input
stringlengths
33
5k
output
stringlengths
32
5k
import os import time import pytest from jina import Client, Document, DocumentArray, Flow @pytest.mark.parametrize('shards', [1, 2]) @pytest.mark.parametrize('replicas', [1, 3, 4]) def test_containerruntime_args( docker_image_name, docker_image_built, shards, replicas, port_generator ): exposed_port = port_generator() f = Flow(port=exposed_port).add( name='executor_container', uses=f'docker://{docker_image_name}', replicas=replicas, shards=shards, polling='ANY', ) with f: ret1 = Client(port=exposed_port).index( inputs=DocumentArray([Document() for _ in range(2000)]), request_size=10, return_responses=True, ) assert len(ret1) == 200 unique_replicas = set() shard_ids = set() for r in ret1: assert len(r.docs) == 10 for replica in r.docs[:, 'tags__replica']: unique_replicas.add(replica) for shard_id in r.docs[:, 'tags__shard_id']: shard_ids.add(shard_id) for doc in r.docs: assert doc.tags['shards'] == shards assert shard_ids == set(range(shards)) assert len(unique_replicas) == replicas * shards
import os import time import pytest from jina import Client, Document, DocumentArray, Flow cur_dir = os.path.dirname(os.path.abspath(__file__)) img_name = 'jina/replica-exec' @pytest.fixture(scope='function') def docker_image_built(): import docker client = docker.from_env() client.images.build(path=os.path.join(cur_dir, 'replica-exec'), tag=img_name) client.close() yield time.sleep(2) client = docker.from_env() client.containers.prune() @pytest.mark.parametrize('shards', [1, 2]) @pytest.mark.parametrize('replicas', [1, 3, 4]) def test_containerruntime_args(docker_image_built, shards, replicas, port_generator): exposed_port = port_generator() f = Flow(port=exposed_port).add( name='executor_container', uses=f'docker://{img_name}', replicas=replicas, shards=shards, polling='ANY', ) with f: ret1 = Client(port=exposed_port).index( inputs=DocumentArray([Document() for _ in range(2000)]), request_size=10, return_responses=True, ) assert len(ret1) == 200 unique_replicas = set() shard_ids = set() for r in ret1: assert len(r.docs) == 10 for replica in r.docs[:, 'tags__replica']: unique_replicas.add(replica) for shard_id in r.docs[:, 'tags__shard_id']: shard_ids.add(shard_id) for doc in r.docs: assert doc.tags['shards'] == shards assert shard_ids == set(range(shards)) assert len(unique_replicas) == replicas * shards
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chat_message_histories import Neo4jChatMessageHistory # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "Neo4jChatMessageHistory": "langchain_community.chat_message_histories", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "Neo4jChatMessageHistory", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chat_message_histories import Neo4jChatMessageHistory # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "Neo4jChatMessageHistory": "langchain_community.chat_message_histories" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "Neo4jChatMessageHistory", ]
"""Simple reader that turns an iterable of strings into a list of Documents.""" from typing import List from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document class StringIterableReader(BasePydanticReader): """ String Iterable Reader. Gets a list of documents, given an iterable (e.g. list) of strings. Example: .. code-block:: python from llama_index import TreeIndex from llama_index.readers import StringIterableReader documents = StringIterableReader().load_data( texts=["I went to the store", "I bought an apple"] ) index = TreeIndex.from_documents(documents) query_engine = index.as_query_engine() query_engine.query("what did I buy?") # response should be something like "You bought an apple." """ is_remote: bool = False @classmethod def class_name(cls) -> str: return "StringIterableReader" def load_data(self, texts: List[str]) -> List[Document]: """Load the data.""" results = [] for text in texts: results.append(Document(text=text)) return results
"""Simple reader that turns an iterable of strings into a list of Documents.""" from typing import List from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document class StringIterableReader(BasePydanticReader): """String Iterable Reader. Gets a list of documents, given an iterable (e.g. list) of strings. Example: .. code-block:: python from llama_index import TreeIndex from llama_index.readers import StringIterableReader documents = StringIterableReader().load_data( texts=["I went to the store", "I bought an apple"] ) index = TreeIndex.from_documents(documents) query_engine = index.as_query_engine() query_engine.query("what did I buy?") # response should be something like "You bought an apple." """ is_remote: bool = False @classmethod def class_name(cls) -> str: return "StringIterableReader" def load_data(self, texts: List[str]) -> List[Document]: """Load the data.""" results = [] for text in texts: results.append(Document(text=text)) return results
"""Chain that hits a URL and then uses an LLM to parse results.""" from __future__ import annotations from typing import Any, Dict, List, Optional from langchain.chains import LLMChain from langchain.chains.base import Chain from langchain_core.callbacks import CallbackManagerForChainRun from pydantic import ConfigDict, Field, model_validator from langchain_community.utilities.requests import TextRequestsWrapper DEFAULT_HEADERS = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36" # noqa: E501 } class LLMRequestsChain(Chain): """Chain that requests a URL and then uses an LLM to parse results. **Security Note**: This chain can make GET requests to arbitrary URLs, including internal URLs. Control access to who can run this chain and what network access this chain has. See https://python.langchain.com/docs/security for more information. """ llm_chain: LLMChain requests_wrapper: TextRequestsWrapper = Field( default_factory=lambda: TextRequestsWrapper(headers=DEFAULT_HEADERS), exclude=True, ) text_length: int = 8000 requests_key: str = "requests_result" #: :meta private: input_key: str = "url" #: :meta private: output_key: str = "output" #: :meta private: model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @property def input_keys(self) -> List[str]: """Will be whatever keys the prompt expects. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Will always return text key. :meta private: """ return [self.output_key] @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" try: from bs4 import BeautifulSoup # noqa: F401 except ImportError: raise ImportError( "Could not import bs4 python package. " "Please install it with `pip install bs4`." ) return values def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: from bs4 import BeautifulSoup _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() # Other keys are assumed to be needed for LLM prediction other_keys = {k: v for k, v in inputs.items() if k != self.input_key} url = inputs[self.input_key] res = self.requests_wrapper.get(url) # extract the text from the html soup = BeautifulSoup(res, "html.parser") other_keys[self.requests_key] = soup.get_text()[: self.text_length] result = self.llm_chain.predict( callbacks=_run_manager.get_child(), **other_keys ) return {self.output_key: result} @property def _chain_type(self) -> str: return "llm_requests_chain"
"""Chain that hits a URL and then uses an LLM to parse results.""" from __future__ import annotations from typing import Any, Dict, List, Optional from langchain.chains import LLMChain from langchain.chains.base import Chain from langchain_core.callbacks import CallbackManagerForChainRun from pydantic import ConfigDict, Field, model_validator from langchain_community.utilities.requests import TextRequestsWrapper DEFAULT_HEADERS = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36" # noqa: E501 } class LLMRequestsChain(Chain): """Chain that requests a URL and then uses an LLM to parse results. **Security Note**: This chain can make GET requests to arbitrary URLs, including internal URLs. Control access to who can run this chain and what network access this chain has. See https://python.langchain.com/docs/security for more information. """ llm_chain: LLMChain # type: ignore[valid-type] requests_wrapper: TextRequestsWrapper = Field( default_factory=lambda: TextRequestsWrapper(headers=DEFAULT_HEADERS), exclude=True, ) text_length: int = 8000 requests_key: str = "requests_result" #: :meta private: input_key: str = "url" #: :meta private: output_key: str = "output" #: :meta private: model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @property def input_keys(self) -> List[str]: """Will be whatever keys the prompt expects. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Will always return text key. :meta private: """ return [self.output_key] @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" try: from bs4 import BeautifulSoup # noqa: F401 except ImportError: raise ImportError( "Could not import bs4 python package. " "Please install it with `pip install bs4`." ) return values def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: from bs4 import BeautifulSoup _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() # Other keys are assumed to be needed for LLM prediction other_keys = {k: v for k, v in inputs.items() if k != self.input_key} url = inputs[self.input_key] res = self.requests_wrapper.get(url) # extract the text from the html soup = BeautifulSoup(res, "html.parser") other_keys[self.requests_key] = soup.get_text()[: self.text_length] result = self.llm_chain.predict( # type: ignore[attr-defined] callbacks=_run_manager.get_child(), **other_keys ) return {self.output_key: result} @property def _chain_type(self) -> str: return "llm_requests_chain"
import gc import unittest import numpy as np import torch from diffusers import FluxPipeline, FluxPriorReduxPipeline from diffusers.utils import load_image from diffusers.utils.testing_utils import ( Expectations, backend_empty_cache, numpy_cosine_similarity_distance, require_big_accelerator, slow, torch_device, ) @slow @require_big_accelerator class FluxReduxSlowTests(unittest.TestCase): pipeline_class = FluxPriorReduxPipeline repo_id = "black-forest-labs/FLUX.1-Redux-dev" base_pipeline_class = FluxPipeline base_repo_id = "black-forest-labs/FLUX.1-schnell" def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def get_inputs(self, device, seed=0): init_image = load_image( "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png" ) return {"image": init_image} def get_base_pipeline_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device="cpu").manual_seed(seed) return { "num_inference_steps": 2, "guidance_scale": 2.0, "output_type": "np", "generator": generator, } def test_flux_redux_inference(self): pipe_redux = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16) pipe_base = self.base_pipeline_class.from_pretrained( self.base_repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None ) pipe_redux.to(torch_device) pipe_base.enable_model_cpu_offload(device=torch_device) inputs = self.get_inputs(torch_device) base_pipeline_inputs = self.get_base_pipeline_inputs(torch_device) redux_pipeline_output = pipe_redux(**inputs) image = pipe_base(**base_pipeline_inputs, **redux_pipeline_output).images[0] image_slice = image[0, :10, :10] expected_slices = Expectations( { ("cuda", 7): np.array( [ 0.30078125, 0.37890625, 0.46875, 0.28125, 0.36914062, 0.47851562, 0.28515625, 0.375, 0.4765625, 0.28125, 0.375, 0.48046875, 0.27929688, 0.37695312, 0.47851562, 0.27734375, 0.38085938, 0.4765625, 0.2734375, 0.38085938, 0.47265625, 0.27539062, 0.37890625, 0.47265625, 0.27734375, 0.37695312, 0.47070312, 0.27929688, 0.37890625, 0.47460938, ], dtype=np.float32, ), ("xpu", 3): np.array( [ 0.20507812, 0.30859375, 0.3984375, 0.18554688, 0.30078125, 0.41015625, 0.19921875, 0.3125, 0.40625, 0.19726562, 0.3125, 0.41601562, 0.19335938, 0.31445312, 0.4140625, 0.1953125, 0.3203125, 0.41796875, 0.19726562, 0.32421875, 0.41992188, 0.19726562, 0.32421875, 0.41992188, 0.20117188, 0.32421875, 0.41796875, 0.203125, 0.32617188, 0.41796875, ], dtype=np.float32, ), } ) expected_slice = expected_slices.get_expectation() max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) assert max_diff < 1e-4
import gc import unittest import numpy as np import pytest import torch from diffusers import FluxPipeline, FluxPriorReduxPipeline from diffusers.utils import load_image from diffusers.utils.testing_utils import ( Expectations, backend_empty_cache, numpy_cosine_similarity_distance, require_big_accelerator, slow, torch_device, ) @slow @require_big_accelerator @pytest.mark.big_accelerator class FluxReduxSlowTests(unittest.TestCase): pipeline_class = FluxPriorReduxPipeline repo_id = "black-forest-labs/FLUX.1-Redux-dev" base_pipeline_class = FluxPipeline base_repo_id = "black-forest-labs/FLUX.1-schnell" def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def get_inputs(self, device, seed=0): init_image = load_image( "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png" ) return {"image": init_image} def get_base_pipeline_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device="cpu").manual_seed(seed) return { "num_inference_steps": 2, "guidance_scale": 2.0, "output_type": "np", "generator": generator, } def test_flux_redux_inference(self): pipe_redux = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16) pipe_base = self.base_pipeline_class.from_pretrained( self.base_repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None ) pipe_redux.to(torch_device) pipe_base.enable_model_cpu_offload(device=torch_device) inputs = self.get_inputs(torch_device) base_pipeline_inputs = self.get_base_pipeline_inputs(torch_device) redux_pipeline_output = pipe_redux(**inputs) image = pipe_base(**base_pipeline_inputs, **redux_pipeline_output).images[0] image_slice = image[0, :10, :10] expected_slices = Expectations( { ("cuda", 7): np.array( [ 0.30078125, 0.37890625, 0.46875, 0.28125, 0.36914062, 0.47851562, 0.28515625, 0.375, 0.4765625, 0.28125, 0.375, 0.48046875, 0.27929688, 0.37695312, 0.47851562, 0.27734375, 0.38085938, 0.4765625, 0.2734375, 0.38085938, 0.47265625, 0.27539062, 0.37890625, 0.47265625, 0.27734375, 0.37695312, 0.47070312, 0.27929688, 0.37890625, 0.47460938, ], dtype=np.float32, ), ("xpu", 3): np.array( [ 0.20507812, 0.30859375, 0.3984375, 0.18554688, 0.30078125, 0.41015625, 0.19921875, 0.3125, 0.40625, 0.19726562, 0.3125, 0.41601562, 0.19335938, 0.31445312, 0.4140625, 0.1953125, 0.3203125, 0.41796875, 0.19726562, 0.32421875, 0.41992188, 0.19726562, 0.32421875, 0.41992188, 0.20117188, 0.32421875, 0.41796875, 0.203125, 0.32617188, 0.41796875, ], dtype=np.float32, ), } ) expected_slice = expected_slices.get_expectation() max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) assert max_diff < 1e-4
import warnings from abc import ABC from typing import Any, Optional from langchain_core._api import deprecated from langchain_core.chat_history import ( BaseChatMessageHistory, InMemoryChatMessageHistory, ) from langchain_core.memory import BaseMemory from langchain_core.messages import AIMessage, HumanMessage from pydantic import Field from langchain.memory.utils import get_prompt_input_key @deprecated( since="0.3.1", removal="1.0.0", message=( "Please see the migration guide at: " "https://python.langchain.com/docs/versions/migrating_memory/" ), ) class BaseChatMemory(BaseMemory, ABC): """Abstract base class for chat memory. **ATTENTION** This abstraction was created prior to when chat models had native tool calling capabilities. It does **NOT** support native tool calling capabilities for chat models and will fail SILENTLY if used with a chat model that has native tool calling. DO NOT USE THIS ABSTRACTION FOR NEW CODE. """ chat_memory: BaseChatMessageHistory = Field( default_factory=InMemoryChatMessageHistory, ) output_key: Optional[str] = None input_key: Optional[str] = None return_messages: bool = False def _get_input_output( self, inputs: dict[str, Any], outputs: dict[str, str], ) -> tuple[str, str]: if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key if self.output_key is None: if len(outputs) == 1: output_key = next(iter(outputs.keys())) elif "output" in outputs: output_key = "output" warnings.warn( f"'{self.__class__.__name__}' got multiple output keys:" f" {outputs.keys()}. The default 'output' key is being used." f" If this is not desired, please manually set 'output_key'.", stacklevel=3, ) else: msg = ( f"Got multiple output keys: {outputs.keys()}, cannot " f"determine which to store in memory. Please set the " f"'output_key' explicitly." ) raise ValueError(msg) else: output_key = self.output_key return inputs[prompt_input_key], outputs[output_key] def save_context(self, inputs: dict[str, Any], outputs: dict[str, str]) -> None: """Save context from this conversation to buffer.""" input_str, output_str = self._get_input_output(inputs, outputs) self.chat_memory.add_messages( [ HumanMessage(content=input_str), AIMessage(content=output_str), ], ) async def asave_context( self, inputs: dict[str, Any], outputs: dict[str, str], ) -> None: """Save context from this conversation to buffer.""" input_str, output_str = self._get_input_output(inputs, outputs) await self.chat_memory.aadd_messages( [ HumanMessage(content=input_str), AIMessage(content=output_str), ], ) def clear(self) -> None: """Clear memory contents.""" self.chat_memory.clear() async def aclear(self) -> None: """Clear memory contents.""" await self.chat_memory.aclear()
import warnings from abc import ABC from typing import Any, Optional from langchain_core._api import deprecated from langchain_core.chat_history import ( BaseChatMessageHistory, InMemoryChatMessageHistory, ) from langchain_core.memory import BaseMemory from langchain_core.messages import AIMessage, HumanMessage from pydantic import Field from langchain.memory.utils import get_prompt_input_key @deprecated( since="0.3.1", removal="1.0.0", message=( "Please see the migration guide at: " "https://python.langchain.com/docs/versions/migrating_memory/" ), ) class BaseChatMemory(BaseMemory, ABC): """Abstract base class for chat memory. **ATTENTION** This abstraction was created prior to when chat models had native tool calling capabilities. It does **NOT** support native tool calling capabilities for chat models and will fail SILENTLY if used with a chat model that has native tool calling. DO NOT USE THIS ABSTRACTION FOR NEW CODE. """ chat_memory: BaseChatMessageHistory = Field( default_factory=InMemoryChatMessageHistory, ) output_key: Optional[str] = None input_key: Optional[str] = None return_messages: bool = False def _get_input_output( self, inputs: dict[str, Any], outputs: dict[str, str], ) -> tuple[str, str]: if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key if self.output_key is None: if len(outputs) == 1: output_key = next(iter(outputs.keys())) elif "output" in outputs: output_key = "output" warnings.warn( f"'{self.__class__.__name__}' got multiple output keys:" f" {outputs.keys()}. The default 'output' key is being used." f" If this is not desired, please manually set 'output_key'.", stacklevel=2, ) else: msg = ( f"Got multiple output keys: {outputs.keys()}, cannot " f"determine which to store in memory. Please set the " f"'output_key' explicitly." ) raise ValueError(msg) else: output_key = self.output_key return inputs[prompt_input_key], outputs[output_key] def save_context(self, inputs: dict[str, Any], outputs: dict[str, str]) -> None: """Save context from this conversation to buffer.""" input_str, output_str = self._get_input_output(inputs, outputs) self.chat_memory.add_messages( [ HumanMessage(content=input_str), AIMessage(content=output_str), ], ) async def asave_context( self, inputs: dict[str, Any], outputs: dict[str, str], ) -> None: """Save context from this conversation to buffer.""" input_str, output_str = self._get_input_output(inputs, outputs) await self.chat_memory.aadd_messages( [ HumanMessage(content=input_str), AIMessage(content=output_str), ], ) def clear(self) -> None: """Clear memory contents.""" self.chat_memory.clear() async def aclear(self) -> None: """Clear memory contents.""" await self.chat_memory.aclear()
def __getattr__(name: str): if name in ["ctc_decoder", "lexicon_decoder"]: import warnings from torchaudio.models.decoder import ctc_decoder warnings.warn( f"{__name__}.{name} has been moved to torchaudio.models.decoder.ctc_decoder", DeprecationWarning, ) if name == "lexicon_decoder": global lexicon_decoder lexicon_decoder = ctc_decoder return lexicon_decoder else: return ctc_decoder elif name == "download_pretrained_files": import warnings from torchaudio.models.decoder import download_pretrained_files return download_pretrained_files raise AttributeError(f"module {__name__} has no attribute {name}") def __dir__(): return ["ctc_decoder", "lexicon_decoder", "download_pretrained_files"]
_INITIALIZED = False _LAZILY_IMPORTED = [ "Hypothesis", "CTCDecoder", "ctc_decoder", "lexicon_decoder", "download_pretrained_files", ] def _init_extension(): import torchaudio torchaudio._extension._load_lib("libtorchaudio_decoder") global _INITIALIZED _INITIALIZED = True def __getattr__(name: str): if name in _LAZILY_IMPORTED: if not _INITIALIZED: _init_extension() try: from . import _ctc_decoder except AttributeError as err: raise RuntimeError( "CTC decoder requires the decoder extension. Please set BUILD_CTC_DECODER=1 when building from source." ) from err item = getattr(_ctc_decoder, name) globals()[name] = item return item raise AttributeError(f"module {__name__} has no attribute {name}") def __dir__(): return sorted(__all__ + _LAZILY_IMPORTED) __all__ = []
# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Tuple import torch.nn as nn from mmcv.cnn import ConvModule from mmengine.model import BaseModule from torch import Tensor from mmdet.models.layers import ResLayer, SimplifiedBasicBlock from mmdet.registry import MODELS from mmdet.utils import MultiConfig, OptConfigType @MODELS.register_module() class GlobalContextHead(BaseModule): """Global context head used in `SCNet <https://arxiv.org/abs/2012.10150>`_. Args: num_convs (int, optional): number of convolutional layer in GlbCtxHead. Defaults to 4. in_channels (int, optional): number of input channels. Defaults to 256. conv_out_channels (int, optional): number of output channels before classification layer. Defaults to 256. num_classes (int, optional): number of classes. Defaults to 80. loss_weight (float, optional): global context loss weight. Defaults to 1. conv_cfg (dict, optional): config to init conv layer. Defaults to None. norm_cfg (dict, optional): config to init norm layer. Defaults to None. conv_to_res (bool, optional): if True, 2 convs will be grouped into 1 `SimplifiedBasicBlock` using a skip connection. Defaults to False. init_cfg (:obj:`ConfigDict` or dict or list[dict] or list[:obj:`ConfigDict`]): Initialization config dict. Defaults to dict(type='Normal', std=0.01, override=dict(name='fc')). """ def __init__( self, num_convs: int = 4, in_channels: int = 256, conv_out_channels: int = 256, num_classes: int = 80, loss_weight: float = 1.0, conv_cfg: OptConfigType = None, norm_cfg: OptConfigType = None, conv_to_res: bool = False, init_cfg: MultiConfig = dict( type='Normal', std=0.01, override=dict(name='fc')) ) -> None: super().__init__(init_cfg=init_cfg) self.num_convs = num_convs self.in_channels = in_channels self.conv_out_channels = conv_out_channels self.num_classes = num_classes self.loss_weight = loss_weight self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.conv_to_res = conv_to_res self.fp16_enabled = False if self.conv_to_res: num_res_blocks = num_convs // 2 self.convs = ResLayer( SimplifiedBasicBlock, in_channels, self.conv_out_channels, num_res_blocks, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) self.num_convs = num_res_blocks else: self.convs = nn.ModuleList() for i in range(self.num_convs): in_channels = self.in_channels if i == 0 else conv_out_channels self.convs.append( ConvModule( in_channels, conv_out_channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Linear(conv_out_channels, num_classes) self.criterion = nn.BCEWithLogitsLoss() def forward(self, feats: Tuple[Tensor]) -> Tuple[Tensor]: """Forward function. Args: feats (Tuple[Tensor]): Multi-scale feature maps. Returns: Tuple[Tensor]: - mc_pred (Tensor): Multi-class prediction. - x (Tensor): Global context feature. """ x = feats[-1] for i in range(self.num_convs): x = self.convs[i](x) x = self.pool(x) # multi-class prediction mc_pred = x.reshape(x.size(0), -1) mc_pred = self.fc(mc_pred) return mc_pred, x def loss(self, pred: Tensor, labels: List[Tensor]) -> Tensor: """Loss function. Args: pred (Tensor): Logits. labels (list[Tensor]): Grouth truths. Returns: Tensor: Loss. """ labels = [lbl.unique() for lbl in labels] targets = pred.new_zeros(pred.size()) for i, label in enumerate(labels): targets[i, label] = 1.0 loss = self.loss_weight * self.criterion(pred, targets) return loss
# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Tuple import torch.nn as nn from mmcv.cnn import ConvModule from mmengine.model import BaseModule from torch import Tensor from mmdet.core.utils.typing import MultiConfig, OptConfigType from mmdet.models.utils import ResLayer, SimplifiedBasicBlock from mmdet.registry import MODELS @MODELS.register_module() class GlobalContextHead(BaseModule): """Global context head used in `SCNet <https://arxiv.org/abs/2012.10150>`_. Args: num_convs (int, optional): number of convolutional layer in GlbCtxHead. Defaults to 4. in_channels (int, optional): number of input channels. Defaults to 256. conv_out_channels (int, optional): number of output channels before classification layer. Defaults to 256. num_classes (int, optional): number of classes. Defaults to 80. loss_weight (float, optional): global context loss weight. Defaults to 1. conv_cfg (dict, optional): config to init conv layer. Defaults to None. norm_cfg (dict, optional): config to init norm layer. Defaults to None. conv_to_res (bool, optional): if True, 2 convs will be grouped into 1 `SimplifiedBasicBlock` using a skip connection. Defaults to False. init_cfg (:obj:`ConfigDict` or dict or list[dict] or list[:obj:`ConfigDict`]): Initialization config dict. Defaults to dict(type='Normal', std=0.01, override=dict(name='fc')). """ def __init__( self, num_convs: int = 4, in_channels: int = 256, conv_out_channels: int = 256, num_classes: int = 80, loss_weight: float = 1.0, conv_cfg: OptConfigType = None, norm_cfg: OptConfigType = None, conv_to_res: bool = False, init_cfg: MultiConfig = dict( type='Normal', std=0.01, override=dict(name='fc')) ) -> None: super().__init__(init_cfg=init_cfg) self.num_convs = num_convs self.in_channels = in_channels self.conv_out_channels = conv_out_channels self.num_classes = num_classes self.loss_weight = loss_weight self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.conv_to_res = conv_to_res self.fp16_enabled = False if self.conv_to_res: num_res_blocks = num_convs // 2 self.convs = ResLayer( SimplifiedBasicBlock, in_channels, self.conv_out_channels, num_res_blocks, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) self.num_convs = num_res_blocks else: self.convs = nn.ModuleList() for i in range(self.num_convs): in_channels = self.in_channels if i == 0 else conv_out_channels self.convs.append( ConvModule( in_channels, conv_out_channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Linear(conv_out_channels, num_classes) self.criterion = nn.BCEWithLogitsLoss() def forward(self, feats: Tuple[Tensor]) -> Tuple[Tensor]: """Forward function. Args: feats (Tuple[Tensor]): Multi-scale feature maps. Returns: Tuple[Tensor]: - mc_pred (Tensor): Multi-class prediction. - x (Tensor): Global context feature. """ x = feats[-1] for i in range(self.num_convs): x = self.convs[i](x) x = self.pool(x) # multi-class prediction mc_pred = x.reshape(x.size(0), -1) mc_pred = self.fc(mc_pred) return mc_pred, x def loss(self, pred: Tensor, labels: List[Tensor]) -> Tensor: """Loss function. Args: pred (Tensor): Logits. labels (list[Tensor]): Grouth truths. Returns: Tensor: Loss. """ labels = [lbl.unique() for lbl in labels] targets = pred.new_zeros(pred.size()) for i, label in enumerate(labels): targets[i, label] = 1.0 loss = self.loss_weight * self.criterion(pred, targets) return loss
_base_ = ['../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'] img_scale = (640, 640) # height, width # model settings model = dict( type='YOLOX', input_size=img_scale, random_size_range=(15, 25), random_size_interval=10, backbone=dict(type='CSPDarknet', deepen_factor=0.33, widen_factor=0.5), neck=dict( type='YOLOXPAFPN', in_channels=[128, 256, 512], out_channels=128, num_csp_blocks=1), bbox_head=dict( type='YOLOXHead', num_classes=80, in_channels=128, feat_channels=128), train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)), # In order to align the source code, the threshold of the val phase is # 0.01, and the threshold of the test phase is 0.001. test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65))) # dataset settings data_root = 'data/coco/' dataset_type = 'CocoDataset' train_pipeline = [ dict(type='Mosaic', img_scale=img_scale, pad_val=114.0), dict( type='RandomAffine', scaling_ratio_range=(0.1, 2), border=(-img_scale[0] // 2, -img_scale[1] // 2)), dict( type='MixUp', img_scale=img_scale, ratio_range=(0.8, 1.6), pad_val=114.0), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', flip_ratio=0.5), # According to the official implementation, multi-scale # training is not considered here but in the # 'mmdet/models/detectors/yolox.py'. dict(type='Resize', img_scale=img_scale, keep_ratio=True), dict( type='Pad', pad_to_square=True, # If the image is three-channel, the pad value needs # to be set separately for each channel. pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] train_dataset = dict( type='MultiImageMixDataset', dataset=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True) ], filter_empty_gt=False, ), pipeline=train_pipeline) test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=img_scale, flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=4, persistent_workers=True, train=train_dataset, val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) # optimizer # default 8 gpu optimizer = dict( type='SGD', lr=0.01, momentum=0.9, weight_decay=5e-4, nesterov=True, paramwise_cfg=dict(norm_decay_mult=0., bias_decay_mult=0.)) optimizer_config = dict(grad_clip=None) max_epochs = 300 num_last_epochs = 15 resume_from = None interval = 10 # learning policy lr_config = dict( _delete_=True, policy='YOLOX', warmup='exp', by_epoch=False, warmup_by_epoch=True, warmup_ratio=1, warmup_iters=5, # 5 epoch num_last_epochs=num_last_epochs, min_lr_ratio=0.05) runner = dict(type='EpochBasedRunner', max_epochs=max_epochs) custom_hooks = [ dict( type='YOLOXModeSwitchHook', num_last_epochs=num_last_epochs, priority=48), dict( type='SyncNormHook', num_last_epochs=num_last_epochs, interval=interval, priority=48), dict( type='ExpMomentumEMAHook', resume_from=resume_from, momentum=0.0001, priority=49) ] checkpoint_config = dict(interval=interval) evaluation = dict( save_best='auto', # The evaluation interval is 'interval' when running epoch is # less than ‘max_epochs - num_last_epochs’. # The evaluation interval is 1 when running epoch is greater than # or equal to ‘max_epochs - num_last_epochs’. interval=interval, dynamic_intervals=[(max_epochs - num_last_epochs, 1)], metric='bbox') log_config = dict(interval=50) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = ['../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'] img_scale = (640, 640) # height, width # model settings model = dict( type='YOLOX', input_size=img_scale, random_size_range=(15, 25), random_size_interval=10, backbone=dict(type='CSPDarknet', deepen_factor=0.33, widen_factor=0.5), neck=dict( type='YOLOXPAFPN', in_channels=[128, 256, 512], out_channels=128, num_csp_blocks=1), bbox_head=dict( type='YOLOXHead', num_classes=80, in_channels=128, feat_channels=128), train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)), # In order to align the source code, the threshold of the val phase is # 0.01, and the threshold of the test phase is 0.001. test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65))) # dataset settings data_root = 'data/coco/' dataset_type = 'CocoDataset' train_pipeline = [ dict(type='Mosaic', img_scale=img_scale, pad_val=114.0), dict( type='RandomAffine', scaling_ratio_range=(0.1, 2), border=(-img_scale[0] // 2, -img_scale[1] // 2)), dict( type='MixUp', img_scale=img_scale, ratio_range=(0.8, 1.6), pad_val=114.0), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', flip_ratio=0.5), # According to the official implementation, multi-scale # training is not considered here but in the # 'mmdet/models/detectors/yolox.py'. dict(type='Resize', img_scale=img_scale, keep_ratio=True), dict( type='Pad', pad_to_square=True, # If the image is three-channel, the pad value needs # to be set separately for each channel. pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] train_dataset = dict( type='MultiImageMixDataset', dataset=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True) ], filter_empty_gt=False, ), pipeline=train_pipeline) test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=img_scale, flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=4, persistent_workers=True, train=train_dataset, val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) # optimizer # default 8 gpu optimizer = dict( type='SGD', lr=0.01, momentum=0.9, weight_decay=5e-4, nesterov=True, paramwise_cfg=dict(norm_decay_mult=0., bias_decay_mult=0.)) optimizer_config = dict(grad_clip=None) max_epochs = 300 num_last_epochs = 15 resume_from = None interval = 10 # learning policy lr_config = dict( _delete_=True, policy='YOLOX', warmup='exp', by_epoch=False, warmup_by_epoch=True, warmup_ratio=1, warmup_iters=5, # 5 epoch num_last_epochs=num_last_epochs, min_lr_ratio=0.05) runner = dict(type='EpochBasedRunner', max_epochs=max_epochs) custom_hooks = [ dict( type='YOLOXModeSwitchHook', num_last_epochs=num_last_epochs, priority=48), dict( type='SyncNormHook', num_last_epochs=num_last_epochs, interval=interval, priority=48), dict( type='ExpMomentumEMAHook', resume_from=resume_from, momentum=0.0001, priority=49) ] checkpoint_config = dict(interval=interval) evaluation = dict( save_best='auto', # The evaluation interval is 'interval' when running epoch is # less than ‘max_epochs - num_last_epochs’. # The evaluation interval is 1 when running epoch is greater than # or equal to ‘max_epochs - num_last_epochs’. interval=interval, dynamic_intervals=[(max_epochs - num_last_epochs, 1)], metric='bbox') log_config = dict(interval=50)
#!/usr/bin/env python3 # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" print("Python version:", sys.version) print("OS platform:", platform.platform()) print("OS architecture:", platform.machine()) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) if torch.cuda.is_available(): device_properties = torch.cuda.get_device_properties(0) total_memory = device_properties.total_memory / (1024**3) print(f"CUDA memory: {total_memory} GB") except ImportError: print("Torch version:", None) try: import transformers print("transformers version:", transformers.__version__) except ImportError: print("transformers version:", None)
#!/usr/bin/env python3 # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" print("Python version:", sys.version) print("OS platform:", platform.platform()) print("OS architecture:", platform.machine()) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) if torch.cuda.is_available(): device_properties = torch.cuda.get_device_properties(0) total_memory = device_properties.total_memory / (1024**3) print(f"CUDA memory: {total_memory} GB") except ImportError: print("Torch version:", None) try: import transformers print("transformers version:", transformers.__version__) except ImportError: print("transformers version:", None)
_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, plugins=[ dict( cfg=dict(type='ContextBlock', ratio=1. / 16), stages=(False, True, True, True), position='after_conv3') ]))
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, plugins=[ dict( cfg=dict(type='ContextBlock', ratio=1. / 16), stages=(False, True, True, True), position='after_conv3') ]))
"""Module for argparse for Client""" def mixin_comm_protocol_parser(parser): """Add the arguments for the protocol to the parser :param parser: the parser configure """ from jina.enums import GatewayProtocolType parser.add_argument( '--protocol', type=GatewayProtocolType.from_string, choices=list(GatewayProtocolType), default=GatewayProtocolType.GRPC, help='Communication protocol between server and client.', ) def mixin_client_features_parser(parser): """Add the arguments for the client to the parser :param parser: the parser configure """ parser.add_argument( '--asyncio', action='store_true', default=False, help='If set, then the input and output of this Client work in an asynchronous manner. ', )
"""Module for argparse for Client""" def mixin_comm_protocol_parser(parser): """Add the arguments for the protocol to the parser :param parser: the parser configure """ from jina.enums import GatewayProtocolType parser.add_argument( '--protocol', type=GatewayProtocolType.from_string, choices=list(GatewayProtocolType), default=GatewayProtocolType.GRPC, help='Communication protocol between server and client.', ) def mixin_client_features_parser(parser): """Add the arguments for the client to the parser :param parser: the parser configure """ parser.add_argument( '--asyncio', action='store_true', default=False, help='If set, then the input and output of this Client work in an asynchronous manner. ', ) parser.add_argument( '--return-responses', action='store_true', default=False, help="If set, return results as List of Requests instead of a reduced DocArray.", )
from pathlib import Path from typing import Dict import numpy as np from jina import DocumentArray, Document, Executor from ...paddle_image import ImagePaddlehubEncoder input_dim = 224 target_output_dim = 2048 num_doc = 2 test_data = np.random.rand(num_doc, 3, input_dim, input_dim) tmp_files = [] def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.model_name == 'xception71_imagenet' def test_imagepaddlehubencoder_encode(test_images: Dict[str, np.array]): encoder = ImagePaddlehubEncoder(channel_axis=3) embeddings = {} for name, image_arr in test_images.items(): docs = DocumentArray([Document(blob=image_arr)]) encoder.encode(docs, parameters={}) embeddings[name] = docs[0].embedding assert docs[0].embedding.shape == (2048,) def dist(a, b): a_embedding = embeddings[a] b_embedding = embeddings[b] return np.linalg.norm(a_embedding - b_embedding) small_distance = dist('banana1', 'banana2') assert small_distance < dist('banana1', 'airplane') assert small_distance < dist('banana1', 'satellite') assert small_distance < dist('banana1', 'studio') assert small_distance < dist('banana2', 'airplane') assert small_distance < dist('banana2', 'satellite') assert small_distance < dist('banana2', 'studio') assert small_distance < dist('airplane', 'studio') assert small_distance < dist('airplane', 'satellite')
import os from typing import Dict import numpy as np from jina import DocumentArray, Document from ...paddle_image import ImagePaddlehubEncoder directory = os.path.dirname(os.path.realpath(__file__)) input_dim = 224 target_output_dim = 2048 num_doc = 2 test_data = np.random.rand(num_doc, 3, input_dim, input_dim) tmp_files = [] def test_imagepaddlehubencoder_encode(test_images: Dict[str, np.array]): encoder = ImagePaddlehubEncoder(channel_axis=3) embeddings = {} for name, image_arr in test_images.items(): docs = DocumentArray([Document(blob=image_arr)]) encoder.encode(docs, parameters={}) embeddings[name] = docs[0].embedding assert docs[0].embedding.shape == (2048,) def dist(a, b): a_embedding = embeddings[a] b_embedding = embeddings[b] return np.linalg.norm(a_embedding - b_embedding) small_distance = dist('banana1', 'banana2') assert small_distance < dist('banana1', 'airplane') assert small_distance < dist('banana1', 'satellite') assert small_distance < dist('banana1', 'studio') assert small_distance < dist('banana2', 'airplane') assert small_distance < dist('banana2', 'satellite') assert small_distance < dist('banana2', 'studio') assert small_distance < dist('airplane', 'studio') assert small_distance < dist('airplane', 'satellite')
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.registry import HOOKS from .hook import Hook @HOOKS.register_module() class DistSamplerSeedHook(Hook): """Data-loading sampler for distributed training. When distributed training, it is only useful in conjunction with :obj:`EpochBasedRunner`, while :obj:`IterBasedRunner` achieves the same purpose with :obj:`IterLoader`. """ priority = 'NORMAL' def before_epoch(self, runner: object) -> None: """Set the seed for sampler and batch_sampler. Args: runner (object): The runner of the training process. """ if hasattr(runner.data_loader.sampler, 'set_epoch'): # type: ignore # in case the data loader uses `SequentialSampler` in Pytorch runner.data_loader.sampler.set_epoch(runner.epoch) # type: ignore elif hasattr( runner.data_loader.batch_sampler.sampler, # type: ignore 'set_epoch'): # batch sampler in pytorch warps the sampler as its attributes. runner.data_loader.batch_sampler.sampler.set_epoch( # type: ignore runner.epoch) # type: ignore
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.registry import HOOKS from .hook import Hook @HOOKS.register_module() class DistSamplerSeedHook(Hook): """Data-loading sampler for distributed training. When distributed training, it is only useful in conjunction with :obj:`EpochBasedRunner`, while :obj:`IterBasedRunner` achieves the same purpose with :obj:`IterLoader`. """ def before_epoch(self, runner: object) -> None: """Set the seed for sampler and batch_sampler. Args: runner (object): The runner of the training process. """ if hasattr(runner.data_loader.sampler, 'set_epoch'): # type: ignore # in case the data loader uses `SequentialSampler` in Pytorch runner.data_loader.sampler.set_epoch(runner.epoch) # type: ignore elif hasattr( runner.data_loader.batch_sampler.sampler, # type: ignore 'set_epoch'): # batch sampler in pytorch warps the sampler as its attributes. runner.data_loader.batch_sampler.sampler.set_epoch( # type: ignore runner.epoch) # type: ignore
from functools import partial from torchaudio.models import emformer_rnnt_base from torchaudio.pipelines import RNNTBundle EMFORMER_RNNT_BASE_MUSTC = RNNTBundle( _rnnt_path="models/emformer_rnnt_base_mustc.pt", _rnnt_factory_func=partial(emformer_rnnt_base, num_symbols=501), _global_stats_path="pipeline-assets/global_stats_rnnt_mustc.json", _sp_model_path="pipeline-assets/spm_bpe_500_mustc.model", _right_padding=4, _blank=500, _sample_rate=16000, _n_fft=400, _n_mels=80, _hop_length=160, _segment_length=16, _right_context_length=4, ) EMFORMER_RNNT_BASE_MUSTC.__doc__ = """Pre-trained Emformer-RNNT-based ASR pipeline capable of performing both streaming and non-streaming inference. The underlying model is constructed by :py:func:`torchaudio.models.emformer_rnnt_base` and utilizes weights trained on *MuST-C release v2.0* :cite:`CATTONI2021101155` dataset using training script ``train.py`` `here <https://github.com/pytorch/audio/tree/main/examples/asr/emformer_rnnt>`__ with ``num_symbols=501``. Please refer to :py:class:`torchaudio.pipelines.RNNTBundle` for usage instructions. """ EMFORMER_RNNT_BASE_TEDLIUM3 = RNNTBundle( _rnnt_path="models/emformer_rnnt_base_tedlium3.pt", _rnnt_factory_func=partial(emformer_rnnt_base, num_symbols=501), _global_stats_path="pipeline-assets/global_stats_rnnt_tedlium3.json", _sp_model_path="pipeline-assets/spm_bpe_500_tedlium3.model", _right_padding=4, _blank=500, _sample_rate=16000, _n_fft=400, _n_mels=80, _hop_length=160, _segment_length=16, _right_context_length=4, ) EMFORMER_RNNT_BASE_TEDLIUM3.__doc__ = """Pre-trained Emformer-RNNT-based ASR pipeline capable of performing both streaming and non-streaming inference. The underlying model is constructed by :py:func:`torchaudio.models.emformer_rnnt_base` and utilizes weights trained on *TED-LIUM Release 3* :cite:`rousseau2012tedlium` dataset using training script ``train.py`` `here <https://github.com/pytorch/audio/tree/main/examples/asr/emformer_rnnt>`__ with ``num_symbols=501``. Please refer to :py:class:`torchaudio.pipelines.RNNTBundle` for usage instructions. """
from functools import partial from torchaudio.models import emformer_rnnt_base from torchaudio.pipelines import RNNTBundle EMFORMER_RNNT_BASE_MUSTC = RNNTBundle( _rnnt_path="models/emformer_rnnt_base_mustc.pt", _rnnt_factory_func=partial(emformer_rnnt_base, num_symbols=501), _global_stats_path="pipeline-assets/global_stats_rnnt_mustc.json", _sp_model_path="pipeline-assets/spm_bpe_500_mustc.model", _right_padding=4, _blank=500, _sample_rate=16000, _n_fft=400, _n_mels=80, _hop_length=160, _segment_length=16, _right_context_length=4, ) EMFORMER_RNNT_BASE_MUSTC.__doc__ = """Pre-trained Emformer-RNNT-based ASR pipeline capable of performing both streaming and non-streaming inference. The underlying model is constructed by :py:func:`torchaudio.models.emformer_rnnt_base` and utilizes weights trained on *MuST-C release v2.0* :cite:`CATTONI2021101155` dataset using training script ``train.py`` `here <https://github.com/pytorch/audio/tree/main/examples/asr/emformer_rnnt>`__ with ``num_symbols=501``. Please refer to :py:class:`torchaudio.pipelines.RNNTBundle` for usage instructions. """ EMFORMER_RNNT_BASE_TEDLIUM3 = RNNTBundle( _rnnt_path="models/emformer_rnnt_base_tedlium3.pt", _rnnt_factory_func=partial(emformer_rnnt_base, num_symbols=501), _global_stats_path="pipeline-assets/global_stats_rnnt_tedlium3.json", _sp_model_path="pipeline-assets/spm_bpe_500_tedlium3.model", _right_padding=4, _blank=500, _sample_rate=16000, _n_fft=400, _n_mels=80, _hop_length=160, _segment_length=16, _right_context_length=4, ) EMFORMER_RNNT_BASE_TEDLIUM3.__doc__ = """Pre-trained Emformer-RNNT-based ASR pipeline capable of performing both streaming and non-streaming inference. The underlying model is constructed by :py:func:`torchaudio.models.emformer_rnnt_base` and utilizes weights trained on TED-LIUM Release 3 dataset using training script ``train.py`` `here <https://github.com/pytorch/audio/tree/main/examples/asr/emformer_rnnt>`__ with ``num_symbols=501``. Please refer to :py:class:`torchaudio.pipelines.RNNTBundle` for usage instructions. """
_base_ = [ '../_base_/models/faster-rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), roi_head=dict( bbox_head=dict( _delete_=True, type='SABLHead', num_classes=80, cls_in_channels=256, reg_in_channels=256, roi_feat_size=7, reg_feat_up_ratio=2, reg_pre_kernel=3, reg_post_kernel=3, reg_pre_num=2, reg_post_num=1, cls_out_channels=1024, reg_offset_out_channels=256, reg_cls_out_channels=256, num_cls_fcs=1, num_reg_fcs=0, reg_class_agnostic=True, norm_cfg=None, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=1.7), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox_reg=dict(type='SmoothL1Loss', beta=0.1, loss_weight=1.0))))
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), roi_head=dict( bbox_head=dict( _delete_=True, type='SABLHead', num_classes=80, cls_in_channels=256, reg_in_channels=256, roi_feat_size=7, reg_feat_up_ratio=2, reg_pre_kernel=3, reg_post_kernel=3, reg_pre_num=2, reg_post_num=1, cls_out_channels=1024, reg_offset_out_channels=256, reg_cls_out_channels=256, num_cls_fcs=1, num_reg_fcs=0, reg_class_agnostic=True, norm_cfg=None, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=1.7), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox_reg=dict(type='SmoothL1Loss', beta=0.1, loss_weight=1.0))))
# Copyright (c) OpenMMLab. All rights reserved. from .conditional_detr_layers import (ConditionalDetrTransformerDecoder, ConditionalDetrTransformerDecoderLayer) from .dab_detr_layers import (DABDetrTransformerDecoder, DABDetrTransformerDecoderLayer, DABDetrTransformerEncoder) from .ddq_detr_layers import DDQTransformerDecoder from .deformable_detr_layers import (DeformableDetrTransformerDecoder, DeformableDetrTransformerDecoderLayer, DeformableDetrTransformerEncoder, DeformableDetrTransformerEncoderLayer) from .detr_layers import (DetrTransformerDecoder, DetrTransformerDecoderLayer, DetrTransformerEncoder, DetrTransformerEncoderLayer) from .dino_layers import CdnQueryGenerator, DinoTransformerDecoder from .mask2former_layers import (Mask2FormerTransformerDecoder, Mask2FormerTransformerDecoderLayer, Mask2FormerTransformerEncoder) from .utils import (MLP, AdaptivePadding, ConditionalAttention, DynamicConv, PatchEmbed, PatchMerging, coordinate_to_encoding, inverse_sigmoid, nchw_to_nlc, nlc_to_nchw) __all__ = [ 'nlc_to_nchw', 'nchw_to_nlc', 'AdaptivePadding', 'PatchEmbed', 'PatchMerging', 'inverse_sigmoid', 'DynamicConv', 'MLP', 'DetrTransformerEncoder', 'DetrTransformerDecoder', 'DetrTransformerEncoderLayer', 'DetrTransformerDecoderLayer', 'DeformableDetrTransformerEncoder', 'DeformableDetrTransformerDecoder', 'DeformableDetrTransformerEncoderLayer', 'DeformableDetrTransformerDecoderLayer', 'coordinate_to_encoding', 'ConditionalAttention', 'DABDetrTransformerDecoderLayer', 'DABDetrTransformerDecoder', 'DABDetrTransformerEncoder', 'DDQTransformerDecoder', 'ConditionalDetrTransformerDecoder', 'ConditionalDetrTransformerDecoderLayer', 'DinoTransformerDecoder', 'CdnQueryGenerator', 'Mask2FormerTransformerEncoder', 'Mask2FormerTransformerDecoderLayer', 'Mask2FormerTransformerDecoder' ]
# Copyright (c) OpenMMLab. All rights reserved. from .conditional_detr_layers import (ConditionalDetrTransformerDecoder, ConditionalDetrTransformerDecoderLayer) from .dab_detr_layers import (DABDetrTransformerDecoder, DABDetrTransformerDecoderLayer, DABDetrTransformerEncoder) from .deformable_detr_layers import (DeformableDetrTransformerDecoder, DeformableDetrTransformerDecoderLayer, DeformableDetrTransformerEncoder, DeformableDetrTransformerEncoderLayer) from .detr_layers import (DetrTransformerDecoder, DetrTransformerDecoderLayer, DetrTransformerEncoder, DetrTransformerEncoderLayer) from .dino_layers import CdnQueryGenerator, DinoTransformerDecoder from .mask2former_layers import (Mask2FormerTransformerDecoder, Mask2FormerTransformerDecoderLayer, Mask2FormerTransformerEncoder) from .utils import (MLP, AdaptivePadding, ConditionalAttention, DynamicConv, PatchEmbed, PatchMerging, coordinate_to_encoding, inverse_sigmoid, nchw_to_nlc, nlc_to_nchw) __all__ = [ 'nlc_to_nchw', 'nchw_to_nlc', 'AdaptivePadding', 'PatchEmbed', 'PatchMerging', 'inverse_sigmoid', 'DynamicConv', 'MLP', 'DetrTransformerEncoder', 'DetrTransformerDecoder', 'DetrTransformerEncoderLayer', 'DetrTransformerDecoderLayer', 'DeformableDetrTransformerEncoder', 'DeformableDetrTransformerDecoder', 'DeformableDetrTransformerEncoderLayer', 'DeformableDetrTransformerDecoderLayer', 'coordinate_to_encoding', 'ConditionalAttention', 'DABDetrTransformerDecoderLayer', 'DABDetrTransformerDecoder', 'DABDetrTransformerEncoder', 'ConditionalDetrTransformerDecoder', 'ConditionalDetrTransformerDecoderLayer', 'DinoTransformerDecoder', 'CdnQueryGenerator', 'Mask2FormerTransformerEncoder', 'Mask2FormerTransformerDecoderLayer', 'Mask2FormerTransformerDecoder' ]
import contextlib import logging import typing import fastapi import fastapi.responses import starlette.middleware.cors import uvicorn from autogpt_libs.feature_flag.client import ( initialize_launchdarkly, shutdown_launchdarkly, ) import backend.data.block import backend.data.db import backend.data.graph import backend.data.user import backend.server.routers.v1 import backend.util.service import backend.util.settings settings = backend.util.settings.Settings() logger = logging.getLogger(__name__) logging.getLogger("autogpt_libs").setLevel(logging.INFO) @contextlib.asynccontextmanager async def lifespan_context(app: fastapi.FastAPI): await backend.data.db.connect() await backend.data.block.initialize_blocks() await backend.data.user.migrate_and_encrypt_user_integrations() await backend.data.graph.fix_llm_provider_credentials() initialize_launchdarkly() yield shutdown_launchdarkly() await backend.data.db.disconnect() docs_url = ( "/docs" if settings.config.app_env == backend.util.settings.AppEnvironment.LOCAL else None ) app = fastapi.FastAPI( title="AutoGPT Agent Server", description=( "This server is used to execute agents that are created by the " "AutoGPT system." ), summary="AutoGPT Agent Server", version="0.1", lifespan=lifespan_context, docs_url=docs_url, ) def handle_internal_http_error(status_code: int = 500, log_error: bool = True): def handler(request: fastapi.Request, exc: Exception): if log_error: logger.exception(f"{request.method} {request.url.path} failed: {exc}") return fastapi.responses.JSONResponse( content={ "message": f"{request.method} {request.url.path} failed", "detail": str(exc), }, status_code=status_code, ) return handler app.add_exception_handler(ValueError, handle_internal_http_error(400)) app.add_exception_handler(Exception, handle_internal_http_error(500)) app.include_router(backend.server.routers.v1.v1_router, tags=["v1"]) @app.get(path="/health", tags=["health"], dependencies=[]) async def health(): return {"status": "healthy"} class AgentServer(backend.util.service.AppProcess): def run(self): server_app = starlette.middleware.cors.CORSMiddleware( app=app, allow_origins=settings.config.backend_cors_allow_origins, allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) uvicorn.run( server_app, host=backend.util.settings.Config().agent_api_host, port=backend.util.settings.Config().agent_api_port, ) @staticmethod async def test_execute_graph( graph_id: str, node_input: dict[typing.Any, typing.Any], user_id: str ): return backend.server.routers.v1.execute_graph(graph_id, node_input, user_id) @staticmethod async def test_create_graph( create_graph: backend.server.routers.v1.CreateGraph, user_id: str, is_template=False, ): return await backend.server.routers.v1.create_new_graph(create_graph, user_id) @staticmethod async def test_get_graph_run_status( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_status( graph_id, graph_exec_id, user_id ) @staticmethod async def test_get_graph_run_node_execution_results( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_node_execution_results( graph_id, graph_exec_id, user_id ) @staticmethod async def test_delete_graph(graph_id: str, user_id: str): return await backend.server.routers.v1.delete_graph(graph_id, user_id) def set_test_dependency_overrides(self, overrides: dict): app.dependency_overrides.update(overrides)
import contextlib import logging import typing import fastapi import fastapi.responses import starlette.middleware.cors import uvicorn import backend.data.block import backend.data.db import backend.data.graph import backend.data.user import backend.server.routers.v1 import backend.util.service import backend.util.settings settings = backend.util.settings.Settings() logger = logging.getLogger(__name__) @contextlib.asynccontextmanager async def lifespan_context(app: fastapi.FastAPI): await backend.data.db.connect() await backend.data.block.initialize_blocks() await backend.data.user.migrate_and_encrypt_user_integrations() await backend.data.graph.fix_llm_provider_credentials() yield await backend.data.db.disconnect() docs_url = ( "/docs" if settings.config.app_env == backend.util.settings.AppEnvironment.LOCAL else None ) app = fastapi.FastAPI( title="AutoGPT Agent Server", description=( "This server is used to execute agents that are created by the " "AutoGPT system." ), summary="AutoGPT Agent Server", version="0.1", lifespan=lifespan_context, docs_url=docs_url, ) def handle_internal_http_error(status_code: int = 500, log_error: bool = True): def handler(request: fastapi.Request, exc: Exception): if log_error: logger.exception(f"{request.method} {request.url.path} failed: {exc}") return fastapi.responses.JSONResponse( content={ "message": f"{request.method} {request.url.path} failed", "detail": str(exc), }, status_code=status_code, ) return handler app.add_exception_handler(ValueError, handle_internal_http_error(400)) app.add_exception_handler(Exception, handle_internal_http_error(500)) app.include_router(backend.server.routers.v1.v1_router, tags=["v1"]) @app.get(path="/health", tags=["health"], dependencies=[]) async def health(): return {"status": "healthy"} class AgentServer(backend.util.service.AppProcess): def run(self): server_app = starlette.middleware.cors.CORSMiddleware( app=app, allow_origins=settings.config.backend_cors_allow_origins, allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) uvicorn.run( server_app, host=backend.util.settings.Config().agent_api_host, port=backend.util.settings.Config().agent_api_port, ) @staticmethod async def test_execute_graph( graph_id: str, node_input: dict[typing.Any, typing.Any], user_id: str ): return backend.server.routers.v1.execute_graph(graph_id, node_input, user_id) @staticmethod async def test_create_graph( create_graph: backend.server.routers.v1.CreateGraph, user_id: str, is_template=False, ): return await backend.server.routers.v1.create_new_graph(create_graph, user_id) @staticmethod async def test_get_graph_run_status( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_status( graph_id, graph_exec_id, user_id ) @staticmethod async def test_get_graph_run_node_execution_results( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_node_execution_results( graph_id, graph_exec_id, user_id ) @staticmethod async def test_delete_graph(graph_id: str, user_id: str): return await backend.server.routers.v1.delete_graph(graph_id, user_id) def set_test_dependency_overrides(self, overrides: dict): app.dependency_overrides.update(overrides)
# Copyright (c) OpenMMLab. All rights reserved. import copy import os.path as osp import unittest import numpy as np from mmengine.data import BaseDataElement as PixelData from mmengine.data import InstanceData from mmdet.core import DetDataSample from mmdet.core.mask import BitmapMasks from mmdet.datasets.pipelines import PackDetInputs class TestPackDetInputs(unittest.TestCase): def setUp(self): """Setup the model and optimizer which are used in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ data_prefix = osp.join(osp.dirname(__file__), '../../data') img_path = osp.join(data_prefix, 'color.jpg') rng = np.random.RandomState(0) self.results1 = { 'img_id': 1, 'img_path': img_path, 'ori_height': 300, 'ori_width': 400, 'height': 600, 'width': 800, 'scale_factor': 2.0, 'flip': False, 'img': rng.rand(300, 400), 'gt_seg_map': rng.rand(300, 400), 'gt_masks': BitmapMasks(rng.rand(3, 300, 400), height=300, width=400), 'gt_bboxes_labels': rng.rand(3, ), 'gt_ignore_flags': np.array([0, 0, 1], dtype=np.bool) } self.results2 = { 'img_id': 1, 'img_path': img_path, 'ori_height': 300, 'ori_width': 400, 'height': 600, 'width': 800, 'scale_factor': 2.0, 'flip': False, 'img': rng.rand(300, 400), 'gt_seg_map': rng.rand(300, 400), 'gt_masks': BitmapMasks(rng.rand(3, 300, 400), height=300, width=400), 'gt_bboxes_labels': rng.rand(3, ) } self.meta_keys = ('img_id', 'img_path', 'ori_shape', 'scale_factor', 'flip') def test_transform(self): transform = PackDetInputs(meta_keys=self.meta_keys) results = transform(copy.deepcopy(self.results1)) self.assertIn('data_sample', results) self.assertIsInstance(results['data_sample'], DetDataSample) self.assertIsInstance(results['data_sample'].gt_instances, InstanceData) self.assertIsInstance(results['data_sample'].ignored_instances, InstanceData) self.assertEqual(len(results['data_sample'].gt_instances), 2) self.assertEqual(len(results['data_sample'].ignored_instances), 1) self.assertIsInstance(results['data_sample'].gt_sem_seg, PixelData) def test_transform_without_ignore(self): transform = PackDetInputs(meta_keys=self.meta_keys) results = transform(copy.deepcopy(self.results2)) self.assertIn('data_sample', results) self.assertIsInstance(results['data_sample'], DetDataSample) self.assertIsInstance(results['data_sample'].gt_instances, InstanceData) self.assertIsInstance(results['data_sample'].ignored_instances, InstanceData) self.assertEqual(len(results['data_sample'].gt_instances), 3) self.assertEqual(len(results['data_sample'].ignored_instances), 0) self.assertIsInstance(results['data_sample'].gt_sem_seg, PixelData) def test_repr(self): transform = PackDetInputs(meta_keys=self.meta_keys) self.assertEqual( repr(transform), f'PackDetInputs(meta_keys={self.meta_keys})')
# Copyright (c) OpenMMLab. All rights reserved. import copy import os.path as osp import unittest import numpy as np from mmengine.data import BaseDataElement as PixelData from mmengine.data import InstanceData from mmdet.core import DetDataSample from mmdet.core.mask import BitmapMasks from mmdet.datasets.pipelines import PackDetInputs class TestPackDetInputs(unittest.TestCase): def setUp(self): """Setup the model and optimizer which are used in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ data_prefix = osp.join(osp.dirname(__file__), '../../data') img_path = osp.join(data_prefix, 'color.jpg') rng = np.random.RandomState(0) self.results1 = { 'img_id': 1, 'img_path': img_path, 'ori_height': 300, 'ori_width': 400, 'height': 600, 'width': 800, 'scale_factor': 2.0, 'flip': False, 'img': rng.rand(300, 400), 'gt_seg_map': rng.rand(300, 400), 'gt_masks': BitmapMasks(rng.rand(3, 300, 400), height=300, width=400), 'gt_bboxes_labels': rng.rand(3, ), 'gt_ignore_flags': np.array([0, 0, 1], dtype=np.bool) } self.results2 = { 'img_id': 1, 'img_path': img_path, 'ori_height': 300, 'ori_width': 400, 'height': 600, 'width': 800, 'scale_factor': 2.0, 'flip': False, 'img': rng.rand(300, 400), 'gt_seg_map': rng.rand(300, 400), 'gt_masks': BitmapMasks(rng.rand(3, 300, 400), height=300, width=400), 'gt_bboxes_labels': rng.rand(3, ) } self.meta_keys = ('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip') def test_transform(self): transform = PackDetInputs(meta_keys=self.meta_keys) results = transform(copy.deepcopy(self.results1)) self.assertIn('data_sample', results) self.assertIsInstance(results['data_sample'], DetDataSample) self.assertIsInstance(results['data_sample'].gt_instances, InstanceData) self.assertIsInstance(results['data_sample'].ignored_instances, InstanceData) self.assertEqual(len(results['data_sample'].gt_instances), 2) self.assertEqual(len(results['data_sample'].ignored_instances), 1) self.assertIsInstance(results['data_sample'].gt_sem_seg, PixelData) def test_transform_without_ignore(self): transform = PackDetInputs(meta_keys=self.meta_keys) results = transform(copy.deepcopy(self.results2)) self.assertIn('data_sample', results) self.assertIsInstance(results['data_sample'], DetDataSample) self.assertIsInstance(results['data_sample'].gt_instances, InstanceData) self.assertIsInstance(results['data_sample'].ignored_instances, InstanceData) self.assertEqual(len(results['data_sample'].gt_instances), 3) self.assertEqual(len(results['data_sample'].ignored_instances), 0) self.assertIsInstance(results['data_sample'].gt_sem_seg, PixelData) def test_repr(self): transform = PackDetInputs(meta_keys=self.meta_keys) self.assertEqual( repr(transform), f'PackDetInputs(meta_keys={self.meta_keys})')
"""A unit test meant to catch accidental introduction of non-optional dependencies.""" from collections.abc import Mapping from pathlib import Path from typing import Any import pytest import toml from packaging.requirements import Requirement HERE = Path(__file__).parent PYPROJECT_TOML = HERE / "../../pyproject.toml" @pytest.fixture def uv_conf() -> dict[str, Any]: """Load the pyproject.toml file.""" with open(PYPROJECT_TOML) as f: return toml.load(f) def test_required_dependencies(uv_conf: Mapping[str, Any]) -> None: """A test that checks if a new non-optional dependency is being introduced. If this test is triggered, it means that a contributor is trying to introduce a new required dependency. This should be avoided in most situations. """ # Get the dependencies from the [tool.poetry.dependencies] section dependencies = uv_conf["project"]["dependencies"] required_dependencies = {Requirement(dep).name for dep in dependencies} assert sorted(required_dependencies) == sorted( [ "PyYAML", "SQLAlchemy", "async-timeout", "langchain-core", "langchain-text-splitters", "langsmith", "pydantic", "requests", ], ) def test_test_group_dependencies(uv_conf: Mapping[str, Any]) -> None: """Check if someone is attempting to add additional test dependencies. Only dependencies associated with test running infrastructure should be added to the test group; e.g., pytest, pytest-cov etc. Examples of dependencies that should NOT be included: boto3, azure, postgres, etc. """ dependencies = uv_conf["dependency-groups"]["test"] test_group_deps = {Requirement(dep).name for dep in dependencies} assert sorted(test_group_deps) == sorted( [ "duckdb-engine", "freezegun", "langchain-core", "langchain-tests", "langchain-text-splitters", "langchain-openai", "lark", "packaging", "pandas", "pytest", "pytest-asyncio", "pytest-cov", "pytest-dotenv", "pytest-mock", "pytest-socket", "pytest-watcher", "pytest-xdist", "blockbuster", "responses", "syrupy", "toml", "requests-mock", # TODO: temporary hack since cffi 1.17.1 doesn't work with py 3.9. "cffi", "numpy", ], )
"""A unit test meant to catch accidental introduction of non-optional dependencies.""" from collections.abc import Mapping from pathlib import Path from typing import Any import pytest import toml from packaging.requirements import Requirement HERE = Path(__file__).parent PYPROJECT_TOML = HERE / "../../pyproject.toml" @pytest.fixture() def uv_conf() -> dict[str, Any]: """Load the pyproject.toml file.""" with open(PYPROJECT_TOML) as f: return toml.load(f) def test_required_dependencies(uv_conf: Mapping[str, Any]) -> None: """A test that checks if a new non-optional dependency is being introduced. If this test is triggered, it means that a contributor is trying to introduce a new required dependency. This should be avoided in most situations. """ # Get the dependencies from the [tool.poetry.dependencies] section dependencies = uv_conf["project"]["dependencies"] required_dependencies = {Requirement(dep).name for dep in dependencies} assert sorted(required_dependencies) == sorted( [ "PyYAML", "SQLAlchemy", "async-timeout", "langchain-core", "langchain-text-splitters", "langsmith", "pydantic", "requests", ] ) def test_test_group_dependencies(uv_conf: Mapping[str, Any]) -> None: """Check if someone is attempting to add additional test dependencies. Only dependencies associated with test running infrastructure should be added to the test group; e.g., pytest, pytest-cov etc. Examples of dependencies that should NOT be included: boto3, azure, postgres, etc. """ dependencies = uv_conf["dependency-groups"]["test"] test_group_deps = {Requirement(dep).name for dep in dependencies} assert sorted(test_group_deps) == sorted( [ "duckdb-engine", "freezegun", "langchain-core", "langchain-tests", "langchain-text-splitters", "langchain-openai", "lark", "packaging", "pandas", "pytest", "pytest-asyncio", "pytest-cov", "pytest-dotenv", "pytest-mock", "pytest-socket", "pytest-watcher", "pytest-xdist", "blockbuster", "responses", "syrupy", "toml", "requests-mock", # TODO: temporary hack since cffi 1.17.1 doesn't work with py 3.9. "cffi", "numpy", ] )
"""Message responsible for deleting other messages.""" from typing import Any, Literal from langchain_core.messages.base import BaseMessage class RemoveMessage(BaseMessage): """Message responsible for deleting other messages.""" type: Literal["remove"] = "remove" """The type of the message (used for serialization). Defaults to "remove".""" def __init__(self, id: str, **kwargs: Any) -> None: """Create a RemoveMessage. Args: id: The ID of the message to remove. kwargs: Additional fields to pass to the message. Raises: ValueError: If the 'content' field is passed in kwargs. """ if kwargs.pop("content", None): msg = "RemoveMessage does not support 'content' field." raise ValueError(msg) super().__init__("", id=id, **kwargs)
"""Message responsible for deleting other messages.""" from typing import Any, Literal from langchain_core.messages.base import BaseMessage class RemoveMessage(BaseMessage): """Message responsible for deleting other messages.""" type: Literal["remove"] = "remove" """The type of the message (used for serialization). Defaults to "remove".""" def __init__(self, id: str, **kwargs: Any) -> None: """Create a RemoveMessage. Args: id: The ID of the message to remove. kwargs: Additional fields to pass to the message. Raises: ValueError: If the 'content' field is passed in kwargs. """ if kwargs.pop("content", None): msg = "RemoveMessage does not support 'content' field." raise ValueError(msg) super().__init__("", id=id, **kwargs) RemoveMessage.model_rebuild()
from langchain_core.tools import BaseTool, tool from langchain_tests.integration_tests import ToolsIntegrationTests from langchain_tests.unit_tests import ToolsUnitTests @tool def parrot_multiply_tool(a: int, b: int) -> int: """Multiply two numbers like a parrot. Parrots always add eighty for their matey.""" return a * b + 80 class TestParrotMultiplyToolUnit(ToolsUnitTests): @property def tool_constructor(self) -> BaseTool: return parrot_multiply_tool @property def tool_invoke_params_example(self) -> dict: """Returns a dictionary representing the "args" of an example tool call. This should NOT be a ToolCall dict - i.e. it should not have {"name", "id", "args"} keys. """ return {"a": 2, "b": 3} class TestParrotMultiplyToolIntegration(ToolsIntegrationTests): @property def tool_constructor(self) -> BaseTool: return parrot_multiply_tool @property def tool_invoke_params_example(self) -> dict: """Returns a dictionary representing the "args" of an example tool call. This should NOT be a ToolCall dict - i.e. it should not have {"name", "id", "args"} keys. """ return {"a": 2, "b": 3}
from langchain_core.tools import BaseTool, tool from langchain_tests.integration_tests import ToolsIntegrationTests from langchain_tests.unit_tests import ToolsUnitTests @tool def parrot_multiply_tool(a: int, b: int) -> int: """Multiply two numbers like a parrot. Parrots always add eighty for their matey.""" return a * b + 80 class TestParrotMultiplyToolUnit(ToolsUnitTests): @property def tool_constructor(self) -> BaseTool: return parrot_multiply_tool @property def tool_invoke_params_example(self) -> dict: """ Returns a dictionary representing the "args" of an example tool call. This should NOT be a ToolCall dict - i.e. it should not have {"name", "id", "args"} keys. """ return {"a": 2, "b": 3} class TestParrotMultiplyToolIntegration(ToolsIntegrationTests): @property def tool_constructor(self) -> BaseTool: return parrot_multiply_tool @property def tool_invoke_params_example(self) -> dict: """ Returns a dictionary representing the "args" of an example tool call. This should NOT be a ToolCall dict - i.e. it should not have {"name", "id", "args"} keys. """ return {"a": 2, "b": 3}
_base_ = [ '../_base_/models/cascade-mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.pth' # noqa model = dict( backbone=dict( init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint))) optim_wrapper = dict( optimizer=dict(_delete_=True, type='AdamW', lr=0.0002, weight_decay=0.05), paramwise_cfg=dict(norm_decay_mult=0., bypass_duplicate=True))
_base_ = [ '../_base_/models/cascade_mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb256-rsb-a1-600e_in1k_20211228-20e21305.pth' # noqa model = dict( backbone=dict( init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint=checkpoint))) optim_wrapper = dict( optimizer=dict(_delete_=True, type='AdamW', lr=0.0002, weight_decay=0.05), paramwise_cfg=dict(norm_decay_mult=0., bypass_duplicate=True))
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import pytest from jina import Document, DocumentArray from match_merger import MatchMerger @pytest.fixture def docs_matrix(): return [ DocumentArray( [ Document( id=f'doc {i}', matches=[Document(id=f'doc {i}, match {j}') for j in range(3)], chunks=[ Document( id=f'doc {i}, chunk {j}', matches=[ Document(id=f'doc {i}, chunk {j}, match {k}') for k in range(2) ], ) for j in range(3) ], ) for i in range(2) ] ) for shard in range(4) ] def test_root_traversal(docs_matrix): executor = MatchMerger() document_array = executor.merge(docs_matrix=docs_matrix, parameters={}) assert len(document_array) == 2 for d in document_array: assert len(d.matches) == 12 def test_chunk_traversal(docs_matrix): executor = MatchMerger(default_traversal_paths=('c',)) document_array = executor.merge(docs_matrix=docs_matrix, parameters={}) assert len(document_array) == 6 for d in document_array: assert len(d.matches) == 8
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import pytest from jina import Document, DocumentArray from ...match_merger import MatchMerger @pytest.fixture def docs_matrix(): return [ DocumentArray( [ Document( id=f'doc {i}', matches=[Document(id=f'doc {i}, match {j}') for j in range(3)], chunks=[ Document( id=f'doc {i}, chunk {j}', matches=[ Document(id=f'doc {i}, chunk {j}, match {k}') for k in range(2) ], ) for j in range(3) ], ) for i in range(2) ] ) for shard in range(4) ] def test_root_traversal(docs_matrix): executor = MatchMerger() document_array = executor.merge(docs_matrix=docs_matrix, parameters={}) assert len(document_array) == 2 for d in document_array: assert len(d.matches) == 12 def test_chunk_traversal(docs_matrix): executor = MatchMerger(default_traversal_paths=('c',)) document_array = executor.merge(docs_matrix=docs_matrix, parameters={}) assert len(document_array) == 6 for d in document_array: assert len(d.matches) == 8
import tempfile from enum import Enum from typing import Any, Dict, Optional, Union from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env from pydantic import model_validator def _import_elevenlabs() -> Any: try: import elevenlabs except ImportError as e: raise ImportError( "Cannot import elevenlabs, please install `pip install elevenlabs`." ) from e return elevenlabs class ElevenLabsModel(str, Enum): """Models available for Eleven Labs Text2Speech.""" MULTI_LINGUAL = "eleven_multilingual_v2" MULTI_LINGUAL_FLASH = "eleven_flash_v2_5" MONO_LINGUAL = "eleven_flash_v2" class ElevenLabsText2SpeechTool(BaseTool): """Tool that queries the Eleven Labs Text2Speech API. In order to set this up, follow instructions at: https://elevenlabs.io/docs """ model: Union[ElevenLabsModel, str] = ElevenLabsModel.MULTI_LINGUAL voice: str = "JBFqnCBsd6RMkjVDRZzb" name: str = "eleven_labs_text2speech" description: str = ( "A wrapper around Eleven Labs Text2Speech. " "Useful for when you need to convert text to speech. " "It supports more than 30 languages, including English, German, Polish, " "Spanish, Italian, French, Portuguese, and Hindi. " ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key exists in environment.""" _ = get_from_dict_or_env(values, "elevenlabs_api_key", "ELEVENLABS_API_KEY") return values def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> str: """Use the tool.""" elevenlabs = _import_elevenlabs() client = elevenlabs.client.ElevenLabs() try: speech = client.text_to_speech.convert( text=query, model_id=self.model, voice_id=self.voice, output_format="mp3_44100_128", ) with tempfile.NamedTemporaryFile( mode="bx", suffix=".mp3", delete=False ) as f: f.write(speech) return f.name except Exception as e: raise RuntimeError(f"Error while running ElevenLabsText2SpeechTool: {e}") def play(self, speech_file: str) -> None: """Play the text as speech.""" elevenlabs = _import_elevenlabs() with open(speech_file, mode="rb") as f: speech = f.read() elevenlabs.play(speech) def stream_speech(self, query: str) -> None: """Stream the text as speech as it is generated. Play the text in your speakers.""" elevenlabs = _import_elevenlabs() client = elevenlabs.client.ElevenLabs() speech_stream = client.text_to_speech.convert_as_stream( text=query, model_id=self.model, voice_id=self.voice ) elevenlabs.stream(speech_stream)
import tempfile from enum import Enum from typing import Any, Dict, Optional, Union from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env from pydantic import model_validator def _import_elevenlabs() -> Any: try: import elevenlabs except ImportError as e: raise ImportError( "Cannot import elevenlabs, please install `pip install elevenlabs`." ) from e return elevenlabs class ElevenLabsModel(str, Enum): """Models available for Eleven Labs Text2Speech.""" MULTI_LINGUAL = "eleven_multilingual_v2" MULTI_LINGUAL_FLASH = "eleven_flash_v2_5" MONO_LINGUAL = "eleven_flash_v2" class ElevenLabsText2SpeechTool(BaseTool): # type: ignore[override] """Tool that queries the Eleven Labs Text2Speech API. In order to set this up, follow instructions at: https://elevenlabs.io/docs """ model: Union[ElevenLabsModel, str] = ElevenLabsModel.MULTI_LINGUAL voice: str = "JBFqnCBsd6RMkjVDRZzb" name: str = "eleven_labs_text2speech" description: str = ( "A wrapper around Eleven Labs Text2Speech. " "Useful for when you need to convert text to speech. " "It supports more than 30 languages, including English, German, Polish, " "Spanish, Italian, French, Portuguese, and Hindi. " ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key exists in environment.""" _ = get_from_dict_or_env(values, "elevenlabs_api_key", "ELEVENLABS_API_KEY") return values def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> str: """Use the tool.""" elevenlabs = _import_elevenlabs() client = elevenlabs.client.ElevenLabs() try: speech = client.text_to_speech.convert( text=query, model_id=self.model, voice_id=self.voice, output_format="mp3_44100_128", ) with tempfile.NamedTemporaryFile( mode="bx", suffix=".mp3", delete=False ) as f: f.write(speech) return f.name except Exception as e: raise RuntimeError(f"Error while running ElevenLabsText2SpeechTool: {e}") def play(self, speech_file: str) -> None: """Play the text as speech.""" elevenlabs = _import_elevenlabs() with open(speech_file, mode="rb") as f: speech = f.read() elevenlabs.play(speech) def stream_speech(self, query: str) -> None: """Stream the text as speech as it is generated. Play the text in your speakers.""" elevenlabs = _import_elevenlabs() client = elevenlabs.client.ElevenLabs() speech_stream = client.text_to_speech.convert_as_stream( text=query, model_id=self.model, voice_id=self.voice ) elevenlabs.stream(speech_stream)
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.27.16' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.27.15' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 11 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from .registry import Registry # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner') # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of loops like `EpochBasedTrainLoop` LOOPS = Registry('loop') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model') # mangage all kinds of model wrappers like 'MMDistributedDataParallel' MODEL_WRAPPERS = Registry('model_wrapper') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage constructors that customize the optimization hyperparameters. OPTIMIZER_CONSTRUCTORS = Registry('optimizer constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry('parameter scheduler') # manage all kinds of metrics METRICS = Registry('metric') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util') # manage visualizer VISUALIZERS = Registry('visualizer') # manage visualizer backend VISBACKENDS = Registry('vis_backend')
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 11 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from .registry import Registry # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner') # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of loops like `EpochBasedTrainLoop` LOOPS = Registry('loop') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model') # mangage all kinds of model wrappers like 'MMDistributedDataParallel' MODEL_WRAPPERS = Registry('model_wrapper') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage constructors that customize the optimization hyperparameters. OPTIMIZER_CONSTRUCTORS = Registry('optimizer constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry('parameter scheduler') # manage all kinds of metrics METRICS = Registry('metric') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util') # manage visualizer VISUALIZERS = Registry('visualizer') # manage writer WRITERS = Registry('writer')
from __future__ import annotations from sentence_transformers.losses.MSELoss import MSELoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseMSELoss(MSELoss): def __init__(self, model: SparseEncoder) -> None: """ Computes the MSE loss between the computed sentence embedding and a target sentence embedding. This loss is used when extending sentence embeddings to new languages as described in our publication Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation. Args: model: SparseEncoder Requirements: 1. Usually uses a finetuned teacher M in a knowledge distillation setup Inputs: +-----------------------------------------+-----------------------------+ | Texts | Labels | +=========================================+=============================+ | sentence | model sentence embeddings | +-----------------------------------------+-----------------------------+ | sentence_1, sentence_2, ..., sentence_N | model sentence embeddings | +-----------------------------------------+-----------------------------+ Relations: - :class:`SparseMarginMSELoss` is equivalent to this loss, but with a margin through a negative pair. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses student_model = SparseEncoder("prithivida/Splade_PP_en_v1") teacher_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") train_dataset = Dataset.from_dict( { "english": ["The first sentence", "The second sentence", "The third sentence", "The fourth sentence"], "french": ["La première phrase", "La deuxième phrase", "La troisième phrase", "La quatrième phrase"], } ) def compute_labels(batch): return {"label": teacher_model.encode(batch["english"], convert_to_sparse_tensor=False)} train_dataset = train_dataset.map(compute_labels, batched=True) loss = losses.SparseMSELoss(student_model) trainer = SparseEncoderTrainer(model=student_model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model)
from __future__ import annotations from sentence_transformers.losses.MSELoss import MSELoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseMSELoss(MSELoss): def __init__(self, model: SparseEncoder) -> None: return super().__init__(model)
__version__ = '0.36.0' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
__version__ = '0.35.1' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
import os import time import pytest from jina import Flow, Document, Client cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture() def docker_image(): import docker client = docker.from_env() client.images.build(path=os.path.join(cur_dir), tag='override-config-test') client.close() yield time.sleep(2) client = docker.from_env() client.containers.prune() client.close() @pytest.fixture() def flow(request, port_generator): exposed_port = port_generator() flow_src = request.param if flow_src == 'yml': return Flow(port=exposed_port).load_config(os.path.join(cur_dir, 'flow.yml')) elif flow_src == 'python': return Flow(port=exposed_port).add( uses='docker://override-config-test', uses_with={'param1': 50, 'param2': 30}, uses_metas={'workspace': 'different_workspace'}, ) @pytest.mark.parametrize('flow', ['yml', 'python'], indirect=['flow']) def test_override_config_params(docker_image, flow): with flow: resps = Client(port=flow.port).search( inputs=[Document()], return_responses=True ) doc = resps[0].docs[0] assert doc.tags['param1'] == 50 assert doc.tags['param2'] == 30 assert doc.tags['param3'] == 10 # not overriden assert doc.tags['name'] == 'name' # not override assert doc.tags['workspace'] == 'different_workspace' def test_override_config_params_shards(docker_image, port_generator): exposed_port = port_generator() flow = Flow(port=exposed_port).add( uses='docker://override-config-test', uses_with={'param1': 50, 'param2': 30}, uses_metas={'workspace': 'different_workspace'}, shards=2, ) with flow: resps = Client(port=exposed_port).search( inputs=[Document()], return_responses=True ) doc = resps[0].docs[0] assert doc.tags['param1'] == 50 assert doc.tags['param2'] == 30 assert doc.tags['param3'] == 10 # not overriden assert doc.tags['name'] == 'name' # not override assert doc.tags['workspace'] == 'different_workspace'
import os import time import pytest from jina import Flow, Document, Client cur_dir = os.path.dirname(os.path.abspath(__file__)) exposed_port = 12345 @pytest.fixture() def docker_image(): import docker client = docker.from_env() client.images.build(path=os.path.join(cur_dir), tag='override-config-test') client.close() yield time.sleep(2) client = docker.from_env() client.containers.prune() client.close() @pytest.fixture() def flow(request): flow_src = request.param if flow_src == 'yml': return Flow(port=exposed_port).load_config(os.path.join(cur_dir, 'flow.yml')) elif flow_src == 'python': return Flow(port=exposed_port).add( uses='docker://override-config-test', uses_with={'param1': 50, 'param2': 30}, uses_metas={'workspace': 'different_workspace'}, ) @pytest.mark.parametrize('flow', ['yml', 'python'], indirect=['flow']) def test_override_config_params(docker_image, flow): with flow: resps = Client(port=exposed_port, return_responses=True).search( inputs=[Document()] ) doc = resps[0].docs[0] assert doc.tags['param1'] == 50 assert doc.tags['param2'] == 30 assert doc.tags['param3'] == 10 # not overriden assert doc.tags['name'] == 'name' # not override assert doc.tags['workspace'] == 'different_workspace' def test_override_config_params_shards(docker_image): flow = Flow(port=exposed_port).add( uses='docker://override-config-test', uses_with={'param1': 50, 'param2': 30}, uses_metas={'workspace': 'different_workspace'}, shards=2, ) with flow: resps = Client(port=exposed_port, return_responses=True).search( inputs=[Document()] ) doc = resps[0].docs[0] assert doc.tags['param1'] == 50 assert doc.tags['param2'] == 30 assert doc.tags['param3'] == 10 # not overriden assert doc.tags['name'] == 'name' # not override assert doc.tags['workspace'] == 'different_workspace'
from llama_index_instrumentation.span_handlers.null import NullSpanHandler # noqa
import inspect from typing import Dict, Optional, Any from llama_index.core.instrumentation.span_handlers.base import BaseSpanHandler from llama_index.core.instrumentation.span.base import BaseSpan class NullSpanHandler(BaseSpanHandler[BaseSpan]): @classmethod def class_name(cls) -> str: """Class name.""" return "NullSpanHandler" def span_enter( self, id_: str, bound_args: inspect.BoundArguments, instance: Optional[Any] = None, parent_id: Optional[str] = None, tags: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> None: """Logic for entering a span.""" return def span_exit( self, id_: str, bound_args: inspect.BoundArguments, instance: Optional[Any] = None, result: Optional[Any] = None, **kwargs: Any, ) -> None: """Logic for exiting a span.""" return def new_span( self, id_: str, bound_args: inspect.BoundArguments, instance: Optional[Any] = None, parent_span_id: Optional[str] = None, tags: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> None: """Create a span.""" return def prepare_to_exit_span( self, id_: str, bound_args: inspect.BoundArguments, instance: Optional[Any] = None, result: Optional[Any] = None, **kwargs: Any, ) -> None: """Logic for exiting a span.""" return def prepare_to_drop_span( self, id_: str, bound_args: inspect.BoundArguments, instance: Optional[Any] = None, err: Optional[BaseException] = None, **kwargs: Any, ) -> None: """Logic for droppping a span.""" return
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import numpy as np import pytest from jina import Document, DocumentArray, Flow from jina.executors.metas import get_default_metas from jina_commons.indexers.dump import import_vectors from .. import HnswlibSearcher # fix the seed here np.random.seed(500) docs = DocumentArray([Document(embedding=np.random.random(10)) for i in range(10)]) search_doc = DocumentArray([Document(embedding=np.random.random(10))]) DUMP_PATH = 'tests/dump1' TOP_K = 5 @pytest.fixture(scope='function', autouse=True) def metas(tmpdir): os.environ['TEST_WORKSPACE'] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ['TEST_WORKSPACE'] yield metas del os.environ['TEST_WORKSPACE'] @pytest.mark.parametrize(['metric', 'is_distance'], [('l2', True), ('ip', True), ('cosine', True), ('l2', False), ('ip', False), ('cosine', False)]) def test_metric(tmpdir, metric, is_distance): metas = {'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0} indexer = HnswlibSearcher(dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas, metric=metric, is_distance=is_distance) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) assert len(docs[0].matches) == TOP_K for i in range(len(docs[0].matches) - 1): if not is_distance: assert docs[0].matches[i].scores[metric].value >= docs[0].matches[i + 1].scores[metric].value else: assert docs[0].matches[i].scores[metric].value <= docs[0].matches[i + 1].scores[metric].value def test_query_vector(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0} indexer = HnswlibSearcher(dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) ids, vecs = import_vectors(DUMP_PATH, str(0)) ids = np.array(list(ids)) vecs = np.array(list(vecs)) assert len(docs) == 1 assert len(docs[0].matches) == TOP_K assert docs[0].matches[0].id in ids assert len(docs[0].matches[0].embedding) == 7 assert docs[0].matches[0].embedding in vecs da = DocumentArray([Document(id=0), Document(id=1), Document(id=2)]) indexer.fill_embedding(da) for i, doc in enumerate(da): assert list(doc.embedding) def test_none_doc(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0} indexer = HnswlibSearcher(dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas) indexer.search(None, {}) indexer.fill_embedding(None) def test_query_vector_empty(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0} indexer = HnswlibSearcher(default_top_k=TOP_K, metas=metas) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) assert len(docs[0].matches) == 0 def test_flow(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0} flow = Flow().add(uses=HnswlibSearcher, override_with={'dump_path': DUMP_PATH, 'default_top_k': TOP_K}, override_metas=metas) with flow: resp = flow.post( on='/search', inputs=DocumentArray([Document(embedding=np.random.random(7))]), return_results=True ) assert len(resp[0].data.docs[0].matches) == TOP_K doc_array = DocumentArray([Document(id=0), Document(id=1), Document(id=2)]) with flow: resp = flow.post( on='/fill_embedding', inputs=doc_array, return_results=True ) for i, doc in enumerate(resp[0].data.docs): assert doc.embedding assert doc.embedding.dense.shape == [7]
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import numpy as np import pytest from jina import Document, DocumentArray, Flow from jina.executors.metas import get_default_metas from jina_commons.indexers.dump import import_vectors from .. import HnswlibSearcher # fix the seed here np.random.seed(500) docs = DocumentArray([Document(embedding=np.random.random(10)) for i in range(10)]) search_doc = DocumentArray([Document(embedding=np.random.random(10))]) DUMP_PATH = 'tests/dump1' TOP_K = 5 @pytest.fixture(scope='function', autouse=True) def metas(tmpdir): os.environ['TEST_WORKSPACE'] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ['TEST_WORKSPACE'] yield metas del os.environ['TEST_WORKSPACE'] def test_query_vector(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0} indexer = HnswlibSearcher(dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) ids, vecs = import_vectors(DUMP_PATH, str(0)) ids = np.array(list(ids)) vecs = np.array(list(vecs)) assert len(docs) == 1 assert len(docs[0].matches) == TOP_K assert docs[0].matches[0].id in ids assert len(docs[0].matches[0].embedding) == 7 assert docs[0].matches[0].embedding in vecs da = DocumentArray([Document(id=0), Document(id=1), Document(id=2)]) indexer.fill_embedding(da) for i, doc in enumerate(da): assert list(doc.embedding) def test_none_doc(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0} indexer = HnswlibSearcher(dump_path=DUMP_PATH, default_top_k=TOP_K, metas=metas) indexer.search(None, {}) indexer.fill_embedding(None) def test_query_vector_empty(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0} indexer = HnswlibSearcher(default_top_k=TOP_K, metas=metas) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) assert len(docs[0].matches) == 0 def test_flow(tmpdir): metas = {'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0} flow = Flow().add(uses=HnswlibSearcher, override_with={'dump_path': DUMP_PATH, 'default_top_k': TOP_K}, override_metas=metas) with flow: resp = flow.post( on='/search', inputs=DocumentArray([Document(embedding=np.random.random(7))]), return_results=True ) assert len(resp[0].data.docs[0].matches) == TOP_K doc_array = DocumentArray([Document(id=0), Document(id=1), Document(id=2)]) with flow: resp = flow.post( on='/fill_embedding', inputs=doc_array, return_results=True ) for i, doc in enumerate(resp[0].data.docs): assert doc.embedding assert doc.embedding.dense.shape == [7]
# ruff: noqa: E402 import pytest # Rewrite assert statements for test suite so that implementations can # see the full error message from failed asserts. # https://docs.pytest.org/en/7.1.x/how-to/writing_plugins.html#assertion-rewriting modules = [ "base_store", "cache", "chat_models", "vectorstores", "embeddings", "tools", "retrievers", ] for module in modules: pytest.register_assert_rewrite(f"langchain_tests.integration_tests.{module}") from .base_store import BaseStoreAsyncTests, BaseStoreSyncTests from .cache import AsyncCacheTestSuite, SyncCacheTestSuite from .chat_models import ChatModelIntegrationTests from .embeddings import EmbeddingsIntegrationTests from .retrievers import RetrieversIntegrationTests from .tools import ToolsIntegrationTests from .vectorstores import VectorStoreIntegrationTests __all__ = [ "AsyncCacheTestSuite", "BaseStoreAsyncTests", "BaseStoreSyncTests", "ChatModelIntegrationTests", "EmbeddingsIntegrationTests", "RetrieversIntegrationTests", "SyncCacheTestSuite", "ToolsIntegrationTests", "VectorStoreIntegrationTests", ]
# ruff: noqa: E402 import pytest # Rewrite assert statements for test suite so that implementations can # see the full error message from failed asserts. # https://docs.pytest.org/en/7.1.x/how-to/writing_plugins.html#assertion-rewriting modules = [ "base_store", "cache", "chat_models", "vectorstores", "embeddings", "tools", "retrievers", ] for module in modules: pytest.register_assert_rewrite(f"langchain_tests.integration_tests.{module}") from .base_store import BaseStoreAsyncTests, BaseStoreSyncTests from .cache import AsyncCacheTestSuite, SyncCacheTestSuite from .chat_models import ChatModelIntegrationTests from .embeddings import EmbeddingsIntegrationTests from .retrievers import RetrieversIntegrationTests from .tools import ToolsIntegrationTests from .vectorstores import VectorStoreIntegrationTests __all__ = [ "ChatModelIntegrationTests", "EmbeddingsIntegrationTests", "ToolsIntegrationTests", "BaseStoreAsyncTests", "BaseStoreSyncTests", "AsyncCacheTestSuite", "SyncCacheTestSuite", "VectorStoreIntegrationTests", "RetrieversIntegrationTests", ]
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from docarray import BaseDoc from docarray.typing import TorchTensor def test_tensor_ops(): class A(BaseDoc): tensor: TorchTensor[3, 224, 224] class B(BaseDoc): tensor: TorchTensor[3, 112, 224] tensor = A(tensor=torch.ones(3, 224, 224)).tensor tensord = A(tensor=torch.ones(3, 224, 224)).tensor tensorn = torch.zeros(3, 224, 224) tensorhalf = B(tensor=torch.ones(3, 112, 224)).tensor tensorfull = torch.cat([tensorhalf, tensorhalf], dim=1) assert type(tensor) == TorchTensor assert type(tensor + tensord) == TorchTensor assert type(tensor + tensorn) == TorchTensor assert type(tensor + tensorfull) == TorchTensor
import torch from docarray import BaseDoc from docarray.typing import TorchTensor def test_tensor_ops(): class A(BaseDoc): tensor: TorchTensor[3, 224, 224] class B(BaseDoc): tensor: TorchTensor[3, 112, 224] tensor = A(tensor=torch.ones(3, 224, 224)).tensor tensord = A(tensor=torch.ones(3, 224, 224)).tensor tensorn = torch.zeros(3, 224, 224) tensorhalf = B(tensor=torch.ones(3, 112, 224)).tensor tensorfull = torch.cat([tensorhalf, tensorhalf], dim=1) assert type(tensor) == TorchTensor assert type(tensor + tensord) == TorchTensor assert type(tensor + tensorn) == TorchTensor assert type(tensor + tensorfull) == TorchTensor
from typing import overload, Dict, Optional, List, TYPE_CHECKING, Sequence, Any from docarray.document.data import DocumentData from docarray.document.mixins import AllMixins from docarray.base import BaseDCType from docarray.math.ndarray import detach_tensor_if_present if TYPE_CHECKING: from docarray.typing import ArrayType, StructValueType, DocumentContentType class Document(AllMixins, BaseDCType): """Document is the basic data type in DocArray. A Document is a container for any kind of data, be it text, image, audio, video, or 3D meshes. You can initialize a Document object with given attributes: .. code-block:: python from docarray import Document import numpy d1 = Document(text='hello') d3 = Document(tensor=numpy.array([1, 2, 3])) d4 = Document( uri='https://jina.ai', mime_type='text/plain', granularity=1, adjacency=3, tags={'foo': 'bar'}, ) Documents support a :ref:`nested structure <recursive-nested-document>`, which can also be specified during construction: .. code-block:: python d = Document( id='d0', chunks=[Document(id='d1', chunks=Document(id='d2'))], matches=[Document(id='d3')], ) A Document can embed its contents using the :meth:`embed` method and a provided embedding model: .. code-block:: python import torchvision q = ( Document(uri='/Users/usr/path/to/image.jpg') .load_uri_to_image_tensor() .set_image_tensor_normalization() .set_image_tensor_channel_axis(-1, 0) ) model = torchvision.models.resnet50(pretrained=True) q.embed(model) Multiple Documents can be organized into a :class:`~docarray.array.document.DocumentArray`. .. seealso:: For further details, see our :ref:`user guide <document>`. """ _data_class = DocumentData _unresolved_fields_dest = 'tags' _post_init_fields = ( 'text', 'blob', 'tensor', 'content', 'uri', 'mime_type', 'chunks', 'matches', ) @overload def __init__(self): """Create an empty Document.""" ... @overload def __init__(self, _obj: Optional['Document'] = None, copy: bool = False): ... @overload def __init__(self, _obj: Optional[Any] = None): """Create a Document from a `docarray.dataclass` instance""" ... @overload def __init__( self, _obj: Optional[Dict], copy: bool = False, field_resolver: Optional[Dict[str, str]] = None, unknown_fields_handler: str = 'catch', ): ... @overload def __init__(self, blob: Optional[bytes] = None, **kwargs): """Create a Document with binary content.""" ... @overload def __init__(self, tensor: Optional['ArrayType'] = None, **kwargs): """Create a Document with NdArray-like content.""" ... @overload def __init__(self, text: Optional[str] = None, **kwargs): """Create a Document with string content.""" ... @overload def __init__(self, uri: Optional[str] = None, **kwargs): """Create a Document with content from a URI.""" ... @overload def __init__( self, parent_id: Optional[str] = None, granularity: Optional[int] = None, adjacency: Optional[int] = None, blob: Optional[bytes] = None, tensor: Optional['ArrayType'] = None, mime_type: Optional[str] = None, text: Optional[str] = None, content: Optional['DocumentContentType'] = None, weight: Optional[float] = None, uri: Optional[str] = None, tags: Optional[Dict[str, 'StructValueType']] = None, offset: Optional[float] = None, location: Optional[List[float]] = None, embedding: Optional['ArrayType'] = None, modality: Optional[str] = None, evaluations: Optional[Dict[str, Dict[str, 'StructValueType']]] = None, scores: Optional[Dict[str, Dict[str, 'StructValueType']]] = None, chunks: Optional[Sequence['Document']] = None, matches: Optional[Sequence['Document']] = None, ): ... def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __getstate__(self): state = self.__dict__.copy() for attribute in ['embedding', 'tensor']: if hasattr(self, attribute): setattr( state['_data'], attribute, detach_tensor_if_present(getattr(state['_data'], attribute)), ) return state
from typing import overload, Dict, Optional, List, TYPE_CHECKING, Sequence, Any from .data import DocumentData from .mixins import AllMixins from ..base import BaseDCType from ..math.ndarray import detach_tensor_if_present if TYPE_CHECKING: from ..typing import ArrayType, StructValueType, DocumentContentType class Document(AllMixins, BaseDCType): """Document is the basic data type in DocArray. A Document is a container for any kind of data, be it text, image, audio, video, or 3D meshes. You can initialize a Document object with given attributes: .. code-block:: python from docarray import Document import numpy d1 = Document(text='hello') d3 = Document(tensor=numpy.array([1, 2, 3])) d4 = Document( uri='https://jina.ai', mime_type='text/plain', granularity=1, adjacency=3, tags={'foo': 'bar'}, ) Documents support a :ref:`nested structure <recursive-nested-document>`, which can also be specified during construction: .. code-block:: python d = Document( id='d0', chunks=[Document(id='d1', chunks=Document(id='d2'))], matches=[Document(id='d3')], ) A Document can embed its contents using the :meth:`embed` method and a provided embedding model: .. code-block:: python import torchvision q = ( Document(uri='/Users/usr/path/to/image.jpg') .load_uri_to_image_tensor() .set_image_tensor_normalization() .set_image_tensor_channel_axis(-1, 0) ) model = torchvision.models.resnet50(pretrained=True) q.embed(model) Multiple Documents can be organized into a :class:`~docarray.array.document.DocumentArray`. .. seealso:: For further details, see our :ref:`user guide <document>`. """ _data_class = DocumentData _unresolved_fields_dest = 'tags' _post_init_fields = ( 'text', 'blob', 'tensor', 'content', 'uri', 'mime_type', 'chunks', 'matches', ) @overload def __init__(self): """Create an empty Document.""" ... @overload def __init__(self, _obj: Optional['Document'] = None, copy: bool = False): ... @overload def __init__(self, _obj: Optional[Any] = None): """Create a Document from a `docarray.dataclass` instance""" ... @overload def __init__( self, _obj: Optional[Dict], copy: bool = False, field_resolver: Optional[Dict[str, str]] = None, unknown_fields_handler: str = 'catch', ): ... @overload def __init__(self, blob: Optional[bytes] = None, **kwargs): """Create a Document with binary content.""" ... @overload def __init__(self, tensor: Optional['ArrayType'] = None, **kwargs): """Create a Document with NdArray-like content.""" ... @overload def __init__(self, text: Optional[str] = None, **kwargs): """Create a Document with string content.""" ... @overload def __init__(self, uri: Optional[str] = None, **kwargs): """Create a Document with content from a URI.""" ... @overload def __init__( self, parent_id: Optional[str] = None, granularity: Optional[int] = None, adjacency: Optional[int] = None, blob: Optional[bytes] = None, tensor: Optional['ArrayType'] = None, mime_type: Optional[str] = None, text: Optional[str] = None, content: Optional['DocumentContentType'] = None, weight: Optional[float] = None, uri: Optional[str] = None, tags: Optional[Dict[str, 'StructValueType']] = None, offset: Optional[float] = None, location: Optional[List[float]] = None, embedding: Optional['ArrayType'] = None, modality: Optional[str] = None, evaluations: Optional[Dict[str, Dict[str, 'StructValueType']]] = None, scores: Optional[Dict[str, Dict[str, 'StructValueType']]] = None, chunks: Optional[Sequence['Document']] = None, matches: Optional[Sequence['Document']] = None, ): ... def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __getstate__(self): state = self.__dict__.copy() for attribute in ['embedding', 'tensor']: if hasattr(self, attribute): setattr( state['_data'], attribute, detach_tensor_if_present(getattr(state['_data'], attribute)), ) return state
""" This file contains deprecated code that can only be used with the old `model.fit`-style Sentence Transformers v2.X training. It exists for backwards compatibility with the `model.old_fit` method, but will be removed in a future version. Nowadays, with Sentence Transformers v3+, it is recommended to use the `SentenceTransformerTrainer` class to train models. See https://www.sbert.net/docs/sentence_transformer/training_overview.html for more information. """ from __future__ import annotations from torch.utils.data import Dataset from sentence_transformers import SentenceTransformer from sentence_transformers.readers.InputExample import InputExample class SentencesDataset(Dataset): """ DEPRECATED: This class is no longer used. Instead of wrapping your List of InputExamples in a SentencesDataset and then passing it to the DataLoader, you can pass the list of InputExamples directly to the dataset loader. """ def __init__(self, examples: list[InputExample], model: SentenceTransformer): self.examples = examples def __getitem__(self, item): return self.examples[item] def __len__(self): return len(self.examples)
from __future__ import annotations from torch.utils.data import Dataset from sentence_transformers import SentenceTransformer from sentence_transformers.readers.InputExample import InputExample class SentencesDataset(Dataset): """ DEPRECATED: This class is no longer used. Instead of wrapping your List of InputExamples in a SentencesDataset and then passing it to the DataLoader, you can pass the list of InputExamples directly to the dataset loader. """ def __init__(self, examples: list[InputExample], model: SentenceTransformer): self.examples = examples def __getitem__(self, item): return self.examples[item] def __len__(self): return len(self.examples)
# Copyright (c) OpenMMLab. All rights reserved. from .registry import Registry, build_from_cfg from .root import (DATA_SAMPLERS, DATASETS, EVALUATORS, HOOKS, MODELS, OPTIMIZER_CONSTRUCTORS, OPTIMIZERS, PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS, TRANSFORMS, WEIGHT_INITIALIZERS) __all__ = [ 'Registry', 'build_from_cfg', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIMIZER_CONSTRUCTORS', 'TASK_UTILS', 'PARAM_SCHEDULERS', 'EVALUATORS' ]
# Copyright (c) OpenMMLab. All rights reserved. from .registry import Registry, build_from_cfg from .root import (DATA_SAMPLERS, DATASETS, HOOKS, MODELS, OPTIMIZER_CONSTRUCTORS, OPTIMIZERS, PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS, TRANSFORMS, WEIGHT_INITIALIZERS) __all__ = [ 'Registry', 'build_from_cfg', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIMIZER_CONSTRUCTORS', 'TASK_UTILS', 'PARAM_SCHEDULERS' ]
"""Callback Handler that tracks AIMessage.usage_metadata.""" import threading from collections.abc import Generator from contextlib import contextmanager from contextvars import ContextVar from typing import Any, Optional from langchain_core._api import beta from langchain_core.callbacks import BaseCallbackHandler from langchain_core.messages import AIMessage from langchain_core.messages.ai import UsageMetadata, add_usage from langchain_core.outputs import ChatGeneration, LLMResult @beta() class UsageMetadataCallbackHandler(BaseCallbackHandler): """Callback Handler that tracks AIMessage.usage_metadata. Example: .. code-block:: python from langchain.chat_models import init_chat_model from langchain_core.callbacks import UsageMetadataCallbackHandler llm = init_chat_model(model="openai:gpt-4o-mini") callback = UsageMetadataCallbackHandler() results = llm.batch(["Hello", "Goodbye"], config={"callbacks": [callback]}) print(callback.usage_metadata) .. code-block:: none {'output_token_details': {'audio': 0, 'reasoning': 0}, 'input_tokens': 17, 'output_tokens': 31, 'total_tokens': 48, 'input_token_details': {'cache_read': 0, 'audio': 0}} .. versionadded:: 0.3.49 """ # noqa: E501 def __init__(self) -> None: super().__init__() self._lock = threading.Lock() self.usage_metadata: dict[str, UsageMetadata] = {} def __repr__(self) -> str: return str(self.usage_metadata) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Collect token usage.""" # Check for usage_metadata (langchain-core >= 0.2.2) try: generation = response.generations[0][0] except IndexError: generation = None usage_metadata = None model_name = None if isinstance(generation, ChatGeneration): try: message = generation.message if isinstance(message, AIMessage): usage_metadata = message.usage_metadata model_name = message.response_metadata.get("model_name") except AttributeError: pass # update shared state behind lock if usage_metadata and model_name: with self._lock: if model_name not in self.usage_metadata: self.usage_metadata[model_name] = usage_metadata else: self.usage_metadata[model_name] = add_usage( self.usage_metadata[model_name], usage_metadata ) @contextmanager @beta() def get_usage_metadata_callback( name: str = "usage_metadata_callback", ) -> Generator[UsageMetadataCallbackHandler, None, None]: """Get context manager for tracking usage metadata across chat model calls using ``AIMessage.usage_metadata``. Args: name (str): The name of the context variable. Defaults to ``"usage_metadata_callback"``. Example: .. code-block:: python from langchain.chat_models import init_chat_model from langchain_core.callbacks import get_usage_metadata_callback llm = init_chat_model(model="openai:gpt-4o-mini") with get_usage_metadata_callback() as cb: llm.invoke("Hello") llm.invoke("Goodbye") print(cb.usage_metadata) .. code-block:: none {'output_token_details': {'audio': 0, 'reasoning': 0}, 'input_tokens': 17, 'output_tokens': 31, 'total_tokens': 48, 'input_token_details': {'cache_read': 0, 'audio': 0}} .. versionadded:: 0.3.49 """ # noqa: E501 from langchain_core.tracers.context import register_configure_hook usage_metadata_callback_var: ContextVar[Optional[UsageMetadataCallbackHandler]] = ( ContextVar(name, default=None) ) register_configure_hook(usage_metadata_callback_var, True) cb = UsageMetadataCallbackHandler() usage_metadata_callback_var.set(cb) yield cb usage_metadata_callback_var.set(None)
"""Callback Handler that tracks AIMessage.usage_metadata.""" import threading from collections.abc import Generator from contextlib import contextmanager from contextvars import ContextVar from typing import Any, Optional from langchain_core._api import beta from langchain_core.callbacks import BaseCallbackHandler from langchain_core.messages import AIMessage from langchain_core.messages.ai import UsageMetadata, add_usage from langchain_core.outputs import ChatGeneration, LLMResult @beta() class UsageMetadataCallbackHandler(BaseCallbackHandler): """Callback Handler that tracks AIMessage.usage_metadata. Example: .. code-block:: python from langchain.chat_models import init_chat_model from langchain_core.callbacks import UsageMetadataCallbackHandler llm = init_chat_model(model="openai:gpt-4o-mini") callback = UsageMetadataCallbackHandler() results = llm.batch(["Hello", "Goodbye"], config={"callbacks": [callback]}) print(callback.usage_metadata) .. code-block:: none {'output_token_details': {'audio': 0, 'reasoning': 0}, 'input_tokens': 17, 'output_tokens': 31, 'total_tokens': 48, 'input_token_details': {'cache_read': 0, 'audio': 0}} .. versionadded:: 0.3.49 """ # noqa: E501 def __init__(self) -> None: super().__init__() self._lock = threading.Lock() self.usage_metadata: Optional[UsageMetadata] = None def __repr__(self) -> str: return str(self.usage_metadata) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Collect token usage.""" # Check for usage_metadata (langchain-core >= 0.2.2) try: generation = response.generations[0][0] except IndexError: generation = None if isinstance(generation, ChatGeneration): try: message = generation.message if isinstance(message, AIMessage): usage_metadata = message.usage_metadata else: usage_metadata = None except AttributeError: usage_metadata = None else: usage_metadata = None # update shared state behind lock with self._lock: self.usage_metadata = add_usage(self.usage_metadata, usage_metadata) @contextmanager @beta() def get_usage_metadata_callback( name: str = "usage_metadata_callback", ) -> Generator[UsageMetadataCallbackHandler, None, None]: """Get context manager for tracking usage metadata across chat model calls using ``AIMessage.usage_metadata``. Args: name (str): The name of the context variable. Defaults to ``"usage_metadata_callback"``. Example: .. code-block:: python from langchain.chat_models import init_chat_model from langchain_core.callbacks import get_usage_metadata_callback llm = init_chat_model(model="openai:gpt-4o-mini") with get_usage_metadata_callback() as cb: llm.invoke("Hello") llm.invoke("Goodbye") print(cb.usage_metadata) .. code-block:: none {'output_token_details': {'audio': 0, 'reasoning': 0}, 'input_tokens': 17, 'output_tokens': 31, 'total_tokens': 48, 'input_token_details': {'cache_read': 0, 'audio': 0}} .. versionadded:: 0.3.49 """ # noqa: E501 from langchain_core.tracers.context import register_configure_hook usage_metadata_callback_var: ContextVar[Optional[UsageMetadataCallbackHandler]] = ( ContextVar(name, default=None) ) register_configure_hook(usage_metadata_callback_var, True) cb = UsageMetadataCallbackHandler() usage_metadata_callback_var.set(cb) yield cb usage_metadata_callback_var.set(None)
# Owner(s): ["oncall: distributed"] import torch import torch.nn as nn from torch.distributed.checkpoint.state_dict import get_state_dict from torch.distributed.device_mesh import _mesh_resources, init_device_mesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.tensor import DTensor from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class Dummymodel(nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x): raise NotImplementedError class EPModel(nn.Module): def __init__(self, rank): super().__init__() self.net1 = nn.Sequential(nn.Linear(16, 16), nn.ReLU()) self.net2 = nn.Sequential(nn.Linear(16, 16), nn.ReLU()) def forward(self, x): raise NotImplementedError class SecondTier(nn.Module): def __init__(self, rank): super().__init__() self.ep_layers = nn.ModuleList( [EPModel(rank) if rank % 4 == i else Dummymodel() for i in range(4)] ) self.net = nn.Sequential(nn.Linear(16, 16), nn.ReLU()) def forward(self, x): raise NotImplementedError class TopModel(nn.Module): def __init__(self, rank): super().__init__() torch.manual_seed(0) self.second = SecondTier(rank) self.net = nn.Sequential(nn.Linear(16, 16), nn.ReLU()) def forward(self, x): raise NotImplementedError class TestFSDPWithEP(DTensorTestBase, VerifyStateDictMixin): @property def world_size(self) -> int: return min(8, torch.cuda.device_count()) @with_comms @skip_if_lt_x_gpu(8) @with_temp_dir def test_e2e(self): model = TopModel(self.rank).cuda() mesh_fsdp_tp = init_device_mesh( self.device_type, (2, 4), mesh_dim_names=("dp", "tp") ) # TODO: we are using an internal API atm. Change to a public API once it is ready. mesh_fsdp_ep = _mesh_resources.create_child_mesh(mesh_fsdp_tp, ("dp",)) del _mesh_resources.child_to_parent_mapping[mesh_fsdp_ep] mesh_fsdp = init_device_mesh(self.device_type, (8,)) for i, l in enumerate(model.second.ep_layers): model.second.ep_layers[i] = FSDP( l, use_orig_params=True, device_mesh=mesh_fsdp_ep ) model.second = FSDP(model.second, use_orig_params=True, device_mesh=mesh_fsdp) model = FSDP(model, use_orig_params=True, device_mesh=mesh_fsdp) optim = torch.optim.Adam(model.parameters(), lr=0.1) msd, osd = get_state_dict(model, optim) # FSDP only params for key in ( "net.0.weight", "net.0.bias", "second.net.0.weight", "second.net.0.bias", ): msd_v = msd[key] osd_v = osd["state"][key]["exp_avg"] for v in (msd_v, osd_v): self.assertTrue(isinstance(v, DTensor)) self.assertEqual(tuple(v.device_mesh.mesh), tuple(range(8))) # FSDP/EP params layer = self.rank % 4 ranks = (layer, layer + 4) for i in range(4): for key in ( f"second.ep_layers.{i}.net1.0.weight", f"second.ep_layers.{i}.net1.0.bias", f"second.ep_layers.{i}.net2.0.weight", f"second.ep_layers.{i}.net2.0.bias", ): if layer != i: self.assertTrue(key not in msd) else: msd_v = msd[key] osd_v = osd["state"][key]["exp_avg"] for v in (msd_v, osd_v): self.assertTrue(isinstance(v, DTensor)) self.assertEqual(tuple(v.device_mesh.mesh), ranks) self.assertEqual(set(osd["state"].keys()), set(msd.keys())) if __name__ == "__main__": run_tests()
# Owner(s): ["oncall: distributed"] import torch import torch.nn as nn from torch.distributed.checkpoint.state_dict import get_state_dict from torch.distributed.device_mesh import _mesh_resources, init_device_mesh from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.tensor import DTensor from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_if_lt_x_gpu, with_comms, ) from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir from torch.testing._internal.distributed.common_state_dict import VerifyStateDictMixin class Dummymodel(nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x): raise NotImplementedError class EPModel(nn.Module): def __init__(self, rank): super().__init__() self.net1 = nn.Sequential(nn.Linear(16, 16), nn.ReLU()) self.net2 = nn.Sequential(nn.Linear(16, 16), nn.ReLU()) def forward(self, x): raise NotImplementedError class SecondTier(nn.Module): def __init__(self, rank): super().__init__() self.ep_layers = nn.ModuleList( [EPModel(rank) if rank % 4 == i else Dummymodel() for i in range(4)] ) self.net = nn.Sequential(nn.Linear(16, 16), nn.ReLU()) def forward(self, x): raise NotImplementedError class TopModel(nn.Module): def __init__(self, rank): super().__init__() torch.manual_seed(0) self.second = SecondTier(rank) self.net = nn.Sequential(nn.Linear(16, 16), nn.ReLU()) def forward(self, x): raise NotImplementedError class TestFSDPWithEP(DTensorTestBase, VerifyStateDictMixin): @property def world_size(self) -> int: return min(8, torch.cuda.device_count()) @with_comms @skip_if_lt_x_gpu(8) @with_temp_dir def test_e2e(self): model = TopModel(self.rank).cuda() mesh_fsdp_tp = init_device_mesh( self.device_type, (2, 4), mesh_dim_names=("dp", "tp") ) # TODO: we are using an internal API atm. Change to a publich API once it is ready. mesh_fsdp_ep = _mesh_resources.create_child_mesh(mesh_fsdp_tp, ("dp",)) del _mesh_resources.child_to_parent_mapping[mesh_fsdp_ep] mesh_fsdp = init_device_mesh(self.device_type, (8,)) for i, l in enumerate(model.second.ep_layers): model.second.ep_layers[i] = FSDP( l, use_orig_params=True, device_mesh=mesh_fsdp_ep ) model.second = FSDP(model.second, use_orig_params=True, device_mesh=mesh_fsdp) model = FSDP(model, use_orig_params=True, device_mesh=mesh_fsdp) optim = torch.optim.Adam(model.parameters(), lr=0.1) msd, osd = get_state_dict(model, optim) # FSDP only params for key in ( "net.0.weight", "net.0.bias", "second.net.0.weight", "second.net.0.bias", ): msd_v = msd[key] osd_v = osd["state"][key]["exp_avg"] for v in (msd_v, osd_v): self.assertTrue(isinstance(v, DTensor)) self.assertEqual(tuple(v.device_mesh.mesh), tuple(range(8))) # FSDP/EP params layer = self.rank % 4 ranks = (layer, layer + 4) for i in range(4): for key in ( f"second.ep_layers.{i}.net1.0.weight", f"second.ep_layers.{i}.net1.0.bias", f"second.ep_layers.{i}.net2.0.weight", f"second.ep_layers.{i}.net2.0.bias", ): if layer != i: self.assertTrue(key not in msd) else: msd_v = msd[key] osd_v = osd["state"][key]["exp_avg"] for v in (msd_v, osd_v): self.assertTrue(isinstance(v, DTensor)) self.assertEqual(tuple(v.device_mesh.mesh), ranks) self.assertEqual(set(osd["state"].keys()), set(msd.keys())) if __name__ == "__main__": run_tests()
# Copyright (c) OpenMMLab. All rights reserved. import math import torch from torch.utils.data import DistributedSampler as _DistributedSampler from mmdet.core.utils import sync_random_seed from mmdet.utils import get_device class DistributedSampler(_DistributedSampler): def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, seed=0): super().__init__( dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) # In distributed sampling, different ranks should sample # non-overlapped data in the dataset. Therefore, this function # is used to make sure that each rank shuffles the data indices # in the same order based on the same seed. Then different ranks # could use different indices to select non-overlapped data from the # same data list. device = get_device() self.seed = sync_random_seed(seed, device) def __iter__(self): # deterministically shuffle based on epoch if self.shuffle: g = torch.Generator() # When :attr:`shuffle=True`, this ensures all replicas # use a different random ordering for each epoch. # Otherwise, the next iteration of this sampler will # yield the same ordering. g.manual_seed(self.epoch + self.seed) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() # add extra samples to make it evenly divisible # in case that indices is shorter than half of total_size indices = (indices * math.ceil(self.total_size / len(indices)))[:self.total_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices)
# Copyright (c) OpenMMLab. All rights reserved. import math import torch from torch.utils.data import DistributedSampler as _DistributedSampler from mmdet.core.utils import sync_random_seed from mmdet.utils import get_device class DistributedSampler(_DistributedSampler): def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, seed=0): super().__init__( dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) # In distributed sampling, different ranks should sample # non-overlapped data in the dataset. Therefore, this function # is used to make sure that each rank shuffles the data indices # in the same order based on the same seed. Then different ranks # could use different indices to select non-overlapped data from the # same data list. device = get_device() self.seed = sync_random_seed(seed, device) def __iter__(self): # deterministically shuffle based on epoch if self.shuffle: g = torch.Generator() # When :attr:`shuffle=True`, this ensures all replicas # use a different random ordering for each epoch. # Otherwise, the next iteration of this sampler will # yield the same ordering. g.manual_seed(self.epoch + self.seed) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() # add extra samples to make it evenly divisible # in case that indices is shorter than half of total_size indices = (indices * math.ceil(self.total_size / len(indices)))[:self.total_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices)
import pytest from jina import Executor, Flow, requests @pytest.fixture() def get_executor(): class DummyExecutor(Executor): @requests(on='/foo') def foo(self, docs, **kwargs): ... return DummyExecutor def test_disable_monitoring_on_pods(port_generator, get_executor): port0 = port_generator() port1 = port_generator() f = Flow(monitoring=True, port_monitoring=port0).add( uses=get_executor(), port_monitoring=port1, monitoring=False, ) f = f.build() assert f._deployment_nodes['gateway'].pod_args['pods'][0][0].monitoring assert not f._deployment_nodes['executor0'].pod_args['pods'][0][0].monitoring def test_disable_monitoring_on_gatway_only(port_generator, get_executor): port0 = port_generator() port1 = port_generator() f = Flow(monitoring=False, port_monitoring=port0).add( uses=get_executor(), port_monitoring=port1, monitoring=True, ) f = f.build() assert not f._deployment_nodes['gateway'].pod_args['pods'][0][0].monitoring assert f._deployment_nodes['executor0'].pod_args['pods'][0][0].monitoring
import pytest from jina import Executor, Flow, requests @pytest.fixture() def get_executor(): class DummyExecutor(Executor): @requests(on='/foo') def foo(self, docs, **kwargs): ... return DummyExecutor def test_disable_monitoring_on_pods(port_generator, get_executor): port0 = port_generator() port1 = port_generator() f = Flow(monitoring=True, port_monitoring=port0).add( uses=get_executor(), port_monitoring=port1, monitoring=False, ) f = f.build() assert f._deployment_nodes['gateway'].pod_args['pods'][0][0].monitoring assert not f._deployment_nodes['executor0'].pod_args['pods'][0][0].monitoring def test_disable_monitoring_on_gatway_only(port_generator, get_executor): port0 = port_generator() port1 = port_generator() f = Flow(monitoring=False, port_monitoring=port0).add( uses=get_executor(), port_monitoring=port1, monitoring=True, ) f = f.build() assert not f._deployment_nodes['gateway'].pod_args['pods'][0][0].monitoring assert f._deployment_nodes['executor0'].pod_args['pods'][0][0].monitoring
""" Prompts for implementing Chain of Abstraction. While official prompts are not given (and the paper finetunes models for the task), we can take inspiration and use few-shot prompting to generate a prompt for implementing chain of abstraction in an LLM agent. """ REASONING_PROMPT_TEMPALTE = """Generate an abstract plan of reasoning using placeholders for the specific values and function calls needed. The placeholders should be labeled y1, y2, etc. Function calls should be represented as inline strings like [FUNC {{function_name}}({{input1}}, {{input2}}, ...) = {{output_placeholder}}]. Assume someone will read the plan after the functions have been executed in order to make a final response. Not every question will require function calls to answer. If you do invoke a function, only use the available functions, do not make up functions. Example: ----------- Available functions: ```python def add(a: int, b: int) -> int: \"\"\"Add two numbers together.\"\"\" ... def multiply(a: int, b: int) -> int: \"\"\"Multiply two numbers together.\"\"\" ... ``` Question: Sally has 3 apples and buys 2 more. Then magically, a wizard casts a spell that multiplies the number of apples by 3. How many apples does Sally have now? Abstract plan of reasoning: After buying the apples, Sally has [FUNC add(3, 2) = y1] apples. Then, the wizard casts a spell to multiply the number of apples by 3, resulting in [FUNC multiply(y1, 3) = y2] apples. Your Turn: ----------- Available functions: ```python {functions} ``` Question: {question} Abstract plan of reasoning: """ REFINE_REASONING_PROMPT_TEMPALTE = """Generate a response to a question by using a previous abstract plan of reasoning. Use the previous reasoning as context to write a response to the question. Example: ----------- Question: Sally has 3 apples and buys 2 more. Then magically, a wizard casts a spell that multiplies the number of apples by 3. How many apples does Sally have now? Previous reasoning: After buying the apples, Sally has [FUNC add(3, 2) = 5] apples. Then, the wizard casts a spell to multiply the number of apples by 3, resulting in [FUNC multiply(5, 3) = 15] apples. Response: After the wizard casts the spell, Sally has 15 apples. Your Turn: ----------- Question: {question} Previous reasoning: {prev_reasoning} Response: """
""" Prompts for implementing Chain of Abstraction. While official prompts are not given (and the paper finetunes models for the task), we can take inspiration and use few-shot prompting to generate a prompt for implementing chain of abstraction in an LLM agent. """ REASONING_PROMPT_TEMPALTE = """Generate an abstract plan of reasoning using placeholders for the specific values and function calls needed. The placeholders should be labeled y1, y2, etc. Function calls should be represented as inline strings like [FUNC {{function_name}}({{input1}}, {{input2}}, ...) = {{output_placeholder}}]. Assume someone will read the plan after the functions have been executed in order to make a final response. Not every question will require function calls to answer. If you do invoke a function, only use the available functions, do not make up functions. Example: ----------- Available functions: ```python def add(a: int, b: int) -> int: \"\"\"Add two numbers together.\"\"\" ... def multiply(a: int, b: int) -> int: \"\"\"Multiply two numbers together.\"\"\" ... ``` Question: Sally has 3 apples and buys 2 more. Then magically, a wizard casts a spell that multiplies the number of apples by 3. How many apples does Sally have now? Abstract plan of reasoning: After buying the apples, Sally has [FUNC add(3, 2) = y1] apples. Then, the wizard casts a spell to multiply the number of apples by 3, resulting in [FUNC multiply(y1, 3) = y2] apples. Your Turn: ----------- Available functions: ```python {functions} ``` Question: {question} Abstract plan of reasoning: """ REFINE_REASONING_PROMPT_TEMPALTE = """Generate a response to a question by using a previous abstract plan of reasoning. Use the previous reasoning as context to write a response to the question. Example: ----------- Question: Sally has 3 apples and buys 2 more. Then magically, a wizard casts a spell that multiplies the number of apples by 3. How many apples does Sally have now? Previous reasoning: After buying the apples, Sally has [FUNC add(3, 2) = 5] apples. Then, the wizard casts a spell to multiply the number of apples by 3, resulting in [FUNC multiply(5, 3) = 15] apples. Response: After the wizard casts the spell, Sally has 15 apples. Your Turn: ----------- Question: {question} Previous reasoning: {prev_reasoning} Response: """
"""DeepLake reader.""" from typing import List, Optional, Union import numpy as np from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document distance_metric_map = { "l2": lambda a, b: np.linalg.norm(a - b, axis=1, ord=2), "l1": lambda a, b: np.linalg.norm(a - b, axis=1, ord=1), "max": lambda a, b: np.linalg.norm(a - b, axis=1, ord=np.inf), "cos": lambda a, b: np.dot(a, b.T) / (np.linalg.norm(a) * np.linalg.norm(b, axis=1)), "dot": lambda a, b: np.dot(a, b.T), } def vector_search( query_vector: Union[List, np.ndarray], data_vectors: np.ndarray, distance_metric: str = "l2", limit: Optional[int] = 4, ) -> List: """ Naive search for nearest neighbors args: query_vector: Union[List, np.ndarray] data_vectors: np.ndarray limit (int): number of nearest neighbors distance_metric: distance function 'L2' for Euclidean, 'L1' for Nuclear, 'Max' l-infinity distance, 'cos' for cosine similarity, 'dot' for dot product returns: nearest_indices: List, indices of nearest neighbors. """ # Calculate the distance between the query_vector and all data_vectors if isinstance(query_vector, list): query_vector = np.array(query_vector) query_vector = query_vector.reshape(1, -1) distances = distance_metric_map[distance_metric](query_vector, data_vectors) nearest_indices = np.argsort(distances) nearest_indices = ( nearest_indices[::-1][:limit] if distance_metric in ["cos"] else nearest_indices[:limit] ) return nearest_indices.tolist() class DeepLakeReader(BaseReader): """ DeepLake reader. Retrieve documents from existing DeepLake datasets. Args: dataset_name: Name of the deeplake dataset. """ def __init__( self, token: Optional[str] = None, ): """Initializing the deepLake reader.""" import_err_msg = ( "`deeplake` package not found, please run `pip install deeplake`" ) try: import deeplake # noqa except ImportError: raise ImportError(import_err_msg) self.token = token def load_data( self, query_vector: List[float], dataset_path: str, limit: int = 4, distance_metric: str = "l2", ) -> List[Document]: """ Load data from DeepLake. Args: dataset_name (str): Name of the DeepLake dataset. query_vector (List[float]): Query vector. limit (int): Number of results to return. Returns: List[Document]: A list of documents. """ import deeplake from deeplake.util.exceptions import TensorDoesNotExistError dataset = deeplake.load(dataset_path, token=self.token) try: embeddings = dataset.embedding.numpy(fetch_chunks=True) except Exception: raise TensorDoesNotExistError("embedding") indices = vector_search( query_vector, embeddings, distance_metric=distance_metric, limit=limit ) documents = [] for idx in indices: document = Document( text=str(dataset[idx].text.numpy().tolist()[0]), id_=dataset[idx].ids.numpy().tolist()[0], ) documents.append(document) return documents
"""DeepLake reader.""" from typing import List, Optional, Union import numpy as np from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document distance_metric_map = { "l2": lambda a, b: np.linalg.norm(a - b, axis=1, ord=2), "l1": lambda a, b: np.linalg.norm(a - b, axis=1, ord=1), "max": lambda a, b: np.linalg.norm(a - b, axis=1, ord=np.inf), "cos": lambda a, b: np.dot(a, b.T) / (np.linalg.norm(a) * np.linalg.norm(b, axis=1)), "dot": lambda a, b: np.dot(a, b.T), } def vector_search( query_vector: Union[List, np.ndarray], data_vectors: np.ndarray, distance_metric: str = "l2", limit: Optional[int] = 4, ) -> List: """ Naive search for nearest neighbors args: query_vector: Union[List, np.ndarray] data_vectors: np.ndarray limit (int): number of nearest neighbors distance_metric: distance function 'L2' for Euclidean, 'L1' for Nuclear, 'Max' l-infinity distance, 'cos' for cosine similarity, 'dot' for dot product returns: nearest_indices: List, indices of nearest neighbors. """ # Calculate the distance between the query_vector and all data_vectors if isinstance(query_vector, list): query_vector = np.array(query_vector) query_vector = query_vector.reshape(1, -1) distances = distance_metric_map[distance_metric](query_vector, data_vectors) nearest_indices = np.argsort(distances) nearest_indices = ( nearest_indices[::-1][:limit] if distance_metric in ["cos"] else nearest_indices[:limit] ) return nearest_indices.tolist() class DeepLakeReader(BaseReader): """ DeepLake reader. Retrieve documents from existing DeepLake datasets. Args: dataset_name: Name of the deeplake dataset. """ def __init__( self, token: Optional[str] = None, ): """Initializing the deepLake reader.""" import_err_msg = ( "`deeplake` package not found, please run `pip install deeplake`" ) try: import deeplake # noqa except ImportError: raise ImportError(import_err_msg) self.token = token def load_data( self, query_vector: List[float], dataset_path: str, limit: int = 4, distance_metric: str = "l2", ) -> List[Document]: """ Load data from DeepLake. Args: dataset_name (str): Name of the DeepLake dataset. query_vector (List[float]): Query vector. limit (int): Number of results to return. Returns: List[Document]: A list of documents. """ import deeplake from deeplake.util.exceptions import TensorDoesNotExistError dataset = deeplake.load(dataset_path, token=self.token) try: embeddings = dataset.embedding.numpy(fetch_chunks=True) except Exception: raise TensorDoesNotExistError("embedding") indices = vector_search( query_vector, embeddings, distance_metric=distance_metric, limit=limit ) documents = [] for idx in indices: document = Document( text=str(dataset[idx].text.numpy().tolist()[0]), id_=dataset[idx].ids.numpy().tolist()[0], ) documents.append(document) return documents
import numpy as np def _number_of_shards_in_gen_kwargs(gen_kwargs: dict) -> int: """Return the number of possible shards according to the input gen_kwargs""" # Having lists of different sizes makes sharding ambigious, raise an error in this case # until we decide how to define sharding without ambiguity for users lists_lengths = {key: len(value) for key, value in gen_kwargs.items() if isinstance(value, list)} if len(set(lists_lengths.values())) > 1: raise RuntimeError( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(f"\t- key {key} has length {length}" for key, length in lists_lengths.items()) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) max_length = max(lists_lengths.values(), default=0) return max(1, max_length) def _distribute_shards(num_shards: int, max_num_jobs: int) -> list[range]: """ Get the range of shard indices per job. If num_shards<max_num_jobs, then num_shards jobs are given a range of one shard. The shards indices order is preserved: e.g. all the first shards are given the first job. Moreover all the jobs are given approximately the same number of shards. Example: ```python >>> _distribute_shards(2, max_num_jobs=4) [range(0, 1), range(1, 2)] >>> _distribute_shards(10, max_num_jobs=3) [range(0, 4), range(4, 7), range(7, 10)] ``` """ shards_indices_per_group = [] for group_idx in range(max_num_jobs): num_shards_to_add = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break start = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 shard_indices = range(start, start + num_shards_to_add) shards_indices_per_group.append(shard_indices) return shards_indices_per_group def _split_gen_kwargs(gen_kwargs: dict, max_num_jobs: int) -> list[dict]: """Split the gen_kwargs into `max_num_job` gen_kwargs""" # Having lists of different sizes makes sharding ambigious, raise an error in this case num_shards = _number_of_shards_in_gen_kwargs(gen_kwargs) if num_shards == 1: return [dict(gen_kwargs)] else: shard_indices_per_group = _distribute_shards(num_shards=num_shards, max_num_jobs=max_num_jobs) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(value, list) else value for key, value in gen_kwargs.items() } for group_idx in range(len(shard_indices_per_group)) ] def _merge_gen_kwargs(gen_kwargs_list: list[dict]) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key], list) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _shuffle_gen_kwargs(rng: np.random.Generator, gen_kwargs: dict) -> dict: """Return a shuffled copy of the input gen_kwargs""" # We must shuffle all the lists, and lists of the same size must have the same shuffling. # This way entangled lists of (shard, shard_metadata) are still in the right order. # First, let's generate the shuffled indices per list size list_sizes = {len(value) for value in gen_kwargs.values() if isinstance(value, list)} indices_per_size = {} for size in list_sizes: indices_per_size[size] = list(range(size)) rng.shuffle(indices_per_size[size]) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes shuffled_kwargs = dict(gen_kwargs) for key, value in shuffled_kwargs.items(): if isinstance(value, list): shuffled_kwargs[key] = [value[i] for i in indices_per_size[len(value)]] return shuffled_kwargs
from typing import List import numpy as np def _number_of_shards_in_gen_kwargs(gen_kwargs: dict) -> int: """Return the number of possible shards according to the input gen_kwargs""" # Having lists of different sizes makes sharding ambigious, raise an error in this case # until we decide how to define sharding without ambiguity for users lists_lengths = {key: len(value) for key, value in gen_kwargs.items() if isinstance(value, list)} if len(set(lists_lengths.values())) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(f"\t- key {key} has length {length}" for key, length in lists_lengths.items()) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) max_length = max(lists_lengths.values(), default=0) return max(1, max_length) def _distribute_shards(num_shards: int, max_num_jobs: int) -> List[range]: """ Get the range of shard indices per job. If num_shards<max_num_jobs, then num_shards jobs are given a range of one shard. The shards indices order is preserved: e.g. all the first shards are given the first job. Moreover all the jobs are given approximately the same number of shards. Example: ```python >>> _distribute_shards(2, max_num_jobs=4) [range(0, 1), range(1, 2)] >>> _distribute_shards(10, max_num_jobs=3) [range(0, 4), range(4, 7), range(7, 10)] ``` """ shards_indices_per_group = [] for group_idx in range(max_num_jobs): num_shards_to_add = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break start = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 shard_indices = range(start, start + num_shards_to_add) shards_indices_per_group.append(shard_indices) return shards_indices_per_group def _split_gen_kwargs(gen_kwargs: dict, max_num_jobs: int) -> List[dict]: """Split the gen_kwargs into `max_num_job` gen_kwargs""" # Having lists of different sizes makes sharding ambigious, raise an error in this case num_shards = _number_of_shards_in_gen_kwargs(gen_kwargs) if num_shards == 1: return [dict(gen_kwargs)] else: shard_indices_per_group = _distribute_shards(num_shards=num_shards, max_num_jobs=max_num_jobs) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(value, list) else value for key, value in gen_kwargs.items() } for group_idx in range(len(shard_indices_per_group)) ] def _merge_gen_kwargs(gen_kwargs_list: List[dict]) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key], list) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _shuffle_gen_kwargs(rng: np.random.Generator, gen_kwargs: dict) -> dict: """Return a shuffled copy of the input gen_kwargs""" # We must shuffle all the lists, and lists of the same size must have the same shuffling. # This way entangled lists of (shard, shard_metadata) are still in the right order. # First, let's generate the shuffled indices per list size list_sizes = {len(value) for value in gen_kwargs.values() if isinstance(value, list)} indices_per_size = {} for size in list_sizes: indices_per_size[size] = list(range(size)) rng.shuffle(indices_per_size[size]) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes shuffled_kwargs = dict(gen_kwargs) for key, value in shuffled_kwargs.items(): if isinstance(value, list): shuffled_kwargs[key] = [value[i] for i in indices_per_size[len(value)]] return shuffled_kwargs
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDoc from docarray.documents import ImageDoc from docarray.typing import ImageBytes from docarray.utils._internal.misc import is_tf_available from docarray.utils._internal.pydantic import is_pydantic_v2 tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image(): image = ImageDoc(url=REMOTE_JPG) image.tensor = image.url.load() assert isinstance(image.tensor, np.ndarray) @pytest.mark.skipif(is_pydantic_v2, reason="Not working with pydantic v2 for now") def test_image_str(): image = parse_obj_as(ImageDoc, 'http://myurl.jpg') assert image.url == 'http://myurl.jpg' @pytest.mark.skipif(is_pydantic_v2, reason="Not working with pydantic v2 for now") def test_image_np(): image = parse_obj_as(ImageDoc, np.zeros((10, 10, 3))) assert (image.tensor == np.zeros((10, 10, 3))).all() @pytest.mark.skipif(is_pydantic_v2, reason="Not working with pydantic v2 for now") def test_image_torch(): image = parse_obj_as(ImageDoc, torch.zeros(10, 10, 3)) assert (image.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_image_tensorflow(): image = ImageDoc(tensor=tf.zeros((10, 10, 3))) assert tnp.allclose(image.tensor.tensor, tf.zeros((10, 10, 3))) @pytest.mark.skipif(is_pydantic_v2, reason="Not working with pydantic v2 for now") def test_image_shortcut_doc(): class MyDoc(BaseDoc): image: ImageDoc image2: ImageDoc image3: ImageDoc doc = MyDoc( image='http://myurl.jpg', image2=np.zeros((10, 10, 3)), image3=torch.zeros(10, 10, 3), ) assert doc.image.url == 'http://myurl.jpg' assert (doc.image2.tensor == np.zeros((10, 10, 3))).all() assert (doc.image3.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.slow @pytest.mark.internet def test_byte(): img = ImageDoc(url=REMOTE_JPG) img.bytes_ = img.url.load_bytes() assert isinstance(img.bytes_, ImageBytes) @pytest.mark.slow @pytest.mark.internet def test_byte_from_tensor(): img = ImageDoc(url=REMOTE_JPG) img.tensor = img.url.load() img.bytes_ = img.tensor.to_bytes() assert isinstance(img.bytes_, bytes) assert isinstance(img.bytes_, ImageBytes) assert len(img.bytes_) > 0
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDoc from docarray.documents import ImageDoc from docarray.typing import ImageBytes from docarray.utils._internal.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image(): image = ImageDoc(url=REMOTE_JPG) image.tensor = image.url.load() assert isinstance(image.tensor, np.ndarray) def test_image_str(): image = parse_obj_as(ImageDoc, 'http://myurl.jpg') assert image.url == 'http://myurl.jpg' def test_image_np(): image = parse_obj_as(ImageDoc, np.zeros((10, 10, 3))) assert (image.tensor == np.zeros((10, 10, 3))).all() def test_image_torch(): image = parse_obj_as(ImageDoc, torch.zeros(10, 10, 3)) assert (image.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_image_tensorflow(): image = ImageDoc(tensor=tf.zeros((10, 10, 3))) assert tnp.allclose(image.tensor.tensor, tf.zeros((10, 10, 3))) def test_image_shortcut_doc(): class MyDoc(BaseDoc): image: ImageDoc image2: ImageDoc image3: ImageDoc doc = MyDoc( image='http://myurl.jpg', image2=np.zeros((10, 10, 3)), image3=torch.zeros(10, 10, 3), ) assert doc.image.url == 'http://myurl.jpg' assert (doc.image2.tensor == np.zeros((10, 10, 3))).all() assert (doc.image3.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.slow @pytest.mark.internet def test_byte(): img = ImageDoc(url=REMOTE_JPG) img.bytes_ = img.url.load_bytes() assert isinstance(img.bytes_, ImageBytes) @pytest.mark.slow @pytest.mark.internet def test_byte_from_tensor(): img = ImageDoc(url=REMOTE_JPG) img.tensor = img.url.load() img.bytes_ = img.tensor.to_bytes() assert isinstance(img.bytes_, bytes) assert isinstance(img.bytes_, ImageBytes) assert len(img.bytes_) > 0
__copyright__ = 'Copyright (c) 2020-2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' from typing import Any, Iterable, Optional import librosa as lr import numpy as np import torch from jina import DocumentArray, Executor, requests from jina.excepts import BadDocType from .audio_clip.model import AudioCLIP class AudioCLIPEncoder(Executor): """ Encode audio data with AudioCLIP embeddings """ TARGET_SAMPLE_RATE = 44100 # derived from ESResNeXt def __init__( self, model_path: str = 'assets/AudioCLIP-Full-Training.pt', default_traversal_paths: Iterable[str] = ('r',), device: str = 'cpu', *args, **kwargs ): """ :param model_path: path of the pre-trained AudioCLIP model :param default_traversal_paths: default traversal path :param device: Torch device string (e.g. 'cpu', 'cuda', 'cuda:2') """ super().__init__(*args, **kwargs) torch.set_grad_enabled(False) self.model_path = model_path self.aclp = AudioCLIP(pretrained=model_path).to(device).eval() self.default_traversal_paths = default_traversal_paths @requests def encode( self, docs: Optional[DocumentArray], parameters: dict, *args, **kwargs ) -> Any: if docs: cleaned_document_array = self._get_input_data(docs, parameters) self._create_embeddings(cleaned_document_array) def _get_input_data(self, docs: DocumentArray, parameters: dict): """Create a filtered set of Documents to iterate over.""" traversal_paths = parameters.get( 'traversal_paths', self.default_traversal_paths ) # traverse thought all documents which have to be processed flat_docs = docs.traverse_flat(traversal_paths) # filter out documents without audio wav filtered_docs = DocumentArray( [doc for doc in flat_docs if doc.blob is not None] ) return filtered_docs def _create_embeddings(self, filtered_docs: Iterable): """Update the documents with the embeddings generated by AudioCLIP""" for d in filtered_docs: d.blob, d.tags['sample_rate'] = self._resample( d.blob, d.tags.get('sample_rate', None) ) audio = torch.Tensor(d.blob).unsqueeze(0) embedding = self.aclp.encode_audio(audio=audio)[0] d.embedding = embedding.cpu().numpy() def _resample(self, blob: np.ndarray, orig_sr: int): if orig_sr is None: raise BadDocType( 'sample rate is not given, please provide a valid sample rate' ) if orig_sr == AudioCLIPEncoder.TARGET_SAMPLE_RATE: return return ( lr.resample(blob, orig_sr, AudioCLIPEncoder.TARGET_SAMPLE_RATE), AudioCLIPEncoder.TARGET_SAMPLE_RATE, )
__copyright__ = 'Copyright (c) 2020-2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' from typing import Any, Iterable, Optional import librosa as lr import numpy as np import torch from jina import DocumentArray, Executor, requests from jina.excepts import BadDocType from .audio_clip.model import AudioCLIP class AudioCLIPEncoder(Executor): """ Encode audio data with AudioCLIP embeddings :param model_path: path of the pre-trained AudioCLIP model :param default_traversal_paths: default traversal path :param device: Torch device string (e.g. 'cpu', 'cuda', 'cuda:2') """ TARGET_SAMPLE_RATE = 44100 # derived from ESResNeXt def __init__( self, model_path: str = 'assets/AudioCLIP-Full-Training.pt', default_traversal_paths: Iterable[str] = ('r',), device: str = 'cpu', *args, **kwargs ): super().__init__(*args, **kwargs) torch.set_grad_enabled(False) self.model_path = model_path self.aclp = AudioCLIP(pretrained=model_path).to(device).eval() self.default_traversal_paths = default_traversal_paths @requests def encode( self, docs: Optional[DocumentArray], parameters: dict, *args, **kwargs ) -> Any: if docs: cleaned_document_array = self._get_input_data(docs, parameters) self._create_embeddings(cleaned_document_array) def _get_input_data(self, docs: DocumentArray, parameters: dict): """Create a filtered set of Documents to iterate over.""" traversal_paths = parameters.get( 'traversal_paths', self.default_traversal_paths ) # traverse thought all documents which have to be processed flat_docs = docs.traverse_flat(traversal_paths) # filter out documents without audio wav filtered_docs = DocumentArray( [doc for doc in flat_docs if doc.blob is not None] ) return filtered_docs def _create_embeddings(self, filtered_docs: Iterable): """Update the documents with the embeddings generated by AudioCLIP""" for d in filtered_docs: d.blob, d.tags['sample_rate'] = self._resample( d.blob, d.tags.get('sample_rate', None) ) audio = torch.Tensor(d.blob).unsqueeze(0) embedding = self.aclp.encode_audio(audio=audio)[0] d.embedding = embedding.cpu().numpy() def _resample(self, blob: np.ndarray, orig_sr: int): if orig_sr is None: raise BadDocType( 'sample rate is not given, please provide a valid sample rate' ) if orig_sr == AudioCLIPEncoder.TARGET_SAMPLE_RATE: return return ( lr.resample(blob, orig_sr, AudioCLIPEncoder.TARGET_SAMPLE_RATE), AudioCLIPEncoder.TARGET_SAMPLE_RATE, )
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from docarray import BaseDoc, DocList from docarray.base_doc import AnyDoc def test_generic_init(): class Text(BaseDoc): text: str da = DocList[Text]([]) da.doc_type == Text assert isinstance(da, DocList) def test_normal_access_init(): da = DocList([]) da.doc_type == AnyDoc assert isinstance(da, DocList)
from docarray import BaseDoc, DocList from docarray.base_doc import AnyDoc def test_generic_init(): class Text(BaseDoc): text: str da = DocList[Text]([]) da.doc_type == Text assert isinstance(da, DocList) def test_normal_access_init(): da = DocList([]) da.doc_type == AnyDoc assert isinstance(da, DocList)
from __future__ import annotations import csv import logging import os import numpy as np from sentence_transformers import InputExample logger = logging.getLogger(__name__) class CEBinaryAccuracyEvaluator: """ This evaluator can be used with the CrossEncoder class. It is designed for CrossEncoders with 1 outputs. It measure the accuracy of the predict class vs. the gold labels. It uses a fixed threshold to determine the label (0 vs 1). See CEBinaryClassificationEvaluator for an evaluator that determines automatically the optimal threshold. """ def __init__( self, sentence_pairs: list[list[str]], labels: list[int], name: str = "", threshold: float = 0.5, write_csv: bool = True, ): self.sentence_pairs = sentence_pairs self.labels = labels self.name = name self.threshold = threshold self.csv_file = "CEBinaryAccuracyEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = ["epoch", "steps", "Accuracy"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: list[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CEBinaryAccuracyEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) pred_labels = pred_scores > self.threshold assert len(pred_labels) == len(self.labels) acc = np.sum(pred_labels == self.labels) / len(self.labels) logger.info("Accuracy: {:.2f}".format(acc * 100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc]) return acc
import csv import logging import os from typing import List import numpy as np from sentence_transformers import InputExample logger = logging.getLogger(__name__) class CEBinaryAccuracyEvaluator: """ This evaluator can be used with the CrossEncoder class. It is designed for CrossEncoders with 1 outputs. It measure the accuracy of the predict class vs. the gold labels. It uses a fixed threshold to determine the label (0 vs 1). See CEBinaryClassificationEvaluator for an evaluator that determines automatically the optimal threshold. """ def __init__( self, sentence_pairs: List[List[str]], labels: List[int], name: str = "", threshold: float = 0.5, write_csv: bool = True, ): self.sentence_pairs = sentence_pairs self.labels = labels self.name = name self.threshold = threshold self.csv_file = "CEBinaryAccuracyEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = ["epoch", "steps", "Accuracy"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: List[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CEBinaryAccuracyEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) pred_labels = pred_scores > self.threshold assert len(pred_labels) == len(self.labels) acc = np.sum(pred_labels == self.labels) / len(self.labels) logger.info("Accuracy: {:.2f}".format(acc * 100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc]) return acc
from __future__ import annotations from sentence_transformers.similarity_functions import SimilarityFunction __all__ = ["SimilarityFunction"]
from sentence_transformers.similarity_functions import SimilarityFunction __all__ = ["SimilarityFunction"]
from keras.src.api_export import keras_export from keras.src.layers.pooling.base_pooling import BasePooling @keras_export(["keras.layers.AveragePooling3D", "keras.layers.AvgPool3D"]) class AveragePooling3D(BasePooling): """Average pooling operation for 3D data (spatial or spatio-temporal). Downsamples the input along its spatial dimensions (depth, height, and width) by taking the average value over an input window (of size defined by `pool_size`) for each channel of the input. The window is shifted by `strides` along each dimension. Args: pool_size: int or tuple of 3 integers, factors by which to downscale (dim1, dim2, dim3). If only one integer is specified, the same window length will be used for all dimensions. strides: int or tuple of 3 integers, or None. Strides values. If None, it will default to `pool_size`. If only one int is specified, the same stride size will be used for all dimensions. padding: string, either `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. data_format: string, either `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be `"channels_last"`. Input shape: - If `data_format="channels_last"`: 5D tensor with shape: `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - If `data_format="channels_first"`: 5D tensor with shape: `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)` Output shape: - If `data_format="channels_last"`: 5D tensor with shape: `(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)` - If `data_format="channels_first"`: 5D tensor with shape: `(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)` Example: ```python depth = 30 height = 30 width = 30 channels = 3 inputs = keras.layers.Input(shape=(depth, height, width, channels)) layer = keras.layers.AveragePooling3D(pool_size=3) outputs = layer(inputs) # Shape: (batch_size, 10, 10, 10, 3) ``` """ def __init__( self, pool_size, strides=None, padding="valid", data_format=None, name=None, **kwargs, ): super().__init__( pool_size, strides, pool_dimensions=3, pool_mode="average", padding=padding, data_format=data_format, name=name, **kwargs, )
from keras.src.api_export import keras_export from keras.src.layers.pooling.base_pooling import BasePooling @keras_export(["keras.layers.AveragePooling3D", "keras.layers.AvgPool3D"]) class AveragePooling3D(BasePooling): """Average pooling operation for 3D data (spatial or spatio-temporal). Downsamples the input along its spatial dimensions (depth, height, and width) by taking the average value over an input window (of size defined by `pool_size`) for each channel of the input. The window is shifted by `strides` along each dimension. Args: pool_size: int or tuple of 3 integers, factors by which to downscale (dim1, dim2, dim3). If only one integer is specified, the same window length will be used for all dimensions. strides: int or tuple of 3 integers, or None. Strides values. If None, it will default to `pool_size`. If only one int is specified, the same stride size will be used for all dimensions. padding: string, either `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. data_format: string, either `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be `"channels_last"`. Input shape: - If `data_format="channels_last"`: 5D tensor with shape: `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - If `data_format="channels_first"`: 5D tensor with shape: `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)` Output shape: - If `data_format="channels_last"`: 5D tensor with shape: `(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)` - If `data_format="channels_first"`: 5D tensor with shape: `(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)` Example: ```python depth = 30 height = 30 width = 30 channels = 3 inputs = keras.layers.Input(shape=(depth, height, width, channels)) layer = keras.layers.AveragePooling3D(pool_size=3) outputs = layer(inputs) # Shape: (batch_size, 10, 10, 10, 3) ``` """ def __init__( self, pool_size, strides=None, padding="valid", data_format=None, name=None, **kwargs ): super().__init__( pool_size, strides, pool_dimensions=3, pool_mode="average", padding=padding, data_format=data_format, name=name, **kwargs, )
"""Test pydantic output parser.""" import pytest from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.output_parsers.pydantic import PydanticOutputParser from llama_index.core.llms import ChatMessage, TextBlock, ImageBlock class AttrDict(BaseModel): test_attr: str foo: int class TestModel(BaseModel): __test__ = False title: str attr_dict: AttrDict def test_pydantic() -> None: """Test pydantic output parser.""" output = """\ Here is the valid JSON: { "title": "TestModel", "attr_dict": { "test_attr": "test_attr", "foo": 2 } } """ parser = PydanticOutputParser(output_cls=TestModel) parsed_output = parser.parse(output) assert isinstance(parsed_output, TestModel) assert parsed_output.title == "TestModel" assert isinstance(parsed_output.attr_dict, AttrDict) assert parsed_output.attr_dict.test_attr == "test_attr" assert parsed_output.attr_dict.foo == 2 # TODO: figure out testing conditions with pytest.raises(ValueError): output = "hello world" parsed_output = parser.parse(output) def test_pydantic_format() -> None: """Test pydantic format.""" query = "hello world" parser = PydanticOutputParser(output_cls=AttrDict) formatted_query = parser.format(query) assert "hello world" in formatted_query def test_pydantic_format_with_blocks() -> None: """Test pydantic format with blocks.""" parser = PydanticOutputParser(output_cls=AttrDict) messages = [ ChatMessage( role="user", blocks=[ TextBlock(text="hello world"), ImageBlock( url="https://pbs.twimg.com/media/GVhGD1PXkAANfPV?format=jpg&name=4096x4096" ), TextBlock(text="hello world"), ], ) ] formatted_messages = parser.format_messages(messages) assert "hello world" in formatted_messages[0].blocks[-1].text
"""Test pydantic output parser.""" import pytest from llama_index.core.bridge.pydantic import BaseModel from llama_index.core.output_parsers.pydantic import PydanticOutputParser class AttrDict(BaseModel): test_attr: str foo: int class TestModel(BaseModel): __test__ = False title: str attr_dict: AttrDict def test_pydantic() -> None: """Test pydantic output parser.""" output = """\ Here is the valid JSON: { "title": "TestModel", "attr_dict": { "test_attr": "test_attr", "foo": 2 } } """ parser = PydanticOutputParser(output_cls=TestModel) parsed_output = parser.parse(output) assert isinstance(parsed_output, TestModel) assert parsed_output.title == "TestModel" assert isinstance(parsed_output.attr_dict, AttrDict) assert parsed_output.attr_dict.test_attr == "test_attr" assert parsed_output.attr_dict.foo == 2 # TODO: figure out testing conditions with pytest.raises(ValueError): output = "hello world" parsed_output = parser.parse(output) def test_pydantic_format() -> None: """Test pydantic format.""" query = "hello world" parser = PydanticOutputParser(output_cls=AttrDict) formatted_query = parser.format(query) assert "hello world" in formatted_query
_base_ = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict(plugins=[ dict( cfg=dict( type='GeneralizedAttention', spatial_range=-1, num_heads=8, attention_type='1111', kv_stride=2), stages=(False, False, True, True), position='after_conv2') ]))
_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict(plugins=[ dict( cfg=dict( type='GeneralizedAttention', spatial_range=-1, num_heads=8, attention_type='1111', kv_stride=2), stages=(False, False, True, True), position='after_conv2') ]))
from urllib.parse import urlparse, urlunparse import pytest from llama_index.postprocessor.nvidia_rerank import NVIDIARerank as Interface from llama_index.postprocessor.nvidia_rerank.utils import BASE_URL import respx @pytest.fixture() def mock_v1_local_models2(respx_mock: respx.MockRouter, base_url: str) -> None: parsed = urlparse(base_url) normalized_path = parsed.path.rstrip("/") if not normalized_path.endswith("/v1"): normalized_path += "/v1" base_url = urlunparse( (parsed.scheme, parsed.netloc, normalized_path, None, None, None) ) # Intercept GET call for retrieving models using httpx. respx_mock.get(f"{base_url}/models").respond( json={ "data": [ { "id": "model1", "object": "model", "created": 1234567890, "owned_by": "OWNER", "root": "model1", }, ] } ) # marking as skip because base_url validation is removed @pytest.mark.skip(reason="base_url validation is removed") @pytest.mark.parametrize( "base_url", [ "http://0.0.0.0:8888/rankings", "http://0.0.0.0:8888/ranking", "http://test_url/.../v1", "https://test_url/.../v1", ], ) def test_base_url_invalid_not_hosted( base_url: str, mock_v1_local_models2: None ) -> None: parsed = urlparse(base_url) normalized_path = parsed.path.rstrip("/") # Expect a warning if the URL does NOT already end with "/v1" if not normalized_path.endswith("/v1"): with pytest.warns(UserWarning, match="does not end in /v1"): client = Interface(base_url=base_url) else: client = Interface(base_url=base_url) # Assert that the client's base_url is normalized to end with '/v1' assert client.base_url.endswith("/v1") # Updated test for valid non-hosted URL. @pytest.mark.parametrize( "base_url", [ "http://0.0.0.0:8888/v1", ], ) def test_base_url_valid_not_hosted(base_url: str, mock_v1_local_models2: None) -> None: # The default model warning is expected in non-hosted mode with pytest.warns(UserWarning, match="Default model is set") as record: client = Interface(base_url=base_url) # Also verify the base_url remains normalized (unchanged in this case) assert client.base_url.endswith("/v1") # Updated test for hosted base URL. @pytest.mark.parametrize( "base_url", [BASE_URL], ) def test_base_url_valid_hosted(base_url: str, mock_v1_local_models2: None) -> None: client = Interface(base_url=base_url, api_key="BOGUS") assert client._is_hosted # Hosted client should use the provided base_url exactly. assert client.base_url == base_url # Updated test for proxy base URLs. @pytest.mark.parametrize( "base_url", [ "http://host/path0/path1/path2/v1", "http://host:123/path0/path1/path2/v1", ], ) def test_proxy_base_url(base_url: str, mock_v1_local_models2: None) -> None: client = Interface(api_key="NO_API_KEY_PROVIDED", base_url=base_url) assert not client._is_hosted # Since the URL is already normalized, verify it remains unchanged. assert client.base_url == base_url # marking as skip because base_url validation is removed @pytest.mark.skip(reason="base_url validation is removed") @pytest.mark.parametrize( "base_url", [ "bogus", "http:/", "http://", "http:/oops", ], ) def test_param_base_url_negative(base_url: str, monkeypatch) -> None: monkeypatch.setenv("NVIDIA_API_KEY", "valid_api_key") with pytest.raises(ValueError) as e: Interface(model="model1", base_url=base_url) assert "Invalid base_url" in str(e.value)
from urllib.parse import urlparse, urlunparse import pytest from llama_index.postprocessor.nvidia_rerank import NVIDIARerank as Interface from llama_index.postprocessor.nvidia_rerank.utils import BASE_URL import respx @pytest.fixture() def mock_v1_local_models2(respx_mock: respx.MockRouter, base_url: str) -> None: parsed = urlparse(base_url) normalized_path = parsed.path.rstrip("/") if not normalized_path.endswith("/v1"): normalized_path += "/v1" base_url = urlunparse( (parsed.scheme, parsed.netloc, normalized_path, None, None, None) ) # Intercept GET call for retrieving models using httpx. respx_mock.get(f"{base_url}/models").respond( json={ "data": [ { "id": "model1", "object": "model", "created": 1234567890, "owned_by": "OWNER", "root": "model1", }, ] } ) # Updated test for non-hosted URLs that may need normalization. @pytest.mark.parametrize( "base_url", [ "http://0.0.0.0:8888/rankings", "http://0.0.0.0:8888/ranking", "http://test_url/.../v1", "https://test_url/.../v1", ], ) def test_base_url_invalid_not_hosted( base_url: str, mock_v1_local_models2: None ) -> None: parsed = urlparse(base_url) normalized_path = parsed.path.rstrip("/") # Expect a warning if the URL does NOT already end with "/v1" if not normalized_path.endswith("/v1"): with pytest.warns(UserWarning, match="does not end in /v1"): client = Interface(base_url=base_url) else: client = Interface(base_url=base_url) # Assert that the client's base_url is normalized to end with '/v1' assert client.base_url.endswith("/v1") # Updated test for valid non-hosted URL. @pytest.mark.parametrize( "base_url", [ "http://0.0.0.0:8888/v1", ], ) def test_base_url_valid_not_hosted(base_url: str, mock_v1_local_models2: None) -> None: # The default model warning is expected in non-hosted mode with pytest.warns(UserWarning, match="Default model is set") as record: client = Interface(base_url=base_url) # Also verify the base_url remains normalized (unchanged in this case) assert client.base_url.endswith("/v1") # Updated test for hosted base URL. @pytest.mark.parametrize( "base_url", [BASE_URL], ) def test_base_url_valid_hosted(base_url: str, mock_v1_local_models2: None) -> None: client = Interface(base_url=base_url, api_key="BOGUS") assert client._is_hosted # Hosted client should use the provided base_url exactly. assert client.base_url == base_url # Updated test for proxy base URLs. @pytest.mark.parametrize( "base_url", [ "http://host/path0/path1/path2/v1", "http://host:123/path0/path1/path2/v1", ], ) def test_proxy_base_url(base_url: str, mock_v1_local_models2: None) -> None: client = Interface(api_key="NO_API_KEY_PROVIDED", base_url=base_url) assert not client._is_hosted # Since the URL is already normalized, verify it remains unchanged. assert client.base_url == base_url @pytest.mark.parametrize( "base_url", [ "bogus", "http:/", "http://", "http:/oops", ], ) def test_param_base_url_negative(base_url: str, monkeypatch) -> None: monkeypatch.setenv("NVIDIA_API_KEY", "valid_api_key") with pytest.raises(ValueError) as e: Interface(model="model1", base_url=base_url) assert "Invalid base_url" in str(e.value)
"""Standard LangChain interface tests""" from pathlib import Path from typing import Literal, cast from langchain_core.language_models import BaseChatModel from langchain_core.messages import AIMessage from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_anthropic import ChatAnthropic REPO_ROOT_DIR = Path(__file__).parents[5] class TestAnthropicStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatAnthropic @property def chat_model_params(self) -> dict: return {"model": "claude-3-5-sonnet-latest"} @property def supports_image_inputs(self) -> bool: return True @property def supports_image_urls(self) -> bool: return True @property def supports_pdf_inputs(self) -> bool: return True @property def supports_image_tool_message(self) -> bool: return True @property def supports_anthropic_inputs(self) -> bool: return True @property def supported_usage_metadata_details( self, ) -> dict[ Literal["invoke", "stream"], list[ Literal[ "audio_input", "audio_output", "reasoning_output", "cache_read_input", "cache_creation_input", ] ], ]: return { "invoke": ["cache_read_input", "cache_creation_input"], "stream": ["cache_read_input", "cache_creation_input"], } def invoke_with_cache_creation_input(self, *, stream: bool = False) -> AIMessage: llm = ChatAnthropic( model="claude-3-5-sonnet-20240620", # type: ignore[call-arg] extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"}, # type: ignore[call-arg] ) with open(REPO_ROOT_DIR / "README.md") as f: readme = f.read() input_ = f"""What's langchain? Here's the langchain README: {readme} """ return _invoke( llm, [ { "role": "user", "content": [ { "type": "text", "text": input_, "cache_control": {"type": "ephemeral"}, } ], } ], stream, ) def invoke_with_cache_read_input(self, *, stream: bool = False) -> AIMessage: llm = ChatAnthropic( model="claude-3-5-sonnet-20240620", # type: ignore[call-arg] extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"}, # type: ignore[call-arg] ) with open(REPO_ROOT_DIR / "README.md") as f: readme = f.read() input_ = f"""What's langchain? Here's the langchain README: {readme} """ # invoke twice so first invocation is cached _invoke( llm, [ { "role": "user", "content": [ { "type": "text", "text": input_, "cache_control": {"type": "ephemeral"}, } ], } ], stream, ) return _invoke( llm, [ { "role": "user", "content": [ { "type": "text", "text": input_, "cache_control": {"type": "ephemeral"}, } ], } ], stream, ) def _invoke(llm: ChatAnthropic, input_: list, stream: bool) -> AIMessage: if stream: full = None for chunk in llm.stream(input_): full = full + chunk if full else chunk # type: ignore[operator] return cast(AIMessage, full) else: return cast(AIMessage, llm.invoke(input_))
"""Standard LangChain interface tests""" from pathlib import Path from typing import Literal, cast from langchain_core.language_models import BaseChatModel from langchain_core.messages import AIMessage from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_anthropic import ChatAnthropic REPO_ROOT_DIR = Path(__file__).parents[5] class TestAnthropicStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatAnthropic @property def chat_model_params(self) -> dict: return {"model": "claude-3-5-sonnet-latest"} @property def supports_image_inputs(self) -> bool: return True @property def supports_image_tool_message(self) -> bool: return True @property def supports_anthropic_inputs(self) -> bool: return True @property def supported_usage_metadata_details( self, ) -> dict[ Literal["invoke", "stream"], list[ Literal[ "audio_input", "audio_output", "reasoning_output", "cache_read_input", "cache_creation_input", ] ], ]: return { "invoke": ["cache_read_input", "cache_creation_input"], "stream": ["cache_read_input", "cache_creation_input"], } def invoke_with_cache_creation_input(self, *, stream: bool = False) -> AIMessage: llm = ChatAnthropic( model="claude-3-5-sonnet-20240620", # type: ignore[call-arg] extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"}, # type: ignore[call-arg] ) with open(REPO_ROOT_DIR / "README.md") as f: readme = f.read() input_ = f"""What's langchain? Here's the langchain README: {readme} """ return _invoke( llm, [ { "role": "user", "content": [ { "type": "text", "text": input_, "cache_control": {"type": "ephemeral"}, } ], } ], stream, ) def invoke_with_cache_read_input(self, *, stream: bool = False) -> AIMessage: llm = ChatAnthropic( model="claude-3-5-sonnet-20240620", # type: ignore[call-arg] extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"}, # type: ignore[call-arg] ) with open(REPO_ROOT_DIR / "README.md") as f: readme = f.read() input_ = f"""What's langchain? Here's the langchain README: {readme} """ # invoke twice so first invocation is cached _invoke( llm, [ { "role": "user", "content": [ { "type": "text", "text": input_, "cache_control": {"type": "ephemeral"}, } ], } ], stream, ) return _invoke( llm, [ { "role": "user", "content": [ { "type": "text", "text": input_, "cache_control": {"type": "ephemeral"}, } ], } ], stream, ) def _invoke(llm: ChatAnthropic, input_: list, stream: bool) -> AIMessage: if stream: full = None for chunk in llm.stream(input_): full = full + chunk if full else chunk # type: ignore[operator] return cast(AIMessage, full) else: return cast(AIMessage, llm.invoke(input_))
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmdet.core.bbox.coder import (DeltaXYWHBBoxCoder, TBLRBBoxCoder, YOLOBBoxCoder) def test_yolo_bbox_coder(): coder = YOLOBBoxCoder() bboxes = torch.Tensor([[-42., -29., 74., 61.], [-10., -29., 106., 61.], [22., -29., 138., 61.], [54., -29., 170., 61.]]) pred_bboxes = torch.Tensor([[0.4709, 0.6152, 0.1690, -0.4056], [0.5399, 0.6653, 0.1162, -0.4162], [0.4654, 0.6618, 0.1548, -0.4301], [0.4786, 0.6197, 0.1896, -0.4479]]) grid_size = 32 expected_decode_bboxes = torch.Tensor( [[-53.6102, -10.3096, 83.7478, 49.6824], [-15.8700, -8.3901, 114.4236, 50.9693], [11.1822, -8.0924, 146.6034, 50.4476], [41.2068, -8.9232, 181.4236, 48.5840]]) assert expected_decode_bboxes.allclose( coder.decode(bboxes, pred_bboxes, grid_size)) def test_delta_bbox_coder(): coder = DeltaXYWHBBoxCoder() rois = torch.Tensor([[0., 0., 1., 1.], [0., 0., 1., 1.], [0., 0., 1., 1.], [5., 5., 5., 5.]]) deltas = torch.Tensor([[0., 0., 0., 0.], [1., 1., 1., 1.], [0., 0., 2., -1.], [0.7, -1.9, -0.5, 0.3]]) expected_decode_bboxes = torch.Tensor([[0.0000, 0.0000, 1.0000, 1.0000], [0.1409, 0.1409, 2.8591, 2.8591], [0.0000, 0.3161, 4.1945, 0.6839], [5.0000, 5.0000, 5.0000, 5.0000]]) out = coder.decode(rois, deltas, max_shape=(32, 32)) assert expected_decode_bboxes.allclose(out, atol=1e-04) out = coder.decode(rois, deltas, max_shape=torch.Tensor((32, 32))) assert expected_decode_bboxes.allclose(out, atol=1e-04) batch_rois = rois.unsqueeze(0).repeat(2, 1, 1) batch_deltas = deltas.unsqueeze(0).repeat(2, 1, 1) batch_out = coder.decode(batch_rois, batch_deltas, max_shape=(32, 32))[0] assert out.allclose(batch_out) batch_out = coder.decode( batch_rois, batch_deltas, max_shape=[(32, 32), (32, 32)])[0] assert out.allclose(batch_out) # test max_shape is not equal to batch with pytest.raises(AssertionError): coder.decode( batch_rois, batch_deltas, max_shape=[(32, 32), (32, 32), (32, 32)]) rois = torch.zeros((0, 4)) deltas = torch.zeros((0, 4)) out = coder.decode(rois, deltas, max_shape=(32, 32)) assert rois.shape == out.shape # test add_ctr_clamp coder = DeltaXYWHBBoxCoder(add_ctr_clamp=True, ctr_clamp=2) rois = torch.Tensor([[0., 0., 6., 6.], [0., 0., 1., 1.], [0., 0., 1., 1.], [5., 5., 5., 5.]]) deltas = torch.Tensor([[1., 1., 2., 2.], [1., 1., 1., 1.], [0., 0., 2., -1.], [0.7, -1.9, -0.5, 0.3]]) expected_decode_bboxes = torch.Tensor([[0.0000, 0.0000, 27.1672, 27.1672], [0.1409, 0.1409, 2.8591, 2.8591], [0.0000, 0.3161, 4.1945, 0.6839], [5.0000, 5.0000, 5.0000, 5.0000]]) out = coder.decode(rois, deltas, max_shape=(32, 32)) assert expected_decode_bboxes.allclose(out, atol=1e-04) def test_tblr_bbox_coder(): coder = TBLRBBoxCoder(normalizer=15.) rois = torch.Tensor([[0., 0., 1., 1.], [0., 0., 1., 1.], [0., 0., 1., 1.], [5., 5., 5., 5.]]) deltas = torch.Tensor([[0., 0., 0., 0.], [1., 1., 1., 1.], [0., 0., 2., -1.], [0.7, -1.9, -0.5, 0.3]]) expected_decode_bboxes = torch.Tensor([[0.5000, 0.5000, 0.5000, 0.5000], [0.0000, 0.0000, 12.0000, 13.0000], [0.0000, 0.5000, 0.0000, 0.5000], [5.0000, 5.0000, 5.0000, 5.0000]]) out = coder.decode(rois, deltas, max_shape=(13, 12)) assert expected_decode_bboxes.allclose(out) out = coder.decode(rois, deltas, max_shape=torch.Tensor((13, 12))) assert expected_decode_bboxes.allclose(out) batch_rois = rois.unsqueeze(0).repeat(2, 1, 1) batch_deltas = deltas.unsqueeze(0).repeat(2, 1, 1) batch_out = coder.decode(batch_rois, batch_deltas, max_shape=(13, 12))[0] assert out.allclose(batch_out) batch_out = coder.decode( batch_rois, batch_deltas, max_shape=[(13, 12), (13, 12)])[0] assert out.allclose(batch_out) # test max_shape is not equal to batch with pytest.raises(AssertionError): coder.decode(batch_rois, batch_deltas, max_shape=[(13, 12)]) rois = torch.zeros((0, 4)) deltas = torch.zeros((0, 4)) out = coder.decode(rois, deltas, max_shape=(32, 32)) assert rois.shape == out.shape
import pytest import torch from mmdet.core.bbox.coder import (DeltaXYWHBBoxCoder, TBLRBBoxCoder, YOLOBBoxCoder) def test_yolo_bbox_coder(): coder = YOLOBBoxCoder() bboxes = torch.Tensor([[-42., -29., 74., 61.], [-10., -29., 106., 61.], [22., -29., 138., 61.], [54., -29., 170., 61.]]) pred_bboxes = torch.Tensor([[0.4709, 0.6152, 0.1690, -0.4056], [0.5399, 0.6653, 0.1162, -0.4162], [0.4654, 0.6618, 0.1548, -0.4301], [0.4786, 0.6197, 0.1896, -0.4479]]) grid_size = 32 expected_decode_bboxes = torch.Tensor( [[-53.6102, -10.3096, 83.7478, 49.6824], [-15.8700, -8.3901, 114.4236, 50.9693], [11.1822, -8.0924, 146.6034, 50.4476], [41.2068, -8.9232, 181.4236, 48.5840]]) assert expected_decode_bboxes.allclose( coder.decode(bboxes, pred_bboxes, grid_size)) def test_delta_bbox_coder(): coder = DeltaXYWHBBoxCoder() rois = torch.Tensor([[0., 0., 1., 1.], [0., 0., 1., 1.], [0., 0., 1., 1.], [5., 5., 5., 5.]]) deltas = torch.Tensor([[0., 0., 0., 0.], [1., 1., 1., 1.], [0., 0., 2., -1.], [0.7, -1.9, -0.5, 0.3]]) expected_decode_bboxes = torch.Tensor([[0.0000, 0.0000, 1.0000, 1.0000], [0.1409, 0.1409, 2.8591, 2.8591], [0.0000, 0.3161, 4.1945, 0.6839], [5.0000, 5.0000, 5.0000, 5.0000]]) out = coder.decode(rois, deltas, max_shape=(32, 32)) assert expected_decode_bboxes.allclose(out, atol=1e-04) out = coder.decode(rois, deltas, max_shape=torch.Tensor((32, 32))) assert expected_decode_bboxes.allclose(out, atol=1e-04) batch_rois = rois.unsqueeze(0).repeat(2, 1, 1) batch_deltas = deltas.unsqueeze(0).repeat(2, 1, 1) batch_out = coder.decode(batch_rois, batch_deltas, max_shape=(32, 32))[0] assert out.allclose(batch_out) batch_out = coder.decode( batch_rois, batch_deltas, max_shape=[(32, 32), (32, 32)])[0] assert out.allclose(batch_out) # test max_shape is not equal to batch with pytest.raises(AssertionError): coder.decode( batch_rois, batch_deltas, max_shape=[(32, 32), (32, 32), (32, 32)]) rois = torch.zeros((0, 4)) deltas = torch.zeros((0, 4)) out = coder.decode(rois, deltas, max_shape=(32, 32)) assert rois.shape == out.shape # test add_ctr_clamp coder = DeltaXYWHBBoxCoder(add_ctr_clamp=True, ctr_clamp=2) rois = torch.Tensor([[0., 0., 6., 6.], [0., 0., 1., 1.], [0., 0., 1., 1.], [5., 5., 5., 5.]]) deltas = torch.Tensor([[1., 1., 2., 2.], [1., 1., 1., 1.], [0., 0., 2., -1.], [0.7, -1.9, -0.5, 0.3]]) expected_decode_bboxes = torch.Tensor([[0.0000, 0.0000, 27.1672, 27.1672], [0.1409, 0.1409, 2.8591, 2.8591], [0.0000, 0.3161, 4.1945, 0.6839], [5.0000, 5.0000, 5.0000, 5.0000]]) out = coder.decode(rois, deltas, max_shape=(32, 32)) assert expected_decode_bboxes.allclose(out, atol=1e-04) def test_tblr_bbox_coder(): coder = TBLRBBoxCoder(normalizer=15.) rois = torch.Tensor([[0., 0., 1., 1.], [0., 0., 1., 1.], [0., 0., 1., 1.], [5., 5., 5., 5.]]) deltas = torch.Tensor([[0., 0., 0., 0.], [1., 1., 1., 1.], [0., 0., 2., -1.], [0.7, -1.9, -0.5, 0.3]]) expected_decode_bboxes = torch.Tensor([[0.5000, 0.5000, 0.5000, 0.5000], [0.0000, 0.0000, 12.0000, 13.0000], [0.0000, 0.5000, 0.0000, 0.5000], [5.0000, 5.0000, 5.0000, 5.0000]]) out = coder.decode(rois, deltas, max_shape=(13, 12)) assert expected_decode_bboxes.allclose(out) out = coder.decode(rois, deltas, max_shape=torch.Tensor((13, 12))) assert expected_decode_bboxes.allclose(out) batch_rois = rois.unsqueeze(0).repeat(2, 1, 1) batch_deltas = deltas.unsqueeze(0).repeat(2, 1, 1) batch_out = coder.decode(batch_rois, batch_deltas, max_shape=(13, 12))[0] assert out.allclose(batch_out) batch_out = coder.decode( batch_rois, batch_deltas, max_shape=[(13, 12), (13, 12)])[0] assert out.allclose(batch_out) # test max_shape is not equal to batch with pytest.raises(AssertionError): coder.decode(batch_rois, batch_deltas, max_shape=[(13, 12)]) rois = torch.zeros((0, 4)) deltas = torch.zeros((0, 4)) out = coder.decode(rois, deltas, max_shape=(32, 32)) assert rois.shape == out.shape
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for traceback_utils.""" import sys import traceback from tensorflow.python.eager import def_function from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.util import traceback_utils class TracebackUtilsTest(test.TestCase): def assert_trace_line_count(self, fn, count, filtering_enabled=True): trace_line_count = -1 if filtering_enabled: traceback_utils.enable_traceback_filtering() else: traceback_utils.disable_traceback_filtering() self.assertEqual( traceback_utils.is_traceback_filtering_enabled(), filtering_enabled) try: fn() except Exception as e: # pylint: disable=broad-except # We must count lines rather than frames because autograph transforms # stack frames into a single large string trace = '\n'.join(traceback.format_tb(e.__traceback__)) trace_line_count = len(trace.split('\n')) self.assertGreater(trace_line_count, 0) if filtering_enabled: if sys.version_info >= (3, 13): self.assertLessEqual(trace_line_count, count) else: self.assertLess(trace_line_count, count) else: self.assertGreater(trace_line_count, count) def test_eager_add(self): def fn(): x = array_ops.zeros((2, 3)) y = array_ops.zeros((2, 4)) _ = x + y self.assert_trace_line_count(fn, count=15, filtering_enabled=True) self.assert_trace_line_count(fn, count=25, filtering_enabled=False) def test_tfn_add(self): @def_function.function def fn(): x = array_ops.zeros((2, 3)) y = array_ops.zeros((2, 4)) return x + y self.assert_trace_line_count(fn, count=10, filtering_enabled=True) self.assert_trace_line_count(fn, count=25, filtering_enabled=False) def test_tfn_div(self): @def_function.function def wrapped_fn(x): return x / 0. def fn(): wrapped_fn(0.5) self.assert_trace_line_count(fn, count=15, filtering_enabled=True) self.assert_trace_line_count(fn, count=30, filtering_enabled=False) def test_eager_argmax(self): def fn(): _ = math_ops.argmax([0, 1], axis=2) self.assert_trace_line_count(fn, count=15, filtering_enabled=True) self.assert_trace_line_count(fn, count=30, filtering_enabled=False) def test_tfn_argmax(self): @def_function.function def wrapped_fn(x): return math_ops.argmax(x, axis=2) def fn(): wrapped_fn([0, 1]) if sys.version_info >= (3, 13): self.assert_trace_line_count(fn, count=16, filtering_enabled=True) else: self.assert_trace_line_count(fn, count=15, filtering_enabled=True) self.assert_trace_line_count(fn, count=25, filtering_enabled=False) def test_variable_constructor(self): def fn(): _ = variables.Variable() self.assert_trace_line_count(fn, count=15, filtering_enabled=True) self.assert_trace_line_count(fn, count=30, filtering_enabled=False) if __name__ == '__main__': ops.enable_eager_execution() test.main()
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for traceback_utils.""" import traceback from tensorflow.python.eager import def_function from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.util import traceback_utils class TracebackUtilsTest(test.TestCase): def assert_trace_line_count(self, fn, count, filtering_enabled=True): trace_line_count = -1 if filtering_enabled: traceback_utils.enable_traceback_filtering() else: traceback_utils.disable_traceback_filtering() self.assertEqual( traceback_utils.is_traceback_filtering_enabled(), filtering_enabled) try: fn() except Exception as e: # pylint: disable=broad-except # We must count lines rather than frames because autograph transforms # stack frames into a single large string trace = '\n'.join(traceback.format_tb(e.__traceback__)) trace_line_count = len(trace.split('\n')) self.assertGreater(trace_line_count, 0) if filtering_enabled: self.assertLess(trace_line_count, count) else: self.assertGreater(trace_line_count, count) def test_eager_add(self): def fn(): x = array_ops.zeros((2, 3)) y = array_ops.zeros((2, 4)) _ = x + y self.assert_trace_line_count(fn, count=15, filtering_enabled=True) self.assert_trace_line_count(fn, count=25, filtering_enabled=False) def test_tfn_add(self): @def_function.function def fn(): x = array_ops.zeros((2, 3)) y = array_ops.zeros((2, 4)) return x + y self.assert_trace_line_count(fn, count=10, filtering_enabled=True) self.assert_trace_line_count(fn, count=25, filtering_enabled=False) def test_tfn_div(self): @def_function.function def wrapped_fn(x): return x / 0. def fn(): wrapped_fn(0.5) self.assert_trace_line_count(fn, count=15, filtering_enabled=True) self.assert_trace_line_count(fn, count=30, filtering_enabled=False) def test_eager_argmax(self): def fn(): _ = math_ops.argmax([0, 1], axis=2) self.assert_trace_line_count(fn, count=15, filtering_enabled=True) self.assert_trace_line_count(fn, count=30, filtering_enabled=False) def test_tfn_argmax(self): @def_function.function def wrapped_fn(x): return math_ops.argmax(x, axis=2) def fn(): wrapped_fn([0, 1]) self.assert_trace_line_count(fn, count=15, filtering_enabled=True) self.assert_trace_line_count(fn, count=25, filtering_enabled=False) def test_variable_constructor(self): def fn(): _ = variables.Variable() self.assert_trace_line_count(fn, count=15, filtering_enabled=True) self.assert_trace_line_count(fn, count=30, filtering_enabled=False) if __name__ == '__main__': ops.enable_eager_execution() test.main()
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any from sentence_transformers.evaluation import MSEEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder import SparseEncoder logger = logging.getLogger(__name__) class SparseMSEEvaluator(MSEEvaluator): def __init__( self, source_sentences: list[str], target_sentences: list[str], teacher_model=None, show_progress_bar: bool = False, batch_size: int = 32, name: str = "", write_csv: bool = True, truncate_dim: int | None = None, ): super().__init__( source_sentences=source_sentences, target_sentences=target_sentences, teacher_model=teacher_model, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, write_csv=write_csv, truncate_dim=truncate_dim, ) logger.warning( "The SparseMSEEvaluator is not handling the mse compute with sparse tensors yet. Memory issues may occur." ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1, ) -> dict[str, float]: return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> Tensor: kwargs["truncate_dim"] = self.truncate_dim return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=False, save_on_cpu=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0, ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any from sentence_transformers.evaluation import MSEEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder import SparseEncoder logger = logging.getLogger(__name__) class SparseMSEEvaluator(MSEEvaluator): def __init__( self, source_sentences: list[str], target_sentences: list[str], teacher_model=None, show_progress_bar: bool = False, batch_size: int = 32, name: str = "", write_csv: bool = True, truncate_dim: int | None = None, ): super().__init__( source_sentences=source_sentences, target_sentences=target_sentences, teacher_model=teacher_model, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, write_csv=write_csv, truncate_dim=truncate_dim, ) logger.warning( "The SparseMSEEvaluator is not handling the mse compute with sparse tensors yet. Memory issues may occur." ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1, ) -> dict[str, float]: return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> Tensor: kwargs["truncate_dim"] = self.truncate_dim return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=False, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0, ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
# Copyright (c) OpenMMLab. All rights reserved. import argparse import torch from mmcv import Config, DictAction from mmdet.models import build_detector try: from mmcv.cnn import get_model_complexity_info except ImportError: raise ImportError('Please upgrade mmcv to >0.6.2') def parse_args(): parser = argparse.ArgumentParser(description='Train a detector') parser.add_argument('config', help='train config file path') parser.add_argument( '--shape', type=int, nargs='+', default=[1280, 800], help='input image size') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def main(): args = parse_args() if len(args.shape) == 1: input_shape = (3, args.shape[0], args.shape[0]) elif len(args.shape) == 2: input_shape = (3, ) + tuple(args.shape) else: raise ValueError('invalid input shape') cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) model = build_detector( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) if torch.cuda.is_available(): model.cuda() model.eval() if hasattr(model, 'forward_dummy'): model.forward = model.forward_dummy else: raise NotImplementedError( 'FLOPs counter is currently not currently supported with {}'. format(model.__class__.__name__)) flops, params = get_model_complexity_info(model, input_shape) split_line = '=' * 30 print(f'{split_line}\nInput shape: {input_shape}\n' f'Flops: {flops}\nParams: {params}\n{split_line}') print('!!!Please be cautious if you use the results in papers. ' 'You may need to check if all ops are supported and verify that the ' 'flops computation is correct.') if __name__ == '__main__': main()
import argparse import torch from mmcv import Config, DictAction from mmdet.models import build_detector try: from mmcv.cnn import get_model_complexity_info except ImportError: raise ImportError('Please upgrade mmcv to >0.6.2') def parse_args(): parser = argparse.ArgumentParser(description='Train a detector') parser.add_argument('config', help='train config file path') parser.add_argument( '--shape', type=int, nargs='+', default=[1280, 800], help='input image size') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def main(): args = parse_args() if len(args.shape) == 1: input_shape = (3, args.shape[0], args.shape[0]) elif len(args.shape) == 2: input_shape = (3, ) + tuple(args.shape) else: raise ValueError('invalid input shape') cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) model = build_detector( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) if torch.cuda.is_available(): model.cuda() model.eval() if hasattr(model, 'forward_dummy'): model.forward = model.forward_dummy else: raise NotImplementedError( 'FLOPs counter is currently not currently supported with {}'. format(model.__class__.__name__)) flops, params = get_model_complexity_info(model, input_shape) split_line = '=' * 30 print(f'{split_line}\nInput shape: {input_shape}\n' f'Flops: {flops}\nParams: {params}\n{split_line}') print('!!!Please be cautious if you use the results in papers. ' 'You may need to check if all ops are supported and verify that the ' 'flops computation is correct.') if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from mmdet.registry import MODELS MODELS.register_module('Linear', module=nn.Linear) @MODELS.register_module(name='NormedLinear') class NormedLinear(nn.Linear): """Normalized Linear Layer. Args: tempeature (float, optional): Tempeature term. Defaults to 20. power (int, optional): Power term. Defaults to 1.0. eps (float, optional): The minimal value of divisor to keep numerical stability. Defaults to 1e-6. """ def __init__(self, *args, tempearture: float = 20, power: int = 1.0, eps: float = 1e-6, **kwargs) -> None: super().__init__(*args, **kwargs) self.tempearture = tempearture self.power = power self.eps = eps self.init_weights() def init_weights(self) -> None: """Initialize the weights.""" nn.init.normal_(self.weight, mean=0, std=0.01) if self.bias is not None: nn.init.constant_(self.bias, 0) def forward(self, x: Tensor) -> Tensor: """Forward function for `NormedLinear`.""" weight_ = self.weight / ( self.weight.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x / (x.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x_ * self.tempearture return F.linear(x_, weight_, self.bias) @MODELS.register_module(name='NormedConv2d') class NormedConv2d(nn.Conv2d): """Normalized Conv2d Layer. Args: tempeature (float, optional): Tempeature term. Defaults to 20. power (int, optional): Power term. Defaults to 1.0. eps (float, optional): The minimal value of divisor to keep numerical stability. Defaults to 1e-6. norm_over_kernel (bool, optional): Normalize over kernel. Defaults to False. """ def __init__(self, *args, tempearture: float = 20, power: int = 1.0, eps: float = 1e-6, norm_over_kernel: bool = False, **kwargs) -> None: super().__init__(*args, **kwargs) self.tempearture = tempearture self.power = power self.norm_over_kernel = norm_over_kernel self.eps = eps def forward(self, x: Tensor) -> Tensor: """Forward function for `NormedConv2d`.""" if not self.norm_over_kernel: weight_ = self.weight / ( self.weight.norm(dim=1, keepdim=True).pow(self.power) + self.eps) else: weight_ = self.weight / ( self.weight.view(self.weight.size(0), -1).norm( dim=1, keepdim=True).pow(self.power)[..., None, None] + self.eps) x_ = x / (x.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x_ * self.tempearture if hasattr(self, 'conv2d_forward'): x_ = self.conv2d_forward(x_, weight_) else: if torch.__version__ >= '1.8': x_ = self._conv_forward(x_, weight_, self.bias) else: x_ = self._conv_forward(x_, weight_) return x_
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmdet.registry import MODELS MODELS.register_module('Linear', module=nn.Linear) @MODELS.register_module(name='NormedLinear') class NormedLinear(nn.Linear): """Normalized Linear Layer. Args: tempeature (float, optional): Tempeature term. Default to 20. power (int, optional): Power term. Default to 1.0. eps (float, optional): The minimal value of divisor to keep numerical stability. Default to 1e-6. """ def __init__(self, *args, tempearture=20, power=1.0, eps=1e-6, **kwargs): super(NormedLinear, self).__init__(*args, **kwargs) self.tempearture = tempearture self.power = power self.eps = eps self.init_weights() def init_weights(self): nn.init.normal_(self.weight, mean=0, std=0.01) if self.bias is not None: nn.init.constant_(self.bias, 0) def forward(self, x): weight_ = self.weight / ( self.weight.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x / (x.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x_ * self.tempearture return F.linear(x_, weight_, self.bias) @MODELS.register_module(name='NormedConv2d') class NormedConv2d(nn.Conv2d): """Normalized Conv2d Layer. Args: tempeature (float, optional): Tempeature term. Default to 20. power (int, optional): Power term. Default to 1.0. eps (float, optional): The minimal value of divisor to keep numerical stability. Default to 1e-6. norm_over_kernel (bool, optional): Normalize over kernel. Default to False. """ def __init__(self, *args, tempearture=20, power=1.0, eps=1e-6, norm_over_kernel=False, **kwargs): super(NormedConv2d, self).__init__(*args, **kwargs) self.tempearture = tempearture self.power = power self.norm_over_kernel = norm_over_kernel self.eps = eps def forward(self, x): if not self.norm_over_kernel: weight_ = self.weight / ( self.weight.norm(dim=1, keepdim=True).pow(self.power) + self.eps) else: weight_ = self.weight / ( self.weight.view(self.weight.size(0), -1).norm( dim=1, keepdim=True).pow(self.power)[..., None, None] + self.eps) x_ = x / (x.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x_ * self.tempearture if hasattr(self, 'conv2d_forward'): x_ = self.conv2d_forward(x_, weight_) else: if torch.__version__ >= '1.8': x_ = self._conv_forward(x_, weight_, self.bias) else: x_ = self._conv_forward(x_, weight_) return x_
# Copyright (c) OpenMMLab. All rights reserved. from .det_tta import DetTTAModel from .merge_augs import (merge_aug_bboxes, merge_aug_masks, merge_aug_proposals, merge_aug_results, merge_aug_scores) __all__ = [ 'merge_aug_bboxes', 'merge_aug_masks', 'merge_aug_proposals', 'merge_aug_scores', 'merge_aug_results', 'DetTTAModel' ]
# Copyright (c) OpenMMLab. All rights reserved. from .merge_augs import (merge_aug_bboxes, merge_aug_masks, merge_aug_proposals, merge_aug_results, merge_aug_scores) __all__ = [ 'merge_aug_bboxes', 'merge_aug_masks', 'merge_aug_proposals', 'merge_aug_scores', 'merge_aug_results' ]
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from itertools import groupby from typing import Dict, Iterable from jina import DocumentArray, Executor, requests class SimpleRanker(Executor): """ :class:`SimpleRanker` aggregates the score of the matched doc from the matched chunks. For each matched doc, the score is aggregated from all the matched chunks belonging to that doc. The score of the document is the minimum score (min distance) among the chunks. The aggregated matches are sorted by score (ascending). """ def __init__( self, metric: str = 'cosine', ranking: str = 'min', default_traversal_paths: Iterable[str] = ('r',), *args, **kwargs ): """ :param metric: the distance metric used in `scores` :param renking: The ranking function that the executor uses. There are multiple options: - min: Select minimum score/distance and sort by minimum - max: Select maximum score/distance and sort by maximum - mean_min: Calculate mean score/distance and sort by minimum mean - mean_max: Calculate mean score/distance and sort by maximum mean :param default_traversal_paths: traverse path on docs, e.g. ['r'], ['c'] """ super().__init__(*args, **kwargs) self.metric = metric assert ranking in ['min', 'max', 'mean_min', 'mean_max'] self.ranking = ranking self.default_traversal_paths = default_traversal_paths @requests(on='/search') def rank(self, docs: DocumentArray, parameters: Dict, *args, **kwargs): traversal_paths = parameters.get( 'traversal_paths', self.default_traversal_paths ) for doc in docs.traverse_flat(traversal_paths): matches_of_chunks = [] for chunk in doc.chunks: matches_of_chunks.extend(chunk.matches) groups = groupby( sorted(matches_of_chunks, key=lambda d: d.parent_id), lambda d: d.parent_id, ) for key, group in groups: chunk_match_list = list(group) if self.ranking == 'min': chunk_match_list.sort(key=lambda m: m.scores[self.metric].value) elif self.ranking == 'max': chunk_match_list.sort(key=lambda m: -m.scores[self.metric].value) match = chunk_match_list[0] match.id = chunk_match_list[0].parent_id if self.ranking in ['mean_min', 'mean_max']: scores = [el.scores[self.metric].value for el in chunk_match_list] match.scores[self.metric] = sum(scores) / len(scores) doc.matches.append(match) if self.ranking in ['min', 'mean_min']: doc.matches.sort(key=lambda d: d.scores[self.metric].value) elif self.ranking in ['max', 'mean_max']: doc.matches.sort(key=lambda d: -d.scores[self.metric].value)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from itertools import groupby from typing import Dict, Iterable from jina import DocumentArray, Executor, requests class SimpleRanker(Executor): """ :class:`SimpleRanker` aggregates the score of the matched doc from the matched chunks. For each matched doc, the score is aggregated from all the matched chunks belonging to that doc. The score of the document is the minimum score (min distance) among the chunks. The aggregated matches are sorted by score (ascending). :param metric: the distance metric used in `scores` :param renking: The ranking function that the executor uses. There are multiple options: - min: Select minimum score/distance and sort by minimum - max: Select maximum score/distance and sort by maximum - mean_min: Calculate mean score/distance and sort by minimum mean - mean_max: Calculate mean score/distance and sort by maximum mean :param default_traversal_paths: traverse path on docs, e.g. ['r'], ['c'] :param args: Additional positional arguments :param kwargs: Additional keyword arguments """ def __init__( self, metric: str = 'cosine', ranking: str = 'min', default_traversal_paths: Iterable[str] = ('r',), *args, **kwargs ): super().__init__(*args, **kwargs) self.metric = metric assert ranking in ['min', 'max', 'mean_min', 'mean_max'] self.ranking = ranking self.default_traversal_paths = default_traversal_paths @requests(on='/search') def rank(self, docs: DocumentArray, parameters: Dict, *args, **kwargs): traversal_paths = parameters.get( 'traversal_paths', self.default_traversal_paths ) for doc in docs.traverse_flat(traversal_paths): matches_of_chunks = [] for chunk in doc.chunks: matches_of_chunks.extend(chunk.matches) groups = groupby( sorted(matches_of_chunks, key=lambda d: d.parent_id), lambda d: d.parent_id, ) for key, group in groups: chunk_match_list = list(group) if self.ranking == 'min': chunk_match_list.sort(key=lambda m: m.scores[self.metric].value) elif self.ranking == 'max': chunk_match_list.sort(key=lambda m: -m.scores[self.metric].value) match = chunk_match_list[0] match.id = chunk_match_list[0].parent_id if self.ranking in ['mean_min', 'mean_max']: scores = [el.scores[self.metric].value for el in chunk_match_list] match.scores[self.metric] = sum(scores) / len(scores) doc.matches.append(match) if self.ranking in ['min', 'mean_min']: doc.matches.sort(key=lambda d: d.scores[self.metric].value) elif self.ranking in ['max', 'mean_max']: doc.matches.sort(key=lambda d: -d.scores[self.metric].value)
from __future__ import annotations from dataclasses import field from typing import Any, Callable import torch from sentence_transformers.data_collator import SentenceTransformerDataCollator class CrossEncoderDataCollator(SentenceTransformerDataCollator): """Collator for a CrossEncoder model. This encodes the text columns to {column}_input_ids and {column}_attention_mask columns. This works with the two text dataset that is used as the example in the training overview: https://www.sbert.net/docs/sentence_transformer/training_overview.html It is important that the columns are in the expected order. For example, if your dataset has columns "answer", "question" in that order, then the MultipleNegativesRankingLoss will consider "answer" as the anchor and "question" as the positive, and it will (unexpectedly) optimize for "given the answer, what is the question?". """ tokenize_fn: Callable valid_label_columns: list[str] = field(default_factory=lambda: ["label", "score"]) _warned_columns: set[tuple[str]] = field(default_factory=set, init=False, repr=False) def __call__(self, features: list[dict[str, Any]]) -> dict[str, torch.Tensor]: column_names = list(features[0].keys()) # We should always be able to return a loss, label or not: batch = {} if "dataset_name" in column_names: column_names.remove("dataset_name") batch["dataset_name"] = features[0]["dataset_name"] # Extract the label column if it exists for label_column in self.valid_label_columns: if label_column in column_names: batch["label"] = torch.tensor([row[label_column] for row in features]) column_names.remove(label_column) break for column_name in column_names: # If the prompt length has been set, we should add it to the batch if column_name.endswith("_prompt_length") and column_name[: -len("_prompt_length")] in column_names: batch[column_name] = torch.tensor([row[column_name] for row in features], dtype=torch.int) continue batch[column_name] = [row[column_name] for row in features] return batch
from __future__ import annotations from dataclasses import field from typing import Any, Callable import torch from sentence_transformers.data_collator import SentenceTransformerDataCollator class CrossEncoderDataCollator(SentenceTransformerDataCollator): """Collator for a CrossEncoder model. This encodes the text columns to {column}_input_ids and {column}_attention_mask columns. This works with the two text dataset that is used as the example in the training overview: https://www.sbert.net/docs/sentence_transformer/training_overview.html It is important that the columns are in the expected order. For example, if your dataset has columns "answer", "question" in that order, then the MultipleNegativesRankingLoss will consider "answer" as the anchor and "question" as the positive, and it will (unexpectedly) optimize for "given the answer, what is the question?". """ tokenize_fn: Callable valid_label_columns: list[str] = field(default_factory=lambda: ["label", "score"]) _warned_columns: set[tuple[str]] = field(default_factory=set, init=False, repr=False) def __call__(self, features: list[dict[str, Any]]) -> dict[str, torch.Tensor]: column_names = list(features[0].keys()) # We should always be able to return a loss, label or not: batch = {} if "dataset_name" in column_names: column_names.remove("dataset_name") batch["dataset_name"] = features[0]["dataset_name"] # TODO: # if tuple(column_names) not in self._warned_columns: # self.maybe_warn_about_column_order(column_names) # Extract the label column if it exists for label_column in self.valid_label_columns: if label_column in column_names: batch["label"] = torch.tensor([row[label_column] for row in features]) column_names.remove(label_column) break for column_name in column_names: # If the prompt length has been set, we should add it to the batch if column_name.endswith("_prompt_length") and column_name[: -len("_prompt_length")] in column_names: batch[column_name] = torch.tensor([row[column_name] for row in features], dtype=torch.int) continue batch[column_name] = [row[column_name] for row in features] return batch
_base_ = 'faster-rcnn_r50-caffe-dc5_1x_coco.py' train_pipeline = [ dict(type='LoadImageFromFile', backend_args=_base_.backend_args), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] _base_.train_dataloader.dataset.pipeline = train_pipeline
_base_ = 'faster-rcnn_r50-caffe-dc5_1x_coco.py' train_pipeline = [ dict(type='LoadImageFromFile', backend_args=_base_.backend_args), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] _base_.train_dataloader.dataset.pipeline = train_pipeline
"""Test simple function agent.""" from typing import Any, Dict, Tuple import pytest from llama_index.core.agent.custom.simple_function import FnAgentWorker def mock_foo_fn_no_state_param() -> Tuple[None, bool]: """Mock agent input function without a state.""" return None, True def mock_foo_fn(state: dict) -> Tuple[Dict[str, Any], bool]: """Mock agent input function.""" if "max_count" not in state: raise ValueError("max_count must be specified.") if "input" not in state: state["input"] = state["__task__"].input state["count"] = 0 is_done = False else: state["input"] = state["input"] + ":foo" state["count"] += 1 is_done = state["count"] >= state["max_count"] state["__output__"] = state["input"] return state, is_done async def async_mock_foo_fn(state: dict) -> Tuple[Dict[str, Any], bool]: """Mock async agent input function.""" return mock_foo_fn(state) def test_fn_agent() -> None: """Test function agent.""" agent = FnAgentWorker(fn=mock_foo_fn, initial_state={"max_count": 5}).as_agent() response = agent.query("hello") assert str(response) == "hello:foo:foo:foo:foo:foo" with pytest.raises(ValueError): agent = FnAgentWorker(fn=mock_foo_fn).as_agent() response = agent.query("hello") def test_fn_agent_init() -> None: """Test function agent init.""" with pytest.raises(ValueError) as error_info: FnAgentWorker(fn=mock_foo_fn_no_state_param).as_agent() assert ( str(error_info.value) == "StatefulFnComponent must have 'state' as required parameters" ) @pytest.mark.asyncio async def test_run_async_step() -> None: """Test run async step.""" agent_without_async_fn = FnAgentWorker( fn=mock_foo_fn, asnc_fn=None, initial_state={"max_count": 5} ).as_agent() response = await agent_without_async_fn.aquery("hello") assert str(response) == "hello:foo:foo:foo:foo:foo" agent_with_async_fn = FnAgentWorker( fn=mock_foo_fn, async_fn=async_mock_foo_fn, initial_state={"max_count": 5} ).as_agent() response = await agent_with_async_fn.aquery("hello") assert str(response) == "hello:foo:foo:foo:foo:foo"
"""Test simple function agent.""" from typing import Any, Dict, Tuple import pytest from llama_index.core.agent.custom.simple_function import FnAgentWorker def mock_foo_fn_no_state_param() -> Tuple[None, bool]: """Mock agent input function without a state.""" return None, True def mock_foo_fn(state: dict) -> Tuple[Dict[str, Any], bool]: """Mock agent input function.""" if "max_count" not in state: raise ValueError("max_count must be specified.") if "input" not in state: state["input"] = state["__task__"].input state["count"] = 0 is_done = False else: state["input"] = state["input"] + ":foo" state["count"] += 1 is_done = state["count"] >= state["max_count"] state["__output__"] = state["input"] return state, is_done async def async_mock_foo_fn(state: dict) -> Tuple[Dict[str, Any], bool]: """Mock async agent input function.""" return mock_foo_fn(state) def test_fn_agent() -> None: """Test function agent.""" agent = FnAgentWorker(fn=mock_foo_fn, initial_state={"max_count": 5}).as_agent() response = agent.query("hello") assert str(response) == "hello:foo:foo:foo:foo:foo" with pytest.raises(ValueError): agent = FnAgentWorker(fn=mock_foo_fn).as_agent() response = agent.query("hello") def test_fn_agent_init() -> None: """Test function agent init.""" with pytest.raises(ValueError) as error_info: FnAgentWorker(fn=mock_foo_fn_no_state_param).as_agent() assert ( str(error_info.value) == "StatefulFnComponent must have 'state' as required parameters" ) @pytest.mark.asyncio() async def test_run_async_step() -> None: """Test run async step.""" agent_without_async_fn = FnAgentWorker( fn=mock_foo_fn, asnc_fn=None, initial_state={"max_count": 5} ).as_agent() response = await agent_without_async_fn.aquery("hello") assert str(response) == "hello:foo:foo:foo:foo:foo" agent_with_async_fn = FnAgentWorker( fn=mock_foo_fn, async_fn=async_mock_foo_fn, initial_state={"max_count": 5} ).as_agent() response = await agent_with_async_fn.aquery("hello") assert str(response) == "hello:foo:foo:foo:foo:foo"
import platform import sys from pathlib import Path import pkg_resources from setuptools import find_packages, setup def read_version(fname="whisper/version.py"): exec(compile(open(fname, encoding="utf-8").read(), fname, "exec")) return locals()["__version__"] requirements = [] if sys.platform.startswith("linux") and platform.machine() == "x86_64": requirements.append("triton>=2.0.0") setup( name="openai-whisper", py_modules=["whisper"], version=read_version(), description="Robust Speech Recognition via Large-Scale Weak Supervision", long_description=open("README.md", encoding="utf-8").read(), long_description_content_type="text/markdown", readme="README.md", python_requires=">=3.8", author="OpenAI", url="https://github.com/openai/whisper", license="MIT", packages=find_packages(exclude=["tests*"]), install_requires=[ str(r) for r in pkg_resources.parse_requirements( Path(__file__).with_name("requirements.txt").open() ) ], entry_points={ "console_scripts": ["whisper=whisper.transcribe:cli"], }, include_package_data=True, extras_require={"dev": ["pytest", "scipy", "black", "flake8", "isort"]}, )
import platform import sys from pathlib import Path import pkg_resources from setuptools import find_packages, setup def read_version(fname="whisper/version.py"): exec(compile(open(fname, encoding="utf-8").read(), fname, "exec")) return locals()["__version__"] requirements = [] if sys.platform.startswith("linux") and platform.machine() == "x86_64": requirements.append("triton>=2.0.0,<3") setup( name="openai-whisper", py_modules=["whisper"], version=read_version(), description="Robust Speech Recognition via Large-Scale Weak Supervision", long_description=open("README.md", encoding="utf-8").read(), long_description_content_type="text/markdown", readme="README.md", python_requires=">=3.8", author="OpenAI", url="https://github.com/openai/whisper", license="MIT", packages=find_packages(exclude=["tests*"]), install_requires=[ str(r) for r in pkg_resources.parse_requirements( Path(__file__).with_name("requirements.txt").open() ) ], entry_points={ "console_scripts": ["whisper=whisper.transcribe:cli"], }, include_package_data=True, extras_require={"dev": ["pytest", "scipy", "black", "flake8", "isort"]}, )
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoNdArray') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_ndarray') class VideoNdArray(NdArray, VideoTensorMixin): """ Subclass of [`NdArray`][docarray.typing.NdArray], to represent a video tensor. Adds video-specific features to the tensor. --- ```python from typing import Optional import numpy as np from pydantic import parse_obj_as from docarray import BaseDoc from docarray.typing import VideoNdArray, VideoUrl class MyVideoDoc(BaseDoc): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoNdArray] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=np.random.random((100, 224, 224, 3)), ) doc_2 = MyVideoDoc( title='my_second_video_doc', url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true', ) doc_2.video_tensor = parse_obj_as(VideoNdArray, doc_2.url.load().video) # doc_2.video_tensor.save(file_path='/tmp/file_2.mp4') ``` --- """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoNdArray') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_ndarray') class VideoNdArray(NdArray, VideoTensorMixin): """ Subclass of NdArray, to represent a video tensor. Adds video-specific features to the tensor. --- ```python from typing import Optional import numpy as np from pydantic import parse_obj_as from docarray import BaseDoc from docarray.typing import VideoNdArray, VideoUrl class MyVideoDoc(BaseDoc): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoNdArray] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=np.random.random((100, 224, 224, 3)), ) doc_1.video_tensor.save(file_path='/tmp/file_1.mp4') doc_2 = MyVideoDoc( title='my_second_video_doc', url='/tmp/file_1.mp4', ) doc_2.video_tensor = parse_obj_as(VideoNdArray, doc_2.url.load().video) doc_2.video_tensor.save(file_path='/tmp/file_2.mp4') ``` --- """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
import hashlib import secrets from typing import NamedTuple class APIKeyContainer(NamedTuple): """Container for API key parts.""" raw: str prefix: str postfix: str hash: str class APIKeyManager: PREFIX: str = "agpt_" PREFIX_LENGTH: int = 8 POSTFIX_LENGTH: int = 8 def generate_api_key(self) -> APIKeyContainer: """Generate a new API key with all its parts.""" raw_key = f"{self.PREFIX}{secrets.token_urlsafe(32)}" return APIKeyContainer( raw=raw_key, prefix=raw_key[: self.PREFIX_LENGTH], postfix=raw_key[-self.POSTFIX_LENGTH :], hash=hashlib.sha256(raw_key.encode()).hexdigest(), ) def verify_api_key(self, provided_key: str, stored_hash: str) -> bool: """Verify if a provided API key matches the stored hash.""" if not provided_key.startswith(self.PREFIX): return False return hashlib.sha256(provided_key.encode()).hexdigest() == stored_hash
from typing import NamedTuple import secrets import hashlib class APIKeyContainer(NamedTuple): """Container for API key parts.""" raw: str prefix: str postfix: str hash: str class APIKeyManager: PREFIX: str = "agpt_" PREFIX_LENGTH: int = 8 POSTFIX_LENGTH: int = 8 def generate_api_key(self) -> APIKeyContainer: """Generate a new API key with all its parts.""" raw_key = f"{self.PREFIX}{secrets.token_urlsafe(32)}" return APIKeyContainer( raw=raw_key, prefix=raw_key[:self.PREFIX_LENGTH], postfix=raw_key[-self.POSTFIX_LENGTH:], hash=hashlib.sha256(raw_key.encode()).hexdigest() ) def verify_api_key(self, provided_key: str, stored_hash: str) -> bool: """Verify if a provided API key matches the stored hash.""" if not provided_key.startswith(self.PREFIX): return False return hashlib.sha256(provided_key.encode()).hexdigest() == stored_hash
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.20.1' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.20.0' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch from mmdet.models.dense_heads.autoassign_head import AutoAssignHead from mmdet.models.dense_heads.paa_head import levels_to_images def test_autoassign_head_loss(): """Tests autoassign head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = mmcv.Config( dict(assigner=None, allowed_border=-1, pos_weight=-1, debug=False)) self = AutoAssignHead( num_classes=4, in_channels=1, train_cfg=train_cfg, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3)) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [4, 8, 16, 32, 64] ] self.init_weights() cls_scores, bbox_preds, objectnesses = self(feat) # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero but there should # be no box loss. empty_pos_loss = empty_gt_losses['loss_pos'] empty_neg_loss = empty_gt_losses['loss_neg'] empty_center_loss = empty_gt_losses['loss_center'] assert empty_neg_loss.item() > 0, 'cls loss should be non-zero' assert empty_pos_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') assert empty_center_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero for # random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) onegt_pos_loss = one_gt_losses['loss_pos'] onegt_neg_loss = one_gt_losses['loss_neg'] onegt_center_loss = one_gt_losses['loss_center'] assert onegt_pos_loss.item() > 0, 'cls loss should be non-zero' assert onegt_neg_loss.item() > 0, 'box loss should be non-zero' assert onegt_center_loss.item() > 0, 'box loss should be non-zero' n, c, h, w = 10, 4, 20, 20 mlvl_tensor = [torch.ones(n, c, h, w) for i in range(5)] results = levels_to_images(mlvl_tensor) assert len(results) == n assert results[0].size() == (h * w * 5, c) self = AutoAssignHead( num_classes=4, in_channels=1, train_cfg=train_cfg, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3), strides=(4, )) cls_scores = [torch.ones(2, 4, 5, 5)] bbox_preds = [torch.ones(2, 4, 5, 5)] iou_preds = [torch.ones(2, 1, 5, 5)] cfg = mmcv.Config( dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) rescale = False self.get_bboxes( cls_scores, bbox_preds, iou_preds, img_metas, cfg, rescale=rescale)
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch from mmdet.models.dense_heads.autoassign_head import AutoAssignHead from mmdet.models.dense_heads.paa_head import levels_to_images def test_autoassign_head_loss(): """Tests autoassign head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = mmcv.Config( dict(assigner=None, allowed_border=-1, pos_weight=-1, debug=False)) self = AutoAssignHead( num_classes=4, in_channels=1, train_cfg=train_cfg, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.3)) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [4, 8, 16, 32, 64] ] self.init_weights() cls_scores, bbox_preds, objectnesses = self(feat) # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero but there should # be no box loss. empty_pos_loss = empty_gt_losses['loss_pos'] empty_neg_loss = empty_gt_losses['loss_neg'] empty_center_loss = empty_gt_losses['loss_center'] assert empty_neg_loss.item() > 0, 'cls loss should be non-zero' assert empty_pos_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') assert empty_center_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero for # random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) onegt_pos_loss = one_gt_losses['loss_pos'] onegt_neg_loss = one_gt_losses['loss_neg'] onegt_center_loss = one_gt_losses['loss_center'] assert onegt_pos_loss.item() > 0, 'cls loss should be non-zero' assert onegt_neg_loss.item() > 0, 'box loss should be non-zero' assert onegt_center_loss.item() > 0, 'box loss should be non-zero' n, c, h, w = 10, 4, 20, 20 mlvl_tensor = [torch.ones(n, c, h, w) for i in range(5)] results = levels_to_images(mlvl_tensor) assert len(results) == n assert results[0].size() == (h * w * 5, c) cls_scores = [torch.ones(2, 4, 5, 5)] bbox_preds = [torch.ones(2, 4, 5, 5)] iou_preds = [torch.ones(2, 1, 5, 5)] cfg = mmcv.Config( dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) rescale = False self.get_bboxes( cls_scores, bbox_preds, iou_preds, img_metas, cfg, rescale=rescale)
from __future__ import annotations from torch import Tensor, nn from sentence_transformers.cross_encoder import CrossEncoder # TODO: Consider the naming of this class class CrossEntropyLoss(nn.Module): def __init__(self, model: CrossEncoder, activation_fct: nn.Module = nn.Identity(), **kwargs) -> None: super().__init__() self.model = model self.activation_fct = activation_fct self.ce_loss = nn.CrossEntropyLoss(**kwargs) def forward(self, inputs: list[list[str]], labels: Tensor) -> Tensor: if len(inputs) != 2: raise ValueError( f"CrossEntropyLoss expects a dataset with two non-label columns, but got a dataset with {len(inputs)} columns." ) pairs = list(zip(inputs[0], inputs[1])) tokens = self.model.tokenizer( pairs, padding=True, truncation=True, return_tensors="pt", ) tokens.to(self.model.device) logits = self.model(**tokens)[0] logits = self.activation_fct(logits) loss = self.ce_loss(logits, labels) return loss
from __future__ import annotations from torch import Tensor, nn from sentence_transformers.cross_encoder import CrossEncoder # TODO: Consider the naming of this class class CrossEntropyLoss(nn.Module): def __init__(self, model: CrossEncoder) -> None: super().__init__() self.model = model self.ce_loss = nn.CrossEntropyLoss() def forward(self, inputs: list[list[str]], labels: Tensor) -> Tensor: if len(inputs) != 2: raise ValueError( f"CrossEntropyLoss expects a dataset with two non-label columns, but got a dataset with {len(inputs)} columns." ) pairs = list(zip(inputs[0], inputs[1])) tokens = self.model.tokenizer( pairs, padding=True, truncation=True, return_tensors="pt", ) tokens.to(self.model.device) logits = self.model(**tokens)[0] loss = self.ce_loss(logits, labels) return loss
import pytest import torch from docarray.computation.torch_backend import TorchCompBackend def test_to_device(): t = torch.rand(10, 3) assert t.device == torch.device('cpu') t = TorchCompBackend.to_device(t, 'meta') assert t.device == torch.device('meta') @pytest.mark.parametrize( 'array,result', [ (torch.zeros((5)), 1), (torch.zeros((1, 5)), 2), (torch.zeros((5, 5)), 2), (torch.zeros(()), 0), ], ) def test_n_dim(array, result): assert TorchCompBackend.n_dim(array) == result @pytest.mark.parametrize( 'array,result', [ (torch.zeros((10,)), (10,)), (torch.zeros((5, 5)), (5, 5)), (torch.zeros(()), ()), ], ) def test_shape(array, result): shape = TorchCompBackend.shape(array) assert shape == result assert type(shape) == tuple def test_empty(): tensor = TorchCompBackend.empty((10, 3)) assert tensor.shape == (10, 3)
import torch from docarray.computation.torch_backend import TorchCompBackend def test_to_device(): t = torch.rand(10, 3) assert t.device == torch.device('cpu') t = TorchCompBackend.to_device(t, 'meta') assert t.device == torch.device('meta') def test_empty(): tensor = TorchCompBackend.empty((10, 3)) assert tensor.shape == (10, 3)
import torch import torchaudio.prototype.functional as F from parameterized import parameterized from torch.autograd import gradcheck, gradgradcheck from torchaudio_unittest.common_utils import nested_params, TestBaseMixin class AutogradTestImpl(TestBaseMixin): @nested_params( [F.convolve, F.fftconvolve], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (4, 3, 2) L_x, L_y = 23, 40 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device, requires_grad=True) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device, requires_grad=True) self.assertTrue(gradcheck(fn, (x, y, mode))) self.assertTrue(gradgradcheck(fn, (x, y, mode))) def test_add_noise(self): leading_dims = (5, 2, 3) L = 51 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 self.assertTrue(gradcheck(F.add_noise, (waveform, noise, lengths, snr))) self.assertTrue(gradgradcheck(F.add_noise, (waveform, noise, lengths, snr))) @parameterized.expand( [ (8000, (2, 3, 5, 7)), (8000, (8000, 1)), ] ) def test_oscillator_bank(self, sample_rate, shape): # can be replaced with math.prod when we drop 3.7 support def prod(iterable): ret = 1 for item in iterable: ret *= item return ret numel = prod(shape) # use 1.9 instead of 2 so as to include values above nyquist frequency fmax = sample_rate / 1.9 freq = torch.linspace(-fmax, fmax, numel, dtype=self.dtype, device=self.device, requires_grad=True).reshape( shape ) amps = torch.linspace(-5, 5, numel, dtype=self.dtype, device=self.device, requires_grad=True).reshape(shape) assert gradcheck(F.oscillator_bank, (freq, amps, sample_rate))
import torch import torchaudio.prototype.functional as F from torch.autograd import gradcheck, gradgradcheck from torchaudio_unittest.common_utils import nested_params, TestBaseMixin class AutogradTestImpl(TestBaseMixin): @nested_params( [F.convolve, F.fftconvolve], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (4, 3, 2) L_x, L_y = 23, 40 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device, requires_grad=True) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device, requires_grad=True) self.assertTrue(gradcheck(fn, (x, y, mode))) self.assertTrue(gradgradcheck(fn, (x, y, mode))) def test_add_noise(self): leading_dims = (5, 2, 3) L = 51 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 self.assertTrue(gradcheck(F.add_noise, (waveform, noise, lengths, snr))) self.assertTrue(gradgradcheck(F.add_noise, (waveform, noise, lengths, snr)))
from typing import List, Union class InputExample: """Structure for one input example with texts, the label and a unique id""" def __init__(self, guid: str = "", texts: List[str] = None, label: Union[int, float] = 0): """ Creates one InputExample with the given texts, guid and label Args: guid: id for the example texts: the texts for the example. label: the label for the example """ self.guid = guid self.texts = texts self.label = label def __str__(self): return "<InputExample> label: {}, texts: {}".format(str(self.label), "; ".join(self.texts))
from typing import Union, List class InputExample: """Structure for one input example with texts, the label and a unique id""" def __init__(self, guid: str = "", texts: List[str] = None, label: Union[int, float] = 0): """ Creates one InputExample with the given texts, guid and label Args: guid: id for the example texts: the texts for the example. label: the label for the example """ self.guid = guid self.texts = texts self.label = label def __str__(self): return "<InputExample> label: {}, texts: {}".format(str(self.label), "; ".join(self.texts))
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '3.3.0' short_version = __version__ def parse_version_info(version_str): """Parse a version string into a tuple. Args: version_str (str): The version string. Returns: tuple[int | str]: The version info, e.g., "1.3.0" is parsed into (1, 3, 0), and "2.0.0rc1" is parsed into (2, 0, 0, 'rc1'). """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '3.2.0' short_version = __version__ def parse_version_info(version_str): """Parse a version string into a tuple. Args: version_str (str): The version string. Returns: tuple[int | str]: The version info, e.g., "1.3.0" is parsed into (1, 3, 0), and "2.0.0rc1" is parsed into (2, 0, 0, 'rc1'). """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.11.0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.10.2.dev0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
import time import pytest from backend.util.decorator import async_error_logged, error_logged, time_measured @time_measured def example_function(a: int, b: int, c: int) -> int: time.sleep(0.5) return a + b + c @error_logged(swallow=True) def example_function_with_error_swallowed(a: int, b: int, c: int) -> int: raise ValueError("This error should be swallowed") @error_logged(swallow=False) def example_function_with_error_not_swallowed(a: int, b: int, c: int) -> int: raise ValueError("This error should NOT be swallowed") @async_error_logged(swallow=True) async def async_function_with_error_swallowed() -> int: raise ValueError("This async error should be swallowed") @async_error_logged(swallow=False) async def async_function_with_error_not_swallowed() -> int: raise ValueError("This async error should NOT be swallowed") def test_timer_decorator(): """Test that the time_measured decorator correctly measures execution time.""" info, res = example_function(1, 2, 3) assert info.cpu_time >= 0 assert info.wall_time >= 0.4 assert res == 6 def test_error_decorator_swallow_true(): """Test that error_logged(swallow=True) logs and swallows errors.""" res = example_function_with_error_swallowed(1, 2, 3) assert res is None def test_error_decorator_swallow_false(): """Test that error_logged(swallow=False) logs errors but re-raises them.""" with pytest.raises(ValueError, match="This error should NOT be swallowed"): example_function_with_error_not_swallowed(1, 2, 3) def test_async_error_decorator_swallow_true(): """Test that async_error_logged(swallow=True) logs and swallows errors.""" import asyncio async def run_test(): res = await async_function_with_error_swallowed() return res res = asyncio.run(run_test()) assert res is None def test_async_error_decorator_swallow_false(): """Test that async_error_logged(swallow=False) logs errors but re-raises them.""" import asyncio async def run_test(): await async_function_with_error_not_swallowed() with pytest.raises(ValueError, match="This async error should NOT be swallowed"): asyncio.run(run_test())
import time from backend.util.decorator import error_logged, time_measured @time_measured def example_function(a: int, b: int, c: int) -> int: time.sleep(0.5) return a + b + c @error_logged def example_function_with_error(a: int, b: int, c: int) -> int: raise ValueError("This is a test error") def test_timer_decorator(): info, res = example_function(1, 2, 3) assert info.cpu_time >= 0 assert info.wall_time >= 0.4 assert res == 6 def test_error_decorator(): res = example_function_with_error(1, 2, 3) assert res is None
from abc import ABC, abstractmethod from typing import Dict, Iterator, List, Optional, Type from typing_extensions import TYPE_CHECKING if TYPE_CHECKING: from docarray import BaseDoc, DocArray class AbstractDocStore(ABC): @staticmethod @abstractmethod def list(namespace: str, show_table: bool) -> List[str]: """List all DocArrays in the specified backend at the namespace. :param namespace: The namespace to list :param show_table: If true, a table is printed to the console :return: A list of DocArray names """ ... @staticmethod @abstractmethod def delete(name: str, missing_ok: bool) -> bool: """Delete the DocArray object at the specified name :param name: The name of the DocArray to delete :param missing_ok: If true, no error will be raised if the DocArray does not exist. :return: True if the DocArray was deleted, False if it did not exist. """ ... @staticmethod @abstractmethod def push( da: 'DocArray', name: str, public: bool, show_progress: bool, branding: Optional[Dict], ) -> Dict: """Push this DocArray to the specified name. :param da: The DocArray to push :param name: The name to push to :param public: Whether the DocArray should be publicly accessible :param show_progress: If true, a progress bar will be displayed. :param branding: Branding information to be stored with the DocArray """ ... @staticmethod @abstractmethod def push_stream( docs: Iterator['BaseDoc'], url: str, public: bool = True, show_progress: bool = False, branding: Optional[Dict] = None, ) -> Dict: """Push a stream of documents to the specified name. :param docs: a stream of documents :param url: The name to push to :param public: Whether the DocArray should be publicly accessible :param show_progress: If true, a progress bar will be displayed. :param branding: Branding information to be stored with the DocArray """ ... @staticmethod @abstractmethod def pull( da_cls: Type['DocArray'], name: str, show_progress: bool, local_cache: bool, ) -> 'DocArray': """Pull a DocArray from the specified name. :param da_cls: The DocArray class to instantiate :param name: The name to pull from :param show_progress: If true, a progress bar will be displayed. :param local_cache: If true, the DocArray will be cached locally :return: A DocArray """ ... @staticmethod @abstractmethod def pull_stream( da_cls: Type['DocArray'], name: str, show_progress: bool, local_cache: bool, ) -> Iterator['BaseDoc']: """Pull a stream of documents from the specified name. :param da_cls: The DocArray class to instantiate :param name: The name to pull from :param show_progress: If true, a progress bar will be displayed. :param local_cache: If true, the DocArray will be cached locally :return: An iterator of documents""" ...
from abc import ABC, abstractmethod from typing import Dict, Iterator, List, Optional, Type from typing_extensions import TYPE_CHECKING if TYPE_CHECKING: from docarray import BaseDocument, DocumentArray class AbstractDocStore(ABC): @staticmethod @abstractmethod def list(namespace: str, show_table: bool) -> List[str]: """List all DocumentArrays in the specified backend at the namespace. :param namespace: The namespace to list :param show_table: If true, a table is printed to the console :return: A list of DocumentArray names """ ... @staticmethod @abstractmethod def delete(name: str, missing_ok: bool) -> bool: """Delete the DocumentArray object at the specified name :param name: The name of the DocumentArray to delete :param missing_ok: If true, no error will be raised if the DocumentArray does not exist. :return: True if the DocumentArray was deleted, False if it did not exist. """ ... @staticmethod @abstractmethod def push( da: 'DocumentArray', name: str, public: bool, show_progress: bool, branding: Optional[Dict], ) -> Dict: """Push this DocumentArray to the specified name. :param da: The DocumentArray to push :param name: The name to push to :param public: Whether the DocumentArray should be publicly accessible :param show_progress: If true, a progress bar will be displayed. :param branding: Branding information to be stored with the DocumentArray """ ... @staticmethod @abstractmethod def push_stream( docs: Iterator['BaseDocument'], url: str, public: bool = True, show_progress: bool = False, branding: Optional[Dict] = None, ) -> Dict: """Push a stream of documents to the specified name. :param docs: a stream of documents :param url: The name to push to :param public: Whether the DocumentArray should be publicly accessible :param show_progress: If true, a progress bar will be displayed. :param branding: Branding information to be stored with the DocumentArray """ ... @staticmethod @abstractmethod def pull( da_cls: Type['DocumentArray'], name: str, show_progress: bool, local_cache: bool, ) -> 'DocumentArray': """Pull a DocumentArray from the specified name. :param da_cls: The DocumentArray class to instantiate :param name: The name to pull from :param show_progress: If true, a progress bar will be displayed. :param local_cache: If true, the DocumentArray will be cached locally :return: A DocumentArray """ ... @staticmethod @abstractmethod def pull_stream( da_cls: Type['DocumentArray'], name: str, show_progress: bool, local_cache: bool, ) -> Iterator['BaseDocument']: """Pull a stream of documents from the specified name. :param da_cls: The DocumentArray class to instantiate :param name: The name to pull from :param show_progress: If true, a progress bar will be displayed. :param local_cache: If true, the DocumentArray will be cached locally :return: An iterator of documents""" ...
import tempfile from collections.abc import Generator from typing import cast import pytest from langchain_core.documents import Document from langchain.storage._lc_store import create_kv_docstore, create_lc_store from langchain.storage.file_system import LocalFileStore @pytest.fixture def file_store() -> Generator[LocalFileStore, None, None]: # Create a temporary directory for testing with tempfile.TemporaryDirectory() as temp_dir: # Instantiate the LocalFileStore with the temporary directory as the root path store = LocalFileStore(temp_dir) yield store def test_create_lc_store(file_store: LocalFileStore) -> None: """Test that a docstore is created from a base store.""" docstore = create_lc_store(file_store) docstore.mset([("key1", Document(page_content="hello", metadata={"key": "value"}))]) fetched_doc = cast(Document, docstore.mget(["key1"])[0]) assert fetched_doc.page_content == "hello" assert fetched_doc.metadata == {"key": "value"} def test_create_kv_store(file_store: LocalFileStore) -> None: """Test that a docstore is created from a base store.""" docstore = create_kv_docstore(file_store) docstore.mset([("key1", Document(page_content="hello", metadata={"key": "value"}))]) fetched_doc = docstore.mget(["key1"])[0] assert isinstance(fetched_doc, Document) assert fetched_doc.page_content == "hello" assert fetched_doc.metadata == {"key": "value"}
import tempfile from typing import Generator, cast import pytest from langchain_core.documents import Document from langchain.storage._lc_store import create_kv_docstore, create_lc_store from langchain.storage.file_system import LocalFileStore @pytest.fixture def file_store() -> Generator[LocalFileStore, None, None]: # Create a temporary directory for testing with tempfile.TemporaryDirectory() as temp_dir: # Instantiate the LocalFileStore with the temporary directory as the root path store = LocalFileStore(temp_dir) yield store def test_create_lc_store(file_store: LocalFileStore) -> None: """Test that a docstore is created from a base store.""" docstore = create_lc_store(file_store) docstore.mset([("key1", Document(page_content="hello", metadata={"key": "value"}))]) fetched_doc = cast(Document, docstore.mget(["key1"])[0]) assert fetched_doc.page_content == "hello" assert fetched_doc.metadata == {"key": "value"} def test_create_kv_store(file_store: LocalFileStore) -> None: """Test that a docstore is created from a base store.""" docstore = create_kv_docstore(file_store) docstore.mset([("key1", Document(page_content="hello", metadata={"key": "value"}))]) fetched_doc = docstore.mget(["key1"])[0] assert isinstance(fetched_doc, Document) assert fetched_doc.page_content == "hello" assert fetched_doc.metadata == {"key": "value"}
_base_ = './mask-rcnn_r50_fpn_seesaw-loss_sample1e-3-ms-2x_lvis-v1.py' model = dict( roi_head=dict( mask_head=dict( predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
_base_ = './mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py' model = dict( roi_head=dict( mask_head=dict( predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
_base_ = ['co_dino_5scale_swin_l_lsj_16xb1_1x_coco.py'] model = dict(backbone=dict(drop_path_rate=0.5)) param_scheduler = [dict(type='MultiStepLR', milestones=[30])] train_cfg = dict(max_epochs=36)
_base_ = ['co_dino_5scale_swin_l_lsj_16xb1_1x_coco.py'] model = dict(backbone=dict(drop_path_rate=0.5)) param_scheduler = [dict(milestones=[30])] train_cfg = dict(max_epochs=36)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.9.1' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.9.0' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# TODO: Add _log_api_usage_once() in all mid-level kernels. If they remain not jit-scriptable we can use decorators from torchvision.transforms import InterpolationMode # usort: skip from ._utils import is_simple_tensor # usort: skip from ._meta import ( clamp_bounding_box, convert_format_bounding_box, convert_dtype_image_tensor, convert_dtype, convert_dtype_video, convert_image_dtype, get_dimensions_image_tensor, get_dimensions_image_pil, get_dimensions, get_num_frames_video, get_num_frames, get_image_num_channels, get_num_channels_image_tensor, get_num_channels_image_pil, get_num_channels_video, get_num_channels, get_spatial_size_bounding_box, get_spatial_size_image_tensor, get_spatial_size_image_pil, get_spatial_size_mask, get_spatial_size_video, get_spatial_size, ) # usort: skip from ._augment import erase, erase_image_pil, erase_image_tensor, erase_video from ._color import ( adjust_brightness, adjust_brightness_image_pil, adjust_brightness_image_tensor, adjust_brightness_video, adjust_contrast, adjust_contrast_image_pil, adjust_contrast_image_tensor, adjust_contrast_video, adjust_gamma, adjust_gamma_image_pil, adjust_gamma_image_tensor, adjust_gamma_video, adjust_hue, adjust_hue_image_pil, adjust_hue_image_tensor, adjust_hue_video, adjust_saturation, adjust_saturation_image_pil, adjust_saturation_image_tensor, adjust_saturation_video, adjust_sharpness, adjust_sharpness_image_pil, adjust_sharpness_image_tensor, adjust_sharpness_video, autocontrast, autocontrast_image_pil, autocontrast_image_tensor, autocontrast_video, equalize, equalize_image_pil, equalize_image_tensor, equalize_video, invert, invert_image_pil, invert_image_tensor, invert_video, posterize, posterize_image_pil, posterize_image_tensor, posterize_video, rgb_to_grayscale, rgb_to_grayscale_image_pil, rgb_to_grayscale_image_tensor, solarize, solarize_image_pil, solarize_image_tensor, solarize_video, ) from ._geometry import ( affine, affine_bounding_box, affine_image_pil, affine_image_tensor, affine_mask, affine_video, center_crop, center_crop_bounding_box, center_crop_image_pil, center_crop_image_tensor, center_crop_mask, center_crop_video, crop, crop_bounding_box, crop_image_pil, crop_image_tensor, crop_mask, crop_video, elastic, elastic_bounding_box, elastic_image_pil, elastic_image_tensor, elastic_mask, elastic_transform, elastic_video, five_crop, five_crop_image_pil, five_crop_image_tensor, five_crop_video, hflip, # TODO: Consider moving all pure alias definitions at the bottom of the file horizontal_flip, horizontal_flip_bounding_box, horizontal_flip_image_pil, horizontal_flip_image_tensor, horizontal_flip_mask, horizontal_flip_video, pad, pad_bounding_box, pad_image_pil, pad_image_tensor, pad_mask, pad_video, perspective, perspective_bounding_box, perspective_image_pil, perspective_image_tensor, perspective_mask, perspective_video, resize, resize_bounding_box, resize_image_pil, resize_image_tensor, resize_mask, resize_video, resized_crop, resized_crop_bounding_box, resized_crop_image_pil, resized_crop_image_tensor, resized_crop_mask, resized_crop_video, rotate, rotate_bounding_box, rotate_image_pil, rotate_image_tensor, rotate_mask, rotate_video, ten_crop, ten_crop_image_pil, ten_crop_image_tensor, ten_crop_video, vertical_flip, vertical_flip_bounding_box, vertical_flip_image_pil, vertical_flip_image_tensor, vertical_flip_mask, vertical_flip_video, vflip, ) from ._misc import ( gaussian_blur, gaussian_blur_image_pil, gaussian_blur_image_tensor, gaussian_blur_video, normalize, normalize_image_tensor, normalize_video, ) from ._temporal import uniform_temporal_subsample, uniform_temporal_subsample_video from ._type_conversion import pil_to_tensor, to_image_pil, to_image_tensor, to_pil_image from ._deprecated import get_image_size, to_grayscale, to_tensor # usort: skip
# TODO: Add _log_api_usage_once() in all mid-level kernels. If they remain not jit-scriptable we can use decorators from torchvision.transforms import InterpolationMode # usort: skip from ._utils import is_simple_tensor # usort: skip from ._meta import ( clamp_bounding_box, convert_format_bounding_box, convert_dtype_image_tensor, convert_dtype, convert_dtype_video, convert_image_dtype, get_dimensions_image_tensor, get_dimensions_image_pil, get_dimensions, get_num_frames_video, get_num_frames, get_image_num_channels, get_num_channels_image_tensor, get_num_channels_image_pil, get_num_channels_video, get_num_channels, get_spatial_size_bounding_box, get_spatial_size_image_tensor, get_spatial_size_image_pil, get_spatial_size_mask, get_spatial_size_video, get_spatial_size, ) # usort: skip from ._augment import erase, erase_image_pil, erase_image_tensor, erase_video from ._color import ( adjust_brightness, adjust_brightness_image_pil, adjust_brightness_image_tensor, adjust_brightness_video, adjust_contrast, adjust_contrast_image_pil, adjust_contrast_image_tensor, adjust_contrast_video, adjust_gamma, adjust_gamma_image_pil, adjust_gamma_image_tensor, adjust_gamma_video, adjust_hue, adjust_hue_image_pil, adjust_hue_image_tensor, adjust_hue_video, adjust_saturation, adjust_saturation_image_pil, adjust_saturation_image_tensor, adjust_saturation_video, adjust_sharpness, adjust_sharpness_image_pil, adjust_sharpness_image_tensor, adjust_sharpness_video, autocontrast, autocontrast_image_pil, autocontrast_image_tensor, autocontrast_video, equalize, equalize_image_pil, equalize_image_tensor, equalize_video, invert, invert_image_pil, invert_image_tensor, invert_video, posterize, posterize_image_pil, posterize_image_tensor, posterize_video, solarize, solarize_image_pil, solarize_image_tensor, solarize_video, ) from ._geometry import ( affine, affine_bounding_box, affine_image_pil, affine_image_tensor, affine_mask, affine_video, center_crop, center_crop_bounding_box, center_crop_image_pil, center_crop_image_tensor, center_crop_mask, center_crop_video, crop, crop_bounding_box, crop_image_pil, crop_image_tensor, crop_mask, crop_video, elastic, elastic_bounding_box, elastic_image_pil, elastic_image_tensor, elastic_mask, elastic_transform, elastic_video, five_crop, five_crop_image_pil, five_crop_image_tensor, five_crop_video, hflip, # TODO: Consider moving all pure alias definitions at the bottom of the file horizontal_flip, horizontal_flip_bounding_box, horizontal_flip_image_pil, horizontal_flip_image_tensor, horizontal_flip_mask, horizontal_flip_video, pad, pad_bounding_box, pad_image_pil, pad_image_tensor, pad_mask, pad_video, perspective, perspective_bounding_box, perspective_image_pil, perspective_image_tensor, perspective_mask, perspective_video, resize, resize_bounding_box, resize_image_pil, resize_image_tensor, resize_mask, resize_video, resized_crop, resized_crop_bounding_box, resized_crop_image_pil, resized_crop_image_tensor, resized_crop_mask, resized_crop_video, rotate, rotate_bounding_box, rotate_image_pil, rotate_image_tensor, rotate_mask, rotate_video, ten_crop, ten_crop_image_pil, ten_crop_image_tensor, ten_crop_video, vertical_flip, vertical_flip_bounding_box, vertical_flip_image_pil, vertical_flip_image_tensor, vertical_flip_mask, vertical_flip_video, vflip, ) from ._misc import ( gaussian_blur, gaussian_blur_image_pil, gaussian_blur_image_tensor, gaussian_blur_video, normalize, normalize_image_tensor, normalize_video, ) from ._temporal import uniform_temporal_subsample, uniform_temporal_subsample_video from ._type_conversion import pil_to_tensor, to_image_pil, to_image_tensor, to_pil_image from ._deprecated import get_image_size, rgb_to_grayscale, to_grayscale, to_tensor # usort: skip
import pytest from docarray import DocumentArray from docarray.array.qdrant import DocumentArrayQdrant from docarray.array.sqlite import DocumentArraySqlite from docarray.array.annlite import DocumentArrayAnnlite, AnnliteConfig from docarray.array.storage.qdrant import QdrantConfig from docarray.array.storage.weaviate import WeaviateConfig from docarray.array.weaviate import DocumentArrayWeaviate from docarray.array.elastic import DocumentArrayElastic, ElasticConfig from docarray.array.redis import DocumentArrayRedis, RedisConfig from docarray.array.milvus import DocumentArrayMilvus, MilvusConfig @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=5)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=5)), (DocumentArrayQdrant, QdrantConfig(n_dim=5)), (DocumentArrayElastic, ElasticConfig(n_dim=5)), (DocumentArrayRedis, RedisConfig(n_dim=5)), (DocumentArrayMilvus, MilvusConfig(n_dim=5)), ], ) def test_empty_non_zero(da_cls, config, start_storage): # Assert .empty provides a da with 0 docs if config: da = da_cls.empty(config=config) else: da = da_cls.empty() assert len(da) == 0 # Assert .empty provides a da of the correct length if config: da = da_cls.empty(10, config=config) else: da = da_cls.empty(10) assert len(da) == 10
import pytest from docarray import DocumentArray from docarray.array.qdrant import DocumentArrayQdrant from docarray.array.sqlite import DocumentArraySqlite from docarray.array.annlite import DocumentArrayAnnlite, AnnliteConfig from docarray.array.storage.qdrant import QdrantConfig from docarray.array.storage.weaviate import WeaviateConfig from docarray.array.weaviate import DocumentArrayWeaviate from docarray.array.elastic import DocumentArrayElastic, ElasticConfig from docarray.array.redis import DocumentArrayRedis, RedisConfig @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=5)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=5)), (DocumentArrayQdrant, QdrantConfig(n_dim=5)), (DocumentArrayElastic, ElasticConfig(n_dim=5)), (DocumentArrayRedis, RedisConfig(n_dim=5)), ], ) def test_empty_non_zero(da_cls, config, start_storage): # Assert .empty provides a da with 0 docs if config: da = da_cls.empty(config=config) else: da = da_cls.empty() assert len(da) == 0 # Assert .empty provides a da of the correct length if config: da = da_cls.empty(10, config=config) else: da = da_cls.empty(10) assert len(da) == 10
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional # usort: skip from ._transform import Transform # usort: skip from ._presets import StereoMatching # usort: skip from ._augment import RandomCutmix, RandomErasing, RandomMixup, SimpleCopyPaste from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, RandomAdjustSharpness, RandomAutocontrast, RandomEqualize, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, FixedSizeCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat, ConvertColorSpace, ConvertImageDtype from ._misc import ( GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, PermuteDimensions, RemoveSmallBoundingBoxes, ToDtype, TransposeDimensions, ) from ._type_conversion import DecodeImage, LabelToOneHot, PILToTensor, ToImagePIL, ToImageTensor, ToPILImage from ._deprecated import Grayscale, RandomGrayscale, ToTensor # usort: skip
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional # usort: skip from ._transform import Transform # usort: skip from ._presets import StereoMatching # usort: skip from ._augment import RandomCutmix, RandomErasing, RandomMixup, SimpleCopyPaste from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, RandomAdjustSharpness, RandomAutocontrast, RandomEqualize, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, FixedSizeCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat, ConvertColorSpace, ConvertImageDtype from ._misc import GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, RemoveSmallBoundingBoxes, ToDtype from ._type_conversion import DecodeImage, LabelToOneHot, PILToTensor, ToImagePIL, ToImageTensor, ToPILImage from ._deprecated import Grayscale, RandomGrayscale, ToTensor # usort: skip
_base_ = ['../common/ms_3x_coco.py', '../_base_/models/faster-rcnn_r50_fpn.py'] model = dict( data_preprocessor=dict( # The mean and std are used in PyCls when training RegNets mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], bgr_to_rgb=False), backbone=dict( _delete_=True, type='RegNet', arch='regnetx_3.2gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_3.2gf')), neck=dict( type='FPN', in_channels=[96, 192, 432, 1008], out_channels=256, num_outs=5)) optim_wrapper = dict(optimizer=dict(weight_decay=0.00005))
_base_ = [ '../common/mstrain_3x_coco.py', '../_base_/models/faster_rcnn_r50_fpn.py' ] model = dict( data_preprocessor=dict( # The mean and std are used in PyCls when training RegNets mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], bgr_to_rgb=False), backbone=dict( _delete_=True, type='RegNet', arch='regnetx_3.2gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_3.2gf')), neck=dict( type='FPN', in_channels=[96, 192, 432, 1008], out_channels=256, num_outs=5)) optim_wrapper = dict(optimizer=dict(weight_decay=0.00005))
import os from typing import Dict from hubble.executor.helper import parse_hub_uri from hubble.executor.hubio import HubIO from jina import __default_executor__, __version__ from jina.enums import PodRoleType def get_image_name(uses: str) -> str: """The image can be provided in different formats by the user. This function converts it to an image name which can be understood by k8s. It uses the Hub api to get the image name and the latest tag on Docker Hub. If you don't want to rebuild image on Jina Hub, you can set `JINA_HUB_NO_IMAGE_REBUILD` environment variable. :param uses: image name :return: normalized image name """ try: rebuild_image = 'JINA_HUB_NO_IMAGE_REBUILD' not in os.environ scheme, name, tag, secret = parse_hub_uri(uses) meta_data, _ = HubIO.fetch_meta( name, tag, secret=secret, rebuild_image=rebuild_image, force=True ) image_name = meta_data.image_name return image_name except Exception: if uses.startswith('docker'): # docker:// is a valid requirement and user may want to put its own image return uses.replace('docker://', '') raise def to_compatible_name(name: str) -> str: """Converts the deployment name to a valid name for K8s and docker compose. :param name: name of the deployment :return: compatible name """ return name.replace('/', '-').replace('_', '-').lower() def get_base_executor_version(): """ Get the version of jina to be used :return: the version tag """ import requests try: url = 'https://registry.hub.docker.com/v2/repositories/jinaai/jina/tags' result: Dict = requests.get(url, params={'name': __version__}).json() if result.get('count', 0) > 0: return __version__ else: return 'master' except: return 'master' def construct_runtime_container_args(cargs, uses_metas, uses_with, pod_type): """ Construct a set of Namespace arguments into a list of arguments to pass to a container entrypoint :param cargs: The namespace arguments :param uses_metas: The uses_metas to override :param uses_with: The uses_with to override :param pod_type: The pod_type :return: Arguments to pass to container """ import json from jina.helper import ArgNamespace from jina.parsers import set_pod_parser taboo = { 'uses_with', 'uses_metas', 'volumes', 'uses_before', 'uses_after', 'workspace_id', 'upload_files', 'noblock_on_start', 'env', } if pod_type == PodRoleType.HEAD: taboo.add('uses') taboo.add('workspace') if pod_type in {PodRoleType.WORKER, PodRoleType.GATEWAY}: taboo.add('polling') non_defaults = ArgNamespace.get_non_defaults_args( cargs, set_pod_parser(), taboo=taboo, ) _args = ArgNamespace.kwargs2list(non_defaults) container_args = ['executor'] + _args if uses_metas is not None: container_args.extend(['--uses-metas', json.dumps(uses_metas)]) if uses_with is not None: container_args.extend(['--uses-with', json.dumps(uses_with)]) container_args.append('--native') return container_args def validate_uses(uses: str): """Validate uses argument :param uses: uses argument :return: boolean indicating whether is a valid uses to be used in K8s or docker compose """ if uses == __default_executor__ or uses.startswith('docker://'): return True try: scheme, _, _, _ = parse_hub_uri(uses) if scheme in {'jinahub+docker', 'jinahub+sandbox'}: return True except ValueError: return False
import os from typing import Dict from jina import __default_executor__, __version__ from jina.enums import PodRoleType from jina.hubble.helper import parse_hub_uri from jina.hubble.hubio import HubIO def get_image_name(uses: str) -> str: """The image can be provided in different formats by the user. This function converts it to an image name which can be understood by k8s. It uses the Hub api to get the image name and the latest tag on Docker Hub. If you don't want to rebuild image on Jina Hub, you can set `JINA_HUB_NO_IMAGE_REBUILD` environment variable. :param uses: image name :return: normalized image name """ try: rebuild_image = 'JINA_HUB_NO_IMAGE_REBUILD' not in os.environ scheme, name, tag, secret = parse_hub_uri(uses) meta_data, _ = HubIO.fetch_meta( name, tag, secret=secret, rebuild_image=rebuild_image, force=True ) image_name = meta_data.image_name return image_name except Exception: if uses.startswith('docker'): # docker:// is a valid requirement and user may want to put its own image return uses.replace('docker://', '') raise def to_compatible_name(name: str) -> str: """Converts the deployment name to a valid name for K8s and docker compose. :param name: name of the deployment :return: compatible name """ return name.replace('/', '-').replace('_', '-').lower() def get_base_executor_version(): """ Get the version of jina to be used :return: the version tag """ import requests try: url = 'https://registry.hub.docker.com/v2/repositories/jinaai/jina/tags' result: Dict = requests.get(url, params={'name': __version__}).json() if result.get('count', 0) > 0: return __version__ else: return 'master' except: return 'master' def construct_runtime_container_args(cargs, uses_metas, uses_with, pod_type): """ Construct a set of Namespace arguments into a list of arguments to pass to a container entrypoint :param cargs: The namespace arguments :param uses_metas: The uses_metas to override :param uses_with: The uses_with to override :param pod_type: The pod_type :return: Arguments to pass to container """ import json from jina.helper import ArgNamespace from jina.parsers import set_pod_parser taboo = { 'uses_with', 'uses_metas', 'volumes', 'uses_before', 'uses_after', 'workspace_id', 'upload_files', 'noblock_on_start', 'env', } if pod_type == PodRoleType.HEAD: taboo.add('uses') taboo.add('workspace') if pod_type in {PodRoleType.WORKER, PodRoleType.GATEWAY}: taboo.add('polling') non_defaults = ArgNamespace.get_non_defaults_args( cargs, set_pod_parser(), taboo=taboo, ) _args = ArgNamespace.kwargs2list(non_defaults) container_args = ['executor'] + _args if uses_metas is not None: container_args.extend(['--uses-metas', json.dumps(uses_metas)]) if uses_with is not None: container_args.extend(['--uses-with', json.dumps(uses_with)]) container_args.append('--native') return container_args def validate_uses(uses: str): """Validate uses argument :param uses: uses argument :return: boolean indicating whether is a valid uses to be used in K8s or docker compose """ if uses == __default_executor__ or uses.startswith('docker://'): return True try: scheme, _, _, _ = parse_hub_uri(uses) if scheme in {'jinahub+docker', 'jinahub+sandbox'}: return True except ValueError: return False
import json import multiprocessing import os import time import pytest from jina.helper import random_port from jina.parsers import set_gateway_parser from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime from tests.helper import ( _generate_pod_args, _validate_custom_gateway_process, _validate_dummy_custom_gateway_response, ) from tests.unit.yaml.dummy_gateway import DummyGateway from tests.unit.yaml.dummy_gateway_get_streamer import DummyGatewayGetStreamer cur_dir = os.path.dirname(os.path.abspath(__file__)) _dummy_gateway_yaml_path = os.path.join(cur_dir, '../../yaml/test-custom-gateway.yml') _dummy_fastapi_gateway_yaml_path = os.path.join( cur_dir, '../../yaml/test-fastapi-gateway.yml' ) def _create_gateway_runtime(port, uses, uses_with, worker_port): graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{worker_port}"]}}' deployments_metadata = '{"pod0": {"key1": "value1", "key2": "value2"}}' with GatewayRuntime( set_gateway_parser().parse_args( [ '--port', str(port), '--uses', uses, '--uses-with', json.dumps(uses_with), '--graph-description', graph_description, '--deployments-addresses', pod_addresses, '--deployments-metadata', deployments_metadata, ] ) ) as runtime: runtime.run_forever() def _start_gateway_runtime(uses, uses_with, worker_port): port = random_port() p = multiprocessing.Process( target=_create_gateway_runtime, args=(port, uses, uses_with, worker_port), daemon=True, ) p.start() time.sleep(1) return port, p def _create_worker_runtime(port, uses): args = _generate_pod_args(['--uses', uses, '--port', str(port)]) with WorkerRuntime(args) as runtime: runtime.run_forever() def _start_worker_runtime(uses): port = random_port() p = multiprocessing.Process( target=_create_worker_runtime, args=(port, uses), daemon=True, ) p.start() time.sleep(1) return port, p @pytest.mark.parametrize( 'uses,uses_with,expected', [ ('DummyGateway', {}, {'arg1': None, 'arg2': None, 'arg3': 'default-arg3'}), ( 'DummyGatewayGetStreamer', {}, {'arg1': None, 'arg2': None, 'arg3': 'default-arg3'}, ), ( _dummy_gateway_yaml_path, {}, {'arg1': 'hello', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ( _dummy_fastapi_gateway_yaml_path, {}, {'arg1': 'hello', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ( 'DummyGateway', {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( 'DummyGatewayGetStreamer', {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( _dummy_gateway_yaml_path, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( _dummy_fastapi_gateway_yaml_path, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( 'DummyGateway', {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': None, 'arg3': 'default-arg3'}, ), ( 'DummyGatewayGetStreamer', {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': None, 'arg3': 'default-arg3'}, ), ( _dummy_gateway_yaml_path, {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ( _dummy_fastapi_gateway_yaml_path, {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ], ) def test_custom_gateway_no_executors(uses, uses_with, expected): worker_port, worker_process = _start_worker_runtime('ProcessExecutor') gateway_port, gateway_process = _start_gateway_runtime(uses, uses_with, worker_port) _validate_dummy_custom_gateway_response(gateway_port, expected) _validate_custom_gateway_process( gateway_port, 'hello', {'text': 'helloworld', 'tags': {'processed': True}} ) gateway_process.terminate() gateway_process.join() worker_process.terminate() worker_process.join() assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0
import json import multiprocessing import os import time import pytest from jina.helper import random_port from jina.parsers import set_gateway_parser, set_pod_parser from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime from tests.helper import ( _validate_custom_gateway_process, _validate_dummy_custom_gateway_response, ) from tests.unit.yaml.dummy_gateway import DummyGateway from tests.unit.yaml.dummy_gateway_get_streamer import DummyGatewayGetStreamer cur_dir = os.path.dirname(os.path.abspath(__file__)) _dummy_gateway_yaml_path = os.path.join(cur_dir, '../../yaml/test-custom-gateway.yml') _dummy_fastapi_gateway_yaml_path = os.path.join( cur_dir, '../../yaml/test-fastapi-gateway.yml' ) def _create_gateway_runtime(port, uses, uses_with, worker_port): graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{worker_port}"]}}' deployments_metadata = '{"pod0": {"key1": "value1", "key2": "value2"}}' with GatewayRuntime( set_gateway_parser().parse_args( [ '--port', str(port), '--uses', uses, '--uses-with', json.dumps(uses_with), '--graph-description', graph_description, '--deployments-addresses', pod_addresses, '--deployments-metadata', deployments_metadata, ] ) ) as runtime: runtime.run_forever() def _start_gateway_runtime(uses, uses_with, worker_port): port = random_port() p = multiprocessing.Process( target=_create_gateway_runtime, args=(port, uses, uses_with, worker_port), daemon=True, ) p.start() time.sleep(1) return port, p def _create_worker_runtime(port, uses): args = set_pod_parser().parse_args(['--uses', uses, '--port', str(port)]) with WorkerRuntime(args) as runtime: runtime.run_forever() def _start_worker_runtime(uses): port = random_port() p = multiprocessing.Process( target=_create_worker_runtime, args=(port, uses), daemon=True, ) p.start() time.sleep(1) return port, p @pytest.mark.parametrize( 'uses,uses_with,expected', [ ('DummyGateway', {}, {'arg1': None, 'arg2': None, 'arg3': 'default-arg3'}), ( 'DummyGatewayGetStreamer', {}, {'arg1': None, 'arg2': None, 'arg3': 'default-arg3'}, ), ( _dummy_gateway_yaml_path, {}, {'arg1': 'hello', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ( _dummy_fastapi_gateway_yaml_path, {}, {'arg1': 'hello', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ( 'DummyGateway', {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( 'DummyGatewayGetStreamer', {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( _dummy_gateway_yaml_path, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( _dummy_fastapi_gateway_yaml_path, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, {'arg1': 'arg1', 'arg2': 'arg2', 'arg3': 'arg3'}, ), ( 'DummyGateway', {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': None, 'arg3': 'default-arg3'}, ), ( 'DummyGatewayGetStreamer', {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': None, 'arg3': 'default-arg3'}, ), ( _dummy_gateway_yaml_path, {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ( _dummy_fastapi_gateway_yaml_path, {'arg1': 'arg1'}, {'arg1': 'arg1', 'arg2': 'world', 'arg3': 'default-arg3'}, ), ], ) def test_custom_gateway_no_executors(uses, uses_with, expected): worker_port, worker_process = _start_worker_runtime('ProcessExecutor') gateway_port, gateway_process = _start_gateway_runtime(uses, uses_with, worker_port) _validate_dummy_custom_gateway_response(gateway_port, expected) _validate_custom_gateway_process( gateway_port, 'hello', {'text': 'helloworld', 'tags': {'processed': True}} ) gateway_process.terminate() gateway_process.join() worker_process.terminate() worker_process.join() assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class AutoAssign(SingleStageDetector): """Implementation of `AutoAssign: Differentiable Label Assignment for Dense Object Detection <https://arxiv.org/abs/2007.03496>`_.""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None): super(AutoAssign, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained)
from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class AutoAssign(SingleStageDetector): """Implementation of `AutoAssign: Differentiable Label Assignment for Dense Object Detection <https://arxiv.org/abs/2007.03496>`_.""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None): super(AutoAssign, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained)
# Copyright (c) OpenMMLab. All rights reserved. from .atss import ATSS from .autoassign import AutoAssign from .base import BaseDetector from .cascade_rcnn import CascadeRCNN from .centernet import CenterNet from .cornernet import CornerNet from .d2_wrapper import Detectron2Wrapper from .ddod import DDOD from .deformable_detr import DeformableDETR from .detr import DETR from .fast_rcnn import FastRCNN from .faster_rcnn import FasterRCNN from .fcos import FCOS from .fovea import FOVEA from .fsaf import FSAF from .gfl import GFL from .grid_rcnn import GridRCNN from .htc import HybridTaskCascade from .kd_one_stage import KnowledgeDistillationSingleStageDetector from .lad import LAD from .mask2former import Mask2Former from .mask_rcnn import MaskRCNN from .mask_scoring_rcnn import MaskScoringRCNN from .maskformer import MaskFormer from .nasfcos import NASFCOS from .paa import PAA from .panoptic_fpn import PanopticFPN from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor from .point_rend import PointRend from .queryinst import QueryInst from .reppoints_detector import RepPointsDetector from .retinanet import RetinaNet from .rpn import RPN from .rtmdet import RTMDet from .scnet import SCNet from .semi_base import SemiBaseDetector from .single_stage import SingleStageDetector from .soft_teacher import SoftTeacher from .solo import SOLO from .solov2 import SOLOv2 from .sparse_rcnn import SparseRCNN from .tood import TOOD from .trident_faster_rcnn import TridentFasterRCNN from .two_stage import TwoStageDetector from .vfnet import VFNet from .yolact import YOLACT from .yolo import YOLOV3 from .yolof import YOLOF from .yolox import YOLOX __all__ = [ 'ATSS', 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN', 'KnowledgeDistillationSingleStageDetector', 'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN', 'RepPointsDetector', 'FOVEA', 'FSAF', 'NASFCOS', 'PointRend', 'GFL', 'CornerNet', 'PAA', 'YOLOV3', 'YOLACT', 'VFNet', 'DETR', 'TridentFasterRCNN', 'SparseRCNN', 'SCNet', 'SOLO', 'SOLOv2', 'DeformableDETR', 'AutoAssign', 'YOLOF', 'CenterNet', 'YOLOX', 'TwoStagePanopticSegmentor', 'PanopticFPN', 'QueryInst', 'LAD', 'TOOD', 'MaskFormer', 'DDOD', 'Mask2Former', 'SemiBaseDetector', 'SoftTeacher', 'RTMDet', 'Detectron2Wrapper' ]
# Copyright (c) OpenMMLab. All rights reserved. from .atss import ATSS from .autoassign import AutoAssign from .base import BaseDetector from .cascade_rcnn import CascadeRCNN from .centernet import CenterNet from .cornernet import CornerNet from .ddod import DDOD from .deformable_detr import DeformableDETR from .detr import DETR from .fast_rcnn import FastRCNN from .faster_rcnn import FasterRCNN from .fcos import FCOS from .fovea import FOVEA from .fsaf import FSAF from .gfl import GFL from .grid_rcnn import GridRCNN from .htc import HybridTaskCascade from .kd_one_stage import KnowledgeDistillationSingleStageDetector from .lad import LAD from .mask2former import Mask2Former from .mask_rcnn import MaskRCNN from .mask_scoring_rcnn import MaskScoringRCNN from .maskformer import MaskFormer from .nasfcos import NASFCOS from .paa import PAA from .panoptic_fpn import PanopticFPN from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor from .point_rend import PointRend from .queryinst import QueryInst from .reppoints_detector import RepPointsDetector from .retinanet import RetinaNet from .rpn import RPN from .rtmdet import RTMDet from .scnet import SCNet from .semi_base import SemiBaseDetector from .single_stage import SingleStageDetector from .soft_teacher import SoftTeacher from .solo import SOLO from .solov2 import SOLOv2 from .sparse_rcnn import SparseRCNN from .tood import TOOD from .trident_faster_rcnn import TridentFasterRCNN from .two_stage import TwoStageDetector from .vfnet import VFNet from .yolact import YOLACT from .yolo import YOLOV3 from .yolof import YOLOF from .yolox import YOLOX __all__ = [ 'ATSS', 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN', 'KnowledgeDistillationSingleStageDetector', 'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN', 'RepPointsDetector', 'FOVEA', 'FSAF', 'NASFCOS', 'PointRend', 'GFL', 'CornerNet', 'PAA', 'YOLOV3', 'YOLACT', 'VFNet', 'DETR', 'TridentFasterRCNN', 'SparseRCNN', 'SCNet', 'SOLO', 'SOLOv2', 'DeformableDETR', 'AutoAssign', 'YOLOF', 'CenterNet', 'YOLOX', 'TwoStagePanopticSegmentor', 'PanopticFPN', 'QueryInst', 'LAD', 'TOOD', 'MaskFormer', 'DDOD', 'Mask2Former', 'SemiBaseDetector', 'SoftTeacher', 'RTMDet' ]
# Copyright (c) OpenMMLab. All rights reserved. import datetime import os.path as osp from typing import Optional from mmengine.fileio import dump from . import root from .registry import Registry def traverse_registry_tree(registry: Registry, verbose: bool = True) -> list: """Traverse the whole registry tree from any given node, and collect information of all registered modules in this registry tree. Args: registry (Registry): a registry node in the registry tree. verbose (bool): Whether to print log. Default: True Returns: list: Statistic results of all modules in each node of the registry tree. """ root_registry = registry.root modules_info = [] def _dfs_registry(_registry): if isinstance(_registry, Registry): num_modules = len(_registry.module_dict) scope = _registry.scope registry_info = dict(num_modules=num_modules, scope=scope) for name, registered_class in _registry.module_dict.items(): folder = '/'.join(registered_class.__module__.split('.')[:-1]) if folder in registry_info: registry_info[folder].append(name) else: registry_info[folder] = [name] if verbose: print(f"Find {num_modules} modules in {scope}'s " f"'{_registry.name}' registry ") modules_info.append(registry_info) else: return for _, child in _registry.children.items(): _dfs_registry(child) _dfs_registry(root_registry) return modules_info def count_registered_modules(save_path: Optional[str] = None, verbose: bool = True) -> dict: """Scan all modules in MMEngine's root and child registries and dump to json. Args: save_path (str, optional): Path to save the json file. verbose (bool): Whether to print log. Defaults to True. Returns: dict: Statistic results of all registered modules. """ # import modules to trigger registering import mmengine.dataset import mmengine.evaluator import mmengine.hooks import mmengine.model import mmengine.optim import mmengine.runner import mmengine.visualization # noqa: F401 registries_info = {} # traverse all registries in MMEngine for item in dir(root): if not item.startswith('__'): registry = getattr(root, item) if isinstance(registry, Registry): registries_info[item] = traverse_registry_tree( registry, verbose) scan_data = dict( scan_date=datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), registries=registries_info) if verbose: print('Finish registry analysis, got: ', scan_data) if save_path is not None: json_path = osp.join(save_path, 'modules_statistic_results.json') dump(scan_data, json_path, indent=2) print(f'Result has been saved to {json_path}') return scan_data
# Copyright (c) OpenMMLab. All rights reserved. import datetime import os.path as osp from typing import Optional from mmengine.fileio import dump from . import root from .registry import Registry def traverse_registry_tree(registry: Registry, verbose: bool = True) -> list: """Traverse the whole registry tree from any given node, and collect information of all registered modules in this registry tree. Args: registry (Registry): a registry node in the registry tree. verbose (bool): Whether to print log. Default: True Returns: list: Statistic results of all modules in each node of the registry tree. """ root_registry = registry.root modules_info = [] def _dfs_registry(_registry): if isinstance(_registry, Registry): num_modules = len(_registry.module_dict) scope = _registry.scope registry_info = dict(num_modules=num_modules, scope=scope) for name, registered_class in _registry.module_dict.items(): folder = '/'.join(registered_class.__module__.split('.')[:-1]) if folder in registry_info: registry_info[folder].append(name) else: registry_info[folder] = [name] if verbose: print(f"Find {num_modules} modules in {scope}'s " f"'{_registry.name}' registry ") modules_info.append(registry_info) else: return for _, child in _registry.children.items(): _dfs_registry(child) _dfs_registry(root_registry) return modules_info def count_registered_modules(save_path: Optional[str] = None, verbose: bool = True) -> dict: """Scan all modules in MMEngine's root and child registries and dump to json. Args: save_path (str, optional): Path to save the json file. verbose (bool): Whether to print log. Default: True Returns: dict: Statistic results of all registered modules. """ registries_info = {} # traverse all registries in MMEngine for item in dir(root): if not item.startswith('__'): registry = getattr(root, item) if isinstance(registry, Registry): registries_info[item] = traverse_registry_tree( registry, verbose) scan_data = dict( scan_date=datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), registries=registries_info) if verbose: print('Finish registry analysis, got: ', scan_data) if save_path is not None: json_path = osp.join(save_path, 'modules_statistic_results.json') dump(scan_data, json_path, indent=2) print(f'Result has been saved to {json_path}') return scan_data
from typing import List, cast from llama_index.core.indices.vector_store.base import VectorStoreIndex from llama_index.core.schema import ( Document, NodeRelationship, QueryBundle, RelatedNodeInfo, TextNode, ImageNode, ) from llama_index.core.vector_stores.simple import SimpleVectorStore def test_simple_query( documents: List[Document], patch_llm_predictor, patch_token_text_splitter, mock_embed_model, ) -> None: """Test embedding query.""" index = VectorStoreIndex.from_documents(documents, embed_model=mock_embed_model) # test embedding query query_str = "What is?" retriever = index.as_retriever(similarity_top_k=1) nodes = retriever.retrieve(QueryBundle(query_str)) assert len(nodes) == 1 assert nodes[0].node.get_content() == "This is another test." def test_query_and_similarity_scores( patch_llm_predictor, patch_token_text_splitter, ) -> None: """Test that sources nodes have similarity scores.""" doc_text = ( "Hello world.\nThis is a test.\nThis is another test.\nThis is a test v2." ) document = Document(text=doc_text) index = VectorStoreIndex.from_documents([document]) # test embedding query query_str = "What is?" retriever = index.as_retriever() nodes = retriever.retrieve(QueryBundle(query_str)) assert len(nodes) > 0 assert nodes[0].score is not None def test_simple_check_ids( patch_llm_predictor, patch_token_text_splitter, ) -> None: """Test build VectorStoreIndex.""" ref_doc_id = "ref_doc_id_test" source_rel = {NodeRelationship.SOURCE: RelatedNodeInfo(node_id=ref_doc_id)} all_nodes = [ TextNode(text="Hello world.", id_="node1", relationships=source_rel), TextNode(text="This is a test.", id_="node2", relationships=source_rel), TextNode(text="This is another test.", id_="node3", relationships=source_rel), TextNode(text="This is a test v2.", id_="node4", relationships=source_rel), ] index = VectorStoreIndex(all_nodes) # test query query_str = "What is?" retriever = index.as_retriever() nodes = retriever.retrieve(QueryBundle(query_str)) assert nodes[0].node.get_content() == "This is another test." assert nodes[0].node.ref_doc_id == "ref_doc_id_test" assert nodes[0].node.node_id == "node3" vector_store = cast(SimpleVectorStore, index._vector_store) assert "node3" in vector_store._data.embedding_dict assert "node3" in vector_store._data.text_id_to_ref_doc_id def test_query( patch_llm_predictor, patch_token_text_splitter, ) -> None: """Test embedding query.""" doc_text = ( "Hello world.\nThis is a test.\nThis is another test.\nThis is a test v2." ) document = Document(text=doc_text) index = VectorStoreIndex.from_documents([document]) # test embedding query query_str = "What is?" retriever = index.as_retriever() _ = retriever.retrieve(QueryBundle(query_str)) def test_query_image_node() -> None: """Test embedding query.""" image_node = ImageNode(image="potato") index = VectorStoreIndex.from_documents([]) index.insert_nodes([image_node]) # test embedding query query_str = "What is?" retriever = index.as_retriever() results = retriever.retrieve(QueryBundle(query_str)) assert len(results) == 1 assert results[0].node.node_id == image_node.node_id assert isinstance(results[0].node, ImageNode) assert results[0].node.image == "potato"
from typing import List, cast from llama_index.core.indices.vector_store.base import VectorStoreIndex from llama_index.core.schema import ( Document, NodeRelationship, QueryBundle, RelatedNodeInfo, TextNode, ) from llama_index.core.vector_stores.simple import SimpleVectorStore def test_simple_query( documents: List[Document], patch_llm_predictor, patch_token_text_splitter, mock_embed_model, ) -> None: """Test embedding query.""" index = VectorStoreIndex.from_documents(documents, embed_model=mock_embed_model) # test embedding query query_str = "What is?" retriever = index.as_retriever(similarity_top_k=1) nodes = retriever.retrieve(QueryBundle(query_str)) assert len(nodes) == 1 assert nodes[0].node.get_content() == "This is another test." def test_query_and_similarity_scores( patch_llm_predictor, patch_token_text_splitter, ) -> None: """Test that sources nodes have similarity scores.""" doc_text = ( "Hello world.\nThis is a test.\nThis is another test.\nThis is a test v2." ) document = Document(text=doc_text) index = VectorStoreIndex.from_documents([document]) # test embedding query query_str = "What is?" retriever = index.as_retriever() nodes = retriever.retrieve(QueryBundle(query_str)) assert len(nodes) > 0 assert nodes[0].score is not None def test_simple_check_ids( patch_llm_predictor, patch_token_text_splitter, ) -> None: """Test build VectorStoreIndex.""" ref_doc_id = "ref_doc_id_test" source_rel = {NodeRelationship.SOURCE: RelatedNodeInfo(node_id=ref_doc_id)} all_nodes = [ TextNode(text="Hello world.", id_="node1", relationships=source_rel), TextNode(text="This is a test.", id_="node2", relationships=source_rel), TextNode(text="This is another test.", id_="node3", relationships=source_rel), TextNode(text="This is a test v2.", id_="node4", relationships=source_rel), ] index = VectorStoreIndex(all_nodes) # test query query_str = "What is?" retriever = index.as_retriever() nodes = retriever.retrieve(QueryBundle(query_str)) assert nodes[0].node.get_content() == "This is another test." assert nodes[0].node.ref_doc_id == "ref_doc_id_test" assert nodes[0].node.node_id == "node3" vector_store = cast(SimpleVectorStore, index._vector_store) assert "node3" in vector_store._data.embedding_dict assert "node3" in vector_store._data.text_id_to_ref_doc_id def test_query( patch_llm_predictor, patch_token_text_splitter, ) -> None: """Test embedding query.""" doc_text = ( "Hello world.\nThis is a test.\nThis is another test.\nThis is a test v2." ) document = Document(text=doc_text) index = VectorStoreIndex.from_documents([document]) # test embedding query query_str = "What is?" retriever = index.as_retriever() _ = retriever.retrieve(QueryBundle(query_str))
_base_ = 'cascade-mask-rcnn_regnetx-3.2GF_fpn_ms-3x_coco.py' model = dict( backbone=dict( type='RegNet', arch='regnetx_1.6gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_1.6gf')), neck=dict( type='FPN', in_channels=[72, 168, 408, 912], out_channels=256, num_outs=5))
_base_ = 'cascade_mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py' model = dict( backbone=dict( type='RegNet', arch='regnetx_1.6gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_1.6gf')), neck=dict( type='FPN', in_channels=[72, 168, 408, 912], out_channels=256, num_outs=5))
# Copyright (c) OpenMMLab. All rights reserved. import unittest import torch import torch.nn as nn from mmengine.runner import autocast from mmengine.utils import digit_version from mmengine.utils.dl_utils import TORCH_VERSION class TestAmp(unittest.TestCase): def test_autocast(self): if not torch.cuda.is_available(): if digit_version(TORCH_VERSION) < digit_version('1.10.0'): # `torch.cuda.amp.autocast` is only support in gpu mode, if # cuda is not available, it will return an empty context and # should not accept any arguments. with self.assertRaisesRegex(RuntimeError, 'If pytorch versions is '): with autocast(): pass with autocast(enabled=False): layer = nn.Conv2d(1, 1, 1) res = layer(torch.randn(1, 1, 1, 1)) self.assertEqual(res.dtype, torch.float32) else: with autocast(device_type='cpu'): # torch.autocast support cpu mode. layer = nn.Conv2d(1, 1, 1) res = layer(torch.randn(1, 1, 1, 1)) self.assertIn(res.dtype, (torch.bfloat16, torch.float16)) with autocast(enabled=False): res = layer(torch.randn(1, 1, 1, 1)) self.assertEqual(res.dtype, torch.float32) else: if digit_version(TORCH_VERSION) < digit_version('1.10.0'): devices = ['cuda'] else: devices = ['cpu', 'cuda'] for device in devices: with autocast(device_type=device): # torch.autocast support cpu and cuda mode. layer = nn.Conv2d(1, 1, 1).to(device) res = layer(torch.randn(1, 1, 1, 1).to(device)) self.assertIn(res.dtype, (torch.bfloat16, torch.float16)) with autocast(enabled=False, device_type=device): res = layer(torch.randn(1, 1, 1, 1).to(device)) self.assertEqual(res.dtype, torch.float32) # Test with fp32_enabled with autocast(enabled=False, device_type=device): layer = nn.Conv2d(1, 1, 1).to(device) res = layer(torch.randn(1, 1, 1, 1).to(device)) self.assertEqual(res.dtype, torch.float32)
# Copyright (c) OpenMMLab. All rights reserved. import unittest import torch import torch.nn as nn from mmengine.runner import autocast from mmengine.utils import TORCH_VERSION, digit_version class TestAmp(unittest.TestCase): def test_autocast(self): if not torch.cuda.is_available(): if digit_version(TORCH_VERSION) < digit_version('1.10.0'): # `torch.cuda.amp.autocast` is only support in gpu mode, if # cuda is not available, it will return an empty context and # should not accept any arguments. with self.assertRaisesRegex(RuntimeError, 'If pytorch versions is '): with autocast(): pass with autocast(enabled=False): layer = nn.Conv2d(1, 1, 1) res = layer(torch.randn(1, 1, 1, 1)) self.assertEqual(res.dtype, torch.float32) else: with autocast(device_type='cpu'): # torch.autocast support cpu mode. layer = nn.Conv2d(1, 1, 1) res = layer(torch.randn(1, 1, 1, 1)) self.assertIn(res.dtype, (torch.bfloat16, torch.float16)) with autocast(enabled=False): res = layer(torch.randn(1, 1, 1, 1)) self.assertEqual(res.dtype, torch.float32) else: if digit_version(TORCH_VERSION) < digit_version('1.10.0'): devices = ['cuda'] else: devices = ['cpu', 'cuda'] for device in devices: with autocast(device_type=device): # torch.autocast support cpu and cuda mode. layer = nn.Conv2d(1, 1, 1).to(device) res = layer(torch.randn(1, 1, 1, 1).to(device)) self.assertIn(res.dtype, (torch.bfloat16, torch.float16)) with autocast(enabled=False, device_type=device): res = layer(torch.randn(1, 1, 1, 1).to(device)) self.assertEqual(res.dtype, torch.float32) # Test with fp32_enabled with autocast(enabled=False, device_type=device): layer = nn.Conv2d(1, 1, 1).to(device) res = layer(torch.randn(1, 1, 1, 1).to(device)) self.assertEqual(res.dtype, torch.float32)
import numpy as np from docarray.proto import DocumentProto, NdArrayProto, NodeProto from docarray.typing import Tensor def test_nested_item_proto(): NodeProto(text='hello') NodeProto(nested=DocumentProto()) def test_nested_optional_item_proto(): NodeProto() def test_ndarray(): nd_proto = NdArrayProto() original_tensor = np.zeros((3, 224, 224)) Tensor._flush_tensor_to_proto(nd_proto, value=original_tensor) nested_item = NodeProto(tensor=nd_proto) tensor = Tensor._read_from_proto(nested_item.tensor) assert (tensor == original_tensor).all() def test_document_proto_set(): data = {} nested_item1 = NodeProto(text='hello') nd_proto = NdArrayProto() original_tensor = np.zeros((3, 224, 224)) Tensor._flush_tensor_to_proto(nd_proto, value=original_tensor) nested_item2 = NodeProto(tensor=nd_proto) data['a'] = nested_item1 data['b'] = nested_item2 DocumentProto(data=data)
import numpy as np from docarray.proto import DocumentProto, NdArrayProto, NodeProto from docarray.typing import Tensor def test_nested_item_proto(): NodeProto(text='hello') NodeProto(nested=DocumentProto()) def test_nested_optional_item_proto(): NodeProto() def test_ndarray(): nd_proto = NdArrayProto() original_tensor = np.zeros((3, 224, 224)) Tensor.flush_ndarray(nd_proto, value=original_tensor) nested_item = NodeProto(tensor=nd_proto) tensor = Tensor.read_ndarray(nested_item.tensor) assert (tensor == original_tensor).all() def test_document_proto_set(): data = {} nested_item1 = NodeProto(text='hello') nd_proto = NdArrayProto() original_tensor = np.zeros((3, 224, 224)) Tensor.flush_ndarray(nd_proto, value=original_tensor) nested_item2 = NodeProto(tensor=nd_proto) data['a'] = nested_item1 data['b'] = nested_item2 DocumentProto(data=data)
import time import pytest from jina import Executor, Flow SLOW_EXECUTOR_SLEEP_TIME = 3 class SlowExecutor(Executor): def __init__(self, **kwargs): super().__init__(**kwargs) time.sleep(SLOW_EXECUTOR_SLEEP_TIME) @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) async def test_gateway_warmup_fast_executor(protocol, capfd): flow = Flow(protocol=protocol).add() with flow: time.sleep(1) out, _ = capfd.readouterr() assert 'recv _status' in out assert out.count('recv _status') == 1 @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) async def test_gateway_warmup_with_replicas_and_shards(protocol, capfd): flow = ( Flow(protocol=protocol) .add(name='executor0', shards=2) .add(name='executor1', replicas=2) ) with flow: time.sleep(1) out, _ = capfd.readouterr() assert 'recv _status' in out # 2 calls from gateway runtime to deployments # 2 calls from head to shards # 1 call from the gateway to the head runtime warmup adds an additional call to any shard assert out.count('recv _status') == 5 @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) async def test_gateway_warmup_slow_executor(protocol, capfd): flow = Flow(protocol=protocol).add(name='slowExecutor', uses='SlowExecutor') with flow: # requires high sleep time to account for Flow readiness and properly capture the output logs time.sleep(SLOW_EXECUTOR_SLEEP_TIME * 3) out, _ = capfd.readouterr() assert 'recv _status' in out assert out.count('recv _status') == 1 @pytest.mark.asyncio async def test_multi_protocol_gateway_warmup_fast_executor(port_generator, capfd): http_port = port_generator() grpc_port = port_generator() websocket_port = port_generator() flow = ( Flow() .config_gateway( port=[http_port, grpc_port, websocket_port], protocol=['http', 'grpc', 'websocket'], ) .add() ) with flow: time.sleep(1) out, _ = capfd.readouterr() assert 'recv _status' in out assert out.count('recv _status') == 1 @pytest.mark.asyncio async def test_multi_protocol_gateway_warmup_slow_executor(port_generator, capfd): http_port = port_generator() grpc_port = port_generator() websocket_port = port_generator() flow = ( Flow() .config_gateway( port=[http_port, grpc_port, websocket_port], protocol=['http', 'grpc', 'websocket'], ) .add(name='slowExecutor', uses='SlowExecutor') ) with flow: # requires high sleep time to account for Flow readiness and properly capture the output logs time.sleep(SLOW_EXECUTOR_SLEEP_TIME * 3) out, _ = capfd.readouterr() assert 'recv _status' in out assert out.count('recv _status') == 1
import threading import time import pytest from jina import Executor, Flow SLOW_EXECUTOR_SLEEP_TIME = 3 class SlowExecutor(Executor): def __init__(self, **kwargs): super().__init__(**kwargs) time.sleep(SLOW_EXECUTOR_SLEEP_TIME) @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) async def test_gateway_warmup_fast_executor(protocol, capfd): flow = Flow(protocol=protocol).add() with flow: time.sleep(1) out, _ = capfd.readouterr() assert 'recv _status' in out assert out.count('recv _status') == 1 @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) async def test_gateway_warmup_with_replicas_and_shards(protocol, capfd): flow = ( Flow(protocol=protocol) .add(name='executor0', shards=2) .add(name='executor1', replicas=2) ) with flow: time.sleep(1) out, _ = capfd.readouterr() assert 'recv _status' in out # 2 calls from gateway runtime to deployments # 2 calls from head to shards # 1 call from the gateway to the head runtime warmup adds an additional call to any shard assert out.count('recv _status') == 5 @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) async def test_gateway_warmup_slow_executor(protocol, capfd): flow = Flow(protocol=protocol).add(name='slowExecutor', uses='SlowExecutor') with flow: # requires high sleep time to account for Flow readiness and properly capture the output logs time.sleep(SLOW_EXECUTOR_SLEEP_TIME * 3) out, _ = capfd.readouterr() assert 'recv _status' in out assert out.count('recv _status') == 1 @pytest.mark.asyncio async def test_multi_protocol_gateway_warmup_fast_executor(port_generator, capfd): http_port = port_generator() grpc_port = port_generator() websocket_port = port_generator() flow = ( Flow() .config_gateway( port=[http_port, grpc_port, websocket_port], protocol=['http', 'grpc', 'websocket'], ) .add() ) with flow: time.sleep(1) out, _ = capfd.readouterr() assert 'recv _status' in out assert out.count('recv _status') == 1 @pytest.mark.asyncio async def test_multi_protocol_gateway_warmup_slow_executor(port_generator, capfd): http_port = port_generator() grpc_port = port_generator() websocket_port = port_generator() flow = ( Flow() .config_gateway( port=[http_port, grpc_port, websocket_port], protocol=['http', 'grpc', 'websocket'], ) .add(name='slowExecutor', uses='SlowExecutor') ) with flow: # requires high sleep time to account for Flow readiness and properly capture the output logs time.sleep(SLOW_EXECUTOR_SLEEP_TIME * 3) out, _ = capfd.readouterr() assert 'recv _status' in out assert out.count('recv _status') == 1
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _additional_imports = {} _import_structure = {"pipeline_output": ["FluxPipelineOutput", "FluxPriorReduxPipelineOutput"]} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["modeling_flux"] = ["ReduxImageEncoder"] _import_structure["pipeline_flux"] = ["FluxPipeline"] _import_structure["pipeline_flux_control"] = ["FluxControlPipeline"] _import_structure["pipeline_flux_control_img2img"] = ["FluxControlImg2ImgPipeline"] _import_structure["pipeline_flux_controlnet"] = ["FluxControlNetPipeline"] _import_structure["pipeline_flux_controlnet_image_to_image"] = ["FluxControlNetImg2ImgPipeline"] _import_structure["pipeline_flux_controlnet_inpainting"] = ["FluxControlNetInpaintPipeline"] _import_structure["pipeline_flux_fill"] = ["FluxFillPipeline"] _import_structure["pipeline_flux_img2img"] = ["FluxImg2ImgPipeline"] _import_structure["pipeline_flux_inpaint"] = ["FluxInpaintPipeline"] _import_structure["pipeline_flux_prior_redux"] = ["FluxPriorReduxPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .modeling_flux import ReduxImageEncoder from .pipeline_flux import FluxPipeline from .pipeline_flux_control import FluxControlPipeline from .pipeline_flux_control_img2img import FluxControlImg2ImgPipeline from .pipeline_flux_controlnet import FluxControlNetPipeline from .pipeline_flux_controlnet_image_to_image import FluxControlNetImg2ImgPipeline from .pipeline_flux_controlnet_inpainting import FluxControlNetInpaintPipeline from .pipeline_flux_fill import FluxFillPipeline from .pipeline_flux_img2img import FluxImg2ImgPipeline from .pipeline_flux_inpaint import FluxInpaintPipeline from .pipeline_flux_prior_redux import FluxPriorReduxPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value) for name, value in _additional_imports.items(): setattr(sys.modules[__name__], name, value)
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _additional_imports = {} _import_structure = {"pipeline_output": ["FluxPipelineOutput"]} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_flux"] = ["FluxPipeline"] _import_structure["pipeline_flux_controlnet"] = ["FluxControlNetPipeline"] _import_structure["pipeline_flux_controlnet_image_to_image"] = ["FluxControlNetImg2ImgPipeline"] _import_structure["pipeline_flux_controlnet_inpainting"] = ["FluxControlNetInpaintPipeline"] _import_structure["pipeline_flux_img2img"] = ["FluxImg2ImgPipeline"] _import_structure["pipeline_flux_inpaint"] = ["FluxInpaintPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_flux import FluxPipeline from .pipeline_flux_controlnet import FluxControlNetPipeline from .pipeline_flux_controlnet_image_to_image import FluxControlNetImg2ImgPipeline from .pipeline_flux_controlnet_inpainting import FluxControlNetInpaintPipeline from .pipeline_flux_img2img import FluxImg2ImgPipeline from .pipeline_flux_inpaint import FluxInpaintPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value) for name, value in _additional_imports.items(): setattr(sys.modules[__name__], name, value)
import importlib from typing import Any from langchain.retrievers.document_compressors.base import DocumentCompressorPipeline from langchain.retrievers.document_compressors.chain_extract import ( LLMChainExtractor, ) from langchain.retrievers.document_compressors.chain_filter import ( LLMChainFilter, ) from langchain.retrievers.document_compressors.cohere_rerank import CohereRerank from langchain.retrievers.document_compressors.cross_encoder_rerank import ( CrossEncoderReranker, ) from langchain.retrievers.document_compressors.embeddings_filter import ( EmbeddingsFilter, ) from langchain.retrievers.document_compressors.listwise_rerank import ( LLMListwiseRerank, ) _module_lookup = { "FlashrankRerank": "langchain_community.document_compressors.flashrank_rerank", } def __getattr__(name: str) -> Any: if name in _module_lookup: module = importlib.import_module(_module_lookup[name]) return getattr(module, name) msg = f"module {__name__} has no attribute {name}" raise AttributeError(msg) __all__ = [ "CohereRerank", "CrossEncoderReranker", "DocumentCompressorPipeline", "EmbeddingsFilter", "FlashrankRerank", "LLMChainExtractor", "LLMChainFilter", "LLMListwiseRerank", ]
import importlib from typing import Any from langchain.retrievers.document_compressors.base import DocumentCompressorPipeline from langchain.retrievers.document_compressors.chain_extract import ( LLMChainExtractor, ) from langchain.retrievers.document_compressors.chain_filter import ( LLMChainFilter, ) from langchain.retrievers.document_compressors.cohere_rerank import CohereRerank from langchain.retrievers.document_compressors.cross_encoder_rerank import ( CrossEncoderReranker, ) from langchain.retrievers.document_compressors.embeddings_filter import ( EmbeddingsFilter, ) from langchain.retrievers.document_compressors.listwise_rerank import ( LLMListwiseRerank, ) _module_lookup = { "FlashrankRerank": "langchain_community.document_compressors.flashrank_rerank", } def __getattr__(name: str) -> Any: if name in _module_lookup: module = importlib.import_module(_module_lookup[name]) return getattr(module, name) msg = f"module {__name__} has no attribute {name}" raise AttributeError(msg) __all__ = [ "DocumentCompressorPipeline", "EmbeddingsFilter", "FlashrankRerank", "LLMListwiseRerank", "LLMChainExtractor", "LLMChainFilter", "CohereRerank", "CrossEncoderReranker", ]
""" This basic example loads a pre-trained model from the web and uses it to generate sentence embeddings for a given list of sentences. """ import logging import numpy as np from sentence_transformers import LoggingHandler, SentenceTransformer #### Just some code to print debug information to stdout np.set_printoptions(threshold=100) logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Load pre-trained Sentence Transformer Model. It will be downloaded automatically model = SentenceTransformer("all-MiniLM-L6-v2") # Embed a list of sentences sentences = [ "This framework generates embeddings for each input sentence", "Sentences are passed as a list of string.", "The quick brown fox jumps over the lazy dog.", ] sentence_embeddings = model.encode(sentences) # The result is a list of sentence embeddings as numpy arrays for sentence, embedding in zip(sentences, sentence_embeddings): print("Sentence:", sentence) print("Embedding:", embedding) print("")
""" This basic example loads a pre-trained model from the web and uses it to generate sentence embeddings for a given list of sentences. """ from sentence_transformers import SentenceTransformer, LoggingHandler import numpy as np import logging #### Just some code to print debug information to stdout np.set_printoptions(threshold=100) logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Load pre-trained Sentence Transformer Model. It will be downloaded automatically model = SentenceTransformer("all-MiniLM-L6-v2") # Embed a list of sentences sentences = [ "This framework generates embeddings for each input sentence", "Sentences are passed as a list of string.", "The quick brown fox jumps over the lazy dog.", ] sentence_embeddings = model.encode(sentences) # The result is a list of sentence embeddings as numpy arrays for sentence, embedding in zip(sentences, sentence_embeddings): print("Sentence:", sentence) print("Embedding:", embedding) print("")
#!/usr/bin/env python from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.convert_to_parquet import ConvertToParquetCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def parse_unknown_args(unknown_args): return {key.lstrip("-"): value for key, value in zip(unknown_args[::2], unknown_args[1::2])} def main(): parser = ArgumentParser( "HuggingFace Datasets CLI tool", usage="datasets-cli <command> [<args>]", allow_abbrev=False ) commands_parser = parser.add_subparsers(help="datasets-cli command helpers") set_verbosity_info() # Register commands ConvertCommand.register_subcommand(commands_parser) EnvironmentCommand.register_subcommand(commands_parser) TestCommand.register_subcommand(commands_parser) RunBeamCommand.register_subcommand(commands_parser) DummyDataCommand.register_subcommand(commands_parser) ConvertToParquetCommand.register_subcommand(commands_parser) # Parse args args, unknown_args = parser.parse_known_args() if not hasattr(args, "func"): parser.print_help() exit(1) kwargs = parse_unknown_args(unknown_args) # Run service = args.func(args, **kwargs) service.run() if __name__ == "__main__": main()
#!/usr/bin/env python from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def parse_unknown_args(unknown_args): return {key.lstrip("-"): value for key, value in zip(unknown_args[::2], unknown_args[1::2])} def main(): parser = ArgumentParser( "HuggingFace Datasets CLI tool", usage="datasets-cli <command> [<args>]", allow_abbrev=False ) commands_parser = parser.add_subparsers(help="datasets-cli command helpers") set_verbosity_info() # Register commands ConvertCommand.register_subcommand(commands_parser) EnvironmentCommand.register_subcommand(commands_parser) TestCommand.register_subcommand(commands_parser) RunBeamCommand.register_subcommand(commands_parser) DummyDataCommand.register_subcommand(commands_parser) # Parse args args, unknown_args = parser.parse_known_args() if not hasattr(args, "func"): parser.print_help() exit(1) kwargs = parse_unknown_args(unknown_args) # Run service = args.func(args, **kwargs) service.run() if __name__ == "__main__": main()
from .clip_image import CLIPImageEncoder
from .clip_image import CLIPImageEncoder