graph_version: int class UpdatePermissionsRequest(pydantic.BaseModel): permissions: List[APIKeyPermission] class RequestTopUp(pydantic.BaseModel): amount: int """Amount of credits to top up."""
"""Module to change the configuration of FFmpeg libraries (such as libavformat). It affects functionalities in :py:mod:`torchaudio.io` (and indirectly :py:func:`torchaudio.load`). """ from typing import Dict, Tuple import torch def get_versions() -> Dict[str, Tuple[int]]: """Get the versions of FFmpeg libraries Returns: dict: mapping from library names to version string, i.e. `"libavutil": (56, 22, 100)`. """ return torch.ops.torchaudio.ffmpeg_get_versions() def get_log_level() -> int: """Get the log level of FFmpeg. See :py:func:`set_log_level` for the detailo. """ return torch.ops.torchaudio.ffmpeg_get_log_level() def set_log_level(level: int): """Set the log level of FFmpeg (libavformat etc) Arguments: level (int): Log level. The larger, the more verbose. The following values are common values, the corresponding ``ffmpeg``'s ``-loglevel`` option value and desription. * ``-8`` (``quiet``): Print no output. * ``0`` (``panic``): Something went really wrong and we will crash now. * ``8`` (``fatal``): Something went wrong and recovery is not possible. For example, no header was found for a format which depends on headers or an illegal combination of parameters is used. * ``16`` (``error``): Something went wrong and cannot losslessly be recovered. However, not all future data is affected. * ``24`` (``warning``): Something somehow does not look correct. This may or may not lead to problems. * ``32`` (``info``): Standard information. * ``40`` (``verbose``): Detailed information. * ``48`` (``debug``): Stuff which is only useful for libav* developers. * ``56`` (``trace``): Extremely verbose debugging, useful for libav* development. """ torch.ops.torchaudio.ffmpeg_set_log_level(level)
from typing import Dict, Tuple import torch def get_versions() -> Dict[str, Tuple[int]]: """Get the versions of FFmpeg libraries Returns: dict: mapping from library names to version string, i.e. `"libavutil": (56, 22, 100)`. """ return torch.ops.torchaudio.ffmpeg_get_versions() def get_log_level() -> int: """Get the log level of FFmpeg. See :py:func:`set_log_level` for the detailo. """ return torch.ops.torchaudio.ffmpeg_get_log_level() def set_log_level(level: int): """Set the log level of FFmpeg (libavformat etc) Arguments: level (int): Log level. The larger, the more verbose. The following values are common values, the corresponding ``ffmpeg``'s ``-loglevel`` option value and desription. * ``-8`` (``quiet``): Print no output. * ``0`` (``panic``): Something went really wrong and we will crash now. * ``8`` (``fatal``): Something went wrong and recovery is not possible. For example, no header was found for a format which depends on headers or an illegal combination of parameters is used. * ``16`` (``error``): Something went wrong and cannot losslessly be recovered. However, not all future data is affected. * ``24`` (``warning``): Something somehow does not look correct. This may or may not lead to problems. * ``32`` (``info``): Standard information. * ``40`` (``verbose``): Detailed information. * ``48`` (``debug``): Stuff which is only useful for libav* developers. * ``56`` (``trace``): Extremely verbose debugging, useful for libav* development. """ torch.ops.torchaudio.ffmpeg_set_log_level(level)
# ruff: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "2.19.2.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# ruff: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "2.19.1.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
_base_ = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py' model = dict( roi_head=dict( bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict( _delete_=True, type='DeformRoIPoolPack', output_size=7, output_channels=256), out_channels=256, featmap_strides=[4, 8, 16, 32])))
_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' model = dict( roi_head=dict( bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict( _delete_=True, type='DeformRoIPoolPack', output_size=7, output_channels=256), out_channels=256, featmap_strides=[4, 8, 16, 32])))
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Iterable, Optional import torch from jina import DocumentArray, Executor, requests from jina_commons.batching import get_docs_batch_generator from .audio_clip.model import AudioCLIP class AudioCLIPTextEncoder(Executor): """ Encode text data with the AudioCLIP model """ def __init__( self, model_path: str = '.cache/AudioCLIP-Full-Training.pt', tokenizer_path: str = '.cache/bpe_simple_vocab_16e6.txt.gz', traversal_paths: Iterable[str] = ('r',), batch_size: int = 32, device: str = 'cpu', *args, **kwargs ): """ :param model_path: path to the pre-trained AudioCLIP model. :param traversal_paths: default traversal path (used if not specified in request's parameters) :param batch_size: default batch size (used if not specified in request's parameters) :param device: device that the model is on (should be "cpu", "cuda" or "cuda:X", where X is the index of the GPU on the machine) """ super().__init__(*args, **kwargs) self.model = ( AudioCLIP( pretrained=model_path, bpe_path=tokenizer_path, ) .to(device) .eval() ) self.traversal_paths = traversal_paths self.batch_size = batch_size @requests def encode( self, docs: Optional[DocumentArray] = None, parameters: dict = {}, *args, **kwargs ) -> None: """ Method to create embeddings for documents by encoding their text. :param docs: A document array with documents to create embeddings for. Only the documents that have the ``text`` attribute will get embeddings. :param parameters: A dictionary that contains parameters to control encoding. The accepted keys are ``traversal_paths`` and ``batch_size`` - in their absence their corresponding default values are used. """ if not docs: return batch_generator = get_docs_batch_generator( docs, traversal_path=parameters.get('traversal_paths', self.traversal_paths), batch_size=parameters.get('batch_size', self.batch_size), needs_attr='text', ) with torch.no_grad(): for batch in batch_generator: embeddings = self.model.encode_text(text=[[doc.text] for doc in batch]) embeddings = embeddings.cpu().numpy() for idx, doc in enumerate(batch): doc.embedding = embeddings[idx]
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import Iterable, Optional import torch from jina import DocumentArray, Executor, requests from jina_commons.batching import get_docs_batch_generator from .audio_clip.model import AudioCLIP class AudioCLIPTextEncoder(Executor): """ Encode text data with the AudioCLIP model """ def __init__( self, model_path: str = '.cache/AudioCLIP-Full-Training.pt', tokenizer_path: str = '.cache/bpe_simple_vocab_16e6.txt.gz', default_traversal_paths: Iterable[str] = ('r',), default_batch_size: int = 32, device: str = 'cpu', *args, **kwargs ): """ :param model_path: path to the pre-trained AudioCLIP model. :param default_traversal_paths: default traversal path (used if not specified in request's parameters) :param default_batch_size: default batch size (used if not specified in request's parameters) :param device: device that the model is on (should be "cpu", "cuda" or "cuda:X", where X is the index of the GPU on the machine) """ super().__init__(*args, **kwargs) self.model = ( AudioCLIP( pretrained=model_path, bpe_path=tokenizer_path, ) .to(device) .eval() ) self.default_traversal_paths = default_traversal_paths self.default_batch_size = default_batch_size @requests def encode( self, docs: Optional[DocumentArray], parameters: dict, *args, **kwargs ) -> None: """ Method to create embedddings for documents by encoding their text. :param docs: A document array with documents to create embeddings for. Only the documents that have the ``text`` attribute will get embeddings. :param parameters: A dictionary that contains parameters to control encoding. The accepted keys are ``traversal_paths`` and ``batch_size`` - in their absence their corresponding default values are used. """ batch_generator = get_docs_batch_generator( docs, traversal_path=parameters.get( 'traversal_paths', self.default_traversal_paths ), batch_size=parameters.get('batch_size', self.default_batch_size), needs_attr='text', ) with torch.no_grad(): for batch in batch_generator: embeddings = self.model.encode_text(text=[[doc.text] for doc in batch]) embeddings = embeddings.cpu().numpy() for idx, doc in enumerate(batch): doc.embedding = embeddings[idx]
from docarray import DocumentArray from jina import requests from jina.serve.executors import BaseExecutor class DummyExternalIndexer(BaseExecutor): @requests def index(self, docs: DocumentArray, **kwargs): for doc in docs: doc.text = 'indexed'
from jina.serve.executors import BaseExecutor class DummyExternalIndexer(BaseExecutor): pass
from __future__ import annotations from typing import Any, Optional, Sequence, Type, TypeVar, Union import torch from torch.utils._pytree import tree_map from torchvision.datapoints._datapoint import Datapoint L = TypeVar("L", bound="_LabelBase") class _LabelBase(Datapoint): categories: Optional[Sequence[str]] @classmethod def _wrap(cls: Type[L], tensor: torch.Tensor, *, categories: Optional[Sequence[str]]) -> L: # type: ignore[override] label_base = tensor.as_subclass(cls) label_base.categories = categories return label_base def __new__( cls: Type[L], data: Any, *, categories: Optional[Sequence[str]] = None, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> L: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor, categories=categories) @classmethod def wrap_like(cls: Type[L], other: L, tensor: torch.Tensor, *, categories: Optional[Sequence[str]] = None) -> L: return cls._wrap( tensor, categories=categories if categories is not None else other.categories, ) @classmethod def from_category( cls: Type[L], category: str, *, categories: Sequence[str], **kwargs: Any, ) -> L: return cls(categories.index(category), categories=categories, **kwargs) class Label(_LabelBase): def to_categories(self) -> Any: if self.categories is None: raise RuntimeError("Label does not have categories") return tree_map(lambda idx: self.categories[idx], self.tolist()) class OneHotLabel(_LabelBase): def __new__( cls, data: Any, *, categories: Optional[Sequence[str]] = None, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: bool = False, ) -> OneHotLabel: one_hot_label = super().__new__( cls, data, categories=categories, dtype=dtype, device=device, requires_grad=requires_grad ) if categories is not None and len(categories) != one_hot_label.shape[-1]: raise ValueError() return one_hot_label
from __future__ import annotations from typing import Any, Optional, Sequence, Type, TypeVar, Union import torch from torch.utils._pytree import tree_map from torchvision.datapoints._datapoint import Datapoint L = TypeVar("L", bound="_LabelBase") class _LabelBase(Datapoint): categories: Optional[Sequence[str]] @classmethod def _wrap(cls: Type[L], tensor: torch.Tensor, *, categories: Optional[Sequence[str]]) -> L: label_base = tensor.as_subclass(cls) label_base.categories = categories return label_base def __new__( cls: Type[L], data: Any, *, categories: Optional[Sequence[str]] = None, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> L: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor, categories=categories) @classmethod def wrap_like(cls: Type[L], other: L, tensor: torch.Tensor, *, categories: Optional[Sequence[str]] = None) -> L: return cls._wrap( tensor, categories=categories if categories is not None else other.categories, ) @classmethod def from_category( cls: Type[L], category: str, *, categories: Sequence[str], **kwargs: Any, ) -> L: return cls(categories.index(category), categories=categories, **kwargs) class Label(_LabelBase): def to_categories(self) -> Any: if self.categories is None: raise RuntimeError("Label does not have categories") return tree_map(lambda idx: self.categories[idx], self.tolist()) class OneHotLabel(_LabelBase): def __new__( cls, data: Any, *, categories: Optional[Sequence[str]] = None, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: bool = False, ) -> OneHotLabel: one_hot_label = super().__new__( cls, data, categories=categories, dtype=dtype, device=device, requires_grad=requires_grad ) if categories is not None and len(categories) != one_hot_label.shape[-1]: raise ValueError() return one_hot_label
"""Athena Reader.""" import warnings from typing import Optional import boto3 from llama_index.core.readers.base import BaseReader from sqlalchemy.engine import create_engine class AthenaReader(BaseReader): """ Athena reader. Follow AWS best practices for security. AWS discourages hardcoding credentials in code. We recommend that you use IAM roles instead of IAM user credentials. If you must use credentials, do not embed them in your code. Instead, store them in environment variables or in a separate configuration file. """ def __init__( self, ) -> None: """Initialize with parameters.""" def create_athena_engine( self, aws_access_key: Optional[str] = None, aws_secret_key: Optional[str] = None, aws_region: str = None, s3_staging_dir: str = None, database: str = None, workgroup: str = None, ): """ Args: aws_access_key is the AWS access key from aws credential aws_secret_key is the AWS secret key from aws credential aws_region is the AWS region s3_staging_dir is the S3 staging (result bucket) directory database is the Athena database name workgroup is the Athena workgroup name. """ if not aws_access_key or not aws_secret_key: conn_str = ( "awsathena+rest://:@athena.{region_name}.amazonaws.com:443/" "{database}?s3_staging_dir={s3_staging_dir}?work_group={workgroup}" ) engine = create_engine( conn_str.format( region_name=aws_region, s3_staging_dir=s3_staging_dir, database=database, workgroup=workgroup, ) ) else: warnings.warn( "aws_access_key and aws_secret_key are set. We recommend to use IAM role instead." ) boto3.client( "athena", aws_access_key_id=aws_access_key, aws_secret_access_key=aws_secret_key, region_name=aws_region, ) conn_str = ( "awsathena+rest://:@athena.{region_name}.amazonaws.com:443/" "{database}?s3_staging_dir={s3_staging_dir}?work_group={workgroup}" ) engine = create_engine( conn_str.format( region_name=aws_region, s3_staging_dir=s3_staging_dir, database=database, workgroup=workgroup, ) ) return engine
"""Athena Reader.""" import warnings from typing import Optional import boto3 from llama_index.core.readers.base import BaseReader from sqlalchemy.engine import create_engine class AthenaReader(BaseReader): """Athena reader. Follow AWS best practices for security. AWS discourages hardcoding credentials in code. We recommend that you use IAM roles instead of IAM user credentials. If you must use credentials, do not embed them in your code. Instead, store them in environment variables or in a separate configuration file. """ def __init__( self, ) -> None: """Initialize with parameters.""" def create_athena_engine( self, aws_access_key: Optional[str] = None, aws_secret_key: Optional[str] = None, aws_region: str = None, s3_staging_dir: str = None, database: str = None, workgroup: str = None, ): """ Args: aws_access_key is the AWS access key from aws credential aws_secret_key is the AWS secret key from aws credential aws_region is the AWS region s3_staging_dir is the S3 staging (result bucket) directory database is the Athena database name workgroup is the Athena workgroup name. """ if not aws_access_key or not aws_secret_key: conn_str = ( "awsathena+rest://:@athena.{region_name}.amazonaws.com:443/" "{database}?s3_staging_dir={s3_staging_dir}?work_group={workgroup}" ) engine = create_engine( conn_str.format( region_name=aws_region, s3_staging_dir=s3_staging_dir, database=database, workgroup=workgroup, ) ) else: warnings.warn( "aws_access_key and aws_secret_key are set. We recommend to use IAM role instead." ) boto3.client( "athena", aws_access_key_id=aws_access_key, aws_secret_access_key=aws_secret_key, region_name=aws_region, ) conn_str = ( "awsathena+rest://:@athena.{region_name}.amazonaws.com:443/" "{database}?s3_staging_dir={s3_staging_dir}?work_group={workgroup}" ) engine = create_engine( conn_str.format( region_name=aws_region, s3_staging_dir=s3_staging_dir, database=database, workgroup=workgroup, ) ) return engine
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from examples/modular-transformers/modular_add_function.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_add_function.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # Note that zamba does not have the `apply_rotary_pos_emb` function! from typing import Optional, Tuple import torch from torch import nn def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class TestAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". Adapted from transformers.models.mistral.modeling_mistral.MistralAttention: The input dimension here is attention_hidden_size = 2 * hidden_size, and head_dim = attention_hidden_size // num_heads. The extra factor of 2 comes from the input being the concatenation of original_hidden_states with the output of the previous (mamba) layer (see fig. 2 in https://arxiv.org/pdf/2405.16712). Additionally, replaced attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) with attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim/2) """ def __init__(self): pass def forward(self) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: _ = apply_rotary_pos_emb(1, 1, 1, 1)
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from examples/modular-transformers/modular_add_function.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_add_function.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # Note that zamba does not have the `apply_rotary_pos_emb` function! from typing import Optional import torch from torch import nn def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class TestAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". Adapted from transformers.models.mistral.modeling_mistral.MistralAttention: The input dimension here is attention_hidden_size = 2 * hidden_size, and head_dim = attention_hidden_size // num_heads. The extra factor of 2 comes from the input being the concatenation of original_hidden_states with the output of the previous (mamba) layer (see fig. 2 in https://arxiv.org/pdf/2405.16712). Additionally, replaced attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) with attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim/2) """ def __init__(self): pass def forward(self) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: _ = apply_rotary_pos_emb(1, 1, 1, 1)
import pytest from docarray import BaseDoc from docarray.utils.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp # type: ignore from docarray.typing import TensorFlowEmbedding, TensorFlowTensor @pytest.mark.tensorflow def test_set_tensorflow_tensor(): class MyDocument(BaseDoc): t: TensorFlowTensor doc = MyDocument(t=tf.zeros((3, 224, 224))) assert isinstance(doc.t, TensorFlowTensor) assert isinstance(doc.t.tensor, tf.Tensor) assert tnp.allclose(doc.t.tensor, tf.zeros((3, 224, 224))) @pytest.mark.tensorflow def test_set_tf_embedding(): class MyDocument(BaseDoc): embedding: TensorFlowEmbedding doc = MyDocument(embedding=tf.zeros((128,))) assert isinstance(doc.embedding, TensorFlowTensor) assert isinstance(doc.embedding, TensorFlowEmbedding) assert isinstance(doc.embedding.tensor, tf.Tensor) assert tnp.allclose(doc.embedding.tensor, tf.zeros((128,)))
import pytest from docarray import BaseDocument from docarray.utils.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp # type: ignore from docarray.typing import TensorFlowEmbedding, TensorFlowTensor @pytest.mark.tensorflow def test_set_tensorflow_tensor(): class MyDocument(BaseDocument): t: TensorFlowTensor doc = MyDocument(t=tf.zeros((3, 224, 224))) assert isinstance(doc.t, TensorFlowTensor) assert isinstance(doc.t.tensor, tf.Tensor) assert tnp.allclose(doc.t.tensor, tf.zeros((3, 224, 224))) @pytest.mark.tensorflow def test_set_tf_embedding(): class MyDocument(BaseDocument): embedding: TensorFlowEmbedding doc = MyDocument(embedding=tf.zeros((128,))) assert isinstance(doc.embedding, TensorFlowTensor) assert isinstance(doc.embedding, TensorFlowEmbedding) assert isinstance(doc.embedding.tensor, tf.Tensor) assert tnp.allclose(doc.embedding.tensor, tf.zeros((128,)))
# Copyright (c) OpenMMLab. All rights reserved. from .csp_darknet import CSPDarknet from .darknet import Darknet from .detectors_resnet import DetectoRS_ResNet from .detectors_resnext import DetectoRS_ResNeXt from .efficientnet import EfficientNet from .hourglass import HourglassNet from .hrnet import HRNet from .mobilenet_v2 import MobileNetV2 from .pvt import PyramidVisionTransformer, PyramidVisionTransformerV2 from .regnet import RegNet from .res2net import Res2Net from .resnest import ResNeSt from .resnet import ResNet, ResNetV1d from .resnext import ResNeXt from .ssd_vgg import SSDVGG from .swin import SwinTransformer from .trident_resnet import TridentResNet __all__ = [ 'RegNet', 'ResNet', 'ResNetV1d', 'ResNeXt', 'SSDVGG', 'HRNet', 'MobileNetV2', 'Res2Net', 'HourglassNet', 'DetectoRS_ResNet', 'DetectoRS_ResNeXt', 'Darknet', 'ResNeSt', 'TridentResNet', 'CSPDarknet', 'SwinTransformer', 'PyramidVisionTransformer', 'PyramidVisionTransformerV2', 'EfficientNet' ]
# Copyright (c) OpenMMLab. All rights reserved. from .csp_darknet import CSPDarknet from .darknet import Darknet from .detectors_resnet import DetectoRS_ResNet from .detectors_resnext import DetectoRS_ResNeXt from .hourglass import HourglassNet from .hrnet import HRNet from .mobilenet_v2 import MobileNetV2 from .pvt import PyramidVisionTransformer, PyramidVisionTransformerV2 from .regnet import RegNet from .res2net import Res2Net from .resnest import ResNeSt from .resnet import ResNet, ResNetV1d from .resnext import ResNeXt from .ssd_vgg import SSDVGG from .swin import SwinTransformer from .trident_resnet import TridentResNet __all__ = [ 'RegNet', 'ResNet', 'ResNetV1d', 'ResNeXt', 'SSDVGG', 'HRNet', 'MobileNetV2', 'Res2Net', 'HourglassNet', 'DetectoRS_ResNet', 'DetectoRS_ResNeXt', 'Darknet', 'ResNeSt', 'TridentResNet', 'CSPDarknet', 'SwinTransformer', 'PyramidVisionTransformer', 'PyramidVisionTransformerV2' ]
import os as _os import sys as _sys from pathlib import Path as _Path import datetime as _datetime __windows__ = _sys.platform == 'win32' __uptime__ = _datetime.datetime.now().isoformat() # update on MacOS 1. clean this tuple, 2. grep -rohEI --exclude-dir=jina/hub --exclude-dir=tests --include \*.py # "\'JINA_.*?\'" jina | sort -u | sed "s/$/,/g" 3. copy all lines EXCEPT the first (which is the grep command in the # last line) __jina_env__ = ( 'JINA_DEFAULT_HOST', 'JINA_DEFAULT_TIMEOUT_CTRL', 'JINA_DEPLOYMENT_NAME', 'JINA_DISABLE_UVLOOP', 'JINA_EARLY_STOP', 'JINA_FULL_CLI', 'JINA_GATEWAY_IMAGE', 'JINA_GRPC_RECV_BYTES', 'JINA_GRPC_SEND_BYTES', 'JINA_HUB_NO_IMAGE_REBUILD', 'JINA_LOG_CONFIG', 'JINA_LOG_LEVEL', 'JINA_LOG_NO_COLOR', 'JINA_MP_START_METHOD', 'JINA_OPTOUT_TELEMETRY', 'JINA_RANDOM_PORT_MAX', 'JINA_RANDOM_PORT_MIN', 'JINA_LOCKS_ROOT', 'JINA_OPTOUT_TELEMETRY', 'JINA_K8S_ACCESS_MODES', 'JINA_K8S_STORAGE_CLASS_NAME', 'JINA_K8S_STORAGE_CAPACITY', 'JINA_STREAMER_ARGS', ) __default_host__ = _os.getenv( 'JINA_DEFAULT_HOST', '127.0.0.1' if __windows__ else '0.0.0.0' ) __docker_host__ = 'host.docker.internal' __default_executor__ = 'BaseExecutor' __default_gateway__ = 'BaseGateway' __default_http_gateway__ = 'HTTPGateway' __default_composite_gateway__ = 'CompositeGateway' __default_websocket_gateway__ = 'WebSocketGateway' __default_grpc_gateway__ = 'GRPCGateway' __default_endpoint__ = '/default' __dynamic_base_gateway_hubble__ = 'jinaai+docker://jina-ai/JinaGateway:latest' __ready_msg__ = 'ready and listening' __stop_msg__ = 'terminated' __unset_msg__ = '(unset)' __args_executor_func__ = { 'docs', 'parameters', 'docs_matrix', } __args_executor_init__ = {'metas', 'requests', 'runtime_args'} __resources_path__ = _os.path.join( _os.path.dirname(_sys.modules['jina'].__file__), 'resources' ) __cache_path__ = f'{_os.path.expanduser("~")}/.cache/{__package__}' if not _Path(__cache_path__).exists(): _Path(__cache_path__).mkdir(parents=True, exist_ok=True) _names_with_underscore = [ '__version__', '__proto_version__', '__default_host__', '__ready_msg__', '__stop_msg__', '__jina_env__', '__uptime__', '__default_endpoint__', '__default_executor__', '__unset_msg__', '__windows__', ] __all__ = [_s for _s in dir() if not _s.startswith('_')] + _names_with_underscore RAFT_TO_EXECUTOR_PORT = 100
import os as _os import sys as _sys from pathlib import Path as _Path import datetime as _datetime __windows__ = _sys.platform == 'win32' __uptime__ = _datetime.datetime.now().isoformat() # update on MacOS 1. clean this tuple, 2. grep -rohEI --exclude-dir=jina/hub --exclude-dir=tests --include \*.py # "\'JINA_.*?\'" jina | sort -u | sed "s/$/,/g" 3. copy all lines EXCEPT the first (which is the grep command in the # last line) __jina_env__ = ( 'JINA_DEFAULT_HOST', 'JINA_DEFAULT_TIMEOUT_CTRL', 'JINA_DEPLOYMENT_NAME', 'JINA_DISABLE_UVLOOP', 'JINA_EARLY_STOP', 'JINA_FULL_CLI', 'JINA_GATEWAY_IMAGE', 'JINA_GRPC_RECV_BYTES', 'JINA_GRPC_SEND_BYTES', 'JINA_HUB_NO_IMAGE_REBUILD', 'JINA_LOG_CONFIG', 'JINA_LOG_LEVEL', 'JINA_LOG_NO_COLOR', 'JINA_MP_START_METHOD', 'JINA_OPTOUT_TELEMETRY', 'JINA_RANDOM_PORT_MAX', 'JINA_RANDOM_PORT_MIN', 'JINA_LOCKS_ROOT', 'JINA_OPTOUT_TELEMETRY', 'JINA_K8S_ACCESS_MODES', 'JINA_K8S_STORAGE_CLASS_NAME', 'JINA_K8S_STORAGE_CAPACITY', 'JINA_STREAMER_ARGS', ) __default_host__ = _os.environ.get( 'JINA_DEFAULT_HOST', '127.0.0.1' if __windows__ else '0.0.0.0' ) __docker_host__ = 'host.docker.internal' __default_executor__ = 'BaseExecutor' __default_gateway__ = 'BaseGateway' __default_http_gateway__ = 'HTTPGateway' __default_composite_gateway__ = 'CompositeGateway' __default_websocket_gateway__ = 'WebSocketGateway' __default_grpc_gateway__ = 'GRPCGateway' __default_endpoint__ = '/default' __dynamic_base_gateway_hubble__ = 'jinaai+docker://jina-ai/JinaGateway:latest' __ready_msg__ = 'ready and listening' __stop_msg__ = 'terminated' __unset_msg__ = '(unset)' __args_executor_func__ = { 'docs', 'parameters', 'docs_matrix', } __args_executor_init__ = {'metas', 'requests', 'runtime_args'} __resources_path__ = _os.path.join( _os.path.dirname(_sys.modules['jina'].__file__), 'resources' ) __cache_path__ = f'{_os.path.expanduser("~")}/.cache/{__package__}' if not _Path(__cache_path__).exists(): _Path(__cache_path__).mkdir(parents=True, exist_ok=True) _names_with_underscore = [ '__version__', '__proto_version__', '__default_host__', '__ready_msg__', '__stop_msg__', '__jina_env__', '__uptime__', '__default_endpoint__', '__default_executor__', '__unset_msg__', '__windows__', ] __all__ = [_s for _s in dir() if not _s.startswith('_')] __all__.extend(_names_with_underscore) RAFT_TO_EXECUTOR_PORT = 100
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.inception_resnet_v2 import ( InceptionResNetV2 as InceptionResNetV2, ) from keras.src.applications.inception_resnet_v2 import ( decode_predictions as decode_predictions, ) from keras.src.applications.inception_resnet_v2 import ( preprocess_input as preprocess_input, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.inception_resnet_v2 import InceptionResNetV2 from keras.src.applications.inception_resnet_v2 import decode_predictions from keras.src.applications.inception_resnet_v2 import preprocess_input
"""Edenai Tools.""" from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ( EdenAiExplicitImageTool, EdenAiObjectDetectionTool, EdenAiParsingIDTool, EdenAiParsingInvoiceTool, EdenAiSpeechToTextTool, EdenAiTextModerationTool, EdenAiTextToSpeechTool, EdenaiTool, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "EdenAiExplicitImageTool": "langchain_community.tools", "EdenAiObjectDetectionTool": "langchain_community.tools", "EdenAiParsingIDTool": "langchain_community.tools", "EdenAiParsingInvoiceTool": "langchain_community.tools", "EdenAiTextToSpeechTool": "langchain_community.tools", "EdenAiSpeechToTextTool": "langchain_community.tools", "EdenAiTextModerationTool": "langchain_community.tools", "EdenaiTool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "EdenAiExplicitImageTool", "EdenAiObjectDetectionTool", "EdenAiParsingIDTool", "EdenAiParsingInvoiceTool", "EdenAiSpeechToTextTool", "EdenAiTextModerationTool", "EdenAiTextToSpeechTool", "EdenaiTool", ]
"""Edenai Tools.""" from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ( EdenAiExplicitImageTool, EdenAiObjectDetectionTool, EdenAiParsingIDTool, EdenAiParsingInvoiceTool, EdenAiSpeechToTextTool, EdenAiTextModerationTool, EdenAiTextToSpeechTool, EdenaiTool, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "EdenAiExplicitImageTool": "langchain_community.tools", "EdenAiObjectDetectionTool": "langchain_community.tools", "EdenAiParsingIDTool": "langchain_community.tools", "EdenAiParsingInvoiceTool": "langchain_community.tools", "EdenAiTextToSpeechTool": "langchain_community.tools", "EdenAiSpeechToTextTool": "langchain_community.tools", "EdenAiTextModerationTool": "langchain_community.tools", "EdenaiTool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "EdenAiExplicitImageTool", "EdenAiObjectDetectionTool", "EdenAiParsingIDTool", "EdenAiParsingInvoiceTool", "EdenAiTextToSpeechTool", "EdenAiSpeechToTextTool", "EdenAiTextModerationTool", "EdenaiTool", ]
# Copyright (c) OpenMMLab. All rights reserved. from .atss import ATSS from .autoassign import AutoAssign from .base import BaseDetector from .cascade_rcnn import CascadeRCNN from .centernet import CenterNet from .cornernet import CornerNet from .deformable_detr import DeformableDETR from .detr import DETR from .fast_rcnn import FastRCNN from .faster_rcnn import FasterRCNN from .fcos import FCOS from .fovea import FOVEA from .fsaf import FSAF from .gfl import GFL from .grid_rcnn import GridRCNN from .htc import HybridTaskCascade from .kd_one_stage import KnowledgeDistillationSingleStageDetector from .lad import LAD from .mask_rcnn import MaskRCNN from .mask_scoring_rcnn import MaskScoringRCNN from .nasfcos import NASFCOS from .paa import PAA from .panoptic_fpn import PanopticFPN from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor from .point_rend import PointRend from .queryinst import QueryInst from .reppoints_detector import RepPointsDetector from .retinanet import RetinaNet from .rpn import RPN from .scnet import SCNet from .single_stage import SingleStageDetector from .solo import SOLO from .sparse_rcnn import SparseRCNN from .tood import TOOD from .trident_faster_rcnn import TridentFasterRCNN from .two_stage import TwoStageDetector from .vfnet import VFNet from .yolact import YOLACT from .yolo import YOLOV3 from .yolof import YOLOF from .yolox import YOLOX __all__ = [ 'ATSS', 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN', 'KnowledgeDistillationSingleStageDetector', 'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN', 'RepPointsDetector', 'FOVEA', 'FSAF', 'NASFCOS', 'PointRend', 'GFL', 'CornerNet', 'PAA', 'YOLOV3', 'YOLACT', 'VFNet', 'DETR', 'TridentFasterRCNN', 'SparseRCNN', 'SCNet', 'SOLO', 'DeformableDETR', 'AutoAssign', 'YOLOF', 'CenterNet', 'YOLOX', 'TwoStagePanopticSegmentor', 'PanopticFPN', 'QueryInst', 'LAD', 'TOOD' ]
# Copyright (c) OpenMMLab. All rights reserved. from .atss import ATSS from .autoassign import AutoAssign from .base import BaseDetector from .cascade_rcnn import CascadeRCNN from .centernet import CenterNet from .cornernet import CornerNet from .deformable_detr import DeformableDETR from .detr import DETR from .fast_rcnn import FastRCNN from .faster_rcnn import FasterRCNN from .fcos import FCOS from .fovea import FOVEA from .fsaf import FSAF from .gfl import GFL from .grid_rcnn import GridRCNN from .htc import HybridTaskCascade from .kd_one_stage import KnowledgeDistillationSingleStageDetector from .lad import LAD from .mask_rcnn import MaskRCNN from .mask_scoring_rcnn import MaskScoringRCNN from .nasfcos import NASFCOS from .paa import PAA from .panoptic_fpn import PanopticFPN from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor from .point_rend import PointRend from .queryinst import QueryInst from .reppoints_detector import RepPointsDetector from .retinanet import RetinaNet from .rpn import RPN from .scnet import SCNet from .single_stage import SingleStageDetector from .solo import SOLO from .sparse_rcnn import SparseRCNN from .trident_faster_rcnn import TridentFasterRCNN from .two_stage import TwoStageDetector from .vfnet import VFNet from .yolact import YOLACT from .yolo import YOLOV3 from .yolof import YOLOF from .yolox import YOLOX __all__ = [ 'ATSS', 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN', 'KnowledgeDistillationSingleStageDetector', 'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN', 'RepPointsDetector', 'FOVEA', 'FSAF', 'NASFCOS', 'PointRend', 'GFL', 'CornerNet', 'PAA', 'YOLOV3', 'YOLACT', 'VFNet', 'DETR', 'TridentFasterRCNN', 'SparseRCNN', 'SCNet', 'SOLO', 'DeformableDETR', 'AutoAssign', 'YOLOF', 'CenterNet', 'YOLOX', 'TwoStagePanopticSegmentor', 'PanopticFPN', 'QueryInst', 'LAD' ]
# Copyright (c) OpenMMLab. All rights reserved. import copy import os.path as osp import unittest import numpy as np from mmdet.core.mask import BitmapMasks, PolygonMasks from mmdet.datasets.pipelines import LoadAnnotations class TestLoadAnnotations(unittest.TestCase): def setUp(self): """Setup the model and optimizer which are used in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ data_prefix = osp.join(osp.dirname(__file__), '../../data') seg_map = osp.join(data_prefix, 'gray.jpg') self.results = { 'height': 300, 'width': 400, 'seg_map_path': seg_map, 'instances': [{ 'bbox': [0, 0, 10, 20], 'bbox_label': 1, 'mask': [[0, 0, 0, 20, 10, 20, 10, 0]], 'ignore_flag': 0 }, { 'bbox': [10, 10, 110, 120], 'bbox_label': 2, 'mask': [[10, 10, 110, 10, 110, 120, 110, 10]], 'ignore_flag': 0 }, { 'bbox': [50, 50, 60, 80], 'bbox_label': 2, 'mask': [[50, 50, 60, 50, 60, 80, 50, 80]], 'ignore_flag': 1 }] } def test_load_bboxes(self): transform = LoadAnnotations( with_bbox=True, with_label=False, with_seg=False, with_mask=False, ) results = transform(copy.deepcopy(self.results)) self.assertIn('gt_bboxes', results) self.assertTrue((results['gt_bboxes'] == np.array([[0, 0, 10, 20], [10, 10, 110, 120], [50, 50, 60, 80]])).all()) self.assertEqual(results['gt_bboxes'].dtype, np.float32) self.assertTrue((results['gt_ignore_flags'] == np.array([0, 0, 1])).all()) self.assertEqual(results['gt_ignore_flags'].dtype, np.bool) def test_load_denorm_bboxes(self): transform = LoadAnnotations( with_bbox=True, with_label=False, with_seg=False, with_mask=False, denorm_bbox=True) results = transform(copy.deepcopy(self.results)) self.assertIn('gt_bboxes', results) self.assertTrue( (results['gt_bboxes'] == np.array([[0, 0, 4000, 6000], [4000, 3000, 44000, 36000], [20000, 15000, 24000, 24000]])).all()) self.assertEqual(results['gt_bboxes'].dtype, np.float32) def test_load_labels(self): transform = LoadAnnotations( with_bbox=False, with_label=True, with_seg=False, with_mask=False, ) results = transform(copy.deepcopy(self.results)) self.assertIn('gt_bboxes_labels', results) self.assertTrue((results['gt_bboxes_labels'] == np.array([1, 2, 2])).all()) self.assertEqual(results['gt_bboxes_labels'].dtype, np.int64) def test_load_mask(self): transform = LoadAnnotations( with_bbox=False, with_label=False, with_seg=False, with_mask=True, poly2mask=False) results = transform(copy.deepcopy(self.results)) self.assertIn('gt_masks', results) self.assertEqual(len(results['gt_masks']), 3) self.assertIsInstance(results['gt_masks'], PolygonMasks) def test_load_mask_poly2mask(self): transform = LoadAnnotations( with_bbox=False, with_label=False, with_seg=False, with_mask=True, poly2mask=True) results = transform(copy.deepcopy(self.results)) self.assertIn('gt_masks', results) self.assertEqual(len(results['gt_masks']), 3) self.assertIsInstance(results['gt_masks'], BitmapMasks) def test_repr(self): transform = LoadAnnotations( with_bbox=True, with_label=False, with_seg=False, with_mask=False, ) self.assertEqual( repr(transform), ('LoadAnnotations(with_bbox=True, ' 'with_label=False, with_mask=False, ' 'with_seg=False, poly2mask=True, ' "imdecode_backend='cv2', " "file_client_args={'backend': 'disk'})"))
# Copyright (c) OpenMMLab. All rights reserved. import copy import os.path as osp import unittest import numpy as np from mmdet.core.mask import BitmapMasks, PolygonMasks from mmdet.datasets.pipelines import LoadAnnotations class TestLoadAnnotations(unittest.TestCase): def setUp(self): """Setup the model and optimizer which are used in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ data_prefix = osp.join(osp.dirname(__file__), '../../data') seg_map = osp.join(data_prefix, 'gray.jpg') self.results = { 'height': 300, 'width': 400, 'seg_map_path': seg_map, 'instances': [{ 'bbox': [0, 0, 10, 20], 'bbox_label': 1, 'mask': [[0, 0, 0, 20, 10, 20, 10, 0]], 'ignore_flag': 0 }, { 'bbox': [10, 10, 110, 120], 'bbox_label': 2, 'mask': [[10, 10, 110, 10, 110, 120, 110, 10]], 'ignore_flag': 0 }, { 'bbox': [50, 50, 60, 80], 'bbox_label': 2, 'mask': [[50, 50, 60, 50, 60, 80, 50, 80]], 'ignore_flag': 1 }] } def test_load_bboxes(self): transform = LoadAnnotations( with_bbox=True, with_label=False, with_seg=False, with_mask=False, ) results = transform(copy.deepcopy(self.results)) self.assertIn('gt_bboxes', results) self.assertTrue((results['gt_bboxes'] == np.array([[0, 0, 10, 20], [10, 10, 110, 120], [50, 50, 60, 80]])).all()) self.assertEqual(results['gt_bboxes'].dtype, np.float32) self.assertTrue((results['gt_ignore_flags'] == np.array([0, 0, 1])).all()) self.assertEqual(results['gt_ignore_flags'].dtype, np.bool) def test_load_denorm_bboxes(self): transform = LoadAnnotations( with_bbox=True, with_label=False, with_seg=False, with_mask=False, denorm_bbox=True) results = transform(copy.deepcopy(self.results)) self.assertIn('gt_bboxes', results) self.assertTrue( (results['gt_bboxes'] == np.array([[0, 0, 4000, 6000], [4000, 3000, 44000, 36000], [20000, 15000, 24000, 24000]])).all()) self.assertEqual(results['gt_bboxes'].dtype, np.float32) def test_load_labels(self): transform = LoadAnnotations( with_bbox=False, with_label=True, with_seg=False, with_mask=False, ) results = transform(copy.deepcopy(self.results)) self.assertIn('gt_bboxes_labels', results) self.assertTrue((results['gt_bboxes_labels'] == np.array([1, 2, 2])).all()) self.assertEqual(results['gt_bboxes_labels'].dtype, np.int32) def test_load_mask(self): transform = LoadAnnotations( with_bbox=False, with_label=False, with_seg=False, with_mask=True, poly2mask=False) results = transform(copy.deepcopy(self.results)) self.assertIn('gt_masks', results) self.assertEqual(len(results['gt_masks']), 3) self.assertIsInstance(results['gt_masks'], PolygonMasks) def test_load_mask_poly2mask(self): transform = LoadAnnotations( with_bbox=False, with_label=False, with_seg=False, with_mask=True, poly2mask=True) results = transform(copy.deepcopy(self.results)) self.assertIn('gt_masks', results) self.assertEqual(len(results['gt_masks']), 3) self.assertIsInstance(results['gt_masks'], BitmapMasks) def test_repr(self): transform = LoadAnnotations( with_bbox=True, with_label=False, with_seg=False, with_mask=False, ) self.assertEqual( repr(transform), ('LoadAnnotations(with_bbox=True, ' 'with_label=False, with_mask=False, ' 'with_seg=False, poly2mask=True, ' "imdecode_backend='cv2', " "file_client_args={'backend': 'disk'})"))
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import ParamSchedulerHook class TestParamSchedulerHook: def test_after_iter(self): hook = ParamSchedulerHook() runner = Mock() scheduler = Mock() scheduler.step = Mock() scheduler.by_epoch = False runner.param_schedulers = [scheduler] hook.after_train_iter(runner, 0) scheduler.step.assert_called() def test_after_epoch(self): hook = ParamSchedulerHook() runner = Mock() scheduler = Mock() scheduler.step = Mock() scheduler.by_epoch = True runner.param_schedulers = [scheduler] hook.after_train_epoch(runner) scheduler.step.assert_called()
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import ParamSchedulerHook class TestParamSchedulerHook: def test_after_iter(self): Hook = ParamSchedulerHook() Runner = Mock() scheduler = Mock() scheduler.step = Mock() scheduler.by_epoch = False Runner.param_schedulers = [scheduler] Hook.after_train_iter(Runner) scheduler.step.assert_called() def test_after_epoch(self): Hook = ParamSchedulerHook() Runner = Mock() scheduler = Mock() scheduler.step = Mock() scheduler.by_epoch = True Runner.param_schedulers = [scheduler] Hook.after_train_epoch(Runner) scheduler.step.assert_called()
""" This script contains an example how to perform semantic search with Elasticsearch. You need Elasticsearch up and running locally: https://www.elastic.co/guide/en/elasticsearch/reference/current/run-elasticsearch-locally.html Further, you need the Python Elasticsearch Client installed: https://elasticsearch-py.readthedocs.io/, e.g.: ``` pip install elasticsearch ``` This script was created for `elasticsearch` v8.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_elasticsearch # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model sparse_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # 4. Encode the corpus print("Start encoding corpus...") start_time = time.time() corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=16, show_progress_bar=True) corpus_embeddings_decoded = sparse_model.decode(corpus_embeddings) print(f"Corpus encoding time: {time.time() - start_time:.6f} seconds") corpus_index = None while True: # 5. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) query_embeddings_decoded = sparse_model.decode(query_embeddings) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using Elasticsearch results, search_time, corpus_index = semantic_search_elasticsearch( query_embeddings_decoded, corpus_index=corpus_index, corpus_embeddings_decoded=corpus_embeddings_decoded if corpus_index is None else None, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
""" This script contains an example how to perform semantic search with Elasticsearch. You need Elasticsearch up and running locally: https://www.elastic.co/guide/en/elasticsearch/reference/current/run-elasticsearch-locally.html Further, you need the Python Elasticsearch Client installed: https://elasticsearch-py.readthedocs.io/, e.g.: ``` pip install elasticsearch ``` This script was created for `elasticsearch` v8.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_elasticsearch # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model sparse_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # 4. Encode the corpus corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=32, show_progress_bar=True) corpus_index = None while True: # 5. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using Elasticsearch results, search_time, corpus_index = semantic_search_elasticsearch( query_embeddings, corpus_index=corpus_index, corpus_embeddings=corpus_embeddings if corpus_index is None else None, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
from __future__ import annotations from torch import Tensor, nn from sentence_transformers.cross_encoder.CrossEncoder import CrossEncoder from sentence_transformers.util import fullname class MSELoss(nn.Module): def __init__(self, model: CrossEncoder, activation_fct: nn.Module = nn.Identity(), **kwargs) -> None: """ Computes the MSE loss between the computed query-passage score and a target query-passage score. This loss is used to distill a cross-encoder model from a teacher cross-encoder model or gold labels. Args: model (:class:`~sentence_transformers.cross_encoder.CrossEncoder`): A CrossEncoder model to be trained. activation_fct (:class:`~torch.nn.Module`): Activation function applied to the logits before computing the loss. **kwargs: Additional keyword arguments passed to the underlying :class:`torch.nn.MSELoss`. .. note:: Be mindful of the magnitude of both the labels and what the model produces. If the teacher model produces logits with Sigmoid to bound them to [0, 1], then you may wish to use a Sigmoid activation function in the loss. References: - Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation: https://arxiv.org/abs/2010.02666 Requirements: 1. Your model must be initialized with `num_labels = 1` (a.k.a. the default) to predict one class. 2. Usually uses a finetuned CrossEncoder teacher M in a knowledge distillation setup. Inputs: +-----------------------------------------+-----------------------------+-------------------------------+ | Texts | Labels | Number of Model Output Labels | +=========================================+=============================+===============================+ | (sentence_A, sentence_B) pairs | similarity score | 1 | +-----------------------------------------+-----------------------------+-------------------------------+ Relations: - :class:`MarginMSELoss` is similar to this loss, but with a margin through a negative pair. Example: :: from sentence_transformers.cross_encoder import CrossEncoder, CrossEncoderTrainer, losses from datasets import Dataset student_model = CrossEncoder("microsoft/mpnet-base") teacher_model = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-12-v2") train_dataset = Dataset.from_dict({ "query": ["What are pandas?", "What is the capital of France?"], "answer": ["Pandas are a kind of bear.", "The capital of France is Paris."], }) def compute_labels(batch): return { "label": teacher_model.predict(list(zip(batch["query"], batch["answer"]))) } train_dataset = train_dataset.map(compute_labels, batched=True) loss = losses.MSELoss(student_model) trainer = CrossEncoderTrainer( model=student_model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.model = model self.activation_fct = activation_fct self.loss_fct = nn.MSELoss(**kwargs) if not isinstance(self.model, CrossEncoder): raise ValueError( f"{self.__class__.__name__} expects a model of type CrossEncoder, " f"but got a model of type {type(self.model)}." ) if self.model.num_labels != 1: raise ValueError( f"{self.__class__.__name__} expects a model with 1 output label, " f"but got a model with {self.model.num_labels} output labels." ) def forward(self, inputs: list[list[str]], labels: Tensor) -> Tensor: if len(inputs) != 2: raise ValueError( f"MSELoss expects a dataset with two non-label columns, but got a dataset with {len(inputs)} columns." ) pairs = list(zip(inputs[0], inputs[1])) tokens = self.model.tokenizer( pairs, padding=True, truncation=True, return_tensors="pt", ) tokens.to(self.model.device) logits = self.model(**tokens)[0].view(-1) logits = self.activation_fct(logits) loss = self.loss_fct(logits, labels.float()) return loss def get_config_dict(self): return { "activation_fct": fullname(self.activation_fct), }
from __future__ import annotations from torch import Tensor, nn from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.util import fullname class MSELoss(nn.Module): def __init__(self, model: CrossEncoder, **kwargs) -> None: super().__init__() self.model = model self.loss_fct = nn.MSELoss(**kwargs) if self.model.num_labels != 1: raise ValueError( f"{self.__class__.__name__} expects a model with 1 output label, " f"but got a model with {self.model.num_labels} output labels." ) def forward(self, inputs: list[list[str]], labels: Tensor) -> Tensor: if len(inputs) != 2: raise ValueError( f"MSELoss expects a dataset with two non-label columns, but got a dataset with {len(inputs)} columns." ) pairs = list(zip(inputs[0], inputs[1])) tokens = self.model.tokenizer( pairs, padding=True, truncation=True, return_tensors="pt", ) tokens.to(self.model.device) logits = self.model(**tokens)[0].view(-1) loss = self.loss_fct(logits, labels.float()) return loss def get_config_dict(self): return { "activation_fct": fullname(self.activation_fct), }
import pytest import inspect from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler, CBEventType from llama_index.core.base.embeddings.base import BaseEmbedding from llama_index.embeddings.nvidia import NVIDIAEmbedding from openai import AuthenticationError from pytest_httpx import HTTPXMock @pytest.fixture() def mock_integration_api(httpx_mock: HTTPXMock): BASE_URL = "https://integrate.api.nvidia.com/v1" mock_response = {"object": "list", "data": [{"index": 0, "embedding": ""}]} httpx_mock.add_response( method="POST", url=f"{BASE_URL}/embeddings", json=mock_response, headers={"Content-Type": "application/json"}, status_code=200, ) def test_embedding_class(): emb = NVIDIAEmbedding(api_key="BOGUS") assert isinstance(emb, BaseEmbedding) def test_nvidia_embedding_param_setting(): emb = NVIDIAEmbedding( api_key="BOGUS", model="NV-Embed-QA", truncate="END", timeout=20, max_retries=10, embed_batch_size=15, ) assert emb.model == "NV-Embed-QA" assert emb.truncate == "END" assert emb._client.timeout == 20 assert emb._client.max_retries == 10 assert emb._aclient.timeout == 20 assert emb._aclient.max_retries == 10 assert emb.embed_batch_size == 15 def test_nvidia_embedding_throws_on_batches_larger_than_259(): with pytest.raises(ValueError): NVIDIAEmbedding(embed_batch_size=300) def test_nvidia_embedding_async(): emb = NVIDIAEmbedding(api_key="BOGUS") assert inspect.iscoroutinefunction(emb._aget_query_embedding) query_emb = emb._aget_query_embedding("hi") assert inspect.isawaitable(query_emb) query_emb.close() assert inspect.iscoroutinefunction(emb._aget_text_embedding) text_emb = emb._aget_text_embedding("hi") assert inspect.isawaitable(text_emb) text_emb.close() assert inspect.iscoroutinefunction(emb._aget_text_embeddings) text_embs = emb._aget_text_embeddings(["hi", "hello"]) assert inspect.isawaitable(text_embs) text_embs.close() def test_nvidia_embedding_callback(mock_integration_api): llama_debug = LlamaDebugHandler(print_trace_on_end=False) assert len(llama_debug.get_events()) == 0 callback_manager = CallbackManager([llama_debug]) emb = NVIDIAEmbedding(api_key="dummy", callback_manager=callback_manager) try: emb.get_text_embedding("hi") except AuthenticationError: pass assert len(llama_debug.get_events(CBEventType.EMBEDDING)) > 0 def test_nvidia_embedding_throws_with_invalid_key(mock_integration_api): emb = NVIDIAEmbedding(api_key="invalid") emb.get_text_embedding("hi") # @pytest.mark.parametrize("model", list(MODEL_ENDPOINT_MAP.keys())) # def test_model_compatible_client_model(model: str) -> None: # NVIDIAEmbedding(api_key="BOGUS", model=model) # marking this as xfail as we do not return invalid error anymore @pytest.mark.xfail(reason="value error is not raised anymore") def test_model_incompatible_client_model() -> None: model_name = "x" err_msg = ( f"Model {model_name} is incompatible with client NVIDIAEmbedding. " f"Please check `NVIDIAEmbedding.available_models`." ) with pytest.raises(ValueError) as msg: NVIDIAEmbedding(api_key="BOGUS", model=model_name) assert err_msg == str(msg.value) def test_model_incompatible_client_known_model() -> None: model_name = "google/deplot" warn_msg = f"Unable to determine validity" with pytest.warns(UserWarning) as msg: NVIDIAEmbedding(api_key="BOGUS", model=model_name) assert warn_msg in str(msg[0].message)
import pytest import inspect from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler, CBEventType from llama_index.core.base.embeddings.base import BaseEmbedding from llama_index.embeddings.nvidia import NVIDIAEmbedding from openai import AuthenticationError from pytest_httpx import HTTPXMock @pytest.fixture() def mock_integration_api(httpx_mock: HTTPXMock): BASE_URL = "https://integrate.api.nvidia.com/v1" mock_response = {"object": "list", "data": [{"index": 0, "embedding": ""}]} httpx_mock.add_response( method="POST", url=f"{BASE_URL}/embeddings", json=mock_response, headers={"Content-Type": "application/json"}, status_code=200, ) def test_embedding_class(): emb = NVIDIAEmbedding(api_key="BOGUS") assert isinstance(emb, BaseEmbedding) def test_nvidia_embedding_param_setting(): emb = NVIDIAEmbedding( api_key="BOGUS", model="NV-Embed-QA", truncate="END", timeout=20, max_retries=10, embed_batch_size=15, ) assert emb.model == "NV-Embed-QA" assert emb.truncate == "END" assert emb._client.timeout == 20 assert emb._client.max_retries == 10 assert emb._aclient.timeout == 20 assert emb._aclient.max_retries == 10 assert emb.embed_batch_size == 15 def test_nvidia_embedding_throws_on_batches_larger_than_259(): with pytest.raises(ValueError): NVIDIAEmbedding(embed_batch_size=300) def test_nvidia_embedding_async(): emb = NVIDIAEmbedding(api_key="BOGUS") assert inspect.iscoroutinefunction(emb._aget_query_embedding) query_emb = emb._aget_query_embedding("hi") assert inspect.isawaitable(query_emb) query_emb.close() assert inspect.iscoroutinefunction(emb._aget_text_embedding) text_emb = emb._aget_text_embedding("hi") assert inspect.isawaitable(text_emb) text_emb.close() assert inspect.iscoroutinefunction(emb._aget_text_embeddings) text_embs = emb._aget_text_embeddings(["hi", "hello"]) assert inspect.isawaitable(text_embs) text_embs.close() def test_nvidia_embedding_callback(mock_integration_api): llama_debug = LlamaDebugHandler(print_trace_on_end=False) assert len(llama_debug.get_events()) == 0 callback_manager = CallbackManager([llama_debug]) emb = NVIDIAEmbedding(api_key="dummy", callback_manager=callback_manager) try: emb.get_text_embedding("hi") except AuthenticationError: pass assert len(llama_debug.get_events(CBEventType.EMBEDDING)) > 0 def test_nvidia_embedding_throws_with_invalid_key(mock_integration_api): emb = NVIDIAEmbedding(api_key="invalid") emb.get_text_embedding("hi") # @pytest.mark.parametrize("model", list(MODEL_ENDPOINT_MAP.keys())) # def test_model_compatible_client_model(model: str) -> None: # NVIDIAEmbedding(api_key="BOGUS", model=model) def test_model_incompatible_client_model() -> None: model_name = "x" err_msg = ( f"Model {model_name} is incompatible with client NVIDIAEmbedding. " f"Please check `NVIDIAEmbedding.available_models()`." ) with pytest.raises(ValueError) as msg: NVIDIAEmbedding(api_key="BOGUS", model=model_name) assert err_msg == str(msg.value) def test_model_incompatible_client_known_model() -> None: model_name = "google/deplot" warn_msg = f"Unable to determine validity" with pytest.warns(UserWarning) as msg: NVIDIAEmbedding(api_key="BOGUS", model=model_name) assert len(msg) == 1 assert warn_msg in str(msg[0].message)
# Copyright (c) OpenMMLab. All rights reserved. from .default_scope import DefaultScope from .registry import Registry, build_from_cfg from .root import (DATA_SAMPLERS, DATASETS, HOOKS, LOOPS, METRICS, MODEL_WRAPPERS, MODELS, OPTIMIZER_CONSTRUCTORS, OPTIMIZERS, PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS, TRANSFORMS, VISBACKENDS, VISUALIZERS, WEIGHT_INITIALIZERS) __all__ = [ 'Registry', 'build_from_cfg', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIMIZER_CONSTRUCTORS', 'TASK_UTILS', 'PARAM_SCHEDULERS', 'METRICS', 'MODEL_WRAPPERS', 'LOOPS', 'VISBACKENDS', 'VISUALIZERS', 'DefaultScope' ]
# Copyright (c) OpenMMLab. All rights reserved. from .default_scope import DefaultScope from .registry import Registry, build_from_cfg from .root import (DATA_SAMPLERS, DATASETS, HOOKS, LOOPS, METRICS, MODEL_WRAPPERS, MODELS, OPTIMIZER_CONSTRUCTORS, OPTIMIZERS, PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS, TRANSFORMS, VISUALIZERS, WEIGHT_INITIALIZERS, WRITERS) __all__ = [ 'Registry', 'build_from_cfg', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIMIZER_CONSTRUCTORS', 'TASK_UTILS', 'PARAM_SCHEDULERS', 'METRICS', 'MODEL_WRAPPERS', 'LOOPS', 'WRITERS', 'VISUALIZERS', 'DefaultScope' ]
from langchain_core.prompts.prompt import PromptTemplate from langchain.memory.prompt import ( ENTITY_EXTRACTION_PROMPT, ENTITY_MEMORY_CONVERSATION_TEMPLATE, ENTITY_SUMMARIZATION_PROMPT, KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT, SUMMARY_PROMPT, ) DEFAULT_TEMPLATE = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: {history} Human: {input} AI:""" # noqa: E501 PROMPT = PromptTemplate(input_variables=["history", "input"], template=DEFAULT_TEMPLATE) # Only for backwards compatibility __all__ = [ "ENTITY_EXTRACTION_PROMPT", "ENTITY_MEMORY_CONVERSATION_TEMPLATE", "ENTITY_SUMMARIZATION_PROMPT", "KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT", "PROMPT", "SUMMARY_PROMPT", ]
# flake8: noqa from langchain.memory.prompt import ( ENTITY_EXTRACTION_PROMPT, ENTITY_MEMORY_CONVERSATION_TEMPLATE, ENTITY_SUMMARIZATION_PROMPT, KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT, SUMMARY_PROMPT, ) from langchain_core.prompts.prompt import PromptTemplate DEFAULT_TEMPLATE = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: {history} Human: {input} AI:""" PROMPT = PromptTemplate(input_variables=["history", "input"], template=DEFAULT_TEMPLATE) # Only for backwards compatibility __all__ = [ "SUMMARY_PROMPT", "ENTITY_MEMORY_CONVERSATION_TEMPLATE", "ENTITY_SUMMARIZATION_PROMPT", "ENTITY_EXTRACTION_PROMPT", "KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT", "PROMPT", ]
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["modeling_latent_upsampler"] = ["LTXLatentUpsamplerModel"] _import_structure["pipeline_ltx"] = ["LTXPipeline"] _import_structure["pipeline_ltx_condition"] = ["LTXConditionPipeline"] _import_structure["pipeline_ltx_image2video"] = ["LTXImageToVideoPipeline"] _import_structure["pipeline_ltx_latent_upsample"] = ["LTXLatentUpsamplePipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: from .modeling_latent_upsampler import LTXLatentUpsamplerModel from .pipeline_ltx import LTXPipeline from .pipeline_ltx_condition import LTXConditionPipeline from .pipeline_ltx_image2video import LTXImageToVideoPipeline from .pipeline_ltx_latent_upsample import LTXLatentUpsamplePipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_ltx"] = ["LTXPipeline"] _import_structure["pipeline_ltx_condition"] = ["LTXConditionPipeline"] _import_structure["pipeline_ltx_image2video"] = ["LTXImageToVideoPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: from .pipeline_ltx import LTXPipeline from .pipeline_ltx_condition import LTXConditionPipeline from .pipeline_ltx_image2video import LTXImageToVideoPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
from .cmuarctic import CMUARCTIC from .cmudict import CMUDict from .commonvoice import COMMONVOICE from .dr_vctk import DR_VCTK from .fluentcommands import FluentSpeechCommands from .gtzan import GTZAN from .librilight_limited import LibriLightLimited from .librimix import LibriMix from .librispeech import LIBRISPEECH from .libritts import LIBRITTS from .ljspeech import LJSPEECH from .musdb_hq import MUSDB_HQ from .quesst14 import QUESST14 from .speechcommands import SPEECHCOMMANDS from .tedlium import TEDLIUM from .vctk import VCTK_092 from .voxceleb1 import VoxCeleb1Identification, VoxCeleb1Verification from .yesno import YESNO __all__ = [ "COMMONVOICE", "LIBRISPEECH", "LibriLightLimited", "SPEECHCOMMANDS", "VCTK_092", "DR_VCTK", "YESNO", "LJSPEECH", "GTZAN", "CMUARCTIC", "CMUDict", "LibriMix", "LIBRITTS", "TEDLIUM", "QUESST14", "MUSDB_HQ", "FluentSpeechCommands", "VoxCeleb1Identification", "VoxCeleb1Verification", ]
from .cmuarctic import CMUARCTIC from .cmudict import CMUDict from .commonvoice import COMMONVOICE from .dr_vctk import DR_VCTK from .fluentcommands import FluentSpeechCommands from .gtzan import GTZAN from .librilight_limited import LibriLightLimited from .librimix import LibriMix from .librispeech import LIBRISPEECH from .libritts import LIBRITTS from .ljspeech import LJSPEECH from .musdb_hq import MUSDB_HQ from .quesst14 import QUESST14 from .speechcommands import SPEECHCOMMANDS from .tedlium import TEDLIUM from .vctk import VCTK_092 from .yesno import YESNO __all__ = [ "COMMONVOICE", "LIBRISPEECH", "LibriLightLimited", "SPEECHCOMMANDS", "VCTK_092", "DR_VCTK", "YESNO", "LJSPEECH", "GTZAN", "CMUARCTIC", "CMUDict", "LibriMix", "LIBRITTS", "TEDLIUM", "QUESST14", "MUSDB_HQ", "FluentSpeechCommands", ]
import pathlib from typing import Any, Dict, List, Optional, Tuple, Union from torchdata.datapipes.iter import CSVDictParser, Demultiplexer, Filter, IterDataPipe, Mapper, Zipper from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, INFINITE_BUFFER_SIZE, path_comparator, ) from torchvision.prototype.tv_tensors import Label from torchvision.tv_tensors import BoundingBoxes from .._api import register_dataset, register_info NAME = "gtsrb" @register_info(NAME) def _info() -> Dict[str, Any]: return dict( categories=[f"{label:05d}" for label in range(43)], ) @register_dataset(NAME) class GTSRB(Dataset): """GTSRB Dataset homepage="https://benchmark.ini.rub.de" """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) _URL_ROOT = "https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/" _URLS = { "train": f"{_URL_ROOT}GTSRB-Training_fixed.zip", "test": f"{_URL_ROOT}GTSRB_Final_Test_Images.zip", "test_ground_truth": f"{_URL_ROOT}GTSRB_Final_Test_GT.zip", } _CHECKSUMS = { "train": "df4144942083645bd60b594de348aa6930126c3e0e5de09e39611630abf8455a", "test": "48ba6fab7e877eb64eaf8de99035b0aaecfbc279bee23e35deca4ac1d0a837fa", "test_ground_truth": "f94e5a7614d75845c74c04ddb26b8796b9e483f43541dd95dd5b726504e16d6d", } def _resources(self) -> List[OnlineResource]: rsrcs: List[OnlineResource] = [HttpResource(self._URLS[self._split], sha256=self._CHECKSUMS[self._split])] if self._split == "test": rsrcs.append( HttpResource( self._URLS["test_ground_truth"], sha256=self._CHECKSUMS["test_ground_truth"], ) ) return rsrcs def _classify_train_archive(self, data: Tuple[str, Any]) -> Optional[int]: path = pathlib.Path(data[0]) if path.suffix == ".ppm": return 0 elif path.suffix == ".csv": return 1 else: return None def _prepare_sample(self, data: Tuple[Tuple[str, Any], Dict[str, Any]]) -> Dict[str, Any]: (path, buffer), csv_info = data label = int(csv_info["ClassId"]) bounding_boxes = BoundingBoxes( [int(csv_info[k]) for k in ("Roi.X1", "Roi.Y1", "Roi.X2", "Roi.Y2")], format="xyxy", spatial_size=(int(csv_info["Height"]), int(csv_info["Width"])), ) return { "path": path, "image": EncodedImage.from_file(buffer), "label": Label(label, categories=self._categories), "bounding_boxes": bounding_boxes, } def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: if self._split == "train": images_dp, ann_dp = Demultiplexer( resource_dps[0], 2, self._classify_train_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE ) else: images_dp, ann_dp = resource_dps images_dp = Filter(images_dp, path_comparator("suffix", ".ppm")) # The order of the image files in the .zip archives perfectly match the order of the entries in the # (possibly concatenated) .csv files. So we're able to use Zipper here instead of a IterKeyZipper. ann_dp = CSVDictParser(ann_dp, delimiter=";") dp = Zipper(images_dp, ann_dp) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 26_640 if self._split == "train" else 12_630
import pathlib from typing import Any, Dict, List, Optional, Tuple, Union from torchdata.datapipes.iter import CSVDictParser, Demultiplexer, Filter, IterDataPipe, Mapper, Zipper from torchvision.datapoints import BoundingBoxes from torchvision.prototype.datapoints import Label from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, INFINITE_BUFFER_SIZE, path_comparator, ) from .._api import register_dataset, register_info NAME = "gtsrb" @register_info(NAME) def _info() -> Dict[str, Any]: return dict( categories=[f"{label:05d}" for label in range(43)], ) @register_dataset(NAME) class GTSRB(Dataset): """GTSRB Dataset homepage="https://benchmark.ini.rub.de" """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) _URL_ROOT = "https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/" _URLS = { "train": f"{_URL_ROOT}GTSRB-Training_fixed.zip", "test": f"{_URL_ROOT}GTSRB_Final_Test_Images.zip", "test_ground_truth": f"{_URL_ROOT}GTSRB_Final_Test_GT.zip", } _CHECKSUMS = { "train": "df4144942083645bd60b594de348aa6930126c3e0e5de09e39611630abf8455a", "test": "48ba6fab7e877eb64eaf8de99035b0aaecfbc279bee23e35deca4ac1d0a837fa", "test_ground_truth": "f94e5a7614d75845c74c04ddb26b8796b9e483f43541dd95dd5b726504e16d6d", } def _resources(self) -> List[OnlineResource]: rsrcs: List[OnlineResource] = [HttpResource(self._URLS[self._split], sha256=self._CHECKSUMS[self._split])] if self._split == "test": rsrcs.append( HttpResource( self._URLS["test_ground_truth"], sha256=self._CHECKSUMS["test_ground_truth"], ) ) return rsrcs def _classify_train_archive(self, data: Tuple[str, Any]) -> Optional[int]: path = pathlib.Path(data[0]) if path.suffix == ".ppm": return 0 elif path.suffix == ".csv": return 1 else: return None def _prepare_sample(self, data: Tuple[Tuple[str, Any], Dict[str, Any]]) -> Dict[str, Any]: (path, buffer), csv_info = data label = int(csv_info["ClassId"]) bounding_boxes = BoundingBoxes( [int(csv_info[k]) for k in ("Roi.X1", "Roi.Y1", "Roi.X2", "Roi.Y2")], format="xyxy", spatial_size=(int(csv_info["Height"]), int(csv_info["Width"])), ) return { "path": path, "image": EncodedImage.from_file(buffer), "label": Label(label, categories=self._categories), "bounding_boxes": bounding_boxes, } def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: if self._split == "train": images_dp, ann_dp = Demultiplexer( resource_dps[0], 2, self._classify_train_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE ) else: images_dp, ann_dp = resource_dps images_dp = Filter(images_dp, path_comparator("suffix", ".ppm")) # The order of the image files in the .zip archives perfectly match the order of the entries in the # (possibly concatenated) .csv files. So we're able to use Zipper here instead of a IterKeyZipper. ann_dp = CSVDictParser(ann_dp, delimiter=";") dp = Zipper(images_dp, ann_dp) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 26_640 if self._split == "train" else 12_630
from __future__ import annotations from sentence_transformers.losses.MSELoss import MSELoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseMSELoss(MSELoss): def __init__(self, model: SparseEncoder) -> None: """ # TODO: Update as it's mentionned trainings not applied to sparse models Computes the MSE loss between the computed sentence embedding and a target sentence embedding. This loss is used when extending sentence embeddings to new languages as described in our publication Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation. For an example, see `the distillation documentation <../../../examples/sentence_transformer/training/distillation/README.html>`_ on extending language models to new languages. Args: model: SparseEncoder References: - Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation: https://arxiv.org/abs/2004.09813 - `Training > Model Distillation <../../../examples/sentence_transformer/training/distillation/README.html>`_ - `Training > Multilingual Models <../../../examples/sentence_transformer/training/multilingual/README.html>`_ Requirements: 1. Usually uses a finetuned teacher M in a knowledge distillation setup Inputs: +-----------------------------------------+-----------------------------+ | Texts | Labels | +=========================================+=============================+ | sentence | model sentence embeddings | +-----------------------------------------+-----------------------------+ | sentence_1, sentence_2, ..., sentence_N | model sentence embeddings | +-----------------------------------------+-----------------------------+ Relations: - :class:`SparseMarginMSELoss` is equivalent to this loss, but with a margin through a negative pair. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses student_model = SparseEncoder("prithivida/Splade_PP_en_v1") teacher_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") train_dataset = Dataset.from_dict( { "english": ["The first sentence", "The second sentence", "The third sentence", "The fourth sentence"], "french": ["La première phrase", "La deuxième phrase", "La troisième phrase", "La quatrième phrase"], } ) def compute_labels(batch): return {"label": teacher_model.encode(batch["english"], convert_to_sparse_tensor=False)} train_dataset = train_dataset.map(compute_labels, batched=True) loss = losses.SparseMSELoss(student_model) trainer = SparseEncoderTrainer(model=student_model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model)
from __future__ import annotations from sentence_transformers.losses.MSELoss import MSELoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseMSELoss(MSELoss): def __init__(self, model: SparseEncoder) -> None: """ # TODO: Update as it's mentionned trainings not applied to sparse models Computes the MSE loss between the computed sentence embedding and a target sentence embedding. This loss is used when extending sentence embeddings to new languages as described in our publication Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation. For an example, see `the distillation documentation <../../../examples/sentence_transformer/training/distillation/README.html>`_ on extending language models to new languages. Args: model: SparseEncoder References: - Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation: https://arxiv.org/abs/2004.09813 - `Training > Model Distillation <../../../examples/sentence_transformer/training/distillation/README.html>`_ - `Training > Multilingual Models <../../../examples/sentence_transformer/training/multilingual/README.html>`_ Requirements: 1. Usually uses a finetuned teacher M in a knowledge distillation setup Inputs: +-----------------------------------------+-----------------------------+ | Texts | Labels | +=========================================+=============================+ | sentence | model sentence embeddings | +-----------------------------------------+-----------------------------+ | sentence_1, sentence_2, ..., sentence_N | model sentence embeddings | +-----------------------------------------+-----------------------------+ Relations: - :class:`SparseMarginMSELoss` is equivalent to this loss, but with a margin through a negative pair. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses student_model = SparseEncoder("prithivida/Splade_PP_en_v1") teacher_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") train_dataset = Dataset.from_dict( { "english": ["The first sentence", "The second sentence", "The third sentence", "The fourth sentence"], "french": ["La première phrase", "La deuxième phrase", "La troisième phrase", "La quatrième phrase"], } ) def compute_labels(batch): return {"label": teacher_model.encode(batch["english"], convert_to_sparse_tensor=False)} train_dataset = train_dataset.map(compute_labels, batched=True) loss = losses.SparseMSELoss(student_model) trainer = SparseEncoderTrainer(model=student_model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model)
""" Arize-Phoenix LlamaPack. """ from typing import TYPE_CHECKING, Any, Dict, List from llama_index.core import set_global_handler from llama_index.core.indices.vector_store import VectorStoreIndex from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.schema import TextNode if TYPE_CHECKING: from phoenix import Session as PhoenixSession class ArizePhoenixQueryEnginePack(BaseLlamaPack): """ The Arize-Phoenix LlamaPack show how to instrument your LlamaIndex query engine with tracing. It launches Phoenix in the background, builds an index over an input list of nodes, and instantiates and instruments a query engine over that index so that trace data from each query is sent to Phoenix. Note: Using this LlamaPack requires that your OpenAI API key is set via the OPENAI_API_KEY environment variable. """ def __init__( self, nodes: List[TextNode], **kwargs: Any, ) -> None: """ Initializes a new instance of ArizePhoenixQueryEnginePack. Args: nodes (List[TextNode]): An input list of nodes over which the index will be built. """ try: import phoenix as px except ImportError: raise ImportError( "The arize-phoenix package could not be found. " "Please install with `pip install arize-phoenix`." ) self._session: "PhoenixSession" = px.launch_app() set_global_handler("arize_phoenix") self._index = VectorStoreIndex(nodes, **kwargs) self._query_engine = self._index.as_query_engine() def get_modules(self) -> Dict[str, Any]: """ Returns a dictionary containing the internals of the LlamaPack. Returns: Dict[str, Any]: A dictionary containing the internals of the LlamaPack. """ return { "session": self._session, "session_url": self._session.url, "index": self._index, "query_engine": self._query_engine, } def run(self, *args: Any, **kwargs: Any) -> Any: """ Runs queries against the index. Returns: Any: A response from the query engine. """ return self._query_engine.query(*args, **kwargs)
""" Arize-Phoenix LlamaPack. """ from typing import TYPE_CHECKING, Any, Dict, List from llama_index.core import set_global_handler from llama_index.core.indices.vector_store import VectorStoreIndex from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.schema import TextNode if TYPE_CHECKING: from phoenix import Session as PhoenixSession class ArizePhoenixQueryEnginePack(BaseLlamaPack): """ The Arize-Phoenix LlamaPack show how to instrument your LlamaIndex query engine with tracing. It launches Phoenix in the background, builds an index over an input list of nodes, and instantiates and instruments a query engine over that index so that trace data from each query is sent to Phoenix. Note: Using this LlamaPack requires that your OpenAI API key is set via the OPENAI_API_KEY environment variable. """ def __init__( self, nodes: List[TextNode], **kwargs: Any, ) -> None: """ Initializes a new instance of ArizePhoenixQueryEnginePack. Args: nodes (List[TextNode]): An input list of nodes over which the index will be built. """ try: import phoenix as px except ImportError: raise ImportError( "The arize-phoenix package could not be found. " "Please install with `pip install arize-phoenix`." ) self._session: "PhoenixSession" = px.launch_app() set_global_handler("arize_phoenix") self._index = VectorStoreIndex(nodes, **kwargs) self._query_engine = self._index.as_query_engine() def get_modules(self) -> Dict[str, Any]: """ Returns a dictionary containing the internals of the LlamaPack. Returns: Dict[str, Any]: A dictionary containing the internals of the LlamaPack. """ return { "session": self._session, "session_url": self._session.url, "index": self._index, "query_engine": self._query_engine, } def run(self, *args: Any, **kwargs: Any) -> Any: """ Runs queries against the index. Returns: Any: A response from the query engine. """ return self._query_engine.query(*args, **kwargs)
# Copyright (c) OpenMMLab. All rights reserved. from collections import OrderedDict from mmcv.utils import print_log from mmdet.core import eval_map, eval_recalls from .builder import DATASETS from .xml_style import XMLDataset @DATASETS.register_module() class VOCDataset(XMLDataset): CLASSES = ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') PALETTE = [(106, 0, 228), (119, 11, 32), (165, 42, 42), (0, 0, 192), (197, 226, 255), (0, 60, 100), (0, 0, 142), (255, 77, 255), (153, 69, 1), (120, 166, 157), (0, 182, 199), (0, 226, 252), (182, 182, 255), (0, 0, 230), (220, 20, 60), (163, 255, 0), (0, 82, 0), (3, 95, 161), (0, 80, 100), (183, 130, 88)] def __init__(self, **kwargs): super(VOCDataset, self).__init__(**kwargs) if 'VOC2007' in self.img_prefix: self.year = 2007 elif 'VOC2012' in self.img_prefix: self.year = 2012 else: raise ValueError('Cannot infer dataset year from img_prefix') def evaluate(self, results, metric='mAP', logger=None, proposal_nums=(100, 300, 1000), iou_thr=0.5, scale_ranges=None): """Evaluate in VOC protocol. Args: results (list[list | tuple]): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. Options are 'mAP', 'recall'. logger (logging.Logger | str, optional): Logger used for printing related information during evaluation. Default: None. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thr (float | list[float]): IoU threshold. Default: 0.5. scale_ranges (list[tuple], optional): Scale ranges for evaluating mAP. If not specified, all bounding boxes would be included in evaluation. Default: None. Returns: dict[str, float]: AP/recall metrics. """ if not isinstance(metric, str): assert len(metric) == 1 metric = metric[0] allowed_metrics = ['mAP', 'recall'] if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') annotations = [self.get_ann_info(i) for i in range(len(self))] eval_results = OrderedDict() iou_thrs = [iou_thr] if isinstance(iou_thr, float) else iou_thr if metric == 'mAP': assert isinstance(iou_thrs, list) if self.year == 2007: ds_name = 'voc07' else: ds_name = self.CLASSES mean_aps = [] for iou_thr in iou_thrs: print_log(f'\n{"-" * 15}iou_thr: {iou_thr}{"-" * 15}') # Follow the official implementation, # http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCdevkit_18-May-2011.tar # we should use the legacy coordinate system in mmdet 1.x, # which means w, h should be computed as 'x2 - x1 + 1` and # `y2 - y1 + 1` mean_ap, _ = eval_map( results, annotations, scale_ranges=None, iou_thr=iou_thr, dataset=ds_name, logger=logger, use_legacy_coordinate=True) mean_aps.append(mean_ap) eval_results[f'AP{int(iou_thr * 100):02d}'] = round(mean_ap, 3) eval_results['mAP'] = sum(mean_aps) / len(mean_aps) elif metric == 'recall': gt_bboxes = [ann['bboxes'] for ann in annotations] recalls = eval_recalls( gt_bboxes, results, proposal_nums, iou_thrs, logger=logger, use_legacy_coordinate=True) for i, num in enumerate(proposal_nums): for j, iou_thr in enumerate(iou_thrs): eval_results[f'recall@{num}@{iou_thr}'] = recalls[i, j] if recalls.shape[1] > 1: ar = recalls.mean(axis=1) for i, num in enumerate(proposal_nums): eval_results[f'AR@{num}'] = ar[i] return eval_results
# Copyright (c) OpenMMLab. All rights reserved. from collections import OrderedDict from mmcv.utils import print_log from mmdet.core import eval_map, eval_recalls from .builder import DATASETS from .xml_style import XMLDataset @DATASETS.register_module() class VOCDataset(XMLDataset): CLASSES = ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') def __init__(self, **kwargs): super(VOCDataset, self).__init__(**kwargs) if 'VOC2007' in self.img_prefix: self.year = 2007 elif 'VOC2012' in self.img_prefix: self.year = 2012 else: raise ValueError('Cannot infer dataset year from img_prefix') def evaluate(self, results, metric='mAP', logger=None, proposal_nums=(100, 300, 1000), iou_thr=0.5, scale_ranges=None): """Evaluate in VOC protocol. Args: results (list[list | tuple]): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. Options are 'mAP', 'recall'. logger (logging.Logger | str, optional): Logger used for printing related information during evaluation. Default: None. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thr (float | list[float]): IoU threshold. Default: 0.5. scale_ranges (list[tuple], optional): Scale ranges for evaluating mAP. If not specified, all bounding boxes would be included in evaluation. Default: None. Returns: dict[str, float]: AP/recall metrics. """ if not isinstance(metric, str): assert len(metric) == 1 metric = metric[0] allowed_metrics = ['mAP', 'recall'] if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') annotations = [self.get_ann_info(i) for i in range(len(self))] eval_results = OrderedDict() iou_thrs = [iou_thr] if isinstance(iou_thr, float) else iou_thr if metric == 'mAP': assert isinstance(iou_thrs, list) if self.year == 2007: ds_name = 'voc07' else: ds_name = self.CLASSES mean_aps = [] for iou_thr in iou_thrs: print_log(f'\n{"-" * 15}iou_thr: {iou_thr}{"-" * 15}') # Follow the official implementation, # http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCdevkit_18-May-2011.tar # we should use the legacy coordinate system in mmdet 1.x, # which means w, h should be computed as 'x2 - x1 + 1` and # `y2 - y1 + 1` mean_ap, _ = eval_map( results, annotations, scale_ranges=None, iou_thr=iou_thr, dataset=ds_name, logger=logger, use_legacy_coordinate=True) mean_aps.append(mean_ap) eval_results[f'AP{int(iou_thr * 100):02d}'] = round(mean_ap, 3) eval_results['mAP'] = sum(mean_aps) / len(mean_aps) elif metric == 'recall': gt_bboxes = [ann['bboxes'] for ann in annotations] recalls = eval_recalls( gt_bboxes, results, proposal_nums, iou_thrs, logger=logger, use_legacy_coordinate=True) for i, num in enumerate(proposal_nums): for j, iou_thr in enumerate(iou_thrs): eval_results[f'recall@{num}@{iou_thr}'] = recalls[i, j] if recalls.shape[1] > 1: ar = recalls.mean(axis=1) for i, num in enumerate(proposal_nums): eval_results[f'AR@{num}'] = ar[i] return eval_results
"""Init file of LlamaIndex.""" __version__ = "0.12.12" import logging from logging import NullHandler from typing import Callable, Optional try: # Force pants to install eval_type_backport on 3.9 import eval_type_backport # noqa # type: ignore except ImportError: pass # response from llama_index.core.base.response.schema import Response # import global eval handler from llama_index.core.callbacks.global_handlers import set_global_handler from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.embeddings.mock_embed_model import MockEmbedding # indices # loading from llama_index.core.indices import ( ComposableGraph, DocumentSummaryIndex, GPTDocumentSummaryIndex, GPTKeywordTableIndex, GPTListIndex, GPTRAKEKeywordTableIndex, GPTSimpleKeywordTableIndex, GPTTreeIndex, GPTVectorStoreIndex, KeywordTableIndex, KnowledgeGraphIndex, ListIndex, PropertyGraphIndex, RAKEKeywordTableIndex, SimpleKeywordTableIndex, SummaryIndex, TreeIndex, VectorStoreIndex, load_graph_from_storage, load_index_from_storage, load_indices_from_storage, ) # structured from llama_index.core.indices.common.struct_store.base import ( SQLDocumentContextBuilder, ) # prompt helper from llama_index.core.indices.prompt_helper import PromptHelper # prompts from llama_index.core.prompts import ( BasePromptTemplate, ChatPromptTemplate, # backwards compatibility Prompt, PromptTemplate, SelectorPromptTemplate, ) from llama_index.core.readers import SimpleDirectoryReader, download_loader # Response Synthesizer from llama_index.core.response_synthesizers.factory import get_response_synthesizer from llama_index.core.schema import Document, QueryBundle from llama_index.core.service_context import ( ServiceContext, set_global_service_context, ) # global settings from llama_index.core.settings import Settings # storage from llama_index.core.storage.storage_context import StorageContext # sql wrapper from llama_index.core.utilities.sql_wrapper import SQLDatabase # global tokenizer from llama_index.core.utils import get_tokenizer, set_global_tokenizer # best practices for library logging: # https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library logging.getLogger(__name__).addHandler(NullHandler()) __all__ = [ "StorageContext", "ServiceContext", "ComposableGraph", # indices "SummaryIndex", "VectorStoreIndex", "SimpleKeywordTableIndex", "KeywordTableIndex", "RAKEKeywordTableIndex", "TreeIndex", "DocumentSummaryIndex", "KnowledgeGraphIndex", "PropertyGraphIndex", # indices - legacy names "GPTKeywordTableIndex", "GPTKnowledgeGraphIndex", "GPTSimpleKeywordTableIndex", "GPTRAKEKeywordTableIndex", "GPTListIndex", "ListIndex", "GPTTreeIndex", "GPTVectorStoreIndex", "GPTDocumentSummaryIndex", "Prompt", "PromptTemplate", "BasePromptTemplate", "ChatPromptTemplate", "SelectorPromptTemplate", "SummaryPrompt", "TreeInsertPrompt", "TreeSelectPrompt", "TreeSelectMultiplePrompt", "RefinePrompt", "QuestionAnswerPrompt", "KeywordExtractPrompt", "QueryKeywordExtractPrompt", "Response", "Document", "SimpleDirectoryReader", "VellumPredictor", "VellumPromptRegistry", "MockEmbedding", "SQLDatabase", "SQLDocumentContextBuilder", "SQLContextBuilder", "PromptHelper", "IndexStructType", "download_loader", "load_graph_from_storage", "load_index_from_storage", "load_indices_from_storage", "QueryBundle", "get_response_synthesizer", "set_global_service_context", "set_global_handler", "set_global_tokenizer", "get_tokenizer", "Settings", ] # eval global toggle from llama_index.core.callbacks.base_handler import BaseCallbackHandler global_handler: Optional[BaseCallbackHandler] = None # NOTE: keep for backwards compatibility SQLContextBuilder = SQLDocumentContextBuilder # global tokenizer global_tokenizer: Optional[Callable[[str], list]] = None
"""Init file of LlamaIndex.""" __version__ = "0.12.11" import logging from logging import NullHandler from typing import Callable, Optional try: # Force pants to install eval_type_backport on 3.9 import eval_type_backport # noqa # type: ignore except ImportError: pass # response from llama_index.core.base.response.schema import Response # import global eval handler from llama_index.core.callbacks.global_handlers import set_global_handler from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.embeddings.mock_embed_model import MockEmbedding # indices # loading from llama_index.core.indices import ( ComposableGraph, DocumentSummaryIndex, GPTDocumentSummaryIndex, GPTKeywordTableIndex, GPTListIndex, GPTRAKEKeywordTableIndex, GPTSimpleKeywordTableIndex, GPTTreeIndex, GPTVectorStoreIndex, KeywordTableIndex, KnowledgeGraphIndex, ListIndex, PropertyGraphIndex, RAKEKeywordTableIndex, SimpleKeywordTableIndex, SummaryIndex, TreeIndex, VectorStoreIndex, load_graph_from_storage, load_index_from_storage, load_indices_from_storage, ) # structured from llama_index.core.indices.common.struct_store.base import ( SQLDocumentContextBuilder, ) # prompt helper from llama_index.core.indices.prompt_helper import PromptHelper # prompts from llama_index.core.prompts import ( BasePromptTemplate, ChatPromptTemplate, # backwards compatibility Prompt, PromptTemplate, SelectorPromptTemplate, ) from llama_index.core.readers import SimpleDirectoryReader, download_loader # Response Synthesizer from llama_index.core.response_synthesizers.factory import get_response_synthesizer from llama_index.core.schema import Document, QueryBundle from llama_index.core.service_context import ( ServiceContext, set_global_service_context, ) # global settings from llama_index.core.settings import Settings # storage from llama_index.core.storage.storage_context import StorageContext # sql wrapper from llama_index.core.utilities.sql_wrapper import SQLDatabase # global tokenizer from llama_index.core.utils import get_tokenizer, set_global_tokenizer # best practices for library logging: # https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library logging.getLogger(__name__).addHandler(NullHandler()) __all__ = [ "StorageContext", "ServiceContext", "ComposableGraph", # indices "SummaryIndex", "VectorStoreIndex", "SimpleKeywordTableIndex", "KeywordTableIndex", "RAKEKeywordTableIndex", "TreeIndex", "DocumentSummaryIndex", "KnowledgeGraphIndex", "PropertyGraphIndex", # indices - legacy names "GPTKeywordTableIndex", "GPTKnowledgeGraphIndex", "GPTSimpleKeywordTableIndex", "GPTRAKEKeywordTableIndex", "GPTListIndex", "ListIndex", "GPTTreeIndex", "GPTVectorStoreIndex", "GPTDocumentSummaryIndex", "Prompt", "PromptTemplate", "BasePromptTemplate", "ChatPromptTemplate", "SelectorPromptTemplate", "SummaryPrompt", "TreeInsertPrompt", "TreeSelectPrompt", "TreeSelectMultiplePrompt", "RefinePrompt", "QuestionAnswerPrompt", "KeywordExtractPrompt", "QueryKeywordExtractPrompt", "Response", "Document", "SimpleDirectoryReader", "VellumPredictor", "VellumPromptRegistry", "MockEmbedding", "SQLDatabase", "SQLDocumentContextBuilder", "SQLContextBuilder", "PromptHelper", "IndexStructType", "download_loader", "load_graph_from_storage", "load_index_from_storage", "load_indices_from_storage", "QueryBundle", "get_response_synthesizer", "set_global_service_context", "set_global_handler", "set_global_tokenizer", "get_tokenizer", "Settings", ] # eval global toggle from llama_index.core.callbacks.base_handler import BaseCallbackHandler global_handler: Optional[BaseCallbackHandler] = None # NOTE: keep for backwards compatibility SQLContextBuilder = SQLDocumentContextBuilder # global tokenizer global_tokenizer: Optional[Callable[[str], list]] = None
""" Separation of concerns: DataAdapter: - x, y - sample_weight - class_weight - shuffle - batch_size - steps, as it relates to batch_size for array data EpochIterator: - whether to yield numpy or tf data - steps - most argument validation Trainer: - steps_per_execution - validation_split - validation_data - callbacks - validation_freq - epochs - initial_epoch - any backend-specific concern such as distribution PyDataset: - num_workers - use_multiprocessing - max_queue_size EpochIterator steps: 1. Look at data type and select correct DataHandler 2. Instantiate DataHandler with correct arguments 3. Raise or warn on unused arguments 4. in __iter__, iterate, either for a fixed number of steps or until there is no data """ import warnings from keras.src.trainers import data_adapters class EpochIterator: def __init__( self, x, y=None, sample_weight=None, batch_size=None, steps_per_epoch=None, shuffle=False, class_weight=None, steps_per_execution=1, ): self.steps_per_epoch = steps_per_epoch self.steps_per_execution = steps_per_execution if steps_per_epoch: self._current_iterator = None self._insufficient_data = False self.data_adapter = data_adapters.get_data_adapter( x=x, y=y, sample_weight=sample_weight, batch_size=batch_size, steps_per_epoch=steps_per_epoch, shuffle=shuffle, class_weight=class_weight, ) self._num_batches = self.data_adapter.num_batches def _get_iterator(self): return self.data_adapter.get_numpy_iterator() def enumerate_epoch(self): buffer = [] self.data_adapter.on_epoch_begin() if self.steps_per_epoch: if self._current_iterator is None: self._current_iterator = iter(self._get_iterator()) self._insufficient_data = False for step in range(self.steps_per_epoch): if self._insufficient_data: break try: data = next(self._current_iterator) buffer.append(data) if len(buffer) == self.steps_per_execution: yield step - len(buffer) + 1, buffer buffer = [] except (StopIteration,): warnings.warn( "Your input ran out of data; interrupting epoch. " "Make sure that your dataset or generator can generate " "at least `steps_per_epoch * epochs` batches. " "You may need to use the `.repeat()` " "function when building your dataset.", stacklevel=2, ) self._current_iterator = None self._insufficient_data = True if buffer: yield step - len(buffer) + 1, buffer else: for step, data in enumerate(self._get_iterator()): buffer.append(data) if len(buffer) == self.steps_per_execution: yield step - len(buffer) + 1, buffer buffer = [] if buffer: yield step - len(buffer) + 1, buffer if not self._num_batches: # Infer the number of batches returned by the data_adapter. # Assumed static. self._num_batches = step + 1 self.data_adapter.on_epoch_end() @property def num_batches(self): if self.steps_per_epoch: return self.steps_per_epoch # Either copied from the data_adapter, or # inferred at the end of an iteration. return self._num_batches
""" Separation of concerns: DataAdapter: - x, y - sample_weight - class_weight - shuffle - batch_size - steps, as it relates to batch_size for array data EpochIterator: - whether to yield numpy or tf data - steps - most argument validation Trainer: - steps_per_execution - validation_split - validation_data - callbacks - validation_freq - epochs - initial_epoch - any backend-specific concern such as distribution PyDataset: - num_workers - use_multiprocessing - max_queue_size EpochIterator steps: 1. Look at data type and select correct DataHandler 2. Instantiate DataHandler with correct arguments 3. Raise or warn on unused arguments 4. in __iter__, iterate, either for a fixed number of steps or until there is no data """ import warnings from keras.src.trainers import data_adapters class EpochIterator: def __init__( self, x, y=None, sample_weight=None, batch_size=None, steps_per_epoch=None, shuffle=False, class_weight=None, steps_per_execution=1, ): self.steps_per_epoch = steps_per_epoch self.steps_per_execution = steps_per_execution if steps_per_epoch: self._current_iterator = None self._insufficient_data = False self.data_adapter = data_adapters.get_data_adapter( x=x, y=y, sample_weight=sample_weight, batch_size=batch_size, steps_per_epoch=steps_per_epoch, shuffle=shuffle, class_weight=class_weight, ) self._num_batches = self.data_adapter.num_batches def _get_iterator(self): return self.data_adapter.get_numpy_iterator() def enumerate_epoch(self): buffer = [] if self.steps_per_epoch: if self._current_iterator is None: self._current_iterator = iter(self._get_iterator()) self._insufficient_data = False for step in range(self.steps_per_epoch): if self._insufficient_data: break try: data = next(self._current_iterator) buffer.append(data) if len(buffer) == self.steps_per_execution: yield step - len(buffer) + 1, buffer buffer = [] except (StopIteration,): warnings.warn( "Your input ran out of data; interrupting epoch. " "Make sure that your dataset or generator can generate " "at least `steps_per_epoch * epochs` batches. " "You may need to use the `.repeat()` " "function when building your dataset.", stacklevel=2, ) self._current_iterator = None self._insufficient_data = True if buffer: yield step - len(buffer) + 1, buffer else: for step, data in enumerate(self._get_iterator()): buffer.append(data) if len(buffer) == self.steps_per_execution: yield step - len(buffer) + 1, buffer buffer = [] if buffer: yield step - len(buffer) + 1, buffer if not self._num_batches: # Infer the number of batches returned by the data_adapter. # Assumed static. self._num_batches = step + 1 self.data_adapter.on_epoch_end() @property def num_batches(self): if self.steps_per_epoch: return self.steps_per_epoch # Either copied from the data_adapter, or # inferred at the end of an iteration. return self._num_batches
import os from typing import Any, Optional from llama_index.llms.openai_like import OpenAILike class Cerebras(OpenAILike): """ Cerebras LLM. Examples: `pip install llama-index-llms-cerebras` ```python from llama_index.llms.cerebras import Cerebras # Set up the Cerebras class with the required model and API key llm = Cerebras(model="llama-3.3-70b", api_key="your_api_key") # Call the complete method with a query response = llm.complete("Why is fast inference important?") print(response) ``` """ def __init__( self, model: str, api_key: Optional[str] = None, api_base: str = os.environ.get("CEREBRAS_BASE_URL", None) or "https://api.cerebras.ai/v1/", is_chat_model: bool = True, **kwargs: Any, ) -> None: api_key = api_key or os.environ.get("CEREBRAS_API_KEY", None) assert api_key is not None, ( "API Key not specified! Please set `CEREBRAS_API_KEY`!" ) super().__init__( model=model, api_key=api_key, api_base=api_base, is_chat_model=is_chat_model, **kwargs, ) @classmethod def class_name(cls) -> str: """Get class name.""" return "Cerebras"
import os from typing import Any, Optional from llama_index.llms.openai_like import OpenAILike class Cerebras(OpenAILike): """ Cerebras LLM. Examples: `pip install llama-index-llms-cerebras` ```python from llama_index.llms.cerebras import Cerebras # Set up the Cerebras class with the required model and API key llm = Cerebras(model="llama-3.3-70b", api_key="your_api_key") # Call the complete method with a query response = llm.complete("Why is fast inference important?") print(response) ``` """ def __init__( self, model: str, api_key: Optional[str] = None, api_base: str = os.environ.get("CEREBRAS_BASE_URL", None) or "https://api.cerebras.ai/v1/", is_chat_model: bool = True, **kwargs: Any, ) -> None: api_key = api_key or os.environ.get("CEREBRAS_API_KEY", None) assert ( api_key is not None ), "API Key not specified! Please set `CEREBRAS_API_KEY`!" super().__init__( model=model, api_key=api_key, api_base=api_base, is_chat_model=is_chat_model, **kwargs, ) @classmethod def class_name(cls) -> str: """Get class name.""" return "Cerebras"
from unittest import mock import pytest from llama_index.core.workflow import Context from llama_index.core.workflow.handler import WorkflowHandler def test_str(): h = WorkflowHandler() h.set_result([]) assert str(h) == "[]" @pytest.mark.asyncio async def test_stream_no_context(): h = WorkflowHandler() with pytest.raises(ValueError, match="Context is not set!"): async for ev in h.stream_events(): pass @pytest.mark.asyncio async def test_run_step_no_context(): h = WorkflowHandler() with pytest.raises( ValueError, match="Context must be set to run a workflow step-wise!", ): await h.run_step() @pytest.mark.asyncio async def test_run_step_no_stepwise(): ctx = mock.MagicMock(spec=Context, stepwise=False) h = WorkflowHandler(ctx=ctx) with pytest.raises( ValueError, match="Workflow must be created passing stepwise=True to call this method.", ): await h.run_step()
from unittest import mock import pytest from llama_index.core.workflow import Context from llama_index.core.workflow.handler import WorkflowHandler def test_str(): h = WorkflowHandler() h.set_result([]) assert str(h) == "[]" @pytest.mark.asyncio() async def test_stream_no_context(): h = WorkflowHandler() with pytest.raises(ValueError, match="Context is not set!"): async for ev in h.stream_events(): pass @pytest.mark.asyncio() async def test_run_step_no_context(): h = WorkflowHandler() with pytest.raises( ValueError, match="Context must be set to run a workflow step-wise!", ): await h.run_step() @pytest.mark.asyncio() async def test_run_step_no_stepwise(): ctx = mock.MagicMock(spec=Context, stepwise=False) h = WorkflowHandler(ctx=ctx) with pytest.raises( ValueError, match="Workflow must be created passing stepwise=True to call this method.", ): await h.run_step()
""" This script runs the evaluation of an SBERT msmarco model on the MS MARCO dev dataset and reports different performances metrices for cossine similarity & dot-product. Usage: python eval_msmarco.py model_name [max_corpus_size_in_thousands] """ import logging import os import sys import tarfile from sentence_transformers import LoggingHandler, SentenceTransformer, evaluation, util #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Name of the SBERT model model_name = sys.argv[1] # You can limit the approx. max size of the corpus. Pass 100 as second parameter and the corpus has a size of approx 100k docs corpus_max_size = int(sys.argv[2]) * 1000 if len(sys.argv) >= 3 else 0 #### Load model model = SentenceTransformer(model_name) ### Data files data_folder = "msmarco-data" os.makedirs(data_folder, exist_ok=True) collection_filepath = os.path.join(data_folder, "collection.tsv") dev_queries_file = os.path.join(data_folder, "queries.dev.small.tsv") qrels_filepath = os.path.join(data_folder, "qrels.dev.tsv") ### Download files if needed if not os.path.exists(collection_filepath) or not os.path.exists(dev_queries_file): tar_filepath = os.path.join(data_folder, "collectionandqueries.tar.gz") if not os.path.exists(tar_filepath): logging.info("Download: " + tar_filepath) util.http_get( "https://msmarco.z22.web.core.windows.net/msmarcoranking/collectionandqueries.tar.gz", tar_filepath ) with tarfile.open(tar_filepath, "r:gz") as tar: tar.extractall(path=data_folder) if not os.path.exists(qrels_filepath): util.http_get("https://msmarco.z22.web.core.windows.net/msmarcoranking/qrels.dev.tsv", qrels_filepath) ### Load data corpus = {} # Our corpus pid => passage dev_queries = {} # Our dev queries. qid => query dev_rel_docs = {} # Mapping qid => set with relevant pids needed_pids = set() # Passage IDs we need needed_qids = set() # Query IDs we need # Load the 6980 dev queries with open(dev_queries_file, encoding="utf8") as fIn: for line in fIn: qid, query = line.strip().split("\t") dev_queries[qid] = query.strip() # Load which passages are relevant for which queries with open(qrels_filepath) as fIn: for line in fIn: qid, _, pid, _ = line.strip().split("\t") if qid not in dev_queries: continue if qid not in dev_rel_docs: dev_rel_docs[qid] = set() dev_rel_docs[qid].add(pid) needed_pids.add(pid) needed_qids.add(qid) # Read passages with open(collection_filepath, encoding="utf8") as fIn: for line in fIn: pid, passage = line.strip().split("\t") passage = passage if pid in needed_pids or corpus_max_size <= 0 or len(corpus) <= corpus_max_size: corpus[pid] = passage.strip() ## Run evaluator logging.info(f"Queries: {len(dev_queries)}") logging.info(f"Corpus: {len(corpus)}") ir_evaluator = evaluation.InformationRetrievalEvaluator( dev_queries, corpus, dev_rel_docs, show_progress_bar=True, corpus_chunk_size=100000, precision_recall_at_k=[10, 100], name="msmarco dev", ) ir_evaluator(model)
""" This script runs the evaluation of an SBERT msmarco model on the MS MARCO dev dataset and reports different performances metrices for cossine similarity & dot-product. Usage: python eval_msmarco.py model_name [max_corpus_size_in_thousands] """ import logging import os import sys import tarfile from sentence_transformers import LoggingHandler, SentenceTransformer, evaluation, util #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Name of the SBERT model model_name = sys.argv[1] # You can limit the approx. max size of the corpus. Pass 100 as second parameter and the corpus has a size of approx 100k docs corpus_max_size = int(sys.argv[2]) * 1000 if len(sys.argv) >= 3 else 0 #### Load model model = SentenceTransformer(model_name) ### Data files data_folder = "msmarco-data" os.makedirs(data_folder, exist_ok=True) collection_filepath = os.path.join(data_folder, "collection.tsv") dev_queries_file = os.path.join(data_folder, "queries.dev.small.tsv") qrels_filepath = os.path.join(data_folder, "qrels.dev.tsv") ### Download files if needed if not os.path.exists(collection_filepath) or not os.path.exists(dev_queries_file): tar_filepath = os.path.join(data_folder, "collectionandqueries.tar.gz") if not os.path.exists(tar_filepath): logging.info("Download: " + tar_filepath) util.http_get( "https://msmarco.z22.web.core.windows.net/msmarcoranking/collectionandqueries.tar.gz", tar_filepath ) with tarfile.open(tar_filepath, "r:gz") as tar: tar.extractall(path=data_folder) if not os.path.exists(qrels_filepath): util.http_get("https://msmarco.z22.web.core.windows.net/msmarcoranking/qrels.dev.tsv", qrels_filepath) ### Load data corpus = {} # Our corpus pid => passage dev_queries = {} # Our dev queries. qid => query dev_rel_docs = {} # Mapping qid => set with relevant pids needed_pids = set() # Passage IDs we need needed_qids = set() # Query IDs we need # Load the 6980 dev queries with open(dev_queries_file, encoding="utf8") as fIn: for line in fIn: qid, query = line.strip().split("\t") dev_queries[qid] = query.strip() # Load which passages are relevant for which queries with open(qrels_filepath) as fIn: for line in fIn: qid, _, pid, _ = line.strip().split("\t") if qid not in dev_queries: continue if qid not in dev_rel_docs: dev_rel_docs[qid] = set() dev_rel_docs[qid].add(pid) needed_pids.add(pid) needed_qids.add(qid) # Read passages with open(collection_filepath, encoding="utf8") as fIn: for line in fIn: pid, passage = line.strip().split("\t") passage = passage if pid in needed_pids or corpus_max_size <= 0 or len(corpus) <= corpus_max_size: corpus[pid] = passage.strip() ## Run evaluator logging.info("Queries: {}".format(len(dev_queries))) logging.info("Corpus: {}".format(len(corpus))) ir_evaluator = evaluation.InformationRetrievalEvaluator( dev_queries, corpus, dev_rel_docs, show_progress_bar=True, corpus_chunk_size=100000, precision_recall_at_k=[10, 100], name="msmarco dev", ) ir_evaluator(model)
import numpy as np from docarray import Document, DocumentArray, dataclass from docarray.typing import Text from jina import Executor, Flow, requests def test_specific_params(): class MyExec(Executor): def __init__(self, params_awaited, *args, **kwargs): super().__init__(*args, **kwargs) self.params_awaited = params_awaited @requests def process(self, docs, parameters, **kwargs): for doc in docs: doc.tags['assert'] = parameters == self.params_awaited flow = ( Flow() .add(uses=MyExec, name='exec1', uses_with={'params_awaited': {'key_1': True}}) .add( uses=MyExec, name='exec2', uses_with={'params_awaited': {'key_1': True, 'key_2': False}}, ) ) with flow: docs = flow.index( DocumentArray.empty(size=1), parameters={'key_1': True, 'exec2__key_2': False}, ) assert docs[0].tags['assert'] def test_specific_params_with_branched_flow(): class TextEncoderTestSpecific(Executor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.model = lambda t: np.random.rand( len(t), 128 ) # initialize dummy text embedding model @requests(on='/encode') def encode_text(self, docs, parameters, **kwargs): path = parameters.get('access_path', None) text_docs = docs[path] embeddings = self.model(text_docs[:, 'text']) text_docs.embeddings = embeddings class EmbeddingCombinerTestSpecific(Executor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.model = lambda emb1, emb2: np.concatenate( [emb1, emb2], axis=1 ) # initialize dummy model to combine embeddings @requests(on='/encode') def combine(self, docs, parameters, **kwargs): text1_path = parameters.get('text1_access_path', None) text2_path = parameters.get('text2_access_path', None) assert text1_path == '@.[text1]' assert text2_path == '@.[text2]' text1_docs = docs[text1_path] text2_docs = docs[text2_path] combined_embeddings = self.model( text1_docs.embeddings, text2_docs.embeddings ) docs.embeddings = combined_embeddings @dataclass class MMDoc: text1: Text text2: Text mmdoc_dataclass = MMDoc(text1='text 1', text2='text 2') da = DocumentArray([Document(mmdoc_dataclass)]) f = ( Flow() .add(uses=TextEncoderTestSpecific, name='Text1Encoder') .add(uses=TextEncoderTestSpecific, name='Text2Encoder', needs='gateway') .add( uses=EmbeddingCombinerTestSpecific, name='Combiner', needs=['Text1Encoder', 'Text2Encoder'], ) ) with f: da = f.post( inputs=da, on='/encode', parameters={ 'Text1Encoder__access_path': '@.[text1]', 'Text2Encoder__access_path': '@.[text2]', 'Combiner__text1_access_path': '@.[text1]', 'Combiner__text2_access_path': '@.[text2]', }, ) assert len(da) == 1 for d in da: assert d.embedding.shape == (256,)
import numpy as np from docarray import DocumentArray, Document, dataclass from docarray.typing import Text from jina import Executor, Flow, requests def test_specific_params(): class MyExec(Executor): def __init__(self, params_awaited, *args, **kwargs): super().__init__(*args, **kwargs) self.params_awaited = params_awaited @requests def process(self, docs, parameters, **kwargs): for doc in docs: doc.tags['assert'] = parameters == self.params_awaited flow = ( Flow() .add(uses=MyExec, name='exec1', uses_with={'params_awaited': {'key_1': True}}) .add( uses=MyExec, name='exec2', uses_with={'params_awaited': {'key_1': True, 'key_2': False}}, ) ) with flow: docs = flow.index( DocumentArray.empty(size=1), parameters={'key_1': True, 'exec2__key_2': False}, ) assert docs[0].tags['assert'] def test_specific_params_with_branched_flow(): class TextEncoderTestSpecific(Executor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.model = lambda t: np.random.rand( len(t), 128 ) # initialize dummy text embedding model @requests(on='/encode') def encode_text(self, docs, parameters, **kwargs): path = parameters.get('access_path', None) text_docs = docs[path] embeddings = self.model(text_docs[:, 'text']) text_docs.embeddings = embeddings class EmbeddingCombinerTestSpecific(Executor): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.model = lambda emb1, emb2: np.concatenate( [emb1, emb2], axis=1 ) # initialize dummy model to combine embeddings @requests(on='/encode') def combine(self, docs, parameters, **kwargs): text1_path = parameters.get('text1_access_path', None) text2_path = parameters.get('text2_access_path', None) assert text1_path == '@.[text1]' assert text2_path == '@.[text2]' text1_docs = docs[text1_path] text2_docs = docs[text2_path] combined_embeddings = self.model(text1_docs.embeddings, text2_docs.embeddings) docs.embeddings = combined_embeddings @dataclass class MMDoc: text1: Text text2: Text mmdoc_dataclass = MMDoc(text1='text 1', text2='text 2') da = DocumentArray([Document(mmdoc_dataclass)]) f = ( Flow() .add(uses=TextEncoderTestSpecific, name='Text1Encoder') .add(uses=TextEncoderTestSpecific, name='Text2Encoder', needs='gateway') .add(uses=EmbeddingCombinerTestSpecific, name='Combiner', needs=['Text1Encoder', 'Text2Encoder']) ) with f: da = f.post( inputs=da, on='/encode', parameters={ 'Text1Encoder__access_path': '@.[text1]', 'Text2Encoder__access_path': '@.[text2]', 'Combiner__text1_access_path': '@.[text1]', 'Combiner__text2_access_path': '@.[text2]', }, ) assert len(da) == 1 for d in da: assert d.embedding.shape == (256, )
from typing import Union from docarray.typing.tensor.audio.audio_ndarray import AudioNdArray from docarray.utils.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.audio.audio_tensorflow_tensor import ( AudioTensorFlowTensor as AudioTFTensor, ) AudioTensor = AudioNdArray if tf_available and torch_available: AudioTensor = Union[AudioNdArray, AudioTorchTensor, AudioTFTensor] # type: ignore elif tf_available: AudioTensor = Union[AudioNdArray, AudioTFTensor] # type: ignore elif torch_available: AudioTensor = Union[AudioNdArray, AudioTorchTensor] # type: ignore
from typing import Union from docarray.typing.tensor.audio.audio_ndarray import AudioNdArray try: import torch # noqa: F401 except ImportError: AudioTensor = AudioNdArray else: from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor AudioTensor = Union[AudioNdArray, AudioTorchTensor] # type: ignore
import logging from typing import Any, Dict, Optional, Tuple from llama_index.core.base.llms.generic_utils import get_from_param_or_env DEFAULT_UPSTAGE_API_BASE = "https://api.upstage.ai/v1/solar" DEFAULT_CONTEXT_WINDOW = 32768 CHAT_MODELS = { "solar-mini": 32768, "solar-pro": 4096, } FUNCTION_CALLING_MODELS = ["solar-mini"] DOC_PARSING_MODELS = ["solar-pro"] ALL_AVAILABLE_MODELS = {**CHAT_MODELS} SOLAR_TOKENIZERS = { "solar-pro": "upstage/solar-pro-tokenizer", "solar-mini": "upstage/solar-1-mini-tokenizer", } logger = logging.getLogger(__name__) def resolve_upstage_credentials( api_key: Optional[str] = None, api_base: Optional[str] = None, ) -> Tuple[Optional[str], str]: """Resolve Upstage credentials. The order of precedence is: 1. param 2. env 4. default """ # resolve from param or env api_key = get_from_param_or_env("api_key", api_key, "UPSTAGE_API_KEY", "") api_base = get_from_param_or_env("api_base", api_base, "UPSTAGE_API_BASE", "") final_api_key = api_key or "" final_api_base = api_base or DEFAULT_UPSTAGE_API_BASE return final_api_key, str(final_api_base) def is_chat_model(model: str) -> bool: return True def is_function_calling_model(model: str) -> bool: return model in FUNCTION_CALLING_MODELS def is_doc_parsing_model(model: str, kwargs: Dict[str, Any]) -> bool: if "file_path" in kwargs: if model in DOC_PARSING_MODELS: return True raise ValueError("file_path is not supported for this model.") return False def upstage_modelname_to_contextsize(modelname: str) -> int: if modelname not in ALL_AVAILABLE_MODELS: return DEFAULT_CONTEXT_WINDOW return CHAT_MODELS[modelname]
import logging from typing import Any, Dict, Optional, Tuple from llama_index.core.base.llms.generic_utils import get_from_param_or_env DEFAULT_UPSTAGE_API_BASE = "https://api.upstage.ai/v1/solar" DEFAULT_CONTEXT_WINDOW = 32768 CHAT_MODELS = { "solar-1-mini-chat": 32768, "solar-pro": 4096, "solar-docvision": 65536, } FUNCTION_CALLING_MODELS = ["solar-1-mini-chat"] DOC_PARSING_MODELS = ["solar-pro"] ALL_AVAILABLE_MODELS = {**CHAT_MODELS} SOLAR_TOKENIZERS = { "solar-pro": "upstage/solar-pro-tokenizer", "solar-1-mini-chat": "upstage/solar-1-mini-tokenizer", "solar-docvision": "upstage/solar-docvision-preview-tokenizer", } logger = logging.getLogger(__name__) def resolve_upstage_credentials( api_key: Optional[str] = None, api_base: Optional[str] = None, ) -> Tuple[Optional[str], str]: """Resolve Upstage credentials. The order of precedence is: 1. param 2. env 4. default """ # resolve from param or env api_key = get_from_param_or_env("api_key", api_key, "UPSTAGE_API_KEY", "") api_base = get_from_param_or_env("api_base", api_base, "UPSTAGE_API_BASE", "") final_api_key = api_key or "" final_api_base = api_base or DEFAULT_UPSTAGE_API_BASE return final_api_key, str(final_api_base) def is_chat_model(model: str) -> bool: return True def is_function_calling_model(model: str) -> bool: return model in FUNCTION_CALLING_MODELS def is_doc_parsing_model(model: str, kwargs: Dict[str, Any]) -> bool: if "file_path" in kwargs: if model in DOC_PARSING_MODELS: return True raise ValueError("file_path is not supported for this model.") return False def upstage_modelname_to_contextsize(modelname: str) -> int: if modelname not in ALL_AVAILABLE_MODELS: return DEFAULT_CONTEXT_WINDOW return CHAT_MODELS[modelname]
import logging from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") datasets = ["QuoraRetrieval", "MSMARCO"] evaluator = SparseNanoBEIREvaluator( dataset_names=datasets, show_progress_bar=True, batch_size=32, ) # Run evaluation results = evaluator(model) """ Evaluating NanoQuoraRetrieval Information Retrieval Evaluation of the model on the NanoQuoraRetrieval dataset: Queries: 50 Corpus: 5046 Score-Function: dot Accuracy@1: 92.00% Accuracy@3: 96.00% Accuracy@5: 98.00% Accuracy@10: 100.00% Precision@1: 92.00% Precision@3: 40.00% Precision@5: 24.80% Precision@10: 13.20% Recall@1: 79.73% Recall@3: 92.53% Recall@5: 94.93% Recall@10: 98.27% MRR@10: 0.9439 NDCG@10: 0.9339 MAP@100: 0.9072 Model Query Sparsity: Active Dimensions: 63.0, Sparsity Ratio: 0.9979 Model Corpus Sparsity: Active Dimensions: 63.4, Sparsity Ratio: 0.9979 Information Retrieval Evaluation of the model on the NanoMSMARCO dataset: Queries: 50 Corpus: 5043 Score-Function: dot Accuracy@1: 48.00% Accuracy@3: 74.00% Accuracy@5: 76.00% Accuracy@10: 88.00% Precision@1: 48.00% Precision@3: 24.67% Precision@5: 15.20% Precision@10: 8.80% Recall@1: 48.00% Recall@3: 74.00% Recall@5: 76.00% Recall@10: 88.00% MRR@10: 0.6211 NDCG@10: 0.6838 MAP@100: 0.6277 Model Query Sparsity: Active Dimensions: 48.1, Sparsity Ratio: 0.9984 Model Corpus Sparsity: Active Dimensions: 125.4, Sparsity Ratio: 0.9959 Average Queries: 50.0 Average Corpus: 5044.5 Aggregated for Score Function: dot Accuracy@1: 70.00% Accuracy@3: 85.00% Accuracy@5: 87.00% Accuracy@10: 94.00% Precision@1: 70.00% Recall@1: 63.87% Precision@3: 32.33% Recall@3: 83.27% Precision@5: 20.00% Recall@5: 85.47% Precision@10: 11.00% Recall@10: 93.13% MRR@10: 0.7825 NDCG@10: 0.8089 Model Query Sparsity: Active Dimensions: 55.5, Sparsity Ratio: 0.9982 Model Corpus Sparsity: Active Dimensions: 94.4, Sparsity Ratio: 0.9969 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8089
import logging from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") datasets = ["QuoraRetrieval", "MSMARCO"] evaluator = SparseNanoBEIREvaluator( dataset_names=datasets, show_progress_bar=True, batch_size=32, ) # Run evaluation results = evaluator(model) """ Evaluating NanoQuoraRetrieval Information Retrieval Evaluation of the model on the NanoQuoraRetrieval dataset: Queries: 50 Corpus: 5046 Score-Function: dot Accuracy@1: 92.00% Accuracy@3: 96.00% Accuracy@5: 98.00% Accuracy@10: 100.00% Precision@1: 92.00% Precision@3: 40.00% Precision@5: 24.80% Precision@10: 13.20% Recall@1: 79.73% Recall@3: 92.53% Recall@5: 94.93% Recall@10: 98.27% MRR@10: 0.9439 NDCG@10: 0.9339 MAP@100: 0.9072 Model Sparsity Stats Query : Row Non-Zero Mean: 62.97999954223633, Row Sparsity Mean: 0.9979365468025208 Model Sparsity Stats Corpus : Row Non-Zero Mean: 63.39932632446289, Row Sparsity Mean: 0.9979228377342224 Information Retrieval Evaluation of the model on the NanoMSMARCO dataset: Queries: 50 Corpus: 5043 Score-Function: dot Accuracy@1: 48.00% Accuracy@3: 74.00% Accuracy@5: 76.00% Accuracy@10: 88.00% Precision@1: 48.00% Precision@3: 24.67% Precision@5: 15.20% Precision@10: 8.80% Recall@1: 48.00% Recall@3: 74.00% Recall@5: 76.00% Recall@10: 88.00% MRR@10: 0.6211 NDCG@10: 0.6838 MAP@100: 0.6277 Model Sparsity Stats Query : Row Non-Zero Mean: 48.08000183105469, Row Sparsity Mean: 0.9984247088432312 Model Sparsity Stats Corpus : Row Non-Zero Mean: 125.3604965209961, Row Sparsity Mean: 0.9958928227424622 Average Queries: 50.0 Average Corpus: 5044.5 Aggregated for Score Function: dot Accuracy@1: 70.00% Accuracy@3: 85.00% Accuracy@5: 87.00% Accuracy@10: 94.00% Precision@1: 70.00% Recall@1: 63.87% Precision@3: 32.33% Recall@3: 83.27% Precision@5: 20.00% Recall@5: 85.47% Precision@10: 11.00% Recall@10: 93.13% MRR@10: 0.7825 NDCG@10: 0.8089 Model Sparsity Stats Query : Row Non-Zero Mean: 55.53000068664551, Row Sparsity Mean: 0.998180627822876 Model Sparsity Stats Corpus : Row Non-Zero Mean: 94.37991142272949, Row Sparsity Mean: 0.9969078302383423 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8089
from langchain_core.exceptions import TracerException from langchain_core.tracers.base import BaseTracer __all__ = ["TracerException", "BaseTracer"]
from langchain_core.tracers.base import BaseTracer, TracerException __all__ = ["TracerException", "BaseTracer"]
import logging from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") datasets = ["QuoraRetrieval", "MSMARCO"] evaluator = SparseNanoBEIREvaluator( dataset_names=datasets, show_progress_bar=True, batch_size=32, ) # Run evaluation results = evaluator(model) """ Evaluating NanoQuoraRetrieval Information Retrieval Evaluation of the model on the NanoQuoraRetrieval dataset: Query info: num_rows: 50, num_cols: 30522, row_non_zero_mean: 62.97999954223633, row_sparsity_mean: 0.9979365468025208 1/1 [00:04<00:00, 4.12s/it] Corpus info: num_rows: 5046, num_cols: 30522, row_non_zero_mean: 63.394371032714844, row_sparsity_mean: 0.9979230165481567 Score-Function: dot Accuracy@1: 92.00% Accuracy@3: 96.00% Accuracy@5: 98.00% Accuracy@10: 100.00% Precision@1: 92.00% Precision@3: 40.00% Precision@5: 24.80% Precision@10: 13.20% Recall@1: 79.73% Recall@3: 92.53% Recall@5: 94.93% Recall@10: 98.27% MRR@10: 0.9439 NDCG@10: 0.9339 MAP@100: 0.9072 Evaluating NanoMSMARCO Information Retrieval Evaluation of the model on the NanoMSMARCO dataset: Query info: num_rows: 50, num_cols: 30522, row_non_zero_mean: 48.099998474121094, row_sparsity_mean: 0.99842399358749391/1 [00:19<00:00, 19.40s/it] Corpus info: num_rows: 5043, num_cols: 30522, row_non_zero_mean: 125.38131713867188, row_sparsity_mean: 0.9958921670913696 Score-Function: dot Accuracy@1: 48.00% Accuracy@3: 74.00% Accuracy@5: 76.00% Accuracy@10: 88.00% Precision@1: 48.00% Precision@3: 24.67% Precision@5: 15.20% Precision@10: 8.80% Recall@1: 48.00% Recall@3: 74.00% Recall@5: 76.00% Recall@10: 88.00% MRR@10: 0.6211 NDCG@10: 0.6838 MAP@100: 0.6277 Average Querie: num_rows: 50.0, num_cols: 30522.0, row_non_zero_mean: 55.53999900817871, row_sparsity_mean: 0.9981802701950073 Average Corpus: num_rows: 5044.5, num_cols: 30522.0, row_non_zero_mean: 94.38784408569336, row_sparsity_mean: 0.9969075918197632 Aggregated for Score Function: dot Accuracy@1: 70.00% Accuracy@3: 85.00% Accuracy@5: 87.00% Accuracy@10: 94.00% Precision@1: 70.00% Recall@1: 63.87% Precision@3: 32.33% Recall@3: 83.27% Precision@5: 20.00% Recall@5: 85.47% Precision@10: 11.00% Recall@10: 93.13% MRR@10: 0.7825 NDCG@10: 0.8089 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8089
import logging from sentence_transformers.sparse_encoder import ( SparseEncoder, SparseNanoBEIREvaluator, ) logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") datasets = ["QuoraRetrieval", "MSMARCO"] evaluator = SparseNanoBEIREvaluator( dataset_names=datasets, show_progress_bar=True, batch_size=32, ) # Run evaluation results = evaluator(model) """ Evaluating NanoQuoraRetrieval Information Retrieval Evaluation of the model on the NanoQuoraRetrieval dataset: Query info: num_rows: 50, num_cols: 30522, row_non_zero_mean: 62.97999954223633, row_sparsity_mean: 0.9979365468025208 1/1 [00:04<00:00, 4.12s/it] Corpus info: num_rows: 5046, num_cols: 30522, row_non_zero_mean: 63.394371032714844, row_sparsity_mean: 0.9979230165481567 Score-Function: dot Accuracy@1: 92.00% Accuracy@3: 96.00% Accuracy@5: 98.00% Accuracy@10: 100.00% Precision@1: 92.00% Precision@3: 40.00% Precision@5: 24.80% Precision@10: 13.20% Recall@1: 79.73% Recall@3: 92.53% Recall@5: 94.93% Recall@10: 98.27% MRR@10: 0.9439 NDCG@10: 0.9339 MAP@100: 0.9072 Evaluating NanoMSMARCO Information Retrieval Evaluation of the model on the NanoMSMARCO dataset: Query info: num_rows: 50, num_cols: 30522, row_non_zero_mean: 48.099998474121094, row_sparsity_mean: 0.99842399358749391/1 [00:19<00:00, 19.40s/it] Corpus info: num_rows: 5043, num_cols: 30522, row_non_zero_mean: 125.38131713867188, row_sparsity_mean: 0.9958921670913696 Score-Function: dot Accuracy@1: 48.00% Accuracy@3: 74.00% Accuracy@5: 76.00% Accuracy@10: 88.00% Precision@1: 48.00% Precision@3: 24.67% Precision@5: 15.20% Precision@10: 8.80% Recall@1: 48.00% Recall@3: 74.00% Recall@5: 76.00% Recall@10: 88.00% MRR@10: 0.6211 NDCG@10: 0.6838 MAP@100: 0.6277 Average Querie: num_rows: 50.0, num_cols: 30522.0, row_non_zero_mean: 55.53999900817871, row_sparsity_mean: 0.9981802701950073 Average Corpus: num_rows: 5044.5, num_cols: 30522.0, row_non_zero_mean: 94.38784408569336, row_sparsity_mean: 0.9969075918197632 Aggregated for Score Function: dot Accuracy@1: 70.00% Accuracy@3: 85.00% Accuracy@5: 87.00% Accuracy@10: 94.00% Precision@1: 70.00% Recall@1: 63.87% Precision@3: 32.33% Recall@3: 83.27% Precision@5: 20.00% Recall@5: 85.47% Precision@10: 11.00% Recall@10: 93.13% MRR@10: 0.7825 NDCG@10: 0.8089 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8089
import platform from argparse import ArgumentParser import huggingface_hub import pandas import pyarrow from datasets import __version__ as version from datasets.commands import BaseDatasetsCLICommand def info_command_factory(_): return EnvironmentCommand() class EnvironmentCommand(BaseDatasetsCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): download_parser = parser.add_parser("env", help="Print relevant system environment info.") download_parser.set_defaults(func=info_command_factory) def run(self): info = { "`datasets` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "PyArrow version": pyarrow.__version__, "Pandas version": pandas.__version__, } print("\nCopy-and-paste the text below in your GitHub issue.\n") print(self.format_dict(info)) return info @staticmethod def format_dict(d): return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
import platform from argparse import ArgumentParser import pandas import pyarrow from datasets import __version__ as version from datasets.commands import BaseDatasetsCLICommand def info_command_factory(_): return EnvironmentCommand() class EnvironmentCommand(BaseDatasetsCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): download_parser = parser.add_parser("env", help="Print relevant system environment info.") download_parser.set_defaults(func=info_command_factory) def run(self): info = { "`datasets` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyArrow version": pyarrow.__version__, "Pandas version": pandas.__version__, } print("\nCopy-and-paste the text below in your GitHub issue.\n") print(self.format_dict(info)) return info @staticmethod def format_dict(d): return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet import * # noqa from mmdet.core import DetDataSample from mmdet.testing import demo_mm_inputs, get_detector_cfg from mmdet.utils import register_all_modules class TestKDSingleStageDetector(TestCase): def setUp(self): register_all_modules() @parameterized.expand(['ld/ld_r18_gflv1_r101_fpn_coco_1x.py']) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) self.assertTrue(detector.backbone) self.assertTrue(detector.neck) self.assertTrue(detector.bbox_head) @parameterized.expand([('ld/ld_r18_gflv1_r101_fpn_coco_1x.py', ('cpu', 'cuda'))]) def test_single_stage_forward_train(self, cfg_file, devices): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) batch_inputs, data_samples = detector.data_preprocessor( packed_inputs, True) # Test forward train losses = detector.forward(batch_inputs, data_samples, mode='loss') self.assertIsInstance(losses, dict) @parameterized.expand([('ld/ld_r18_gflv1_r101_fpn_coco_1x.py', ('cpu', 'cuda'))]) def test_single_stage_forward_test(self, cfg_file, devices): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) batch_inputs, data_samples = detector.data_preprocessor( packed_inputs, False) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward( batch_inputs, data_samples, mode='predict') self.assertEqual(len(batch_results), 2) self.assertIsInstance(batch_results[0], DetDataSample)
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet import * # noqa from mmdet.core import DetDataSample from mmdet.testing import demo_mm_inputs, get_detector_cfg class TestKDSingleStageDetector(TestCase): # TODO: waiting ``ld/ld_r18_gflv1_r101_fpn_coco_1x.py`` ready @parameterized.expand(['lad/lad_r101_paa_r50_fpn_coco_1x.py']) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) assert detector.backbone assert detector.neck assert detector.bbox_head assert detector.device.type == 'cpu' @parameterized.expand([('lad/lad_r101_paa_r50_fpn_coco_1x.py', ('cpu', 'cuda'))]) def test_single_stage_forward_train(self, cfg_file, devices): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() assert detector.device.type == device packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) # Test forward train losses = detector.forward(packed_inputs, return_loss=True) assert isinstance(losses, dict) # Test forward_dummy batch = torch.ones((1, 3, 64, 64)).to(device=device) out = detector.forward_dummy(batch) assert isinstance(out, tuple) assert len(out) == 3 @parameterized.expand([('lad/lad_r101_paa_r50_fpn_coco_1x.py', ('cpu', 'cuda'))]) def test_single_stage_forward_test(self, cfg_file, devices): model = get_detector_cfg(cfg_file) model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() assert detector.device.type == device packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward( packed_inputs, return_loss=False) assert len(batch_results) == 2 assert isinstance(batch_results[0], DetDataSample)
import re from typing import TYPE_CHECKING, Any, Dict, Union if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SentenceEvaluator: """ Base class for all evaluators Extend this class and implement __call__ for custom evaluators. """ def __init__(self): """ Base class for all evaluators. Notably, this class introduces the ``greater_is_better`` and ``primary_metric`` attributes. The former is a boolean indicating whether a higher evaluation score is better, which is used for choosing the best checkpoint if ``load_best_model_at_end`` is set to ``True`` in the training arguments. The latter is a string indicating the primary metric for the evaluator. This has to be defined whenever the evaluator returns a dictionary of metrics, and the primary metric is the key pointing to the primary metric, i.e. the one that is used for model selection and/or logging. """ self.greater_is_better = True self.primary_metric = None def __call__( self, model: "SentenceTransformer", output_path: str = None, epoch: int = -1, steps: int = -1 ) -> Union[float, Dict[str, float]]: """ This is called during training to evaluate the model. It returns a score for the evaluation with a higher score indicating a better result. Args: model: the model to evaluate output_path: path where predictions and metrics are written to epoch: the epoch where the evaluation takes place. This is used for the file prefixes. If this is -1, then we assume evaluation on test data. steps: the steps in the current epoch at time of the evaluation. This is used for the file prefixes. If this is -1, then we assume evaluation at the end of the epoch. Returns: Either a score for the evaluation with a higher score indicating a better result, or a dictionary with scores. If the latter is chosen, then `evaluator.primary_metric` must be defined """ pass def prefix_name_to_metrics(self, metrics: Dict[str, float], name: str): if not name: return metrics metrics = {name + "_" + key: value for key, value in metrics.items()} if hasattr(self, "primary_metric") and not self.primary_metric.startswith(name + "_"): self.primary_metric = name + "_" + self.primary_metric return metrics def store_metrics_in_model_card_data(self, model: "SentenceTransformer", metrics: Dict[str, Any]) -> None: model.model_card_data.set_evaluation_metrics(self, metrics) @property def description(self) -> str: """ Returns a human-readable description of the evaluator: BinaryClassificationEvaluator -> Binary Classification 1. Remove "Evaluator" from the class name 2. Add a space before every capital letter """ class_name = self.__class__.__name__ try: index = class_name.index("Evaluator") class_name = class_name[:index] except IndexError: pass return re.sub(r"([a-z])([A-Z])", "\g<1> \g<2>", class_name)
from sentence_transformers import SentenceTransformer class SentenceEvaluator: """ Base class for all evaluators Extend this class and implement __call__ for custom evaluators. """ def __call__(self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: """ This is called during training to evaluate the model. It returns a score for the evaluation with a higher score indicating a better result. :param model: the model to evaluate :param output_path: path where predictions and metrics are written to :param epoch the epoch where the evaluation takes place. This is used for the file prefixes. If this is -1, then we assume evaluation on test data. :param steps the steps in the current epoch at time of the evaluation. This is used for the file prefixes. If this is -1, then we assume evaluation at the end of the epoch. :return: a score for the evaluation with a higher score indicating a better result """ pass
# dataset settings dataset_type = 'CocoPanopticDataset' # data_root = 'data/coco/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadPanopticAnnotations', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadPanopticAnnotations', backend_args=backend_args), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/panoptic_train2017.json', data_prefix=dict( img='train2017/', seg='annotations/panoptic_train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/panoptic_val2017.json', data_prefix=dict(img='val2017/', seg='annotations/panoptic_val2017/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoPanopticMetric', ann_file=data_root + 'annotations/panoptic_val2017.json', seg_prefix=data_root + 'annotations/panoptic_val2017/', backend_args=backend_args) test_evaluator = val_evaluator # inference on test dataset and # format the output results for submission. # test_dataloader = dict( # batch_size=1, # num_workers=1, # persistent_workers=True, # drop_last=False, # sampler=dict(type='DefaultSampler', shuffle=False), # dataset=dict( # type=dataset_type, # data_root=data_root, # ann_file='annotations/panoptic_image_info_test-dev2017.json', # data_prefix=dict(img='test2017/'), # test_mode=True, # pipeline=test_pipeline)) # test_evaluator = dict( # type='CocoPanopticMetric', # format_only=True, # ann_file=data_root + 'annotations/panoptic_image_info_test-dev2017.json', # outfile_prefix='./work_dirs/coco_panoptic/test')
# dataset settings dataset_type = 'CocoPanopticDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadPanopticAnnotations', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadPanopticAnnotations', file_client_args=file_client_args), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/panoptic_train2017.json', data_prefix=dict( img='train2017/', seg='annotations/panoptic_train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/panoptic_val2017.json', data_prefix=dict(img='val2017/', seg='annotations/panoptic_val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoPanopticMetric', ann_file=data_root + 'annotations/panoptic_val2017.json', seg_prefix=data_root + 'annotations/panoptic_val2017/', file_client_args=file_client_args, ) test_evaluator = val_evaluator # inference on test dataset and # format the output results for submission. # test_dataloader = dict( # batch_size=1, # num_workers=1, # persistent_workers=True, # drop_last=False, # sampler=dict(type='DefaultSampler', shuffle=False), # dataset=dict( # type=dataset_type, # data_root=data_root, # ann_file='annotations/panoptic_image_info_test-dev2017.json', # data_prefix=dict(img='test2017/'), # test_mode=True, # pipeline=test_pipeline)) # test_evaluator = dict( # type='CocoPanopticMetric', # format_only=True, # ann_file=data_root + 'annotations/panoptic_image_info_test-dev2017.json', # outfile_prefix='./work_dirs/coco_panoptic/test')
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py' # dataset settings train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scale=[(1333, 640), (1333, 800)], resize_cfg=dict(type='Resize', keep_ratio=True)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 2x train_cfg = dict(by_epoch=True, max_epochs=24) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py' img_norm_cfg = dict( mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 640), (1333, 800)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # learning policy lr_config = dict(step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24)
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional, utils # usort: skip from ._transform import Transform # usort: skip from ._augment import CutMix, MixUp, RandomErasing from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, Grayscale, RandomAdjustSharpness, RandomAutocontrast, RandomChannelPermutation, RandomEqualize, RandomGrayscale, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat from ._misc import ( ConvertImageDtype, GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, SanitizeBoundingBoxes, ToDtype, ) from ._temporal import UniformTemporalSubsample from ._type_conversion import PILToTensor, ToImage, ToPILImage from ._deprecated import ToTensor # usort: skip from torchvision import _BETA_TRANSFORMS_WARNING, _WARN_ABOUT_BETA_TRANSFORMS if _WARN_ABOUT_BETA_TRANSFORMS: import warnings warnings.warn(_BETA_TRANSFORMS_WARNING)
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional, utils # usort: skip from ._transform import Transform # usort: skip from ._augment import CutMix, MixUp, RandomErasing from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, Grayscale, RandomAdjustSharpness, RandomAutocontrast, RandomChannelPermutation, RandomEqualize, RandomGrayscale, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat from ._misc import ( ConvertImageDtype, GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, SanitizeBoundingBoxes, ToDtype, ) from ._temporal import UniformTemporalSubsample from ._type_conversion import PILToTensor, ToImagePIL, ToImageTensor, ToPILImage from ._deprecated import ToTensor # usort: skip from torchvision import _BETA_TRANSFORMS_WARNING, _WARN_ABOUT_BETA_TRANSFORMS if _WARN_ABOUT_BETA_TRANSFORMS: import warnings warnings.warn(_BETA_TRANSFORMS_WARNING)
__copyright__ = 'Copyright (c) 2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' import os import subprocess from pathlib import Path import pytest from jina import Document, DocumentArray @pytest.fixture(scope='session') def build_docker_image() -> str: img_name = Path(__file__).parents[1].stem.lower() subprocess.run(['docker', 'build', '-t', img_name, '.'], check=True) return img_name @pytest.fixture() def test_dir() -> str: return os.path.dirname(os.path.abspath(__file__)) @pytest.fixture() def data_generator(test_dir: str): def _generator(): data_file_path = os.path.join(test_dir, 'data', 'test_data.txt') with open(data_file_path, 'r') as file: lines = file.readlines() for line in lines: yield Document(text=line.strip()) return _generator @pytest.fixture() def docs_with_text() -> DocumentArray: return DocumentArray([Document(text='hello world') for _ in range(10)]) @pytest.fixture() def docs_with_chunk_text() -> DocumentArray: return DocumentArray( [Document(chunks=[Document(text='hello world') for _ in range(10)])] ) @pytest.fixture() def docs_with_chunk_chunk_text() -> DocumentArray: return DocumentArray( [ Document( chunks=[ Document(chunks=[Document(text='hello world') for _ in range(10)]) ] ) ] )
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import pytest from jina import Document, DocumentArray @pytest.fixture() def test_dir() -> str: return os.path.dirname(os.path.abspath(__file__)) @pytest.fixture() def data_generator(test_dir: str): def _generator(): data_file_path = os.path.join(test_dir, 'data', 'test_data.txt') with open(data_file_path, 'r') as file: lines = file.readlines() for line in lines: yield Document(text=line.strip()) return _generator @pytest.fixture() def docs_with_text() -> DocumentArray: return DocumentArray([ Document(text='hello world') for _ in range(10) ]) @pytest.fixture() def docs_with_chunk_text() -> DocumentArray: return DocumentArray([ Document( chunks=[Document(text='hello world') for _ in range(10)] ) ]) @pytest.fixture() def docs_with_chunk_chunk_text() -> DocumentArray: return DocumentArray([ Document( chunks=[Document( chunks=[Document(text='hello world') for _ in range(10)])]) ])
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "3.0.3.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled from .info import DatasetInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .utils import * from .utils import logging
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "3.0.2" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled from .info import DatasetInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .utils import * from .utils import logging
import re from typing import Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain.agents.agent import AgentOutputParser from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS FINAL_ANSWER_ACTION = "Final Answer:" MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE = ( "Invalid Format: Missing 'Action:' after 'Thought:'" ) MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE = ( "Invalid Format: Missing 'Action Input:' after 'Action:'" ) FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE = ( "Parsing LLM output produced both a final answer and a parse-able action:" ) class ReActSingleInputOutputParser(AgentOutputParser): """Parses ReAct-style LLM calls that have a single tool input. Expects output to be in one of two formats. If the output signals that an action should be taken, should be in the below format. This will result in an AgentAction being returned. ``` Thought: agent thought here Action: search Action Input: what is the temperature in SF? ``` If the output signals that a final answer should be given, should be in the below format. This will result in an AgentFinish being returned. ``` Thought: agent thought here Final Answer: The temperature is 100 degrees ``` """ def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: includes_answer = FINAL_ANSWER_ACTION in text regex = ( r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)" ) action_match = re.search(regex, text, re.DOTALL) if action_match: if includes_answer: msg = f"{FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}: {text}" raise OutputParserException(msg) action = action_match.group(1).strip() action_input = action_match.group(2) tool_input = action_input.strip(" ") tool_input = tool_input.strip('"') return AgentAction(action, tool_input, text) if includes_answer: return AgentFinish( {"output": text.split(FINAL_ANSWER_ACTION)[-1].strip()}, text ) if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL): msg = f"Could not parse LLM output: `{text}`" raise OutputParserException( msg, observation=MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE, llm_output=text, send_to_llm=True, ) if not re.search( r"[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)", text, re.DOTALL ): msg = f"Could not parse LLM output: `{text}`" raise OutputParserException( msg, observation=MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE, llm_output=text, send_to_llm=True, ) msg = f"Could not parse LLM output: `{text}`" raise OutputParserException(msg) @property def _type(self) -> str: return "react-single-input"
import re from typing import Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain.agents.agent import AgentOutputParser from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS FINAL_ANSWER_ACTION = "Final Answer:" MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE = ( "Invalid Format: Missing 'Action:' after 'Thought:'" ) MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE = ( "Invalid Format: Missing 'Action Input:' after 'Action:'" ) FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE = ( "Parsing LLM output produced both a final answer and a parse-able action:" ) class ReActSingleInputOutputParser(AgentOutputParser): """Parses ReAct-style LLM calls that have a single tool input. Expects output to be in one of two formats. If the output signals that an action should be taken, should be in the below format. This will result in an AgentAction being returned. ``` Thought: agent thought here Action: search Action Input: what is the temperature in SF? ``` If the output signals that a final answer should be given, should be in the below format. This will result in an AgentFinish being returned. ``` Thought: agent thought here Final Answer: The temperature is 100 degrees ``` """ def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS def parse(self, text: str) -> Union[AgentAction, AgentFinish]: includes_answer = FINAL_ANSWER_ACTION in text regex = ( r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)" ) action_match = re.search(regex, text, re.DOTALL) if action_match: if includes_answer: msg = f"{FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}: {text}" raise OutputParserException(msg) action = action_match.group(1).strip() action_input = action_match.group(2) tool_input = action_input.strip(" ") tool_input = tool_input.strip('"') return AgentAction(action, tool_input, text) elif includes_answer: return AgentFinish( {"output": text.split(FINAL_ANSWER_ACTION)[-1].strip()}, text ) if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL): msg = f"Could not parse LLM output: `{text}`" raise OutputParserException( msg, observation=MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE, llm_output=text, send_to_llm=True, ) elif not re.search( r"[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)", text, re.DOTALL ): msg = f"Could not parse LLM output: `{text}`" raise OutputParserException( msg, observation=MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE, llm_output=text, send_to_llm=True, ) else: msg = f"Could not parse LLM output: `{text}`" raise OutputParserException(msg) @property def _type(self) -> str: return "react-single-input"
from sentence_transformers import SentenceTransformer, losses, util class AnglELoss(losses.CoSENTLoss): def __init__(self, model: SentenceTransformer, scale: float = 20.0): """ This class implements AnglE (Angle Optimized) loss. This is a modification of :class:`CoSENTLoss`, designed to address the following issue: The cosine function's gradient approaches 0 as the wave approaches the top or bottom of its form. This can hinder the optimization process, so AnglE proposes to instead optimize the angle difference in complex space in order to mitigate this effect. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. This is the same as CoSENTLoss, with a different similarity function. Args: model: SentenceTransformerModel scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://arxiv.org/abs/2309.12871v1 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Relations: - :class:`CoSENTLoss` is AnglELoss with ``pairwise_cos_sim`` as the metric, rather than ``pairwise_angle_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than ``CoSENTLoss`` or ``AnglELoss``. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.AnglELoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim) @property def citation(self) -> str: return """ @misc{li2023angleoptimized, title={AnglE-optimized Text Embeddings}, author={Xianming Li and Jing Li}, year={2023}, eprint={2309.12871}, archivePrefix={arXiv}, primaryClass={cs.CL} } """
from sentence_transformers import losses, SentenceTransformer, util class AnglELoss(losses.CoSENTLoss): def __init__(self, model: SentenceTransformer, scale: float = 20.0): """ This class implements AnglE (Angle Optimized) loss. This is a modification of :class:`CoSENTLoss`, designed to address the following issue: The cosine function's gradient approaches 0 as the wave approaches the top or bottom of its form. This can hinder the optimization process, so AnglE proposes to instead optimize the angle difference in complex space in order to mitigate this effect. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. This is the same as CoSENTLoss, with a different similarity function. :param model: SentenceTransformerModel :param scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://arxiv.org/abs/2309.12871v1 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Relations: - :class:`CoSENTLoss` is AnglELoss with ``pairwise_cos_sim`` as the metric, rather than ``pairwise_angle_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than ``CoSENTLoss`` or ``AnglELoss``. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, losses from sentence_transformers.readers import InputExample model = SentenceTransformer('bert-base-uncased') train_examples = [InputExample(texts=['My first sentence', 'My second sentence'], label=1.0), InputExample(texts=['My third sentence', 'Unrelated sentence'], label=0.3)] train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=train_batch_size) train_loss = losses.AnglELoss(model=model) """ super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim)
""" Paged CSV reader. A parser for tabular data files. """ from pathlib import Path from typing import Any, Dict, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class PagedCSVReader(BaseReader): """ Paged CSV parser. Displayed each row in an LLM-friendly format on a separate document. Args: encoding (str): Encoding used to open the file. utf-8 by default. """ def __init__(self, *args: Any, encoding: str = "utf-8", **kwargs: Any) -> None: """Init params.""" super().__init__(*args, **kwargs) self._encoding = encoding def load_data( self, file: Path, extra_info: Optional[Dict] = None, delimiter: str = ",", quotechar: str = '"', ) -> List[Document]: """Parse file.""" import csv docs = [] with open(file, encoding=self._encoding) as fp: csv_reader = csv.DictReader(f=fp, delimiter=delimiter, quotechar=quotechar) # type: ignore for row in csv_reader: docs.append( Document( text="\n".join( f"{k.strip()}: {v.strip()}" for k, v in row.items() ), extra_info=extra_info or {}, ) ) return docs
"""Paged CSV reader. A parser for tabular data files. """ from pathlib import Path from typing import Any, Dict, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class PagedCSVReader(BaseReader): """Paged CSV parser. Displayed each row in an LLM-friendly format on a separate document. Args: encoding (str): Encoding used to open the file. utf-8 by default. """ def __init__(self, *args: Any, encoding: str = "utf-8", **kwargs: Any) -> None: """Init params.""" super().__init__(*args, **kwargs) self._encoding = encoding def load_data( self, file: Path, extra_info: Optional[Dict] = None, delimiter: str = ",", quotechar: str = '"', ) -> List[Document]: """Parse file.""" import csv docs = [] with open(file, encoding=self._encoding) as fp: csv_reader = csv.DictReader(f=fp, delimiter=delimiter, quotechar=quotechar) # type: ignore for row in csv_reader: docs.append( Document( text="\n".join( f"{k.strip()}: {v.strip()}" for k, v in row.items() ), extra_info=extra_info or {}, ) ) return docs
_base_ = './mask-rcnn_r101_fpn_1x_coco.py' model = dict( # ResNeXt-101-32x8d model trained with Caffe2 at FB, # so the mean and std need to be changed. data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], bgr_to_rgb=False), backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=8, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnext101_32x8d'))) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './mask-rcnn_r101_fpn_1x_coco.py' model = dict( # ResNeXt-101-32x8d model trained with Caffe2 at FB, # so the mean and std need to be changed. data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], bgr_to_rgb=False), backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=8, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnext101_32x8d'))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))