input
stringlengths
33
5k
output
stringlengths
32
5k
from dataclasses import dataclass, field from typing import Any, Callable, Dict, List import torch @dataclass class SentenceTransformerDataCollator: """Collator for a SentenceTransformers model. This encodes the text columns to {column}_input_ids and {column}_attention_mask columns. This works with the two text dataset that is used as the example in the training overview: https://www.sbert.net/docs/training/overview.html """ tokenize_fn: Callable valid_label_columns: List[str] = field(default_factory=lambda: ["label", "score"]) def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, torch.Tensor]: columns = list(features[0].keys()) # We should always be able to return a loss, label or not: batch = {} if "dataset_name" in columns: columns.remove("dataset_name") batch["dataset_name"] = features[0]["dataset_name"] # Extract the label column if it exists for label_column in self.valid_label_columns: if label_column in columns: batch["label"] = torch.tensor([row[label_column] for row in features]) columns.remove(label_column) break # Extract the feature columns for column in columns: tokenized = self.tokenize_fn([row[column] for row in features]) for key, value in tokenized.items(): batch[f"{column}_{key}"] = value return batch
from dataclasses import dataclass, field from typing import Any, Callable, Dict, List import torch @dataclass class SentenceTransformerDataCollator: """Collator for a SentenceTransformers model. This encodes the text columns to {column}_input_ids and {column}_attention_mask columns. This works with the two text dataset that is used as the example in the training overview: https://www.sbert.net/docs/training/overview.html """ tokenize_fn: Callable valid_label_columns: List[str] = field(default_factory=lambda: ["label", "score"]) def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, torch.Tensor]: columns = list(features[0].keys()) # We should always be able to return a loss, label or not: batch = {"return_loss": True} if "dataset_name" in columns: columns.remove("dataset_name") batch["dataset_name"] = features[0]["dataset_name"] # Extract the label column if it exists for label_column in self.valid_label_columns: if label_column in columns: batch["label"] = torch.tensor([row[label_column] for row in features]) columns.remove(label_column) break # Extract the feature columns for column in columns: tokenized = self.tokenize_fn([row[column] for row in features]) for key, value in tokenized.items(): batch[f"{column}_{key}"] = value return batch
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from mmengine.config import ConfigDict from mmengine.data import InstanceData from parameterized import parameterized from mmdet.models.roi_heads.mask_heads import FCNMaskHead class TestFCNMaskHead(TestCase): @parameterized.expand(['cpu', 'cuda']) def test_get_seg_masks(self, device): if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') num_classes = 6 mask_head = FCNMaskHead( num_convs=1, in_channels=1, conv_out_channels=1, num_classes=num_classes) rcnn_test_cfg = ConfigDict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5) s = 128 img_metas = { 'img_shape': (s, s, 3), 'scale_factor': (1, 1), 'ori_shape': (s, s, 3) } result = InstanceData(metainfo=img_metas) num_samples = 2 mask_pred = [torch.rand((num_samples, num_classes, 14, 14)).to(device)] result.bboxes = torch.rand((num_samples, 4)).to(device) result.labels = torch.randint( num_classes, (num_samples, ), dtype=torch.long).to(device) mask_head.to(device=device) result_list = mask_head.get_results( mask_preds=tuple(mask_pred), results_list=tuple([result]), batch_img_metas=[img_metas], rcnn_test_cfg=rcnn_test_cfg) self.assertIsInstance(result_list[0], InstanceData) self.assertEqual(len(result_list[0]), num_samples) self.assertEqual(result_list[0].masks.shape, (num_samples, s, s)) # test with activate_map, `mask_pred` has been activated before num_samples = 2 mask_pred = [torch.rand((num_samples, num_classes, 14, 14)).to(device)] mask_pred = [m.sigmoid().detach() for m in mask_pred] result.bboxes = torch.rand((num_samples, 4)).to(device) result.labels = torch.randint( num_classes, (num_samples, ), dtype=torch.long).to(device) mask_head.to(device=device) result_list = mask_head.get_results( mask_preds=tuple(mask_pred), results_list=tuple([result]), batch_img_metas=[img_metas], rcnn_test_cfg=rcnn_test_cfg, activate_map=True) self.assertIsInstance(result_list[0], InstanceData) self.assertEqual(len(result_list[0]), num_samples) self.assertEqual(result_list[0].masks.shape, (num_samples, s, s)) # num_samples is 0 num_samples = 0 result = InstanceData(metainfo=img_metas) mask_pred = [torch.rand((num_samples, num_classes, 14, 14)).to(device)] result.bboxes = torch.zeros((num_samples, 4)).to(device) result.labels = torch.zeros((num_samples, )).to(device) result_list = mask_head.get_results( mask_preds=tuple(mask_pred), results_list=tuple([result]), batch_img_metas=[img_metas], rcnn_test_cfg=rcnn_test_cfg) self.assertIsInstance(result_list[0], InstanceData) self.assertEqual(len(result_list[0]), num_samples) self.assertEqual(result_list[0].masks.shape, (num_samples, s, s))
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from mmengine.config import ConfigDict from mmengine.data import InstanceData from parameterized import parameterized from mmdet.models.roi_heads.mask_heads import FCNMaskHead class TestFCNMaskHead(TestCase): def test_init(self): """Test init standard RoI head.""" @parameterized.expand(['cpu', 'cuda']) def test_get_seg_masks(self, device): if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') num_classes = 6 mask_head = FCNMaskHead( num_convs=1, in_channels=1, conv_out_channels=1, num_classes=num_classes) rcnn_test_cfg = ConfigDict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5) s = 128 img_metas = { 'img_shape': (s, s, 3), 'scale_factor': (1, 1), 'ori_shape': (s, s, 3) } result = InstanceData(metainfo=img_metas) num_samples = 2 mask_pred = [torch.rand((num_samples, num_classes, 14, 14)).to(device)] result.bboxes = torch.rand((num_samples, 4)).to(device) result.labels = torch.randint( num_classes, (num_samples, ), dtype=torch.long).to(device) mask_head.to(device=device) result_list = mask_head.get_results( mask_preds=tuple(mask_pred), results_list=tuple([result]), batch_img_metas=[img_metas], rcnn_test_cfg=rcnn_test_cfg) assert isinstance(result_list[0], InstanceData) assert len(result_list[0]) == num_samples assert result_list[0].masks.shape == (num_samples, s, s) # num_samples is 0 num_samples = 0 result = InstanceData(metainfo=img_metas) mask_pred = [torch.rand((num_samples, num_classes, 14, 14)).to(device)] result.bboxes = torch.zeros((num_samples, 4)).to(device) result.labels = torch.zeros((num_samples, )).to(device) result_list = mask_head.get_results( mask_preds=tuple(mask_pred), results_list=tuple([result]), batch_img_metas=[img_metas], rcnn_test_cfg=rcnn_test_cfg) assert isinstance(result_list[0], InstanceData) assert len(result_list[0]) == num_samples assert result_list[0].masks.shape == (num_samples, s, s)
from keras.src import activations from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.ELU") class ELU(Layer): """Applies an Exponential Linear Unit function to an output. Formula: ``` f(x) = alpha * (exp(x) - 1.) for x < 0 f(x) = x for x >= 0 ``` Args: alpha: float, slope of negative section. Defaults to `1.0`. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. """ def __init__(self, alpha=1.0, **kwargs): super().__init__(**kwargs) self.alpha = alpha self.supports_masking = True self.built = True def call(self, inputs): return activations.elu(inputs, alpha=self.alpha) def compute_output_shape(self, input_shape): return input_shape
from keras.src import activations from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.ELU") class ELU(Layer): """Applies an Exponential Linear Unit function to an output. Formula: ``` f(x) = alpha * (exp(x) - 1.) for x < 0 f(x) = x for x >= 0 ``` Args: alpha: float, slope of negative section. Defaults to `1.0`. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. """ def __init__(self, alpha=1.0, **kwargs): super().__init__(**kwargs) self.alpha = alpha self.supports_masking = True def call(self, inputs): return activations.elu(inputs, alpha=self.alpha) def compute_output_shape(self, input_shape): return input_shape
"""Tests for evaluation metrics.""" from typing import Dict, List import numpy as np import pytest import xgboost as xgb from xgboost.compat import concat from xgboost.core import _parse_eval_str def check_precision_score(tree_method: str) -> None: """Test for precision with ranking and classification.""" datasets = pytest.importorskip("sklearn.datasets") X, y = datasets.make_classification( n_samples=1024, n_features=4, n_classes=2, random_state=2023 ) qid = np.zeros(shape=y.shape) # same group ltr = xgb.XGBRanker(n_estimators=2, tree_method=tree_method) ltr.fit(X, y, qid=qid) # re-generate so that XGBoost doesn't evaluate the result to 1.0 X, y = datasets.make_classification( n_samples=512, n_features=4, n_classes=2, random_state=1994 ) ltr.set_params(eval_metric="pre@32") result = _parse_eval_str( ltr.get_booster().eval_set(evals=[(xgb.DMatrix(X, y), "Xy")]) ) score_0 = result[1][1] X_list = [] y_list = [] n_query_groups = 3 q_list: List[np.ndarray] = [] for i in range(n_query_groups): # same for all groups X, y = datasets.make_classification( n_samples=512, n_features=4, n_classes=2, random_state=1994 ) X_list.append(X) y_list.append(y) q = np.full(shape=y.shape, fill_value=i, dtype=np.uint64) q_list.append(q) qid = concat(q_list) X = concat(X_list) y = concat(y_list) result = _parse_eval_str( ltr.get_booster().eval_set(evals=[(xgb.DMatrix(X, y, qid=qid), "Xy")]) ) assert result[1][0].endswith("pre@32") score_1 = result[1][1] assert score_1 == score_0 def check_quantile_error(tree_method: str) -> None: """Test for the `quantile` loss.""" from sklearn.datasets import make_regression from sklearn.metrics import mean_pinball_loss rng = np.random.RandomState(19) # pylint: disable=unbalanced-tuple-unpacking X, y = make_regression(128, 3, random_state=rng) Xy = xgb.QuantileDMatrix(X, y) evals_result: Dict[str, Dict] = {} booster = xgb.train( {"tree_method": tree_method, "eval_metric": "quantile", "quantile_alpha": 0.3}, Xy, evals=[(Xy, "Train")], evals_result=evals_result, ) predt = booster.inplace_predict(X) loss = mean_pinball_loss(y, predt, alpha=0.3) np.testing.assert_allclose(evals_result["Train"]["quantile"][-1], loss)
"""Tests for evaluation metrics.""" from typing import Dict, List import numpy as np import pytest import xgboost as xgb from xgboost.compat import concat from xgboost.core import _parse_eval_str def check_precision_score(tree_method: str) -> None: """Test for precision with ranking and classification.""" datasets = pytest.importorskip("sklearn.datasets") X, y = datasets.make_classification( n_samples=1024, n_features=4, n_classes=2, random_state=2023 ) qid = np.zeros(shape=y.shape) # same group ltr = xgb.XGBRanker(n_estimators=2, tree_method=tree_method) ltr.fit(X, y, qid=qid) # re-generate so that XGBoost doesn't evaluate the result to 1.0 X, y = datasets.make_classification( n_samples=512, n_features=4, n_classes=2, random_state=1994 ) ltr.set_params(eval_metric="pre@32") result = _parse_eval_str( ltr.get_booster().eval_set(evals=[(xgb.DMatrix(X, y), "Xy")]) ) score_0 = result[1][1] X_list = [] y_list = [] n_query_groups = 3 q_list: List[np.ndarray] = [] for i in range(n_query_groups): # same for all groups X, y = datasets.make_classification( n_samples=512, n_features=4, n_classes=2, random_state=1994 ) X_list.append(X) y_list.append(y) q = np.full(shape=y.shape, fill_value=i, dtype=np.uint64) q_list.append(q) qid = concat(q_list) X = concat(X_list) y = concat(y_list) result = _parse_eval_str( ltr.get_booster().eval_set(evals=[(xgb.DMatrix(X, y, qid=qid), "Xy")]) ) assert result[1][0].endswith("pre@32") score_1 = result[1][1] assert score_1 == score_0 def check_quantile_error(tree_method: str) -> None: """Test for the `quantile` loss.""" from sklearn.datasets import make_regression from sklearn.metrics import mean_pinball_loss rng = np.random.RandomState(19) # pylint: disable=unbalanced-tuple-unpacking X, y = make_regression(128, 3, random_state=rng) Xy = xgb.QuantileDMatrix(X, y) evals_result: Dict[str, Dict] = {} booster = xgb.train( {"tree_method": tree_method, "eval_metric": "quantile", "quantile_alpha": 0.3}, Xy, evals=[(Xy, "Train")], evals_result=evals_result, ) predt = booster.inplace_predict(X) loss = mean_pinball_loss(y, predt, alpha=0.3) np.testing.assert_allclose(evals_result["Train"]["quantile"][-1], loss)
import unittest import torch import torchaudio.prototype.functional as F from torchaudio_unittest.common_utils import nested_params, TestBaseMixin, torch_script class TorchScriptConsistencyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) @nested_params( ["convolve", "fftconvolve"], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (2, 3, 2) L_x, L_y = 32, 55 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) self._assert_consistency(getattr(F, fn), (x, y, mode)) @nested_params([True, False]) def test_add_noise(self, use_lengths): leading_dims = (2, 3) L = 31 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) if use_lengths: lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) else: lengths = None snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 self._assert_consistency(F.add_noise, (waveform, noise, snr, lengths)) def test_barkscale_fbanks(self): if self.device != torch.device("cpu"): raise unittest.SkipTest("No need to perform test on device other than CPU") n_stft = 100 f_min = 0.0 f_max = 20.0 n_barks = 10 sample_rate = 16000 self._assert_consistency(F.barkscale_fbanks, (n_stft, f_min, f_max, n_barks, sample_rate, "traunmuller")) def test_oscillator_bank(self): num_frames, num_pitches, sample_rate = 8000, 8, 8000 freq = torch.rand((num_frames, num_pitches), dtype=self.dtype, device=self.device) amps = torch.ones_like(freq) self._assert_consistency(F.oscillator_bank, (freq, amps, sample_rate, "sum")) def test_extend_pitch(self): num_frames = 5 input = torch.ones((num_frames, 1), device=self.device, dtype=self.dtype) num_pitches = 7 pattern = [i + 1.0 for i in range(num_pitches)] self._assert_consistency(F.extend_pitch, (input, num_pitches)) self._assert_consistency(F.extend_pitch, (input, pattern)) self._assert_consistency(F.extend_pitch, (input, torch.tensor(pattern))) def test_sinc_ir(self): cutoff = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, False)) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, True)) def test_speed(self): leading_dims = (3, 2) T = 200 waveform = torch.rand(*leading_dims, T, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.randint(1, T, leading_dims, dtype=self.dtype, device=self.device) self._assert_consistency(F.speed, (waveform, lengths, 1000, 1.1)) def test_preemphasis(self): waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype) coeff = 0.9 self._assert_consistency(F.preemphasis, (waveform, coeff)) def test_deemphasis(self): waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype) coeff = 0.9 self._assert_consistency(F.deemphasis, (waveform, coeff)) def test_freq_ir(self): mags = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.frequency_impulse_response, (mags,))
import unittest import torch import torchaudio.prototype.functional as F from torchaudio_unittest.common_utils import nested_params, TestBaseMixin, torch_script class TorchScriptConsistencyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) @nested_params( ["convolve", "fftconvolve"], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (2, 3, 2) L_x, L_y = 32, 55 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) self._assert_consistency(getattr(F, fn), (x, y, mode)) def test_add_noise(self): leading_dims = (2, 3) L = 31 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 self._assert_consistency(F.add_noise, (waveform, noise, lengths, snr)) def test_barkscale_fbanks(self): if self.device != torch.device("cpu"): raise unittest.SkipTest("No need to perform test on device other than CPU") n_stft = 100 f_min = 0.0 f_max = 20.0 n_barks = 10 sample_rate = 16000 self._assert_consistency(F.barkscale_fbanks, (n_stft, f_min, f_max, n_barks, sample_rate, "traunmuller")) def test_oscillator_bank(self): num_frames, num_pitches, sample_rate = 8000, 8, 8000 freq = torch.rand((num_frames, num_pitches), dtype=self.dtype, device=self.device) amps = torch.ones_like(freq) self._assert_consistency(F.oscillator_bank, (freq, amps, sample_rate, "sum")) def test_extend_pitch(self): num_frames = 5 input = torch.ones((num_frames, 1), device=self.device, dtype=self.dtype) num_pitches = 7 pattern = [i + 1.0 for i in range(num_pitches)] self._assert_consistency(F.extend_pitch, (input, num_pitches)) self._assert_consistency(F.extend_pitch, (input, pattern)) self._assert_consistency(F.extend_pitch, (input, torch.tensor(pattern))) def test_sinc_ir(self): cutoff = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, False)) self._assert_consistency(F.sinc_impulse_response, (cutoff, 513, True)) def test_speed(self): leading_dims = (3, 2) T = 200 waveform = torch.rand(*leading_dims, T, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.randint(1, T, leading_dims, dtype=self.dtype, device=self.device) self._assert_consistency(F.speed, (waveform, lengths, 1000, 1.1)) def test_preemphasis(self): waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype) coeff = 0.9 self._assert_consistency(F.preemphasis, (waveform, coeff)) def test_deemphasis(self): waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype) coeff = 0.9 self._assert_consistency(F.deemphasis, (waveform, coeff)) def test_freq_ir(self): mags = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.frequency_impulse_response, (mags,))
from typing import Any, Optional, Sequence from llama_index.core.evaluation.base import BaseEvaluator, EvaluationResult from llama_index.core.prompts.mixin import PromptDictType, PromptMixinType from tonic_validate.metrics.answer_similarity_metric import ( AnswerSimilarityMetric, ) from tonic_validate.services.openai_service import OpenAIService class AnswerSimilarityEvaluator(BaseEvaluator): """ Tonic Validate's answer similarity metric. The output score is a float between 0.0 and 5.0. See https://docs.tonic.ai/validate/ for more details. Args: openai_service(OpenAIService): The OpenAI service to use. Specifies the chat completion model to use as the LLM evaluator. Defaults to "gpt-4". """ def __init__(self, openai_service: Optional[Any] = None): if openai_service is None: openai_service = OpenAIService("gpt-4") self.openai_service = openai_service self.metric = AnswerSimilarityMetric() async def aevaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, reference_response: Optional[str] = None, **kwargs: Any ) -> EvaluationResult: from tonic_validate.classes.benchmark import BenchmarkItem from tonic_validate.classes.llm_response import LLMResponse benchmark_item = BenchmarkItem(question=query, answer=reference_response) llm_response = LLMResponse( llm_answer=response, llm_context_list=contexts, benchmark_item=benchmark_item, ) score = self.metric.score(llm_response, self.openai_service) return EvaluationResult( query=query, contexts=contexts, response=response, score=score ) def _get_prompts(self) -> PromptDictType: return {} def _get_prompt_modules(self) -> PromptMixinType: return {} def _update_prompts(self, prompts_dict: PromptDictType) -> None: return
from typing import Any, Optional, Sequence from llama_index.core.evaluation.base import BaseEvaluator, EvaluationResult from llama_index.core.prompts.mixin import PromptDictType, PromptMixinType from tonic_validate.metrics.answer_similarity_metric import ( AnswerSimilarityMetric, ) from tonic_validate.services.openai_service import OpenAIService class AnswerSimilarityEvaluator(BaseEvaluator): """Tonic Validate's answer similarity metric. The output score is a float between 0.0 and 5.0. See https://docs.tonic.ai/validate/ for more details. Args: openai_service(OpenAIService): The OpenAI service to use. Specifies the chat completion model to use as the LLM evaluator. Defaults to "gpt-4". """ def __init__(self, openai_service: Optional[Any] = None): if openai_service is None: openai_service = OpenAIService("gpt-4") self.openai_service = openai_service self.metric = AnswerSimilarityMetric() async def aevaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, reference_response: Optional[str] = None, **kwargs: Any ) -> EvaluationResult: from tonic_validate.classes.benchmark import BenchmarkItem from tonic_validate.classes.llm_response import LLMResponse benchmark_item = BenchmarkItem(question=query, answer=reference_response) llm_response = LLMResponse( llm_answer=response, llm_context_list=contexts, benchmark_item=benchmark_item, ) score = self.metric.score(llm_response, self.openai_service) return EvaluationResult( query=query, contexts=contexts, response=response, score=score ) def _get_prompts(self) -> PromptDictType: return {} def _get_prompt_modules(self) -> PromptMixinType: return {} def _update_prompts(self, prompts_dict: PromptDictType) -> None: return
from backend.app import run_processes from backend.executor import DatabaseManager from backend.notifications.notifications import NotificationManager from backend.server.rest_api import AgentServer def main(): """ Run all the processes required for the AutoGPT-server REST API. """ run_processes( NotificationManager(), DatabaseManager(), AgentServer(), ) if __name__ == "__main__": main()
from backend.app import run_processes from backend.executor import DatabaseManager, Scheduler from backend.notifications.notifications import NotificationManager from backend.server.rest_api import AgentServer def main(): """ Run all the processes required for the AutoGPT-server REST API. """ run_processes( NotificationManager(), DatabaseManager(), Scheduler(), AgentServer(), ) if __name__ == "__main__": main()
"""Utilities to render tools.""" from __future__ import annotations from inspect import signature from typing import Callable from langchain_core.tools.base import BaseTool ToolsRenderer = Callable[[list[BaseTool]], str] def render_text_description(tools: list[BaseTool]) -> str: """Render the tool name and description in plain text. Args: tools: The tools to render. Returns: The rendered text. Output will be in the format of: .. code-block:: markdown search: This tool is used for search calculator: This tool is used for math """ descriptions = [] for tool in tools: if hasattr(tool, "func") and tool.func: sig = signature(tool.func) description = f"{tool.name}{sig} - {tool.description}" else: description = f"{tool.name} - {tool.description}" descriptions.append(description) return "\n".join(descriptions) def render_text_description_and_args(tools: list[BaseTool]) -> str: """Render the tool name, description, and args in plain text. Args: tools: The tools to render. Returns: The rendered text. Output will be in the format of: .. code-block:: markdown search: This tool is used for search, args: {"query": {"type": "string"}} calculator: This tool is used for math, \ args: {"expression": {"type": "string"}} """ tool_strings = [] for tool in tools: args_schema = str(tool.args) if hasattr(tool, "func") and tool.func: sig = signature(tool.func) description = f"{tool.name}{sig} - {tool.description}" else: description = f"{tool.name} - {tool.description}" tool_strings.append(f"{description}, args: {args_schema}") return "\n".join(tool_strings)
from __future__ import annotations from inspect import signature from typing import Callable from langchain_core.tools.base import BaseTool ToolsRenderer = Callable[[list[BaseTool]], str] def render_text_description(tools: list[BaseTool]) -> str: """Render the tool name and description in plain text. Args: tools: The tools to render. Returns: The rendered text. Output will be in the format of: .. code-block:: markdown search: This tool is used for search calculator: This tool is used for math """ descriptions = [] for tool in tools: if hasattr(tool, "func") and tool.func: sig = signature(tool.func) description = f"{tool.name}{sig} - {tool.description}" else: description = f"{tool.name} - {tool.description}" descriptions.append(description) return "\n".join(descriptions) def render_text_description_and_args(tools: list[BaseTool]) -> str: """Render the tool name, description, and args in plain text. Args: tools: The tools to render. Returns: The rendered text. Output will be in the format of: .. code-block:: markdown search: This tool is used for search, args: {"query": {"type": "string"}} calculator: This tool is used for math, \ args: {"expression": {"type": "string"}} """ tool_strings = [] for tool in tools: args_schema = str(tool.args) if hasattr(tool, "func") and tool.func: sig = signature(tool.func) description = f"{tool.name}{sig} - {tool.description}" else: description = f"{tool.name} - {tool.description}" tool_strings.append(f"{description}, args: {args_schema}") return "\n".join(tool_strings)
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning) # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn( f'multiprocessing start method is set to `fork`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `fork`: {e!r}' ) # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.17.1' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning) # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn( f'multiprocessing start method is set to `fork`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `fork`: {e!r}' ) # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.17.0' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
# Copyright (c) OpenMMLab. All rights reserved. from .cityscapes_metric import CityScapesMetric from .coco_metric import CocoMetric from .coco_panoptic_metric import CocoPanopticMetric from .openimages_metric import OpenImagesMetric __all__ = [ 'CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric', 'OpenImagesMetric' ]
# Copyright (c) OpenMMLab. All rights reserved. from .cityscapes_metric import CityScapesMetric from .coco_metric import CocoMetric from .coco_panoptic_metric import CocoPanopticMetric __all__ = ['CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric']
"""Module contains a few fake embedding models for testing purposes.""" # Please do not add additional fake embedding model implementations here. import hashlib from pydantic import BaseModel from typing_extensions import override from langchain_core.embeddings import Embeddings class FakeEmbeddings(Embeddings, BaseModel): """Fake embedding model for unit testing purposes. This embedding model creates embeddings by sampling from a normal distribution. Do not use this outside of testing, as it is not a real embedding model. Instantiate: .. code-block:: python from langchain_core.embeddings import FakeEmbeddings embed = FakeEmbeddings(size=100) Embed single text: .. code-block:: python input_text = "The meaning of life is 42" vector = embed.embed_query(input_text) print(vector[:3]) .. code-block:: python [-0.700234640213188, -0.581266257710429, -1.1328482266445354] Embed multiple texts: .. code-block:: python input_texts = ["Document 1...", "Document 2..."] vectors = embed.embed_documents(input_texts) print(len(vectors)) # The first 3 coordinates for the first vector print(vectors[0][:3]) .. code-block:: python 2 [-0.5670477847544458, -0.31403828652395727, -0.5840547508955257] """ size: int """The size of the embedding vector.""" def _get_embedding(self) -> list[float]: import numpy as np # type: ignore[import-not-found, import-untyped] return list(np.random.default_rng().normal(size=self.size)) @override def embed_documents(self, texts: list[str]) -> list[list[float]]: return [self._get_embedding() for _ in texts] @override def embed_query(self, text: str) -> list[float]: return self._get_embedding() class DeterministicFakeEmbedding(Embeddings, BaseModel): """Deterministic fake embedding model for unit testing purposes. This embedding model creates embeddings by sampling from a normal distribution with a seed based on the hash of the text. Do not use this outside of testing, as it is not a real embedding model. Instantiate: .. code-block:: python from langchain_core.embeddings import DeterministicFakeEmbedding embed = DeterministicFakeEmbedding(size=100) Embed single text: .. code-block:: python input_text = "The meaning of life is 42" vector = embed.embed_query(input_text) print(vector[:3]) .. code-block:: python [-0.700234640213188, -0.581266257710429, -1.1328482266445354] Embed multiple texts: .. code-block:: python input_texts = ["Document 1...", "Document 2..."] vectors = embed.embed_documents(input_texts) print(len(vectors)) # The first 3 coordinates for the first vector print(vectors[0][:3]) .. code-block:: python 2 [-0.5670477847544458, -0.31403828652395727, -0.5840547508955257] """ size: int """The size of the embedding vector.""" def _get_embedding(self, seed: int) -> list[float]: import numpy as np # type: ignore[import-not-found, import-untyped] # set the seed for the random generator rng = np.random.default_rng(seed) return list(rng.normal(size=self.size)) def _get_seed(self, text: str) -> int: """Get a seed for the random generator, using the hash of the text.""" return int(hashlib.sha256(text.encode("utf-8")).hexdigest(), 16) % 10**8 @override def embed_documents(self, texts: list[str]) -> list[list[float]]: return [self._get_embedding(seed=self._get_seed(_)) for _ in texts] @override def embed_query(self, text: str) -> list[float]: return self._get_embedding(seed=self._get_seed(text))
"""Module contains a few fake embedding models for testing purposes.""" # Please do not add additional fake embedding model implementations here. import hashlib from pydantic import BaseModel from langchain_core.embeddings import Embeddings class FakeEmbeddings(Embeddings, BaseModel): """Fake embedding model for unit testing purposes. This embedding model creates embeddings by sampling from a normal distribution. Do not use this outside of testing, as it is not a real embedding model. Instantiate: .. code-block:: python from langchain_core.embeddings import FakeEmbeddings embed = FakeEmbeddings(size=100) Embed single text: .. code-block:: python input_text = "The meaning of life is 42" vector = embed.embed_query(input_text) print(vector[:3]) .. code-block:: python [-0.700234640213188, -0.581266257710429, -1.1328482266445354] Embed multiple texts: .. code-block:: python input_texts = ["Document 1...", "Document 2..."] vectors = embed.embed_documents(input_texts) print(len(vectors)) # The first 3 coordinates for the first vector print(vectors[0][:3]) .. code-block:: python 2 [-0.5670477847544458, -0.31403828652395727, -0.5840547508955257] """ size: int """The size of the embedding vector.""" def _get_embedding(self) -> list[float]: import numpy as np # type: ignore[import-not-found, import-untyped] return list(np.random.default_rng().normal(size=self.size)) def embed_documents(self, texts: list[str]) -> list[list[float]]: return [self._get_embedding() for _ in texts] def embed_query(self, text: str) -> list[float]: return self._get_embedding() class DeterministicFakeEmbedding(Embeddings, BaseModel): """Deterministic fake embedding model for unit testing purposes. This embedding model creates embeddings by sampling from a normal distribution with a seed based on the hash of the text. Do not use this outside of testing, as it is not a real embedding model. Instantiate: .. code-block:: python from langchain_core.embeddings import DeterministicFakeEmbedding embed = DeterministicFakeEmbedding(size=100) Embed single text: .. code-block:: python input_text = "The meaning of life is 42" vector = embed.embed_query(input_text) print(vector[:3]) .. code-block:: python [-0.700234640213188, -0.581266257710429, -1.1328482266445354] Embed multiple texts: .. code-block:: python input_texts = ["Document 1...", "Document 2..."] vectors = embed.embed_documents(input_texts) print(len(vectors)) # The first 3 coordinates for the first vector print(vectors[0][:3]) .. code-block:: python 2 [-0.5670477847544458, -0.31403828652395727, -0.5840547508955257] """ size: int """The size of the embedding vector.""" def _get_embedding(self, seed: int) -> list[float]: import numpy as np # type: ignore[import-not-found, import-untyped] # set the seed for the random generator rng = np.random.default_rng(seed) return list(rng.normal(size=self.size)) def _get_seed(self, text: str) -> int: """Get a seed for the random generator, using the hash of the text.""" return int(hashlib.sha256(text.encode("utf-8")).hexdigest(), 16) % 10**8 def embed_documents(self, texts: list[str]) -> list[list[float]]: return [self._get_embedding(seed=self._get_seed(_)) for _ in texts] def embed_query(self, text: str) -> list[float]: return self._get_embedding(seed=self._get_seed(text))
import time import uuid from contextlib import contextmanager from pathlib import Path from typing import Optional import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder, RepositoryNotFoundError CI_HUB_USER = "__DUMMY_TRANSFORMERS_USER__" CI_HUB_USER_FULL_NAME = "Dummy User" CI_HUB_USER_TOKEN = "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" CI_HUB_ENDPOINT = "https://hub-ci.huggingface.co" CI_HUB_DATASETS_URL = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" CI_HUB_TOKEN_PATH = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def ci_hfh_hf_hub_url(monkeypatch): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE ) @pytest.fixture def ci_hub_config(monkeypatch): monkeypatch.setattr("datasets.config.HF_ENDPOINT", CI_HUB_ENDPOINT) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", CI_HUB_DATASETS_URL) @pytest.fixture def ci_hub_token_path(monkeypatch): monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", CI_HUB_TOKEN_PATH) @pytest.fixture def set_ci_hub_access_token(ci_hub_config, ci_hub_token_path): HfFolder.save_token(CI_HUB_USER_TOKEN) yield HfFolder.delete_token() @pytest.fixture(scope="session") def hf_api(): return HfApi(endpoint=CI_HUB_ENDPOINT) @pytest.fixture(scope="session") def hf_token(): yield CI_HUB_USER_TOKEN @pytest.fixture def cleanup_repo(hf_api): def _cleanup_repo(repo_id): hf_api.delete_repo(repo_id, token=CI_HUB_USER_TOKEN, repo_type="dataset") return _cleanup_repo @pytest.fixture def temporary_repo(cleanup_repo): @contextmanager def _temporary_repo(repo_id: Optional[str] = None): repo_id = repo_id or f"{CI_HUB_USER}/test-dataset-{uuid.uuid4().hex[:6]}-{int(time.time() * 10e3)}" try: yield repo_id finally: try: cleanup_repo(repo_id) except RepositoryNotFoundError: pass return _temporary_repo @pytest.fixture(scope="session") def hf_private_dataset_repo_txt_data_(hf_api: HfApi, hf_token, text_file): repo_name = f"repo_txt_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(text_file), path_in_repo="data/text_data.txt", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_txt_data(hf_private_dataset_repo_txt_data_, ci_hub_config, ci_hfh_hf_hub_url): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_txt_data_(hf_api: HfApi, hf_token, zip_csv_with_dir_path): repo_name = f"repo_zipped_txt_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_csv_with_dir_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_txt_data( hf_private_dataset_repo_zipped_txt_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_img_data_(hf_api: HfApi, hf_token, zip_image_path): repo_name = f"repo_zipped_img_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_image_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_img_data( hf_private_dataset_repo_zipped_img_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_img_data_
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder CI_HUB_USER = "__DUMMY_TRANSFORMERS_USER__" CI_HUB_USER_FULL_NAME = "Dummy User" CI_HUB_USER_TOKEN = "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" CI_HUB_ENDPOINT = "https://hub-ci.huggingface.co" CI_HUB_DATASETS_URL = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" CI_HUB_TOKEN_PATH = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def ci_hfh_hf_hub_url(monkeypatch): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE ) @pytest.fixture def ci_hub_config(monkeypatch): monkeypatch.setattr("datasets.config.HF_ENDPOINT", CI_HUB_ENDPOINT) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", CI_HUB_DATASETS_URL) @pytest.fixture def ci_hub_token_path(monkeypatch): monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", CI_HUB_TOKEN_PATH) @pytest.fixture def set_ci_hub_access_token(ci_hub_config, ci_hub_token_path): HfFolder.save_token(CI_HUB_USER_TOKEN) yield HfFolder.delete_token() @pytest.fixture(scope="session") def hf_api(): return HfApi(endpoint=CI_HUB_ENDPOINT) @pytest.fixture(scope="session") def hf_token(): yield CI_HUB_USER_TOKEN @pytest.fixture def cleanup_repo(hf_api): def _cleanup_repo(repo_id): hf_api.delete_repo(repo_id, token=CI_HUB_USER_TOKEN, repo_type="dataset") return _cleanup_repo @pytest.fixture def temporary_repo(cleanup_repo): @contextmanager def _temporary_repo(repo_id): try: yield repo_id finally: cleanup_repo(repo_id) return _temporary_repo @pytest.fixture(scope="session") def hf_private_dataset_repo_txt_data_(hf_api: HfApi, hf_token, text_file): repo_name = f"repo_txt_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(text_file), path_in_repo="data/text_data.txt", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_txt_data(hf_private_dataset_repo_txt_data_, ci_hub_config, ci_hfh_hf_hub_url): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_txt_data_(hf_api: HfApi, hf_token, zip_csv_with_dir_path): repo_name = f"repo_zipped_txt_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_csv_with_dir_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_txt_data( hf_private_dataset_repo_zipped_txt_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_img_data_(hf_api: HfApi, hf_token, zip_image_path): repo_name = f"repo_zipped_img_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_image_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_img_data( hf_private_dataset_repo_zipped_img_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_img_data_
"""Question-answering with sources over an index.""" from typing import Any from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from pydantic import Field from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain class RetrievalQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over an index.""" retriever: BaseRetriever = Field(exclude=True) """Index to connect to.""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" def _reduce_tokens_below_limit(self, docs: list[Document]) -> list[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain, ): tokens = [ self.combine_documents_chain.llm_chain._get_num_tokens(doc.page_content) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs( self, inputs: dict[str, Any], *, run_manager: CallbackManagerForChainRun, ) -> list[Document]: question = inputs[self.question_key] docs = self.retriever.invoke( question, config={"callbacks": run_manager.get_child()}, ) return self._reduce_tokens_below_limit(docs) async def _aget_docs( self, inputs: dict[str, Any], *, run_manager: AsyncCallbackManagerForChainRun, ) -> list[Document]: question = inputs[self.question_key] docs = await self.retriever.ainvoke( question, config={"callbacks": run_manager.get_child()}, ) return self._reduce_tokens_below_limit(docs) @property def _chain_type(self) -> str: """Return the chain type.""" return "retrieval_qa_with_sources_chain"
"""Question-answering with sources over an index.""" from typing import Any from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from pydantic import Field from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain class RetrievalQAWithSourcesChain(BaseQAWithSourcesChain): """Question-answering with sources over an index.""" retriever: BaseRetriever = Field(exclude=True) """Index to connect to.""" reduce_k_below_max_tokens: bool = False """Reduce the number of results to return from store based on tokens limit""" max_tokens_limit: int = 3375 """Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" def _reduce_tokens_below_limit(self, docs: list[Document]) -> list[Document]: num_docs = len(docs) if self.reduce_k_below_max_tokens and isinstance( self.combine_documents_chain, StuffDocumentsChain ): tokens = [ self.combine_documents_chain.llm_chain._get_num_tokens(doc.page_content) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs( self, inputs: dict[str, Any], *, run_manager: CallbackManagerForChainRun ) -> list[Document]: question = inputs[self.question_key] docs = self.retriever.invoke( question, config={"callbacks": run_manager.get_child()} ) return self._reduce_tokens_below_limit(docs) async def _aget_docs( self, inputs: dict[str, Any], *, run_manager: AsyncCallbackManagerForChainRun ) -> list[Document]: question = inputs[self.question_key] docs = await self.retriever.ainvoke( question, config={"callbacks": run_manager.get_child()} ) return self._reduce_tokens_below_limit(docs) @property def _chain_type(self) -> str: """Return the chain type.""" return "retrieval_qa_with_sources_chain"
""" This examples demonstrates the setup for Question-Answer-Retrieval. You can input a query or a question. The script then uses semantic search to find relevant passages in Simple English Wikipedia (as it is smaller and fits better in RAM). As model, we use: nq-distilbert-base-v1 It was trained on the Natural Questions dataset, a dataset with real questions from Google Search together with annotated data from Wikipedia providing the answer. For the passages, we encode the Wikipedia article tile together with the individual text passages. Google Colab Example: https://colab.research.google.com/drive/11GunvCqJuebfeTlgbJWkIMT0xJH6PWF1?usp=sharing """ import gzip import json import os import time import torch from sentence_transformers import SentenceTransformer, util # We use the Bi-Encoder to encode all passages, so that we can use it with semantic search model_name = "nq-distilbert-base-v1" bi_encoder = SentenceTransformer(model_name) top_k = 5 # Number of passages we want to retrieve with the bi-encoder # As dataset, we use Simple English Wikipedia. Compared to the full English wikipedia, it has only # about 170k articles. We split these articles into paragraphs and encode them with the bi-encoder wikipedia_filepath = "data/simplewiki-2020-11-01.jsonl.gz" if not os.path.exists(wikipedia_filepath): util.http_get("http://sbert.net/datasets/simplewiki-2020-11-01.jsonl.gz", wikipedia_filepath) passages = [] with gzip.open(wikipedia_filepath, "rt", encoding="utf8") as fIn: for line in fIn: data = json.loads(line.strip()) for paragraph in data["paragraphs"]: # We encode the passages as [title, text] passages.append([data["title"], paragraph]) # If you like, you can also limit the number of passages you want to use print("Passages:", len(passages)) # To speed things up, pre-computed embeddings are downloaded. # The provided file encoded the passages with the model 'nq-distilbert-base-v1' if model_name == "nq-distilbert-base-v1": embeddings_filepath = "simplewiki-2020-11-01-nq-distilbert-base-v1.pt" if not os.path.exists(embeddings_filepath): util.http_get("http://sbert.net/datasets/simplewiki-2020-11-01-nq-distilbert-base-v1.pt", embeddings_filepath) corpus_embeddings = torch.load(embeddings_filepath) corpus_embeddings = corpus_embeddings.float() # Convert embedding file to float device = util.get_device_name() corpus_embeddings = corpus_embeddings.to(device) else: # Here, we compute the corpus_embeddings from scratch (which can take a while depending on the GPU) corpus_embeddings = bi_encoder.encode(passages, convert_to_tensor=True, show_progress_bar=True) while True: query = input("Please enter a question: ") # Encode the query using the bi-encoder and find potentially relevant passages start_time = time.time() question_embedding = bi_encoder.encode(query, convert_to_tensor=True) hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) hits = hits[0] # Get the hits for the first query end_time = time.time() # Output of top-k hits print("Input question:", query) print(f"Results (after {end_time - start_time:.3f} seconds):") for hit in hits: print("\t{:.3f}\t{}".format(hit["score"], passages[hit["corpus_id"]])) print("\n\n========\n")
""" This examples demonstrates the setup for Question-Answer-Retrieval. You can input a query or a question. The script then uses semantic search to find relevant passages in Simple English Wikipedia (as it is smaller and fits better in RAM). As model, we use: nq-distilbert-base-v1 It was trained on the Natural Questions dataset, a dataset with real questions from Google Search together with annotated data from Wikipedia providing the answer. For the passages, we encode the Wikipedia article tile together with the individual text passages. Google Colab Example: https://colab.research.google.com/drive/11GunvCqJuebfeTlgbJWkIMT0xJH6PWF1?usp=sharing """ import gzip import json import os import time import torch from sentence_transformers import SentenceTransformer, util # We use the Bi-Encoder to encode all passages, so that we can use it with semantic search model_name = "nq-distilbert-base-v1" bi_encoder = SentenceTransformer(model_name) top_k = 5 # Number of passages we want to retrieve with the bi-encoder # As dataset, we use Simple English Wikipedia. Compared to the full English wikipedia, it has only # about 170k articles. We split these articles into paragraphs and encode them with the bi-encoder wikipedia_filepath = "data/simplewiki-2020-11-01.jsonl.gz" if not os.path.exists(wikipedia_filepath): util.http_get("http://sbert.net/datasets/simplewiki-2020-11-01.jsonl.gz", wikipedia_filepath) passages = [] with gzip.open(wikipedia_filepath, "rt", encoding="utf8") as fIn: for line in fIn: data = json.loads(line.strip()) for paragraph in data["paragraphs"]: # We encode the passages as [title, text] passages.append([data["title"], paragraph]) # If you like, you can also limit the number of passages you want to use print("Passages:", len(passages)) # To speed things up, pre-computed embeddings are downloaded. # The provided file encoded the passages with the model 'nq-distilbert-base-v1' if model_name == "nq-distilbert-base-v1": embeddings_filepath = "simplewiki-2020-11-01-nq-distilbert-base-v1.pt" if not os.path.exists(embeddings_filepath): util.http_get("http://sbert.net/datasets/simplewiki-2020-11-01-nq-distilbert-base-v1.pt", embeddings_filepath) corpus_embeddings = torch.load(embeddings_filepath) corpus_embeddings = corpus_embeddings.float() # Convert embedding file to float device = util.get_device_name() corpus_embeddings = corpus_embeddings.to(device) else: # Here, we compute the corpus_embeddings from scratch (which can take a while depending on the GPU) corpus_embeddings = bi_encoder.encode(passages, convert_to_tensor=True, show_progress_bar=True) while True: query = input("Please enter a question: ") # Encode the query using the bi-encoder and find potentially relevant passages start_time = time.time() question_embedding = bi_encoder.encode(query, convert_to_tensor=True) hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) hits = hits[0] # Get the hits for the first query end_time = time.time() # Output of top-k hits print("Input question:", query) print("Results (after {:.3f} seconds):".format(end_time - start_time)) for hit in hits: print("\t{:.3f}\t{}".format(hit["score"], passages[hit["corpus_id"]])) print("\n\n========\n")
from jina import Executor, Flow, requests, DocumentArray def test_gateway_metric_labels(monkeypatch_metric_exporter): collect_metrics, read_metrics = monkeypatch_metric_exporter class FirstExec(Executor): @requests() def meow(self, docs, **kwargs): return DocumentArray.empty(3) class SecondExec(Executor): @requests() def meow(self, docs, **kwargs): return DocumentArray.empty(3) with Flow( tracing=False, metrics=True, metrics_exporter_host='localhost', metrics_exporter_port=4317, port=12345, ).add(name='first_exec', uses=FirstExec).add( name="second_exec", uses=SecondExec ) as f: f.post('/') collect_metrics() metrics = read_metrics() gateway_metrics = metrics['gateway/rep-0'][0]['resource_metrics'][0][ 'scope_metrics' ][0]['metrics'] gateway_metric_data_point = { i['name']: i['data']['data_points'] for i in gateway_metrics } assert ( 'address' in gateway_metric_data_point['jina_sending_request_seconds'][0][ 'attributes' ] ) assert ( 'address' in gateway_metric_data_point['jina_sent_request_bytes'][0]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_received_response_bytes'][0][ 'attributes' ] ) assert ( 'address' in gateway_metric_data_point['jina_sending_request_seconds'][1][ 'attributes' ] ) assert ( 'address' in gateway_metric_data_point['jina_sent_request_bytes'][1]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_received_response_bytes'][1][ 'attributes' ] ) assert ( 'deployment' in gateway_metric_data_point['jina_sending_request_seconds'][0][ 'attributes' ] ) assert ( 'deployment' in gateway_metric_data_point['jina_sent_request_bytes'][0]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_received_response_bytes'][0][ 'attributes' ] ) assert ( 'deployment' in gateway_metric_data_point['jina_sending_request_seconds'][1][ 'attributes' ] ) assert ( 'deployment' in gateway_metric_data_point['jina_sent_request_bytes'][1]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_received_response_bytes'][1][ 'attributes' ] ) assert {'first_exec', 'second_exec'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_received_response_bytes'] } assert {'first_exec', 'second_exec'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sent_request_bytes'] } assert {'first_exec', 'second_exec'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sending_request_seconds'] } def test_merge_with_no_reduce(monkeypatch_metric_exporter): collect_metrics, read_metrics = monkeypatch_metric_exporter f = ( Flow( tracing=False, metrics=True, metrics_exporter_host='localhost', metrics_exporter_port=4317, port=12345, ) .add(name='name1') .add(name='name2', needs=['gateway']) .add(name='name3', needs=['name1', 'name2'], disable_reduce=True) ) with f: f.post('/') collect_metrics() metrics = read_metrics() gateway_metrics = metrics['gateway/rep-0'][0]['resource_metrics'][0][ 'scope_metrics' ][0]['metrics'] gateway_metric_data_point = { i['name']: i['data']['data_points'] for i in gateway_metrics } assert {'name1', 'name2', 'name3'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_received_response_bytes'] } assert {'name1', 'name2', 'name3'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sent_request_bytes'] } assert {'name1', 'name2', 'name3'} == { i['attributes']['deployment'] for i in gateway_metric_data_point['jina_sending_request_seconds'] }
from jina import Executor, Flow, requests, DocumentArray def test_gateway_metric_labels(monkeypatch_metric_exporter): collect_metrics, read_metrics = monkeypatch_metric_exporter class FirstExec(Executor): @requests() def meow(self, docs, **kwargs): return DocumentArray.empty(3) class SecondExec(Executor): @requests() def meow(self, docs, **kwargs): return DocumentArray.empty(3) with Flow( tracing=False, metrics=True, metrics_exporter_host='localhost', metrics_exporter_port=4317, port=12345, ).add(name='first_exec', uses=FirstExec).add( name="second_exec", uses=SecondExec ) as f: f.post('/') collect_metrics() metrics = read_metrics() gateway_metrics = metrics['gateway/rep-0'][0]['resource_metrics'][0][ 'scope_metrics' ][0]['metrics'] gateway_metric_data_point = { i['name']: i['data']['data_points'] for i in gateway_metrics } assert ( 'address' in gateway_metric_data_point['jina_sending_request_seconds'][0][ 'attributes' ] ) assert ( 'address' in gateway_metric_data_point['jina_sent_request_bytes'][0]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_received_response_bytes'][0][ 'attributes' ] ) assert ( 'address' in gateway_metric_data_point['jina_sending_request_seconds'][1][ 'attributes' ] ) assert ( 'address' in gateway_metric_data_point['jina_sent_request_bytes'][1]['attributes'] ) assert ( 'address' in gateway_metric_data_point['jina_received_response_bytes'][1][ 'attributes' ] ) assert ( 'deployment' in gateway_metric_data_point['jina_sending_request_seconds'][0][ 'attributes' ] ) assert ( 'deployment' in gateway_metric_data_point['jina_sent_request_bytes'][0]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_received_response_bytes'][0][ 'attributes' ] ) assert ( 'deployment' in gateway_metric_data_point['jina_sending_request_seconds'][1][ 'attributes' ] ) assert ( 'deployment' in gateway_metric_data_point['jina_sent_request_bytes'][1]['attributes'] ) assert ( 'deployment' in gateway_metric_data_point['jina_received_response_bytes'][1][ 'attributes' ] ) assert ( gateway_metric_data_point['jina_received_response_bytes'][0]['attributes'][ 'deployment' ] == 'first_exec' ) assert ( gateway_metric_data_point['jina_received_response_bytes'][1]['attributes'][ 'deployment' ] == 'second_exec' )
import json import logging from typing import Any, Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_community.tools.slack.base import SlackBaseTool class SlackGetChannel(SlackBaseTool): """Tool that gets Slack channel information.""" name: str = "get_channelid_name_dict" description: str = ( "Use this tool to get channelid-name dict. There is no input to this tool" ) def _run( self, *args: Any, run_manager: Optional[CallbackManagerForToolRun] = None ) -> str: try: logging.getLogger(__name__) result = self.client.conversations_list() channels = result["channels"] filtered_result = [ {key: channel[key] for key in ("id", "name", "created", "num_members")} for channel in channels if "id" in channel and "name" in channel and "created" in channel and "num_members" in channel ] return json.dumps(filtered_result, ensure_ascii=False) except Exception as e: return "Error creating conversation: {}".format(e)
import json import logging from typing import Any, Optional from langchain_core.callbacks import CallbackManagerForToolRun from langchain_community.tools.slack.base import SlackBaseTool class SlackGetChannel(SlackBaseTool): # type: ignore[override] """Tool that gets Slack channel information.""" name: str = "get_channelid_name_dict" description: str = ( "Use this tool to get channelid-name dict. There is no input to this tool" ) def _run( self, *args: Any, run_manager: Optional[CallbackManagerForToolRun] = None ) -> str: try: logging.getLogger(__name__) result = self.client.conversations_list() channels = result["channels"] filtered_result = [ {key: channel[key] for key in ("id", "name", "created", "num_members")} for channel in channels if "id" in channel and "name" in channel and "created" in channel and "num_members" in channel ] return json.dumps(filtered_result, ensure_ascii=False) except Exception as e: return "Error creating conversation: {}".format(e)
from unittest.mock import MagicMock from llama_index.core.base.llms.base import BaseLLM from llama_index.core.tools import FunctionTool from llama_index.llms.oci_genai import OCIGenAI def test_oci_genai_embedding_class(): names_of_base_classes = [b.__name__ for b in OCIGenAI.__mro__] assert BaseLLM.__name__ in names_of_base_classes # Shared test tool for tool_required tests def search(query: str) -> str: """Search for information about a query.""" return f"Results for {query}" search_tool = FunctionTool.from_defaults( fn=search, name="search_tool", description="A tool for searching information" ) def test_prepare_chat_with_tools_tool_required(): """Test that tool_required is correctly passed to the API request when True.""" # Mock the client to avoid authentication issues mock_client = MagicMock() llm = OCIGenAI( model="cohere.command-r-16k", service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com", compartment_id="test_compartment_id", client=mock_client, ) # Test with tool_required=True result = llm._prepare_chat_with_tools( tools=[search_tool], user_msg="Test message", tool_required=True ) assert result["tool_choice"] == "REQUIRED" assert len(result["tools"]) == 1 # FunctionTool objects don't have a name attribute directly assert result["tools"][0].metadata.name == "search_tool" def test_prepare_chat_with_tools_tool_not_required(): """Test that tool_required is correctly passed to the API request when False.""" # Mock the client to avoid authentication issues mock_client = MagicMock() llm = OCIGenAI( model="cohere.command-r-16k", service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com", compartment_id="test_compartment_id", client=mock_client, ) # Test with tool_required=False (default) result = llm._prepare_chat_with_tools( tools=[search_tool], user_msg="Test message", ) # When tool_required is False, tool_choice should not be included assert "tool_choice" not in result assert len(result["tools"]) == 1 # FunctionTool objects don't have a name attribute directly assert result["tools"][0].metadata.name == "search_tool"
from unittest.mock import MagicMock from llama_index.core.base.llms.base import BaseLLM from llama_index.core.tools import FunctionTool from llama_index.llms.oci_genai import OCIGenAI def test_oci_genai_embedding_class(): names_of_base_classes = [b.__name__ for b in OCIGenAI.__mro__] assert BaseLLM.__name__ in names_of_base_classes # Shared test tool for tool_required tests def search(query: str) -> str: """Search for information about a query.""" return f"Results for {query}" search_tool = FunctionTool.from_defaults( fn=search, name="search_tool", description="A tool for searching information" ) def test_prepare_chat_with_tools_tool_required(): """Test that tool_required is correctly passed to the API request when True.""" # Mock the client to avoid authentication issues mock_client = MagicMock() llm = OCIGenAI( model="cohere.command-r-16k", service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com", compartment_id="test_compartment_id", client=mock_client, ) # Test with tool_required=True result = llm._prepare_chat_with_tools( tools=[search_tool], user_msg="Test message", tool_required=True ) assert result["tool_choice"] == "REQUIRED" assert len(result["tools"]) == 1 # CohereTool objects have a `name` attribute directly assert result["tools"][0].name == "search_tool" def test_prepare_chat_with_tools_tool_not_required(): """Test that tool_required is correctly passed to the API request when False.""" # Mock the client to avoid authentication issues mock_client = MagicMock() llm = OCIGenAI( model="cohere.command-r-16k", service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com", compartment_id="test_compartment_id", client=mock_client, ) # Test with tool_required=False (default) result = llm._prepare_chat_with_tools( tools=[search_tool], user_msg="Test message", ) # When tool_required is False, tool_choice should not be included assert "tool_choice" not in result assert len(result["tools"]) == 1 # CohereTool objects have a `name` attribute directly assert result["tools"][0].name == "search_tool"
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 20 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/advanced_tutorials/registry.html. """ from .build_functions import (build_model_from_cfg, build_runner_from_cfg, build_scheduler_from_cfg) from .registry import Registry # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner', build_func=build_runner_from_cfg) # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of loops like `EpochBasedTrainLoop` LOOPS = Registry('loop') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model', build_model_from_cfg) # mangage all kinds of model wrappers like 'MMDistributedDataParallel' MODEL_WRAPPERS = Registry('model_wrapper') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage optimizer wrapper OPTIM_WRAPPERS = Registry('optim_wrapper') # manage constructors that customize the optimization hyperparameters. OPTIM_WRAPPER_CONSTRUCTORS = Registry('optimizer wrapper constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry( 'parameter scheduler', build_func=build_scheduler_from_cfg) # manage all kinds of metrics METRICS = Registry('metric') # manage evaluator EVALUATOR = Registry('evaluator') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util') # manage visualizer VISUALIZERS = Registry('visualizer') # manage visualizer backend VISBACKENDS = Registry('vis_backend') # manage logprocessor LOG_PROCESSORS = Registry('log_processor') # manage inferencer INFERENCERS = Registry('inferencer')
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 20 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from .build_functions import (build_model_from_cfg, build_runner_from_cfg, build_scheduler_from_cfg) from .registry import Registry # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner', build_func=build_runner_from_cfg) # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of loops like `EpochBasedTrainLoop` LOOPS = Registry('loop') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model', build_model_from_cfg) # mangage all kinds of model wrappers like 'MMDistributedDataParallel' MODEL_WRAPPERS = Registry('model_wrapper') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage optimizer wrapper OPTIM_WRAPPERS = Registry('optim_wrapper') # manage constructors that customize the optimization hyperparameters. OPTIM_WRAPPER_CONSTRUCTORS = Registry('optimizer wrapper constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry( 'parameter scheduler', build_func=build_scheduler_from_cfg) # manage all kinds of metrics METRICS = Registry('metric') # manage evaluator EVALUATOR = Registry('evaluator') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util') # manage visualizer VISUALIZERS = Registry('visualizer') # manage visualizer backend VISBACKENDS = Registry('vis_backend') # manage logprocessor LOG_PROCESSORS = Registry('log_processor') # manage inferencer INFERENCERS = Registry('inferencer')
"""Retriever tool.""" from typing import TYPE_CHECKING, Any, List, Optional from llama_index.core.base.base_retriever import BaseRetriever if TYPE_CHECKING: from llama_index.core.langchain_helpers.agents.tools import LlamaIndexTool from llama_index.core.schema import ( MetadataMode, Node, NodeWithScore, QueryBundle, TextNode, ) from llama_index.core.tools.types import AsyncBaseTool, ToolMetadata, ToolOutput from llama_index.core.postprocessor.types import BaseNodePostprocessor DEFAULT_NAME = "retriever_tool" DEFAULT_DESCRIPTION = """Useful for running a natural language query against a knowledge base and retrieving a set of relevant documents. """ class RetrieverTool(AsyncBaseTool): """ Retriever tool. A tool making use of a retriever. Args: retriever (BaseRetriever): A retriever. metadata (ToolMetadata): The associated metadata of the query engine. node_postprocessors (Optional[List[BaseNodePostprocessor]]): A list of node postprocessors. """ def __init__( self, retriever: BaseRetriever, metadata: ToolMetadata, node_postprocessors: Optional[List[BaseNodePostprocessor]] = None, ) -> None: self._retriever = retriever self._metadata = metadata self._node_postprocessors = node_postprocessors or [] @classmethod def from_defaults( cls, retriever: BaseRetriever, node_postprocessors: Optional[List[BaseNodePostprocessor]] = None, name: Optional[str] = None, description: Optional[str] = None, ) -> "RetrieverTool": name = name or DEFAULT_NAME description = description or DEFAULT_DESCRIPTION metadata = ToolMetadata(name=name, description=description) return cls( retriever=retriever, metadata=metadata, node_postprocessors=node_postprocessors, ) @property def retriever(self) -> BaseRetriever: return self._retriever @property def metadata(self) -> ToolMetadata: return self._metadata def call(self, *args: Any, **kwargs: Any) -> ToolOutput: query_str = "" if args is not None: query_str += ", ".join([str(arg) for arg in args]) + "\n" if kwargs is not None: query_str += ( ", ".join([f"{k!s} is {v!s}" for k, v in kwargs.items()]) + "\n" ) if query_str == "": raise ValueError("Cannot call query engine without inputs") docs = self._retriever.retrieve(query_str) docs = self._apply_node_postprocessors(docs, QueryBundle(query_str)) content = "" for doc in docs: assert isinstance(doc.node, (Node, TextNode)) node_copy = doc.node.model_copy() content += node_copy.get_content(MetadataMode.LLM) + "\n\n" return ToolOutput( content=content, tool_name=self.metadata.get_name(), raw_input={"input": query_str}, raw_output=docs, ) async def acall(self, *args: Any, **kwargs: Any) -> ToolOutput: query_str = "" if args is not None: query_str += ", ".join([str(arg) for arg in args]) + "\n" if kwargs is not None: query_str += ( ", ".join([f"{k!s} is {v!s}" for k, v in kwargs.items()]) + "\n" ) if query_str == "": raise ValueError("Cannot call query engine without inputs") docs = await self._retriever.aretrieve(query_str) content = "" docs = self._apply_node_postprocessors(docs, QueryBundle(query_str)) for doc in docs: assert isinstance(doc.node, (Node, TextNode)) node_copy = doc.node.model_copy() content += node_copy.get_content(MetadataMode.LLM) + "\n\n" return ToolOutput( content=content, tool_name=self.metadata.get_name(), raw_input={"input": query_str}, raw_output=docs, ) def as_langchain_tool(self) -> "LlamaIndexTool": raise NotImplementedError("`as_langchain_tool` not implemented here.") def _apply_node_postprocessors( self, nodes: List[NodeWithScore], query_bundle: QueryBundle ) -> List[NodeWithScore]: for node_postprocessor in self._node_postprocessors: nodes = node_postprocessor.postprocess_nodes( nodes, query_bundle=query_bundle ) return nodes
"""Retriever tool.""" from typing import TYPE_CHECKING, Any, List, Optional from llama_index.core.base.base_retriever import BaseRetriever if TYPE_CHECKING: from llama_index.core.langchain_helpers.agents.tools import LlamaIndexTool from llama_index.core.schema import ( MetadataMode, Node, NodeWithScore, QueryBundle, TextNode, ) from llama_index.core.tools.types import AsyncBaseTool, ToolMetadata, ToolOutput from llama_index.core.postprocessor.types import BaseNodePostprocessor DEFAULT_NAME = "retriever_tool" DEFAULT_DESCRIPTION = """Useful for running a natural language query against a knowledge base and retrieving a set of relevant documents. """ class RetrieverTool(AsyncBaseTool): """ Retriever tool. A tool making use of a retriever. Args: retriever (BaseRetriever): A retriever. metadata (ToolMetadata): The associated metadata of the query engine. node_postprocessors (Optional[List[BaseNodePostprocessor]]): A list of node postprocessors. """ def __init__( self, retriever: BaseRetriever, metadata: ToolMetadata, node_postprocessors: Optional[List[BaseNodePostprocessor]] = None, ) -> None: self._retriever = retriever self._metadata = metadata self._node_postprocessors = node_postprocessors or [] @classmethod def from_defaults( cls, retriever: BaseRetriever, node_postprocessors: Optional[List[BaseNodePostprocessor]] = None, name: Optional[str] = None, description: Optional[str] = None, ) -> "RetrieverTool": name = name or DEFAULT_NAME description = description or DEFAULT_DESCRIPTION metadata = ToolMetadata(name=name, description=description) return cls( retriever=retriever, metadata=metadata, node_postprocessors=node_postprocessors, ) @property def retriever(self) -> BaseRetriever: return self._retriever @property def metadata(self) -> ToolMetadata: return self._metadata def call(self, *args: Any, **kwargs: Any) -> ToolOutput: query_str = "" if args is not None: query_str += ", ".join([str(arg) for arg in args]) + "\n" if kwargs is not None: query_str += ( ", ".join([f"{k!s} is {v!s}" for k, v in kwargs.items()]) + "\n" ) if query_str == "": raise ValueError("Cannot call query engine without inputs") docs = self._retriever.retrieve(query_str) docs = self._apply_node_postprocessors(docs, QueryBundle(query_str)) content = "" for doc in docs: assert isinstance(doc.node, (Node, TextNode)) node_copy = doc.node.model_copy() content += node_copy.get_content(MetadataMode.LLM) + "\n\n" return ToolOutput( content=content, tool_name=self.metadata.name, raw_input={"input": query_str}, raw_output=docs, ) async def acall(self, *args: Any, **kwargs: Any) -> ToolOutput: query_str = "" if args is not None: query_str += ", ".join([str(arg) for arg in args]) + "\n" if kwargs is not None: query_str += ( ", ".join([f"{k!s} is {v!s}" for k, v in kwargs.items()]) + "\n" ) if query_str == "": raise ValueError("Cannot call query engine without inputs") docs = await self._retriever.aretrieve(query_str) content = "" docs = self._apply_node_postprocessors(docs, QueryBundle(query_str)) for doc in docs: assert isinstance(doc.node, (Node, TextNode)) node_copy = doc.node.model_copy() content += node_copy.get_content(MetadataMode.LLM) + "\n\n" return ToolOutput( content=content, tool_name=self.metadata.name, raw_input={"input": query_str}, raw_output=docs, ) def as_langchain_tool(self) -> "LlamaIndexTool": raise NotImplementedError("`as_langchain_tool` not implemented here.") def _apply_node_postprocessors( self, nodes: List[NodeWithScore], query_bundle: QueryBundle ) -> List[NodeWithScore]: for node_postprocessor in self._node_postprocessors: nodes = node_postprocessor.postprocess_nodes( nodes, query_bundle=query_bundle ) return nodes
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys import pytorch_sphinx_theme sys.path.insert(0, os.path.abspath('../..')) # -- Project information ----------------------------------------------------- project = 'mmengine' copyright = '2022, mmengine contributors' author = 'mmengine contributors' version_file = '../../mmengine/version.py' with open(version_file) as f: exec(compile(f.read(), version_file, 'exec')) __version__ = locals()['__version__'] # The short X.Y version version = __version__ # The full version, including alpha/beta/rc tags release = __version__ # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'sphinx.ext.autosectionlabel', 'sphinx_markdown_tables', 'myst_parser', 'sphinx_copybutton', 'sphinx.ext.autodoc.typehints', ] # yapf: disable autodoc_typehints = 'description' # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'pytorch_sphinx_theme' html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()] html_theme_options = { 'menu': [ { 'name': 'GitHub', 'url': 'https://github.com/open-mmlab/mmengine' }, ], # Specify the language of shared menu 'menu_lang': 'en', } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Extension configuration ------------------------------------------------- # Ignore >>> when copying code copybutton_prompt_text = r'>>> |\.\.\. ' copybutton_prompt_is_regexp = True
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys import pytorch_sphinx_theme sys.path.insert(0, os.path.abspath('../..')) # -- Project information ----------------------------------------------------- project = 'mmengine' copyright = '2022, mmengine contributors' author = 'mmengine contributors' version_file = '../../mmengine/version.py' with open(version_file, 'r') as f: exec(compile(f.read(), version_file, 'exec')) __version__ = locals()['__version__'] # The short X.Y version version = __version__ # The full version, including alpha/beta/rc tags release = __version__ # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'sphinx.ext.autosectionlabel', 'sphinx_markdown_tables', 'myst_parser', 'sphinx_copybutton', 'sphinx.ext.autodoc.typehints', ] # yapf: disable autodoc_typehints = 'description' # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'pytorch_sphinx_theme' html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()] html_theme_options = { 'menu': [ { 'name': 'GitHub', 'url': 'https://github.com/open-mmlab/mmengine' }, ], # Specify the language of shared menu 'menu_lang': 'en', } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Extension configuration ------------------------------------------------- # Ignore >>> when copying code copybutton_prompt_text = r'>>> |\.\.\. ' copybutton_prompt_is_regexp = True
# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class TorchFormatter(TensorFormatter[Mapping, "torch.Tensor", Mapping]): def __init__(self, features=None, **torch_tensor_kwargs): super().__init__(features=features) self.torch_tensor_kwargs = torch_tensor_kwargs import torch # noqa import torch at initialization def _consolidate(self, column): import torch if isinstance(column, list) and column: if all( isinstance(x, torch.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(column) return column def _tensorize(self, value): import torch if isinstance(value, (str, bytes, type(None))): return value elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character): return value.tolist() default_dtype = {} if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): default_dtype = {"dtype": torch.int64} # Convert dtype to np.int64 if it's either np.uint16 or np.uint32 to ensure compatibility. # np.uint64 is excluded from this conversion as there is no compatible PyTorch dtype that can handle it without loss. if value.dtype in [np.uint16, np.uint32]: value = value.astype(np.int64) elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": torch.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): value = np.asarray(value) if value.ndim == 2: value = value[:, :, np.newaxis] value = value.transpose((2, 0, 1)) return torch.tensor(value, **{**default_dtype, **self.torch_tensor_kwargs}) def _recursive_tensorize(self, data_struct): import torch # support for torch, tf, jax etc. if hasattr(data_struct, "__array__") and not isinstance(data_struct, torch.Tensor): data_struct = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) elif isinstance(data_struct, (list, tuple)): return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct, map_list=False) def format_row(self, pa_table: pa.Table) -> Mapping: row = self.numpy_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> "torch.Tensor": column = self.numpy_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> Mapping: batch = self.numpy_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class TorchFormatter(TensorFormatter[Mapping, "torch.Tensor", Mapping]): def __init__(self, features=None, **torch_tensor_kwargs): super().__init__(features=features) self.torch_tensor_kwargs = torch_tensor_kwargs import torch # noqa import torch at initialization def _consolidate(self, column): import torch if isinstance(column, list) and column: if all( isinstance(x, torch.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(column) return column def _tensorize(self, value): import torch if isinstance(value, (str, bytes, type(None))): return value elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character): return value.tolist() default_dtype = {} if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): default_dtype = {"dtype": torch.int64} # Convert dtype to np.int64 if it's either np.uint16 or np.uint32 to ensure compatibility. # np.uint64 is excluded from this conversion as there is no compatible PyTorch dtype that can handle it without loss. if value.dtype in [np.uint16, np.uint32]: value = value.astype(np.int64) elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": torch.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): value = np.asarray(value) return torch.tensor(value, **{**default_dtype, **self.torch_tensor_kwargs}) def _recursive_tensorize(self, data_struct): import torch # support for torch, tf, jax etc. if hasattr(data_struct, "__array__") and not isinstance(data_struct, torch.Tensor): data_struct = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) elif isinstance(data_struct, (list, tuple)): return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct, map_list=False) def format_row(self, pa_table: pa.Table) -> Mapping: row = self.numpy_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> "torch.Tensor": column = self.numpy_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> Mapping: batch = self.numpy_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
from typing import Any, Dict, Union import torch from torchvision import transforms as _transforms from torchvision.prototype import datapoints from torchvision.prototype.transforms import functional as F, Transform from .utils import is_simple_tensor class ConvertBoundingBoxFormat(Transform): _transformed_types = (datapoints.BoundingBox,) def __init__(self, format: Union[str, datapoints.BoundingBoxFormat]) -> None: super().__init__() if isinstance(format, str): format = datapoints.BoundingBoxFormat[format] self.format = format def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: # We need to unwrap here to avoid unnecessary `__torch_function__` calls, # since `convert_format_bounding_box` does not have a dispatcher function that would do that for us output = F.convert_format_bounding_box( inpt.as_subclass(torch.Tensor), old_format=inpt.format, new_format=params["format"] ) return datapoints.BoundingBox.wrap_like(inpt, output, format=params["format"]) class ConvertDtype(Transform): _v1_transform_cls = _transforms.ConvertImageDtype _transformed_types = (is_simple_tensor, datapoints.Image, datapoints.Video) def __init__(self, dtype: torch.dtype = torch.float32) -> None: super().__init__() self.dtype = dtype def _transform( self, inpt: Union[datapoints.TensorImageType, datapoints.TensorVideoType], params: Dict[str, Any] ) -> Union[datapoints.TensorImageType, datapoints.TensorVideoType]: return F.convert_dtype(inpt, self.dtype) # We changed the name to align it with the new naming scheme. Still, `ConvertImageDtype` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ConvertImageDtype = ConvertDtype class ClampBoundingBoxes(Transform): _transformed_types = (datapoints.BoundingBox,) def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: return F.clamp_bounding_box(inpt) # type: ignore[return-value]
from typing import Any, Dict, Union import torch from torchvision import transforms as _transforms from torchvision.prototype import datapoints from torchvision.prototype.transforms import functional as F, Transform from .utils import is_simple_tensor class ConvertBoundingBoxFormat(Transform): _transformed_types = (datapoints.BoundingBox,) def __init__(self, format: Union[str, datapoints.BoundingBoxFormat]) -> None: super().__init__() if isinstance(format, str): format = datapoints.BoundingBoxFormat[format] self.format = format def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: # We need to unwrap here to avoid unnecessary `__torch_function__` calls, # since `convert_format_bounding_box` does not have a dispatcher function that would do that for us output = F.convert_format_bounding_box( inpt.as_subclass(torch.Tensor), old_format=inpt.format, new_format=params["format"] ) return datapoints.BoundingBox.wrap_like(inpt, output, format=params["format"]) class ConvertDtype(Transform): _v1_transform_cls = _transforms.ConvertImageDtype _transformed_types = (is_simple_tensor, datapoints.Image, datapoints.Video) def __init__(self, dtype: torch.dtype = torch.float32) -> None: super().__init__() self.dtype = dtype def _transform( self, inpt: Union[datapoints.TensorImageType, datapoints.TensorVideoType], params: Dict[str, Any] ) -> Union[datapoints.TensorImageType, datapoints.TensorVideoType]: return F.convert_dtype(inpt, self.dtype) # We changed the name to align it with the new naming scheme. Still, `ConvertImageDtype` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ConvertImageDtype = ConvertDtype class ClampBoundingBoxes(Transform): _transformed_types = (datapoints.BoundingBox,) def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: # We need to unwrap here to avoid unnecessary `__torch_function__` calls, # since `clamp_bounding_box` does not have a dispatcher function that would do that for us output = F.clamp_bounding_box( inpt.as_subclass(torch.Tensor), format=inpt.format, spatial_size=inpt.spatial_size ) return datapoints.BoundingBox.wrap_like(inpt, output)
import multiprocessing from concurrent.futures import ThreadPoolExecutor import pytest import xgboost as xgb @pytest.mark.parametrize("verbosity_level", [0, 1, 2, 3]) def test_global_config_verbosity(verbosity_level): def get_current_verbosity(): return xgb.get_config()["verbosity"] old_verbosity = get_current_verbosity() assert old_verbosity == 1 with xgb.config_context(verbosity=verbosity_level): new_verbosity = get_current_verbosity() assert new_verbosity == verbosity_level assert old_verbosity == get_current_verbosity() @pytest.mark.parametrize("use_rmm", [False, True]) def test_global_config_use_rmm(use_rmm): def get_current_use_rmm_flag(): return xgb.get_config()["use_rmm"] old_use_rmm_flag = get_current_use_rmm_flag() with xgb.config_context(use_rmm=use_rmm): new_use_rmm_flag = get_current_use_rmm_flag() assert new_use_rmm_flag == use_rmm assert old_use_rmm_flag == get_current_use_rmm_flag() def test_nested_config() -> None: verbosity = xgb.get_config()["verbosity"] assert verbosity == 1 with xgb.config_context(verbosity=3): assert xgb.get_config()["verbosity"] == 3 with xgb.config_context(verbosity=2): assert xgb.get_config()["verbosity"] == 2 with xgb.config_context(verbosity=1): assert xgb.get_config()["verbosity"] == 1 assert xgb.get_config()["verbosity"] == 2 assert xgb.get_config()["verbosity"] == 3 with xgb.config_context(verbosity=3): assert xgb.get_config()["verbosity"] == 3 with xgb.config_context(verbosity=None): assert xgb.get_config()["verbosity"] == 3 # None has no effect xgb.set_config(verbosity=2) assert xgb.get_config()["verbosity"] == 2 with xgb.config_context(verbosity=3): assert xgb.get_config()["verbosity"] == 3 xgb.set_config(verbosity=verbosity) # reset verbosity = xgb.get_config()["verbosity"] assert verbosity == 1 def test_thread_safety(): n_threads = multiprocessing.cpu_count() futures = [] with ThreadPoolExecutor(max_workers=n_threads) as executor: for i in range(256): f = executor.submit(test_nested_config) futures.append(f) for f in futures: f.result()
import multiprocessing from concurrent.futures import ThreadPoolExecutor import pytest import xgboost as xgb @pytest.mark.parametrize("verbosity_level", [0, 1, 2, 3]) def test_global_config_verbosity(verbosity_level): def get_current_verbosity(): return xgb.get_config()["verbosity"] old_verbosity = get_current_verbosity() assert old_verbosity == 1 with xgb.config_context(verbosity=verbosity_level): new_verbosity = get_current_verbosity() assert new_verbosity == verbosity_level assert old_verbosity == get_current_verbosity() @pytest.mark.parametrize("use_rmm", [False, True]) def test_global_config_use_rmm(use_rmm): def get_current_use_rmm_flag(): return xgb.get_config()["use_rmm"] old_use_rmm_flag = get_current_use_rmm_flag() with xgb.config_context(use_rmm=use_rmm): new_use_rmm_flag = get_current_use_rmm_flag() assert new_use_rmm_flag == use_rmm assert old_use_rmm_flag == get_current_use_rmm_flag() def test_nested_config() -> None: verbosity = xgb.get_config()["verbosity"] assert verbosity == 1 with xgb.config_context(verbosity=3): assert xgb.get_config()["verbosity"] == 3 with xgb.config_context(verbosity=2): assert xgb.get_config()["verbosity"] == 2 with xgb.config_context(verbosity=1): assert xgb.get_config()["verbosity"] == 1 assert xgb.get_config()["verbosity"] == 2 assert xgb.get_config()["verbosity"] == 3 with xgb.config_context(verbosity=3): assert xgb.get_config()["verbosity"] == 3 with xgb.config_context(verbosity=None): assert xgb.get_config()["verbosity"] == 3 # None has no effect xgb.set_config(verbosity=2) assert xgb.get_config()["verbosity"] == 2 with xgb.config_context(verbosity=3): assert xgb.get_config()["verbosity"] == 3 xgb.set_config(verbosity=verbosity) # reset verbosity = xgb.get_config()["verbosity"] assert verbosity == 1 def test_thread_safty(): n_threads = multiprocessing.cpu_count() futures = [] with ThreadPoolExecutor(max_workers=n_threads) as executor: for i in range(256): f = executor.submit(test_nested_config) futures.append(f) for f in futures: f.result()
"""Test embedding model integration.""" from typing import Any from unittest.mock import patch from langchain_ollama.embeddings import OllamaEmbeddings MODEL_NAME = "llama3.1" def test_initialization() -> None: """Test embedding model initialization.""" OllamaEmbeddings(model="llama3", keep_alive=1) @patch("langchain_ollama.embeddings.validate_model") def test_validate_model_on_init(mock_validate_model: Any) -> None: """Test that the model is validated on initialization when requested.""" # Test that validate_model is called when validate_model_on_init=True OllamaEmbeddings(model=MODEL_NAME, validate_model_on_init=True) mock_validate_model.assert_called_once() mock_validate_model.reset_mock() # Test that validate_model is NOT called when validate_model_on_init=False OllamaEmbeddings(model=MODEL_NAME, validate_model_on_init=False) mock_validate_model.assert_not_called() # Test that validate_model is NOT called by default OllamaEmbeddings(model=MODEL_NAME) mock_validate_model.assert_not_called()
"""Test embedding model integration.""" from langchain_ollama.embeddings import OllamaEmbeddings def test_initialization() -> None: """Test embedding model initialization.""" OllamaEmbeddings(model="llama3", keep_alive=1)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.ainetwork.toolkit import AINetworkToolkit # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "AINetworkToolkit": "langchain_community.agent_toolkits.ainetwork.toolkit", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AINetworkToolkit", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.ainetwork.toolkit import AINetworkToolkit # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "AINetworkToolkit": "langchain_community.agent_toolkits.ainetwork.toolkit" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AINetworkToolkit", ]
from docarray.typing.tensor.embedding.embedding import AnyEmbedding from docarray.typing.tensor.embedding.ndarray import NdArrayEmbedding __all__ = ['NdArrayEmbedding', 'AnyEmbedding'] from docarray.utils.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.embedding.torch import TorchEmbedding # noqa F401 __all__.append('TorchEmbedding') tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.embedding.tensorflow import ( # noqa F401 TensorFlowEmbedding, ) __all__.append('TensorFlowEmbedding')
from docarray.typing.tensor.embedding.embedding import AnyEmbedding from docarray.typing.tensor.embedding.ndarray import NdArrayEmbedding __all__ = ['NdArrayEmbedding', 'AnyEmbedding'] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor.embedding.torch import TorchEmbedding # noqa F401 __all__.append('TorchEmbedding')
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .compat_config import compat_cfg from .dist_utils import (all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .logger import get_caller_name, log_img_scale from .memory import AvoidCUDAOOM, AvoidOOM from .misc import add_dump_metric, find_latest_checkpoint, update_data_root from .replace_cfg_vals import replace_cfg_vals from .setup_env import register_all_modules, setup_multi_processes from .split_batch import split_batch from .typing import (ConfigType, InstanceList, MultiConfig, OptConfigType, OptInstanceList, OptMultiConfig, OptPixelList, PixelList, RangeType) __all__ = [ 'collect_env', 'find_latest_checkpoint', 'update_data_root', 'setup_multi_processes', 'get_caller_name', 'log_img_scale', 'compat_cfg', 'split_batch', 'register_all_modules', 'replace_cfg_vals', 'AvoidOOM', 'AvoidCUDAOOM', 'all_reduce_dict', 'allreduce_grads', 'reduce_mean', 'sync_random_seed', 'ConfigType', 'InstanceList', 'MultiConfig', 'OptConfigType', 'OptInstanceList', 'OptMultiConfig', 'OptPixelList', 'PixelList', 'RangeType', 'add_dump_metric' ]
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .compat_config import compat_cfg from .dist_utils import (all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .logger import get_caller_name, log_img_scale from .memory import AvoidCUDAOOM, AvoidOOM from .misc import find_latest_checkpoint, update_data_root from .replace_cfg_vals import replace_cfg_vals from .setup_env import register_all_modules, setup_multi_processes from .split_batch import split_batch from .typing import (ConfigType, InstanceList, MultiConfig, OptConfigType, OptInstanceList, OptMultiConfig, OptPixelList, PixelList, RangeType) __all__ = [ 'collect_env', 'find_latest_checkpoint', 'update_data_root', 'setup_multi_processes', 'get_caller_name', 'log_img_scale', 'compat_cfg', 'split_batch', 'register_all_modules', 'replace_cfg_vals', 'AvoidOOM', 'AvoidCUDAOOM', 'all_reduce_dict', 'allreduce_grads', 'reduce_mean', 'sync_random_seed', 'ConfigType', 'InstanceList', 'MultiConfig', 'OptConfigType', 'OptInstanceList', 'OptMultiConfig', 'OptPixelList', 'PixelList', 'RangeType' ]
# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp from typing import Optional, Sequence from mmengine.dist import is_main_process from mmengine.evaluator import BaseMetric from mmengine.fileio import dump from mmengine.logging import MMLogger from mmengine.structures import InstanceData from mmdet.registry import METRICS @METRICS.register_module() class DumpProposals(BaseMetric): """Dump proposals pseudo metric. Args: output_dir (str): The root directory for ``proposals_file``. Defaults to ''. proposals_file (str): Proposals file path. Defaults to 'proposals.pkl'. num_max_proposals (int, optional): Maximum number of proposals to dump. If not specified, all proposals will be dumped. file_client_args (dict, optional): Arguments to instantiate the corresponding backend in mmdet <= 3.0.0rc6. Defaults to None. backend_args (dict, optional): Arguments to instantiate the corresponding backend. Defaults to None. collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None. """ default_prefix: Optional[str] = 'dump_proposals' def __init__(self, output_dir: str = '', proposals_file: str = 'proposals.pkl', num_max_proposals: Optional[int] = None, file_client_args: dict = None, backend_args: dict = None, collect_device: str = 'cpu', prefix: Optional[str] = None) -> None: super().__init__(collect_device=collect_device, prefix=prefix) self.num_max_proposals = num_max_proposals # TODO: update after mmengine finish refactor fileio. self.backend_args = backend_args if file_client_args is not None: raise RuntimeError( 'The `file_client_args` is deprecated, ' 'please use `backend_args` instead, please refer to' 'https://github.com/open-mmlab/mmdetection/blob/main/configs/_base_/datasets/coco_detection.py' # noqa: E501 ) self.output_dir = output_dir assert proposals_file.endswith(('.pkl', '.pickle')), \ 'The output file must be a pkl file.' self.proposals_file = os.path.join(self.output_dir, proposals_file) if is_main_process(): os.makedirs(self.output_dir, exist_ok=True) def process(self, data_batch: Sequence[dict], data_samples: Sequence[dict]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (dict): A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of data samples that contain annotations and predictions. """ for data_sample in data_samples: pred = data_sample['pred_instances'] # `bboxes` is sorted by `scores` ranked_scores, rank_inds = pred['scores'].sort(descending=True) ranked_bboxes = pred['bboxes'][rank_inds, :] ranked_bboxes = ranked_bboxes.cpu().numpy() ranked_scores = ranked_scores.cpu().numpy() pred_instance = InstanceData() pred_instance.bboxes = ranked_bboxes pred_instance.scores = ranked_scores if self.num_max_proposals is not None: pred_instance = pred_instance[:self.num_max_proposals] img_path = data_sample['img_path'] # `file_name` is the key to obtain the proposals from the # `proposals_list`. file_name = osp.join( osp.split(osp.split(img_path)[0])[-1], osp.split(img_path)[-1]) result = {file_name: pred_instance} self.results.append(result) def compute_metrics(self, results: list) -> dict: """Dump the processed results. Args: results (list): The processed results of each batch. Returns: dict: An empty dict. """ logger: MMLogger = MMLogger.get_current_instance() dump_results = {} for result in results: dump_results.update(result) dump( dump_results, file=self.proposals_file, backend_args=self.backend_args) logger.info(f'Results are saved at {self.proposals_file}') return {}
# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp from typing import Optional, Sequence from mmengine.dist import is_main_process from mmengine.evaluator import BaseMetric from mmengine.fileio import dump from mmengine.logging import MMLogger from mmengine.structures import InstanceData from mmdet.registry import METRICS @METRICS.register_module() class DumpProposals(BaseMetric): """Dump proposals pseudo metric. Args: output_dir (str): The root directory for ``proposals_file``. Defaults to ''. proposals_file (str): Proposals file path. Defaults to 'proposals.pkl'. num_max_proposals (int, optional): Maximum number of proposals to dump. If not specified, all proposals will be dumped. file_client_args (dict): Arguments to instantiate a FileClient. See :class:`mmengine.fileio.FileClient` for details. Defaults to ``dict(backend='disk')``. collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None. """ default_prefix: Optional[str] = 'dump_proposals' def __init__(self, output_dir: str = '', proposals_file: str = 'proposals.pkl', num_max_proposals: Optional[int] = None, file_client_args: dict = dict(backend='disk'), collect_device: str = 'cpu', prefix: Optional[str] = None) -> None: super().__init__(collect_device=collect_device, prefix=prefix) self.num_max_proposals = num_max_proposals # TODO: update after mmengine finish refactor fileio. self.file_client_args = file_client_args self.output_dir = output_dir assert proposals_file.endswith(('.pkl', '.pickle')), \ 'The output file must be a pkl file.' self.proposals_file = os.path.join(self.output_dir, proposals_file) if is_main_process(): os.makedirs(self.output_dir, exist_ok=True) def process(self, data_batch: Sequence[dict], data_samples: Sequence[dict]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (dict): A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of data samples that contain annotations and predictions. """ for data_sample in data_samples: pred = data_sample['pred_instances'] # `bboxes` is sorted by `scores` ranked_scores, rank_inds = pred['scores'].sort(descending=True) ranked_bboxes = pred['bboxes'][rank_inds, :] ranked_bboxes = ranked_bboxes.cpu().numpy() ranked_scores = ranked_scores.cpu().numpy() pred_instance = InstanceData() pred_instance.bboxes = ranked_bboxes pred_instance.scores = ranked_scores if self.num_max_proposals is not None: pred_instance = pred_instance[:self.num_max_proposals] img_path = data_sample['img_path'] # `file_name` is the key to obtain the proposals from the # `proposals_list`. file_name = osp.join( osp.split(osp.split(img_path)[0])[-1], osp.split(img_path)[-1]) result = {file_name: pred_instance} self.results.append(result) def compute_metrics(self, results: list) -> dict: """Dump the processed results. Args: results (list): The processed results of each batch. Returns: dict: An empty dict. """ logger: MMLogger = MMLogger.get_current_instance() dump_results = {} for result in results: dump_results.update(result) dump( dump_results, file=self.proposals_file, file_client_args=self.file_client_args) logger.info(f'Results are saved at {self.proposals_file}') return {}
import random from typing import Optional, TYPE_CHECKING if TYPE_CHECKING: # pragma: no cover from docarray.array.document import DocumentArray class SampleMixin: """A mixin that provides search functionality to DocumentArrays""" def sample(self, k: int, seed: Optional[int] = None) -> 'DocumentArray': """random sample k elements from :class:`DocumentArray` without replacement. :param k: Number of elements to sample from the document array. :param seed: initialize the random number generator, by default is None. If set will save the state of the random function to produce certain outputs. :return: A sampled list of :class:`Document` represented as :class:`DocumentArray`. """ if seed is not None: random.seed(seed) # NOTE, this could simplified to random.sample(self, k) # without getting indices and itemgetter etc. # however it's only work on DocumentArray. sampled = random.sample(self, k) from docarray.array.document import DocumentArray return DocumentArray(sampled) def shuffle(self, seed: Optional[int] = None) -> 'DocumentArray': """Randomly shuffle documents within the :class:`DocumentArray`. :param seed: initialize the random number generator, by default is None. If set will save the state of the random function to produce certain outputs. :return: The shuffled list of :class:`Document` represented as :class:`DocumentArray`. """ return self.sample(len(self), seed=seed)
import random from typing import Optional, TYPE_CHECKING if TYPE_CHECKING: from docarray.array.document import DocumentArray class SampleMixin: """A mixin that provides search functionality to DocumentArrays""" def sample(self, k: int, seed: Optional[int] = None) -> 'DocumentArray': """random sample k elements from :class:`DocumentArray` without replacement. :param k: Number of elements to sample from the document array. :param seed: initialize the random number generator, by default is None. If set will save the state of the random function to produce certain outputs. :return: A sampled list of :class:`Document` represented as :class:`DocumentArray`. """ if seed is not None: random.seed(seed) # NOTE, this could simplified to random.sample(self, k) # without getting indices and itemgetter etc. # however it's only work on DocumentArray. sampled = random.sample(self, k) from docarray.array.document import DocumentArray return DocumentArray(sampled) def shuffle(self, seed: Optional[int] = None) -> 'DocumentArray': """Randomly shuffle documents within the :class:`DocumentArray`. :param seed: initialize the random number generator, by default is None. If set will save the state of the random function to produce certain outputs. :return: The shuffled list of :class:`Document` represented as :class:`DocumentArray`. """ return self.sample(len(self), seed=seed)
from __future__ import annotations import os import sys from typing import Any, BinaryIO, TypeVar import PIL.Image import torch from torchvision.prototype.utils._internal import fromfile, ReadOnlyTensorBuffer from torchvision.tv_tensors._tv_tensor import TVTensor D = TypeVar("D", bound="EncodedData") class EncodedData(TVTensor): @classmethod def _wrap(cls: type[D], tensor: torch.Tensor) -> D: return tensor.as_subclass(cls) def __new__( cls, data: Any, *, dtype: torch.dtype | None = None, device: torch.device | str | int | None = None, requires_grad: bool = False, ) -> EncodedData: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) # TODO: warn / bail out if we encounter a tensor with shape other than (N,) or with dtype other than uint8? return cls._wrap(tensor) @classmethod def wrap_like(cls: type[D], other: D, tensor: torch.Tensor) -> D: return cls._wrap(tensor) @classmethod def from_file(cls: type[D], file: BinaryIO, **kwargs: Any) -> D: encoded_data = cls(fromfile(file, dtype=torch.uint8, byte_order=sys.byteorder), **kwargs) file.close() return encoded_data @classmethod def from_path(cls: type[D], path: str | os.PathLike, **kwargs: Any) -> D: with open(path, "rb") as file: return cls.from_file(file, **kwargs) class EncodedImage(EncodedData): # TODO: Use @functools.cached_property if we can depend on Python 3.8 @property def spatial_size(self) -> tuple[int, int]: if not hasattr(self, "_spatial_size"): with PIL.Image.open(ReadOnlyTensorBuffer(self)) as image: self._spatial_size = image.height, image.width return self._spatial_size
from __future__ import annotations import os import sys from typing import Any, BinaryIO, Optional, Tuple, Type, TypeVar, Union import PIL.Image import torch from torchvision.prototype.utils._internal import fromfile, ReadOnlyTensorBuffer from torchvision.tv_tensors._tv_tensor import TVTensor D = TypeVar("D", bound="EncodedData") class EncodedData(TVTensor): @classmethod def _wrap(cls: Type[D], tensor: torch.Tensor) -> D: return tensor.as_subclass(cls) def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: bool = False, ) -> EncodedData: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) # TODO: warn / bail out if we encounter a tensor with shape other than (N,) or with dtype other than uint8? return cls._wrap(tensor) @classmethod def wrap_like(cls: Type[D], other: D, tensor: torch.Tensor) -> D: return cls._wrap(tensor) @classmethod def from_file(cls: Type[D], file: BinaryIO, **kwargs: Any) -> D: encoded_data = cls(fromfile(file, dtype=torch.uint8, byte_order=sys.byteorder), **kwargs) file.close() return encoded_data @classmethod def from_path(cls: Type[D], path: Union[str, os.PathLike], **kwargs: Any) -> D: with open(path, "rb") as file: return cls.from_file(file, **kwargs) class EncodedImage(EncodedData): # TODO: Use @functools.cached_property if we can depend on Python 3.8 @property def spatial_size(self) -> Tuple[int, int]: if not hasattr(self, "_spatial_size"): with PIL.Image.open(ReadOnlyTensorBuffer(self)) as image: self._spatial_size = image.height, image.width return self._spatial_size
import logging import os import sys from torchaudio._internal.module_utils import eval_env, fail_with_message, is_module_available, no_op try: from .fb import _init_ffmpeg except ImportError: from .utils import _init_ffmpeg from .utils import _check_cuda_version, _fail_since_no_ffmpeg, _init_dll_path, _init_sox, _load_lib _LG = logging.getLogger(__name__) # Note: # `_check_cuda_version` is not meant to be used by regular users. # Builder uses it for debugging purpose, so we export it. # https://github.com/pytorch/builder/blob/e2e4542b8eb0bdf491214451a1a4128bd606cce2/test/smoke_test/smoke_test.py#L80 __all__ = [ "fail_if_no_sox", "fail_if_no_ffmpeg", "_check_cuda_version", "_IS_TORCHAUDIO_EXT_AVAILABLE", "_IS_RIR_AVAILABLE", "_SOX_INITIALIZED", "_FFMPEG_EXT", ] if os.name == "nt" and (3, 8) <= sys.version_info < (3, 9): _init_dll_path() # When the extension module is built, we initialize it. # In case of an error, we do not catch the failure as it suggests there is something # wrong with the installation. _IS_TORCHAUDIO_EXT_AVAILABLE = is_module_available("torchaudio.lib._torchaudio") # RIR features are implemented in _torchaudio extension, but they can be individually # turned on/off at build time. Available means that _torchaudio is loaded properly, and # RIR features are found there. _IS_RIR_AVAILABLE = False _IS_ALIGN_AVAILABLE = False if _IS_TORCHAUDIO_EXT_AVAILABLE: _load_lib("libtorchaudio") import torchaudio.lib._torchaudio # noqa _check_cuda_version() _IS_RIR_AVAILABLE = torchaudio.lib._torchaudio.is_rir_available() _IS_ALIGN_AVAILABLE = torchaudio.lib._torchaudio.is_align_available() # Similar to libtorchaudio, sox-related features should be importable when present. # # Note: This will be change in the future when sox is dynamically linked. # At that point, this initialization should handle the case where # sox integration is built but libsox is not found. _SOX_INITIALIZED = False _USE_SOX = False if os.name == "nt" else eval_env("TORCHAUDIO_USE_SOX", True) _SOX_MODULE_AVAILABLE = is_module_available("torchaudio.lib._torchaudio_sox") if _USE_SOX and _SOX_MODULE_AVAILABLE: _init_sox() _SOX_INITIALIZED = True if os.name == "nt": fail_if_no_sox = fail_with_message("requires sox extension, which is not supported on Windows.") elif not _USE_SOX: fail_if_no_sox = fail_with_message("requires sox extension, but it is disabled. (TORCHAUDIO_USE_SOX=0)") elif not _SOX_MODULE_AVAILABLE: fail_if_no_sox = fail_with_message( "requires sox extension, but TorchAudio is not compiled with it. " "Please build TorchAudio with libsox support. (BUILD_SOX=1)" ) else: fail_if_no_sox = no_op # Initialize FFmpeg-related features _FFMPEG_EXT = None _USE_FFMPEG = eval_env("TORCHAUDIO_USE_FFMPEG", True) if _USE_FFMPEG and _IS_TORCHAUDIO_EXT_AVAILABLE: try: _FFMPEG_EXT = _init_ffmpeg() except Exception: # The initialization of FFmpeg extension will fail if supported FFmpeg # libraries are not found in the system. # Since the rest of the torchaudio works without it, we do not report the # error here. # The error will be raised when user code attempts to use these features. _LG.debug("Failed to initialize ffmpeg bindings", exc_info=True) if _USE_FFMPEG: fail_if_no_ffmpeg = _fail_since_no_ffmpeg if _FFMPEG_EXT is None else no_op else: fail_if_no_ffmpeg = fail_with_message("requires ffmpeg extension, but it is disabled. (TORCHAUDIO_USE_FFMPEG=0)") fail_if_no_rir = ( no_op if _IS_RIR_AVAILABLE else fail_with_message( "requires RIR extension, but TorchAudio is not compiled with it. Please build TorchAudio with RIR support." ) ) fail_if_no_align = ( no_op if _IS_ALIGN_AVAILABLE else fail_with_message( "Requires alignment extension, but TorchAudio is not compiled with it. \ Please build TorchAudio with alignment support." ) )
import logging import os import sys from torchaudio._internal.module_utils import fail_with_message, is_module_available, no_op try: from .fb import _init_ffmpeg except ImportError: from .utils import _init_ffmpeg from .utils import _check_cuda_version, _fail_since_no_ffmpeg, _init_dll_path, _init_sox, _load_lib _LG = logging.getLogger(__name__) # Note: # `_check_cuda_version` is not meant to be used by regular users. # Builder uses it for debugging purpose, so we export it. # https://github.com/pytorch/builder/blob/e2e4542b8eb0bdf491214451a1a4128bd606cce2/test/smoke_test/smoke_test.py#L80 __all__ = [ "fail_if_no_sox", "fail_if_no_ffmpeg", "_check_cuda_version", "_IS_TORCHAUDIO_EXT_AVAILABLE", "_IS_RIR_AVAILABLE", "_SOX_INITIALIZED", "_FFMPEG_EXT", ] if os.name == "nt" and (3, 8) <= sys.version_info < (3, 9): _init_dll_path() # When the extension module is built, we initialize it. # In case of an error, we do not catch the failure as it suggests there is something # wrong with the installation. _IS_TORCHAUDIO_EXT_AVAILABLE = is_module_available("torchaudio.lib._torchaudio") # RIR features are implemented in _torchaudio extension, but they can be individually # turned on/off at build time. Available means that _torchaudio is loaded properly, and # RIR features are found there. _IS_RIR_AVAILABLE = False _IS_ALIGN_AVAILABLE = False if _IS_TORCHAUDIO_EXT_AVAILABLE: _load_lib("libtorchaudio") import torchaudio.lib._torchaudio # noqa _check_cuda_version() _IS_RIR_AVAILABLE = torchaudio.lib._torchaudio.is_rir_available() _IS_ALIGN_AVAILABLE = torchaudio.lib._torchaudio.is_align_available() # Similar to libtorchaudio, sox-related features should be importable when present. # # Note: This will be change in the future when sox is dynamically linked. # At that point, this initialization should handle the case where # sox integration is built but libsox is not found. _SOX_INITIALIZED = False if is_module_available("torchaudio.lib._torchaudio_sox"): _init_sox() _SOX_INITIALIZED = True # Initialize FFmpeg-related features _FFMPEG_EXT = None if _IS_TORCHAUDIO_EXT_AVAILABLE: try: _FFMPEG_EXT = _init_ffmpeg() except Exception: # The initialization of FFmpeg extension will fail if supported FFmpeg # libraries are not found in the system. # Since the rest of the torchaudio works without it, we do not report the # error here. # The error will be raised when user code attempts to use these features. _LG.debug("Failed to initialize ffmpeg bindings", exc_info=True) fail_if_no_sox = ( no_op if _SOX_INITIALIZED else fail_with_message( "requires sox extension, but TorchAudio is not compiled with it. Please build TorchAudio with libsox support." ) ) fail_if_no_ffmpeg = _fail_since_no_ffmpeg if _FFMPEG_EXT is None else no_op fail_if_no_rir = ( no_op if _IS_RIR_AVAILABLE else fail_with_message( "requires RIR extension, but TorchAudio is not compiled with it. Please build TorchAudio with RIR support." ) ) fail_if_no_align = ( no_op if _IS_ALIGN_AVAILABLE else fail_with_message( "Requires alignment extension, but TorchAudio is not compiled with it. \ Please build TorchAudio with alignment support." ) )
__version__ = '0.14.4' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
__version__ = '0.14.3' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
from base64 import b64encode from urllib.parse import urlencode from backend.data.model import OAuth2Credentials from backend.util.request import requests from .base import BaseOAuthHandler class NotionOAuthHandler(BaseOAuthHandler): """ Based on the documentation at https://developers.notion.com/docs/authorization Notes: - Notion uses non-expiring access tokens and therefore doesn't have a refresh flow - Notion doesn't use scopes """ PROVIDER_NAME = "notion" def __init__(self, client_id: str, client_secret: str, redirect_uri: str): self.client_id = client_id self.client_secret = client_secret self.redirect_uri = redirect_uri self.auth_base_url = "https://api.notion.com/v1/oauth/authorize" self.token_url = "https://api.notion.com/v1/oauth/token" def get_login_url(self, scopes: list[str], state: str) -> str: params = { "client_id": self.client_id, "redirect_uri": self.redirect_uri, "response_type": "code", "owner": "user", "state": state, } return f"{self.auth_base_url}?{urlencode(params)}" def exchange_code_for_tokens( self, code: str, scopes: list[str] ) -> OAuth2Credentials: request_body = { "grant_type": "authorization_code", "code": code, "redirect_uri": self.redirect_uri, } auth_str = b64encode(f"{self.client_id}:{self.client_secret}".encode()).decode() headers = { "Authorization": f"Basic {auth_str}", "Accept": "application/json", } response = requests.post(self.token_url, json=request_body, headers=headers) token_data = response.json() # Email is only available for non-bot users email = ( token_data["owner"]["person"]["email"] if "person" in token_data["owner"] and "email" in token_data["owner"]["person"] else None ) return OAuth2Credentials( provider=self.PROVIDER_NAME, title=token_data.get("workspace_name"), username=email, access_token=token_data["access_token"], refresh_token=None, access_token_expires_at=None, # Notion tokens don't expire refresh_token_expires_at=None, scopes=[], metadata={ "owner": token_data["owner"], "bot_id": token_data["bot_id"], "workspace_id": token_data["workspace_id"], "workspace_name": token_data.get("workspace_name"), "workspace_icon": token_data.get("workspace_icon"), }, ) def revoke_tokens(self, credentials: OAuth2Credentials) -> bool: # Notion doesn't support token revocation return False def _refresh_tokens(self, credentials: OAuth2Credentials) -> OAuth2Credentials: # Notion doesn't support token refresh return credentials def needs_refresh(self, credentials: OAuth2Credentials) -> bool: # Notion access tokens don't expire return False
from base64 import b64encode from urllib.parse import urlencode from autogpt_libs.supabase_integration_credentials_store import OAuth2Credentials from backend.util.request import requests from .base import BaseOAuthHandler class NotionOAuthHandler(BaseOAuthHandler): """ Based on the documentation at https://developers.notion.com/docs/authorization Notes: - Notion uses non-expiring access tokens and therefore doesn't have a refresh flow - Notion doesn't use scopes """ PROVIDER_NAME = "notion" def __init__(self, client_id: str, client_secret: str, redirect_uri: str): self.client_id = client_id self.client_secret = client_secret self.redirect_uri = redirect_uri self.auth_base_url = "https://api.notion.com/v1/oauth/authorize" self.token_url = "https://api.notion.com/v1/oauth/token" def get_login_url(self, scopes: list[str], state: str) -> str: params = { "client_id": self.client_id, "redirect_uri": self.redirect_uri, "response_type": "code", "owner": "user", "state": state, } return f"{self.auth_base_url}?{urlencode(params)}" def exchange_code_for_tokens( self, code: str, scopes: list[str] ) -> OAuth2Credentials: request_body = { "grant_type": "authorization_code", "code": code, "redirect_uri": self.redirect_uri, } auth_str = b64encode(f"{self.client_id}:{self.client_secret}".encode()).decode() headers = { "Authorization": f"Basic {auth_str}", "Accept": "application/json", } response = requests.post(self.token_url, json=request_body, headers=headers) token_data = response.json() # Email is only available for non-bot users email = ( token_data["owner"]["person"]["email"] if "person" in token_data["owner"] and "email" in token_data["owner"]["person"] else None ) return OAuth2Credentials( provider=self.PROVIDER_NAME, title=token_data.get("workspace_name"), username=email, access_token=token_data["access_token"], refresh_token=None, access_token_expires_at=None, # Notion tokens don't expire refresh_token_expires_at=None, scopes=[], metadata={ "owner": token_data["owner"], "bot_id": token_data["bot_id"], "workspace_id": token_data["workspace_id"], "workspace_name": token_data.get("workspace_name"), "workspace_icon": token_data.get("workspace_icon"), }, ) def revoke_tokens(self, credentials: OAuth2Credentials) -> bool: # Notion doesn't support token revocation return False def _refresh_tokens(self, credentials: OAuth2Credentials) -> OAuth2Credentials: # Notion doesn't support token refresh return credentials def needs_refresh(self, credentials: OAuth2Credentials) -> bool: # Notion access tokens don't expire return False
_base_ = '../cascade_rcnn/cascade-rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( # use ResNeSt img_norm data_preprocessor=dict( mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='ResNeSt', stem_channels=64, depth=50, radix=2, reduction_factor=4, avg_down_stride=True, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=False, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest50')), roi_head=dict( bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], )) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = '../cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( # use ResNeSt img_norm data_preprocessor=dict( mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='ResNeSt', stem_channels=64, depth=50, radix=2, reduction_factor=4, avg_down_stride=True, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=False, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest50')), roi_head=dict( bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], )) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
import os import pytest from llama_index.llms.nvidia import NVIDIA from typing import Any from pytest_httpx import HTTPXMock @pytest.fixture() def mock_local_models(httpx_mock: HTTPXMock): mock_response = { "data": [ { "id": "model1", "object": "model", "created": 1234567890, "owned_by": "OWNER", "root": "model1", } ] } httpx_mock.add_response( url="https://test_url/v1/models", method="GET", json=mock_response, status_code=200, ) def get_api_key(instance: Any) -> str: return instance.api_key def test_create_default_url_without_api_key() -> None: NVIDIA() @pytest.mark.usefixtures("mock_local_models") def test_create_unknown_url_without_api_key(masked_env_var: str) -> None: NVIDIA(base_url="https://test_url/v1") @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_create_with_api_key(param: str, masked_env_var: str) -> None: instance = NVIDIA(**{param: "just testing no failure"}) assert get_api_key(instance) == "just testing no failure" def test_api_key_priority(masked_env_var: str) -> None: try: os.environ["NVIDIA_API_KEY"] = "ENV" assert get_api_key(NVIDIA()) == "ENV" assert get_api_key(NVIDIA(nvidia_api_key="PARAM")) == "PARAM" assert get_api_key(NVIDIA(api_key="PARAM")) == "PARAM" assert get_api_key(NVIDIA(api_key="LOW", nvidia_api_key="HIGH")) == "HIGH" finally: # we must clean up environ or it may impact other tests del os.environ["NVIDIA_API_KEY"] @pytest.mark.integration def test_missing_api_key_error(masked_env_var: str) -> None: with pytest.warns(UserWarning): client = NVIDIA() with pytest.raises(Exception) as exc_info: client.complete("Hello, world!").text message = str(exc_info.value) assert "401" in message @pytest.mark.integration def test_bogus_api_key_error(masked_env_var: str) -> None: client = NVIDIA(nvidia_api_key="BOGUS") with pytest.raises(Exception) as exc_info: client.complete("Hello, world!").text message = str(exc_info.value) assert "401" in message @pytest.mark.integration @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_api_key(chat_model: str, mode: dict, param: str, masked_env_var: str) -> None: client = NVIDIA(model=chat_model, **{**mode, **{param: masked_env_var}}) assert client.complete("Hello, world!").text
import os import pytest from llama_index.llms.nvidia import NVIDIA from typing import Any from pytest_httpx import HTTPXMock @pytest.fixture() def mock_local_models(httpx_mock: HTTPXMock): mock_response = { "data": [ { "id": "model1", "object": "model", "created": 1234567890, "owned_by": "OWNER", "root": "model1", } ] } httpx_mock.add_response( url="https://test_url/v1/models", method="GET", json=mock_response, status_code=200, ) def get_api_key(instance: Any) -> str: return instance.api_key def test_create_default_url_without_api_key() -> None: NVIDIA() @pytest.mark.usefixtures("mock_local_models") def test_create_unknown_url_without_api_key(masked_env_var: str) -> None: NVIDIA(base_url="https://test_url/v1") @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_create_with_api_key(param: str, masked_env_var: str) -> None: instance = NVIDIA(**{param: "just testing no failure"}) assert get_api_key(instance) == "just testing no failure" def test_api_key_priority(masked_env_var: str) -> None: try: os.environ["NVIDIA_API_KEY"] = "ENV" assert get_api_key(NVIDIA()) == "ENV" assert get_api_key(NVIDIA(nvidia_api_key="PARAM")) == "PARAM" assert get_api_key(NVIDIA(api_key="PARAM")) == "PARAM" assert get_api_key(NVIDIA(api_key="LOW", nvidia_api_key="HIGH")) == "HIGH" finally: # we must clean up environ or it may impact other tests del os.environ["NVIDIA_API_KEY"] @pytest.mark.integration() def test_missing_api_key_error(masked_env_var: str) -> None: with pytest.warns(UserWarning): client = NVIDIA() with pytest.raises(Exception) as exc_info: client.complete("Hello, world!").text message = str(exc_info.value) assert "401" in message @pytest.mark.integration() def test_bogus_api_key_error(masked_env_var: str) -> None: client = NVIDIA(nvidia_api_key="BOGUS") with pytest.raises(Exception) as exc_info: client.complete("Hello, world!").text message = str(exc_info.value) assert "401" in message @pytest.mark.integration() @pytest.mark.parametrize("param", ["nvidia_api_key", "api_key"]) def test_api_key(chat_model: str, mode: dict, param: str, masked_env_var: str) -> None: client = NVIDIA(model=chat_model, **{**mode, **{param: masked_env_var}}) assert client.complete("Hello, world!").text
"""Test Output parsers.""" import pytest from llama_index.core.output_parsers.langchain import LangchainOutputParser try: import langchain # pants: no-infer-dep from llama_index.core.bridge.langchain import ( BaseOutputParser as LCOutputParser, ) from llama_index.core.bridge.langchain import ( ResponseSchema, ) except ImportError: langchain = None # type: ignore @pytest.mark.skipif(langchain is None, reason="langchain not installed") def test_lc_output_parser() -> None: """Test langchain output parser.""" class MockOutputParser(LCOutputParser): """ Mock output parser. Similar to langchain's StructuredOutputParser, but better for testing. """ response_schema: ResponseSchema def get_format_instructions(self) -> str: """Get format instructions.""" return ( f"{{ {self.response_schema.name}, {self.response_schema.description} }}" ) def parse(self, text: str) -> str: """Parse the output of an LLM call.""" # TODO: make this better return text response_schema = ResponseSchema( name="Education", description="education experience", ) lc_output_parser = MockOutputParser(response_schema=response_schema) output_parser = LangchainOutputParser(lc_output_parser) query_str = "Hello world." output_instructions = output_parser.format(query_str) assert output_instructions == ( "Hello world.\n\n{ Education, education experience }" ) query_str = "foo {bar}." output_instructions = output_parser.format(query_str) assert output_instructions == ( "foo {bar}.\n\n{{ Education, education experience }}" )
"""Test Output parsers.""" import pytest from llama_index.core.output_parsers.langchain import LangchainOutputParser try: import langchain # pants: no-infer-dep from llama_index.core.bridge.langchain import ( BaseOutputParser as LCOutputParser, ) from llama_index.core.bridge.langchain import ( ResponseSchema, ) except ImportError: langchain = None # type: ignore @pytest.mark.skipif(langchain is None, reason="langchain not installed") def test_lc_output_parser() -> None: """Test langchain output parser.""" class MockOutputParser(LCOutputParser): """ Mock output parser. Similar to langchain's StructuredOutputParser, but better for testing. """ response_schema: ResponseSchema def get_format_instructions(self) -> str: """Get format instructions.""" return ( f"{{ {self.response_schema.name}, {self.response_schema.description} }}" ) def parse(self, text: str) -> str: """Parse the output of an LLM call.""" # TODO: make this better return text response_schema = ResponseSchema( name="Education", description="education experience", ) lc_output_parser = MockOutputParser(response_schema=response_schema) output_parser = LangchainOutputParser(lc_output_parser) query_str = "Hello world." output_instructions = output_parser.format(query_str) assert output_instructions == ( "Hello world.\n\n" "{ Education, education experience }" ) query_str = "foo {bar}." output_instructions = output_parser.format(query_str) assert output_instructions == ( "foo {bar}.\n\n" "{{ Education, education experience }}" )
"""This is the langchain_ollama package. It provides infrastructure for interacting with the Ollama service. """ from importlib import metadata from langchain_ollama.chat_models import ChatOllama from langchain_ollama.embeddings import OllamaEmbeddings from langchain_ollama.llms import OllamaLLM try: __version__ = metadata.version(__package__) except metadata.PackageNotFoundError: # Case where package metadata is not available. __version__ = "" del metadata # optional, avoids polluting the results of dir(__package__) __all__ = [ "ChatOllama", "OllamaEmbeddings", "OllamaLLM", "__version__", ]
"""This is the langchain_ollama package. It provides infrastructure for interacting with the Ollama service. """ from importlib import metadata from langchain_ollama.chat_models import ChatOllama from langchain_ollama.embeddings import OllamaEmbeddings from langchain_ollama.llms import OllamaLLM try: __version__ = metadata.version(__package__) except metadata.PackageNotFoundError: # Case where package metadata is not available. __version__ = "" del metadata # optional, avoids polluting the results of dir(__package__) __all__ = [ "ChatOllama", "OllamaLLM", "OllamaEmbeddings", "__version__", ]
# Copyright (c) OpenMMLab. All rights reserved. from .augment_wrappers import AutoAugment, RandAugment from .colorspace import (AutoContrast, Brightness, Color, ColorTransform, Contrast, Equalize, Invert, Posterize, Sharpness, Solarize, SolarizeAdd) from .formatting import (ImageToTensor, PackDetInputs, ToDataContainer, ToTensor, Transpose) from .geometric import (GeomTransform, Rotate, ShearX, ShearY, TranslateX, TranslateY) from .instaboost import InstaBoost from .loading import (FilterAnnotations, LoadAnnotations, LoadImageFromNDArray, LoadMultiChannelImageFromFiles, LoadPanopticAnnotations, LoadProposals) from .test_time_aug import MultiScaleFlipAug from .transforms import (Albu, CopyPaste, CutOut, Expand, MinIoURandomCrop, MixUp, Mosaic, Normalize, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) from .wrappers import MultiBranch __all__ = [ 'PackDetInputs', 'ToTensor', 'ImageToTensor', 'ToDataContainer', 'Transpose', 'LoadImageFromNDArray', 'LoadAnnotations', 'LoadPanopticAnnotations', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'MultiScaleFlipAug', 'Resize', 'RandomFlip', 'RandomCrop', 'Normalize', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'ShearX', 'ShearY', 'Rotate', 'Color', 'Equalize', 'Brightness', 'Contrast', 'TranslateX', 'TranslateY', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug', 'CopyPaste', 'FilterAnnotations', 'Pad', 'GeomTransform', 'ColorTransform', 'RandAugment', 'Sharpness', 'Solarize', 'SolarizeAdd', 'Posterize', 'AutoContrast', 'Invert', 'MultiBranch' ]
# Copyright (c) OpenMMLab. All rights reserved. from .augment_wrappers import AutoAugment, RandAugment from .colorspace import (AutoContrast, Brightness, Color, ColorTransform, Contrast, Equalize, Invert, Posterize, Sharpness, Solarize, SolarizeAdd) from .compose import Compose from .formatting import (ImageToTensor, PackDetInputs, ToDataContainer, ToTensor, Transpose) from .geometric import (GeomTransform, Rotate, ShearX, ShearY, TranslateX, TranslateY) from .instaboost import InstaBoost from .loading import (FilterAnnotations, LoadAnnotations, LoadImageFromNDArray, LoadMultiChannelImageFromFiles, LoadPanopticAnnotations, LoadProposals) from .test_time_aug import MultiScaleFlipAug from .transforms import (Albu, CopyPaste, CutOut, Expand, MinIoURandomCrop, MixUp, Mosaic, Normalize, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) __all__ = [ 'PackDetInputs', 'Compose', 'ToTensor', 'ImageToTensor', 'ToDataContainer', 'Transpose', 'LoadImageFromNDArray', 'LoadAnnotations', 'LoadPanopticAnnotations', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'MultiScaleFlipAug', 'Resize', 'RandomFlip', 'RandomCrop', 'Normalize', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'ShearX', 'ShearY', 'Rotate', 'Color', 'Equalize', 'Brightness', 'Contrast', 'TranslateX', 'TranslateY', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug', 'CopyPaste', 'FilterAnnotations', 'Pad', 'GeomTransform', 'ColorTransform', 'RandAugment', 'Sharpness', 'Solarize', 'SolarizeAdd', 'Posterize', 'AutoContrast', 'Invert' ]
from __future__ import annotations from enum import Enum from typing import Any, Optional, Tuple, Union import torch from ._datapoint import Datapoint class BoundingBoxFormat(Enum): """[BETA] Coordinate format of a bounding box. Available formats are * ``XYXY`` * ``XYWH`` * ``CXCYWH`` """ XYXY = "XYXY" XYWH = "XYWH" CXCYWH = "CXCYWH" class BoundingBoxes(Datapoint): """[BETA] :class:`torch.Tensor` subclass for bounding boxes. Args: data: Any data that can be turned into a tensor with :func:`torch.as_tensor`. format (BoundingBoxFormat, str): Format of the bounding box. canvas_size (two-tuple of ints): Height and width of the corresponding image or video. dtype (torch.dtype, optional): Desired data type of the bounding box. If omitted, will be inferred from ``data``. device (torch.device, optional): Desired device of the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the device is taken from it. Otherwise, the bounding box is constructed on the CPU. requires_grad (bool, optional): Whether autograd should record operations on the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``. """ format: BoundingBoxFormat canvas_size: Tuple[int, int] @classmethod def _wrap(cls, tensor: torch.Tensor, *, format: Union[BoundingBoxFormat, str], canvas_size: Tuple[int, int]) -> BoundingBoxes: # type: ignore[override] if isinstance(format, str): format = BoundingBoxFormat[format.upper()] bounding_boxes = tensor.as_subclass(cls) bounding_boxes.format = format bounding_boxes.canvas_size = canvas_size return bounding_boxes def __new__( cls, data: Any, *, format: Union[BoundingBoxFormat, str], canvas_size: Tuple[int, int], dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> BoundingBoxes: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor, format=format, canvas_size=canvas_size) @classmethod def wrap_like( cls, other: BoundingBoxes, tensor: torch.Tensor, *, format: Optional[Union[BoundingBoxFormat, str]] = None, canvas_size: Optional[Tuple[int, int]] = None, ) -> BoundingBoxes: """Wrap a :class:`torch.Tensor` as :class:`BoundingBoxes` from a reference. Args: other (BoundingBoxes): Reference bounding box. tensor (Tensor): Tensor to be wrapped as :class:`BoundingBoxes` format (BoundingBoxFormat, str, optional): Format of the bounding box. If omitted, it is taken from the reference. canvas_size (two-tuple of ints, optional): Height and width of the corresponding image or video. If omitted, it is taken from the reference. """ return cls._wrap( tensor, format=format if format is not None else other.format, canvas_size=canvas_size if canvas_size is not None else other.canvas_size, ) def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override] return self._make_repr(format=self.format, canvas_size=self.canvas_size)
from __future__ import annotations from enum import Enum from typing import Any, Optional, Tuple, Union import torch from ._datapoint import Datapoint class BoundingBoxFormat(Enum): """[BETA] Coordinate format of a bounding box. Available formats are * ``XYXY`` * ``XYWH`` * ``CXCYWH`` """ XYXY = "XYXY" XYWH = "XYWH" CXCYWH = "CXCYWH" class BoundingBoxes(Datapoint): """[BETA] :class:`torch.Tensor` subclass for bounding boxes. Args: data: Any data that can be turned into a tensor with :func:`torch.as_tensor`. format (BoundingBoxFormat, str): Format of the bounding box. canvas_size (two-tuple of ints): Height and width of the corresponding image or video. dtype (torch.dtype, optional): Desired data type of the bounding box. If omitted, will be inferred from ``data``. device (torch.device, optional): Desired device of the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the device is taken from it. Otherwise, the bounding box is constructed on the CPU. requires_grad (bool, optional): Whether autograd should record operations on the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``. """ format: BoundingBoxFormat canvas_size: Tuple[int, int] @classmethod def _wrap(cls, tensor: torch.Tensor, *, format: BoundingBoxFormat, canvas_size: Tuple[int, int]) -> BoundingBoxes: # type: ignore[override] bounding_boxes = tensor.as_subclass(cls) bounding_boxes.format = format bounding_boxes.canvas_size = canvas_size return bounding_boxes def __new__( cls, data: Any, *, format: Union[BoundingBoxFormat, str], canvas_size: Tuple[int, int], dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> BoundingBoxes: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) if isinstance(format, str): format = BoundingBoxFormat[format.upper()] return cls._wrap(tensor, format=format, canvas_size=canvas_size) @classmethod def wrap_like( cls, other: BoundingBoxes, tensor: torch.Tensor, *, format: Optional[BoundingBoxFormat] = None, canvas_size: Optional[Tuple[int, int]] = None, ) -> BoundingBoxes: """Wrap a :class:`torch.Tensor` as :class:`BoundingBoxes` from a reference. Args: other (BoundingBoxes): Reference bounding box. tensor (Tensor): Tensor to be wrapped as :class:`BoundingBoxes` format (BoundingBoxFormat, str, optional): Format of the bounding box. If omitted, it is taken from the reference. canvas_size (two-tuple of ints, optional): Height and width of the corresponding image or video. If omitted, it is taken from the reference. """ if isinstance(format, str): format = BoundingBoxFormat[format.upper()] return cls._wrap( tensor, format=format if format is not None else other.format, canvas_size=canvas_size if canvas_size is not None else other.canvas_size, ) def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override] return self._make_repr(format=self.format, canvas_size=self.canvas_size)
from typing import Any, Callable from langchain_core.documents import Document from langchain.retrievers.multi_vector import MultiVectorRetriever, SearchType from langchain.storage import InMemoryStore from tests.unit_tests.indexes.test_indexing import InMemoryVectorStore class InMemoryVectorstoreWithSearch(InMemoryVectorStore): @staticmethod def _identity_fn(score: float) -> float: return score def _select_relevance_score_fn(self) -> Callable[[float], float]: return self._identity_fn def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> list[Document]: res = self.store.get(query) if res is None: return [] return [res] def similarity_search_with_score( self, query: str, k: int = 4, **kwargs: Any ) -> list[tuple[Document, float]]: res = self.store.get(query) if res is None: return [] return [(res, 0.8)] def test_multi_vector_retriever_initialization() -> None: vectorstore = InMemoryVectorstoreWithSearch() retriever = MultiVectorRetriever( # type: ignore[call-arg] vectorstore=vectorstore, docstore=InMemoryStore(), doc_id="doc_id" ) documents = [Document(page_content="test document", metadata={"doc_id": "1"})] retriever.vectorstore.add_documents(documents, ids=["1"]) retriever.docstore.mset(list(zip(["1"], documents))) results = retriever.invoke("1") assert len(results) > 0 assert results[0].page_content == "test document" async def test_multi_vector_retriever_initialization_async() -> None: vectorstore = InMemoryVectorstoreWithSearch() retriever = MultiVectorRetriever( # type: ignore[call-arg] vectorstore=vectorstore, docstore=InMemoryStore(), doc_id="doc_id" ) documents = [Document(page_content="test document", metadata={"doc_id": "1"})] await retriever.vectorstore.aadd_documents(documents, ids=["1"]) await retriever.docstore.amset(list(zip(["1"], documents))) results = await retriever.ainvoke("1") assert len(results) > 0 assert results[0].page_content == "test document" def test_multi_vector_retriever_similarity_search_with_score() -> None: documents = [Document(page_content="test document", metadata={"doc_id": "1"})] vectorstore = InMemoryVectorstoreWithSearch() vectorstore.add_documents(documents, ids=["1"]) # score_threshold = 0.5 retriever = MultiVectorRetriever( # type: ignore[call-arg] vectorstore=vectorstore, docstore=InMemoryStore(), doc_id="doc_id", search_kwargs={"score_threshold": 0.5}, search_type=SearchType.similarity_score_threshold, ) retriever.docstore.mset(list(zip(["1"], documents))) results = retriever.invoke("1") assert len(results) == 1 assert results[0].page_content == "test document" # score_threshold = 0.9 retriever = MultiVectorRetriever( # type: ignore[call-arg] vectorstore=vectorstore, docstore=InMemoryStore(), doc_id="doc_id", search_kwargs={"score_threshold": 0.9}, search_type=SearchType.similarity_score_threshold, ) retriever.docstore.mset(list(zip(["1"], documents))) results = retriever.invoke("1") assert len(results) == 0 async def test_multi_vector_retriever_similarity_search_with_score_async() -> None: documents = [Document(page_content="test document", metadata={"doc_id": "1"})] vectorstore = InMemoryVectorstoreWithSearch() await vectorstore.aadd_documents(documents, ids=["1"]) # score_threshold = 0.5 retriever = MultiVectorRetriever( # type: ignore[call-arg] vectorstore=vectorstore, docstore=InMemoryStore(), doc_id="doc_id", search_kwargs={"score_threshold": 0.5}, search_type=SearchType.similarity_score_threshold, ) await retriever.docstore.amset(list(zip(["1"], documents))) results = retriever.invoke("1") assert len(results) == 1 assert results[0].page_content == "test document" # score_threshold = 0.9 retriever = MultiVectorRetriever( # type: ignore[call-arg] vectorstore=vectorstore, docstore=InMemoryStore(), doc_id="doc_id", search_kwargs={"score_threshold": 0.9}, search_type=SearchType.similarity_score_threshold, ) await retriever.docstore.amset(list(zip(["1"], documents))) results = retriever.invoke("1") assert len(results) == 0
from typing import Any, Callable, List, Tuple from langchain_core.documents import Document from langchain.retrievers.multi_vector import MultiVectorRetriever, SearchType from langchain.storage import InMemoryStore from tests.unit_tests.indexes.test_indexing import InMemoryVectorStore class InMemoryVectorstoreWithSearch(InMemoryVectorStore): @staticmethod def _identity_fn(score: float) -> float: return score def _select_relevance_score_fn(self) -> Callable[[float], float]: return self._identity_fn def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: res = self.store.get(query) if res is None: return [] return [res] def similarity_search_with_score( self, query: str, k: int = 4, **kwargs: Any ) -> List[Tuple[Document, float]]: res = self.store.get(query) if res is None: return [] return [(res, 0.8)] def test_multi_vector_retriever_initialization() -> None: vectorstore = InMemoryVectorstoreWithSearch() retriever = MultiVectorRetriever( # type: ignore[call-arg] vectorstore=vectorstore, docstore=InMemoryStore(), doc_id="doc_id" ) documents = [Document(page_content="test document", metadata={"doc_id": "1"})] retriever.vectorstore.add_documents(documents, ids=["1"]) retriever.docstore.mset(list(zip(["1"], documents))) results = retriever.invoke("1") assert len(results) > 0 assert results[0].page_content == "test document" async def test_multi_vector_retriever_initialization_async() -> None: vectorstore = InMemoryVectorstoreWithSearch() retriever = MultiVectorRetriever( # type: ignore[call-arg] vectorstore=vectorstore, docstore=InMemoryStore(), doc_id="doc_id" ) documents = [Document(page_content="test document", metadata={"doc_id": "1"})] await retriever.vectorstore.aadd_documents(documents, ids=["1"]) await retriever.docstore.amset(list(zip(["1"], documents))) results = await retriever.ainvoke("1") assert len(results) > 0 assert results[0].page_content == "test document" def test_multi_vector_retriever_similarity_search_with_score() -> None: documents = [Document(page_content="test document", metadata={"doc_id": "1"})] vectorstore = InMemoryVectorstoreWithSearch() vectorstore.add_documents(documents, ids=["1"]) # score_threshold = 0.5 retriever = MultiVectorRetriever( # type: ignore[call-arg] vectorstore=vectorstore, docstore=InMemoryStore(), doc_id="doc_id", search_kwargs={"score_threshold": 0.5}, search_type=SearchType.similarity_score_threshold, ) retriever.docstore.mset(list(zip(["1"], documents))) results = retriever.invoke("1") assert len(results) == 1 assert results[0].page_content == "test document" # score_threshold = 0.9 retriever = MultiVectorRetriever( # type: ignore[call-arg] vectorstore=vectorstore, docstore=InMemoryStore(), doc_id="doc_id", search_kwargs={"score_threshold": 0.9}, search_type=SearchType.similarity_score_threshold, ) retriever.docstore.mset(list(zip(["1"], documents))) results = retriever.invoke("1") assert len(results) == 0 async def test_multi_vector_retriever_similarity_search_with_score_async() -> None: documents = [Document(page_content="test document", metadata={"doc_id": "1"})] vectorstore = InMemoryVectorstoreWithSearch() await vectorstore.aadd_documents(documents, ids=["1"]) # score_threshold = 0.5 retriever = MultiVectorRetriever( # type: ignore[call-arg] vectorstore=vectorstore, docstore=InMemoryStore(), doc_id="doc_id", search_kwargs={"score_threshold": 0.5}, search_type=SearchType.similarity_score_threshold, ) await retriever.docstore.amset(list(zip(["1"], documents))) results = retriever.invoke("1") assert len(results) == 1 assert results[0].page_content == "test document" # score_threshold = 0.9 retriever = MultiVectorRetriever( # type: ignore[call-arg] vectorstore=vectorstore, docstore=InMemoryStore(), doc_id="doc_id", search_kwargs={"score_threshold": 0.9}, search_type=SearchType.similarity_score_threshold, ) await retriever.docstore.amset(list(zip(["1"], documents))) results = retriever.invoke("1") assert len(results) == 0
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.27.13' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.27.12' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
import logging from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") datasets = ["QuoraRetrieval", "MSMARCO"] evaluator = SparseNanoBEIREvaluator( dataset_names=datasets, show_progress_bar=True, batch_size=32, ) # Run evaluation results = evaluator(model) """ Evaluating NanoQuoraRetrieval Information Retrieval Evaluation of the model on the NanoQuoraRetrieval dataset: Queries: 50 Corpus: 5046 Score-Function: dot Accuracy@1: 92.00% Accuracy@3: 96.00% Accuracy@5: 98.00% Accuracy@10: 100.00% Precision@1: 92.00% Precision@3: 40.00% Precision@5: 24.80% Precision@10: 13.20% Recall@1: 79.73% Recall@3: 92.53% Recall@5: 94.93% Recall@10: 98.27% MRR@10: 0.9439 NDCG@10: 0.9339 MAP@100: 0.9070 Model Query Sparsity: Active Dimensions: 59.4, Sparsity Ratio: 0.9981 Model Corpus Sparsity: Active Dimensions: 61.9, Sparsity Ratio: 0.9980 Information Retrieval Evaluation of the model on the NanoMSMARCO dataset: Queries: 50 Corpus: 5043 Score-Function: dot Accuracy@1: 48.00% Accuracy@3: 74.00% Accuracy@5: 76.00% Accuracy@10: 86.00% Precision@1: 48.00% Precision@3: 24.67% Precision@5: 15.20% Precision@10: 8.60% Recall@1: 48.00% Recall@3: 74.00% Recall@5: 76.00% Recall@10: 86.00% MRR@10: 0.6191 NDCG@10: 0.6780 MAP@100: 0.6277 Model Query Sparsity: Active Dimensions: 45.4, Sparsity Ratio: 0.9985 Model Corpus Sparsity: Active Dimensions: 122.6, Sparsity Ratio: 0.9960 Average Queries: 50.0 Average Corpus: 5044.5 Aggregated for Score Function: dot Accuracy@1: 70.00% Accuracy@3: 85.00% Accuracy@5: 87.00% Accuracy@10: 93.00% Precision@1: 70.00% Recall@1: 63.87% Precision@3: 32.33% Recall@3: 83.27% Precision@5: 20.00% Recall@5: 85.47% Precision@10: 10.90% Recall@10: 92.13% MRR@10: 0.7815 NDCG@10: 0.8060 Model Query Sparsity: Active Dimensions: 52.4, Sparsity Ratio: 0.9983 Model Corpus Sparsity: Active Dimensions: 92.2, Sparsity Ratio: 0.9970 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8060
import logging from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") datasets = ["QuoraRetrieval", "MSMARCO"] evaluator = SparseNanoBEIREvaluator( dataset_names=datasets, show_progress_bar=True, batch_size=32, ) # Run evaluation results = evaluator(model) """ Evaluating NanoQuoraRetrieval Information Retrieval Evaluation of the model on the NanoQuoraRetrieval dataset: Queries: 50 Corpus: 5046 Score-Function: dot Accuracy@1: 92.00% Accuracy@3: 96.00% Accuracy@5: 98.00% Accuracy@10: 100.00% Precision@1: 92.00% Precision@3: 40.00% Precision@5: 24.80% Precision@10: 13.20% Recall@1: 79.73% Recall@3: 92.53% Recall@5: 94.93% Recall@10: 98.27% MRR@10: 0.9439 NDCG@10: 0.9339 MAP@100: 0.9072 Model Query Sparsity: Active Dimensions: 63.0, Sparsity Ratio: 0.9979 Model Corpus Sparsity: Active Dimensions: 63.4, Sparsity Ratio: 0.9979 Information Retrieval Evaluation of the model on the NanoMSMARCO dataset: Queries: 50 Corpus: 5043 Score-Function: dot Accuracy@1: 48.00% Accuracy@3: 74.00% Accuracy@5: 76.00% Accuracy@10: 88.00% Precision@1: 48.00% Precision@3: 24.67% Precision@5: 15.20% Precision@10: 8.80% Recall@1: 48.00% Recall@3: 74.00% Recall@5: 76.00% Recall@10: 88.00% MRR@10: 0.6211 NDCG@10: 0.6838 MAP@100: 0.6277 Model Query Sparsity: Active Dimensions: 48.1, Sparsity Ratio: 0.9984 Model Corpus Sparsity: Active Dimensions: 125.4, Sparsity Ratio: 0.9959 Average Queries: 50.0 Average Corpus: 5044.5 Aggregated for Score Function: dot Accuracy@1: 70.00% Accuracy@3: 85.00% Accuracy@5: 87.00% Accuracy@10: 94.00% Precision@1: 70.00% Recall@1: 63.87% Precision@3: 32.33% Recall@3: 83.27% Precision@5: 20.00% Recall@5: 85.47% Precision@10: 11.00% Recall@10: 93.13% MRR@10: 0.7825 NDCG@10: 0.8089 Model Query Sparsity: Active Dimensions: 55.5, Sparsity Ratio: 0.9982 Model Corpus Sparsity: Active Dimensions: 94.4, Sparsity Ratio: 0.9969 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8089
""" ============================= Recursive feature elimination ============================= This example demonstrates how Recursive Feature Elimination (:class:`~sklearn.feature_selection.RFE`) can be used to determine the importance of individual pixels for classifying handwritten digits. :class:`~sklearn.feature_selection.RFE` recursively removes the least significant features, assigning ranks based on their importance, where higher `ranking_` values denote lower importance. The ranking is visualized using both shades of blue and pixel annotations for clarity. As expected, pixels positioned at the center of the image tend to be more predictive than those near the edges. .. note:: See also :ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_with_cross_validation.py` """ # noqa: E501 # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt from sklearn.datasets import load_digits from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.preprocessing import MinMaxScaler # Load the digits dataset digits = load_digits() X = digits.images.reshape((len(digits.images), -1)) y = digits.target pipe = Pipeline( [ ("scaler", MinMaxScaler()), ("rfe", RFE(estimator=LogisticRegression(), n_features_to_select=1, step=1)), ] ) pipe.fit(X, y) ranking = pipe.named_steps["rfe"].ranking_.reshape(digits.images[0].shape) # Plot pixel ranking plt.matshow(ranking, cmap=plt.cm.Blues) # Add annotations for pixel numbers for i in range(ranking.shape[0]): for j in range(ranking.shape[1]): plt.text(j, i, str(ranking[i, j]), ha="center", va="center", color="black") plt.colorbar() plt.title("Ranking of pixels with RFE\n(Logistic Regression)") plt.show()
""" ============================= Recursive feature elimination ============================= This example demonstrates how Recursive Feature Elimination (:class:`~sklearn.feature_selection.RFE`) can be used to determine the importance of individual pixels for classifying handwritten digits. :class:`~sklearn.feature_selection.RFE` recursively removes the least significant features, assigning ranks based on their importance, where higher `ranking_` values denote lower importance. The ranking is visualized using both shades of blue and pixel annotations for clarity. As expected, pixels positioned at the center of the image tend to be more predictive than those near the edges. .. note:: See also :ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_with_cross_validation.py` """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt from sklearn.datasets import load_digits from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.preprocessing import MinMaxScaler # Load the digits dataset digits = load_digits() X = digits.images.reshape((len(digits.images), -1)) y = digits.target pipe = Pipeline( [ ("scaler", MinMaxScaler()), ("rfe", RFE(estimator=LogisticRegression(), n_features_to_select=1, step=1)), ] ) pipe.fit(X, y) ranking = pipe.named_steps["rfe"].ranking_.reshape(digits.images[0].shape) # Plot pixel ranking plt.matshow(ranking, cmap=plt.cm.Blues) # Add annotations for pixel numbers for i in range(ranking.shape[0]): for j in range(ranking.shape[1]): plt.text(j, i, str(ranking[i, j]), ha="center", va="center", color="black") plt.colorbar() plt.title("Ranking of pixels with RFE\n(Logistic Regression)") plt.show()
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from ..builder import LOSSES from .utils import weight_reduce_loss def dice_loss(pred, target, weight=None, eps=1e-3, reduction='mean', avg_factor=None): """Calculate dice loss, which is proposed in `V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation <https://arxiv.org/abs/1606.04797>`_. Args: pred (torch.Tensor): The prediction, has a shape (n, *) target (torch.Tensor): The learning label of the prediction, shape (n, *), same shape of pred. weight (torch.Tensor, optional): The weight of loss for each prediction, has a shape (n,). Defaults to None. eps (float): Avoid dividing by zero. Default: 1e-3. reduction (str, optional): The method used to reduce the loss into a scalar. Defaults to 'mean'. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. """ input = pred.flatten(1) target = target.flatten(1).float() a = torch.sum(input * target, 1) b = torch.sum(input * input, 1) + eps c = torch.sum(target * target, 1) + eps d = (2 * a) / (b + c) loss = 1 - d if weight is not None: assert weight.ndim == loss.ndim assert len(weight) == len(pred) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss @LOSSES.register_module() class DiceLoss(nn.Module): def __init__(self, use_sigmoid=True, activate=True, reduction='mean', loss_weight=1.0, eps=1e-3): """`Dice Loss, which is proposed in `V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation <https://arxiv.org/abs/1606.04797>`_. Args: use_sigmoid (bool, optional): Whether to the prediction is used for sigmoid or softmax. Defaults to True. activate (bool): Whether to activate the predictions inside, this will disable the inside sigmoid operation. Defaults to True. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". Defaults to 'mean'. loss_weight (float, optional): Weight of loss. Defaults to 1.0. eps (float): Avoid dividing by zero. Defaults to 1e-3. """ super(DiceLoss, self).__init__() self.use_sigmoid = use_sigmoid self.reduction = reduction self.loss_weight = loss_weight self.eps = eps self.activate = activate def forward(self, pred, target, weight=None, reduction_override=None, avg_factor=None): """Forward function. Args: pred (torch.Tensor): The prediction, has a shape (n, *). target (torch.Tensor): The label of the prediction, shape (n, *), same shape of pred. weight (torch.Tensor, optional): The weight of loss for each prediction, has a shape (n,). Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Options are "none", "mean" and "sum". Returns: torch.Tensor: The calculated loss """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if self.activate: if self.use_sigmoid: pred = pred.sigmoid() else: raise NotImplementedError loss = self.loss_weight * dice_loss( pred, target, weight, eps=self.eps, reduction=reduction, avg_factor=avg_factor) return loss
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from ..builder import LOSSES from .utils import weight_reduce_loss def dice_loss(pred, target, weight=None, eps=1e-3, reduction='mean', avg_factor=None): """Calculate dice loss, which is proposed in `V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation <https://arxiv.org/abs/1606.04797>`_. Args: pred (torch.Tensor): The prediction, has a shape (n, *) target (torch.Tensor): The learning label of the prediction, shape (n, *), same shape of pred. weight (torch.Tensor, optional): The weight of loss for each prediction, has a shape (n,). Defaults to None. eps (float): Avoid dividing by zero. Default: 1e-3. reduction (str, optional): The method used to reduce the loss into a scalar. Defaults to 'mean'. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. """ input = pred.reshape(pred.size()[0], -1) target = target.reshape(target.size()[0], -1).float() a = torch.sum(input * target, 1) b = torch.sum(input * input, 1) + eps c = torch.sum(target * target, 1) + eps d = (2 * a) / (b + c) loss = 1 - d if weight is not None: assert weight.ndim == loss.ndim assert len(weight) == len(pred) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss @LOSSES.register_module() class DiceLoss(nn.Module): def __init__(self, use_sigmoid=True, activate=True, reduction='mean', loss_weight=1.0, eps=1e-3): """`Dice Loss, which is proposed in `V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation <https://arxiv.org/abs/1606.04797>`_. Args: use_sigmoid (bool, optional): Whether to the prediction is used for sigmoid or softmax. Defaults to True. activate (bool): Whether to activate the predictions inside, this will disable the inside sigmoid operation. Defaults to True. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". Defaults to 'mean'. loss_weight (float, optional): Weight of loss. Defaults to 1.0. eps (float): Avoid dividing by zero. Defaults to 1e-3. """ super(DiceLoss, self).__init__() self.use_sigmoid = use_sigmoid self.reduction = reduction self.loss_weight = loss_weight self.eps = eps self.activate = activate def forward(self, pred, target, weight=None, reduction_override=None, avg_factor=None): """Forward function. Args: pred (torch.Tensor): The prediction, has a shape (n, *). target (torch.Tensor): The label of the prediction, shape (n, *), same shape of pred. weight (torch.Tensor, optional): The weight of loss for each prediction, has a shape (n,). Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Options are "none", "mean" and "sum". Returns: torch.Tensor: The calculated loss """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if self.activate: if self.use_sigmoid: pred = pred.sigmoid() else: raise NotImplementedError loss = self.loss_weight * dice_loss( pred, target, weight, eps=self.eps, reduction=reduction, avg_factor=avg_factor) return loss
"""Helpers for creating Anthropic API clients. This module allows for the caching of httpx clients to avoid creating new instances for each instance of ChatAnthropic. Logic is largely replicated from anthropic._base_client. """ from __future__ import annotations import asyncio import os from functools import lru_cache from typing import Any, Optional import anthropic _NOT_GIVEN: Any = object() class _SyncHttpxClientWrapper(anthropic.DefaultHttpxClient): """Borrowed from anthropic._base_client.""" def __del__(self) -> None: if self.is_closed: return try: self.close() except Exception: # noqa: S110 pass class _AsyncHttpxClientWrapper(anthropic.DefaultAsyncHttpxClient): """Borrowed from anthropic._base_client.""" def __del__(self) -> None: if self.is_closed: return try: # TODO(someday): support non asyncio runtimes here asyncio.get_running_loop().create_task(self.aclose()) except Exception: # noqa: S110 pass @lru_cache def _get_default_httpx_client( *, base_url: Optional[str], timeout: Any = _NOT_GIVEN, ) -> _SyncHttpxClientWrapper: kwargs: dict[str, Any] = { "base_url": base_url or os.environ.get("ANTHROPIC_BASE_URL") or "https://api.anthropic.com", } if timeout is not _NOT_GIVEN: kwargs["timeout"] = timeout return _SyncHttpxClientWrapper(**kwargs) @lru_cache def _get_default_async_httpx_client( *, base_url: Optional[str], timeout: Any = _NOT_GIVEN, ) -> _AsyncHttpxClientWrapper: kwargs: dict[str, Any] = { "base_url": base_url or os.environ.get("ANTHROPIC_BASE_URL") or "https://api.anthropic.com", } if timeout is not _NOT_GIVEN: kwargs["timeout"] = timeout return _AsyncHttpxClientWrapper(**kwargs)
"""Helpers for creating Anthropic API clients. This module allows for the caching of httpx clients to avoid creating new instances for each instance of ChatAnthropic. Logic is largely replicated from anthropic._base_client. """ import asyncio import os from functools import lru_cache from typing import Any, Optional import anthropic _NOT_GIVEN: Any = object() class _SyncHttpxClientWrapper(anthropic.DefaultHttpxClient): """Borrowed from anthropic._base_client""" def __del__(self) -> None: if self.is_closed: return try: self.close() except Exception: # noqa: S110 pass class _AsyncHttpxClientWrapper(anthropic.DefaultAsyncHttpxClient): """Borrowed from anthropic._base_client""" def __del__(self) -> None: if self.is_closed: return try: # TODO(someday): support non asyncio runtimes here asyncio.get_running_loop().create_task(self.aclose()) except Exception: # noqa: S110 pass @lru_cache def _get_default_httpx_client( *, base_url: Optional[str], timeout: Any = _NOT_GIVEN, ) -> _SyncHttpxClientWrapper: kwargs: dict[str, Any] = { "base_url": base_url or os.environ.get("ANTHROPIC_BASE_URL") or "https://api.anthropic.com", } if timeout is not _NOT_GIVEN: kwargs["timeout"] = timeout return _SyncHttpxClientWrapper(**kwargs) @lru_cache def _get_default_async_httpx_client( *, base_url: Optional[str], timeout: Any = _NOT_GIVEN, ) -> _AsyncHttpxClientWrapper: kwargs: dict[str, Any] = { "base_url": base_url or os.environ.get("ANTHROPIC_BASE_URL") or "https://api.anthropic.com", } if timeout is not _NOT_GIVEN: kwargs["timeout"] = timeout return _AsyncHttpxClientWrapper(**kwargs)
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.vgg16 import VGG16 as VGG16 from keras.src.applications.vgg16 import ( decode_predictions as decode_predictions, ) from keras.src.applications.vgg16 import preprocess_input as preprocess_input
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.vgg16 import VGG16 from keras.src.applications.vgg16 import decode_predictions from keras.src.applications.vgg16 import preprocess_input
import argparse from jina.enums import GatewayProtocolType from jina.helper import parse_host_scheme from jina.logging.predefined import default_logger class NetworkChecker: """Check if a Deployment is running or not.""" def __init__(self, args: 'argparse.Namespace'): """ Create a new :class:`NetworkChecker`. :param args: args provided by the CLI. """ import time from jina.clients import Client from jina.logging.profile import TimeContext from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime try: total_time = 0 total_success = 0 for j in range(args.attempts): with TimeContext( f'ping {args.target} on {args.host} at {j} round', default_logger ) as tc: if args.target == 'executor': hostname, port, protocol, _ = parse_host_scheme(args.host) r = WorkerRuntime.is_ready(ctrl_address=f'{hostname}:{port}') elif args.target == 'gateway': hostname, port, protocol, _ = parse_host_scheme(args.host) r = GatewayRuntime.is_ready( f'{hostname}:{port}', protocol=GatewayProtocolType.from_string(protocol) ) elif args.target == 'flow': r = Client(host=args.host).is_flow_ready(timeout=args.timeout / 1000) if not r: default_logger.warning( 'not responding, attempt (%d/%d) in 1s' % (j + 1, args.attempts) ) else: total_success += 1 total_time += tc.duration if args.attempts > 0: time.sleep(1) if total_success < args.attempts: default_logger.debug( 'message lost %.0f%% (%d/%d) ' % ( (1 - total_success / args.attempts) * 100, args.attempts - total_success, args.attempts, ) ) if total_success > 0: default_logger.debug( 'avg. latency: %.0f ms' % (total_time / total_success * 1000) ) if total_success >= args.min_successful_attempts: default_logger.debug( f'readiness check succeeded {total_success} times!!!' ) exit(0) else: default_logger.debug( f'readiness check succeeded {total_success} times, less than {args.min_successful_attempts}' ) except KeyboardInterrupt: pass # returns 1 (anomaly) when it comes to here exit(1)
import argparse from jina.enums import GatewayProtocolType from jina.helper import parse_host_scheme from jina.logging.predefined import default_logger class NetworkChecker: """Check if a BaseDeployment is running or not.""" def __init__(self, args: 'argparse.Namespace'): """ Create a new :class:`NetworkChecker`. :param args: args provided by the CLI. """ import time from jina.clients import Client from jina.logging.profile import TimeContext from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime try: total_time = 0 total_success = 0 for j in range(args.attempts): with TimeContext( f'ping {args.target} on {args.host} at {j} round', default_logger ) as tc: if args.target == 'executor': hostname, port, protocol, _ = parse_host_scheme(args.host) r = WorkerRuntime.is_ready(ctrl_address=f'{hostname}:{port}') elif args.target == 'gateway': hostname, port, protocol, _ = parse_host_scheme(args.host) r = GatewayRuntime.is_ready( f'{hostname}:{port}', protocol=GatewayProtocolType.from_string(protocol) ) elif args.target == 'flow': r = Client(host=args.host).is_flow_ready(timeout=args.timeout / 1000) if not r: default_logger.warning( 'not responding, attempt (%d/%d) in 1s' % (j + 1, args.attempts) ) else: total_success += 1 total_time += tc.duration if args.attempts > 0: time.sleep(1) if total_success < args.attempts: default_logger.debug( 'message lost %.0f%% (%d/%d) ' % ( (1 - total_success / args.attempts) * 100, args.attempts - total_success, args.attempts, ) ) if total_success > 0: default_logger.debug( 'avg. latency: %.0f ms' % (total_time / total_success * 1000) ) if total_success >= args.min_successful_attempts: default_logger.debug( f'readiness check succeeded {total_success} times!!!' ) exit(0) else: default_logger.debug( f'readiness check succeeded {total_success} times, less than {args.min_successful_attempts}' ) except KeyboardInterrupt: pass # returns 1 (anomaly) when it comes to here exit(1)
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: docarray.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import struct_pb2 as google_dot_protobuf_dot_struct__pb2 DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile( b'\n\x0e\x64ocarray.proto\x12\x08\x64ocarray\x1a\x1cgoogle/protobuf/struct.proto\"A\n\x11\x44\x65nseNdArrayProto\x12\x0e\n\x06\x62uffer\x18\x01 \x01(\x0c\x12\r\n\x05shape\x18\x02 \x03(\r\x12\r\n\x05\x64type\x18\x03 \x01(\t\"g\n\x0cNdArrayProto\x12*\n\x05\x64\x65nse\x18\x01 \x01(\x0b\x32\x1b.docarray.DenseNdArrayProto\x12+\n\nparameters\x18\x02 \x01(\x0b\x32\x17.google.protobuf.Struct\"\x8a\x05\n\tNodeProto\x12\x0e\n\x04\x62lob\x18\x01 \x01(\x0cH\x00\x12)\n\x07ndarray\x18\x02 \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x12\x0e\n\x04text\x18\x03 \x01(\tH\x00\x12)\n\x06nested\x18\x04 \x01(\x0b\x32\x17.docarray.DocumentProtoH\x00\x12.\n\x06\x63hunks\x18\x05 \x01(\x0b\x32\x1c.docarray.DocumentArrayProtoH\x00\x12+\n\tembedding\x18\x06 \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x12\x11\n\x07\x61ny_url\x18\x07 \x01(\tH\x00\x12\x13\n\timage_url\x18\x08 \x01(\tH\x00\x12\x12\n\x08text_url\x18\t \x01(\tH\x00\x12\x0c\n\x02id\x18\n \x01(\tH\x00\x12.\n\x0ctorch_tensor\x18\x0b \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x12\x12\n\x08mesh_url\x18\x0c \x01(\tH\x00\x12\x19\n\x0fpoint_cloud_url\x18\r \x01(\tH\x00\x12\x13\n\taudio_url\x18\x0e \x01(\tH\x00\x12/\n\raudio_ndarray\x18\x0f \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x12\x34\n\x12\x61udio_torch_tensor\x18\x10 \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x12\x13\n\tvideo_url\x18\x11 \x01(\tH\x00\x12/\n\rvideo_ndarray\x18\x12 \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x12\x34\n\x12video_torch_tensor\x18\x13 \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x42\t\n\x07\x63ontent\"\x82\x01\n\rDocumentProto\x12/\n\x04\x64\x61ta\x18\x01 \x03(\x0b\x32!.docarray.DocumentProto.DataEntry\x1a@\n\tDataEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\"\n\x05value\x18\x02 \x01(\x0b\x32\x13.docarray.NodeProto:\x02\x38\x01\";\n\x12\x44ocumentArrayProto\x12%\n\x04\x64ocs\x18\x01 \x03(\x0b\x32\x17.docarray.DocumentProto\"\x86\x01\n\x0fUnionArrayProto\x12=\n\x0e\x64ocument_array\x18\x01 \x01(\x0b\x32#.docarray.DocumentArrayStackedProtoH\x00\x12)\n\x07ndarray\x18\x02 \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x42\t\n\x07\x63ontent\"\xd6\x01\n\x19\x44ocumentArrayStackedProto\x12+\n\x05list_\x18\x01 \x01(\x0b\x32\x1c.docarray.DocumentArrayProto\x12\x41\n\x07\x63olumns\x18\x02 \x03(\x0b\x32\x30.docarray.DocumentArrayStackedProto.ColumnsEntry\x1aI\n\x0c\x43olumnsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12(\n\x05value\x18\x02 \x01(\x0b\x32\x19.docarray.UnionArrayProto:\x02\x38\x01\x62\x06proto3' ) _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals()) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'docarray_pb2', globals()) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _DOCUMENTPROTO_DATAENTRY._options = None _DOCUMENTPROTO_DATAENTRY._serialized_options = b'8\001' _DOCUMENTARRAYSTACKEDPROTO_COLUMNSENTRY._options = None _DOCUMENTARRAYSTACKEDPROTO_COLUMNSENTRY._serialized_options = b'8\001' _DENSENDARRAYPROTO._serialized_start = 58 _DENSENDARRAYPROTO._serialized_end = 123 _NDARRAYPROTO._serialized_start = 125 _NDARRAYPROTO._serialized_end = 228 _NODEPROTO._serialized_start = 231 _NODEPROTO._serialized_end = 881 _DOCUMENTPROTO._serialized_start = 884 _DOCUMENTPROTO._serialized_end = 1014 _DOCUMENTPROTO_DATAENTRY._serialized_start = 950 _DOCUMENTPROTO_DATAENTRY._serialized_end = 1014 _DOCUMENTARRAYPROTO._serialized_start = 1016 _DOCUMENTARRAYPROTO._serialized_end = 1075 _UNIONARRAYPROTO._serialized_start = 1078 _UNIONARRAYPROTO._serialized_end = 1212 _DOCUMENTARRAYSTACKEDPROTO._serialized_start = 1215 _DOCUMENTARRAYSTACKEDPROTO._serialized_end = 1429 _DOCUMENTARRAYSTACKEDPROTO_COLUMNSENTRY._serialized_start = 1356 _DOCUMENTARRAYSTACKEDPROTO_COLUMNSENTRY._serialized_end = 1429 # @@protoc_insertion_point(module_scope)
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: docarray.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import struct_pb2 as google_dot_protobuf_dot_struct__pb2 DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile( b'\n\x0e\x64ocarray.proto\x12\x08\x64ocarray\x1a\x1cgoogle/protobuf/struct.proto\"A\n\x11\x44\x65nseNdArrayProto\x12\x0e\n\x06\x62uffer\x18\x01 \x01(\x0c\x12\r\n\x05shape\x18\x02 \x03(\r\x12\r\n\x05\x64type\x18\x03 \x01(\t\"g\n\x0cNdArrayProto\x12*\n\x05\x64\x65nse\x18\x01 \x01(\x0b\x32\x1b.docarray.DenseNdArrayProto\x12+\n\nparameters\x18\x02 \x01(\x0b\x32\x17.google.protobuf.Struct\"\x8e\x04\n\tNodeProto\x12\x0e\n\x04\x62lob\x18\x01 \x01(\x0cH\x00\x12)\n\x07ndarray\x18\x02 \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x12\x0e\n\x04text\x18\x03 \x01(\tH\x00\x12)\n\x06nested\x18\x04 \x01(\x0b\x32\x17.docarray.DocumentProtoH\x00\x12.\n\x06\x63hunks\x18\x05 \x01(\x0b\x32\x1c.docarray.DocumentArrayProtoH\x00\x12+\n\tembedding\x18\x06 \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x12\x11\n\x07\x61ny_url\x18\x07 \x01(\tH\x00\x12\x13\n\timage_url\x18\x08 \x01(\tH\x00\x12\x12\n\x08text_url\x18\t \x01(\tH\x00\x12\x0c\n\x02id\x18\n \x01(\tH\x00\x12.\n\x0ctorch_tensor\x18\x0b \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x12\x12\n\x08mesh_url\x18\x0c \x01(\tH\x00\x12\x19\n\x0fpoint_cloud_url\x18\r \x01(\tH\x00\x12\x13\n\taudio_url\x18\x0e \x01(\tH\x00\x12/\n\raudio_ndarray\x18\x0f \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x12\x34\n\x12\x61udio_torch_tensor\x18\x10 \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x42\t\n\x07\x63ontent\"\x82\x01\n\rDocumentProto\x12/\n\x04\x64\x61ta\x18\x01 \x03(\x0b\x32!.docarray.DocumentProto.DataEntry\x1a@\n\tDataEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\"\n\x05value\x18\x02 \x01(\x0b\x32\x13.docarray.NodeProto:\x02\x38\x01\";\n\x12\x44ocumentArrayProto\x12%\n\x04\x64ocs\x18\x01 \x03(\x0b\x32\x17.docarray.DocumentProto\"\x86\x01\n\x0fUnionArrayProto\x12=\n\x0e\x64ocument_array\x18\x01 \x01(\x0b\x32#.docarray.DocumentArrayStackedProtoH\x00\x12)\n\x07ndarray\x18\x02 \x01(\x0b\x32\x16.docarray.NdArrayProtoH\x00\x42\t\n\x07\x63ontent\"\xd6\x01\n\x19\x44ocumentArrayStackedProto\x12+\n\x05list_\x18\x01 \x01(\x0b\x32\x1c.docarray.DocumentArrayProto\x12\x41\n\x07\x63olumns\x18\x02 \x03(\x0b\x32\x30.docarray.DocumentArrayStackedProto.ColumnsEntry\x1aI\n\x0c\x43olumnsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12(\n\x05value\x18\x02 \x01(\x0b\x32\x19.docarray.UnionArrayProto:\x02\x38\x01\x62\x06proto3' ) _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals()) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'docarray_pb2', globals()) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _DOCUMENTPROTO_DATAENTRY._options = None _DOCUMENTPROTO_DATAENTRY._serialized_options = b'8\001' _DOCUMENTARRAYSTACKEDPROTO_COLUMNSENTRY._options = None _DOCUMENTARRAYSTACKEDPROTO_COLUMNSENTRY._serialized_options = b'8\001' _DENSENDARRAYPROTO._serialized_start = 58 _DENSENDARRAYPROTO._serialized_end = 123 _NDARRAYPROTO._serialized_start = 125 _NDARRAYPROTO._serialized_end = 228 _NODEPROTO._serialized_start = 231 _NODEPROTO._serialized_end = 757 _DOCUMENTPROTO._serialized_start = 760 _DOCUMENTPROTO._serialized_end = 890 _DOCUMENTPROTO_DATAENTRY._serialized_start = 826 _DOCUMENTPROTO_DATAENTRY._serialized_end = 890 _DOCUMENTARRAYPROTO._serialized_start = 892 _DOCUMENTARRAYPROTO._serialized_end = 951 _UNIONARRAYPROTO._serialized_start = 954 _UNIONARRAYPROTO._serialized_end = 1088 _DOCUMENTARRAYSTACKEDPROTO._serialized_start = 1091 _DOCUMENTARRAYSTACKEDPROTO._serialized_end = 1305 _DOCUMENTARRAYSTACKEDPROTO_COLUMNSENTRY._serialized_start = 1232 _DOCUMENTARRAYSTACKEDPROTO_COLUMNSENTRY._serialized_end = 1305 # @@protoc_insertion_point(module_scope)
"""Test in memory docstore.""" from typing import Any from langchain.output_parsers.combining import CombiningOutputParser from langchain.output_parsers.regex import RegexParser from langchain.output_parsers.structured import ResponseSchema, StructuredOutputParser DEF_EXPECTED_RESULT = { "answer": "Paris", "source": "https://en.wikipedia.org/wiki/France", "confidence": "A", "explanation": "Paris is the capital of France according to Wikipedia.", } DEF_README = """```json { "answer": "Paris", "source": "https://en.wikipedia.org/wiki/France" } ``` //Confidence: A, Explanation: Paris is the capital of France according to Wikipedia.""" def test_combining_dict_result() -> None: """Test combining result.""" parsers = [ StructuredOutputParser( response_schemas=[ ResponseSchema( name="answer", description="answer to the user's question", ), ResponseSchema( name="source", description="source used to answer the user's question", ), ], ), RegexParser( regex=r"Confidence: (A|B|C), Explanation: (.*)", output_keys=["confidence", "explanation"], default_output_key="noConfidence", ), ] combining_parser = CombiningOutputParser(parsers=parsers) result_dict = combining_parser.parse(DEF_README) assert result_dict == DEF_EXPECTED_RESULT def test_combining_output_parser_output_type() -> None: """Test combining output parser output type is Dict[str, Any].""" parsers = [ StructuredOutputParser( response_schemas=[ ResponseSchema( name="answer", description="answer to the user's question", ), ResponseSchema( name="source", description="source used to answer the user's question", ), ], ), RegexParser( regex=r"Confidence: (A|B|C), Explanation: (.*)", output_keys=["confidence", "explanation"], default_output_key="noConfidence", ), ] combining_parser = CombiningOutputParser(parsers=parsers) assert combining_parser.OutputType == dict[str, Any]
"""Test in memory docstore.""" from typing import Any from langchain.output_parsers.combining import CombiningOutputParser from langchain.output_parsers.regex import RegexParser from langchain.output_parsers.structured import ResponseSchema, StructuredOutputParser DEF_EXPECTED_RESULT = { "answer": "Paris", "source": "https://en.wikipedia.org/wiki/France", "confidence": "A", "explanation": "Paris is the capital of France according to Wikipedia.", } DEF_README = """```json { "answer": "Paris", "source": "https://en.wikipedia.org/wiki/France" } ``` //Confidence: A, Explanation: Paris is the capital of France according to Wikipedia.""" def test_combining_dict_result() -> None: """Test combining result.""" parsers = [ StructuredOutputParser( response_schemas=[ ResponseSchema( name="answer", description="answer to the user's question" ), ResponseSchema( name="source", description="source used to answer the user's question", ), ] ), RegexParser( regex=r"Confidence: (A|B|C), Explanation: (.*)", output_keys=["confidence", "explanation"], default_output_key="noConfidence", ), ] combining_parser = CombiningOutputParser(parsers=parsers) result_dict = combining_parser.parse(DEF_README) assert result_dict == DEF_EXPECTED_RESULT def test_combining_output_parser_output_type() -> None: """Test combining output parser output type is Dict[str, Any].""" parsers = [ StructuredOutputParser( response_schemas=[ ResponseSchema( name="answer", description="answer to the user's question" ), ResponseSchema( name="source", description="source used to answer the user's question", ), ] ), RegexParser( regex=r"Confidence: (A|B|C), Explanation: (.*)", output_keys=["confidence", "explanation"], default_output_key="noConfidence", ), ] combining_parser = CombiningOutputParser(parsers=parsers) assert combining_parser.OutputType == dict[str, Any]
_base_ = './mask-rcnn_s50_fpn_syncbn-backbone+head_ms-1x_coco.py' model = dict( backbone=dict( stem_channels=128, depth=101, init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest101')))
_base_ = './mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py' model = dict( backbone=dict( stem_channels=128, depth=101, init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest101')))
# dataset settings dataset_type = 'RefCocoDataset' data_root = 'data/coco/' backend_args = None test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict( type='LoadAnnotations', with_mask=True, with_bbox=False, with_seg=False, with_label=False), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'gt_masks', 'text')) ] val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict(img_path='train2014/'), ann_file='refcoco+/instances.json', split_file='refcoco+/refs(unc).p', split='val', text_mode='select_first', pipeline=test_pipeline)) test_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict(img_path='train2014/'), ann_file='refcoco+/instances.json', split_file='refcoco+/refs(unc).p', split='testA', # or 'testB' text_mode='select_first', pipeline=test_pipeline)) val_evaluator = dict(type='RefSegMetric', metric=['cIoU', 'mIoU']) test_evaluator = val_evaluator
# dataset settings dataset_type = 'RefCOCODataset' data_root = 'data/refcoco/' backend_args = None train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'text', 'image_id')) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'text', 'image_id')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict(img='train2014/'), ann_file='refcoco+/instances.json', split_file='refcoco+/refs(unc).p', split='train', pipeline=train_pipeline, backend_args=backend_args)) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict(img='train2014/'), ann_file='refcoco+/instances.json', split_file='refcoco+/refs(unc).p', split='val', pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict(img='train2014/'), ann_file='refcoco+/instances.json', split_file='refcoco+/refs(unc).p', split='testA', # or 'testB' pipeline=test_pipeline, backend_args=backend_args)) # TODO: set the metrics
from ._conformer_wav2vec2 import ( conformer_wav2vec2_base, conformer_wav2vec2_model, conformer_wav2vec2_pretrain_base, conformer_wav2vec2_pretrain_large, conformer_wav2vec2_pretrain_model, ConformerWav2Vec2PretrainModel, ) from ._emformer_hubert import emformer_hubert_base, emformer_hubert_model from .conv_emformer import ConvEmformer from .rnnt import conformer_rnnt_base, conformer_rnnt_model __all__ = [ "conformer_rnnt_base", "conformer_rnnt_model", "ConvEmformer", "conformer_wav2vec2_model", "conformer_wav2vec2_base", "conformer_wav2vec2_pretrain_model", "conformer_wav2vec2_pretrain_base", "conformer_wav2vec2_pretrain_large", "ConformerWav2Vec2PretrainModel", "emformer_hubert_base", "emformer_hubert_model", ]
from ._conformer_wav2vec2 import conformer_wav2vec2_base, conformer_wav2vec2_model from ._emformer_hubert import emformer_hubert_base, emformer_hubert_model from .conv_emformer import ConvEmformer from .rnnt import conformer_rnnt_base, conformer_rnnt_model __all__ = [ "conformer_rnnt_base", "conformer_rnnt_model", "ConvEmformer", "conformer_wav2vec2_model", "conformer_wav2vec2_base", "emformer_hubert_base", "emformer_hubert_model", ]
import os import shutil import pytest import torch import torchaudio class GreedyCTCDecoder(torch.nn.Module): def __init__(self, labels, blank: int = 0): super().__init__() self.blank = blank self.labels = labels def forward(self, logits: torch.Tensor) -> str: """Given a sequence logits over labels, get the best path string Args: logits (Tensor): Logit tensors. Shape `[num_seq, num_label]`. Returns: str: The resulting transcript """ best_path = torch.argmax(logits, dim=-1) # [num_seq,] best_path = torch.unique_consecutive(best_path, dim=-1) hypothesis = [] for i in best_path: if i != self.blank: hypothesis.append(self.labels[i]) return "".join(hypothesis) @pytest.fixture def ctc_decoder(): return GreedyCTCDecoder _FILES = { "en": "Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.flac", "de": "20090505-0900-PLENARY-16-de_20090505-21_56_00_8.flac", "en2": "20120613-0900-PLENARY-8-en_20120613-13_46_50_3.flac", "es": "20130207-0900-PLENARY-7-es_20130207-13_02_05_5.flac", "fr": "20121212-0900-PLENARY-5-fr_20121212-11_37_04_10.flac", "it": "20170516-0900-PLENARY-16-it_20170516-18_56_31_1.flac", } _MIXTURE_FILES = { "speech_separation": "mixture_3729-6852-0037_8463-287645-0000.wav", "music_separation": "al_james_mixture_shorter.wav", } _CLEAN_FILES = { "speech_separation": [ "s1_3729-6852-0037_8463-287645-0000.wav", "s2_3729-6852-0037_8463-287645-0000.wav", ], "music_separation": [ "al_james_drums_shorter.wav", "al_james_bass_shorter.wav", "al_james_other_shorter.wav", "al_james_vocals_shorter.wav", ], } @pytest.fixture def sample_speech(lang): if lang not in _FILES: raise NotImplementedError(f"Unexpected lang: {lang}") filename = _FILES[lang] path = torchaudio.utils.download_asset(f"test-assets/{filename}") return path @pytest.fixture def mixture_source(task): if task not in _MIXTURE_FILES: raise NotImplementedError(f"Unexpected task: {task}") path = torchaudio.utils.download_asset(f"test-assets/{_MIXTURE_FILES[task]}") return path @pytest.fixture def clean_sources(task): if task not in _CLEAN_FILES: raise NotImplementedError(f"Unexpected task: {task}") paths = [] for file in _CLEAN_FILES[task]: path = torchaudio.utils.download_asset(f"test-assets/{file}") paths.append(path) return paths def pytest_addoption(parser): parser.addoption( "--use-tmp-hub-dir", action="store_true", help=( "When provided, tests will use temporary directory as Torch Hub directory. " "Downloaded models will be deleted after each test." ), ) @pytest.fixture(autouse=True) def temp_hub_dir(tmp_path, pytestconfig): if not pytestconfig.getoption("use_tmp_hub_dir"): yield else: org_dir = torch.hub.get_dir() subdir = os.path.join(tmp_path, "hub") torch.hub.set_dir(subdir) yield torch.hub.set_dir(org_dir) shutil.rmtree(subdir, ignore_errors=True) @pytest.fixture() def emissions(): path = torchaudio.utils.download_asset("test-assets/emissions-8555-28447-0012.pt") return torch.load(path)
import os import shutil import pytest import torch import torchaudio class GreedyCTCDecoder(torch.nn.Module): def __init__(self, labels, blank: int = 0): super().__init__() self.blank = blank self.labels = labels def forward(self, logits: torch.Tensor) -> str: """Given a sequence logits over labels, get the best path string Args: logits (Tensor): Logit tensors. Shape `[num_seq, num_label]`. Returns: str: The resulting transcript """ best_path = torch.argmax(logits, dim=-1) # [num_seq,] best_path = torch.unique_consecutive(best_path, dim=-1) hypothesis = [] for i in best_path: if i != self.blank: hypothesis.append(self.labels[i]) return "".join(hypothesis) @pytest.fixture def ctc_decoder(): return GreedyCTCDecoder _FILES = { "en": "Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.flac", "de": "20090505-0900-PLENARY-16-de_20090505-21_56_00_8.flac", "en2": "20120613-0900-PLENARY-8-en_20120613-13_46_50_3.flac", "es": "20130207-0900-PLENARY-7-es_20130207-13_02_05_5.flac", "fr": "20121212-0900-PLENARY-5-fr_20121212-11_37_04_10.flac", "it": "20170516-0900-PLENARY-16-it_20170516-18_56_31_1.flac", } _MIXTURE_FILE = "mixture_3729-6852-0037_8463-287645-0000.wav" _CLEAN_FILES = [ "s1_3729-6852-0037_8463-287645-0000.wav", "s2_3729-6852-0037_8463-287645-0000.wav", ] @pytest.fixture def sample_speech(lang): if lang not in _FILES: raise NotImplementedError(f"Unexpected lang: {lang}") filename = _FILES[lang] path = torchaudio.utils.download_asset(f"test-assets/{filename}") return path @pytest.fixture def mixture_source(): path = torchaudio.utils.download_asset(f"test-assets/{_MIXTURE_FILE}") return path @pytest.fixture def clean_sources(): paths = [] for file in _CLEAN_FILES: path = torchaudio.utils.download_asset(f"test-assets/{file}") paths.append(path) return paths def pytest_addoption(parser): parser.addoption( "--use-tmp-hub-dir", action="store_true", help=( "When provided, tests will use temporary directory as Torch Hub directory. " "Downloaded models will be deleted after each test." ), ) @pytest.fixture(autouse=True) def temp_hub_dir(tmp_path, pytestconfig): if not pytestconfig.getoption("use_tmp_hub_dir"): yield else: org_dir = torch.hub.get_dir() subdir = os.path.join(tmp_path, "hub") torch.hub.set_dir(subdir) yield torch.hub.set_dir(org_dir) shutil.rmtree(subdir, ignore_errors=True) @pytest.fixture() def emissions(): path = torchaudio.utils.download_asset("test-assets/emissions-8555-28447-0012.pt") return torch.load(path)
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import ConvModule from mmdet.registry import MODELS from .anchor_head import AnchorHead @MODELS.register_module() class RetinaHead(AnchorHead): r"""An anchor-based head used in `RetinaNet <https://arxiv.org/pdf/1708.02002.pdf>`_. The head contains two subnetworks. The first classifies anchor boxes and the second regresses deltas for the anchors. Example: >>> import torch >>> self = RetinaHead(11, 7) >>> x = torch.rand(1, 7, 32, 32) >>> cls_score, bbox_pred = self.forward_single(x) >>> # Each anchor predicts a score for each class except background >>> cls_per_anchor = cls_score.shape[1] / self.num_anchors >>> box_per_anchor = bbox_pred.shape[1] / self.num_anchors >>> assert cls_per_anchor == (self.num_classes) >>> assert box_per_anchor == 4 """ def __init__(self, num_classes, in_channels, stacked_convs=4, conv_cfg=None, norm_cfg=None, anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), init_cfg=dict( type='Normal', layer='Conv2d', std=0.01, override=dict( type='Normal', name='retina_cls', std=0.01, bias_prob=0.01)), **kwargs): self.stacked_convs = stacked_convs self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg super(RetinaHead, self).__init__( num_classes, in_channels, anchor_generator=anchor_generator, init_cfg=init_cfg, **kwargs) def _init_layers(self): """Initialize layers of the head.""" self.relu = nn.ReLU(inplace=True) self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels self.cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.retina_cls = nn.Conv2d( self.feat_channels, self.num_base_priors * self.cls_out_channels, 3, padding=1) self.retina_reg = nn.Conv2d( self.feat_channels, self.num_base_priors * 4, 3, padding=1) def forward_single(self, x): """Forward feature of a single scale level. Args: x (Tensor): Features of a single scale level. Returns: tuple: cls_score (Tensor): Cls scores for a single scale level the channels number is num_anchors * num_classes. bbox_pred (Tensor): Box energies / deltas for a single scale level, the channels number is num_anchors * 4. """ cls_feat = x reg_feat = x for cls_conv in self.cls_convs: cls_feat = cls_conv(cls_feat) for reg_conv in self.reg_convs: reg_feat = reg_conv(reg_feat) cls_score = self.retina_cls(cls_feat) bbox_pred = self.retina_reg(reg_feat) return cls_score, bbox_pred
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import ConvModule from ..builder import HEADS from .anchor_head import AnchorHead @HEADS.register_module() class RetinaHead(AnchorHead): r"""An anchor-based head used in `RetinaNet <https://arxiv.org/pdf/1708.02002.pdf>`_. The head contains two subnetworks. The first classifies anchor boxes and the second regresses deltas for the anchors. Example: >>> import torch >>> self = RetinaHead(11, 7) >>> x = torch.rand(1, 7, 32, 32) >>> cls_score, bbox_pred = self.forward_single(x) >>> # Each anchor predicts a score for each class except background >>> cls_per_anchor = cls_score.shape[1] / self.num_anchors >>> box_per_anchor = bbox_pred.shape[1] / self.num_anchors >>> assert cls_per_anchor == (self.num_classes) >>> assert box_per_anchor == 4 """ def __init__(self, num_classes, in_channels, stacked_convs=4, conv_cfg=None, norm_cfg=None, anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), init_cfg=dict( type='Normal', layer='Conv2d', std=0.01, override=dict( type='Normal', name='retina_cls', std=0.01, bias_prob=0.01)), **kwargs): self.stacked_convs = stacked_convs self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg super(RetinaHead, self).__init__( num_classes, in_channels, anchor_generator=anchor_generator, init_cfg=init_cfg, **kwargs) def _init_layers(self): """Initialize layers of the head.""" self.relu = nn.ReLU(inplace=True) self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels self.cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.retina_cls = nn.Conv2d( self.feat_channels, self.num_base_priors * self.cls_out_channels, 3, padding=1) self.retina_reg = nn.Conv2d( self.feat_channels, self.num_base_priors * 4, 3, padding=1) def forward_single(self, x): """Forward feature of a single scale level. Args: x (Tensor): Features of a single scale level. Returns: tuple: cls_score (Tensor): Cls scores for a single scale level the channels number is num_anchors * num_classes. bbox_pred (Tensor): Box energies / deltas for a single scale level, the channels number is num_anchors * 4. """ cls_feat = x reg_feat = x for cls_conv in self.cls_convs: cls_feat = cls_conv(cls_feat) for reg_conv in self.reg_convs: reg_feat = reg_conv(reg_feat) cls_score = self.retina_cls(cls_feat) bbox_pred = self.retina_reg(reg_feat) return cls_score, bbox_pred
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', 'weaviate-client~=3.3.0', 'annlite>=0.3.0', 'qdrant-client~=0.7.1', 'elasticsearch>=8.0.1', ], 'qdrant': [ 'qdrant-client~=0.7.1', ], 'annlite': [ 'annlite>=0.3.0', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.0.1', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.0', 'elasticsearch>=8.0.1', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'weaviate-client~=3.3.0', 'annlite>=0.3.0', 'qdrant-client~=0.7.1', 'strawberry-graphql', 'elasticsearch>=8.0.1', ], 'qdrant': [ 'qdrant-client~=0.7.0', ], 'annlite': [ 'annlite>=0.3.0', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
# Copyright (c) OpenMMLab. All rights reserved. from .csp_darknet import CSPDarknet from .darknet import Darknet from .detectors_resnet import DetectoRS_ResNet from .detectors_resnext import DetectoRS_ResNeXt from .hourglass import HourglassNet from .hrnet import HRNet from .mobilenet_v2 import MobileNetV2 from .regnet import RegNet from .res2net import Res2Net from .resnest import ResNeSt from .resnet import ResNet, ResNetV1d from .resnext import ResNeXt from .ssd_vgg import SSDVGG from .swin import SwinTransformer from .trident_resnet import TridentResNet __all__ = [ 'RegNet', 'ResNet', 'ResNetV1d', 'ResNeXt', 'SSDVGG', 'HRNet', 'MobileNetV2', 'Res2Net', 'HourglassNet', 'DetectoRS_ResNet', 'DetectoRS_ResNeXt', 'Darknet', 'ResNeSt', 'TridentResNet', 'CSPDarknet', 'SwinTransformer' ]
# Copyright (c) OpenMMLab. All rights reserved. from .csp_darknet import CSPDarknet from .darknet import Darknet from .detectors_resnet import DetectoRS_ResNet from .detectors_resnext import DetectoRS_ResNeXt from .hourglass import HourglassNet from .hrnet import HRNet from .mobilenet_v2 import MobileNetV2 from .regnet import RegNet from .res2net import Res2Net from .resnest import ResNeSt from .resnet import ResNet, ResNetV1d from .resnext import ResNeXt from .ssd_vgg import SSDVGG from .trident_resnet import TridentResNet __all__ = [ 'RegNet', 'ResNet', 'ResNetV1d', 'ResNeXt', 'SSDVGG', 'HRNet', 'MobileNetV2', 'Res2Net', 'HourglassNet', 'DetectoRS_ResNet', 'DetectoRS_ResNeXt', 'Darknet', 'ResNeSt', 'TridentResNet', 'CSPDarknet' ]
from __future__ import annotations from collections import Counter import pytest from sentence_transformers.sampler import GroupByLabelBatchSampler from sentence_transformers.util import is_datasets_available if is_datasets_available(): from datasets import Dataset else: pytest.skip( reason='Sentence Transformers was not installed with the `["train"]` extra.', allow_module_level=True, ) @pytest.fixture def dummy_dataset(): """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": [0, 1, 2, ..., 99], "label_a": [0, 1, 0, 1, ..., 0, 1], "label_b": [0, 1, 2, 3, 4, 0, ..., 4] } """ data = {"data": list(range(100)), "label_a": [i % 2 for i in range(100)], "label_b": [i % 5 for i in range(100)]} return Dataset.from_dict(data) @pytest.fixture def dummy_uneven_dataset(): """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": ["a"] * 51, "label": [0] * 17 + [1] * 17 + [2] * 17, } """ data = {"data": ["a"] * 51, "label": [0] * 17 + [1] * 17 + [2] * 17} return Dataset.from_dict(data) def test_group_by_label_batch_sampler_label_a(dummy_dataset: Dataset) -> None: batch_size = 10 sampler = GroupByLabelBatchSampler( dataset=dummy_dataset, batch_size=batch_size, drop_last=False, valid_label_columns=["label_a", "label_b"] ) batches = list(iter(sampler)) assert all(len(batch) == batch_size for batch in batches) # Check if all labels within each batch are identical # In this case, label_a has 50 0's and 50 1's, so with a batch size of 10 we expect each batch to # have only 0's or only 1's. for batch in batches: labels = [dummy_dataset[int(idx)]["label_a"] for idx in batch] assert len(set(labels)) == 1, f"Batch {batch} does not have identical labels: {labels}" def test_group_by_label_batch_sampler_label_b(dummy_dataset: Dataset) -> None: batch_size = 8 sampler = GroupByLabelBatchSampler( dataset=dummy_dataset, batch_size=batch_size, drop_last=True, valid_label_columns=["label_b"] ) # drop_last=True, so each batch should be the same length and the last batch is dropped. batches = list(iter(sampler)) assert all( len(batch) == batch_size for batch in batches ), "Not all batches are the same size, while drop_last was True." # Assert that we have the expected number of total samples in the batches. assert sum(len(batch) for batch in batches) == 100 // batch_size * batch_size # Since we have 20 occurrences each of label_b values 0, 1, 2, 3 and 4 and a batch_size of 8, we expect each batch # to have either 4 or 8 samples with the same label. (The first two batches are 16 samples of the first label, # leaving 4 for the third batch. There 4 of the next label are added, leaving 16 for the next two batches, and so on.) for batch in batches: labels = [dummy_dataset[int(idx)]["label_b"] for idx in batch] counts = list(Counter(labels).values()) assert counts == [8] or counts == [4, 4] def test_group_by_label_batch_sampler_uneven_dataset(dummy_uneven_dataset: Dataset) -> None: batch_size = 8 sampler = GroupByLabelBatchSampler( dataset=dummy_uneven_dataset, batch_size=batch_size, drop_last=False, valid_label_columns=["label"] ) # With a batch_size of 8 and 17 samples per label; verify that every label in a batch occurs at least twice. # We accept some tiny data loss (1 sample per label) due to the uneven number of samples per label. batches = list(iter(sampler)) for batch in batches: labels = [dummy_uneven_dataset[int(idx)]["label"] for idx in batch] counts = list(Counter(labels).values()) assert [count > 1 for count in counts]
from __future__ import annotations from collections import Counter import pytest from datasets import Dataset from sentence_transformers.sampler import GroupByLabelBatchSampler @pytest.fixture def dummy_dataset(): """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": [0, 1, 2, ..., 99], "label_a": [0, 1, 0, 1, ..., 0, 1], "label_b": [0, 1, 2, 3, 4, 0, ..., 4] } """ data = {"data": list(range(100)), "label_a": [i % 2 for i in range(100)], "label_b": [i % 5 for i in range(100)]} return Dataset.from_dict(data) @pytest.fixture def dummy_uneven_dataset(): """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": ["a"] * 51, "label": [0] * 17 + [1] * 17 + [2] * 17, } """ data = {"data": ["a"] * 51, "label": [0] * 17 + [1] * 17 + [2] * 17} return Dataset.from_dict(data) def test_group_by_label_batch_sampler_label_a(dummy_dataset: Dataset) -> None: batch_size = 10 sampler = GroupByLabelBatchSampler( dataset=dummy_dataset, batch_size=batch_size, drop_last=False, valid_label_columns=["label_a", "label_b"] ) batches = list(iter(sampler)) assert all(len(batch) == batch_size for batch in batches) # Check if all labels within each batch are identical # In this case, label_a has 50 0's and 50 1's, so with a batch size of 10 we expect each batch to # have only 0's or only 1's. for batch in batches: labels = [dummy_dataset[int(idx)]["label_a"] for idx in batch] assert len(set(labels)) == 1, f"Batch {batch} does not have identical labels: {labels}" def test_group_by_label_batch_sampler_label_b(dummy_dataset: Dataset) -> None: batch_size = 8 sampler = GroupByLabelBatchSampler( dataset=dummy_dataset, batch_size=batch_size, drop_last=True, valid_label_columns=["label_b"] ) # drop_last=True, so each batch should be the same length and the last batch is dropped. batches = list(iter(sampler)) assert all( len(batch) == batch_size for batch in batches ), "Not all batches are the same size, while drop_last was True." # Assert that we have the expected number of total samples in the batches. assert sum(len(batch) for batch in batches) == 100 // batch_size * batch_size # Since we have 20 occurrences each of label_b values 0, 1, 2, 3 and 4 and a batch_size of 8, we expect each batch # to have either 4 or 8 samples with the same label. (The first two batches are 16 samples of the first label, # leaving 4 for the third batch. There 4 of the next label are added, leaving 16 for the next two batches, and so on.) for batch in batches: labels = [dummy_dataset[int(idx)]["label_b"] for idx in batch] counts = list(Counter(labels).values()) assert counts == [8] or counts == [4, 4] def test_group_by_label_batch_sampler_uneven_dataset(dummy_uneven_dataset: Dataset) -> None: batch_size = 8 sampler = GroupByLabelBatchSampler( dataset=dummy_uneven_dataset, batch_size=batch_size, drop_last=False, valid_label_columns=["label"] ) # With a batch_size of 8 and 17 samples per label; verify that every label in a batch occurs at least twice. # We accept some tiny data loss (1 sample per label) due to the uneven number of samples per label. batches = list(iter(sampler)) for batch in batches: labels = [dummy_uneven_dataset[int(idx)]["label"] for idx in batch] counts = list(Counter(labels).values()) assert [count > 1 for count in counts]
# dataset settings dataset_type = 'CityscapesDataset' data_root = 'data/cityscapes/' train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomResize', scale=[(2048, 800), (2048, 1024)]), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(2048, 1024), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=8, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instancesonly_filtered_gtFine_train.json', data_prefix=dict(img='leftImg8bit/train/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instancesonly_filtered_gtFine_val.json', data_prefix=dict(img='leftImg8bit/val/'), test_mode=True, filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = [ dict( type='CocoMetric', ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_val.json', metric=['bbox', 'segm']), dict( type='CityScapesMetric', ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_val.json', seg_prefix=data_root + '/gtFine/val', outfile_prefix='./work_dirs/cityscapes_metric/instance') ] test_evaluator = val_evaluator # inference on test dataset and # format the output results for submission. # test_dataloader = dict( # batch_size=1, # num_workers=2, # persistent_workers=True, # drop_last=False, # sampler=dict(type='DefaultSampler', shuffle=False), # dataset=dict( # type=dataset_type, # data_root=data_root, # ann_file='annotations/instancesonly_filtered_gtFine_test.json', # data_prefix=dict(img='leftImg8bit/test/'), # test_mode=True, # filter_cfg=dict(filter_empty_gt=True, min_size=32), # pipeline=test_pipeline)) # test_evaluator = dict( # type='CityScapesMetric', # format_only=True, # outfile_prefix='./work_dirs/cityscapes_metric/test')
# dataset settings dataset_type = 'CityscapesDataset' # TODO remove it after cityscape metric # data_root = '/mnt/lustre/luochunhua.vendor/openmmlab2.0/data/cityscapes/' data_root = 'data/cityscapes/' train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomResize', scale=[(2048, 800), (2048, 1024)]), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(2048, 1024), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=8, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instancesonly_filtered_gtFine_train.json', data_prefix=dict(img='leftImg8bit/train/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instancesonly_filtered_gtFine_val.json', data_prefix=dict(img='leftImg8bit/val/'), test_mode=True, filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=test_pipeline)) test_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instancesonly_filtered_gtFine_val.json', data_prefix=dict(img='leftImg8bit/val/'), test_mode=True, filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=test_pipeline)) val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_val.json', metric=['bbox', 'segm']) test_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_val.json', metric=['bbox', 'segm']) # TODO add setting on test dataset after cityscape metric # inference on test dataset and # format the output results for submission. # test_dataloader = None # test_evaluator = None
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import pytest from jina import Document, DocumentArray from ...match_merger import MatchMerger @pytest.fixture def docs_matrix(): return [ DocumentArray( [ Document( id=f'doc {i}', matches=[Document(id=f'doc {i}, match {j}') for j in range(3)], chunks=[ Document( id=f'doc {i}, chunk {j}', matches=[ Document(id=f'doc {i}, chunk {j}, match {k}') for k in range(2) ], ) for j in range(3) ], ) for i in range(2) ] ) for shard in range(4) ] def test_root_traversal(docs_matrix): executor = MatchMerger() document_array = executor.merge(docs_matrix=docs_matrix, parameters={}) assert len(document_array) == 2 for d in document_array: assert len(d.matches) == 12 def test_chunk_traversal(docs_matrix): executor = MatchMerger(default_traversal_paths=('c',)) document_array = executor.merge(docs_matrix=docs_matrix, parameters={}) assert len(document_array) == 6 for d in document_array: assert len(d.matches) == 8
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import pytest from jina import Document, DocumentArray from ...match_merger import MatchMerger @pytest.fixture def docs_matrix(): return [ DocumentArray( [ Document( id=f'doc {i}', matches=[ Document(id=f'doc {i}, match {j}') for j in range(3) ], chunks=[ Document( id=f'doc {i}, chunk {j}', matches=[ Document( id=f'doc {i}, chunk {j}, match {k}' ) for k in range(2) ] ) for j in range(3) ]) for i in range(2) ] ) for shard in range(4) ] def test_root_traversal(docs_matrix): executor = MatchMerger() document_array = executor.merge(docs_matrix=docs_matrix, parameters={}) assert len(document_array) == 2 for d in document_array: assert len(d.matches) == 12 def test_chunk_traversal(docs_matrix): executor = MatchMerger(default_traversal_paths=('c',)) document_array = executor.merge(docs_matrix=docs_matrix, parameters={}) assert len(document_array) == 6 for d in document_array: assert len(d.matches) == 8
from typing import TYPE_CHECKING, Type, List if TYPE_CHECKING: from docarray.document.pydantic_model import PydanticDocumentArray from docarray.typing import T from pydantic import BaseModel class PydanticMixin: @classmethod def get_json_schema(cls, indent: int = 2) -> str: """Return a JSON Schema of DocumentArray class.""" from pydantic import schema_json_of from docarray.document.pydantic_model import PydanticDocumentArray return schema_json_of( PydanticDocumentArray, title='DocumentArray Schema', indent=indent ) def to_pydantic_model(self) -> 'PydanticDocumentArray': """Convert a DocumentArray object into a Pydantic model.""" return [d.to_pydantic_model() for d in self] @classmethod def from_pydantic_model(cls: Type['T'], model: List['BaseModel']) -> 'T': """Convert a list of PydanticDocument into DocumentArray :param model: the list of pydantic data model objects that represents a DocumentArray :return: a DocumentArray """ from docarray import Document return cls(Document.from_pydantic_model(m) for m in model)
from typing import TYPE_CHECKING, Type, List if TYPE_CHECKING: from ...document.pydantic_model import PydanticDocumentArray from ...typing import T from pydantic import BaseModel class PydanticMixin: @classmethod def get_json_schema(cls, indent: int = 2) -> str: """Return a JSON Schema of DocumentArray class.""" from pydantic import schema_json_of from ...document.pydantic_model import PydanticDocumentArray return schema_json_of( PydanticDocumentArray, title='DocumentArray Schema', indent=indent ) def to_pydantic_model(self) -> 'PydanticDocumentArray': """Convert a DocumentArray object into a Pydantic model.""" return [d.to_pydantic_model() for d in self] @classmethod def from_pydantic_model(cls: Type['T'], model: List['BaseModel']) -> 'T': """Convert a list of PydanticDocument into DocumentArray :param model: the list of pydantic data model objects that represents a DocumentArray :return: a DocumentArray """ from ... import Document return cls(Document.from_pydantic_model(m) for m in model)
"""Argparser module for pinging""" from jina.parsers.base import set_base_parser def set_new_project_parser(parser=None): """Set the parser for `new` :param parser: an existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() parser.add_argument( 'name', type=str, help='The name of the project', default='hello-jina' ) parser.add_argument( '--type', type=str, help='The type of project to be created (either flow or deployment)', default='flow' ) return parser
"""Argparser module for pinging""" from jina.parsers.base import set_base_parser def set_new_project_parser(parser=None): """Set the parser for `new` :param parser: an existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() parser.add_argument( 'name', type=str, help='The name of the project', default='hello-jina' ) return parser
# Copyright (c) OpenMMLab. All rights reserved. import math from typing import Optional import torch import torch.nn as nn from mmengine.model import ExponentialMovingAverage from torch import Tensor from mmdet.registry import MODELS @MODELS.register_module() class ExpMomentumEMA(ExponentialMovingAverage): """Exponential moving average (EMA) with exponential momentum strategy, which is used in YOLOX. Args: model (nn.Module): The model to be averaged. momentum (float): The momentum used for updating ema parameter. Ema's parameter are updated with the formula: `averaged_param = (1-momentum) * averaged_param + momentum * source_param`. Defaults to 0.0002. gamma (int): Use a larger momentum early in training and gradually annealing to a smaller value to update the ema model smoothly. The momentum is calculated as `(1 - momentum) * exp(-(1 + steps) / gamma) + momentum`. Defaults to 2000. interval (int): Interval between two updates. Defaults to 1. device (torch.device, optional): If provided, the averaged model will be stored on the :attr:`device`. Defaults to None. update_buffers (bool): if True, it will compute running averages for both the parameters and the buffers of the model. Defaults to False. """ def __init__(self, model: nn.Module, momentum: float = 0.0002, gamma: int = 2000, interval=1, device: Optional[torch.device] = None, update_buffers: bool = False) -> None: super().__init__( model=model, momentum=momentum, interval=interval, device=device, update_buffers=update_buffers) assert gamma > 0, f'gamma must be greater than 0, but got {gamma}' self.gamma = gamma def avg_func(self, averaged_param: Tensor, source_param: Tensor, steps: int) -> None: """Compute the moving average of the parameters using the exponential momentum strategy. Args: averaged_param (Tensor): The averaged parameters. source_param (Tensor): The source parameters. steps (int): The number of times the parameters have been updated. """ momentum = (1 - self.momentum) * math.exp( -(1 + steps) / self.gamma) + self.momentum averaged_param.mul_(1 - momentum).add_(source_param, alpha=momentum)
# Copyright (c) OpenMMLab. All rights reserved. import math from typing import Optional import torch import torch.nn as nn from mmengine.model import ExponentialMovingAverage from torch import Tensor from mmdet.registry import MODELS @MODELS.register_module() class ExpMomentumEMA(ExponentialMovingAverage): """Exponential moving average (EMA) with exponential momentum strategy, which is used in YOLOX. Args: model (nn.Module): The model to be averaged. momentum (float): The momentum used for updating ema parameter. Ema's parameter are updated with the formula: `averaged_param = (1-momentum) * averaged_param + momentum * source_param`. Defaults to 0.0002. gamma (int): Use a larger momentum early in training and gradually annealing to a smaller value to update the ema model smoothly. The momentum is calculated as `(1 - momentum) * exp(-(1 + steps) / gamma) + momentum`. Defaults to 2000. interval (int): Interval between two updates. Defaults to 1. device (torch.device, optional): If provided, the averaged model will be stored on the :attr:`device`. Defaults to None. update_buffers (bool): if True, it will compute running averages for both the parameters and the buffers of the model. Defaults to False. """ def __init__(self, model: nn.Module, momentum: float = 0.0002, gamma: int = 2000, interval=1, device: Optional[torch.device] = None, update_buffers: bool = False) -> None: super().__init__( model=model, momentum=momentum, interval=interval, device=device, update_buffers=update_buffers) assert gamma > 0, f'gamma must be greater than 0, but got {gamma}' self.gamma = gamma def avg_func(self, averaged_param: Tensor, source_param: Tensor, steps: int) -> Tensor: """Compute the moving average of the parameters using the linear momentum strategy. Args: averaged_param (Tensor): The averaged parameters. source_param (Tensor): The source parameters. steps (int): The number of times the parameters have been updated. Returns: Tensor: The averaged parameters. """ momentum = (1 - self.momentum) * math.exp( -(1 + steps) / self.gamma) + self.momentum return averaged_param * (1 - momentum) + source_param * momentum
# Copyright (c) OpenMMLab. All rights reserved. import argparse import mmengine from mmengine import Config, DictAction from mmengine.evaluator import Evaluator from mmengine.registry import init_default_scope from mmdet.registry import DATASETS def parse_args(): parser = argparse.ArgumentParser(description='Evaluate metric of the ' 'results saved in pkl format') parser.add_argument('config', help='Config of the model') parser.add_argument('pkl_results', help='Results in pickle format') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) init_default_scope(cfg.get('default_scope', 'mmdet')) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) dataset = DATASETS.build(cfg.test_dataloader.dataset) predictions = mmengine.load(args.pkl_results) evaluator = Evaluator(cfg.val_evaluator) evaluator.dataset_meta = dataset.metainfo eval_results = evaluator.offline_evaluate(predictions) print(eval_results) if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import mmengine from mmengine import Config, DictAction from mmengine.evaluator import Evaluator from mmdet.registry import DATASETS from mmdet.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='Evaluate metric of the ' 'results saved in pkl format') parser.add_argument('config', help='Config of the model') parser.add_argument('pkl_results', help='Results in pickle format') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def main(): args = parse_args() register_all_modules(init_default_scope=True) cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) dataset = DATASETS.build(cfg.test_dataloader.dataset) predictions = mmengine.load(args.pkl_results) evaluator = Evaluator(cfg.val_evaluator) evaluator.dataset_meta = dataset.metainfo eval_results = evaluator.offline_evaluate(predictions) print(eval_results) if __name__ == '__main__': main()
import numpy as np import pytest import tempfile import os from PIL import Image from unittest.mock import patch, MagicMock from llama_index.core.schema import ImageDocument from llama_index.core.base.llms.types import ChatMessage from llama_index.core.multi_modal_llms.base import MultiModalLLM from llama_index.multi_modal_llms.huggingface import HuggingFaceMultiModal @pytest.fixture(scope="module") def mock_model(): with ( patch( "llama_index.multi_modal_llms.huggingface.base.AutoConfig" ) as mock_config, patch( "llama_index.multi_modal_llms.huggingface.base.Qwen2VLForConditionalGeneration" ) as mock_model_class, patch( "llama_index.multi_modal_llms.huggingface.base.AutoProcessor" ) as mock_processor, ): mock_config.from_pretrained.return_value = MagicMock( architectures=["Qwen2VLForConditionalGeneration"] ) mock_model = mock_model_class.from_pretrained.return_value mock_processor = mock_processor.from_pretrained.return_value yield HuggingFaceMultiModal.from_model_name("Qwen/Qwen2-VL-2B-Instruct") # Replace the existing 'model' fixture with this mock_model @pytest.fixture(scope="module") def model(mock_model): return mock_model @pytest.fixture(scope="module") def temp_image_path(): # Create a white square image white_square = np.ones((100, 100, 3), dtype=np.uint8) * 255 image = Image.fromarray(white_square) # Create a temporary file with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file: image.save(temp_file, format="PNG") temp_path = temp_file.name yield temp_path # Clean up the temporary file after the test os.unlink(temp_path) def test_class(): names_of_base_classes = [b.__name__ for b in HuggingFaceMultiModal.__mro__] assert MultiModalLLM.__name__ in names_of_base_classes def test_initialization(model): assert isinstance(model, HuggingFaceMultiModal) assert model.model_name == "Qwen/Qwen2-VL-2B-Instruct" def test_metadata(model): metadata = model.metadata assert metadata.model_name == "Qwen/Qwen2-VL-2B-Instruct" assert metadata.context_window == 3900 # Default value assert metadata.num_output == 256 # Default value def test_complete(model, temp_image_path): prompt = "Describe this image:" image_doc = ImageDocument(image_path=temp_image_path) # Mock the _prepare_messages and _generate methods model._prepare_messages = MagicMock(return_value={"mocked": "inputs"}) model._generate = MagicMock(return_value="This is a mocked response.") response = model.complete(prompt, image_documents=[image_doc]) assert response.text == "This is a mocked response." model._prepare_messages.assert_called_once() model._generate.assert_called_once_with({"mocked": "inputs"}) def test_chat(model, temp_image_path): messages = [ChatMessage(role="user", content="What's in this image?")] image_doc = ImageDocument(image_path=temp_image_path) # Mock the _prepare_messages and _generate methods model._prepare_messages = MagicMock(return_value={"mocked": "inputs"}) model._generate = MagicMock(return_value="This is a mocked chat response.") response = model.chat(messages, image_documents=[image_doc]) assert response.message.content == "This is a mocked chat response." model._prepare_messages.assert_called_once() model._generate.assert_called_once_with({"mocked": "inputs"}) @pytest.mark.asyncio @pytest.mark.parametrize( "method_name", [ "astream_chat", "astream_complete", "acomplete", "achat", ], ) async def test_unsupported_methods(model, method_name): with pytest.raises(NotImplementedError): method = getattr(model, method_name) if method_name in ["astream_chat", "achat"]: await method([]) else: await method("prompt", [])
import numpy as np import pytest import tempfile import os from PIL import Image from unittest.mock import patch, MagicMock from llama_index.core.schema import ImageDocument from llama_index.core.base.llms.types import ChatMessage from llama_index.core.multi_modal_llms.base import MultiModalLLM from llama_index.multi_modal_llms.huggingface import HuggingFaceMultiModal @pytest.fixture(scope="module") def mock_model(): with patch( "llama_index.multi_modal_llms.huggingface.base.AutoConfig" ) as mock_config, patch( "llama_index.multi_modal_llms.huggingface.base.Qwen2VLForConditionalGeneration" ) as mock_model_class, patch( "llama_index.multi_modal_llms.huggingface.base.AutoProcessor" ) as mock_processor: mock_config.from_pretrained.return_value = MagicMock( architectures=["Qwen2VLForConditionalGeneration"] ) mock_model = mock_model_class.from_pretrained.return_value mock_processor = mock_processor.from_pretrained.return_value yield HuggingFaceMultiModal.from_model_name("Qwen/Qwen2-VL-2B-Instruct") # Replace the existing 'model' fixture with this mock_model @pytest.fixture(scope="module") def model(mock_model): return mock_model @pytest.fixture(scope="module") def temp_image_path(): # Create a white square image white_square = np.ones((100, 100, 3), dtype=np.uint8) * 255 image = Image.fromarray(white_square) # Create a temporary file with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file: image.save(temp_file, format="PNG") temp_path = temp_file.name yield temp_path # Clean up the temporary file after the test os.unlink(temp_path) def test_class(): names_of_base_classes = [b.__name__ for b in HuggingFaceMultiModal.__mro__] assert MultiModalLLM.__name__ in names_of_base_classes def test_initialization(model): assert isinstance(model, HuggingFaceMultiModal) assert model.model_name == "Qwen/Qwen2-VL-2B-Instruct" def test_metadata(model): metadata = model.metadata assert metadata.model_name == "Qwen/Qwen2-VL-2B-Instruct" assert metadata.context_window == 3900 # Default value assert metadata.num_output == 256 # Default value def test_complete(model, temp_image_path): prompt = "Describe this image:" image_doc = ImageDocument(image_path=temp_image_path) # Mock the _prepare_messages and _generate methods model._prepare_messages = MagicMock(return_value={"mocked": "inputs"}) model._generate = MagicMock(return_value="This is a mocked response.") response = model.complete(prompt, image_documents=[image_doc]) assert response.text == "This is a mocked response." model._prepare_messages.assert_called_once() model._generate.assert_called_once_with({"mocked": "inputs"}) def test_chat(model, temp_image_path): messages = [ChatMessage(role="user", content="What's in this image?")] image_doc = ImageDocument(image_path=temp_image_path) # Mock the _prepare_messages and _generate methods model._prepare_messages = MagicMock(return_value={"mocked": "inputs"}) model._generate = MagicMock(return_value="This is a mocked chat response.") response = model.chat(messages, image_documents=[image_doc]) assert response.message.content == "This is a mocked chat response." model._prepare_messages.assert_called_once() model._generate.assert_called_once_with({"mocked": "inputs"}) @pytest.mark.asyncio @pytest.mark.parametrize( "method_name", [ "astream_chat", "astream_complete", "acomplete", "achat", ], ) async def test_unsupported_methods(model, method_name): with pytest.raises(NotImplementedError): method = getattr(model, method_name) if method_name in ["astream_chat", "achat"]: await method([]) else: await method("prompt", [])
from __future__ import annotations from torch import Tensor, nn from sentence_transformers.cross_encoder import CrossEncoder class BinaryCrossEntropyLoss(nn.Module): def __init__(self, model: CrossEncoder, pos_weight: Tensor | None = None, **kwargs) -> None: super().__init__() self.model = model self.bce_with_logits_loss = nn.BCEWithLogitsLoss(pos_weight=pos_weight, **kwargs) if self.model.num_labels != 1: raise ValueError( f"{self.__class__.__name__} expects a model with 1 output label, " f"but got a model with {self.model.num_labels} output labels." ) def forward(self, inputs: list[list[str]], labels: Tensor) -> Tensor: if len(inputs) != 2: raise ValueError( f"BinaryCrossEntropyLoss expects a dataset with two non-label columns, but got a dataset with {len(inputs)} columns." ) pairs = list(zip(inputs[0], inputs[1])) tokens = self.model.tokenizer( pairs, padding=True, truncation=True, return_tensors="pt", ) tokens.to(self.model.device) logits = self.model(**tokens)[0].view(-1) loss = self.bce_with_logits_loss(logits, labels.float()) return loss
from __future__ import annotations from torch import Tensor, nn from sentence_transformers.cross_encoder import CrossEncoder # TODO: Bad name, don't 1-1 copy the name from PyTorch class BinaryCrossEntropyLoss(nn.Module): def __init__(self, model: CrossEncoder, pos_weight: Tensor | None = None, **kwargs) -> None: super().__init__() self.model = model self.bce_with_logits_loss = nn.BCEWithLogitsLoss(pos_weight=pos_weight, **kwargs) if self.model.num_labels != 1: raise ValueError( f"{self.__class__.__name__} expects a model with 1 output label, " f"but got a model with {self.model.num_labels} output labels." ) def forward(self, inputs: list[list[str]], labels: Tensor) -> Tensor: if len(inputs) != 2: raise ValueError( f"BinaryCrossEntropyLoss expects a dataset with two non-label columns, but got a dataset with {len(inputs)} columns." ) pairs = list(zip(inputs[0], inputs[1])) tokens = self.model.tokenizer( pairs, padding=True, truncation=True, return_tensors="pt", ) tokens.to(self.model.device) logits = self.model(**tokens)[0].view(-1) loss = self.bce_with_logits_loss(logits, labels.float()) return loss
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .auto_factory import * from .configuration_auto import * from .feature_extraction_auto import * from .image_processing_auto import * from .modeling_auto import * from .modeling_flax_auto import * from .modeling_tf_auto import * from .processing_auto import * from .tokenization_auto import * from .video_processing_auto import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .auto_factory import * from .configuration_auto import * from .feature_extraction_auto import * from .image_processing_auto import * from .modeling_auto import * from .modeling_flax_auto import * from .modeling_tf_auto import * from .processing_auto import * from .tokenization_auto import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import patch import pytest from mmengine.device import is_cuda_available from mmengine.testing import RunnerTestCase class TestEmptyCacheHook(RunnerTestCase): @pytest.mark.skipif( not is_cuda_available(), reason='cuda should be available') def test_with_runner(self): with patch('torch.cuda.empty_cache') as mock_empty_cache: cfg = self.epoch_based_cfg cfg.custom_hooks = [dict(type='EmptyCacheHook')] cfg.train_cfg.val_interval = 1e6 # disable validation during training # noqa: E501 runner = self.build_runner(cfg) runner.train() runner.test() runner.val() # Call `torch.cuda.empty_cache` after each epoch: # runner.train: `max_epochs` times. # runner.val: `1` time. # runner.test: `1` time. target_called_times = runner.max_epochs + 2 self.assertEqual(mock_empty_cache.call_count, target_called_times) with patch('torch.cuda.empty_cache') as mock_empty_cache: cfg.custom_hooks = [dict(type='EmptyCacheHook', before_epoch=True)] runner = self.build_runner(cfg) runner.train() runner.val() runner.test() # Call `torch.cuda.empty_cache` after/before each epoch: # runner.train: `max_epochs*2` times. # runner.val: `1*2` times. # runner.test: `1*2` times. target_called_times = runner.max_epochs * 2 + 4 self.assertEqual(mock_empty_cache.call_count, target_called_times) with patch('torch.cuda.empty_cache') as mock_empty_cache: cfg.custom_hooks = [ dict( type='EmptyCacheHook', after_iter=True, before_epoch=True) ] runner = self.build_runner(cfg) runner.train() runner.val() runner.test() # Call `torch.cuda.empty_cache` after/before each epoch, # after each iteration: # runner.train: `max_epochs*2 + len(dataloader)*max_epochs` times. # noqa: E501 # runner.val: `1*2 + len(val_dataloader)` times. # runner.test: `1*2 + len(val_dataloader)` times. target_called_times = \ runner.max_epochs * 2 + 4 + \ len(runner.train_dataloader) * runner.max_epochs + \ len(runner.val_dataloader) + \ len(runner.test_dataloader) self.assertEqual(mock_empty_cache.call_count, target_called_times)
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import patch from mmengine.testing import RunnerTestCase class TestEmptyCacheHook(RunnerTestCase): def test_with_runner(self): with patch('torch.cuda.empty_cache') as mock_empty_cache: cfg = self.epoch_based_cfg cfg.custom_hooks = [dict(type='EmptyCacheHook')] cfg.train_cfg.val_interval = 1e6 # disable validation during training # noqa: E501 runner = self.build_runner(cfg) runner.train() runner.test() runner.val() # Call `torch.cuda.empty_cache` after each epoch: # runner.train: `max_epochs` times. # runner.val: `1` time. # runner.test: `1` time. target_called_times = runner.max_epochs + 2 self.assertEqual(mock_empty_cache.call_count, target_called_times) with patch('torch.cuda.empty_cache') as mock_empty_cache: cfg.custom_hooks = [dict(type='EmptyCacheHook', before_epoch=True)] runner = self.build_runner(cfg) runner.train() runner.val() runner.test() # Call `torch.cuda.empty_cache` after/before each epoch: # runner.train: `max_epochs*2` times. # runner.val: `1*2` times. # runner.test: `1*2` times. target_called_times = runner.max_epochs * 2 + 4 self.assertEqual(mock_empty_cache.call_count, target_called_times) with patch('torch.cuda.empty_cache') as mock_empty_cache: cfg.custom_hooks = [ dict( type='EmptyCacheHook', after_iter=True, before_epoch=True) ] runner = self.build_runner(cfg) runner.train() runner.val() runner.test() # Call `torch.cuda.empty_cache` after/before each epoch, # after each iteration: # runner.train: `max_epochs*2 + len(dataloader)*max_epochs` times. # noqa: E501 # runner.val: `1*2 + len(val_dataloader)` times. # runner.test: `1*2 + len(val_dataloader)` times. target_called_times = \ runner.max_epochs * 2 + 4 + \ len(runner.train_dataloader) * runner.max_epochs + \ len(runner.val_dataloader) + \ len(runner.test_dataloader) self.assertEqual(mock_empty_cache.call_count, target_called_times)
from typing import Optional, Union, Callable, Tuple, TYPE_CHECKING, Dict if TYPE_CHECKING: # pragma: no cover import numpy as np from docarray.typing import ArrayType from docarray import DocumentArray class MatchMixin: """A mixin that provides match functionality to DocumentArrays""" def match( self, darray: 'DocumentArray', metric: Union[ str, Callable[['ArrayType', 'ArrayType'], 'np.ndarray'] ] = 'cosine', limit: Optional[Union[int, float]] = 20, normalization: Optional[Tuple[float, float]] = None, metric_name: Optional[str] = None, batch_size: Optional[int] = None, exclude_self: bool = False, filter: Optional[Dict] = None, only_id: bool = False, use_scipy: bool = False, device: str = 'cpu', num_worker: Optional[int] = 1, on: Optional[str] = None, **kwargs, ) -> None: """Compute embedding based nearest neighbour in `another` for each Document in `self`, and store results in `matches`. For the purpose of evaluation, one can also directly use the :meth:`~docarray.array.mixins.evaluation.EvaluationMixin.embed_and_evaluate` function. .. note:: 'cosine', 'euclidean', 'sqeuclidean' are supported natively without extra dependency. You can use other distance metric provided by ``scipy``, such as `braycurtis`, `canberra`, `chebyshev`, `cityblock`, `correlation`, `cosine`, `dice`, `euclidean`, `hamming`, `jaccard`, `jensenshannon`, `kulsinski`, `mahalanobis`, `matching`, `minkowski`, `rogerstanimoto`, `russellrao`, `seuclidean`, `sokalmichener`, `sokalsneath`, `sqeuclidean`, `wminkowski`, `yule`. To use scipy metric, please set ``use_scipy=True``. - To make all matches values in [0, 1], use ``dA.match(dB, normalization=(0, 1))`` - To invert the distance as score and make all values in range [0, 1], use ``dA.match(dB, normalization=(1, 0))``. Note, how ``normalization`` differs from the previous. - If a custom metric distance is provided. Make sure that it returns scores as distances and not similarity, meaning the smaller the better. :param darray: the other DocumentArray to match against :param metric: the distance metric :param limit: the maximum number of matches, when not given defaults to 20. :param normalization: a tuple [a, b] to be used with min-max normalization, the min distance will be rescaled to `a`, the max distance will be rescaled to `b` all values will be rescaled into range `[a, b]`. :param metric_name: if provided, then match result will be marked with this string. :param batch_size: if provided, then ``darray`` is loaded in batches, where each of them is at most ``batch_size`` elements. When `darray` is big, this can significantly speedup the computation. :param exclude_self: if set, Documents in ``darray`` with same ``id`` as the left-hand values will not be considered as matches. :param filter: filter query used for pre-filtering :param only_id: if set, then returning matches will only contain ``id`` :param use_scipy: if set, use ``scipy`` as the computation backend. Note, ``scipy`` does not support distance on sparse matrix. :param device: the computational device for ``.match()``, can be either `cpu` or `cuda`. :param num_worker: the number of parallel workers. If not given, then the number of CPUs in the system will be used. .. note:: This argument is only effective when ``batch_size`` is set. :param on: specifies a subindex to search on. If set, the returned DocumentArray will be retrieved from the given subindex. :param kwargs: other kwargs. """ if not (self and darray): return for d in self: d.matches.clear() match_docs = darray.find( self, metric=metric, limit=limit, normalization=normalization, metric_name=metric_name, batch_size=batch_size, exclude_self=exclude_self, filter=filter, only_id=only_id, use_scipy=use_scipy, device=device, num_worker=num_worker, on=on, **kwargs, ) if not isinstance(match_docs, list): match_docs = [match_docs] for m, d in zip(match_docs, self): d.matches = m
from typing import Optional, Union, Callable, Tuple, TYPE_CHECKING, Dict if TYPE_CHECKING: # pragma: no cover import numpy as np from docarray.typing import ArrayType from docarray import DocumentArray class MatchMixin: """A mixin that provides match functionality to DocumentArrays""" def match( self, darray: 'DocumentArray', metric: Union[ str, Callable[['ArrayType', 'ArrayType'], 'np.ndarray'] ] = 'cosine', limit: Optional[Union[int, float]] = 20, normalization: Optional[Tuple[float, float]] = None, metric_name: Optional[str] = None, batch_size: Optional[int] = None, exclude_self: bool = False, filter: Optional[Dict] = None, only_id: bool = False, use_scipy: bool = False, device: str = 'cpu', num_worker: Optional[int] = 1, on: Optional[str] = None, **kwargs, ) -> None: """Compute embedding based nearest neighbour in `another` for each Document in `self`, and store results in `matches`. .. note:: 'cosine', 'euclidean', 'sqeuclidean' are supported natively without extra dependency. You can use other distance metric provided by ``scipy``, such as `braycurtis`, `canberra`, `chebyshev`, `cityblock`, `correlation`, `cosine`, `dice`, `euclidean`, `hamming`, `jaccard`, `jensenshannon`, `kulsinski`, `mahalanobis`, `matching`, `minkowski`, `rogerstanimoto`, `russellrao`, `seuclidean`, `sokalmichener`, `sokalsneath`, `sqeuclidean`, `wminkowski`, `yule`. To use scipy metric, please set ``use_scipy=True``. - To make all matches values in [0, 1], use ``dA.match(dB, normalization=(0, 1))`` - To invert the distance as score and make all values in range [0, 1], use ``dA.match(dB, normalization=(1, 0))``. Note, how ``normalization`` differs from the previous. - If a custom metric distance is provided. Make sure that it returns scores as distances and not similarity, meaning the smaller the better. :param darray: the other DocumentArray to match against :param metric: the distance metric :param limit: the maximum number of matches, when not given defaults to 20. :param normalization: a tuple [a, b] to be used with min-max normalization, the min distance will be rescaled to `a`, the max distance will be rescaled to `b` all values will be rescaled into range `[a, b]`. :param metric_name: if provided, then match result will be marked with this string. :param batch_size: if provided, then ``darray`` is loaded in batches, where each of them is at most ``batch_size`` elements. When `darray` is big, this can significantly speedup the computation. :param exclude_self: if set, Documents in ``darray`` with same ``id`` as the left-hand values will not be considered as matches. :param filter: filter query used for pre-filtering :param only_id: if set, then returning matches will only contain ``id`` :param use_scipy: if set, use ``scipy`` as the computation backend. Note, ``scipy`` does not support distance on sparse matrix. :param device: the computational device for ``.match()``, can be either `cpu` or `cuda`. :param num_worker: the number of parallel workers. If not given, then the number of CPUs in the system will be used. .. note:: This argument is only effective when ``batch_size`` is set. :param on: specifies a subindex to search on. If set, the returned DocumentArray will be retrieved from the given subindex. :param kwargs: other kwargs. """ if not (self and darray): return for d in self: d.matches.clear() match_docs = darray.find( self, metric=metric, limit=limit, normalization=normalization, metric_name=metric_name, batch_size=batch_size, exclude_self=exclude_self, filter=filter, only_id=only_id, use_scipy=use_scipy, device=device, num_worker=num_worker, on=on, **kwargs, ) if not isinstance(match_docs, list): match_docs = [match_docs] for m, d in zip(match_docs, self): d.matches = m
"""Interface with the LangChain Hub.""" from __future__ import annotations import json from collections.abc import Sequence from typing import Any, Optional from langchain_core.load.dump import dumps from langchain_core.load.load import loads from langchain_core.prompts import BasePromptTemplate def _get_client( api_key: Optional[str] = None, api_url: Optional[str] = None, ) -> Any: try: from langsmith import Client as LangSmithClient ls_client = LangSmithClient(api_url, api_key=api_key) if hasattr(ls_client, "push_prompt") and hasattr(ls_client, "pull_prompt"): return ls_client from langchainhub import Client as LangChainHubClient return LangChainHubClient(api_url, api_key=api_key) except ImportError: try: from langchainhub import Client as LangChainHubClient return LangChainHubClient(api_url, api_key=api_key) except ImportError as e: msg = ( "Could not import langsmith or langchainhub (deprecated)," "please install with `pip install langsmith`." ) raise ImportError(msg) from e def push( repo_full_name: str, object: Any, # noqa: A002 *, api_url: Optional[str] = None, api_key: Optional[str] = None, parent_commit_hash: Optional[str] = None, new_repo_is_public: bool = False, new_repo_description: Optional[str] = None, readme: Optional[str] = None, tags: Optional[Sequence[str]] = None, ) -> str: """ Push an object to the hub and returns the URL it can be viewed at in a browser. :param repo_full_name: The full name of the prompt to push to in the format of `owner/prompt_name` or `prompt_name`. :param object: The LangChain to serialize and push to the hub. :param api_url: The URL of the LangChain Hub API. Defaults to the hosted API service if you have an api key set, or a localhost instance if not. :param api_key: The API key to use to authenticate with the LangChain Hub API. :param parent_commit_hash: The commit hash of the parent commit to push to. Defaults to the latest commit automatically. :param new_repo_is_public: Whether the prompt should be public. Defaults to False (Private by default). :param new_repo_description: The description of the prompt. Defaults to an empty string. """ client = _get_client(api_key=api_key, api_url=api_url) # Then it's langsmith if hasattr(client, "push_prompt"): return client.push_prompt( repo_full_name, object=object, parent_commit_hash=parent_commit_hash, is_public=new_repo_is_public, description=new_repo_description, readme=readme, tags=tags, ) # Then it's langchainhub manifest_json = dumps(object) return client.push( repo_full_name, manifest_json, parent_commit_hash=parent_commit_hash, new_repo_is_public=new_repo_is_public, new_repo_description=new_repo_description, ) def pull( owner_repo_commit: str, *, include_model: Optional[bool] = None, api_url: Optional[str] = None, api_key: Optional[str] = None, ) -> Any: """ Pull an object from the hub and returns it as a LangChain object. :param owner_repo_commit: The full name of the prompt to pull from in the format of `owner/prompt_name:commit_hash` or `owner/prompt_name` or just `prompt_name` if it's your own prompt. :param api_url: The URL of the LangChain Hub API. Defaults to the hosted API service if you have an api key set, or a localhost instance if not. :param api_key: The API key to use to authenticate with the LangChain Hub API. """ client = _get_client(api_key=api_key, api_url=api_url) # Then it's langsmith if hasattr(client, "pull_prompt"): return client.pull_prompt(owner_repo_commit, include_model=include_model) # Then it's langchainhub if hasattr(client, "pull_repo"): # >= 0.1.15 res_dict = client.pull_repo(owner_repo_commit) obj = loads(json.dumps(res_dict["manifest"])) if isinstance(obj, BasePromptTemplate): if obj.metadata is None: obj.metadata = {} obj.metadata["lc_hub_owner"] = res_dict["owner"] obj.metadata["lc_hub_repo"] = res_dict["repo"] obj.metadata["lc_hub_commit_hash"] = res_dict["commit_hash"] return obj # Then it's < 0.1.15 langchainhub resp: str = client.pull(owner_repo_commit) return loads(resp)
"""Interface with the LangChain Hub.""" from __future__ import annotations import json from collections.abc import Sequence from typing import Any, Optional from langchain_core.load.dump import dumps from langchain_core.load.load import loads from langchain_core.prompts import BasePromptTemplate def _get_client( api_key: Optional[str] = None, api_url: Optional[str] = None, ) -> Any: try: from langsmith import Client as LangSmithClient ls_client = LangSmithClient(api_url, api_key=api_key) if hasattr(ls_client, "push_prompt") and hasattr(ls_client, "pull_prompt"): return ls_client else: from langchainhub import Client as LangChainHubClient return LangChainHubClient(api_url, api_key=api_key) except ImportError: try: from langchainhub import Client as LangChainHubClient return LangChainHubClient(api_url, api_key=api_key) except ImportError as e: msg = ( "Could not import langsmith or langchainhub (deprecated)," "please install with `pip install langsmith`." ) raise ImportError(msg) from e def push( repo_full_name: str, object: Any, # noqa: A002 *, api_url: Optional[str] = None, api_key: Optional[str] = None, parent_commit_hash: Optional[str] = None, new_repo_is_public: bool = False, new_repo_description: Optional[str] = None, readme: Optional[str] = None, tags: Optional[Sequence[str]] = None, ) -> str: """ Push an object to the hub and returns the URL it can be viewed at in a browser. :param repo_full_name: The full name of the prompt to push to in the format of `owner/prompt_name` or `prompt_name`. :param object: The LangChain to serialize and push to the hub. :param api_url: The URL of the LangChain Hub API. Defaults to the hosted API service if you have an api key set, or a localhost instance if not. :param api_key: The API key to use to authenticate with the LangChain Hub API. :param parent_commit_hash: The commit hash of the parent commit to push to. Defaults to the latest commit automatically. :param new_repo_is_public: Whether the prompt should be public. Defaults to False (Private by default). :param new_repo_description: The description of the prompt. Defaults to an empty string. """ client = _get_client(api_key=api_key, api_url=api_url) # Then it's langsmith if hasattr(client, "push_prompt"): return client.push_prompt( repo_full_name, object=object, parent_commit_hash=parent_commit_hash, is_public=new_repo_is_public, description=new_repo_description, readme=readme, tags=tags, ) # Then it's langchainhub manifest_json = dumps(object) message = client.push( repo_full_name, manifest_json, parent_commit_hash=parent_commit_hash, new_repo_is_public=new_repo_is_public, new_repo_description=new_repo_description, ) return message def pull( owner_repo_commit: str, *, include_model: Optional[bool] = None, api_url: Optional[str] = None, api_key: Optional[str] = None, ) -> Any: """ Pull an object from the hub and returns it as a LangChain object. :param owner_repo_commit: The full name of the prompt to pull from in the format of `owner/prompt_name:commit_hash` or `owner/prompt_name` or just `prompt_name` if it's your own prompt. :param api_url: The URL of the LangChain Hub API. Defaults to the hosted API service if you have an api key set, or a localhost instance if not. :param api_key: The API key to use to authenticate with the LangChain Hub API. """ client = _get_client(api_key=api_key, api_url=api_url) # Then it's langsmith if hasattr(client, "pull_prompt"): response = client.pull_prompt(owner_repo_commit, include_model=include_model) return response # Then it's langchainhub if hasattr(client, "pull_repo"): # >= 0.1.15 res_dict = client.pull_repo(owner_repo_commit) obj = loads(json.dumps(res_dict["manifest"])) if isinstance(obj, BasePromptTemplate): if obj.metadata is None: obj.metadata = {} obj.metadata["lc_hub_owner"] = res_dict["owner"] obj.metadata["lc_hub_repo"] = res_dict["repo"] obj.metadata["lc_hub_commit_hash"] = res_dict["commit_hash"] return obj # Then it's < 0.1.15 langchainhub resp: str = client.pull(owner_repo_commit) return loads(resp)
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras._tf_keras.keras.preprocessing import image as image from keras._tf_keras.keras.preprocessing import sequence as sequence from keras._tf_keras.keras.preprocessing import text as text from keras.src.utils.image_dataset_utils import ( image_dataset_from_directory as image_dataset_from_directory, ) from keras.src.utils.text_dataset_utils import ( text_dataset_from_directory as text_dataset_from_directory, ) from keras.src.utils.timeseries_dataset_utils import ( timeseries_dataset_from_array as timeseries_dataset_from_array, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api._tf_keras.keras.preprocessing import image from keras.api._tf_keras.keras.preprocessing import sequence from keras.api._tf_keras.keras.preprocessing import text from keras.src.utils.image_dataset_utils import image_dataset_from_directory from keras.src.utils.text_dataset_utils import text_dataset_from_directory from keras.src.utils.timeseries_dataset_utils import ( timeseries_dataset_from_array, )
"""Tests using Scikit-Learn's bundled estimator_checks.""" from contextlib import contextmanager import pytest import sklearn from packaging.version import parse as parse_version from sklearn.utils.estimator_checks import parametrize_with_checks import keras from keras.src.backend import floatx from keras.src.backend import set_floatx from keras.src.layers import Dense from keras.src.layers import Input from keras.src.models import Model from keras.src.wrappers import SKLearnClassifier from keras.src.wrappers import SKLearnRegressor from keras.src.wrappers import SKLearnTransformer def wrapped_parametrize_with_checks( estimators, *, legacy: bool = True, expected_failed_checks=None, ): """Wrapped `parametrize_with_checks` handling backwards compat.""" sklearn_version = parse_version( parse_version(sklearn.__version__).base_version ) if sklearn_version >= parse_version("1.6"): return parametrize_with_checks( estimators, legacy=legacy, expected_failed_checks=expected_failed_checks, ) def patched_more_tags(estimator, expected_failed_checks): import copy original_tags = copy.deepcopy(sklearn.utils._tags._safe_tags(estimator)) def patched_more_tags(self): original_tags.update({"_xfail_checks": expected_failed_checks}) return original_tags estimator.__class__._more_tags = patched_more_tags return estimator estimators = [ patched_more_tags(estimator, expected_failed_checks(estimator)) for estimator in estimators ] # legacy is not supported and ignored return parametrize_with_checks(estimators) def dynamic_model(X, y, loss, layers=[10]): """Creates a basic MLP classifier dynamically choosing binary/multiclass classification loss and ouput activations. """ n_features_in = X.shape[1] inp = Input(shape=(n_features_in,)) hidden = inp for layer_size in layers: hidden = Dense(layer_size, activation="relu")(hidden) n_outputs = y.shape[1] if len(y.shape) > 1 else 1 out = [Dense(n_outputs, activation="softmax")(hidden)] model = Model(inp, out) model.compile(loss=loss, optimizer="rmsprop") return model @contextmanager def use_floatx(x: str): """Context manager to temporarily set the keras backend precision. """ _floatx = floatx() set_floatx(x) try: yield finally: set_floatx(_floatx) EXPECTED_FAILED_CHECKS = { "SKLearnClassifier": { "check_classifiers_regression_target": "not an issue in sklearn>=1.6", "check_parameters_default_constructible": ( "not an issue in sklearn>=1.6" ), "check_classifiers_one_label_sample_weights": ( "0 sample weight is not ignored" ), "check_classifiers_classes": ( "with small test cases the estimator returns not all classes " "sometimes" ), "check_classifier_data_not_an_array": ( "This test assumes reproducibility in fit." ), "check_supervised_y_2d": "This test assumes reproducibility in fit.", "check_fit_idempotent": "This test assumes reproducibility in fit.", }, "SKLearnRegressor": { "check_parameters_default_constructible": ( "not an issue in sklearn>=1.6" ), }, "SKLearnTransformer": { "check_parameters_default_constructible": ( "not an issue in sklearn>=1.6" ), }, } @wrapped_parametrize_with_checks( estimators=[ SKLearnClassifier( model=dynamic_model, model_kwargs={ "loss": "categorical_crossentropy", "layers": [20, 20, 20], }, fit_kwargs={"epochs": 5}, ), SKLearnRegressor( model=dynamic_model, model_kwargs={"loss": "mse"}, ), SKLearnTransformer( model=dynamic_model, model_kwargs={"loss": "mse"}, ), ], expected_failed_checks=lambda estimator: EXPECTED_FAILED_CHECKS[ type(estimator).__name__ ], ) def test_sklearn_estimator_checks(estimator, check): """Checks that can be passed with sklearn's default tolerances and in a single epoch. """ try: check(estimator) except Exception as exc: if keras.config.backend() in ["numpy", "openvino"] and ( isinstance(exc, NotImplementedError) or "NotImplementedError" in str(exc) ): pytest.xfail("Backend not implemented") else: raise
"""Tests using Scikit-Learn's bundled estimator_checks.""" from contextlib import contextmanager import pytest import keras from keras.src.backend import floatx from keras.src.backend import set_floatx from keras.src.layers import Dense from keras.src.layers import Input from keras.src.models import Model from keras.src.wrappers import SKLearnClassifier from keras.src.wrappers import SKLearnRegressor from keras.src.wrappers import SKLearnTransformer from keras.src.wrappers.fixes import parametrize_with_checks def dynamic_model(X, y, loss, layers=[10]): """Creates a basic MLP classifier dynamically choosing binary/multiclass classification loss and ouput activations. """ n_features_in = X.shape[1] inp = Input(shape=(n_features_in,)) hidden = inp for layer_size in layers: hidden = Dense(layer_size, activation="relu")(hidden) n_outputs = y.shape[1] if len(y.shape) > 1 else 1 out = [Dense(n_outputs, activation="softmax")(hidden)] model = Model(inp, out) model.compile(loss=loss, optimizer="rmsprop") return model @contextmanager def use_floatx(x: str): """Context manager to temporarily set the keras backend precision. """ _floatx = floatx() set_floatx(x) try: yield finally: set_floatx(_floatx) EXPECTED_FAILED_CHECKS = { "SKLearnClassifier": { "check_classifiers_regression_target": "not an issue in sklearn>=1.6", "check_parameters_default_constructible": ( "not an issue in sklearn>=1.6" ), "check_classifiers_one_label_sample_weights": ( "0 sample weight is not ignored" ), "check_classifiers_classes": ( "with small test cases the estimator returns not all classes " "sometimes" ), "check_classifier_data_not_an_array": ( "This test assumes reproducibility in fit." ), "check_supervised_y_2d": "This test assumes reproducibility in fit.", "check_fit_idempotent": "This test assumes reproducibility in fit.", }, "SKLearnRegressor": { "check_parameters_default_constructible": ( "not an issue in sklearn>=1.6" ), }, "SKLearnTransformer": { "check_parameters_default_constructible": ( "not an issue in sklearn>=1.6" ), }, } @parametrize_with_checks( estimators=[ SKLearnClassifier( model=dynamic_model, model_kwargs={ "loss": "categorical_crossentropy", "layers": [20, 20, 20], }, fit_kwargs={"epochs": 5}, ), SKLearnRegressor( model=dynamic_model, model_kwargs={"loss": "mse"}, ), SKLearnTransformer( model=dynamic_model, model_kwargs={"loss": "mse"}, ), ], expected_failed_checks=lambda estimator: EXPECTED_FAILED_CHECKS[ type(estimator).__name__ ], ) def test_sklearn_estimator_checks(estimator, check): """Checks that can be passed with sklearn's default tolerances and in a single epoch. """ try: check(estimator) except Exception as exc: if keras.config.backend() in ["numpy", "openvino"] and ( isinstance(exc, NotImplementedError) or "NotImplementedError" in str(exc) ): pytest.xfail("Backend not implemented") else: raise
"""Test OllamaLLM llm.""" from langchain_core.runnables import RunnableConfig from langchain_ollama.llms import OllamaLLM MODEL_NAME = "llama3.1" def test_stream() -> None: """Test streaming tokens from OpenAI.""" llm = OllamaLLM(model=MODEL_NAME) for token in llm.stream("I'm Pickle Rick"): assert isinstance(token, str) async def test_astream() -> None: """Test streaming tokens from OpenAI.""" llm = OllamaLLM(model=MODEL_NAME) async for token in llm.astream("I'm Pickle Rick"): assert isinstance(token, str) async def test_abatch() -> None: """Test streaming tokens from OllamaLLM.""" llm = OllamaLLM(model=MODEL_NAME) result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token, str) async def test_abatch_tags() -> None: """Test batch tokens from OllamaLLM.""" llm = OllamaLLM(model=MODEL_NAME) result = await llm.abatch( ["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]} ) for token in result: assert isinstance(token, str) def test_batch() -> None: """Test batch tokens from OllamaLLM.""" llm = OllamaLLM(model=MODEL_NAME) result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token, str) async def test_ainvoke() -> None: """Test invoke tokens from OllamaLLM.""" llm = OllamaLLM(model=MODEL_NAME) result = await llm.ainvoke("I'm Pickle Rick", config=RunnableConfig(tags=["foo"])) assert isinstance(result, str) def test_invoke() -> None: """Test invoke tokens from OllamaLLM.""" llm = OllamaLLM(model=MODEL_NAME) result = llm.invoke("I'm Pickle Rick", config=RunnableConfig(tags=["foo"])) assert isinstance(result, str)
"""Test OllamaLLM llm.""" from langchain_ollama.llms import OllamaLLM MODEL_NAME = "llama3" def test_stream() -> None: """Test streaming tokens from OpenAI.""" llm = OllamaLLM(model=MODEL_NAME) for token in llm.stream("I'm Pickle Rick"): assert isinstance(token, str) async def test_astream() -> None: """Test streaming tokens from OpenAI.""" llm = OllamaLLM(model=MODEL_NAME) async for token in llm.astream("I'm Pickle Rick"): assert isinstance(token, str) async def test_abatch() -> None: """Test streaming tokens from OllamaLLM.""" llm = OllamaLLM(model=MODEL_NAME) result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token, str) async def test_abatch_tags() -> None: """Test batch tokens from OllamaLLM.""" llm = OllamaLLM(model=MODEL_NAME) result = await llm.abatch( ["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]} ) for token in result: assert isinstance(token, str) def test_batch() -> None: """Test batch tokens from OllamaLLM.""" llm = OllamaLLM(model=MODEL_NAME) result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"]) for token in result: assert isinstance(token, str) async def test_ainvoke() -> None: """Test invoke tokens from OllamaLLM.""" llm = OllamaLLM(model=MODEL_NAME) result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]}) assert isinstance(result, str) def test_invoke() -> None: """Test invoke tokens from OllamaLLM.""" llm = OllamaLLM(model=MODEL_NAME) result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"])) assert isinstance(result, str)
from docarray.base_doc.any_doc import AnyDoc from docarray.base_doc.base_node import BaseNode from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) __all__ = ['AnyDoc', 'BaseDoc', 'BaseNode'] def __getattr__(name: str): if name == 'DocArrayResponse': import_library('fastapi', raise_error=True) from docarray.base_doc.docarray_response import DocArrayResponse if name not in __all__: __all__.append(name) return DocArrayResponse else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
from docarray.base_doc.any_doc import AnyDoc from docarray.base_doc.base_node import BaseNode from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) __all__ = ['AnyDoc', 'BaseDoc', 'BaseNode'] def __getattr__(name: str): if name == 'DocResponse': import_library('fastapi', raise_error=True) from docarray.base_doc.doc_response import DocResponse if name not in __all__: __all__.append(name) return DocResponse else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
import contextlib import logging import typing import fastapi import fastapi.responses import starlette.middleware.cors import uvicorn import backend.data.block import backend.data.db import backend.data.user import backend.server.routers.v1 import backend.util.service import backend.util.settings settings = backend.util.settings.Settings() logger = logging.getLogger(__name__) @contextlib.asynccontextmanager async def lifespan_context(app: fastapi.FastAPI): await backend.data.db.connect() await backend.data.block.initialize_blocks() await backend.data.user.migrate_and_encrypt_user_integrations() yield await backend.data.db.disconnect() def handle_internal_http_error(status_code: int = 500, log_error: bool = True): def handler(request: fastapi.Request, exc: Exception): if log_error: logger.exception(f"{request.method} {request.url.path} failed: {exc}") return fastapi.responses.JSONResponse( content={ "message": f"{request.method} {request.url.path} failed", "detail": str(exc), }, status_code=status_code, ) return handler docs_url = ( "/docs" if settings.config.app_env == backend.util.settings.AppEnvironment.LOCAL else None ) app = fastapi.FastAPI( title="AutoGPT Agent Server", description=( "This server is used to execute agents that are created by the " "AutoGPT system." ), summary="AutoGPT Agent Server", version="0.1", lifespan=lifespan_context, docs_url=docs_url, ) app.add_exception_handler(ValueError, handle_internal_http_error(400)) app.add_exception_handler(500, handle_internal_http_error(500)) app.include_router(backend.server.routers.v1.v1_router, tags=["v1"]) @app.get(path="/health", tags=["health"], dependencies=[]) async def health(): return {"status": "healthy"} class AgentServer(backend.util.service.AppProcess): def run(self): server_app = starlette.middleware.cors.CORSMiddleware( app=app, allow_origins=settings.config.backend_cors_allow_origins, allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) uvicorn.run( server_app, host=backend.util.settings.Config().agent_api_host, port=backend.util.settings.Config().agent_api_port, ) @staticmethod async def test_execute_graph( graph_id: str, node_input: dict[typing.Any, typing.Any], user_id: str ): return await backend.server.routers.v1.execute_graph( graph_id, node_input, user_id ) @staticmethod async def test_create_graph( create_graph: backend.server.routers.v1.CreateGraph, user_id: str, is_template=False, ): return await backend.server.routers.v1.create_new_graph(create_graph, user_id) @staticmethod async def test_get_graph_run_status( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_status( graph_id, graph_exec_id, user_id ) @staticmethod async def test_get_graph_run_node_execution_results( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_node_execution_results( graph_id, graph_exec_id, user_id ) @staticmethod async def test_delete_graph(graph_id: str, user_id: str): return await backend.server.routers.v1.delete_graph(graph_id, user_id) def set_test_dependency_overrides(self, overrides: dict): app.dependency_overrides.update(overrides)
import contextlib import logging import typing import fastapi import fastapi.responses import starlette.middleware.cors import uvicorn import backend.data.block import backend.data.db import backend.data.user import backend.server.routers.v1 import backend.util.service import backend.util.settings settings = backend.util.settings.Settings() logger = logging.getLogger(__name__) @contextlib.asynccontextmanager async def lifespan_context(app: fastapi.FastAPI): await backend.data.db.connect() await backend.data.block.initialize_blocks() yield await backend.data.db.disconnect() def handle_internal_http_error(status_code: int = 500, log_error: bool = True): def handler(request: fastapi.Request, exc: Exception): if log_error: logger.exception(f"{request.method} {request.url.path} failed: {exc}") return fastapi.responses.JSONResponse( content={ "message": f"{request.method} {request.url.path} failed", "detail": str(exc), }, status_code=status_code, ) return handler docs_url = ( "/docs" if settings.config.app_env == backend.util.settings.AppEnvironment.LOCAL else None ) app = fastapi.FastAPI( title="AutoGPT Agent Server", description=( "This server is used to execute agents that are created by the " "AutoGPT system." ), summary="AutoGPT Agent Server", version="0.1", lifespan=lifespan_context, docs_url=docs_url, ) app.add_exception_handler(ValueError, handle_internal_http_error(400)) app.add_exception_handler(500, handle_internal_http_error(500)) app.include_router(backend.server.routers.v1.v1_router, tags=["v1"]) @app.get(path="/health", tags=["health"], dependencies=[]) async def health(): return {"status": "healthy"} class AgentServer(backend.util.service.AppProcess): def run(self): server_app = starlette.middleware.cors.CORSMiddleware( app=app, allow_origins=settings.config.backend_cors_allow_origins, allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) uvicorn.run( server_app, host=backend.util.settings.Config().agent_api_host, port=backend.util.settings.Config().agent_api_port, ) @staticmethod async def test_execute_graph( graph_id: str, node_input: dict[typing.Any, typing.Any], user_id: str ): return await backend.server.routers.v1.execute_graph( graph_id, node_input, user_id ) @staticmethod async def test_create_graph( create_graph: backend.server.routers.v1.CreateGraph, user_id: str, is_template=False, ): return await backend.server.routers.v1.create_new_graph(create_graph, user_id) @staticmethod async def test_get_graph_run_status( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_status( graph_id, graph_exec_id, user_id ) @staticmethod async def test_get_graph_run_node_execution_results( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_node_execution_results( graph_id, graph_exec_id, user_id ) @staticmethod async def test_delete_graph(graph_id: str, user_id: str): return await backend.server.routers.v1.delete_graph(graph_id, user_id) def set_test_dependency_overrides(self, overrides: dict): app.dependency_overrides.update(overrides)
## under jina root dir # python scripts/get-last-release-note.py ## result in root/tmp.md with open('CHANGELOG.md', encoding='utf-8') as fp: n = [] for v in fp: if v.startswith('## Release Note'): n.clear() n.append(v) with open('tmp.md', 'w', encoding='utf-8') as fp: fp.writelines(n)
## under jina root dir # python scripts/get-last-release-note.py ## result in root/tmp.md with open('CHANGELOG.md') as fp: n = [] for v in fp: if v.startswith('## Release Note'): n.clear() n.append(v) with open('tmp.md', 'w') as fp: fp.writelines(n)
__version__ = '0.15.0' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
__version__ = '0.14.12' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
from typing import Optional, TYPE_CHECKING, TypeVar, Type, Union, Any from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.typing.url.filetypes import TEXT_FILE_FORMATS if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='TextUrl') @_register_proto(proto_type_name='text_url') class TextUrl(AnyUrl): """ URL to a text file. Can be remote (web) URL, or a local file path. """ @classmethod def validate( cls: Type[T], value: Union[T, str, Any], field: 'ModelField', config: 'BaseConfig', ): import os from urllib.parse import urlparse url = super().validate(value, field, config) # basic url validation path = urlparse(url).path ext = os.path.splitext(path)[1][1:].lower() # pass test if extension is valid or no extension has_valid_text_extension = ext in TEXT_FILE_FORMATS or ext == '' if not has_valid_text_extension: raise ValueError('Text URL must have a valid extension') return cls(str(url), scheme=None) def load(self, charset: str = 'utf-8', timeout: Optional[float] = None) -> str: """ Load the text file into a string. EXAMPLE USAGE .. code-block:: python from docarray import BaseDocument from docarray.typing import TextUrl class MyDoc(BaseDocument): remote_url: TextUrl local_url: TextUrl doc = MyDoc( remote_url='https://de.wikipedia.org/wiki/Brixen', local_url='home/username/my_file.txt', ) remote_txt = doc.remote_url.load() print(remote_txt) # prints: ```<!DOCTYPE html>\n<html class="client-nojs" ... > ...``` local_txt = doc.local_url.load() print(local_txt) # prints content of my_file.txt :param timeout: timeout (sec) for urlopen network request. Only relevant if URL is not local :param charset: decoding charset; may be any character set registered with IANA :return: the text file content """ _bytes = self.load_bytes(timeout=timeout) return _bytes.decode(charset)
from typing import Optional from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl @_register_proto(proto_type_name='text_url') class TextUrl(AnyUrl): """ URL to a text file. Can be remote (web) URL, or a local file path. """ def load(self, charset: str = 'utf-8', timeout: Optional[float] = None) -> str: """ Load the text file into a string. EXAMPLE USAGE .. code-block:: python from docarray import BaseDocument from docarray.typing import TextUrl class MyDoc(BaseDocument): remote_url: TextUrl local_url: TextUrl doc = MyDoc( remote_url='https://de.wikipedia.org/wiki/Brixen', local_url='home/username/my_file.txt', ) remote_txt = doc.remote_url.load() print(remote_txt) # prints: ```<!DOCTYPE html>\n<html class="client-nojs" ... > ...``` local_txt = doc.local_url.load() print(local_txt) # prints content of my_file.txt :param timeout: timeout (sec) for urlopen network request. Only relevant if URL is not local :param charset: decoding charset; may be any character set registered with IANA :return: the text file content """ _bytes = self.load_bytes(timeout=timeout) return _bytes.decode(charset)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.8.3' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.8.2' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
_base_ = './faster-rcnn_r50-caffe_fpn_1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet101_caffe')))
_base_ = './faster_rcnn_r50_caffe_fpn_1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet101_caffe')))
import torch from torchvision.transforms import autoaugment, transforms from torchvision.transforms.functional import InterpolationMode class ClassificationPresetTrain: def __init__( self, *, crop_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), interpolation=InterpolationMode.BILINEAR, hflip_prob=0.5, auto_augment_policy=None, ra_magnitude=9, augmix_severity=3, random_erase_prob=0.0, backend="pil", ): trans = [] backend = backend.lower() if backend == "tensor": trans.append(transforms.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}") trans.append(transforms.RandomResizedCrop(crop_size, interpolation=interpolation, antialias=True)) if hflip_prob > 0: trans.append(transforms.RandomHorizontalFlip(hflip_prob)) if auto_augment_policy is not None: if auto_augment_policy == "ra": trans.append(autoaugment.RandAugment(interpolation=interpolation, magnitude=ra_magnitude)) elif auto_augment_policy == "ta_wide": trans.append(autoaugment.TrivialAugmentWide(interpolation=interpolation)) elif auto_augment_policy == "augmix": trans.append(autoaugment.AugMix(interpolation=interpolation, severity=augmix_severity)) else: aa_policy = autoaugment.AutoAugmentPolicy(auto_augment_policy) trans.append(autoaugment.AutoAugment(policy=aa_policy, interpolation=interpolation)) if backend == "pil": trans.append(transforms.PILToTensor()) trans.extend( [ transforms.ConvertImageDtype(torch.float), transforms.Normalize(mean=mean, std=std), ] ) if random_erase_prob > 0: trans.append(transforms.RandomErasing(p=random_erase_prob)) self.transforms = transforms.Compose(trans) def __call__(self, img): return self.transforms(img) class ClassificationPresetEval: def __init__( self, *, crop_size, resize_size=256, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), interpolation=InterpolationMode.BILINEAR, backend="pil", ): trans = [] backend = backend.lower() if backend == "tensor": trans.append(transforms.PILToTensor()) else: raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}") trans += [ transforms.Resize(resize_size, interpolation=interpolation, antialias=True), transforms.CenterCrop(crop_size), ] if backend == "pil": trans.append(transforms.PILToTensor()) trans += [ transforms.ConvertImageDtype(torch.float), transforms.Normalize(mean=mean, std=std), ] self.transforms = transforms.Compose(trans) def __call__(self, img): return self.transforms(img)
import torch from torchvision.transforms import autoaugment, transforms from torchvision.transforms.functional import InterpolationMode class ClassificationPresetTrain: def __init__( self, *, crop_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), interpolation=InterpolationMode.BILINEAR, hflip_prob=0.5, auto_augment_policy=None, ra_magnitude=9, augmix_severity=3, random_erase_prob=0.0, ): trans = [transforms.RandomResizedCrop(crop_size, interpolation=interpolation)] if hflip_prob > 0: trans.append(transforms.RandomHorizontalFlip(hflip_prob)) if auto_augment_policy is not None: if auto_augment_policy == "ra": trans.append(autoaugment.RandAugment(interpolation=interpolation, magnitude=ra_magnitude)) elif auto_augment_policy == "ta_wide": trans.append(autoaugment.TrivialAugmentWide(interpolation=interpolation)) elif auto_augment_policy == "augmix": trans.append(autoaugment.AugMix(interpolation=interpolation, severity=augmix_severity)) else: aa_policy = autoaugment.AutoAugmentPolicy(auto_augment_policy) trans.append(autoaugment.AutoAugment(policy=aa_policy, interpolation=interpolation)) trans.extend( [ transforms.PILToTensor(), transforms.ConvertImageDtype(torch.float), transforms.Normalize(mean=mean, std=std), ] ) if random_erase_prob > 0: trans.append(transforms.RandomErasing(p=random_erase_prob)) self.transforms = transforms.Compose(trans) def __call__(self, img): return self.transforms(img) class ClassificationPresetEval: def __init__( self, *, crop_size, resize_size=256, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), interpolation=InterpolationMode.BILINEAR, ): self.transforms = transforms.Compose( [ transforms.Resize(resize_size, interpolation=interpolation), transforms.CenterCrop(crop_size), transforms.PILToTensor(), transforms.ConvertImageDtype(torch.float), transforms.Normalize(mean=mean, std=std), ] ) def __call__(self, img): return self.transforms(img)
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import numpy as np from mmengine.fileio import dump, load from mmengine.utils import mkdir_or_exist, track_parallel_progress prog_description = '''K-Fold coco split. To split coco data for semi-supervised object detection: python tools/misc/split_coco.py ''' def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( '--data-root', type=str, help='The data root of coco dataset.', default='./data/coco/') parser.add_argument( '--out-dir', type=str, help='The output directory of coco semi-supervised annotations.', default='./data/coco/semi_anns/') parser.add_argument( '--labeled-percent', type=float, nargs='+', help='The percentage of labeled data in the training set.', default=[1, 2, 5, 10]) parser.add_argument( '--fold', type=int, help='K-fold cross validation for semi-supervised object detection.', default=5) args = parser.parse_args() return args def split_coco(data_root, out_dir, percent, fold): """Split COCO data for Semi-supervised object detection. Args: data_root (str): The data root of coco dataset. out_dir (str): The output directory of coco semi-supervised annotations. percent (float): The percentage of labeled data in the training set. fold (int): The fold of dataset and set as random seed for data split. """ def save_anns(name, images, annotations): sub_anns = dict() sub_anns['images'] = images sub_anns['annotations'] = annotations sub_anns['licenses'] = anns['licenses'] sub_anns['categories'] = anns['categories'] sub_anns['info'] = anns['info'] mkdir_or_exist(out_dir) dump(sub_anns, f'{out_dir}/{name}.json') # set random seed with the fold np.random.seed(fold) ann_file = osp.join(data_root, 'annotations/instances_train2017.json') anns = load(ann_file) image_list = anns['images'] labeled_total = int(percent / 100. * len(image_list)) labeled_inds = set( np.random.choice(range(len(image_list)), size=labeled_total)) labeled_ids, labeled_images, unlabeled_images = [], [], [] for i in range(len(image_list)): if i in labeled_inds: labeled_images.append(image_list[i]) labeled_ids.append(image_list[i]['id']) else: unlabeled_images.append(image_list[i]) # get all annotations of labeled images labeled_ids = set(labeled_ids) labeled_annotations, unlabeled_annotations = [], [] for ann in anns['annotations']: if ann['image_id'] in labeled_ids: labeled_annotations.append(ann) else: unlabeled_annotations.append(ann) # save labeled and unlabeled labeled_name = f'instances_train2017.{fold}@{percent}' unlabeled_name = f'instances_train2017.{fold}@{percent}-unlabeled' save_anns(labeled_name, labeled_images, labeled_annotations) save_anns(unlabeled_name, unlabeled_images, unlabeled_annotations) def multi_wrapper(args): return split_coco(*args) if __name__ == '__main__': args = parse_args() arguments_list = [(args.data_root, args.out_dir, p, f) for f in range(1, args.fold + 1) for p in args.labeled_percent] track_parallel_progress(multi_wrapper, arguments_list, args.fold)
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import numpy as np from mmengine.fileio import dump, load from mmengine.utils import mkdir_or_exist, track_parallel_progress prog_description = '''K-Fold coco split. To split coco data for semi-supervised object detection: python tools/misc/split_coco.py ''' def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( '--data-root', type=str, help='The data root of coco dataset.', default='./data/coco/') parser.add_argument( '--out-dir', type=str, help='The output directory of coco semi-supervised annotations.', default='./data/coco_semi_annos/') parser.add_argument( '--labeled-percent', type=float, nargs='+', help='The percentage of labeled data in the training set.', default=[1, 2, 5, 10]) parser.add_argument( '--fold', type=int, help='K-fold cross validation for semi-supervised object detection.', default=5) args = parser.parse_args() return args def split_coco(data_root, out_dir, percent, fold): """Split COCO data for Semi-supervised object detection. Args: data_root (str): The data root of coco dataset. out_dir (str): The output directory of coco semi-supervised annotations. percent (float): The percentage of labeled data in the training set. fold (int): The fold of dataset and set as random seed for data split. """ def save_anns(name, images, annotations): sub_anns = dict() sub_anns['images'] = images sub_anns['annotations'] = annotations sub_anns['licenses'] = anns['licenses'] sub_anns['categories'] = anns['categories'] sub_anns['info'] = anns['info'] mkdir_or_exist(out_dir) dump(sub_anns, f'{out_dir}/{name}.json') # set random seed with the fold np.random.seed(fold) ann_file = osp.join(data_root, 'annotations/instances_train2017.json') anns = load(ann_file) image_list = anns['images'] labeled_total = int(percent / 100. * len(image_list)) labeled_inds = set( np.random.choice(range(len(image_list)), size=labeled_total)) labeled_ids, labeled_images, unlabeled_images = [], [], [] for i in range(len(image_list)): if i in labeled_inds: labeled_images.append(image_list[i]) labeled_ids.append(image_list[i]['id']) else: unlabeled_images.append(image_list[i]) # get all annotations of labeled images labeled_ids = set(labeled_ids) labeled_annotations, unlabeled_annotations = [], [] for ann in anns['annotations']: if ann['image_id'] in labeled_ids: labeled_annotations.append(ann) else: unlabeled_annotations.append(ann) # save labeled and unlabeled labeled_name = f'instances_train2017.{fold}@{percent}' unlabeled_name = f'instances_train2017.{fold}@{percent}-unlabeled' save_anns(labeled_name, labeled_images, labeled_annotations) save_anns(unlabeled_name, unlabeled_images, unlabeled_annotations) def multi_wrapper(args): return split_coco(*args) if __name__ == '__main__': args = parse_args() arguments_list = [(args.data_root, args.out_dir, p, f) for f in range(1, args.fold + 1) for p in args.labeled_percent] track_parallel_progress(multi_wrapper, arguments_list, args.fold)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import pytest from jina import Document, DocumentArray, Flow, requests from jina.executors import BaseExecutor from ...match_merger import MatchMerger class MockShard(BaseExecutor): @requests def search(self, docs: DocumentArray, **kwargs): for doc in docs: doc.matches.append(Document(tags={'shard_id': self.runtime_args.pea_id})) @pytest.fixture def docs(): return [Document(text=f'sample text {i}') for i in range(2)] @pytest.mark.parametrize('shards', (1, 3, 5)) def test_match_merger(docs, shards): with Flow().add( uses=MockShard, uses_after=MatchMerger, shards=shards, polling='all' ) as f: documents = f.search(docs, return_results=True)[0].docs assert len(documents) == 2 for doc in documents: assert {d.tags['shard_id'] for d in doc.matches} == { float(i) for i in range(shards) }
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import pytest from jina import Flow, Document, requests, DocumentArray from jina.executors import BaseExecutor from ...match_merger import MatchMerger class MockShard(BaseExecutor): @requests def search(self, docs: DocumentArray, **kwargs): for doc in docs: doc.matches.append(Document(tags={'shard_id': self.runtime_args.pea_id})) @pytest.fixture def docs(): return [Document(text=f'sample text {i}') for i in range(2)] @pytest.mark.parametrize('shards', (1, 3, 5)) def test_match_merger(docs, shards): with Flow().add( uses=MockShard, uses_after=MatchMerger, shards=shards, polling='all' ) as f: documents = f.search(docs, return_results=True)[0].docs assert len(documents) == 2 for doc in documents: assert {d.tags['shard_id'] for d in doc.matches} == {float(i) for i in range(shards)}
__copyright__ = 'Copyright (c) 2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' import os import subprocess from pathlib import Path import pytest from jina import Document, DocumentArray @pytest.fixture(scope='session') def docker_image_name() -> str: return Path(__file__).parents[1].stem.lower() @pytest.fixture(scope='session') def build_docker_image(docker_image_name: str) -> str: subprocess.run(['docker', 'build', '-t', docker_image_name, '.'], check=True) return docker_image_name @pytest.fixture(scope='session') def build_docker_image_gpu(docker_image_name: str) -> str: image_name = f'{docker_image_name}:gpu' subprocess.run( ['docker', 'build', '-t', image_name, '-f', 'Dockerfile.gpu', '.'], check=True ) return image_name @pytest.fixture() def test_dir() -> str: return os.path.dirname(os.path.abspath(__file__)) @pytest.fixture() def data_generator(test_dir: str): def _generator(): data_file_path = os.path.join(test_dir, 'data', 'test_data.txt') with open(data_file_path, 'r') as file: lines = file.readlines() for line in lines: yield Document(text=line.strip()) return _generator @pytest.fixture() def docs_with_text() -> DocumentArray: return DocumentArray([Document(text='hello world') for _ in range(10)]) @pytest.fixture() def docs_with_chunk_text() -> DocumentArray: return DocumentArray( [Document(chunks=[Document(text='hello world') for _ in range(10)])] ) @pytest.fixture() def docs_with_chunk_chunk_text() -> DocumentArray: return DocumentArray( [ Document( chunks=[ Document(chunks=[Document(text='hello world') for _ in range(10)]) ] ) ] )
__copyright__ = 'Copyright (c) 2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' import os import subprocess from pathlib import Path import pytest from jina import Document, DocumentArray @pytest.fixture(scope='session') def build_docker_image() -> str: img_name = Path(__file__).parents[1].stem.lower() subprocess.run(['docker', 'build', '-t', img_name, '.'], check=True) return img_name @pytest.fixture() def test_dir() -> str: return os.path.dirname(os.path.abspath(__file__)) @pytest.fixture() def data_generator(test_dir: str): def _generator(): data_file_path = os.path.join(test_dir, 'data', 'test_data.txt') with open(data_file_path, 'r') as file: lines = file.readlines() for line in lines: yield Document(text=line.strip()) return _generator @pytest.fixture() def docs_with_text() -> DocumentArray: return DocumentArray([Document(text='hello world') for _ in range(10)]) @pytest.fixture() def docs_with_chunk_text() -> DocumentArray: return DocumentArray( [Document(chunks=[Document(text='hello world') for _ in range(10)])] ) @pytest.fixture() def docs_with_chunk_chunk_text() -> DocumentArray: return DocumentArray( [ Document( chunks=[ Document(chunks=[Document(text='hello world') for _ in range(10)]) ] ) ] )
import random import numpy as np import pytest from jina import Document, DocumentArray from ..catboost_ranker import CatboostRanker NUM_DOCS = 1000 NUM_MATCHES = 5 @pytest.fixture def ranker(): return CatboostRanker( query_features=['brand', 'price'], match_features=['brand', 'price'], relevance_label='relevance', ) @pytest.fixture def ranker_with_weight(): return CatboostRanker( query_features=['brand', 'price'], match_features=['brand', 'price'], relevance_label='relevance', weight='weight', ) @pytest.fixture def relevances(): return np.random.uniform(0, 1, [1, NUM_DOCS]).flatten() @pytest.fixture def documents_to_train_stub_model(relevances): """features: color, brand, price. Label relevance""" # initial stub model, relevance purely dependent on brand, not price. # brand relevance 5 > 4 > 3 > 2 > 1. da = DocumentArray() bins = np.array([0.0, 0.2, 0.4, 0.6, 0.8, 1.0]) inds = np.digitize(relevances, bins) for brand, relevance in zip(inds, relevances): doc = Document( tags={ 'brand': int(brand), 'price': random.randint(50, 200), 'weight': random.uniform(0, 1), } ) for _ in range(NUM_MATCHES): # each match has an extra relevance field indicates score. doc.matches.append( Document( tags={ 'brand': int(brand), 'price': random.randint(50, 200), 'relevance': float(relevance), } ) ) da.append(doc) return da @pytest.fixture def documents_to_train_price_sensitive_model(): """features: color, brand, price. Label relevance""" # price sensitive, relevance based on pure price, cheaper relevance higher. da = DocumentArray() for _ in range(NUM_DOCS): root = Document(tags={'price': random.randint(200, 500), 'brand': 1}) for _ in range(NUM_MATCHES): root_price = root.tags['price'] root.matches.extend( [ Document( tags={'price': root_price - 100, 'brand': 3, 'relevance': 0.8} ), Document(tags={'price': root_price, 'brand': 3, 'relevance': 0.6}), Document( tags={'price': root_price + 100, 'brand': 3, 'relevance': 0.4} ), Document( tags={'price': root_price + 200, 'brand': 3, 'relevance': 0.2} ), ] ) da.append(root) return da @pytest.fixture def documents_without_label_random_price(): """features: color, brand, price. Label relevance""" # expect 5 > 3 > 1 # expect price da = DocumentArray() d1 = Document(tags={'brand': random.randint(0, 5), 'price': 200}) d1.matches.append(Document(tags={'brand': random.randint(0, 5), 'price': 196})) d1.matches.append(Document(tags={'brand': random.randint(0, 5), 'price': 100})) d1.matches.append(Document(tags={'brand': random.randint(0, 5), 'price': 50})) da.append(d1) return da @pytest.fixture def documents_without_label_random_brand(): """features: color, brand, price. Label relevance""" # expect price da = DocumentArray() d1 = Document(tags={'brand': 2, 'price': 200}) d1.matches.append(Document(id=1, tags={'brand': 2, 'price': 405})) d1.matches.append(Document(id=2, tags={'brand': 2, 'price': 305})) d1.matches.append(Document(id=3, tags={'brand': 2, 'price': 96})) d1.matches.append(Document(id=4, tags={'brand': 2, 'price': 200})) da.append(d1) return da
import random import pytest import numpy as np from jina import Document, DocumentArray from ..catboost_ranker import CatboostRanker NUM_DOCS = 1000 NUM_MATCHES = 5 @pytest.fixture def ranker(): return CatboostRanker( query_features=['brand', 'price'], match_features=['brand', 'price'], relevance_label='relevance', ) @pytest.fixture def ranker_with_weight(): return CatboostRanker( query_features=['brand', 'price'], match_features=['brand', 'price'], relevance_label='relevance', weight='weight', ) @pytest.fixture def relevances(): return np.random.uniform(0, 1, [1, NUM_DOCS]).flatten() @pytest.fixture def documents_to_train_stub_model(relevances): """features: color, brand, price. Label relevance""" # initial stub model, relevance purely dependent on brand, not price. # brand relevance 5 > 4 > 3 > 2 > 1. da = DocumentArray() bins = np.array([0.0, 0.2, 0.4, 0.6, 0.8, 1.0]) inds = np.digitize(relevances, bins) for brand, relevance in zip(inds, relevances): doc = Document( tags={ 'brand': int(brand), 'price': random.randint(50, 200), 'weight': random.uniform(0, 1), } ) for _ in range(NUM_MATCHES): # each match has an extra relevance field indicates score. doc.matches.append( Document( tags={ 'brand': int(brand), 'price': random.randint(50, 200), 'relevance': float(relevance), } ) ) da.append(doc) return da @pytest.fixture def documents_to_train_price_sensitive_model(): """features: color, brand, price. Label relevance""" # price sensitive, relevance based on pure price, cheaper relevance higher. da = DocumentArray() for _ in range(NUM_DOCS): root = Document(tags={'price': random.randint(200, 500), 'brand': 1}) for _ in range(NUM_MATCHES): root_price = root.tags['price'] root.matches.extend( [ Document( tags={'price': root_price - 100, 'brand': 3, 'relevance': 0.8} ), Document(tags={'price': root_price, 'brand': 3, 'relevance': 0.6}), Document( tags={'price': root_price + 100, 'brand': 3, 'relevance': 0.4} ), Document( tags={'price': root_price + 200, 'brand': 3, 'relevance': 0.2} ), ] ) da.append(root) return da @pytest.fixture def documents_without_label_random_price(): """features: color, brand, price. Label relevance""" # expect 5 > 3 > 1 # expect price da = DocumentArray() d1 = Document(tags={'brand': random.randint(0, 5), 'price': 200}) d1.matches.append(Document(tags={'brand': random.randint(0, 5), 'price': 196})) d1.matches.append(Document(tags={'brand': random.randint(0, 5), 'price': 100})) d1.matches.append(Document(tags={'brand': random.randint(0, 5), 'price': 50})) da.append(d1) return da @pytest.fixture def documents_without_label_random_brand(): """features: color, brand, price. Label relevance""" # expect price da = DocumentArray() d1 = Document(tags={'brand': 2, 'price': 200}) d1.matches.append(Document(id=1, tags={'brand': 2, 'price': 405})) d1.matches.append(Document(id=2, tags={'brand': 2, 'price': 305})) d1.matches.append(Document(id=3, tags={'brand': 2, 'price': 96})) d1.matches.append(Document(id=4, tags={'brand': 2, 'price': 200})) da.append(d1) return da
import pytest from docarray import DocumentArray, Document from docarray.array.opensearch import DocumentArrayOpenSearch from docarray.array.qdrant import DocumentArrayQdrant from docarray.array.sqlite import DocumentArraySqlite from docarray.array.annlite import DocumentArrayAnnlite, AnnliteConfig from docarray.array.storage.opensearch import OpenSearchConfig from docarray.array.storage.qdrant import QdrantConfig from docarray.array.storage.weaviate import WeaviateConfig from docarray.array.weaviate import DocumentArrayWeaviate from docarray.array.elastic import DocumentArrayElastic, ElasticConfig from docarray.array.redis import DocumentArrayRedis, RedisConfig from docarray.array.milvus import DocumentArrayMilvus, MilvusConfig N = 100 def da_and_dam(): da = DocumentArray.empty(N) dasq = DocumentArraySqlite.empty(N) return (da, dasq) @pytest.fixture def docs(): yield (Document(text=str(j)) for j in range(100)) @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), (DocumentArrayOpenSearch, OpenSearchConfig(n_dim=128)), (DocumentArrayRedis, RedisConfig(n_dim=1)), (DocumentArrayMilvus, MilvusConfig(n_dim=128)), ], ) def test_iter_len_bool(da_cls, config, start_storage): if config: da = da_cls.empty(N, config=config) else: da = da_cls.empty(N) j = 0 for _ in da: j += 1 assert j == N assert j == len(da) assert da da.clear() assert not da @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), (DocumentArrayOpenSearch, OpenSearchConfig(n_dim=128)), (DocumentArrayRedis, RedisConfig(n_dim=128)), (DocumentArrayMilvus, MilvusConfig(n_dim=128)), ], ) def test_repr(da_cls, config, start_storage): if config: da = da_cls.empty(N, config=config) else: da = da_cls.empty(N) assert f'length={N}' in repr(da) @pytest.mark.parametrize( 'storage, config', [ ('memory', None), ('sqlite', None), ('annlite', AnnliteConfig(n_dim=128)), ('weaviate', WeaviateConfig(n_dim=128)), ('qdrant', QdrantConfig(n_dim=128)), ('elasticsearch', ElasticConfig(n_dim=128)), ('opensearch', OpenSearchConfig(n_dim=128)), ('redis', RedisConfig(n_dim=128)), ('milvus', MilvusConfig(n_dim=128)), ], ) def test_repr_str(docs, storage, config, start_storage): if config: da = DocumentArray(docs, storage=storage, config=config) else: da = DocumentArray(docs, storage=storage) da.summary() assert da da.clear() assert not da print(da) @pytest.mark.parametrize( 'da_cls, config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=10)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=10)), (DocumentArrayQdrant, QdrantConfig(n_dim=10)), (DocumentArrayElastic, ElasticConfig(n_dim=10)), (DocumentArrayOpenSearch, OpenSearchConfig(n_dim=10)), (DocumentArrayRedis, RedisConfig(n_dim=10)), (DocumentArrayMilvus, MilvusConfig(n_dim=10)), ], ) def test_iadd(da_cls, config, start_storage): if config: da = da_cls.empty(N, config=config) else: da = da_cls.empty(N) oid = id(da) dap = DocumentArray.empty(10) da += dap assert len(da) == N + len(dap) nid = id(da) assert nid == oid @pytest.mark.parametrize('da', [da_and_dam()[0]]) def test_add(da): oid = id(da) dap = DocumentArray.empty(10) da = da + dap assert len(da) == N + len(dap) nid = id(da) assert nid != oid
import pytest from docarray import DocumentArray, Document from docarray.array.qdrant import DocumentArrayQdrant from docarray.array.sqlite import DocumentArraySqlite from docarray.array.annlite import DocumentArrayAnnlite, AnnliteConfig from docarray.array.storage.qdrant import QdrantConfig from docarray.array.storage.weaviate import WeaviateConfig from docarray.array.weaviate import DocumentArrayWeaviate from docarray.array.elastic import DocumentArrayElastic, ElasticConfig from docarray.array.redis import DocumentArrayRedis, RedisConfig from docarray.array.milvus import DocumentArrayMilvus, MilvusConfig N = 100 def da_and_dam(): da = DocumentArray.empty(N) dasq = DocumentArraySqlite.empty(N) return (da, dasq) @pytest.fixture def docs(): yield (Document(text=str(j)) for j in range(100)) @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), (DocumentArrayRedis, RedisConfig(n_dim=1)), (DocumentArrayMilvus, MilvusConfig(n_dim=128)), ], ) def test_iter_len_bool(da_cls, config, start_storage): if config: da = da_cls.empty(N, config=config) else: da = da_cls.empty(N) j = 0 for _ in da: j += 1 assert j == N assert j == len(da) assert da da.clear() assert not da @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), (DocumentArrayRedis, RedisConfig(n_dim=128)), (DocumentArrayMilvus, MilvusConfig(n_dim=128)), ], ) def test_repr(da_cls, config, start_storage): if config: da = da_cls.empty(N, config=config) else: da = da_cls.empty(N) assert f'length={N}' in repr(da) @pytest.mark.parametrize( 'storage, config', [ ('memory', None), ('sqlite', None), ('annlite', AnnliteConfig(n_dim=128)), ('weaviate', WeaviateConfig(n_dim=128)), ('qdrant', QdrantConfig(n_dim=128)), ('elasticsearch', ElasticConfig(n_dim=128)), ('redis', RedisConfig(n_dim=128)), ('milvus', MilvusConfig(n_dim=128)), ], ) def test_repr_str(docs, storage, config, start_storage): if config: da = DocumentArray(docs, storage=storage, config=config) else: da = DocumentArray(docs, storage=storage) da.summary() assert da da.clear() assert not da print(da) @pytest.mark.parametrize( 'da_cls, config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=10)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=10)), (DocumentArrayQdrant, QdrantConfig(n_dim=10)), (DocumentArrayElastic, ElasticConfig(n_dim=10)), (DocumentArrayRedis, RedisConfig(n_dim=10)), (DocumentArrayMilvus, MilvusConfig(n_dim=10)), ], ) def test_iadd(da_cls, config, start_storage): if config: da = da_cls.empty(N, config=config) else: da = da_cls.empty(N) oid = id(da) dap = DocumentArray.empty(10) da += dap assert len(da) == N + len(dap) nid = id(da) assert nid == oid @pytest.mark.parametrize('da', [da_and_dam()[0]]) def test_add(da): oid = id(da) dap = DocumentArray.empty(10) da = da + dap assert len(da) == N + len(dap) nid = id(da) assert nid != oid
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import copy from typing import Dict from jina import DocumentArray, Executor, requests from jinahub.indexers.searcher.FaissSearcher import FaissSearcher from jinahub.indexers.storage.LMDBStorage import LMDBStorage class FaissLMDBSearcher(Executor): """ `Document` with `.embedding` the same shape as the `Documents` stored in the `FaissSearcher`. The ids of the `Documents` stored in `FaissSearcher` need to exist in the `FileSearcher`. Otherwise you will not get back the original metadata. The `FaissSearcher` attaches matches to the `Documents` sent as inputs, with the id of the match, and its embedding. Then, the `FileSearcher` retrieves the full metadata (original text or image blob) and attaches those to the `Document`. You receive back the full `Document`. """ def __init__(self, dump_path=None, *args, **kwargs): """ :param dump_path: dump path """ super().__init__(*args, **kwargs) self._vec_indexer = FaissSearcher(dump_path=dump_path, *args, **kwargs) self._kv_indexer = LMDBStorage(dump_path=dump_path, *args, **kwargs) @requests(on="/search") def search(self, docs: "DocumentArray", parameters: Dict = None, **kwargs): self._vec_indexer.search(docs, parameters) kv_parameters = copy.deepcopy(parameters) kv_parameters["traversal_paths"] = [ path + "m" for path in kv_parameters.get("traversal_paths", ["r"]) ] self._kv_indexer.search(docs, parameters=kv_parameters)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import copy from typing import Dict from jina import DocumentArray, Executor, requests from jinahub.indexers.searcher.FaissSearcher import FaissSearcher from jinahub.indexers.storage.LMDBStorage import LMDBStorage class FaissLMDBSearcher(Executor): """ `Document` with `.embedding` the same shape as the `Documents` stored in the `FaissSearcher`. The ids of the `Documents` stored in `FaissSearcher` need to exist in the `FileSearcher`. Otherwise you will not get back the original metadata. The `FaissSearcher` attaches matches to the `Documents` sent as inputs, with the id of the match, and its embedding. Then, the `FileSearcher` retrieves the full metadata (original text or image blob) and attaches those to the `Document`. You receive back the full `Document`. """ def __init__(self, dump_path=None, *args, **kwargs): super().__init__(*args, **kwargs) self._vec_indexer = FaissSearcher(dump_path=dump_path, *args, **kwargs) self._kv_indexer = LMDBStorage(dump_path=dump_path, *args, **kwargs) @requests(on="/search") def search(self, docs: "DocumentArray", parameters: Dict = None, **kwargs): self._vec_indexer.search(docs, parameters) kv_parameters = copy.deepcopy(parameters) kv_parameters["traversal_paths"] = [ path + "m" for path in kv_parameters.get("traversal_paths", ["r"]) ] self._kv_indexer.search(docs, parameters=kv_parameters)
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import ParamSchedulerHook class TestParamSchedulerHook: def test_after_iter(self): Hook = ParamSchedulerHook() Runner = Mock() scheduler = Mock() scheduler.step = Mock() scheduler.by_epoch = False Runner.schedulers = [scheduler] Hook.after_train_iter(Runner) scheduler.step.assert_called() def test_after_epoch(self): Hook = ParamSchedulerHook() Runner = Mock() scheduler = Mock() scheduler.step = Mock() scheduler.by_epoch = True Runner.schedulers = [scheduler] Hook.after_train_epoch(Runner) scheduler.step.assert_called()
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import ParamSchedulerHook class TestParamSchedulerHook: def test_after_iter(self): Hook = ParamSchedulerHook() Runner = Mock() scheduler = Mock() scheduler.step = Mock() scheduler.by_epoch = False Runner.schedulers = [scheduler] Hook.after_iter(Runner) scheduler.step.assert_called() def test_after_epoch(self): Hook = ParamSchedulerHook() Runner = Mock() scheduler = Mock() scheduler.step = Mock() scheduler.by_epoch = True Runner.schedulers = [scheduler] Hook.after_epoch(Runner) scheduler.step.assert_called()
import argparse import jsonlines from pycocotools.coco import COCO from tqdm import tqdm def _has_only_empty_bbox(anno): return all(any(o <= 1 for o in obj['bbox'][2:]) for obj in anno) def has_valid_annotation(anno): # if it's empty, there is no annotation if len(anno) == 0: return False # if all boxes have close to zero area, there is no annotation if _has_only_empty_bbox(anno): return False return True def goldg2odvg(args): coco = COCO(args.input) ids = list(sorted(coco.imgs.keys())) out_results = [] for img_id in tqdm(ids): if isinstance(img_id, str): ann_ids = coco.getAnnIds(imgIds=[img_id], iscrowd=0) else: ann_ids = coco.getAnnIds(imgIds=img_id, iscrowd=0) annos = coco.loadAnns(ann_ids) if not has_valid_annotation(annos): continue img_info = coco.loadImgs(img_id)[0] file_name = img_info['file_name'] caption = img_info['caption'] regions = {} for anno in annos: box = anno['bbox'] tokens_positive = anno['tokens_positive'] x1, y1, w, h = box inter_w = max(0, min(x1 + w, int(img_info['width'])) - max(x1, 0)) inter_h = max(0, min(y1 + h, int(img_info['height'])) - max(y1, 0)) if inter_w * inter_h == 0: continue if anno['area'] <= 0 or w < 1 or h < 1: continue if anno.get('iscrowd', False): continue bbox_xyxy = [ x1, y1, min(x1 + w, int(img_info['width'])), min(y1 + h, int(img_info['height'])) ] tokens_positive = sorted(tokens_positive, key=lambda x: x[0]) phrase = [] pre_end_index = -10 for token in tokens_positive: start_index = token[0] end_index = token[1] if pre_end_index + 1 == start_index: if caption[token[0] - 1] == ' ': phrase[ -1] = phrase[-1] + ' ' + caption[token[0]:token[1]] else: phrase.append(caption[token[0]:token[1]]) else: phrase.append(caption[token[0]:token[1]]) pre_end_index = end_index key = ' '.join(phrase) if key not in regions: regions[key] = { 'bbox': bbox_xyxy, 'phrase': phrase, 'tokens_positive': tokens_positive } else: old_box = regions[key]['bbox'] if isinstance(old_box[0], list): old_box.append(bbox_xyxy) else: old_box = [old_box, bbox_xyxy] regions[key]['bbox'] = old_box out_dict = { 'filename': file_name, 'height': int(img_info['height']), 'width': int(img_info['width']), 'grounding': { 'caption': caption } } region_list = [] for key, value in regions.items(): phrase = value['phrase'] if len(phrase) == 1: phrase = phrase[0] region_list.append({ 'bbox': value['bbox'], 'phrase': phrase, 'tokens_positive': value['tokens_positive'] }) out_dict['grounding']['regions'] = region_list out_results.append(out_dict) if args.out_ann is None: out_path = args.input[:-5] + '_vg.json' else: out_path = args.out_ann with jsonlines.open(out_path, mode='w') as writer: writer.write_all(out_results) print(f'save to {out_path}') # goldg+: final_mixed_train_no_coco.json + # final_flickr_separateGT_train.json + # final_mixed_train_only_coco.json if __name__ == '__main__': parser = argparse.ArgumentParser('goldg to odvg format.', add_help=True) parser.add_argument('input', type=str, help='input json file name') parser.add_argument('--out-ann', '-o', type=str) args = parser.parse_args() goldg2odvg(args)
import argparse import jsonlines from pycocotools.coco import COCO from tqdm import tqdm def _has_only_empty_bbox(anno): return all(any(o <= 1 for o in obj['bbox'][2:]) for obj in anno) def has_valid_annotation(anno): # if it's empty, there is no annotation if len(anno) == 0: return False # if all boxes have close to zero area, there is no annotation if _has_only_empty_bbox(anno): return False return True def goldg2odvg(args): coco = COCO(args.input) ids = list(sorted(coco.imgs.keys())) out_results = [] for img_id in tqdm(ids): if isinstance(img_id, str): ann_ids = coco.getAnnIds(imgIds=[img_id], iscrowd=0) else: ann_ids = coco.getAnnIds(imgIds=img_id, iscrowd=0) annos = coco.loadAnns(ann_ids) if not has_valid_annotation(annos): continue img_info = coco.loadImgs(img_id)[0] file_name = img_info['file_name'] caption = img_info['caption'] regions = {} for anno in annos: box = anno['bbox'] tokens_positive = anno['tokens_positive'] x1, y1, w, h = box inter_w = max(0, min(x1 + w, int(img_info['width'])) - max(x1, 0)) inter_h = max(0, min(y1 + h, int(img_info['height'])) - max(y1, 0)) if inter_w * inter_h == 0: continue if anno['area'] <= 0 or w < 1 or h < 1: continue if anno.get('iscrowd', False): continue bbox_xyxy = [ x1, y1, min(x1 + w, int(img_info['width'])), min(y1 + h, int(img_info['height'])) ] tokens_positive = sorted(tokens_positive, key=lambda x: x[0]) phrase = [] pre_end_index = -10 for token in tokens_positive: start_index = token[0] end_index = token[1] if pre_end_index + 1 == start_index: if caption[token[0] - 1] == ' ': phrase[ -1] = phrase[-1] + ' ' + caption[token[0]:token[1]] else: phrase.append(caption[token[0]:token[1]]) else: phrase.append(caption[token[0]:token[1]]) pre_end_index = end_index key = ' '.join(phrase) if key not in regions: regions[key] = { 'bbox': bbox_xyxy, 'phrase': phrase, 'tokens_positive': tokens_positive } else: old_box = regions[key]['bbox'] if isinstance(old_box[0], list): old_box.append(bbox_xyxy) else: old_box = [old_box, bbox_xyxy] regions[key]['bbox'] = old_box out_dict = { 'filename': file_name, 'height': int(img_info['height']), 'width': int(img_info['width']), 'grounding': { 'caption': caption } } region_list = [] for key, value in regions.items(): phrase = value['phrase'] if len(phrase) == 1: phrase = phrase[0] region_list.append({ 'bbox': value['bbox'], 'phrase': phrase, 'tokens_positive': value['tokens_positive'] }) out_dict['grounding']['regions'] = region_list out_results.append(out_dict) if args.out_ann is None: out_path = args.input[:-5] + '_vg.json' else: out_path = args.out_ann with jsonlines.open(out_path, mode='w') as writer: writer.write_all(out_results) print(f'save to {out_path}') # goldg+: final_mixed_train_no_coco.json + # final_flickr_separateGT_train.json + # final_mixed_train_only_coco.json if __name__ == '__main__': parser = argparse.ArgumentParser('goldg to odvg format.', add_help=True) parser.add_argument('input', type=str, help='input list name') parser.add_argument('--out-ann', '-o', type=str) args = parser.parse_args() goldg2odvg(args)
from typing import Dict, Optional, TypeVar from google.protobuf import json_format from jina.excepts import BadRequestType from jina.helper import typename from jina.proto import jina_pb2 from jina.types.mixin import ProtoTypeMixin StatusSourceType = TypeVar('StatusSourceType', jina_pb2.StatusProto, str, Dict, bytes) class StatusMessage(ProtoTypeMixin): """Represents a Status message used for health check of the Flow""" def __init__( self, status_object: Optional[StatusSourceType] = None, ): self._pb_body = jina_pb2.StatusProto() try: if isinstance(status_object, jina_pb2.StatusProto): self._pb_body = status_object elif isinstance(status_object, dict): json_format.ParseDict(status_object, self._pb_body) elif isinstance(status_object, str): json_format.Parse(status_object, self._pb_body) elif isinstance(status_object, bytes): self._pb_body.ParseFromString(status_object) elif status_object is not None: # note ``None`` is not considered as a bad type raise ValueError(f'{typename(status_object)} is not recognizable') else: self._pb_body = jina_pb2.StatusProto() except Exception as ex: raise BadRequestType( f'fail to construct a {self.__class__} object from {status_object}' ) from ex def set_exception(self, ex: Exception): """Set exception information into the Status Message :param ex: The Exception to be filled """ import traceback self.proto.code = jina_pb2.StatusProto.ERROR self.proto.description = repr(ex) self.proto.exception.name = ex.__class__.__name__ self.proto.exception.args.extend([str(v) for v in ex.args]) self.proto.exception.stacks.extend( traceback.format_exception(type(ex), value=ex, tb=ex.__traceback__) ) def set_code(self, code): """Set the code of the Status Message :param code: The code to be added """ self.proto.code = code
from typing import Dict, Optional, TypeVar from google.protobuf import json_format from jina.excepts import BadRequestType from jina.helper import typename from jina.proto import jina_pb2 from jina.types.mixin import ProtoTypeMixin StatusSourceType = TypeVar('StatusSourceType', jina_pb2.StatusProto, str, Dict, bytes) class StatusMessage(ProtoTypeMixin): """Represents a Status message used for health check of the Flow""" def __init__( self, status_object: Optional[StatusSourceType] = None, ): self._pb_body = jina_pb2.StatusProto() try: if isinstance(status_object, jina_pb2.StatusProto): self._pb_body = status_object elif isinstance(status_object, dict): json_format.ParseDict(status_object, self._pb_body) elif isinstance(status_object, str): json_format.Parse(status_object, self._pb_body) elif isinstance(status_object, bytes): self._pb_body.ParseFromString(status_object) elif status_object is not None: # note ``None`` is not considered as a bad type raise ValueError(f'{typename(status_object)} is not recognizable') else: self._pb_body = jina_pb2.StatusProto() except Exception as ex: raise BadRequestType( f'fail to construct a {self.__class__} object from {status_object}' ) from ex def set_exception(self, ex: Exception): """Set exception information into the Status Message :param ex: The Exception to be filled """ import traceback self.proto.code = jina_pb2.StatusProto.ERROR self.proto.description = repr(ex) self.proto.exception.name = ex.__class__.__name__ self.proto.exception.args.extend([str(v) for v in ex.args]) self.proto.exception.stacks.extend( traceback.format_exception(etype=type(ex), value=ex, tb=ex.__traceback__) ) def set_code(self, code): """Set the code of the Status Message :param code: The code to be added """ self.proto.code = code
from typing import Any from langchain_core.exceptions import OutputParserException from langchain.output_parsers import ResponseSchema, StructuredOutputParser def test_parse() -> None: """Test parsing structured output.""" response_schemas = [ ResponseSchema(name="name", description="desc"), ResponseSchema(name="age", description="desc"), ] parser = StructuredOutputParser.from_response_schemas(response_schemas) # Test valid JSON input text = '```json\n{"name": "John", "age": 30}\n```' expected_result = {"name": "John", "age": 30} result = parser.parse(text) assert result == expected_result, f"Expected {expected_result}, but got {result}" # Test invalid JSON input text = '```json\n{"name": "John"}\n```' try: parser.parse(text) except OutputParserException: pass # Test passes if OutputParserException is raised else: msg = f"Expected OutputParserException, but got {parser.parse(text)}" raise AssertionError(msg) def test_output_type() -> None: """Test the output type of the structured output parser is Dict[str, Any].""" response_schemas = [ ResponseSchema(name="name", description="desc"), ResponseSchema(name="age", description="desc"), ] parser = StructuredOutputParser.from_response_schemas(response_schemas) assert parser.OutputType == dict[str, Any]
from typing import Any from langchain_core.exceptions import OutputParserException from langchain.output_parsers import ResponseSchema, StructuredOutputParser def test_parse() -> None: """Test parsing structured output.""" response_schemas = [ ResponseSchema(name="name", description="desc"), ResponseSchema(name="age", description="desc"), ] parser = StructuredOutputParser.from_response_schemas(response_schemas) # Test valid JSON input text = '```json\n{"name": "John", "age": 30}\n```' expected_result = {"name": "John", "age": 30} result = parser.parse(text) assert result == expected_result, f"Expected {expected_result}, but got {result}" # Test invalid JSON input text = '```json\n{"name": "John"}\n```' try: parser.parse(text) except OutputParserException: pass # Test passes if OutputParserException is raised else: assert False, f"Expected OutputParserException, but got {parser.parse(text)}" def test_output_type() -> None: """Test the output type of the structured output parser is Dict[str, Any].""" response_schemas = [ ResponseSchema(name="name", description="desc"), ResponseSchema(name="age", description="desc"), ] parser = StructuredOutputParser.from_response_schemas(response_schemas) assert parser.OutputType == dict[str, Any]
import random import asyncio import time import aiohttp import grpc def _raise_last_attempt(err, attempt): if isinstance(err, asyncio.CancelledError): trailing_metadata = grpc.aio.Metadata() trailing_metadata.add('jina-client-attempts', str(attempt)) raise grpc.aio.AioRpcError( code=grpc.StatusCode.CANCELLED, initial_metadata=grpc.aio.Metadata(), trailing_metadata=trailing_metadata, ) elif isinstance(err, grpc.aio.AioRpcError): trailing_metadata = err.trailing_metadata() or grpc.aio.Metadata() trailing_metadata.add('jina-client-attempts', str(attempt)) raise grpc.aio.AioRpcError( code=err.code(), details=err.details(), initial_metadata=err.initial_metadata(), trailing_metadata=trailing_metadata, debug_error_string=err.debug_error_string(), ) elif isinstance(err, aiohttp.ClientConnectorCertificateError): raise err elif isinstance(err, aiohttp.ClientError): raise ConnectionError(str(err)) else: raise err def sync_wait_or_raise_err( attempt: int, err: Exception, max_attempts: float, backoff_multiplier: float, initial_backoff: float, max_backoff: float, ): """ Accepts retry parameters and the underlying. The error is raised if the max_attempts has been reached otherwise the method waits based on the backoff calculations. :param attempt: Number of the current attempt. :param err: Underlying error that was raised by the operation. :param max_attempts: Maximum number of attempts that are allowed. :param backoff_multiplier: Factor that will be raised to the exponent of (attempt - 1) for calculating the backoff wait time. :param initial_backoff: The backoff time on the first error. This will be multiplied by the backoff_multiplier exponent for subsequent wait time calculations. :param max_backoff: The maximum backoff wait time. """ if attempt == max_attempts: _raise_last_attempt(err, attempt) else: time.sleep( _wait_time(attempt, backoff_multiplier, initial_backoff, max_backoff) ) async def wait_or_raise_err( attempt: int, err: Exception, max_attempts: float, backoff_multiplier: float, initial_backoff: float, max_backoff: float, ): """ Accepts retry parameters and the underlying. The error is raised if the max_attempts has been reached otherwise the method waits based on the backoff calculations. :param attempt: Number of the current attempt. :param err: Underlying error that was raised by the operation. :param max_attempts: Maximum number of attempts that are allowed. :param backoff_multiplier: Factor that will be raised to the exponent of (attempt - 1) for calculating the backoff wait time. :param initial_backoff: The backoff time on the first error. This will be multiplied by the backoff_multiplier exponent for subsequent wait time calculations. :param max_backoff: The maximum backoff wait time. """ if attempt == max_attempts: _raise_last_attempt(err, attempt) else: await asyncio.sleep( _wait_time(attempt, backoff_multiplier, initial_backoff, max_backoff) ) def _wait_time(attempt, backoff_multiplier, initial_backoff, max_backoff): if attempt == 1: wait_time = initial_backoff else: wait_time = random.uniform( 0, min(initial_backoff * backoff_multiplier ** (attempt - 1), max_backoff), ) return wait_time
import random import asyncio import time import aiohttp import grpc def _raise_last_attempt(err, attempt): if isinstance(err, asyncio.CancelledError): trailing_metadata = grpc.aio.Metadata() trailing_metadata.add('jina-client-attempts', str(attempt)) raise grpc.aio.AioRpcError( code=grpc.StatusCode.CANCELLED, initial_metadata=grpc.aio.Metadata(), trailing_metadata=trailing_metadata, ) elif isinstance(err, grpc.aio.AioRpcError): trailing_metadata = err.trailing_metadata() or grpc.aio.Metadata() trailing_metadata.add('jina-client-attempts', str(attempt)) raise grpc.aio.AioRpcError( code=err.code(), details=err.details(), initial_metadata=err.initial_metadata(), trailing_metadata=trailing_metadata, debug_error_string=err.debug_error_string(), ) elif isinstance(err, aiohttp.ClientConnectorCertificateError): raise err elif isinstance(err, aiohttp.ClientError): raise ConnectionError(str(err)) else: raise err def sync_wait_or_raise_err(attempt: int, err: Exception, max_attempts: float, backoff_multiplier: float, initial_backoff: float, max_backoff: float, ): """ Accepts retry parameters and the underlying. The error is raised if the max_attempts has been reached otherwise the method waits based on the backoff calculations. :param attempt: Number of the current attempt. :param err: Underlying error that was raised by the operation. :param max_attempts: Maximum number of attempts that are allowed. :param backoff_multiplier: Factor that will be raised to the exponent of (attempt - 1) for calculating the backoff wait time. :param initial_backoff: The backoff time on the first error. This will be multiplied by the backoff_multiplier exponent for subsequent wait time calculations. :param max_backoff: The maximum backoff wait time. """ if attempt == max_attempts: _raise_last_attempt(err, attempt) else: time.sleep(_wait_time(attempt, backoff_multiplier, initial_backoff, max_backoff)) async def wait_or_raise_err( attempt: int, err: Exception, max_attempts: float, backoff_multiplier: float, initial_backoff: float, max_backoff: float, ): """ Accepts retry parameters and the underlying. The error is raised if the max_attempts has been reached otherwise the method waits based on the backoff calculations. :param attempt: Number of the current attempt. :param err: Underlying error that was raised by the operation. :param max_attempts: Maximum number of attempts that are allowed. :param backoff_multiplier: Factor that will be raised to the exponent of (attempt - 1) for calculating the backoff wait time. :param initial_backoff: The backoff time on the first error. This will be multiplied by the backoff_multiplier exponent for subsequent wait time calculations. :param max_backoff: The maximum backoff wait time. """ if attempt == max_attempts: _raise_last_attempt(err, attempt) else: await asyncio.sleep(_wait_time(attempt, backoff_multiplier, initial_backoff, max_backoff)) def _wait_time(attempt, backoff_multiplier, initial_backoff, max_backoff): if attempt == 1: wait_time = initial_backoff else: wait_time = random.uniform( 0, min(initial_backoff * backoff_multiplier ** (attempt - 1), max_backoff), ) return wait_time
import argparse import json import logging import os import tarfile from functools import partial from multiprocessing import Pool def create_logger(output_file): logger = logging.getLogger('grit_logger') logger.setLevel(logging.INFO) # set logger output level formatter = logging.Formatter('%(asctime)s - %(message)s') fh = logging.FileHandler(output_file) fh.setLevel(logging.INFO) fh.setFormatter(formatter) console = logging.StreamHandler() console.setLevel(logging.INFO) logger.addHandler(fh) logger.addHandler(console) return logger def count_download_image(download_json_dir, logger): parquet_files = [ f for f in os.listdir(download_json_dir) if f.endswith('.json') ] len = 0 for file in parquet_files: with open(os.path.join(download_json_dir, file), 'r') as f: data = json.load(f) len = len + int(data['successes']) logger.info(file + 'has ' + str(data['successes']) + ' successful images') logger.info('all files finished.', str(len), 'images have been successfully downloaded.') def tar_processing(tar_path, output_dir, logger): filepath = untar(tar_path, logger) json_files = [f for f in os.listdir(filepath) if f.endswith('.json')] all_data = [] cnt = 0 for file in json_files: with open(os.path.join(filepath, file), 'r') as f: df = json.load(f) cnt = cnt + 1 all_data.extend([df]) dir_name = os.path.basename(filepath) # write all data to a json file logger.info(f'{dir_name} has {cnt} jsons') json_name = os.path.basename(filepath) + '.json' if not os.path.exists(os.path.join(output_dir, 'annotations')): os.mkdir(os.path.join(output_dir, 'annotations')) with open(os.path.join(output_dir, 'annotations', json_name), 'w') as f: json.dump(all_data, f) logger.info(f'{dir_name} completed') cp_rm(filepath, output_dir) return os.path.basename(filepath) def untar(filepath, logger): if tarfile.is_tarfile(filepath): new_folder = os.path.splitext(filepath)[0] tar_name = os.path.basename(filepath) with tarfile.open(filepath) as tar: members = tar.getmembers() if not os.path.exists(new_folder): os.mkdir(new_folder) else: f = os.listdir(new_folder) if len(members) == len(f): logger.info(f'{tar_name} already decompressed') return new_folder logger.info(f'{tar_name} decompressing...') os.system(f'tar -xf {filepath} -C {new_folder}') logger.info(f'{tar_name} decompressed!') return new_folder def cp_rm(filepath, output_dir): # delete txt/json for file in os.listdir(filepath): if file.endswith('.txt') or file.endswith('.json'): os.remove(os.path.join(filepath, file)) # move images to output dir target_dir = os.path.join(output_dir, 'images') if not os.path.exists(os.path.join(output_dir, 'images')): os.mkdir(os.path.join(output_dir, 'images')) os.system('mv -f {} {}'.format(filepath, target_dir)) def main(args): logger = create_logger(args.log_name) all_file_name = [ os.path.join(args.image_dir, file) for file in os.listdir(args.image_dir) if file.endswith('.tar') ] all_file_name.sort() func = partial(tar_processing, output_dir=args.output_dir, logger=logger) with Pool(processes=args.num_process) as pool: result = pool.imap(func=func, iterable=all_file_name) # noqa # print(result) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('image_dir', type=str) # grit raw directory parser.add_argument('output_dir', type=str) parser.add_argument('--num-process', default=10) parser.add_argument('--log-name', type=str, default='grit_processing.log') args = parser.parse_args() main(args)
import argparse import json import logging import os import tarfile from functools import partial from multiprocessing import Pool def create_logger(output_file): logger = logging.getLogger('grit_logger') logger.setLevel(logging.INFO) # set logger output level formatter = logging.Formatter('%(asctime)s - %(message)s') fh = logging.FileHandler(output_file) fh.setLevel(logging.INFO) fh.setFormatter(formatter) console = logging.StreamHandler() console.setLevel(logging.INFO) logger.addHandler(fh) logger.addHandler(console) return logger def count_download_image(download_json_dir, logger): parquet_files = [ f for f in os.listdir(download_json_dir) if f.endswith('.json') ] len = 0 for file in parquet_files: with open(os.path.join(download_json_dir, file), 'r') as f: data = json.load(f) len = len + int(data['successes']) logger.info(file + 'has ' + str(data['successes']) + ' successful images') logger.info('all files finished.', str(len), 'images have been successfully downloaded.') def tar_processing(tar_path, output_dir, logger): """解压tar文件到对应名字的文件夹,并提取所有的json combine后,删除其他保存图片.""" # 创建文件夹并解压 filepath = untar(tar_path, logger) '''将所有json融合为一个json''' # 获取解压后目录下所有的.json文件 json_files = [f for f in os.listdir(filepath) if f.endswith('.json')] # 初始化一个空的列表来存储所有的数据 all_data = [] cnt = 0 for file in json_files: with open(os.path.join(filepath, file), 'r') as f: df = json.load(f) cnt = cnt + 1 # 将DataFrame转换为.json格式,并添加到all_data列表中 all_data.extend([df]) dir_name = os.path.basename(filepath) # write all data to a json file logger.info(f'{dir_name} has {cnt} jsons') json_name = os.path.basename(filepath) + '.json' if not os.path.exists(os.path.join(output_dir, 'annotations')): os.mkdir(os.path.join(output_dir, 'annotations')) with open(os.path.join(output_dir, 'annotations', json_name), 'w') as f: json.dump(all_data, f) logger.info(f'{dir_name} completed') cp_rm(filepath, output_dir) return os.path.basename(filepath) def untar(filepath, logger): # 如果文件是tar文件,就解压它 if tarfile.is_tarfile(filepath): # 创建一个新的文件夹,和tar文件同名,但去掉后缀 new_folder = os.path.splitext(filepath)[0] tar_name = os.path.basename(filepath) with tarfile.open(filepath) as tar: # 获取tar文件中的所有成员 members = tar.getmembers() if not os.path.exists(new_folder): os.mkdir(new_folder) else: f = os.listdir(new_folder) # 打开tar文件,并解压到新的文件夹中 if len(members) == len(f): logger.info(f'{tar_name} already decompressed') return new_folder logger.info(f'{tar_name} decompressing...') os.system(f'tar -xf {filepath} -C {new_folder}') logger.info(f'{tar_name} decompressed!') return new_folder def cp_rm(filepath, output_dir): # delete txt/json for file in os.listdir(filepath): if file.endswith('.txt') or file.endswith('.json'): os.remove(os.path.join(filepath, file)) # move images to output dir target_dir = os.path.join(output_dir, 'images') if not os.path.exists(os.path.join(output_dir, 'images')): os.mkdir(os.path.join(output_dir, 'images')) os.system('mv -f {} {}'.format(filepath, target_dir)) parser = argparse.ArgumentParser() # parser.add_argument('-d', '--download_json_dir', type=str, default=None) parser.add_argument('image_dir', type=str) # grit raw directory parser.add_argument('output_dir', type=str) # processed grit output dir parser.add_argument('--log_name', type=str, default='grit_processing.log') args = parser.parse_args() def main(args): logger = create_logger(args.log_name) # if args.download_json_dir != None: # count_download_image(args.download_json_dir, logger) if args.image_dir is not None: all_file_name = [ os.path.join(args.image_dir, file) for file in os.listdir(args.image_dir) if file.endswith('.tar') ] all_file_name.sort() func = partial( tar_processing, output_dir=args.output_dir, logger=logger) with Pool(processes=10) as pool: result = pool.imap(func=func, iterable=all_file_name) for r in result: print(result) if __name__ == '__main__': main(args)
import os from typing import Optional import pytest from docarray import BaseDoc, DocArray from docarray.documents import ImageDoc from tests import TOYDATA_DIR @pytest.fixture() def nested_doc_cls(): class MyDoc(BaseDoc): count: Optional[int] text: str class MyDocNested(MyDoc): image: ImageDoc image2: ImageDoc return MyDocNested def test_to_from_csv(tmpdir, nested_doc_cls): da = DocArray[nested_doc_cls]( [ nested_doc_cls( count=0, text='hello', image=ImageDoc(url='aux.png'), image2=ImageDoc(url='aux.png'), ), nested_doc_cls(text='hello world', image=ImageDoc(), image2=ImageDoc()), ] ) tmp_file = str(tmpdir / 'tmp.csv') da.to_csv(tmp_file) assert os.path.isfile(tmp_file) da_from = DocArray[nested_doc_cls].from_csv(tmp_file) for doc1, doc2 in zip(da, da_from): assert doc1 == doc2 def test_from_csv_nested(nested_doc_cls): da = DocArray[nested_doc_cls].from_csv( file_path=str(TOYDATA_DIR / 'docs_nested.csv') ) assert len(da) == 3 for i, doc in enumerate(da): assert doc.count.__class__ == int assert doc.count == int(f'{i}{i}{i}') assert doc.text.__class__ == str assert doc.text == f'hello {i}' assert doc.image.__class__ == ImageDoc assert doc.image.tensor is None assert doc.image.embedding is None assert doc.image.bytes_ is None assert doc.image2.__class__ == ImageDoc assert doc.image2.tensor is None assert doc.image2.embedding is None assert doc.image2.bytes_ is None assert da[0].image2.url == 'image_10.png' assert da[1].image2.url is None assert da[2].image2.url is None @pytest.fixture() def nested_doc(): class Inner(BaseDoc): img: Optional[ImageDoc] class Middle(BaseDoc): img: Optional[ImageDoc] inner: Optional[Inner] class Outer(BaseDoc): img: Optional[ImageDoc] middle: Optional[Middle] doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())) ) return doc def test_from_csv_without_schema_raise_exception(): with pytest.raises(TypeError, match='no document schema defined'): DocArray.from_csv(file_path=str(TOYDATA_DIR / 'docs_nested.csv')) def test_from_csv_with_wrong_schema_raise_exception(nested_doc): with pytest.raises(ValueError, match='Column names do not match the schema'): DocArray[nested_doc.__class__].from_csv(file_path=str(TOYDATA_DIR / 'docs.csv'))
import os from typing import Optional import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import ImageDoc from tests import TOYDATA_DIR @pytest.fixture() def nested_doc_cls(): class MyDoc(BaseDocument): count: Optional[int] text: str class MyDocNested(MyDoc): image: ImageDoc image2: ImageDoc return MyDocNested def test_to_from_csv(tmpdir, nested_doc_cls): da = DocumentArray[nested_doc_cls]( [ nested_doc_cls( count=0, text='hello', image=ImageDoc(url='aux.png'), image2=ImageDoc(url='aux.png'), ), nested_doc_cls(text='hello world', image=ImageDoc(), image2=ImageDoc()), ] ) tmp_file = str(tmpdir / 'tmp.csv') da.to_csv(tmp_file) assert os.path.isfile(tmp_file) da_from = DocumentArray[nested_doc_cls].from_csv(tmp_file) for doc1, doc2 in zip(da, da_from): assert doc1 == doc2 def test_from_csv_nested(nested_doc_cls): da = DocumentArray[nested_doc_cls].from_csv( file_path=str(TOYDATA_DIR / 'docs_nested.csv') ) assert len(da) == 3 for i, doc in enumerate(da): assert doc.count.__class__ == int assert doc.count == int(f'{i}{i}{i}') assert doc.text.__class__ == str assert doc.text == f'hello {i}' assert doc.image.__class__ == ImageDoc assert doc.image.tensor is None assert doc.image.embedding is None assert doc.image.bytes_ is None assert doc.image2.__class__ == ImageDoc assert doc.image2.tensor is None assert doc.image2.embedding is None assert doc.image2.bytes_ is None assert da[0].image2.url == 'image_10.png' assert da[1].image2.url is None assert da[2].image2.url is None @pytest.fixture() def nested_doc(): class Inner(BaseDocument): img: Optional[ImageDoc] class Middle(BaseDocument): img: Optional[ImageDoc] inner: Optional[Inner] class Outer(BaseDocument): img: Optional[ImageDoc] middle: Optional[Middle] doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())) ) return doc def test_from_csv_without_schema_raise_exception(): with pytest.raises(TypeError, match='no document schema defined'): DocumentArray.from_csv(file_path=str(TOYDATA_DIR / 'docs_nested.csv')) def test_from_csv_with_wrong_schema_raise_exception(nested_doc): with pytest.raises(ValueError, match='Column names do not match the schema'): DocumentArray[nested_doc.__class__].from_csv( file_path=str(TOYDATA_DIR / 'docs.csv') )
# mypy: allow-untyped-defs import torch._C._lazy def reset(): """Resets all metric counters.""" torch._C._lazy._reset_metrics() def counter_names(): """Retrieves all the currently active counter names.""" return torch._C._lazy._counter_names() def counter_value(name: str): """Return the value of the counter with the specified name""" return torch._C._lazy._counter_value(name) def metrics_report(): """Return the combined (lazy core and backend) metric report""" return torch._C._lazy._metrics_report()
# mypy: allow-untyped-defs import torch._C._lazy def reset(): """Resets all metric counters.""" torch._C._lazy._reset_metrics() def counter_names(): """Retrieves all the currently active counter names.""" return torch._C._lazy._counter_names() def counter_value(name: str): """Return the value of the counter with the speficied name""" return torch._C._lazy._counter_value(name) def metrics_report(): """Return the combined (lazy core and backend) metric report""" return torch._C._lazy._metrics_report()
# Copyright (c) OpenMMLab. All rights reserved. from .conditional_detr_layers import (ConditionalDetrTransformerDecoder, ConditionalDetrTransformerDecoderLayer) from .dab_detr_layers import (DABDetrTransformerDecoder, DABDetrTransformerDecoderLayer, DABDetrTransformerEncoder) from .ddq_detr_layers import DDQTransformerDecoder from .deformable_detr_layers import (DeformableDetrTransformerDecoder, DeformableDetrTransformerDecoderLayer, DeformableDetrTransformerEncoder, DeformableDetrTransformerEncoderLayer) from .detr_layers import (DetrTransformerDecoder, DetrTransformerDecoderLayer, DetrTransformerEncoder, DetrTransformerEncoderLayer) from .dino_layers import CdnQueryGenerator, DinoTransformerDecoder from .grounding_dino_layers import (GroundingDinoTransformerDecoder, GroundingDinoTransformerDecoderLayer, GroundingDinoTransformerEncoder) from .mask2former_layers import (Mask2FormerTransformerDecoder, Mask2FormerTransformerDecoderLayer, Mask2FormerTransformerEncoder) from .utils import (MLP, AdaptivePadding, ConditionalAttention, DynamicConv, PatchEmbed, PatchMerging, coordinate_to_encoding, inverse_sigmoid, nchw_to_nlc, nlc_to_nchw) __all__ = [ 'nlc_to_nchw', 'nchw_to_nlc', 'AdaptivePadding', 'PatchEmbed', 'PatchMerging', 'inverse_sigmoid', 'DynamicConv', 'MLP', 'DetrTransformerEncoder', 'DetrTransformerDecoder', 'DetrTransformerEncoderLayer', 'DetrTransformerDecoderLayer', 'DeformableDetrTransformerEncoder', 'DeformableDetrTransformerDecoder', 'DeformableDetrTransformerEncoderLayer', 'DeformableDetrTransformerDecoderLayer', 'coordinate_to_encoding', 'ConditionalAttention', 'DABDetrTransformerDecoderLayer', 'DABDetrTransformerDecoder', 'DABDetrTransformerEncoder', 'DDQTransformerDecoder', 'ConditionalDetrTransformerDecoder', 'ConditionalDetrTransformerDecoderLayer', 'DinoTransformerDecoder', 'CdnQueryGenerator', 'Mask2FormerTransformerEncoder', 'Mask2FormerTransformerDecoderLayer', 'Mask2FormerTransformerDecoder', 'GroundingDinoTransformerDecoderLayer', 'GroundingDinoTransformerEncoder', 'GroundingDinoTransformerDecoder' ]
# Copyright (c) OpenMMLab. All rights reserved. from .conditional_detr_layers import (ConditionalDetrTransformerDecoder, ConditionalDetrTransformerDecoderLayer) from .dab_detr_layers import (DABDetrTransformerDecoder, DABDetrTransformerDecoderLayer, DABDetrTransformerEncoder) from .deformable_detr_layers import (DeformableDetrTransformerDecoder, DeformableDetrTransformerDecoderLayer, DeformableDetrTransformerEncoder, DeformableDetrTransformerEncoderLayer) from .detr_layers import (DetrTransformerDecoder, DetrTransformerDecoderLayer, DetrTransformerEncoder, DetrTransformerEncoderLayer) from .dino_layers import CdnQueryGenerator, DinoTransformerDecoder from .mask2former_layers import (Mask2FormerTransformerDecoder, Mask2FormerTransformerDecoderLayer, Mask2FormerTransformerEncoder) from .utils import (MLP, AdaptivePadding, ConditionalAttention, DynamicConv, PatchEmbed, PatchMerging, coordinate_to_encoding, inverse_sigmoid, nchw_to_nlc, nlc_to_nchw) __all__ = [ 'nlc_to_nchw', 'nchw_to_nlc', 'AdaptivePadding', 'PatchEmbed', 'PatchMerging', 'inverse_sigmoid', 'DynamicConv', 'MLP', 'DetrTransformerEncoder', 'DetrTransformerDecoder', 'DetrTransformerEncoderLayer', 'DetrTransformerDecoderLayer', 'DeformableDetrTransformerEncoder', 'DeformableDetrTransformerDecoder', 'DeformableDetrTransformerEncoderLayer', 'DeformableDetrTransformerDecoderLayer', 'coordinate_to_encoding', 'ConditionalAttention', 'DABDetrTransformerDecoderLayer', 'DABDetrTransformerDecoder', 'DABDetrTransformerEncoder', 'ConditionalDetrTransformerDecoder', 'ConditionalDetrTransformerDecoderLayer', 'DinoTransformerDecoder', 'CdnQueryGenerator', 'Mask2FormerTransformerEncoder', 'Mask2FormerTransformerDecoderLayer', 'Mask2FormerTransformerDecoder' ]
from __future__ import annotations import os import sys from typing import Any, BinaryIO, Optional, Tuple, Type, TypeVar, Union import PIL.Image import torch from torchvision.prototype.datapoints._datapoint import Datapoint from torchvision.prototype.utils._internal import fromfile, ReadOnlyTensorBuffer D = TypeVar("D", bound="EncodedData") class EncodedData(Datapoint): @classmethod def _wrap(cls: Type[D], tensor: torch.Tensor) -> D: return tensor.as_subclass(cls) def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: bool = False, ) -> EncodedData: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) # TODO: warn / bail out if we encounter a tensor with shape other than (N,) or with dtype other than uint8? return cls._wrap(tensor) @classmethod def wrap_like(cls: Type[D], other: D, tensor: torch.Tensor) -> D: return cls._wrap(tensor) @classmethod def from_file(cls: Type[D], file: BinaryIO, **kwargs: Any) -> D: encoded_data = cls(fromfile(file, dtype=torch.uint8, byte_order=sys.byteorder), **kwargs) file.close() return encoded_data @classmethod def from_path(cls: Type[D], path: Union[str, os.PathLike], **kwargs: Any) -> D: with open(path, "rb") as file: return cls.from_file(file, **kwargs) class EncodedImage(EncodedData): # TODO: Use @functools.cached_property if we can depend on Python 3.8 @property def spatial_size(self) -> Tuple[int, int]: if not hasattr(self, "_spatial_size"): with PIL.Image.open(ReadOnlyTensorBuffer(self)) as image: self._spatial_size = image.height, image.width return self._spatial_size
from __future__ import annotations import os import sys from typing import Any, BinaryIO, Optional, Tuple, Type, TypeVar, Union import PIL.Image import torch from torchvision.prototype.features._feature import _Feature from torchvision.prototype.utils._internal import fromfile, ReadOnlyTensorBuffer D = TypeVar("D", bound="EncodedData") class EncodedData(_Feature): @classmethod def _wrap(cls: Type[D], tensor: torch.Tensor) -> D: return tensor.as_subclass(cls) def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: bool = False, ) -> EncodedData: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) # TODO: warn / bail out if we encounter a tensor with shape other than (N,) or with dtype other than uint8? return cls._wrap(tensor) @classmethod def wrap_like(cls: Type[D], other: D, tensor: torch.Tensor) -> D: return cls._wrap(tensor) @classmethod def from_file(cls: Type[D], file: BinaryIO, **kwargs: Any) -> D: encoded_data = cls(fromfile(file, dtype=torch.uint8, byte_order=sys.byteorder), **kwargs) file.close() return encoded_data @classmethod def from_path(cls: Type[D], path: Union[str, os.PathLike], **kwargs: Any) -> D: with open(path, "rb") as file: return cls.from_file(file, **kwargs) class EncodedImage(EncodedData): # TODO: Use @functools.cached_property if we can depend on Python 3.8 @property def spatial_size(self) -> Tuple[int, int]: if not hasattr(self, "_spatial_size"): with PIL.Image.open(ReadOnlyTensorBuffer(self)) as image: self._spatial_size = image.height, image.width return self._spatial_size
from dataclasses import dataclass from functools import partial from typing import Callable import torch import torchaudio from torchaudio.prototype.models import conv_tasnet_base, hdemucs_high @dataclass class SourceSeparationBundle: """torchaudio.prototype.pipelines.SourceSeparationBundle() Dataclass that bundles components for performing source separation. Example >>> import torchaudio >>> from torchaudio.prototype.pipelines import CONVTASNET_BASE_LIBRI2MIX >>> import torch >>> >>> # Build the separation model. >>> model = CONVTASNET_BASE_LIBRI2MIX.get_model() >>> 100%|███████████████████████████████|19.1M/19.1M [00:04<00:00, 4.93MB/s] >>> >>> # Instantiate the test set of Libri2Mix dataset. >>> dataset = torchaudio.datasets.LibriMix("/home/datasets/", subset="test") >>> >>> # Apply source separation on mixture audio. >>> for i, data in enumerate(dataset): >>> sample_rate, mixture, clean_sources = data >>> # Make sure the shape of input suits the model requirement. >>> mixture = mixture.reshape(1, 1, -1) >>> estimated_sources = model(mixture) >>> score = si_snr_pit(estimated_sources, clean_sources) # for demonstration >>> print(f"Si-SNR score is : {score}.) >>> break >>> Si-SNR score is : 16.24. >>> """ _model_path: str _model_factory_func: Callable[[], torch.nn.Module] _sample_rate: int @property def sample_rate(self) -> int: """Sample rate of the audio that the model is trained on. :type: int """ return self._sample_rate def get_model(self) -> torch.nn.Module: """Construct the model and load the pretrained weight.""" model = self._model_factory_func() path = torchaudio.utils.download_asset(self._model_path) state_dict = torch.load(path) model.load_state_dict(state_dict) model.eval() return model CONVTASNET_BASE_LIBRI2MIX = SourceSeparationBundle( _model_path="models/conv_tasnet_base_libri2mix.pt", _model_factory_func=partial(conv_tasnet_base, num_sources=2), _sample_rate=8000, ) CONVTASNET_BASE_LIBRI2MIX.__doc__ = """Pre-trained *ConvTasNet* [:footcite:`Luo_2019`] pipeline for source separation. The underlying model is constructed by :py:func:`torchaudio.prototyoe.models.conv_tasnet_base` and utilizes weights trained on *Libri2Mix dataset* [:footcite:`cosentino2020librimix`] using training script ``lightning_train.py`` `here <https://github.com/pytorch/audio/tree/release/0.12/examples/source_separation/>`__ with default arguments. Please refer to :py:class:`SourceSeparationBundle` for usage instructions. """ HDEMUCS_HIGH_MUSDB_PLUS = SourceSeparationBundle( _model_path="models/hdemucs_high_trained.pt", _model_factory_func=partial(hdemucs_high, sources=["drums", "bass", "other", "vocals"]), _sample_rate=44100, ) HDEMUCS_HIGH_MUSDB_PLUS.__doc__ = """Pre-trained *Hybrid Demucs* [:footcite:`defossez2021hybrid`] pipeline for music source separation. The underlying model is constructed by :py:func:`torchaudio.prototyoe.models.hdemucs_high` and utilizes weights trained on MUSDB-HQ [:footcite:`MUSDB18HQ`] and internal extra training data, all at the same sample rate of 44.1 kHZ. The model separates mixture music into “drums”, “base”, “vocals”, and “other” sources. Training was performed in the original HDemucs repository `here <https://github.com/facebookresearch/demucs/>`__. """
from dataclasses import dataclass from functools import partial from typing import Callable import torch import torchaudio from torchaudio.prototype.models import conv_tasnet_base, hdemucs_high @dataclass class SourceSeparationBundle: """torchaudio.prototype.pipelines.SourceSeparationBundle() Dataclass that bundles components for performing source separation. Example >>> import torchaudio >>> from torchaudio.prototype.pipelines import CONVTASNET_BASE_LIBRI2MIX >>> import torch >>> >>> # Build the separation model. >>> model = CONVTASNET_BASE_LIBRI2MIX.get_model() >>> 100%|███████████████████████████████|19.1M/19.1M [00:04<00:00, 4.93MB/s] >>> >>> # Instantiate the test set of Libri2Mix dataset. >>> dataset = torchaudio.datasets.LibriMix("/home/datasets/", subset="test") >>> >>> # Apply source separation on mixture audio. >>> for i, data in enumerate(dataset): >>> sample_rate, mixture, clean_sources = data >>> # Make sure the shape of input suits the model requirement. >>> mixture = mixture.reshape(1, 1, -1) >>> estimated_sources = model(mixture) >>> score = si_snr_pit(estimated_sources, clean_sources) # for demonstration >>> print(f"Si-SNR score is : {score}.) >>> break >>> Si-SNR score is : 16.24. >>> """ _model_path: str _model_factory_func: Callable[[], torch.nn.Module] _sample_rate: int @property def sample_rate(self) -> int: """Sample rate of the audio that the model is trained on. :type: int """ return self._sample_rate def get_model(self) -> torch.nn.Module: """Construct the model and load the pretrained weight.""" model = self._model_factory_func() path = torchaudio.utils.download_asset(self._model_path) state_dict = torch.load(path) model.load_state_dict(state_dict) model.eval() return model CONVTASNET_BASE_LIBRI2MIX = SourceSeparationBundle( _model_path="models/conv_tasnet_base_libri2mix.pt", _model_factory_func=partial(conv_tasnet_base, num_sources=2), _sample_rate=8000, ) CONVTASNET_BASE_LIBRI2MIX.__doc__ = """Pre-trained *ConvTasNet* [:footcite:`Luo_2019`] pipeline for source separation. The underlying model is constructed by :py:func:`torchaudio.prototyoe.models.conv_tasnet_base` and utilizes weights trained on *Libri2Mix dataset* [:footcite:`cosentino2020librimix`] using training script ``lightning_train.py`` `here <https://github.com/pytorch/audio/tree/release/0.12/examples/source_separation/>`__ with default arguments. Please refer to :py:class:`SourceSeparationBundle` for usage instructions. """ HDEMUCS_HIGH_MUSDB_PLUS = SourceSeparationBundle( _model_path="models/hdemucs_high_trained.pt", _model_factory_func=partial(hdemucs_high, sources=["drums", "bass", "other", "vocals"], sample_rate=44100), _sample_rate=44100, ) HDEMUCS_HIGH_MUSDB_PLUS.__doc__ = """Pre-trained *Hybrid Demucs* [:footcite:`defossez2021hybrid`] pipeline for music source separation. The underlying model is constructed by :py:func:`torchaudio.prototyoe.models.hdemucs_high` and utilizes weights trained on MUSDB-HQ [:footcite:`MUSDB18HQ`] and internal extra training data, all at the same sample rate of 44.1 kHZ. The model separates mixture music into “drums”, “base”, “vocals”, and “other” sources. Training was performed in the original HDemucs repository `here <https://github.com/facebookresearch/demucs/>`__. """
import tempfile import unittest import numpy as np import pytest import torch from diffusers import DiffusionPipeline from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor from diffusers.utils.testing_utils import torch_device class AttnAddedKVProcessorTests(unittest.TestCase): def get_constructor_arguments(self, only_cross_attention: bool = False): query_dim = 10 if only_cross_attention: cross_attention_dim = 12 else: # when only cross attention is not set, the cross attention dim must be the same as the query dim cross_attention_dim = query_dim return { "query_dim": query_dim, "cross_attention_dim": cross_attention_dim, "heads": 2, "dim_head": 4, "added_kv_proj_dim": 6, "norm_num_groups": 1, "only_cross_attention": only_cross_attention, "processor": AttnAddedKVProcessor(), } def get_forward_arguments(self, query_dim, added_kv_proj_dim): batch_size = 2 hidden_states = torch.rand(batch_size, query_dim, 3, 2) encoder_hidden_states = torch.rand(batch_size, 4, added_kv_proj_dim) attention_mask = None return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "attention_mask": attention_mask, } def test_only_cross_attention(self): # self and cross attention torch.manual_seed(0) constructor_args = self.get_constructor_arguments(only_cross_attention=False) attn = Attention(**constructor_args) self.assertTrue(attn.to_k is not None) self.assertTrue(attn.to_v is not None) forward_args = self.get_forward_arguments( query_dim=constructor_args["query_dim"], added_kv_proj_dim=constructor_args["added_kv_proj_dim"] ) self_and_cross_attn_out = attn(**forward_args) # only self attention torch.manual_seed(0) constructor_args = self.get_constructor_arguments(only_cross_attention=True) attn = Attention(**constructor_args) self.assertTrue(attn.to_k is None) self.assertTrue(attn.to_v is None) forward_args = self.get_forward_arguments( query_dim=constructor_args["query_dim"], added_kv_proj_dim=constructor_args["added_kv_proj_dim"] ) only_cross_attn_out = attn(**forward_args) self.assertTrue((only_cross_attn_out != self_and_cross_attn_out).all()) class DeprecatedAttentionBlockTests(unittest.TestCase): @pytest.fixture(scope="session") def is_dist_enabled(pytestconfig): return pytestconfig.getoption("dist") == "loadfile" @pytest.mark.xfail( condition=torch.device(torch_device).type == "cuda" and is_dist_enabled, reason="Test currently fails on our GPU CI because of `loadfile`. Note that it only fails when the tests are distributed from `pytest ... tests/models`. If the tests are run individually, even with `loadfile` it won't fail.", strict=True, ) def test_conversion_when_using_device_map(self): pipe = DiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None ) pre_conversion = pipe( "foo", num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np", ).images # the initial conversion succeeds pipe = DiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-torch", device_map="balanced", safety_checker=None ) conversion = pipe( "foo", num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np", ).images with tempfile.TemporaryDirectory() as tmpdir: # save the converted model pipe.save_pretrained(tmpdir) # can also load the converted weights pipe = DiffusionPipeline.from_pretrained(tmpdir, device_map="balanced", safety_checker=None) after_conversion = pipe( "foo", num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np", ).images self.assertTrue(np.allclose(pre_conversion, conversion, atol=1e-3)) self.assertTrue(np.allclose(conversion, after_conversion, atol=1e-3))
import tempfile import unittest import numpy as np import torch from diffusers import DiffusionPipeline from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor class AttnAddedKVProcessorTests(unittest.TestCase): def get_constructor_arguments(self, only_cross_attention: bool = False): query_dim = 10 if only_cross_attention: cross_attention_dim = 12 else: # when only cross attention is not set, the cross attention dim must be the same as the query dim cross_attention_dim = query_dim return { "query_dim": query_dim, "cross_attention_dim": cross_attention_dim, "heads": 2, "dim_head": 4, "added_kv_proj_dim": 6, "norm_num_groups": 1, "only_cross_attention": only_cross_attention, "processor": AttnAddedKVProcessor(), } def get_forward_arguments(self, query_dim, added_kv_proj_dim): batch_size = 2 hidden_states = torch.rand(batch_size, query_dim, 3, 2) encoder_hidden_states = torch.rand(batch_size, 4, added_kv_proj_dim) attention_mask = None return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "attention_mask": attention_mask, } def test_only_cross_attention(self): # self and cross attention torch.manual_seed(0) constructor_args = self.get_constructor_arguments(only_cross_attention=False) attn = Attention(**constructor_args) self.assertTrue(attn.to_k is not None) self.assertTrue(attn.to_v is not None) forward_args = self.get_forward_arguments( query_dim=constructor_args["query_dim"], added_kv_proj_dim=constructor_args["added_kv_proj_dim"] ) self_and_cross_attn_out = attn(**forward_args) # only self attention torch.manual_seed(0) constructor_args = self.get_constructor_arguments(only_cross_attention=True) attn = Attention(**constructor_args) self.assertTrue(attn.to_k is None) self.assertTrue(attn.to_v is None) forward_args = self.get_forward_arguments( query_dim=constructor_args["query_dim"], added_kv_proj_dim=constructor_args["added_kv_proj_dim"] ) only_cross_attn_out = attn(**forward_args) self.assertTrue((only_cross_attn_out != self_and_cross_attn_out).all()) class DeprecatedAttentionBlockTests(unittest.TestCase): def test_conversion_when_using_device_map(self): pipe = DiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None ) pre_conversion = pipe( "foo", num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np", ).images # the initial conversion succeeds pipe = DiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-torch", device_map="balanced", safety_checker=None ) conversion = pipe( "foo", num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np", ).images with tempfile.TemporaryDirectory() as tmpdir: # save the converted model pipe.save_pretrained(tmpdir) # can also load the converted weights pipe = DiffusionPipeline.from_pretrained(tmpdir, device_map="balanced", safety_checker=None) after_conversion = pipe( "foo", num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np", ).images self.assertTrue(np.allclose(pre_conversion, conversion, atol=1e-3)) self.assertTrue(np.allclose(conversion, after_conversion, atol=1e-3))
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import pytest from executor.audioclip_text import AudioCLIPTextEncoder from jina import Document, DocumentArray, Flow _EMBEDDING_DIM = 1024 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=AudioCLIPTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', '--volumes=.cache:/workspace/.cache', ], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'pea', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:"cuda"', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import pytest from executor.audioclip_text import AudioCLIPTextEncoder from jina import Document, DocumentArray, Flow _EMBEDDING_DIM = 1024 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=AudioCLIPTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', '--volumes=.cache:/workspace/.cache', ], timeout=30, check=True, )
from typing import TYPE_CHECKING, Any, Dict, List, Optional, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.url.mimetypes import MESH_EXTRA_EXTENSIONS from docarray.typing.url.url_3d.url_3d import Url3D if TYPE_CHECKING: from docarray.documents.mesh.vertices_and_faces import VerticesAndFaces T = TypeVar('T', bound='Mesh3DUrl') @_register_proto(proto_type_name='mesh_url') class Mesh3DUrl(Url3D): """ URL to a file containing 3D mesh information. Can be remote (web) URL, or a local file path. """ @classmethod def extra_extensions(cls) -> List[str]: """ Returns a list of additional file extensions that are valid for this class but cannot be identified by the mimetypes library. """ return MESH_EXTRA_EXTENSIONS def load( self: T, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> 'VerticesAndFaces': """ Load the data from the url into a [`VerticesAndFaces`][docarray.documents.VerticesAndFaces] object containing vertices and faces information. --- ```python from docarray import BaseDoc from docarray.typing import Mesh3DUrl, NdArray class MyDoc(BaseDoc): mesh_url: Mesh3DUrl doc = MyDoc(mesh_url="https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj") tensors = doc.mesh_url.load() assert isinstance(tensors.vertices, NdArray) assert isinstance(tensors.faces, NdArray) ``` :param skip_materials: Skip materials if True, else skip. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: VerticesAndFaces object containing vertices and faces information. """ from docarray.documents.mesh.vertices_and_faces import VerticesAndFaces if not trimesh_args: trimesh_args = {} mesh = self._load_trimesh_instance( force='mesh', skip_materials=skip_materials, **trimesh_args ) vertices = parse_obj_as(NdArray, mesh.vertices.view(np.ndarray)) faces = parse_obj_as(NdArray, mesh.faces.view(np.ndarray)) return VerticesAndFaces(vertices=vertices, faces=faces) def display(self) -> None: """ Plot mesh from url. This loads the Trimesh instance of the 3D mesh, and then displays it. """ from IPython.display import display mesh = self._load_trimesh_instance(skip_materials=False) display(mesh.show())
from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.url.url_3d.url_3d import Url3D if TYPE_CHECKING: from docarray.documents.mesh.vertices_and_faces import VerticesAndFaces T = TypeVar('T', bound='Mesh3DUrl') @_register_proto(proto_type_name='mesh_url') class Mesh3DUrl(Url3D): """ URL to a file containing 3D mesh information. Can be remote (web) URL, or a local file path. """ def load( self: T, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> 'VerticesAndFaces': """ Load the data from the url into a [`VerticesAndFaces`][docarray.documents.VerticesAndFaces] object containing vertices and faces information. --- ```python from docarray import BaseDoc from docarray.typing import Mesh3DUrl, NdArray class MyDoc(BaseDoc): mesh_url: Mesh3DUrl doc = MyDoc(mesh_url="https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj") tensors = doc.mesh_url.load() assert isinstance(tensors.vertices, NdArray) assert isinstance(tensors.faces, NdArray) ``` :param skip_materials: Skip materials if True, else skip. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: VerticesAndFaces object containing vertices and faces information. """ from docarray.documents.mesh.vertices_and_faces import VerticesAndFaces if not trimesh_args: trimesh_args = {} mesh = self._load_trimesh_instance( force='mesh', skip_materials=skip_materials, **trimesh_args ) vertices = parse_obj_as(NdArray, mesh.vertices.view(np.ndarray)) faces = parse_obj_as(NdArray, mesh.faces.view(np.ndarray)) return VerticesAndFaces(vertices=vertices, faces=faces) def display(self) -> None: """ Plot mesh from url. This loads the Trimesh instance of the 3D mesh, and then displays it. """ from IPython.display import display mesh = self._load_trimesh_instance(skip_materials=False) display(mesh.show())