input
stringlengths
33
5k
output
stringlengths
32
5k
import os import tempfile from abc import ABC from pathlib import Path from typing import List, Union from urllib.parse import urlparse import requests from langchain_community.docstore.document import Document from langchain_community.document_loaders.base import BaseLoader from langchain_community.document_loaders.blob_loaders import Blob from langchain_community.document_loaders.parsers import VsdxParser class VsdxLoader(BaseLoader, ABC): def __init__(self, file_path: Union[str, Path]): """Initialize with file path.""" self.file_path = str(file_path) if "~" in self.file_path: self.file_path = os.path.expanduser(self.file_path) # If the file is a web path, download it to a temporary file, and use that if not os.path.isfile(self.file_path) and self._is_valid_url(self.file_path): r = requests.get(self.file_path) if r.status_code != 200: raise ValueError( "Check the url of your file; returned status code %s" % r.status_code ) self.web_path = self.file_path self.temp_file = tempfile.NamedTemporaryFile() self.temp_file.write(r.content) self.file_path = self.temp_file.name elif not os.path.isfile(self.file_path): raise ValueError("File path %s is not a valid file or url" % self.file_path) self.parser = VsdxParser() def __del__(self) -> None: if hasattr(self, "temp_file"): self.temp_file.close() @staticmethod def _is_valid_url(url: str) -> bool: """Check if the url is valid.""" parsed = urlparse(url) return bool(parsed.netloc) and bool(parsed.scheme) def load(self) -> List[Document]: blob = Blob.from_path(self.file_path) return list(self.parser.parse(blob))
import os import tempfile from abc import ABC from pathlib import Path from typing import List, Union from urllib.parse import urlparse import requests from langchain_community.docstore.document import Document from langchain_community.document_loaders.base import BaseLoader from langchain_community.document_loaders.blob_loaders import Blob from langchain_community.document_loaders.parsers import VsdxParser class VsdxLoader(BaseLoader, ABC): def __init__(self, file_path: Union[str, Path]): """Initialize with file path.""" self.file_path = str(file_path) if "~" in self.file_path: self.file_path = os.path.expanduser(self.file_path) # If the file is a web path, download it to a temporary file, and use that if not os.path.isfile(self.file_path) and self._is_valid_url(self.file_path): r = requests.get(self.file_path) if r.status_code != 200: raise ValueError( "Check the url of your file; returned status code %s" % r.status_code ) self.web_path = self.file_path self.temp_file = tempfile.NamedTemporaryFile() self.temp_file.write(r.content) self.file_path = self.temp_file.name elif not os.path.isfile(self.file_path): raise ValueError("File path %s is not a valid file or url" % self.file_path) self.parser = VsdxParser() # type: ignore[misc] def __del__(self) -> None: if hasattr(self, "temp_file"): self.temp_file.close() @staticmethod def _is_valid_url(url: str) -> bool: """Check if the url is valid.""" parsed = urlparse(url) return bool(parsed.netloc) and bool(parsed.scheme) def load(self) -> List[Document]: blob = Blob.from_path(self.file_path) # type: ignore[attr-defined] return list(self.parser.parse(blob))
from datasets import load_dataset from sentence_transformers import SentenceTransformer from sentence_transformers.quantization import quantize_embeddings, semantic_search_usearch # 1. Load the quora corpus with questions dataset = load_dataset("quora", split="train").map( lambda batch: {"text": [text for sample in batch["questions"] for text in sample["text"]]}, batched=True, remove_columns=["questions", "is_duplicate"], ) max_corpus_size = 100_000 corpus = dataset["text"][:max_corpus_size] num_queries = 1_000 queries = corpus[:num_queries] # 2. Load the model model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") # 3. Encode the corpus full_corpus_embeddings = model.encode(corpus, normalize_embeddings=True, show_progress_bar=True) # 4. Encode the queries using the full precision query_embeddings = model.encode(queries, normalize_embeddings=True) for exact in (True, False): for corpus_precision in ("float32", "int8", "binary"): corpus_embeddings = quantize_embeddings(full_corpus_embeddings, precision=corpus_precision) # NOTE: We can also pass "precision=..." to the encode method to quantize the embeddings directly, # but we want to keep the full precision embeddings to act as a calibration dataset for quantizing # the query embeddings. This is important only if you are using uint8 or int8 precision # 5. Perform semantic search using usearch rescore_multiplier = 4 results, search_time = semantic_search_usearch( query_embeddings, corpus_embeddings=corpus_embeddings, corpus_precision=corpus_precision, top_k=10, calibration_embeddings=full_corpus_embeddings, rescore=corpus_precision != "float32", rescore_multiplier=rescore_multiplier, exact=exact, ) print( f"{'Exact' if exact else 'Approximate'} search time using {corpus_precision} corpus: {search_time:.6f} seconds" + (f" (rescore_multiplier: {rescore_multiplier})" if corpus_precision != "float32" else "") )
from sentence_transformers import SentenceTransformer from sentence_transformers.quantization import quantize_embeddings, semantic_search_usearch from datasets import load_dataset # 1. Load the quora corpus with questions dataset = load_dataset("quora", split="train").map( lambda batch: {"text": [text for sample in batch["questions"] for text in sample["text"]]}, batched=True, remove_columns=["questions", "is_duplicate"], ) max_corpus_size = 100_000 corpus = dataset["text"][:max_corpus_size] num_queries = 1_000 queries = corpus[:num_queries] # 2. Load the model model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") # 3. Encode the corpus full_corpus_embeddings = model.encode(corpus, normalize_embeddings=True, show_progress_bar=True) # 4. Encode the queries using the full precision query_embeddings = model.encode(queries, normalize_embeddings=True) for exact in (True, False): for corpus_precision in ("float32", "int8", "binary"): corpus_embeddings = quantize_embeddings(full_corpus_embeddings, precision=corpus_precision) # NOTE: We can also pass "precision=..." to the encode method to quantize the embeddings directly, # but we want to keep the full precision embeddings to act as a calibration dataset for quantizing # the query embeddings. This is important only if you are using uint8 or int8 precision # 5. Perform semantic search using usearch rescore_multiplier = 4 results, search_time = semantic_search_usearch( query_embeddings, corpus_embeddings=corpus_embeddings, corpus_precision=corpus_precision, top_k=10, calibration_embeddings=full_corpus_embeddings, rescore=corpus_precision != "float32", rescore_multiplier=rescore_multiplier, exact=exact, ) print( f"{'Exact' if exact else 'Approximate'} search time using {corpus_precision} corpus: {search_time:.6f} seconds" + (f" (rescore_multiplier: {rescore_multiplier})" if corpus_precision != "float32" else "") )
from typing import Any, Dict, Type, TypeVar from pydantic.tools import parse_obj_as from docarray.document.abstract_document import AbstractDocument from docarray.document.base_node import BaseNode from docarray.proto import DocumentProto, NodeProto from docarray.typing import ID, AnyUrl, Embedding, ImageUrl, Tensor, TorchTensor T = TypeVar('T', bound='ProtoMixin') class ProtoMixin(AbstractDocument, BaseNode): @classmethod def from_protobuf(cls: Type[T], pb_msg: 'DocumentProto') -> T: """create a Document from a protobuf message""" from docarray import DocumentArray fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type = value.WhichOneof('content') # this if else statement need to be refactored it is too long # the check should be delegated to the type level if content_type == 'tensor': fields[field] = Tensor._read_from_proto(value.tensor) elif content_type == 'torch_tensor': fields[field] = TorchTensor._read_from_proto(value.torch_tensor) elif content_type == 'embedding': fields[field] = Embedding._read_from_proto(value.embedding) elif content_type == 'any_url': fields[field] = parse_obj_as(AnyUrl, value.any_url) elif content_type == 'image_url': fields[field] = parse_obj_as(ImageUrl, value.image_url) elif content_type == 'id': fields[field] = parse_obj_as(ID, value.id) elif content_type == 'text': fields[field] = value.text elif content_type == 'nested': fields[field] = cls._get_nested_document_class(field).from_protobuf( value.nested ) # we get to the parent class elif content_type == 'chunks': fields[field] = DocumentArray.from_protobuf( value.chunks ) # we get to the parent class elif content_type is None: fields[field] = None else: raise ValueError( f'type {content_type} is not supported for deserialization' ) return cls(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif type(value) is str: nested_item = NodeProto(text=value) elif type(value) is bytes: nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> NodeProto: """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(nested=self.to_protobuf())
from typing import Any, Dict from pydantic.tools import parse_obj_as from docarray.document.abstract_document import AbstractDocument from docarray.document.base_node import BaseNode from docarray.proto import DocumentProto, NodeProto from docarray.typing import ID, AnyUrl, Embedding, ImageUrl, Tensor, TorchTensor class ProtoMixin(AbstractDocument, BaseNode): @classmethod def from_protobuf(cls, pb_msg: 'DocumentProto') -> 'ProtoMixin': """create a Document from a protobuf message""" from docarray import DocumentArray fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type = value.WhichOneof('content') # this if else statement need to be refactored it is too long # the check should be delegated to the type level if content_type == 'tensor': fields[field] = Tensor._read_from_proto(value.tensor) elif content_type == 'torch_tensor': fields[field] = TorchTensor._read_from_proto(value.torch_tensor) elif content_type == 'embedding': fields[field] = Embedding._read_from_proto(value.embedding) elif content_type == 'any_url': fields[field] = parse_obj_as(AnyUrl, value.any_url) elif content_type == 'image_url': fields[field] = parse_obj_as(ImageUrl, value.image_url) elif content_type == 'id': fields[field] = parse_obj_as(ID, value.id) elif content_type == 'text': fields[field] = value.text elif content_type == 'nested': fields[field] = cls._get_nested_document_class(field).from_protobuf( value.nested ) # we get to the parent class elif content_type == 'chunks': fields[field] = DocumentArray.from_protobuf( value.chunks ) # we get to the parent class elif content_type is None: fields[field] = None else: raise ValueError( f'type {content_type} is not supported for deserialization' ) return cls(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif type(value) is str: nested_item = NodeProto(text=value) elif type(value) is bytes: nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> NodeProto: """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(nested=self.to_protobuf())
# coding: utf-8 """Find the path to LightGBM dynamic library files.""" import ctypes from os import environ from pathlib import Path from platform import system from typing import List __all__: List[str] = [] def _find_lib_path() -> List[str]: """Find the path to LightGBM library files. Returns ------- lib_path: list of str List of all found library paths to LightGBM. """ curr_path = Path(__file__).absolute() dll_path = [ curr_path.parents[1], curr_path.parents[0] / "bin", curr_path.parents[0] / "lib", ] if system() in ("Windows", "Microsoft"): dll_path.append(curr_path.parents[1] / "Release") dll_path.append(curr_path.parents[1] / "windows" / "x64" / "DLL") dll_path = [p / "lib_lightgbm.dll" for p in dll_path] elif system() == "Darwin": dll_path = [p / "lib_lightgbm.dylib" for p in dll_path] else: dll_path = [p / "lib_lightgbm.so" for p in dll_path] lib_path = [str(p) for p in dll_path if p.is_file()] if not lib_path: dll_path_joined = "\n".join(map(str, dll_path)) raise Exception(f"Cannot find lightgbm library file in following paths:\n{dll_path_joined}") return lib_path # we don't need lib_lightgbm while building docs _LIB: ctypes.CDLL if environ.get("LIGHTGBM_BUILD_DOC", False): from unittest.mock import Mock # isort: skip _LIB = Mock(ctypes.CDLL) # type: ignore else: _LIB = ctypes.cdll.LoadLibrary(_find_lib_path()[0])
# coding: utf-8 """Find the path to LightGBM dynamic library files.""" from pathlib import Path from platform import system from typing import List __all__: List[str] = [] def find_lib_path() -> List[str]: """Find the path to LightGBM library files. Returns ------- lib_path: list of str List of all found library paths to LightGBM. """ curr_path = Path(__file__).absolute() dll_path = [ curr_path.parents[1], curr_path.parents[0] / "bin", curr_path.parents[0] / "lib", ] if system() in ("Windows", "Microsoft"): dll_path.append(curr_path.parents[1] / "Release") dll_path.append(curr_path.parents[1] / "windows" / "x64" / "DLL") dll_path = [p / "lib_lightgbm.dll" for p in dll_path] elif system() == "Darwin": dll_path = [p / "lib_lightgbm.dylib" for p in dll_path] else: dll_path = [p / "lib_lightgbm.so" for p in dll_path] lib_path = [str(p) for p in dll_path if p.is_file()] if not lib_path: dll_path_joined = "\n".join(map(str, dll_path)) raise Exception(f"Cannot find lightgbm library file in following paths:\n{dll_path_joined}") return lib_path
import argparse import urllib from http import HTTPStatus from jina.logging.predefined import default_logger from jina.helper import parse_host_scheme class NetworkChecker: """Check if a BaseDeployment is running or not.""" def __init__(self, args: 'argparse.Namespace'): """ Create a new :class:`NetworkChecker`. :param args: args provided by the CLI. """ import time from jina import Client from jina.logging.profile import TimeContext from jina.serve.runtimes.worker import WorkerRuntime from jina.serve.runtimes.gateway import GatewayRuntime try: total_time = 0 total_success = 0 for j in range(args.attempts): with TimeContext( f'ping {args.target} on {args.host} at {j} round', default_logger ) as tc: if args.target == 'executor': hostname, port, protocol, _ = parse_host_scheme(args.host) r = WorkerRuntime.is_ready(f'{hostname}:{port}') elif args.target == 'gateway': hostname, port, protocol, _ = parse_host_scheme(args.host) r = GatewayRuntime.is_ready(f'{hostname}:{port}', protocol=protocol) elif args.target == 'flow': r = Client(host=args.host).is_flow_ready(timeout=args.timeout) if not r: default_logger.warning( 'not responding, attempt (%d/%d) in 1s' % (j + 1, args.attempts) ) else: total_success += 1 total_time += tc.duration if args.attempts > 0: time.sleep(1) if total_success < args.attempts: default_logger.warning( 'message lost %.0f%% (%d/%d) ' % ( (1 - total_success / args.attempts) * 100, args.attempts - total_success, args.attempts, ) ) if total_success > 0: default_logger.info( 'avg. latency: %.0f ms' % (total_time / total_success * 1000) ) if total_success >= args.min_successful_attempts: default_logger.info( f'readiness check succeeded {total_success} times!!!' ) exit(0) else: default_logger.info( f'readiness check succeeded {total_success} times, less than {args.min_successful_attempts}' ) except KeyboardInterrupt: pass # returns 1 (anomaly) when it comes to here exit(1)
import argparse from jina.logging.predefined import default_logger class NetworkChecker: """Check if a BaseDeployment is running or not.""" def __init__(self, args: 'argparse.Namespace'): """ Create a new :class:`NetworkChecker`. :param args: args provided by the CLI. """ import time from jina import Client from jina.logging.profile import TimeContext from jina.serve.runtimes.worker import WorkerRuntime try: total_time = 0 total_success = 0 for j in range(args.retries): with TimeContext( f'ping {args.host} at {j} round', default_logger ) as tc: if args.target == 'executor': r = WorkerRuntime.is_ready(args.host) elif args.target == 'flow': r = Client(host=args.host).is_flow_ready(timeout=args.timeout) if not r: default_logger.warning( 'not responding, retry (%d/%d) in 1s' % (j + 1, args.retries) ) else: total_success += 1 total_time += tc.duration time.sleep(1) if total_success < args.retries: default_logger.warning( 'message lost %.0f%% (%d/%d) ' % ( (1 - total_success / args.retries) * 100, args.retries - total_success, args.retries, ) ) if total_success > 0: default_logger.info( 'avg. latency: %.0f ms' % (total_time / total_success * 1000) ) exit(0) except KeyboardInterrupt: pass # returns 1 (anomaly) when it comes to here exit(1)
import pytest from docarray import BaseDocument from docarray.utils.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp # type: ignore from docarray.typing import TensorFlowEmbedding, TensorFlowTensor @pytest.mark.tensorflow def test_set_tensorflow_tensor(): class MyDocument(BaseDocument): t: TensorFlowTensor doc = MyDocument(t=tf.zeros((3, 224, 224))) assert isinstance(doc.t, TensorFlowTensor) assert isinstance(doc.t.tensor, tf.Tensor) assert tnp.allclose(doc.t.tensor, tf.zeros((3, 224, 224))) @pytest.mark.tensorflow def test_set_tf_embedding(): class MyDocument(BaseDocument): embedding: TensorFlowEmbedding doc = MyDocument(embedding=tf.zeros((128,))) assert isinstance(doc.embedding, TensorFlowTensor) assert isinstance(doc.embedding, TensorFlowEmbedding) assert isinstance(doc.embedding.tensor, tf.Tensor) assert tnp.allclose(doc.embedding.tensor, tf.zeros((128,)))
import pytest from docarray import BaseDocument try: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp # type: ignore from docarray.typing import TensorFlowTensor except (ImportError, TypeError): pass @pytest.mark.tensorflow def test_set_tensorflow_tensor(): class MyDocument(BaseDocument): t: TensorFlowTensor doc = MyDocument(t=tf.zeros((3, 224, 224))) assert isinstance(doc.t, TensorFlowTensor) assert isinstance(doc.t.tensor, tf.Tensor) assert tnp.allclose(doc.t.tensor, tf.zeros((3, 224, 224)))
import pytest from langchain._api import suppress_langchain_deprecation_warning as sup2 from langchain_core._api import suppress_langchain_deprecation_warning as sup1 from langchain_cli.namespaces.migrate.generate.generic import ( generate_simplified_migrations, ) @pytest.mark.xfail(reason="Unknown reason") def test_create_json_agent_migration() -> None: """Test the migration of create_json_agent from langchain to langchain_community.""" with sup1(), sup2(): raw_migrations = generate_simplified_migrations( from_package="langchain", to_package="langchain_community", ) json_agent_migrations = [ migration for migration in raw_migrations if "create_json_agent" in migration[0] ] if json_agent_migrations != [ ( "langchain.agents.create_json_agent", "langchain_community.agent_toolkits.create_json_agent", ), ( "langchain.agents.agent_toolkits.create_json_agent", "langchain_community.agent_toolkits.create_json_agent", ), ( "langchain.agents.agent_toolkits.json.base.create_json_agent", "langchain_community.agent_toolkits.create_json_agent", ), ]: msg = "json_agent_migrations did not match the expected value" raise ValueError(msg) @pytest.mark.xfail(reason="Unknown reason") def test_create_single_store_retriever_db() -> None: """Test migration from langchain to langchain_core.""" with sup1(), sup2(): raw_migrations = generate_simplified_migrations( from_package="langchain", to_package="langchain_core", ) # SingleStore was an old name for VectorStoreRetriever single_store_migration = [ migration for migration in raw_migrations if "SingleStore" in migration[0] ] if single_store_migration != [ ( "langchain.vectorstores.singlestoredb.SingleStoreDBRetriever", "langchain_core.vectorstores.VectorStoreRetriever", ), ]: msg = ( "Unexpected migration: single_store_migration does not match expected " "value" ) raise ValueError(msg)
import pytest from langchain._api import suppress_langchain_deprecation_warning as sup2 from langchain_core._api import suppress_langchain_deprecation_warning as sup1 from langchain_cli.namespaces.migrate.generate.generic import ( generate_simplified_migrations, ) @pytest.mark.xfail(reason="Unknown reason") def test_create_json_agent_migration() -> None: """Test the migration of create_json_agent from langchain to langchain_community.""" with sup1(), sup2(): raw_migrations = generate_simplified_migrations( from_package="langchain", to_package="langchain_community" ) json_agent_migrations = [ migration for migration in raw_migrations if "create_json_agent" in migration[0] ] assert json_agent_migrations == [ ( "langchain.agents.create_json_agent", "langchain_community.agent_toolkits.create_json_agent", ), ( "langchain.agents.agent_toolkits.create_json_agent", "langchain_community.agent_toolkits.create_json_agent", ), ( "langchain.agents.agent_toolkits.json.base.create_json_agent", "langchain_community.agent_toolkits.create_json_agent", ), ] @pytest.mark.xfail(reason="Unknown reason") def test_create_single_store_retriever_db() -> None: """Test migration from langchain to langchain_core.""" with sup1(), sup2(): raw_migrations = generate_simplified_migrations( from_package="langchain", to_package="langchain_core" ) # SingleStore was an old name for VectorStoreRetriever single_store_migration = [ migration for migration in raw_migrations if "SingleStore" in migration[0] ] assert single_store_migration == [ ( "langchain.vectorstores.singlestoredb.SingleStoreDBRetriever", "langchain_core.vectorstores.VectorStoreRetriever", ), ]
"""Hive data reader.""" try: from pyhive import hive except ImportError: raise ImportError("`hive` package not found, please run `pip install pyhive`") try: import sqlglot except ImportError: raise ImportError("`sqlglot` package not found, please run `pip install sqlglot`") from typing import List, Optional, Tuple from deprecated import deprecated from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class InvalidSqlError(Exception): """Raise when invalid SQL is passed.""" def _validate_sql_query(statements: List[str]) -> None: if len(statements) > 1: raise InvalidSqlError("You cannot pass multiple statements into the query") if not statements[0].lower().startswith("select"): raise InvalidSqlError("You must provide a SELECT query") if "or" in statements[0].lower(): raise InvalidSqlError("The use of OR is not allowed to prevent SQL Injections") @deprecated( reason="llama-index-readers-hive has been deprecated since v0.3.1 on the grounds of security concerns for SQL query handling, and will thus no longer be maintained. Use this package with caution.", version="0.3.1", ) class HiveReader(BaseReader): """ Read documents from a Hive. These documents can then be used in a downstream Llama Index data structure. Args: host : What host HiveServer2 runs on port : The port Hive Server runs on. Defaults to 10000. auth : The value of hive.server2.authentication used by HiveServer2. Defaults to ``NONE`` database: the database name password: Use with auth='LDAP' or auth='CUSTOM' only """ def __init__( self, host: str, port: Optional[int] = None, database: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, auth: Optional[str] = None, ): """Initialize with parameters.""" self.con = hive.Connection( host=host, port=port, username=username, database=database, auth=auth, password=password, ) def load_data( self, query: str, params: Optional[Tuple[str, ...]] = None ) -> List[Document]: """ Read data from the Hive. Args: query (str): Query with which to extract data from Hive. Parametrized values must be represented as '%s'. params (Optional[Tuple[str, ...]): Parametrized values. Returns: List[Document]: A list of documents. """ try: if params: filled_query = query % tuple(repr(p) for p in params) else: filled_query = query parsed_query = sqlglot.parse(filled_query) statements = [statement.sql() for statement in parsed_query] _validate_sql_query(statements=statements) cursor = self.con.cursor() cursor.execute(operation=query, parameters=params) rows = cursor.fetchall() except Exception: raise Exception( "Throws Exception in execution, please check your connection params and query." ) documents: List[Document] = [] for row in rows: documents.append(Document(text=str(row))) return documents
"""Hive data reader.""" from typing import List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class HiveReader(BaseReader): """ Read documents from a Hive. These documents can then be used in a downstream Llama Index data structure. Args: host : What host HiveServer2 runs on port : The port Hive Server runs on. Defaults to 10000. auth : The value of hive.server2.authentication used by HiveServer2. Defaults to ``NONE`` database: the database name password: Use with auth='LDAP' or auth='CUSTOM' only """ def __init__( self, host: str, port: Optional[int] = None, database: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, auth: Optional[str] = None, ): """Initialize with parameters.""" try: from pyhive import hive except ImportError: raise ImportError( "`hive` package not found, please run `pip install pyhive`" ) self.con = hive.Connection( host=host, port=port, username=username, database=database, auth=auth, password=password, ) def load_data(self, query: str) -> List[Document]: """ Read data from the Hive. Args: query (str): The query used to query data from Hive Returns: List[Document]: A list of documents. """ try: cursor = self.con.cursor().execute(query) cursor.execute(query) rows = cursor.fetchall() except Exception: raise Exception( "Throws Exception in execution, please check your connection params and query " ) documents = [] for row in rows: documents = Document(text=row) return documents
from .autograd_utils import use_deterministic_algorithms from .backend_utils import set_audio_backend from .case_utils import ( disabledInCI, HttpServerMixin, is_ffmpeg_available, PytorchTestCase, skipIfCudaSmallMemory, skipIfNoAudioDevice, skipIfNoCtcDecoder, skipIfNoCuCtcDecoder, skipIfNoCuda, skipIfNoExec, skipIfNoFFmpeg, skipIfNoHWAccel, skipIfNoKaldi, skipIfNoMacOS, skipIfNoModule, skipIfNoQengine, skipIfNoRIR, skipIfNoSox, skipIfPy310, skipIfRocm, TempDirMixin, TestBaseMixin, TorchaudioTestCase, zip_equal, ) from .data_utils import get_asset_path, get_sinusoid, get_spectrogram, get_whitenoise from .func_utils import torch_script from .image_utils import get_image, rgb_to_gray, rgb_to_yuv_ccir, save_image from .parameterized_utils import load_params, nested_params from .wav_utils import get_wav_data, load_wav, normalize_wav, save_wav __all__ = [ "get_asset_path", "get_whitenoise", "get_sinusoid", "get_spectrogram", "set_audio_backend", "TempDirMixin", "HttpServerMixin", "TestBaseMixin", "PytorchTestCase", "TorchaudioTestCase", "is_ffmpeg_available", "skipIfNoAudioDevice", "skipIfNoCtcDecoder", "skipIfNoCuCtcDecoder", "skipIfNoCuda", "skipIfCudaSmallMemory", "skipIfNoExec", "skipIfNoMacOS", "skipIfNoModule", "skipIfNoKaldi", "skipIfNoRIR", "skipIfNoSox", "skipIfNoSoxBackend", "skipIfRocm", "skipIfNoQengine", "skipIfNoFFmpeg", "skipIfNoHWAccel", "skipIfPy310", "disabledInCI", "get_wav_data", "normalize_wav", "load_wav", "save_wav", "load_params", "nested_params", "torch_script", "save_image", "get_image", "rgb_to_gray", "rgb_to_yuv_ccir", "use_deterministic_algorithms", "zip_equal", ]
from .autograd_utils import use_deterministic_algorithms from .backend_utils import set_audio_backend from .case_utils import ( HttpServerMixin, is_ffmpeg_available, PytorchTestCase, skipIfCudaSmallMemory, skipIfNoAudioDevice, skipIfNoCtcDecoder, skipIfNoCuCtcDecoder, skipIfNoCuda, skipIfNoExec, skipIfNoFFmpeg, skipIfNoHWAccel, skipIfNoKaldi, skipIfNoMacOS, skipIfNoModule, skipIfNoQengine, skipIfNoRIR, skipIfNoSox, skipIfPy310, skipIfRocm, TempDirMixin, TestBaseMixin, TorchaudioTestCase, zip_equal, ) from .data_utils import get_asset_path, get_sinusoid, get_spectrogram, get_whitenoise from .func_utils import torch_script from .image_utils import get_image, rgb_to_gray, rgb_to_yuv_ccir, save_image from .parameterized_utils import load_params, nested_params from .wav_utils import get_wav_data, load_wav, normalize_wav, save_wav __all__ = [ "get_asset_path", "get_whitenoise", "get_sinusoid", "get_spectrogram", "set_audio_backend", "TempDirMixin", "HttpServerMixin", "TestBaseMixin", "PytorchTestCase", "TorchaudioTestCase", "is_ffmpeg_available", "skipIfNoAudioDevice", "skipIfNoCtcDecoder", "skipIfNoCuCtcDecoder", "skipIfNoCuda", "skipIfCudaSmallMemory", "skipIfNoExec", "skipIfNoMacOS", "skipIfNoModule", "skipIfNoKaldi", "skipIfNoRIR", "skipIfNoSox", "skipIfNoSoxBackend", "skipIfRocm", "skipIfNoQengine", "skipIfNoFFmpeg", "skipIfNoHWAccel", "skipIfPy310", "get_wav_data", "normalize_wav", "load_wav", "save_wav", "load_params", "nested_params", "torch_script", "save_image", "get_image", "rgb_to_gray", "rgb_to_yuv_ccir", "use_deterministic_algorithms", "zip_equal", ]
from keras.src import backend from keras.src import ops from keras.src import testing from keras.src.backend.common.masking import get_keras_mask from keras.src.backend.common.masking import set_keras_mask class MaskingTest(testing.TestCase): def test_mask_on_eager_tensor(self): x = ops.zeros((2, 3)) self.assertIsNone(get_keras_mask(x)) set_keras_mask(x, None) self.assertIsNone(get_keras_mask(x)) mask = ops.ones((2, 3)) set_keras_mask(x, mask) self.assertIs(get_keras_mask(x), mask) set_keras_mask(x, None) self.assertIsNone(get_keras_mask(x)) set_keras_mask(x, None) self.assertIsNone(get_keras_mask(x)) def test_mask_on_tracer_tensor(self): def fn(x): self.assertIsNone(get_keras_mask(x)) set_keras_mask(x, None) self.assertIsNone(get_keras_mask(x)) mask = ops.ones((2, 3)) set_keras_mask(x, mask) self.assertIs(get_keras_mask(x), mask) set_keras_mask(x, None) self.assertIsNone(get_keras_mask(x)) set_keras_mask(x, None) # key is now deleted, should be a no-op self.assertIsNone(get_keras_mask(x)) backend.compute_output_spec(fn, backend.KerasTensor((2, 3)))
from keras.src import backend from keras.src import ops from keras.src import testing from keras.src.backend.common.masking import get_keras_mask from keras.src.backend.common.masking import set_keras_mask class MaskingTest(testing.TestCase): def test_mask_on_eager_tensor(self): x = ops.zeros((2, 3)) self.assertIsNone(get_keras_mask(x)) set_keras_mask(x, None) self.assertIsNone(get_keras_mask(x)) mask = ops.ones((2, 3)) set_keras_mask(x, mask) self.assertIs(get_keras_mask(x), mask) set_keras_mask(x, None) self.assertIsNone(get_keras_mask(x)) set_keras_mask(x, None) self.assertIsNone(get_keras_mask(x)) def test_mask_on_tracer_tensor(self): def fn(x): self.assertIsNone(get_keras_mask(x)) set_keras_mask(x, None) self.assertIsNone(get_keras_mask(x)) mask = ops.ones((2, 3)) set_keras_mask(x, mask) self.assertIs(get_keras_mask(x), mask) set_keras_mask(x, None) self.assertIsNone(get_keras_mask(x)) set_keras_mask(x, None) # key is now deleted, should be a no-op self.assertIsNone(get_keras_mask(x)) backend.compute_output_spec(fn, backend.KerasTensor((2, 3)))
import os # When using jax.experimental.enable_x64 in unit test, we want to keep the # default dtype with 32 bits, aligning it with Keras's default. os.environ["JAX_DEFAULT_DTYPE_BITS"] = "32" try: # When using torch and tensorflow, torch needs to be imported first, # otherwise it will segfault upon import. This should force the torch # import to happen first for all tests. import torch # noqa: F401 except ImportError: pass import pytest # noqa: E402 from keras.src.backend import backend # noqa: E402 def pytest_configure(config): config.addinivalue_line( "markers", "requires_trainable_backend: mark test for trainable backend only", ) def pytest_collection_modifyitems(config, items): openvino_skipped_tests = [] if backend() == "openvino": with open( "keras/src/backend/openvino/excluded_concrete_tests.txt", "r" ) as file: openvino_skipped_tests = file.readlines() # it is necessary to check if stripped line is not empty # and exclude such lines openvino_skipped_tests = [ line.strip() for line in openvino_skipped_tests if line.strip() ] requires_trainable_backend = pytest.mark.skipif( backend() in ["numpy", "openvino"], reason="Trainer not implemented for NumPy and OpenVINO backend.", ) for item in items: if "requires_trainable_backend" in item.keywords: item.add_marker(requires_trainable_backend) # also, skip concrete tests for openvino, listed in the special file # this is more granular mechanism to exclude tests rather # than using --ignore option for skipped_test in openvino_skipped_tests: if skipped_test in item.nodeid: item.add_marker( skip_if_backend( "openvino", "Not supported operation by openvino backend", ) ) def skip_if_backend(given_backend, reason): return pytest.mark.skipif(backend() == given_backend, reason=reason)
import os # When using jax.experimental.enable_x64 in unit test, we want to keep the # default dtype with 32 bits, aligning it with Keras's default. os.environ["JAX_DEFAULT_DTYPE_BITS"] = "32" try: # When using torch and tensorflow, torch needs to be imported first, # otherwise it will segfault upon import. This should force the torch # import to happen first for all tests. import torch # noqa: F401 except ImportError: pass import pytest # noqa: E402 from keras.src.backend import backend # noqa: E402 def pytest_configure(config): config.addinivalue_line( "markers", "requires_trainable_backend: mark test for trainable backend only", ) def pytest_collection_modifyitems(config, items): openvino_skipped_tests = [] if backend() == "openvino": with open( "keras/src/backend/openvino/excluded_concrete_tests.txt", "r" ) as file: openvino_skipped_tests = file.readlines() # it is necessary to check if stripped line is not empty # and exclude such lines openvino_skipped_tests = [ line.strip() for line in openvino_skipped_tests if line.strip() ] requires_trainable_backend = pytest.mark.skipif( backend() == "numpy" or backend() == "openvino", reason="Trainer not implemented for NumPy and OpenVINO backend.", ) for item in items: if "requires_trainable_backend" in item.keywords: item.add_marker(requires_trainable_backend) # also, skip concrete tests for openvino, listed in the special file # this is more granular mechanism to exclude tests rather # than using --ignore option for skipped_test in openvino_skipped_tests: if skipped_test in item.nodeid: item.add_marker( skip_if_backend( "openvino", "Not supported operation by openvino backend", ) ) def skip_if_backend(given_backend, reason): return pytest.mark.skipif(backend() == given_backend, reason=reason)
_base_ = '../_base_/default_runtime.py' # model settings model = dict( type='YOLOV3', backbone=dict( type='Darknet', depth=53, out_indices=(3, 4, 5), init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://darknet53')), neck=dict( type='YOLOV3Neck', num_scales=3, in_channels=[1024, 512, 256], out_channels=[512, 256, 128]), bbox_head=dict( type='YOLOV3Head', num_classes=80, in_channels=[512, 256, 128], out_channels=[1024, 512, 256], anchor_generator=dict( type='YOLOAnchorGenerator', base_sizes=[[(116, 90), (156, 198), (373, 326)], [(30, 61), (62, 45), (59, 119)], [(10, 13), (16, 30), (33, 23)]], strides=[32, 16, 8]), bbox_coder=dict(type='YOLOBBoxCoder'), featmap_strides=[32, 16, 8], loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0, reduction='sum'), loss_conf=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0, reduction='sum'), loss_xy=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=2.0, reduction='sum'), loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum')), # training and testing settings train_cfg=dict( assigner=dict( type='GridAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0)), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, conf_thr=0.005, nms=dict(type='nms', iou_threshold=0.45), max_per_img=100)) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 2)), dict( type='MinIoURandomCrop', min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=[(320, 320), (608, 608)], keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(608, 608), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=4, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0005) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=2000, # same as burn-in in darknet warmup_ratio=0.1, step=[218, 246]) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=273) evaluation = dict(interval=1, metric=['bbox']) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = '../_base_/default_runtime.py' # model settings model = dict( type='YOLOV3', backbone=dict( type='Darknet', depth=53, out_indices=(3, 4, 5), init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://darknet53')), neck=dict( type='YOLOV3Neck', num_scales=3, in_channels=[1024, 512, 256], out_channels=[512, 256, 128]), bbox_head=dict( type='YOLOV3Head', num_classes=80, in_channels=[512, 256, 128], out_channels=[1024, 512, 256], anchor_generator=dict( type='YOLOAnchorGenerator', base_sizes=[[(116, 90), (156, 198), (373, 326)], [(30, 61), (62, 45), (59, 119)], [(10, 13), (16, 30), (33, 23)]], strides=[32, 16, 8]), bbox_coder=dict(type='YOLOBBoxCoder'), featmap_strides=[32, 16, 8], loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0, reduction='sum'), loss_conf=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0, reduction='sum'), loss_xy=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=2.0, reduction='sum'), loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum')), # training and testing settings train_cfg=dict( assigner=dict( type='GridAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0)), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, conf_thr=0.005, nms=dict(type='nms', iou_threshold=0.45), max_per_img=100)) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 2)), dict( type='MinIoURandomCrop', min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=[(320, 320), (608, 608)], keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(608, 608), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=4, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0005) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=2000, # same as burn-in in darknet warmup_ratio=0.1, step=[218, 246]) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=273) evaluation = dict(interval=1, metric=['bbox'])
"""langchain-core version information and utilities.""" VERSION = "0.3.65"
"""langchain-core version information and utilities.""" VERSION = "0.3.64"
import json import os from typing import List import torch from torch import nn class LSTM(nn.Module): """Bidirectional LSTM running over word embeddings.""" def __init__( self, word_embedding_dimension: int, hidden_dim: int, num_layers: int = 1, dropout: float = 0, bidirectional: bool = True, ): nn.Module.__init__(self) self.config_keys = ["word_embedding_dimension", "hidden_dim", "num_layers", "dropout", "bidirectional"] self.word_embedding_dimension = word_embedding_dimension self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout = dropout self.bidirectional = bidirectional self.embeddings_dimension = hidden_dim if self.bidirectional: self.embeddings_dimension *= 2 self.encoder = nn.LSTM( word_embedding_dimension, hidden_dim, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional, batch_first=True, ) def forward(self, features): token_embeddings = features["token_embeddings"] sentence_lengths = torch.clamp(features["sentence_lengths"], min=1) packed = nn.utils.rnn.pack_padded_sequence( token_embeddings, sentence_lengths.cpu(), batch_first=True, enforce_sorted=False ) packed = self.encoder(packed) unpack = nn.utils.rnn.pad_packed_sequence(packed[0], batch_first=True)[0] features.update({"token_embeddings": unpack}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str, **kwargs) -> List[int]: raise NotImplementedError() def save(self, output_path: str): with open(os.path.join(output_path, "lstm_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "lstm_config.json"), "r") as fIn: config = json.load(fIn) weights = torch.load(os.path.join(input_path, "pytorch_model.bin")) model = LSTM(**config) model.load_state_dict(weights) return model
import torch from torch import nn from typing import List import os import json class LSTM(nn.Module): """ Bidirectional LSTM running over word embeddings. """ def __init__( self, word_embedding_dimension: int, hidden_dim: int, num_layers: int = 1, dropout: float = 0, bidirectional: bool = True, ): nn.Module.__init__(self) self.config_keys = ["word_embedding_dimension", "hidden_dim", "num_layers", "dropout", "bidirectional"] self.word_embedding_dimension = word_embedding_dimension self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout = dropout self.bidirectional = bidirectional self.embeddings_dimension = hidden_dim if self.bidirectional: self.embeddings_dimension *= 2 self.encoder = nn.LSTM( word_embedding_dimension, hidden_dim, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional, batch_first=True, ) def forward(self, features): token_embeddings = features["token_embeddings"] sentence_lengths = torch.clamp(features["sentence_lengths"], min=1) packed = nn.utils.rnn.pack_padded_sequence( token_embeddings, sentence_lengths.cpu(), batch_first=True, enforce_sorted=False ) packed = self.encoder(packed) unpack = nn.utils.rnn.pad_packed_sequence(packed[0], batch_first=True)[0] features.update({"token_embeddings": unpack}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str, **kwargs) -> List[int]: raise NotImplementedError() def save(self, output_path: str): with open(os.path.join(output_path, "lstm_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "lstm_config.json"), "r") as fIn: config = json.load(fIn) weights = torch.load(os.path.join(input_path, "pytorch_model.bin")) model = LSTM(**config) model.load_state_dict(weights) return model
"""Language models. **Language Model** is a type of model that can generate text or complete text prompts. LangChain has two main classes to work with language models: **Chat Models** and "old-fashioned" **LLMs**. **Chat Models** Language models that use a sequence of messages as inputs and return chat messages as outputs (as opposed to using plain text). These are traditionally newer models ( older models are generally LLMs, see below). Chat models support the assignment of distinct roles to conversation messages, helping to distinguish messages from the AI, users, and instructions such as system messages. The key abstraction for chat models is `BaseChatModel`. Implementations should inherit from this class. Please see LangChain how-to guides with more information on how to implement a custom chat model. To implement a custom Chat Model, inherit from `BaseChatModel`. See the following guide for more information on how to implement a custom Chat Model: https://python.langchain.com/docs/how_to/custom_chat_model/ **LLMs** Language models that takes a string as input and returns a string. These are traditionally older models (newer models generally are Chat Models, see below). Although the underlying models are string in, string out, the LangChain wrappers also allow these models to take messages as input. This gives them the same interface as Chat Models. When messages are passed in as input, they will be formatted into a string under the hood before being passed to the underlying model. To implement a custom LLM, inherit from `BaseLLM` or `LLM`. Please see the following guide for more information on how to implement a custom LLM: https://python.langchain.com/docs/how_to/custom_llm/ """ # noqa: E501 from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from langchain_core.language_models.base import ( BaseLanguageModel, LangSmithParams, LanguageModelInput, LanguageModelLike, LanguageModelOutput, get_tokenizer, ) from langchain_core.language_models.chat_models import ( BaseChatModel, SimpleChatModel, ) from langchain_core.language_models.fake import FakeListLLM, FakeStreamingListLLM from langchain_core.language_models.fake_chat_models import ( FakeListChatModel, FakeMessagesListChatModel, GenericFakeChatModel, ParrotFakeChatModel, ) from langchain_core.language_models.llms import LLM, BaseLLM __all__ = ( "LLM", "BaseChatModel", "BaseLLM", "BaseLanguageModel", "FakeListChatModel", "FakeListLLM", "FakeMessagesListChatModel", "FakeStreamingListLLM", "GenericFakeChatModel", "LangSmithParams", "LanguageModelInput", "LanguageModelLike", "LanguageModelOutput", "ParrotFakeChatModel", "SimpleChatModel", "get_tokenizer", ) _dynamic_imports = { "BaseLanguageModel": "base", "LangSmithParams": "base", "LanguageModelInput": "base", "LanguageModelLike": "base", "LanguageModelOutput": "base", "get_tokenizer": "base", "BaseChatModel": "chat_models", "SimpleChatModel": "chat_models", "FakeListLLM": "fake", "FakeStreamingListLLM": "fake", "FakeListChatModel": "fake_chat_models", "FakeMessagesListChatModel": "fake_chat_models", "GenericFakeChatModel": "fake_chat_models", "ParrotFakeChatModel": "fake_chat_models", "LLM": "llms", "BaseLLM": "llms", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""Language models. **Language Model** is a type of model that can generate text or complete text prompts. LangChain has two main classes to work with language models: **Chat Models** and "old-fashioned" **LLMs**. **Chat Models** Language models that use a sequence of messages as inputs and return chat messages as outputs (as opposed to using plain text). These are traditionally newer models ( older models are generally LLMs, see below). Chat models support the assignment of distinct roles to conversation messages, helping to distinguish messages from the AI, users, and instructions such as system messages. The key abstraction for chat models is `BaseChatModel`. Implementations should inherit from this class. Please see LangChain how-to guides with more information on how to implement a custom chat model. To implement a custom Chat Model, inherit from `BaseChatModel`. See the following guide for more information on how to implement a custom Chat Model: https://python.langchain.com/docs/how_to/custom_chat_model/ **LLMs** Language models that takes a string as input and returns a string. These are traditionally older models (newer models generally are Chat Models, see below). Although the underlying models are string in, string out, the LangChain wrappers also allow these models to take messages as input. This gives them the same interface as Chat Models. When messages are passed in as input, they will be formatted into a string under the hood before being passed to the underlying model. To implement a custom LLM, inherit from `BaseLLM` or `LLM`. Please see the following guide for more information on how to implement a custom LLM: https://python.langchain.com/docs/how_to/custom_llm/ """ # noqa: E501 from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from langchain_core.language_models.base import ( BaseLanguageModel, LangSmithParams, LanguageModelInput, LanguageModelLike, LanguageModelOutput, get_tokenizer, ) from langchain_core.language_models.chat_models import ( BaseChatModel, SimpleChatModel, ) from langchain_core.language_models.fake import FakeListLLM, FakeStreamingListLLM from langchain_core.language_models.fake_chat_models import ( FakeListChatModel, FakeMessagesListChatModel, GenericFakeChatModel, ParrotFakeChatModel, ) from langchain_core.language_models.llms import LLM, BaseLLM __all__ = ( "BaseLanguageModel", "BaseChatModel", "SimpleChatModel", "BaseLLM", "LLM", "LanguageModelInput", "get_tokenizer", "LangSmithParams", "LanguageModelOutput", "LanguageModelLike", "FakeListLLM", "FakeStreamingListLLM", "FakeListChatModel", "FakeMessagesListChatModel", "GenericFakeChatModel", "ParrotFakeChatModel", ) _dynamic_imports = { "BaseLanguageModel": "base", "LangSmithParams": "base", "LanguageModelInput": "base", "LanguageModelLike": "base", "LanguageModelOutput": "base", "get_tokenizer": "base", "BaseChatModel": "chat_models", "SimpleChatModel": "chat_models", "FakeListLLM": "fake", "FakeStreamingListLLM": "fake", "FakeListChatModel": "fake_chat_models", "FakeMessagesListChatModel": "fake_chat_models", "GenericFakeChatModel": "fake_chat_models", "ParrotFakeChatModel": "fake_chat_models", "LLM": "llms", "BaseLLM": "llms", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from typing import List import numpy as np import pytest from jina import Document, DocumentArray, Flow from ...torch_encoder import ImageTorchEncoder @pytest.mark.parametrize( 'arr_in', [ (np.ones((224, 224, 3), dtype=np.uint8)), (np.ones((100, 100, 3), dtype=np.uint8)), (np.ones((50, 40, 3), dtype=np.uint8)), ], ) def test_no_batch(arr_in: np.ndarray): flow = Flow().add(uses=ImageTorchEncoder) with flow: resp = flow.post( on='/test', inputs=[Document(blob=arr_in)], return_results=True ) results_arr = DocumentArray(resp[0].data.docs) assert len(results_arr) == 1 assert results_arr[0].embedding is not None assert results_arr[0].embedding.shape == (512,) def test_with_batch(): flow = Flow().add(uses=ImageTorchEncoder) with flow: resp = flow.post( on='/test', inputs=( Document(blob=np.ones((224, 224, 3), dtype=np.uint8)) for _ in range(25) ), return_results=True, ) assert len(resp[0].docs.get_attributes('embedding')) == 25 @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_paths'], [ (pytest.lazy_fixture('docs_with_blobs'), [['r', 11], ['c', 0], ['cc', 0]], 'r'), ( pytest.lazy_fixture('docs_with_chunk_blobs'), [['r', 0], ['c', 11], ['cc', 0]], 'c', ), ( pytest.lazy_fixture('docs_with_chunk_chunk_blobs'), [['r', 0], ['c', 0], ['cc', 11]], 'cc', ), ], ) def test_traversal_paths( docs: DocumentArray, docs_per_path: List[List[str]], traversal_paths: str ): def validate_traversal(expected_docs_per_path: List[List[str]]): def validate(res): for path, count in expected_docs_per_path: embeddings = ( DocumentArray(res[0].docs) .traverse_flat([path]) .get_attributes('embedding') ) return len([em for em in embeddings if em is not None]) == count return validate flow = Flow().add(uses=ImageTorchEncoder) with flow: resp = flow.post( on='/test', inputs=docs, parameters={'traversal_paths': [traversal_paths]}, return_results=True, ) assert validate_traversal(docs_per_path)(resp) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( ['jina', 'executor', f'--uses=docker://{build_docker_image}'], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'pea', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:cuda', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from typing import List import numpy as np import pytest from jina import Flow, Document, DocumentArray from ...torch_encoder import ImageTorchEncoder @pytest.mark.parametrize('arr_in', [ (np.ones((224, 224, 3), dtype=np.uint8)), (np.ones((100, 100, 3), dtype=np.uint8)), (np.ones((50, 40, 3), dtype=np.uint8)) ]) def test_no_batch(arr_in: np.ndarray): flow = Flow().add(uses=ImageTorchEncoder) with flow: resp = flow.post( on='/test', inputs=[Document(blob=arr_in)], return_results=True ) results_arr = DocumentArray(resp[0].data.docs) assert len(results_arr) == 1 assert results_arr[0].embedding is not None assert results_arr[0].embedding.shape == (512, ) def test_with_batch(): flow = Flow().add(uses=ImageTorchEncoder) with flow: resp = flow.post( on='/test', inputs=(Document(blob=np.ones((224, 224, 3), dtype=np.uint8)) for _ in range(25)), return_results=True ) assert len(resp[0].docs.get_attributes('embedding')) == 25 @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_paths'], [ (pytest.lazy_fixture('docs_with_blobs'), [['r', 11], ['c', 0], ['cc', 0]], 'r'), (pytest.lazy_fixture('docs_with_chunk_blobs'), [['r', 0], ['c', 11], ['cc', 0]], 'c'), (pytest.lazy_fixture('docs_with_chunk_chunk_blobs'), [['r', 0], ['c', 0], ['cc', 11]], 'cc') ] ) def test_traversal_paths(docs: DocumentArray, docs_per_path: List[List[str]], traversal_paths: str): def validate_traversal(expected_docs_per_path: List[List[str]]): def validate(res): for path, count in expected_docs_per_path: return len(DocumentArray(res[0].docs).traverse_flat([path]).get_attributes('embedding')) == count return validate flow = Flow().add(uses=ImageTorchEncoder) with flow: resp = flow.post( on='/test', inputs=docs, parameters={'traversal_paths': [traversal_paths]}, return_results=True ) assert validate_traversal(docs_per_path)(resp)
from __future__ import annotations from .model_card import SparseEncoderModelCardData from .SparseEncoder import SparseEncoder from .trainer import SparseEncoderTrainer from .training_args import SparseEncoderTrainingArguments __all__ = [ "SparseEncoder", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", "SparseEncoderModelCardData", ] # TODO : Add tests for all the components
from __future__ import annotations from sentence_transformers.sparse_encoder.callbacks.splade_callbacks import ( SchedulerType, SpladeLambdaSchedulerCallback, ) from sentence_transformers.sparse_encoder.data_collator import SparseEncoderDataCollator from sentence_transformers.sparse_encoder.evaluation import ( SparseBinaryClassificationEvaluator, SparseEmbeddingSimilarityEvaluator, SparseInformationRetrievalEvaluator, SparseMSEEvaluator, SparseNanoBEIREvaluator, SparseRerankingEvaluator, SparseTranslationEvaluator, SparseTripletEvaluator, ) from sentence_transformers.sparse_encoder.losses import ( CSRLoss, CSRReconstructionLoss, FlopsLoss, SparseAnglELoss, SparseCachedGISTEmbedLoss, SparseCachedMultipleNegativesRankingLoss, SparseCoSENTLoss, SparseCosineSimilarityLoss, SparseDistillKLDivLoss, SparseGISTEmbedLoss, SparseMarginMSELoss, SparseMSELoss, SparseMultipleNegativesRankingLoss, SparseTripletLoss, SpladeLoss, ) from sentence_transformers.sparse_encoder.model_card import SparseEncoderModelCardData from sentence_transformers.sparse_encoder.models import IDF, CSRSparsity, MLMTransformer, SpladePooling from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import ( SparseEncoderTrainingArguments, ) __all__ = [ # Core components "SparseEncoder", "SparseEncoderDataCollator", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", # Models "CSRSparsity", "MLMTransformer", "SpladePooling", "IDF", # Losses "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", "FlopsLoss", "SpladeLoss", # Callbacks "SpladeLambdaSchedulerCallback", "SchedulerType", # Evaluators "SparseBinaryClassificationEvaluator", "SparseEmbeddingSimilarityEvaluator", "SparseInformationRetrievalEvaluator", "SparseMSEEvaluator", "SparseNanoBEIREvaluator", "SparseTranslationEvaluator", "SparseRerankingEvaluator", "SparseTripletEvaluator", # Model card "SparseEncoderModelCardData", ] # TODO : Add tests for all the components
# Copyright (c) OpenMMLab. All rights reserved. import argparse from mmengine.config import Config, DictAction from mmengine.fileio import load from mmdet.datasets import build_dataset from mmdet.utils import replace_cfg_vals, update_data_root def parse_args(): parser = argparse.ArgumentParser(description='Evaluate metric of the ' 'results saved in pkl format') parser.add_argument('config', help='Config of the model') parser.add_argument('pkl_results', help='Results in pickle format') parser.add_argument( '--format-only', action='store_true', help='Format the output results without perform evaluation. It is' 'useful when you want to format the result to a specific format and ' 'submit it to the test server') parser.add_argument( '--eval', type=str, nargs='+', help='Evaluation metrics, which depends on the dataset, e.g., "bbox",' ' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--eval-options', nargs='+', action=DictAction, help='custom options for evaluation, the key-value pair in xxx=yyy ' 'format will be kwargs for dataset.evaluate() function') args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) # replace the ${key} with the value of cfg.key cfg = replace_cfg_vals(cfg) # update data root according to MMDET_DATASETS update_data_root(cfg) assert args.eval or args.format_only, ( 'Please specify at least one operation (eval/format the results) with ' 'the argument "--eval", "--format-only"') if args.eval and args.format_only: raise ValueError('--eval and --format_only cannot be both specified') if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) cfg.data.test.test_mode = True dataset = build_dataset(cfg.data.test) outputs = load(args.pkl_results) kwargs = {} if args.eval_options is None else args.eval_options if args.format_only: dataset.format_results(outputs, **kwargs) if args.eval: eval_kwargs = cfg.get('evaluation', {}).copy() # hard-code way to remove EvalHook args for key in [ 'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best', 'rule' ]: eval_kwargs.pop(key, None) eval_kwargs.update(dict(metric=args.eval, **kwargs)) print(dataset.evaluate(outputs, **eval_kwargs)) if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import mmcv from mmcv import Config, DictAction from mmdet.datasets import build_dataset from mmdet.utils import replace_cfg_vals, update_data_root def parse_args(): parser = argparse.ArgumentParser(description='Evaluate metric of the ' 'results saved in pkl format') parser.add_argument('config', help='Config of the model') parser.add_argument('pkl_results', help='Results in pickle format') parser.add_argument( '--format-only', action='store_true', help='Format the output results without perform evaluation. It is' 'useful when you want to format the result to a specific format and ' 'submit it to the test server') parser.add_argument( '--eval', type=str, nargs='+', help='Evaluation metrics, which depends on the dataset, e.g., "bbox",' ' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--eval-options', nargs='+', action=DictAction, help='custom options for evaluation, the key-value pair in xxx=yyy ' 'format will be kwargs for dataset.evaluate() function') args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) # replace the ${key} with the value of cfg.key cfg = replace_cfg_vals(cfg) # update data root according to MMDET_DATASETS update_data_root(cfg) assert args.eval or args.format_only, ( 'Please specify at least one operation (eval/format the results) with ' 'the argument "--eval", "--format-only"') if args.eval and args.format_only: raise ValueError('--eval and --format_only cannot be both specified') if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) cfg.data.test.test_mode = True dataset = build_dataset(cfg.data.test) outputs = mmcv.load(args.pkl_results) kwargs = {} if args.eval_options is None else args.eval_options if args.format_only: dataset.format_results(outputs, **kwargs) if args.eval: eval_kwargs = cfg.get('evaluation', {}).copy() # hard-code way to remove EvalHook args for key in [ 'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best', 'rule' ]: eval_kwargs.pop(key, None) eval_kwargs.update(dict(metric=args.eval, **kwargs)) print(dataset.evaluate(outputs, **eval_kwargs)) if __name__ == '__main__': main()
from enum import Enum from typing import Any, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from langchain_core.stores import BaseStore, ByteStore from langchain_core.vectorstores import VectorStore from pydantic import Field, model_validator from langchain.storage._lc_store import create_kv_docstore class SearchType(str, Enum): """Enumerator of the types of search to perform.""" similarity = "similarity" """Similarity search.""" similarity_score_threshold = "similarity_score_threshold" """Similarity search with a score threshold.""" mmr = "mmr" """Maximal Marginal Relevance reranking of similarity search.""" class MultiVectorRetriever(BaseRetriever): """Retrieve from a set of multiple embeddings for the same document.""" vectorstore: VectorStore """The underlying vectorstore to use to store small chunks and their embedding vectors""" byte_store: Optional[ByteStore] = None """The lower-level backing storage layer for the parent documents""" docstore: BaseStore[str, Document] """The storage interface for the parent documents""" id_key: str = "doc_id" search_kwargs: dict = Field(default_factory=dict) """Keyword arguments to pass to the search function.""" search_type: SearchType = SearchType.similarity """Type of search to perform (similarity / mmr)""" @model_validator(mode="before") @classmethod def shim_docstore(cls, values: dict) -> Any: byte_store = values.get("byte_store") docstore = values.get("docstore") if byte_store is not None: docstore = create_kv_docstore(byte_store) elif docstore is None: raise Exception("You must pass a `byte_store` parameter.") values["docstore"] = docstore return values def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> list[Document]: """Get documents relevant to a query. Args: query: String to find relevant documents for run_manager: The callbacks handler to use Returns: List of relevant documents """ if self.search_type == SearchType.mmr: sub_docs = self.vectorstore.max_marginal_relevance_search( query, **self.search_kwargs ) elif self.search_type == SearchType.similarity_score_threshold: sub_docs_and_similarities = ( self.vectorstore.similarity_search_with_relevance_scores( query, **self.search_kwargs ) ) sub_docs = [sub_doc for sub_doc, _ in sub_docs_and_similarities] else: sub_docs = self.vectorstore.similarity_search(query, **self.search_kwargs) # We do this to maintain the order of the ids that are returned ids = [] for d in sub_docs: if self.id_key in d.metadata and d.metadata[self.id_key] not in ids: ids.append(d.metadata[self.id_key]) docs = self.docstore.mget(ids) return [d for d in docs if d is not None] async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun ) -> list[Document]: """Asynchronously get documents relevant to a query. Args: query: String to find relevant documents for run_manager: The callbacks handler to use Returns: List of relevant documents """ if self.search_type == SearchType.mmr: sub_docs = await self.vectorstore.amax_marginal_relevance_search( query, **self.search_kwargs ) elif self.search_type == SearchType.similarity_score_threshold: sub_docs_and_similarities = ( await self.vectorstore.asimilarity_search_with_relevance_scores( query, **self.search_kwargs ) ) sub_docs = [sub_doc for sub_doc, _ in sub_docs_and_similarities] else: sub_docs = await self.vectorstore.asimilarity_search( query, **self.search_kwargs ) # We do this to maintain the order of the ids that are returned ids = [] for d in sub_docs: if self.id_key in d.metadata and d.metadata[self.id_key] not in ids: ids.append(d.metadata[self.id_key]) docs = await self.docstore.amget(ids) return [d for d in docs if d is not None]
from enum import Enum from typing import Any, Dict, List, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from langchain_core.stores import BaseStore, ByteStore from langchain_core.vectorstores import VectorStore from pydantic import Field, model_validator from langchain.storage._lc_store import create_kv_docstore class SearchType(str, Enum): """Enumerator of the types of search to perform.""" similarity = "similarity" """Similarity search.""" similarity_score_threshold = "similarity_score_threshold" """Similarity search with a score threshold.""" mmr = "mmr" """Maximal Marginal Relevance reranking of similarity search.""" class MultiVectorRetriever(BaseRetriever): """Retrieve from a set of multiple embeddings for the same document.""" vectorstore: VectorStore """The underlying vectorstore to use to store small chunks and their embedding vectors""" byte_store: Optional[ByteStore] = None """The lower-level backing storage layer for the parent documents""" docstore: BaseStore[str, Document] """The storage interface for the parent documents""" id_key: str = "doc_id" search_kwargs: dict = Field(default_factory=dict) """Keyword arguments to pass to the search function.""" search_type: SearchType = SearchType.similarity """Type of search to perform (similarity / mmr)""" @model_validator(mode="before") @classmethod def shim_docstore(cls, values: Dict) -> Any: byte_store = values.get("byte_store") docstore = values.get("docstore") if byte_store is not None: docstore = create_kv_docstore(byte_store) elif docstore is None: raise Exception("You must pass a `byte_store` parameter.") values["docstore"] = docstore return values def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """Get documents relevant to a query. Args: query: String to find relevant documents for run_manager: The callbacks handler to use Returns: List of relevant documents """ if self.search_type == SearchType.mmr: sub_docs = self.vectorstore.max_marginal_relevance_search( query, **self.search_kwargs ) elif self.search_type == SearchType.similarity_score_threshold: sub_docs_and_similarities = ( self.vectorstore.similarity_search_with_relevance_scores( query, **self.search_kwargs ) ) sub_docs = [sub_doc for sub_doc, _ in sub_docs_and_similarities] else: sub_docs = self.vectorstore.similarity_search(query, **self.search_kwargs) # We do this to maintain the order of the ids that are returned ids = [] for d in sub_docs: if self.id_key in d.metadata and d.metadata[self.id_key] not in ids: ids.append(d.metadata[self.id_key]) docs = self.docstore.mget(ids) return [d for d in docs if d is not None] async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun ) -> List[Document]: """Asynchronously get documents relevant to a query. Args: query: String to find relevant documents for run_manager: The callbacks handler to use Returns: List of relevant documents """ if self.search_type == SearchType.mmr: sub_docs = await self.vectorstore.amax_marginal_relevance_search( query, **self.search_kwargs ) elif self.search_type == SearchType.similarity_score_threshold: sub_docs_and_similarities = ( await self.vectorstore.asimilarity_search_with_relevance_scores( query, **self.search_kwargs ) ) sub_docs = [sub_doc for sub_doc, _ in sub_docs_and_similarities] else: sub_docs = await self.vectorstore.asimilarity_search( query, **self.search_kwargs ) # We do this to maintain the order of the ids that are returned ids = [] for d in sub_docs: if self.id_key in d.metadata and d.metadata[self.id_key] not in ids: ids.append(d.metadata[self.id_key]) docs = await self.docstore.amget(ids) return [d for d in docs if d is not None]
from typing import Optional from docarray.document import BaseDocument from docarray.typing import AnyEmbedding, AnyTensor, PointCloud3DUrl class PointCloud3D(BaseDocument): """ Document for handling point clouds for 3D data representation. Point cloud is a representation of a 3D mesh. It is made by repeatedly and uniformly sampling points within the surface of the 3D body. Compared to the mesh representation, the point cloud is a fixed size ndarray (shape=(n_samples, 3)) and hence easier for deep learning algorithms to handle. A PointCloud3D Document can contain an PointCloud3DUrl (`PointCloud3D.url`), an AnyTensor (`PointCloud3D.tensor`), and an AnyEmbedding (`PointCloud3D.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray import PointCloud3D # use it directly pc = PointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensor = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensor) You can extend this Document: .. code-block:: python from docarray import PointCloud3D from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyPointCloud3D(PointCloud3D): second_embedding: Optional[AnyEmbedding] pc = MyPointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensor = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensor) pc.second_embedding = model(pc.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument, PointCloud3D, Text # compose it class MultiModalDoc(BaseDocument): point_cloud: PointCloud3D text: Text mmdoc = MultiModalDoc( point_cloud=PointCloud3D( url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.point_cloud.tensor = mmdoc.point_cloud.url.load(samples=100) """ url: Optional[PointCloud3DUrl] tensor: Optional[AnyTensor] embedding: Optional[AnyEmbedding]
from typing import Optional from docarray.document import BaseDocument from docarray.typing import AnyTensor, Embedding, PointCloud3DUrl class PointCloud3D(BaseDocument): """ Document for handling point clouds for 3D data representation. Point cloud is a representation of a 3D mesh. It is made by repeatedly and uniformly sampling points within the surface of the 3D body. Compared to the mesh representation, the point cloud is a fixed size ndarray (shape=(n_samples, 3)) and hence easier for deep learning algorithms to handle. A PointCloud3D Document can contain an PointCloud3DUrl (`PointCloud3D.url`), an AnyTensor (`PointCloud3D.tensor`), and an Embedding (`PointCloud3D.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray import PointCloud3D # use it directly pc = PointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensor = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensor) You can extend this Document: .. code-block:: python from docarray import PointCloud3D from docarray.typing import Embedding from typing import Optional # extend it class MyPointCloud3D(PointCloud3D): second_embedding: Optional[Embedding] pc = MyPointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensor = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensor) pc.second_embedding = model(pc.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument, PointCloud3D, Text # compose it class MultiModalDoc(BaseDocument): point_cloud: PointCloud3D text: Text mmdoc = MultiModalDoc( point_cloud=PointCloud3D( url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.point_cloud.tensor = mmdoc.point_cloud.url.load(samples=100) """ url: Optional[PointCloud3DUrl] tensor: Optional[AnyTensor] embedding: Optional[Embedding]
from __future__ import annotations __version__ = "3.5.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" import importlib import os from sentence_transformers.backend import ( export_dynamic_quantized_onnx_model, export_optimized_onnx_model, export_static_quantized_openvino_model, ) from sentence_transformers.cross_encoder import ( CrossEncoder, CrossEncoderModelCardData, CrossEncoderTrainer, CrossEncoderTrainingArguments, ) from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset from sentence_transformers.LoggingHandler import LoggingHandler from sentence_transformers.model_card import SentenceTransformerModelCardData from sentence_transformers.quantization import quantize_embeddings from sentence_transformers.readers import InputExample from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # If codecarbon is installed and the log level is not defined, # automatically overwrite the default to "error" if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ: os.environ["CODECARBON_LOG_LEVEL"] = "error" __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "SimilarityFunction", "InputExample", "CrossEncoder", "CrossEncoderTrainer", "CrossEncoderTrainingArguments", "CrossEncoderModelCardData", "SentenceTransformerTrainer", "SentenceTransformerTrainingArguments", "SentenceTransformerModelCardData", "quantize_embeddings", "export_optimized_onnx_model", "export_dynamic_quantized_onnx_model", "export_static_quantized_openvino_model", ]
from __future__ import annotations __version__ = "3.5.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" import importlib import os from sentence_transformers.backend import ( export_dynamic_quantized_onnx_model, export_optimized_onnx_model, export_static_quantized_openvino_model, ) from sentence_transformers.cross_encoder.CrossEncoder import CrossEncoder from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset from sentence_transformers.LoggingHandler import LoggingHandler from sentence_transformers.model_card import SentenceTransformerModelCardData from sentence_transformers.quantization import quantize_embeddings from sentence_transformers.readers import InputExample from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # If codecarbon is installed and the log level is not defined, # automatically overwrite the default to "error" if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ: os.environ["CODECARBON_LOG_LEVEL"] = "error" __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "SimilarityFunction", "InputExample", "CrossEncoder", "SentenceTransformerTrainer", "SentenceTransformerTrainingArguments", "SentenceTransformerModelCardData", "quantize_embeddings", "export_optimized_onnx_model", "export_dynamic_quantized_onnx_model", "export_static_quantized_openvino_model", ]
import multiprocessing import pytest from jina import Client from jina.parsers import set_gateway_parser from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.servers import BaseServer from jina.serve.runtimes.worker.request_handling import WorkerRequestHandler from jina.serve.runtimes.gateway.request_handling import GatewayRequestHandler from tests.helper import _generate_pod_args def _create_worker_runtime(port, name='', executor=None): args = _generate_pod_args() args.port = [port] args.name = name if executor: args.uses = executor with AsyncNewLoopRuntime(args, req_handler_cls=WorkerRequestHandler) as runtime: runtime.run_forever() def _create_gateway_runtime(graph_description, pod_addresses, port, protocol='grpc'): with AsyncNewLoopRuntime( set_gateway_parser().parse_args( [ '--graph-description', graph_description, '--deployments-addresses', pod_addresses, '--port', str(port), '--protocol', protocol, ] ), req_handler_cls=GatewayRequestHandler, ) as runtime: runtime.run_forever() def _setup(worker_port, port, protocol): graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{worker_port}"]}}' # create a single worker runtime worker_process = multiprocessing.Process( target=_create_worker_runtime, args=(worker_port,) ) worker_process.start() # create a single gateway runtime gateway_process = multiprocessing.Process( target=_create_gateway_runtime, args=(graph_description, pod_addresses, port, protocol), ) gateway_process.start() BaseServer.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{worker_port}', ready_or_shutdown_event=multiprocessing.Event(), ) BaseServer.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) return worker_process, gateway_process @pytest.mark.parametrize('protocol', ['http']) def test_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', port=port, protocol=protocol) dry_run_alive = c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0 @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) async def test_async_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', asyncio=True, port=port, protocol=protocol) dry_run_alive = await c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = await c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0
import multiprocessing import pytest from jina import Client from jina.parsers import set_gateway_parser from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.servers import BaseServer from jina.serve.runtimes.worker.request_handling import WorkerRequestHandler from jina.serve.runtimes.gateway.request_handling import GatewayRequestHandler from tests.helper import _generate_pod_args def _create_worker_runtime(port, name='', executor=None): args = _generate_pod_args() args.port = [port] args.name = name if executor: args.uses = executor with AsyncNewLoopRuntime(args, req_handler_cls=WorkerRequestHandler) as runtime: runtime.run_forever() def _create_gateway_runtime(graph_description, pod_addresses, port, protocol='grpc'): with AsyncNewLoopRuntime( set_gateway_parser().parse_args( [ '--graph-description', graph_description, '--deployments-addresses', pod_addresses, '--port', str(port), '--protocol', protocol, ] ), req_handler_cls=GatewayRequestHandler ) as runtime: runtime.run_forever() def _setup(worker_port, port, protocol): graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{worker_port}"]}}' # create a single worker runtime worker_process = multiprocessing.Process( target=_create_worker_runtime, args=(worker_port,) ) worker_process.start() # create a single gateway runtime gateway_process = multiprocessing.Process( target=_create_gateway_runtime, args=(graph_description, pod_addresses, port, protocol), ) gateway_process.start() BaseServer.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{worker_port}', ready_or_shutdown_event=multiprocessing.Event(), ) BaseServer.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) return worker_process, gateway_process @pytest.mark.parametrize('protocol', ['http']) def test_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', port=port, protocol=protocol) dry_run_alive = c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0 @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) async def test_async_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', asyncio=True, port=port, protocol=protocol) dry_run_alive = await c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = await c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0
from typing import BinaryIO, Dict, Optional, Tuple import torch import torchaudio from torchaudio.backend.common import AudioMetaData # Note: need to comply TorchScript syntax -- need annotation and no f-string nor global def _info_audio( s: torch.classes.torchaudio.ffmpeg_StreamReader, ): i = s.find_best_audio_stream() sinfo = s.get_src_stream_info(i) if sinfo[5] == 0: waveform, _ = _load_audio(s) num_frames = waveform.size(1) else: num_frames = sinfo[5] return AudioMetaData( int(sinfo[8]), num_frames, sinfo[9], sinfo[6], sinfo[1].upper(), ) def info_audio( src: str, format: Optional[str], ) -> AudioMetaData: s = torch.classes.torchaudio.ffmpeg_StreamReader(src, format, None) return _info_audio(s) def info_audio_fileobj( src, format: Optional[str], buffer_size: int = 4096, ) -> AudioMetaData: s = torchaudio.lib._torchaudio_ffmpeg.StreamReaderFileObj(src, format, None, buffer_size) return _info_audio(s) def _get_load_filter( frame_offset: int = 0, num_frames: int = -1, convert: bool = True, ) -> Optional[str]: if frame_offset < 0: raise RuntimeError("Invalid argument: frame_offset must be non-negative. Found: {}".format(frame_offset)) if num_frames == 0 or num_frames < -1: raise RuntimeError("Invalid argument: num_frames must be -1 or greater than 0. Found: {}".format(num_frames)) # All default values -> no filter if frame_offset == 0 and num_frames == -1 and not convert: return None # Only convert aformat = "aformat=sample_fmts=fltp" if frame_offset == 0 and num_frames == -1 and convert: return aformat # At least one of frame_offset or num_frames has non-default value if num_frames > 0: atrim = "atrim=start_sample={}:end_sample={}".format(frame_offset, frame_offset + num_frames) else: atrim = "atrim=start_sample={}".format(frame_offset) if not convert: return atrim return "{},{}".format(atrim, aformat) # Note: need to comply TorchScript syntax -- need annotation and no f-string nor global def _load_audio( s: torch.classes.torchaudio.ffmpeg_StreamReader, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, ) -> Tuple[torch.Tensor, int]: i = s.find_best_audio_stream() sinfo = s.get_src_stream_info(i) sample_rate = int(sinfo[8]) option: Dict[str, str] = {} s.add_audio_stream(i, -1, -1, _get_load_filter(frame_offset, num_frames, convert), None, option) s.process_all_packets() chunk = s.pop_chunks()[0] if chunk is None: raise RuntimeError("Failed to decode audio.") assert chunk is not None waveform = chunk[0] if channels_first: waveform = waveform.T return waveform, sample_rate def load_audio( src: str, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, format: Optional[str] = None, ) -> Tuple[torch.Tensor, int]: s = torch.classes.torchaudio.ffmpeg_StreamReader(src, format, None) return _load_audio(s, frame_offset, num_frames, convert, channels_first) def load_audio_fileobj( src: BinaryIO, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, format: Optional[str] = None, buffer_size: int = 4096, ) -> Tuple[torch.Tensor, int]: s = torchaudio.lib._torchaudio_ffmpeg.StreamReaderFileObj(src, format, None, buffer_size) return _load_audio(s, frame_offset, num_frames, convert, channels_first)
from typing import BinaryIO, Dict, Optional, Tuple import torch import torchaudio from torchaudio.backend.common import AudioMetaData # Note: need to comply TorchScript syntax -- need annotation and no f-string nor global def _info_audio( s: torch.classes.torchaudio.ffmpeg_StreamReader, ): i = s.find_best_audio_stream() sinfo = s.get_src_stream_info(i) if sinfo[5] == 0: waveform, _ = _load_audio(s) num_frames = waveform.size(1) else: num_frames = sinfo[5] return AudioMetaData( int(sinfo[8]), num_frames, sinfo[9], sinfo[6], sinfo[1].upper(), ) def info_audio( src: str, format: Optional[str], ) -> AudioMetaData: s = torch.classes.torchaudio.ffmpeg_StreamReader(src, format, None) return _info_audio(s) def info_audio_fileobj( src, format: Optional[str], buffer_size: int = 4096, ) -> AudioMetaData: s = torchaudio.lib._torchaudio_ffmpeg.StreamReaderFileObj(src, format, None, buffer_size) return _info_audio(s) def _get_load_filter( frame_offset: int = 0, num_frames: int = -1, convert: bool = True, ) -> Optional[str]: if frame_offset < 0: raise RuntimeError("Invalid argument: frame_offset must be non-negative. Found: {}".format(frame_offset)) if num_frames == 0 or num_frames < -1: raise RuntimeError("Invalid argument: num_frames must be -1 or greater than 0. Found: {}".format(num_frames)) # All default values -> no filter if frame_offset == 0 and num_frames == -1 and not convert: return None # Only convert aformat = "aformat=sample_fmts=fltp" if frame_offset == 0 and num_frames == -1 and convert: return aformat # At least one of frame_offset or num_frames has non-default value if num_frames > 0: atrim = "atrim=start_sample={}:end_sample={}".format(frame_offset, frame_offset + num_frames) else: atrim = "atrim=start_sample={}".format(frame_offset) if not convert: return atrim return "{},{}".format(atrim, aformat) # Note: need to comply TorchScript syntax -- need annotation and no f-string nor global def _load_audio( s: torch.classes.torchaudio.ffmpeg_StreamReader, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, ) -> Tuple[torch.Tensor, int]: i = s.find_best_audio_stream() sinfo = s.get_src_stream_info(i) sample_rate = int(sinfo[8]) option: Dict[str, str] = {} s.add_audio_stream(i, -1, -1, _get_load_filter(frame_offset, num_frames, convert), None, option) s.process_all_packets() waveform = s.pop_chunks()[0] if waveform is None: raise RuntimeError("Failed to decode audio.") assert waveform is not None if channels_first: waveform = waveform.T return waveform, sample_rate def load_audio( src: str, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, format: Optional[str] = None, ) -> Tuple[torch.Tensor, int]: s = torch.classes.torchaudio.ffmpeg_StreamReader(src, format, None) return _load_audio(s, frame_offset, num_frames, convert, channels_first) def load_audio_fileobj( src: BinaryIO, frame_offset: int = 0, num_frames: int = -1, convert: bool = True, channels_first: bool = True, format: Optional[str] = None, buffer_size: int = 4096, ) -> Tuple[torch.Tensor, int]: s = torchaudio.lib._torchaudio_ffmpeg.StreamReaderFileObj(src, format, None, buffer_size) return _load_audio(s, frame_offset, num_frames, convert, channels_first)
# Copyright (c) OpenMMLab. All rights reserved. from .auto_augment import (AutoAugment, BrightnessTransform, ColorTransform, ContrastTransform, EqualizeTransform, Rotate, Shear, Translate) from .compose import Compose from .formatting import (Collect, DefaultFormatBundle, ImageToTensor, ToDataContainer, ToTensor, Transpose, to_tensor) from .instaboost import InstaBoost from .loading import (LoadAnnotations, LoadImageFromFile, LoadImageFromWebcam, LoadMultiChannelImageFromFiles, LoadProposals) from .test_time_aug import MultiScaleFlipAug from .transforms import (Albu, CutOut, Expand, MinIoURandomCrop, MixUp, Mosaic, Normalize, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) __all__ = [ 'Compose', 'to_tensor', 'ToTensor', 'ImageToTensor', 'ToDataContainer', 'Transpose', 'Collect', 'DefaultFormatBundle', 'LoadAnnotations', 'LoadImageFromFile', 'LoadImageFromWebcam', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'MultiScaleFlipAug', 'Resize', 'RandomFlip', 'Pad', 'RandomCrop', 'Normalize', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'Shear', 'Rotate', 'ColorTransform', 'EqualizeTransform', 'BrightnessTransform', 'ContrastTransform', 'Translate', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug' ]
# Copyright (c) OpenMMLab. All rights reserved. from .auto_augment import (AutoAugment, BrightnessTransform, ColorTransform, ContrastTransform, EqualizeTransform, Rotate, Shear, Translate) from .compose import Compose from .formating import (Collect, DefaultFormatBundle, ImageToTensor, ToDataContainer, ToTensor, Transpose, to_tensor) from .instaboost import InstaBoost from .loading import (LoadAnnotations, LoadImageFromFile, LoadImageFromWebcam, LoadMultiChannelImageFromFiles, LoadProposals) from .test_time_aug import MultiScaleFlipAug from .transforms import (Albu, CutOut, Expand, MinIoURandomCrop, MixUp, Mosaic, Normalize, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) __all__ = [ 'Compose', 'to_tensor', 'ToTensor', 'ImageToTensor', 'ToDataContainer', 'Transpose', 'Collect', 'DefaultFormatBundle', 'LoadAnnotations', 'LoadImageFromFile', 'LoadImageFromWebcam', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'MultiScaleFlipAug', 'Resize', 'RandomFlip', 'Pad', 'RandomCrop', 'Normalize', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'Shear', 'Rotate', 'ColorTransform', 'EqualizeTransform', 'BrightnessTransform', 'ContrastTransform', 'Translate', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug' ]
""" LexRank implementation Source: https://github.com/crabcamp/lexrank/tree/dev """ import logging import numpy as np from scipy.sparse.csgraph import connected_components from scipy.special import softmax logger = logging.getLogger(__name__) def degree_centrality_scores( similarity_matrix, threshold=None, increase_power=True, ): if not (threshold is None or isinstance(threshold, float) and 0 <= threshold < 1): raise ValueError( "'threshold' should be a floating-point number " "from the interval [0, 1) or None", ) if threshold is None: markov_matrix = create_markov_matrix(similarity_matrix) else: markov_matrix = create_markov_matrix_discrete( similarity_matrix, threshold, ) scores = stationary_distribution( markov_matrix, increase_power=increase_power, normalized=False, ) return scores def _power_method(transition_matrix, increase_power=True, max_iter=10000): eigenvector = np.ones(len(transition_matrix)) if len(eigenvector) == 1: return eigenvector transition = transition_matrix.transpose() for _ in range(max_iter): eigenvector_next = np.dot(transition, eigenvector) if np.allclose(eigenvector_next, eigenvector): return eigenvector_next eigenvector = eigenvector_next if increase_power: transition = np.dot(transition, transition) logger.warning("Maximum number of iterations for power method exceeded without convergence!") return eigenvector_next def connected_nodes(matrix): _, labels = connected_components(matrix) groups = [] for tag in np.unique(labels): group = np.where(labels == tag)[0] groups.append(group) return groups def create_markov_matrix(weights_matrix): n_1, n_2 = weights_matrix.shape if n_1 != n_2: raise ValueError("'weights_matrix' should be square") row_sum = weights_matrix.sum(axis=1, keepdims=True) # normalize probability distribution differently if we have negative transition values if np.min(weights_matrix) <= 0: return softmax(weights_matrix, axis=1) return weights_matrix / row_sum def create_markov_matrix_discrete(weights_matrix, threshold): discrete_weights_matrix = np.zeros(weights_matrix.shape) ixs = np.where(weights_matrix >= threshold) discrete_weights_matrix[ixs] = 1 return create_markov_matrix(discrete_weights_matrix) def stationary_distribution( transition_matrix, increase_power=True, normalized=True, ): n_1, n_2 = transition_matrix.shape if n_1 != n_2: raise ValueError("'transition_matrix' should be square") distribution = np.zeros(n_1) grouped_indices = connected_nodes(transition_matrix) for group in grouped_indices: t_matrix = transition_matrix[np.ix_(group, group)] eigenvector = _power_method(t_matrix, increase_power=increase_power) distribution[group] = eigenvector if normalized: distribution /= n_1 return distribution
""" LexRank implementation Source: https://github.com/crabcamp/lexrank/tree/dev """ import numpy as np from scipy.sparse.csgraph import connected_components from scipy.special import softmax import logging logger = logging.getLogger(__name__) def degree_centrality_scores( similarity_matrix, threshold=None, increase_power=True, ): if not ( threshold is None or isinstance(threshold, float) and 0 <= threshold < 1 ): raise ValueError( '\'threshold\' should be a floating-point number ' 'from the interval [0, 1) or None', ) if threshold is None: markov_matrix = create_markov_matrix(similarity_matrix) else: markov_matrix = create_markov_matrix_discrete( similarity_matrix, threshold, ) scores = stationary_distribution( markov_matrix, increase_power=increase_power, normalized=False, ) return scores def _power_method(transition_matrix, increase_power=True, max_iter=10000): eigenvector = np.ones(len(transition_matrix)) if len(eigenvector) == 1: return eigenvector transition = transition_matrix.transpose() for _ in range(max_iter): eigenvector_next = np.dot(transition, eigenvector) if np.allclose(eigenvector_next, eigenvector): return eigenvector_next eigenvector = eigenvector_next if increase_power: transition = np.dot(transition, transition) logger.warning("Maximum number of iterations for power method exceeded without convergence!") return eigenvector_next def connected_nodes(matrix): _, labels = connected_components(matrix) groups = [] for tag in np.unique(labels): group = np.where(labels == tag)[0] groups.append(group) return groups def create_markov_matrix(weights_matrix): n_1, n_2 = weights_matrix.shape if n_1 != n_2: raise ValueError('\'weights_matrix\' should be square') row_sum = weights_matrix.sum(axis=1, keepdims=True) # normalize probability distribution differently if we have negative transition values if np.min(weights_matrix) <= 0: return softmax(weights_matrix, axis=1) return weights_matrix / row_sum def create_markov_matrix_discrete(weights_matrix, threshold): discrete_weights_matrix = np.zeros(weights_matrix.shape) ixs = np.where(weights_matrix >= threshold) discrete_weights_matrix[ixs] = 1 return create_markov_matrix(discrete_weights_matrix) def stationary_distribution( transition_matrix, increase_power=True, normalized=True, ): n_1, n_2 = transition_matrix.shape if n_1 != n_2: raise ValueError('\'transition_matrix\' should be square') distribution = np.zeros(n_1) grouped_indices = connected_nodes(transition_matrix) for group in grouped_indices: t_matrix = transition_matrix[np.ix_(group, group)] eigenvector = _power_method(t_matrix, increase_power=increase_power) distribution[group] = eigenvector if normalized: distribution /= n_1 return distribution
from torch import nn, Tensor __all__ = [ "Wav2Letter", ] class Wav2Letter(nn.Module): r"""Wav2Letter model architecture from *Wav2Letter: an End-to-End ConvNet-based Speech Recognition System* :cite:`collobert2016wav2letter`. :math:`\text{padding} = \frac{\text{ceil}(\text{kernel} - \text{stride})}{2}` Args: num_classes (int, optional): Number of classes to be classified. (Default: ``40``) input_type (str, optional): Wav2Letter can use as input: ``waveform``, ``power_spectrum`` or ``mfcc`` (Default: ``waveform``). num_features (int, optional): Number of input features that the network will receive (Default: ``1``). """ def __init__(self, num_classes: int = 40, input_type: str = "waveform", num_features: int = 1) -> None: super(Wav2Letter, self).__init__() acoustic_num_features = 250 if input_type == "waveform" else num_features acoustic_model = nn.Sequential( nn.Conv1d(in_channels=acoustic_num_features, out_channels=250, kernel_size=48, stride=2, padding=23), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=2000, kernel_size=32, stride=1, padding=16), nn.ReLU(inplace=True), nn.Conv1d(in_channels=2000, out_channels=2000, kernel_size=1, stride=1, padding=0), nn.ReLU(inplace=True), nn.Conv1d(in_channels=2000, out_channels=num_classes, kernel_size=1, stride=1, padding=0), nn.ReLU(inplace=True), ) if input_type == "waveform": waveform_model = nn.Sequential( nn.Conv1d(in_channels=num_features, out_channels=250, kernel_size=250, stride=160, padding=45), nn.ReLU(inplace=True), ) self.acoustic_model = nn.Sequential(waveform_model, acoustic_model) if input_type in ["power_spectrum", "mfcc"]: self.acoustic_model = acoustic_model def forward(self, x: Tensor) -> Tensor: r""" Args: x (torch.Tensor): Tensor of dimension (batch_size, num_features, input_length). Returns: Tensor: Predictor tensor of dimension (batch_size, number_of_classes, input_length). """ x = self.acoustic_model(x) x = nn.functional.log_softmax(x, dim=1) return x
from torch import nn, Tensor __all__ = [ "Wav2Letter", ] class Wav2Letter(nn.Module): r"""Wav2Letter model architecture from *Wav2Letter: an End-to-End ConvNet-based Speech Recognition System* [:footcite:`collobert2016wav2letter`]. :math:`\text{padding} = \frac{\text{ceil}(\text{kernel} - \text{stride})}{2}` Args: num_classes (int, optional): Number of classes to be classified. (Default: ``40``) input_type (str, optional): Wav2Letter can use as input: ``waveform``, ``power_spectrum`` or ``mfcc`` (Default: ``waveform``). num_features (int, optional): Number of input features that the network will receive (Default: ``1``). """ def __init__(self, num_classes: int = 40, input_type: str = "waveform", num_features: int = 1) -> None: super(Wav2Letter, self).__init__() acoustic_num_features = 250 if input_type == "waveform" else num_features acoustic_model = nn.Sequential( nn.Conv1d(in_channels=acoustic_num_features, out_channels=250, kernel_size=48, stride=2, padding=23), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=2000, kernel_size=32, stride=1, padding=16), nn.ReLU(inplace=True), nn.Conv1d(in_channels=2000, out_channels=2000, kernel_size=1, stride=1, padding=0), nn.ReLU(inplace=True), nn.Conv1d(in_channels=2000, out_channels=num_classes, kernel_size=1, stride=1, padding=0), nn.ReLU(inplace=True), ) if input_type == "waveform": waveform_model = nn.Sequential( nn.Conv1d(in_channels=num_features, out_channels=250, kernel_size=250, stride=160, padding=45), nn.ReLU(inplace=True), ) self.acoustic_model = nn.Sequential(waveform_model, acoustic_model) if input_type in ["power_spectrum", "mfcc"]: self.acoustic_model = acoustic_model def forward(self, x: Tensor) -> Tensor: r""" Args: x (torch.Tensor): Tensor of dimension (batch_size, num_features, input_length). Returns: Tensor: Predictor tensor of dimension (batch_size, number_of_classes, input_length). """ x = self.acoustic_model(x) x = nn.functional.log_softmax(x, dim=1) return x
from typing import Optional import torch from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask from ..utils import logging logger = logging.get_logger(__name__) _use_top_left_mask = flash_attn_supports_top_left_mask() def flash_attention_forward( module: torch.nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], dropout: float = 0.0, scaling: Optional[float] = None, sliding_window: Optional[int] = None, softcap: Optional[float] = None, **kwargs, ) -> tuple[torch.Tensor, None]: if kwargs.get("output_attentions", False) or kwargs.get("head_mask", None) is not None: logger.warning_once( "`flash_attention_2` does not support `output_attentions=True` or `head_mask`." " Please set your attention to `eager` if you want any of these features." ) # This is before the transpose seq_len = query.shape[2] if any(dim == 0 for dim in query.shape): raise ValueError( "Tensor query has shape with a zero dimension.\n" "FlashAttention does not support inputs with dim=0.\n" "Please check your input shapes or use SDPA instead." ) # FA2 uses non-transposed inputs query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (usually our RMSNorm modules handle it correctly) target_dtype = None if query.dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(module.config, "_pre_quantization_dtype"): target_dtype = module.config._pre_quantization_dtype else: target_dtype = next(layer for layer in module.modules() if isinstance(layer, torch.nn.Linear)).weight.dtype # FA2 always relies on the value set in the module, so remove it if present in kwargs to avoid passing it twice kwargs.pop("is_causal", None) attn_output = _flash_attention_forward( query, key, value, attention_mask, query_length=seq_len, is_causal=module.is_causal, dropout=dropout, softmax_scale=scaling, sliding_window=sliding_window, softcap=softcap, use_top_left_mask=_use_top_left_mask, target_dtype=target_dtype, **kwargs, ) return attn_output, None
from typing import Optional import torch from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask from ..utils import logging logger = logging.get_logger(__name__) _use_top_left_mask = flash_attn_supports_top_left_mask() def flash_attention_forward( module: torch.nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], dropout: float = 0.0, scaling: Optional[float] = None, sliding_window: Optional[int] = None, softcap: Optional[float] = None, **kwargs, ) -> tuple[torch.Tensor, None]: if kwargs.get("output_attentions", False) or kwargs.get("head_mask", None) is not None: logger.warning_once( "`flash_attention_2` does not support `output_attentions=True` or `head_mask`." " Please set your attention to `eager` if you want any of these features." ) # This is before the transpose seq_len = query.shape[2] # FA2 uses non-transposed inputs query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (usually our RMSNorm modules handle it correctly) target_dtype = None if query.dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(module.config, "_pre_quantization_dtype"): target_dtype = module.config._pre_quantization_dtype else: target_dtype = next(layer for layer in module.modules() if isinstance(layer, torch.nn.Linear)).weight.dtype # FA2 always relies on the value set in the module, so remove it if present in kwargs to avoid passing it twice kwargs.pop("is_causal", None) attn_output = _flash_attention_forward( query, key, value, attention_mask, query_length=seq_len, is_causal=module.is_causal, dropout=dropout, softmax_scale=scaling, sliding_window=sliding_window, softcap=softcap, use_top_left_mask=_use_top_left_mask, target_dtype=target_dtype, **kwargs, ) return attn_output, None
import logging from typing import Literal from github import Github from github.PullRequestReview import PullRequestReview from pydantic import BaseModel, SecretStr from pydantic_settings import BaseSettings class LabelSettings(BaseModel): await_label: str | None = None number: int default_config = {"approved-2": LabelSettings(await_label="awaiting-review", number=2)} class Settings(BaseSettings): github_repository: str token: SecretStr debug: bool | None = False config: dict[str, LabelSettings] | Literal[""] = default_config settings = Settings() if settings.debug: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) logging.debug(f"Using config: {settings.model_dump_json()}") g = Github(settings.token.get_secret_value()) repo = g.get_repo(settings.github_repository) for pr in repo.get_pulls(state="open"): logging.info(f"Checking PR: #{pr.number}") pr_labels = list(pr.get_labels()) pr_label_by_name = {label.name: label for label in pr_labels} reviews = list(pr.get_reviews()) review_by_user: dict[str, PullRequestReview] = {} for review in reviews: if review.user.login in review_by_user: stored_review = review_by_user[review.user.login] if review.submitted_at >= stored_review.submitted_at: review_by_user[review.user.login] = review else: review_by_user[review.user.login] = review approved_reviews = [ review for review in review_by_user.values() if review.state == "APPROVED" ] config = settings.config or default_config for approved_label, conf in config.items(): logging.debug(f"Processing config: {conf.model_dump_json()}") if conf.await_label is None or (conf.await_label in pr_label_by_name): logging.debug(f"Processable PR: {pr.number}") if len(approved_reviews) >= conf.number: logging.info(f"Adding label to PR: {pr.number}") pr.add_to_labels(approved_label) if conf.await_label: logging.info(f"Removing label from PR: {pr.number}") pr.remove_from_labels(conf.await_label) logging.info("Finished")
import logging from typing import Literal from github import Github from github.PullRequestReview import PullRequestReview from pydantic import BaseModel, SecretStr from pydantic_settings import BaseSettings class LabelSettings(BaseModel): await_label: str | None = None number: int default_config = {"approved-2": LabelSettings(await_label="awaiting-review", number=2)} class Settings(BaseSettings): github_repository: str token: SecretStr debug: bool | None = False config: dict[str, LabelSettings] | Literal[""] = default_config settings = Settings() if settings.debug: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) logging.debug(f"Using config: {settings.json()}") g = Github(settings.token.get_secret_value()) repo = g.get_repo(settings.github_repository) for pr in repo.get_pulls(state="open"): logging.info(f"Checking PR: #{pr.number}") pr_labels = list(pr.get_labels()) pr_label_by_name = {label.name: label for label in pr_labels} reviews = list(pr.get_reviews()) review_by_user: dict[str, PullRequestReview] = {} for review in reviews: if review.user.login in review_by_user: stored_review = review_by_user[review.user.login] if review.submitted_at >= stored_review.submitted_at: review_by_user[review.user.login] = review else: review_by_user[review.user.login] = review approved_reviews = [ review for review in review_by_user.values() if review.state == "APPROVED" ] config = settings.config or default_config for approved_label, conf in config.items(): logging.debug(f"Processing config: {conf.json()}") if conf.await_label is None or (conf.await_label in pr_label_by_name): logging.debug(f"Processable PR: {pr.number}") if len(approved_reviews) >= conf.number: logging.info(f"Adding label to PR: {pr.number}") pr.add_to_labels(approved_label) if conf.await_label: logging.info(f"Removing label from PR: {pr.number}") pr.remove_from_labels(conf.await_label) logging.info("Finished")
from docarray.typing.tensor.embedding.embedding import AnyEmbedding from docarray.typing.tensor.embedding.ndarray import NdArrayEmbedding __all__ = ['NdArrayEmbedding', 'AnyEmbedding'] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor.embedding.torch import TorchEmbedding # noqa F401 __all__.append('TorchEmbedding')
from docarray.typing.tensor.embedding.embedding import Embedding from docarray.typing.tensor.embedding.ndarray import NdArrayEmbedding __all__ = ['NdArrayEmbedding', 'Embedding'] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor.embedding.torch import TorchEmbedding # noqa F401 __all__.append('TorchEmbedding')
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Literal from sentence_transformers.evaluation import TripletEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseTripletEvaluator(TripletEvaluator): def __init__( self, anchors: list[str], positives: list[str], negatives: list[str], main_similarity_function: str | SimilarityFunction | None = None, margin: float | dict[str, float] | None = None, name: str = "", batch_size: int = 16, show_progress_bar: bool = False, write_csv: bool = True, truncate_dim: int | None = None, similarity_fn_names: list[Literal["cosine", "dot", "euclidean", "manhattan"]] | None = None, main_distance_function: str | SimilarityFunction | None = "deprecated", ): super().__init__( anchors=anchors, positives=positives, negatives=negatives, main_similarity_function=main_similarity_function, margin=margin, name=name, batch_size=batch_size, show_progress_bar=show_progress_bar, write_csv=write_csv, truncate_dim=truncate_dim, similarity_fn_names=similarity_fn_names, main_distance_function=main_distance_function, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model, output_path, epoch, steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> Tensor: return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch, step)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any from sentence_transformers.evaluation import TripletEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseTripletEvaluator(TripletEvaluator): def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super.__call__(model, output_path, epoch, steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> Tensor: return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch, step)
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.linalg import cholesky from keras.src.ops.linalg import det from keras.src.ops.linalg import eig from keras.src.ops.linalg import eigh from keras.src.ops.linalg import inv from keras.src.ops.linalg import lstsq from keras.src.ops.linalg import lu_factor from keras.src.ops.linalg import norm from keras.src.ops.linalg import qr from keras.src.ops.linalg import solve from keras.src.ops.linalg import solve_triangular from keras.src.ops.linalg import svd
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.linalg import cholesky from keras.src.ops.linalg import det from keras.src.ops.linalg import eig from keras.src.ops.linalg import eigh from keras.src.ops.linalg import inv from keras.src.ops.linalg import lu_factor from keras.src.ops.linalg import norm from keras.src.ops.linalg import qr from keras.src.ops.linalg import solve from keras.src.ops.linalg import solve_triangular from keras.src.ops.linalg import svd
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch.nn as nn from mmcv.cnn import ConvModule from mmcv.runner import BaseModule class SELayer(BaseModule): """Squeeze-and-Excitation Module. Args: channels (int): The input (and output) channels of the SE layer. ratio (int): Squeeze ratio in SELayer, the intermediate channel will be ``int(channels/ratio)``. Default: 16. conv_cfg (None or dict): Config dict for convolution layer. Default: None, which means using conv2d. act_cfg (dict or Sequence[dict]): Config dict for activation layer. If act_cfg is a dict, two activation layers will be configurated by this dict. If act_cfg is a sequence of dicts, the first activation layer will be configurated by the first dict and the second activation layer will be configurated by the second dict. Default: (dict(type='ReLU'), dict(type='Sigmoid')) init_cfg (dict or list[dict], optional): Initialization config dict. Default: None """ def __init__(self, channels, ratio=16, conv_cfg=None, act_cfg=(dict(type='ReLU'), dict(type='Sigmoid')), init_cfg=None): super(SELayer, self).__init__(init_cfg) if isinstance(act_cfg, dict): act_cfg = (act_cfg, act_cfg) assert len(act_cfg) == 2 assert mmcv.is_tuple_of(act_cfg, dict) self.global_avgpool = nn.AdaptiveAvgPool2d(1) self.conv1 = ConvModule( in_channels=channels, out_channels=int(channels / ratio), kernel_size=1, stride=1, conv_cfg=conv_cfg, act_cfg=act_cfg[0]) self.conv2 = ConvModule( in_channels=int(channels / ratio), out_channels=channels, kernel_size=1, stride=1, conv_cfg=conv_cfg, act_cfg=act_cfg[1]) def forward(self, x): out = self.global_avgpool(x) out = self.conv1(out) out = self.conv2(out) return x * out
import mmcv import torch.nn as nn from mmcv.cnn import ConvModule from mmcv.runner import BaseModule class SELayer(BaseModule): """Squeeze-and-Excitation Module. Args: channels (int): The input (and output) channels of the SE layer. ratio (int): Squeeze ratio in SELayer, the intermediate channel will be ``int(channels/ratio)``. Default: 16. conv_cfg (None or dict): Config dict for convolution layer. Default: None, which means using conv2d. act_cfg (dict or Sequence[dict]): Config dict for activation layer. If act_cfg is a dict, two activation layers will be configurated by this dict. If act_cfg is a sequence of dicts, the first activation layer will be configurated by the first dict and the second activation layer will be configurated by the second dict. Default: (dict(type='ReLU'), dict(type='Sigmoid')) init_cfg (dict or list[dict], optional): Initialization config dict. Default: None """ def __init__(self, channels, ratio=16, conv_cfg=None, act_cfg=(dict(type='ReLU'), dict(type='Sigmoid')), init_cfg=None): super(SELayer, self).__init__(init_cfg) if isinstance(act_cfg, dict): act_cfg = (act_cfg, act_cfg) assert len(act_cfg) == 2 assert mmcv.is_tuple_of(act_cfg, dict) self.global_avgpool = nn.AdaptiveAvgPool2d(1) self.conv1 = ConvModule( in_channels=channels, out_channels=int(channels / ratio), kernel_size=1, stride=1, conv_cfg=conv_cfg, act_cfg=act_cfg[0]) self.conv2 = ConvModule( in_channels=int(channels / ratio), out_channels=channels, kernel_size=1, stride=1, conv_cfg=conv_cfg, act_cfg=act_cfg[1]) def forward(self, x): out = self.global_avgpool(x) out = self.conv1(out) out = self.conv2(out) return x * out
_base_ = './solov2_r50_fpn_1x_coco.py' # model settings model = dict( mask_head=dict( stacked_convs=2, feat_channels=256, scale_ranges=((1, 56), (28, 112), (56, 224), (112, 448), (224, 896)), mask_feature_head=dict(out_channels=128))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(768, 512), (768, 480), (768, 448), (768, 416), (768, 384), (768, 352)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=(448, 768), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # training schedule for 3x max_epochs = 36 train_cfg = dict(by_epoch=True, max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=36, by_epoch=True, milestones=[27, 33], gamma=0.1) ]
_base_ = './solov2_r50_fpn_1x_coco.py' # model settings model = dict( mask_head=dict( stacked_convs=2, feat_channels=256, scale_ranges=((1, 56), (28, 112), (56, 224), (112, 448), (224, 896)), mask_feature_head=dict(out_channels=128))) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(768, 512), (768, 480), (768, 448), (768, 416), (768, 384), (768, 352)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(448, 768), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # training schedule for 3x max_epochs = 36 train_cfg = dict(by_epoch=True, max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=36, by_epoch=True, milestones=[27, 33], gamma=0.1) ]
from pathlib import Path from typing import List import pytest from executor.audioclip_text import AudioCLIPTextEncoder from jina import Document, DocumentArray, Executor _EMBEDDING_DIM = 1024 @pytest.fixture(scope='module') def basic_encoder() -> AudioCLIPTextEncoder: return AudioCLIPTextEncoder( model_path=str(Path(__file__).parents[2] / '.cache/AudioCLIP-Full-Training.pt'), tokenizer_path=str( Path(__file__).parents[2] / '.cache/bpe_simple_vocab_16e6.txt.gz' ), ) def test_config(): ex = Executor.load_config( str(Path(__file__).parents[2] / 'config.yml'), override_with={ 'model_path': str( Path(__file__).parents[2] / '.cache/AudioCLIP-Full-Training.pt' ), 'tokenizer_path': str( Path(__file__).parents[2] / '.cache/bpe_simple_vocab_16e6.txt.gz' ), }, ) assert ex.default_batch_size == 32 def test_no_document(basic_encoder: AudioCLIPTextEncoder): basic_encoder.encode(None, {}) def test_empty_documents(basic_encoder: AudioCLIPTextEncoder): docs = DocumentArray([]) basic_encoder.encode(docs, {}) assert len(docs) == 0 def test_no_text_documents(basic_encoder: AudioCLIPTextEncoder): docs = DocumentArray([Document()]) basic_encoder.encode(docs, {}) assert len(docs) == 1 assert docs[0].embedding is None def test_encoding_cpu(): enc = AudioCLIPTextEncoder(device='cpu') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.gpu def test_encoding_gpu(): enc = AudioCLIPTextEncoder(device='cuda') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: AudioCLIPTextEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: AudioCLIPTextEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) def test_quality_embeddings(basic_encoder: AudioCLIPTextEncoder): docs = DocumentArray( [ Document(id='A', text='a furry animal that with a long tail'), Document(id='B', text='a domesticated mammal with four legs'), Document(id='C', text='a type of aircraft that uses rotating wings'), Document(id='D', text='flying vehicle that has fixed wings and engines'), ] ) basic_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ['B', 'A', 'D', 'C'] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i]
from pathlib import Path from typing import List import pytest from jina import Document, DocumentArray, Executor from ...audioclip_text import AudioCLIPTextEncoder _EMBEDDING_DIM = 1024 @pytest.fixture(scope='module') def basic_encoder() -> AudioCLIPTextEncoder: return AudioCLIPTextEncoder() def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.default_batch_size == 32 def test_no_document(basic_encoder: AudioCLIPTextEncoder): basic_encoder.encode(None, {}) def test_empty_documents(basic_encoder: AudioCLIPTextEncoder): docs = DocumentArray([]) basic_encoder.encode(docs, {}) assert len(docs) == 0 def test_no_text_documents(basic_encoder: AudioCLIPTextEncoder): docs = DocumentArray([Document()]) basic_encoder.encode(docs, {}) assert len(docs) == 1 assert docs[0].embedding is None def test_encoding_cpu(): enc = AudioCLIPTextEncoder(device='cpu') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.gpu def test_encoding_gpu(): enc = AudioCLIPTextEncoder(device='cuda') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: AudioCLIPTextEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: AudioCLIPTextEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) def test_quality_embeddings(basic_encoder: AudioCLIPTextEncoder): docs = DocumentArray( [ Document(id='A', text='a furry animal that with a long tail'), Document(id='B', text='a domesticated mammal with four legs'), Document(id='C', text='a type of aircraft that uses rotating wings'), Document(id='D', text='flying vehicle that has fixed wings and engines'), ] ) basic_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ['B', 'A', 'D', 'C'] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i]
from .autoencoder_asym_kl import AsymmetricAutoencoderKL from .autoencoder_dc import AutoencoderDC from .autoencoder_kl import AutoencoderKL from .autoencoder_kl_allegro import AutoencoderKLAllegro from .autoencoder_kl_cogvideox import AutoencoderKLCogVideoX from .autoencoder_kl_hunyuan_video import AutoencoderKLHunyuanVideo from .autoencoder_kl_ltx import AutoencoderKLLTXVideo from .autoencoder_kl_mochi import AutoencoderKLMochi from .autoencoder_kl_temporal_decoder import AutoencoderKLTemporalDecoder from .autoencoder_oobleck import AutoencoderOobleck from .autoencoder_tiny import AutoencoderTiny from .consistency_decoder_vae import ConsistencyDecoderVAE from .vq_model import VQModel
from .autoencoder_asym_kl import AsymmetricAutoencoderKL from .autoencoder_dc import AutoencoderDC from .autoencoder_kl import AutoencoderKL from .autoencoder_kl_allegro import AutoencoderKLAllegro from .autoencoder_kl_cogvideox import AutoencoderKLCogVideoX from .autoencoder_kl_ltx import AutoencoderKLLTXVideo from .autoencoder_kl_mochi import AutoencoderKLMochi from .autoencoder_kl_temporal_decoder import AutoencoderKLTemporalDecoder from .autoencoder_oobleck import AutoencoderOobleck from .autoencoder_tiny import AutoencoderTiny from .consistency_decoder_vae import ConsistencyDecoderVAE from .vq_model import VQModel
""" This is a simple application for sentence embeddings: semantic search We have a corpus with various sentences. Then, for a given query sentence, we want to find the most similar sentence in this corpus. This script outputs for various queries the top 5 most similar sentences in the corpus. """ import torch from sentence_transformers import SentenceTransformer embedder = SentenceTransformer("all-MiniLM-L6-v2") # Corpus with example sentences corpus = [ "A man is eating food.", "A man is eating a piece of bread.", "The girl is carrying a baby.", "A man is riding a horse.", "A woman is playing violin.", "Two men pushed carts through the woods.", "A man is riding a white horse on an enclosed ground.", "A monkey is playing drums.", "A cheetah is running behind its prey.", ] # Use "convert_to_tensor=True" to keep the tensors on GPU (if available) corpus_embeddings = embedder.encode(corpus, convert_to_tensor=True) # Query sentences: queries = [ "A man is eating pasta.", "Someone in a gorilla costume is playing a set of drums.", "A cheetah chases prey on across a field.", ] # Find the closest 5 sentences of the corpus for each query sentence based on cosine similarity top_k = min(5, len(corpus)) for query in queries: query_embedding = embedder.encode(query, convert_to_tensor=True) # We use cosine-similarity and torch.topk to find the highest 5 scores similarity_scores = embedder.similarity(query_embedding, corpus_embeddings)[0] scores, indices = torch.topk(similarity_scores, k=top_k) print("\nQuery:", query) print("Top 5 most similar sentences in corpus:") for score, idx in zip(scores, indices): print(corpus[idx], f"(Score: {score:.4f})") """ # Alternatively, we can also use util.semantic_search to perform cosine similarty + topk hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=5) hits = hits[0] #Get the hits for the first query for hit in hits: print(corpus[hit['corpus_id']], "(Score: {:.4f})".format(hit['score'])) """
""" This is a simple application for sentence embeddings: semantic search We have a corpus with various sentences. Then, for a given query sentence, we want to find the most similar sentence in this corpus. This script outputs for various queries the top 5 most similar sentences in the corpus. """ import torch from sentence_transformers import SentenceTransformer embedder = SentenceTransformer("all-MiniLM-L6-v2") # Corpus with example sentences corpus = [ "A man is eating food.", "A man is eating a piece of bread.", "The girl is carrying a baby.", "A man is riding a horse.", "A woman is playing violin.", "Two men pushed carts through the woods.", "A man is riding a white horse on an enclosed ground.", "A monkey is playing drums.", "A cheetah is running behind its prey.", ] # Use "convert_to_tensor=True" to keep the tensors on GPU (if available) corpus_embeddings = embedder.encode(corpus, convert_to_tensor=True) # Query sentences: queries = [ "A man is eating pasta.", "Someone in a gorilla costume is playing a set of drums.", "A cheetah chases prey on across a field.", ] # Find the closest 5 sentences of the corpus for each query sentence based on cosine similarity top_k = min(5, len(corpus)) for query in queries: query_embedding = embedder.encode(query, convert_to_tensor=True) # We use cosine-similarity and torch.topk to find the highest 5 scores similarity_scores = embedder.similarity(query_embedding, corpus_embeddings)[0] scores, indices = torch.topk(similarity_scores, k=top_k) print("\nQuery:", query) print("Top 5 most similar sentences in corpus:") for score, idx in zip(scores, indices): print(corpus[idx], "(Score: {:.4f})".format(score)) """ # Alternatively, we can also use util.semantic_search to perform cosine similarty + topk hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=5) hits = hits[0] #Get the hits for the first query for hit in hits: print(corpus[hit['corpus_id']], "(Score: {:.4f})".format(hit['score'])) """
_base_ = './fovea_r50_fpn_4x4_1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), bbox_head=dict( with_deform=True, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # learning policy max_epochs = 24 param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs)
_base_ = './fovea_r50_fpn_4x4_1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), bbox_head=dict( with_deform=True, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True))) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 640), (1333, 800)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] data = dict(train=dict(pipeline=train_pipeline)) # learning policy lr_config = dict(step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24)
# CoSENTLoss must be imported before AnglELoss from __future__ import annotations from .CoSENTLoss import CoSENTLoss # isort: skip from .AdaptiveLayerLoss import AdaptiveLayerLoss from .AnglELoss import AnglELoss from .BatchAllTripletLoss import BatchAllTripletLoss from .BatchHardSoftMarginTripletLoss import BatchHardSoftMarginTripletLoss from .BatchHardTripletLoss import BatchHardTripletLoss, BatchHardTripletLossDistanceFunction from .BatchSemiHardTripletLoss import BatchSemiHardTripletLoss from .CachedGISTEmbedLoss import CachedGISTEmbedLoss from .CachedMultipleNegativesRankingLoss import CachedMultipleNegativesRankingLoss from .ContrastiveLoss import ContrastiveLoss, SiameseDistanceMetric from .ContrastiveTensionLoss import ( ContrastiveTensionDataLoader, ContrastiveTensionLoss, ContrastiveTensionLossInBatchNegatives, ) from .CosineSimilarityLoss import CosineSimilarityLoss from .DenoisingAutoEncoderLoss import DenoisingAutoEncoderLoss from .GISTEmbedLoss import GISTEmbedLoss from .MarginMSELoss import MarginMSELoss from .Matryoshka2dLoss import Matryoshka2dLoss from .MatryoshkaLoss import MatryoshkaLoss from .MegaBatchMarginLoss import MegaBatchMarginLoss from .MSELoss import MSELoss from .MultipleNegativesRankingLoss import MultipleNegativesRankingLoss from .MultipleNegativesSymmetricRankingLoss import MultipleNegativesSymmetricRankingLoss from .OnlineContrastiveLoss import OnlineContrastiveLoss from .SoftmaxLoss import SoftmaxLoss from .TripletLoss import TripletDistanceMetric, TripletLoss __all__ = [ "AdaptiveLayerLoss", "CosineSimilarityLoss", "SoftmaxLoss", "MultipleNegativesRankingLoss", "MultipleNegativesSymmetricRankingLoss", "TripletLoss", "TripletDistanceMetric", "MarginMSELoss", "MatryoshkaLoss", "Matryoshka2dLoss", "MSELoss", "ContrastiveLoss", "SiameseDistanceMetric", "CachedGISTEmbedLoss", "CachedMultipleNegativesRankingLoss", "ContrastiveTensionLoss", "ContrastiveTensionLossInBatchNegatives", "ContrastiveTensionDataLoader", "CoSENTLoss", "AnglELoss", "OnlineContrastiveLoss", "MegaBatchMarginLoss", "DenoisingAutoEncoderLoss", "GISTEmbedLoss", "BatchHardTripletLoss", "BatchHardTripletLossDistanceFunction", "BatchHardSoftMarginTripletLoss", "BatchSemiHardTripletLoss", "BatchAllTripletLoss", ]
# CoSENTLoss must be imported before AnglELoss from .CoSENTLoss import CoSENTLoss # isort: skip from .AdaptiveLayerLoss import AdaptiveLayerLoss from .AnglELoss import AnglELoss from .BatchAllTripletLoss import BatchAllTripletLoss from .BatchHardSoftMarginTripletLoss import BatchHardSoftMarginTripletLoss from .BatchHardTripletLoss import BatchHardTripletLoss, BatchHardTripletLossDistanceFunction from .BatchSemiHardTripletLoss import BatchSemiHardTripletLoss from .CachedGISTEmbedLoss import CachedGISTEmbedLoss from .CachedMultipleNegativesRankingLoss import CachedMultipleNegativesRankingLoss from .ContrastiveLoss import ContrastiveLoss, SiameseDistanceMetric from .ContrastiveTensionLoss import ( ContrastiveTensionDataLoader, ContrastiveTensionLoss, ContrastiveTensionLossInBatchNegatives, ) from .CosineSimilarityLoss import CosineSimilarityLoss from .DenoisingAutoEncoderLoss import DenoisingAutoEncoderLoss from .GISTEmbedLoss import GISTEmbedLoss from .MarginMSELoss import MarginMSELoss from .Matryoshka2dLoss import Matryoshka2dLoss from .MatryoshkaLoss import MatryoshkaLoss from .MegaBatchMarginLoss import MegaBatchMarginLoss from .MSELoss import MSELoss from .MultipleNegativesRankingLoss import MultipleNegativesRankingLoss from .MultipleNegativesSymmetricRankingLoss import MultipleNegativesSymmetricRankingLoss from .OnlineContrastiveLoss import OnlineContrastiveLoss from .SoftmaxLoss import SoftmaxLoss from .TripletLoss import TripletDistanceMetric, TripletLoss __all__ = [ "AdaptiveLayerLoss", "CosineSimilarityLoss", "SoftmaxLoss", "MultipleNegativesRankingLoss", "MultipleNegativesSymmetricRankingLoss", "TripletLoss", "TripletDistanceMetric", "MarginMSELoss", "MatryoshkaLoss", "Matryoshka2dLoss", "MSELoss", "ContrastiveLoss", "SiameseDistanceMetric", "CachedGISTEmbedLoss", "CachedMultipleNegativesRankingLoss", "ContrastiveTensionLoss", "ContrastiveTensionLossInBatchNegatives", "ContrastiveTensionDataLoader", "CoSENTLoss", "AnglELoss", "OnlineContrastiveLoss", "MegaBatchMarginLoss", "DenoisingAutoEncoderLoss", "GISTEmbedLoss", "BatchHardTripletLoss", "BatchHardTripletLossDistanceFunction", "BatchHardSoftMarginTripletLoss", "BatchSemiHardTripletLoss", "BatchAllTripletLoss", ]
# coding=utf-8 # Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import requests # Configuration LIBRARY_NAME = "diffusers" GITHUB_REPO = "huggingface/diffusers" SLACK_WEBHOOK_URL = os.getenv("SLACK_WEBHOOK_URL") def check_pypi_for_latest_release(library_name): """Check PyPI for the latest release of the library.""" response = requests.get(f"https://pypi.org/pypi/{library_name}/json", timeout=60) if response.status_code == 200: data = response.json() return data["info"]["version"] else: print("Failed to fetch library details from PyPI.") return None def get_github_release_info(github_repo): """Fetch the latest release info from GitHub.""" url = f"https://api.github.com/repos/{github_repo}/releases/latest" response = requests.get(url, timeout=60) if response.status_code == 200: data = response.json() return {"tag_name": data["tag_name"], "url": data["html_url"], "release_time": data["published_at"]} else: print("Failed to fetch release info from GitHub.") return None def notify_slack(webhook_url, library_name, version, release_info): """Send a notification to a Slack channel.""" message = ( f"🚀 New release for {library_name} available: version **{version}** 🎉\n" f"📜 Release Notes: {release_info['url']}\n" f"⏱️ Release time: {release_info['release_time']}" ) payload = {"text": message} response = requests.post(webhook_url, json=payload) if response.status_code == 200: print("Notification sent to Slack successfully.") else: print("Failed to send notification to Slack.") def main(): latest_version = check_pypi_for_latest_release(LIBRARY_NAME) release_info = get_github_release_info(GITHUB_REPO) parsed_version = release_info["tag_name"].replace("v", "") if latest_version and release_info and latest_version == parsed_version: notify_slack(SLACK_WEBHOOK_URL, LIBRARY_NAME, latest_version, release_info) else: print(f"{latest_version=}, {release_info=}, {parsed_version=}") raise ValueError("There were some problems.") if __name__ == "__main__": main()
# coding=utf-8 # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import requests # Configuration LIBRARY_NAME = "diffusers" GITHUB_REPO = "huggingface/diffusers" SLACK_WEBHOOK_URL = os.getenv("SLACK_WEBHOOK_URL") def check_pypi_for_latest_release(library_name): """Check PyPI for the latest release of the library.""" response = requests.get(f"https://pypi.org/pypi/{library_name}/json", timeout=60) if response.status_code == 200: data = response.json() return data["info"]["version"] else: print("Failed to fetch library details from PyPI.") return None def get_github_release_info(github_repo): """Fetch the latest release info from GitHub.""" url = f"https://api.github.com/repos/{github_repo}/releases/latest" response = requests.get(url, timeout=60) if response.status_code == 200: data = response.json() return {"tag_name": data["tag_name"], "url": data["html_url"], "release_time": data["published_at"]} else: print("Failed to fetch release info from GitHub.") return None def notify_slack(webhook_url, library_name, version, release_info): """Send a notification to a Slack channel.""" message = ( f"🚀 New release for {library_name} available: version **{version}** 🎉\n" f"📜 Release Notes: {release_info['url']}\n" f"⏱️ Release time: {release_info['release_time']}" ) payload = {"text": message} response = requests.post(webhook_url, json=payload) if response.status_code == 200: print("Notification sent to Slack successfully.") else: print("Failed to send notification to Slack.") def main(): latest_version = check_pypi_for_latest_release(LIBRARY_NAME) release_info = get_github_release_info(GITHUB_REPO) parsed_version = release_info["tag_name"].replace("v", "") if latest_version and release_info and latest_version == parsed_version: notify_slack(SLACK_WEBHOOK_URL, LIBRARY_NAME, latest_version, release_info) else: print(f"{latest_version=}, {release_info=}, {parsed_version=}") raise ValueError("There were some problems.") if __name__ == "__main__": main()
from typing import Optional, TypeVar from docarray.base_document import BaseDocument from docarray.documents import Audio from docarray.typing import AnyEmbedding, AnyTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl T = TypeVar('T', bound='Video') class Video(BaseDocument): """ Document for handling video. The Video Document can contain a VideoUrl (`Video.url`), an Audio Document (`Video.audio`), a VideoTensor (`Video.tensor`), an AnyTensor representing the indices of the video's key frames (`Video.key_frame_indices`) and an AnyEmbedding (`Video.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Video # use it directly vid = Video( url='https://github.com/docarray/docarray/tree/feat-add-video-v2/tests/toydata/mov_bbb.mp4?raw=true' ) vid.audio.tensor, vid.tensor, vid.key_frame_indices = vid.url.load() model = MyEmbeddingModel() vid.embedding = model(vid.tensor) You can extend this Document: .. code-block:: python from typing import Optional from docarray.documents import Text, Video # extend it class MyVideo(Video): name: Optional[Text] video = MyVideo( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video.tensor = video.url.load_key_frames() model = MyEmbeddingModel() video.embedding = model(video.tensor) video.name = Text(text='my first video') You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Text, Video # compose it class MultiModalDoc(BaseDocument): video: Video text: Text mmdoc = MultiModalDoc( video=Video( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.video.tensor = mmdoc.video.url.load_key_frames() """ url: Optional[VideoUrl] audio: Optional[Audio] = Audio() tensor: Optional[VideoTensor] key_frame_indices: Optional[AnyTensor] embedding: Optional[AnyEmbedding]
from typing import Optional, TypeVar from docarray.base_document import BaseDocument from docarray.documents import Audio from docarray.typing import AnyEmbedding, AnyTensor from docarray.typing.tensor.video.video_tensor import VideoTensor from docarray.typing.url.video_url import VideoUrl T = TypeVar('T', bound='Video') class Video(BaseDocument): """ Document for handling video. The Video Document can contain a VideoUrl (`Video.url`), an Audio Document (`Video.audio`), a VideoTensor (`Video.video_tensor`), an AnyTensor representing the indices of the video's key frames (`Video.key_frame_indices`) and an AnyEmbedding (`Video.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Video # use it directly vid = Video( url='https://github.com/docarray/docarray/tree/feat-add-video-v2/tests/toydata/mov_bbb.mp4?raw=true' ) vid.audio.tensor, vid.video_tensor, vid.key_frame_indices = vid.url.load() model = MyEmbeddingModel() vid.embedding = model(vid.video_tensor) You can extend this Document: .. code-block:: python from typing import Optional from docarray.documents import Text, Video # extend it class MyVideo(Video): name: Optional[Text] video = MyVideo( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ) video.video_tensor = video.url.load_key_frames() model = MyEmbeddingModel() video.embedding = model(video.video_tensor) video.name = Text(text='my first video') You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Text, Video # compose it class MultiModalDoc(BaseDocument): video: Video text: Text mmdoc = MultiModalDoc( video=Video( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.video.video_tensor = mmdoc.video.url.load_key_frames() """ url: Optional[VideoUrl] audio: Optional[Audio] = Audio() video_tensor: Optional[VideoTensor] key_frame_indices: Optional[AnyTensor] embedding: Optional[AnyEmbedding]
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
import os from typing import Type import orjson from pydantic import BaseModel, Field from pydantic import parse_obj_as from docarray.document.abstract_document import AbstractDocument from docarray.document.base_node import BaseNode from docarray.document.io.json import orjson_dumps from docarray.document.mixins import ProtoMixin from docarray.typing import ID class BaseDocument(BaseModel, ProtoMixin, AbstractDocument, BaseNode): """ The base class for Document """ id: ID = Field(default_factory=lambda: parse_obj_as(ID, os.urandom(16).hex())) class Config: json_loads = orjson.loads json_dumps = orjson_dumps @classmethod def _get_nested_document_class(cls, field: str) -> Type['BaseDocument']: """ Accessing the nested python Class define in the schema. Could be useful for reconstruction of Document in serialization/deserilization :param field: name of the field :return: """ return cls.__fields__[field].type_
import os from typing import Type import orjson from pydantic import BaseModel, Field from docarray.document.abstract_document import AbstractDocument from docarray.document.base_node import BaseNode from docarray.document.io.json import orjson_dumps from docarray.document.mixins import ProtoMixin from docarray.typing import ID class BaseDocument(BaseModel, ProtoMixin, AbstractDocument, BaseNode): """ The base class for Document """ id: ID = Field(default_factory=lambda: ID.validate(os.urandom(16).hex())) class Config: json_loads = orjson.loads json_dumps = orjson_dumps @classmethod def _get_nested_document_class(cls, field: str) -> Type['BaseDocument']: """ Accessing the nested python Class define in the schema. Could be useful for reconstruction of Document in serialization/deserilization :param field: name of the field :return: """ return cls.__fields__[field].type_
from typing import Any, List, Optional from llama_index.core.bridge.pydantic import SerializeAsAny, ConfigDict from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, CompletionResponse, ) from llama_index.core.instrumentation.events.base import BaseEvent from llama_index.core.prompts import BasePromptTemplate class LLMPredictStartEvent(BaseEvent): """ LLMPredictStartEvent. Args: template (BasePromptTemplate): Prompt template. template_args (Optional[dict]): Prompt template arguments. """ template: SerializeAsAny[BasePromptTemplate] template_args: Optional[dict] @classmethod def class_name(cls) -> str: """Class name.""" return "LLMPredictStartEvent" class LLMPredictEndEvent(BaseEvent): """ LLMPredictEndEvent. The result of an llm.predict() call. Args: output (str): Output. """ output: str @classmethod def class_name(cls) -> str: """Class name.""" return "LLMPredictEndEvent" class LLMStructuredPredictStartEvent(BaseEvent): """ LLMStructuredPredictStartEvent. Args: output_cls (Any): Output class to predict. template (BasePromptTemplate): Prompt template. template_args (Optional[dict]): Prompt template arguments. """ output_cls: Any template: SerializeAsAny[BasePromptTemplate] template_args: Optional[dict] @classmethod def class_name(cls) -> str: """Class name.""" return "LLMStructuredPredictStartEvent" class LLMStructuredPredictEndEvent(BaseEvent): """ LLMStructuredPredictEndEvent. Args: output (BaseModel): Predicted output class. """ output: SerializeAsAny[Any] @classmethod def class_name(cls) -> str: """Class name.""" return "LLMStructuredPredictEndEvent" class LLMStructuredPredictInProgressEvent(BaseEvent): """ LLMStructuredPredictInProgressEvent. Args: output (BaseModel): Predicted output class. """ output: SerializeAsAny[Any] @classmethod def class_name(cls) -> str: """Class name.""" return "LLMStructuredPredictInProgressEvent" class LLMCompletionStartEvent(BaseEvent): """ LLMCompletionStartEvent. Args: prompt (str): The prompt to be completed. additional_kwargs (dict): Additional keyword arguments. model_dict (dict): Model dictionary. """ model_config = ConfigDict(protected_namespaces=("pydantic_model_",)) prompt: str additional_kwargs: dict model_dict: dict @classmethod def class_name(cls) -> str: """Class name.""" return "LLMCompletionStartEvent" class LLMCompletionInProgressEvent(BaseEvent): """ LLMCompletionInProgressEvent. Args: prompt (str): The prompt to be completed. response (CompletionResponse): Completion response. """ prompt: str response: CompletionResponse @classmethod def class_name(cls) -> str: """Class name.""" return "LLMCompletionInProgressEvent" class LLMCompletionEndEvent(BaseEvent): """ LLMCompletionEndEvent. Args: prompt (str): The prompt to be completed. response (CompletionResponse): Completion response. """ prompt: str response: CompletionResponse @classmethod def class_name(cls) -> str: """Class name.""" return "LLMCompletionEndEvent" class LLMChatStartEvent(BaseEvent): """ LLMChatStartEvent. Args: messages (List[ChatMessage]): List of chat messages. additional_kwargs (dict): Additional keyword arguments. model_dict (dict): Model dictionary. """ model_config = ConfigDict(protected_namespaces=("pydantic_model_",)) messages: List[ChatMessage] additional_kwargs: dict model_dict: dict @classmethod def class_name(cls) -> str: """Class name.""" return "LLMChatStartEvent" class LLMChatInProgressEvent(BaseEvent): """ LLMChatInProgressEvent. Args: messages (List[ChatMessage]): List of chat messages. response (ChatResponse): Chat response currently being streamed. """ messages: List[ChatMessage] response: ChatResponse @classmethod def class_name(cls) -> str: """Class name.""" return "LLMChatInProgressEvent" class LLMChatEndEvent(BaseEvent): """ LLMChatEndEvent. Args: messages (List[ChatMessage]): List of chat messages. response (Optional[ChatResponse]): Last chat response. """ messages: List[ChatMessage] response: Optional[ChatResponse] @classmethod def class_name(cls) -> str: """Class name.""" return "LLMChatEndEvent"
from typing import Any, List, Optional from llama_index.core.bridge.pydantic import SerializeAsAny, ConfigDict from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, CompletionResponse, ) from llama_index.core.instrumentation.events.base import BaseEvent from llama_index.core.prompts import BasePromptTemplate class LLMPredictStartEvent(BaseEvent): """LLMPredictStartEvent. Args: template (BasePromptTemplate): Prompt template. template_args (Optional[dict]): Prompt template arguments. """ template: SerializeAsAny[BasePromptTemplate] template_args: Optional[dict] @classmethod def class_name(cls) -> str: """Class name.""" return "LLMPredictStartEvent" class LLMPredictEndEvent(BaseEvent): """LLMPredictEndEvent. The result of an llm.predict() call. Args: output (str): Output. """ output: str @classmethod def class_name(cls) -> str: """Class name.""" return "LLMPredictEndEvent" class LLMStructuredPredictStartEvent(BaseEvent): """LLMStructuredPredictStartEvent. Args: output_cls (Any): Output class to predict. template (BasePromptTemplate): Prompt template. template_args (Optional[dict]): Prompt template arguments. """ output_cls: Any template: SerializeAsAny[BasePromptTemplate] template_args: Optional[dict] @classmethod def class_name(cls) -> str: """Class name.""" return "LLMStructuredPredictStartEvent" class LLMStructuredPredictEndEvent(BaseEvent): """LLMStructuredPredictEndEvent. Args: output (BaseModel): Predicted output class. """ output: SerializeAsAny[Any] @classmethod def class_name(cls) -> str: """Class name.""" return "LLMStructuredPredictEndEvent" class LLMStructuredPredictInProgressEvent(BaseEvent): """LLMStructuredPredictInProgressEvent. Args: output (BaseModel): Predicted output class. """ output: SerializeAsAny[Any] @classmethod def class_name(cls) -> str: """Class name.""" return "LLMStructuredPredictInProgressEvent" class LLMCompletionStartEvent(BaseEvent): """LLMCompletionStartEvent. Args: prompt (str): The prompt to be completed. additional_kwargs (dict): Additional keyword arguments. model_dict (dict): Model dictionary. """ model_config = ConfigDict(protected_namespaces=("pydantic_model_",)) prompt: str additional_kwargs: dict model_dict: dict @classmethod def class_name(cls) -> str: """Class name.""" return "LLMCompletionStartEvent" class LLMCompletionInProgressEvent(BaseEvent): """LLMCompletionInProgressEvent. Args: prompt (str): The prompt to be completed. response (CompletionResponse): Completion response. """ prompt: str response: CompletionResponse @classmethod def class_name(cls) -> str: """Class name.""" return "LLMCompletionInProgressEvent" class LLMCompletionEndEvent(BaseEvent): """LLMCompletionEndEvent. Args: prompt (str): The prompt to be completed. response (CompletionResponse): Completion response. """ prompt: str response: CompletionResponse @classmethod def class_name(cls) -> str: """Class name.""" return "LLMCompletionEndEvent" class LLMChatStartEvent(BaseEvent): """LLMChatStartEvent. Args: messages (List[ChatMessage]): List of chat messages. additional_kwargs (dict): Additional keyword arguments. model_dict (dict): Model dictionary. """ model_config = ConfigDict(protected_namespaces=("pydantic_model_",)) messages: List[ChatMessage] additional_kwargs: dict model_dict: dict @classmethod def class_name(cls) -> str: """Class name.""" return "LLMChatStartEvent" class LLMChatInProgressEvent(BaseEvent): """LLMChatInProgressEvent. Args: messages (List[ChatMessage]): List of chat messages. response (ChatResponse): Chat response currently being streamed. """ messages: List[ChatMessage] response: ChatResponse @classmethod def class_name(cls) -> str: """Class name.""" return "LLMChatInProgressEvent" class LLMChatEndEvent(BaseEvent): """LLMChatEndEvent. Args: messages (List[ChatMessage]): List of chat messages. response (Optional[ChatResponse]): Last chat response. """ messages: List[ChatMessage] response: Optional[ChatResponse] @classmethod def class_name(cls) -> str: """Class name.""" return "LLMChatEndEvent"
from typing import Any, Type, TypeVar, Union, cast import numpy as np from docarray.typing.tensor.tensor import AnyTensor from docarray.typing.tensor.video.video_ndarray import VideoNdArray from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin from docarray.utils._internal.misc import ( is_jax_available, is_tf_available, is_torch_available, ) jax_available = is_jax_available() if jax_available: import jax.numpy as jnp from docarray.typing.tensor.jaxarray import JaxArray # noqa: F401 from docarray.typing.tensor.video.video_jax_array import VideoJaxArray torch_available = is_torch_available() if torch_available: import torch from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 from docarray.typing.tensor.video.video_torch_tensor import VideoTorchTensor tf_available = is_tf_available() if tf_available: import tensorflow as tf # type: ignore from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor # noqa: F401 from docarray.typing.tensor.video.video_tensorflow_tensor import ( VideoTensorFlowTensor, ) T = TypeVar("T", bound="VideoTensor") class VideoTensor(AnyTensor, VideoTensorMixin): """ Represents a Video tensor object that can be used with TensorFlow, PyTorch, and NumPy type. --- '''python from docarray import BaseDoc from docarray.typing import VideoTensor class MyVideoDoc(BaseDoc): video: VideoTensor # Example usage with TensorFlow: import tensorflow as tf doc = MyVideoDoc(video=tf.zeros(1000, 2)) type(doc.video) # VideoTensorFlowTensor # Example usage with PyTorch: import torch doc = MyVideoDoc(video=torch.zeros(1000, 2)) type(doc.video) # VideoTorchTensor # Example usage with NumPy: import numpy as np doc = MyVideoDoc(video=np.zeros((1000, 2))) type(doc.video) # VideoNdArray ''' --- Returns: Union[VideoTorchTensor, VideoTensorFlowTensor, VideoNdArray]: The validated and converted audio tensor. Raises: TypeError: If the input value is not a compatible type (torch.Tensor, tensorflow.Tensor, numpy.ndarray). """ @classmethod def _docarray_validate( cls: Type[T], value: Union[T, np.ndarray, Any], ): if torch_available: if isinstance(value, TorchTensor): return cast(VideoTorchTensor, value) elif isinstance(value, torch.Tensor): return VideoTorchTensor._docarray_from_native(value) # noqa if tf_available: if isinstance(value, TensorFlowTensor): return cast(VideoTensorFlowTensor, value) elif isinstance(value, tf.Tensor): return VideoTensorFlowTensor._docarray_from_native(value) # noqa if jax_available: if isinstance(value, JaxArray): return cast(VideoJaxArray, value) elif isinstance(value, jnp.ndarray): return VideoJaxArray._docarray_from_native(value) # noqa if isinstance(value, VideoNdArray): return cast(VideoNdArray, value) if isinstance(value, np.ndarray): try: return VideoNdArray._docarray_validate(value) except Exception as e: # noqa raise e raise TypeError( f"Expected one of [torch.Tensor, tensorflow.Tensor, numpy.ndarray] " f"compatible type, got {type(value)}" )
from typing import TYPE_CHECKING, Any, Type, TypeVar, Union, cast import numpy as np from docarray.typing.tensor.tensor import AnyTensor from docarray.typing.tensor.video.video_ndarray import VideoNdArray from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin from docarray.utils._internal.misc import ( is_jax_available, is_tf_available, is_torch_available, ) jax_available = is_jax_available() if jax_available: import jax.numpy as jnp from docarray.typing.tensor.jaxarray import JaxArray # noqa: F401 from docarray.typing.tensor.video.video_jax_array import VideoJaxArray torch_available = is_torch_available() if torch_available: import torch from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 from docarray.typing.tensor.video.video_torch_tensor import VideoTorchTensor tf_available = is_tf_available() if tf_available: import tensorflow as tf # type: ignore from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor # noqa: F401 from docarray.typing.tensor.video.video_tensorflow_tensor import ( VideoTensorFlowTensor, ) if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar("T", bound="VideoTensor") class VideoTensor(AnyTensor, VideoTensorMixin): """ Represents a Video tensor object that can be used with TensorFlow, PyTorch, and NumPy type. --- '''python from docarray import BaseDoc from docarray.typing import VideoTensor class MyVideoDoc(BaseDoc): video: VideoTensor # Example usage with TensorFlow: import tensorflow as tf doc = MyVideoDoc(video=tf.zeros(1000, 2)) type(doc.video) # VideoTensorFlowTensor # Example usage with PyTorch: import torch doc = MyVideoDoc(video=torch.zeros(1000, 2)) type(doc.video) # VideoTorchTensor # Example usage with NumPy: import numpy as np doc = MyVideoDoc(video=np.zeros((1000, 2))) type(doc.video) # VideoNdArray ''' --- Returns: Union[VideoTorchTensor, VideoTensorFlowTensor, VideoNdArray]: The validated and converted audio tensor. Raises: TypeError: If the input value is not a compatible type (torch.Tensor, tensorflow.Tensor, numpy.ndarray). """ @classmethod def __get_validators__(cls): yield cls.validate @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, Any], field: "ModelField", config: "BaseConfig", ): if torch_available: if isinstance(value, TorchTensor): return cast(VideoTorchTensor, value) elif isinstance(value, torch.Tensor): return VideoTorchTensor._docarray_from_native(value) # noqa if tf_available: if isinstance(value, TensorFlowTensor): return cast(VideoTensorFlowTensor, value) elif isinstance(value, tf.Tensor): return VideoTensorFlowTensor._docarray_from_native(value) # noqa if jax_available: if isinstance(value, JaxArray): return cast(VideoJaxArray, value) elif isinstance(value, jnp.ndarray): return VideoJaxArray._docarray_from_native(value) # noqa if isinstance(value, VideoNdArray): return cast(VideoNdArray, value) if isinstance(value, np.ndarray): try: return VideoNdArray.validate(value, field, config) except Exception as e: # noqa raise e raise TypeError( f"Expected one of [torch.Tensor, tensorflow.Tensor, numpy.ndarray] " f"compatible type, got {type(value)}" )
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) pytestmark = pytest.mark.integration @pytest.mark.parametrize("path", ["paws", "csv"]) def test_inspect_dataset(path, tmp_path): inspect_dataset(path, tmp_path) script_name = path + ".py" assert script_name in os.listdir(tmp_path) assert "__pycache__" not in os.listdir(tmp_path) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning") @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning") @pytest.mark.parametrize("path", ["accuracy"]) def test_inspect_metric(path, tmp_path): inspect_metric(path, tmp_path) script_name = path + ".py" assert script_name in os.listdir(tmp_path) assert "__pycache__" not in os.listdir(tmp_path) @pytest.mark.parametrize( "path, config_name, expected_splits", [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "default", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def test_get_dataset_config_info(path, config_name, expected_splits): info = get_dataset_config_info(path, config_name=config_name) assert info.config_name == config_name assert list(info.splits.keys()) == expected_splits def test_get_dataset_config_info_private(hf_token, hf_private_dataset_repo_txt_data): info = get_dataset_config_info(hf_private_dataset_repo_txt_data, config_name="default", token=hf_token) assert list(info.splits.keys()) == ["train"] @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), ], ) def test_get_dataset_config_info_error(path, config_name, expected_exception): with pytest.raises(expected_exception): get_dataset_config_info(path, config_name=config_name) @pytest.mark.parametrize( "path, expected", [ ("acronym_identification", ["default"]), ("squad", ["plain_text"]), ("hf-internal-testing/dataset_with_script", ["default"]), ("dalle-mini/wit", ["default"]), ("hf-internal-testing/librispeech_asr_dummy", ["clean", "other"]), ("hf-internal-testing/audiofolder_no_configs_in_metadata", ["default"]), ("hf-internal-testing/audiofolder_single_config_in_metadata", ["custom"]), ("hf-internal-testing/audiofolder_two_configs_in_metadata", ["v1", "v2"]), ], ) def test_get_dataset_config_names(path, expected): config_names = get_dataset_config_names(path) assert config_names == expected @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config", [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["default"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ], ) def test_get_dataset_info(path, expected_configs, expected_splits_in_first_config): infos = get_dataset_infos(path) assert list(infos.keys()) == expected_configs expected_config = expected_configs[0] assert expected_config in infos info = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits", [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "default", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def test_get_dataset_split_names(path, expected_config, expected_splits): infos = get_dataset_infos(path) assert expected_config in infos info = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), ], ) def test_get_dataset_split_names_error(path, config_name, expected_exception): with pytest.raises(expected_exception): get_dataset_split_names(path, config_name=config_name)
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) pytestmark = pytest.mark.integration @pytest.mark.parametrize("path", ["paws", "csv"]) def test_inspect_dataset(path, tmp_path): inspect_dataset(path, tmp_path) script_name = path + ".py" assert script_name in os.listdir(tmp_path) assert "__pycache__" not in os.listdir(tmp_path) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning") @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning") @pytest.mark.parametrize("path", ["accuracy"]) def test_inspect_metric(path, tmp_path): inspect_metric(path, tmp_path) script_name = path + ".py" assert script_name in os.listdir(tmp_path) assert "__pycache__" not in os.listdir(tmp_path) @pytest.mark.parametrize( "path, config_name, expected_splits", [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "default", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def test_get_dataset_config_info(path, config_name, expected_splits): info = get_dataset_config_info(path, config_name=config_name) assert info.config_name == config_name assert list(info.splits.keys()) == expected_splits def test_get_dataset_config_info_private(hf_token, hf_private_dataset_repo_txt_data): info = get_dataset_config_info(hf_private_dataset_repo_txt_data, config_name="default", token=hf_token) assert list(info.splits.keys()) == ["train"] @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), ], ) def test_get_dataset_config_info_error(path, config_name, expected_exception): with pytest.raises(expected_exception): get_dataset_config_info(path, config_name=config_name) @pytest.mark.parametrize( "path, expected", [ ("squad", ["plain_text"]), ("acronym_identification", ["default"]), ("lhoestq/squad", ["plain_text"]), ("lhoestq/test", ["default"]), ("lhoestq/demo1", ["default"]), ("dalle-mini/wit", ["default"]), ("datasets-maintainers/audiofolder_no_configs_in_metadata", ["default"]), ("datasets-maintainers/audiofolder_single_config_in_metadata", ["custom"]), ("datasets-maintainers/audiofolder_two_configs_in_metadata", ["v1", "v2"]), ], ) def test_get_dataset_config_names(path, expected): config_names = get_dataset_config_names(path) assert config_names == expected @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config", [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["default"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ], ) def test_get_dataset_info(path, expected_configs, expected_splits_in_first_config): infos = get_dataset_infos(path) assert list(infos.keys()) == expected_configs expected_config = expected_configs[0] assert expected_config in infos info = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits", [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "default", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def test_get_dataset_split_names(path, expected_config, expected_splits): infos = get_dataset_infos(path) assert expected_config in infos info = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), ], ) def test_get_dataset_split_names_error(path, config_name, expected_exception): with pytest.raises(expected_exception): get_dataset_split_names(path, config_name=config_name)
import os import numpy as np import pytest from jina import Document, DocumentArray from ...custom_image_torch_encoder import CustomImageTorchEncoder cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture def encoder(tmpdir): model_state_dict_path = os.path.join(cur_dir, '../model/model_state_dict.pth') return CustomImageTorchEncoder(model_definition_file=os.path.join(cur_dir, '../model/external_model.py'), model_state_dict_path=model_state_dict_path, layer_name='conv1', model_class_name='ExternalModel') def test_encoder(encoder): output_dim = 10 input_dim = 224 test_img = np.random.rand(3, input_dim, input_dim) docs = DocumentArray([Document(blob=test_img), Document(blob=test_img)]) encoder.encode(docs, {}) assert len(docs) == 2 for doc in docs: assert doc.embedding.shape == (output_dim,) def test_encoder_traversal_paths(encoder): output_dim = 10 input_dim = 224 test_img = np.random.rand(3, input_dim, input_dim) docs = DocumentArray([Document(chunks=[Document(blob=test_img), Document(blob=test_img)]), Document(chunks=[Document(blob=test_img), Document(blob=test_img)])]) encoder.encode(docs, {'traversal_paths': ['c']}) assert len(docs) == 2 assert len(docs.traverse_flat(['c'])) == 4 for chunk in docs.traverse_flat(['c']): assert chunk.embedding.shape == (output_dim,)
import pytest import os import numpy as np from jina import Document, DocumentArray try: from custom_image_torch_encoder import CustomImageTorchEncoder except: from jinahub.encoder.custom_image_torch_encoder import CustomImageTorchEncoder cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture def encoder(tmpdir): model_state_dict_path = os.path.join(cur_dir, '../model/model_state_dict.pth') return CustomImageTorchEncoder(model_definition_file=os.path.join(cur_dir, '../model/external_model.py'), model_state_dict_path=model_state_dict_path, layer_name='conv1', model_class_name='ExternalModel') def test_encoder(encoder): output_dim = 10 input_dim = 224 test_img = np.random.rand(3, input_dim, input_dim) docs = DocumentArray([Document(blob=test_img), Document(blob=test_img)]) encoder.encode(docs, {}) assert len(docs) == 2 for doc in docs: assert doc.embedding.shape == (output_dim,) def test_encoder_traversal_paths(encoder): output_dim = 10 input_dim = 224 test_img = np.random.rand(3, input_dim, input_dim) docs = DocumentArray([Document(chunks=[Document(blob=test_img), Document(blob=test_img)]), Document(chunks=[Document(blob=test_img), Document(blob=test_img)])]) encoder.encode(docs, {'traversal_paths': ['c']}) assert len(docs) == 2 assert len(docs.traverse_flat(['c'])) == 4 for chunk in docs.traverse_flat(['c']): assert chunk.embedding.shape == (output_dim,)
_base_ = './htc_r50_fpn_1x_coco.py' # learning policy max_epochs = 20 param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 19], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs)
_base_ = './htc_r50_fpn_1x_coco.py' # learning policy lr_config = dict(step=[16, 19]) runner = dict(type='EpochBasedRunner', max_epochs=20)
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from typing import Dict, Union from torch.utils.data import DataLoader class BaseLoop(metaclass=ABCMeta): """Base loop class. All subclasses inherited from ``BaseLoop`` should overwrite the :meth:`run` method. Args: runner (Runner): A reference of runner. dataloader (Dataloader or dict): An iterator to generate one batch of dataset each iteration. """ def __init__(self, runner, dataloader: Union[DataLoader, Dict]) -> None: self._runner = runner if isinstance(dataloader, dict): self.dataloader = runner.build_dataloader(dataloader) else: self.dataloader = dataloader @property def runner(self): return self._runner @abstractmethod def run(self) -> None: """Execute loop."""
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from typing import Dict, Union from torch.utils.data import DataLoader class BaseLoop(metaclass=ABCMeta): """Base loop class. All subclasses inherited from ``BaseLoop`` should overwrite the :meth:`run` method. Args: runner (Runner): A reference of runner. dataloader (Dataloader or dict): An iterator to generate one batch of dataset each iteration. """ def __init__(self, runner, dataloader: Union[DataLoader, Dict]) -> None: self._runner = runner if isinstance(dataloader, dict): self.dataloader = runner.build_dataloader(dataloader) else: self.dataloader = dataloader # TODO, used by `end_of_epoch` of `Hook` self._runner.data_loader = self.dataloader @property def runner(self): return self._runner @abstractmethod def run(self) -> None: """Execute loop."""
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] teacher_ckpt = 'http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_1x_coco/paa_r101_fpn_1x_coco_20200821-0a1825a4.pth' # noqa model = dict( type='LAD', # student backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # teacher teacher_ckpt=teacher_ckpt, teacher_backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), teacher_neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), teacher_bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.1, neg_iou_thr=0.1, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, score_voting=True, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) data = dict(samples_per_gpu=8, workers_per_gpu=4) optimizer = dict(lr=0.01) fp16 = dict(loss_scale=512.) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] teacher_ckpt = 'http://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_1x_coco/paa_r101_fpn_1x_coco_20200821-0a1825a4.pth' # noqa model = dict( type='LAD', # student backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # teacher teacher_ckpt=teacher_ckpt, teacher_backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), teacher_neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), teacher_bbox_head=dict( type='LADHead', reg_decoded_bbox=True, score_voting=True, topk=9, num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)), # training and testing settings train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.1, neg_iou_thr=0.1, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, score_voting=True, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) data = dict(samples_per_gpu=8, workers_per_gpu=4) optimizer = dict(lr=0.01) fp16 = dict(loss_scale=512.)
from backend.executor.utils import merge_execution_input, parse_execution_output def test_parse_execution_output(): # Test case for list extraction output = ("result", [10, 20, 30]) assert parse_execution_output(output, "result_$_1") == 20 assert parse_execution_output(output, "result_$_3") is None # Test case for dictionary extraction output = ("config", {"key1": "value1", "key2": "value2"}) assert parse_execution_output(output, "config_#_key1") == "value1" assert parse_execution_output(output, "config_#_key3") is None # Test case for object extraction class Sample: attr1 = "value1" attr2 = "value2" output = ("object", Sample()) assert parse_execution_output(output, "object_@_attr1") == "value1" assert parse_execution_output(output, "object_@_attr3") is None # Test case for direct match output = ("direct", "match") assert parse_execution_output(output, "direct") == "match" assert parse_execution_output(output, "nomatch") is None def test_merge_execution_input(): # Test case for merging list inputs data = {"list_$_0": "a", "list_$_1": "b", "list_$_3": "d"} merged_data = merge_execution_input(data) assert merged_data["list"] == ["a", "b", "", "d"] # Test case for merging dictionary inputs data = {"dict_#_key1": "value1", "dict_#_key2": "value2"} merged_data = merge_execution_input(data) assert merged_data["dict"] == {"key1": "value1", "key2": "value2"} # Test case for merging object inputs data = {"object_@_attr1": "value1", "object_@_attr2": "value2"} merged_data = merge_execution_input(data) assert hasattr(merged_data["object"], "attr1") assert hasattr(merged_data["object"], "attr2") assert merged_data["object"].attr1 == "value1" assert merged_data["object"].attr2 == "value2" # Test case for mixed inputs data = {"list_$_0": "a", "dict_#_key1": "value1", "object_@_attr1": "value1"} merged_data = merge_execution_input(data) assert merged_data["list"] == ["a"] assert merged_data["dict"] == {"key1": "value1"} assert hasattr(merged_data["object"], "attr1") assert merged_data["object"].attr1 == "value1"
from backend.data.execution import merge_execution_input, parse_execution_output def test_parse_execution_output(): # Test case for list extraction output = ("result", [10, 20, 30]) assert parse_execution_output(output, "result_$_1") == 20 assert parse_execution_output(output, "result_$_3") is None # Test case for dictionary extraction output = ("config", {"key1": "value1", "key2": "value2"}) assert parse_execution_output(output, "config_#_key1") == "value1" assert parse_execution_output(output, "config_#_key3") is None # Test case for object extraction class Sample: attr1 = "value1" attr2 = "value2" output = ("object", Sample()) assert parse_execution_output(output, "object_@_attr1") == "value1" assert parse_execution_output(output, "object_@_attr3") is None # Test case for direct match output = ("direct", "match") assert parse_execution_output(output, "direct") == "match" assert parse_execution_output(output, "nomatch") is None def test_merge_execution_input(): # Test case for merging list inputs data = {"list_$_0": "a", "list_$_1": "b", "list_$_3": "d"} merged_data = merge_execution_input(data) assert merged_data["list"] == ["a", "b", "", "d"] # Test case for merging dictionary inputs data = {"dict_#_key1": "value1", "dict_#_key2": "value2"} merged_data = merge_execution_input(data) assert merged_data["dict"] == {"key1": "value1", "key2": "value2"} # Test case for merging object inputs data = {"object_@_attr1": "value1", "object_@_attr2": "value2"} merged_data = merge_execution_input(data) assert hasattr(merged_data["object"], "attr1") assert hasattr(merged_data["object"], "attr2") assert merged_data["object"].attr1 == "value1" assert merged_data["object"].attr2 == "value2" # Test case for mixed inputs data = {"list_$_0": "a", "dict_#_key1": "value1", "object_@_attr1": "value1"} merged_data = merge_execution_input(data) assert merged_data["list"] == ["a"] assert merged_data["dict"] == {"key1": "value1"} assert hasattr(merged_data["object"], "attr1") assert merged_data["object"].attr1 == "value1"
from __future__ import annotations import csv import logging import os import numpy as np from sklearn.metrics import average_precision_score from sentence_transformers import InputExample from sentence_transformers.evaluation import BinaryClassificationEvaluator logger = logging.getLogger(__name__) class CEBinaryClassificationEvaluator: """ This evaluator can be used with the CrossEncoder class. Given sentence pairs and binary labels (0 and 1), it compute the average precision and the best possible f1 score """ def __init__( self, sentence_pairs: list[list[str]], labels: list[int], name: str = "", show_progress_bar: bool = False, write_csv: bool = True, ): assert len(sentence_pairs) == len(labels) for label in labels: assert label == 0 or label == 1 self.sentence_pairs = sentence_pairs self.labels = np.asarray(labels) self.name = name if show_progress_bar is None: show_progress_bar = ( logger.getEffectiveLevel() == logging.INFO or logger.getEffectiveLevel() == logging.DEBUG ) self.show_progress_bar = show_progress_bar self.csv_file = "CEBinaryClassificationEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = [ "epoch", "steps", "Accuracy", "Accuracy_Threshold", "F1", "F1_Threshold", "Precision", "Recall", "Average_Precision", ] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: list[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CEBinaryClassificationEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict( self.sentence_pairs, convert_to_numpy=True, show_progress_bar=self.show_progress_bar ) acc, acc_threshold = BinaryClassificationEvaluator.find_best_acc_and_threshold(pred_scores, self.labels, True) f1, precision, recall, f1_threshold = BinaryClassificationEvaluator.find_best_f1_and_threshold( pred_scores, self.labels, True ) ap = average_precision_score(self.labels, pred_scores) logger.info("Accuracy: {:.2f}\t(Threshold: {:.4f})".format(acc * 100, acc_threshold)) logger.info("F1: {:.2f}\t(Threshold: {:.4f})".format(f1 * 100, f1_threshold)) logger.info("Precision: {:.2f}".format(precision * 100)) logger.info("Recall: {:.2f}".format(recall * 100)) logger.info("Average Precision: {:.2f}\n".format(ap * 100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc, acc_threshold, f1, f1_threshold, precision, recall, ap]) return ap
import csv import logging import os from typing import List import numpy as np from sklearn.metrics import average_precision_score from sentence_transformers import InputExample from sentence_transformers.evaluation import BinaryClassificationEvaluator logger = logging.getLogger(__name__) class CEBinaryClassificationEvaluator: """ This evaluator can be used with the CrossEncoder class. Given sentence pairs and binary labels (0 and 1), it compute the average precision and the best possible f1 score """ def __init__( self, sentence_pairs: List[List[str]], labels: List[int], name: str = "", show_progress_bar: bool = False, write_csv: bool = True, ): assert len(sentence_pairs) == len(labels) for label in labels: assert label == 0 or label == 1 self.sentence_pairs = sentence_pairs self.labels = np.asarray(labels) self.name = name if show_progress_bar is None: show_progress_bar = ( logger.getEffectiveLevel() == logging.INFO or logger.getEffectiveLevel() == logging.DEBUG ) self.show_progress_bar = show_progress_bar self.csv_file = "CEBinaryClassificationEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = [ "epoch", "steps", "Accuracy", "Accuracy_Threshold", "F1", "F1_Threshold", "Precision", "Recall", "Average_Precision", ] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: List[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CEBinaryClassificationEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict( self.sentence_pairs, convert_to_numpy=True, show_progress_bar=self.show_progress_bar ) acc, acc_threshold = BinaryClassificationEvaluator.find_best_acc_and_threshold(pred_scores, self.labels, True) f1, precision, recall, f1_threshold = BinaryClassificationEvaluator.find_best_f1_and_threshold( pred_scores, self.labels, True ) ap = average_precision_score(self.labels, pred_scores) logger.info("Accuracy: {:.2f}\t(Threshold: {:.4f})".format(acc * 100, acc_threshold)) logger.info("F1: {:.2f}\t(Threshold: {:.4f})".format(f1 * 100, f1_threshold)) logger.info("Precision: {:.2f}".format(precision * 100)) logger.info("Recall: {:.2f}".format(recall * 100)) logger.info("Average Precision: {:.2f}\n".format(ap * 100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc, acc_threshold, f1, f1_threshold, precision, recall, ap]) return ap
from __future__ import annotations import random import pytest import torch from torch.utils.data import ConcatDataset from sentence_transformers.sampler import NoDuplicatesBatchSampler, ProportionalBatchSampler from sentence_transformers.util import is_datasets_available if is_datasets_available(): from datasets import Dataset else: pytest.skip( reason='Sentence Transformers was not installed with the `["train"]` extra.', allow_module_level=True, ) @pytest.fixture def dummy_dataset() -> Dataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": [0, 47, 3, 30, 3, ... 2], "label": [0, 1, 0, 1, ..., 0, 1], } """ # Create a list of two 0's, two 1's, two 2's, ... two 49's. Then shuffle. values = [j for i in range(50) for j in (i, i)] random.shuffle(values) data = {"data": values, "label": [i % 2 for i in range(100)]} return Dataset.from_dict(data) @pytest.fixture def dummy_duplicates_dataset() -> Dataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "anchor": ["anchor_1", "anchor_1", "anchor_1", ... "anchor_2", "anchor_2"], "positive": ["positive_1", "positive_1", "positive_1", ... "positive_2", "positive_2"], } """ values = [{"anchor": "anchor_1", "positive": "positive_1"}] * 10 + [ {"anchor": "anchor_2", "positive": "positive_2"} ] * 8 return Dataset.from_list(values) def test_group_by_label_batch_sampler_label_a(dummy_dataset: Dataset) -> None: batch_size = 10 sampler = NoDuplicatesBatchSampler( dataset=dummy_dataset, batch_size=batch_size, drop_last=True, valid_label_columns=["label"] ) batches = list(iter(sampler)) # Assert all batch sizes are correct assert all(len(batch) == batch_size for batch in batches) # Assert batches contain no duplicate values for batch in batches: batch_values = [dummy_dataset[i]["data"] for i in batch] assert len(batch_values) == len(set(batch_values)), f"Batch {batch} contains duplicate values: {batch_values}" @pytest.mark.parametrize("drop_last", [True, False]) def test_proportional_no_duplicates(dummy_duplicates_dataset: Dataset, drop_last: bool) -> None: batch_size = 2 sampler_1 = NoDuplicatesBatchSampler( dataset=dummy_duplicates_dataset, batch_size=batch_size, drop_last=drop_last, valid_label_columns=["anchor"] ) sampler_2 = NoDuplicatesBatchSampler( dataset=dummy_duplicates_dataset, batch_size=batch_size, drop_last=drop_last, valid_label_columns=["positive"] ) concat_dataset = ConcatDataset([dummy_duplicates_dataset, dummy_duplicates_dataset]) batch_sampler = ProportionalBatchSampler( concat_dataset, [sampler_1, sampler_2], generator=torch.Generator(), seed=12 ) batches = list(iter(batch_sampler)) if drop_last: # If we drop the last batch (i.e. incomplete batches), we should have 16 batches out of the 18 possible, # because of the duplicates being skipped by the NoDuplicatesBatchSampler. # Notably, we should not crash like reported in #2816. assert len(batches) == 16 # All batches are the same size: 2 assert all(len(batch) == batch_size for batch in batches) assert len(sum(batches, [])) == 32 else: # If we don't drop incomplete batches, we should be able to do 18 batches, and get more data. # Note: we don't get all data, because the NoDuplicatesBatchSampler will estimate the number of batches # and it would require more (non-complete) batches to get all data. assert len(batches) == 18 assert len(sum(batches, [])) == 34
from __future__ import annotations import random import pytest import torch from datasets import Dataset from torch.utils.data import ConcatDataset from sentence_transformers.sampler import NoDuplicatesBatchSampler, ProportionalBatchSampler @pytest.fixture def dummy_dataset() -> Dataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": [0, 47, 3, 30, 3, ... 2], "label": [0, 1, 0, 1, ..., 0, 1], } """ # Create a list of two 0's, two 1's, two 2's, ... two 49's. Then shuffle. values = [j for i in range(50) for j in (i, i)] random.shuffle(values) data = {"data": values, "label": [i % 2 for i in range(100)]} return Dataset.from_dict(data) @pytest.fixture def dummy_duplicates_dataset() -> Dataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "anchor": ["anchor_1", "anchor_1", "anchor_1", ... "anchor_2", "anchor_2"], "positive": ["positive_1", "positive_1", "positive_1", ... "positive_2", "positive_2"], } """ values = [{"anchor": "anchor_1", "positive": "positive_1"}] * 10 + [ {"anchor": "anchor_2", "positive": "positive_2"} ] * 8 return Dataset.from_list(values) def test_group_by_label_batch_sampler_label_a(dummy_dataset: Dataset) -> None: batch_size = 10 sampler = NoDuplicatesBatchSampler( dataset=dummy_dataset, batch_size=batch_size, drop_last=True, valid_label_columns=["label"] ) batches = list(iter(sampler)) # Assert all batch sizes are correct assert all(len(batch) == batch_size for batch in batches) # Assert batches contain no duplicate values for batch in batches: batch_values = [dummy_dataset[i]["data"] for i in batch] assert len(batch_values) == len(set(batch_values)), f"Batch {batch} contains duplicate values: {batch_values}" @pytest.mark.parametrize("drop_last", [True, False]) def test_proportional_no_duplicates(dummy_duplicates_dataset: Dataset, drop_last: bool) -> None: batch_size = 2 sampler_1 = NoDuplicatesBatchSampler( dataset=dummy_duplicates_dataset, batch_size=batch_size, drop_last=drop_last, valid_label_columns=["anchor"] ) sampler_2 = NoDuplicatesBatchSampler( dataset=dummy_duplicates_dataset, batch_size=batch_size, drop_last=drop_last, valid_label_columns=["positive"] ) concat_dataset = ConcatDataset([dummy_duplicates_dataset, dummy_duplicates_dataset]) batch_sampler = ProportionalBatchSampler( concat_dataset, [sampler_1, sampler_2], generator=torch.Generator(), seed=12 ) batches = list(iter(batch_sampler)) if drop_last: # If we drop the last batch (i.e. incomplete batches), we should have 16 batches out of the 18 possible, # because of the duplicates being skipped by the NoDuplicatesBatchSampler. # Notably, we should not crash like reported in #2816. assert len(batches) == 16 # All batches are the same size: 2 assert all(len(batch) == batch_size for batch in batches) assert len(sum(batches, [])) == 32 else: # If we don't drop incomplete batches, we should be able to do 18 batches, and get more data. # Note: we don't get all data, because the NoDuplicatesBatchSampler will estimate the number of batches # and it would require more (non-complete) batches to get all data. assert len(batches) == 18 assert len(sum(batches, [])) == 34
import uuid from typing import List from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document class TrafilaturaWebReader(BasePydanticReader): """ Trafilatura web page reader. Reads pages from the web. Requires the `trafilatura` package. """ is_remote: bool = True @classmethod def class_name(cls) -> str: """Get the name identifier of the class.""" return "TrafilaturaWebReader" def load_data( self, urls: List[str], include_comments=True, output_format="txt", include_tables=True, include_images=False, include_formatting=False, include_links=False, show_progress=False, no_ssl=False, **kwargs, ) -> List[Document]: """ Load data from the urls. Args: urls (List[str]): List of URLs to scrape. include_comments (bool, optional): Include comments in the output. Defaults to True. output_format (str, optional): Output format. Defaults to 'txt'. include_tables (bool, optional): Include tables in the output. Defaults to True. include_images (bool, optional): Include images in the output. Defaults to False. include_formatting (bool, optional): Include formatting in the output. Defaults to False. include_links (bool, optional): Include links in the output. Defaults to False. show_progress (bool, optional): Show progress bar. Defaults to False no_ssl (bool, optional): Bypass SSL verification. Defaults to False. kwargs: Additional keyword arguments for the `trafilatura.extract` function. Returns: List[Document]: List of documents. """ import trafilatura if not isinstance(urls, list): raise ValueError("urls must be a list of strings.") documents = [] if show_progress: from tqdm import tqdm iterator = tqdm(urls, desc="Downloading pages") else: iterator = urls for url in iterator: downloaded = trafilatura.fetch_url(url, no_ssl=no_ssl) response = trafilatura.extract( downloaded, include_comments=include_comments, output_format=output_format, include_tables=include_tables, include_images=include_images, include_formatting=include_formatting, include_links=include_links, **kwargs, ) documents.append( Document(text=response, id_=str(uuid.uuid4()), metadata={"url": url}) ) return documents
from typing import List from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document class TrafilaturaWebReader(BasePydanticReader): """ Trafilatura web page reader. Reads pages from the web. Requires the `trafilatura` package. """ is_remote: bool = True @classmethod def class_name(cls) -> str: """Get the name identifier of the class.""" return "TrafilaturaWebReader" def load_data( self, urls: List[str], include_comments=True, output_format="txt", include_tables=True, include_images=False, include_formatting=False, include_links=False, show_progress=False, no_ssl=False, **kwargs, ) -> List[Document]: """ Load data from the urls. Args: urls (List[str]): List of URLs to scrape. include_comments (bool, optional): Include comments in the output. Defaults to True. output_format (str, optional): Output format. Defaults to 'txt'. include_tables (bool, optional): Include tables in the output. Defaults to True. include_images (bool, optional): Include images in the output. Defaults to False. include_formatting (bool, optional): Include formatting in the output. Defaults to False. include_links (bool, optional): Include links in the output. Defaults to False. show_progress (bool, optional): Show progress bar. Defaults to False no_ssl (bool, optional): Bypass SSL verification. Defaults to False. kwargs: Additional keyword arguments for the `trafilatura.extract` function. Returns: List[Document]: List of documents. """ import trafilatura if not isinstance(urls, list): raise ValueError("urls must be a list of strings.") documents = [] if show_progress: from tqdm import tqdm iterator = tqdm(urls, desc="Downloading pages") else: iterator = urls for url in iterator: downloaded = trafilatura.fetch_url(url, no_ssl=no_ssl) response = trafilatura.extract( downloaded, include_comments=include_comments, output_format=output_format, include_tables=include_tables, include_images=include_images, include_formatting=include_formatting, include_links=include_links, **kwargs, ) documents.append(Document(text=response, id_=url)) return documents
import os from pathlib import Path import numpy as np import pytest import torch from mmdet.apis import inference_detector, init_detector from mmdet.structures import DetDataSample from mmdet.utils import register_all_modules # TODO: Waiting to fix multiple call error bug register_all_modules() @pytest.mark.parametrize('config,devices', [('configs/retinanet/retinanet_r18_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_init_detector(config, devices): assert all([device in ['cpu', 'cuda'] for device in devices]) project_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) project_dir = os.path.join(project_dir, '..') config_file = os.path.join(project_dir, config) # test init_detector with config_file: str and cfg_options cfg_options = dict( model=dict( backbone=dict( depth=18, init_cfg=dict( type='Pretrained', checkpoint='torchvision://resnet18')))) for device in devices: if device == 'cuda' and not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') model = init_detector( config_file, device=device, cfg_options=cfg_options) # test init_detector with :obj:`Path` config_path_object = Path(config_file) model = init_detector(config_path_object, device=device) # test init_detector with undesirable type with pytest.raises(TypeError): config_list = [config_file] model = init_detector(config_list) # noqa: F841 @pytest.mark.parametrize('config,devices', [('configs/retinanet/retinanet_r18_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_inference_detector(config, devices): assert all([device in ['cpu', 'cuda'] for device in devices]) project_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) project_dir = os.path.join(project_dir, '..') config_file = os.path.join(project_dir, config) # test init_detector with config_file: str and cfg_options rng = np.random.RandomState(0) img1 = rng.randint(0, 255, (32, 32, 3), dtype=np.uint8) img2 = rng.randint(0, 255, (32, 32, 3), dtype=np.uint8) for device in devices: if device == 'cuda' and not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') model = init_detector(config_file, device=device) result = inference_detector(model, img1) assert isinstance(result, DetDataSample) result = inference_detector(model, [img1, img2]) assert isinstance(result, list) and len(result) == 2
import os from pathlib import Path import numpy as np import pytest import torch from mmdet.apis import inference_detector, init_detector from mmdet.structures import DetDataSample from mmdet.utils import register_all_modules # TODO: Waiting to fix multiple call error bug register_all_modules() @pytest.mark.parametrize('config,devices', [('configs/retinanet/retinanet_r18_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_init_detector(config, devices): assert all([device in ['cpu', 'cuda'] for device in devices]) project_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) project_dir = os.path.join(project_dir, '..') config_file = os.path.join(project_dir, config) # test init_detector with config_file: str and cfg_options cfg_options = dict( model=dict( backbone=dict( depth=18, init_cfg=dict( type='Pretrained', checkpoint='torchvision://resnet18')))) for device in devices: if device == 'cuda' and not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') model = init_detector( config_file, device=device, cfg_options=cfg_options) # test init_detector with :obj:`Path` config_path_object = Path(config_file) model = init_detector(config_path_object, device=device) # test init_detector with undesirable type with pytest.raises(TypeError): config_list = [config_file] model = init_detector(config_list) # noqa: F841 @pytest.mark.parametrize('config,devices', [('configs/retinanet/retinanet_r18_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_inference_detector(config, devices): assert all([device in ['cpu', 'cuda'] for device in devices]) project_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) project_dir = os.path.join(project_dir, '..') config_file = os.path.join(project_dir, config) # test init_detector with config_file: str and cfg_options rng = np.random.RandomState(0) img1 = rng.randint(0, 255, (100, 100, 3), dtype=np.uint8) img2 = rng.randint(0, 255, (100, 100, 3), dtype=np.uint8) for device in devices: if device == 'cuda' and not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') model = init_detector(config_file, device=device) result = inference_detector(model, img1) assert isinstance(result, DetDataSample) result = inference_detector(model, [img1, img2]) assert isinstance(result, list) and len(result) == 2
import itertools from typing import ( TYPE_CHECKING, Union, Sequence, overload, Any, List, ) import numpy as np from docarray import Document from docarray.helper import typename if TYPE_CHECKING: from docarray.typing import ( DocumentArrayIndexType, DocumentArraySingletonIndexType, DocumentArrayMultipleIndexType, DocumentArrayMultipleAttributeType, DocumentArraySingleAttributeType, ) from docarray import DocumentArray class GetItemMixin: """Provide helper functions to enable advance indexing in `__getitem__`""" @overload def __getitem__(self, index: 'DocumentArraySingletonIndexType') -> 'Document': ... @overload def __getitem__(self, index: 'DocumentArrayMultipleIndexType') -> 'DocumentArray': ... @overload def __getitem__(self, index: 'DocumentArraySingleAttributeType') -> List[Any]: ... @overload def __getitem__( self, index: 'DocumentArrayMultipleAttributeType' ) -> List[List[Any]]: ... def __getitem__( self, index: 'DocumentArrayIndexType' ) -> Union['Document', 'DocumentArray']: if isinstance(index, (int, np.generic)) and not isinstance(index, bool): return self._get_doc_by_offset(int(index)) elif isinstance(index, str): if index.startswith('@'): return self.traverse_flat(index[1:]) else: return self._get_doc_by_id(index) elif isinstance(index, slice): from docarray import DocumentArray return DocumentArray(self._get_docs_by_slice(index)) elif index is Ellipsis: return self.flatten() elif isinstance(index, Sequence): from docarray import DocumentArray if ( isinstance(index, tuple) and len(index) == 2 and ( isinstance(index[0], (slice, Sequence, str, int)) or index[0] is Ellipsis ) and isinstance(index[1], (str, Sequence)) ): # TODO: add support for cases such as da[1, ['text', 'id']]? if isinstance(index[0], (str, int)) and isinstance(index[1], str): # ambiguity only comes from the second string if index[1] in self: return DocumentArray([self[index[0]], self[index[1]]]) else: _docs = self[index[0]] if not _docs: return [] if isinstance(_docs, Document): return getattr(_docs, index[1]) return _docs._get_attributes(index[1]) elif isinstance(index[0], (slice, Sequence)): _docs = self[index[0]] _attrs = index[1] if isinstance(_attrs, str): _attrs = (index[1],) return _docs._get_attributes(*_attrs) elif isinstance(index[0], bool): return DocumentArray(itertools.compress(self, index)) elif isinstance(index[0], int): return DocumentArray(self._get_docs_by_offsets(index)) elif isinstance(index[0], str): return DocumentArray(self._get_docs_by_ids(index)) elif isinstance(index, np.ndarray): index = index.squeeze() if index.ndim == 1: return self[index.tolist()] else: raise IndexError( f'When using np.ndarray as index, its `ndim` must =1. However, receiving ndim={index.ndim}' ) raise IndexError(f'Unsupported index type {typename(index)}: {index}')
import itertools from typing import ( TYPE_CHECKING, Union, Sequence, overload, Any, List, ) import numpy as np from ... import Document from ...helper import typename if TYPE_CHECKING: from ...typing import ( DocumentArrayIndexType, DocumentArraySingletonIndexType, DocumentArrayMultipleIndexType, DocumentArrayMultipleAttributeType, DocumentArraySingleAttributeType, ) from ... import DocumentArray class GetItemMixin: """Provide helper functions to enable advance indexing in `__getitem__`""" @overload def __getitem__(self, index: 'DocumentArraySingletonIndexType') -> 'Document': ... @overload def __getitem__(self, index: 'DocumentArrayMultipleIndexType') -> 'DocumentArray': ... @overload def __getitem__(self, index: 'DocumentArraySingleAttributeType') -> List[Any]: ... @overload def __getitem__( self, index: 'DocumentArrayMultipleAttributeType' ) -> List[List[Any]]: ... def __getitem__( self, index: 'DocumentArrayIndexType' ) -> Union['Document', 'DocumentArray']: if isinstance(index, (int, np.generic)) and not isinstance(index, bool): return self._get_doc_by_offset(int(index)) elif isinstance(index, str): if index.startswith('@'): return self.traverse_flat(index[1:]) else: return self._get_doc_by_id(index) elif isinstance(index, slice): from ... import DocumentArray return DocumentArray(self._get_docs_by_slice(index)) elif index is Ellipsis: return self.flatten() elif isinstance(index, Sequence): from ... import DocumentArray if ( isinstance(index, tuple) and len(index) == 2 and ( isinstance(index[0], (slice, Sequence, str, int)) or index[0] is Ellipsis ) and isinstance(index[1], (str, Sequence)) ): # TODO: add support for cases such as da[1, ['text', 'id']]? if isinstance(index[0], (str, int)) and isinstance(index[1], str): # ambiguity only comes from the second string if index[1] in self: return DocumentArray([self[index[0]], self[index[1]]]) else: _docs = self[index[0]] if not _docs: return [] if isinstance(_docs, Document): return getattr(_docs, index[1]) return _docs._get_attributes(index[1]) elif isinstance(index[0], (slice, Sequence)): _docs = self[index[0]] _attrs = index[1] if isinstance(_attrs, str): _attrs = (index[1],) return _docs._get_attributes(*_attrs) elif isinstance(index[0], bool): return DocumentArray(itertools.compress(self, index)) elif isinstance(index[0], int): return DocumentArray(self._get_docs_by_offsets(index)) elif isinstance(index[0], str): return DocumentArray(self._get_docs_by_ids(index)) elif isinstance(index, np.ndarray): index = index.squeeze() if index.ndim == 1: return self[index.tolist()] else: raise IndexError( f'When using np.ndarray as index, its `ndim` must =1. However, receiving ndim={index.ndim}' ) raise IndexError(f'Unsupported index type {typename(index)}: {index}')
from typing import Optional import agentql import httpx from llama_index.tools.agentql.const import EXTRACT_DATA_ENDPOINT, REQUEST_ORIGIN from llama_index.tools.agentql.messages import ( QUERY_PROMPT_REQUIRED_ERROR_MESSAGE, QUERY_PROMPT_EXCLUSIVE_ERROR_MESSAGE, UNAUTHORIZED_ERROR_MESSAGE, ) try: from playwright.async_api import Browser as AsyncBrowser from playwright.async_api import Page as AsyncPage except ImportError as e: raise ImportError( "Unable to import playwright. Please make sure playwright module is properly installed." ) from e async def _aget_current_agentql_page(browser: AsyncBrowser) -> AsyncPage: """ Get the current page of the async browser. Args: browser: The browser to get the current page from. Returns: Page: The current page. """ context = browser.contexts[0] if browser.contexts else await browser.new_context() page = context.pages[-1] if context.pages else await context.new_page() return await agentql.wrap_async(page) def _handle_http_error(e: httpx.HTTPStatusError) -> None: response = e.response if response.status_code == httpx.codes.UNAUTHORIZED: raise ValueError(UNAUTHORIZED_ERROR_MESSAGE) from e msg = response.text try: error_json = response.json() msg = ( error_json["error_info"] if "error_info" in error_json else str(error_json) ) except (ValueError, TypeError): msg = f"HTTP {e}." raise ValueError(msg) from e async def _aload_data( url: str, api_key: str, metadata: dict, params: dict, timeout: int, query: Optional[str] = None, prompt: Optional[str] = None, ) -> dict: if not query and not prompt: raise ValueError(QUERY_PROMPT_REQUIRED_ERROR_MESSAGE) if query and prompt: raise ValueError(QUERY_PROMPT_EXCLUSIVE_ERROR_MESSAGE) payload = { "url": url, "query": query, "prompt": prompt, "params": params, "metadata": metadata, } headers = { "X-API-Key": f"{api_key}", "Content-Type": "application/json", "X-TF-Request-Origin": REQUEST_ORIGIN, } async with httpx.AsyncClient() as client: try: response = await client.post( EXTRACT_DATA_ENDPOINT, headers=headers, json=payload, timeout=timeout, ) response.raise_for_status() except httpx.HTTPStatusError as e: _handle_http_error(e) else: return response.json()
from typing import Optional import agentql import httpx from llama_index.tools.agentql.const import EXTRACT_DATA_ENDPOINT, REQUEST_ORIGIN from llama_index.tools.agentql.messages import ( QUERY_PROMPT_REQUIRED_ERROR_MESSAGE, QUERY_PROMPT_EXCLUSIVE_ERROR_MESSAGE, UNAUTHORIZED_ERROR_MESSAGE, ) try: from playwright.async_api import Browser as AsyncBrowser from playwright.async_api import Page as AsyncPage except ImportError as e: raise ImportError( "Unable to import playwright. Please make sure playwright module is properly installed." ) from e async def _aget_current_agentql_page(browser: AsyncBrowser) -> AsyncPage: """ Get the current page of the async browser. Args: browser: The browser to get the current page from. Returns: Page: The current page. """ context = browser.contexts[0] if browser.contexts else await browser.new_context() page = context.pages[-1] if context.pages else await context.new_page() return await agentql.wrap_async(page) def _handle_http_error(e: httpx.HTTPStatusError) -> None: response = e.response if response.status_code == httpx.codes.UNAUTHORIZED: raise ValueError(UNAUTHORIZED_ERROR_MESSAGE) from e msg = response.text try: error_json = response.json() msg = ( error_json["error_info"] if "error_info" in error_json else str(error_json) ) except (ValueError, TypeError): msg = f"HTTP {e}." raise ValueError(msg) from e async def _aload_data( url: str, api_key: str, metadata: dict, params: dict, timeout: int, query: Optional[str] = None, prompt: Optional[str] = None, ) -> dict: if not query and not prompt: raise ValueError(QUERY_PROMPT_REQUIRED_ERROR_MESSAGE) if query and prompt: raise ValueError(QUERY_PROMPT_EXCLUSIVE_ERROR_MESSAGE) payload = { "url": url, "query": query, "prompt": prompt, "params": params, "metadata": metadata, } headers = { "X-API-Key": f"{api_key}", "Content-Type": "application/json", "X-TF-Request-Origin": REQUEST_ORIGIN, } async with httpx.AsyncClient() as client: try: response = await client.post( EXTRACT_DATA_ENDPOINT, headers=headers, json=payload, timeout=timeout, ) response.raise_for_status() except httpx.HTTPStatusError as e: _handle_http_error(e) else: return response.json()
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .single_stage_instance_seg import SingleStageInstanceSegmentor @MODELS.register_module() class SOLO(SingleStageInstanceSegmentor): """`SOLO: Segmenting Objects by Locations <https://arxiv.org/abs/1912.04488>`_ """ def __init__(self, backbone, neck=None, bbox_head=None, mask_head=None, train_cfg=None, test_cfg=None, init_cfg=None, pretrained=None): super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, mask_head=mask_head, train_cfg=train_cfg, test_cfg=test_cfg, init_cfg=init_cfg, pretrained=pretrained)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .single_stage_instance_seg import SingleStageInstanceSegmentor @DETECTORS.register_module() class SOLO(SingleStageInstanceSegmentor): """`SOLO: Segmenting Objects by Locations <https://arxiv.org/abs/1912.04488>`_ """ def __init__(self, backbone, neck=None, bbox_head=None, mask_head=None, train_cfg=None, test_cfg=None, init_cfg=None, pretrained=None): super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, mask_head=mask_head, train_cfg=train_cfg, test_cfg=test_cfg, init_cfg=init_cfg, pretrained=pretrained)
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import numpy as np import pycocotools.mask as mask_util def split_combined_polys(polys, poly_lens, polys_per_mask): """Split the combined 1-D polys into masks. A mask is represented as a list of polys, and a poly is represented as a 1-D array. In dataset, all masks are concatenated into a single 1-D tensor. Here we need to split the tensor into original representations. Args: polys (list): a list (length = image num) of 1-D tensors poly_lens (list): a list (length = image num) of poly length polys_per_mask (list): a list (length = image num) of poly number of each mask Returns: list: a list (length = image num) of list (length = mask num) of \ list (length = poly num) of numpy array. """ mask_polys_list = [] for img_id in range(len(polys)): polys_single = polys[img_id] polys_lens_single = poly_lens[img_id].tolist() polys_per_mask_single = polys_per_mask[img_id].tolist() split_polys = mmcv.slice_list(polys_single, polys_lens_single) mask_polys = mmcv.slice_list(split_polys, polys_per_mask_single) mask_polys_list.append(mask_polys) return mask_polys_list # TODO: move this function to more proper place def encode_mask_results(mask_results): """Encode bitmap mask to RLE code. Args: mask_results (list | tuple[list]): bitmap mask results. In mask scoring rcnn, mask_results is a tuple of (segm_results, segm_cls_score). Returns: list | tuple: RLE encoded mask. """ if isinstance(mask_results, tuple): # mask scoring cls_segms, cls_mask_scores = mask_results else: cls_segms = mask_results num_classes = len(cls_segms) encoded_mask_results = [[] for _ in range(num_classes)] for i in range(len(cls_segms)): for cls_segm in cls_segms[i]: encoded_mask_results[i].append( mask_util.encode( np.array( cls_segm[:, :, np.newaxis], order='F', dtype='uint8'))[0]) # encoded with RLE if isinstance(mask_results, tuple): return encoded_mask_results, cls_mask_scores else: return encoded_mask_results
import mmcv import numpy as np import pycocotools.mask as mask_util def split_combined_polys(polys, poly_lens, polys_per_mask): """Split the combined 1-D polys into masks. A mask is represented as a list of polys, and a poly is represented as a 1-D array. In dataset, all masks are concatenated into a single 1-D tensor. Here we need to split the tensor into original representations. Args: polys (list): a list (length = image num) of 1-D tensors poly_lens (list): a list (length = image num) of poly length polys_per_mask (list): a list (length = image num) of poly number of each mask Returns: list: a list (length = image num) of list (length = mask num) of \ list (length = poly num) of numpy array. """ mask_polys_list = [] for img_id in range(len(polys)): polys_single = polys[img_id] polys_lens_single = poly_lens[img_id].tolist() polys_per_mask_single = polys_per_mask[img_id].tolist() split_polys = mmcv.slice_list(polys_single, polys_lens_single) mask_polys = mmcv.slice_list(split_polys, polys_per_mask_single) mask_polys_list.append(mask_polys) return mask_polys_list # TODO: move this function to more proper place def encode_mask_results(mask_results): """Encode bitmap mask to RLE code. Args: mask_results (list | tuple[list]): bitmap mask results. In mask scoring rcnn, mask_results is a tuple of (segm_results, segm_cls_score). Returns: list | tuple: RLE encoded mask. """ if isinstance(mask_results, tuple): # mask scoring cls_segms, cls_mask_scores = mask_results else: cls_segms = mask_results num_classes = len(cls_segms) encoded_mask_results = [[] for _ in range(num_classes)] for i in range(len(cls_segms)): for cls_segm in cls_segms[i]: encoded_mask_results[i].append( mask_util.encode( np.array( cls_segm[:, :, np.newaxis], order='F', dtype='uint8'))[0]) # encoded with RLE if isinstance(mask_results, tuple): return encoded_mask_results, cls_mask_scores else: return encoded_mask_results
import pathlib from typing import Any, Union import torch from torchdata.datapipes.iter import Decompressor, IterDataPipe, LineReader, Mapper from torchvision.prototype.datasets.utils import Dataset, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import hint_sharding, hint_shuffling from torchvision.prototype.tv_tensors import Label from torchvision.tv_tensors import Image from .._api import register_dataset, register_info NAME = "usps" @register_info(NAME) def _info() -> dict[str, Any]: return dict(categories=[str(c) for c in range(10)]) @register_dataset(NAME) class USPS(Dataset): """USPS Dataset homepage="https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps", """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) _URL = "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass" _RESOURCES = { "train": HttpResource( f"{_URL}/usps.bz2", sha256="3771e9dd6ba685185f89867b6e249233dd74652389f263963b3b741e994b034f" ), "test": HttpResource( f"{_URL}/usps.t.bz2", sha256="a9c0164e797d60142a50604917f0baa604f326e9a689698763793fa5d12ffc4e" ), } def _resources(self) -> list[OnlineResource]: return [USPS._RESOURCES[self._split]] def _prepare_sample(self, line: str) -> dict[str, Any]: label, *values = line.strip().split(" ") values = [float(value.split(":")[1]) for value in values] pixels = torch.tensor(values).add_(1).div_(2) return dict( image=Image(pixels.reshape(16, 16)), label=Label(int(label) - 1, categories=self._categories), ) def _datapipe(self, resource_dps: list[IterDataPipe]) -> IterDataPipe[dict[str, Any]]: dp = Decompressor(resource_dps[0]) dp = LineReader(dp, decode=True, return_path=False) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 7_291 if self._split == "train" else 2_007
import pathlib from typing import Any, Dict, List, Union import torch from torchdata.datapipes.iter import Decompressor, IterDataPipe, LineReader, Mapper from torchvision.prototype.datasets.utils import Dataset, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import hint_sharding, hint_shuffling from torchvision.prototype.tv_tensors import Label from torchvision.tv_tensors import Image from .._api import register_dataset, register_info NAME = "usps" @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=[str(c) for c in range(10)]) @register_dataset(NAME) class USPS(Dataset): """USPS Dataset homepage="https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps", """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False, ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) _URL = "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass" _RESOURCES = { "train": HttpResource( f"{_URL}/usps.bz2", sha256="3771e9dd6ba685185f89867b6e249233dd74652389f263963b3b741e994b034f" ), "test": HttpResource( f"{_URL}/usps.t.bz2", sha256="a9c0164e797d60142a50604917f0baa604f326e9a689698763793fa5d12ffc4e" ), } def _resources(self) -> List[OnlineResource]: return [USPS._RESOURCES[self._split]] def _prepare_sample(self, line: str) -> Dict[str, Any]: label, *values = line.strip().split(" ") values = [float(value.split(":")[1]) for value in values] pixels = torch.tensor(values).add_(1).div_(2) return dict( image=Image(pixels.reshape(16, 16)), label=Label(int(label) - 1, categories=self._categories), ) def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = Decompressor(resource_dps[0]) dp = LineReader(dp, decode=True, return_path=False) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 7_291 if self._split == "train" else 2_007
from __future__ import annotations import json import os from typing import Any import torch from torch import nn class SpladePooling(nn.Module): """ SPLADE Pooling module for creating the sparse embeddings. This module implements the SPLADE pooling mechanism that: 1. Takes token logits from a masked language model (MLM) 2. Applies a sparse transformation using the RELU(log(1 + exp(MLM logits))) 3. Applies a pooling strategy (max or sum) to produce sparse embeddings The resulting embeddings are highly sparse and capture lexical information, making them suitable for efficient information retrieval. Args: pooling_strategy (str): The pooling strategy to use, either "max" or "sum". "max" takes the maximum value across all tokens. "sum" adds the values across all tokens. """ SPLADE_POOLING_MODES = ("sum", "max") def __init__(self, pooling_strategy: str = "max", word_embedding_dimension: int = None) -> None: super().__init__() self.pooling_strategy = pooling_strategy if pooling_strategy not in self.SPLADE_POOLING_MODES: raise ValueError("pooling_strategy must be either 'max' or 'sum'") self.config_keys = ["pooling_strategy", "word_embedding_dimension"] self.word_embedding_dimension = word_embedding_dimension # This will be set in the forward method def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: """Forward pass of the model. Args: features: Dictionary containing input features with 'mlm_logits' key Returns: Dictionary containing SPLADE pooled embeddings """ # Get the MLM head logits (shape: batch_size, seq_length, vocab_size) mlm_logits = features["token_embeddings"] # Apply ReLU and log transformation for SPLADE splade_scores = torch.log1p(torch.relu(mlm_logits)) # Pool across sequence length dimension if self.pooling_strategy == "max": pooled_scores = torch.max(splade_scores, dim=1)[0] # shape: batch_size, vocab_size else: # sum pooled_scores = torch.sum(splade_scores, dim=1) # shape: batch_size, vocab_size # Set the word embedding dimension if self.word_embedding_dimension is None: self.word_embedding_dimension = pooled_scores.shape[1] features["sentence_embedding"] = pooled_scores return features def get_config_dict(self) -> dict[str, Any]: return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path) -> None: with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path) -> SpladePooling: with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return SpladePooling(**config) def __repr__(self) -> str: return f"SpladePooling({self.get_config_dict()})" def get_sentence_embedding_dimension(self) -> int: """Get the dimension of the sentence embedding. Returns: int: Dimension of the sentence embedding """ return self.word_embedding_dimension
from __future__ import annotations import json import os from typing import Any import torch from torch import nn class SpladePooling(nn.Module): """SPLADE pooling layer that aggregates MLM logits using max or sum pooling. This pooling layer takes MLM logits (shape: batch_size, seq_length, vocab_size) and applies SPLADE transformation (ReLU + log) followed by pooling across the sequence length dimension. Args: pooling_strategy: Either 'max' or 'sum' for SPLADE pooling """ SPLADE_POOLING_MODES = ("sum", "max") def __init__(self, pooling_strategy: str = "max", word_embedding_dimension: int = None) -> None: super().__init__() self.pooling_strategy = pooling_strategy if pooling_strategy not in self.SPLADE_POOLING_MODES: raise ValueError("pooling_strategy must be either 'max' or 'sum'") self.config_keys = ["pooling_strategy", "word_embedding_dimension"] self.word_embedding_dimension = word_embedding_dimension # This will be set in the forward method def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: """Forward pass of the model. Args: features: Dictionary containing input features with 'mlm_logits' key Returns: Dictionary containing SPLADE pooled embeddings """ # Get the MLM head logits (shape: batch_size, seq_length, vocab_size) mlm_logits = features["token_embeddings"] # Apply ReLU and log transformation for SPLADE splade_scores = torch.log1p(torch.relu(mlm_logits)) # Pool across sequence length dimension if self.pooling_strategy == "max": pooled_scores = torch.max(splade_scores, dim=1)[0] # shape: batch_size, vocab_size else: # sum pooled_scores = torch.sum(splade_scores, dim=1) # shape: batch_size, vocab_size # Set the word embedding dimension if self.word_embedding_dimension is None: self.word_embedding_dimension = pooled_scores.shape[1] features["sentence_embedding"] = pooled_scores return features def get_config_dict(self) -> dict[str, Any]: return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path) -> None: with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path) -> SpladePooling: with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return SpladePooling(**config) def __repr__(self) -> str: return f"SpladePooling({self.get_config_dict()})" def get_sentence_embedding_dimension(self) -> int: """Get the dimension of the sentence embedding. Returns: int: Dimension of the sentence embedding """ return self.word_embedding_dimension
import numpy as np from absl.testing import parameterized from keras.src import backend from keras.src import testing from keras.src.utils import numerical_utils NUM_CLASSES = 5 class TestNumericalUtils(testing.TestCase, parameterized.TestCase): @parameterized.parameters( [ ((1,), (1, NUM_CLASSES)), ((3,), (3, NUM_CLASSES)), ((4, 3), (4, 3, NUM_CLASSES)), ((5, 4, 3), (5, 4, 3, NUM_CLASSES)), ((3, 1), (3, NUM_CLASSES)), ((3, 2, 1), (3, 2, NUM_CLASSES)), ] ) def test_to_categorical(self, shape, expected_shape): label = np.random.randint(0, NUM_CLASSES, shape) one_hot = numerical_utils.to_categorical(label, NUM_CLASSES) # Check shape self.assertEqual(one_hot.shape, expected_shape) # Make sure there is only one 1 in a row self.assertTrue(np.all(one_hot.sum(axis=-1) == 1)) # Get original labels back from one hots self.assertTrue( np.all(np.argmax(one_hot, -1).reshape(label.shape) == label) ) def test_to_categorical_without_num_classes(self): label = [0, 2, 5] one_hot = numerical_utils.to_categorical(label) self.assertEqual(one_hot.shape, (3, 5 + 1)) def test_to_categorical_with_backend_tensor(self): label = backend.convert_to_tensor(np.array([0, 2, 1, 3, 4])) expected = backend.convert_to_tensor( np.array( [ [1, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 1, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1], ] ) ) one_hot = numerical_utils.to_categorical(label, NUM_CLASSES) assert backend.is_tensor(one_hot) self.assertAllClose(one_hot, expected) @parameterized.parameters([1, 2, 3]) def test_normalize(self, order): xb = backend.random.uniform((3, 3), seed=1337) xnp = backend.convert_to_numpy(xb) # Expected result l2 = np.atleast_1d(np.linalg.norm(xnp, order, axis=-1)) l2[l2 == 0] = 1 expected = xnp / np.expand_dims(l2, axis=-1) # Test NumPy out = numerical_utils.normalize(xnp, axis=-1, order=order) self.assertIsInstance(out, np.ndarray) self.assertAllClose(out, expected) # Test backend out = numerical_utils.normalize(xb, axis=-1, order=order) self.assertTrue(backend.is_tensor(out)) self.assertAllClose(backend.convert_to_numpy(out), expected)
import numpy as np from absl.testing import parameterized from keras.src import backend from keras.src import testing from keras.src.utils import numerical_utils NUM_CLASSES = 5 class TestNumericalUtils(testing.TestCase, parameterized.TestCase): @parameterized.parameters( [ ((1,), (1, NUM_CLASSES)), ((3,), (3, NUM_CLASSES)), ((4, 3), (4, 3, NUM_CLASSES)), ((5, 4, 3), (5, 4, 3, NUM_CLASSES)), ((3, 1), (3, NUM_CLASSES)), ((3, 2, 1), (3, 2, NUM_CLASSES)), ] ) def test_to_categorical(self, shape, expected_shape): label = np.random.randint(0, NUM_CLASSES, shape) one_hot = numerical_utils.to_categorical(label, NUM_CLASSES) # Check shape self.assertEqual(one_hot.shape, expected_shape) # Make sure there is only one 1 in a row self.assertTrue(np.all(one_hot.sum(axis=-1) == 1)) # Get original labels back from one hots self.assertTrue( np.all(np.argmax(one_hot, -1).reshape(label.shape) == label) ) def test_to_categorial_without_num_classes(self): label = [0, 2, 5] one_hot = numerical_utils.to_categorical(label) self.assertEqual(one_hot.shape, (3, 5 + 1)) def test_to_categorical_with_backend_tensor(self): label = backend.convert_to_tensor(np.array([0, 2, 1, 3, 4])) expected = backend.convert_to_tensor( np.array( [ [1, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 1, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1], ] ) ) one_hot = numerical_utils.to_categorical(label, NUM_CLASSES) assert backend.is_tensor(one_hot) self.assertAllClose(one_hot, expected) @parameterized.parameters([1, 2, 3]) def test_normalize(self, order): xb = backend.random.uniform((3, 3), seed=1337) xnp = backend.convert_to_numpy(xb) # Expected result l2 = np.atleast_1d(np.linalg.norm(xnp, order, axis=-1)) l2[l2 == 0] = 1 expected = xnp / np.expand_dims(l2, axis=-1) # Test NumPy out = numerical_utils.normalize(xnp, axis=-1, order=order) self.assertIsInstance(out, np.ndarray) self.assertAllClose(out, expected) # Test backend out = numerical_utils.normalize(xb, axis=-1, order=order) self.assertTrue(backend.is_tensor(out)) self.assertAllClose(backend.convert_to_numpy(out), expected)
# type: ignore """Development Scripts for template packages.""" from collections.abc import Sequence from fastapi import FastAPI from langserve import add_routes from langchain_cli.utils.packages import get_langserve_export, get_package_root def create_demo_server( *, config_keys: Sequence[str] = (), playground_type: str = "default", ): """Creates a demo server for the current template.""" app = FastAPI() package_root = get_package_root() pyproject = package_root / "pyproject.toml" try: package = get_langserve_export(pyproject) mod = __import__(package["module"], fromlist=[package["attr"]]) chain = getattr(mod, package["attr"]) add_routes( app, chain, config_keys=config_keys, playground_type=playground_type, ) except KeyError as e: msg = "Missing fields from pyproject.toml" raise KeyError(msg) from e except ImportError as e: msg = "Could not import module defined in pyproject.toml" raise ImportError(msg) from e return app def create_demo_server_configurable(): return create_demo_server(config_keys=["configurable"]) def create_demo_server_chat(): return create_demo_server(playground_type="chat")
# type: ignore """ Development Scripts for template packages """ from collections.abc import Sequence from fastapi import FastAPI from langserve import add_routes from langchain_cli.utils.packages import get_langserve_export, get_package_root def create_demo_server( *, config_keys: Sequence[str] = (), playground_type: str = "default", ): """ Creates a demo server for the current template. """ app = FastAPI() package_root = get_package_root() pyproject = package_root / "pyproject.toml" try: package = get_langserve_export(pyproject) mod = __import__(package["module"], fromlist=[package["attr"]]) chain = getattr(mod, package["attr"]) add_routes( app, chain, config_keys=config_keys, playground_type=playground_type, ) except KeyError as e: raise KeyError("Missing fields from pyproject.toml") from e except ImportError as e: raise ImportError("Could not import module defined in pyproject.toml") from e return app def create_demo_server_configurable(): return create_demo_server(config_keys=["configurable"]) def create_demo_server_chat(): return create_demo_server(playground_type="chat")
_base_ = './mask-rcnn_hrnetv2p-w18-1x_coco.py' model = dict( backbone=dict( type='HRNet', extra=dict( stage2=dict(num_channels=(40, 80)), stage3=dict(num_channels=(40, 80, 160)), stage4=dict(num_channels=(40, 80, 160, 320))), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w40')), neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
_base_ = './mask_rcnn_hrnetv2p_w18_1x_coco.py' model = dict( backbone=dict( type='HRNet', extra=dict( stage2=dict(num_channels=(40, 80)), stage3=dict(num_channels=(40, 80, 160)), stage4=dict(num_channels=(40, 80, 160, 320))), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w40')), neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
""" This examples trains a CrossEncoder for the NLI task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it learns to predict the labels: "contradiction": 0, "entailment": 1, "neutral": 2. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_nli.py """ import logging import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CrossEncoderClassificationEvaluator from sentence_transformers.cross_encoder.losses.CrossEntropyLoss import CrossEntropyLoss from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer from sentence_transformers.cross_encoder.training_args import CrossEncoderTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) train_batch_size = 64 num_epochs = 1 output_dir = "output/training_ce_allnli-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Define our CrossEncoder model. We use distilroberta-base as the base model and set it up to predict 3 labels # You can also use other base models, like bert-base-uncased, microsoft/mpnet-base, etc. model_name = "distilroberta-base" model = CrossEncoder(model_name, num_labels=3) # 2. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli # We'll start with 100k training samples, but you can increase this to get a stronger model logging.info("Read AllNLI train dataset") train_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="train").select(range(100_000)) eval_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="dev").select(range(1000)) test_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="test") logging.info(train_dataset) # 3. Define our training loss: loss = CrossEntropyLoss(model) # 4. Before and during training, we use CrossEncoderClassificationEvaluator to measure the performance on the dev set dev_cls_evaluator = CrossEncoderClassificationEvaluator( sentence_pairs=list(zip(eval_dataset["premise"], eval_dataset["hypothesis"])), labels=eval_dataset["label"], name="AllNLI-dev", ) dev_cls_evaluator(model) # 5. Define the training arguments short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1] run_name = f"reranker-{short_model_name}-nli" args = CrossEncoderTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=500, save_strategy="steps", save_steps=500, save_total_limit=2, logging_steps=100, run_name=run_name, # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = CrossEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_cls_evaluator, ) trainer.train() # 7. Evaluate the final model on test dataset test_cls_evaluator = CrossEncoderClassificationEvaluator( list(zip(test_dataset["premise"], test_dataset["hypothesis"])), test_dataset["label"], name="AllNLI-test", ) test_cls_evaluator(model) # 8. Save the final model final_output_dir = f"{output_dir}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." )
""" This examples trains a CrossEncoder for the NLI task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it learns to predict the labels: "contradiction": 0, "entailment": 1, "neutral": 2. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_nli.py """ import logging import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CEClassificationEvaluator from sentence_transformers.cross_encoder.losses.CrossEntropyLoss import CrossEntropyLoss from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer from sentence_transformers.cross_encoder.training_args import CrossEncoderTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) train_batch_size = 64 num_epochs = 1 output_dir = "output/training_ce_allnli-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Define our CrossEncoder model. We use distilroberta-base as the base model and set it up to predict 3 labels # You can also use other base models, like bert-base-uncased, microsoft/mpnet-base, etc. model_name = "distilroberta-base" model = CrossEncoder(model_name, num_labels=3) # 2. Load the AllNLI dataset: https://huggingface.co/datasets/sentence-transformers/all-nli # We'll start with 100k training samples, but you can increase this to get a stronger model logging.info("Read AllNLI train dataset") train_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="train").select(range(100_000)) eval_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="dev").select(range(1000)) test_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="test") logging.info(train_dataset) # 3. Define our training loss: loss = CrossEntropyLoss(model) # 4. Before and during training, we use CEClassificationEvaluator to measure the performance on the dev set dev_cls_evaluator = CEClassificationEvaluator( sentence_pairs=list(zip(eval_dataset["premise"], eval_dataset["hypothesis"])), labels=eval_dataset["label"], name="AllNLI-dev", ) dev_cls_evaluator(model) # 5. Define the training arguments short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1] run_name = f"reranker-{short_model_name}-nli" args = CrossEncoderTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=500, save_strategy="steps", save_steps=500, save_total_limit=2, logging_steps=100, run_name=run_name, # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = CrossEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_cls_evaluator, ) trainer.train() # 7. Evaluate the final model on test dataset test_cls_evaluator = CEClassificationEvaluator( list(zip(test_dataset["premise"], test_dataset["hypothesis"])), test_dataset["label"], name="AllNLI-test", ) test_cls_evaluator(model) # 8. Save the final model final_output_dir = f"{output_dir}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." )
import torch from ..utils import _log_api_usage_once from ._utils import _loss_inter_union, _upcast_non_float def distance_box_iou_loss( boxes1: torch.Tensor, boxes2: torch.Tensor, reduction: str = "none", eps: float = 1e-7, ) -> torch.Tensor: """ Gradient-friendly IoU loss with an additional penalty that is non-zero when the distance between boxes' centers isn't zero. Indeed, for two exactly overlapping boxes, the distance IoU is the same as the IoU loss. This loss is symmetric, so the boxes1 and boxes2 arguments are interchangeable. Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with ``0 <= x1 < x2`` and ``0 <= y1 < y2``, and The two boxes should have the same dimensions. Args: boxes1 (Tensor[N, 4]): first set of boxes boxes2 (Tensor[N, 4]): second set of boxes reduction (string, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: No reduction will be applied to the output. ``'mean'``: The output will be averaged. ``'sum'``: The output will be summed. Default: ``'none'`` eps (float, optional): small number to prevent division by zero. Default: 1e-7 Returns: Tensor: Loss tensor with the reduction option applied. Reference: Zhaohui Zheng et al.: Distance Intersection over Union Loss: https://arxiv.org/abs/1911.08287 """ # Original Implementation from https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/losses.py if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(distance_box_iou_loss) boxes1 = _upcast_non_float(boxes1) boxes2 = _upcast_non_float(boxes2) loss, _ = _diou_iou_loss(boxes1, boxes2, eps) # Check reduction option and return loss accordingly if reduction == "none": pass elif reduction == "mean": loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum() elif reduction == "sum": loss = loss.sum() else: raise ValueError( f"Invalid Value for arg 'reduction': '{reduction} \n Supported reduction modes: 'none', 'mean', 'sum'" ) return loss def _diou_iou_loss( boxes1: torch.Tensor, boxes2: torch.Tensor, eps: float = 1e-7, ) -> tuple[torch.Tensor, torch.Tensor]: intsct, union = _loss_inter_union(boxes1, boxes2) iou = intsct / (union + eps) # smallest enclosing box x1, y1, x2, y2 = boxes1.unbind(dim=-1) x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1) xc1 = torch.min(x1, x1g) yc1 = torch.min(y1, y1g) xc2 = torch.max(x2, x2g) yc2 = torch.max(y2, y2g) # The diagonal distance of the smallest enclosing box squared diagonal_distance_squared = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps # centers of boxes x_p = (x2 + x1) / 2 y_p = (y2 + y1) / 2 x_g = (x1g + x2g) / 2 y_g = (y1g + y2g) / 2 # The distance between boxes' centers squared. centers_distance_squared = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2) # The distance IoU is the IoU penalized by a normalized # distance between boxes' centers squared. loss = 1 - iou + (centers_distance_squared / diagonal_distance_squared) return loss, iou
from typing import Tuple import torch from ..utils import _log_api_usage_once from ._utils import _loss_inter_union, _upcast_non_float def distance_box_iou_loss( boxes1: torch.Tensor, boxes2: torch.Tensor, reduction: str = "none", eps: float = 1e-7, ) -> torch.Tensor: """ Gradient-friendly IoU loss with an additional penalty that is non-zero when the distance between boxes' centers isn't zero. Indeed, for two exactly overlapping boxes, the distance IoU is the same as the IoU loss. This loss is symmetric, so the boxes1 and boxes2 arguments are interchangeable. Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with ``0 <= x1 < x2`` and ``0 <= y1 < y2``, and The two boxes should have the same dimensions. Args: boxes1 (Tensor[N, 4]): first set of boxes boxes2 (Tensor[N, 4]): second set of boxes reduction (string, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: No reduction will be applied to the output. ``'mean'``: The output will be averaged. ``'sum'``: The output will be summed. Default: ``'none'`` eps (float, optional): small number to prevent division by zero. Default: 1e-7 Returns: Tensor: Loss tensor with the reduction option applied. Reference: Zhaohui Zheng et al.: Distance Intersection over Union Loss: https://arxiv.org/abs/1911.08287 """ # Original Implementation from https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/losses.py if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(distance_box_iou_loss) boxes1 = _upcast_non_float(boxes1) boxes2 = _upcast_non_float(boxes2) loss, _ = _diou_iou_loss(boxes1, boxes2, eps) # Check reduction option and return loss accordingly if reduction == "none": pass elif reduction == "mean": loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum() elif reduction == "sum": loss = loss.sum() else: raise ValueError( f"Invalid Value for arg 'reduction': '{reduction} \n Supported reduction modes: 'none', 'mean', 'sum'" ) return loss def _diou_iou_loss( boxes1: torch.Tensor, boxes2: torch.Tensor, eps: float = 1e-7, ) -> Tuple[torch.Tensor, torch.Tensor]: intsct, union = _loss_inter_union(boxes1, boxes2) iou = intsct / (union + eps) # smallest enclosing box x1, y1, x2, y2 = boxes1.unbind(dim=-1) x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1) xc1 = torch.min(x1, x1g) yc1 = torch.min(y1, y1g) xc2 = torch.max(x2, x2g) yc2 = torch.max(y2, y2g) # The diagonal distance of the smallest enclosing box squared diagonal_distance_squared = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps # centers of boxes x_p = (x2 + x1) / 2 y_p = (y2 + y1) / 2 x_g = (x1g + x2g) / 2 y_g = (y1g + y2g) / 2 # The distance between boxes' centers squared. centers_distance_squared = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2) # The distance IoU is the IoU penalized by a normalized # distance between boxes' centers squared. loss = 1 - iou + (centers_distance_squared / diagonal_distance_squared) return loss, iou
PODCAST_DOCS = """API documentation: Endpoint: https://listen-api.listennotes.com/api/v2 GET /search This API is for searching podcasts or episodes. Query parameters table: q | string | Search term, e.g., person, place, topic... You can use double quotes to do verbatim match, e.g., "game of thrones". Otherwise, it's fuzzy search. | required type | string | What type of contents do you want to search for? Available values: episode, podcast, curated. default: episode | optional page_size | integer | The maximum number of search results per page. A valid value should be an integer between 1 and 10 (inclusive). default: 3 | optional language | string | Limit search results to a specific language, e.g., English, Chinese ... If not specified, it'll be any language. It works only when type is episode or podcast. | optional region | string | Limit search results to a specific region (e.g., us, gb, in...). If not specified, it'll be any region. It works only when type is episode or podcast. | optional len_min | integer | Minimum audio length in minutes. Applicable only when type parameter is episode or podcast. If type parameter is episode, it's for audio length of an episode. If type parameter is podcast, it's for average audio length of all episodes in a podcast. | optional len_max | integer | Maximum audio length in minutes. Applicable only when type parameter is episode or podcast. If type parameter is episode, it's for audio length of an episode. If type parameter is podcast, it's for average audio length of all episodes in a podcast. | optional Response schema (JSON object): next_offset | integer | optional total | integer | optional results | array[object] (Episode / Podcast List Result Object) Each object in the "results" key has the following schema: listennotes_url | string | optional id | integer | optional title_highlighted | string | optional Use page_size: 3 """ # noqa: E501
# flake8: noqa PODCAST_DOCS = """API documentation: Endpoint: https://listen-api.listennotes.com/api/v2 GET /search This API is for searching podcasts or episodes. Query parameters table: q | string | Search term, e.g., person, place, topic... You can use double quotes to do verbatim match, e.g., "game of thrones". Otherwise, it's fuzzy search. | required type | string | What type of contents do you want to search for? Available values: episode, podcast, curated. default: episode | optional page_size | integer | The maximum number of search results per page. A valid value should be an integer between 1 and 10 (inclusive). default: 3 | optional language | string | Limit search results to a specific language, e.g., English, Chinese ... If not specified, it'll be any language. It works only when type is episode or podcast. | optional region | string | Limit search results to a specific region (e.g., us, gb, in...). If not specified, it'll be any region. It works only when type is episode or podcast. | optional len_min | integer | Minimum audio length in minutes. Applicable only when type parameter is episode or podcast. If type parameter is episode, it's for audio length of an episode. If type parameter is podcast, it's for average audio length of all episodes in a podcast. | optional len_max | integer | Maximum audio length in minutes. Applicable only when type parameter is episode or podcast. If type parameter is episode, it's for audio length of an episode. If type parameter is podcast, it's for average audio length of all episodes in a podcast. | optional Response schema (JSON object): next_offset | integer | optional total | integer | optional results | array[object] (Episode / Podcast List Result Object) Each object in the "results" key has the following schema: listennotes_url | string | optional id | integer | optional title_highlighted | string | optional Use page_size: 3 """
"""**Prompt** is the input to the model. Prompt is often constructed from multiple components and prompt values. Prompt classes and functions make constructing and working with prompts easy. **Class hierarchy:** .. code-block:: BasePromptTemplate --> PipelinePromptTemplate StringPromptTemplate --> PromptTemplate FewShotPromptTemplate FewShotPromptWithTemplates BaseChatPromptTemplate --> AutoGPTPrompt ChatPromptTemplate --> AgentScratchPadChatPromptTemplate BaseMessagePromptTemplate --> MessagesPlaceholder BaseStringMessagePromptTemplate --> ChatMessagePromptTemplate HumanMessagePromptTemplate AIMessagePromptTemplate SystemMessagePromptTemplate """ # noqa: E501 from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from langchain_core.prompts.base import ( BasePromptTemplate, aformat_document, format_document, ) from langchain_core.prompts.chat import ( AIMessagePromptTemplate, BaseChatPromptTemplate, ChatMessagePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) from langchain_core.prompts.few_shot import ( FewShotChatMessagePromptTemplate, FewShotPromptTemplate, ) from langchain_core.prompts.few_shot_with_templates import ( FewShotPromptWithTemplates, ) from langchain_core.prompts.loading import load_prompt from langchain_core.prompts.pipeline import PipelinePromptTemplate from langchain_core.prompts.prompt import PromptTemplate from langchain_core.prompts.string import ( StringPromptTemplate, check_valid_template, get_template_variables, jinja2_formatter, validate_jinja2, ) __all__ = ( "AIMessagePromptTemplate", "BaseChatPromptTemplate", "BasePromptTemplate", "ChatMessagePromptTemplate", "ChatPromptTemplate", "FewShotPromptTemplate", "FewShotPromptWithTemplates", "FewShotChatMessagePromptTemplate", "HumanMessagePromptTemplate", "MessagesPlaceholder", "PipelinePromptTemplate", "PromptTemplate", "StringPromptTemplate", "SystemMessagePromptTemplate", "load_prompt", "format_document", "aformat_document", "check_valid_template", "get_template_variables", "jinja2_formatter", "validate_jinja2", ) _dynamic_imports = { "BasePromptTemplate": "base", "format_document": "base", "aformat_document": "base", "AIMessagePromptTemplate": "chat", "BaseChatPromptTemplate": "chat", "ChatMessagePromptTemplate": "chat", "ChatPromptTemplate": "chat", "HumanMessagePromptTemplate": "chat", "MessagesPlaceholder": "chat", "SystemMessagePromptTemplate": "chat", "FewShotChatMessagePromptTemplate": "few_shot", "FewShotPromptTemplate": "few_shot", "FewShotPromptWithTemplates": "few_shot_with_templates", "load_prompt": "loading", "PipelinePromptTemplate": "pipeline", "PromptTemplate": "prompt", "StringPromptTemplate": "string", "check_valid_template": "string", "get_template_variables": "string", "jinja2_formatter": "string", "validate_jinja2": "string", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""**Prompt** is the input to the model. Prompt is often constructed from multiple components and prompt values. Prompt classes and functions make constructing and working with prompts easy. **Class hierarchy:** .. code-block:: BasePromptTemplate --> PipelinePromptTemplate StringPromptTemplate --> PromptTemplate FewShotPromptTemplate FewShotPromptWithTemplates BaseChatPromptTemplate --> AutoGPTPrompt ChatPromptTemplate --> AgentScratchPadChatPromptTemplate BaseMessagePromptTemplate --> MessagesPlaceholder BaseStringMessagePromptTemplate --> ChatMessagePromptTemplate HumanMessagePromptTemplate AIMessagePromptTemplate SystemMessagePromptTemplate """ # noqa: E501 from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.prompts.base import ( BasePromptTemplate, aformat_document, format_document, ) from langchain_core.prompts.chat import ( AIMessagePromptTemplate, BaseChatPromptTemplate, ChatMessagePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) from langchain_core.prompts.few_shot import ( FewShotChatMessagePromptTemplate, FewShotPromptTemplate, ) from langchain_core.prompts.few_shot_with_templates import ( FewShotPromptWithTemplates, ) from langchain_core.prompts.loading import load_prompt from langchain_core.prompts.pipeline import PipelinePromptTemplate from langchain_core.prompts.prompt import PromptTemplate from langchain_core.prompts.string import ( StringPromptTemplate, check_valid_template, get_template_variables, jinja2_formatter, validate_jinja2, ) __all__ = [ "AIMessagePromptTemplate", "BaseChatPromptTemplate", "BasePromptTemplate", "ChatMessagePromptTemplate", "ChatPromptTemplate", "FewShotPromptTemplate", "FewShotPromptWithTemplates", "FewShotChatMessagePromptTemplate", "HumanMessagePromptTemplate", "MessagesPlaceholder", "PipelinePromptTemplate", "PromptTemplate", "StringPromptTemplate", "SystemMessagePromptTemplate", "load_prompt", "format_document", "aformat_document", "check_valid_template", "get_template_variables", "jinja2_formatter", "validate_jinja2", ] _dynamic_imports = { "BasePromptTemplate": "base", "format_document": "base", "aformat_document": "base", "AIMessagePromptTemplate": "chat", "BaseChatPromptTemplate": "chat", "ChatMessagePromptTemplate": "chat", "ChatPromptTemplate": "chat", "HumanMessagePromptTemplate": "chat", "MessagesPlaceholder": "chat", "SystemMessagePromptTemplate": "chat", "FewShotChatMessagePromptTemplate": "few_shot", "FewShotPromptTemplate": "few_shot", "FewShotPromptWithTemplates": "few_shot_with_templates", "load_prompt": "loading", "PipelinePromptTemplate": "pipeline", "PromptTemplate": "prompt", "StringPromptTemplate": "string", "check_valid_template": "string", "get_template_variables": "string", "jinja2_formatter": "string", "validate_jinja2": "string", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .faster_rcnn import FasterRCNN @DETECTORS.register_module() class TridentFasterRCNN(FasterRCNN): """Implementation of `TridentNet <https://arxiv.org/abs/1901.01892>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(TridentFasterRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg) assert self.backbone.num_branch == self.roi_head.num_branch assert self.backbone.test_branch_idx == self.roi_head.test_branch_idx self.num_branch = self.backbone.num_branch self.test_branch_idx = self.backbone.test_branch_idx def simple_test(self, img, img_metas, proposals=None, rescale=False): """Test without augmentation.""" assert self.with_bbox, 'Bbox head must be implemented.' x = self.extract_feat(img) if proposals is None: num_branch = (self.num_branch if self.test_branch_idx == -1 else 1) trident_img_metas = img_metas * num_branch proposal_list = self.rpn_head.simple_test_rpn(x, trident_img_metas) else: proposal_list = proposals # TODO: Fix trident_img_metas undefined errors # when proposals is specified return self.roi_head.simple_test( x, proposal_list, trident_img_metas, rescale=rescale) def aug_test(self, imgs, img_metas, rescale=False): """Test with augmentations. If rescale is False, then returned bboxes and masks will fit the scale of imgs[0]. """ x = self.extract_feats(imgs) num_branch = (self.num_branch if self.test_branch_idx == -1 else 1) trident_img_metas = [img_metas * num_branch for img_metas in img_metas] proposal_list = self.rpn_head.aug_test_rpn(x, trident_img_metas) return self.roi_head.aug_test( x, proposal_list, img_metas, rescale=rescale) def forward_train(self, img, img_metas, gt_bboxes, gt_labels, **kwargs): """make copies of img and gts to fit multi-branch.""" trident_gt_bboxes = tuple(gt_bboxes * self.num_branch) trident_gt_labels = tuple(gt_labels * self.num_branch) trident_img_metas = tuple(img_metas * self.num_branch) return super(TridentFasterRCNN, self).forward_train(img, trident_img_metas, trident_gt_bboxes, trident_gt_labels)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .faster_rcnn import FasterRCNN @DETECTORS.register_module() class TridentFasterRCNN(FasterRCNN): """Implementation of `TridentNet <https://arxiv.org/abs/1901.01892>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(TridentFasterRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg) assert self.backbone.num_branch == self.roi_head.num_branch assert self.backbone.test_branch_idx == self.roi_head.test_branch_idx self.num_branch = self.backbone.num_branch self.test_branch_idx = self.backbone.test_branch_idx def simple_test(self, img, img_metas, proposals=None, rescale=False): """Test without augmentation.""" assert self.with_bbox, 'Bbox head must be implemented.' x = self.extract_feat(img) if proposals is None: num_branch = (self.num_branch if self.test_branch_idx == -1 else 1) trident_img_metas = img_metas * num_branch proposal_list = self.rpn_head.simple_test_rpn(x, trident_img_metas) else: proposal_list = proposals return self.roi_head.simple_test( x, proposal_list, trident_img_metas, rescale=rescale) def aug_test(self, imgs, img_metas, rescale=False): """Test with augmentations. If rescale is False, then returned bboxes and masks will fit the scale of imgs[0]. """ x = self.extract_feats(imgs) num_branch = (self.num_branch if self.test_branch_idx == -1 else 1) trident_img_metas = [img_metas * num_branch for img_metas in img_metas] proposal_list = self.rpn_head.aug_test_rpn(x, trident_img_metas) return self.roi_head.aug_test( x, proposal_list, img_metas, rescale=rescale) def forward_train(self, img, img_metas, gt_bboxes, gt_labels, **kwargs): """make copies of img and gts to fit multi-branch.""" trident_gt_bboxes = tuple(gt_bboxes * self.num_branch) trident_gt_labels = tuple(gt_labels * self.num_branch) trident_img_metas = tuple(img_metas * self.num_branch) return super(TridentFasterRCNN, self).forward_train(img, trident_img_metas, trident_gt_bboxes, trident_gt_labels)
""" Demo for using and defining callback functions ============================================== .. versionadded:: 1.3.0 """ import argparse import os import tempfile from typing import Dict import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split import xgboost as xgb class Plotting(xgb.callback.TrainingCallback): """Plot evaluation result during training. Only for demonstration purpose as it's quite slow to draw using matplotlib. """ def __init__(self, rounds: int) -> None: self.fig = plt.figure() self.ax = self.fig.add_subplot(111) self.rounds = rounds self.lines: Dict[str, plt.Line2D] = {} self.fig.show() self.x = np.linspace(0, self.rounds, self.rounds) plt.ion() def _get_key(self, data: str, metric: str) -> str: return f"{data}-{metric}" def after_iteration( self, model: xgb.Booster, epoch: int, evals_log: Dict[str, dict] ) -> bool: """Update the plot.""" if not self.lines: for data, metric in evals_log.items(): for metric_name, log in metric.items(): key = self._get_key(data, metric_name) expanded = log + [0] * (self.rounds - len(log)) (self.lines[key],) = self.ax.plot(self.x, expanded, label=key) self.ax.legend() else: # https://pythonspot.com/matplotlib-update-plot/ for data, metric in evals_log.items(): for metric_name, log in metric.items(): key = self._get_key(data, metric_name) expanded = log + [0] * (self.rounds - len(log)) self.lines[key].set_ydata(expanded) self.fig.canvas.draw() # False to indicate training should not stop. return False def custom_callback() -> None: """Demo for defining a custom callback function that plots evaluation result during training.""" X, y = load_breast_cancer(return_X_y=True) X_train, X_valid, y_train, y_valid = train_test_split(X, y, random_state=0) D_train = xgb.DMatrix(X_train, y_train) D_valid = xgb.DMatrix(X_valid, y_valid) num_boost_round = 100 plotting = Plotting(num_boost_round) # Pass it to the `callbacks` parameter as a list. xgb.train( { "objective": "binary:logistic", "eval_metric": ["error", "rmse"], "tree_method": "hist", "device": "cuda", }, D_train, evals=[(D_train, "Train"), (D_valid, "Valid")], num_boost_round=num_boost_round, callbacks=[plotting], ) def check_point_callback() -> None: """Demo for using the checkpoint callback. Custom logic for handling output is usually required and users are encouraged to define their own callback for checkpointing operations. The builtin one can be used as a starting point. """ # Only for demo, set a larger value (like 100) in practice as checkpointing is quite # slow. rounds = 2 def check(as_pickle: bool) -> None: for i in range(0, 10, rounds): if i == 0: continue if as_pickle: path = os.path.join(tmpdir, "model_" + str(i) + ".pkl") else: path = os.path.join( tmpdir, f"model_{i}.{xgb.callback.TrainingCheckPoint.default_format}", ) assert os.path.exists(path) X, y = load_breast_cancer(return_X_y=True) m = xgb.DMatrix(X, y) # Check point to a temporary directory for demo with tempfile.TemporaryDirectory() as tmpdir: # Use callback class from xgboost.callback # Feel free to subclass/customize it to suit your need. check_point = xgb.callback.TrainingCheckPoint( directory=tmpdir, interval=rounds, name="model" ) xgb.train( {"objective": "binary:logistic"}, m, num_boost_round=10, verbose_eval=False, callbacks=[check_point], ) check(False) # This version of checkpoint saves everything including parameters and # model. See: doc/tutorials/saving_model.rst check_point = xgb.callback.TrainingCheckPoint( directory=tmpdir, interval=rounds, as_pickle=True, name="model" ) xgb.train( {"objective": "binary:logistic"}, m, num_boost_round=10, verbose_eval=False, callbacks=[check_point], ) check(True) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--plot", default=1, type=int) args = parser.parse_args() check_point_callback() if args.plot: custom_callback()
""" Demo for using and defining callback functions ============================================== .. versionadded:: 1.3.0 """ import argparse import os import tempfile import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split import xgboost as xgb class Plotting(xgb.callback.TrainingCallback): """Plot evaluation result during training. Only for demonstration purpose as it's quite slow to draw. """ def __init__(self, rounds): self.fig = plt.figure() self.ax = self.fig.add_subplot(111) self.rounds = rounds self.lines = {} self.fig.show() self.x = np.linspace(0, self.rounds, self.rounds) plt.ion() def _get_key(self, data, metric): return f"{data}-{metric}" def after_iteration(self, model, epoch, evals_log): """Update the plot.""" if not self.lines: for data, metric in evals_log.items(): for metric_name, log in metric.items(): key = self._get_key(data, metric_name) expanded = log + [0] * (self.rounds - len(log)) (self.lines[key],) = self.ax.plot(self.x, expanded, label=key) self.ax.legend() else: # https://pythonspot.com/matplotlib-update-plot/ for data, metric in evals_log.items(): for metric_name, log in metric.items(): key = self._get_key(data, metric_name) expanded = log + [0] * (self.rounds - len(log)) self.lines[key].set_ydata(expanded) self.fig.canvas.draw() # False to indicate training should not stop. return False def custom_callback(): """Demo for defining a custom callback function that plots evaluation result during training.""" X, y = load_breast_cancer(return_X_y=True) X_train, X_valid, y_train, y_valid = train_test_split(X, y, random_state=0) D_train = xgb.DMatrix(X_train, y_train) D_valid = xgb.DMatrix(X_valid, y_valid) num_boost_round = 100 plotting = Plotting(num_boost_round) # Pass it to the `callbacks` parameter as a list. xgb.train( { "objective": "binary:logistic", "eval_metric": ["error", "rmse"], "tree_method": "hist", "device": "cuda", }, D_train, evals=[(D_train, "Train"), (D_valid, "Valid")], num_boost_round=num_boost_round, callbacks=[plotting], ) def check_point_callback(): # only for demo, set a larger value (like 100) in practice as checkpointing is quite # slow. rounds = 2 def check(as_pickle): for i in range(0, 10, rounds): if i == 0: continue if as_pickle: path = os.path.join(tmpdir, "model_" + str(i) + ".pkl") else: path = os.path.join(tmpdir, "model_" + str(i) + ".json") assert os.path.exists(path) X, y = load_breast_cancer(return_X_y=True) m = xgb.DMatrix(X, y) # Check point to a temporary directory for demo with tempfile.TemporaryDirectory() as tmpdir: # Use callback class from xgboost.callback # Feel free to subclass/customize it to suit your need. check_point = xgb.callback.TrainingCheckPoint( directory=tmpdir, interval=rounds, name="model" ) xgb.train( {"objective": "binary:logistic"}, m, num_boost_round=10, verbose_eval=False, callbacks=[check_point], ) check(False) # This version of checkpoint saves everything including parameters and # model. See: doc/tutorials/saving_model.rst check_point = xgb.callback.TrainingCheckPoint( directory=tmpdir, interval=rounds, as_pickle=True, name="model" ) xgb.train( {"objective": "binary:logistic"}, m, num_boost_round=10, verbose_eval=False, callbacks=[check_point], ) check(True) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--plot", default=1, type=int) args = parser.parse_args() check_point_callback() if args.plot: custom_callback()
from datetime import datetime import pytest from prisma.models import CreditTransaction from backend.blocks.llm import AITextGeneratorBlock from backend.data.credit import UserCredit from backend.data.user import DEFAULT_USER_ID from backend.integrations.credentials_store import openai_credentials from backend.util.test import SpinTestServer REFILL_VALUE = 1000 user_credit = UserCredit(REFILL_VALUE) @pytest.mark.asyncio(scope="session") async def test_block_credit_usage(server: SpinTestServer): current_credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) spending_amount_1 = await user_credit.spend_credits( DEFAULT_USER_ID, current_credit, AITextGeneratorBlock().id, { "model": "gpt-4-turbo", "credentials": { "id": openai_credentials.id, "provider": openai_credentials.provider, "type": openai_credentials.type, }, }, 0.0, 0.0, validate_balance=False, ) assert spending_amount_1 > 0 spending_amount_2 = await user_credit.spend_credits( DEFAULT_USER_ID, current_credit, AITextGeneratorBlock().id, {"model": "gpt-4-turbo", "api_key": "owned_api_key"}, 0.0, 0.0, validate_balance=False, ) assert spending_amount_2 == 0 new_credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) assert new_credit == current_credit - spending_amount_1 - spending_amount_2 @pytest.mark.asyncio(scope="session") async def test_block_credit_top_up(server: SpinTestServer): current_credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) await user_credit.top_up_credits(DEFAULT_USER_ID, 100) new_credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) assert new_credit == current_credit + 100 @pytest.mark.asyncio(scope="session") async def test_block_credit_reset(server: SpinTestServer): month1 = datetime(2022, 1, 15) month2 = datetime(2022, 2, 15) user_credit.time_now = lambda: month2 month2credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) # Month 1 result should only affect month 1 user_credit.time_now = lambda: month1 month1credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) await user_credit.top_up_credits(DEFAULT_USER_ID, 100) assert await user_credit.get_or_refill_credit(DEFAULT_USER_ID) == month1credit + 100 # Month 2 balance is unaffected user_credit.time_now = lambda: month2 assert await user_credit.get_or_refill_credit(DEFAULT_USER_ID) == month2credit @pytest.mark.asyncio(scope="session") async def test_credit_refill(server: SpinTestServer): # Clear all transactions within the month await CreditTransaction.prisma().update_many( where={ "userId": DEFAULT_USER_ID, "createdAt": { "gte": datetime(2022, 2, 1), "lt": datetime(2022, 3, 1), }, }, data={"isActive": False}, ) user_credit.time_now = lambda: datetime(2022, 2, 15) balance = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) assert balance == REFILL_VALUE
from datetime import datetime import pytest from prisma.models import UserBlockCredit from backend.blocks.llm import AITextGeneratorBlock from backend.data.credit import UserCredit from backend.data.user import DEFAULT_USER_ID from backend.integrations.credentials_store import openai_credentials from backend.util.test import SpinTestServer REFILL_VALUE = 1000 user_credit = UserCredit(REFILL_VALUE) @pytest.mark.asyncio(scope="session") async def test_block_credit_usage(server: SpinTestServer): current_credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) spending_amount_1 = await user_credit.spend_credits( DEFAULT_USER_ID, current_credit, AITextGeneratorBlock().id, { "model": "gpt-4-turbo", "credentials": { "id": openai_credentials.id, "provider": openai_credentials.provider, "type": openai_credentials.type, }, }, 0.0, 0.0, validate_balance=False, ) assert spending_amount_1 > 0 spending_amount_2 = await user_credit.spend_credits( DEFAULT_USER_ID, current_credit, AITextGeneratorBlock().id, {"model": "gpt-4-turbo", "api_key": "owned_api_key"}, 0.0, 0.0, validate_balance=False, ) assert spending_amount_2 == 0 new_credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) assert new_credit == current_credit - spending_amount_1 - spending_amount_2 @pytest.mark.asyncio(scope="session") async def test_block_credit_top_up(server: SpinTestServer): current_credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) await user_credit.top_up_credits(DEFAULT_USER_ID, 100) new_credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) assert new_credit == current_credit + 100 @pytest.mark.asyncio(scope="session") async def test_block_credit_reset(server: SpinTestServer): month1 = datetime(2022, 1, 15) month2 = datetime(2022, 2, 15) user_credit.time_now = lambda: month2 month2credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) # Month 1 result should only affect month 1 user_credit.time_now = lambda: month1 month1credit = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) await user_credit.top_up_credits(DEFAULT_USER_ID, 100) assert await user_credit.get_or_refill_credit(DEFAULT_USER_ID) == month1credit + 100 # Month 2 balance is unaffected user_credit.time_now = lambda: month2 assert await user_credit.get_or_refill_credit(DEFAULT_USER_ID) == month2credit @pytest.mark.asyncio(scope="session") async def test_credit_refill(server: SpinTestServer): # Clear all transactions within the month await UserBlockCredit.prisma().update_many( where={ "userId": DEFAULT_USER_ID, "createdAt": { "gte": datetime(2022, 2, 1), "lt": datetime(2022, 3, 1), }, }, data={"isActive": False}, ) user_credit.time_now = lambda: datetime(2022, 2, 15) balance = await user_credit.get_or_refill_credit(DEFAULT_USER_ID) assert balance == REFILL_VALUE
from __future__ import annotations import json import logging import os from typing import Literal import torch from torch import Tensor, nn from .tokenizer import WhitespaceTokenizer logger = logging.getLogger(__name__) class BoW(nn.Module): """Implements a Bag-of-Words (BoW) model to derive sentence embeddings. A weighting can be added to allow the generation of tf-idf vectors. The output vector has the size of the vocab. """ def __init__( self, vocab: list[str], word_weights: dict[str, float] = {}, unknown_word_weight: float = 1, cumulative_term_frequency: bool = True, ): super(BoW, self).__init__() vocab = list(set(vocab)) # Ensure vocab is unique self.config_keys = ["vocab", "word_weights", "unknown_word_weight", "cumulative_term_frequency"] self.vocab = vocab self.word_weights = word_weights self.unknown_word_weight = unknown_word_weight self.cumulative_term_frequency = cumulative_term_frequency # Maps wordIdx -> word weight self.weights = [] num_unknown_words = 0 for word in vocab: weight = unknown_word_weight if word in word_weights: weight = word_weights[word] elif word.lower() in word_weights: weight = word_weights[word.lower()] else: num_unknown_words += 1 self.weights.append(weight) logger.info( "{} out of {} words without a weighting value. Set weight to {}".format( num_unknown_words, len(vocab), unknown_word_weight ) ) self.tokenizer = WhitespaceTokenizer(vocab, stop_words=set(), do_lower_case=False) self.sentence_embedding_dimension = len(vocab) def forward(self, features: dict[str, Tensor]): # Nothing to do, everything is done in get_sentence_features return features def tokenize(self, texts: list[str], **kwargs) -> list[int]: tokenized = [self.tokenizer.tokenize(text, **kwargs) for text in texts] return self.get_sentence_features(tokenized) def get_sentence_embedding_dimension(self): return self.sentence_embedding_dimension def get_sentence_features( self, tokenized_texts: list[list[int]], pad_seq_length: int = 0 ) -> dict[Literal["sentence_embedding"], torch.Tensor]: vectors = [] for tokens in tokenized_texts: vector = torch.zeros(self.get_sentence_embedding_dimension(), dtype=torch.float32) for token in tokens: if self.cumulative_term_frequency: vector[token] += self.weights[token] else: vector[token] = self.weights[token] vectors.append(vector) return {"sentence_embedding": torch.stack(vectors)} def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return BoW(**config)
import json import logging import os from typing import Dict, List, Literal import torch from torch import Tensor, nn from .tokenizer import WhitespaceTokenizer logger = logging.getLogger(__name__) class BoW(nn.Module): """Implements a Bag-of-Words (BoW) model to derive sentence embeddings. A weighting can be added to allow the generation of tf-idf vectors. The output vector has the size of the vocab. """ def __init__( self, vocab: List[str], word_weights: Dict[str, float] = {}, unknown_word_weight: float = 1, cumulative_term_frequency: bool = True, ): super(BoW, self).__init__() vocab = list(set(vocab)) # Ensure vocab is unique self.config_keys = ["vocab", "word_weights", "unknown_word_weight", "cumulative_term_frequency"] self.vocab = vocab self.word_weights = word_weights self.unknown_word_weight = unknown_word_weight self.cumulative_term_frequency = cumulative_term_frequency # Maps wordIdx -> word weight self.weights = [] num_unknown_words = 0 for word in vocab: weight = unknown_word_weight if word in word_weights: weight = word_weights[word] elif word.lower() in word_weights: weight = word_weights[word.lower()] else: num_unknown_words += 1 self.weights.append(weight) logger.info( "{} out of {} words without a weighting value. Set weight to {}".format( num_unknown_words, len(vocab), unknown_word_weight ) ) self.tokenizer = WhitespaceTokenizer(vocab, stop_words=set(), do_lower_case=False) self.sentence_embedding_dimension = len(vocab) def forward(self, features: Dict[str, Tensor]): # Nothing to do, everything is done in get_sentence_features return features def tokenize(self, texts: List[str], **kwargs) -> List[int]: tokenized = [self.tokenizer.tokenize(text, **kwargs) for text in texts] return self.get_sentence_features(tokenized) def get_sentence_embedding_dimension(self): return self.sentence_embedding_dimension def get_sentence_features( self, tokenized_texts: List[List[int]], pad_seq_length: int = 0 ) -> Dict[Literal["sentence_embedding"], torch.Tensor]: vectors = [] for tokens in tokenized_texts: vector = torch.zeros(self.get_sentence_embedding_dimension(), dtype=torch.float32) for token in tokens: if self.cumulative_term_frequency: vector[token] += self.weights[token] else: vector[token] = self.weights[token] vectors.append(vector) return {"sentence_embedding": torch.stack(vectors)} def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return BoW(**config)
from llama_index.core.extractors.metadata_extractors import ( BaseExtractor, KeywordExtractor, QuestionsAnsweredExtractor, SummaryExtractor, TitleExtractor, ) def load_extractor( data: dict, ) -> BaseExtractor: if isinstance(data, BaseExtractor): return data extractor_name = data.get("class_name") if extractor_name is None: raise ValueError("Extractor loading requires a class_name") if extractor_name == SummaryExtractor.class_name(): return SummaryExtractor.from_dict(data) elif extractor_name == QuestionsAnsweredExtractor.class_name(): return QuestionsAnsweredExtractor.from_dict(data) elif extractor_name == TitleExtractor.class_name(): return TitleExtractor.from_dict(data) elif extractor_name == KeywordExtractor.class_name(): return KeywordExtractor.from_dict(data) else: raise ValueError(f"Unknown extractor name: {extractor_name}")
from llama_index.core.extractors.metadata_extractors import ( BaseExtractor, KeywordExtractor, QuestionsAnsweredExtractor, SummaryExtractor, TitleExtractor, ) def load_extractor( data: dict, ) -> BaseExtractor: if isinstance(data, BaseExtractor): return data extractor_name = data.get("class_name", None) if extractor_name is None: raise ValueError("Extractor loading requires a class_name") if extractor_name == SummaryExtractor.class_name(): return SummaryExtractor.from_dict(data) elif extractor_name == QuestionsAnsweredExtractor.class_name(): return QuestionsAnsweredExtractor.from_dict(data) elif extractor_name == TitleExtractor.class_name(): return TitleExtractor.from_dict(data) elif extractor_name == KeywordExtractor.class_name(): return KeywordExtractor.from_dict(data) else: raise ValueError(f"Unknown extractor name: {extractor_name}")
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.5.3.dev0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 6: raise ImportWarning( "To use `datasets`, the module `pyarrow>=6.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.5.2.dev0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 6: raise ImportWarning( "To use `datasets`, the module `pyarrow>=6.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.structures import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import FreeAnchorRetinaHead class TestFreeAnchorRetinaHead(TestCase): def test_free_anchor_head_loss(self): """Tests rpn head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1, }] anchor_head = FreeAnchorRetinaHead(num_classes=1, in_channels=1) # Anchor head expects a multiple levels of features per image feats = ( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))) for i in range(len(anchor_head.prior_generator.strides))) cls_scores, bbox_preds = anchor_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = anchor_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but # there should be no box loss. positive_bag_loss = empty_gt_losses['positive_bag_loss'] negative_bag_loss = empty_gt_losses['negative_bag_loss'] self.assertGreater(negative_bag_loss.item(), 0, 'negative_bag loss should be non-zero') self.assertEqual( positive_bag_loss.item(), 0, 'there should be no positive_bag loss when there are no true boxes' ) # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([0]) one_gt_losses = anchor_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = one_gt_losses['positive_bag_loss'] onegt_box_loss = one_gt_losses['negative_bag_loss'] self.assertGreater(onegt_cls_loss.item(), 0, 'positive bag loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'negative bag loss should be non-zero')
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.data import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import FreeAnchorRetinaHead class TestFreeAnchorRetinaHead(TestCase): def test_free_anchor_head_loss(self): """Tests rpn head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1, }] anchor_head = FreeAnchorRetinaHead(num_classes=1, in_channels=1) # Anchor head expects a multiple levels of features per image feats = ( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))) for i in range(len(anchor_head.prior_generator.strides))) cls_scores, bbox_preds = anchor_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = anchor_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but # there should be no box loss. positive_bag_loss = empty_gt_losses['positive_bag_loss'] negative_bag_loss = empty_gt_losses['negative_bag_loss'] self.assertGreater(negative_bag_loss.item(), 0, 'negative_bag loss should be non-zero') self.assertEqual( positive_bag_loss.item(), 0, 'there should be no positive_bag loss when there are no true boxes' ) # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([0]) one_gt_losses = anchor_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = one_gt_losses['positive_bag_loss'] onegt_box_loss = one_gt_losses['negative_bag_loss'] self.assertGreater(onegt_cls_loss.item(), 0, 'positive bag loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'negative bag loss should be non-zero')
"""**Prompt** is the input to the model. Prompt is often constructed from multiple components. Prompt classes and functions make constructing and working with prompts easy. **Class hierarchy:** .. code-block:: BasePromptTemplate --> PipelinePromptTemplate StringPromptTemplate --> PromptTemplate FewShotPromptTemplate FewShotPromptWithTemplates BaseChatPromptTemplate --> AutoGPTPrompt ChatPromptTemplate --> AgentScratchPadChatPromptTemplate BaseMessagePromptTemplate --> MessagesPlaceholder BaseStringMessagePromptTemplate --> ChatMessagePromptTemplate HumanMessagePromptTemplate AIMessagePromptTemplate SystemMessagePromptTemplate PromptValue --> StringPromptValue ChatPromptValue """ # noqa: E501 from typing import TYPE_CHECKING, Any from langchain_core.example_selectors import ( LengthBasedExampleSelector, MaxMarginalRelevanceExampleSelector, SemanticSimilarityExampleSelector, ) from langchain_core.prompts import ( AIMessagePromptTemplate, BaseChatPromptTemplate, BasePromptTemplate, ChatMessagePromptTemplate, ChatPromptTemplate, FewShotChatMessagePromptTemplate, FewShotPromptTemplate, FewShotPromptWithTemplates, HumanMessagePromptTemplate, MessagesPlaceholder, PipelinePromptTemplate, PromptTemplate, StringPromptTemplate, SystemMessagePromptTemplate, load_prompt, ) from langchain._api import create_importer from langchain.prompts.prompt import Prompt if TYPE_CHECKING: from langchain_community.example_selectors.ngram_overlap import ( NGramOverlapExampleSelector, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. MODULE_LOOKUP = { "NGramOverlapExampleSelector": "langchain_community.example_selectors.ngram_overlap" } _import_attribute = create_importer(__file__, module_lookup=MODULE_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AIMessagePromptTemplate", "BaseChatPromptTemplate", "BasePromptTemplate", "ChatMessagePromptTemplate", "ChatPromptTemplate", "FewShotChatMessagePromptTemplate", "FewShotPromptTemplate", "FewShotPromptWithTemplates", "HumanMessagePromptTemplate", "LengthBasedExampleSelector", "MaxMarginalRelevanceExampleSelector", "MessagesPlaceholder", "NGramOverlapExampleSelector", "PipelinePromptTemplate", "Prompt", "PromptTemplate", "SemanticSimilarityExampleSelector", "StringPromptTemplate", "SystemMessagePromptTemplate", "load_prompt", ]
"""**Prompt** is the input to the model. Prompt is often constructed from multiple components. Prompt classes and functions make constructing and working with prompts easy. **Class hierarchy:** .. code-block:: BasePromptTemplate --> PipelinePromptTemplate StringPromptTemplate --> PromptTemplate FewShotPromptTemplate FewShotPromptWithTemplates BaseChatPromptTemplate --> AutoGPTPrompt ChatPromptTemplate --> AgentScratchPadChatPromptTemplate BaseMessagePromptTemplate --> MessagesPlaceholder BaseStringMessagePromptTemplate --> ChatMessagePromptTemplate HumanMessagePromptTemplate AIMessagePromptTemplate SystemMessagePromptTemplate PromptValue --> StringPromptValue ChatPromptValue """ # noqa: E501 from typing import TYPE_CHECKING, Any from langchain_core.example_selectors import ( LengthBasedExampleSelector, MaxMarginalRelevanceExampleSelector, SemanticSimilarityExampleSelector, ) from langchain_core.prompts import ( AIMessagePromptTemplate, BaseChatPromptTemplate, BasePromptTemplate, ChatMessagePromptTemplate, ChatPromptTemplate, FewShotChatMessagePromptTemplate, FewShotPromptTemplate, FewShotPromptWithTemplates, HumanMessagePromptTemplate, MessagesPlaceholder, PipelinePromptTemplate, PromptTemplate, StringPromptTemplate, SystemMessagePromptTemplate, load_prompt, ) from langchain._api import create_importer from langchain.prompts.prompt import Prompt if TYPE_CHECKING: from langchain_community.example_selectors.ngram_overlap import ( NGramOverlapExampleSelector, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. MODULE_LOOKUP = { "NGramOverlapExampleSelector": "langchain_community.example_selectors.ngram_overlap" } _import_attribute = create_importer(__file__, module_lookup=MODULE_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AIMessagePromptTemplate", "BaseChatPromptTemplate", "BasePromptTemplate", "ChatMessagePromptTemplate", "ChatPromptTemplate", "FewShotPromptTemplate", "FewShotPromptWithTemplates", "HumanMessagePromptTemplate", "LengthBasedExampleSelector", "MaxMarginalRelevanceExampleSelector", "MessagesPlaceholder", "NGramOverlapExampleSelector", "PipelinePromptTemplate", "PromptTemplate", "SemanticSimilarityExampleSelector", "StringPromptTemplate", "SystemMessagePromptTemplate", "load_prompt", "FewShotChatMessagePromptTemplate", "Prompt", ]
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from typing import Dict, Iterable, Optional import spacy from jina import DocumentArray, Executor, requests from jina_commons.batching import get_docs_batch_generator _EXCLUDE_COMPONENTS = [ 'tagger', 'parser', 'ner', 'senter', 'lemmatizer', 'attribute_ruler', ] class SpacyTextEncoder(Executor): """ :class:`SpacyTextEncoder` encodes ``Document`` using models offered by Spacy """ def __init__( self, model_name: str = 'en_core_web_sm', download_data: bool = True, traversal_paths: Iterable[str] = ('r',), batch_size: int = 32, device: str = 'cpu', *args, **kwargs, ): """ :param model_name: pre-trained spaCy language pipeline name :param traversal_paths: fallback traversal path in case there is not traversal path sent in the request :param batch_size: fallback batch size in case there is not batch size sent in the request :param device: device to use for encoding. ['cuda', 'cpu', 'cuda:2'] """ super().__init__(*args, **kwargs) self.batch_size = batch_size self.traversal_paths = traversal_paths self.device = device if device.startswith('cuda'): spacy.require_gpu() if download_data: subprocess.run( ['python3', '-m', 'spacy', 'download', model_name], check=True ) self.spacy_model = spacy.load(model_name, exclude=_EXCLUDE_COMPONENTS) @requests def encode( self, docs: Optional[DocumentArray] = None, parameters: Dict = {}, **kwargs ): """ Encode all docs with text and store the encodings in the embedding attribute of the docs. :param docs: documents sent to the encoder. The docs must have the ``text`` attribute. :param parameters: dictionary to define the ``traversal_path`` and the ``batch_size``. For example, ``parameters={'traversal_paths': ['r'], 'batch_size': 10}`` """ if self.device.startswith('cuda'): from cupy import asnumpy if docs: batch_size = parameters.get('batch_size', self.batch_size) document_batches_generator = get_docs_batch_generator( docs, traversal_path=parameters.get('traversal_paths', self.traversal_paths), batch_size=batch_size, needs_attr='text', ) for document_batch in document_batches_generator: texts = [doc.text for doc in document_batch] for doc, spacy_doc in zip( document_batch, self.spacy_model.pipe(texts, batch_size=batch_size) ): if self.device.startswith('cuda'): doc.embedding = asnumpy(spacy_doc.vector) else: doc.embedding = spacy_doc.vector
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from typing import Dict, Iterable, Optional import spacy from jina import DocumentArray, Executor, requests from jina_commons.batching import get_docs_batch_generator _EXCLUDE_COMPONENTS = [ 'tagger', 'parser', 'ner', 'senter', 'lemmatizer', 'attribute_ruler', ] class SpacyTextEncoder(Executor): """ :class:`SpacyTextEncoder` encodes ``Document`` using models offered by Spacy """ def __init__( self, model_name: str = 'en_core_web_sm', download_data: bool = True, default_batch_size: int = 32, default_traversal_paths: Iterable[str] = ('r',), device: str = 'cpu', *args, **kwargs, ): """ :param model_name: pre-trained spaCy language pipeline name :param default_batch_size: fallback batch size in case there is not batch size sent in the request :param default_traversal_paths: fallback traversal path in case there is not traversal path sent in the request :param device: device to use for encoding ['cuda', 'cpu', 'cuda:2'] """ super().__init__(*args, **kwargs) self.default_batch_size = default_batch_size self.default_traversal_paths = default_traversal_paths self.device = device if device.startswith('cuda'): spacy.require_gpu() if download_data: subprocess.run( ['python3', '-m', 'spacy', 'download', model_name], check=True ) self.spacy_model = spacy.load(model_name, exclude=_EXCLUDE_COMPONENTS) @requests def encode(self, docs: Optional[DocumentArray], parameters: Dict, **kwargs): """ Encode all docs with text and store the encodings in the embedding attribute of the docs. :param docs: documents sent to the encoder. The docs must have the ``text`` attribute. :param parameters: dictionary to define the ``traversal_path`` and the ``batch_size``. For example, ``parameters={'traversal_paths': ['r'], 'batch_size': 10}`` """ if self.device.startswith('cuda'): from cupy import asnumpy if docs: batch_size = parameters.get('batch_size', self.default_batch_size) document_batches_generator = get_docs_batch_generator( docs, traversal_path=parameters.get( 'traversal_paths', self.default_traversal_paths ), batch_size=batch_size, needs_attr='text', ) for document_batch in document_batches_generator: texts = [doc.text for doc in document_batch] for doc, spacy_doc in zip( document_batch, self.spacy_model.pipe(texts, batch_size=batch_size) ): if self.device.startswith('cuda'): doc.embedding = asnumpy(spacy_doc.vector) else: doc.embedding = spacy_doc.vector
import pytest from docarray import Document from docarray.array.memory import DocumentArrayInMemory from docarray.array.elastic import DocumentArrayElastic, ElasticConfig from docarray.array.qdrant import DocumentArrayQdrant from docarray.array.sqlite import DocumentArraySqlite from docarray.array.annlite import DocumentArrayAnnlite, AnnliteConfig from docarray.array.storage.qdrant import QdrantConfig from docarray.array.weaviate import DocumentArrayWeaviate, WeaviateConfig from docarray.array.elastic import DocumentArrayElastic, ElasticConfig from docarray.array.redis import DocumentArrayRedis, RedisConfig @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArrayInMemory, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), (DocumentArrayRedis, RedisConfig(n_dim=128, flush=True)), ], ) def test_construct_docarray(da_cls, config, start_storage): if config: da = da_cls(config=config) assert len(da) == 0 da = da_cls(Document(), config=config) assert len(da) == 1 da = da_cls([Document(), Document()], config=config) assert len(da) == 2 da = da_cls((Document(), Document()), config=config) assert len(da) == 2 da = da_cls((Document() for _ in range(10)), config=config) assert len(da) == 10 else: da = da_cls() assert len(da) == 0 da = da_cls(Document()) assert len(da) == 1 da = da_cls([Document(), Document()]) assert len(da) == 2 da = da_cls((Document(), Document())) assert len(da) == 2 da = da_cls((Document() for _ in range(10))) assert len(da) == 10 if da_cls is DocumentArrayInMemory: da1 = da_cls(da) assert len(da1) == 10 @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArrayInMemory, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), (DocumentArrayRedis, RedisConfig(n_dim=128, flush=True)), ], ) @pytest.mark.parametrize('is_copy', [True, False]) def test_docarray_copy_singleton(da_cls, config, is_copy, start_storage): d = Document() if config: da = da_cls(d, copy=is_copy, config=config) else: da = da_cls(d, copy=is_copy) d.id = 'hello' if da_cls == DocumentArrayInMemory: if is_copy: assert da[0].id != 'hello' else: assert da[0].id == 'hello' else: assert da[0].id != 'hello' @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArrayInMemory, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), (DocumentArrayRedis, RedisConfig(n_dim=128, flush=True)), ], ) @pytest.mark.parametrize('is_copy', [True, False]) def test_docarray_copy_da(da_cls, config, is_copy, start_storage): d1 = Document() d2 = Document() if config: da = da_cls([d1, d2], copy=is_copy, config=config) else: da = da_cls([d1, d2], copy=is_copy) d1.id = 'hello' if da_cls == DocumentArrayInMemory: if is_copy: assert da[0].id != 'hello' else: assert da[0].id == 'hello' else: assert da[0] != 'hello' @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArrayInMemory, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=1)), (DocumentArrayQdrant, QdrantConfig(n_dim=1)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), (DocumentArrayRedis, RedisConfig(n_dim=128, flush=True)), ], ) @pytest.mark.parametrize('is_copy', [True, False]) def test_docarray_copy_list(da_cls, config, is_copy, start_storage): d1 = Document() d2 = Document() da = da_cls([d1, d2], copy=is_copy, config=config) d1.id = 'hello' if da_cls == DocumentArrayInMemory: if is_copy: assert da[0].id != 'hello' else: assert da[0].id == 'hello' else: assert da[0] != 'hello'
import pytest from docarray import Document from docarray.array.memory import DocumentArrayInMemory from docarray.array.elastic import DocumentArrayElastic, ElasticConfig from docarray.array.qdrant import DocumentArrayQdrant from docarray.array.sqlite import DocumentArraySqlite from docarray.array.annlite import DocumentArrayAnnlite, AnnliteConfig from docarray.array.storage.qdrant import QdrantConfig from docarray.array.weaviate import DocumentArrayWeaviate, WeaviateConfig from docarray.array.elastic import DocumentArrayElastic, ElasticConfig @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArrayInMemory, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), ], ) def test_construct_docarray(da_cls, config, start_storage): if config: da = da_cls(config=config) assert len(da) == 0 da = da_cls(Document(), config=config) assert len(da) == 1 da = da_cls([Document(), Document()], config=config) assert len(da) == 2 da = da_cls((Document(), Document()), config=config) assert len(da) == 2 da = da_cls((Document() for _ in range(10)), config=config) assert len(da) == 10 else: da = da_cls() assert len(da) == 0 da = da_cls(Document()) assert len(da) == 1 da = da_cls([Document(), Document()]) assert len(da) == 2 da = da_cls((Document(), Document())) assert len(da) == 2 da = da_cls((Document() for _ in range(10))) assert len(da) == 10 if da_cls is DocumentArrayInMemory: da1 = da_cls(da) assert len(da1) == 10 @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArrayInMemory, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), ], ) @pytest.mark.parametrize('is_copy', [True, False]) def test_docarray_copy_singleton(da_cls, config, is_copy, start_storage): d = Document() if config: da = da_cls(d, copy=is_copy, config=config) else: da = da_cls(d, copy=is_copy) d.id = 'hello' if da_cls == DocumentArrayInMemory: if is_copy: assert da[0].id != 'hello' else: assert da[0].id == 'hello' else: assert da[0].id != 'hello' @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArrayInMemory, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), ], ) @pytest.mark.parametrize('is_copy', [True, False]) def test_docarray_copy_da(da_cls, config, is_copy, start_storage): d1 = Document() d2 = Document() if config: da = da_cls([d1, d2], copy=is_copy, config=config) else: da = da_cls([d1, d2], copy=is_copy) d1.id = 'hello' if da_cls == DocumentArrayInMemory: if is_copy: assert da[0].id != 'hello' else: assert da[0].id == 'hello' else: assert da[0] != 'hello' @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArrayInMemory, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=1)), (DocumentArrayQdrant, QdrantConfig(n_dim=1)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), ], ) @pytest.mark.parametrize('is_copy', [True, False]) def test_docarray_copy_list(da_cls, config, is_copy, start_storage): d1 = Document() d2 = Document() da = da_cls([d1, d2], copy=is_copy, config=config) d1.id = 'hello' if da_cls == DocumentArrayInMemory: if is_copy: assert da[0].id != 'hello' else: assert da[0].id == 'hello' else: assert da[0] != 'hello'
import logging import os import torch from torchaudio._internal import ( download_url_to_file, module_utils as _mod_utils, ) def _get_chars(): return ( "_", "-", "!", "'", "(", ")", ",", ".", ":", ";", "?", " ", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", ) def _get_phones(): return ( "_", "-", "!", "'", "(", ")", ",", ".", ":", ";", "?", " ", "AA", "AA0", "AA1", "AA2", "AE", "AE0", "AE1", "AE2", "AH", "AH0", "AH1", "AH2", "AO", "AO0", "AO1", "AO2", "AW", "AW0", "AW1", "AW2", "AY", "AY0", "AY1", "AY2", "B", "CH", "D", "DH", "EH", "EH0", "EH1", "EH2", "ER", "ER0", "ER1", "ER2", "EY", "EY0", "EY1", "EY2", "F", "G", "HH", "IH", "IH0", "IH1", "IH2", "IY", "IY0", "IY1", "IY2", "JH", "K", "L", "M", "N", "NG", "OW", "OW0", "OW1", "OW2", "OY", "OY0", "OY1", "OY2", "P", "R", "S", "SH", "T", "TH", "UH", "UH0", "UH1", "UH2", "UW", "UW0", "UW1", "UW2", "V", "W", "Y", "Z", "ZH", ) def _to_tensor(indices): lengths = torch.tensor([len(i) for i in indices], dtype=torch.int32) values = [torch.tensor(i) for i in indices] values = torch.nn.utils.rnn.pad_sequence(values, batch_first=True) return values, lengths def _load_phonemizer(file, dl_kwargs): if not _mod_utils.is_module_available("dp"): raise RuntimeError("DeepPhonemizer is not installed. Please install it.") from dp.phonemizer import Phonemizer # By default, dp issues DEBUG level log. logger = logging.getLogger("dp") orig_level = logger.level logger.setLevel(logging.INFO) try: url = f"https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/{file}" directory = os.path.join(torch.hub.get_dir(), "checkpoints") os.makedirs(directory, exist_ok=True) path = os.path.join(directory, file) if not os.path.exists(path): dl_kwargs = {} if dl_kwargs is None else dl_kwargs download_url_to_file(url, path, **dl_kwargs) return Phonemizer.from_checkpoint(path) finally: logger.setLevel(orig_level) def _unnormalize_waveform(waveform: torch.Tensor, bits: int) -> torch.Tensor: r"""Transform waveform [-1, 1] to label [0, 2 ** bits - 1]""" waveform = torch.clamp(waveform, -1, 1) waveform = (waveform + 1.0) * (2**bits - 1) / 2 return torch.clamp(waveform, 0, 2**bits - 1).int() def _get_taco_params(n_symbols): return { "mask_padding": False, "n_mels": 80, "n_frames_per_step": 1, "symbol_embedding_dim": 512, "encoder_embedding_dim": 512, "encoder_n_convolution": 3, "encoder_kernel_size": 5, "decoder_rnn_dim": 1024, "decoder_max_step": 2000, "decoder_dropout": 0.1, "decoder_early_stopping": True, "attention_rnn_dim": 1024, "attention_hidden_dim": 128, "attention_location_n_filter": 32, "attention_location_kernel_size": 31, "attention_dropout": 0.1, "prenet_dim": 256, "postnet_n_convolution": 5, "postnet_kernel_size": 5, "postnet_embedding_dim": 512, "gate_threshold": 0.5, "n_symbol": n_symbols, } def _get_wrnn_params(): return { "upsample_scales": [5, 5, 11], "n_classes": 2**8, # n_bits = 8 "hop_length": 275, "n_res_block": 10, "n_rnn": 512, "n_fc": 512, "kernel_size": 5, "n_freq": 80, "n_hidden": 128, "n_output": 128, }
import logging import os import torch from torchaudio._internal import ( download_url_to_file, module_utils as _mod_utils, ) def _get_chars(): return ( "_", "-", "!", "'", "(", ")", ",", ".", ":", ";", "?", " ", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", ) def _get_phones(): return ( "_", "-", "!", "'", "(", ")", ",", ".", ":", ";", "?", " ", "AA", "AA0", "AA1", "AA2", "AE", "AE0", "AE1", "AE2", "AH", "AH0", "AH1", "AH2", "AO", "AO0", "AO1", "AO2", "AW", "AW0", "AW1", "AW2", "AY", "AY0", "AY1", "AY2", "B", "CH", "D", "DH", "EH", "EH0", "EH1", "EH2", "ER", "ER0", "ER1", "ER2", "EY", "EY0", "EY1", "EY2", "F", "G", "HH", "IH", "IH0", "IH1", "IH2", "IY", "IY0", "IY1", "IY2", "JH", "K", "L", "M", "N", "NG", "OW", "OW0", "OW1", "OW2", "OY", "OY0", "OY1", "OY2", "P", "R", "S", "SH", "T", "TH", "UH", "UH0", "UH1", "UH2", "UW", "UW0", "UW1", "UW2", "V", "W", "Y", "Z", "ZH", ) def _to_tensor(indices): lengths = torch.tensor([len(i) for i in indices], dtype=torch.int32) values = [torch.tensor(i) for i in indices] values = torch.nn.utils.rnn.pad_sequence(values, batch_first=True) return values, lengths def _load_phonemizer(file, dl_kwargs): if not _mod_utils.is_module_available("dp"): raise RuntimeError("DeepPhonemizer is not installed. Please install it.") from dp.phonemizer import Phonemizer # By default, dp issues DEBUG level log. logger = logging.getLogger("dp") orig_level = logger.level logger.setLevel(logging.INFO) try: url = f"https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/{file}" directory = os.path.join(torch.hub.get_dir(), "checkpoints") os.makedirs(directory, exist_ok=True) path = os.path.join(directory, file) if not os.path.exists(path): dl_kwargs = {} if dl_kwargs is None else dl_kwargs download_url_to_file(url, path, **dl_kwargs) return Phonemizer.from_checkpoint(path) finally: logger.setLevel(orig_level) def _unnormalize_waveform(waveform: torch.Tensor, bits: int) -> torch.Tensor: r"""Transform waveform [-1, 1] to label [0, 2 ** bits - 1]""" waveform = torch.clamp(waveform, -1, 1) waveform = (waveform + 1.0) * (2 ** bits - 1) / 2 return torch.clamp(waveform, 0, 2 ** bits - 1).int() def _get_taco_params(n_symbols): return { "mask_padding": False, "n_mels": 80, "n_frames_per_step": 1, "symbol_embedding_dim": 512, "encoder_embedding_dim": 512, "encoder_n_convolution": 3, "encoder_kernel_size": 5, "decoder_rnn_dim": 1024, "decoder_max_step": 2000, "decoder_dropout": 0.1, "decoder_early_stopping": True, "attention_rnn_dim": 1024, "attention_hidden_dim": 128, "attention_location_n_filter": 32, "attention_location_kernel_size": 31, "attention_dropout": 0.1, "prenet_dim": 256, "postnet_n_convolution": 5, "postnet_kernel_size": 5, "postnet_embedding_dim": 512, "gate_threshold": 0.5, "n_symbol": n_symbols, } def _get_wrnn_params(): return { "upsample_scales": [5, 5, 11], "n_classes": 2 ** 8, # n_bits = 8 "hop_length": 275, "n_res_block": 10, "n_rnn": 512, "n_fc": 512, "kernel_size": 5, "n_freq": 80, "n_hidden": 128, "n_output": 128, }
# Copyright (c) OpenMMLab. All rights reserved. from .panoptic_fpn_head import PanopticFPNHead # noqa: F401,F403 from .panoptic_fusion_heads import * # noqa: F401,F403
from .panoptic_fpn_head import PanopticFPNHead # noqa: F401,F403 from .panoptic_fusion_heads import * # noqa: F401,F403
_base_ = './fcos_r50-caffe_fpn_gn-head_1x_coco.py' # model settings model = dict(bbox_head=dict(center_sampling=True, center_sample_radius=1.5))
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py' # model settings model = dict(bbox_head=dict(center_sampling=True, center_sample_radius=1.5))
import logging import pathlib from postmarker.core import PostmarkClient from postmarker.models.emails import EmailManager from prisma.enums import NotificationType from pydantic import BaseModel from backend.data.notifications import ( NotificationDataType_co, NotificationEventModel, NotificationTypeOverride, ) from backend.util.settings import Settings from backend.util.text import TextFormatter logger = logging.getLogger(__name__) settings = Settings() # The following is a workaround to get the type checker to recognize the EmailManager type # This is a temporary solution and should be removed once the Postmark library is updated # to support type annotations. class TypedPostmarkClient(PostmarkClient): emails: EmailManager class Template(BaseModel): subject_template: str body_template: str base_template: str class EmailSender: def __init__(self): if settings.secrets.postmark_server_api_token: self.postmark = TypedPostmarkClient( server_token=settings.secrets.postmark_server_api_token ) else: logger.warning( "Postmark server API token not found, email sending disabled" ) self.postmark = None self.formatter = TextFormatter() def send_templated( self, notification: NotificationType, user_email: str, data: ( NotificationEventModel[NotificationDataType_co] | list[NotificationEventModel[NotificationDataType_co]] ), user_unsub_link: str | None = None, ): """Send an email to a user using a template pulled from the notification type""" if not self.postmark: logger.warning("Postmark client not initialized, email not sent") return template = self._get_template(notification) base_url = ( settings.config.frontend_base_url or settings.config.platform_base_url ) # Handle the case when data is a list template_data = data if isinstance(data, list): # Create a dictionary with a 'notifications' key containing the list template_data = {"notifications": data} try: subject, full_message = self.formatter.format_email( base_template=template.base_template, subject_template=template.subject_template, content_template=template.body_template, data=template_data, unsubscribe_link=f"{base_url}/profile/settings", ) except Exception as e: logger.error(f"Error formatting full message: {e}") raise e self._send_email( user_email=user_email, user_unsubscribe_link=user_unsub_link, subject=subject, body=full_message, ) def _get_template(self, notification: NotificationType): # convert the notification type to a notification type override notification_type_override = NotificationTypeOverride(notification) # find the template in templates/name.html (the .template returns with the .html) template_path = f"templates/{notification_type_override.template}.jinja2" logger.debug( f"Template full path: {pathlib.Path(__file__).parent / template_path}" ) base_template_path = "templates/base.html.jinja2" with open(pathlib.Path(__file__).parent / base_template_path, "r") as file: base_template = file.read() with open(pathlib.Path(__file__).parent / template_path, "r") as file: template = file.read() return Template( subject_template=notification_type_override.subject, body_template=template, base_template=base_template, ) def _send_email( self, user_email: str, subject: str, body: str, user_unsubscribe_link: str | None = None, ): if not self.postmark: logger.warning("Email tried to send without postmark configured") return logger.debug(f"Sending email to {user_email} with subject {subject}") self.postmark.emails.send( From=settings.config.postmark_sender_email, To=user_email, Subject=subject, HtmlBody=body, # Headers default to None internally so this is fine Headers=( { "List-Unsubscribe-Post": "List-Unsubscribe=One-Click", "List-Unsubscribe": f"<{user_unsubscribe_link}>", } if user_unsubscribe_link else None ), )
import logging import pathlib from postmarker.core import PostmarkClient from postmarker.models.emails import EmailManager from prisma.enums import NotificationType from pydantic import BaseModel from backend.data.notifications import ( NotificationEventModel, NotificationTypeOverride, T_co, ) from backend.util.settings import Settings from backend.util.text import TextFormatter logger = logging.getLogger(__name__) settings = Settings() # The following is a workaround to get the type checker to recognize the EmailManager type # This is a temporary solution and should be removed once the Postmark library is updated # to support type annotations. class TypedPostmarkClient(PostmarkClient): emails: EmailManager class Template(BaseModel): subject_template: str body_template: str base_template: str class EmailSender: def __init__(self): if settings.secrets.postmark_server_api_token: self.postmark = TypedPostmarkClient( server_token=settings.secrets.postmark_server_api_token ) else: logger.warning( "Postmark server API token not found, email sending disabled" ) self.postmark = None self.formatter = TextFormatter() def send_templated( self, notification: NotificationType, user_email: str, data: NotificationEventModel[T_co] | list[NotificationEventModel[T_co]], user_unsub_link: str | None = None, ): """Send an email to a user using a template pulled from the notification type""" if not self.postmark: logger.warning("Postmark client not initialized, email not sent") return template = self._get_template(notification) base_url = ( settings.config.frontend_base_url or settings.config.platform_base_url ) # Handle the case when data is a list template_data = data if isinstance(data, list): # Create a dictionary with a 'notifications' key containing the list template_data = {"notifications": data} try: subject, full_message = self.formatter.format_email( base_template=template.base_template, subject_template=template.subject_template, content_template=template.body_template, data=template_data, unsubscribe_link=f"{base_url}/profile/settings", ) except Exception as e: logger.error(f"Error formatting full message: {e}") raise e self._send_email( user_email=user_email, user_unsubscribe_link=user_unsub_link, subject=subject, body=full_message, ) def _get_template(self, notification: NotificationType): # convert the notification type to a notification type override notification_type_override = NotificationTypeOverride(notification) # find the template in templates/name.html (the .template returns with the .html) template_path = f"templates/{notification_type_override.template}.jinja2" logger.debug( f"Template full path: {pathlib.Path(__file__).parent / template_path}" ) base_template_path = "templates/base.html.jinja2" with open(pathlib.Path(__file__).parent / base_template_path, "r") as file: base_template = file.read() with open(pathlib.Path(__file__).parent / template_path, "r") as file: template = file.read() return Template( subject_template=notification_type_override.subject, body_template=template, base_template=base_template, ) def _send_email( self, user_email: str, subject: str, body: str, user_unsubscribe_link: str | None = None, ): if not self.postmark: logger.warning("Email tried to send without postmark configured") return logger.debug(f"Sending email to {user_email} with subject {subject}") self.postmark.emails.send( From=settings.config.postmark_sender_email, To=user_email, Subject=subject, HtmlBody=body, # Headers default to None internally so this is fine Headers=( { "List-Unsubscribe-Post": "List-Unsubscribe=One-Click", "List-Unsubscribe": f"<{user_unsubscribe_link}>", } if user_unsubscribe_link else None ), )
import unittest import torch import torchaudio.prototype.functional as F from torchaudio_unittest.common_utils import nested_params, TestBaseMixin, torch_script class TorchScriptConsistencyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) @nested_params( ["convolve", "fftconvolve"], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (2, 3, 2) L_x, L_y = 32, 55 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) self._assert_consistency(getattr(F, fn), (x, y, mode)) def test_add_noise(self): leading_dims = (2, 3) L = 31 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 self._assert_consistency(F.add_noise, (waveform, noise, lengths, snr)) def test_barkscale_fbanks(self): if self.device != torch.device("cpu"): raise unittest.SkipTest("No need to perform test on device other than CPU") n_stft = 100 f_min = 0.0 f_max = 20.0 n_barks = 10 sample_rate = 16000 self._assert_consistency(F.barkscale_fbanks, (n_stft, f_min, f_max, n_barks, sample_rate, "traunmuller")) def test_oscillator_bank(self): num_frames, num_pitches, sample_rate = 8000, 8, 8000 freq = torch.rand((num_frames, num_pitches), dtype=self.dtype, device=self.device) amps = torch.ones_like(freq) self._assert_consistency(F.oscillator_bank, (freq, amps, sample_rate, "sum")) def test_extend_pitch(self): num_frames = 5 input = torch.ones((num_frames, 1), device=self.device, dtype=self.dtype) num_pitches = 7 pattern = [i + 1.0 for i in range(num_pitches)] self._assert_consistency(F.extend_pitch, (input, num_pitches)) self._assert_consistency(F.extend_pitch, (input, pattern)) self._assert_consistency(F.extend_pitch, (input, torch.tensor(pattern))) def test_sinc_ir(self): cutoff = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, False)) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, True)) def test_speed(self): leading_dims = (3, 2) T = 200 waveform = torch.rand(*leading_dims, T, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.randint(1, T, leading_dims, dtype=self.dtype, device=self.device) self._assert_consistency(F.speed, (waveform, lengths, 1000, 1.1))
import unittest import torch import torchaudio.prototype.functional as F from torchaudio_unittest.common_utils import nested_params, TestBaseMixin, torch_script class TorchScriptConsistencyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) @nested_params( ["convolve", "fftconvolve"], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (2, 3, 2) L_x, L_y = 32, 55 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) self._assert_consistency(getattr(F, fn), (x, y, mode)) def test_add_noise(self): leading_dims = (2, 3) L = 31 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 self._assert_consistency(F.add_noise, (waveform, noise, lengths, snr)) def test_barkscale_fbanks(self): if self.device != torch.device("cpu"): raise unittest.SkipTest("No need to perform test on device other than CPU") n_stft = 100 f_min = 0.0 f_max = 20.0 n_barks = 10 sample_rate = 16000 self._assert_consistency(F.barkscale_fbanks, (n_stft, f_min, f_max, n_barks, sample_rate, "traunmuller")) def test_oscillator_bank(self): num_frames, num_pitches, sample_rate = 8000, 8, 8000 freq = torch.rand((num_frames, num_pitches), dtype=self.dtype, device=self.device) amps = torch.ones_like(freq) self._assert_consistency(F.oscillator_bank, (freq, amps, sample_rate, "sum")) def test_extend_pitch(self): num_frames = 5 input = torch.ones((num_frames, 1), device=self.device, dtype=self.dtype) num_pitches = 7 pattern = [i + 1.0 for i in range(num_pitches)] self._assert_consistency(F.extend_pitch, (input, num_pitches)) self._assert_consistency(F.extend_pitch, (input, pattern)) self._assert_consistency(F.extend_pitch, (input, torch.tensor(pattern))) def test_sinc_ir(self): cutoff = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, False)) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, True))
from llama_index.core.graph_stores.types import GraphStore from llama_index.graph_stores.nebula import NebulaGraphStore def test_nebula_graph_store(): names_of_bases = [b.__name__ for b in NebulaGraphStore.__bases__] assert GraphStore.__name__ in names_of_bases
from unittest.mock import MagicMock, patch from llama_index.core.graph_stores.types import GraphStore from llama_index.graph_stores.nebula import NebulaGraphStore @patch("llama_index.graph_stores.nebula.NebulaGraphStore") def test_kuzu_graph_store(MockNebulaGraphStore: MagicMock): instance: NebulaGraphStore = MockNebulaGraphStore.return_value() assert isinstance(instance, GraphStore)
# Copyright (c) OpenMMLab. All rights reserved. from .mask2former_track_head import Mask2FormerTrackHead from .quasi_dense_embed_head import QuasiDenseEmbedHead from .quasi_dense_track_head import QuasiDenseTrackHead from .roi_embed_head import RoIEmbedHead from .roi_track_head import RoITrackHead __all__ = [ 'QuasiDenseEmbedHead', 'QuasiDenseTrackHead', 'Mask2FormerTrackHead', 'RoIEmbedHead', 'RoITrackHead' ]
# Copyright (c) OpenMMLab. All rights reserved. from .mask2former_track_head import Mask2FormerTrackHead from .quasi_dense_embed_head import QuasiDenseEmbedHead from .quasi_dense_track_head import QuasiDenseTrackHead __all__ = [ 'QuasiDenseEmbedHead', 'QuasiDenseTrackHead', 'Mask2FormerTrackHead' ]
import json from typing import Tuple import responses from requests import Request from langchain_community.document_loaders import HuggingFaceModelLoader # Mocked model data to simulate an API response MOCKED_MODELS_RESPONSE = [ { "_id": "657a1fff16886e681230c05a", "id": "microsoft/phi-2", "likes": 2692, "private": False, "downloads": 546775, "tags": [ "transformers", "safetensors", "phi", "text-generation", "nlp", "code", "custom_code", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us", ], "pipeline_tag": "text-generation", "library_name": "transformers", "createdAt": "2023-12-13T21:19:59.000Z", "modelId": "microsoft/phi-2", }, # Add additional models as needed ] # Mocked README content for models MOCKED_README_CONTENT = { "microsoft/phi-2": "README content for microsoft/phi-2", "openai/gpt-3": "README content for openai/gpt-3", } def response_callback(request: Request) -> Tuple[int, dict, str]: if "/api/models" in request.url: return (200, {}, json.dumps(MOCKED_MODELS_RESPONSE)) elif "README.md" in request.url: model_id = ( request.url.split("/")[3] + "/" + request.url.split("/")[4] ) # Extract model_id content = MOCKED_README_CONTENT.get(model_id, "") return (200, {}, content) return (404, {}, "Not Found") @responses.activate def test_load_models_with_readme() -> None: """Tests loading models along with their README content.""" responses.add_callback( responses.GET, "https://huggingface.co/api/models", callback=response_callback, # type: ignore[arg-type] content_type="application/json", ) responses.add_callback( responses.GET, # Use a regex or update this placeholder "https://huggingface.co/microsoft/phi-2/raw/main/README.md", callback=response_callback, # type: ignore[arg-type] content_type="text/plain", ) loader = HuggingFaceModelLoader(search="phi-2", limit=2) docs = loader.load() assert len(docs) == len(MOCKED_MODELS_RESPONSE) for doc, expected_model in zip(docs, MOCKED_MODELS_RESPONSE): id_ = expected_model["id"] assert isinstance(id_, str) assert doc.page_content == MOCKED_README_CONTENT[id_] assert doc.metadata["modelId"] == expected_model["id"]
import json from typing import Tuple import responses from requests import Request from langchain_community.document_loaders import HuggingFaceModelLoader # Mocked model data to simulate an API response MOCKED_MODELS_RESPONSE = [ { "_id": "657a1fff16886e681230c05a", "id": "microsoft/phi-2", "likes": 2692, "private": False, "downloads": 546775, "tags": [ "transformers", "safetensors", "phi", "text-generation", "nlp", "code", "custom_code", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us", ], "pipeline_tag": "text-generation", "library_name": "transformers", "createdAt": "2023-12-13T21:19:59.000Z", "modelId": "microsoft/phi-2", }, # Add additional models as needed ] # Mocked README content for models MOCKED_README_CONTENT = { "microsoft/phi-2": "README content for microsoft/phi-2", "openai/gpt-3": "README content for openai/gpt-3", } def response_callback(request: Request) -> Tuple[int, dict, str]: if "/api/models" in request.url: return (200, {}, json.dumps(MOCKED_MODELS_RESPONSE)) elif "README.md" in request.url: model_id = ( request.url.split("/")[3] + "/" + request.url.split("/")[4] ) # Extract model_id content = MOCKED_README_CONTENT.get(model_id, "") return (200, {}, content) return (404, {}, "Not Found") @responses.activate def test_load_models_with_readme() -> None: """Tests loading models along with their README content.""" responses.add_callback( responses.GET, "https://huggingface.co/api/models", callback=response_callback, # type: ignore content_type="application/json", ) responses.add_callback( responses.GET, # Use a regex or update this placeholder "https://huggingface.co/microsoft/phi-2/raw/main/README.md", callback=response_callback, # type: ignore content_type="text/plain", ) loader = HuggingFaceModelLoader(search="phi-2", limit=2) docs = loader.load() assert len(docs) == len(MOCKED_MODELS_RESPONSE) for doc, expected_model in zip(docs, MOCKED_MODELS_RESPONSE): id_ = expected_model["id"] assert isinstance(id_, str) assert doc.page_content == MOCKED_README_CONTENT[id_] assert doc.metadata["modelId"] == expected_model["id"]
# Copyright (c) OpenMMLab. All rights reserved. import base64 import os import mmcv import torch from ts.torch_handler.base_handler import BaseHandler from mmdet.apis import inference_detector, init_detector class MMdetHandler(BaseHandler): threshold = 0.5 def initialize(self, context): properties = context.system_properties self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu' self.device = torch.device(self.map_location + ':' + str(properties.get('gpu_id')) if torch.cuda. is_available() else self.map_location) self.manifest = context.manifest model_dir = properties.get('model_dir') serialized_file = self.manifest['model']['serializedFile'] checkpoint = os.path.join(model_dir, serialized_file) self.config_file = os.path.join(model_dir, 'config.py') self.model = init_detector(self.config_file, checkpoint, self.device) self.initialized = True def preprocess(self, data): images = [] for row in data: image = row.get('data') or row.get('body') if isinstance(image, str): image = base64.b64decode(image) image = mmcv.imfrombytes(image) images.append(image) return images def inference(self, data, *args, **kwargs): results = inference_detector(self.model, data) return results def postprocess(self, data): # Format output following the example ObjectDetectionHandler format output = [] for image_index, image_result in enumerate(data): output.append([]) if isinstance(image_result, tuple): bbox_result, segm_result = image_result if isinstance(segm_result, tuple): segm_result = segm_result[0] # ms rcnn else: bbox_result, segm_result = image_result, None for class_index, class_result in enumerate(bbox_result): class_name = self.model.CLASSES[class_index] for bbox in class_result: bbox_coords = bbox[:-1].tolist() score = float(bbox[-1]) if score >= self.threshold: output[image_index].append({ class_name: bbox_coords, 'score': score }) return output
import base64 import os import mmcv import torch from ts.torch_handler.base_handler import BaseHandler from mmdet.apis import inference_detector, init_detector class MMdetHandler(BaseHandler): threshold = 0.5 def initialize(self, context): properties = context.system_properties self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu' self.device = torch.device(self.map_location + ':' + str(properties.get('gpu_id')) if torch.cuda. is_available() else self.map_location) self.manifest = context.manifest model_dir = properties.get('model_dir') serialized_file = self.manifest['model']['serializedFile'] checkpoint = os.path.join(model_dir, serialized_file) self.config_file = os.path.join(model_dir, 'config.py') self.model = init_detector(self.config_file, checkpoint, self.device) self.initialized = True def preprocess(self, data): images = [] for row in data: image = row.get('data') or row.get('body') if isinstance(image, str): image = base64.b64decode(image) image = mmcv.imfrombytes(image) images.append(image) return images def inference(self, data, *args, **kwargs): results = inference_detector(self.model, data) return results def postprocess(self, data): # Format output following the example ObjectDetectionHandler format output = [] for image_index, image_result in enumerate(data): output.append([]) if isinstance(image_result, tuple): bbox_result, segm_result = image_result if isinstance(segm_result, tuple): segm_result = segm_result[0] # ms rcnn else: bbox_result, segm_result = image_result, None for class_index, class_result in enumerate(bbox_result): class_name = self.model.CLASSES[class_index] for bbox in class_result: bbox_coords = bbox[:-1].tolist() score = float(bbox[-1]) if score >= self.threshold: output[image_index].append({ class_name: bbox_coords, 'score': score }) return output
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.vectorstores.redis.schema import ( FlatVectorField, HNSWVectorField, NumericFieldSchema, RedisDistanceMetric, RedisField, RedisModel, RedisVectorField, TagFieldSchema, TextFieldSchema, read_schema, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "RedisDistanceMetric": "langchain_community.vectorstores.redis.schema", "RedisField": "langchain_community.vectorstores.redis.schema", "TextFieldSchema": "langchain_community.vectorstores.redis.schema", "TagFieldSchema": "langchain_community.vectorstores.redis.schema", "NumericFieldSchema": "langchain_community.vectorstores.redis.schema", "RedisVectorField": "langchain_community.vectorstores.redis.schema", "FlatVectorField": "langchain_community.vectorstores.redis.schema", "HNSWVectorField": "langchain_community.vectorstores.redis.schema", "RedisModel": "langchain_community.vectorstores.redis.schema", "read_schema": "langchain_community.vectorstores.redis.schema", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "FlatVectorField", "HNSWVectorField", "NumericFieldSchema", "RedisDistanceMetric", "RedisField", "RedisModel", "RedisVectorField", "TagFieldSchema", "TextFieldSchema", "read_schema", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.vectorstores.redis.schema import ( FlatVectorField, HNSWVectorField, NumericFieldSchema, RedisDistanceMetric, RedisField, RedisModel, RedisVectorField, TagFieldSchema, TextFieldSchema, read_schema, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "RedisDistanceMetric": "langchain_community.vectorstores.redis.schema", "RedisField": "langchain_community.vectorstores.redis.schema", "TextFieldSchema": "langchain_community.vectorstores.redis.schema", "TagFieldSchema": "langchain_community.vectorstores.redis.schema", "NumericFieldSchema": "langchain_community.vectorstores.redis.schema", "RedisVectorField": "langchain_community.vectorstores.redis.schema", "FlatVectorField": "langchain_community.vectorstores.redis.schema", "HNSWVectorField": "langchain_community.vectorstores.redis.schema", "RedisModel": "langchain_community.vectorstores.redis.schema", "read_schema": "langchain_community.vectorstores.redis.schema", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "RedisDistanceMetric", "RedisField", "TextFieldSchema", "TagFieldSchema", "NumericFieldSchema", "RedisVectorField", "FlatVectorField", "HNSWVectorField", "RedisModel", "read_schema", ]
import re from collections.abc import Sequence from typing import Optional from langchain_core.messages import BaseMessage def _is_openai_data_block(block: dict) -> bool: """Check if the block contains multimodal data in OpenAI Chat Completions format.""" if block.get("type") == "image_url": if ( (set(block.keys()) <= {"type", "image_url", "detail"}) and (image_url := block.get("image_url")) and isinstance(image_url, dict) ): url = image_url.get("url") if isinstance(url, str): return True elif block.get("type") == "file": if (file := block.get("file")) and isinstance(file, dict): file_data = file.get("file_data") if isinstance(file_data, str): return True elif block.get("type") == "input_audio": if (input_audio := block.get("input_audio")) and isinstance(input_audio, dict): audio_data = input_audio.get("data") audio_format = input_audio.get("format") if isinstance(audio_data, str) and isinstance(audio_format, str): return True else: return False return False def _parse_data_uri(uri: str) -> Optional[dict]: """Parse a data URI into its components. If parsing fails, return None. Example: .. code-block:: python data_uri = "..." parsed = _parse_data_uri(data_uri) assert parsed == { "source_type": "base64", "mime_type": "image/jpeg", "data": "/9j/4AAQSkZJRg...", } """ regex = r"^data:(?P<mime_type>[^;]+);base64,(?P<data>.+)$" match = re.match(regex, uri) if match is None: return None return { "source_type": "base64", "data": match.group("data"), "mime_type": match.group("mime_type"), } def _convert_openai_format_to_data_block(block: dict) -> dict: """Convert OpenAI image content block to standard data content block. If parsing fails, pass-through. Args: block: The OpenAI image content block to convert. Returns: The converted standard data content block. """ if block["type"] == "image_url": parsed = _parse_data_uri(block["image_url"]["url"]) if parsed is not None: parsed["type"] = "image" return parsed return block if block["type"] == "file": parsed = _parse_data_uri(block["file"]["file_data"]) if parsed is not None: parsed["type"] = "file" if filename := block["file"].get("filename"): parsed["filename"] = filename return parsed return block if block["type"] == "input_audio": data = block["input_audio"].get("data") format = block["input_audio"].get("format") if data and format: return { "type": "audio", "source_type": "base64", "data": data, "mime_type": f"audio/{format}", } return block return block def _normalize_messages(messages: Sequence[BaseMessage]) -> list[BaseMessage]: """Extend support for message formats. Chat models implement support for images in OpenAI Chat Completions format, as well as other multimodal data as standard data blocks. This function extends support to audio and file data in OpenAI Chat Completions format by converting them to standard data blocks. """ formatted_messages = [] for message in messages: formatted_message = message if isinstance(message.content, list): for idx, block in enumerate(message.content): if ( isinstance(block, dict) # Subset to (PDF) files and audio, as most relevant chat models # support images in OAI format (and some may not yet support the # standard data block format) and block.get("type") in ("file", "input_audio") and _is_openai_data_block(block) ): if formatted_message is message: formatted_message = message.model_copy() # Also shallow-copy content formatted_message.content = list(formatted_message.content) formatted_message.content[idx] = ( # type: ignore[index] # mypy confused by .model_copy _convert_openai_format_to_data_block(block) ) formatted_messages.append(formatted_message) return formatted_messages
import re from collections.abc import Sequence from typing import Optional from langchain_core.messages import BaseMessage def _is_openai_data_block(block: dict) -> bool: """Check if the block contains multimodal data in OpenAI Chat Completions format.""" if block.get("type") == "image_url": if ( (set(block.keys()) <= {"type", "image_url", "detail"}) and (image_url := block.get("image_url")) and isinstance(image_url, dict) ): url = image_url.get("url") if isinstance(url, str): return True elif block.get("type") == "file": if (file := block.get("file")) and isinstance(file, dict): file_data = file.get("file_data") if isinstance(file_data, str): return True elif block.get("type") == "input_audio": # noqa: SIM102 if (input_audio := block.get("input_audio")) and isinstance(input_audio, dict): audio_data = input_audio.get("data") audio_format = input_audio.get("format") if isinstance(audio_data, str) and isinstance(audio_format, str): return True else: return False return False def _parse_data_uri(uri: str) -> Optional[dict]: """Parse a data URI into its components. If parsing fails, return None. Example: .. code-block:: python data_uri = "..." parsed = _parse_data_uri(data_uri) assert parsed == { "source_type": "base64", "mime_type": "image/jpeg", "data": "/9j/4AAQSkZJRg...", } """ regex = r"^data:(?P<mime_type>[^;]+);base64,(?P<data>.+)$" match = re.match(regex, uri) if match is None: return None return { "source_type": "base64", "data": match.group("data"), "mime_type": match.group("mime_type"), } def _convert_openai_format_to_data_block(block: dict) -> dict: """Convert OpenAI image content block to standard data content block. If parsing fails, pass-through. Args: block: The OpenAI image content block to convert. Returns: The converted standard data content block. """ if block["type"] == "image_url": parsed = _parse_data_uri(block["image_url"]["url"]) if parsed is not None: parsed["type"] = "image" return parsed return block if block["type"] == "file": parsed = _parse_data_uri(block["file"]["file_data"]) if parsed is not None: parsed["type"] = "file" if filename := block["file"].get("filename"): parsed["filename"] = filename return parsed return block if block["type"] == "input_audio": data = block["input_audio"].get("data") format = block["input_audio"].get("format") if data and format: return { "type": "audio", "source_type": "base64", "data": data, "mime_type": f"audio/{format}", } return block return block def _normalize_messages(messages: Sequence[BaseMessage]) -> list[BaseMessage]: """Extend support for message formats. Chat models implement support for images in OpenAI Chat Completions format, as well as other multimodal data as standard data blocks. This function extends support to audio and file data in OpenAI Chat Completions format by converting them to standard data blocks. """ formatted_messages = [] for message in messages: formatted_message = message if isinstance(message.content, list): for idx, block in enumerate(message.content): if ( isinstance(block, dict) # Subset to (PDF) files and audio, as most relevant chat models # support images in OAI format (and some may not yet support the # standard data block format) and block.get("type") in ("file", "input_audio") and _is_openai_data_block(block) ): if formatted_message is message: formatted_message = message.model_copy() # Also shallow-copy content formatted_message.content = list(formatted_message.content) formatted_message.content[idx] = ( # type: ignore[index] # mypy confused by .model_copy _convert_openai_format_to_data_block(block) ) formatted_messages.append(formatted_message) return formatted_messages
# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp from typing import Optional, Sequence from mmengine.dist import is_main_process from mmengine.evaluator import BaseMetric from mmengine.fileio import dump from mmengine.logging import MMLogger from mmengine.structures import InstanceData from mmdet.registry import METRICS @METRICS.register_module() class DumpProposals(BaseMetric): """Dump proposals pseudo metric. Args: output_dir (str): The root directory for ``proposals_file``. Defaults to ''. proposals_file (str): Proposals file path. Defaults to 'proposals.pkl'. num_max_proposals (int, optional): Maximum number of proposals to dump. If not specified, all proposals will be dumped. file_client_args (dict, optional): Arguments to instantiate the corresponding backend in mmdet <= 3.0.0rc6. Defaults to None. backend_args (dict, optional): Arguments to instantiate the corresponding backend. Defaults to None. collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None. """ default_prefix: Optional[str] = 'dump_proposals' def __init__(self, output_dir: str = '', proposals_file: str = 'proposals.pkl', num_max_proposals: Optional[int] = None, file_client_args: dict = None, backend_args: dict = None, collect_device: str = 'cpu', prefix: Optional[str] = None) -> None: super().__init__(collect_device=collect_device, prefix=prefix) self.num_max_proposals = num_max_proposals # TODO: update after mmengine finish refactor fileio. self.backend_args = backend_args if file_client_args is not None: raise RuntimeError( 'The `file_client_args` is deprecated, ' 'please use `backend_args` instead, please refer to' 'https://github.com/open-mmlab/mmdetection/blob/dev-3.x/configs/_base_/datasets/coco_detection.py' # noqa: E501 ) self.output_dir = output_dir assert proposals_file.endswith(('.pkl', '.pickle')), \ 'The output file must be a pkl file.' self.proposals_file = os.path.join(self.output_dir, proposals_file) if is_main_process(): os.makedirs(self.output_dir, exist_ok=True) def process(self, data_batch: Sequence[dict], data_samples: Sequence[dict]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (dict): A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of data samples that contain annotations and predictions. """ for data_sample in data_samples: pred = data_sample['pred_instances'] # `bboxes` is sorted by `scores` ranked_scores, rank_inds = pred['scores'].sort(descending=True) ranked_bboxes = pred['bboxes'][rank_inds, :] ranked_bboxes = ranked_bboxes.cpu().numpy() ranked_scores = ranked_scores.cpu().numpy() pred_instance = InstanceData() pred_instance.bboxes = ranked_bboxes pred_instance.scores = ranked_scores if self.num_max_proposals is not None: pred_instance = pred_instance[:self.num_max_proposals] img_path = data_sample['img_path'] # `file_name` is the key to obtain the proposals from the # `proposals_list`. file_name = osp.join( osp.split(osp.split(img_path)[0])[-1], osp.split(img_path)[-1]) result = {file_name: pred_instance} self.results.append(result) def compute_metrics(self, results: list) -> dict: """Dump the processed results. Args: results (list): The processed results of each batch. Returns: dict: An empty dict. """ logger: MMLogger = MMLogger.get_current_instance() dump_results = {} for result in results: dump_results.update(result) dump( dump_results, file=self.proposals_file, backend_args=self.backend_args) logger.info(f'Results are saved at {self.proposals_file}') return {}
# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp from typing import Optional, Sequence from mmengine.dist import is_main_process from mmengine.evaluator import BaseMetric from mmengine.fileio import dump from mmengine.logging import MMLogger from mmengine.structures import InstanceData from mmdet.registry import METRICS @METRICS.register_module() class DumpProposals(BaseMetric): """Dump proposals pseudo metric. Args: output_dir (str): The root directory for ``proposals_file``. Defaults to ''. proposals_file (str): Proposals file path. Defaults to 'proposals.pkl'. num_max_proposals (int, optional): Maximum number of proposals to dump. If not specified, all proposals will be dumped. file_client_args (dict): Arguments to instantiate a FileClient. See :class:`mmengine.fileio.FileClient` for details. Defaults to ``dict(backend='disk')``. collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None. """ default_prefix: Optional[str] = 'dump_proposals' def __init__(self, output_dir: str = '', proposals_file: str = 'proposals.pkl', num_max_proposals: Optional[int] = None, file_client_args: dict = dict(backend='disk'), collect_device: str = 'cpu', prefix: Optional[str] = None) -> None: super().__init__(collect_device=collect_device, prefix=prefix) self.num_max_proposals = num_max_proposals # TODO: update after mmengine finish refactor fileio. self.file_client_args = file_client_args self.output_dir = output_dir assert proposals_file.endswith(('.pkl', '.pickle')), \ 'The output file must be a pkl file.' self.proposals_file = os.path.join(self.output_dir, proposals_file) if is_main_process(): os.makedirs(self.output_dir, exist_ok=True) def process(self, data_batch: Sequence[dict], data_samples: Sequence[dict]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (dict): A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of data samples that contain annotations and predictions. """ for data_sample in data_samples: pred = data_sample['pred_instances'] # `bboxes` is sorted by `scores` ranked_scores, rank_inds = pred['scores'].sort(descending=True) ranked_bboxes = pred['bboxes'][rank_inds, :] ranked_bboxes = ranked_bboxes.cpu().numpy() ranked_scores = ranked_scores.cpu().numpy() pred_instance = InstanceData() pred_instance.bboxes = ranked_bboxes pred_instance.scores = ranked_scores if self.num_max_proposals is not None: pred_instance = pred_instance[:self.num_max_proposals] img_path = data_sample['img_path'] # `file_name` is the key to obtain the proposals from the # `proposals_list`. file_name = osp.join( osp.split(osp.split(img_path)[0])[-1], osp.split(img_path)[-1]) result = {file_name: pred_instance} self.results.append(result) def compute_metrics(self, results: list) -> dict: """Dump the processed results. Args: results (list): The processed results of each batch. Returns: dict: An empty dict. """ logger: MMLogger = MMLogger.get_current_instance() dump_results = {} for result in results: dump_results.update(result) dump( dump_results, file=self.proposals_file, file_client_args=self.file_client_args) logger.info(f'Results are saved at {self.proposals_file}') return {}
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, AnyTensor, PointCloud3DUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor try: import torch torch_available = True except ImportError: torch_available = False T = TypeVar('T', bound='PointCloud3D') class PointCloud3D(BaseDocument): """ Document for handling point clouds for 3D data representation. Point cloud is a representation of a 3D mesh. It is made by repeatedly and uniformly sampling points within the surface of the 3D body. Compared to the mesh representation, the point cloud is a fixed size ndarray (shape=(n_samples, 3)) and hence easier for deep learning algorithms to handle. A PointCloud3D Document can contain an PointCloud3DUrl (`PointCloud3D.url`), an AnyTensor (`PointCloud3D.tensor`), and an AnyEmbedding (`PointCloud3D.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import PointCloud3D # use it directly pc = PointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensor = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensor) You can extend this Document: .. code-block:: python from docarray.documents import PointCloud3D from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyPointCloud3D(PointCloud3D): second_embedding: Optional[AnyEmbedding] pc = MyPointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensor = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensor) pc.second_embedding = model(pc.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import PointCloud3D, Text # compose it class MultiModalDoc(BaseDocument): point_cloud: PointCloud3D text: Text mmdoc = MultiModalDoc( point_cloud=PointCloud3D( url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.point_cloud.tensor = mmdoc.point_cloud.url.load(samples=100) # or mmdoc.point_cloud.bytes = mmdoc.point_cloud.url.load_bytes() """ url: Optional[PointCloud3DUrl] tensor: Optional[AnyTensor] embedding: Optional[AnyEmbedding] bytes: Optional[bytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) ): value = cls(tensor=value) return super().validate(value)
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, AnyTensor, PointCloud3DUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor try: import torch torch_available = True except ImportError: torch_available = False T = TypeVar('T', bound='PointCloud3D') class PointCloud3D(BaseDocument): """ Document for handling point clouds for 3D data representation. Point cloud is a representation of a 3D mesh. It is made by repeatedly and uniformly sampling points within the surface of the 3D body. Compared to the mesh representation, the point cloud is a fixed size ndarray (shape=(n_samples, 3)) and hence easier for deep learning algorithms to handle. A PointCloud3D Document can contain an PointCloud3DUrl (`PointCloud3D.url`), an AnyTensor (`PointCloud3D.tensor`), and an AnyEmbedding (`PointCloud3D.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import PointCloud3D # use it directly pc = PointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensor = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensor) You can extend this Document: .. code-block:: python from docarray.documents import PointCloud3D from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyPointCloud3D(PointCloud3D): second_embedding: Optional[AnyEmbedding] pc = MyPointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensor = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensor) pc.second_embedding = model(pc.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import PointCloud3D, Text # compose it class MultiModalDoc(BaseDocument): point_cloud: PointCloud3D text: Text mmdoc = MultiModalDoc( point_cloud=PointCloud3D( url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.point_cloud.tensor = mmdoc.point_cloud.url.load(samples=100) """ url: Optional[PointCloud3DUrl] tensor: Optional[AnyTensor] embedding: Optional[AnyEmbedding] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) ): value = cls(tensor=value) return super().validate(value)
import argparse import urllib from abc import ABC from http import HTTPStatus from typing import TYPE_CHECKING, Optional, Union from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime if TYPE_CHECKING: import asyncio import multiprocessing import threading class GatewayRuntime(AsyncNewLoopRuntime, ABC): """ The Runtime from which the GatewayRuntimes need to inherit """ def __init__( self, args: argparse.Namespace, cancel_event: Optional[ Union['asyncio.Event', 'multiprocessing.Event', 'threading.Event'] ] = None, **kwargs, ): # this order is intentional: The timeout is needed in _create_topology_graph(), called by super self.timeout_send = args.timeout_send if self.timeout_send: self.timeout_send /= 1e3 # convert ms to seconds super().__init__(args, cancel_event, **kwargs) @staticmethod def is_ready(ctrl_address: str, protocol: Optional[str] = 'grpc', **kwargs) -> bool: """ Check if status is ready. :param ctrl_address: the address where the control request needs to be sent :param protocol: protocol of the gateway runtime :param kwargs: extra keyword arguments :return: True if status is ready else False. """ if protocol is None or protocol == 'grpc': res = AsyncNewLoopRuntime.is_ready(ctrl_address) else: try: conn = urllib.request.urlopen(url=f'http://{ctrl_address}') res = conn.code == HTTPStatus.OK except: res = False return res @classmethod def wait_for_ready_or_shutdown( cls, timeout: Optional[float], ready_or_shutdown_event: Union['multiprocessing.Event', 'threading.Event'], ctrl_address: str, protocol: Optional[str] = 'grpc', **kwargs, ): """ Check if the runtime has successfully started :param timeout: The time to wait before readiness or failure is determined :param ctrl_address: the address where the control message needs to be sent :param ready_or_shutdown_event: the multiprocessing event to detect if the process failed or is ready :param protocol: protocol of the gateway runtime :param kwargs: extra keyword arguments :return: True if is ready or it needs to be shutdown """ return super().wait_for_ready_or_shutdown( timeout=timeout, ready_or_shutdown_event=ready_or_shutdown_event, ctrl_address=ctrl_address, protocol=protocol, )
import argparse import urllib from abc import ABC from http import HTTPStatus from typing import TYPE_CHECKING, Optional, Union from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime if TYPE_CHECKING: import asyncio import multiprocessing import threading class GatewayRuntime(AsyncNewLoopRuntime, ABC): """ The Runtime from which the GatewayRuntimes need to inherit """ def __init__( self, args: argparse.Namespace, cancel_event: Optional[ Union['asyncio.Event', 'multiprocessing.Event', 'threading.Event'] ] = None, **kwargs, ): # this order is intentional: The timeout is needed in _create_topology_graph(), called by super self.timeout_send = args.timeout_send if self.timeout_send: self.timeout_send /= 1e3 # convert ms to seconds super().__init__(args, cancel_event, **kwargs) @staticmethod def is_ready(ctrl_address: str, protocol: Optional[str] = 'grpc', **kwargs) -> bool: """ Check if status is ready. :param ctrl_address: the address where the control request needs to be sent :param protocol: protocol of the gateway runtime :param kwargs: extra keyword arguments :return: True if status is ready else False. """ if protocol is None or protocol == 'grpc': res = super().is_ready(ctrl_address) else: try: conn = urllib.request.urlopen(url=f'http://{ctrl_address}') res = conn.code == HTTPStatus.OK except: res = False return res @classmethod def wait_for_ready_or_shutdown( cls, timeout: Optional[float], ready_or_shutdown_event: Union['multiprocessing.Event', 'threading.Event'], ctrl_address: str, protocol: Optional[str] = 'grpc', **kwargs, ): """ Check if the runtime has successfully started :param timeout: The time to wait before readiness or failure is determined :param ctrl_address: the address where the control message needs to be sent :param ready_or_shutdown_event: the multiprocessing event to detect if the process failed or is ready :param protocol: protocol of the gateway runtime :param kwargs: extra keyword arguments :return: True if is ready or it needs to be shutdown """ return super().wait_for_ready_or_shutdown( timeout=timeout, ready_or_shutdown_event=ready_or_shutdown_event, ctrl_address=ctrl_address, protocol=protocol, )
# Credit to https://github.com/openai/evals/tree/main from langchain_core.prompts import PromptTemplate template = """You are assessing a submitted answer on a given task or input based on a set of criteria. Here is the data: [BEGIN DATA] *** [Input]: {input} *** [Submission]: {output} *** [Criteria]: {criteria} *** [END DATA] Does the submission meet the Criteria? First, write out in a step by step manner your reasoning about each criterion to be sure that your conclusion is correct. Avoid simply stating the correct answers at the outset. Then print only the single character "Y" or "N" (without quotes or punctuation) on its own line corresponding to the correct answer of whether the submission meets all criteria. At the end, repeat just the letter again by itself on a new line.""" # noqa: E501 PROMPT = PromptTemplate( input_variables=["input", "output", "criteria"], template=template ) template = """You are assessing a submitted answer on a given task or input based on a set of criteria. Here is the data: [BEGIN DATA] *** [Input]: {input} *** [Submission]: {output} *** [Criteria]: {criteria} *** [Reference]: {reference} *** [END DATA] Does the submission meet the Criteria? First, write out in a step by step manner your reasoning about each criterion to be sure that your conclusion is correct. Avoid simply stating the correct answers at the outset. Then print only the single character "Y" or "N" (without quotes or punctuation) on its own line corresponding to the correct answer of whether the submission meets all criteria. At the end, repeat just the letter again by itself on a new line.""" # noqa: E501 PROMPT_WITH_REFERENCES = PromptTemplate( input_variables=["input", "output", "criteria", "reference"], template=template )
# flake8: noqa # Credit to https://github.com/openai/evals/tree/main from langchain_core.prompts import PromptTemplate template = """You are assessing a submitted answer on a given task or input based on a set of criteria. Here is the data: [BEGIN DATA] *** [Input]: {input} *** [Submission]: {output} *** [Criteria]: {criteria} *** [END DATA] Does the submission meet the Criteria? First, write out in a step by step manner your reasoning about each criterion to be sure that your conclusion is correct. Avoid simply stating the correct answers at the outset. Then print only the single character "Y" or "N" (without quotes or punctuation) on its own line corresponding to the correct answer of whether the submission meets all criteria. At the end, repeat just the letter again by itself on a new line.""" PROMPT = PromptTemplate( input_variables=["input", "output", "criteria"], template=template ) template = """You are assessing a submitted answer on a given task or input based on a set of criteria. Here is the data: [BEGIN DATA] *** [Input]: {input} *** [Submission]: {output} *** [Criteria]: {criteria} *** [Reference]: {reference} *** [END DATA] Does the submission meet the Criteria? First, write out in a step by step manner your reasoning about each criterion to be sure that your conclusion is correct. Avoid simply stating the correct answers at the outset. Then print only the single character "Y" or "N" (without quotes or punctuation) on its own line corresponding to the correct answer of whether the submission meets all criteria. At the end, repeat just the letter again by itself on a new line.""" PROMPT_WITH_REFERENCES = PromptTemplate( input_variables=["input", "output", "criteria", "reference"], template=template )
from dataclasses import dataclass, asdict, field from typing import ( Union, Dict, Optional, TYPE_CHECKING, Iterable, List, Tuple, ) import numpy as np from docarray.array.storage.base.backend import BaseBackendMixin, TypeMap from docarray.helper import dataclass_from_dict, filter_dict, _safe_cast_int if TYPE_CHECKING: from docarray.typing import DocumentArraySourceType, ArrayType @dataclass class AnnliteConfig: n_dim: int metric: str = 'cosine' serialize_config: Dict = field(default_factory=dict) data_path: Optional[str] = None ef_construction: Optional[int] = None ef_search: Optional[int] = None max_connection: Optional[int] = None columns: Optional[List[Tuple[str, str]]] = None class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" TYPE_MAP = { 'str': TypeMap(type='str', converter=str), 'float': TypeMap(type='float', converter=float), 'int': TypeMap(type='int', converter=_safe_cast_int), } def _map_embedding(self, embedding: 'ArrayType') -> 'ArrayType': if embedding is None: embedding = np.zeros(self.n_dim, dtype=np.float32) elif isinstance(embedding, list): from docarray.math.ndarray import to_numpy_array embedding = to_numpy_array(embedding) if embedding.ndim > 1: embedding = np.asarray(embedding).squeeze() return embedding def _normalize_columns(self, columns): columns = super()._normalize_columns(columns) for i in range(len(columns)): columns[i] = ( columns[i][0], self._map_type(columns[i][1]), ) return columns def _ensure_unique_config( self, config_root: dict, config_subindex: dict, config_joined: dict, subindex_name: str, ) -> dict: import os if 'data_path' not in config_subindex: config_joined['data_path'] = os.path.join( config_joined['data_path'], 'subindex_' + subindex_name ) return config_joined def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, config: Optional[Union[AnnliteConfig, Dict]] = None, subindex_configs: Optional[Dict] = None, **kwargs, ): from docarray import Document if not config: raise ValueError('Config object must be specified') elif isinstance(config, dict): config = dataclass_from_dict(AnnliteConfig, config) self._persist = bool(config.data_path) if not self._persist: from tempfile import TemporaryDirectory config.data_path = TemporaryDirectory().name self._config = config self._config.columns = self._normalize_columns(self._config.columns) config = asdict(config) self.n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(self.n_dim, lock=False, **filter_dict(config)) super()._init_storage() if _docs is None: return self.clear() if isinstance(_docs, Iterable): self.extend(_docs) elif isinstance(_docs, Document): self.append(_docs) def __getstate__(self): state = dict(self.__dict__) del state['_annlite'] del state['_offsetmapping'] return state def __setstate__(self, state): self.__dict__ = state config = state['_config'] config = asdict(config) n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(n_dim, lock=False, **filter_dict(config)) def __len__(self): return self._annlite.index_size
from dataclasses import dataclass, asdict, field from typing import ( Union, Dict, Optional, TYPE_CHECKING, Iterable, List, Tuple, ) import numpy as np from docarray.array.storage.base.backend import BaseBackendMixin, TypeMap from docarray.helper import dataclass_from_dict, filter_dict, _safe_cast_int if TYPE_CHECKING: from docarray.typing import DocumentArraySourceType, ArrayType @dataclass class AnnliteConfig: n_dim: int metric: str = 'cosine' serialize_config: Dict = field(default_factory=dict) data_path: Optional[str] = None ef_construction: Optional[int] = None ef_search: Optional[int] = None max_connection: Optional[int] = None columns: Optional[List[Tuple[str, str]]] = None class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" TYPE_MAP = { 'str': TypeMap(type='TEXT', converter=str), 'float': TypeMap(type='float', converter=float), 'int': TypeMap(type='integer', converter=_safe_cast_int), } def _map_embedding(self, embedding: 'ArrayType') -> 'ArrayType': if embedding is None: embedding = np.zeros(self.n_dim, dtype=np.float32) elif isinstance(embedding, list): from docarray.math.ndarray import to_numpy_array embedding = to_numpy_array(embedding) if embedding.ndim > 1: embedding = np.asarray(embedding).squeeze() return embedding def _normalize_columns(self, columns): columns = super()._normalize_columns(columns) for i in range(len(columns)): columns[i] = ( columns[i][0], self._map_type(columns[i][1]), ) return columns def _ensure_unique_config( self, config_root: dict, config_subindex: dict, config_joined: dict, subindex_name: str, ) -> dict: import os if 'data_path' not in config_subindex: config_joined['data_path'] = os.path.join( config_joined['data_path'], 'subindex_' + subindex_name ) return config_joined def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, config: Optional[Union[AnnliteConfig, Dict]] = None, subindex_configs: Optional[Dict] = None, **kwargs, ): from docarray import Document if not config: raise ValueError('Config object must be specified') elif isinstance(config, dict): config = dataclass_from_dict(AnnliteConfig, config) self._persist = bool(config.data_path) if not self._persist: from tempfile import TemporaryDirectory config.data_path = TemporaryDirectory().name self._config = config self._config.columns = self._normalize_columns(self._config.columns) config = asdict(config) self.n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(self.n_dim, lock=False, **filter_dict(config)) super()._init_storage() if _docs is None: return self.clear() if isinstance(_docs, Iterable): self.extend(_docs) elif isinstance(_docs, Document): self.append(_docs) def __getstate__(self): state = dict(self.__dict__) del state['_annlite'] del state['_offsetmapping'] return state def __setstate__(self, state): self.__dict__ = state config = state['_config'] config = asdict(config) n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(n_dim, lock=False, **filter_dict(config)) def __len__(self): return self._annlite.index_size
import logging import time from abc import ABC, abstractmethod from typing import ClassVar, Optional from backend.data.model import OAuth2Credentials from backend.integrations.providers import ProviderName logger = logging.getLogger(__name__) class BaseOAuthHandler(ABC): # --8<-- [start:BaseOAuthHandler1] PROVIDER_NAME: ClassVar[ProviderName] DEFAULT_SCOPES: ClassVar[list[str]] = [] # --8<-- [end:BaseOAuthHandler1] @abstractmethod # --8<-- [start:BaseOAuthHandler2] def __init__(self, client_id: str, client_secret: str, redirect_uri: str): ... # --8<-- [end:BaseOAuthHandler2] @abstractmethod # --8<-- [start:BaseOAuthHandler3] def get_login_url( self, scopes: list[str], state: str, code_challenge: Optional[str] ) -> str: # --8<-- [end:BaseOAuthHandler3] """Constructs a login URL that the user can be redirected to""" ... @abstractmethod # --8<-- [start:BaseOAuthHandler4] def exchange_code_for_tokens( self, code: str, scopes: list[str], code_verifier: Optional[str] ) -> OAuth2Credentials: # --8<-- [end:BaseOAuthHandler4] """Exchanges the acquired authorization code from login for a set of tokens""" ... @abstractmethod # --8<-- [start:BaseOAuthHandler5] def _refresh_tokens(self, credentials: OAuth2Credentials) -> OAuth2Credentials: # --8<-- [end:BaseOAuthHandler5] """Implements the token refresh mechanism""" ... @abstractmethod # --8<-- [start:BaseOAuthHandler6] def revoke_tokens(self, credentials: OAuth2Credentials) -> bool: # --8<-- [end:BaseOAuthHandler6] """Revokes the given token at provider, returns False provider does not support it""" ... def refresh_tokens(self, credentials: OAuth2Credentials) -> OAuth2Credentials: if credentials.provider != self.PROVIDER_NAME: raise ValueError( f"{self.__class__.__name__} can not refresh tokens " f"for other provider '{credentials.provider}'" ) return self._refresh_tokens(credentials) def get_access_token(self, credentials: OAuth2Credentials) -> str: """Returns a valid access token, refreshing it first if needed""" if self.needs_refresh(credentials): credentials = self.refresh_tokens(credentials) return credentials.access_token.get_secret_value() def needs_refresh(self, credentials: OAuth2Credentials) -> bool: """Indicates whether the given tokens need to be refreshed""" return ( credentials.access_token_expires_at is not None and credentials.access_token_expires_at < int(time.time()) + 300 ) def handle_default_scopes(self, scopes: list[str]) -> list[str]: """Handles the default scopes for the provider""" # If scopes are empty, use the default scopes for the provider if not scopes: logger.debug( f"Using default scopes for provider {self.PROVIDER_NAME.value}" ) scopes = self.DEFAULT_SCOPES return scopes
import logging import time from abc import ABC, abstractmethod from typing import ClassVar from backend.data.model import OAuth2Credentials from backend.integrations.providers import ProviderName logger = logging.getLogger(__name__) class BaseOAuthHandler(ABC): # --8<-- [start:BaseOAuthHandler1] PROVIDER_NAME: ClassVar[ProviderName] DEFAULT_SCOPES: ClassVar[list[str]] = [] # --8<-- [end:BaseOAuthHandler1] @abstractmethod # --8<-- [start:BaseOAuthHandler2] def __init__(self, client_id: str, client_secret: str, redirect_uri: str): ... # --8<-- [end:BaseOAuthHandler2] @abstractmethod # --8<-- [start:BaseOAuthHandler3] def get_login_url(self, scopes: list[str], state: str) -> str: # --8<-- [end:BaseOAuthHandler3] """Constructs a login URL that the user can be redirected to""" ... @abstractmethod # --8<-- [start:BaseOAuthHandler4] def exchange_code_for_tokens( self, code: str, scopes: list[str] ) -> OAuth2Credentials: # --8<-- [end:BaseOAuthHandler4] """Exchanges the acquired authorization code from login for a set of tokens""" ... @abstractmethod # --8<-- [start:BaseOAuthHandler5] def _refresh_tokens(self, credentials: OAuth2Credentials) -> OAuth2Credentials: # --8<-- [end:BaseOAuthHandler5] """Implements the token refresh mechanism""" ... @abstractmethod # --8<-- [start:BaseOAuthHandler6] def revoke_tokens(self, credentials: OAuth2Credentials) -> bool: # --8<-- [end:BaseOAuthHandler6] """Revokes the given token at provider, returns False provider does not support it""" ... def refresh_tokens(self, credentials: OAuth2Credentials) -> OAuth2Credentials: if credentials.provider != self.PROVIDER_NAME: raise ValueError( f"{self.__class__.__name__} can not refresh tokens " f"for other provider '{credentials.provider}'" ) return self._refresh_tokens(credentials) def get_access_token(self, credentials: OAuth2Credentials) -> str: """Returns a valid access token, refreshing it first if needed""" if self.needs_refresh(credentials): credentials = self.refresh_tokens(credentials) return credentials.access_token.get_secret_value() def needs_refresh(self, credentials: OAuth2Credentials) -> bool: """Indicates whether the given tokens need to be refreshed""" return ( credentials.access_token_expires_at is not None and credentials.access_token_expires_at < int(time.time()) + 300 ) def handle_default_scopes(self, scopes: list[str]) -> list[str]: """Handles the default scopes for the provider""" # If scopes are empty, use the default scopes for the provider if not scopes: logger.debug( f"Using default scopes for provider {self.PROVIDER_NAME.value}" ) scopes = self.DEFAULT_SCOPES return scopes
from .objective import squim_objective_base, squim_objective_model, SquimObjective from .subjective import squim_subjective_base, squim_subjective_model, SquimSubjective __all__ = [ "squim_objective_base", "squim_objective_model", "squim_subjective_base", "squim_subjective_model", "SquimObjective", "SquimSubjective", ]
from .objective import squim_objective_base, squim_objective_model, SquimObjective __all__ = [ "squim_objective_base", "squim_objective_model", "SquimObjective", ]
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class FSAF(SingleStageDetector): """Implementation of `FSAF <https://arxiv.org/abs/1903.00621>`_""" def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, preprocess_cfg: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, preprocess_cfg=preprocess_cfg, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class FSAF(SingleStageDetector): """Implementation of `FSAF <https://arxiv.org/abs/1903.00621>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(FSAF, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
from dataclasses import dataclass, fields, field from typing import Optional, Tuple, TYPE_CHECKING if TYPE_CHECKING: # pragma: no cover from docarray.score import NamedScore default_values = dict(value=0.0, op_name='', description='', ref_id='') @dataclass(unsafe_hash=True) class NamedScoreData: _reference_ns: 'NamedScore' = field(hash=False, compare=False) value: Optional[float] = None op_name: Optional[str] = None description: Optional[str] = None ref_id: Optional[str] = None @property def _non_empty_fields(self) -> Tuple[str]: r = [] for f in fields(self): f_name = f.name if not f_name.startswith('_'): v = getattr(self, f_name) if v is not None: r.append(f_name) return tuple(r) def _set_default_value_if_none(self, key): if getattr(self, key) is None: setattr(self, key, default_values[key])
from dataclasses import dataclass, fields, field from typing import Optional, Tuple, TYPE_CHECKING if TYPE_CHECKING: from docarray.score import NamedScore default_values = dict(value=0.0, op_name='', description='', ref_id='') @dataclass(unsafe_hash=True) class NamedScoreData: _reference_ns: 'NamedScore' = field(hash=False, compare=False) value: Optional[float] = None op_name: Optional[str] = None description: Optional[str] = None ref_id: Optional[str] = None @property def _non_empty_fields(self) -> Tuple[str]: r = [] for f in fields(self): f_name = f.name if not f_name.startswith('_'): v = getattr(self, f_name) if v is not None: r.append(f_name) return tuple(r) def _set_default_value_if_none(self, key): if getattr(self, key) is None: setattr(self, key, default_values[key])
# Copyright (c) OpenMMLab. All rights reserved. """Get image metas on a specific dataset. Here is an example to run this script. Example: python tools/misc/get_image_metas.py ${CONFIG} \ --out ${OUTPUT FILE NAME} """ import argparse import csv import os.path as osp from multiprocessing import Pool import mmcv from mmengine.config import Config from mmengine.fileio import FileClient, dump def parse_args(): parser = argparse.ArgumentParser(description='Collect image metas') parser.add_argument('config', help='Config file path') parser.add_argument( '--dataset', default='val', choices=['train', 'val', 'test'], help='Collect image metas from which dataset') parser.add_argument( '--out', default='validation-image-metas.pkl', help='The output image metas file name. The save dir is in the ' 'same directory as `dataset.ann_file` path') parser.add_argument( '--nproc', default=4, type=int, help='Processes used for get image metas') args = parser.parse_args() return args def get_metas_from_csv_style_ann_file(ann_file): data_infos = [] cp_filename = None with open(ann_file, 'r') as f: reader = csv.reader(f) for i, line in enumerate(reader): if i == 0: continue img_id = line[0] filename = f'{img_id}.jpg' if filename != cp_filename: data_infos.append(dict(filename=filename)) cp_filename = filename return data_infos def get_metas_from_txt_style_ann_file(ann_file): with open(ann_file) as f: lines = f.readlines() i = 0 data_infos = [] while i < len(lines): filename = lines[i].rstrip() data_infos.append(dict(filename=filename)) skip_lines = int(lines[i + 2]) + 3 i += skip_lines return data_infos def get_image_metas(data_info, img_prefix): file_client = FileClient(backend='disk') filename = data_info.get('filename', None) if filename is not None: if img_prefix is not None: filename = osp.join(img_prefix, filename) img_bytes = file_client.get(filename) img = mmcv.imfrombytes(img_bytes, flag='color') shape = img.shape meta = dict(filename=filename, ori_shape=shape) else: raise NotImplementedError('Missing `filename` in data_info') return meta def main(): args = parse_args() assert args.out.endswith('pkl'), 'The output file name must be pkl suffix' # load config files cfg = Config.fromfile(args.config) dataloader_cfg = cfg.get(f'{args.dataset}_dataloader') ann_file = osp.join(dataloader_cfg.dataset.data_root, dataloader_cfg.dataset.ann_file) img_prefix = osp.join(dataloader_cfg.dataset.data_root, dataloader_cfg.dataset.data_prefix['img']) print(f'{"-" * 5} Start Processing {"-" * 5}') if ann_file.endswith('csv'): data_infos = get_metas_from_csv_style_ann_file(ann_file) elif ann_file.endswith('txt'): data_infos = get_metas_from_txt_style_ann_file(ann_file) else: shuffix = ann_file.split('.')[-1] raise NotImplementedError('File name must be csv or txt suffix but ' f'get {shuffix}') print(f'Successfully load annotation file from {ann_file}') print(f'Processing {len(data_infos)} images...') pool = Pool(args.nproc) # get image metas with multiple processes image_metas = pool.starmap( get_image_metas, zip(data_infos, [img_prefix for _ in range(len(data_infos))]), ) pool.close() # save image metas root_path = dataloader_cfg.dataset.ann_file.rsplit('/', 1)[0] save_path = osp.join(root_path, args.out) dump(image_metas, save_path, protocol=4) print(f'Image meta file save to: {save_path}') if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. """Get image metas on a specific dataset. Here is an example to run this script. Example: python tools/misc/get_image_metas.py ${CONFIG} \ --out ${OUTPUT FILE NAME} """ import argparse import csv import os.path as osp from multiprocessing import Pool import mmcv from mmcv import Config def parse_args(): parser = argparse.ArgumentParser(description='Collect image metas') parser.add_argument('config', help='Config file path') parser.add_argument( '--dataset', default='val', choices=['train', 'val', 'test'], help='Collect image metas from which dataset') parser.add_argument( '--out', default='validation-image-metas.pkl', help='The output image metas file name. The save dir is in the ' 'same directory as `dataset.ann_file` path') parser.add_argument( '--nproc', default=4, type=int, help='Processes used for get image metas') args = parser.parse_args() return args def get_metas_from_csv_style_ann_file(ann_file): data_infos = [] cp_filename = None with open(ann_file, 'r') as f: reader = csv.reader(f) for i, line in enumerate(reader): if i == 0: continue img_id = line[0] filename = f'{img_id}.jpg' if filename != cp_filename: data_infos.append(dict(filename=filename)) cp_filename = filename return data_infos def get_metas_from_txt_style_ann_file(ann_file): with open(ann_file) as f: lines = f.readlines() i = 0 data_infos = [] while i < len(lines): filename = lines[i].rstrip() data_infos.append(dict(filename=filename)) skip_lines = int(lines[i + 2]) + 3 i += skip_lines return data_infos def get_image_metas(data_info, img_prefix): file_client = mmcv.FileClient(backend='disk') filename = data_info.get('filename', None) if filename is not None: if img_prefix is not None: filename = osp.join(img_prefix, filename) img_bytes = file_client.get(filename) img = mmcv.imfrombytes(img_bytes, flag='color') shape = img.shape meta = dict(filename=filename, ori_shape=shape) else: raise NotImplementedError('Missing `filename` in data_info') return meta def main(): args = parse_args() assert args.out.endswith('pkl'), 'The output file name must be pkl suffix' # load config files cfg = Config.fromfile(args.config) dataloader_cfg = cfg.get(f'{args.dataset}_dataloader') ann_file = osp.join(dataloader_cfg.dataset.data_root, dataloader_cfg.dataset.ann_file) img_prefix = osp.join(dataloader_cfg.dataset.data_root, dataloader_cfg.dataset.data_prefix['img']) print(f'{"-" * 5} Start Processing {"-" * 5}') if ann_file.endswith('csv'): data_infos = get_metas_from_csv_style_ann_file(ann_file) elif ann_file.endswith('txt'): data_infos = get_metas_from_txt_style_ann_file(ann_file) else: shuffix = ann_file.split('.')[-1] raise NotImplementedError('File name must be csv or txt suffix but ' f'get {shuffix}') print(f'Successfully load annotation file from {ann_file}') print(f'Processing {len(data_infos)} images...') pool = Pool(args.nproc) # get image metas with multiple processes image_metas = pool.starmap( get_image_metas, zip(data_infos, [img_prefix for _ in range(len(data_infos))]), ) pool.close() # save image metas root_path = dataloader_cfg.dataset.ann_file.rsplit('/', 1)[0] save_path = osp.join(root_path, args.out) mmcv.dump(image_metas, save_path, protocol=4) print(f'Image meta file save to: {save_path}') if __name__ == '__main__': main()
from typing import Type from .doc import BaseDoc class AnyDoc(BaseDoc): """ AnyDoc is a Document that is not tied to any schema """ class Config: _load_extra_fields_from_protobuf = True # I introduce this variable to allow to load more that the fields defined in the schema # will documented this behavior later if this fix our problem def __init__(self, **kwargs): super().__init__() self.__dict__.update(kwargs) @classmethod def _get_field_type(cls, field: str) -> Type['BaseDoc']: """ Accessing the nested python Class define in the schema. Could be useful for reconstruction of Document in serialization/deserilization :param field: name of the field :return: """ return AnyDoc @classmethod def _get_field_type_array(cls, field: str) -> Type: from docarray import DocList return DocList
from typing import Type from .doc import BaseDoc class AnyDoc(BaseDoc): """ AnyDoc is a Document that is not tied to any schema """ def __init__(self, **kwargs): super().__init__() self.__dict__.update(kwargs) @classmethod def _get_field_type(cls, field: str) -> Type['BaseDoc']: """ Accessing the nested python Class define in the schema. Could be useful for reconstruction of Document in serialization/deserilization :param field: name of the field :return: """ return AnyDoc
import logging from typing import Any, List import requests from llama_index.core.base.embeddings.base import BaseEmbedding from requests.adapters import HTTPAdapter, Retry logger = logging.getLogger(__name__) class LLMRailsEmbedding(BaseEmbedding): """ LLMRails embedding models. This class provides an interface to generate embeddings using a model deployed in an LLMRails cluster. It requires a model_id of the model deployed in the cluster and api key you can obtain from https://console.llmrails.com/api-keys. """ model_id: str api_key: str session: requests.Session @classmethod def class_name(self) -> str: return "LLMRailsEmbedding" def __init__( self, api_key: str, model_id: str = "embedding-english-v1", # or embedding-multi-v1 **kwargs: Any, ): retry = Retry( total=3, connect=3, read=2, allowed_methods=["POST"], backoff_factor=2, status_forcelist=[502, 503, 504], ) session = requests.Session() session.mount("https://api.llmrails.com", HTTPAdapter(max_retries=retry)) session.headers = {"X-API-KEY": api_key} super().__init__(model_id=model_id, api_key=api_key, session=session, **kwargs) def _get_embedding(self, text: str) -> List[float]: """ Generate an embedding for a single query text. Args: text (str): The query text to generate an embedding for. Returns: List[float]: The embedding for the input query text. """ try: response = self.session.post( "https://api.llmrails.com/v1/embeddings", json={"input": [text], "model": self.model_id}, ) response.raise_for_status() return response.json()["data"][0]["embedding"] except requests.exceptions.HTTPError as e: logger.error(f"Error while embedding text {e}.") raise ValueError(f"Unable to embed given text {e}") async def _aget_embedding(self, text: str) -> List[float]: """ Generate an embedding for a single query text. Args: text (str): The query text to generate an embedding for. Returns: List[float]: The embedding for the input query text. """ try: import httpx except ImportError: raise ImportError( "The httpx library is required to use the async version of " "this function. Install it with `pip install httpx`." ) try: async with httpx.AsyncClient() as client: response = await client.post( "https://api.llmrails.com/v1/embeddings", headers={"X-API-KEY": self.api_key}, json={"input": [text], "model": self.model_id}, ) response.raise_for_status() return response.json()["data"][0]["embedding"] except httpx._exceptions.HTTPError as e: logger.error(f"Error while embedding text {e}.") raise ValueError(f"Unable to embed given text {e}") def _get_text_embedding(self, text: str) -> List[float]: return self._get_embedding(text) def _get_query_embedding(self, query: str) -> List[float]: return self._get_embedding(query) async def _aget_query_embedding(self, query: str) -> List[float]: return await self._aget_embedding(query) async def _aget_text_embedding(self, query: str) -> List[float]: return await self._aget_embedding(query) LLMRailsEmbeddings = LLMRailsEmbedding
import logging from typing import Any, List import requests from llama_index.core.base.embeddings.base import BaseEmbedding from requests.adapters import HTTPAdapter, Retry logger = logging.getLogger(__name__) class LLMRailsEmbedding(BaseEmbedding): """LLMRails embedding models. This class provides an interface to generate embeddings using a model deployed in an LLMRails cluster. It requires a model_id of the model deployed in the cluster and api key you can obtain from https://console.llmrails.com/api-keys. """ model_id: str api_key: str session: requests.Session @classmethod def class_name(self) -> str: return "LLMRailsEmbedding" def __init__( self, api_key: str, model_id: str = "embedding-english-v1", # or embedding-multi-v1 **kwargs: Any, ): retry = Retry( total=3, connect=3, read=2, allowed_methods=["POST"], backoff_factor=2, status_forcelist=[502, 503, 504], ) session = requests.Session() session.mount("https://api.llmrails.com", HTTPAdapter(max_retries=retry)) session.headers = {"X-API-KEY": api_key} super().__init__(model_id=model_id, api_key=api_key, session=session, **kwargs) def _get_embedding(self, text: str) -> List[float]: """ Generate an embedding for a single query text. Args: text (str): The query text to generate an embedding for. Returns: List[float]: The embedding for the input query text. """ try: response = self.session.post( "https://api.llmrails.com/v1/embeddings", json={"input": [text], "model": self.model_id}, ) response.raise_for_status() return response.json()["data"][0]["embedding"] except requests.exceptions.HTTPError as e: logger.error(f"Error while embedding text {e}.") raise ValueError(f"Unable to embed given text {e}") async def _aget_embedding(self, text: str) -> List[float]: """ Generate an embedding for a single query text. Args: text (str): The query text to generate an embedding for. Returns: List[float]: The embedding for the input query text. """ try: import httpx except ImportError: raise ImportError( "The httpx library is required to use the async version of " "this function. Install it with `pip install httpx`." ) try: async with httpx.AsyncClient() as client: response = await client.post( "https://api.llmrails.com/v1/embeddings", headers={"X-API-KEY": self.api_key}, json={"input": [text], "model": self.model_id}, ) response.raise_for_status() return response.json()["data"][0]["embedding"] except httpx._exceptions.HTTPError as e: logger.error(f"Error while embedding text {e}.") raise ValueError(f"Unable to embed given text {e}") def _get_text_embedding(self, text: str) -> List[float]: return self._get_embedding(text) def _get_query_embedding(self, query: str) -> List[float]: return self._get_embedding(query) async def _aget_query_embedding(self, query: str) -> List[float]: return await self._aget_embedding(query) async def _aget_text_embedding(self, query: str) -> List[float]: return await self._aget_embedding(query) LLMRailsEmbeddings = LLMRailsEmbedding