input
stringlengths
33
5k
output
stringlengths
32
5k
import functools import os import os.path import pathlib from typing import Any, BinaryIO, Collection, Dict, List, Optional, Tuple, Union from torchdata.datapipes.iter import FileLister, FileOpener, Filter, IterDataPipe, Mapper from torchvision.prototype.datasets.utils import EncodedData, EncodedImage from torchvision.prototype.datasets.utils._internal import hint_sharding, hint_shuffling from torchvision.prototype.features import Label __all__ = ["from_data_folder", "from_image_folder"] def _is_not_top_level_file(path: str, *, root: pathlib.Path) -> bool: rel_path = pathlib.Path(path).relative_to(root) return rel_path.is_dir() or rel_path.parent != pathlib.Path(".") def _prepare_sample( data: Tuple[str, BinaryIO], *, root: pathlib.Path, categories: List[str], ) -> Dict[str, Any]: path, buffer = data category = pathlib.Path(path).relative_to(root).parts[0] return dict( path=path, data=EncodedData.from_file(buffer), label=Label.from_category(category, categories=categories), ) def from_data_folder( root: Union[str, pathlib.Path], *, valid_extensions: Optional[Collection[str]] = None, recursive: bool = True, ) -> Tuple[IterDataPipe, List[str]]: root = pathlib.Path(root).expanduser().resolve() categories = sorted(entry.name for entry in os.scandir(root) if entry.is_dir()) masks: Union[List[str], str] = [f"*.{ext}" for ext in valid_extensions] if valid_extensions is not None else "" dp = FileLister(str(root), recursive=recursive, masks=masks) dp: IterDataPipe = Filter(dp, functools.partial(_is_not_top_level_file, root=root)) dp = hint_sharding(dp) dp = hint_shuffling(dp) dp = FileOpener(dp, mode="rb") return Mapper(dp, functools.partial(_prepare_sample, root=root, categories=categories)), categories def _data_to_image_key(sample: Dict[str, Any]) -> Dict[str, Any]: sample["image"] = EncodedImage(sample.pop("data").data) return sample def from_image_folder( root: Union[str, pathlib.Path], *, valid_extensions: Collection[str] = ("jpg", "jpeg", "png", "ppm", "bmp", "pgm", "tif", "tiff", "webp"), **kwargs: Any, ) -> Tuple[IterDataPipe, List[str]]: valid_extensions = [valid_extension for ext in valid_extensions for valid_extension in (ext.lower(), ext.upper())] dp, categories = from_data_folder(root, valid_extensions=valid_extensions, **kwargs) return Mapper(dp, _data_to_image_key), categories
import functools import os import os.path import pathlib from typing import Any, BinaryIO, Collection, Dict, List, Optional, Tuple, Union from torchdata.datapipes.iter import FileLister, FileOpener, Filter, IterDataPipe, Mapper from torchvision.prototype.datasets.utils._internal import hint_sharding, hint_shuffling from torchvision.prototype.features import EncodedData, EncodedImage, Label __all__ = ["from_data_folder", "from_image_folder"] def _is_not_top_level_file(path: str, *, root: pathlib.Path) -> bool: rel_path = pathlib.Path(path).relative_to(root) return rel_path.is_dir() or rel_path.parent != pathlib.Path(".") def _prepare_sample( data: Tuple[str, BinaryIO], *, root: pathlib.Path, categories: List[str], ) -> Dict[str, Any]: path, buffer = data category = pathlib.Path(path).relative_to(root).parts[0] return dict( path=path, data=EncodedData.from_file(buffer), label=Label.from_category(category, categories=categories), ) def from_data_folder( root: Union[str, pathlib.Path], *, valid_extensions: Optional[Collection[str]] = None, recursive: bool = True, ) -> Tuple[IterDataPipe, List[str]]: root = pathlib.Path(root).expanduser().resolve() categories = sorted(entry.name for entry in os.scandir(root) if entry.is_dir()) masks: Union[List[str], str] = [f"*.{ext}" for ext in valid_extensions] if valid_extensions is not None else "" dp = FileLister(str(root), recursive=recursive, masks=masks) dp: IterDataPipe = Filter(dp, functools.partial(_is_not_top_level_file, root=root)) dp = hint_sharding(dp) dp = hint_shuffling(dp) dp = FileOpener(dp, mode="rb") return Mapper(dp, functools.partial(_prepare_sample, root=root, categories=categories)), categories def _data_to_image_key(sample: Dict[str, Any]) -> Dict[str, Any]: sample["image"] = EncodedImage(sample.pop("data").data) return sample def from_image_folder( root: Union[str, pathlib.Path], *, valid_extensions: Collection[str] = ("jpg", "jpeg", "png", "ppm", "bmp", "pgm", "tif", "tiff", "webp"), **kwargs: Any, ) -> Tuple[IterDataPipe, List[str]]: valid_extensions = [valid_extension for ext in valid_extensions for valid_extension in (ext.lower(), ext.upper())] dp, categories = from_data_folder(root, valid_extensions=valid_extensions, **kwargs) return Mapper(dp, _data_to_image_key), categories
from hubble.executor.hubio import HubIO from jina.orchestrate.pods.factory import PodFactory from jina.parsers import set_pod_parser def test_container_pod(mocker, monkeypatch): mock = mocker.Mock() def _mock_pull(self): return 'docker://jinahub/dummy_executor' monkeypatch.setattr(HubIO, 'pull', _mock_pull) args = set_pod_parser().parse_args(['--uses', 'jinahub+docker://DummyExecutor']) pod = PodFactory.build_pod(args) assert pod.args.uses == 'docker://jinahub/dummy_executor' assert pod.name == 'ContainerPod'
from jina.orchestrate.pods.factory import PodFactory from jina.hubble.hubio import HubIO from jina.parsers import set_pod_parser def test_container_pod(mocker, monkeypatch): mock = mocker.Mock() def _mock_pull(self): return 'docker://jinahub/dummy_executor' monkeypatch.setattr(HubIO, 'pull', _mock_pull) args = set_pod_parser().parse_args(['--uses', 'jinahub+docker://DummyExecutor']) pod = PodFactory.build_pod(args) assert pod.args.uses == 'docker://jinahub/dummy_executor' assert pod.name == 'ContainerPod'
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import shutil import time from unittest import TestCase from unittest.mock import Mock import torch from mmengine.structures import InstanceData from mmdet.engine.hooks import DetVisualizationHook from mmdet.structures import DetDataSample from mmdet.visualization import DetLocalVisualizer def _rand_bboxes(num_boxes, h, w): cx, cy, bw, bh = torch.rand(num_boxes, 4).T tl_x = ((cx * w) - (w * bw / 2)).clip(0, w) tl_y = ((cy * h) - (h * bh / 2)).clip(0, h) br_x = ((cx * w) + (w * bw / 2)).clip(0, w) br_y = ((cy * h) + (h * bh / 2)).clip(0, h) bboxes = torch.vstack([tl_x, tl_y, br_x, br_y]).T return bboxes class TestVisualizationHook(TestCase): def setUp(self) -> None: DetLocalVisualizer.get_instance('visualizer') pred_instances = InstanceData() pred_instances.bboxes = _rand_bboxes(5, 10, 12) pred_instances.labels = torch.randint(0, 2, (5, )) pred_instances.scores = torch.rand((5, )) pred_det_data_sample = DetDataSample() pred_det_data_sample.set_metainfo({ 'img_path': osp.join(osp.dirname(__file__), '../../data/color.jpg') }) pred_det_data_sample.pred_instances = pred_instances self.outputs = [pred_det_data_sample] * 2 def test_after_val_iter(self): runner = Mock() runner.iter = 1 hook = DetVisualizationHook() hook.after_val_iter(runner, 1, {}, self.outputs) def test_after_test_iter(self): runner = Mock() runner.iter = 1 hook = DetVisualizationHook(draw=True) hook.after_test_iter(runner, 1, {}, self.outputs) self.assertEqual(hook._test_index, 2) # test timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) test_out_dir = timestamp + '1' runner.work_dir = timestamp runner.timestamp = '1' hook = DetVisualizationHook(draw=False, test_out_dir=test_out_dir) hook.after_test_iter(runner, 1, {}, self.outputs) self.assertTrue(not osp.exists(f'{timestamp}/1/{test_out_dir}')) hook = DetVisualizationHook(draw=True, test_out_dir=test_out_dir) hook.after_test_iter(runner, 1, {}, self.outputs) self.assertTrue(osp.exists(f'{timestamp}/1/{test_out_dir}')) shutil.rmtree(f'{timestamp}')
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import shutil import time from unittest import TestCase from unittest.mock import Mock import torch from mmengine.data import InstanceData from mmdet.engine.hooks import DetVisualizationHook from mmdet.structures import DetDataSample from mmdet.visualization import DetLocalVisualizer def _rand_bboxes(num_boxes, h, w): cx, cy, bw, bh = torch.rand(num_boxes, 4).T tl_x = ((cx * w) - (w * bw / 2)).clip(0, w) tl_y = ((cy * h) - (h * bh / 2)).clip(0, h) br_x = ((cx * w) + (w * bw / 2)).clip(0, w) br_y = ((cy * h) + (h * bh / 2)).clip(0, h) bboxes = torch.vstack([tl_x, tl_y, br_x, br_y]).T return bboxes class TestVisualizationHook(TestCase): def setUp(self) -> None: DetLocalVisualizer.get_instance('visualizer') data_sample = DetDataSample() data_sample.set_metainfo({ 'img_path': osp.join(osp.dirname(__file__), '../../data/color.jpg') }) self.data_batch = [{'data_sample': data_sample}] * 2 pred_instances = InstanceData() pred_instances.bboxes = _rand_bboxes(5, 10, 12) pred_instances.labels = torch.randint(0, 2, (5, )) pred_instances.scores = torch.rand((5, )) pred_det_data_sample = DetDataSample() pred_det_data_sample.pred_instances = pred_instances self.outputs = [pred_det_data_sample] * 2 def test_after_val_iter(self): runner = Mock() runner.iter = 1 hook = DetVisualizationHook() hook.after_val_iter(runner, 1, self.data_batch, self.outputs) def test_after_test_iter(self): runner = Mock() runner.iter = 1 hook = DetVisualizationHook(draw=True) hook.after_test_iter(runner, 1, self.data_batch, self.outputs) self.assertEqual(hook._test_index, 2) # test timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) test_out_dir = timestamp + '1' runner.work_dir = timestamp runner.timestamp = '1' hook = DetVisualizationHook(draw=False, test_out_dir=test_out_dir) hook.after_test_iter(runner, 1, self.data_batch, self.outputs) self.assertTrue(not osp.exists(f'{timestamp}/1/{test_out_dir}')) hook = DetVisualizationHook(draw=True, test_out_dir=test_out_dir) hook.after_test_iter(runner, 1, self.data_batch, self.outputs) self.assertTrue(osp.exists(f'{timestamp}/1/{test_out_dir}')) shutil.rmtree(f'{timestamp}')
# Copyright (c) OpenMMLab. All rights reserved. from .coco_api import COCO, COCOeval __all__ = ['COCO', 'COCOeval']
from .coco_api import COCO, COCOeval __all__ = ['COCO', 'COCOeval']
__version__ = '0.1.0' from docarray.array import DocumentArray from docarray.document.document import BaseDocument as Document from docarray.predefined_document import Image, Text __all__ = ['Document', 'DocumentArray', 'Image', 'Text']
__version__ = '0.18.2' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field from docarray.helper import login, logout if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
from keras.src import ops from keras.src.api_export import keras_export from keras.src.layers.attention.attention import Attention @keras_export("keras.layers.AdditiveAttention") class AdditiveAttention(Attention): """Additive attention layer, a.k.a. Bahdanau-style attention. Inputs are a list with 2 or 3 elements: 1. A `query` tensor of shape `(batch_size, Tq, dim)`. 2. A `value` tensor of shape `(batch_size, Tv, dim)`. 3. A optional `key` tensor of shape `(batch_size, Tv, dim)`. If none supplied, `value` will be used as `key`. The calculation follows the steps: 1. Calculate attention scores using `query` and `key` with shape `(batch_size, Tq, Tv)` as a non-linear sum `scores = reduce_sum(tanh(query + key), axis=-1)`. 2. Use scores to calculate a softmax distribution with shape `(batch_size, Tq, Tv)`. 3. Use the softmax distribution to create a linear combination of `value` with shape `(batch_size, Tq, dim)`. Args: use_scale: If `True`, will create a scalar variable to scale the attention scores. dropout: Float between 0 and 1. Fraction of the units to drop for the attention scores. Defaults to `0.0`. Call arguments: inputs: List of the following tensors: - `query`: Query tensor of shape `(batch_size, Tq, dim)`. - `value`: Value tensor of shape `(batch_size, Tv, dim)`. - `key`: Optional key tensor of shape `(batch_size, Tv, dim)`. If not given, will use `value` for both `key` and `value`, which is the most common case. mask: List of the following tensors: - `query_mask`: A boolean mask tensor of shape `(batch_size, Tq)`. If given, the output will be zero at the positions where `mask==False`. - `value_mask`: A boolean mask tensor of shape `(batch_size, Tv)`. If given, will apply the mask such that values at positions where `mask==False` do not contribute to the result. return_attention_scores: bool, it `True`, returns the attention scores (after masking and softmax) as an additional output argument. training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (no dropout). use_causal_mask: Boolean. Set to `True` for decoder self-attention. Adds a mask such that position `i` cannot attend to positions `j > i`. This prevents the flow of information from the future towards the past. Defaults to `False`. Output: Attention outputs of shape `(batch_size, Tq, dim)`. (Optional) Attention scores after masking and softmax with shape `(batch_size, Tq, Tv)`. """ def __init__( self, use_scale=True, dropout=0.0, **kwargs, ): super().__init__(use_scale=use_scale, dropout=dropout, **kwargs) def build(self, input_shape): self._validate_inputs(input_shape) dim = input_shape[0][-1] self.scale = None if self.use_scale: self.scale = self.add_weight( name="scale", shape=[dim], initializer="glorot_uniform", dtype=self.dtype, trainable=True, ) self.built = True def _calculate_scores(self, query, key): """Calculates attention scores as a nonlinear sum of query and key. Args: query: Query tensor of shape `(batch_size, Tq, dim)`. key: Key tensor of shape `(batch_size, Tv, dim)`. Returns: Tensor of shape `(batch_size, Tq, Tv)`. """ # Reshape tensors to enable broadcasting. # Reshape into [batch_size, Tq, 1, dim]. q_reshaped = ops.expand_dims(query, axis=-2) # Reshape into [batch_size, 1, Tv, dim]. k_reshaped = ops.expand_dims(key, axis=-3) scale = self.scale if self.use_scale else 1.0 return ops.sum(scale * ops.tanh(q_reshaped + k_reshaped), axis=-1) def get_config(self): base_config = super().get_config() del base_config["score_mode"] return base_config
from keras.src import ops from keras.src.api_export import keras_export from keras.src.layers.attention.attention import Attention @keras_export("keras.layers.AdditiveAttention") class AdditiveAttention(Attention): """Additive attention layer, a.k.a. Bahdanau-style attention. Inputs are a list with 2 or 3 elements: 1. A `query` tensor of shape `(batch_size, Tq, dim)`. 2. A `value` tensor of shape `(batch_size, Tv, dim)`. 3. A optional `key` tensor of shape `(batch_size, Tv, dim)`. If none supplied, `value` will be used as `key`. The calculation follows the steps: 1. Calculate attention scores using `query` and `key` with shape `(batch_size, Tq, Tv)` as a non-linear sum `scores = reduce_sum(tanh(query + key), axis=-1)`. 2. Use scores to calculate a softmax distribution with shape `(batch_size, Tq, Tv)`. 3. Use the softmax distribution to create a linear combination of `value` with shape `(batch_size, Tq, dim)`. Args: use_scale: If `True`, will create a scalar variable to scale the attention scores. dropout: Float between 0 and 1. Fraction of the units to drop for the attention scores. Defaults to `0.0`. Call Args: inputs: List of the following tensors: - `query`: Query tensor of shape `(batch_size, Tq, dim)`. - `value`: Value tensor of shape `(batch_size, Tv, dim)`. - `key`: Optional key tensor of shape `(batch_size, Tv, dim)`. If not given, will use `value` for both `key` and `value`, which is the most common case. mask: List of the following tensors: - `query_mask`: A boolean mask tensor of shape `(batch_size, Tq)`. If given, the output will be zero at the positions where `mask==False`. - `value_mask`: A boolean mask tensor of shape `(batch_size, Tv)`. If given, will apply the mask such that values at positions where `mask==False` do not contribute to the result. return_attention_scores: bool, it `True`, returns the attention scores (after masking and softmax) as an additional output argument. training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (no dropout). use_causal_mask: Boolean. Set to `True` for decoder self-attention. Adds a mask such that position `i` cannot attend to positions `j > i`. This prevents the flow of information from the future towards the past. Defaults to `False`. Output: Attention outputs of shape `(batch_size, Tq, dim)`. (Optional) Attention scores after masking and softmax with shape `(batch_size, Tq, Tv)`. """ def __init__( self, use_scale=True, dropout=0.0, **kwargs, ): super().__init__(use_scale=use_scale, dropout=dropout, **kwargs) def build(self, input_shape): self._validate_inputs(input_shape) dim = input_shape[0][-1] self.scale = None if self.use_scale: self.scale = self.add_weight( name="scale", shape=[dim], initializer="glorot_uniform", dtype=self.dtype, trainable=True, ) self.built = True def _calculate_scores(self, query, key): """Calculates attention scores as a nonlinear sum of query and key. Args: query: Query tensor of shape `(batch_size, Tq, dim)`. key: Key tensor of shape `(batch_size, Tv, dim)`. Returns: Tensor of shape `(batch_size, Tq, Tv)`. """ # Reshape tensors to enable broadcasting. # Reshape into [batch_size, Tq, 1, dim]. q_reshaped = ops.expand_dims(query, axis=-2) # Reshape into [batch_size, 1, Tv, dim]. k_reshaped = ops.expand_dims(key, axis=-3) scale = self.scale if self.use_scale else 1.0 return ops.sum(scale * ops.tanh(q_reshaped + k_reshaped), axis=-1) def get_config(self): base_config = super().get_config() del base_config["score_mode"] return base_config
# training schedule for 2x train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=24, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 22], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
# training schedule for 2x train_cfg = dict(by_epoch=True, max_epochs=24) val_cfg = dict(interval=1) test_cfg = dict() # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 22], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
import torch from torch import nn from typing import List import os import json class LSTM(nn.Module): """ Bidirectional LSTM running over word embeddings. """ def __init__( self, word_embedding_dimension: int, hidden_dim: int, num_layers: int = 1, dropout: float = 0, bidirectional: bool = True, ): nn.Module.__init__(self) self.config_keys = ["word_embedding_dimension", "hidden_dim", "num_layers", "dropout", "bidirectional"] self.word_embedding_dimension = word_embedding_dimension self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout = dropout self.bidirectional = bidirectional self.embeddings_dimension = hidden_dim if self.bidirectional: self.embeddings_dimension *= 2 self.encoder = nn.LSTM( word_embedding_dimension, hidden_dim, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional, batch_first=True, ) def forward(self, features): token_embeddings = features["token_embeddings"] sentence_lengths = torch.clamp(features["sentence_lengths"], min=1) packed = nn.utils.rnn.pack_padded_sequence( token_embeddings, sentence_lengths.cpu(), batch_first=True, enforce_sorted=False ) packed = self.encoder(packed) unpack = nn.utils.rnn.pad_packed_sequence(packed[0], batch_first=True)[0] features.update({"token_embeddings": unpack}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str, **kwargs) -> List[int]: raise NotImplementedError() def save(self, output_path: str): with open(os.path.join(output_path, "lstm_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "lstm_config.json"), "r") as fIn: config = json.load(fIn) weights = torch.load(os.path.join(input_path, "pytorch_model.bin")) model = LSTM(**config) model.load_state_dict(weights) return model
import torch from torch import nn from typing import List import os import json class LSTM(nn.Module): """ Bidirectional LSTM running over word embeddings. """ def __init__( self, word_embedding_dimension: int, hidden_dim: int, num_layers: int = 1, dropout: float = 0, bidirectional: bool = True, ): nn.Module.__init__(self) self.config_keys = ["word_embedding_dimension", "hidden_dim", "num_layers", "dropout", "bidirectional"] self.word_embedding_dimension = word_embedding_dimension self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout = dropout self.bidirectional = bidirectional self.embeddings_dimension = hidden_dim if self.bidirectional: self.embeddings_dimension *= 2 self.encoder = nn.LSTM( word_embedding_dimension, hidden_dim, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional, batch_first=True, ) def forward(self, features): token_embeddings = features["token_embeddings"] sentence_lengths = torch.clamp(features["sentence_lengths"], min=1) packed = nn.utils.rnn.pack_padded_sequence( token_embeddings, sentence_lengths.cpu(), batch_first=True, enforce_sorted=False ) packed = self.encoder(packed) unpack = nn.utils.rnn.pad_packed_sequence(packed[0], batch_first=True)[0] features.update({"token_embeddings": unpack}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str) -> List[int]: raise NotImplementedError() def save(self, output_path: str): with open(os.path.join(output_path, "lstm_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "lstm_config.json"), "r") as fIn: config = json.load(fIn) weights = torch.load(os.path.join(input_path, "pytorch_model.bin")) model = LSTM(**config) model.load_state_dict(weights) return model
from enum import Enum # --8<-- [start:ProviderName] class ProviderName(str, Enum): ANTHROPIC = "anthropic" APOLLO = "apollo" COMPASS = "compass" DISCORD = "discord" D_ID = "d_id" E2B = "e2b" EXA = "exa" FAL = "fal" GITHUB = "github" GOOGLE = "google" GOOGLE_MAPS = "google_maps" GROQ = "groq" HUBSPOT = "hubspot" IDEOGRAM = "ideogram" JINA = "jina" LINEAR = "linear" MEDIUM = "medium" MEM0 = "mem0" NOTION = "notion" NVIDIA = "nvidia" OLLAMA = "ollama" OPENAI = "openai" OPENWEATHERMAP = "openweathermap" OPEN_ROUTER = "open_router" PINECONE = "pinecone" REDDIT = "reddit" REPLICATE = "replicate" REVID = "revid" SCREENSHOTONE = "screenshotone" SLANT3D = "slant3d" SMARTLEAD = "smartlead" SMTP = "smtp" TWITTER = "twitter" TODOIST = "todoist" UNREAL_SPEECH = "unreal_speech" ZEROBOUNCE = "zerobounce" # --8<-- [end:ProviderName]
from enum import Enum # --8<-- [start:ProviderName] class ProviderName(str, Enum): ANTHROPIC = "anthropic" COMPASS = "compass" DISCORD = "discord" D_ID = "d_id" E2B = "e2b" EXA = "exa" FAL = "fal" GITHUB = "github" GOOGLE = "google" GOOGLE_MAPS = "google_maps" GROQ = "groq" HUBSPOT = "hubspot" IDEOGRAM = "ideogram" JINA = "jina" LINEAR = "linear" MEDIUM = "medium" MEM0 = "mem0" NOTION = "notion" NVIDIA = "nvidia" OLLAMA = "ollama" OPENAI = "openai" OPENWEATHERMAP = "openweathermap" OPEN_ROUTER = "open_router" PINECONE = "pinecone" REDDIT = "reddit" REPLICATE = "replicate" REVID = "revid" SCREENSHOTONE = "screenshotone" SLANT3D = "slant3d" SMTP = "smtp" TWITTER = "twitter" TODOIST = "todoist" UNREAL_SPEECH = "unreal_speech" # --8<-- [end:ProviderName]
# Copyright (c) OpenMMLab. All rights reserved. import torch from .base_data_element import BaseDataElement class LabelData(BaseDataElement): """Data structure for label-level annnotations or predictions.""" @staticmethod def onehot_to_label(onehot: torch.Tensor) -> torch.Tensor: """Convert the one-hot input to label. Args: onehot (torch.Tensor, optional): The one-hot input. The format of input must be one-hot. Return: torch.Tensor: The converted results. """ assert isinstance(onehot, torch.Tensor) if (onehot.ndim == 1 and onehot.max().item() <= 1 and onehot.min().item() >= 0): return onehot.nonzero().squeeze() else: raise ValueError( 'input is not one-hot and can not convert to label') @staticmethod def label_to_onehot(label: torch.Tensor, num_classes: int) -> torch.Tensor: """Convert the label-format input to one-hot. Args: label (torch.Tensor): The label-format input. The format of item must be label-format. num_classes (int): The number of classes. Return: torch.Tensor: The converted results. """ assert isinstance(label, torch.Tensor) onehot = label.new_zeros((num_classes, )) assert max(label, default=torch.tensor(0)).item() < num_classes onehot[label] = 1 return onehot
# Copyright (c) OpenMMLab. All rights reserved. import torch from .base_data_element import BaseDataElement class LabelData(BaseDataElement): """Data structure for label-level annnotations or predictions.""" @staticmethod def onehot_to_label(onehot: torch.Tensor) -> torch.Tensor: """Convert the one-hot input to label. Args: onehot (torch.Tensor, optional): The one-hot input. The format of input must be one-hot. Return: torch.Tensor: The converted results. """ assert isinstance(onehot, torch.Tensor) if (onehot.ndim == 1 and onehot.max().item() <= 1 and onehot.min().item() >= 0): return onehot.nonzero().squeeze() else: raise ValueError( 'input is not one-hot and can not convert to label') @staticmethod def label_to_onehot(label: torch.Tensor, num_classes: int) -> torch.Tensor: """Convert the label-format input to one-hot. Args: label (torch.Tensor): The label-format input. The format of item must be label-format. num_classes (int): The number of classes. Return: torch.Tensor: The converted results. """ assert isinstance(label, torch.Tensor) onehot = torch.zeros((num_classes, ), dtype=torch.int64) assert label.max().item() < num_classes onehot[label] = 1 return onehot
"""Prompt display utils.""" from llama_index.core.prompts.mixin import PromptDictType # define prompt viewing function def display_prompt_dict(prompts_dict: PromptDictType) -> None: """ Display prompt dict. Args: prompts_dict: prompt dict """ from IPython.display import Markdown, display for k, p in prompts_dict.items(): text_md = f"**Prompt Key**: {k}<br>**Text:** <br>" display(Markdown(text_md)) print(p.get_template()) display(Markdown("<br><br>"))
"""Prompt display utils.""" from llama_index.core.prompts.mixin import PromptDictType # define prompt viewing function def display_prompt_dict(prompts_dict: PromptDictType) -> None: """ Display prompt dict. Args: prompts_dict: prompt dict """ from IPython.display import Markdown, display for k, p in prompts_dict.items(): text_md = f"**Prompt Key**: {k}<br>" f"**Text:** <br>" display(Markdown(text_md)) print(p.get_template()) display(Markdown("<br><br>"))
"""Chain-of-Abstraction Output Parser.""" import asyncio import json import networkx as nx import re from collections import defaultdict from typing import Dict, Tuple from llama_index.core.tools import AsyncBaseTool, ToolOutput from llama_index.core.types import BaseOutputParser class ChainOfAbstractionParser(BaseOutputParser): """ Chain of abstraction output parser. This parser is used to parse the output using the default prompt defined in prompts.py. If the prompt formatting changes the function format, this parser will not work and should be updated. """ def __init__(self, verbose: bool = False): """Init params.""" self._verbose = verbose def parse( self, solution: str, tools_by_name: Dict[str, AsyncBaseTool] ) -> Tuple[str, int]: return asyncio.run(self.aparse(solution, tools_by_name)) async def aparse( self, solution: str, tools_by_name: Dict[str, AsyncBaseTool] ) -> Tuple[str, int]: # Extract function calls and placeholders func_calls = re.findall(r"\[FUNC (\w+)\((.*?)\) = (\w+)\]", solution) placeholders = set() for match in re.finditer(r"\[FUNC (\w+)\((.*?)\) = (\w+)\]", solution): placeholders.add(match.group(3)) # Create a dependency graph graph = nx.DiGraph() for func_name, inputs, output in func_calls: inputs = json.loads("[" + inputs + "]") graph.add_node(output, func_name=func_name, inputs=inputs) for inp in inputs: graph.add_edge(inp, output) # Find the execution levels execution_levels = defaultdict(list) for node in nx.topological_sort(graph): level = ( max( [execution_levels[pred] for pred in graph.predecessors(node)], default=-1, ) + 1 ) execution_levels[node] = level # Group nodes by execution level level_groups = defaultdict(list) for node, level in execution_levels.items(): level_groups[level].append(node) # Execute functions and replace placeholders results = {} tool_outputs = [] graph_nodes = {node[0]: node[1] for node in graph.nodes(data=True)} for level in sorted(level_groups.keys()): level_nodes = level_groups[level] parallel_results = {} for placeholder in level_nodes: if len(graph_nodes[placeholder]) == 0: continue # get function name and inputs func_name, inputs = ( graph_nodes[placeholder]["func_name"], graph_nodes[placeholder]["inputs"], ) # loop up any inputs that depend on other functions breakpoint() input_values = [results.get(inp, inp) for inp in inputs] if self._verbose: print( f"==== Executing {func_name} with inputs {input_values} ====", flush=True, ) # execute function and store result try: tool_output = await tools_by_name[func_name].acall(*input_values) tool_outputs.append(tool_output) except Exception as e: tool_outputs.append( ToolOutput( content=str(e), tool_name=func_name, raw_output=None, raw_input={"args": input_values}, is_error=True, ) ) # If an error occurs, stop execution break parallel_results[placeholder] = tool_output.raw_output results.update(parallel_results) # Replace placeholders in the solution text for placeholder, value in results.items(): solution = solution.replace(f"{placeholder}", '"' + str(value) + '"') return solution, tool_outputs
"""Chain-of-Abstraction Output Parser.""" import asyncio import json import networkx as nx import re from collections import defaultdict from typing import Dict, Tuple from llama_index.core.tools import AsyncBaseTool, ToolOutput from llama_index.core.types import BaseOutputParser class ChainOfAbstractionParser(BaseOutputParser): """ Chain of abstraction output parser. This parser is used to parse the output using the default prompt defined in prompts.py. If the prompt formatting changes the function format, this parser will not work and should be updated. """ def __init__(self, verbose: bool = False): """Init params.""" self._verbose = verbose def parse( self, solution: str, tools_by_name: Dict[str, AsyncBaseTool] ) -> Tuple[str, int]: return asyncio.run(self.aparse(solution, tools_by_name)) async def aparse( self, solution: str, tools_by_name: Dict[str, AsyncBaseTool] ) -> Tuple[str, int]: # Extract function calls and placeholders func_calls = re.findall(r"\[FUNC (\w+)\((.*?)\) = (\w+)\]", solution) placeholders = set() for match in re.finditer(r"\[FUNC (\w+)\((.*?)\) = (\w+)\]", solution): placeholders.add(match.group(3)) # Create a dependency graph graph = nx.DiGraph() for func_name, inputs, output in func_calls: inputs = json.loads("[" + inputs + "]") graph.add_node(output, func_name=func_name, inputs=inputs) for inp in inputs: graph.add_edge(inp, output) # Find the execution levels execution_levels = defaultdict(list) for node in nx.topological_sort(graph): level = ( max( [execution_levels[pred] for pred in graph.predecessors(node)], default=-1, ) + 1 ) execution_levels[node] = level # Group nodes by execution level level_groups = defaultdict(list) for node, level in execution_levels.items(): level_groups[level].append(node) # Execute functions and replace placeholders results = {} tool_outputs = [] graph_nodes = {node[0]: node[1] for node in graph.nodes(data=True)} for level in sorted(level_groups.keys()): level_nodes = level_groups[level] parallel_results = {} for placeholder in level_nodes: if len(graph_nodes[placeholder]) == 0: continue # get function name and inputs func_name, inputs = ( graph_nodes[placeholder]["func_name"], graph_nodes[placeholder]["inputs"], ) # loop up any inputs that depend on other functions input_values = [results.get(inp, inp) for inp in inputs] if self._verbose: print( f"==== Executing {func_name} with inputs {input_values} ====", flush=True, ) # execute function and store result try: raw_tool_output = await tools_by_name[func_name].acall( *input_values ) tool_outputs.append( ToolOutput( content=str(raw_tool_output), tool_name=func_name, raw_output=raw_tool_output, raw_input={"args": input_values}, is_error=False, ) ) except Exception as e: tool_outputs.append( ToolOutput( content=str(e), tool_name=func_name, raw_output=None, raw_input={"args": input_values}, is_error=True, ) ) # If an error occurs, stop execution break parallel_results[placeholder] = str(raw_tool_output) results.update(parallel_results) # Replace placeholders in the solution text for placeholder, value in results.items(): solution = solution.replace(f"{placeholder}", '"' + str(value) + '"') return solution, tool_outputs
import logging import os from typing import Optional from jina.importer import ImportExtensions from jina.serve.gateway import BaseGateway from jina.serve.runtimes.gateway.websocket.app import get_fastapi_app class WebSocketGateway(BaseGateway): """WebSocket Gateway implementation""" def __init__( self, ssl_keyfile: Optional[str] = None, ssl_certfile: Optional[str] = None, uvicorn_kwargs: Optional[dict] = None, proxy: Optional[bool] = None, **kwargs ): """Initialize the gateway :param ssl_keyfile: the path to the key file :param ssl_certfile: the path to the certificate file :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server :param proxy: If set, respect the http_proxy and https_proxy environment variables, otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param kwargs: keyword args """ super().__init__(**kwargs) self.ssl_keyfile = ssl_keyfile self.ssl_certfile = ssl_certfile self.uvicorn_kwargs = uvicorn_kwargs if not proxy and os.name != 'nt': os.unsetenv('http_proxy') os.unsetenv('https_proxy') async def setup_server(self): """ Setup WebSocket Server """ from jina.helper import extend_rest_interface self.app = extend_rest_interface( get_fastapi_app( streamer=self.streamer, logger=self.logger, tracing=self.tracing, tracer_provider=self.tracer_provider, ) ) with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'CICD_JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) uvicorn_kwargs = self.uvicorn_kwargs or {} if self.ssl_keyfile and 'ssl_keyfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_keyfile'] = self.ssl_keyfile if self.ssl_certfile and 'ssl_certfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_certfile'] = self.ssl_certfile self.server = UviServer( config=Config( app=self.app, host=self.host, port=self.port, ws_max_size=1024 * 1024 * 1024, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **uvicorn_kwargs, ) ) await self.server.setup() async def shutdown(self): """Free other resources allocated with the server, e.g, gateway object, ...""" self.server.should_exit = True await self.server.shutdown() async def run_server(self): """Run WebSocket server forever""" await self.server.serve()
import logging import os from typing import Optional from jina import __default_host__ from jina.importer import ImportExtensions from jina.serve.gateway import BaseGateway from jina.serve.runtimes.gateway.websocket.app import get_fastapi_app class WebSocketGateway(BaseGateway): """WebSocket Gateway implementation""" def __init__( self, ssl_keyfile: Optional[str] = None, ssl_certfile: Optional[str] = None, uvicorn_kwargs: Optional[dict] = None, proxy: Optional[bool] = None, **kwargs ): """Initialize the gateway :param ssl_keyfile: the path to the key file :param ssl_certfile: the path to the certificate file :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server :param proxy: If set, respect the http_proxy and https_proxy environment variables, otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param kwargs: keyword args """ super().__init__(**kwargs) self.ssl_keyfile = ssl_keyfile self.ssl_certfile = ssl_certfile self.uvicorn_kwargs = uvicorn_kwargs if not proxy and os.name != 'nt': os.unsetenv('http_proxy') os.unsetenv('https_proxy') async def setup_server(self): """ Setup WebSocket Server """ from jina.helper import extend_rest_interface self.app = extend_rest_interface( get_fastapi_app( streamer=self.streamer, logger=self.logger, tracing=self.tracing, tracer_provider=self.tracer_provider, ) ) with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'CICD_JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) uvicorn_kwargs = self.uvicorn_kwargs or {} if self.ssl_keyfile and 'ssl_keyfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_keyfile'] = self.ssl_keyfile if self.ssl_certfile and 'ssl_certfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_certfile'] = self.ssl_certfile self.server = UviServer( config=Config( app=self.app, host=self.host, port=self.port, ws_max_size=1024 * 1024 * 1024, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **uvicorn_kwargs, ) ) await self.server.setup() async def shutdown(self): """Free other resources allocated with the server, e.g, gateway object, ...""" self.server.should_exit = True await self.server.shutdown() async def run_server(self): """Run WebSocket server forever""" await self.server.serve()
import unittest import torch from mmengine.structures import PixelData from mmengine.testing import assert_allclose from mmdet.models.seg_heads import PanopticFPNHead from mmdet.structures import DetDataSample class TestPanopticFPNHead(unittest.TestCase): def test_init_weights(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=32, inner_channels=32) head.init_weights() assert_allclose(head.conv_logits.bias.data, torch.zeros_like(head.conv_logits.bias.data)) def test_loss(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=32, inner_channels=32, start_level=0, end_level=1) x = [torch.rand((2, 32, 8, 8)), torch.rand((2, 32, 4, 4))] data_sample1 = DetDataSample() data_sample1.gt_sem_seg = PixelData( sem_seg=torch.randint(0, 4, (1, 7, 8))) data_sample2 = DetDataSample() data_sample2.gt_sem_seg = PixelData( sem_seg=torch.randint(0, 4, (1, 7, 8))) batch_data_samples = [data_sample1, data_sample2] results = head.loss(x, batch_data_samples) self.assertIsInstance(results, dict) def test_predict(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=32, inner_channels=32, start_level=0, end_level=1) x = [torch.rand((2, 32, 8, 8)), torch.rand((2, 32, 4, 4))] img_meta1 = { 'batch_input_shape': (16, 16), 'img_shape': (14, 14), 'ori_shape': (12, 12), } img_meta2 = { 'batch_input_shape': (16, 16), 'img_shape': (16, 16), 'ori_shape': (16, 16), } batch_img_metas = [img_meta1, img_meta2] head.eval() with torch.no_grad(): seg_preds = head.predict(x, batch_img_metas, rescale=False) self.assertTupleEqual(seg_preds[0].shape[-2:], (16, 16)) self.assertTupleEqual(seg_preds[1].shape[-2:], (16, 16)) seg_preds = head.predict(x, batch_img_metas, rescale=True) self.assertTupleEqual(seg_preds[0].shape[-2:], (12, 12)) self.assertTupleEqual(seg_preds[1].shape[-2:], (16, 16))
import unittest import torch from mmengine.structures import PixelData from mmengine.testing import assert_allclose from mmdet.models.seg_heads import PanopticFPNHead from mmdet.structures import DetDataSample class TestPanopticFPNHead(unittest.TestCase): def test_init_weights(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=1, inner_channels=1) head.init_weights() assert_allclose(head.conv_logits.bias.data, torch.zeros_like(head.conv_logits.bias.data)) def test_loss(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=32, inner_channels=32, start_level=0, end_level=1) x = [torch.rand((2, 32, 8, 8)), torch.rand((2, 32, 4, 4))] data_sample1 = DetDataSample() data_sample1.gt_sem_seg = PixelData( sem_seg=torch.randint(0, 4, (1, 7, 8))) data_sample2 = DetDataSample() data_sample2.gt_sem_seg = PixelData( sem_seg=torch.randint(0, 4, (1, 7, 8))) batch_data_samples = [data_sample1, data_sample2] results = head.loss(x, batch_data_samples) self.assertIsInstance(results, dict) def test_predict(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=32, inner_channels=32, start_level=0, end_level=1) x = [torch.rand((2, 32, 8, 8)), torch.rand((2, 32, 4, 4))] img_meta1 = { 'batch_input_shape': (16, 16), 'img_shape': (14, 14), 'ori_shape': (12, 12), } img_meta2 = { 'batch_input_shape': (16, 16), 'img_shape': (16, 16), 'ori_shape': (16, 16), } batch_img_metas = [img_meta1, img_meta2] head.eval() with torch.no_grad(): seg_preds = head.predict(x, batch_img_metas, rescale=False) self.assertTupleEqual(seg_preds[0].shape[-2:], (16, 16)) self.assertTupleEqual(seg_preds[1].shape[-2:], (16, 16)) seg_preds = head.predict(x, batch_img_metas, rescale=True) self.assertTupleEqual(seg_preds[0].shape[-2:], (12, 12)) self.assertTupleEqual(seg_preds[1].shape[-2:], (16, 16))
"""Tests for the InMemoryStore class.""" import pytest from langchain_core.stores import InMemoryStore from langchain_tests.integration_tests.base_store import ( BaseStoreAsyncTests, BaseStoreSyncTests, ) class TestInMemoryStore(BaseStoreSyncTests[str]): @pytest.fixture def three_values(self) -> tuple[str, str, str]: return "foo", "bar", "buzz" @pytest.fixture def kv_store(self) -> InMemoryStore: return InMemoryStore() class TestInMemoryStoreAsync(BaseStoreAsyncTests[str]): @pytest.fixture def three_values(self) -> tuple[str, str, str]: return "foo", "bar", "buzz" @pytest.fixture async def kv_store(self) -> InMemoryStore: return InMemoryStore()
"""Tests for the InMemoryStore class.""" import pytest from langchain_core.stores import InMemoryStore from langchain_tests.integration_tests.base_store import ( BaseStoreAsyncTests, BaseStoreSyncTests, ) class TestInMemoryStore(BaseStoreSyncTests): @pytest.fixture def three_values(self) -> tuple[str, str, str]: return "foo", "bar", "buzz" @pytest.fixture def kv_store(self) -> InMemoryStore: return InMemoryStore() class TestInMemoryStoreAsync(BaseStoreAsyncTests): @pytest.fixture def three_values(self) -> tuple[str, str, str]: # type: ignore return "foo", "bar", "buzz" @pytest.fixture async def kv_store(self) -> InMemoryStore: return InMemoryStore()
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api.optimizers import legacy from keras.api.optimizers import schedules from keras.src.optimizers import deserialize from keras.src.optimizers import get from keras.src.optimizers import serialize from keras.src.optimizers.adadelta import Adadelta from keras.src.optimizers.adafactor import Adafactor from keras.src.optimizers.adagrad import Adagrad from keras.src.optimizers.adam import Adam from keras.src.optimizers.adamax import Adamax from keras.src.optimizers.adamw import AdamW from keras.src.optimizers.ftrl import Ftrl from keras.src.optimizers.lamb import Lamb from keras.src.optimizers.lion import Lion from keras.src.optimizers.loss_scale_optimizer import LossScaleOptimizer from keras.src.optimizers.nadam import Nadam from keras.src.optimizers.optimizer import Optimizer from keras.src.optimizers.rmsprop import RMSprop from keras.src.optimizers.sgd import SGD
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api.optimizers import legacy from keras.api.optimizers import schedules from keras.src.optimizers import deserialize from keras.src.optimizers import get from keras.src.optimizers import serialize from keras.src.optimizers.adadelta import Adadelta from keras.src.optimizers.adafactor import Adafactor from keras.src.optimizers.adagrad import Adagrad from keras.src.optimizers.adam import Adam from keras.src.optimizers.adamax import Adamax from keras.src.optimizers.adamw import AdamW from keras.src.optimizers.ftrl import Ftrl from keras.src.optimizers.lion import Lion from keras.src.optimizers.loss_scale_optimizer import LossScaleOptimizer from keras.src.optimizers.nadam import Nadam from keras.src.optimizers.optimizer import Optimizer from keras.src.optimizers.rmsprop import RMSprop from keras.src.optimizers.sgd import SGD
""" This examples trains a CrossEncoder for the NLI task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it learns to predict the labels: "contradiction": 0, "entailment": 1, "neutral": 2. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_nli.py """ import csv import gzip import logging import math import os from datetime import datetime from torch.utils.data import DataLoader from sentence_transformers import LoggingHandler, util from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CEF1Evaluator, CESoftmaxAccuracyEvaluator from sentence_transformers.evaluation import SequentialEvaluator from sentence_transformers.readers import InputExample #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) #### /print debug information to stdout # As dataset, we use SNLI + MultiNLI # Check if dataset exists. If not, download and extract it nli_dataset_path = "datasets/AllNLI.tsv.gz" if not os.path.exists(nli_dataset_path): util.http_get("https://sbert.net/datasets/AllNLI.tsv.gz", nli_dataset_path) # Read the AllNLI.tsv.gz file and create the training dataset logger.info("Read AllNLI train dataset") label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} train_samples = [] dev_samples = [] with gzip.open(nli_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: label_id = label2int[row["label"]] if row["split"] == "train": train_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) else: dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) train_batch_size = 16 num_epochs = 4 model_save_path = "output/training_allnli-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # Define our CrossEncoder model. We use distilroberta-base as basis and setup it up to predict 3 labels model = CrossEncoder("distilroberta-base", num_labels=len(label2int)) # We wrap train_samples, which is a list of InputExample, in a pytorch DataLoader train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) # During training, we use CESoftmaxAccuracyEvaluator and CEF1Evaluator to measure the performance on the dev set accuracy_evaluator = CESoftmaxAccuracyEvaluator.from_input_examples(dev_samples, name="AllNLI-dev") f1_evaluator = CEF1Evaluator.from_input_examples(dev_samples, name="AllNLI-dev") evaluator = SequentialEvaluator([accuracy_evaluator, f1_evaluator]) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logger.info(f"Warmup-steps: {warmup_steps}") # Train the model model.fit( train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, evaluation_steps=10000, warmup_steps=warmup_steps, output_path=model_save_path, )
""" This examples trains a CrossEncoder for the NLI task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it learns to predict the labels: "contradiction": 0, "entailment": 1, "neutral": 2. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_nli.py """ import csv import gzip import logging import math import os from datetime import datetime from torch.utils.data import DataLoader from sentence_transformers import LoggingHandler, util from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CEF1Evaluator, CESoftmaxAccuracyEvaluator from sentence_transformers.evaluation import SequentialEvaluator from sentence_transformers.readers import InputExample #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) #### /print debug information to stdout # As dataset, we use SNLI + MultiNLI # Check if dataset exists. If not, download and extract it nli_dataset_path = "datasets/AllNLI.tsv.gz" if not os.path.exists(nli_dataset_path): util.http_get("https://sbert.net/datasets/AllNLI.tsv.gz", nli_dataset_path) # Read the AllNLI.tsv.gz file and create the training dataset logger.info("Read AllNLI train dataset") label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} train_samples = [] dev_samples = [] with gzip.open(nli_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: label_id = label2int[row["label"]] if row["split"] == "train": train_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) else: dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) train_batch_size = 16 num_epochs = 4 model_save_path = "output/training_allnli-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # Define our CrossEncoder model. We use distilroberta-base as basis and setup it up to predict 3 labels model = CrossEncoder("distilroberta-base", num_labels=len(label2int)) # We wrap train_samples, which is a list of InputExample, in a pytorch DataLoader train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) # During training, we use CESoftmaxAccuracyEvaluator and CEF1Evaluator to measure the performance on the dev set accuracy_evaluator = CESoftmaxAccuracyEvaluator.from_input_examples(dev_samples, name="AllNLI-dev") f1_evaluator = CEF1Evaluator.from_input_examples(dev_samples, name="AllNLI-dev") evaluator = SequentialEvaluator([accuracy_evaluator, f1_evaluator]) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logger.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, evaluation_steps=10000, warmup_steps=warmup_steps, output_path=model_save_path, )
_base_ = './mask-rcnn_r50_fpn_gn-ws-all_2x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://jhu/resnet101_gn_ws')))
_base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://jhu/resnet101_gn_ws')))
"""Semi-supervised learning algorithms. These algorithms utilize small amounts of labeled data and large amounts of unlabeled data for classification tasks. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._label_propagation import LabelPropagation, LabelSpreading from ._self_training import SelfTrainingClassifier __all__ = ["LabelPropagation", "LabelSpreading", "SelfTrainingClassifier"]
"""Semi-supervised learning algorithms. These algorithms utilize small amounts of labeled data and large amounts of unlabeled data for classification tasks. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._label_propagation import LabelPropagation, LabelSpreading from ._self_training import SelfTrainingClassifier __all__ = ["SelfTrainingClassifier", "LabelPropagation", "LabelSpreading"]
"""Hatena Blog reader.""" from typing import Dict, List from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document ATOM_PUB_ENTRY_URL = "{root_endpoint}/entry" class Article: def __init__(self) -> None: self.title = "" self.content = "" self.published = "" self.url = "" class HatenaBlogReader(BaseReader): """ Hatena Blog reader. Args: root_endpoint (str): AtomPub root endpoint. api_key (str): AtomPub API Key username (str): Hatena ID """ def __init__(self, root_endpoint: str, api_key: str, username: str) -> None: """Initialize Hatena Blog reader.""" self.root_endpoint = root_endpoint self.api_key = api_key self.username = username def load_data(self) -> List[Document]: results = [] articles = self.get_all_articles() for a in articles: results.append( Document( text=a.content, extra_info={ "title": a.title, "published": a.published, "url": a.url, }, ) ) return results def get_all_articles(self) -> List[Article]: articles: List[Article] = [] page_url = ATOM_PUB_ENTRY_URL.format(root_endpoint=self.root_endpoint) while True: res = self.get_articles(page_url) articles += res.get("articles") page_url = res.get("next_page") if page_url is None: break return articles def get_articles(self, url: str) -> Dict: import requests from bs4 import BeautifulSoup from requests.auth import HTTPBasicAuth articles: List[Article] = [] next_page = None res = requests.get(url, auth=HTTPBasicAuth(self.username, self.api_key)) soup = BeautifulSoup(res.text, "xml") for entry in soup.find_all("entry"): if entry.find("app:control").find("app:draft").string == "yes": continue article = Article() article.title = entry.find("title").string article.published = entry.find("published").string article.url = entry.find("link", rel="alternate")["href"] content = entry.find("content") if content.get("type") == "text/html": article.content = ( BeautifulSoup(entry.find("content").string, "html.parser") .get_text() .strip() ) else: article.content = entry.find("content").string.strip() articles.append(article) next = soup.find("link", attrs={"rel": "next"}) if next: next_page = next.get("href") return {"articles": articles, "next_page": next_page}
"""Hatena Blog reader.""" from typing import Dict, List from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document ATOM_PUB_ENTRY_URL = "{root_endpoint}/entry" class Article: def __init__(self) -> None: self.title = "" self.content = "" self.published = "" self.url = "" class HatenaBlogReader(BaseReader): """Hatena Blog reader. Args: root_endpoint (str): AtomPub root endpoint. api_key (str): AtomPub API Key username (str): Hatena ID """ def __init__(self, root_endpoint: str, api_key: str, username: str) -> None: """Initialize Hatena Blog reader.""" self.root_endpoint = root_endpoint self.api_key = api_key self.username = username def load_data(self) -> List[Document]: results = [] articles = self.get_all_articles() for a in articles: results.append( Document( text=a.content, extra_info={ "title": a.title, "published": a.published, "url": a.url, }, ) ) return results def get_all_articles(self) -> List[Article]: articles: List[Article] = [] page_url = ATOM_PUB_ENTRY_URL.format(root_endpoint=self.root_endpoint) while True: res = self.get_articles(page_url) articles += res.get("articles") page_url = res.get("next_page") if page_url is None: break return articles def get_articles(self, url: str) -> Dict: import requests from bs4 import BeautifulSoup from requests.auth import HTTPBasicAuth articles: List[Article] = [] next_page = None res = requests.get(url, auth=HTTPBasicAuth(self.username, self.api_key)) soup = BeautifulSoup(res.text, "xml") for entry in soup.find_all("entry"): if entry.find("app:control").find("app:draft").string == "yes": continue article = Article() article.title = entry.find("title").string article.published = entry.find("published").string article.url = entry.find("link", rel="alternate")["href"] content = entry.find("content") if content.get("type") == "text/html": article.content = ( BeautifulSoup(entry.find("content").string, "html.parser") .get_text() .strip() ) else: article.content = entry.find("content").string.strip() articles.append(article) next = soup.find("link", attrs={"rel": "next"}) if next: next_page = next.get("href") return {"articles": articles, "next_page": next_page}
from typing import Dict, List, Optional, Callable from jina.importer import ImportExtensions from jina.types.request.data import DataRequest from jina import DocumentArray from jina._docarray import docarray_v2 if docarray_v2: from docarray import DocList def get_fastapi_app( request_models_map: Dict, caller: Callable, **kwargs ): """ Get the app from FastAPI as the REST interface. :param request_models_map: Map describing the endpoints and its Pydantic models :param caller: Callable to be handled by the endpoints of the returned FastAPI app :param kwargs: Extra kwargs to make it compatible with other methods :return: fastapi app """ with ImportExtensions(required=True): from fastapi import FastAPI, Response, HTTPException import pydantic from jina.proto import jina_pb2 app = FastAPI() def add_route(endpoint_path, input_model, output_model, input_doc_list_model=None, output_doc_list_model=None): @app.api_route( path=f'/{endpoint_path.strip("/")}', methods=['POST'], summary=f'Endpoint {endpoint_path}', response_model=output_model ) async def post(body: input_model, response: Response): req = DataRequest() if not docarray_v2: req.data.docs = DocumentArray.from_pydantic_model(body.data) else: req.data.docs = DocList[input_doc_list_model](body.data) req.parameters = body.parameters req.header.exec_endpoint = endpoint_path resp = await caller(req) status = resp.header.status if status.code == jina_pb2.StatusProto.ERROR: raise HTTPException(status_code=499, detail=status.description) else: if not docarray_v2: docs_response = resp.docs.to_dict() else: docs_response = resp.docs._data return output_model(data=docs_response, parameters=resp.parameters) for endpoint, input_output_map in request_models_map.items(): if endpoint != '_jina_dry_run_': input_doc_model = input_output_map['input']['model'] output_doc_model = input_output_map['output']['model'] endpoint_input_model = pydantic.create_model( f'{endpoint.strip("/")}_input_model', data=(List[input_doc_model], []), parameters=(Optional[Dict], None) ) endpoint_output_model = pydantic.create_model( f'{endpoint.strip("/")}_output_model', data=(List[output_doc_model], []), parameters=(Optional[Dict], None) ) add_route(endpoint, input_model=endpoint_input_model, output_model=endpoint_output_model, input_doc_list_model=input_doc_model, output_doc_list_model=output_doc_model) from jina.serve.runtimes.gateway.health_model import JinaHealthModel @app.get( path='/', summary='Get the health of Jina Executor service', response_model=JinaHealthModel, ) async def _executor_health(): """ Get the health of this Gateway service. .. # noqa: DAR201 """ return {} return app
from typing import Dict, List, Optional, Callable from jina.importer import ImportExtensions from jina.types.request.data import DataRequest from jina import DocumentArray def get_fastapi_app( request_models_map: Dict, caller: Callable, **kwargs ): """ Get the app from FastAPI as the REST interface. :param request_models_map: Map describing the endpoints and its Pydantic models :param caller: Callable to be handled by the endpoints of the returned FastAPI app :param kwargs: Extra kwargs to make it compatible with other methods :return: fastapi app """ with ImportExtensions(required=True): from fastapi import FastAPI, Response, HTTPException import pydantic from jina.proto import jina_pb2 app = FastAPI() def add_route(endpoint_path, input_model, output_model): @app.api_route( path=f'/{endpoint_path.strip("/")}', methods=['POST'], summary=f'Endpoint {endpoint_path}', response_model=output_model ) async def post(body: input_model, response: Response): req = DataRequest() req.data.docs = DocumentArray.from_pydantic_model(body.data) req.parameters = body.parameters req.header.exec_endpoint = endpoint_path resp = await caller(req) status = resp.header.status if status.code == jina_pb2.StatusProto.ERROR: raise HTTPException(status_code=499, detail=status.description) else: return output_model(data=resp.docs.to_dict(), parameters=resp.parameters) for endpoint, input_output_map in request_models_map.items(): if endpoint != '_jina_dry_run_': input_doc_model = input_output_map['input']['model'] output_doc_model = input_output_map['output']['model'] endpoint_input_model = pydantic.create_model( f'{endpoint.strip("/")}_input_model', data=(List[input_doc_model], []), parameters=(Optional[Dict], None) ) endpoint_output_model = pydantic.create_model( f'{endpoint.strip("/")}_output_model', data=(List[output_doc_model], []), parameters=(Optional[Dict], None) ) add_route(endpoint, input_model=endpoint_input_model, output_model=endpoint_output_model) from jina.serve.runtimes.gateway.models import JinaHealthModel @app.get( path='/', summary='Get the health of Jina Executor service', response_model=JinaHealthModel, ) async def _executor_health(): """ Get the health of this Gateway service. .. # noqa: DAR201 """ return {} return app
# Copyright (c) OpenMMLab. All rights reserved. from .approx_max_iou_assigner import ApproxMaxIoUAssigner from .assign_result import AssignResult from .atss_assigner import ATSSAssigner from .base_assigner import BaseAssigner from .center_region_assigner import CenterRegionAssigner from .grid_assigner import GridAssigner from .hungarian_assigner import HungarianAssigner from .max_iou_assigner import MaxIoUAssigner from .point_assigner import PointAssigner from .region_assigner import RegionAssigner from .sim_ota_assigner import SimOTAAssigner from .task_aligned_assigner import TaskAlignedAssigner from .uniform_assigner import UniformAssigner __all__ = [ 'BaseAssigner', 'MaxIoUAssigner', 'ApproxMaxIoUAssigner', 'AssignResult', 'PointAssigner', 'ATSSAssigner', 'CenterRegionAssigner', 'GridAssigner', 'HungarianAssigner', 'RegionAssigner', 'UniformAssigner', 'SimOTAAssigner', 'TaskAlignedAssigner' ]
# Copyright (c) OpenMMLab. All rights reserved. from .approx_max_iou_assigner import ApproxMaxIoUAssigner from .assign_result import AssignResult from .atss_assigner import ATSSAssigner from .base_assigner import BaseAssigner from .center_region_assigner import CenterRegionAssigner from .grid_assigner import GridAssigner from .hungarian_assigner import HungarianAssigner from .mask_hungarian_assigner import MaskHungarianAssigner from .max_iou_assigner import MaxIoUAssigner from .point_assigner import PointAssigner from .region_assigner import RegionAssigner from .sim_ota_assigner import SimOTAAssigner from .task_aligned_assigner import TaskAlignedAssigner from .uniform_assigner import UniformAssigner __all__ = [ 'BaseAssigner', 'MaxIoUAssigner', 'ApproxMaxIoUAssigner', 'AssignResult', 'PointAssigner', 'ATSSAssigner', 'CenterRegionAssigner', 'GridAssigner', 'HungarianAssigner', 'RegionAssigner', 'UniformAssigner', 'SimOTAAssigner', 'TaskAlignedAssigner', 'MaskHungarianAssigner' ]
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class AbstractDatasetReader(ABC): def __init__( self, path_or_paths: Optional[NestedDataStructureLike[PathLike]] = None, split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, num_proc: Optional[int] = None, **kwargs, ): self.path_or_paths = path_or_paths self.split = split if split or isinstance(path_or_paths, dict) else "train" self.features = features self.cache_dir = cache_dir self.keep_in_memory = keep_in_memory self.streaming = streaming self.num_proc = num_proc self.kwargs = kwargs @abstractmethod def read(self) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class AbstractDatasetInputStream(ABC): def __init__( self, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, num_proc: Optional[int] = None, **kwargs, ): self.features = features self.cache_dir = cache_dir self.keep_in_memory = keep_in_memory self.streaming = streaming self.num_proc = num_proc self.kwargs = kwargs @abstractmethod def read(self) -> Union[Dataset, IterableDataset]: pass
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class AbstractDatasetReader(ABC): def __init__( self, path_or_paths: NestedDataStructureLike[PathLike], split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, num_proc: Optional[int] = None, **kwargs, ): self.path_or_paths = path_or_paths self.split = split if split or isinstance(path_or_paths, dict) else "train" self.features = features self.cache_dir = cache_dir self.keep_in_memory = keep_in_memory self.streaming = streaming self.num_proc = num_proc self.kwargs = kwargs @abstractmethod def read(self) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class AbstractDatasetInputStream(ABC): def __init__( self, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, num_proc: Optional[int] = None, **kwargs, ): self.features = features self.cache_dir = cache_dir self.keep_in_memory = keep_in_memory self.streaming = streaming self.num_proc = num_proc self.kwargs = kwargs @abstractmethod def read(self) -> Union[Dataset, IterableDataset]: pass
# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Processor class for Granite Speech.""" from typing import List, Union from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...tokenization_utils import PreTokenizedInput, TextInput from ...utils import is_torch_available, logging from ...utils.import_utils import requires_backends if is_torch_available(): import torch logger = logging.get_logger(__name__) class GraniteSpeechProcessor(ProcessorMixin): attributes = ["audio_processor", "tokenizer"] audio_processor_class = "GraniteSpeechFeatureExtractor" tokenizer_class = "AutoTokenizer" def __init__( self, audio_processor, tokenizer, audio_token="<|audio|>", chat_template=None, ): self.audio_token = tokenizer.audio_token if hasattr(tokenizer, "audio_token") else audio_token super().__init__(audio_processor, tokenizer, chat_template=chat_template) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], audio: Union["torch.Tensor", List["torch.Tensor"]] = None, device: str = "cpu", images=None, videos=None, **kwargs, ) -> BatchFeature: requires_backends(self, ["torch"]) text = self._get_validated_text(text) prompt_strings = text if audio is not None: # NOTE - we intentionally avoid throwing for potentially misaligned # text / audio inputs here because some inference engines will # trigger the conditions due to the way they call multimodal # processors, e.g., vLLM. audio_inputs = self.audio_processor(audio, device=device) # TODO (@alex-jw-brooks); we should add a util to get_num_audio_tokens # from feature lengths and call it here, rather than returning it # from the feature extractor. audio_embed_sizes = audio_inputs.pop("audio_embed_sizes") # Expand the audio placeholders to match the feature dims; this # is similar to how many VLMs handle image tokens, e.g., llava next prompt_strings = [] num_replaced = 0 for sample in text: while self.audio_token in sample: sample = sample.replace( self.audio_token, "<placeholder>" * audio_embed_sizes[num_replaced], 1, ) num_replaced += 1 prompt_strings.append(sample) prompt_strings = [sample.replace("<placeholder>", self.audio_token) for sample in prompt_strings] else: audio_inputs = {} text_inputs = self.tokenizer(prompt_strings, padding=True, **kwargs) return BatchFeature(data={**text_inputs, **audio_inputs}) def _get_validated_text(self, text: Union[str, list]) -> List[str]: if isinstance(text, str): return [text] elif isinstance(text, list) and isinstance(text[0], str): return text raise TypeError("Invalid text provided! Text should be a string or list of strings.") __all__ = ["GraniteSpeechProcessor"]
# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Processor class for Granite Speech.""" from typing import List, Union from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...tokenization_utils import PreTokenizedInput, TextInput from ...utils import is_torch_available, logging from ...utils.import_utils import requires_backends if is_torch_available(): import torch logger = logging.get_logger(__name__) class GraniteSpeechProcessor(ProcessorMixin): attributes = ["audio_processor", "tokenizer"] valid_kwargs = ["audio_token"] audio_processor_class = "GraniteSpeechFeatureExtractor" tokenizer_class = "AutoTokenizer" def __init__( self, audio_processor, tokenizer, audio_token="<|audio|>", chat_template=None, ): self.audio_token = tokenizer.audio_token if hasattr(tokenizer, "audio_token") else audio_token super().__init__(audio_processor, tokenizer, chat_template=chat_template) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], audio: Union["torch.Tensor", List["torch.Tensor"]] = None, device: str = "cpu", images=None, videos=None, **kwargs, ) -> BatchFeature: requires_backends(self, ["torch"]) text = self._get_validated_text(text) prompt_strings = text if audio is not None: # NOTE - we intentionally avoid throwing for potentially misaligned # text / audio inputs here because some inference engines will # trigger the conditions due to the way they call multimodal # processors, e.g., vLLM. audio_inputs = self.audio_processor(audio, device=device) # TODO (@alex-jw-brooks); we should add a util to get_num_audio_tokens # from feature lengths and call it here, rather than returning it # from the feature extractor. audio_embed_sizes = audio_inputs.pop("audio_embed_sizes") # Expand the audio placeholders to match the feature dims; this # is similar to how many VLMs handle image tokens, e.g., llava next prompt_strings = [] num_replaced = 0 for sample in text: while self.audio_token in sample: sample = sample.replace( self.audio_token, "<placeholder>" * audio_embed_sizes[num_replaced], 1, ) num_replaced += 1 prompt_strings.append(sample) prompt_strings = [sample.replace("<placeholder>", self.audio_token) for sample in prompt_strings] else: audio_inputs = {} text_inputs = self.tokenizer(prompt_strings, padding=True, **kwargs) return BatchFeature(data={**text_inputs, **audio_inputs}) def _get_validated_text(self, text: Union[str, list]) -> List[str]: if isinstance(text, str): return [text] elif isinstance(text, list) and isinstance(text[0], str): return text raise TypeError("Invalid text provided! Text should be a string or list of strings.") __all__ = ["GraniteSpeechProcessor"]
"""Test chat model integration using standard integration tests.""" from typing import Type from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_ollama.chat_models import ChatOllama class TestChatOllama(ChatModelIntegrationTests): @property def chat_model_class(self) -> Type[ChatOllama]: return ChatOllama @property def chat_model_params(self) -> dict: return {"model": "llama3.1"} @property def supports_image_inputs(self) -> bool: return True @property def supports_json_mode(self) -> bool: return True
"""Test chat model integration using standard integration tests.""" from typing import Type import pytest from langchain_core.language_models import BaseChatModel from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_ollama.chat_models import ChatOllama class TestChatOllama(ChatModelIntegrationTests): @property def chat_model_class(self) -> Type[ChatOllama]: return ChatOllama @property def chat_model_params(self) -> dict: return {"model": "llama3.1"} @property def supports_image_inputs(self) -> bool: return True @property def supports_json_mode(self) -> bool: return True @pytest.mark.xfail( reason=( "Fails with 'AssertionError'. Ollama does not support 'tool_choice' yet." ) ) def test_structured_output(self, model: BaseChatModel, schema_type: str) -> None: super().test_structured_output(model, schema_type) @pytest.mark.xfail( reason=( "Fails with 'AssertionError'. Ollama does not support 'tool_choice' yet." ) ) def test_structured_output_pydantic_2_v1(self, model: BaseChatModel) -> None: super().test_structured_output_pydantic_2_v1(model)
import json import logging import os from typing import Dict, Optional import fsspec from llama_index.core.storage.kvstore.types import ( DEFAULT_COLLECTION, BaseInMemoryKVStore, ) logger = logging.getLogger(__name__) DATA_TYPE = Dict[str, Dict[str, dict]] class SimpleKVStore(BaseInMemoryKVStore): """ Simple in-memory Key-Value store. Args: data (Optional[DATA_TYPE]): data to initialize the store with """ def __init__( self, data: Optional[DATA_TYPE] = None, ) -> None: """Init a SimpleKVStore.""" self._data: DATA_TYPE = data or {} def put(self, key: str, val: dict, collection: str = DEFAULT_COLLECTION) -> None: """Put a key-value pair into the store.""" if collection not in self._data: self._data[collection] = {} self._data[collection][key] = val.copy() async def aput( self, key: str, val: dict, collection: str = DEFAULT_COLLECTION ) -> None: """Put a key-value pair into the store.""" self.put(key, val, collection) def get(self, key: str, collection: str = DEFAULT_COLLECTION) -> Optional[dict]: """Get a value from the store.""" collection_data = self._data.get(collection, None) if not collection_data: return None if key not in collection_data: return None return collection_data[key].copy() async def aget( self, key: str, collection: str = DEFAULT_COLLECTION ) -> Optional[dict]: """Get a value from the store.""" return self.get(key, collection) def get_all(self, collection: str = DEFAULT_COLLECTION) -> Dict[str, dict]: """Get all values from the store.""" return self._data.get(collection, {}).copy() async def aget_all(self, collection: str = DEFAULT_COLLECTION) -> Dict[str, dict]: """Get all values from the store.""" return self.get_all(collection) def delete(self, key: str, collection: str = DEFAULT_COLLECTION) -> bool: """Delete a value from the store.""" try: self._data[collection].pop(key) return True except KeyError: return False async def adelete(self, key: str, collection: str = DEFAULT_COLLECTION) -> bool: """Delete a value from the store.""" return self.delete(key, collection) def persist( self, persist_path: str, fs: Optional[fsspec.AbstractFileSystem] = None ) -> None: """Persist the store.""" fs = fs or fsspec.filesystem("file") dirpath = os.path.dirname(persist_path) if not fs.exists(dirpath): fs.makedirs(dirpath) with fs.open(persist_path, "w") as f: f.write(json.dumps(self._data)) @classmethod def from_persist_path( cls, persist_path: str, fs: Optional[fsspec.AbstractFileSystem] = None ) -> "SimpleKVStore": """Load a SimpleKVStore from a persist path and filesystem.""" fs = fs or fsspec.filesystem("file") logger.debug(f"Loading {__name__} from {persist_path}.") with fs.open(persist_path, "rb") as f: data = json.load(f) return cls(data) def to_dict(self) -> dict: """Save the store as dict.""" return self._data @classmethod def from_dict(cls, save_dict: dict) -> "SimpleKVStore": """Load a SimpleKVStore from dict.""" return cls(save_dict)
import json import logging import os from typing import Dict, Optional import fsspec from llama_index.core.storage.kvstore.types import ( DEFAULT_COLLECTION, BaseInMemoryKVStore, ) logger = logging.getLogger(__name__) DATA_TYPE = Dict[str, Dict[str, dict]] class SimpleKVStore(BaseInMemoryKVStore): """Simple in-memory Key-Value store. Args: data (Optional[DATA_TYPE]): data to initialize the store with """ def __init__( self, data: Optional[DATA_TYPE] = None, ) -> None: """Init a SimpleKVStore.""" self._data: DATA_TYPE = data or {} def put(self, key: str, val: dict, collection: str = DEFAULT_COLLECTION) -> None: """Put a key-value pair into the store.""" if collection not in self._data: self._data[collection] = {} self._data[collection][key] = val.copy() async def aput( self, key: str, val: dict, collection: str = DEFAULT_COLLECTION ) -> None: """Put a key-value pair into the store.""" self.put(key, val, collection) def get(self, key: str, collection: str = DEFAULT_COLLECTION) -> Optional[dict]: """Get a value from the store.""" collection_data = self._data.get(collection, None) if not collection_data: return None if key not in collection_data: return None return collection_data[key].copy() async def aget( self, key: str, collection: str = DEFAULT_COLLECTION ) -> Optional[dict]: """Get a value from the store.""" return self.get(key, collection) def get_all(self, collection: str = DEFAULT_COLLECTION) -> Dict[str, dict]: """Get all values from the store.""" return self._data.get(collection, {}).copy() async def aget_all(self, collection: str = DEFAULT_COLLECTION) -> Dict[str, dict]: """Get all values from the store.""" return self.get_all(collection) def delete(self, key: str, collection: str = DEFAULT_COLLECTION) -> bool: """Delete a value from the store.""" try: self._data[collection].pop(key) return True except KeyError: return False async def adelete(self, key: str, collection: str = DEFAULT_COLLECTION) -> bool: """Delete a value from the store.""" return self.delete(key, collection) def persist( self, persist_path: str, fs: Optional[fsspec.AbstractFileSystem] = None ) -> None: """Persist the store.""" fs = fs or fsspec.filesystem("file") dirpath = os.path.dirname(persist_path) if not fs.exists(dirpath): fs.makedirs(dirpath) with fs.open(persist_path, "w") as f: f.write(json.dumps(self._data)) @classmethod def from_persist_path( cls, persist_path: str, fs: Optional[fsspec.AbstractFileSystem] = None ) -> "SimpleKVStore": """Load a SimpleKVStore from a persist path and filesystem.""" fs = fs or fsspec.filesystem("file") logger.debug(f"Loading {__name__} from {persist_path}.") with fs.open(persist_path, "rb") as f: data = json.load(f) return cls(data) def to_dict(self) -> dict: """Save the store as dict.""" return self._data @classmethod def from_dict(cls, save_dict: dict) -> "SimpleKVStore": """Load a SimpleKVStore from dict.""" return cls(save_dict)
import re from io import BytesIO from pathlib import Path from typing import Any, Type import numpy as np import pytest from langchain_core.documents.base import Blob from langchain_core.language_models import FakeMessagesListChatModel from langchain_core.messages import ChatMessage from langchain_community.document_loaders.parsers.images import ( LLMImageBlobParser, RapidOCRBlobParser, TesseractBlobParser, ) path_base = Path(__file__).parent.parent.parent building_image = Blob.from_path(path_base / "examples/building.jpg") text_image = Blob.from_path(path_base / "examples/text.png") page_image = Blob.from_path(path_base / "examples/page.png") _re_in_image = r"(?ms).*MAKE.*TEXT.*STAND.*OUT.*FROM.*" @pytest.mark.parametrize( "blob,body", [ (Blob.from_path(path_base / "examples/text-gray.png"), _re_in_image), ], ) @pytest.mark.parametrize( "blob_loader,kw", [ (RapidOCRBlobParser, {}), (TesseractBlobParser, {}), ( LLMImageBlobParser, { "model": FakeMessagesListChatModel( responses=[ ChatMessage( id="ai1", role="system", content="A building. MAKE TEXT STAND OUT FROM BACKGROUNDS", ), ] ) }, ), ], ) def test_image_parser_with_differents_files( blob_loader: Type, kw: dict[str, Any], blob: Blob, body: str, ) -> None: if blob_loader == LLMImageBlobParser and "building" in str(blob.path): body = ".*building.*" documents = list(blob_loader(**kw).lazy_parse(blob)) assert len(documents) == 1 assert re.compile(body).match(documents[0].page_content) @pytest.mark.parametrize( "blob_loader,kw", [ (RapidOCRBlobParser, {}), (TesseractBlobParser, {}), ( LLMImageBlobParser, { "model": FakeMessagesListChatModel( responses=[ ChatMessage( id="ai1", role="system", content="A building. MAKE TEXT STAND OUT FROM BACKGROUNDS", ), ] ) }, ), ], ) def test_image_parser_with_numpy( blob_loader: Type, kw: dict[str, Any], ) -> None: gray_image = np.empty(shape=(412, 1652, 1)) with BytesIO() as buffer: np.save(buffer, gray_image) buffer.seek(0) npy_bytes = buffer.getvalue() blob = Blob.from_data(npy_bytes, mime_type="application/x-npy") documents = list(blob_loader(**kw).lazy_parse(blob)) assert len(documents) == 1
import re from pathlib import Path from typing import Any, Type import pytest from langchain_core.documents.base import Blob from langchain_core.language_models import FakeMessagesListChatModel from langchain_core.messages import ChatMessage from langchain_community.document_loaders.parsers.images import ( LLMImageBlobParser, RapidOCRBlobParser, TesseractBlobParser, ) path_base = Path(__file__).parent.parent.parent building_image = Blob.from_path(path_base / "examples/building.jpg") text_image = Blob.from_path(path_base / "examples/text.png") page_image = Blob.from_path(path_base / "examples/page.png") @pytest.mark.parametrize( "blob,body", [ (building_image, ""), (text_image, r"(?ms).*MAKE.*TEXT.*STAND.*OUT.*FROM.*BACKGROUNDS.*"), ], ) @pytest.mark.parametrize( "blob_loader,kw", [ (RapidOCRBlobParser, {}), (TesseractBlobParser, {}), ( LLMImageBlobParser, { "model": FakeMessagesListChatModel( responses=[ ChatMessage( id="ai1", role="system", content="A building. MAKE TEXT STAND OUT FROM BACKGROUNDS", ), ] ) }, ), ], ) def test_image_parser_with_differents_files( blob_loader: Type, kw: dict[str, Any], blob: Blob, body: str, ) -> None: if blob_loader == LLMImageBlobParser and "building" in str(blob.path): body = ".*building.*" documents = list(blob_loader(**kw).lazy_parse(blob)) assert len(documents) == 1 assert re.compile(body).match(documents[0].page_content)
import logging from datasets import load_dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseRerankingEvaluator, SpladePooling, ) logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Load a dataset with queries, positives, and negatives eval_dataset = load_dataset("microsoft/ms_marco", "v1.1", split="validation").select(range(1000)) samples = [ { "query": sample["query"], "positive": [ text for is_selected, text in zip(sample["passages"]["is_selected"], sample["passages"]["passage_text"]) if is_selected ], "negative": [ text for is_selected, text in zip(sample["passages"]["is_selected"], sample["passages"]["passage_text"]) if not is_selected ], } for sample in eval_dataset ] # Now evaluate using only the documents from the 1000 samples reranking_evaluator = SparseRerankingEvaluator( samples=samples, name="ms-marco-dev-small", show_progress_bar=True, batch_size=32, ) results = reranking_evaluator(model) # Print the results print(f"Primary metric: {reranking_evaluator.primary_metric}") print(f"Primary metric value: {results[reranking_evaluator.primary_metric]:.4f}")
from datasets import load_dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseRerankingEvaluator, SpladePooling, ) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Load a dataset with queries, positives, and negatives eval_dataset = load_dataset("microsoft/ms_marco", "v1.1", split="validation") samples = [ { "query": sample["query"], "positive": [ text for is_selected, text in zip(sample["passages"]["is_selected"], sample["passages"]["passage_text"]) if is_selected ], "negative": [ text for is_selected, text in zip(sample["passages"]["is_selected"], sample["passages"]["passage_text"]) if not is_selected ], } for sample in eval_dataset ] # Now evaluate using only the documents from the 1000 samples reranking_evaluator = SparseRerankingEvaluator( samples=samples, name="ms-marco-dev-small", show_progress_bar=True, batch_size=32, ) results = reranking_evaluator(model) print(results) print(reranking_evaluator.primary_metric) print(results[reranking_evaluator.primary_metric])
import inspect import re from typing import Dict, List, Tuple from huggingface_hub.utils import insecure_hashlib from .arrow import arrow from .audiofolder import audiofolder from .cache import cache from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql from .text import text from .videofolder import videofolder from .webdataset import webdataset from .xml import xml def _hash_python_lines(lines: list[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return insecure_hashlib.sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), "videofolder": (videofolder.__name__, _hash_python_lines(inspect.getsource(videofolder).splitlines())), "webdataset": (webdataset.__name__, _hash_python_lines(inspect.getsource(webdataset).splitlines())), "xml": (xml.__name__, _hash_python_lines(inspect.getsource(xml).splitlines())), } # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES_2_15_HASHES = { "csv": "eea64c71ca8b46dd3f537ed218fc9bf495d5707789152eb2764f5c78fa66d59d", "json": "8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96", "pandas": "3ac4ffc4563c796122ef66899b9485a3f1a977553e2d2a8a318c72b8cc6f2202", "parquet": "ca31c69184d9832faed373922c2acccec0b13a0bb5bbbe19371385c3ff26f1d1", "arrow": "74f69db2c14c2860059d39860b1f400a03d11bf7fb5a8258ca38c501c878c137", "text": "c4a140d10f020282918b5dd1b8a49f0104729c6177f60a6b49ec2a365ec69f34", "imagefolder": "7b7ce5247a942be131d49ad4f3de5866083399a0f250901bd8dc202f8c5f7ce5", "audiofolder": "d3c1655c66c8f72e4efb5c79e952975fa6e2ce538473a6890241ddbddee9071c", } # Used to infer the module to use based on the data files extensions _EXTENSION_TO_MODULE: dict[str, tuple[str, dict]] = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), # ndjson is no longer maintained (see: https://github.com/ndjson/ndjson-spec/issues/35#issuecomment-1285673417) ".ndjson": ("json", {}), ".parquet": ("parquet", {}), ".geoparquet": ("parquet", {}), ".gpq": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), ".tar": ("webdataset", {}), ".xml": ("xml", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("videofolder", {}) for ext in videofolder.VideoFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("videofolder", {}) for ext in videofolder.VideoFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder", "videofolder"} # Used to filter data files based on extensions given a module name _MODULE_TO_EXTENSIONS: dict[str, list[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) for _module in _MODULE_TO_EXTENSIONS: _MODULE_TO_EXTENSIONS[_module].append(".zip")
import inspect import re from typing import Dict, List, Tuple from huggingface_hub.utils import insecure_hashlib from .arrow import arrow from .audiofolder import audiofolder from .cache import cache from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql from .text import text from .videofolder import videofolder from .webdataset import webdataset from .xml import xml def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return insecure_hashlib.sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), "videofolder": (videofolder.__name__, _hash_python_lines(inspect.getsource(videofolder).splitlines())), "webdataset": (webdataset.__name__, _hash_python_lines(inspect.getsource(webdataset).splitlines())), "xml": (xml.__name__, _hash_python_lines(inspect.getsource(xml).splitlines())), } # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES_2_15_HASHES = { "csv": "eea64c71ca8b46dd3f537ed218fc9bf495d5707789152eb2764f5c78fa66d59d", "json": "8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96", "pandas": "3ac4ffc4563c796122ef66899b9485a3f1a977553e2d2a8a318c72b8cc6f2202", "parquet": "ca31c69184d9832faed373922c2acccec0b13a0bb5bbbe19371385c3ff26f1d1", "arrow": "74f69db2c14c2860059d39860b1f400a03d11bf7fb5a8258ca38c501c878c137", "text": "c4a140d10f020282918b5dd1b8a49f0104729c6177f60a6b49ec2a365ec69f34", "imagefolder": "7b7ce5247a942be131d49ad4f3de5866083399a0f250901bd8dc202f8c5f7ce5", "audiofolder": "d3c1655c66c8f72e4efb5c79e952975fa6e2ce538473a6890241ddbddee9071c", } # Used to infer the module to use based on the data files extensions _EXTENSION_TO_MODULE: Dict[str, Tuple[str, dict]] = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), # ndjson is no longer maintained (see: https://github.com/ndjson/ndjson-spec/issues/35#issuecomment-1285673417) ".ndjson": ("json", {}), ".parquet": ("parquet", {}), ".geoparquet": ("parquet", {}), ".gpq": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), ".tar": ("webdataset", {}), ".xml": ("xml", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("videofolder", {}) for ext in videofolder.VideoFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("videofolder", {}) for ext in videofolder.VideoFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder", "videofolder"} # Used to filter data files based on extensions given a module name _MODULE_TO_EXTENSIONS: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) for _module in _MODULE_TO_EXTENSIONS: _MODULE_TO_EXTENSIONS[_module].append(".zip")
from __future__ import annotations from collections.abc import Sequence from copy import deepcopy from typing import Any, Optional, Union from langchain_core._api.deprecation import deprecated from langchain_core.callbacks import Callbacks from langchain_core.documents import BaseDocumentCompressor, Document from langchain_core.utils import get_from_dict_or_env from pydantic import ConfigDict, model_validator @deprecated( since="0.0.30", removal="1.0", alternative_import="langchain_cohere.CohereRerank", ) class CohereRerank(BaseDocumentCompressor): """Document compressor that uses `Cohere Rerank API`.""" client: Any = None """Cohere client to use for compressing documents.""" top_n: Optional[int] = 3 """Number of documents to return.""" model: str = "rerank-english-v2.0" """Model to use for reranking.""" cohere_api_key: Optional[str] = None """Cohere API key. Must be specified directly or via environment variable COHERE_API_KEY.""" user_agent: str = "langchain" """Identifier for the application making the request.""" model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: dict) -> Any: """Validate that api key and python package exists in environment.""" if not values.get("client"): try: import cohere except ImportError: msg = ( "Could not import cohere python package. " "Please install it with `pip install cohere`." ) raise ImportError(msg) cohere_api_key = get_from_dict_or_env( values, "cohere_api_key", "COHERE_API_KEY", ) client_name = values.get("user_agent", "langchain") values["client"] = cohere.Client(cohere_api_key, client_name=client_name) return values def rerank( self, documents: Sequence[Union[str, Document, dict]], query: str, *, model: Optional[str] = None, top_n: Optional[int] = -1, max_chunks_per_doc: Optional[int] = None, ) -> list[dict[str, Any]]: """Returns an ordered list of documents ordered by their relevance to the provided query. Args: query: The query to use for reranking. documents: A sequence of documents to rerank. model: The model to use for re-ranking. Default to self.model. top_n : The number of results to return. If None returns all results. Defaults to self.top_n. max_chunks_per_doc : The maximum number of chunks derived from a document. """ # noqa: E501 if len(documents) == 0: # to avoid empty api call return [] docs = [ doc.page_content if isinstance(doc, Document) else doc for doc in documents ] model = model or self.model top_n = top_n if (top_n is None or top_n > 0) else self.top_n results = self.client.rerank( query=query, documents=docs, model=model, top_n=top_n, max_chunks_per_doc=max_chunks_per_doc, ) if hasattr(results, "results"): results = getattr(results, "results") return [ {"index": res.index, "relevance_score": res.relevance_score} for res in results ] def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """ Compress documents using Cohere's rerank API. Args: documents: A sequence of documents to compress. query: The query to use for compressing the documents. callbacks: Callbacks to run during the compression process. Returns: A sequence of compressed documents. """ compressed = [] for res in self.rerank(documents, query): doc = documents[res["index"]] doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata)) doc_copy.metadata["relevance_score"] = res["relevance_score"] compressed.append(doc_copy) return compressed
from __future__ import annotations from collections.abc import Sequence from copy import deepcopy from typing import Any, Optional, Union from langchain_core._api.deprecation import deprecated from langchain_core.callbacks import Callbacks from langchain_core.documents import BaseDocumentCompressor, Document from langchain_core.utils import get_from_dict_or_env from pydantic import ConfigDict, model_validator @deprecated( since="0.0.30", removal="1.0", alternative_import="langchain_cohere.CohereRerank" ) class CohereRerank(BaseDocumentCompressor): """Document compressor that uses `Cohere Rerank API`.""" client: Any = None """Cohere client to use for compressing documents.""" top_n: Optional[int] = 3 """Number of documents to return.""" model: str = "rerank-english-v2.0" """Model to use for reranking.""" cohere_api_key: Optional[str] = None """Cohere API key. Must be specified directly or via environment variable COHERE_API_KEY.""" user_agent: str = "langchain" """Identifier for the application making the request.""" model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: dict) -> Any: """Validate that api key and python package exists in environment.""" if not values.get("client"): try: import cohere except ImportError: msg = ( "Could not import cohere python package. " "Please install it with `pip install cohere`." ) raise ImportError(msg) cohere_api_key = get_from_dict_or_env( values, "cohere_api_key", "COHERE_API_KEY" ) client_name = values.get("user_agent", "langchain") values["client"] = cohere.Client(cohere_api_key, client_name=client_name) return values def rerank( self, documents: Sequence[Union[str, Document, dict]], query: str, *, model: Optional[str] = None, top_n: Optional[int] = -1, max_chunks_per_doc: Optional[int] = None, ) -> list[dict[str, Any]]: """Returns an ordered list of documents ordered by their relevance to the provided query. Args: query: The query to use for reranking. documents: A sequence of documents to rerank. model: The model to use for re-ranking. Default to self.model. top_n : The number of results to return. If None returns all results. Defaults to self.top_n. max_chunks_per_doc : The maximum number of chunks derived from a document. """ # noqa: E501 if len(documents) == 0: # to avoid empty api call return [] docs = [ doc.page_content if isinstance(doc, Document) else doc for doc in documents ] model = model or self.model top_n = top_n if (top_n is None or top_n > 0) else self.top_n results = self.client.rerank( query=query, documents=docs, model=model, top_n=top_n, max_chunks_per_doc=max_chunks_per_doc, ) if hasattr(results, "results"): results = getattr(results, "results") result_dicts = [] for res in results: result_dicts.append( { "index": res.index, "relevance_score": res.relevance_score, } ) return result_dicts def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """ Compress documents using Cohere's rerank API. Args: documents: A sequence of documents to compress. query: The query to use for compressing the documents. callbacks: Callbacks to run during the compression process. Returns: A sequence of compressed documents. """ compressed = [] for res in self.rerank(documents, query): doc = documents[res["index"]] doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata)) doc_copy.metadata["relevance_score"] = res["relevance_score"] compressed.append(doc_copy) return compressed
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoNdArray') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_ndarray') class VideoNdArray(NdArray, VideoTensorMixin): """ Subclass of NdArray, to represent a video tensor. Adds video-specific features to the tensor. --- ```python from typing import Optional import numpy as np from pydantic import parse_obj_as from docarray import BaseDoc from docarray.typing import VideoNdArray, VideoUrl class MyVideoDoc(BaseDoc): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoNdArray] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=np.random.random((100, 224, 224, 3)), ) doc_1.video_tensor.save(file_path='/tmp/file_1.mp4') doc_2 = MyVideoDoc( title='my_second_video_doc', url='/tmp/file_1.mp4', ) doc_2.video_tensor = parse_obj_as(VideoNdArray, doc_2.url.load().video) doc_2.video_tensor.save(file_path='/tmp/file_2.mp4') ``` --- """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
from typing import TYPE_CHECKING, Any, List, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.video.video_tensor_mixin import VideoTensorMixin T = TypeVar('T', bound='VideoNdArray') if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField @_register_proto(proto_type_name='video_ndarray') class VideoNdArray(NdArray, VideoTensorMixin): """ Subclass of NdArray, to represent a video tensor. Adds video-specific features to the tensor. --- ```python from typing import Optional import numpy as np from pydantic import parse_obj_as from docarray import BaseDoc from docarray.typing import VideoNdArray, VideoUrl class MyVideoDoc(BaseDoc): title: str url: Optional[VideoUrl] video_tensor: Optional[VideoNdArray] doc_1 = MyVideoDoc( title='my_first_video_doc', video_tensor=np.random.random((100, 224, 224, 3)), ) doc_1.video_tensor.save(file_path='file_1.mp4') doc_2 = MyVideoDoc( title='my_second_video_doc', url='file_1.mp4', ) doc_2.video_tensor = parse_obj_as(VideoNdArray, doc_2.url.load().video) doc_2.video_tensor.save(file_path='file_2.mp4') ``` --- """ @classmethod def validate( cls: Type[T], value: Union[T, np.ndarray, List[Any], Tuple[Any], Any], field: 'ModelField', config: 'BaseConfig', ) -> T: tensor = super().validate(value=value, field=field, config=config) return cls.validate_shape(value=tensor)
import numpy as np import pytest from absl.testing import parameterized from keras.src import backend from keras.src import layers from keras.src import testing class UpSampling3dTest(testing.TestCase): @parameterized.product( data_format=["channels_first", "channels_last"], length_dim1=[2, 3], length_dim2=[2], length_dim3=[3], ) @pytest.mark.requires_trainable_backend def test_upsampling_3d( self, data_format, length_dim1, length_dim2, length_dim3 ): num_samples = 2 stack_size = 2 input_len_dim1 = 10 input_len_dim2 = 11 input_len_dim3 = 12 if data_format == "channels_first": inputs = np.random.rand( num_samples, stack_size, input_len_dim1, input_len_dim2, input_len_dim3, ) else: inputs = np.random.rand( num_samples, input_len_dim1, input_len_dim2, input_len_dim3, stack_size, ) # basic test if data_format == "channels_first": expected_output_shape = (2, 2, 20, 22, 24) else: expected_output_shape = (2, 20, 22, 24, 2) self.run_layer_test( layers.UpSampling3D, init_kwargs={"size": (2, 2, 2), "data_format": data_format}, input_shape=inputs.shape, expected_output_shape=expected_output_shape, expected_output_dtype="float32", expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=False, ) layer = layers.UpSampling3D( size=(length_dim1, length_dim2, length_dim3), data_format=data_format, ) layer.build(inputs.shape) np_output = layer(inputs=backend.Variable(inputs)) if data_format == "channels_first": assert np_output.shape[2] == length_dim1 * input_len_dim1 assert np_output.shape[3] == length_dim2 * input_len_dim2 assert np_output.shape[4] == length_dim3 * input_len_dim3 else: # tf assert np_output.shape[1] == length_dim1 * input_len_dim1 assert np_output.shape[2] == length_dim2 * input_len_dim2 assert np_output.shape[3] == length_dim3 * input_len_dim3 # compare with numpy if data_format == "channels_first": expected_out = np.repeat(inputs, length_dim1, axis=2) expected_out = np.repeat(expected_out, length_dim2, axis=3) expected_out = np.repeat(expected_out, length_dim3, axis=4) else: # tf expected_out = np.repeat(inputs, length_dim1, axis=1) expected_out = np.repeat(expected_out, length_dim2, axis=2) expected_out = np.repeat(expected_out, length_dim3, axis=3) self.assertAllClose(np_output, expected_out) def test_upsampling_3d_correctness(self): input_shape = (2, 1, 2, 1, 3) x = np.arange(np.prod(input_shape)).reshape(input_shape) expected_output = np.array( [ [ [ [[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]], [[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]], [[3.0, 4.0, 5.0], [3.0, 4.0, 5.0]], [[3.0, 4.0, 5.0], [3.0, 4.0, 5.0]], ], [ [[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]], [[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]], [[3.0, 4.0, 5.0], [3.0, 4.0, 5.0]], [[3.0, 4.0, 5.0], [3.0, 4.0, 5.0]], ], ], [ [ [[6.0, 7.0, 8.0], [6.0, 7.0, 8.0]], [[6.0, 7.0, 8.0], [6.0, 7.0, 8.0]], [[9.0, 10.0, 11.0], [9.0, 10.0, 11.0]], [[9.0, 10.0, 11.0], [9.0, 10.0, 11.0]], ], [ [[6.0, 7.0, 8.0], [6.0, 7.0, 8.0]], [[6.0, 7.0, 8.0], [6.0, 7.0, 8.0]], [[9.0, 10.0, 11.0], [9.0, 10.0, 11.0]], [[9.0, 10.0, 11.0], [9.0, 10.0, 11.0]], ], ], ] ) if backend.config.image_data_format() == "channels_first": expected_output = expected_output.transpose((0, 4, 1, 2, 3)) x = x.transpose((0, 4, 1, 2, 3)) self.assertAllClose( layers.UpSampling3D(size=(2, 2, 2))(x), expected_output )
import numpy as np import pytest from absl.testing import parameterized from keras.src import backend from keras.src import layers from keras.src import testing class UpSampling3dTest(testing.TestCase, parameterized.TestCase): @parameterized.product( data_format=["channels_first", "channels_last"], length_dim1=[2, 3], length_dim2=[2], length_dim3=[3], ) @pytest.mark.requires_trainable_backend def test_upsampling_3d( self, data_format, length_dim1, length_dim2, length_dim3 ): num_samples = 2 stack_size = 2 input_len_dim1 = 10 input_len_dim2 = 11 input_len_dim3 = 12 if data_format == "channels_first": inputs = np.random.rand( num_samples, stack_size, input_len_dim1, input_len_dim2, input_len_dim3, ) else: inputs = np.random.rand( num_samples, input_len_dim1, input_len_dim2, input_len_dim3, stack_size, ) # basic test if data_format == "channels_first": expected_output_shape = (2, 2, 20, 22, 24) else: expected_output_shape = (2, 20, 22, 24, 2) self.run_layer_test( layers.UpSampling3D, init_kwargs={"size": (2, 2, 2), "data_format": data_format}, input_shape=inputs.shape, expected_output_shape=expected_output_shape, expected_output_dtype="float32", expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=False, ) layer = layers.UpSampling3D( size=(length_dim1, length_dim2, length_dim3), data_format=data_format, ) layer.build(inputs.shape) np_output = layer(inputs=backend.Variable(inputs)) if data_format == "channels_first": assert np_output.shape[2] == length_dim1 * input_len_dim1 assert np_output.shape[3] == length_dim2 * input_len_dim2 assert np_output.shape[4] == length_dim3 * input_len_dim3 else: # tf assert np_output.shape[1] == length_dim1 * input_len_dim1 assert np_output.shape[2] == length_dim2 * input_len_dim2 assert np_output.shape[3] == length_dim3 * input_len_dim3 # compare with numpy if data_format == "channels_first": expected_out = np.repeat(inputs, length_dim1, axis=2) expected_out = np.repeat(expected_out, length_dim2, axis=3) expected_out = np.repeat(expected_out, length_dim3, axis=4) else: # tf expected_out = np.repeat(inputs, length_dim1, axis=1) expected_out = np.repeat(expected_out, length_dim2, axis=2) expected_out = np.repeat(expected_out, length_dim3, axis=3) self.assertAllClose(np_output, expected_out) def test_upsampling_3d_correctness(self): input_shape = (2, 1, 2, 1, 3) x = np.arange(np.prod(input_shape)).reshape(input_shape) expected_output = np.array( [ [ [ [[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]], [[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]], [[3.0, 4.0, 5.0], [3.0, 4.0, 5.0]], [[3.0, 4.0, 5.0], [3.0, 4.0, 5.0]], ], [ [[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]], [[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]], [[3.0, 4.0, 5.0], [3.0, 4.0, 5.0]], [[3.0, 4.0, 5.0], [3.0, 4.0, 5.0]], ], ], [ [ [[6.0, 7.0, 8.0], [6.0, 7.0, 8.0]], [[6.0, 7.0, 8.0], [6.0, 7.0, 8.0]], [[9.0, 10.0, 11.0], [9.0, 10.0, 11.0]], [[9.0, 10.0, 11.0], [9.0, 10.0, 11.0]], ], [ [[6.0, 7.0, 8.0], [6.0, 7.0, 8.0]], [[6.0, 7.0, 8.0], [6.0, 7.0, 8.0]], [[9.0, 10.0, 11.0], [9.0, 10.0, 11.0]], [[9.0, 10.0, 11.0], [9.0, 10.0, 11.0]], ], ], ] ) if backend.config.image_data_format() == "channels_first": expected_output = expected_output.transpose((0, 4, 1, 2, 3)) x = x.transpose((0, 4, 1, 2, 3)) self.assertAllClose( layers.UpSampling3D(size=(2, 2, 2))(x), expected_output )
""" =================================== Demo of DBSCAN clustering algorithm =================================== DBSCAN (Density-Based Spatial Clustering of Applications with Noise) finds core samples in regions of high density and expands clusters from them. This algorithm is good for data which contains clusters of similar density. See the :ref:`sphx_glr_auto_examples_cluster_plot_cluster_comparison.py` example for a demo of different clustering algorithms on 2D datasets. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # Data generation # --------------- # # We use :class:`~sklearn.datasets.make_blobs` to create 3 synthetic clusters. from sklearn.datasets import make_blobs from sklearn.preprocessing import StandardScaler centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs( n_samples=750, centers=centers, cluster_std=0.4, random_state=0 ) X = StandardScaler().fit_transform(X) # %% # We can visualize the resulting data: import matplotlib.pyplot as plt plt.scatter(X[:, 0], X[:, 1]) plt.show() # %% # Compute DBSCAN # -------------- # # One can access the labels assigned by :class:`~sklearn.cluster.DBSCAN` using # the `labels_` attribute. Noisy samples are given the label :math:`-1`. import numpy as np from sklearn import metrics from sklearn.cluster import DBSCAN db = DBSCAN(eps=0.3, min_samples=10).fit(X) labels = db.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) n_noise_ = list(labels).count(-1) print("Estimated number of clusters: %d" % n_clusters_) print("Estimated number of noise points: %d" % n_noise_) # %% # Clustering algorithms are fundamentally unsupervised learning methods. # However, since :class:`~sklearn.datasets.make_blobs` gives access to the true # labels of the synthetic clusters, it is possible to use evaluation metrics # that leverage this "supervised" ground truth information to quantify the # quality of the resulting clusters. Examples of such metrics are the # homogeneity, completeness, V-measure, Rand-Index, Adjusted Rand-Index and # Adjusted Mutual Information (AMI). # # If the ground truth labels are not known, evaluation can only be performed # using the model results itself. In that case, the Silhouette Coefficient comes # in handy. # # For more information, see the # :ref:`sphx_glr_auto_examples_cluster_plot_adjusted_for_chance_measures.py` # example or the :ref:`clustering_evaluation` module. print(f"Homogeneity: {metrics.homogeneity_score(labels_true, labels):.3f}") print(f"Completeness: {metrics.completeness_score(labels_true, labels):.3f}") print(f"V-measure: {metrics.v_measure_score(labels_true, labels):.3f}") print(f"Adjusted Rand Index: {metrics.adjusted_rand_score(labels_true, labels):.3f}") print( "Adjusted Mutual Information:" f" {metrics.adjusted_mutual_info_score(labels_true, labels):.3f}" ) print(f"Silhouette Coefficient: {metrics.silhouette_score(X, labels):.3f}") # %% # Plot results # ------------ # # Core samples (large dots) and non-core samples (small dots) are color-coded # according to the assigned cluster. Samples tagged as noise are represented in # black. unique_labels = set(labels) core_samples_mask = np.zeros_like(labels, dtype=bool) core_samples_mask[db.core_sample_indices_] = True colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1, len(unique_labels))] for k, col in zip(unique_labels, colors): if k == -1: # Black used for noise. col = [0, 0, 0, 1] class_member_mask = labels == k xy = X[class_member_mask & core_samples_mask] plt.plot( xy[:, 0], xy[:, 1], "o", markerfacecolor=tuple(col), markeredgecolor="k", markersize=14, ) xy = X[class_member_mask & ~core_samples_mask] plt.plot( xy[:, 0], xy[:, 1], "o", markerfacecolor=tuple(col), markeredgecolor="k", markersize=6, ) plt.title(f"Estimated number of clusters: {n_clusters_}") plt.show()
""" =================================== Demo of DBSCAN clustering algorithm =================================== DBSCAN (Density-Based Spatial Clustering of Applications with Noise) finds core samples in regions of high density and expands clusters from them. This algorithm is good for data which contains clusters of similar density. See the :ref:`sphx_glr_auto_examples_cluster_plot_cluster_comparison.py` example for a demo of different clustering algorithms on 2D datasets. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # Data generation # --------------- # # We use :class:`~sklearn.datasets.make_blobs` to create 3 synthetic clusters. from sklearn.datasets import make_blobs from sklearn.preprocessing import StandardScaler centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs( n_samples=750, centers=centers, cluster_std=0.4, random_state=0 ) X = StandardScaler().fit_transform(X) # %% # We can visualize the resulting data: import matplotlib.pyplot as plt plt.scatter(X[:, 0], X[:, 1]) plt.show() # %% # Compute DBSCAN # -------------- # # One can access the labels assigned by :class:`~sklearn.cluster.DBSCAN` using # the `labels_` attribute. Noisy samples are given the label math:`-1`. import numpy as np from sklearn import metrics from sklearn.cluster import DBSCAN db = DBSCAN(eps=0.3, min_samples=10).fit(X) labels = db.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) n_noise_ = list(labels).count(-1) print("Estimated number of clusters: %d" % n_clusters_) print("Estimated number of noise points: %d" % n_noise_) # %% # Clustering algorithms are fundamentally unsupervised learning methods. # However, since :class:`~sklearn.datasets.make_blobs` gives access to the true # labels of the synthetic clusters, it is possible to use evaluation metrics # that leverage this "supervised" ground truth information to quantify the # quality of the resulting clusters. Examples of such metrics are the # homogeneity, completeness, V-measure, Rand-Index, Adjusted Rand-Index and # Adjusted Mutual Information (AMI). # # If the ground truth labels are not known, evaluation can only be performed # using the model results itself. In that case, the Silhouette Coefficient comes # in handy. # # For more information, see the # :ref:`sphx_glr_auto_examples_cluster_plot_adjusted_for_chance_measures.py` # example or the :ref:`clustering_evaluation` module. print(f"Homogeneity: {metrics.homogeneity_score(labels_true, labels):.3f}") print(f"Completeness: {metrics.completeness_score(labels_true, labels):.3f}") print(f"V-measure: {metrics.v_measure_score(labels_true, labels):.3f}") print(f"Adjusted Rand Index: {metrics.adjusted_rand_score(labels_true, labels):.3f}") print( "Adjusted Mutual Information:" f" {metrics.adjusted_mutual_info_score(labels_true, labels):.3f}" ) print(f"Silhouette Coefficient: {metrics.silhouette_score(X, labels):.3f}") # %% # Plot results # ------------ # # Core samples (large dots) and non-core samples (small dots) are color-coded # according to the assigned cluster. Samples tagged as noise are represented in # black. unique_labels = set(labels) core_samples_mask = np.zeros_like(labels, dtype=bool) core_samples_mask[db.core_sample_indices_] = True colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1, len(unique_labels))] for k, col in zip(unique_labels, colors): if k == -1: # Black used for noise. col = [0, 0, 0, 1] class_member_mask = labels == k xy = X[class_member_mask & core_samples_mask] plt.plot( xy[:, 0], xy[:, 1], "o", markerfacecolor=tuple(col), markeredgecolor="k", markersize=14, ) xy = X[class_member_mask & ~core_samples_mask] plt.plot( xy[:, 0], xy[:, 1], "o", markerfacecolor=tuple(col), markeredgecolor="k", markersize=6, ) plt.title(f"Estimated number of clusters: {n_clusters_}") plt.show()
_base_ = './faster-rcnn_s50_fpn_syncbn-backbone+head_ms-range-1x_coco.py' model = dict( backbone=dict( stem_channels=128, depth=101, init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest101')))
_base_ = './faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py' model = dict( backbone=dict( stem_channels=128, depth=101, init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest101')))
"""General node utils.""" import logging import uuid from typing import List, Optional, Protocol, runtime_checkable from llama_index.core.schema import ( BaseNode, Document, ImageDocument, ImageNode, NodeRelationship, TextNode, ) from llama_index.core.utils import truncate_text logger = logging.getLogger(__name__) @runtime_checkable class IdFuncCallable(Protocol): def __call__(self, i: int, doc: BaseNode) -> str: ... def default_id_func(i: int, doc: BaseNode) -> str: return str(uuid.uuid4()) def build_nodes_from_splits( text_splits: List[str], document: BaseNode, ref_doc: Optional[BaseNode] = None, id_func: Optional[IdFuncCallable] = None, ) -> List[TextNode]: """Build nodes from splits.""" ref_doc = ref_doc or document id_func = id_func or default_id_func nodes: List[TextNode] = [] """Calling as_related_node_info() on a document recomputes the hash for the whole text and metadata""" """It is not that bad, when creating relationships between the nodes, but is terrible when adding a relationship""" """between the node and a document, hence we create the relationship only once here and pass it to the nodes""" relationships = {NodeRelationship.SOURCE: ref_doc.as_related_node_info()} for i, text_chunk in enumerate(text_splits): logger.debug(f"> Adding chunk: {truncate_text(text_chunk, 50)}") if isinstance(document, ImageDocument): image_node = ImageNode( id_=id_func(i, document), text=text_chunk, embedding=document.embedding, image=document.image, image_path=document.image_path, image_url=document.image_url, excluded_embed_metadata_keys=document.excluded_embed_metadata_keys, excluded_llm_metadata_keys=document.excluded_llm_metadata_keys, metadata_seperator=document.metadata_separator, metadata_template=document.metadata_template, text_template=document.text_template, relationships=relationships, ) nodes.append(image_node) # type: ignore elif isinstance(document, Document): node = TextNode( id_=id_func(i, document), text=text_chunk, embedding=document.embedding, excluded_embed_metadata_keys=document.excluded_embed_metadata_keys, excluded_llm_metadata_keys=document.excluded_llm_metadata_keys, metadata_seperator=document.metadata_separator, metadata_template=document.metadata_template, text_template=document.text_template, relationships=relationships, ) nodes.append(node) elif isinstance(document, TextNode): node = TextNode( id_=id_func(i, document), text=text_chunk, embedding=document.embedding, excluded_embed_metadata_keys=document.excluded_embed_metadata_keys, excluded_llm_metadata_keys=document.excluded_llm_metadata_keys, metadata_seperator=document.metadata_seperator, metadata_template=document.metadata_template, text_template=document.text_template, relationships=relationships, ) nodes.append(node) else: raise ValueError(f"Unknown document type: {type(document)}") return nodes
"""General node utils.""" import logging import uuid from typing import List, Optional, Protocol, runtime_checkable from llama_index.core.schema import ( BaseNode, Document, ImageDocument, ImageNode, NodeRelationship, TextNode, ) from llama_index.core.utils import truncate_text logger = logging.getLogger(__name__) @runtime_checkable class IdFuncCallable(Protocol): def __call__(self, i: int, doc: BaseNode) -> str: ... def default_id_func(i: int, doc: BaseNode) -> str: return str(uuid.uuid4()) def build_nodes_from_splits( text_splits: List[str], document: BaseNode, ref_doc: Optional[BaseNode] = None, id_func: Optional[IdFuncCallable] = None, ) -> List[TextNode]: """Build nodes from splits.""" ref_doc = ref_doc or document id_func = id_func or default_id_func nodes: List[TextNode] = [] """Calling as_related_node_info() on a document recomputes the hash for the whole text and metadata""" """It is not that bad, when creating relationships between the nodes, but is terrible when adding a relationship""" """between the node and a document, hence we create the relationship only once here and pass it to the nodes""" relationships = {NodeRelationship.SOURCE: ref_doc.as_related_node_info()} for i, text_chunk in enumerate(text_splits): logger.debug(f"> Adding chunk: {truncate_text(text_chunk, 50)}") if isinstance(document, ImageDocument): image_node = ImageNode( id_=id_func(i, document), text=text_chunk, embedding=document.embedding, image=document.image, image_path=document.image_path, image_url=document.image_url, excluded_embed_metadata_keys=document.excluded_embed_metadata_keys, excluded_llm_metadata_keys=document.excluded_llm_metadata_keys, metadata_seperator=document.metadata_separator, metadata_template=document.metadata_template, text_template=document.text_template, relationships=relationships, ) nodes.append(image_node) # type: ignore elif isinstance(document, Document): node = TextNode( id_=id_func(i, document), text=text_chunk, embedding=document.embedding, excluded_embed_metadata_keys=document.excluded_embed_metadata_keys, excluded_llm_metadata_keys=document.excluded_llm_metadata_keys, metadata_seperator=document.metadata_separator, metadata_template=document.metadata_template, text_template=document.text_template, relationships=relationships, ) nodes.append(node) elif isinstance(document, TextNode): node = TextNode( id_=id_func(i, document), text=text_chunk, embedding=document.embedding, excluded_embed_metadata_keys=document.excluded_embed_metadata_keys, excluded_llm_metadata_keys=document.excluded_llm_metadata_keys, metadata_seperator=document.metadata_seperator, metadata_template=document.metadata_template, text_template=document.text_template, relationships=relationships, ) nodes.append(node) else: raise ValueError(f"Unknown document type: {type(document)}") return nodes
from workflows.types import StopEventT, RunResultT # noqa
from typing import Any, TypeVar, Union from .events import StopEvent StopEventT = TypeVar("StopEventT", bound=StopEvent) # TODO: When releasing 1.0, remove support for Any # and enforce usage of StopEventT RunResultT = Union[StopEventT, Any]
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import librosa from jina import Flow, Document, DocumentArray from ... import AudioCLIPEncoder cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_flow_from_yml(): doc = DocumentArray([Document()]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: resp = f.post(on='test', inputs=doc, return_results=True) assert resp is not None def test_embedding_exists(): x_audio, _ = librosa.load(os.path.join(cur_dir, '../test_data/sample.mp3')) doc = DocumentArray([Document(blob=x_audio)]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: responses = f.post(on='index', inputs=doc, return_results=True) assert responses[0].docs[0].embedding is not None assert responses[0].docs[0].embedding.shape == (1024, )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import librosa from jina import Flow, Document, DocumentArray cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_flow_from_yml(): doc = DocumentArray([Document()]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: resp = f.post(on='test', inputs=doc, return_results=True) assert resp is not None def test_embedding_exists(): x_audio, _ = librosa.load(os.path.join(cur_dir, '../test_data/sample.mp3')) doc = DocumentArray([Document(blob=x_audio)]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: responses = f.post(on='index', inputs=doc, return_results=True) assert responses[0].docs[0].embedding is not None assert responses[0].docs[0].embedding.shape == (1024, )
import re from typing import TYPE_CHECKING, Any, Dict, Union if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SentenceEvaluator: """ Base class for all evaluators Extend this class and implement __call__ for custom evaluators. """ def __init__(self): """ Base class for all evaluators. Notably, this class introduces the ``greater_is_better`` and ``primary_metric`` attributes. The former is a boolean indicating whether a higher evaluation score is better, which is used for choosing the best checkpoint if ``load_best_model_at_end`` is set to ``True`` in the training arguments. The latter is a string indicating the primary metric for the evaluator. This has to be defined whenever the evaluator returns a dictionary of metrics, and the primary metric is the key pointing to the primary metric, i.e. the one that is used for model selection and/or logging. """ self.greater_is_better = True self.primary_metric = None def __call__( self, model: "SentenceTransformer", output_path: str = None, epoch: int = -1, steps: int = -1 ) -> Union[float, Dict[str, float]]: """ This is called during training to evaluate the model. It returns a score for the evaluation with a higher score indicating a better result. Args: model: the model to evaluate output_path: path where predictions and metrics are written to epoch: the epoch where the evaluation takes place. This is used for the file prefixes. If this is -1, then we assume evaluation on test data. steps: the steps in the current epoch at time of the evaluation. This is used for the file prefixes. If this is -1, then we assume evaluation at the end of the epoch. Returns: Either a score for the evaluation with a higher score indicating a better result, or a dictionary with scores. If the latter is chosen, then `evaluator.primary_metric` must be defined """ pass def prefix_name_to_metrics(self, metrics: Dict[str, float], name: str) -> Dict[str, float]: if not name: return metrics metrics = {name + "_" + key: value for key, value in metrics.items()} if hasattr(self, "primary_metric") and not self.primary_metric.startswith(name + "_"): self.primary_metric = name + "_" + self.primary_metric return metrics def store_metrics_in_model_card_data(self, model: "SentenceTransformer", metrics: Dict[str, Any]) -> None: model.model_card_data.set_evaluation_metrics(self, metrics) @property def description(self) -> str: """ Returns a human-readable description of the evaluator: BinaryClassificationEvaluator -> Binary Classification 1. Remove "Evaluator" from the class name 2. Add a space before every capital letter """ class_name = self.__class__.__name__ try: index = class_name.index("Evaluator") class_name = class_name[:index] except IndexError: pass return re.sub(r"([a-z])([A-Z])", "\g<1> \g<2>", class_name)
import re from typing import TYPE_CHECKING, Any, Dict, Union if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SentenceEvaluator: """ Base class for all evaluators Extend this class and implement __call__ for custom evaluators. """ def __init__(self): """ Base class for all evaluators. Notably, this class introduces the ``greater_is_better`` and ``primary_metric`` attributes. The former is a boolean indicating whether a higher evaluation score is better, which is used for choosing the best checkpoint if ``load_best_model_at_end`` is set to ``True`` in the training arguments. The latter is a string indicating the primary metric for the evaluator. This has to be defined whenever the evaluator returns a dictionary of metrics, and the primary metric is the key pointing to the primary metric, i.e. the one that is used for model selection and/or logging. """ self.greater_is_better = True self.primary_metric = None def __call__( self, model: "SentenceTransformer", output_path: str = None, epoch: int = -1, steps: int = -1 ) -> Union[float, Dict[str, float]]: """ This is called during training to evaluate the model. It returns a score for the evaluation with a higher score indicating a better result. Args: model: the model to evaluate output_path: path where predictions and metrics are written to epoch: the epoch where the evaluation takes place. This is used for the file prefixes. If this is -1, then we assume evaluation on test data. steps: the steps in the current epoch at time of the evaluation. This is used for the file prefixes. If this is -1, then we assume evaluation at the end of the epoch. Returns: Either a score for the evaluation with a higher score indicating a better result, or a dictionary with scores. If the latter is chosen, then `evaluator.primary_metric` must be defined """ pass def prefix_name_to_metrics(self, metrics: Dict[str, float], name: str): if not name: return metrics metrics = {name + "_" + key: value for key, value in metrics.items()} if hasattr(self, "primary_metric") and not self.primary_metric.startswith(name + "_"): self.primary_metric = name + "_" + self.primary_metric return metrics def store_metrics_in_model_card_data(self, model: "SentenceTransformer", metrics: Dict[str, Any]) -> None: model.model_card_data.set_evaluation_metrics(self, metrics) @property def description(self) -> str: """ Returns a human-readable description of the evaluator: BinaryClassificationEvaluator -> Binary Classification 1. Remove "Evaluator" from the class name 2. Add a space before every capital letter """ class_name = self.__class__.__name__ try: index = class_name.index("Evaluator") class_name = class_name[:index] except IndexError: pass return re.sub(r"([a-z])([A-Z])", "\g<1> \g<2>", class_name)
_base_ = './cascade-mask-rcnn_convnext-t-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco.py' # noqa # please install mmpretrain # import mmpretrain.models to trigger register_module in mmpretrain custom_imports = dict( imports=['mmpretrain.models'], allow_failed_imports=False) checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-small_3rdparty_32xb128-noema_in1k_20220301-303e75e3.pth' # noqa model = dict( backbone=dict( _delete_=True, type='mmpretrain.ConvNeXt', arch='small', out_indices=[0, 1, 2, 3], drop_path_rate=0.6, layer_scale_init_value=1.0, gap_before_final_norm=False, init_cfg=dict( type='Pretrained', checkpoint=checkpoint_file, prefix='backbone.'))) optim_wrapper = dict(paramwise_cfg={ 'decay_rate': 0.7, 'decay_type': 'layer_wise', 'num_layers': 12 })
_base_ = './cascade-mask-rcnn_convnext-t-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco.py' # noqa # TODO: delete custom_imports after mmcls supports auto import # please install mmcls>=1.0 # import mmcls.models to trigger register_module in mmcls custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False) checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-small_3rdparty_32xb128-noema_in1k_20220301-303e75e3.pth' # noqa model = dict( backbone=dict( _delete_=True, type='mmcls.ConvNeXt', arch='small', out_indices=[0, 1, 2, 3], drop_path_rate=0.6, layer_scale_init_value=1.0, gap_before_final_norm=False, init_cfg=dict( type='Pretrained', checkpoint=checkpoint_file, prefix='backbone.'))) optim_wrapper = dict(paramwise_cfg={ 'decay_rate': 0.7, 'decay_type': 'layer_wise', 'num_layers': 12 })
from typing import TYPE_CHECKING, Dict, Iterable from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SequentialEvaluator(SentenceEvaluator): """ This evaluator allows that multiple sub-evaluators are passed. When the model is evaluated, the data is passed sequentially to all sub-evaluators. All scores are passed to 'main_score_function', which derives one final score value """ def __init__(self, evaluators: Iterable[SentenceEvaluator], main_score_function=lambda scores: scores[-1]): """ Initializes a SequentialEvaluator object. Args: evaluators (Iterable[SentenceEvaluator]): A collection of SentenceEvaluator objects. main_score_function (function, optional): A function that takes a list of scores and returns the main score. Defaults to selecting the last score in the list. Example: :: evaluator1 = BinaryClassificationEvaluator(...) evaluator2 = InformationRetrievalEvaluator(...) evaluator3 = MSEEvaluator(...) seq_evaluator = SequentialEvaluator([evaluator1, evaluator2, evaluator3]) """ super().__init__() self.evaluators = evaluators self.main_score_function = main_score_function def __call__( self, model: "SentenceTransformer", output_path: str = None, epoch: int = -1, steps: int = -1 ) -> Dict[str, float]: evaluations = [] scores = [] for evaluator_idx, evaluator in enumerate(self.evaluators): evaluation = evaluator(model, output_path, epoch, steps) if not isinstance(evaluation, dict): scores.append(evaluation) evaluation = {f"evaluator_{evaluator_idx}": evaluation} else: if hasattr(evaluator, "primary_metric"): scores.append(evaluation[evaluator.primary_metric]) else: scores.append(evaluation[list(evaluation.keys())[0]]) evaluations.append(evaluation) self.primary_metric = "sequential_score" main_score = self.main_score_function(scores) results = {key: value for evaluation in evaluations for key, value in evaluation.items()} results["sequential_score"] = main_score return results
from typing import TYPE_CHECKING, Dict, Iterable from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SequentialEvaluator(SentenceEvaluator): """ This evaluator allows that multiple sub-evaluators are passed. When the model is evaluated, the data is passed sequentially to all sub-evaluators. All scores are passed to 'main_score_function', which derives one final score value """ def __init__(self, evaluators: Iterable[SentenceEvaluator], main_score_function=lambda scores: scores[-1]): """ Initializes a SequentialEvaluator object. Args: evaluators (Iterable[SentenceEvaluator]): A collection of SentenceEvaluator objects. main_score_function (function, optional): A function that takes a list of scores and returns the main score. Defaults to selecting the last score in the list. Example: :: evaluator1 = BinaryClassificationEvaluator(...) evaluator2 = InformationRetrievalEvaluator(...) evaluator3 = MSEEvaluator(...) seq_evaluator = SequentialEvaluator([evaluator1, evaluator2, evaluator3]) """ super().__init__() self.evaluators = evaluators self.main_score_function = main_score_function def __call__( self, model: "SentenceTransformer", output_path: str = None, epoch: int = -1, steps: int = -1 ) -> Dict[str, float]: evaluations = [] scores = [] for evaluator_idx, evaluator in enumerate(self.evaluators): evaluation = evaluator(model, output_path, epoch, steps) if not isinstance(evaluation, dict): scores.append(evaluation) evaluation = {f"evaluator_{evaluator_idx}": evaluation} else: if hasattr(evaluation, "primary_metric"): scores.append(evaluation[evaluation.primary_metric]) else: scores.append(evaluation[list(evaluation.keys())[0]]) evaluations.append(evaluation) self.primary_metric = "sequential_score" main_score = self.main_score_function(scores) results = {key: value for evaluation in evaluations for key, value in evaluation.items()} results["sequential_score"] = main_score return results
from typing import Any from langchain_core.documents import Document from langchain_core.messages import AIMessage, AIMessageChunk, HumanMessage class AnyStr(str): __slots__ = () def __eq__(self, other: object) -> bool: return isinstance(other, str) # The code below creates version of pydantic models # that will work in unit tests with AnyStr as id field # Please note that the `id` field is assigned AFTER the model is created # to workaround an issue with pydantic ignoring the __eq__ method on # subclassed strings. def _any_id_document(**kwargs: Any) -> Document: """Create a document with an id field.""" message = Document(**kwargs) message.id = AnyStr() return message def _any_id_ai_message(**kwargs: Any) -> AIMessage: """Create ai message with an any id field.""" message = AIMessage(**kwargs) message.id = AnyStr() return message def _any_id_ai_message_chunk(**kwargs: Any) -> AIMessageChunk: """Create ai message with an any id field.""" message = AIMessageChunk(**kwargs) message.id = AnyStr() return message def _any_id_human_message(**kwargs: Any) -> HumanMessage: """Create a human with an any id field.""" message = HumanMessage(**kwargs) message.id = AnyStr() return message
from typing import Any from langchain_core.documents import Document from langchain_core.messages import AIMessage, AIMessageChunk, HumanMessage class AnyStr(str): __slots__ = () def __eq__(self, other: Any) -> bool: return isinstance(other, str) # The code below creates version of pydantic models # that will work in unit tests with AnyStr as id field # Please note that the `id` field is assigned AFTER the model is created # to workaround an issue with pydantic ignoring the __eq__ method on # subclassed strings. def _any_id_document(**kwargs: Any) -> Document: """Create a document with an id field.""" message = Document(**kwargs) message.id = AnyStr() return message def _any_id_ai_message(**kwargs: Any) -> AIMessage: """Create ai message with an any id field.""" message = AIMessage(**kwargs) message.id = AnyStr() return message def _any_id_ai_message_chunk(**kwargs: Any) -> AIMessageChunk: """Create ai message with an any id field.""" message = AIMessageChunk(**kwargs) message.id = AnyStr() return message def _any_id_human_message(**kwargs: Any) -> HumanMessage: """Create a human with an any id field.""" message = HumanMessage(**kwargs) message.id = AnyStr() return message
from typing import TypeVar from docarray.document.base_node import BaseNode from .ndarray import Embedding, Tensor from .url import ImageUrl T = TypeVar('T') __all__ = ['Tensor', 'Embedding', 'BaseNode']
from typing import ( Union, TYPE_CHECKING, TypeVar, Sequence, Optional, List, Dict, Generator, Iterable, Tuple, ForwardRef, ) if TYPE_CHECKING: # pragma: no cover import scipy.sparse import tensorflow import torch import numpy as np from PIL.Image import Image as PILImage from docarray import Document ArrayType = TypeVar( 'ArrayType', np.ndarray, scipy.sparse.spmatrix, tensorflow.SparseTensor, tensorflow.Tensor, torch.Tensor, Sequence[float], ) DocumentContentType = Union[bytes, str, ArrayType] ProtoValueType = Optional[Union[str, bool, float]] StructValueType = Union[ ProtoValueType, List[ProtoValueType], Dict[str, ProtoValueType] ] DocumentArraySourceType = Union[ Sequence[Document], Document, Generator[Document], Iterable[Document] ] T = TypeVar('T') AnyDNN = TypeVar( 'AnyDNN' ) #: The type of any implementation of a Deep Neural Network object DocumentArraySingletonIndexType = Union[int, str] DocumentArrayMultipleIndexType = Union[ slice, Sequence[int], Sequence[str], Sequence[bool], Ellipsis ] DocumentArraySingleAttributeType = Tuple[ Union[DocumentArraySingletonIndexType, DocumentArrayMultipleIndexType], str ] DocumentArrayMultipleAttributeType = Tuple[ Union[DocumentArraySingletonIndexType, DocumentArrayMultipleIndexType], Sequence[str], ] DocumentArrayIndexType = Union[ DocumentArraySingletonIndexType, DocumentArrayMultipleIndexType, DocumentArraySingleAttributeType, DocumentArrayMultipleAttributeType, ] Image = TypeVar( 'Image', str, ForwardRef('np.ndarray'), ForwardRef('PILImage'), ) Text = TypeVar('Text', bound=str) URI = TypeVar('URI', bound=str) Audio = TypeVar('Audio', str, ForwardRef('np.ndarray')) Video = TypeVar('Video', str, ForwardRef('np.ndarray')) Mesh = TypeVar('Mesh', str, ForwardRef('np.ndarray')) Tabular = TypeVar('Tabular', bound=str) Blob = TypeVar('Blob', str, bytes) JSON = TypeVar('JSON', str, dict)
# coding=utf-8 # Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import requests from packaging.version import parse # GitHub repository details USER = "huggingface" REPO = "diffusers" def fetch_all_branches(user, repo): branches = [] # List to store all branches page = 1 # Start from first page while True: # Make a request to the GitHub API for the branches response = requests.get( f"https://api.github.com/repos/{user}/{repo}/branches", params={"page": page}, timeout=60, ) # Check if the request was successful if response.status_code == 200: # Add the branches from the current page to the list branches.extend([branch["name"] for branch in response.json()]) # Check if there is a 'next' link for pagination if "next" in response.links: page += 1 # Move to the next page else: break # Exit loop if there is no next page else: print("Failed to retrieve branches:", response.status_code) break return branches def main(): # Fetch all branches branches = fetch_all_branches(USER, REPO) # Filter branches. # print(f"Total branches: {len(branches)}") filtered_branches = [] for branch in branches: if branch.startswith("v") and ("-release" in branch or "-patch" in branch): filtered_branches.append(branch) # print(f"Filtered: {branch}") sorted_branches = sorted(filtered_branches, key=lambda x: parse(x.split("-")[0][1:]), reverse=True) latest_branch = sorted_branches[0] # print(f"Latest branch: {latest_branch}") return latest_branch if __name__ == "__main__": print(main())
# coding=utf-8 # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import requests from packaging.version import parse # GitHub repository details USER = "huggingface" REPO = "diffusers" def fetch_all_branches(user, repo): branches = [] # List to store all branches page = 1 # Start from first page while True: # Make a request to the GitHub API for the branches response = requests.get( f"https://api.github.com/repos/{user}/{repo}/branches", params={"page": page}, timeout=60, ) # Check if the request was successful if response.status_code == 200: # Add the branches from the current page to the list branches.extend([branch["name"] for branch in response.json()]) # Check if there is a 'next' link for pagination if "next" in response.links: page += 1 # Move to the next page else: break # Exit loop if there is no next page else: print("Failed to retrieve branches:", response.status_code) break return branches def main(): # Fetch all branches branches = fetch_all_branches(USER, REPO) # Filter branches. # print(f"Total branches: {len(branches)}") filtered_branches = [] for branch in branches: if branch.startswith("v") and ("-release" in branch or "-patch" in branch): filtered_branches.append(branch) # print(f"Filtered: {branch}") sorted_branches = sorted(filtered_branches, key=lambda x: parse(x.split("-")[0][1:]), reverse=True) latest_branch = sorted_branches[0] # print(f"Latest branch: {latest_branch}") return latest_branch if __name__ == "__main__": print(main())
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from functools import update_wrapper, wraps from types import MethodType class _AvailableIfDescriptor: """Implements a conditional property using the descriptor protocol. Using this class to create a decorator will raise an ``AttributeError`` if check(self) returns a falsey value. Note that if check raises an error this will also result in hasattr returning false. See https://docs.python.org/3/howto/descriptor.html for an explanation of descriptors. """ def __init__(self, fn, check, attribute_name): self.fn = fn self.check = check self.attribute_name = attribute_name # update the docstring of the descriptor update_wrapper(self, fn) def _check(self, obj, owner): attr_err_msg = ( f"This {owner.__name__!r} has no attribute {self.attribute_name!r}" ) try: check_result = self.check(obj) except Exception as e: raise AttributeError(attr_err_msg) from e if not check_result: raise AttributeError(attr_err_msg) def __get__(self, obj, owner=None): if obj is not None: # delegate only on instances, not the classes. # this is to allow access to the docstrings. self._check(obj, owner=owner) out = MethodType(self.fn, obj) else: # This makes it possible to use the decorated method as an unbound method, # for instance when monkeypatching. @wraps(self.fn) def out(*args, **kwargs): self._check(args[0], owner=owner) return self.fn(*args, **kwargs) return out def available_if(check): """An attribute that is available only if check returns a truthy value. Parameters ---------- check : callable When passed the object with the decorated method, this should return a truthy value if the attribute is available, and either return False or raise an AttributeError if not available. Returns ------- callable Callable makes the decorated method available if `check` returns a truthy value, otherwise the decorated method is unavailable. Examples -------- >>> from sklearn.utils.metaestimators import available_if >>> class HelloIfEven: ... def __init__(self, x): ... self.x = x ... ... def _x_is_even(self): ... return self.x % 2 == 0 ... ... @available_if(_x_is_even) ... def say_hello(self): ... print("Hello") ... >>> obj = HelloIfEven(1) >>> hasattr(obj, "say_hello") False >>> obj.x = 2 >>> hasattr(obj, "say_hello") True >>> obj.say_hello() Hello """ return lambda fn: _AvailableIfDescriptor(fn, check, attribute_name=fn.__name__)
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from functools import update_wrapper, wraps from types import MethodType class _AvailableIfDescriptor: """Implements a conditional property using the descriptor protocol. Using this class to create a decorator will raise an ``AttributeError`` if check(self) returns a falsey value. Note that if check raises an error this will also result in hasattr returning false. See https://docs.python.org/3/howto/descriptor.html for an explanation of descriptors. """ def __init__(self, fn, check, attribute_name): self.fn = fn self.check = check self.attribute_name = attribute_name # update the docstring of the descriptor update_wrapper(self, fn) def _check(self, obj, owner): attr_err_msg = ( f"This {repr(owner.__name__)} has no attribute {repr(self.attribute_name)}" ) try: check_result = self.check(obj) except Exception as e: raise AttributeError(attr_err_msg) from e if not check_result: raise AttributeError(attr_err_msg) def __get__(self, obj, owner=None): if obj is not None: # delegate only on instances, not the classes. # this is to allow access to the docstrings. self._check(obj, owner=owner) out = MethodType(self.fn, obj) else: # This makes it possible to use the decorated method as an unbound method, # for instance when monkeypatching. @wraps(self.fn) def out(*args, **kwargs): self._check(args[0], owner=owner) return self.fn(*args, **kwargs) return out def available_if(check): """An attribute that is available only if check returns a truthy value. Parameters ---------- check : callable When passed the object with the decorated method, this should return a truthy value if the attribute is available, and either return False or raise an AttributeError if not available. Returns ------- callable Callable makes the decorated method available if `check` returns a truthy value, otherwise the decorated method is unavailable. Examples -------- >>> from sklearn.utils.metaestimators import available_if >>> class HelloIfEven: ... def __init__(self, x): ... self.x = x ... ... def _x_is_even(self): ... return self.x % 2 == 0 ... ... @available_if(_x_is_even) ... def say_hello(self): ... print("Hello") ... >>> obj = HelloIfEven(1) >>> hasattr(obj, "say_hello") False >>> obj.x = 2 >>> hasattr(obj, "say_hello") True >>> obj.say_hello() Hello """ return lambda fn: _AvailableIfDescriptor(fn, check, attribute_name=fn.__name__)
from sentence_transformers import losses, SentenceTransformer, util class AnglELoss(losses.CoSENTLoss): def __init__(self, model: SentenceTransformer, scale: float = 20.0): """ This class implements AnglE (Angle Optimized) loss. This is a modification of :class:`CoSENTLoss`, designed to address the following issue: The cosine function's gradient approaches 0 as the wave approaches the top or bottom of its form. This can hinder the optimization process, so AnglE proposes to instead optimize the angle difference in complex space in order to mitigate this effect. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. This is the same as CoSENTLoss, with a different similarity function. Args: model: SentenceTransformerModel scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://arxiv.org/abs/2309.12871v1 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Relations: - :class:`CoSENTLoss` is AnglELoss with ``pairwise_cos_sim`` as the metric, rather than ``pairwise_angle_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than ``CoSENTLoss`` or ``AnglELoss``. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.AnglELoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim) @property def citation(self) -> str: return """ @misc{li2023angleoptimized, title={AnglE-optimized Text Embeddings}, author={Xianming Li and Jing Li}, year={2023}, eprint={2309.12871}, archivePrefix={arXiv}, primaryClass={cs.CL} } """
from sentence_transformers import losses, SentenceTransformer, util class AnglELoss(losses.CoSENTLoss): def __init__(self, model: SentenceTransformer, scale: float = 20.0): """ This class implements AnglE (Angle Optimized) loss. This is a modification of :class:`CoSENTLoss`, designed to address the following issue: The cosine function's gradient approaches 0 as the wave approaches the top or bottom of its form. This can hinder the optimization process, so AnglE proposes to instead optimize the angle difference in complex space in order to mitigate this effect. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. This is the same as CoSENTLoss, with a different similarity function. :param model: SentenceTransformerModel :param scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://arxiv.org/abs/2309.12871v1 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Relations: - :class:`CoSENTLoss` is AnglELoss with ``pairwise_cos_sim`` as the metric, rather than ``pairwise_angle_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than ``CoSENTLoss`` or ``AnglELoss``. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, losses from sentence_transformers.readers import InputExample model = SentenceTransformer('bert-base-uncased') train_examples = [InputExample(texts=['My first sentence', 'My second sentence'], label=1.0), InputExample(texts=['My third sentence', 'Unrelated sentence'], label=0.3)] train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=train_batch_size) train_loss = losses.AnglELoss(model=model) """ super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim) @property def citation(self) -> str: return """ @misc{li2023angleoptimized, title={AnglE-optimized Text Embeddings}, author={Xianming Li and Jing Li}, year={2023}, eprint={2309.12871}, archivePrefix={arXiv}, primaryClass={cs.CL} } """
import gc import unittest import pytest import torch from diffusers import ( StableDiffusionUpscalePipeline, ) from diffusers.utils import load_image from diffusers.utils.testing_utils import ( backend_empty_cache, enable_full_determinism, numpy_cosine_similarity_distance, require_torch_accelerator, slow, torch_device, ) from .single_file_testing_utils import SDSingleFileTesterMixin enable_full_determinism() @slow @require_torch_accelerator class StableDiffusionUpscalePipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): pipeline_class = StableDiffusionUpscalePipeline ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler/blob/main/x4-upscaler-ema.safetensors" original_config = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/x4-upscaling.yaml" repo_id = "stabilityai/stable-diffusion-x4-upscaler" def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def test_single_file_format_inference_is_same_as_pretrained(self): image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) prompt = "a cat sitting on a park bench" pipe = StableDiffusionUpscalePipeline.from_pretrained(self.repo_id) pipe.enable_model_cpu_offload(device=torch_device) generator = torch.Generator("cpu").manual_seed(0) output = pipe(prompt=prompt, image=image, generator=generator, output_type="np", num_inference_steps=3) image_from_pretrained = output.images[0] pipe_from_single_file = StableDiffusionUpscalePipeline.from_single_file(self.ckpt_path) pipe_from_single_file.enable_model_cpu_offload(device=torch_device) generator = torch.Generator("cpu").manual_seed(0) output_from_single_file = pipe_from_single_file( prompt=prompt, image=image, generator=generator, output_type="np", num_inference_steps=3 ) image_from_single_file = output_from_single_file.images[0] assert image_from_pretrained.shape == (512, 512, 3) assert image_from_single_file.shape == (512, 512, 3) assert ( numpy_cosine_similarity_distance(image_from_pretrained.flatten(), image_from_single_file.flatten()) < 1e-3 ) @pytest.mark.xfail( condition=True, reason="Test fails because of mismatches in the configs but it is very hard to properly fix this considering downstream usecase.", strict=True, ) def test_single_file_components_with_original_config(self): super().test_single_file_components_with_original_config() @pytest.mark.xfail( condition=True, reason="Test fails because of mismatches in the configs but it is very hard to properly fix this considering downstream usecase.", strict=True, ) def test_single_file_components_with_original_config_local_files_only(self): super().test_single_file_components_with_original_config_local_files_only()
import gc import unittest import pytest import torch from diffusers import ( StableDiffusionUpscalePipeline, ) from diffusers.utils import load_image from diffusers.utils.testing_utils import ( backend_empty_cache, enable_full_determinism, numpy_cosine_similarity_distance, require_torch_accelerator, slow, torch_device, ) from .single_file_testing_utils import SDSingleFileTesterMixin enable_full_determinism() @slow @require_torch_accelerator class StableDiffusionUpscalePipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): pipeline_class = StableDiffusionUpscalePipeline ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler/blob/main/x4-upscaler-ema.safetensors" original_config = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/x4-upscaling.yaml" repo_id = "stabilityai/stable-diffusion-x4-upscaler" def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def test_single_file_format_inference_is_same_as_pretrained(self): image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) prompt = "a cat sitting on a park bench" pipe = StableDiffusionUpscalePipeline.from_pretrained(self.repo_id) pipe.enable_model_cpu_offload() generator = torch.Generator("cpu").manual_seed(0) output = pipe(prompt=prompt, image=image, generator=generator, output_type="np", num_inference_steps=3) image_from_pretrained = output.images[0] pipe_from_single_file = StableDiffusionUpscalePipeline.from_single_file(self.ckpt_path) pipe_from_single_file.enable_model_cpu_offload() generator = torch.Generator("cpu").manual_seed(0) output_from_single_file = pipe_from_single_file( prompt=prompt, image=image, generator=generator, output_type="np", num_inference_steps=3 ) image_from_single_file = output_from_single_file.images[0] assert image_from_pretrained.shape == (512, 512, 3) assert image_from_single_file.shape == (512, 512, 3) assert ( numpy_cosine_similarity_distance(image_from_pretrained.flatten(), image_from_single_file.flatten()) < 1e-3 ) @pytest.mark.xfail( condition=True, reason="Test fails because of mismatches in the configs but it is very hard to properly fix this considering downstream usecase.", strict=True, ) def test_single_file_components_with_original_config(self): super().test_single_file_components_with_original_config() @pytest.mark.xfail( condition=True, reason="Test fails because of mismatches in the configs but it is very hard to properly fix this considering downstream usecase.", strict=True, ) def test_single_file_components_with_original_config_local_files_only(self): super().test_single_file_components_with_original_config_local_files_only()
""" This is a simple application for sentence embeddings: clustering Sentences are mapped to sentence embeddings and then k-mean clustering is applied. """ from sklearn.cluster import KMeans from sentence_transformers import SentenceTransformer embedder = SentenceTransformer("all-MiniLM-L6-v2") # Corpus with example sentences corpus = [ "A man is eating food.", "A man is eating a piece of bread.", "A man is eating pasta.", "The girl is carrying a baby.", "The baby is carried by the woman", "A man is riding a horse.", "A man is riding a white horse on an enclosed ground.", "A monkey is playing drums.", "Someone in a gorilla costume is playing a set of drums.", "A cheetah is running behind its prey.", "A cheetah chases prey on across a field.", ] corpus_embeddings = embedder.encode(corpus) # Perform kmean clustering num_clusters = 5 clustering_model = KMeans(n_clusters=num_clusters) clustering_model.fit(corpus_embeddings) cluster_assignment = clustering_model.labels_ clustered_sentences = [[] for i in range(num_clusters)] for sentence_id, cluster_id in enumerate(cluster_assignment): clustered_sentences[cluster_id].append(corpus[sentence_id]) for i, cluster in enumerate(clustered_sentences): print("Cluster ", i + 1) print(cluster) print("")
""" This is a simple application for sentence embeddings: clustering Sentences are mapped to sentence embeddings and then k-mean clustering is applied. """ from sentence_transformers import SentenceTransformer from sklearn.cluster import KMeans embedder = SentenceTransformer("all-MiniLM-L6-v2") # Corpus with example sentences corpus = [ "A man is eating food.", "A man is eating a piece of bread.", "A man is eating pasta.", "The girl is carrying a baby.", "The baby is carried by the woman", "A man is riding a horse.", "A man is riding a white horse on an enclosed ground.", "A monkey is playing drums.", "Someone in a gorilla costume is playing a set of drums.", "A cheetah is running behind its prey.", "A cheetah chases prey on across a field.", ] corpus_embeddings = embedder.encode(corpus) # Perform kmean clustering num_clusters = 5 clustering_model = KMeans(n_clusters=num_clusters) clustering_model.fit(corpus_embeddings) cluster_assignment = clustering_model.labels_ clustered_sentences = [[] for i in range(num_clusters)] for sentence_id, cluster_id in enumerate(cluster_assignment): clustered_sentences[cluster_id].append(corpus[sentence_id]) for i, cluster in enumerate(clustered_sentences): print("Cluster ", i + 1) print(cluster) print("")
"""**Callback handlers** allow listening to events in LangChain. **Class hierarchy:** .. code-block:: BaseCallbackHandler --> <name>CallbackHandler # Example: AimCallbackHandler """ from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from langchain_core.callbacks.base import ( AsyncCallbackHandler, BaseCallbackHandler, BaseCallbackManager, CallbackManagerMixin, Callbacks, ChainManagerMixin, LLMManagerMixin, RetrieverManagerMixin, RunManagerMixin, ToolManagerMixin, ) from langchain_core.callbacks.file import FileCallbackHandler from langchain_core.callbacks.manager import ( AsyncCallbackManager, AsyncCallbackManagerForChainGroup, AsyncCallbackManagerForChainRun, AsyncCallbackManagerForLLMRun, AsyncCallbackManagerForRetrieverRun, AsyncCallbackManagerForToolRun, AsyncParentRunManager, AsyncRunManager, BaseRunManager, CallbackManager, CallbackManagerForChainGroup, CallbackManagerForChainRun, CallbackManagerForLLMRun, CallbackManagerForRetrieverRun, CallbackManagerForToolRun, ParentRunManager, RunManager, adispatch_custom_event, dispatch_custom_event, ) from langchain_core.callbacks.stdout import StdOutCallbackHandler from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain_core.callbacks.usage import ( UsageMetadataCallbackHandler, get_usage_metadata_callback, ) __all__ = ( "AsyncCallbackHandler", "AsyncCallbackManager", "AsyncCallbackManagerForChainGroup", "AsyncCallbackManagerForChainRun", "AsyncCallbackManagerForLLMRun", "AsyncCallbackManagerForRetrieverRun", "AsyncCallbackManagerForToolRun", "AsyncParentRunManager", "AsyncRunManager", "BaseCallbackHandler", "BaseCallbackManager", "BaseRunManager", "CallbackManager", "CallbackManagerForChainGroup", "CallbackManagerForChainRun", "CallbackManagerForLLMRun", "CallbackManagerForRetrieverRun", "CallbackManagerForToolRun", "CallbackManagerMixin", "Callbacks", "ChainManagerMixin", "FileCallbackHandler", "LLMManagerMixin", "ParentRunManager", "RetrieverManagerMixin", "RunManager", "RunManagerMixin", "StdOutCallbackHandler", "StreamingStdOutCallbackHandler", "ToolManagerMixin", "UsageMetadataCallbackHandler", "adispatch_custom_event", "dispatch_custom_event", "get_usage_metadata_callback", ) _dynamic_imports = { "AsyncCallbackHandler": "base", "BaseCallbackHandler": "base", "BaseCallbackManager": "base", "CallbackManagerMixin": "base", "Callbacks": "base", "ChainManagerMixin": "base", "LLMManagerMixin": "base", "RetrieverManagerMixin": "base", "RunManagerMixin": "base", "ToolManagerMixin": "base", "FileCallbackHandler": "file", "AsyncCallbackManager": "manager", "AsyncCallbackManagerForChainGroup": "manager", "AsyncCallbackManagerForChainRun": "manager", "AsyncCallbackManagerForLLMRun": "manager", "AsyncCallbackManagerForRetrieverRun": "manager", "AsyncCallbackManagerForToolRun": "manager", "AsyncParentRunManager": "manager", "AsyncRunManager": "manager", "BaseRunManager": "manager", "CallbackManager": "manager", "CallbackManagerForChainGroup": "manager", "CallbackManagerForChainRun": "manager", "CallbackManagerForLLMRun": "manager", "CallbackManagerForRetrieverRun": "manager", "CallbackManagerForToolRun": "manager", "ParentRunManager": "manager", "RunManager": "manager", "adispatch_custom_event": "manager", "dispatch_custom_event": "manager", "StdOutCallbackHandler": "stdout", "StreamingStdOutCallbackHandler": "streaming_stdout", "UsageMetadataCallbackHandler": "usage", "get_usage_metadata_callback": "usage", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""**Callback handlers** allow listening to events in LangChain. **Class hierarchy:** .. code-block:: BaseCallbackHandler --> <name>CallbackHandler # Example: AimCallbackHandler """ from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from langchain_core.callbacks.base import ( AsyncCallbackHandler, BaseCallbackHandler, BaseCallbackManager, CallbackManagerMixin, Callbacks, ChainManagerMixin, LLMManagerMixin, RetrieverManagerMixin, RunManagerMixin, ToolManagerMixin, ) from langchain_core.callbacks.file import FileCallbackHandler from langchain_core.callbacks.manager import ( AsyncCallbackManager, AsyncCallbackManagerForChainGroup, AsyncCallbackManagerForChainRun, AsyncCallbackManagerForLLMRun, AsyncCallbackManagerForRetrieverRun, AsyncCallbackManagerForToolRun, AsyncParentRunManager, AsyncRunManager, BaseRunManager, CallbackManager, CallbackManagerForChainGroup, CallbackManagerForChainRun, CallbackManagerForLLMRun, CallbackManagerForRetrieverRun, CallbackManagerForToolRun, ParentRunManager, RunManager, adispatch_custom_event, dispatch_custom_event, ) from langchain_core.callbacks.stdout import StdOutCallbackHandler from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain_core.callbacks.usage import ( UsageMetadataCallbackHandler, get_usage_metadata_callback, ) __all__ = ( "dispatch_custom_event", "adispatch_custom_event", "RetrieverManagerMixin", "LLMManagerMixin", "ChainManagerMixin", "ToolManagerMixin", "Callbacks", "CallbackManagerMixin", "RunManagerMixin", "BaseCallbackHandler", "AsyncCallbackHandler", "BaseCallbackManager", "BaseRunManager", "RunManager", "ParentRunManager", "AsyncRunManager", "AsyncParentRunManager", "CallbackManagerForLLMRun", "AsyncCallbackManagerForLLMRun", "CallbackManagerForChainRun", "AsyncCallbackManagerForChainRun", "CallbackManagerForToolRun", "AsyncCallbackManagerForToolRun", "CallbackManagerForRetrieverRun", "AsyncCallbackManagerForRetrieverRun", "CallbackManager", "CallbackManagerForChainGroup", "AsyncCallbackManager", "AsyncCallbackManagerForChainGroup", "StdOutCallbackHandler", "StreamingStdOutCallbackHandler", "FileCallbackHandler", "UsageMetadataCallbackHandler", "get_usage_metadata_callback", ) _dynamic_imports = { "AsyncCallbackHandler": "base", "BaseCallbackHandler": "base", "BaseCallbackManager": "base", "CallbackManagerMixin": "base", "Callbacks": "base", "ChainManagerMixin": "base", "LLMManagerMixin": "base", "RetrieverManagerMixin": "base", "RunManagerMixin": "base", "ToolManagerMixin": "base", "FileCallbackHandler": "file", "AsyncCallbackManager": "manager", "AsyncCallbackManagerForChainGroup": "manager", "AsyncCallbackManagerForChainRun": "manager", "AsyncCallbackManagerForLLMRun": "manager", "AsyncCallbackManagerForRetrieverRun": "manager", "AsyncCallbackManagerForToolRun": "manager", "AsyncParentRunManager": "manager", "AsyncRunManager": "manager", "BaseRunManager": "manager", "CallbackManager": "manager", "CallbackManagerForChainGroup": "manager", "CallbackManagerForChainRun": "manager", "CallbackManagerForLLMRun": "manager", "CallbackManagerForRetrieverRun": "manager", "CallbackManagerForToolRun": "manager", "ParentRunManager": "manager", "RunManager": "manager", "adispatch_custom_event": "manager", "dispatch_custom_event": "manager", "StdOutCallbackHandler": "stdout", "StreamingStdOutCallbackHandler": "streaming_stdout", "UsageMetadataCallbackHandler": "usage", "get_usage_metadata_callback": "usage", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
from docarray.document.any_document import AnyDocument from docarray.document.base_node import BaseNode from docarray.document.document import BaseDocument __all__ = ['AnyDocument', 'BaseDocument', 'BaseNode']
from docarray.document.any_document import AnyDocument from docarray.document.document import BaseDocument __all__ = ['AnyDocument', 'BaseDocument']
import torchaudio _LAZILY_IMPORTED = [ "StreamReader", "StreamReaderSourceStream", "StreamReaderSourceAudioStream", "StreamReaderSourceVideoStream", "StreamReaderOutputStream", ] def __getattr__(name: str): if name in _LAZILY_IMPORTED: torchaudio._extension._init_ffmpeg() from . import _stream_reader item = getattr(_stream_reader, name) globals()[name] = item return item raise AttributeError(f"module {__name__} has no attribute {name}") def __dir__(): return sorted(__all__ + _LAZILY_IMPORTED) __all__ = []
_INITIALIZED = False _LAZILY_IMPORTED = [ "StreamReader", "StreamReaderSourceStream", "StreamReaderSourceAudioStream", "StreamReaderSourceVideoStream", "StreamReaderOutputStream", ] def _init_extension(): import torch import torchaudio try: torchaudio._extension._load_lib("libtorchaudio_ffmpeg") import torchaudio._torchaudio_ffmpeg except OSError as err: raise ImportError( "Stream API requires FFmpeg libraries (libavformat and such). Please install FFmpeg 4." ) from err try: torch.ops.torchaudio.ffmpeg_init() except RuntimeError as err: raise RuntimeError( "Stream API requires FFmpeg binding. Please set USE_FFMPEG=1 when building from source." ) from err global _INITIALIZED _INITIALIZED = True def __getattr__(name: str): if name in _LAZILY_IMPORTED: if not _INITIALIZED: _init_extension() from . import _stream_reader item = getattr(_stream_reader, name) globals()[name] = item return item raise AttributeError(f"module {__name__} has no attribute {name}") def __dir__(): return sorted(__all__ + _LAZILY_IMPORTED) __all__ = []
"""LlamaPack class.""" from typing import Any, Dict from llama_index.core.llama_pack.base import BaseLlamaPack # backwards compatibility try: from llama_index.agent.legacy.openai_agent import OpenAIAgent except ImportError: from llama_index.agent.openai import OpenAIAgent class GmailOpenAIAgentPack(BaseLlamaPack): def __init__(self, gmail_tool_kwargs: Dict[str, Any]) -> None: """Init params.""" try: from llama_index.tools.google import GmailToolSpec except ImportError: raise ImportError("llama_hub not installed.") self.tool_spec = GmailToolSpec(**gmail_tool_kwargs) self.agent = OpenAIAgent.from_tools(self.tool_spec.to_tool_list()) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return {"gmail_tool": self.tool_spec, "agent": self.agent} def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.agent.chat(*args, **kwargs)
"""LlamaPack class.""" from typing import Any, Dict from llama_index.core.llama_pack.base import BaseLlamaPack # backwards compatibility try: from llama_index.agent.legacy.openai_agent import OpenAIAgent except ImportError: from llama_index.agent.openai import OpenAIAgent class GmailOpenAIAgentPack(BaseLlamaPack): def __init__(self, gmail_tool_kwargs: Dict[str, Any]) -> None: """Init params.""" try: from llama_index.tools.google import GmailToolSpec except ImportError: raise ImportError("llama_hub not installed.") self.tool_spec = GmailToolSpec(**gmail_tool_kwargs) self.agent = OpenAIAgent.from_tools(self.tool_spec.to_tool_list()) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return {"gmail_tool": self.tool_spec, "agent": self.agent} def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.agent.chat(*args, **kwargs)
from __future__ import annotations import functools import operator from typing import Any, TYPE_CHECKING import torch # NOTE: other files rely on the imports below from torch._dynamo import callback as compilation_callback # noqa: F401 from torch._inductor.runtime.cache_dir_utils import ( # noqa: F401 cache_dir, default_cache_dir, triton_cache_dir, ) if TYPE_CHECKING: from collections.abc import Hashable from .triton_compat import Config def conditional_product(*args: int) -> int: return functools.reduce(operator.mul, [x for x in args if x]) def ceildiv(numer: int, denom: int) -> int: return -(numer // -denom) def is_power_of_2(n: int) -> bool: """Returns whether n = 2 ** m for some integer m.""" return n > 0 and n & n - 1 == 0 def next_power_of_2(n: int) -> int: """Return the smallest power of 2 greater than or equal to n""" n -= 1 n |= n >> 1 n |= n >> 2 n |= n >> 4 n |= n >> 8 n |= n >> 16 n |= n >> 32 n += 1 return n def get_num_bytes(*args: torch.Tensor, num_in_out_args: int = 0) -> int: """ Return the total number of bytes the arguments of tensor type takes. For in/out args, tensor sizes are counted twice: once for reading and once for writing. The first num_in_out_args arguments are in out tensors. """ return sum( arg.numel() * arg.element_size() * (1 + int(i < num_in_out_args)) for i, arg in enumerate(args) if isinstance(arg, torch.Tensor) ) def triton_config_to_hashable(cfg: Config) -> Hashable: """ Convert triton config to a tuple that can uniquely identify it. We can use the return value as a dictionary key. """ items = sorted(cfg.kwargs.items()) items.append(("num_warps", cfg.num_warps)) items.append(("num_stages", cfg.num_stages)) return tuple(items) def validate_triton_config(cfg: Config) -> None: # [Note: Triton pre_hook in inductor] # pre-hook is a lambda function, which we don't attempt to serialize. # right now, if a pre-hook is attached to the config, it will not be saved; # and then it won't be used when the config is loaded from cache. # So we assert - if we do get a pre_hook, it might get ignored after caching. assert getattr(cfg, "pre_hook", None) is None, ( "triton configs with pre_hooks not supported" ) def create_bandwidth_info_str( ms: float, num_gb: float, gb_per_s: float, prefix: str = "", suffix: str = "", color: bool = True, ) -> str: info_str = f"{prefix}{ms:.3f}ms \t{num_gb:.3f} GB \t {gb_per_s:7.2f}GB/s{suffix}" slow = ms > 0.012 and gb_per_s < 650 return red_text(info_str) if color and slow else info_str def get_max_y_grid() -> int: return 65535 try: import colorama HAS_COLORAMA = True except ModuleNotFoundError: HAS_COLORAMA = False colorama = None # type: ignore[assignment] if HAS_COLORAMA: def _color_text(msg: str, color: str) -> str: return getattr(colorama.Fore, color.upper()) + msg + colorama.Fore.RESET else: def _color_text(msg: str, color: str) -> str: return msg def green_text(msg: str) -> str: return _color_text(msg, "green") def yellow_text(msg: str) -> str: return _color_text(msg, "yellow") def red_text(msg: str) -> str: return _color_text(msg, "red") def blue_text(msg: str) -> str: return _color_text(msg, "blue") def get_first_attr(obj: Any, *attrs: str) -> Any: """ Return the first available attribute or throw an exception if none is present. """ for attr in attrs: if hasattr(obj, attr): return getattr(obj, attr) raise AssertionError(f"{obj} does not has any of the attributes: {attrs}") dynamo_timed = torch._dynamo.utils.dynamo_timed # type: ignore[has-type] def triton_hash_to_path_key(key: str) -> str: # In early versions of Triton, the hash is directly used in the path name. # Later, the hash is converted to base64 before being used in the path name. # Later, the base64 convertion was replaced to the base32 # # This code tries to import _base64 and falls back to _base32 if _base64 is unavailable. # # To handle this, try to import the to-base64-conversion function. # If it exists, use it; otherwise, try using _base32; if both are unavailable, use the hash directly. try: from triton.runtime.cache import _base64 return _base64(key) except Exception: try: from triton.runtime.cache import _base32 return _base32(key) except Exception: return key def compile_mps_shader(source: str) -> Any: """ Compiles shader source but raise more actionable error message when needed """ try: return torch.mps.compile_shader(source) except SyntaxError as err: raise SyntaxError(f"failed to compile {source} with {err.msg}") from err
from __future__ import annotations import functools import operator from typing import Any, TYPE_CHECKING import torch # NOTE: other files rely on the imports below from torch._dynamo import callback as compilation_callback # noqa: F401 from torch._inductor.runtime.cache_dir_utils import ( # noqa: F401 cache_dir, default_cache_dir, triton_cache_dir, ) if TYPE_CHECKING: from collections.abc import Hashable from .triton_compat import Config def conditional_product(*args: int) -> int: return functools.reduce(operator.mul, [x for x in args if x]) def ceildiv(number: int, denom: int) -> int: return -(number // -denom) def is_power_of_2(n: int) -> bool: """Returns whether n = 2 ** m for some integer m.""" return n > 0 and n & n - 1 == 0 def next_power_of_2(n: int) -> int: """Return the smallest power of 2 greater than or equal to n""" n -= 1 n |= n >> 1 n |= n >> 2 n |= n >> 4 n |= n >> 8 n |= n >> 16 n |= n >> 32 n += 1 return n def get_num_bytes(*args: torch.Tensor, num_in_out_args: int = 0) -> int: """ Return the total number of bytes the arguments of tensor type takes. For in/out args, tensor sizes are counted twice: once for reading and once for writing. The first num_in_out_args arguments are in out tensors. """ return sum( arg.numel() * arg.element_size() * (1 + int(i < num_in_out_args)) for i, arg in enumerate(args) if isinstance(arg, torch.Tensor) ) def triton_config_to_hashable(cfg: Config) -> Hashable: """ Convert triton config to a tuple that can uniquely identify it. We can use the return value as a dictionary key. """ items = sorted(cfg.kwargs.items()) items.append(("num_warps", cfg.num_warps)) items.append(("num_stages", cfg.num_stages)) return tuple(items) def validate_triton_config(cfg: Config) -> None: # [Note: Triton pre_hook in inductor] # pre-hook is a lambda function, which we don't attempt to serialize. # right now, if a pre-hook is attached to the config, it will not be saved; # and then it won't be used when the config is loaded from cache. # So we assert - if we do get a pre_hook, it might get ignored after caching. assert getattr(cfg, "pre_hook", None) is None, ( "triton configs with pre_hooks not supported" ) def create_bandwidth_info_str( ms: float, num_gb: float, gb_per_s: float, prefix: str = "", suffix: str = "", color: bool = True, ) -> str: info_str = f"{prefix}{ms:.3f}ms \t{num_gb:.3f} GB \t {gb_per_s:7.2f}GB/s{suffix}" slow = ms > 0.012 and gb_per_s < 650 return red_text(info_str) if color and slow else info_str def get_max_y_grid() -> int: return 65535 try: import colorama HAS_COLORAMA = True except ModuleNotFoundError: HAS_COLORAMA = False colorama = None # type: ignore[assignment] if HAS_COLORAMA: def _color_text(msg: str, color: str) -> str: return getattr(colorama.Fore, color.upper()) + msg + colorama.Fore.RESET else: def _color_text(msg: str, color: str) -> str: return msg def green_text(msg: str) -> str: return _color_text(msg, "green") def yellow_text(msg: str) -> str: return _color_text(msg, "yellow") def red_text(msg: str) -> str: return _color_text(msg, "red") def blue_text(msg: str) -> str: return _color_text(msg, "blue") def get_first_attr(obj: Any, *attrs: str) -> Any: """ Return the first available attribute or throw an exception if none is present. """ for attr in attrs: if hasattr(obj, attr): return getattr(obj, attr) raise AssertionError(f"{obj} does not has any of the attributes: {attrs}") dynamo_timed = torch._dynamo.utils.dynamo_timed # type: ignore[has-type] def triton_hash_to_path_key(key: str) -> str: # In early versions of Triton, the hash is directly used in the path name. # Later, the hash is converted to base64 before being used in the path name. # Later, the base64 conversion was replaced to the base32 # # This code tries to import _base64 and falls back to _base32 if _base64 is unavailable. # # To handle this, try to import the to-base64-conversion function. # If it exists, use it; otherwise, try using _base32; if both are unavailable, use the hash directly. try: from triton.runtime.cache import _base64 return _base64(key) except Exception: try: from triton.runtime.cache import _base32 return _base32(key) except Exception: return key def compile_mps_shader(source: str) -> Any: """ Compiles shader source but raise more actionable error message when needed """ try: return torch.mps.compile_shader(source) except SyntaxError as err: raise SyntaxError(f"failed to compile {source} with {err.msg}") from err
from typing import List, Optional from llama_index.core.data_structs.data_structs import IndexStruct from llama_index.core.storage.index_store.types import BaseIndexStore from llama_index.core.storage.index_store.utils import ( index_struct_to_json, json_to_index_struct, ) from llama_index.core.storage.kvstore.types import BaseKVStore DEFAULT_NAMESPACE = "index_store" DEFAULT_COLLECTION_SUFFIX = "/data" class KVIndexStore(BaseIndexStore): """ Key-Value Index store. Args: kvstore (BaseKVStore): key-value store namespace (str): namespace for the index store collection_suffix (str): suffix for the collection name """ def __init__( self, kvstore: BaseKVStore, namespace: Optional[str] = None, collection_suffix: Optional[str] = None, ) -> None: """Init a KVIndexStore.""" self._kvstore = kvstore self._namespace = namespace or DEFAULT_NAMESPACE self._collection_suffix = collection_suffix or DEFAULT_COLLECTION_SUFFIX self._collection = f"{self._namespace}{self._collection_suffix}" def add_index_struct(self, index_struct: IndexStruct) -> None: """ Add an index struct. Args: index_struct (IndexStruct): index struct """ key = index_struct.index_id data = index_struct_to_json(index_struct) self._kvstore.put(key, data, collection=self._collection) def delete_index_struct(self, key: str) -> None: """ Delete an index struct. Args: key (str): index struct key """ self._kvstore.delete(key, collection=self._collection) def get_index_struct( self, struct_id: Optional[str] = None ) -> Optional[IndexStruct]: """ Get an index struct. Args: struct_id (Optional[str]): index struct id """ if struct_id is None: structs = self.index_structs() assert len(structs) == 1 return structs[0] else: json = self._kvstore.get(struct_id, collection=self._collection) if json is None: return None return json_to_index_struct(json) def index_structs(self) -> List[IndexStruct]: """ Get all index structs. Returns: List[IndexStruct]: index structs """ jsons = self._kvstore.get_all(collection=self._collection) return [json_to_index_struct(json) for json in jsons.values()] async def async_add_index_struct(self, index_struct: IndexStruct) -> None: """ Asynchronously add an index struct. Args: index_struct (IndexStruct): index struct """ key = index_struct.index_id data = index_struct_to_json(index_struct) await self._kvstore.aput(key, data, collection=self._collection) async def adelete_index_struct(self, key: str) -> None: """ Asynchronously delete an index struct. Args: key (str): index struct key """ await self._kvstore.adelete(key, collection=self._collection) async def aget_index_struct( self, struct_id: Optional[str] = None ) -> Optional[IndexStruct]: """ Asynchronously get an index struct. Args: struct_id (Optional[str]): index struct id """ if struct_id is None: structs = await self.async_index_structs() assert len(structs) == 1 return structs[0] else: json = await self._kvstore.aget(struct_id, collection=self._collection) if json is None: return None return json_to_index_struct(json) async def async_index_structs(self) -> List[IndexStruct]: """ Asynchronously get all index structs. Returns: List[IndexStruct]: index structs """ jsons = await self._kvstore.aget_all(collection=self._collection) return [json_to_index_struct(json) for json in jsons.values()]
from typing import List, Optional from llama_index.core.data_structs.data_structs import IndexStruct from llama_index.core.storage.index_store.types import BaseIndexStore from llama_index.core.storage.index_store.utils import ( index_struct_to_json, json_to_index_struct, ) from llama_index.core.storage.kvstore.types import BaseKVStore DEFAULT_NAMESPACE = "index_store" DEFAULT_COLLECTION_SUFFIX = "/data" class KVIndexStore(BaseIndexStore): """ Key-Value Index store. Args: kvstore (BaseKVStore): key-value store namespace (str): namespace for the index store collection_suffix (str): suffix for the collection name """ def __init__( self, kvstore: BaseKVStore, namespace: Optional[str] = None, collection_suffix: Optional[str] = None, ) -> None: """Init a KVIndexStore.""" self._kvstore = kvstore self._namespace = namespace or DEFAULT_NAMESPACE self._collection_suffix = collection_suffix or DEFAULT_COLLECTION_SUFFIX self._collection = f"{self._namespace}{self._collection_suffix}" def add_index_struct(self, index_struct: IndexStruct) -> None: """ Add an index struct. Args: index_struct (IndexStruct): index struct """ key = index_struct.index_id data = index_struct_to_json(index_struct) self._kvstore.put(key, data, collection=self._collection) def delete_index_struct(self, key: str) -> None: """ Delete an index struct. Args: key (str): index struct key """ self._kvstore.delete(key, collection=self._collection) def get_index_struct( self, struct_id: Optional[str] = None ) -> Optional[IndexStruct]: """ Get an index struct. Args: struct_id (Optional[str]): index struct id """ if struct_id is None: structs = self.index_structs() assert len(structs) == 1 return structs[0] else: json = self._kvstore.get(struct_id, collection=self._collection) if json is None: return None return json_to_index_struct(json) def index_structs(self) -> List[IndexStruct]: """ Get all index structs. Returns: List[IndexStruct]: index structs """ jsons = self._kvstore.get_all(collection=self._collection) return [json_to_index_struct(json) for json in jsons.values()]
_base_ = './detr_r50_8xb2-500e_coco.py' model = dict( backbone=dict( depth=18, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict(in_channels=[512]))
_base_ = './detr_r50_8xb2-500e_coco.py' model = dict( backbone=dict( depth=18, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), bbox_head=dict(in_channels=512))
_base_ = './detr_r50_8xb2-150e_coco.py' # learning policy max_epochs = 500 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=10) param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[334], gamma=0.1) ] # only keep latest 2 checkpoints default_hooks = dict(checkpoint=dict(max_keep_ckpts=2)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=16)
_base_ = './detr_r50_8x2_150e_coco.py' # learning policy max_epochs = 500 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=10) param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[334], gamma=0.1) ] # only keep latest 2 checkpoints default_hooks = dict(checkpoint=dict(max_keep_ckpts=2)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=16)
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../common/lsj-100e_coco-instance.py' ] image_size = (1024, 1024) batch_augments = [ dict(type='BatchFixedSizePad', size=image_size, pad_mask=True) ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # use caffe norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, # pad_size_divisor=32 is unnecessary in training but necessary # in testing. pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None, style='caffe'), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # Use RepeatDataset to speed up training train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline)))
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../common/lsj-100e_coco-instance.py' ] image_size = (1024, 1024) batch_augments = [ dict(type='BatchFixedSizePad', size=image_size, pad_mask=True) ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed # Requires MMCV-full after https://github.com/open-mmlab/mmcv/pull/1205. head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # use caffe norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, # pad_size_divisor=32 is unnecessary in training but necessary # in testing. pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None, style='caffe'), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # Use RepeatDataset to speed up training train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline)))
import os from pathlib import Path from torchaudio.datasets.libritts import LIBRITTS from torchaudio_unittest.common_utils import ( get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase, ) _UTTERANCE_IDS = [ [19, 198, "000000", "000000"], [26, 495, "000004", "000000"], ] _ORIGINAL_TEXT = "this is the original text." _NORMALIZED_TEXT = "this is the normalized text." def get_mock_dataset(root_dir): """ root_dir: directory to the mocked dataset """ mocked_data = [] base_dir = os.path.join(root_dir, "LibriTTS", "train-clean-100") for i, utterance_id in enumerate(_UTTERANCE_IDS): filename = f'{"_".join(str(u) for u in utterance_id)}.wav' file_dir = os.path.join(base_dir, str(utterance_id[0]), str(utterance_id[1])) os.makedirs(file_dir, exist_ok=True) path = os.path.join(file_dir, filename) data = get_whitenoise(sample_rate=24000, duration=2, n_channels=1, dtype="int16", seed=i) save_wav(path, data, 24000) mocked_data.append(normalize_wav(data)) original_text_filename = f'{"_".join(str(u) for u in utterance_id)}.original.txt' path_original = os.path.join(file_dir, original_text_filename) with open(path_original, "w") as file_: file_.write(_ORIGINAL_TEXT) normalized_text_filename = f'{"_".join(str(u) for u in utterance_id)}.normalized.txt' path_normalized = os.path.join(file_dir, normalized_text_filename) with open(path_normalized, "w") as file_: file_.write(_NORMALIZED_TEXT) return mocked_data, _UTTERANCE_IDS, _ORIGINAL_TEXT, _NORMALIZED_TEXT class TestLibriTTS(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None data = [] _utterance_ids, _original_text, _normalized_text = [], [], [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.data, cls._utterance_ids, cls._original_text, cls._normalized_text = get_mock_dataset(cls.root_dir) def _test_libritts(self, dataset): n_ites = 0 for i, ( waveform, sample_rate, original_text, normalized_text, speaker_id, chapter_id, utterance_id, ) in enumerate(dataset): expected_ids = self._utterance_ids[i] expected_data = self.data[i] self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8) assert sample_rate == 24000 assert speaker_id == expected_ids[0] assert chapter_id == expected_ids[1] assert original_text == self._original_text assert normalized_text == self._normalized_text assert utterance_id == f'{"_".join(str(u) for u in expected_ids[-4:])}' n_ites += 1 assert n_ites == len(self._utterance_ids) def test_libritts_str(self): dataset = LIBRITTS(self.root_dir) self._test_libritts(dataset) def test_libritts_path(self): dataset = LIBRITTS(Path(self.root_dir)) self._test_libritts(dataset)
import os from pathlib import Path from torchaudio.datasets.libritts import LIBRITTS from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, get_whitenoise, save_wav, normalize_wav, ) _UTTERANCE_IDS = [ [19, 198, "000000", "000000"], [26, 495, "000004", "000000"], ] _ORIGINAL_TEXT = "this is the original text." _NORMALIZED_TEXT = "this is the normalized text." def get_mock_dataset(root_dir): """ root_dir: directory to the mocked dataset """ mocked_data = [] base_dir = os.path.join(root_dir, "LibriTTS", "train-clean-100") for i, utterance_id in enumerate(_UTTERANCE_IDS): filename = f'{"_".join(str(u) for u in utterance_id)}.wav' file_dir = os.path.join(base_dir, str(utterance_id[0]), str(utterance_id[1])) os.makedirs(file_dir, exist_ok=True) path = os.path.join(file_dir, filename) data = get_whitenoise(sample_rate=24000, duration=2, n_channels=1, dtype="int16", seed=i) save_wav(path, data, 24000) mocked_data.append(normalize_wav(data)) original_text_filename = f'{"_".join(str(u) for u in utterance_id)}.original.txt' path_original = os.path.join(file_dir, original_text_filename) with open(path_original, "w") as file_: file_.write(_ORIGINAL_TEXT) normalized_text_filename = f'{"_".join(str(u) for u in utterance_id)}.normalized.txt' path_normalized = os.path.join(file_dir, normalized_text_filename) with open(path_normalized, "w") as file_: file_.write(_NORMALIZED_TEXT) return mocked_data, _UTTERANCE_IDS, _ORIGINAL_TEXT, _NORMALIZED_TEXT class TestLibriTTS(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None data = [] _utterance_ids, _original_text, _normalized_text = [], [], [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.data, cls._utterance_ids, cls._original_text, cls._normalized_text = get_mock_dataset(cls.root_dir) def _test_libritts(self, dataset): n_ites = 0 for i, ( waveform, sample_rate, original_text, normalized_text, speaker_id, chapter_id, utterance_id, ) in enumerate(dataset): expected_ids = self._utterance_ids[i] expected_data = self.data[i] self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8) assert sample_rate == 24000 assert speaker_id == expected_ids[0] assert chapter_id == expected_ids[1] assert original_text == self._original_text assert normalized_text == self._normalized_text assert utterance_id == f'{"_".join(str(u) for u in expected_ids[-4:])}' n_ites += 1 assert n_ites == len(self._utterance_ids) def test_libritts_str(self): dataset = LIBRITTS(self.root_dir) self._test_libritts(dataset) def test_libritts_path(self): dataset = LIBRITTS(Path(self.root_dir)) self._test_libritts(dataset)
""" This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It generates sentence embeddings that can be compared using cosine-similarity to measure the similarity. Usage: python training_nli.py OR python training_nli.py pretrained_transformer_model_name """ import logging import sys import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers import SentenceTransformer, losses from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any Hugging Face pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "distilbert-base-uncased" train_batch_size = 16 num_epochs = 4 output_dir = ( "output/training_stsbenchmark_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # 1. Here we define our SentenceTransformer model. If not already a Sentence Transformer model, it will automatically # create one with "mean" pooling. model = SentenceTransformer(model_name) # 2. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 3. Define our training loss # CosineSimilarityLoss (https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) needs two text columns and one # similarity score column (between 0 and 1) train_loss = losses.CosineSimilarityLoss(model=model) # train_loss = losses.CoSENTLoss(model=model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="sts", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-sts") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-sts')`." )
""" This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It generates sentence embeddings that can be compared using cosine-similarity to measure the similarity. Usage: python training_nli.py OR python training_nli.py pretrained_transformer_model_name """ from torch.utils.data import DataLoader import math from sentence_transformers import SentenceTransformer, LoggingHandler, losses, models, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import InputExample import logging from datetime import datetime import sys import os import gzip import csv #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "distilbert-base-uncased" # Read the dataset train_batch_size = 16 num_epochs = 4 model_save_path = ( "output/training_stsbenchmark_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False, ) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) else: train_samples.append(inp_example) train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) train_loss = losses.CosineSimilarityLoss(model=model) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training. We skip evaluation in this example warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=model_save_path, ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test") test_evaluator(model, output_path=model_save_path)
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import numpy as np from mmengine.config import Config, DictAction from mmengine.utils import ProgressBar from mmdet.models.utils import mask2ndarray from mmdet.registry import DATASETS, VISUALIZERS from mmdet.structures.bbox import BaseBoxes from mmdet.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='Browse a dataset') parser.add_argument('config', help='train config file path') parser.add_argument( '--output-dir', default=None, type=str, help='If there is no display interface, you can save it') parser.add_argument('--not-show', default=False, action='store_true') parser.add_argument( '--show-interval', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # register all modules in mmdet into the registries register_all_modules() dataset = DATASETS.build(cfg.train_dataloader.dataset) visualizer = VISUALIZERS.build(cfg.visualizer) visualizer.dataset_meta = dataset.metainfo progress_bar = ProgressBar(len(dataset)) for item in dataset: img = item['inputs'].permute(1, 2, 0).numpy() data_sample = item['data_samples'].numpy() gt_instances = data_sample.gt_instances img_path = osp.basename(item['data_samples'].img_path) out_file = osp.join( args.output_dir, osp.basename(img_path)) if args.output_dir is not None else None img = img[..., [2, 1, 0]] # bgr to rgb gt_bboxes = gt_instances.get('bboxes', None) if gt_bboxes is not None and isinstance(gt_bboxes, BaseBoxes): gt_instances.bboxes = gt_bboxes.tensor gt_masks = gt_instances.get('masks', None) if gt_masks is not None: masks = mask2ndarray(gt_masks) gt_instances.masks = masks.astype(np.bool) data_sample.gt_instances = gt_instances visualizer.add_datasample( osp.basename(img_path), img, data_sample, show=not args.not_show, wait_time=args.show_interval, out_file=out_file) progress_bar.update() if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import numpy as np from mmengine.config import Config, DictAction from mmengine.utils import ProgressBar from mmdet.models.utils import mask2ndarray from mmdet.registry import DATASETS, VISUALIZERS from mmdet.structures.bbox import BaseBoxes from mmdet.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='Browse a dataset') parser.add_argument('config', help='train config file path') parser.add_argument( '--output-dir', default=None, type=str, help='If there is no display interface, you can save it') parser.add_argument('--not-show', default=False, action='store_true') parser.add_argument( '--show-interval', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # register all modules in mmdet into the registries register_all_modules() dataset = DATASETS.build(cfg.train_dataloader.dataset) visualizer = VISUALIZERS.build(cfg.visualizer) visualizer.dataset_meta = dataset.metainfo progress_bar = ProgressBar(len(dataset)) for item in dataset: img = item['inputs'].permute(1, 2, 0).numpy() data_sample = item['data_sample'].numpy() gt_instances = data_sample.gt_instances img_path = osp.basename(item['data_sample'].img_path) out_file = osp.join( args.output_dir, osp.basename(img_path)) if args.output_dir is not None else None img = img[..., [2, 1, 0]] # bgr to rgb gt_bboxes = gt_instances.get('bboxes', None) if gt_bboxes is not None and isinstance(gt_bboxes, BaseBoxes): gt_instances.bboxes = gt_bboxes.tensor gt_masks = gt_instances.get('masks', None) if gt_masks is not None: masks = mask2ndarray(gt_masks) gt_instances.masks = masks.astype(np.bool) data_sample.gt_instances = gt_instances visualizer.add_datasample( osp.basename(img_path), img, data_sample, show=not args.not_show, wait_time=args.show_interval, out_file=out_file) progress_bar.update() if __name__ == '__main__': main()
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # please install mmpretrain # import mmpretrain.models to trigger register_module in mmpretrain custom_imports = dict( imports=['mmpretrain.models'], allow_failed_imports=False) model = dict( backbone=dict( _delete_=True, type='mmpretrain.TIMMBackbone', model_name='tv_resnet50', # ResNet-50 with torchvision weights features_only=True, pretrained=True, out_indices=(1, 2, 3, 4))) # optimizer optim_wrapper = dict(optimizer=dict(lr=0.01))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # TODO: delete custom_imports after mmcls supports auto import # please install mmcls>=1.0 # import mmcls.models to trigger register_module in mmcls custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False) model = dict( backbone=dict( _delete_=True, type='mmcls.TIMMBackbone', model_name='tv_resnet50', # ResNet-50 with torchvision weights features_only=True, pretrained=True, out_indices=(1, 2, 3, 4))) # optimizer optim_wrapper = dict(optimizer=dict(lr=0.01))
from sentence_transformers import SentenceTransformer, losses, util class AnglELoss(losses.CoSENTLoss): def __init__(self, model: SentenceTransformer, scale: float = 20.0) -> None: """ This class implements AnglE (Angle Optimized) loss. This is a modification of :class:`CoSENTLoss`, designed to address the following issue: The cosine function's gradient approaches 0 as the wave approaches the top or bottom of its form. This can hinder the optimization process, so AnglE proposes to instead optimize the angle difference in complex space in order to mitigate this effect. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. This is the same as CoSENTLoss, with a different similarity function. Args: model: SentenceTransformerModel scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://arxiv.org/abs/2309.12871v1 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Relations: - :class:`CoSENTLoss` is AnglELoss with ``pairwise_cos_sim`` as the metric, rather than ``pairwise_angle_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than ``CoSENTLoss`` or ``AnglELoss``. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.AnglELoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim) @property def citation(self) -> str: return """ @misc{li2023angleoptimized, title={AnglE-optimized Text Embeddings}, author={Xianming Li and Jing Li}, year={2023}, eprint={2309.12871}, archivePrefix={arXiv}, primaryClass={cs.CL} } """
from sentence_transformers import SentenceTransformer, losses, util class AnglELoss(losses.CoSENTLoss): def __init__(self, model: SentenceTransformer, scale: float = 20.0) -> None: """ This class implements AnglE (Angle Optimized) loss. This is a modification of :class:`CoSENTLoss`, designed to address the following issue: The cosine function's gradient approaches 0 as the wave approaches the top or bottom of its form. This can hinder the optimization process, so AnglE proposes to instead optimize the angle difference in complex space in order to mitigate this effect. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. This is the same as CoSENTLoss, with a different similarity function. Args: model: SentenceTransformerModel scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://arxiv.org/abs/2309.12871v1 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Relations: - :class:`CoSENTLoss` is AnglELoss with ``pairwise_cos_sim`` as the metric, rather than ``pairwise_angle_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than ``CoSENTLoss`` or ``AnglELoss``. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.AnglELoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim) @property def citation(self) -> str: return """ @misc{li2023angleoptimized, title={AnglE-optimized Text Embeddings}, author={Xianming Li and Jing Li}, year={2023}, eprint={2309.12871}, archivePrefix={arXiv}, primaryClass={cs.CL} } """
import os from pathlib import Path from typing import Any, Callable, Optional, Union import numpy as np from PIL import Image from .utils import download_url from .vision import VisionDataset class USPS(VisionDataset): """`USPS <https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps>`_ Dataset. The data-format is : [label [index:value ]*256 \\n] * num_lines, where ``label`` lies in ``[1, 10]``. The value for each pixel lies in ``[-1, 1]``. Here we transform the ``label`` into ``[0, 9]`` and make pixel values in ``[0, 255]``. Args: root (str or ``pathlib.Path``): Root directory of dataset to store``USPS`` data files. train (bool, optional): If True, creates dataset from ``usps.bz2``, otherwise from ``usps.t.bz2``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ split_list = { "train": [ "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.bz2", "usps.bz2", "ec16c51db3855ca6c91edd34d0e9b197", ], "test": [ "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.t.bz2", "usps.t.bz2", "8ea070ee2aca1ac39742fdd1ef5ed118", ], } def __init__( self, root: Union[str, Path], train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) split = "train" if train else "test" url, filename, checksum = self.split_list[split] full_path = os.path.join(self.root, filename) if download and not os.path.exists(full_path): download_url(url, self.root, filename, md5=checksum) import bz2 with bz2.open(full_path) as fp: raw_data = [line.decode().split() for line in fp.readlines()] tmp_list = [[x.split(":")[-1] for x in data[1:]] for data in raw_data] imgs = np.asarray(tmp_list, dtype=np.float32).reshape((-1, 16, 16)) imgs = ((imgs + 1) / 2 * 255).astype(dtype=np.uint8) targets = [int(d[0]) - 1 for d in raw_data] self.data = imgs self.targets = targets def __getitem__(self, index: int) -> tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], int(self.targets[index]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img, mode="L") if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return len(self.data)
import os from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union import numpy as np from PIL import Image from .utils import download_url from .vision import VisionDataset class USPS(VisionDataset): """`USPS <https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps>`_ Dataset. The data-format is : [label [index:value ]*256 \\n] * num_lines, where ``label`` lies in ``[1, 10]``. The value for each pixel lies in ``[-1, 1]``. Here we transform the ``label`` into ``[0, 9]`` and make pixel values in ``[0, 255]``. Args: root (str or ``pathlib.Path``): Root directory of dataset to store``USPS`` data files. train (bool, optional): If True, creates dataset from ``usps.bz2``, otherwise from ``usps.t.bz2``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ split_list = { "train": [ "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.bz2", "usps.bz2", "ec16c51db3855ca6c91edd34d0e9b197", ], "test": [ "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.t.bz2", "usps.t.bz2", "8ea070ee2aca1ac39742fdd1ef5ed118", ], } def __init__( self, root: Union[str, Path], train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) split = "train" if train else "test" url, filename, checksum = self.split_list[split] full_path = os.path.join(self.root, filename) if download and not os.path.exists(full_path): download_url(url, self.root, filename, md5=checksum) import bz2 with bz2.open(full_path) as fp: raw_data = [line.decode().split() for line in fp.readlines()] tmp_list = [[x.split(":")[-1] for x in data[1:]] for data in raw_data] imgs = np.asarray(tmp_list, dtype=np.float32).reshape((-1, 16, 16)) imgs = ((imgs + 1) / 2 * 255).astype(dtype=np.uint8) targets = [int(d[0]) - 1 for d in raw_data] self.data = imgs self.targets = targets def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], int(self.targets[index]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img, mode="L") if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return len(self.data)
import numpy as np import pytest import torch from docarray import BaseDoc, DocList from docarray.array import DocVec from docarray.typing import NdArray, TorchTensor @pytest.fixture() def batch(): class Image(BaseDoc): tensor: TorchTensor[3, 224, 224] batch = DocList[Image]([Image(tensor=torch.zeros(3, 224, 224)) for _ in range(10)]) return batch.to_doc_vec() @pytest.mark.proto def test_proto_stacked_mode_torch(batch): batch.from_protobuf(batch.to_protobuf()) @pytest.mark.proto def test_proto_stacked_mode_numpy(): class MyDoc(BaseDoc): tensor: NdArray[3, 224, 224] da = DocList[MyDoc]([MyDoc(tensor=np.zeros((3, 224, 224))) for _ in range(10)]) da = da.to_doc_vec() da.from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_stacked_proto(): class CustomDocument(BaseDoc): image: NdArray da = DocList[CustomDocument]( [CustomDocument(image=np.zeros((3, 224, 224))) for _ in range(10)] ).to_doc_vec() da2 = DocVec.from_protobuf(da.to_protobuf()) assert isinstance(da2, DocVec)
import numpy as np import pytest import torch from docarray import BaseDoc, DocList from docarray.array import DocVec from docarray.typing import NdArray, TorchTensor @pytest.fixture() def batch(): class Image(BaseDoc): tensor: TorchTensor[3, 224, 224] batch = DocList[Image]([Image(tensor=torch.zeros(3, 224, 224)) for _ in range(10)]) return batch.stack() @pytest.mark.proto def test_proto_stacked_mode_torch(batch): batch.from_protobuf(batch.to_protobuf()) @pytest.mark.proto def test_proto_stacked_mode_numpy(): class MyDoc(BaseDoc): tensor: NdArray[3, 224, 224] da = DocList[MyDoc]([MyDoc(tensor=np.zeros((3, 224, 224))) for _ in range(10)]) da = da.stack() da.from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_stacked_proto(): class CustomDocument(BaseDoc): image: NdArray da = DocList[CustomDocument]( [CustomDocument(image=np.zeros((3, 224, 224))) for _ in range(10)] ).stack() da2 = DocVec.from_protobuf(da.to_protobuf()) assert isinstance(da2, DocVec)
_base_ = './solov2_r50_fpn_ms-3x_coco.py' # model settings model = dict( backbone=dict( type='ResNeXt', depth=101, groups=64, base_width=4, dcn=dict(type='DCNv2', deformable_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')), mask_head=dict( mask_feature_head=dict(conv_cfg=dict(type='DCNv2')), dcn_cfg=dict(type='DCNv2'), dcn_apply_to_all_conv=True))
_base_ = 'solov2_r50_fpn_mstrain_3x_coco.py' # model settings model = dict( backbone=dict( type='ResNeXt', depth=101, groups=64, base_width=4, dcn=dict(type='DCNv2', deformable_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')), mask_head=dict( mask_feature_head=dict(conv_cfg=dict(type='DCNv2')), dcn_cfg=dict(type='DCNv2'), dcn_apply_to_all_conv=True))
# Copyright (c) OpenMMLab. All rights reserved. import argparse import tempfile from collections import OrderedDict import torch from mmcv import Config def parse_config(config_strings): temp_file = tempfile.NamedTemporaryFile() config_path = f'{temp_file.name}.py' with open(config_path, 'w') as f: f.write(config_strings) config = Config.fromfile(config_path) # check whether it is SSD if config.model.bbox_head.type != 'SSDHead': raise AssertionError('This is not a SSD model.') def convert(in_file, out_file): checkpoint = torch.load(in_file) in_state_dict = checkpoint.pop('state_dict') out_state_dict = OrderedDict() meta_info = checkpoint['meta'] parse_config('#' + meta_info['config']) for key, value in in_state_dict.items(): if 'extra' in key: layer_idx = int(key.split('.')[2]) new_key = 'neck.extra_layers.{}.{}.conv.'.format( layer_idx // 2, layer_idx % 2) + key.split('.')[-1] elif 'l2_norm' in key: new_key = 'neck.l2_norm.weight' elif 'bbox_head' in key: new_key = key[:21] + '.0' + key[21:] else: new_key = key out_state_dict[new_key] = value checkpoint['state_dict'] = out_state_dict if torch.__version__ >= '1.6': torch.save(checkpoint, out_file, _use_new_zipfile_serialization=False) else: torch.save(checkpoint, out_file) def main(): parser = argparse.ArgumentParser(description='Upgrade SSD version') parser.add_argument('in_file', help='input checkpoint file') parser.add_argument('out_file', help='output checkpoint file') args = parser.parse_args() convert(args.in_file, args.out_file) if __name__ == '__main__': main()
import argparse import tempfile from collections import OrderedDict import torch from mmcv import Config def parse_config(config_strings): temp_file = tempfile.NamedTemporaryFile() config_path = f'{temp_file.name}.py' with open(config_path, 'w') as f: f.write(config_strings) config = Config.fromfile(config_path) # check whether it is SSD if config.model.bbox_head.type != 'SSDHead': raise AssertionError('This is not a SSD model.') def convert(in_file, out_file): checkpoint = torch.load(in_file) in_state_dict = checkpoint.pop('state_dict') out_state_dict = OrderedDict() meta_info = checkpoint['meta'] parse_config('#' + meta_info['config']) for key, value in in_state_dict.items(): if 'extra' in key: layer_idx = int(key.split('.')[2]) new_key = 'neck.extra_layers.{}.{}.conv.'.format( layer_idx // 2, layer_idx % 2) + key.split('.')[-1] elif 'l2_norm' in key: new_key = 'neck.l2_norm.weight' elif 'bbox_head' in key: new_key = key[:21] + '.0' + key[21:] else: new_key = key out_state_dict[new_key] = value checkpoint['state_dict'] = out_state_dict if torch.__version__ >= '1.6': torch.save(checkpoint, out_file, _use_new_zipfile_serialization=False) else: torch.save(checkpoint, out_file) def main(): parser = argparse.ArgumentParser(description='Upgrade SSD version') parser.add_argument('in_file', help='input checkpoint file') parser.add_argument('out_file', help='output checkpoint file') args = parser.parse_args() convert(args.in_file, args.out_file) if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. """Collecting some commonly used type hint in mmdetection.""" from typing import Dict, List, Optional, Tuple, Union import torch from mmengine.config import ConfigDict from mmengine.data import InstanceData, PixelData from ..bbox.samplers import SamplingResult from ..data_structures import DetDataSample # Type hint of config data ConfigType = Union[ConfigDict, dict] OptConfigType = Optional[ConfigType] # Type hint of one or more config data MultiConfig = Union[ConfigType, List[ConfigType]] OptMultiConfig = Optional[MultiConfig] InstanceList = List[InstanceData] OptInstanceList = Optional[InstanceList] PixelList = List[PixelData] OptPixelList = Optional[PixelList] SampleList = List[DetDataSample] OptSampleList = Optional[SampleList] SamplingResultList = List[SamplingResult] OptSamplingResultList = Optional[SamplingResultList] ForwardResults = Union[Dict[str, torch.Tensor], List[DetDataSample], Tuple[torch.Tensor], torch.Tensor]
# Copyright (c) OpenMMLab. All rights reserved. """Collecting some commonly used type hint in mmdetection.""" from typing import Dict, List, Optional, Tuple, Union import torch from mmengine.config import ConfigDict from mmengine.data import InstanceData from ..bbox.samplers import SamplingResult from ..data_structures import DetDataSample # Type hint of config data ConfigType = Union[ConfigDict, dict] OptConfigType = Optional[ConfigType] # Type hint of one or more config data MultiConfig = Union[ConfigType, List[ConfigType]] OptMultiConfig = Optional[MultiConfig] InstanceList = List[InstanceData] OptInstanceList = Optional[InstanceList] SampleList = List[DetDataSample] OptSampleList = Optional[SampleList] SamplingResultList = List[SamplingResult] OptSamplingResultList = Optional[SamplingResultList] ForwardResults = Union[Dict[str, torch.Tensor], List[DetDataSample], Tuple[torch.Tensor], torch.Tensor]
import os from typing import Literal, Optional, overload import nomic # type: ignore[import] from langchain_core.embeddings import Embeddings from nomic import embed class NomicEmbeddings(Embeddings): """NomicEmbeddings embedding model. Example: .. code-block:: python from langchain_nomic import NomicEmbeddings model = NomicEmbeddings() """ @overload def __init__( self, *, model: str, nomic_api_key: Optional[str] = ..., dimensionality: Optional[int] = ..., inference_mode: Literal["remote"] = ..., ): ... @overload def __init__( self, *, model: str, nomic_api_key: Optional[str] = ..., dimensionality: Optional[int] = ..., inference_mode: Literal["local", "dynamic"], device: Optional[str] = ..., ): ... @overload def __init__( self, *, model: str, nomic_api_key: Optional[str] = ..., dimensionality: Optional[int] = ..., inference_mode: str, device: Optional[str] = ..., ): ... def __init__( self, *, model: str, nomic_api_key: Optional[str] = None, dimensionality: Optional[int] = None, inference_mode: str = "remote", device: Optional[str] = None, vision_model: Optional[str] = None, ): """Initialize NomicEmbeddings model. Args: model: model name nomic_api_key: optionally, set the Nomic API key. Uses the ``NOMIC_API_KEY`` environment variable by default. dimensionality: The embedding dimension, for use with Matryoshka-capable models. Defaults to full-size. inference_mode: How to generate embeddings. One of ``'remote'``, ``'local'`` (Embed4All), or ``'dynamic'`` (automatic). Defaults to ``'remote'``. device: The device to use for local embeddings. Choices include ``'cpu'``, ``'gpu'``, ``'nvidia'``, ``'amd'``, or a specific device name. See the docstring for ``GPT4All.__init__`` for more info. Typically defaults to ``'cpu'``. Do not use on macOS. """ _api_key = nomic_api_key or os.environ.get("NOMIC_API_KEY") if _api_key: nomic.login(_api_key) self.model = model self.dimensionality = dimensionality self.inference_mode = inference_mode self.device = device self.vision_model = vision_model def embed(self, texts: list[str], *, task_type: str) -> list[list[float]]: """Embed texts. Args: texts: list of texts to embed task_type: the task type to use when embedding. One of ``'search_query'``, ``'search_document'``, ``'classification'``, ``'clustering'`` """ output = embed.text( texts=texts, model=self.model, task_type=task_type, dimensionality=self.dimensionality, inference_mode=self.inference_mode, device=self.device, ) return output["embeddings"] def embed_documents(self, texts: list[str]) -> list[list[float]]: """Embed search docs. Args: texts: list of texts to embed as documents """ return self.embed( texts=texts, task_type="search_document", ) def embed_query(self, text: str) -> list[float]: """Embed query text. Args: text: query text """ return self.embed( texts=[text], task_type="search_query", )[0] def embed_image(self, uris: list[str]) -> list[list[float]]: return embed.image( images=uris, model=self.vision_model, )["embeddings"]
import os from typing import Literal, Optional, overload import nomic # type: ignore[import] from langchain_core.embeddings import Embeddings from nomic import embed class NomicEmbeddings(Embeddings): """NomicEmbeddings embedding model. Example: .. code-block:: python from langchain_nomic import NomicEmbeddings model = NomicEmbeddings() """ @overload def __init__( self, *, model: str, nomic_api_key: Optional[str] = ..., dimensionality: Optional[int] = ..., inference_mode: Literal["remote"] = ..., ): ... @overload def __init__( self, *, model: str, nomic_api_key: Optional[str] = ..., dimensionality: Optional[int] = ..., inference_mode: Literal["local", "dynamic"], device: Optional[str] = ..., ): ... @overload def __init__( self, *, model: str, nomic_api_key: Optional[str] = ..., dimensionality: Optional[int] = ..., inference_mode: str, device: Optional[str] = ..., ): ... def __init__( self, *, model: str, nomic_api_key: Optional[str] = None, dimensionality: Optional[int] = None, inference_mode: str = "remote", device: Optional[str] = None, vision_model: Optional[str] = None, ): """Initialize NomicEmbeddings model. Args: model: model name nomic_api_key: optionally, set the Nomic API key. Uses the NOMIC_API_KEY environment variable by default. dimensionality: The embedding dimension, for use with Matryoshka-capable models. Defaults to full-size. inference_mode: How to generate embeddings. One of `remote`, `local` (Embed4All), or `dynamic` (automatic). Defaults to `remote`. device: The device to use for local embeddings. Choices include `cpu`, `gpu`, `nvidia`, `amd`, or a specific device name. See the docstring for `GPT4All.__init__` for more info. Typically defaults to CPU. Do not use on macOS. """ _api_key = nomic_api_key or os.environ.get("NOMIC_API_KEY") if _api_key: nomic.login(_api_key) self.model = model self.dimensionality = dimensionality self.inference_mode = inference_mode self.device = device self.vision_model = vision_model def embed(self, texts: list[str], *, task_type: str) -> list[list[float]]: """Embed texts. Args: texts: list of texts to embed task_type: the task type to use when embedding. One of `search_query`, `search_document`, `classification`, `clustering` """ output = embed.text( texts=texts, model=self.model, task_type=task_type, dimensionality=self.dimensionality, inference_mode=self.inference_mode, device=self.device, ) return output["embeddings"] def embed_documents(self, texts: list[str]) -> list[list[float]]: """Embed search docs. Args: texts: list of texts to embed as documents """ return self.embed( texts=texts, task_type="search_document", ) def embed_query(self, text: str) -> list[float]: """Embed query text. Args: text: query text """ return self.embed( texts=[text], task_type="search_query", )[0] def embed_image(self, uris: list[str]) -> list[list[float]]: return embed.image( images=uris, model=self.vision_model, )["embeddings"]
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import pytest from jina import Document, DocumentArray, Flow from laser_encoder import LaserEncoder _EMBEDDING_DIM = 1024 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=LaserEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import pytest from jina import Document, DocumentArray, Flow from ...laser_encoder import LaserEncoder _EMBEDDING_DIM = 1024 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=LaserEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, )
import os import shutil from typing import Sequence import pytest from llama_index.core.schema import BaseNode, TextNode from llama_index.core.vector_stores import VectorStoreQuery from llama_index.vector_stores.objectbox import ObjectBoxVectorStore EMBEDDING_DIM = 3 @pytest.fixture() def vectorstore(): obx = ObjectBoxVectorStore(embedding_dimensions=EMBEDDING_DIM) db_default_path = "objectbox" assert os.path.exists(db_default_path), ( f"Directory '{db_default_path}' does not exist." ) filepath = os.path.join(db_default_path, "data.mdb") assert os.path.isfile(filepath), ( f"File '{db_default_path}' not found in '{db_default_path}'" ) return obx @pytest.fixture() def node_embeddings() -> Sequence[BaseNode]: return [ TextNode( id_="e8671c2d-8ee3-4f95-9730-7832f0115560", text="test1", embedding=[1.2, 0.3, -0.9], ), TextNode( id_="d0db4ed6-da16-4769-bf19-d1c06267a5f6", text="test2", embedding=[0.1, 0.0, 0.0], ), TextNode( id_="8601b27c-376e-48dd-a252-e61e01f29069", text="test3", embedding=[-2.3, 1.2, -6.7], ), ] def test_add(vectorstore: ObjectBoxVectorStore, node_embeddings: Sequence[BaseNode]): node_ids = vectorstore.add(node_embeddings) retrieved_nodes = vectorstore.get_nodes(node_ids) assert len(retrieved_nodes) == len(node_embeddings) def test_query(vectorstore: ObjectBoxVectorStore, node_embeddings: Sequence[BaseNode]): vectorstore.add(node_embeddings) search_result = vectorstore.query( VectorStoreQuery(query_embedding=[0.15, 0.001, -0.01], similarity_top_k=1) ) assert len(search_result.ids) == 1 assert search_result.nodes[0].id_ == "d0db4ed6-da16-4769-bf19-d1c06267a5f6" def test_get_nodes( vectorstore: ObjectBoxVectorStore, node_embeddings: Sequence[BaseNode] ): vectorstore.add(node_embeddings) retrieved_nodes = vectorstore.get_nodes( node_ids=["8601b27c-376e-48dd-a252-e61e01f29069"] ) assert len(retrieved_nodes) == 1 assert retrieved_nodes[0].id_ == "8601b27c-376e-48dd-a252-e61e01f29069" def test_count(vectorstore: ObjectBoxVectorStore, node_embeddings: Sequence[BaseNode]): vectorstore.add(node_embeddings) assert vectorstore.count() == len(node_embeddings) def test_delete_nodes( vectorstore: ObjectBoxVectorStore, node_embeddings: Sequence[BaseNode] ): node_ids = vectorstore.add(node_embeddings) node_ids_to_be_deleted = node_ids[0:2] vectorstore.delete_nodes(node_ids_to_be_deleted) assert vectorstore.count() == 1 def test_clear(vectorstore: ObjectBoxVectorStore, node_embeddings: Sequence[BaseNode]): node_ids = vectorstore.add(node_embeddings) vectorstore.clear() retrieved_nodes = vectorstore.get_nodes(node_ids) assert len(retrieved_nodes) == 0 def remove_test_dir(test_dir: str): if os.path.exists(test_dir): shutil.rmtree(test_dir) @pytest.fixture(autouse=True) def auto_cleanup(vectorstore: ObjectBoxVectorStore): yield # run the test function vectorstore.close() os.remove("llama_index/vector_stores/objectbox/objectbox-model.json") remove_test_dir("objectbox")
import os import shutil from typing import Sequence import pytest from llama_index.core.schema import TextNode, BaseNode from llama_index.core.vector_stores import VectorStoreQuery from llama_index.vector_stores.objectbox import ObjectBoxVectorStore EMBEDDING_DIM = 3 @pytest.fixture() def vectorstore(): obx = ObjectBoxVectorStore(embedding_dimensions=EMBEDDING_DIM) db_default_path = "objectbox" assert os.path.exists( db_default_path ), f"Directory '{db_default_path}' does not exist." filepath = os.path.join(db_default_path, "data.mdb") assert os.path.isfile( filepath ), f"File '{db_default_path}' not found in '{db_default_path}'" return obx @pytest.fixture() def node_embeddings() -> Sequence[BaseNode]: return [ TextNode( id_="e8671c2d-8ee3-4f95-9730-7832f0115560", text="test1", embedding=[1.2, 0.3, -0.9], ), TextNode( id_="d0db4ed6-da16-4769-bf19-d1c06267a5f6", text="test2", embedding=[0.1, 0.0, 0.0], ), TextNode( id_="8601b27c-376e-48dd-a252-e61e01f29069", text="test3", embedding=[-2.3, 1.2, -6.7], ), ] def test_add(vectorstore: ObjectBoxVectorStore, node_embeddings: Sequence[BaseNode]): node_ids = vectorstore.add(node_embeddings) retrieved_nodes = vectorstore.get_nodes(node_ids) assert len(retrieved_nodes) == len(node_embeddings) def test_query(vectorstore: ObjectBoxVectorStore, node_embeddings: Sequence[BaseNode]): vectorstore.add(node_embeddings) search_result = vectorstore.query( VectorStoreQuery(query_embedding=[0.15, 0.001, -0.01], similarity_top_k=1) ) assert len(search_result.ids) == 1 assert search_result.nodes[0].id_ == "d0db4ed6-da16-4769-bf19-d1c06267a5f6" def test_get_nodes( vectorstore: ObjectBoxVectorStore, node_embeddings: Sequence[BaseNode] ): vectorstore.add(node_embeddings) retrieved_nodes = vectorstore.get_nodes( node_ids=["8601b27c-376e-48dd-a252-e61e01f29069"] ) assert len(retrieved_nodes) == 1 assert retrieved_nodes[0].id_ == "8601b27c-376e-48dd-a252-e61e01f29069" def test_count(vectorstore: ObjectBoxVectorStore, node_embeddings: Sequence[BaseNode]): vectorstore.add(node_embeddings) assert vectorstore.count() == len(node_embeddings) def test_delete_nodes( vectorstore: ObjectBoxVectorStore, node_embeddings: Sequence[BaseNode] ): node_ids = vectorstore.add(node_embeddings) node_ids_to_be_deleted = node_ids[0:2] vectorstore.delete_nodes(node_ids_to_be_deleted) assert vectorstore.count() == 1 def test_clear(vectorstore: ObjectBoxVectorStore, node_embeddings: Sequence[BaseNode]): node_ids = vectorstore.add(node_embeddings) vectorstore.clear() retrieved_nodes = vectorstore.get_nodes(node_ids) assert len(retrieved_nodes) == 0 def remove_test_dir(test_dir: str): if os.path.exists(test_dir): shutil.rmtree(test_dir) @pytest.fixture(autouse=True) def auto_cleanup(vectorstore: ObjectBoxVectorStore): yield # run the test function vectorstore.close() os.remove( "llama-index-integrations/vector_stores/llama-index-vector-stores-objectbox/llama_index/vector_stores/objectbox/objectbox-model.json" ) remove_test_dir("objectbox")
import logging from argparse import ArgumentParser import sentencepiece as spm import torch import torchaudio from transforms import get_data_module logger = logging.getLogger(__name__) def compute_word_level_distance(seq1, seq2): return torchaudio.functional.edit_distance(seq1.lower().split(), seq2.lower().split()) def get_lightning_module(args): sp_model = spm.SentencePieceProcessor(model_file=str(args.sp_model_path)) if args.modality == "audiovisual": from lightning_av import AVConformerRNNTModule model = AVConformerRNNTModule(args, sp_model) else: from lightning import ConformerRNNTModule model = ConformerRNNTModule(args, sp_model) ckpt = torch.load(args.checkpoint_path, map_location=lambda storage, loc: storage)["state_dict"] model.load_state_dict(ckpt) model.eval() return model def run_eval(model, data_module): total_edit_distance = 0 total_length = 0 dataloader = data_module.test_dataloader() with torch.no_grad(): for idx, (batch, sample) in enumerate(dataloader): actual = sample[0][-1] predicted = model(batch) total_edit_distance += compute_word_level_distance(actual, predicted) total_length += len(actual.split()) if idx % 100 == 0: logger.warning(f"Processed elem {idx}; WER: {total_edit_distance / total_length}") logger.warning(f"Final WER: {total_edit_distance / total_length}") return total_edit_distance / total_length def parse_args(): parser = ArgumentParser() parser.add_argument( "--modality", type=str, help="Modality", required=True, ) parser.add_argument( "--mode", type=str, help="Perform online or offline recognition.", required=True, ) parser.add_argument( "--root-dir", type=str, help="Root directory to LRS3 audio-visual datasets.", required=True, ) parser.add_argument( "--sp-model-path", type=str, help="Path to sentencepiece model.", required=True, ) parser.add_argument( "--checkpoint-path", type=str, help="Path to a checkpoint model.", required=True, ) parser.add_argument("--debug", action="store_true", help="whether to use debug level for logging") return parser.parse_args() def init_logger(debug): fmt = "%(asctime)s %(message)s" if debug else "%(message)s" level = logging.DEBUG if debug else logging.INFO logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S") def cli_main(): args = parse_args() init_logger(args.debug) model = get_lightning_module(args) data_module = get_data_module(args, str(args.sp_model_path)) run_eval(model, data_module) if __name__ == "__main__": cli_main()
import logging from argparse import ArgumentParser import sentencepiece as spm import torch import torchaudio from transforms import get_data_module logger = logging.getLogger(__name__) def compute_word_level_distance(seq1, seq2): return torchaudio.functional.edit_distance(seq1.lower().split(), seq2.lower().split()) def get_lightning_module(args): sp_model = spm.SentencePieceProcessor(model_file=str(args.sp_model_path)) if args.md == "av": from lightning_av import AVConformerRNNTModule model = AVConformerRNNTModule(args, sp_model) else: from lightning import ConformerRNNTModule model = ConformerRNNTModule(args, sp_model) ckpt = torch.load(args.checkpoint_path, map_location=lambda storage, loc: storage)["state_dict"] model.load_state_dict(ckpt) model.eval() return model def run_eval(model, data_module): total_edit_distance = 0 total_length = 0 dataloader = data_module.test_dataloader() with torch.no_grad(): for idx, (batch, sample) in enumerate(dataloader): actual = sample[0][-1] predicted = model(batch) total_edit_distance += compute_word_level_distance(actual, predicted) total_length += len(actual.split()) if idx % 100 == 0: logger.warning(f"Processed elem {idx}; WER: {total_edit_distance / total_length}") logger.warning(f"Final WER: {total_edit_distance / total_length}") return total_edit_distance / total_length def parse_args(): parser = ArgumentParser() parser.add_argument( "--md", type=str, help="Modality", required=True, ) parser.add_argument( "--mode", type=str, help="Perform online or offline recognition.", required=True, ) parser.add_argument( "--root-dir", type=str, help="Root directory to LRS3 audio-visual datasets.", required=True, ) parser.add_argument( "--sp-model-path", type=str, help="Path to SentencePiece model.", required=True, ) parser.add_argument( "--checkpoint-path", type=str, help="Path to checkpoint model.", required=True, ) parser.add_argument( "--pretrained-model-path", type=str, help="Path to Pretraned model.", ) parser.add_argument("--debug", action="store_true", help="whether to use debug level for logging") return parser.parse_args() def init_logger(debug): fmt = "%(asctime)s %(message)s" if debug else "%(message)s" level = logging.DEBUG if debug else logging.INFO logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S") def cli_main(): args = parse_args() init_logger(args.debug) model = get_lightning_module(args) data_module = get_data_module(args, str(args.sp_model_path)) run_eval(model, data_module) if __name__ == "__main__": cli_main()
"""**Chat Models** are a variation on language models. While Chat Models use language models under the hood, the interface they expose is a bit different. Rather than expose a "text in, text out" API, they expose an interface where "chat messages" are the inputs and outputs. **Class hierarchy:** .. code-block:: BaseLanguageModel --> BaseChatModel --> <name> # Examples: ChatOpenAI, ChatGooglePalm **Main helpers:** .. code-block:: AIMessage, BaseMessage, HumanMessage """ # noqa: E501 import warnings from langchain_core._api import LangChainDeprecationWarning from langchain._api.interactive_env import is_interactive_env from langchain.chat_models.base import init_chat_model def __getattr__(name: str) -> None: from langchain_community import chat_models # If not in interactive env, raise warning. if not is_interactive_env(): warnings.warn( "Importing chat models from langchain is deprecated. Importing from " "langchain will no longer be supported as of langchain==0.2.0. " "Please import from langchain-community instead:\n\n" f"`from langchain_community.chat_models import {name}`.\n\n" "To install langchain-community run `pip install -U langchain-community`.", stacklevel=2, category=LangChainDeprecationWarning, ) return getattr(chat_models, name) __all__ = [ "AzureChatOpenAI", "BedrockChat", "ChatAnthropic", "ChatAnyscale", "ChatBaichuan", "ChatCohere", "ChatDatabricks", "ChatEverlyAI", "ChatFireworks", "ChatGooglePalm", "ChatHunyuan", "ChatJavelinAIGateway", "ChatKonko", "ChatLiteLLM", "ChatMLflowAIGateway", "ChatMlflow", "ChatOllama", "ChatOpenAI", "ChatVertexAI", "ChatYandexGPT", "ErnieBotChat", "FakeListChatModel", "GigaChat", "HumanInputChatModel", "JinaChat", "MiniMaxChat", "PaiEasChatEndpoint", "PromptLayerChatOpenAI", "QianfanChatEndpoint", "VolcEngineMaasChat", "init_chat_model", ]
"""**Chat Models** are a variation on language models. While Chat Models use language models under the hood, the interface they expose is a bit different. Rather than expose a "text in, text out" API, they expose an interface where "chat messages" are the inputs and outputs. **Class hierarchy:** .. code-block:: BaseLanguageModel --> BaseChatModel --> <name> # Examples: ChatOpenAI, ChatGooglePalm **Main helpers:** .. code-block:: AIMessage, BaseMessage, HumanMessage """ # noqa: E501 import warnings from langchain_core._api import LangChainDeprecationWarning from langchain._api.interactive_env import is_interactive_env from langchain.chat_models.base import init_chat_model def __getattr__(name: str) -> None: from langchain_community import chat_models # If not in interactive env, raise warning. if not is_interactive_env(): warnings.warn( "Importing chat models from langchain is deprecated. Importing from " "langchain will no longer be supported as of langchain==0.2.0. " "Please import from langchain-community instead:\n\n" f"`from langchain_community.chat_models import {name}`.\n\n" "To install langchain-community run `pip install -U langchain-community`.", category=LangChainDeprecationWarning, ) return getattr(chat_models, name) __all__ = [ "AzureChatOpenAI", "BedrockChat", "ChatAnthropic", "ChatAnyscale", "ChatBaichuan", "ChatCohere", "ChatDatabricks", "ChatEverlyAI", "ChatFireworks", "ChatGooglePalm", "ChatHunyuan", "ChatJavelinAIGateway", "ChatKonko", "ChatLiteLLM", "ChatMLflowAIGateway", "ChatMlflow", "ChatOllama", "ChatOpenAI", "ChatVertexAI", "ChatYandexGPT", "ErnieBotChat", "FakeListChatModel", "GigaChat", "HumanInputChatModel", "JinaChat", "MiniMaxChat", "PaiEasChatEndpoint", "PromptLayerChatOpenAI", "QianfanChatEndpoint", "VolcEngineMaasChat", "init_chat_model", ]
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.dist import all_reduce_params, is_distributed from mmengine.registry import HOOKS from .hook import Hook @HOOKS.register_module() class SyncBuffersHook(Hook): """Synchronize model buffers such as running_mean and running_var in BN at the end of each epoch.""" priority = 'NORMAL' def __init__(self) -> None: self.distributed = is_distributed() # A flag to mark whether synchronization has been done in # after_train_epoch self.called_in_train = False def before_val_epoch(self, runner) -> None: """All-reduce model buffers before each validation epoch. Synchronize the buffers before each validation if they have not been synchronized at the end of the previous training epoch. This method will be called when using IterBasedTrainLoop. Args: runner (Runner): The runner of the training process. """ if self.distributed: if not self.called_in_train: all_reduce_params(runner.model.buffers(), op='mean') self.called_in_train = False def after_train_epoch(self, runner) -> None: """All-reduce model buffers at the end of each epoch. Args: runner (Runner): The runner of the training process. """ if self.distributed: all_reduce_params(runner.model.buffers(), op='mean') self.called_in_train = True
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.dist import all_reduce_params, is_distributed from mmengine.registry import HOOKS from .hook import Hook @HOOKS.register_module() class SyncBuffersHook(Hook): """Synchronize model buffers such as running_mean and running_var in BN at the end of each epoch.""" priority = 'NORMAL' def __init__(self) -> None: self.distributed = is_distributed() def after_train_epoch(self, runner) -> None: """All-reduce model buffers at the end of each epoch. Args: runner (Runner): The runner of the training process. """ if self.distributed: all_reduce_params(runner.model.buffers(), op='mean')
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional # usort: skip from ._transform import Transform # usort: skip from ._presets import StereoMatching # usort: skip from ._augment import RandomCutmix, RandomErasing, RandomMixup, SimpleCopyPaste from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, RandomAdjustSharpness, RandomAutocontrast, RandomEqualize, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, FixedSizeCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat, ConvertColorSpace, ConvertDtype, ConvertImageDtype from ._misc import ( GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, PermuteDimensions, RemoveSmallBoundingBoxes, ToDtype, TransposeDimensions, ) from ._type_conversion import DecodeImage, LabelToOneHot, PILToTensor, ToImagePIL, ToImageTensor, ToPILImage from ._deprecated import Grayscale, RandomGrayscale, ToTensor # usort: skip
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional # usort: skip from ._transform import Transform # usort: skip from ._presets import StereoMatching # usort: skip from ._augment import RandomCutmix, RandomErasing, RandomMixup, SimpleCopyPaste from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, RandomAdjustSharpness, RandomAutocontrast, RandomEqualize, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, FixedSizeCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat, ConvertColorSpace, ConvertImageDtype from ._misc import ( GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, PermuteDimensions, RemoveSmallBoundingBoxes, ToDtype, TransposeDimensions, ) from ._type_conversion import DecodeImage, LabelToOneHot, PILToTensor, ToImagePIL, ToImageTensor, ToPILImage from ._deprecated import Grayscale, RandomGrayscale, ToTensor # usort: skip
# Copyright (c) OpenMMLab. All rights reserved. import math import torch from torch.utils.data import DistributedSampler as _DistributedSampler from mmdet.core.utils import sync_random_seed from mmdet.utils import get_device class DistributedSampler(_DistributedSampler): def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, seed=0): super().__init__( dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) # In distributed sampling, different ranks should sample # non-overlapped data in the dataset. Therefore, this function # is used to make sure that each rank shuffles the data indices # in the same order based on the same seed. Then different ranks # could use different indices to select non-overlapped data from the # same data list. device = get_device() self.seed = sync_random_seed(seed, device) def __iter__(self): # deterministically shuffle based on epoch if self.shuffle: g = torch.Generator() # When :attr:`shuffle=True`, this ensures all replicas # use a different random ordering for each epoch. # Otherwise, the next iteration of this sampler will # yield the same ordering. g.manual_seed(self.epoch + self.seed) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() # add extra samples to make it evenly divisible # in case that indices is shorter than half of total_size indices = (indices * math.ceil(self.total_size / len(indices)))[:self.total_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices)
# Copyright (c) OpenMMLab. All rights reserved. import math import torch from torch.utils.data import DistributedSampler as _DistributedSampler from mmdet.core.utils import sync_random_seed class DistributedSampler(_DistributedSampler): def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, seed=0): super().__init__( dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) # In distributed sampling, different ranks should sample # non-overlapped data in the dataset. Therefore, this function # is used to make sure that each rank shuffles the data indices # in the same order based on the same seed. Then different ranks # could use different indices to select non-overlapped data from the # same data list. self.seed = sync_random_seed(seed) def __iter__(self): # deterministically shuffle based on epoch if self.shuffle: g = torch.Generator() # When :attr:`shuffle=True`, this ensures all replicas # use a different random ordering for each epoch. # Otherwise, the next iteration of this sampler will # yield the same ordering. g.manual_seed(self.epoch + self.seed) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() # add extra samples to make it evenly divisible # in case that indices is shorter than half of total_size indices = (indices * math.ceil(self.total_size / len(indices)))[:self.total_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices)
import unittest from transformers.testing_utils import Expectations class ExpectationsTest(unittest.TestCase): def test_expectations(self): # We use the expectations below to make sure the right expectations are found for the right devices. # Each value is just a unique ID. expectations = Expectations( { (None, None): 1, ("cuda", 8): 2, ("cuda", 7): 3, ("rocm", 8): 4, ("rocm", None): 5, ("cpu", None): 6, ("xpu", 3): 7, } ) def check(expected_id, device_prop): found_id = expectations.find_expectation(device_prop) assert found_id == expected_id, f"Expected {expected_id} for {device_prop}, found {found_id}" # npu has no matches so should find default expectation check(1, ("npu", None, None)) check(7, ("xpu", 3, None)) check(2, ("cuda", 8, None)) check(3, ("cuda", 7, None)) check(4, ("rocm", 9, None)) check(4, ("rocm", None, None)) check(2, ("cuda", 2, None)) # We also test that if there is no default excpectation and no match is found, a ValueError is raised. expectations = Expectations({("cuda", 8): 1}) with self.assertRaises(ValueError): expectations.find_expectation(("xpu", None))
import unittest from transformers.testing_utils import Expectations class ExpectationsTest(unittest.TestCase): def test_expectations(self): expectations = Expectations( { (None, None): 1, ("cuda", 8): 2, ("cuda", 7): 3, ("rocm", 8): 4, ("rocm", None): 5, ("cpu", None): 6, ("xpu", 3): 7, } ) def check(value, key): assert expectations.find_expectation(key) == value # npu has no matches so should find default expectation check(1, ("npu", None)) check(7, ("xpu", 3)) check(2, ("cuda", 8)) check(3, ("cuda", 7)) check(4, ("rocm", 9)) check(4, ("rocm", None)) check(2, ("cuda", 2)) expectations = Expectations({("cuda", 8): 1}) with self.assertRaises(ValueError): expectations.find_expectation(("xpu", None))
# model settings norm_cfg = dict(type='BN', requires_grad=False) model = dict( type='FasterRCNN', backbone=dict( type='ResNet', depth=50, num_stages=3, strides=(1, 2, 2), dilations=(1, 1, 1), out_indices=(2, ), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), rpn_head=dict( type='RPNHead', in_channels=1024, feat_channels=1024, anchor_generator=dict( type='AnchorGenerator', scales=[2, 4, 8, 16, 32], ratios=[0.5, 1.0, 2.0], strides=[16]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', shared_head=dict( type='ResLayer', depth=50, stage=3, stride=2, dilation=1, style='caffe', norm_cfg=norm_cfg, norm_eval=True, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=1024, featmap_strides=[16]), bbox_head=dict( type='BBoxHead', with_avg_pool=True, roi_feat_size=7, in_channels=2048, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=12000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=6000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)))
# model settings norm_cfg = dict(type='BN', requires_grad=False) model = dict( type='FasterRCNN', backbone=dict( type='ResNet', depth=50, num_stages=3, strides=(1, 2, 2), dilations=(1, 1, 1), out_indices=(2, ), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), rpn_head=dict( type='RPNHead', in_channels=1024, feat_channels=1024, anchor_generator=dict( type='AnchorGenerator', scales=[2, 4, 8, 16, 32], ratios=[0.5, 1.0, 2.0], strides=[16]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', shared_head=dict( type='ResLayer', depth=50, stage=3, stride=2, dilation=1, style='caffe', norm_cfg=norm_cfg, norm_eval=True), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=1024, featmap_strides=[16]), bbox_head=dict( type='BBoxHead', with_avg_pool=True, roi_feat_size=7, in_channels=2048, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=12000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=6000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)))
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '3.0.0rc6' short_version = __version__ def parse_version_info(version_str): """Parse a version string into a tuple. Args: version_str (str): The version string. Returns: tuple[int | str]: The version info, e.g., "1.3.0" is parsed into (1, 3, 0), and "2.0.0rc1" is parsed into (2, 0, 0, 'rc1'). """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '3.0.0rc5' short_version = __version__ def parse_version_info(version_str): """Parse a version string into a tuple. Args: version_str (str): The version string. Returns: tuple[int | str]: The version info, e.g., "1.3.0" is parsed into (1, 3, 0), and "2.0.0rc1" is parsed into (2, 0, 0, 'rc1'). """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
import os import warnings from modulefinder import Module import torch # Don't re-order these, we need to load the _C extension (done when importing # .extensions) before entering _meta_registrations. from .extension import _HAS_OPS # usort:skip from torchvision import _meta_registrations, datasets, io, models, ops, transforms, utils # usort:skip try: from .version import __version__ # noqa: F401 except ImportError: pass # Check if torchvision is being imported within the root folder if not _HAS_OPS and os.path.dirname(os.path.realpath(__file__)) == os.path.join( os.path.realpath(os.getcwd()), "torchvision" ): message = ( "You are importing torchvision within its own root folder ({}). " "This is not expected to work and may give errors. Please exit the " "torchvision project source and relaunch your python interpreter." ) warnings.warn(message.format(os.getcwd())) _image_backend = "PIL" _video_backend = "pyav" def set_image_backend(backend): """ Specifies the package used to load images. Args: backend (string): Name of the image backend. one of {'PIL', 'accimage'}. The :mod:`accimage` package uses the Intel IPP library. It is generally faster than PIL, but does not support as many operations. """ global _image_backend if backend not in ["PIL", "accimage"]: raise ValueError(f"Invalid backend '{backend}'. Options are 'PIL' and 'accimage'") _image_backend = backend def get_image_backend(): """ Gets the name of the package used to load images """ return _image_backend def set_video_backend(backend): """ Specifies the package used to decode videos. Args: backend (string): Name of the video backend. one of {'pyav', 'video_reader'}. The :mod:`pyav` package uses the 3rd party PyAv library. It is a Pythonic binding for the FFmpeg libraries. The :mod:`video_reader` package includes a native C++ implementation on top of FFMPEG libraries, and a python API of TorchScript custom operator. It generally decodes faster than :mod:`pyav`, but is perhaps less robust. .. note:: Building with FFMPEG is disabled by default in the latest `main`. If you want to use the 'video_reader' backend, please compile torchvision from source. """ global _video_backend if backend not in ["pyav", "video_reader", "cuda"]: raise ValueError("Invalid video backend '%s'. Options are 'pyav', 'video_reader' and 'cuda'" % backend) if backend == "video_reader" and not io._HAS_VIDEO_OPT: # TODO: better messages message = "video_reader video backend is not available. Please compile torchvision from source and try again" raise RuntimeError(message) elif backend == "cuda" and not io._HAS_GPU_VIDEO_DECODER: # TODO: better messages message = "cuda video backend is not available." raise RuntimeError(message) else: _video_backend = backend def get_video_backend(): """ Returns the currently active video backend used to decode videos. Returns: str: Name of the video backend. one of {'pyav', 'video_reader'}. """ return _video_backend def _is_tracing(): return torch._C._get_tracing_state() def disable_beta_transforms_warning(): # Noop, only exists to avoid breaking existing code. # See https://github.com/pytorch/vision/issues/7896 pass
import os import warnings from modulefinder import Module import torch from torchvision import _meta_registrations, datasets, io, models, ops, transforms, utils from .extension import _HAS_OPS try: from .version import __version__ # noqa: F401 except ImportError: pass # Check if torchvision is being imported within the root folder if not _HAS_OPS and os.path.dirname(os.path.realpath(__file__)) == os.path.join( os.path.realpath(os.getcwd()), "torchvision" ): message = ( "You are importing torchvision within its own root folder ({}). " "This is not expected to work and may give errors. Please exit the " "torchvision project source and relaunch your python interpreter." ) warnings.warn(message.format(os.getcwd())) _image_backend = "PIL" _video_backend = "pyav" def set_image_backend(backend): """ Specifies the package used to load images. Args: backend (string): Name of the image backend. one of {'PIL', 'accimage'}. The :mod:`accimage` package uses the Intel IPP library. It is generally faster than PIL, but does not support as many operations. """ global _image_backend if backend not in ["PIL", "accimage"]: raise ValueError(f"Invalid backend '{backend}'. Options are 'PIL' and 'accimage'") _image_backend = backend def get_image_backend(): """ Gets the name of the package used to load images """ return _image_backend def set_video_backend(backend): """ Specifies the package used to decode videos. Args: backend (string): Name of the video backend. one of {'pyav', 'video_reader'}. The :mod:`pyav` package uses the 3rd party PyAv library. It is a Pythonic binding for the FFmpeg libraries. The :mod:`video_reader` package includes a native C++ implementation on top of FFMPEG libraries, and a python API of TorchScript custom operator. It generally decodes faster than :mod:`pyav`, but is perhaps less robust. .. note:: Building with FFMPEG is disabled by default in the latest `main`. If you want to use the 'video_reader' backend, please compile torchvision from source. """ global _video_backend if backend not in ["pyav", "video_reader", "cuda"]: raise ValueError("Invalid video backend '%s'. Options are 'pyav', 'video_reader' and 'cuda'" % backend) if backend == "video_reader" and not io._HAS_VIDEO_OPT: # TODO: better messages message = "video_reader video backend is not available. Please compile torchvision from source and try again" raise RuntimeError(message) elif backend == "cuda" and not io._HAS_GPU_VIDEO_DECODER: # TODO: better messages message = "cuda video backend is not available." raise RuntimeError(message) else: _video_backend = backend def get_video_backend(): """ Returns the currently active video backend used to decode videos. Returns: str: Name of the video backend. one of {'pyav', 'video_reader'}. """ return _video_backend def _is_tracing(): return torch._C._get_tracing_state() def disable_beta_transforms_warning(): # Noop, only exists to avoid breaking existing code. # See https://github.com/pytorch/vision/issues/7896 pass
from typing import Any, Optional from unittest import mock import pytest from langchain_community.tools.databricks._execution import ( DEFAULT_EXECUTE_FUNCTION_ARGS, EXECUTE_FUNCTION_ARG_NAME, execute_function, ) @pytest.mark.requires("databricks.sdk") @pytest.mark.parametrize( ("parameters", "execute_params"), [ ({"a": 1, "b": 2}, DEFAULT_EXECUTE_FUNCTION_ARGS), ( {"a": 1, EXECUTE_FUNCTION_ARG_NAME: {"wait_timeout": "10s"}}, {**DEFAULT_EXECUTE_FUNCTION_ARGS, "wait_timeout": "10s"}, ), ( {EXECUTE_FUNCTION_ARG_NAME: {"row_limit": "1000"}}, {**DEFAULT_EXECUTE_FUNCTION_ARGS, "row_limit": "1000"}, ), ], ) def test_execute_function(parameters: dict, execute_params: dict) -> None: workspace_client = mock.Mock() def mock_execute_statement( statement: str, warehouse_id: str, *, byte_limit: Optional[int] = None, catalog: Optional[str] = None, disposition: Optional[Any] = None, format: Optional[Any] = None, on_wait_timeout: Optional[Any] = None, parameters: Optional[list[Any]] = None, row_limit: Optional[int] = None, schema: Optional[str] = None, wait_timeout: Optional[str] = None, ) -> mock.Mock: for key, value in execute_params.items(): assert locals()[key] == value return mock.Mock() workspace_client.statement_execution.execute_statement = mock_execute_statement function = mock.Mock() function.data_type = "TABLE_TYPE" function.input_params.parameters = [] execute_function( workspace_client, warehouse_id="id", function=function, parameters=parameters ) @pytest.mark.requires("databricks.sdk") def test_execute_function_error() -> None: workspace_client = mock.Mock() def mock_execute_statement( statement: str, warehouse_id: str, *, byte_limit: Optional[int] = None, catalog: Optional[str] = None, disposition: Optional[Any] = None, format: Optional[Any] = None, on_wait_timeout: Optional[Any] = None, parameters: Optional[list[Any]] = None, row_limit: Optional[int] = None, schema: Optional[str] = None, wait_timeout: Optional[str] = None, ) -> mock.Mock: return mock.Mock() workspace_client.statement_execution.execute_statement = mock_execute_statement function = mock.Mock() function.data_type = "TABLE_TYPE" function.input_params.parameters = [] parameters = {EXECUTE_FUNCTION_ARG_NAME: {"invalid_param": "123"}} with pytest.raises( ValueError, match=r"Invalid parameters for executing functions: {'invalid_param'}. ", ): execute_function( workspace_client, warehouse_id="id", function=function, parameters=parameters, )
from unittest import mock import pytest from langchain_community.tools.databricks._execution import ( DEFAULT_EXECUTE_FUNCTION_ARGS, EXECUTE_FUNCTION_ARG_NAME, execute_function, ) @pytest.mark.requires("databricks.sdk") @pytest.mark.parametrize( ("parameters", "execute_params"), [ ({"a": 1, "b": 2}, DEFAULT_EXECUTE_FUNCTION_ARGS), ( {"a": 1, EXECUTE_FUNCTION_ARG_NAME: {"wait_timeout": "10s"}}, {**DEFAULT_EXECUTE_FUNCTION_ARGS, "wait_timeout": "10s"}, ), ( {EXECUTE_FUNCTION_ARG_NAME: {"row_limit": "1000"}}, {**DEFAULT_EXECUTE_FUNCTION_ARGS, "row_limit": "1000"}, ), ], ) def test_execute_function(parameters: dict, execute_params: dict) -> None: workspace_client = mock.Mock() def mock_execute_statement( # type: ignore statement, warehouse_id, *, byte_limit=None, catalog=None, disposition=None, format=None, on_wait_timeout=None, parameters=None, row_limit=None, schema=None, wait_timeout=None, ): for key, value in execute_params.items(): assert locals()[key] == value return mock.Mock() workspace_client.statement_execution.execute_statement = mock_execute_statement function = mock.Mock() function.data_type = "TABLE_TYPE" function.input_params.parameters = [] execute_function( workspace_client, warehouse_id="id", function=function, parameters=parameters ) @pytest.mark.requires("databricks.sdk") def test_execute_function_error() -> None: workspace_client = mock.Mock() def mock_execute_statement( # type: ignore statement, warehouse_id, *, byte_limit=None, catalog=None, disposition=None, format=None, on_wait_timeout=None, parameters=None, row_limit=None, schema=None, wait_timeout=None, ): return mock.Mock() workspace_client.statement_execution.execute_statement = mock_execute_statement function = mock.Mock() function.data_type = "TABLE_TYPE" function.input_params.parameters = [] parameters = {EXECUTE_FUNCTION_ARG_NAME: {"invalid_param": "123"}} with pytest.raises( ValueError, match=r"Invalid parameters for executing functions: {'invalid_param'}. ", ): execute_function( workspace_client, warehouse_id="id", function=function, parameters=parameters, )
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from unittest.mock import patch import numpy as np from mmengine.dataset import DefaultSampler from torch.utils.data import Dataset from mmdet.datasets.samplers import AspectRatioBatchSampler class DummyDataset(Dataset): def __init__(self, length): self.length = length self.shapes = np.random.random((length, 2)) def __len__(self): return self.length def __getitem__(self, idx): return self.shapes[idx] def get_data_info(self, idx): return dict(width=self.shapes[idx][0], height=self.shapes[idx][1]) class TestAspectRatioBatchSampler(TestCase): @patch('mmengine.dist.get_dist_info', return_value=(0, 1)) def setUp(self, mock): self.length = 100 self.dataset = DummyDataset(self.length) self.sampler = DefaultSampler(self.dataset, shuffle=False) def test_invalid_inputs(self): with self.assertRaisesRegex( ValueError, 'batch_size should be a positive integer value'): AspectRatioBatchSampler(self.sampler, batch_size=-1) with self.assertRaisesRegex( TypeError, 'sampler should be an instance of ``Sampler``'): AspectRatioBatchSampler(None, batch_size=1) def test_divisible_batch(self): batch_size = 5 batch_sampler = AspectRatioBatchSampler( self.sampler, batch_size=batch_size, drop_last=True) self.assertEqual(len(batch_sampler), self.length // batch_size) for batch_idxs in batch_sampler: self.assertEqual(len(batch_idxs), batch_size) batch = [self.dataset[idx] for idx in batch_idxs] flag = batch[0][0] < batch[0][1] for i in range(1, batch_size): self.assertEqual(batch[i][0] < batch[i][1], flag) def test_indivisible_batch(self): batch_size = 7 batch_sampler = AspectRatioBatchSampler( self.sampler, batch_size=batch_size, drop_last=False) all_batch_idxs = list(batch_sampler) self.assertEqual( len(batch_sampler), (self.length + batch_size - 1) // batch_size) self.assertEqual( len(all_batch_idxs), (self.length + batch_size - 1) // batch_size) batch_sampler = AspectRatioBatchSampler( self.sampler, batch_size=batch_size, drop_last=True) all_batch_idxs = list(batch_sampler) self.assertEqual(len(batch_sampler), self.length // batch_size) self.assertEqual(len(all_batch_idxs), self.length // batch_size) # the last batch may not have the same aspect ratio for batch_idxs in all_batch_idxs[:-1]: self.assertEqual(len(batch_idxs), batch_size) batch = [self.dataset[idx] for idx in batch_idxs] flag = batch[0][0] < batch[0][1] for i in range(1, batch_size): self.assertEqual(batch[i][0] < batch[i][1], flag)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from unittest.mock import patch import numpy as np from mmengine.data import DefaultSampler from torch.utils.data import Dataset from mmdet.datasets.samplers import AspectRatioBatchSampler class DummyDataset(Dataset): def __init__(self, length): self.length = length self.shapes = np.random.random((length, 2)) def __len__(self): return self.length def __getitem__(self, idx): return self.shapes[idx] def get_data_info(self, idx): return dict(width=self.shapes[idx][0], height=self.shapes[idx][1]) class TestAspectRatioBatchSampler(TestCase): @patch('mmengine.data.sampler.get_dist_info', return_value=(0, 1)) def setUp(self, mock): self.length = 100 self.dataset = DummyDataset(self.length) self.sampler = DefaultSampler(self.dataset, shuffle=False) def test_invalid_inputs(self): with self.assertRaisesRegex( ValueError, 'batch_size should be a positive integer value'): AspectRatioBatchSampler(self.sampler, batch_size=-1) with self.assertRaisesRegex( TypeError, 'sampler should be an instance of ``Sampler``'): AspectRatioBatchSampler(None, batch_size=1) def test_divisible_batch(self): batch_size = 5 batch_sampler = AspectRatioBatchSampler( self.sampler, batch_size=batch_size, drop_last=True) self.assertEqual(len(batch_sampler), self.length // batch_size) for batch_idxs in batch_sampler: self.assertEqual(len(batch_idxs), batch_size) batch = [self.dataset[idx] for idx in batch_idxs] flag = batch[0][0] < batch[0][1] for i in range(1, batch_size): self.assertEqual(batch[i][0] < batch[i][1], flag) def test_indivisible_batch(self): batch_size = 7 batch_sampler = AspectRatioBatchSampler( self.sampler, batch_size=batch_size, drop_last=False) all_batch_idxs = list(batch_sampler) self.assertEqual( len(batch_sampler), (self.length + batch_size - 1) // batch_size) self.assertEqual( len(all_batch_idxs), (self.length + batch_size - 1) // batch_size) batch_sampler = AspectRatioBatchSampler( self.sampler, batch_size=batch_size, drop_last=True) all_batch_idxs = list(batch_sampler) self.assertEqual(len(batch_sampler), self.length // batch_size) self.assertEqual(len(all_batch_idxs), self.length // batch_size) # the last batch may not have the same aspect ratio for batch_idxs in all_batch_idxs[:-1]: self.assertEqual(len(batch_idxs), batch_size) batch = [self.dataset[idx] for idx in batch_idxs] flag = batch[0][0] < batch[0][1] for i in range(1, batch_size): self.assertEqual(batch[i][0] < batch[i][1], flag)
def __getattr__(name: str = "") -> None: """Raise an error on import since is deprecated.""" msg = ( "This module has been moved to langchain-experimental. " "For more details: https://github.com/langchain-ai/langchain/discussions/11352." "To access this code, install it with `pip install langchain-experimental`." "`from langchain_experimental.llm_symbolic_math.base " "import LLMSymbolicMathChain`" ) raise AttributeError(msg)
def __getattr__(name: str = "") -> None: """Raise an error on import since is deprecated.""" raise AttributeError( "This module has been moved to langchain-experimental. " "For more details: https://github.com/langchain-ai/langchain/discussions/11352." "To access this code, install it with `pip install langchain-experimental`." "`from langchain_experimental.llm_symbolic_math.base " "import LLMSymbolicMathChain`" )
import os import pytest from google.ai.generativelanguage_v1beta.types import ( FunctionCallingConfig, ToolConfig, ) from llama_index.core.base.llms.base import BaseLLM from llama_index.core.base.llms.types import ChatMessage, ImageBlock, MessageRole from llama_index.core.prompts.base import ChatPromptTemplate from llama_index.core.tools.function_tool import FunctionTool from llama_index.llms.gemini import Gemini from llama_index.llms.gemini.utils import chat_message_to_gemini from pydantic import BaseModel def test_embedding_class() -> None: names_of_base_classes = [b.__name__ for b in Gemini.__mro__] assert BaseLLM.__name__ in names_of_base_classes def test_chat_message_to_gemini() -> None: msg = ChatMessage("Some content") assert chat_message_to_gemini(msg) == { "role": MessageRole.USER, "parts": [{"text": "Some content"}], } msg = ChatMessage("Some content") msg.blocks.append(ImageBlock(image=b"foo", image_mimetype="image/png")) assert chat_message_to_gemini(msg) == { "role": MessageRole.USER, "parts": [{"text": "Some content"}, {"data": b"foo", "mime_type": "image/png"}], } @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_generate_image_prompt() -> None: msg = ChatMessage("Tell me the brand of the car in this image:") msg.blocks.append( ImageBlock( url="https://upload.wikimedia.org/wikipedia/commons/5/52/Ferrari_SP_FFX.jpg" ) ) response = Gemini(model="models/gemini-1.5-flash").chat(messages=[msg]) assert "ferrari" in str(response).lower() @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_chat_stream() -> None: msg = ChatMessage("List three types of software testing strategies") response = list(Gemini(model="models/gemini-1.5-flash").stream_chat(messages=[msg])) assert response @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_chat_with_tools() -> None: def add(a: int, b: int) -> int: """Add two integers and returns the result integer.""" return a + b add_tool = FunctionTool.from_defaults(fn=add) msg = ChatMessage("What is the result of adding 2 and 3?") model = Gemini(model="models/gemini-1.5-flash") response = model.chat_with_tools( user_msg=msg, tools=[add_tool], tool_config=ToolConfig( function_calling_config=FunctionCallingConfig( mode=FunctionCallingConfig.Mode.ANY ) ), ) tool_calls = model.get_tool_calls_from_response(response) assert len(tool_calls) == 1 assert tool_calls[0].tool_name == "add" assert tool_calls[0].tool_kwargs == {"a": 2, "b": 3} assert len(response.additional_kwargs["tool_calls"]) >= 1 @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_structured_llm() -> None: class Test(BaseModel): test: str gemini_flash = Gemini( model="models/gemini-2.0-flash-001", api_key=os.environ["GOOGLE_API_KEY"], additional_kwargs={"seed": 4242}, ) chat_prompt = ChatPromptTemplate(message_templates=[ChatMessage(content="test")]) direct_prediction_response = gemini_flash.structured_predict( output_cls=Test, prompt=chat_prompt ) assert direct_prediction_response.test is not None structured_llm_response = gemini_flash.as_structured_llm(Test).complete("test") assert structured_llm_response.raw.test is not None @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_is_function_calling_model() -> None: assert Gemini( model="models/gemini-2.0-flash-001" ).metadata.is_function_calling_model # this model is the only one that does not support function calling assert not Gemini( model="models/gemini-2.0-flash-thinking-exp-01-21" ).metadata.is_function_calling_model # in case of un-released models it should be possible to override the # capabilities of the current model manual_override = Gemini(model="models/gemini-2.0-flash-001") assert manual_override.metadata.is_function_calling_model manual_override._is_function_call_model = False assert not manual_override._is_function_call_model assert not manual_override.metadata.is_function_calling_model
import os from llama_index.core.tools.function_tool import FunctionTool import pytest from llama_index.core.base.llms.base import BaseLLM from llama_index.core.base.llms.types import ChatMessage, ImageBlock, MessageRole from llama_index.llms.gemini import Gemini from llama_index.llms.gemini.utils import chat_message_to_gemini from google.ai.generativelanguage_v1beta.types import ( FunctionCallingConfig, ToolConfig, ) def test_embedding_class() -> None: names_of_base_classes = [b.__name__ for b in Gemini.__mro__] assert BaseLLM.__name__ in names_of_base_classes def test_chat_message_to_gemini() -> None: msg = ChatMessage("Some content") assert chat_message_to_gemini(msg) == { "role": MessageRole.USER, "parts": [{"text": "Some content"}], } msg = ChatMessage("Some content") msg.blocks.append(ImageBlock(image=b"foo", image_mimetype="image/png")) assert chat_message_to_gemini(msg) == { "role": MessageRole.USER, "parts": [{"text": "Some content"}, {"data": b"foo", "mime_type": "image/png"}], } @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_generate_image_prompt() -> None: msg = ChatMessage("Tell me the brand of the car in this image:") msg.blocks.append( ImageBlock( url="https://upload.wikimedia.org/wikipedia/commons/5/52/Ferrari_SP_FFX.jpg" ) ) response = Gemini(model="models/gemini-1.5-flash").chat(messages=[msg]) assert "ferrari" in str(response).lower() @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_chat_stream() -> None: msg = ChatMessage("List three types of software testing strategies") response = list(Gemini(model="models/gemini-1.5-flash").stream_chat(messages=[msg])) assert response @pytest.mark.skipif( os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set" ) def test_chat_with_tools() -> None: def add(a: int, b: int) -> int: """Add two integers and returns the result integer.""" return a + b add_tool = FunctionTool.from_defaults(fn=add) msg = ChatMessage("What is the result of adding 2 and 3?") model = Gemini(model="models/gemini-1.5-flash") response = model.chat_with_tools( user_msg=msg, tools=[add_tool], tool_config=ToolConfig( function_calling_config=FunctionCallingConfig( mode=FunctionCallingConfig.Mode.ANY ) ), ) tool_calls = model.get_tool_calls_from_response(response) assert len(tool_calls) == 1 assert tool_calls[0].tool_name == "add" assert tool_calls[0].tool_kwargs == {"a": 2, "b": 3} assert len(response.additional_kwargs["tool_calls"]) >= 1
# -*- coding: utf-8 -*- """ Audio Feature Augmentation ========================== """ # When running this tutorial in Google Colab, install the required packages # with the following. # !pip install torchaudio librosa import torch import torchaudio import torchaudio.transforms as T print(torch.__version__) print(torchaudio.__version__) ###################################################################### # Preparing data and utility functions (skip this section) # -------------------------------------------------------- # # @title Prepare data and utility functions. {display-mode: "form"} # @markdown # @markdown You do not need to look into this cell. # @markdown Just execute once and you are good to go. # @markdown # @markdown In this tutorial, we will use a speech data from [VOiCES dataset](https://iqtlabs.github.io/voices/), # @markdown which is licensed under Creative Commos BY 4.0. # ------------------------------------------------------------------------------- # Preparation of data and helper functions. # ------------------------------------------------------------------------------- import librosa import matplotlib.pyplot as plt from torchaudio.utils import download_asset SAMPLE_WAV_SPEECH_PATH = download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav") def _get_sample(path, resample=None): effects = [["remix", "1"]] if resample: effects.extend( [ ["lowpass", f"{resample // 2}"], ["rate", f"{resample}"], ] ) return torchaudio.sox_effects.apply_effects_file(path, effects=effects) def get_speech_sample(*, resample=None): return _get_sample(SAMPLE_WAV_SPEECH_PATH, resample=resample) def get_spectrogram( n_fft=400, win_len=None, hop_len=None, power=2.0, ): waveform, _ = get_speech_sample() spectrogram = T.Spectrogram( n_fft=n_fft, win_length=win_len, hop_length=hop_len, center=True, pad_mode="reflect", power=power, ) return spectrogram(waveform) def plot_spectrogram(spec, title=None, ylabel="freq_bin", aspect="auto", xmax=None): fig, axs = plt.subplots(1, 1) axs.set_title(title or "Spectrogram (db)") axs.set_ylabel(ylabel) axs.set_xlabel("frame") im = axs.imshow(librosa.power_to_db(spec), origin="lower", aspect=aspect) if xmax: axs.set_xlim((0, xmax)) fig.colorbar(im, ax=axs) plt.show(block=False) ###################################################################### # SpecAugment # ----------- # # `SpecAugment <https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html>`__ # is a popular spectrogram augmentation technique. # # ``torchaudio`` implements :py:func:`torchaudio.transforms.TimeStretch`, # :py:func:`torchaudio.transforms.TimeMasking` and # :py:func:`torchaudio.transforms.FrequencyMasking`. # ###################################################################### # TimeStretch # ----------- # spec = get_spectrogram(power=None) stretch = T.TimeStretch() rate = 1.2 spec_ = stretch(spec, rate) plot_spectrogram(torch.abs(spec_[0]), title=f"Stretched x{rate}", aspect="equal", xmax=304) plot_spectrogram(torch.abs(spec[0]), title="Original", aspect="equal", xmax=304) rate = 0.9 spec_ = stretch(spec, rate) plot_spectrogram(torch.abs(spec_[0]), title=f"Stretched x{rate}", aspect="equal", xmax=304) ###################################################################### # TimeMasking # ----------- # torch.random.manual_seed(4) spec = get_spectrogram() plot_spectrogram(spec[0], title="Original") masking = T.TimeMasking(time_mask_param=80) spec = masking(spec) plot_spectrogram(spec[0], title="Masked along time axis") ###################################################################### # FrequencyMasking # ---------------- # torch.random.manual_seed(4) spec = get_spectrogram() plot_spectrogram(spec[0], title="Original") masking = T.FrequencyMasking(freq_mask_param=80) spec = masking(spec) plot_spectrogram(spec[0], title="Masked along frequency axis")
# -*- coding: utf-8 -*- """ Audio Feature Augmentation ========================== """ # When running this tutorial in Google Colab, install the required packages # with the following. # !pip install torchaudio librosa import torch import torchaudio import torchaudio.transforms as T print(torch.__version__) print(torchaudio.__version__) ###################################################################### # Preparing data and utility functions (skip this section) # -------------------------------------------------------- # # @title Prepare data and utility functions. {display-mode: "form"} # @markdown # @markdown You do not need to look into this cell. # @markdown Just execute once and you are good to go. # @markdown # @markdown In this tutorial, we will use a speech data from [VOiCES dataset](https://iqtlabs.github.io/voices/), # @markdown which is licensed under Creative Commos BY 4.0. # ------------------------------------------------------------------------------- # Preparation of data and helper functions. # ------------------------------------------------------------------------------- import os import librosa import matplotlib.pyplot as plt import requests _SAMPLE_DIR = "_assets" SAMPLE_WAV_SPEECH_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav" # noqa: E501 SAMPLE_WAV_SPEECH_PATH = os.path.join(_SAMPLE_DIR, "speech.wav") os.makedirs(_SAMPLE_DIR, exist_ok=True) def _fetch_data(): uri = [ (SAMPLE_WAV_SPEECH_URL, SAMPLE_WAV_SPEECH_PATH), ] for url, path in uri: with open(path, "wb") as file_: file_.write(requests.get(url).content) _fetch_data() def _get_sample(path, resample=None): effects = [["remix", "1"]] if resample: effects.extend( [ ["lowpass", f"{resample // 2}"], ["rate", f"{resample}"], ] ) return torchaudio.sox_effects.apply_effects_file(path, effects=effects) def get_speech_sample(*, resample=None): return _get_sample(SAMPLE_WAV_SPEECH_PATH, resample=resample) def get_spectrogram( n_fft=400, win_len=None, hop_len=None, power=2.0, ): waveform, _ = get_speech_sample() spectrogram = T.Spectrogram( n_fft=n_fft, win_length=win_len, hop_length=hop_len, center=True, pad_mode="reflect", power=power, ) return spectrogram(waveform) def plot_spectrogram(spec, title=None, ylabel="freq_bin", aspect="auto", xmax=None): fig, axs = plt.subplots(1, 1) axs.set_title(title or "Spectrogram (db)") axs.set_ylabel(ylabel) axs.set_xlabel("frame") im = axs.imshow(librosa.power_to_db(spec), origin="lower", aspect=aspect) if xmax: axs.set_xlim((0, xmax)) fig.colorbar(im, ax=axs) plt.show(block=False) ###################################################################### # SpecAugment # ----------- # # `SpecAugment <https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html>`__ # is a popular spectrogram augmentation technique. # # ``torchaudio`` implements :py:func:`torchaudio.transforms.TimeStretch`, # :py:func:`torchaudio.transforms.TimeMasking` and # :py:func:`torchaudio.transforms.FrequencyMasking`. # ###################################################################### # TimeStretch # ----------- # spec = get_spectrogram(power=None) stretch = T.TimeStretch() rate = 1.2 spec_ = stretch(spec, rate) plot_spectrogram(torch.abs(spec_[0]), title=f"Stretched x{rate}", aspect="equal", xmax=304) plot_spectrogram(torch.abs(spec[0]), title="Original", aspect="equal", xmax=304) rate = 0.9 spec_ = stretch(spec, rate) plot_spectrogram(torch.abs(spec_[0]), title=f"Stretched x{rate}", aspect="equal", xmax=304) ###################################################################### # TimeMasking # ----------- # torch.random.manual_seed(4) spec = get_spectrogram() plot_spectrogram(spec[0], title="Original") masking = T.TimeMasking(time_mask_param=80) spec = masking(spec) plot_spectrogram(spec[0], title="Masked along time axis") ###################################################################### # FrequencyMasking # ---------------- # torch.random.manual_seed(4) spec = get_spectrogram() plot_spectrogram(spec[0], title="Original") masking = T.FrequencyMasking(freq_mask_param=80) spec = masking(spec) plot_spectrogram(spec[0], title="Masked along frequency axis")
from enum import Enum from typing import Callable, Union from numpy import ndarray from torch import Tensor from .util import ( cos_sim, manhattan_sim, euclidean_sim, dot_score, pairwise_cos_sim, pairwise_manhattan_sim, pairwise_euclidean_sim, pairwise_dot_score, ) class SimilarityFunction(Enum): """ Enum class for supported similarity functions. The following functions are supported: - ``SimilarityFunction.COSINE`` (``"cosine"``): Cosine similarity - ``SimilarityFunction.DOT_PRODUCT`` (``"dot"``, ``dot_product``): Dot product similarity - ``SimilarityFunction.EUCLIDEAN`` (``"euclidean"``): Euclidean distance - ``SimilarityFunction.MANHATTAN`` (``"manhattan"``): Manhattan distance """ COSINE = "cosine" DOT_PRODUCT = "dot" DOT = "dot" # Alias for DOT_PRODUCT EUCLIDEAN = "euclidean" MANHATTAN = "manhattan" @staticmethod def to_similarity_fn( similarity_function: Union[str, "SimilarityFunction"], ) -> Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: """ Converts a similarity function name or enum value to the corresponding similarity function. Args: similarity_function (Union[str, SimilarityFunction]): The name or enum value of the similarity function. Returns: Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: The corresponding similarity function. Raises: ValueError: If the provided function is not supported. Example: >>> similarity_fn = SimilarityFunction.to_similarity_fn("cosine") >>> similarity_scores = similarity_fn(embeddings1, embeddings2) >>> similarity_scores tensor([[0.3952, 0.0554], [0.0992, 0.1570]]) """ similarity_function = SimilarityFunction(similarity_function) if similarity_function == SimilarityFunction.COSINE: return cos_sim if similarity_function == SimilarityFunction.DOT_PRODUCT: return dot_score if similarity_function == SimilarityFunction.MANHATTAN: return manhattan_sim if similarity_function == SimilarityFunction.EUCLIDEAN: return euclidean_sim raise ValueError( "The provided function {} is not supported. Use one of the supported values: {}.".format( similarity_function, SimilarityFunction.possible_values() ) ) @staticmethod def to_similarity_pairwise_fn( similarity_function: Union[str, "SimilarityFunction"], ) -> Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: """ Converts a similarity function into a pairwise similarity function. The pairwise similarity function returns the diagonal vector from the similarity matrix, i.e. it only computes the similarity(a[i], b[i]) for each i in the range of the input tensors, rather than computing the similarity between all pairs of a and b. Args: similarity_function (Union[str, SimilarityFunction]): The name or enum value of the similarity function. Returns: Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: The pairwise similarity function. Raises: ValueError: If the provided similarity function is not supported. Example: >>> pairwise_fn = SimilarityFunction.to_similarity_pairwise_fn("cosine") >>> similarity_scores = pairwise_fn(embeddings1, embeddings2) >>> similarity_scores tensor([0.3952, 0.1570]) """ similarity_function = SimilarityFunction(similarity_function) if similarity_function == SimilarityFunction.COSINE: return pairwise_cos_sim if similarity_function == SimilarityFunction.DOT_PRODUCT: return pairwise_dot_score if similarity_function == SimilarityFunction.MANHATTAN: return pairwise_manhattan_sim if similarity_function == SimilarityFunction.EUCLIDEAN: return pairwise_euclidean_sim raise ValueError( "The provided function {} is not supported. Use one of the supported values: {}.".format( similarity_function, SimilarityFunction.possible_values() ) ) @staticmethod def possible_values(): """ Returns a list of possible values for the SimilarityFunction enum. Returns: list: A list of possible values for the SimilarityFunction enum. Example: >>> possible_values = SimilarityFunction.possible_values() >>> possible_values ['cosine', 'dot', 'euclidean', 'manhattan'] """ return [m.value for m in SimilarityFunction]
from enum import Enum from typing import Callable, Union from numpy import ndarray from torch import Tensor from .util import ( cos_sim, manhattan_sim, euclidean_sim, dot_score, pairwise_cos_sim, pairwise_manhattan_sim, pairwise_euclidean_sim, pairwise_dot_score, ) class SimilarityFunction(Enum): COSINE = "cosine" DOT_PRODUCT = "dot" DOT = "dot" # Alias for DOT_PRODUCT EUCLIDEAN = "euclidean" MANHATTAN = "manhattan" @staticmethod def to_similarity_fn( similarity_function: Union[str, "SimilarityFunction"], ) -> Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: similarity_function = SimilarityFunction(similarity_function) if similarity_function == SimilarityFunction.COSINE: return cos_sim if similarity_function == SimilarityFunction.DOT_PRODUCT: return dot_score if similarity_function == SimilarityFunction.MANHATTAN: return manhattan_sim if similarity_function == SimilarityFunction.EUCLIDEAN: return euclidean_sim raise ValueError( "The provided function {} is not supported. Use one of the supported values: {}.".format( similarity_function, SimilarityFunction.possible_values() ) ) @staticmethod def to_similarity_pairwise_fn( similarity_function: Union[str, "SimilarityFunction"], ) -> Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: similarity_function = SimilarityFunction(similarity_function) if similarity_function == SimilarityFunction.COSINE: return pairwise_cos_sim if similarity_function == SimilarityFunction.DOT_PRODUCT: return pairwise_dot_score if similarity_function == SimilarityFunction.MANHATTAN: return pairwise_manhattan_sim if similarity_function == SimilarityFunction.EUCLIDEAN: return pairwise_euclidean_sim raise ValueError( "The provided function {} is not supported. Use one of the supported values: {}.".format( similarity_function, SimilarityFunction.possible_values() ) ) @staticmethod def possible_values(): return [m.value for m in SimilarityFunction]
from typing import Optional, Dict, List, Set, Tuple import numpy as np import pytest import torch from docarray import DocumentArray from docarray.base_document import BaseDocument from docarray.typing import NdArray, TorchTensor @pytest.mark.proto def test_proto_simple(): class CustomDoc(BaseDocument): text: str doc = CustomDoc(text='hello') CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_ndarray(): class CustomDoc(BaseDocument): tensor: NdArray tensor = np.zeros((3, 224, 224)) doc = CustomDoc(tensor=tensor) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) assert (new_doc.tensor == tensor).all() @pytest.mark.proto def test_proto_with_nested_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc(text='hello', inner=CustomInnerDoc(tensor=np.zeros((3, 224, 224)))) CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_with_chunks_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=np.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() @pytest.mark.proto def test_proto_with_nested_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc( text='hello', inner=CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) ) CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_with_chunks_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() @pytest.mark.proto def test_optional_field_in_doc(): class CustomDoc(BaseDocument): text: Optional[str] CustomDoc.from_protobuf(CustomDoc().to_protobuf()) @pytest.mark.proto def test_optional_field_nested_in_doc(): class InnerDoc(BaseDocument): title: str class CustomDoc(BaseDocument): text: Optional[InnerDoc] CustomDoc.from_protobuf(CustomDoc().to_protobuf()) @pytest.mark.proto def test_integer_field(): class Meow(BaseDocument): age: int wealth: float registered: bool d = Meow(age=30, wealth=100.5, registered=True) rebuilt_doc = Meow.from_protobuf(d.to_protobuf()) assert rebuilt_doc.age == 30 assert rebuilt_doc.wealth == 100.5 assert rebuilt_doc.registered @pytest.mark.proto def test_list_set_dict_tuple_field(): class MyDoc(BaseDocument): list_: List dict_: Dict tuple_: Tuple set_: Set d = MyDoc( list_=[0, 1, 2], dict_={'a': 0, 'b': 1}, tuple_=tuple([0, 1]), set_={0, 1} ) rebuilt_doc = MyDoc.from_protobuf(d.to_protobuf()) assert rebuilt_doc.list_ == [0, 1, 2] assert rebuilt_doc.dict_ == {'a': 0, 'b': 1} assert rebuilt_doc.tuple_ == (0, 1) assert rebuilt_doc.set_ == {0, 1} @pytest.mark.proto @pytest.mark.parametrize( 'dtype', [ np.uint, np.uint8, np.uint64, np.int, np.int8, np.int64, np.float, np.float16, np.float128, np.double, ], ) def test_ndarray_dtype(dtype): class MyDoc(BaseDocument): tensor: NdArray doc = MyDoc(tensor=np.ndarray([1, 2, 3], dtype=dtype)) assert doc.tensor.dtype == dtype assert MyDoc.from_protobuf(doc.to_protobuf()).tensor.dtype == dtype assert MyDoc.parse_obj(doc.dict()).tensor.dtype == dtype @pytest.mark.proto @pytest.mark.parametrize( 'dtype', [ torch.uint8, torch.int, torch.int8, torch.int64, torch.float, torch.float64, torch.double, ], ) def test_torch_dtype(dtype): class MyDoc(BaseDocument): tensor: TorchTensor doc = MyDoc(tensor=torch.zeros([5, 5], dtype=dtype)) assert doc.tensor.dtype == dtype assert MyDoc.from_protobuf(doc.to_protobuf()).tensor.dtype == dtype assert MyDoc.parse_obj(doc.dict()).tensor.dtype == dtype
from typing import Optional, Dict, List, Set, Tuple import numpy as np import pytest import torch from docarray import DocumentArray from docarray.base_document import BaseDocument from docarray.typing import NdArray, TorchTensor @pytest.mark.proto def test_proto_simple(): class CustomDoc(BaseDocument): text: str doc = CustomDoc(text='hello') CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_ndarray(): class CustomDoc(BaseDocument): tensor: NdArray tensor = np.zeros((3, 224, 224)) doc = CustomDoc(tensor=tensor) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) assert (new_doc.tensor == tensor).all() @pytest.mark.proto def test_proto_with_nested_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc(text='hello', inner=CustomInnerDoc(tensor=np.zeros((3, 224, 224)))) CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_with_chunks_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=np.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() @pytest.mark.proto def test_proto_with_nested_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc( text='hello', inner=CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) ) CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_with_chunks_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() @pytest.mark.proto def test_optional_field_in_doc(): class CustomDoc(BaseDocument): text: Optional[str] CustomDoc.from_protobuf(CustomDoc().to_protobuf()) @pytest.mark.proto def test_optional_field_nested_in_doc(): class InnerDoc(BaseDocument): title: str class CustomDoc(BaseDocument): text: Optional[InnerDoc] CustomDoc.from_protobuf(CustomDoc().to_protobuf()) @pytest.mark.proto def test_integer_field(): class Meow(BaseDocument): age: int wealth: float registered: bool d = Meow(age=30, wealth=100.5, registered=True) rebuilt_doc = Meow.from_protobuf(d.to_protobuf()) assert rebuilt_doc.age == 30 assert rebuilt_doc.wealth == 100.5 assert rebuilt_doc.registered @pytest.mark.proto def test_list_set_dict_tuple_field(): class MyDoc(BaseDocument): list_: List dict_: Dict tuple_: Tuple set_: Set d = MyDoc( list_=[0, 1, 2], dict_={'a': 0, 'b': 1}, tuple_=tuple([0, 1]), set_={0, 1} ) rebuilt_doc = MyDoc.from_protobuf(d.to_protobuf()) assert rebuilt_doc.list_ == [0, 1, 2] assert rebuilt_doc.dict_ == {'a': 0, 'b': 1} assert rebuilt_doc.tuple_ == (0, 1) assert rebuilt_doc.set_ == {0, 1}
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def mock_emitted_deprecation_warnings(monkeypatch): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings", set()) # Used by list_metrics @pytest.fixture def mock_hfh(monkeypatch): class MetricMock: def __init__(self, metric_id): self.id = metric_id class HfhMock: _metrics = [MetricMock(metric_id) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def list_metrics(self): return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub", HfhMock()) @pytest.mark.parametrize( "func, args, kwargs", [ (load_metric, ("metrics/mse",), {"trust_remote_code": True}), (list_metrics, (), {}), (inspect_metric, ("metrics/mse", "tmp_path"), {"trust_remote_code": True}), ], ) def test_metric_deprecation_warning(func, args, kwargs, mock_emitted_deprecation_warnings, mock_hfh, tmp_path): if "tmp_path" in args: args = tuple(arg if arg != "tmp_path" else tmp_path for arg in args) with pytest.warns(FutureWarning, match="https://huggingface.co/docs/evaluate"): func(*args, **kwargs)
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def mock_emitted_deprecation_warnings(monkeypatch): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings", set()) # Used by list_metrics @pytest.fixture def mock_hfh(monkeypatch): class MetricMock: def __init__(self, metric_id): self.id = metric_id class HfhMock: _metrics = [MetricMock(metric_id) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def list_metrics(self): return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub", HfhMock()) @pytest.mark.parametrize( "func, args", [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def test_metric_deprecation_warning(func, args, mock_emitted_deprecation_warnings, mock_hfh, tmp_path): if "tmp_path" in args: args = tuple(arg if arg != "tmp_path" else tmp_path for arg in args) with pytest.warns(FutureWarning, match="https://huggingface.co/docs/evaluate"): func(*args)
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import tempfile from unittest import TestCase import torch from torch import Tensor from mmengine.evaluator import DumpResults from mmengine.fileio import load class TestDumpResults(TestCase): def test_init(self): with self.assertRaisesRegex(ValueError, 'The output file must be a pkl file.'): DumpResults(out_file_path='./results.json') def test_process(self): metric = DumpResults(out_file_path='./results.pkl') data_samples = [dict(data=(Tensor([1, 2, 3]), Tensor([4, 5, 6])))] metric.process(None, data_samples) self.assertEqual(len(metric.results), 1) self.assertEqual(metric.results[0]['data'][0].device, torch.device('cpu')) def test_compute_metrics(self): temp_dir = tempfile.TemporaryDirectory() path = osp.join(temp_dir.name, 'results.pkl') metric = DumpResults(out_file_path=path) data_samples = [dict(data=(Tensor([1, 2, 3]), Tensor([4, 5, 6])))] metric.process(None, data_samples) metric.compute_metrics(metric.results) self.assertTrue(osp.isfile(path)) results = load(path) self.assertEqual(len(results), 1) self.assertEqual(results[0]['data'][0].device, torch.device('cpu')) temp_dir.cleanup()
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import tempfile from unittest import TestCase import torch from torch import Tensor from mmengine.evaluator import DumpResults from mmengine.fileio import load class TestDumpResults(TestCase): def test_init(self): with self.assertRaisesRegex(ValueError, 'The output file must be a pkl file.'): DumpResults(out_file_path='./results.json') def test_process(self): metric = DumpResults(out_file_path='./results.pkl') predictions = [dict(data=(Tensor([1, 2, 3]), Tensor([4, 5, 6])))] metric.process(None, predictions) self.assertEqual(len(metric.results), 1) self.assertEqual(metric.results[0]['data'][0].device, torch.device('cpu')) def test_compute_metrics(self): temp_dir = tempfile.TemporaryDirectory() path = osp.join(temp_dir.name, 'results.pkl') metric = DumpResults(out_file_path=path) predictions = [dict(data=(Tensor([1, 2, 3]), Tensor([4, 5, 6])))] metric.process(None, predictions) metric.compute_metrics(metric.results) self.assertTrue(osp.isfile(path)) results = load(path) self.assertEqual(len(results), 1) self.assertEqual(results[0]['data'][0].device, torch.device('cpu')) temp_dir.cleanup()
from typing import Any, Optional from backend.util.request import requests class GetRequest: @classmethod def get_request( cls, url: str, headers: Optional[dict] = None, json: bool = False ) -> Any: if headers is None: headers = {} response = requests.get(url, headers=headers) return response.json() if json else response.text
from typing import Any, Optional import requests class GetRequest: @classmethod def get_request( cls, url: str, headers: Optional[dict] = None, json: bool = False ) -> Any: if headers is None: headers = {} response = requests.get(url, headers=headers) response.raise_for_status() return response.json() if json else response.text
import socket from dataclasses import asdict import numpy as np import pytest from loky import get_reusable_executor import xgboost as xgb from xgboost import RabitTracker, build_info, federated from xgboost import testing as tm from xgboost.collective import Config def run_rabit_worker(rabit_env: dict, world_size: int) -> int: with xgb.collective.CommunicatorContext(**rabit_env): assert xgb.collective.get_world_size() == world_size assert xgb.collective.is_distributed() assert xgb.collective.get_processor_name() == socket.gethostname() ret = xgb.collective.broadcast("test1234", 0) assert str(ret) == "test1234" reduced = xgb.collective.allreduce(np.asarray([1, 2, 3]), xgb.collective.Op.SUM) assert np.array_equal(reduced, np.asarray([2, 4, 6])) return 0 @pytest.mark.skipif(**tm.no_loky()) def test_rabit_communicator() -> None: world_size = 2 tracker = RabitTracker(host_ip="127.0.0.1", n_workers=world_size) tracker.start() workers = [] with get_reusable_executor(max_workers=world_size) as pool: for _ in range(world_size): worker = pool.submit( run_rabit_worker, rabit_env=tracker.worker_args(), world_size=world_size ) workers.append(worker) for worker in workers: assert worker.result() == 0 def run_federated_worker(port: int, world_size: int, rank: int) -> int: with xgb.collective.CommunicatorContext( dmlc_communicator="federated", federated_server_address=f"localhost:{port}", federated_world_size=world_size, federated_rank=rank, ): assert xgb.collective.get_world_size() == world_size assert xgb.collective.is_distributed() assert xgb.collective.get_processor_name() == f"rank:{rank}" bret = xgb.collective.broadcast("test1234", 0) assert str(bret) == "test1234" aret = xgb.collective.allreduce(np.asarray([1, 2, 3]), xgb.collective.Op.SUM) assert np.array_equal(aret, np.asarray([2, 4, 6])) return 0 @pytest.mark.skipif(**tm.skip_win()) @pytest.mark.skipif(**tm.no_loky()) def test_federated_communicator() -> None: if not build_info()["USE_FEDERATED"]: pytest.skip("XGBoost not built with federated learning enabled") port = 9091 world_size = 2 with get_reusable_executor(max_workers=world_size + 1) as pool: kwargs = {"port": port, "n_workers": world_size, "blocking": False} tracker = pool.submit(federated.run_federated_server, **kwargs) if not tracker.running(): raise RuntimeError("Error starting Federated Learning server") workers = [] for rank in range(world_size): worker = pool.submit( run_federated_worker, port=port, world_size=world_size, rank=rank ) workers.append(worker) for worker in workers: assert worker.result() == 0 def test_config_serialization() -> None: cfg = Config(retry=1, timeout=2, tracker_host_ip="127.0.0.1", tracker_port=None) cfg1 = Config(**asdict(cfg)) assert cfg == cfg1
import socket import sys from threading import Thread import numpy as np import pytest from loky import get_reusable_executor import xgboost as xgb from xgboost import RabitTracker, build_info, federated from xgboost import testing as tm def run_rabit_worker(rabit_env: dict, world_size: int) -> int: with xgb.collective.CommunicatorContext(**rabit_env): assert xgb.collective.get_world_size() == world_size assert xgb.collective.is_distributed() assert xgb.collective.get_processor_name() == socket.gethostname() ret = xgb.collective.broadcast("test1234", 0) assert str(ret) == "test1234" reduced = xgb.collective.allreduce(np.asarray([1, 2, 3]), xgb.collective.Op.SUM) assert np.array_equal(reduced, np.asarray([2, 4, 6])) return 0 @pytest.mark.skipif(**tm.no_loky()) def test_rabit_communicator() -> None: world_size = 2 tracker = RabitTracker(host_ip="127.0.0.1", n_workers=world_size) tracker.start() workers = [] with get_reusable_executor(max_workers=world_size) as pool: for _ in range(world_size): worker = pool.submit( run_rabit_worker, rabit_env=tracker.worker_args(), world_size=world_size ) workers.append(worker) for worker in workers: assert worker.result() == 0 def run_federated_worker(port: int, world_size: int, rank: int) -> int: with xgb.collective.CommunicatorContext( dmlc_communicator="federated", federated_server_address=f"localhost:{port}", federated_world_size=world_size, federated_rank=rank, ): assert xgb.collective.get_world_size() == world_size assert xgb.collective.is_distributed() assert xgb.collective.get_processor_name() == f"rank:{rank}" bret = xgb.collective.broadcast("test1234", 0) assert str(bret) == "test1234" aret = xgb.collective.allreduce(np.asarray([1, 2, 3]), xgb.collective.Op.SUM) assert np.array_equal(aret, np.asarray([2, 4, 6])) return 0 @pytest.mark.skipif(**tm.skip_win()) @pytest.mark.skipif(**tm.no_loky()) def test_federated_communicator(): if not build_info()["USE_FEDERATED"]: pytest.skip("XGBoost not built with federated learning enabled") port = 9091 world_size = 2 with get_reusable_executor(max_workers=world_size+1) as pool: kwargs={"port": port, "n_workers": world_size, "blocking": False} tracker = pool.submit(federated.run_federated_server, **kwargs) if not tracker.running(): raise RuntimeError("Error starting Federated Learning server") workers = [] for rank in range(world_size): worker = pool.submit( run_federated_worker, port=port, world_size=world_size, rank=rank ) workers.append(worker) for worker in workers: assert worker.result() == 0
from .conv_emformer import ConvEmformer from .rnnt import conformer_rnnt_base, conformer_rnnt_model __all__ = [ "conformer_rnnt_base", "conformer_rnnt_model", "ConvEmformer", ]
from .conv_emformer import ConvEmformer from .conv_tasnet import conv_tasnet_base from .rnnt import conformer_rnnt_base, conformer_rnnt_model __all__ = [ "conformer_rnnt_base", "conformer_rnnt_model", "conv_tasnet_base", "ConvEmformer", ]
"""Module containing the base parser for arguments of Jina.""" import argparse from jina.parsers.helper import _chf def set_base_parser(): """Set the base parser :return: the parser """ from jina import __version__ from jina.helper import colored, format_full_version_info, get_full_version # create the top-level parser urls = { 'Code': ('💻', 'https://oss.jina.ai'), 'Docs': ('📖', 'https://docs.jina.ai'), 'Help': ('💬', 'https://discord.jina.ai'), 'Hiring!': ('🙌', 'https://jobs.jina.ai'), } url_str = '\n'.join( f'- {v[0]:<10} {k:10.10}\t{colored(v[1], "cyan", attrs=["underline"])}' for k, v in urls.items() ) parser = argparse.ArgumentParser( epilog=f''' Jina v{colored(__version__, "green")}: Build multimodal AI services via cloud native technologies. {url_str} ''', formatter_class=_chf, ) parser.add_argument( '-v', '--version', action='version', version=__version__, help='Show Jina version', ) parser.add_argument( '-vf', '--version-full', action='version', version=format_full_version_info(*get_full_version()), help='Show Jina and all dependencies\' versions', ) return parser
"""Module containing the base parser for arguments of Jina.""" import argparse from jina.parsers.helper import _chf def set_base_parser(): """Set the base parser :return: the parser """ from jina import __version__ from jina.helper import colored, format_full_version_info, get_full_version # create the top-level parser urls = { 'Code': ('💻', 'https://oss.jina.ai'), 'Docs': ('📖', 'https://docs.jina.ai'), 'Help': ('💬', 'https://slack.jina.ai'), 'Hiring!': ('🙌', 'https://jobs.jina.ai'), } url_str = '\n'.join( f'- {v[0]:<10} {k:10.10}\t{colored(v[1], "cyan", attrs=["underline"])}' for k, v in urls.items() ) parser = argparse.ArgumentParser( epilog=f''' Jina v{colored(__version__, "green")}: Build multimodal AI services via cloud native technologies. {url_str} ''', formatter_class=_chf, ) parser.add_argument( '-v', '--version', action='version', version=__version__, help='Show Jina version', ) parser.add_argument( '-vf', '--version-full', action='version', version=format_full_version_info(*get_full_version()), help='Show Jina and all dependencies\' versions', ) return parser
"""Callback Handler that tracks AIMessage.usage_metadata.""" import threading from collections.abc import Generator from contextlib import contextmanager from contextvars import ContextVar from typing import Any, Optional from langchain_core._api import beta from langchain_core.callbacks import BaseCallbackHandler from langchain_core.messages import AIMessage from langchain_core.messages.ai import UsageMetadata, add_usage from langchain_core.outputs import ChatGeneration, LLMResult @beta() class UsageMetadataCallbackHandler(BaseCallbackHandler): """Callback Handler that tracks AIMessage.usage_metadata. Example: .. code-block:: python from langchain.chat_models import init_chat_model from langchain_core.callbacks import UsageMetadataCallbackHandler llm_1 = init_chat_model(model="openai:gpt-4o-mini") llm_2 = init_chat_model(model="anthropic:claude-3-5-haiku-latest") callback = UsageMetadataCallbackHandler() result_1 = llm_1.invoke("Hello", config={"callbacks": [callback]}) result_2 = llm_2.invoke("Hello", config={"callbacks": [callback]}) callback.usage_metadata .. code-block:: none {'gpt-4o-mini-2024-07-18': {'input_tokens': 8, 'output_tokens': 10, 'total_tokens': 18, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 0}}, 'claude-3-5-haiku-20241022': {'input_tokens': 8, 'output_tokens': 21, 'total_tokens': 29, 'input_token_details': {'cache_read': 0, 'cache_creation': 0}}} .. versionadded:: 0.3.49 """ def __init__(self) -> None: super().__init__() self._lock = threading.Lock() self.usage_metadata: dict[str, UsageMetadata] = {} def __repr__(self) -> str: return str(self.usage_metadata) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Collect token usage.""" # Check for usage_metadata (langchain-core >= 0.2.2) try: generation = response.generations[0][0] except IndexError: generation = None usage_metadata = None model_name = None if isinstance(generation, ChatGeneration): try: message = generation.message if isinstance(message, AIMessage): usage_metadata = message.usage_metadata model_name = message.response_metadata.get("model_name") except AttributeError: pass # update shared state behind lock if usage_metadata and model_name: with self._lock: if model_name not in self.usage_metadata: self.usage_metadata[model_name] = usage_metadata else: self.usage_metadata[model_name] = add_usage( self.usage_metadata[model_name], usage_metadata ) @contextmanager @beta() def get_usage_metadata_callback( name: str = "usage_metadata_callback", ) -> Generator[UsageMetadataCallbackHandler, None, None]: """Get context manager for tracking usage metadata across chat model calls using ``AIMessage.usage_metadata``. Args: name (str): The name of the context variable. Defaults to ``"usage_metadata_callback"``. Example: .. code-block:: python from langchain.chat_models import init_chat_model from langchain_core.callbacks import get_usage_metadata_callback llm_1 = init_chat_model(model="openai:gpt-4o-mini") llm_2 = init_chat_model(model="anthropic:claude-3-5-haiku-latest") with get_usage_metadata_callback() as cb: llm_1.invoke("Hello") llm_2.invoke("Hello") print(cb.usage_metadata) .. code-block:: none {'gpt-4o-mini-2024-07-18': {'input_tokens': 8, 'output_tokens': 10, 'total_tokens': 18, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 0}}, 'claude-3-5-haiku-20241022': {'input_tokens': 8, 'output_tokens': 21, 'total_tokens': 29, 'input_token_details': {'cache_read': 0, 'cache_creation': 0}}} .. versionadded:: 0.3.49 """ from langchain_core.tracers.context import register_configure_hook usage_metadata_callback_var: ContextVar[Optional[UsageMetadataCallbackHandler]] = ( ContextVar(name, default=None) ) register_configure_hook(usage_metadata_callback_var, True) cb = UsageMetadataCallbackHandler() usage_metadata_callback_var.set(cb) yield cb usage_metadata_callback_var.set(None)
"""Callback Handler that tracks AIMessage.usage_metadata.""" import threading from collections.abc import Generator from contextlib import contextmanager from contextvars import ContextVar from typing import Any, Optional from langchain_core._api import beta from langchain_core.callbacks import BaseCallbackHandler from langchain_core.messages import AIMessage from langchain_core.messages.ai import UsageMetadata, add_usage from langchain_core.outputs import ChatGeneration, LLMResult @beta() class UsageMetadataCallbackHandler(BaseCallbackHandler): """Callback Handler that tracks AIMessage.usage_metadata. Example: .. code-block:: python from langchain.chat_models import init_chat_model from langchain_core.callbacks import UsageMetadataCallbackHandler llm = init_chat_model(model="openai:gpt-4o-mini") callback = UsageMetadataCallbackHandler() results = llm.batch(["Hello", "Goodbye"], config={"callbacks": [callback]}) print(callback.usage_metadata) .. code-block:: none {'output_token_details': {'audio': 0, 'reasoning': 0}, 'input_tokens': 17, 'output_tokens': 31, 'total_tokens': 48, 'input_token_details': {'cache_read': 0, 'audio': 0}} .. versionadded:: 0.3.49 """ # noqa: E501 def __init__(self) -> None: super().__init__() self._lock = threading.Lock() self.usage_metadata: dict[str, UsageMetadata] = {} def __repr__(self) -> str: return str(self.usage_metadata) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Collect token usage.""" # Check for usage_metadata (langchain-core >= 0.2.2) try: generation = response.generations[0][0] except IndexError: generation = None usage_metadata = None model_name = None if isinstance(generation, ChatGeneration): try: message = generation.message if isinstance(message, AIMessage): usage_metadata = message.usage_metadata model_name = message.response_metadata.get("model_name") except AttributeError: pass # update shared state behind lock if usage_metadata and model_name: with self._lock: if model_name not in self.usage_metadata: self.usage_metadata[model_name] = usage_metadata else: self.usage_metadata[model_name] = add_usage( self.usage_metadata[model_name], usage_metadata ) @contextmanager @beta() def get_usage_metadata_callback( name: str = "usage_metadata_callback", ) -> Generator[UsageMetadataCallbackHandler, None, None]: """Get context manager for tracking usage metadata across chat model calls using ``AIMessage.usage_metadata``. Args: name (str): The name of the context variable. Defaults to ``"usage_metadata_callback"``. Example: .. code-block:: python from langchain.chat_models import init_chat_model from langchain_core.callbacks import get_usage_metadata_callback llm = init_chat_model(model="openai:gpt-4o-mini") with get_usage_metadata_callback() as cb: llm.invoke("Hello") llm.invoke("Goodbye") print(cb.usage_metadata) .. code-block:: none {'output_token_details': {'audio': 0, 'reasoning': 0}, 'input_tokens': 17, 'output_tokens': 31, 'total_tokens': 48, 'input_token_details': {'cache_read': 0, 'audio': 0}} .. versionadded:: 0.3.49 """ # noqa: E501 from langchain_core.tracers.context import register_configure_hook usage_metadata_callback_var: ContextVar[Optional[UsageMetadataCallbackHandler]] = ( ContextVar(name, default=None) ) register_configure_hook(usage_metadata_callback_var, True) cb = UsageMetadataCallbackHandler() usage_metadata_callback_var.set(cb) yield cb usage_metadata_callback_var.set(None)
import os import numpy as np import pytest from jina import Document, DocumentArray from .. import NumpySearcher TOP_K = 5 cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture() def query_docs(): chunks = DocumentArray([Document(embedding=np.random.random(7))]) root_doc = Document(embedding=np.random.random(7)) root_doc.chunks.extend(chunks) docs = DocumentArray() docs.append(root_doc) return docs @pytest.mark.parametrize('default_traversal_paths', [['r'], ['c']]) def test_query_vector(tmpdir, query_docs, default_traversal_paths): runtime = { 'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0, } dump_path = os.path.join(cur_dir, 'dump1') indexer = NumpySearcher(dump_path=dump_path, default_traversal_paths=default_traversal_paths, runtime_args=runtime) indexer.search(query_docs, {'top_k': TOP_K}) assert len(query_docs) == 1 doc_traversal = query_docs.traverse_flat(default_traversal_paths) assert len(doc_traversal[0].matches) == TOP_K assert len(doc_traversal[0].matches[0].embedding) == 7 @pytest.mark.parametrize(['metric', 'is_distance'], [('cosine', True), ('euclidean', True), ('cosine', False), ('euclidean', False)]) def test_metric(tmpdir, query_docs, metric, is_distance): runtime = { 'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0, } dump_path = os.path.join(cur_dir, 'dump1') indexer = NumpySearcher(dump_path=dump_path, default_top_k=TOP_K, runtime_args=runtime, metric=metric, is_distance=is_distance) indexer.search(query_docs, {}) assert len(query_docs[0].matches) == TOP_K for i in range(len(query_docs[0].matches) - 1): if not is_distance: assert query_docs[0].matches[i].scores[metric].value >= query_docs[0].matches[i + 1].scores[metric].value else: assert query_docs[0].matches[i].scores[metric].value <= query_docs[0].matches[i + 1].scores[metric].value def test_empty_shard(tmpdir, query_docs): runtime = { 'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0, } indexer = NumpySearcher(dump_path='tests/dump_empty', runtime_args=runtime) indexer.search(query_docs, {'top_k': TOP_K}) assert len(query_docs) == 1 assert len(query_docs[0].matches) == 0 def test_empty_documents(tmpdir): runtime = { 'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0, } indexer = NumpySearcher(dump_path='tests/dump1', runtime_args=runtime) docs = DocumentArray([Document()]) indexer.search(docs, {'top_k': TOP_K}) assert len(docs) == 1 assert len(docs[0].matches) == 0 docs2 = DocumentArray() indexer.search(docs2, {'top_k': TOP_K}) assert len(docs2) == 0
import os import numpy as np import pytest from jina import Document, DocumentArray from .. import NumpySearcher TOP_K = 5 cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_query_vector(tmpdir): runtime = { 'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0, } dump_path = os.path.join(cur_dir, 'dump1') indexer = NumpySearcher(dump_path=dump_path, runtime_args=runtime) docs = DocumentArray([Document(embedding=np.random.random(7))]) TOP_K = 5 indexer.search(docs, {'top_k': TOP_K}) assert len(docs) == 1 assert len(docs[0].matches) == TOP_K assert len(docs[0].matches[0].embedding) == 7 @pytest.mark.parametrize(['metric', 'is_distance'], [('cosine', True), ('euclidean', True), ('cosine', False), ('euclidean', False)]) def test_metric(tmpdir, metric, is_distance): runtime = { 'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0, } dump_path = os.path.join(cur_dir, 'dump1') indexer = NumpySearcher(dump_path=dump_path, default_top_k=TOP_K, runtime_args=runtime, metric=metric, is_distance=is_distance) docs = DocumentArray([Document(embedding=np.random.random(7))]) indexer.search(docs, {}) assert len(docs[0].matches) == TOP_K for i in range(len(docs[0].matches) - 1): if not is_distance: assert docs[0].matches[i].scores[metric].value >= docs[0].matches[i + 1].scores[metric].value else: assert docs[0].matches[i].scores[metric].value <= docs[0].matches[i + 1].scores[metric].value def test_empty_shard(tmpdir): runtime = { 'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0, } indexer = NumpySearcher(dump_path='tests/dump_empty', runtime_args=runtime) docs = DocumentArray([Document(embedding=np.random.random(7))]) TOP_K = 5 indexer.search(docs, {'top_k': TOP_K}) assert len(docs) == 1 assert len(docs[0].matches) == 0 def test_empty_documents(tmpdir): runtime = { 'workspace': str(tmpdir), 'name': 'searcher', 'pea_id': 0, 'replica_id': 0, } indexer = NumpySearcher(dump_path='tests/dump1', runtime_args=runtime) docs = DocumentArray([Document(id=0)]) TOP_K = 5 indexer.search(docs, {'top_k': TOP_K}) assert len(docs) == 1 assert len(docs[0].matches) == 0 docs2 = DocumentArray() indexer.search(docs2, {'top_k': TOP_K}) assert len(docs2) == 0
from backend.blocks.jina._auth import ( JinaCredentials, JinaCredentialsField, JinaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import Requests class JinaChunkingBlock(Block): class Input(BlockSchema): texts: list = SchemaField(description="List of texts to chunk") credentials: JinaCredentialsInput = JinaCredentialsField() max_chunk_length: int = SchemaField( description="Maximum length of each chunk", default=1000 ) return_tokens: bool = SchemaField( description="Whether to return token information", default=False ) class Output(BlockSchema): chunks: list = SchemaField(description="List of chunked texts") tokens: list = SchemaField( description="List of token information for each chunk", ) def __init__(self): super().__init__( id="806fb15e-830f-4796-8692-557d300ff43c", description="Chunks texts using Jina AI's segmentation service", categories={BlockCategory.AI, BlockCategory.TEXT}, input_schema=JinaChunkingBlock.Input, output_schema=JinaChunkingBlock.Output, ) def run( self, input_data: Input, *, credentials: JinaCredentials, **kwargs ) -> BlockOutput: url = "https://segment.jina.ai/" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", } all_chunks = [] all_tokens = [] for text in input_data.texts: data = { "content": text, "return_tokens": str(input_data.return_tokens).lower(), "return_chunks": "true", "max_chunk_length": str(input_data.max_chunk_length), } response = Requests().post(url, headers=headers, json=data) result = response.json() all_chunks.extend(result.get("chunks", [])) if input_data.return_tokens: all_tokens.extend(result.get("tokens", [])) yield "chunks", all_chunks if input_data.return_tokens: yield "tokens", all_tokens
from backend.blocks.jina._auth import ( JinaCredentials, JinaCredentialsField, JinaCredentialsInput, ) from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField from backend.util.request import requests class JinaChunkingBlock(Block): class Input(BlockSchema): texts: list = SchemaField(description="List of texts to chunk") credentials: JinaCredentialsInput = JinaCredentialsField() max_chunk_length: int = SchemaField( description="Maximum length of each chunk", default=1000 ) return_tokens: bool = SchemaField( description="Whether to return token information", default=False ) class Output(BlockSchema): chunks: list = SchemaField(description="List of chunked texts") tokens: list = SchemaField( description="List of token information for each chunk", ) def __init__(self): super().__init__( id="806fb15e-830f-4796-8692-557d300ff43c", description="Chunks texts using Jina AI's segmentation service", categories={BlockCategory.AI, BlockCategory.TEXT}, input_schema=JinaChunkingBlock.Input, output_schema=JinaChunkingBlock.Output, ) def run( self, input_data: Input, *, credentials: JinaCredentials, **kwargs ) -> BlockOutput: url = "https://segment.jina.ai/" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {credentials.api_key.get_secret_value()}", } all_chunks = [] all_tokens = [] for text in input_data.texts: data = { "content": text, "return_tokens": str(input_data.return_tokens).lower(), "return_chunks": "true", "max_chunk_length": str(input_data.max_chunk_length), } response = requests.post(url, headers=headers, json=data) result = response.json() all_chunks.extend(result.get("chunks", [])) if input_data.return_tokens: all_tokens.extend(result.get("tokens", [])) yield "chunks", all_chunks if input_data.return_tokens: yield "tokens", all_tokens
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.registry import TASK_UTILS from mmdet.structures.bbox import HorizontalBoxes, get_box_tensor from .base_bbox_coder import BaseBBoxCoder @TASK_UTILS.register_module() class YOLOBBoxCoder(BaseBBoxCoder): """YOLO BBox coder. Following `YOLO <https://arxiv.org/abs/1506.02640>`_, this coder divide image into grids, and encode bbox (x1, y1, x2, y2) into (cx, cy, dw, dh). cx, cy in [0., 1.], denotes relative center position w.r.t the center of bboxes. dw, dh are the same as :obj:`DeltaXYWHBBoxCoder`. Args: eps (float): Min value of cx, cy when encoding. """ def __init__(self, eps=1e-6, **kwargs): super().__init__(**kwargs) self.eps = eps def encode(self, bboxes, gt_bboxes, stride): """Get box regression transformation deltas that can be used to transform the ``bboxes`` into the ``gt_bboxes``. Args: bboxes (torch.Tensor or :obj:`BaseBoxes`): Source boxes, e.g., anchors. gt_bboxes (torch.Tensor or :obj:`BaseBoxes`): Target of the transformation, e.g., ground-truth boxes. stride (torch.Tensor | int): Stride of bboxes. Returns: torch.Tensor: Box transformation deltas """ bboxes = get_box_tensor(bboxes) gt_bboxes = get_box_tensor(gt_bboxes) assert bboxes.size(0) == gt_bboxes.size(0) assert bboxes.size(-1) == gt_bboxes.size(-1) == 4 x_center_gt = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) * 0.5 y_center_gt = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) * 0.5 w_gt = gt_bboxes[..., 2] - gt_bboxes[..., 0] h_gt = gt_bboxes[..., 3] - gt_bboxes[..., 1] x_center = (bboxes[..., 0] + bboxes[..., 2]) * 0.5 y_center = (bboxes[..., 1] + bboxes[..., 3]) * 0.5 w = bboxes[..., 2] - bboxes[..., 0] h = bboxes[..., 3] - bboxes[..., 1] w_target = torch.log((w_gt / w).clamp(min=self.eps)) h_target = torch.log((h_gt / h).clamp(min=self.eps)) x_center_target = ((x_center_gt - x_center) / stride + 0.5).clamp( self.eps, 1 - self.eps) y_center_target = ((y_center_gt - y_center) / stride + 0.5).clamp( self.eps, 1 - self.eps) encoded_bboxes = torch.stack( [x_center_target, y_center_target, w_target, h_target], dim=-1) return encoded_bboxes def decode(self, bboxes, pred_bboxes, stride): """Apply transformation `pred_bboxes` to `boxes`. Args: boxes (torch.Tensor or :obj:`BaseBoxes`): Basic boxes, e.g. anchors. pred_bboxes (torch.Tensor): Encoded boxes with shape stride (torch.Tensor | int): Strides of bboxes. Returns: Union[torch.Tensor, :obj:`BaseBoxes`]: Decoded boxes. """ bboxes = get_box_tensor(bboxes) assert pred_bboxes.size(-1) == bboxes.size(-1) == 4 xy_centers = (bboxes[..., :2] + bboxes[..., 2:]) * 0.5 + ( pred_bboxes[..., :2] - 0.5) * stride whs = (bboxes[..., 2:] - bboxes[..., :2]) * 0.5 * pred_bboxes[..., 2:].exp() decoded_bboxes = torch.stack( (xy_centers[..., 0] - whs[..., 0], xy_centers[..., 1] - whs[..., 1], xy_centers[..., 0] + whs[..., 0], xy_centers[..., 1] + whs[..., 1]), dim=-1) if self.use_box_type: decoded_bboxes = HorizontalBoxes(decoded_bboxes) return decoded_bboxes
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.models.utils.misc import get_box_tensor from mmdet.registry import TASK_UTILS from mmdet.structures.bbox import HorizontalBoxes from .base_bbox_coder import BaseBBoxCoder @TASK_UTILS.register_module() class YOLOBBoxCoder(BaseBBoxCoder): """YOLO BBox coder. Following `YOLO <https://arxiv.org/abs/1506.02640>`_, this coder divide image into grids, and encode bbox (x1, y1, x2, y2) into (cx, cy, dw, dh). cx, cy in [0., 1.], denotes relative center position w.r.t the center of bboxes. dw, dh are the same as :obj:`DeltaXYWHBBoxCoder`. Args: eps (float): Min value of cx, cy when encoding. """ def __init__(self, eps=1e-6, **kwargs): super().__init__(**kwargs) self.eps = eps def encode(self, bboxes, gt_bboxes, stride): """Get box regression transformation deltas that can be used to transform the ``bboxes`` into the ``gt_bboxes``. Args: bboxes (torch.Tensor or :obj:`BaseBoxes`): Source boxes, e.g., anchors. gt_bboxes (torch.Tensor or :obj:`BaseBoxes`): Target of the transformation, e.g., ground-truth boxes. stride (torch.Tensor | int): Stride of bboxes. Returns: torch.Tensor: Box transformation deltas """ bboxes = get_box_tensor(bboxes) gt_bboxes = get_box_tensor(gt_bboxes) assert bboxes.size(0) == gt_bboxes.size(0) assert bboxes.size(-1) == gt_bboxes.size(-1) == 4 x_center_gt = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) * 0.5 y_center_gt = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) * 0.5 w_gt = gt_bboxes[..., 2] - gt_bboxes[..., 0] h_gt = gt_bboxes[..., 3] - gt_bboxes[..., 1] x_center = (bboxes[..., 0] + bboxes[..., 2]) * 0.5 y_center = (bboxes[..., 1] + bboxes[..., 3]) * 0.5 w = bboxes[..., 2] - bboxes[..., 0] h = bboxes[..., 3] - bboxes[..., 1] w_target = torch.log((w_gt / w).clamp(min=self.eps)) h_target = torch.log((h_gt / h).clamp(min=self.eps)) x_center_target = ((x_center_gt - x_center) / stride + 0.5).clamp( self.eps, 1 - self.eps) y_center_target = ((y_center_gt - y_center) / stride + 0.5).clamp( self.eps, 1 - self.eps) encoded_bboxes = torch.stack( [x_center_target, y_center_target, w_target, h_target], dim=-1) return encoded_bboxes def decode(self, bboxes, pred_bboxes, stride): """Apply transformation `pred_bboxes` to `boxes`. Args: boxes (torch.Tensor or :obj:`BaseBoxes`): Basic boxes, e.g. anchors. pred_bboxes (torch.Tensor): Encoded boxes with shape stride (torch.Tensor | int): Strides of bboxes. Returns: Union[torch.Tensor, :obj:`BaseBoxes`]: Decoded boxes. """ bboxes = get_box_tensor(bboxes) assert pred_bboxes.size(-1) == bboxes.size(-1) == 4 xy_centers = (bboxes[..., :2] + bboxes[..., 2:]) * 0.5 + ( pred_bboxes[..., :2] - 0.5) * stride whs = (bboxes[..., 2:] - bboxes[..., :2]) * 0.5 * pred_bboxes[..., 2:].exp() decoded_bboxes = torch.stack( (xy_centers[..., 0] - whs[..., 0], xy_centers[..., 1] - whs[..., 1], xy_centers[..., 0] + whs[..., 0], xy_centers[..., 1] + whs[..., 1]), dim=-1) if self.use_box_type: decoded_bboxes = HorizontalBoxes(decoded_bboxes) return decoded_bboxes
# Copyright (c) OpenMMLab. All rights reserved. import os import pytest import torch import torch.distributed as torch_dist import torch.multiprocessing as mp import mmengine.dist as dist def _test_get_backend_non_dist(): assert dist.get_backend() is None def _test_get_world_size_non_dist(): assert dist.get_world_size() == 1 def _test_get_rank_non_dist(): assert dist.get_rank() == 0 def _test_local_size_non_dist(): assert dist.get_local_size() == 1 def _test_local_rank_non_dist(): assert dist.get_local_rank() == 0 def _test_get_dist_info_non_dist(): assert dist.get_dist_info() == (0, 1) def _test_is_main_process_non_dist(): assert dist.is_main_process() def _test_master_only_non_dist(): @dist.master_only def fun(): assert dist.get_rank() == 0 fun() def _test_barrier_non_dist(): dist.barrier() # nothing is done def init_process(rank, world_size, functions, backend='gloo'): """Initialize the distributed environment.""" os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '29501' os.environ['RANK'] = str(rank) if backend == 'nccl': num_gpus = torch.cuda.device_count() torch.cuda.set_device(rank % num_gpus) torch_dist.init_process_group( backend=backend, rank=rank, world_size=world_size) dist.init_local_group(0, world_size) for func in functions: func() def main(functions, world_size=2, backend='gloo'): try: mp.spawn( init_process, args=(world_size, functions, backend), nprocs=world_size) except Exception: pytest.fail('error') def _test_get_backend_dist(): assert dist.get_backend() == torch_dist.get_backend() def _test_get_world_size_dist(): assert dist.get_world_size() == 2 def _test_get_rank_dist(): if torch_dist.get_rank() == 0: assert dist.get_rank() == 0 else: assert dist.get_rank() == 1 def _test_local_size_dist(): assert dist.get_local_size() == 2 def _test_local_rank_dist(): torch_dist.get_rank(dist.get_local_group()) == dist.get_local_rank() def _test_get_dist_info_dist(): if dist.get_rank() == 0: assert dist.get_dist_info() == (0, 2) else: assert dist.get_dist_info() == (1, 2) def _test_is_main_process_dist(): if dist.get_rank() == 0: assert dist.is_main_process() else: assert not dist.is_main_process() def _test_master_only_dist(): @dist.master_only def fun(): assert dist.get_rank() == 0 fun() def test_non_distributed_env(): _test_get_backend_non_dist() _test_get_world_size_non_dist() _test_get_rank_non_dist() _test_local_size_non_dist() _test_local_rank_non_dist() _test_get_dist_info_non_dist() _test_is_main_process_non_dist() _test_master_only_non_dist() _test_barrier_non_dist() functions_to_test = [ _test_get_backend_dist, _test_get_world_size_dist, _test_get_rank_dist, _test_local_size_dist, _test_local_rank_dist, _test_get_dist_info_dist, _test_is_main_process_dist, _test_master_only_dist, ] def test_gloo_backend(): main(functions_to_test) @pytest.mark.skipif( torch.cuda.device_count() < 2, reason='need 2 gpu to test nccl') def test_nccl_backend(): main(functions_to_test, backend='nccl')
# Copyright (c) OpenMMLab. All rights reserved. import os import pytest import torch import torch.distributed as torch_dist import torch.multiprocessing as mp import mmengine.dist as dist def _test_get_backend_non_dist(): assert dist.get_backend() is None def _test_get_world_size_non_dist(): assert dist.get_world_size() == 1 def _test_get_rank_non_dist(): assert dist.get_rank() == 0 def _test_local_size_non_dist(): assert dist.get_local_size() == 1 def _test_local_rank_non_dist(): assert dist.get_local_rank() == 0 def _test_get_dist_info_non_dist(): assert dist.get_dist_info() == (0, 1) def _test_is_main_process_non_dist(): assert dist.is_main_process() def _test_master_only_non_dist(): @dist.master_only def fun(): assert dist.get_rank() == 0 fun() def _test_barrier_non_dist(): dist.barrier() # nothing is done def init_process(rank, world_size, functions, backend='gloo'): """Initialize the distributed environment.""" os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '29501' os.environ['RANK'] = str(rank) dist.init_dist('pytorch', backend, rank=rank, world_size=world_size) dist.init_local_group(0, world_size) for func in functions: func() def main(functions, world_size=2, backend='gloo'): try: mp.spawn( init_process, args=(world_size, functions, backend), nprocs=world_size) except Exception: pytest.fail('error') def _test_get_backend_dist(): assert dist.get_backend() == torch_dist.get_backend() def _test_get_world_size_dist(): assert dist.get_world_size() == 2 def _test_get_rank_dist(): if torch_dist.get_rank() == 0: assert dist.get_rank() == 0 else: assert dist.get_rank() == 1 def _test_local_size_dist(): assert dist.get_local_size() == 2 def _test_local_rank_dist(): torch_dist.get_rank(dist.get_local_group()) == dist.get_local_rank() def _test_get_dist_info_dist(): if dist.get_rank() == 0: assert dist.get_dist_info() == (0, 2) else: assert dist.get_dist_info() == (1, 2) def _test_is_main_process_dist(): if dist.get_rank() == 0: assert dist.is_main_process() else: assert not dist.is_main_process() def _test_master_only_dist(): @dist.master_only def fun(): assert dist.get_rank() == 0 fun() def test_non_distributed_env(): _test_get_backend_non_dist() _test_get_world_size_non_dist() _test_get_rank_non_dist() _test_local_size_non_dist() _test_local_rank_non_dist() _test_get_dist_info_non_dist() _test_is_main_process_non_dist() _test_master_only_non_dist() _test_barrier_non_dist() functions_to_test = [ _test_get_backend_dist, _test_get_world_size_dist, _test_get_rank_dist, _test_local_size_dist, _test_local_rank_dist, _test_get_dist_info_dist, _test_is_main_process_dist, _test_master_only_dist, ] def test_gloo_backend(): main(functions_to_test) @pytest.mark.skipif( torch.cuda.device_count() < 2, reason='need 2 gpu to test nccl') def test_nccl_backend(): main(functions_to_test, backend='nccl')
from typing import Any, Callable, Dict, Optional, Sequence from llama_index.core.base.llms.types import ChatMessage, LLMMetadata from llama_index.core.callbacks import CallbackManager from llama_index.core.constants import DEFAULT_NUM_OUTPUTS, DEFAULT_TEMPERATURE from llama_index.core.base.llms.generic_utils import get_from_param_or_env from llama_index.core.types import BaseOutputParser, PydanticProgramMode from llama_index.llms.fireworks.utils import ( fireworks_modelname_to_contextsize, is_function_calling_model, ) from llama_index.llms.openai import OpenAI DEFAULT_API_BASE = "https://api.fireworks.ai/inference/v1" DEFAULT_MODEL = "accounts/fireworks/models/llama-v3p1-8b-instruct" class Fireworks(OpenAI): """ Fireworks LLM. Examples: `pip install llama-index-llms-fireworks` ```python from llama_index.llms.fireworks import Fireworks # Create an instance of the Fireworks class llm = Fireworks( model="accounts/fireworks/models/mixtral-8x7b-instruct", api_key="YOUR_API_KEY" ) # Call the complete method with a prompt resp = llm.complete("Hello world!") print(resp) ``` """ def __init__( self, model: str = DEFAULT_MODEL, temperature: float = DEFAULT_TEMPERATURE, max_tokens: int = DEFAULT_NUM_OUTPUTS, additional_kwargs: Optional[Dict[str, Any]] = None, max_retries: int = 10, api_base: Optional[str] = DEFAULT_API_BASE, api_key: Optional[str] = None, callback_manager: Optional[CallbackManager] = None, default_headers: Optional[Dict[str, str]] = None, system_prompt: Optional[str] = None, messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None, completion_to_prompt: Optional[Callable[[str], str]] = None, pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT, output_parser: Optional[BaseOutputParser] = None, ) -> None: additional_kwargs = additional_kwargs or {} callback_manager = callback_manager or CallbackManager([]) api_base = get_from_param_or_env("api_base", api_base, "FIREWORKS_API_BASE") api_key = get_from_param_or_env("api_key", api_key, "FIREWORKS_API_KEY") super().__init__( model=model, temperature=temperature, max_tokens=max_tokens, api_base=api_base, api_key=api_key, additional_kwargs=additional_kwargs, max_retries=max_retries, callback_manager=callback_manager, default_headers=default_headers, system_prompt=system_prompt, messages_to_prompt=messages_to_prompt, completion_to_prompt=completion_to_prompt, pydantic_program_mode=pydantic_program_mode, output_parser=output_parser, ) @classmethod def class_name(cls) -> str: return "Fireworks_LLM" @property def metadata(self) -> LLMMetadata: return LLMMetadata( context_window=fireworks_modelname_to_contextsize(self.model), num_output=self.max_tokens, is_chat_model=True, model_name=self.model, is_function_calling_model=is_function_calling_model( model=self._get_model_name() ), ) @property def _is_chat_model(self) -> bool: return True
from typing import Any, Callable, Dict, Optional, Sequence from llama_index.core.base.llms.types import ChatMessage, LLMMetadata from llama_index.core.callbacks import CallbackManager from llama_index.core.constants import DEFAULT_NUM_OUTPUTS, DEFAULT_TEMPERATURE from llama_index.core.base.llms.generic_utils import get_from_param_or_env from llama_index.core.types import BaseOutputParser, PydanticProgramMode from llama_index.llms.fireworks.utils import ( fireworks_modelname_to_contextsize, is_function_calling_model, ) from llama_index.llms.openai import OpenAI DEFAULT_API_BASE = "https://api.fireworks.ai/inference/v1" DEFAULT_MODEL = "accounts/fireworks/models/llama-v3p1-8b-instruct" class Fireworks(OpenAI): """Fireworks LLM. Examples: `pip install llama-index-llms-fireworks` ```python from llama_index.llms.fireworks import Fireworks # Create an instance of the Fireworks class llm = Fireworks( model="accounts/fireworks/models/mixtral-8x7b-instruct", api_key="YOUR_API_KEY" ) # Call the complete method with a prompt resp = llm.complete("Hello world!") print(resp) ``` """ def __init__( self, model: str = DEFAULT_MODEL, temperature: float = DEFAULT_TEMPERATURE, max_tokens: int = DEFAULT_NUM_OUTPUTS, additional_kwargs: Optional[Dict[str, Any]] = None, max_retries: int = 10, api_base: Optional[str] = DEFAULT_API_BASE, api_key: Optional[str] = None, callback_manager: Optional[CallbackManager] = None, default_headers: Optional[Dict[str, str]] = None, system_prompt: Optional[str] = None, messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None, completion_to_prompt: Optional[Callable[[str], str]] = None, pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT, output_parser: Optional[BaseOutputParser] = None, ) -> None: additional_kwargs = additional_kwargs or {} callback_manager = callback_manager or CallbackManager([]) api_base = get_from_param_or_env("api_base", api_base, "FIREWORKS_API_BASE") api_key = get_from_param_or_env("api_key", api_key, "FIREWORKS_API_KEY") super().__init__( model=model, temperature=temperature, max_tokens=max_tokens, api_base=api_base, api_key=api_key, additional_kwargs=additional_kwargs, max_retries=max_retries, callback_manager=callback_manager, default_headers=default_headers, system_prompt=system_prompt, messages_to_prompt=messages_to_prompt, completion_to_prompt=completion_to_prompt, pydantic_program_mode=pydantic_program_mode, output_parser=output_parser, ) @classmethod def class_name(cls) -> str: return "Fireworks_LLM" @property def metadata(self) -> LLMMetadata: return LLMMetadata( context_window=fireworks_modelname_to_contextsize(self.model), num_output=self.max_tokens, is_chat_model=True, model_name=self.model, is_function_calling_model=is_function_calling_model( model=self._get_model_name() ), ) @property def _is_chat_model(self) -> bool: return True
from typing import TYPE_CHECKING, Any, Dict, Type, TypeVar from docarray.document.abstract_document import AbstractDocument from docarray.document.base_node import BaseNode if TYPE_CHECKING: from docarray.proto import DocumentProto, NodeProto try: import torch # noqa: F401 except ImportError: torch_imported = False else: from docarray.typing.tensor.torch_tensor import TorchTensor torch_imported = True T = TypeVar('T', bound='ProtoMixin') class ProtoMixin(AbstractDocument, BaseNode): @classmethod def from_protobuf(cls: Type[T], pb_msg: 'DocumentProto') -> T: """create a Document from a protobuf message""" from docarray.typing import ( # TorchTensor, ID, AnyUrl, Embedding, ImageUrl, Mesh3DUrl, NdArray, PointCloud3DUrl, TextUrl, ) fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type = value.WhichOneof('content') # this if else statement need to be refactored it is too long # the check should be delegated to the type level content_type_dict = dict( ndarray=NdArray, embedding=Embedding, any_url=AnyUrl, text_url=TextUrl, image_url=ImageUrl, mesh_url=Mesh3DUrl, point_cloud_url=PointCloud3DUrl, id=ID, ) if torch_imported: content_type_dict['torch_tensor'] = TorchTensor if content_type in content_type_dict: fields[field] = content_type_dict[content_type].from_protobuf( getattr(value, content_type) ) elif content_type == 'text': fields[field] = value.text elif content_type == 'nested': fields[field] = cls._get_field_type(field).from_protobuf( value.nested ) # we get to the parent class elif content_type == 'chunks': from docarray import DocumentArray fields[field] = DocumentArray.from_protobuf( value.chunks ) # we get to the parent class elif content_type is None: fields[field] = None else: raise ValueError( f'type {content_type} is not supported for deserialization' ) return cls.construct(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ from docarray.proto import DocumentProto, NodeProto data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif type(value) is str: nested_item = NodeProto(text=value) elif type(value) is bytes: nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> 'NodeProto': from docarray.proto import NodeProto """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(nested=self.to_protobuf())
from typing import TYPE_CHECKING, Any, Dict, Type, TypeVar from docarray.document.abstract_document import AbstractDocument from docarray.document.base_node import BaseNode if TYPE_CHECKING: from docarray.proto import DocumentProto, NodeProto try: import torch # noqa: F401 except ImportError: torch_imported = False else: from docarray.typing.tensor.torch_tensor import TorchTensor torch_imported = True T = TypeVar('T', bound='ProtoMixin') class ProtoMixin(AbstractDocument, BaseNode): @classmethod def from_protobuf(cls: Type[T], pb_msg: 'DocumentProto') -> T: """create a Document from a protobuf message""" from docarray.typing import ( # TorchTensor, ID, AnyUrl, Embedding, ImageUrl, Mesh3DUrl, NdArray, PointCloud3DUrl, TextUrl, ) fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type = value.WhichOneof('content') # this if else statement need to be refactored it is too long # the check should be delegated to the type level content_type_dict = dict( ndarray=NdArray, embedding=Embedding, any_url=AnyUrl, text_url=TextUrl, image_url=ImageUrl, mesh_url=Mesh3DUrl, point_cloud_url=PointCloud3DUrl, id=ID, ) if torch_imported: content_type_dict['torch_tensor'] = TorchTensor if content_type in content_type_dict: fields[field] = content_type_dict[content_type].from_protobuf( getattr(value, content_type) ) elif content_type == 'text': fields[field] = value.text elif content_type == 'nested': fields[field] = cls._get_nested_document_class(field).from_protobuf( value.nested ) # we get to the parent class elif content_type == 'chunks': from docarray import DocumentArray fields[field] = DocumentArray.from_protobuf( value.chunks ) # we get to the parent class elif content_type is None: fields[field] = None else: raise ValueError( f'type {content_type} is not supported for deserialization' ) return cls.construct(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ from docarray.proto import DocumentProto, NodeProto data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif type(value) is str: nested_item = NodeProto(text=value) elif type(value) is bytes: nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> 'NodeProto': from docarray.proto import NodeProto """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(nested=self.to_protobuf())
"""Pydantic v1 compatibility shim.""" from langchain_core._api import warn_deprecated try: from pydantic.v1.main import * # noqa: F403 except ImportError: from pydantic.main import * # type: ignore[assignment,no-redef] # noqa: F403 warn_deprecated( "0.3.0", removal="1.0.0", alternative="pydantic.v1 or pydantic", message=( "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " "The langchain_core.pydantic_v1 module was a " "compatibility shim for pydantic v1, and should no longer be used. " "Please update the code to import from Pydantic directly.\n\n" "For example, replace imports like: " "`from langchain_core.pydantic_v1 import BaseModel`\n" "with: `from pydantic import BaseModel`\n" "or the v1 compatibility namespace if you are working in a code base " "that has not been fully upgraded to pydantic 2 yet. " "\tfrom pydantic.v1 import BaseModel\n" ), )
"""Pydantic v1 compatibility shim.""" from langchain_core._api import warn_deprecated try: from pydantic.v1.main import * # noqa: F403 except ImportError: from pydantic.main import * # noqa: F403 warn_deprecated( "0.3.0", removal="1.0.0", alternative="pydantic.v1 or pydantic", message=( "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " "The langchain_core.pydantic_v1 module was a " "compatibility shim for pydantic v1, and should no longer be used. " "Please update the code to import from Pydantic directly.\n\n" "For example, replace imports like: " "`from langchain_core.pydantic_v1 import BaseModel`\n" "with: `from pydantic import BaseModel`\n" "or the v1 compatibility namespace if you are working in a code base " "that has not been fully upgraded to pydantic 2 yet. " "\tfrom pydantic.v1 import BaseModel\n" ), )
"""FastAPI framework, high performance, easy to learn, fast to code, ready for production""" __version__ = "0.115.11" from starlette import status as status from .applications import FastAPI as FastAPI from .background import BackgroundTasks as BackgroundTasks from .datastructures import UploadFile as UploadFile from .exceptions import HTTPException as HTTPException from .exceptions import WebSocketException as WebSocketException from .param_functions import Body as Body from .param_functions import Cookie as Cookie from .param_functions import Depends as Depends from .param_functions import File as File from .param_functions import Form as Form from .param_functions import Header as Header from .param_functions import Path as Path from .param_functions import Query as Query from .param_functions import Security as Security from .requests import Request as Request from .responses import Response as Response from .routing import APIRouter as APIRouter from .websockets import WebSocket as WebSocket from .websockets import WebSocketDisconnect as WebSocketDisconnect
"""FastAPI framework, high performance, easy to learn, fast to code, ready for production""" __version__ = "0.115.10" from starlette import status as status from .applications import FastAPI as FastAPI from .background import BackgroundTasks as BackgroundTasks from .datastructures import UploadFile as UploadFile from .exceptions import HTTPException as HTTPException from .exceptions import WebSocketException as WebSocketException from .param_functions import Body as Body from .param_functions import Cookie as Cookie from .param_functions import Depends as Depends from .param_functions import File as File from .param_functions import Form as Form from .param_functions import Header as Header from .param_functions import Path as Path from .param_functions import Query as Query from .param_functions import Security as Security from .requests import Request as Request from .responses import Response as Response from .routing import APIRouter as APIRouter from .websockets import WebSocket as WebSocket from .websockets import WebSocketDisconnect as WebSocketDisconnect