input
stringlengths
33
5k
output
stringlengths
32
5k
from pathlib import Path from typing import Any, List, Union from langchain_community.document_loaders.unstructured import ( UnstructuredFileLoader, validate_unstructured_version, ) class UnstructuredMarkdownLoader(UnstructuredFileLoader): """Load `Markdown` files using `Unstructured`. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Setup: Install ``langchain-community``. .. code-block:: bash pip install -U langchain-community Instantiate: .. code-block:: python from langchain_community.document_loaders import UnstructuredMarkdownLoader loader = UnstructuredMarkdownLoader( "./example_data/example.md", mode="elements", strategy="fast", ) Lazy load: .. code-block:: python docs = [] docs_lazy = loader.lazy_load() # async variant: # docs_lazy = await loader.alazy_load() for doc in docs_lazy: docs.append(doc) print(docs[0].page_content[:100]) print(docs[0].metadata) .. code-block:: python Sample Markdown Document {'source': './example_data/example.md', 'category_depth': 0, 'last_modified': '2024-08-14T15:04:18', 'languages': ['eng'], 'filetype': 'text/markdown', 'file_directory': './example_data', 'filename': 'example.md', 'category': 'Title', 'element_id': '3d0b313864598e704aa26c728ecb61e5'} Async load: .. code-block:: python docs = await loader.aload() print(docs[0].page_content[:100]) print(docs[0].metadata) .. code-block:: python Sample Markdown Document {'source': './example_data/example.md', 'category_depth': 0, 'last_modified': '2024-08-14T15:04:18', 'languages': ['eng'], 'filetype': 'text/markdown', 'file_directory': './example_data', 'filename': 'example.md', 'category': 'Title', 'element_id': '3d0b313864598e704aa26c728ecb61e5'} References ---------- https://unstructured-io.github.io/unstructured/core/partition.html#partition-md """ # noqa: E501 def __init__( self, file_path: Union[str, Path], mode: str = "single", **unstructured_kwargs: Any, ): """ Args: file_path: The path to the Markdown file to load. mode: The mode to use when loading the file. Can be one of "single", "multi", or "all". Default is "single". **unstructured_kwargs: Any kwargs to pass to the unstructured. """ file_path = str(file_path) validate_unstructured_version("0.4.16") super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.partition.md import partition_md return partition_md(filename=self.file_path, **self.unstructured_kwargs)
from pathlib import Path from typing import Any, List, Union from langchain_community.document_loaders.unstructured import ( UnstructuredFileLoader, validate_unstructured_version, ) class UnstructuredMarkdownLoader(UnstructuredFileLoader): """Load `Markdown` files using `Unstructured`. You can run the loader in one of two modes: "single" and "elements". If you use "single" mode, the document will be returned as a single langchain Document object. If you use "elements" mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Setup: Install ``langchain-community``. .. code-block:: bash pip install -U langchain-community Instantiate: .. code-block:: python from langchain_community.document_loaders import UnstructuredMarkdownLoader loader = UnstructuredMarkdownLoader( "./example_data/example.md", mode="elements", strategy="fast", ) Lazy load: .. code-block:: python docs = [] docs_lazy = loader.lazy_load() # async variant: # docs_lazy = await loader.alazy_load() for doc in docs_lazy: docs.append(doc) print(docs[0].page_content[:100]) print(docs[0].metadata) .. code-block:: python Sample Markdown Document {'source': './example_data/example.md', 'category_depth': 0, 'last_modified': '2024-08-14T15:04:18', 'languages': ['eng'], 'filetype': 'text/markdown', 'file_directory': './example_data', 'filename': 'example.md', 'category': 'Title', 'element_id': '3d0b313864598e704aa26c728ecb61e5'} Async load: .. code-block:: python docs = await loader.aload() print(docs[0].page_content[:100]) print(docs[0].metadata) .. code-block:: python Sample Markdown Document {'source': './example_data/example.md', 'category_depth': 0, 'last_modified': '2024-08-14T15:04:18', 'languages': ['eng'], 'filetype': 'text/markdown', 'file_directory': './example_data', 'filename': 'example.md', 'category': 'Title', 'element_id': '3d0b313864598e704aa26c728ecb61e5'} References ---------- https://unstructured-io.github.io/unstructured/core/partition.html#partition-md """ # noqa: E501 def __init__( self, file_path: Union[str, Path], mode: str = "single", **unstructured_kwargs: Any, ): """ Args: file_path: The path to the Markdown file to load. mode: The mode to use when loading the file. Can be one of "single", "multi", or "all". Default is "single". **unstructured_kwargs: Any kwargs to pass to the unstructured. """ file_path = str(file_path) validate_unstructured_version("0.4.16") super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs) def _get_elements(self) -> List: from unstructured.partition.md import partition_md return partition_md(filename=self.file_path, **self.unstructured_kwargs) # type: ignore[arg-type]
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from pathlib import Path import pytest from jina import Document, DocumentArray @pytest.fixture() def docs_with_text() -> DocumentArray: return DocumentArray([Document(text='hello world') for _ in range(10)]) @pytest.fixture() def docs_with_chunk_text() -> DocumentArray: return DocumentArray( [Document(chunks=[Document(text='hello world') for _ in range(10)])] ) @pytest.fixture() def docs_with_chunk_chunk_text() -> DocumentArray: return DocumentArray( [ Document( chunks=[ Document(chunks=[Document(text='hello world') for _ in range(10)]) ] ) ] ) @pytest.fixture(scope='session') def docker_image_name() -> str: return Path(__file__).parents[1].stem.lower() @pytest.fixture(scope='session') def build_docker_image(docker_image_name: str) -> str: subprocess.run(['docker', 'build', '-t', docker_image_name, '.'], check=True) return docker_image_name @pytest.fixture(scope='session') def build_docker_image_gpu(docker_image_name: str) -> str: image_name = f'{docker_image_name}:gpu' subprocess.run( ['docker', 'build', '-t', image_name, '-f', 'Dockerfile.gpu', '.'], check=True ) return image_name
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import pytest from jina import Document, DocumentArray @pytest.fixture() def docs_with_text() -> DocumentArray: return DocumentArray([Document(text='hello world') for _ in range(10)]) @pytest.fixture() def docs_with_chunk_text() -> DocumentArray: return DocumentArray( [Document(chunks=[Document(text='hello world') for _ in range(10)])] ) @pytest.fixture() def docs_with_chunk_chunk_text() -> DocumentArray: return DocumentArray( [ Document( chunks=[ Document(chunks=[Document(text='hello world') for _ in range(10)]) ] ) ] )
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from typing import Any, Dict, List, Optional, Union from huggingface_hub import HfFileSystem from . import config from .table import CastError from .utils.track import TrackedIterable, tracked_list, tracked_str class DatasetsError(Exception): """Base class for exceptions in this library.""" class DefunctDatasetError(DatasetsError): """The dataset has been defunct.""" class FileNotFoundDatasetsError(DatasetsError, FileNotFoundError): """FileNotFoundError raised by this library.""" class DataFilesNotFoundError(FileNotFoundDatasetsError): """No (supported) data files found.""" class DatasetNotFoundError(FileNotFoundDatasetsError): """Dataset not found. Raised when trying to access: - a missing dataset, or - a private/gated dataset and the user is not authenticated. """ class DatasetBuildError(DatasetsError): pass class ManualDownloadError(DatasetBuildError): pass class FileFormatError(DatasetBuildError): pass class DatasetGenerationError(DatasetBuildError): pass class DatasetGenerationCastError(DatasetGenerationError): @classmethod def from_cast_error( cls, cast_error: CastError, builder_name: str, gen_kwargs: Dict[str, Any], token: Optional[Union[bool, str]], ) -> "DatasetGenerationCastError": explanation_message = ( f"\n\nAll the data files must have the same columns, but at some point {cast_error.details()}" ) formatted_tracked_gen_kwargs: List[str] = [] for gen_kwarg in gen_kwargs.values(): if not isinstance(gen_kwarg, (tracked_str, tracked_list, TrackedIterable)): continue while isinstance(gen_kwarg, (tracked_list, TrackedIterable)) and gen_kwarg.last_item is not None: gen_kwarg = gen_kwarg.last_item if isinstance(gen_kwarg, tracked_str): gen_kwarg = gen_kwarg.get_origin() if isinstance(gen_kwarg, str) and gen_kwarg.startswith("hf://"): resolved_path = HfFileSystem(endpoint=config.HF_ENDPOINT, token=token).resolve_path(gen_kwarg) gen_kwarg = "hf://" + resolved_path.unresolve() if "@" + resolved_path.revision in gen_kwarg: gen_kwarg = ( gen_kwarg.replace("@" + resolved_path.revision, "", 1) + f" (at revision {resolved_path.revision})" ) formatted_tracked_gen_kwargs.append(str(gen_kwarg)) if formatted_tracked_gen_kwargs: explanation_message += f"\n\nThis happened while the {builder_name} dataset builder was generating data using\n\n{', '.join(formatted_tracked_gen_kwargs)}" help_message = "\n\nPlease either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)" return cls("An error occurred while generating the dataset" + explanation_message + help_message)
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. class DatasetsError(Exception): """Base class for exceptions in this library.""" class DefunctDatasetError(DatasetsError): """The dataset has been defunct.""" class FileNotFoundDatasetsError(DatasetsError, FileNotFoundError): """FileNotFoundError raised by this library.""" class DataFilesNotFoundError(FileNotFoundDatasetsError): """No (supported) data files found.""" class DatasetNotFoundError(FileNotFoundDatasetsError): """Dataset not found. Raised when trying to access: - a missing dataset, or - a private/gated dataset and the user is not authenticated. """
import os import time import pytest from jina import Deployment, Executor class SlowExecutor(Executor): def close(self) -> None: with open( os.path.join(self.metas.workspace, 'test'), 'w', encoding='utf-8' ) as f: time.sleep(10) f.write('x') @pytest.mark.slow def test_slow_executor_close(tmpdir): with Deployment(protocol='http', uses={'jtype': 'SlowExecutor', 'with': {}, 'metas': {'workspace': str(tmpdir)}}, include_gateway=False, ): pass assert os.path.exists(os.path.join(tmpdir, 'test'))
import os import time import pytest from jina import Flow, Executor class SlowExecutor(Executor): def close(self) -> None: with open( os.path.join(self.metas.workspace, 'test'), 'w', encoding='utf-8' ) as f: time.sleep(10) f.write('x') @pytest.mark.slow def test_slow_executor_close(tmpdir): with Flow().add( uses={'jtype': 'SlowExecutor', 'with': {}, 'metas': {'workspace': str(tmpdir)}} ) as f: pass assert os.path.exists(os.path.join(tmpdir, 'test'))
"""Module for helper functions for clients.""" from typing import Tuple from docarray import Document, DocumentArray from jina.enums import DataInputType from jina.types.request.data import DataRequest def _new_data_request_from_batch( _kwargs, batch, data_type, endpoint, target, parameters ): req = _new_data_request(endpoint, target, parameters) # add docs fields _add_docs(req, batch, data_type, _kwargs) return req def _new_data_request(endpoint, target, parameters): req = DataRequest() # set up header if endpoint: req.header.exec_endpoint = endpoint if target: req.header.target_executor = target # add parameters field if parameters: req.parameters = parameters return req def _new_doc_from_data( data, data_type: DataInputType, **kwargs ) -> Tuple['Document', 'DataInputType']: def _build_doc_from_content(): return Document(content=data, **kwargs), DataInputType.CONTENT if data_type == DataInputType.DICT: doc = Document.from_dict(data) return doc, DataInputType.DICT if data_type == DataInputType.AUTO or data_type == DataInputType.DOCUMENT: if isinstance(data, Document): # if incoming is already primitive type Document, then all good, best practice! return data, DataInputType.DOCUMENT elif isinstance(data, dict): return Document.from_dict(data), DataInputType.DICT try: d = Document(data, **kwargs) return d, DataInputType.DOCUMENT except ValueError: # AUTO has a fallback, now reconsider it as content if data_type == DataInputType.AUTO: return _build_doc_from_content() else: raise elif data_type == DataInputType.CONTENT: return _build_doc_from_content() def _add_docs(req, batch, data_type, _kwargs): da = DocumentArray() for content in batch: if isinstance(content, tuple) and len(content) == 2: d, data_type = _new_doc_from_data(content[0], data_type, **_kwargs) da.append(d) else: d, data_type = _new_doc_from_data(content, data_type, **_kwargs) da.append(d) req.data.docs = da
"""Module for helper functions for clients.""" from typing import Tuple from docarray import Document, DocumentArray from jina.enums import DataInputType from jina.types.request.data import DataRequest def _new_data_request_from_batch( _kwargs, batch, data_type, endpoint, target, parameters ): req = _new_data_request(endpoint, target, parameters) # add docs fields _add_docs(req, batch, data_type, _kwargs) return req def _new_data_request(endpoint, target, parameters): req = DataRequest() # set up header if endpoint: req.header.exec_endpoint = endpoint if target: req.header.target_executor = target # add parameters field if parameters: req.parameters = parameters return req def _new_doc_from_data( data, data_type: DataInputType, **kwargs ) -> Tuple['Document', 'DataInputType']: def _build_doc_from_content(): return Document(content=data, **kwargs), DataInputType.CONTENT if data_type == DataInputType.DICT: doc = Document.from_dict(data) return doc, DataInputType.DICT if data_type == DataInputType.AUTO or data_type == DataInputType.DOCUMENT: if isinstance(data, Document): # if incoming is already primitive type Document, then all good, best practice! return data, DataInputType.DOCUMENT elif isinstance(data, dict): return Document.from_dict(data), DataInputType.DICT try: d = Document(data, **kwargs) return d, DataInputType.DOCUMENT except ValueError: # AUTO has a fallback, now reconsider it as content if data_type == DataInputType.AUTO: return _build_doc_from_content() else: raise elif data_type == DataInputType.CONTENT: return _build_doc_from_content() def _add_docs(req, batch, data_type, _kwargs): da = DocumentArray() for content in batch: if isinstance(content, tuple) and len(content) == 2: d, data_type = _new_doc_from_data(content[0], data_type, **_kwargs) gt, _ = _new_doc_from_data(content[1], data_type, **_kwargs) da.append(d) else: d, data_type = _new_doc_from_data(content, data_type, **_kwargs) da.append(d) req.data.docs = da
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api import _tf_keras from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import saving from keras.api import tree from keras.api import utils from keras.src.backend import Variable from keras.src.backend import device from keras.src.backend import name_scope from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.backend.common.stateless_scope import StatelessScope from keras.src.backend.common.symbolic_scope import SymbolicScope from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.initializers.initializer import Initializer from keras.src.layers.core.input_layer import Input from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer from keras.src.losses.loss import Loss from keras.src.metrics.metric import Metric from keras.src.models.model import Model from keras.src.models.sequential import Sequential from keras.src.ops.function import Function from keras.src.ops.operation import Operation from keras.src.optimizers.optimizer import Optimizer from keras.src.quantizers.quantizers import Quantizer from keras.src.regularizers.regularizers import Regularizer from keras.src.version import __version__ from keras.src.version import version
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api import _tf_keras from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import saving from keras.api import tree from keras.api import utils from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.backend.common.stateless_scope import StatelessScope from keras.src.backend.common.symbolic_scope import SymbolicScope from keras.src.backend.exports import Variable from keras.src.backend.exports import device from keras.src.backend.exports import name_scope from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.initializers.initializer import Initializer from keras.src.layers.core.input_layer import Input from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer from keras.src.losses.loss import Loss from keras.src.metrics.metric import Metric from keras.src.models.model import Model from keras.src.models.sequential import Sequential from keras.src.ops.function import Function from keras.src.ops.operation import Operation from keras.src.optimizers.optimizer import Optimizer from keras.src.quantizers.quantizers import Quantizer from keras.src.regularizers.regularizers import Regularizer from keras.src.version import __version__ from keras.src.version import version
import os # DO NOT EDIT. Generated by api_gen.sh from keras.api import DTypePolicy from keras.api import FloatDTypePolicy from keras.api import Function from keras.api import Initializer from keras.api import Input from keras.api import InputSpec from keras.api import KerasTensor from keras.api import Layer from keras.api import Loss from keras.api import Metric from keras.api import Model from keras.api import Operation from keras.api import Optimizer from keras.api import Quantizer from keras.api import Regularizer from keras.api import Sequential from keras.api import StatelessScope from keras.api import Variable from keras.api import __version__ from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import device from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import name_scope from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import saving from keras.api import tree from keras.api import utils from keras.api import version # END DO NOT EDIT. # Add everything in /api/ to the module search path. __path__.append(os.path.join(os.path.dirname(__file__), "api")) # noqa: F405 # Don't pollute namespace. del os # Never autocomplete `.src` or `.api` on an imported keras object. def __dir__(): keys = dict.fromkeys((globals().keys())) keys.pop("src") keys.pop("api") return list(keys) # Don't import `.src` or `.api` during `from keras import *`. __all__ = [ name for name in globals().keys() if not (name.startswith("_") or name in ("src", "api")) ]
import os # DO NOT EDIT. Generated by api_gen.sh from keras.api import DTypePolicy from keras.api import FloatDTypePolicy from keras.api import Function from keras.api import Initializer from keras.api import Input from keras.api import InputSpec from keras.api import KerasTensor from keras.api import Layer from keras.api import Loss from keras.api import Metric from keras.api import Model from keras.api import Operation from keras.api import Optimizer from keras.api import Quantizer from keras.api import Regularizer from keras.api import Sequential from keras.api import StatelessScope from keras.api import Variable from keras.api import __version__ from keras.api import _tf_keras from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import device from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import name_scope from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import saving from keras.api import tree from keras.api import utils from keras.api import version # END DO NOT EDIT. # Add everything in /api/ to the module search path. __path__.append(os.path.join(os.path.dirname(__file__), "api")) # noqa: F405 # Don't pollute namespace. del os # Never autocomplete `.src` or `.api` on an imported keras object. def __dir__(): keys = dict.fromkeys((globals().keys())) keys.pop("src") keys.pop("api") return list(keys) # Don't import `.src` or `.api` during `from keras import *`. __all__ = [ name for name in globals().keys() if not (name.startswith("_") or name in ("src", "api")) ]
import logging from collections import defaultdict from typing import Any, Dict, List, Optional, Sequence from autogpt_libs.utils.cache import thread_cached from fastapi import APIRouter, Depends, HTTPException from prisma.enums import AgentExecutionStatus, APIKeyPermission from typing_extensions import TypedDict import backend.data.block from backend.data import execution as execution_db from backend.data import graph as graph_db from backend.data.api_key import APIKey from backend.data.block import BlockInput, CompletedBlockOutput from backend.data.execution import ExecutionResult from backend.executor import ExecutionManager from backend.server.external.middleware import require_permission from backend.util.service import get_service_client from backend.util.settings import Settings @thread_cached def execution_manager_client() -> ExecutionManager: return get_service_client(ExecutionManager) settings = Settings() logger = logging.getLogger(__name__) v1_router = APIRouter() class NodeOutput(TypedDict): key: str value: Any class ExecutionNode(TypedDict): node_id: str input: Any output: Dict[str, Any] class ExecutionNodeOutput(TypedDict): node_id: str outputs: List[NodeOutput] class GraphExecutionResult(TypedDict): execution_id: str status: str nodes: List[ExecutionNode] output: Optional[List[Dict[str, str]]] def get_outputs_with_names(results: List[ExecutionResult]) -> List[Dict[str, str]]: outputs = [] for result in results: if "output" in result.output_data: output_value = result.output_data["output"][0] name = result.output_data.get("name", [None])[0] if output_value and name: outputs.append({name: output_value}) return outputs @v1_router.get( path="/blocks", tags=["blocks"], dependencies=[Depends(require_permission(APIKeyPermission.READ_BLOCK))], ) def get_graph_blocks() -> Sequence[dict[Any, Any]]: blocks = [block() for block in backend.data.block.get_blocks().values()] return [b.to_dict() for b in blocks] @v1_router.post( path="/blocks/{block_id}/execute", tags=["blocks"], dependencies=[Depends(require_permission(APIKeyPermission.EXECUTE_BLOCK))], ) def execute_graph_block( block_id: str, data: BlockInput, api_key: APIKey = Depends(require_permission(APIKeyPermission.EXECUTE_BLOCK)), ) -> CompletedBlockOutput: obj = backend.data.block.get_block(block_id) if not obj: raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.") output = defaultdict(list) for name, data in obj.execute(data): output[name].append(data) return output @v1_router.post( path="/graphs/{graph_id}/execute", tags=["graphs"], ) def execute_graph( graph_id: str, node_input: dict[Any, Any], api_key: APIKey = Depends(require_permission(APIKeyPermission.EXECUTE_GRAPH)), ) -> dict[str, Any]: try: graph_exec = execution_manager_client().add_execution( graph_id, node_input, user_id=api_key.user_id ) return {"id": graph_exec.graph_exec_id} except Exception as e: msg = e.__str__().encode().decode("unicode_escape") raise HTTPException(status_code=400, detail=msg) @v1_router.get( path="/graphs/{graph_id}/executions/{graph_exec_id}/results", tags=["graphs"], ) async def get_graph_execution_results( graph_id: str, graph_exec_id: str, api_key: APIKey = Depends(require_permission(APIKeyPermission.READ_GRAPH)), ) -> GraphExecutionResult: graph = await graph_db.get_graph(graph_id, user_id=api_key.user_id) if not graph: raise HTTPException(status_code=404, detail=f"Graph #{graph_id} not found.") results = await execution_db.get_execution_results(graph_exec_id) last_result = results[-1] if results else None execution_status = ( last_result.status if last_result else AgentExecutionStatus.INCOMPLETE ) outputs = get_outputs_with_names(results) return GraphExecutionResult( execution_id=graph_exec_id, status=execution_status, nodes=[ ExecutionNode( node_id=result.node_id, input=result.input_data.get("value", result.input_data), output={k: v for k, v in result.output_data.items()}, ) for result in results ], output=outputs if execution_status == AgentExecutionStatus.COMPLETED else None, )
import logging from collections import defaultdict from typing import Any, Sequence from autogpt_libs.utils.cache import thread_cached from fastapi import APIRouter, Depends, HTTPException from prisma.enums import APIKeyPermission import backend.data.block from backend.data import execution as execution_db from backend.data import graph as graph_db from backend.data.api_key import APIKey from backend.data.block import BlockInput, CompletedBlockOutput from backend.executor import ExecutionManager from backend.server.external.middleware import require_permission from backend.util.service import get_service_client from backend.util.settings import Settings @thread_cached def execution_manager_client() -> ExecutionManager: return get_service_client(ExecutionManager) settings = Settings() logger = logging.getLogger(__name__) v1_router = APIRouter() @v1_router.get( path="/blocks", tags=["blocks"], dependencies=[Depends(require_permission(APIKeyPermission.READ_BLOCK))], ) def get_graph_blocks() -> Sequence[dict[Any, Any]]: blocks = [block() for block in backend.data.block.get_blocks().values()] return [b.to_dict() for b in blocks] @v1_router.post( path="/blocks/{block_id}/execute", tags=["blocks"], dependencies=[Depends(require_permission(APIKeyPermission.EXECUTE_BLOCK))], ) def execute_graph_block( block_id: str, data: BlockInput, api_key: APIKey = Depends(require_permission(APIKeyPermission.EXECUTE_BLOCK)), ) -> CompletedBlockOutput: obj = backend.data.block.get_block(block_id) if not obj: raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.") output = defaultdict(list) for name, data in obj.execute(data): output[name].append(data) return output @v1_router.post( path="/graphs/{graph_id}/execute", tags=["graphs"], ) def execute_graph( graph_id: str, node_input: dict[Any, Any], api_key: APIKey = Depends(require_permission(APIKeyPermission.EXECUTE_GRAPH)), ) -> dict[str, Any]: try: graph_exec = execution_manager_client().add_execution( graph_id, node_input, user_id=api_key.user_id ) return {"id": graph_exec.graph_exec_id} except Exception as e: msg = e.__str__().encode().decode("unicode_escape") raise HTTPException(status_code=400, detail=msg) @v1_router.get( path="/graphs/{graph_id}/executions/{graph_exec_id}/results", tags=["graphs"], ) async def get_graph_execution_results( graph_id: str, graph_exec_id: str, api_key: APIKey = Depends(require_permission(APIKeyPermission.READ_GRAPH)), ) -> dict: graph = await graph_db.get_graph(graph_id, user_id=api_key.user_id) if not graph: raise HTTPException(status_code=404, detail=f"Graph #{graph_id} not found.") results = await execution_db.get_execution_results(graph_exec_id) return { "execution_id": graph_exec_id, "nodes": [ { "node_id": result.node_id, "input": ( result.input_data.get("value") if "value" in result.input_data else result.input_data ), "output": result.output_data.get( "response", result.output_data.get("result", []) ), } for result in results ], }
_base_ = [ '../_base_/models/rpn_r50_caffe_c4.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] val_evaluator = dict(metric='proposal_fast') test_evaluator = val_evaluator
_base_ = [ '../_base_/models/rpn_r50_caffe_c4.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # dataset settings img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_label=False), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) evaluation = dict(interval=1, metric='proposal_fast')
"""Test chat model integration using standard integration tests.""" from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_ollama.chat_models import ChatOllama class TestChatOllama(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[ChatOllama]: return ChatOllama @property def chat_model_params(self) -> dict: return {"model": "llama3.1"} @property def supports_image_inputs(self) -> bool: return True @property def supports_json_mode(self) -> bool: return True @property def has_tool_choice(self) -> bool: return False
"""Test chat model integration using standard integration tests.""" from typing import Type from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_ollama.chat_models import ChatOllama class TestChatOllama(ChatModelIntegrationTests): @property def chat_model_class(self) -> Type[ChatOllama]: return ChatOllama @property def chat_model_params(self) -> dict: return {"model": "llama3.1"} @property def supports_image_inputs(self) -> bool: return True @property def supports_json_mode(self) -> bool: return True @property def has_tool_choice(self) -> bool: return False
import logging import bleach from bleach.css_sanitizer import CSSSanitizer from jinja2 import BaseLoader from jinja2.sandbox import SandboxedEnvironment from markupsafe import Markup logger = logging.getLogger(__name__) def format_filter_for_jinja2(value, format_string=None): if format_string: return format_string % float(value) return value class TextFormatter: def __init__(self): self.env = SandboxedEnvironment(loader=BaseLoader(), autoescape=True) self.env.globals.clear() # Instead of clearing all filters, just remove potentially unsafe ones unsafe_filters = ["pprint", "urlize", "xmlattr", "tojson"] for f in unsafe_filters: if f in self.env.filters: del self.env.filters[f] self.env.filters["format"] = format_filter_for_jinja2 # Define allowed CSS properties allowed_css_properties = [ "font-family", "color", "font-size", "line-height", "margin-top", "margin-bottom", "margin-left", "margin-right", "background-color", "padding", "border-radius", "font-weight", "text-align", ] self.css_sanitizer = CSSSanitizer(allowed_css_properties=allowed_css_properties) self.allowed_tags = [ "p", "b", "i", "u", "ul", "li", "br", "strong", "em", "div", "span", ] self.allowed_attributes = {"*": ["style", "class"]} def format_string(self, template_str: str, values=None, **kwargs) -> str: """Regular template rendering with escaping""" template = self.env.from_string(template_str) return template.render(values or {}, **kwargs) def format_email( self, subject_template: str, base_template: str, content_template: str, data=None, **kwargs, ) -> tuple[str, str]: """ Special handling for email templates where content needs to be rendered as HTML """ # First render the content template content = self.format_string(content_template, data, **kwargs) # Clean the HTML + CSS but don't escape it clean_content = bleach.clean( content, tags=self.allowed_tags, attributes=self.allowed_attributes, css_sanitizer=self.css_sanitizer, strip=True, ) # Mark the cleaned HTML as safe using Markup safe_content = Markup(clean_content) # Render subject rendered_subject_template = self.format_string(subject_template, data, **kwargs) # Create new env just for HTML template html_env = SandboxedEnvironment(loader=BaseLoader(), autoescape=True) html_env.filters["safe"] = lambda x: ( x if isinstance(x, Markup) else Markup(str(x)) ) # Render base template with the safe content template = html_env.from_string(base_template) rendered_base_template = template.render( data={ "message": safe_content, "title": rendered_subject_template, "unsubscribe_link": kwargs.get("unsubscribe_link", ""), } ) return rendered_subject_template, rendered_base_template
import logging import bleach from jinja2 import BaseLoader from jinja2.sandbox import SandboxedEnvironment from markupsafe import Markup logger = logging.getLogger(__name__) class TextFormatter: def __init__(self): self.env = SandboxedEnvironment(loader=BaseLoader(), autoescape=True) self.env.filters.clear() self.env.tests.clear() self.env.globals.clear() self.allowed_tags = ["p", "b", "i", "u", "ul", "li", "br", "strong", "em"] self.allowed_attributes = {"*": ["style", "class"]} def format_string(self, template_str: str, values=None, **kwargs) -> str: """Regular template rendering with escaping""" template = self.env.from_string(template_str) return template.render(values or {}, **kwargs) def format_email( self, subject_template: str, base_template: str, content_template: str, data=None, **kwargs, ) -> tuple[str, str]: """ Special handling for email templates where content needs to be rendered as HTML """ # First render the content template content = self.format_string(content_template, data, **kwargs) # Clean the HTML but don't escape it clean_content = bleach.clean( content, tags=self.allowed_tags, attributes=self.allowed_attributes, strip=True, ) # Mark the cleaned HTML as safe using Markup safe_content = Markup(clean_content) rendered_subject_template = self.format_string(subject_template, data, **kwargs) # Create new env just for HTML template html_env = SandboxedEnvironment(loader=BaseLoader(), autoescape=True) html_env.filters["safe"] = lambda x: ( x if isinstance(x, Markup) else Markup(str(x)) ) # Render base template with the safe content template = html_env.from_string(base_template) rendered_base_template = template.render( data={ "message": safe_content, "title": rendered_subject_template, "unsubscribe_link": kwargs.get("unsubscribe_link", ""), } ) return rendered_subject_template, rendered_base_template
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.utilities.vertexai import ( create_retry_decorator, get_client_info, init_vertexai, raise_vertex_import_error, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "create_retry_decorator": "langchain_community.utilities.vertexai", "raise_vertex_import_error": "langchain_community.utilities.vertexai", "init_vertexai": "langchain_community.utilities.vertexai", "get_client_info": "langchain_community.utilities.vertexai", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "create_retry_decorator", "get_client_info", "init_vertexai", "raise_vertex_import_error", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.utilities.vertexai import ( create_retry_decorator, get_client_info, init_vertexai, raise_vertex_import_error, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "create_retry_decorator": "langchain_community.utilities.vertexai", "raise_vertex_import_error": "langchain_community.utilities.vertexai", "init_vertexai": "langchain_community.utilities.vertexai", "get_client_info": "langchain_community.utilities.vertexai", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "create_retry_decorator", "raise_vertex_import_error", "init_vertexai", "get_client_info", ]
"""Tools for interacting with an Apache Cassandra database.""" from typing import List from llama_index.core.bridge.pydantic import Field from llama_index.core.schema import Document from llama_index.core.tools.tool_spec.base import BaseToolSpec from llama_index.tools.cassandra.cassandra_database_wrapper import ( CassandraDatabase, ) class CassandraDatabaseToolSpec(BaseToolSpec): """Base tool for interacting with an Apache Cassandra database.""" db: CassandraDatabase = Field(exclude=True) spec_functions = [ "cassandra_db_query", "cassandra_db_schema", "cassandra_db_select_table_data", ] def __init__(self, db: CassandraDatabase) -> None: """DB session in context.""" self.db = db def cassandra_db_query(self, query: str) -> List[Document]: """ Execute a CQL query and return the results as a list of Documents. Args: query (str): A CQL query to execute. Returns: List[Document]: A list of Document objects, each containing data from a row. """ documents = [] result = self.db.run_no_throw(query, fetch="Cursor") for row in result: doc_str = ", ".join([str(value) for value in row]) documents.append(Document(text=doc_str)) return documents def cassandra_db_schema(self, keyspace: str) -> List[Document]: """ Input to this tool is a keyspace name, output is a table description of Apache Cassandra tables. If the query is not correct, an error message will be returned. If an error is returned, report back to the user that the keyspace doesn't exist and stop. Args: keyspace (str): The name of the keyspace for which to return the schema. Returns: List[Document]: A list of Document objects, each containing a table description. """ return [Document(text=self.db.get_keyspace_tables_str(keyspace))] def cassandra_db_select_table_data( self, keyspace: str, table: str, predicate: str, limit: int ) -> List[Document]: """ Tool for getting data from a table in an Apache Cassandra database. Use the WHERE clause to specify the predicate for the query that uses the primary key. A blank predicate will return all rows. Avoid this if possible. Use the limit to specify the number of rows to return. A blank limit will return all rows. Args: keyspace (str): The name of the keyspace containing the table. table (str): The name of the table for which to return data. predicate (str): The predicate for the query that uses the primary key. limit (int): The maximum number of rows to return. Returns: List[Document]: A list of Document objects, each containing a row of data. """ return [ Document(text=self.db.get_table_data(keyspace, table, predicate, limit)) ]
"""Tools for interacting with an Apache Cassandra database.""" from typing import List from llama_index.core.bridge.pydantic import Field from llama_index.core.schema import Document from llama_index.core.tools.tool_spec.base import BaseToolSpec from llama_index.tools.cassandra.cassandra_database_wrapper import ( CassandraDatabase, ) class CassandraDatabaseToolSpec(BaseToolSpec): """Base tool for interacting with an Apache Cassandra database.""" db: CassandraDatabase = Field(exclude=True) spec_functions = [ "cassandra_db_query", "cassandra_db_schema", "cassandra_db_select_table_data", ] def __init__(self, db: CassandraDatabase) -> None: """DB session in context.""" self.db = db def cassandra_db_query(self, query: str) -> List[Document]: """ Execute a CQL query and return the results as a list of Documents. Args: query (str): A CQL query to execute. Returns: List[Document]: A list of Document objects, each containing data from a row. """ documents = [] result = self.db.run_no_throw(query, fetch="Cursor") for row in result: doc_str = ", ".join([str(value) for value in row]) documents.append(Document(text=doc_str)) return documents def cassandra_db_schema(self, keyspace: str) -> List[Document]: """ Input to this tool is a keyspace name, output is a table description of Apache Cassandra tables. If the query is not correct, an error message will be returned. If an error is returned, report back to the user that the keyspace doesn't exist and stop. Args: keyspace (str): The name of the keyspace for which to return the schema. Returns: List[Document]: A list of Document objects, each containing a table description. """ return [Document(text=self.db.get_keyspace_tables_str(keyspace))] def cassandra_db_select_table_data( self, keyspace: str, table: str, predicate: str, limit: int ) -> List[Document]: """ Tool for getting data from a table in an Apache Cassandra database. Use the WHERE clause to specify the predicate for the query that uses the primary key. A blank predicate will return all rows. Avoid this if possible. Use the limit to specify the number of rows to return. A blank limit will return all rows. Args: keyspace (str): The name of the keyspace containing the table. table (str): The name of the table for which to return data. predicate (str): The predicate for the query that uses the primary key. limit (int): The maximum number of rows to return. Returns: List[Document]: A list of Document objects, each containing a row of data. """ return [ Document(text=self.db.get_table_data(keyspace, table, predicate, limit)) ]
from __future__ import annotations import math from pathlib import Path import numpy as np import pytest from packaging.version import Version, parse from tokenizers import Tokenizer from sentence_transformers import SentenceTransformer from sentence_transformers.models.StaticEmbedding import StaticEmbedding try: import model2vec from model2vec import __version__ as M2V_VERSION except ImportError: model2vec = None skip_if_no_model2vec = pytest.mark.skipif(model2vec is None, reason="The model2vec library is not installed.") @pytest.fixture(scope="session") def tokenizer() -> Tokenizer: return Tokenizer.from_pretrained("bert-base-uncased") @pytest.fixture def embedding_weights(): return np.random.rand(30522, 768) @pytest.fixture def static_embedding(tokenizer: Tokenizer, embedding_weights) -> StaticEmbedding: return StaticEmbedding(tokenizer, embedding_weights=embedding_weights) def test_initialization_with_embedding_weights(tokenizer: Tokenizer, embedding_weights) -> None: model = StaticEmbedding(tokenizer, embedding_weights=embedding_weights) assert model.embedding.weight.shape == (30522, 768) def test_initialization_with_embedding_dim(tokenizer: Tokenizer) -> None: model = StaticEmbedding(tokenizer, embedding_dim=768) assert model.embedding.weight.shape == (30522, 768) def test_tokenize(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) assert "input_ids" in tokens assert "offsets" in tokens def test_forward(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) output = static_embedding(tokens) assert "sentence_embedding" in output def test_save_and_load(tmp_path: Path, static_embedding: StaticEmbedding) -> None: save_dir = tmp_path / "model" save_dir.mkdir() static_embedding.save(str(save_dir)) loaded_model = StaticEmbedding.load(str(save_dir)) assert loaded_model.embedding.weight.shape == static_embedding.embedding.weight.shape @skip_if_no_model2vec() def test_from_distillation() -> None: model = StaticEmbedding.from_distillation("sentence-transformers-testing/stsb-bert-tiny-safetensors", pca_dims=32) expected_shape = (29525 if parse(M2V_VERSION) >= Version("0.5.0") else 29528, 32) assert model.embedding.weight.shape == expected_shape @skip_if_no_model2vec() def test_from_model2vec() -> None: model = StaticEmbedding.from_model2vec("minishlab/M2V_base_output") assert model.embedding.weight.shape == (29528, 256) def test_loading_model2vec() -> None: model = SentenceTransformer("minishlab/potion-base-8M") assert model.get_sentence_embedding_dimension() == 256 assert model.max_seq_length == math.inf test_sentences = ["It's so sunny outside!", "The sun is shining outside!"] embeddings = model.encode(test_sentences) assert embeddings.shape == (2, 256) similarity = model.similarity(embeddings[0], embeddings[1]) assert similarity.item() > 0.7
from __future__ import annotations import math from pathlib import Path import numpy as np import pytest from tokenizers import Tokenizer from sentence_transformers import SentenceTransformer from sentence_transformers.models.StaticEmbedding import StaticEmbedding try: import model2vec except ImportError: model2vec = None skip_if_no_model2vec = pytest.mark.skipif(model2vec is None, reason="The model2vec library is not installed.") @pytest.fixture(scope="session") def tokenizer() -> Tokenizer: return Tokenizer.from_pretrained("bert-base-uncased") @pytest.fixture def embedding_weights(): return np.random.rand(30522, 768) @pytest.fixture def static_embedding(tokenizer: Tokenizer, embedding_weights) -> StaticEmbedding: return StaticEmbedding(tokenizer, embedding_weights=embedding_weights) def test_initialization_with_embedding_weights(tokenizer: Tokenizer, embedding_weights) -> None: model = StaticEmbedding(tokenizer, embedding_weights=embedding_weights) assert model.embedding.weight.shape == (30522, 768) def test_initialization_with_embedding_dim(tokenizer: Tokenizer) -> None: model = StaticEmbedding(tokenizer, embedding_dim=768) assert model.embedding.weight.shape == (30522, 768) def test_tokenize(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) assert "input_ids" in tokens assert "offsets" in tokens def test_forward(static_embedding: StaticEmbedding) -> None: texts = ["Hello world!", "How are you?"] tokens = static_embedding.tokenize(texts) output = static_embedding(tokens) assert "sentence_embedding" in output def test_save_and_load(tmp_path: Path, static_embedding: StaticEmbedding) -> None: save_dir = tmp_path / "model" save_dir.mkdir() static_embedding.save(str(save_dir)) loaded_model = StaticEmbedding.load(str(save_dir)) assert loaded_model.embedding.weight.shape == static_embedding.embedding.weight.shape @skip_if_no_model2vec() def test_from_distillation() -> None: model = StaticEmbedding.from_distillation("sentence-transformers-testing/stsb-bert-tiny-safetensors", pca_dims=32) assert model.embedding.weight.shape == (29528, 32) @skip_if_no_model2vec() def test_from_model2vec() -> None: model = StaticEmbedding.from_model2vec("minishlab/M2V_base_output") assert model.embedding.weight.shape == (29528, 256) def test_loading_model2vec() -> None: model = SentenceTransformer("minishlab/potion-base-8M") assert model.get_sentence_embedding_dimension() == 256 assert model.max_seq_length == math.inf test_sentences = ["It's so sunny outside!", "The sun is shining outside!"] embeddings = model.encode(test_sentences) assert embeddings.shape == (2, 256) similarity = model.similarity(embeddings[0], embeddings[1]) assert similarity.item() > 0.7
from typing import Any, Dict, Optional, Union import numpy as np import PIL.Image import torch from torch.nn.functional import one_hot from torchvision.prototype import datapoints from torchvision.prototype.transforms import functional as F, Transform from torchvision.prototype.transforms.utils import is_simple_tensor class LabelToOneHot(Transform): _transformed_types = (datapoints.Label,) def __init__(self, num_categories: int = -1): super().__init__() self.num_categories = num_categories def _transform(self, inpt: datapoints.Label, params: Dict[str, Any]) -> datapoints.OneHotLabel: num_categories = self.num_categories if num_categories == -1 and inpt.categories is not None: num_categories = len(inpt.categories) output = one_hot(inpt.as_subclass(torch.Tensor), num_classes=num_categories) return datapoints.OneHotLabel(output, categories=inpt.categories) def extra_repr(self) -> str: if self.num_categories == -1: return "" return f"num_categories={self.num_categories}" class PILToTensor(Transform): _transformed_types = (PIL.Image.Image,) def _transform(self, inpt: Union[PIL.Image.Image], params: Dict[str, Any]) -> torch.Tensor: return F.pil_to_tensor(inpt) class ToImageTensor(Transform): _transformed_types = (is_simple_tensor, PIL.Image.Image, np.ndarray) def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> datapoints.Image: return F.to_image_tensor(inpt) # type: ignore[no-any-return] class ToImagePIL(Transform): _transformed_types = (is_simple_tensor, datapoints.Image, np.ndarray) def __init__(self, mode: Optional[str] = None) -> None: super().__init__() self.mode = mode def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> PIL.Image.Image: return F.to_image_pil(inpt, mode=self.mode) # We changed the name to align them with the new naming scheme. Still, `ToPILImage` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ToPILImage = ToImagePIL
from typing import Any, Dict, Optional, Union import numpy as np import PIL.Image import torch from torch.nn.functional import one_hot from torchvision.prototype import features from torchvision.prototype.transforms import functional as F, Transform class LabelToOneHot(Transform): _transformed_types = (features.Label,) def __init__(self, num_categories: int = -1): super().__init__() self.num_categories = num_categories def _transform(self, inpt: features.Label, params: Dict[str, Any]) -> features.OneHotLabel: num_categories = self.num_categories if num_categories == -1 and inpt.categories is not None: num_categories = len(inpt.categories) output = one_hot(inpt.as_subclass(torch.Tensor), num_classes=num_categories) return features.OneHotLabel(output, categories=inpt.categories) def extra_repr(self) -> str: if self.num_categories == -1: return "" return f"num_categories={self.num_categories}" class PILToTensor(Transform): _transformed_types = (PIL.Image.Image,) def _transform(self, inpt: Union[PIL.Image.Image], params: Dict[str, Any]) -> torch.Tensor: return F.pil_to_tensor(inpt) class ToImageTensor(Transform): _transformed_types = (features.is_simple_tensor, PIL.Image.Image, np.ndarray) def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> features.Image: return F.to_image_tensor(inpt) # type: ignore[no-any-return] class ToImagePIL(Transform): _transformed_types = (features.is_simple_tensor, features.Image, np.ndarray) def __init__(self, mode: Optional[str] = None) -> None: super().__init__() self.mode = mode def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> PIL.Image.Image: return F.to_image_pil(inpt, mode=self.mode) # We changed the name to align them with the new naming scheme. Still, `ToPILImage` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ToPILImage = ToImagePIL
""" This scripts demonstrates how to train a Sparse Encoder model for Information Retrieval. As dataset, we use sentence-transformers/msmarco-bm25, where we have triplets versions of MSMARCO mined thanks to BM25. As loss function, we use MultipleNegativesRankingLoss in the SpladeLoss. """ import logging import traceback from datasets import load_dataset from sentence_transformers import ( SparseEncoder, SparseEncoderModelCardData, SparseEncoderTrainer, SparseEncoderTrainingArguments, ) from sentence_transformers.sparse_encoder import evaluation, losses # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) def main(): model_name = "distilbert/distilbert-base-uncased" train_batch_size = 12 num_epochs = 1 lambda_query = 5e-5 lambda_corpus = 3e-5 learning_rate = 2e-5 # 1. Define our SparseEncoder model model = SparseEncoder( model_name, model_card_data=SparseEncoderModelCardData( language="en", license="apache-2.0", model_name="splade-distilbert-base-uncased trained on Quora Duplicates Questions", ), ) model.max_seq_length = 256 # Set the max sequence length to 256 for the training logging.info("Model max length: %s", model.max_seq_length) # 2. Load the MS MARCO dataset: https://huggingface.co/datasets/sentence-transformers/msmarco-bm25 logging.info("Read the MS MARCO training dataset") full_dataset = load_dataset("sentence-transformers/msmarco-bm25", "triplet", split="train").select(range(100000)) dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12) train_dataset = dataset_dict["train"] eval_dataset = dataset_dict["test"] logging.info(train_dataset) logging.info(eval_dataset) # 3. Define our training loss loss = losses.SpladeLoss( model=model, loss=losses.SparseMultipleNegativesRankingLoss(model=model), lambda_query=lambda_query, # Weight for query loss lambda_corpus=lambda_corpus, # Weight for document loss ) # 4. Define the evaluator. We use the SparseNanoBEIREvaluator, which is a light-weight evaluator for English evaluator = evaluation.SparseNanoBEIREvaluator( dataset_names=["msmarco", "nfcorpus", "nq"], batch_size=train_batch_size ) # 5. Define the training arguments short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1] run_name = f"splade-{short_model_name}-msmarco-mrl" args = SparseEncoderTrainingArguments( # Required parameter: output_dir=f"models/{run_name}", # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, learning_rate=learning_rate, load_best_model_at_end=True, metric_for_best_model="eval_NanoBEIR_mean_dot_ndcg@10", fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=1650, save_strategy="steps", save_steps=1650, save_total_limit=2, logging_steps=200, run_name=run_name, # Will be used in W&B if `wandb` is installed seed=42, ) # 6. Create the trainer & start training trainer = SparseEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=evaluator, ) trainer.train() # 7. Evaluate the final model, using the complete NanoBEIR dataset test_evaluator = evaluation.SparseNanoBEIREvaluator(show_progress_bar=True, batch_size=train_batch_size) test_evaluator(model) # 8. Save the final model final_output_dir = f"models/{run_name}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SparseEncoder({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." ) if __name__ == "__main__": main()
""" This scripts demonstrates how to train a Sparse Encoder model for Information Retrieval. As dataset, we use sentence-transformers/msmarco-bm25, where we have triplets versions of MSMARCO mined thanks to BM25. As loss function, we use MultipleNegativesRankingLoss in the SpladeLoss. """ import logging import traceback from datasets import load_dataset from sentence_transformers import ( SparseEncoder, SparseEncoderModelCardData, SparseEncoderTrainer, SparseEncoderTrainingArguments, ) from sentence_transformers.sparse_encoder import evaluation, losses # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) def main(): model_name = "distilbert/distilbert-base-uncased" train_batch_size = 12 num_epochs = 1 lambda_query = 5e-5 lambda_corpus = 3e-5 learning_rate = 2e-5 # 1. Define our SparseEncoder model model = SparseEncoder( model_name, model_card_data=SparseEncoderModelCardData( language="en", license="apache-2.0", model_name="splade-distilbert-base-uncased trained on Quora Duplicates Questions", ), ) model.max_seq_length = 256 # Set the max sequence length to 256 for the training logging.info("Model max length: %s", model.max_seq_length) # 2. Load the MS MARCO dataset: https://huggingface.co/datasets/sentence-transformers/msmarco-bm25 logging.info("Read the MS MARCO training dataset") full_dataset = load_dataset("sentence-transformers/quora-duplicates", "triplet", split="train").select( range(100000) ) dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12) train_dataset = dataset_dict["train"] eval_dataset = dataset_dict["test"] logging.info(train_dataset) logging.info(eval_dataset) # 3. Define our training loss loss = losses.SpladeLoss( model=model, loss=losses.SparseMultipleNegativesRankingLoss(model=model), lambda_query=lambda_query, # Weight for query loss lambda_corpus=lambda_corpus, # Weight for document loss ) # 4. Define the evaluator. We use the SparseNanoBEIREvaluator, which is a light-weight evaluator for English evaluator = evaluation.SparseNanoBEIREvaluator( dataset_names=["msmarco", "nfcorpus", "nq"], batch_size=train_batch_size ) # 5. Define the training arguments short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1] run_name = f"splade-{short_model_name}-msmarco-mrl" args = SparseEncoderTrainingArguments( # Required parameter: output_dir=f"models/{run_name}", # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, learning_rate=learning_rate, load_best_model_at_end=True, metric_for_best_model="eval_NanoBEIR_mean_dot_ndcg@10", fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=1650, save_strategy="steps", save_steps=1650, save_total_limit=2, logging_steps=200, run_name=run_name, # Will be used in W&B if `wandb` is installed seed=42, ) # 6. Create the trainer & start training trainer = SparseEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=evaluator, ) trainer.train() # 7. Evaluate the final model, using the complete NanoBEIR dataset test_evaluator = evaluation.SparseNanoBEIREvaluator(show_progress_bar=True, batch_size=train_batch_size) test_evaluator(model) # 8. Save the final model final_output_dir = f"models/{run_name}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SparseEncoder({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." ) if __name__ == "__main__": main()
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class CascadeRCNN(TwoStageDetector): r"""Implementation of `Cascade R-CNN: Delving into High Quality Object Detection <https://arxiv.org/abs/1906.09756>`_""" def __init__(self, backbone, neck=None, rpn_head=None, roi_head=None, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(CascadeRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg) def show_result(self, data, result, **kwargs): """Show prediction results of the detector. Args: data (str or np.ndarray): Image filename or loaded image. result (Tensor or tuple): The results to draw over `img` bbox_result or (bbox_result, segm_result). Returns: np.ndarray: The image with bboxes drawn on it. """ if self.with_mask: ms_bbox_result, ms_segm_result = result if isinstance(ms_bbox_result, dict): result = (ms_bbox_result['ensemble'], ms_segm_result['ensemble']) else: if isinstance(result, dict): result = result['ensemble'] return super(CascadeRCNN, self).show_result(data, result, **kwargs)
from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class CascadeRCNN(TwoStageDetector): r"""Implementation of `Cascade R-CNN: Delving into High Quality Object Detection <https://arxiv.org/abs/1906.09756>`_""" def __init__(self, backbone, neck=None, rpn_head=None, roi_head=None, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(CascadeRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg) def show_result(self, data, result, **kwargs): """Show prediction results of the detector. Args: data (str or np.ndarray): Image filename or loaded image. result (Tensor or tuple): The results to draw over `img` bbox_result or (bbox_result, segm_result). Returns: np.ndarray: The image with bboxes drawn on it. """ if self.with_mask: ms_bbox_result, ms_segm_result = result if isinstance(ms_bbox_result, dict): result = (ms_bbox_result['ensemble'], ms_segm_result['ensemble']) else: if isinstance(result, dict): result = result['ensemble'] return super(CascadeRCNN, self).show_result(data, result, **kwargs)
"""Pydantic v1 compatibility shim.""" from pydantic.v1.main import * # noqa: F403 from langchain_core._api import warn_deprecated warn_deprecated( "0.3.0", removal="1.0.0", alternative="pydantic.v1 or pydantic", message=( "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " "The langchain_core.pydantic_v1 module was a " "compatibility shim for pydantic v1, and should no longer be used. " "Please update the code to import from Pydantic directly.\n\n" "For example, replace imports like: " "`from langchain_core.pydantic_v1 import BaseModel`\n" "with: `from pydantic import BaseModel`\n" "or the v1 compatibility namespace if you are working in a code base " "that has not been fully upgraded to pydantic 2 yet. " "\tfrom pydantic.v1 import BaseModel\n" ), )
"""Pydantic v1 compatibility shim.""" from langchain_core._api import warn_deprecated try: from pydantic.v1.main import * # noqa: F403 except ImportError: from pydantic.main import * # type: ignore[assignment,no-redef] # noqa: F403 warn_deprecated( "0.3.0", removal="1.0.0", alternative="pydantic.v1 or pydantic", message=( "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " "The langchain_core.pydantic_v1 module was a " "compatibility shim for pydantic v1, and should no longer be used. " "Please update the code to import from Pydantic directly.\n\n" "For example, replace imports like: " "`from langchain_core.pydantic_v1 import BaseModel`\n" "with: `from pydantic import BaseModel`\n" "or the v1 compatibility namespace if you are working in a code base " "that has not been fully upgraded to pydantic 2 yet. " "\tfrom pydantic.v1 import BaseModel\n" ), )
import json from json import JSONDecodeError from typing import Union from langchain_core.agents import AgentAction, AgentActionMessageLog, AgentFinish from langchain_core.exceptions import OutputParserException from langchain_core.messages import ( AIMessage, BaseMessage, ToolCall, ) from langchain_core.outputs import ChatGeneration, Generation from langchain.agents.agent import MultiActionAgentOutputParser class ToolAgentAction(AgentActionMessageLog): tool_call_id: str """Tool call that this message is responding to.""" def parse_ai_message_to_tool_action( message: BaseMessage, ) -> Union[list[AgentAction], AgentFinish]: """Parse an AI message potentially containing tool_calls.""" if not isinstance(message, AIMessage): msg = f"Expected an AI message got {type(message)}" raise TypeError(msg) actions: list = [] if message.tool_calls: tool_calls = message.tool_calls else: if not message.additional_kwargs.get("tool_calls"): return AgentFinish( return_values={"output": message.content}, log=str(message.content), ) # Best-effort parsing tool_calls = [] for tool_call in message.additional_kwargs["tool_calls"]: function = tool_call["function"] function_name = function["name"] try: args = json.loads(function["arguments"] or "{}") tool_calls.append( ToolCall(name=function_name, args=args, id=tool_call["id"]), ) except JSONDecodeError as e: msg = ( f"Could not parse tool input: {function} because " f"the `arguments` is not valid JSON." ) raise OutputParserException(msg) from e for tool_call in tool_calls: # HACK HACK HACK: # The code that encodes tool input into Open AI uses a special variable # name called `__arg1` to handle old style tools that do not expose a # schema and expect a single string argument as an input. # We unpack the argument here if it exists. # Open AI does not support passing in a JSON array as an argument. function_name = tool_call["name"] _tool_input = tool_call["args"] tool_input = _tool_input.get("__arg1", _tool_input) content_msg = f"responded: {message.content}\n" if message.content else "\n" log = f"\nInvoking: `{function_name}` with `{tool_input}`\n{content_msg}\n" actions.append( ToolAgentAction( tool=function_name, tool_input=tool_input, log=log, message_log=[message], tool_call_id=tool_call["id"], ), ) return actions class ToolsAgentOutputParser(MultiActionAgentOutputParser): """Parses a message into agent actions/finish. If a tool_calls parameter is passed, then that is used to get the tool names and tool inputs. If one is not passed, then the AIMessage is assumed to be the final output. """ @property def _type(self) -> str: return "tools-agent-output-parser" def parse_result( self, result: list[Generation], *, partial: bool = False, ) -> Union[list[AgentAction], AgentFinish]: if not isinstance(result[0], ChatGeneration): msg = "This output parser only works on ChatGeneration output" raise ValueError(msg) message = result[0].message return parse_ai_message_to_tool_action(message) def parse(self, text: str) -> Union[list[AgentAction], AgentFinish]: msg = "Can only parse messages" raise ValueError(msg)
import json from json import JSONDecodeError from typing import Union from langchain_core.agents import AgentAction, AgentActionMessageLog, AgentFinish from langchain_core.exceptions import OutputParserException from langchain_core.messages import ( AIMessage, BaseMessage, ToolCall, ) from langchain_core.outputs import ChatGeneration, Generation from langchain.agents.agent import MultiActionAgentOutputParser class ToolAgentAction(AgentActionMessageLog): tool_call_id: str """Tool call that this message is responding to.""" def parse_ai_message_to_tool_action( message: BaseMessage, ) -> Union[list[AgentAction], AgentFinish]: """Parse an AI message potentially containing tool_calls.""" if not isinstance(message, AIMessage): msg = f"Expected an AI message got {type(message)}" raise TypeError(msg) actions: list = [] if message.tool_calls: tool_calls = message.tool_calls else: if not message.additional_kwargs.get("tool_calls"): return AgentFinish( return_values={"output": message.content}, log=str(message.content), ) # Best-effort parsing tool_calls = [] for tool_call in message.additional_kwargs["tool_calls"]: function = tool_call["function"] function_name = function["name"] try: args = json.loads(function["arguments"] or "{}") tool_calls.append( ToolCall(name=function_name, args=args, id=tool_call["id"]), ) except JSONDecodeError: msg = ( f"Could not parse tool input: {function} because " f"the `arguments` is not valid JSON." ) raise OutputParserException(msg) for tool_call in tool_calls: # HACK HACK HACK: # The code that encodes tool input into Open AI uses a special variable # name called `__arg1` to handle old style tools that do not expose a # schema and expect a single string argument as an input. # We unpack the argument here if it exists. # Open AI does not support passing in a JSON array as an argument. function_name = tool_call["name"] _tool_input = tool_call["args"] tool_input = _tool_input.get("__arg1", _tool_input) content_msg = f"responded: {message.content}\n" if message.content else "\n" log = f"\nInvoking: `{function_name}` with `{tool_input}`\n{content_msg}\n" actions.append( ToolAgentAction( tool=function_name, tool_input=tool_input, log=log, message_log=[message], tool_call_id=tool_call["id"], ), ) return actions class ToolsAgentOutputParser(MultiActionAgentOutputParser): """Parses a message into agent actions/finish. If a tool_calls parameter is passed, then that is used to get the tool names and tool inputs. If one is not passed, then the AIMessage is assumed to be the final output. """ @property def _type(self) -> str: return "tools-agent-output-parser" def parse_result( self, result: list[Generation], *, partial: bool = False, ) -> Union[list[AgentAction], AgentFinish]: if not isinstance(result[0], ChatGeneration): msg = "This output parser only works on ChatGeneration output" raise ValueError(msg) message = result[0].message return parse_ai_message_to_tool_action(message) def parse(self, text: str) -> Union[list[AgentAction], AgentFinish]: msg = "Can only parse messages" raise ValueError(msg)
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility to set up DTensor backend in tests.""" # LINT.IfChange import multiprocessing import os from tensorflow.dtensor.python import accelerator_util from tensorflow.dtensor.python.tests.test_backend_name import DTENSOR_TEST_UTIL_BACKEND from tensorflow.python.platform import test as tf_test class DTensorTestBackendConfigurator: """Configurate test backends.""" def __init__(self, test_case: tf_test.TestCase): self._test_case = test_case # TODO(b/260771689): Refactor common backend set up logic to here. def tearDown(self): # Only need to explicitly shuts down TPU system in TFRT since in current # runtime, the shutdown is done in initialization process. if accelerator_util.is_initialized(): accelerator_util.shutdown_accelerator_system() def slice_host_devices_for_multiworker(num_clients, client_id, ports): """Configure the current process to only use a slice of devices.""" if num_clients == 0: # All GPUs are visible to the client. del os.environ['CUDA_VISIBLE_DEVICES'] del os.environ['HIP_VISIBLE_DEVICES'] else: # Make the client_id-th GPU visible to the client. os.environ['CUDA_VISIBLE_DEVICES'] = f'{client_id}' os.environ['HIP_VISIBLE_DEVICES'] = f'{client_id}' # Make the client_id-th (4x) TPU cores visible to the client. os.environ['CLOUD_TPU_TASK_ID'] = f'{client_id}' if 'tpu' in DTENSOR_TEST_UTIL_BACKEND.value: del ports # Unused due to lack of implementation. # We need to find out if there is a way to slice a CloudTPU host to # multiple workers. raise NotImplementedError( 'OSS multi-client tests of TPU is not supported.' ) def get_mp_context(): return multiprocessing.get_context('forkserver') def handle_test_main(main, *args, **kwargs): main(*args, **kwargs) # LINT.ThenChange(test_backend_util.py)
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility to set up DTensor backend in tests.""" # LINT.IfChange import multiprocessing import os from tensorflow.dtensor.python import accelerator_util from tensorflow.dtensor.python import config from tensorflow.dtensor.python import layout as layout_lib from tensorflow.dtensor.python.tests.test_backend_name import DTENSOR_TEST_UTIL_BACKEND from tensorflow.python.platform import test as tf_test class DTensorTestBackendConfigurator: """Configurate test backends.""" def __init__(self, test_case: tf_test.TestCase): self._test_case = test_case # TODO(b/260771689): Refactor common backend set up logic to here. def tearDown(self): # Only need to explicitly shuts down TPU system in TFRT since in current # runtime, the shutdown is done in initialization process. if accelerator_util.is_initialized(): accelerator_util.shutdown_accelerator_system() def config_test_mesh(mesh: layout_lib.Mesh): """No Op. Args: mesh: The DTensor mesh. """ if config.backend_is_pw(): del mesh def slice_host_devices_for_multiworker(num_clients, client_id, ports): """Configure the current process to only use a slice of devices.""" if num_clients == 0: # All GPUs are visible to the client. del os.environ['CUDA_VISIBLE_DEVICES'] del os.environ['HIP_VISIBLE_DEVICES'] else: # Make the client_id-th GPU visible to the client. os.environ['CUDA_VISIBLE_DEVICES'] = f'{client_id}' os.environ['HIP_VISIBLE_DEVICES'] = f'{client_id}' # Make the client_id-th (4x) TPU cores visible to the client. os.environ['CLOUD_TPU_TASK_ID'] = f'{client_id}' if 'tpu' in DTENSOR_TEST_UTIL_BACKEND.value: del ports # Unused due to lack of implementation. # We need to find out if there is a way to slice a CloudTPU host to # multiple workers. raise NotImplementedError( 'OSS multi-client tests of TPU is not supported.' ) def get_mp_context(): return multiprocessing.get_context('forkserver') def handle_test_main(main, *args, **kwargs): main(*args, **kwargs) # LINT.ThenChange(test_backend_util.py)
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # please install mmcls>=1.0 # import mmcls.models to trigger register_module in mmcls custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False) checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-tiny_3rdparty_32xb128-noema_in1k_20220301-795e9634.pth' # noqa model = dict( backbone=dict( _delete_=True, type='mmcls.ConvNeXt', arch='tiny', out_indices=[0, 1, 2, 3], drop_path_rate=0.4, layer_scale_init_value=1.0, gap_before_final_norm=False, init_cfg=dict( type='Pretrained', checkpoint=checkpoint_file, prefix='backbone.')), neck=dict(in_channels=[96, 192, 384, 768])) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[[ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', scales=[(400, 1333), (500, 1333), (600, 1333)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ]]), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) max_epochs = 36 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[27, 33], gamma=0.1) ] # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', constructor='LearningRateDecayOptimizerConstructor', paramwise_cfg={ 'decay_rate': 0.95, 'decay_type': 'layer_wise', 'num_layers': 6 }, optimizer=dict( _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, ))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # please install mmcls>=1.0 # import mmcls.models to trigger register_module in mmcls custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False) checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-tiny_3rdparty_32xb128-noema_in1k_20220301-795e9634.pth' # noqa model = dict( backbone=dict( _delete_=True, type='mmcls.ConvNeXt', arch='tiny', out_indices=[0, 1, 2, 3], drop_path_rate=0.4, layer_scale_init_value=1.0, gap_before_final_norm=False, init_cfg=dict( type='Pretrained', checkpoint=checkpoint_file, prefix='backbone.')), neck=dict(in_channels=[96, 192, 384, 768])) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[[ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', scales=[(400, 1333), (500, 1333), (600, 1333)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ]]), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) max_epochs = 36 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[27, 33], gamma=0.1) ] # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', constructor='LearningRateDecayOptimizerConstructor', paramwise_cfg={ 'decay_rate': 0.95, 'decay_type': 'layer_wise', 'num_layers': 6 }, optimizer=dict( _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, ))
from deprecated import deprecated from typing import Optional from .workflow import Workflow from .events import StartEvent, StopEvent from .decorators import StepConfig from .utils import get_steps_from_class, get_steps_from_instance @deprecated( reason="Install `llama-index-utils-workflow` and use the import `from llama_index.utils.workflow` instead." ) def draw_all_possible_flows( workflow: Workflow, filename: str = "workflow_all_flows.html", notebook: bool = False, ) -> None: """Draws all possible flows of the workflow.""" from pyvis.network import Network net = Network(directed=True, height="750px", width="100%") # Add the nodes + edge for stop events net.add_node( StopEvent.__name__, label=StopEvent.__name__, color="#FFA07A", shape="ellipse", ) net.add_node("_done", label="_done", color="#ADD8E6", shape="box") net.add_edge(StopEvent.__name__, "_done") # Add nodes from all steps steps = get_steps_from_class(workflow) if not steps: # If no steps are defined in the class, try to get them from the instance steps = get_steps_from_instance(workflow) step_config: Optional[StepConfig] = None for step_name, step_func in steps.items(): step_config = getattr(step_func, "__step_config", None) if step_config is None: continue net.add_node( step_name, label=step_name, color="#ADD8E6", shape="box" ) # Light blue for steps for event_type in step_config.accepted_events: net.add_node( event_type.__name__, label=event_type.__name__, color="#90EE90" if event_type != StartEvent else "#E27AFF", shape="ellipse", ) # Light green for events # Add edges from all steps for step_name, step_func in steps.items(): step_config = getattr(step_func, "__step_config", None) if step_config is None: continue for return_type in step_config.return_types: if return_type is not type(None): net.add_edge(step_name, return_type.__name__) for event_type in step_config.accepted_events: net.add_edge(event_type.__name__, step_name) net.show(filename, notebook=notebook) @deprecated( reason="Install `llama-index-utils-workflow` and use the import `from llama_index.utils.workflow` instead." ) def draw_most_recent_execution( workflow: Workflow, filename: str = "workflow_recent_execution.html", notebook: bool = False, ) -> None: """Draws the most recent execution of the workflow.""" from pyvis.network import Network net = Network(directed=True, height="750px", width="100%") # Add nodes and edges based on execution history existing_context = next(iter(workflow._contexts), None) if existing_context is None: raise ValueError("No runs found in workflow") for i, (step, event) in enumerate(existing_context._accepted_events): event_node = f"{event}_{i}" step_node = f"{step}_{i}" net.add_node( event_node, label=event, color="#90EE90", shape="ellipse" ) # Light green for events net.add_node( step_node, label=step, color="#ADD8E6", shape="box" ) # Light blue for steps net.add_edge(event_node, step_node) if i > 0: prev_step_node = f"{existing_context._accepted_events[i - 1][0]}_{i - 1}" net.add_edge(prev_step_node, event_node) net.show(filename, notebook=notebook)
from deprecated import deprecated from typing import Optional from .workflow import Workflow from .events import StartEvent, StopEvent from .decorators import StepConfig from .utils import get_steps_from_class, get_steps_from_instance @deprecated( reason="Install `llama-index-utils-workflow` and use the import `from llama_index.utils.workflow` instead." ) def draw_all_possible_flows( workflow: Workflow, filename: str = "workflow_all_flows.html", notebook: bool = False, ) -> None: """Draws all possible flows of the workflow.""" from pyvis.network import Network net = Network(directed=True, height="750px", width="100%") # Add the nodes + edge for stop events net.add_node( StopEvent.__name__, label=StopEvent.__name__, color="#FFA07A", shape="ellipse", ) net.add_node("_done", label="_done", color="#ADD8E6", shape="box") net.add_edge(StopEvent.__name__, "_done") # Add nodes from all steps steps = get_steps_from_class(workflow) if not steps: # If no steps are defined in the class, try to get them from the instance steps = get_steps_from_instance(workflow) step_config: Optional[StepConfig] = None for step_name, step_func in steps.items(): step_config = getattr(step_func, "__step_config", None) if step_config is None: continue net.add_node( step_name, label=step_name, color="#ADD8E6", shape="box" ) # Light blue for steps for event_type in step_config.accepted_events: net.add_node( event_type.__name__, label=event_type.__name__, color="#90EE90" if event_type != StartEvent else "#E27AFF", shape="ellipse", ) # Light green for events # Add edges from all steps for step_name, step_func in steps.items(): step_config = getattr(step_func, "__step_config", None) if step_config is None: continue for return_type in step_config.return_types: if return_type != type(None): net.add_edge(step_name, return_type.__name__) for event_type in step_config.accepted_events: net.add_edge(event_type.__name__, step_name) net.show(filename, notebook=notebook) @deprecated( reason="Install `llama-index-utils-workflow` and use the import `from llama_index.utils.workflow` instead." ) def draw_most_recent_execution( workflow: Workflow, filename: str = "workflow_recent_execution.html", notebook: bool = False, ) -> None: """Draws the most recent execution of the workflow.""" from pyvis.network import Network net = Network(directed=True, height="750px", width="100%") # Add nodes and edges based on execution history existing_context = next(iter(workflow._contexts), None) if existing_context is None: raise ValueError("No runs found in workflow") for i, (step, event) in enumerate(existing_context._accepted_events): event_node = f"{event}_{i}" step_node = f"{step}_{i}" net.add_node( event_node, label=event, color="#90EE90", shape="ellipse" ) # Light green for events net.add_node( step_node, label=step, color="#ADD8E6", shape="box" ) # Light blue for steps net.add_edge(event_node, step_node) if i > 0: prev_step_node = f"{existing_context._accepted_events[i - 1][0]}_{i - 1}" net.add_edge(prev_step_node, event_node) net.show(filename, notebook=notebook)
from keras.src import activations from keras.src import backend from keras.src.api_export import keras_export from keras.src.layers.layer import Layer def _large_negative_number(dtype): """Return a Large negative number based on dtype.""" if backend.standardize_dtype(dtype) == "float16": return -3e4 return -1e9 @keras_export("keras.layers.Softmax") class Softmax(Layer): """Softmax activation layer. Formula: ``` python exp_x = exp(x - max(x)) f(x) = exp_x / sum(exp_x) ``` Example: >>> softmax_layer = keras.layers.activations.Softmax() >>> input = np.array([1.0, 2.0, 1.0]) >>> result = softmax_layer(input) >>> result [0.21194157, 0.5761169, 0.21194157] Args: axis: Integer, or list of Integers, axis along which the softmax normalization is applied. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. Call arguments: inputs: The inputs (logits) to the softmax layer. mask: A boolean mask of the same shape as `inputs`. The mask specifies 1 to keep and 0 to mask. Defaults to `None`. Returns: Softmaxed output with the same shape as `inputs`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) self.axis = axis self.supports_masking = True self.built = True def call(self, inputs, mask=None): if mask is not None: adder = ( 1.0 - backend.cast(mask, inputs.dtype) ) * _large_negative_number(inputs.dtype) inputs += adder if isinstance(self.axis, (tuple, list)): if len(self.axis) > 1: return backend.numpy.exp( inputs - backend.math.logsumexp( inputs, axis=self.axis, keepdims=True ) ) else: return activations.softmax(inputs, axis=self.axis[0]) return activations.softmax(inputs, axis=self.axis) def get_config(self): config = super().get_config() config.update({"axis": self.axis}) return config def compute_output_shape(self, input_shape): return input_shape
from keras.src import activations from keras.src import backend from keras.src.api_export import keras_export from keras.src.layers.layer import Layer def _large_negative_number(dtype): """Return a Large negative number based on dtype.""" if backend.standardize_dtype(dtype) == "float16": return -3e4 return -1e9 @keras_export("keras.layers.Softmax") class Softmax(Layer): """Softmax activation layer. Formula: ``` python exp_x = exp(x - max(x)) f(x) = exp_x / sum(exp_x) ``` Example: >>>softmax_layer = keras.layers.activations.Softmax() >>>input = np.array([1.0, 2.0, 1.0]) >>>result = softmax_layer(input) [0.21194157, 0.5761169, 0.21194157] Args: axis: Integer, or list of Integers, axis along which the softmax normalization is applied. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. Call arguments: inputs: The inputs (logits) to the softmax layer. mask: A boolean mask of the same shape as `inputs`. The mask specifies 1 to keep and 0 to mask. Defaults to `None`. Returns: Softmaxed output with the same shape as `inputs`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) self.axis = axis self.supports_masking = True self.built = True def call(self, inputs, mask=None): if mask is not None: adder = ( 1.0 - backend.cast(mask, inputs.dtype) ) * _large_negative_number(inputs.dtype) inputs += adder if isinstance(self.axis, (tuple, list)): if len(self.axis) > 1: return backend.numpy.exp( inputs - backend.math.logsumexp( inputs, axis=self.axis, keepdims=True ) ) else: return activations.softmax(inputs, axis=self.axis[0]) return activations.softmax(inputs, axis=self.axis) def get_config(self): config = super().get_config() config.update({"axis": self.axis}) return config def compute_output_shape(self, input_shape): return input_shape
"""Helper functions for managing the LangChain API. This module is only relevant for LangChain developers, not for users. .. warning:: This module and its submodules are for internal use only. Do not use them in your own code. We may change the API at any time with no warning. """ from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from .beta_decorator import ( LangChainBetaWarning, beta, suppress_langchain_beta_warning, surface_langchain_beta_warnings, ) from .deprecation import ( LangChainDeprecationWarning, deprecated, suppress_langchain_deprecation_warning, surface_langchain_deprecation_warnings, warn_deprecated, ) from .path import as_import_path, get_relative_path __all__ = ( "LangChainBetaWarning", "LangChainDeprecationWarning", "as_import_path", "beta", "deprecated", "get_relative_path", "suppress_langchain_beta_warning", "suppress_langchain_deprecation_warning", "surface_langchain_beta_warnings", "surface_langchain_deprecation_warnings", "warn_deprecated", ) _dynamic_imports = { "LangChainBetaWarning": "beta_decorator", "beta": "beta_decorator", "suppress_langchain_beta_warning": "beta_decorator", "surface_langchain_beta_warnings": "beta_decorator", "as_import_path": "path", "get_relative_path": "path", "LangChainDeprecationWarning": "deprecation", "deprecated": "deprecation", "surface_langchain_deprecation_warnings": "deprecation", "suppress_langchain_deprecation_warning": "deprecation", "warn_deprecated": "deprecation", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""Helper functions for managing the LangChain API. This module is only relevant for LangChain developers, not for users. .. warning:: This module and its submodules are for internal use only. Do not use them in your own code. We may change the API at any time with no warning. """ from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from .beta_decorator import ( LangChainBetaWarning, beta, suppress_langchain_beta_warning, surface_langchain_beta_warnings, ) from .deprecation import ( LangChainDeprecationWarning, deprecated, suppress_langchain_deprecation_warning, surface_langchain_deprecation_warnings, warn_deprecated, ) from .path import as_import_path, get_relative_path __all__ = ( "as_import_path", "beta", "deprecated", "get_relative_path", "LangChainBetaWarning", "LangChainDeprecationWarning", "suppress_langchain_beta_warning", "surface_langchain_beta_warnings", "suppress_langchain_deprecation_warning", "surface_langchain_deprecation_warnings", "warn_deprecated", ) _dynamic_imports = { "LangChainBetaWarning": "beta_decorator", "beta": "beta_decorator", "suppress_langchain_beta_warning": "beta_decorator", "surface_langchain_beta_warnings": "beta_decorator", "as_import_path": "path", "get_relative_path": "path", "LangChainDeprecationWarning": "deprecation", "deprecated": "deprecation", "surface_langchain_deprecation_warnings": "deprecation", "suppress_langchain_deprecation_warning": "deprecation", "warn_deprecated": "deprecation", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
from ._transforms import BarkScale, BarkSpectrogram, InverseBarkScale __all__ = [ "BarkScale", "BarkSpectrogram", "InverseBarkScale", ]
from ._transforms import ( AddNoise, BarkScale, BarkSpectrogram, Convolve, Deemphasis, FFTConvolve, InverseBarkScale, Preemphasis, Speed, SpeedPerturbation, ) __all__ = [ "AddNoise", "BarkScale", "BarkSpectrogram", "Convolve", "Deemphasis", "FFTConvolve", "InverseBarkScale", "Preemphasis", "SpeedPerturbation", "Speed", ]
import os from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal import xgboost as xgb from xgboost import callback class SupportedTasks(object): TRAIN = "train" class XGBoostTrainer(Executor): def __init__(self, server_address: str, world_size: int, server_cert_path: str, client_key_path: str, client_cert_path: str, use_gpus: bool): """Trainer for federated XGBoost. Args: server_address: address for the gRPC server to connect to. world_size: the number of sites. server_cert_path: the path to the server certificate file. client_key_path: the path to the client key file. client_cert_path: the path to the client certificate file. """ super().__init__() self._server_address = server_address self._world_size = world_size self._server_cert_path = server_cert_path self._client_key_path = client_key_path self._client_cert_path = client_cert_path self._use_gpus = use_gpus def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: self.log_info(fl_ctx, f"Executing {task_name}") try: if task_name == SupportedTasks.TRAIN: self._do_training(fl_ctx) return make_reply(ReturnCode.OK) else: self.log_error(fl_ctx, f"{task_name} is not a supported task.") return make_reply(ReturnCode.TASK_UNKNOWN) except BaseException as e: self.log_exception(fl_ctx, f"Task {task_name} failed. Exception: {e.__str__()}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) def _do_training(self, fl_ctx: FLContext): client_name = fl_ctx.get_prop(FLContextKey.CLIENT_NAME) rank = int(client_name.split('-')[1]) - 1 communicator_env = { 'xgboost_communicator': 'federated', 'federated_server_address': self._server_address, 'federated_world_size': self._world_size, 'federated_rank': rank, 'federated_server_cert': self._server_cert_path, 'federated_client_key': self._client_key_path, 'federated_client_cert': self._client_cert_path } with xgb.collective.CommunicatorContext(**communicator_env): # Load file, file will not be sharded in federated mode. if rank == 0: label = '&label_column=0' else: label = '' dtrain = xgb.DMatrix(f'higgs.train.csv?format=csv{label}', data_split_mode=1) dtest = xgb.DMatrix(f'higgs.test.csv?format=csv{label}', data_split_mode=1) # specify parameters via map param = { 'validate_parameters': True, 'eta': 0.1, 'gamma': 1.0, 'max_depth': 8, 'min_child_weight': 100, 'tree_method': 'hist', 'grow_policy': 'depthwise', 'objective': 'binary:logistic', 'eval_metric': 'auc', } if self._use_gpus: self.log_info(fl_ctx, f'Training with GPU {rank}') param['device'] = f"cuda:{rank}" # specify validations set to watch performance watchlist = [(dtest, "eval"), (dtrain, "train")] # number of boosting rounds num_round = 10 bst = xgb.train(param, dtrain, num_round, evals=watchlist, early_stopping_rounds=2) # Save the model. workspace = fl_ctx.get_prop(FLContextKey.WORKSPACE_OBJECT) run_number = fl_ctx.get_prop(FLContextKey.CURRENT_RUN) run_dir = workspace.get_run_dir(run_number) bst.save_model(os.path.join(run_dir, "higgs.model.federated.vertical.json")) xgb.collective.communicator_print("Finished training\n")
import os from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal import xgboost as xgb from xgboost import callback class SupportedTasks(object): TRAIN = "train" class XGBoostTrainer(Executor): def __init__(self, server_address: str, world_size: int, server_cert_path: str, client_key_path: str, client_cert_path: str, use_gpus: bool): """Trainer for federated XGBoost. Args: server_address: address for the gRPC server to connect to. world_size: the number of sites. server_cert_path: the path to the server certificate file. client_key_path: the path to the client key file. client_cert_path: the path to the client certificate file. """ super().__init__() self._server_address = server_address self._world_size = world_size self._server_cert_path = server_cert_path self._client_key_path = client_key_path self._client_cert_path = client_cert_path self._use_gpus = use_gpus def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: self.log_info(fl_ctx, f"Executing {task_name}") try: if task_name == SupportedTasks.TRAIN: self._do_training(fl_ctx) return make_reply(ReturnCode.OK) else: self.log_error(fl_ctx, f"{task_name} is not a supported task.") return make_reply(ReturnCode.TASK_UNKNOWN) except BaseException as e: self.log_exception(fl_ctx, f"Task {task_name} failed. Exception: {e.__str__()}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) def _do_training(self, fl_ctx: FLContext): client_name = fl_ctx.get_prop(FLContextKey.CLIENT_NAME) rank = int(client_name.split('-')[1]) - 1 communicator_env = { 'xgboost_communicator': 'federated', 'federated_server_address': self._server_address, 'federated_world_size': self._world_size, 'federated_rank': rank, 'federated_server_cert': self._server_cert_path, 'federated_client_key': self._client_key_path, 'federated_client_cert': self._client_cert_path } with xgb.collective.CommunicatorContext(**communicator_env): # Load file, file will not be sharded in federated mode. if rank == 0: label = '&label_column=0' else: label = '' dtrain = xgb.DMatrix(f'higgs.train.csv?format=csv{label}', data_split_mode=1) dtest = xgb.DMatrix(f'higgs.test.csv?format=csv{label}', data_split_mode=1) # specify parameters via map param = { 'validate_parameters': True, 'eta': 0.1, 'gamma': 1.0, 'max_depth': 8, 'min_child_weight': 100, 'tree_method': 'hist', 'grow_policy': 'depthwise', 'objective': 'binary:logistic', 'eval_metric': 'auc', } if self._use_gpus: if self._use_gpus: self.log_info(fl_ctx, f'Training with GPU {rank}') param['device'] = f"cuda:{rank}" # specify validations set to watch performance watchlist = [(dtest, "eval"), (dtrain, "train")] # number of boosting rounds num_round = 10 bst = xgb.train(param, dtrain, num_round, evals=watchlist, early_stopping_rounds=2) # Save the model. workspace = fl_ctx.get_prop(FLContextKey.WORKSPACE_OBJECT) run_number = fl_ctx.get_prop(FLContextKey.CURRENT_RUN) run_dir = workspace.get_run_dir(run_number) bst.save_model(os.path.join(run_dir, "higgs.model.federated.vertical.json")) xgb.collective.communicator_print("Finished training\n")
from typing import Union, Dict, Any import google.ai.generativelanguage as glm import google.generativeai as genai from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, CompletionResponse, ImageBlock, TextBlock, ) from llama_index.core.multi_modal_llms.base import ChatMessage from llama_index.core.utilities.gemini_utils import ROLES_FROM_GEMINI, ROLES_TO_GEMINI def _error_if_finished_early(candidate: "glm.Candidate") -> None: # type: ignore[name-defined] # only until release if (finish_reason := candidate.finish_reason) > 1: # 1=STOP (normally) reason = finish_reason.name # Safety reasons have more detail, so include that if we can. if finish_reason == 3: # 3=Safety relevant_safety = list( filter( lambda sr: sr.probability > 1, # 1=Negligible candidate.safety_ratings, ) ) reason += f" {relevant_safety}" raise RuntimeError(f"Response was terminated early: {reason}") def completion_from_gemini_response( response: Union[ "genai.types.GenerateContentResponse", "genai.types.AsyncGenerateContentResponse", ], ) -> CompletionResponse: top_candidate = response.candidates[0] _error_if_finished_early(top_candidate) raw = { **(type(top_candidate).to_dict(top_candidate)), # type: ignore **(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore } if response.usage_metadata: raw["usage_metadata"] = type(response.usage_metadata).to_dict( response.usage_metadata ) return CompletionResponse(text=response.text, raw=raw) def chat_from_gemini_response( response: Union[ "genai.types.GenerateContentResponse", "genai.types.AsyncGenerateContentResponse", ], ) -> ChatResponse: top_candidate = response.candidates[0] _error_if_finished_early(top_candidate) raw = { **(type(top_candidate).to_dict(top_candidate)), # type: ignore **(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore } if response.usage_metadata: raw["usage_metadata"] = type(response.usage_metadata).to_dict( response.usage_metadata ) role = ROLES_FROM_GEMINI[top_candidate.content.role] try: # When the response contains only a function call, the library # raises an exception. # The easiest way to detect this is to try access the text attribute and # catch the exception. # https://github.com/google-gemini/generative-ai-python/issues/670 text = response.text except (ValueError, AttributeError): text = None additional_kwargs: Dict[str, Any] = {} for part in response.parts: if fn := part.function_call: if "tool_calls" not in additional_kwargs: additional_kwargs["tool_calls"] = [] additional_kwargs["tool_calls"].append(fn) return ChatResponse( message=ChatMessage( role=role, content=text, additional_kwargs=additional_kwargs ), raw=raw, additional_kwargs=additional_kwargs, ) def chat_message_to_gemini(message: ChatMessage) -> "genai.types.ContentDict": """Convert ChatMessages to Gemini-specific history, including ImageDocuments.""" parts = [] for block in message.blocks: if isinstance(block, TextBlock): parts.append(block.text) elif isinstance(block, ImageBlock): base64_bytes = block.resolve_image(as_base64=False).read() parts.append( { "mime_type": block.image_mimetype, "data": base64_bytes, } ) else: msg = f"Unsupported content block type: {type(block).__name__}" raise ValueError(msg) return { "role": ROLES_TO_GEMINI[message.role], "parts": parts, }
from typing import Union import google.ai.generativelanguage as glm import google.generativeai as genai from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, CompletionResponse, ImageBlock, TextBlock, ) from llama_index.core.multi_modal_llms.base import ChatMessage from llama_index.core.utilities.gemini_utils import ROLES_FROM_GEMINI, ROLES_TO_GEMINI def _error_if_finished_early(candidate: "glm.Candidate") -> None: # type: ignore[name-defined] # only until release if (finish_reason := candidate.finish_reason) > 1: # 1=STOP (normally) reason = finish_reason.name # Safety reasons have more detail, so include that if we can. if finish_reason == 3: # 3=Safety relevant_safety = list( filter( lambda sr: sr.probability > 1, # 1=Negligible candidate.safety_ratings, ) ) reason += f" {relevant_safety}" raise RuntimeError(f"Response was terminated early: {reason}") def completion_from_gemini_response( response: Union[ "genai.types.GenerateContentResponse", "genai.types.AsyncGenerateContentResponse", ], ) -> CompletionResponse: top_candidate = response.candidates[0] _error_if_finished_early(top_candidate) raw = { **(type(top_candidate).to_dict(top_candidate)), # type: ignore **(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore } if response.usage_metadata: raw["usage_metadata"] = type(response.usage_metadata).to_dict( response.usage_metadata ) return CompletionResponse(text=response.text, raw=raw) def chat_from_gemini_response( response: Union[ "genai.types.GenerateContentResponse", "genai.types.AsyncGenerateContentResponse", ], ) -> ChatResponse: top_candidate = response.candidates[0] _error_if_finished_early(top_candidate) raw = { **(type(top_candidate).to_dict(top_candidate)), # type: ignore **(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore } if response.usage_metadata: raw["usage_metadata"] = type(response.usage_metadata).to_dict( response.usage_metadata ) role = ROLES_FROM_GEMINI[top_candidate.content.role] return ChatResponse(message=ChatMessage(role=role, content=response.text), raw=raw) def chat_message_to_gemini(message: ChatMessage) -> "genai.types.ContentDict": """Convert ChatMessages to Gemini-specific history, including ImageDocuments.""" parts = [] content_txt = "" for block in message.blocks: if isinstance(block, TextBlock): parts.append(block.text) elif isinstance(block, ImageBlock): base64_bytes = block.resolve_image(as_base64=False).read() parts.append( { "mime_type": block.image_mimetype, "data": base64_bytes, } ) else: msg = f"Unsupported content block type: {type(block).__name__}" raise ValueError(msg) return { "role": ROLES_TO_GEMINI[message.role], "parts": parts, }
import pytest from jina import Flow @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) def test_dry_run(protocol): f = Flow(protocol=protocol).add() with f: dry_run = f.dry_run() dry_run_negative = f.dry_run() assert dry_run assert not dry_run_negative @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) @pytest.mark.parametrize('show_table', [True, False]) def test_profiling(protocol, show_table): f = Flow(protocol=protocol).add(name='hello').add(name='world') with f: results = f.profiling(show_table=show_table) assert results assert 'hello' in results assert 'world' in results @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc']) async def test_profiling_async(protocol): f = Flow(protocol=protocol, asyncio=True).add(name='hello').add(name='world') with f: results = await f.profiling() assert results assert 'hello' in results assert 'world' in results
import pytest from jina import Flow @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) def test_dry_run(protocol): f = Flow(protocol=protocol).add() with f: dry_run = f.dry_run() dry_run_negative = f.dry_run() assert dry_run assert not dry_run_negative
"""Test Self-hosted LLMs.""" import pickle from typing import Any, List, Optional from langchain_community.llms import SelfHostedHuggingFaceLLM, SelfHostedPipeline model_reqs = ["pip:./", "transformers", "torch"] def get_remote_instance() -> Any: """Get remote instance for testing.""" import runhouse as rh return rh.cluster(name="rh-a10x", instance_type="A100:1", use_spot=False) def test_self_hosted_huggingface_pipeline_text_generation() -> None: """Test valid call to self-hosted HuggingFace text generation model.""" gpu = get_remote_instance() llm = SelfHostedHuggingFaceLLM( model_id="gpt2", task="text-generation", model_kwargs={"n_positions": 1024}, hardware=gpu, model_reqs=model_reqs, ) output = llm.invoke("Say foo:") assert isinstance(output, str) def test_self_hosted_huggingface_pipeline_text2text_generation() -> None: """Test valid call to self-hosted HuggingFace text2text generation model.""" gpu = get_remote_instance() llm = SelfHostedHuggingFaceLLM( model_id="google/flan-t5-small", task="text2text-generation", hardware=gpu, model_reqs=model_reqs, ) output = llm.invoke("Say foo:") assert isinstance(output, str) def test_self_hosted_huggingface_pipeline_summarization() -> None: """Test valid call to self-hosted HuggingFace summarization model.""" gpu = get_remote_instance() llm = SelfHostedHuggingFaceLLM( model_id="facebook/bart-large-cnn", task="summarization", hardware=gpu, model_reqs=model_reqs, ) output = llm.invoke("Say foo:") assert isinstance(output, str) def load_pipeline() -> Any: """Load pipeline for testing.""" from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 ) return pipe def inference_fn(pipeline: Any, prompt: str, stop: Optional[List[str]] = None) -> str: """Inference function for testing.""" return pipeline(prompt)[0]["generated_text"] def test_init_with_local_pipeline() -> None: """Test initialization with a self-hosted HF pipeline.""" gpu = get_remote_instance() pipeline = load_pipeline() llm = SelfHostedPipeline.from_pipeline( pipeline=pipeline, hardware=gpu, model_reqs=model_reqs, inference_fn=inference_fn, ) output = llm.invoke("Say foo:") assert isinstance(output, str) def test_init_with_pipeline_path() -> None: """Test initialization with a self-hosted HF pipeline.""" gpu = get_remote_instance() pipeline = load_pipeline() import runhouse as rh rh.blob(pickle.dumps(pipeline), path="models/pipeline.pkl").save().to( gpu, path="models" ) llm = SelfHostedPipeline.from_pipeline( pipeline="models/pipeline.pkl", hardware=gpu, model_reqs=model_reqs, inference_fn=inference_fn, ) output = llm.invoke("Say foo:") assert isinstance(output, str) def test_init_with_pipeline_fn() -> None: """Test initialization with a self-hosted HF pipeline.""" gpu = get_remote_instance() llm = SelfHostedPipeline( model_load_fn=load_pipeline, hardware=gpu, model_reqs=model_reqs, inference_fn=inference_fn, ) output = llm.invoke("Say foo:") assert isinstance(output, str)
"""Test Self-hosted LLMs.""" import pickle from typing import Any, List, Optional from langchain_community.llms import SelfHostedHuggingFaceLLM, SelfHostedPipeline model_reqs = ["pip:./", "transformers", "torch"] def get_remote_instance() -> Any: """Get remote instance for testing.""" import runhouse as rh return rh.cluster(name="rh-a10x", instance_type="A100:1", use_spot=False) def test_self_hosted_huggingface_pipeline_text_generation() -> None: """Test valid call to self-hosted HuggingFace text generation model.""" gpu = get_remote_instance() llm = SelfHostedHuggingFaceLLM( model_id="gpt2", task="text-generation", model_kwargs={"n_positions": 1024}, hardware=gpu, model_reqs=model_reqs, ) output = llm.invoke("Say foo:") # type: ignore assert isinstance(output, str) def test_self_hosted_huggingface_pipeline_text2text_generation() -> None: """Test valid call to self-hosted HuggingFace text2text generation model.""" gpu = get_remote_instance() llm = SelfHostedHuggingFaceLLM( model_id="google/flan-t5-small", task="text2text-generation", hardware=gpu, model_reqs=model_reqs, ) output = llm.invoke("Say foo:") # type: ignore assert isinstance(output, str) def test_self_hosted_huggingface_pipeline_summarization() -> None: """Test valid call to self-hosted HuggingFace summarization model.""" gpu = get_remote_instance() llm = SelfHostedHuggingFaceLLM( model_id="facebook/bart-large-cnn", task="summarization", hardware=gpu, model_reqs=model_reqs, ) output = llm.invoke("Say foo:") assert isinstance(output, str) def load_pipeline() -> Any: """Load pipeline for testing.""" from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 ) return pipe def inference_fn(pipeline: Any, prompt: str, stop: Optional[List[str]] = None) -> str: """Inference function for testing.""" return pipeline(prompt)[0]["generated_text"] def test_init_with_local_pipeline() -> None: """Test initialization with a self-hosted HF pipeline.""" gpu = get_remote_instance() pipeline = load_pipeline() llm = SelfHostedPipeline.from_pipeline( pipeline=pipeline, hardware=gpu, model_reqs=model_reqs, inference_fn=inference_fn, ) output = llm.invoke("Say foo:") # type: ignore assert isinstance(output, str) def test_init_with_pipeline_path() -> None: """Test initialization with a self-hosted HF pipeline.""" gpu = get_remote_instance() pipeline = load_pipeline() import runhouse as rh rh.blob(pickle.dumps(pipeline), path="models/pipeline.pkl").save().to( gpu, path="models" ) llm = SelfHostedPipeline.from_pipeline( pipeline="models/pipeline.pkl", hardware=gpu, model_reqs=model_reqs, inference_fn=inference_fn, ) output = llm.invoke("Say foo:") # type: ignore assert isinstance(output, str) def test_init_with_pipeline_fn() -> None: """Test initialization with a self-hosted HF pipeline.""" gpu = get_remote_instance() llm = SelfHostedPipeline( model_load_fn=load_pipeline, hardware=gpu, model_reqs=model_reqs, inference_fn=inference_fn, ) output = llm.invoke("Say foo:") # type: ignore assert isinstance(output, str)
from typing import TYPE_CHECKING, TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.url.url_3d.url_3d import Url3D if TYPE_CHECKING: from docarray.documents.point_cloud.points_and_colors import PointsAndColors T = TypeVar('T', bound='PointCloud3DUrl') @_register_proto(proto_type_name='point_cloud_url') class PointCloud3DUrl(Url3D): """ URL to a .obj, .glb, or .ply file containing point cloud information. Can be remote (web) URL, or a local file path. """ def load( self: T, samples: int, multiple_geometries: bool = False ) -> 'PointsAndColors': """ Load the data from the url into an NdArray containing point cloud information. EXAMPLE USAGE .. code-block:: python import numpy as np from docarray import BaseDocument from docarray.typing import PointCloud3DUrl class MyDoc(BaseDocument): point_cloud_url: PointCloud3DUrl doc = MyDoc(point_cloud_url="toydata/tetrahedron.obj") point_cloud = doc.point_cloud_url.load(samples=100) assert isinstance(point_cloud, np.ndarray) assert point_cloud.shape == (100, 3) :param samples: number of points to sample from the mesh :param multiple_geometries: if False, store point cloud in 2D np.ndarray. If True, store point clouds from multiple geometries in 3D np.ndarray. :return: np.ndarray representing the point cloud """ from docarray.documents.point_cloud.points_and_colors import PointsAndColors if multiple_geometries: # try to coerce everything into a scene scene = self._load_trimesh_instance(force='scene') point_cloud = np.stack( [np.array(geo.sample(samples)) for geo in scene.geometry.values()], axis=0, ) else: # combine a scene into a single mesh mesh = self._load_trimesh_instance(force='mesh') point_cloud = np.array(mesh.sample(samples)) points = parse_obj_as(NdArray, point_cloud) return PointsAndColors(points=points, colors=None) def display(self, samples: int = 10000) -> None: """ Plot point cloud from url. To use this you need to install trimesh[easy]: `pip install 'trimesh[easy]'`. First, it loads the point cloud into a :class:`PointsAndColors` object, and then calls display on it. The following is therefore equivalent: .. code-block:: python import numpy as np from docarray import BaseDocument from docarray.documents import PointCloud3D pc = PointCloud3D("toydata/tetrahedron.obj") # option 1 pc.url.display() # option 2 (equivalent) pc.url.load(samples=10000).display() :param samples: number of points to sample from the mesh. """ self.load(samples=samples).display()
from typing import TypeVar import numpy as np from pydantic import parse_obj_as from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.ndarray import NdArray from docarray.typing.url.url_3d.url_3d import Url3D T = TypeVar('T', bound='PointCloud3DUrl') @_register_proto(proto_type_name='point_cloud_url') class PointCloud3DUrl(Url3D): """ URL to a .obj, .glb, or .ply file containing point cloud information. Can be remote (web) URL, or a local file path. """ def load(self: T, samples: int, multiple_geometries: bool = False) -> NdArray: """ Load the data from the url into an NdArray containing point cloud information. EXAMPLE USAGE .. code-block:: python import numpy as np from docarray import BaseDocument from docarray.typing import PointCloud3DUrl class MyDoc(BaseDocument): point_cloud_url: PointCloud3DvUrl doc = MyDoc(point_cloud_url="toydata/tetrahedron.obj") point_cloud = doc.point_cloud_url.load(samples=100) assert isinstance(point_cloud, np.ndarray) assert point_cloud.shape == (100, 3) :param samples: number of points to sample from the mesh :param multiple_geometries: if False, store point cloud in 2D np.ndarray. If True, store point clouds from multiple geometries in 3D np.ndarray. :return: np.ndarray representing the point cloud """ if multiple_geometries: # try to coerce everything into a scene scene = self._load_trimesh_instance(force='scene') point_cloud = np.stack( [np.array(geo.sample(samples)) for geo in scene.geometry.values()], axis=0, ) else: # combine a scene into a single mesh mesh = self._load_trimesh_instance(force='mesh') point_cloud = np.array(mesh.sample(samples)) return parse_obj_as(NdArray, point_cloud)
from keras.src import backend from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.Dropout") class Dropout(Layer): """Applies dropout to the input. The `Dropout` layer randomly sets input units to 0 with a frequency of `rate` at each step during training time, which helps prevent overfitting. Inputs not set to 0 are scaled up by `1 / (1 - rate)` such that the sum over all inputs is unchanged. Note that the `Dropout` layer only applies when `training` is set to `True` in `call()`, such that no values are dropped during inference. When using `model.fit`, `training` will be appropriately set to `True` automatically. In other contexts, you can set the argument explicitly to `True` when calling the layer. (This is in contrast to setting `trainable=False` for a `Dropout` layer. `trainable` does not affect the layer's behavior, as `Dropout` does not have any variables/weights that can be frozen during training.) Args: rate: Float between 0 and 1. Fraction of the input units to drop. noise_shape: 1D integer tensor representing the shape of the binary dropout mask that will be multiplied with the input. For instance, if your inputs have shape `(batch_size, timesteps, features)` and you want the dropout mask to be the same for all timesteps, you can use `noise_shape=(batch_size, 1, features)`. seed: A Python integer to use as random seed. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing). """ def __init__(self, rate, noise_shape=None, seed=None, **kwargs): super().__init__(**kwargs) if not 0 <= rate <= 1: raise ValueError( f"Invalid value received for argument " "`rate`. Expected a float value between 0 and 1. " f"Received: rate={rate}" ) self.rate = rate self.seed = seed self.noise_shape = noise_shape if rate > 0: self.seed_generator = backend.random.SeedGenerator(seed) self.supports_masking = True self.built = True def call(self, inputs, training=False): if training and self.rate > 0: return backend.random.dropout( inputs, self.rate, noise_shape=self.noise_shape, seed=self.seed_generator, ) return inputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() config = { "rate": self.rate, "seed": self.seed, "noise_shape": self.noise_shape, } return {**base_config, **config}
from keras.src import backend from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.Dropout") class Dropout(Layer): """Applies dropout to the input. The `Dropout` layer randomly sets input units to 0 with a frequency of `rate` at each step during training time, which helps prevent overfitting. Inputs not set to 0 are scaled up by `1 / (1 - rate)` such that the sum over all inputs is unchanged. Note that the `Dropout` layer only applies when `training` is set to `True` in `call()`, such that no values are dropped during inference. When using `model.fit`, `training` will be appropriately set to `True` automatically. In other contexts, you can set the argument explicitly to `True` when calling the layer. (This is in contrast to setting `trainable=False` for a `Dropout` layer. `trainable` does not affect the layer's behavior, as `Dropout` does not have any variables/weights that can be frozen during training.) Args: rate: Float between 0 and 1. Fraction of the input units to drop. noise_shape: 1D integer tensor representing the shape of the binary dropout mask that will be multiplied with the input. For instance, if your inputs have shape `(batch_size, timesteps, features)` and you want the dropout mask to be the same for all timesteps, you can use `noise_shape=(batch_size, 1, features)`. seed: A Python integer to use as random seed. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing). """ def __init__(self, rate, noise_shape=None, seed=None, **kwargs): super().__init__(**kwargs) if not 0 <= rate <= 1: raise ValueError( f"Invalid value received for argument " "`rate`. Expected a float value between 0 and 1. " f"Received: rate={rate}" ) self.rate = rate self.seed = seed self.noise_shape = noise_shape if rate > 0: self.seed_generator = backend.random.SeedGenerator(seed) self.supports_masking = True def call(self, inputs, training=False): if training and self.rate > 0: return backend.random.dropout( inputs, self.rate, noise_shape=self.noise_shape, seed=self.seed_generator, ) return inputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() config = { "rate": self.rate, "seed": self.seed, "noise_shape": self.noise_shape, } return {**base_config, **config}
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder logger = datasets.utils.logging.get_logger(__name__) class AudioFolderConfig(folder_based_builder.FolderBasedBuilderConfig): """Builder Config for AudioFolder.""" drop_labels: bool = None drop_metadata: bool = None class AudioFolder(folder_based_builder.FolderBasedBuilder): BASE_FEATURE = datasets.Audio BASE_COLUMN_NAME = "audio" BUILDER_CONFIG_CLASS = AudioFolderConfig EXTENSIONS: List[str] # definition at the bottom of the script CLASSIFICATION_TASK = AudioClassification(audio_column="audio", label_column="label") # Obtained with: # ``` # import soundfile as sf # # AUDIO_EXTENSIONS = [f".{format.lower()}" for format in sf.available_formats().keys()] # # # .opus decoding is supported if libsndfile >= 1.0.31: # AUDIO_EXTENSIONS.extend([".opus"]) # ``` # We intentionally do not run this code on launch because: # (1) Soundfile is an optional dependency, so importing it in global namespace is not allowed # (2) To ensure the list of supported extensions is deterministic AUDIO_EXTENSIONS = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] AudioFolder.EXTENSIONS = AUDIO_EXTENSIONS
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder logger = datasets.utils.logging.get_logger(__name__) class AudioFolderConfig(folder_based_builder.FolderBasedBuilderConfig): """Builder Config for AudioFolder.""" drop_labels: bool = None drop_metadata: bool = None class AudioFolder(folder_based_builder.FolderBasedBuilder): BASE_FEATURE = datasets.Audio BASE_COLUMN_NAME = "audio" BUILDER_CONFIG_CLASS = AudioFolderConfig EXTENSIONS: List[str] # definition at the bottom of the script CLASSIFICATION_TASK = AudioClassification(audio_column="audio", label_column="label") # Obtained with: # ``` # import soundfile as sf # # AUDIO_EXTENSIONS = [f".{format.lower()}" for format in sf.available_formats().keys()] # # # .mp3 is currently decoded via `torchaudio`, .opus decoding is supported if version of `libsndfile` >= 1.0.30: # AUDIO_EXTENSIONS.extend([".mp3", ".opus"]) # ``` # We intentionally do not run this code on launch because: # (1) Soundfile is an optional dependency, so importing it in global namespace is not allowed # (2) To ensure the list of supported extensions is deterministic AUDIO_EXTENSIONS = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] AudioFolder.EXTENSIONS = AUDIO_EXTENSIONS
import pytest from llama_index.llms.bedrock_converse.utils import get_model_name from io import BytesIO from unittest.mock import MagicMock, patch from llama_index.core.base.llms.types import ( AudioBlock, ImageBlock, MessageRole, TextBlock, ) from llama_index.llms.bedrock_converse.utils import ( __get_img_format_from_image_mimetype, _content_block_to_bedrock_format, ) def test_get_model_name_translates_us(): assert ( get_model_name("us.meta.llama3-2-3b-instruct-v1:0") == "meta.llama3-2-3b-instruct-v1:0" ) def test_get_model_name_does_nottranslate_cn(): assert ( get_model_name("cn.meta.llama3-2-3b-instruct-v1:0") == "cn.meta.llama3-2-3b-instruct-v1:0" ) def test_get_model_name_does_nottranslate_unsupported(): assert get_model_name("cohere.command-r-plus-v1:0") == "cohere.command-r-plus-v1:0" def test_get_model_name_throws_inference_profile_exception(): with pytest.raises(ValueError): assert get_model_name("us.cohere.command-r-plus-v1:0") def test_get_img_format_jpeg(): assert __get_img_format_from_image_mimetype("image/jpeg") == "jpeg" def test_get_img_format_png(): assert __get_img_format_from_image_mimetype("image/png") == "png" def test_get_img_format_gif(): assert __get_img_format_from_image_mimetype("image/gif") == "gif" def test_get_img_format_webp(): assert __get_img_format_from_image_mimetype("image/webp") == "webp" def test_get_img_format_unsupported(caplog): result = __get_img_format_from_image_mimetype("image/unsupported") assert result == "png" assert "Unsupported image mimetype" in caplog.text def test_content_block_to_bedrock_format_text(): text_block = TextBlock(text="Hello, world!") result = _content_block_to_bedrock_format(text_block, MessageRole.USER) assert result == {"text": "Hello, world!"} @patch("llama_index.core.base.llms.types.ImageBlock.resolve_image") def test_content_block_to_bedrock_format_image_user(mock_resolve): mock_bytes = BytesIO(b"fake_image_data") mock_bytes.read = MagicMock(return_value=b"fake_image_data") mock_resolve.return_value = mock_bytes image_block = ImageBlock(image=b"", image_mimetype="image/png") result = _content_block_to_bedrock_format(image_block, MessageRole.USER) assert "image" in result assert result["image"]["format"] == "png" assert "bytes" in result["image"]["source"] mock_resolve.assert_called_once() @patch("llama_index.core.base.llms.types.ImageBlock.resolve_image") def test_content_block_to_bedrock_format_image_assistant(mock_resolve, caplog): image_block = ImageBlock(image=b"", image_mimetype="image/png") result = _content_block_to_bedrock_format(image_block, MessageRole.ASSISTANT) assert result is None assert "only supports image blocks for user messages" in caplog.text mock_resolve.assert_not_called() def test_content_block_to_bedrock_format_audio(caplog): audio_block = AudioBlock(audio=b"test_audio") result = _content_block_to_bedrock_format(audio_block, MessageRole.USER) assert result is None assert "Audio blocks are not supported" in caplog.text def test_content_block_to_bedrock_format_unsupported(caplog): unsupported_block = object() result = _content_block_to_bedrock_format(unsupported_block, MessageRole.USER) assert result is None assert "Unsupported block type" in caplog.text assert str(type(unsupported_block)) in caplog.text
import pytest from llama_index.llms.bedrock_converse.utils import get_model_name from io import BytesIO from unittest.mock import MagicMock, patch from llama_index.core.base.llms.types import ( AudioBlock, ImageBlock, MessageRole, TextBlock, ) from llama_index.llms.bedrock_converse.utils import ( __get_img_format_from_image_mimetype, _content_block_to_bedrock_format, ) def test_get_model_name_translates_us(): assert ( get_model_name("us.meta.llama3-2-3b-instruct-v1:0") == "meta.llama3-2-3b-instruct-v1:0" ) def test_get_model_name_does_nottranslate_cn(): assert ( get_model_name("cn.meta.llama3-2-3b-instruct-v1:0") == "cn.meta.llama3-2-3b-instruct-v1:0" ) def test_get_model_name_does_nottranslate_unsupported(): assert get_model_name("cohere.command-r-plus-v1:0") == "cohere.command-r-plus-v1:0" def test_get_model_name_throws_inference_profile_exception(): with pytest.raises(ValueError): assert get_model_name("us.cohere.command-r-plus-v1:0") def test_get_img_format_jpeg(): assert __get_img_format_from_image_mimetype("image/jpeg") == "jpeg" def test_get_img_format_png(): assert __get_img_format_from_image_mimetype("image/png") == "png" def test_get_img_format_gif(): assert __get_img_format_from_image_mimetype("image/gif") == "gif" def test_get_img_format_webp(): assert __get_img_format_from_image_mimetype("image/webp") == "webp" def test_get_img_format_unsupported(caplog): result = __get_img_format_from_image_mimetype("image/unsupported") assert result == "png" assert "Unsupported image mimetype" in caplog.text def test_content_block_to_bedrock_format_text(): text_block = TextBlock(text="Hello, world!") result = _content_block_to_bedrock_format(text_block, MessageRole.USER) assert result == {"text": "Hello, world!"} @patch("llama_index.core.base.llms.types.ImageBlock.resolve_image") def test_content_block_to_bedrock_format_image_user(mock_resolve): mock_bytes = BytesIO(b"fake_image_data") mock_bytes.read = MagicMock(return_value=b"fake_image_data") mock_resolve.return_value = mock_bytes image_block = ImageBlock(image=b"", image_mimetype="image/png") result = _content_block_to_bedrock_format(image_block, MessageRole.USER) assert "image" in result assert result["image"]["format"] == "png" assert "bytes" in result["image"]["source"] mock_resolve.assert_called_once() @patch("llama_index.core.base.llms.types.ImageBlock.resolve_image") def test_content_block_to_bedrock_format_image_assistant(mock_resolve, caplog): image_block = ImageBlock(image=b"", image_mimetype="image/png") result = _content_block_to_bedrock_format(image_block, MessageRole.ASSISTANT) assert result is None assert "only supports image blocks for user messages" in caplog.text mock_resolve.assert_not_called() def test_content_block_to_bedrock_format_audio(caplog): audio_block = AudioBlock(audio=b"test_audio") result = _content_block_to_bedrock_format(audio_block, MessageRole.USER) assert result is None assert "Audio blocks are not supported" in caplog.text def test_content_block_to_bedrock_format_unsupported(caplog): unsupported_block = object() result = _content_block_to_bedrock_format(unsupported_block, MessageRole.USER) assert result is None assert "Unsupported block type" in caplog.text assert str(type(unsupported_block)) in caplog.text
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.backend.common.dtypes import result_type as result_type from keras.src.backend.common.global_state import clear_session as clear_session from keras.src.backend.common.keras_tensor import ( is_keras_tensor as is_keras_tensor, ) from keras.src.backend.common.variables import is_float_dtype as is_float_dtype from keras.src.backend.common.variables import is_int_dtype as is_int_dtype from keras.src.backend.common.variables import ( standardize_dtype as standardize_dtype, ) from keras.src.backend.config import backend as backend from keras.src.backend.config import epsilon as epsilon from keras.src.backend.config import floatx as floatx from keras.src.backend.config import image_data_format as image_data_format from keras.src.backend.config import set_epsilon as set_epsilon from keras.src.backend.config import set_floatx as set_floatx from keras.src.backend.config import ( set_image_data_format as set_image_data_format, ) from keras.src.utils.naming import get_uid as get_uid
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.backend.common.dtypes import result_type from keras.src.backend.common.global_state import clear_session from keras.src.backend.common.keras_tensor import is_keras_tensor from keras.src.backend.common.variables import is_float_dtype from keras.src.backend.common.variables import is_int_dtype from keras.src.backend.common.variables import standardize_dtype from keras.src.backend.config import backend from keras.src.backend.config import epsilon from keras.src.backend.config import floatx from keras.src.backend.config import image_data_format from keras.src.backend.config import set_epsilon from keras.src.backend.config import set_floatx from keras.src.backend.config import set_image_data_format from keras.src.utils.naming import get_uid
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder CI_HUB_USER = "__DUMMY_TRANSFORMERS_USER__" CI_HUB_USER_FULL_NAME = "Dummy User" CI_HUB_USER_TOKEN = "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" CI_HUB_ENDPOINT = "https://hub-ci.huggingface.co" CI_HUB_DATASETS_URL = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" CI_HUB_TOKEN_PATH = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def ci_hfh_hf_hub_url(monkeypatch): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE ) @pytest.fixture def ci_hub_config(monkeypatch): monkeypatch.setattr("datasets.config.HF_ENDPOINT", CI_HUB_ENDPOINT) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", CI_HUB_DATASETS_URL) @pytest.fixture def ci_hub_token_path(monkeypatch): monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", CI_HUB_TOKEN_PATH) @pytest.fixture def set_ci_hub_access_token(ci_hub_config, ci_hub_token_path): HfFolder.save_token(CI_HUB_USER_TOKEN) yield HfFolder.delete_token() @pytest.fixture(scope="session") def hf_api(): return HfApi(endpoint=CI_HUB_ENDPOINT) @pytest.fixture(scope="session") def hf_token(): yield CI_HUB_USER_TOKEN @pytest.fixture def cleanup_repo(hf_api): def _cleanup_repo(repo_id): hf_api.delete_repo(repo_id, token=CI_HUB_USER_TOKEN, repo_type="dataset") return _cleanup_repo @pytest.fixture def temporary_repo(cleanup_repo): @contextmanager def _temporary_repo(repo_id): try: yield repo_id finally: cleanup_repo(repo_id) return _temporary_repo @pytest.fixture(scope="session") def hf_private_dataset_repo_txt_data_(hf_api: HfApi, hf_token, text_file): repo_name = f"repo_txt_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(text_file), path_in_repo="data/text_data.txt", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_txt_data(hf_private_dataset_repo_txt_data_, ci_hub_config, ci_hfh_hf_hub_url): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_txt_data_(hf_api: HfApi, hf_token, zip_csv_with_dir_path): repo_name = f"repo_zipped_txt_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_csv_with_dir_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_txt_data( hf_private_dataset_repo_zipped_txt_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_img_data_(hf_api: HfApi, hf_token, zip_image_path): repo_name = f"repo_zipped_img_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_image_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_img_data( hf_private_dataset_repo_zipped_img_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_img_data_
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder CI_HUB_USER = "__DUMMY_TRANSFORMERS_USER__" CI_HUB_USER_FULL_NAME = "Dummy User" CI_HUB_USER_TOKEN = "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" CI_HUB_ENDPOINT = "https://hub-ci.huggingface.co" CI_HUB_DATASETS_URL = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" CI_HUB_TOKEN_PATH = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def ci_hfh_hf_hub_url(monkeypatch): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE ) @pytest.fixture def ci_hub_config(monkeypatch): monkeypatch.setattr("datasets.config.HF_ENDPOINT", CI_HUB_ENDPOINT) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", CI_HUB_DATASETS_URL) @pytest.fixture def ci_hub_token_path(monkeypatch): monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", CI_HUB_TOKEN_PATH) @pytest.fixture def set_ci_hub_access_token(ci_hub_config, ci_hub_token_path): HfFolder.save_token(CI_HUB_USER_TOKEN) yield HfFolder.delete_token() @pytest.fixture(scope="session") def hf_api(): return HfApi(endpoint=CI_HUB_ENDPOINT) @pytest.fixture(scope="session") def hf_token(hf_api: HfApi): previous_token = HfFolder.get_token() HfFolder.save_token(CI_HUB_USER_TOKEN) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(previous_token) @pytest.fixture def cleanup_repo(hf_api): def _cleanup_repo(repo_id): hf_api.delete_repo(repo_id, token=CI_HUB_USER_TOKEN, repo_type="dataset") return _cleanup_repo @pytest.fixture def temporary_repo(cleanup_repo): @contextmanager def _temporary_repo(repo_id): try: yield repo_id finally: cleanup_repo(repo_id) return _temporary_repo @pytest.fixture(scope="session") def hf_private_dataset_repo_txt_data_(hf_api: HfApi, hf_token, text_file): repo_name = f"repo_txt_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(text_file), path_in_repo="data/text_data.txt", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_txt_data(hf_private_dataset_repo_txt_data_, ci_hub_config, ci_hfh_hf_hub_url): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_txt_data_(hf_api: HfApi, hf_token, zip_csv_with_dir_path): repo_name = f"repo_zipped_txt_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_csv_with_dir_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_txt_data( hf_private_dataset_repo_zipped_txt_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_img_data_(hf_api: HfApi, hf_token, zip_image_path): repo_name = f"repo_zipped_img_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_image_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_img_data( hf_private_dataset_repo_zipped_img_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_img_data_
""" This is a simple application for sentence embeddings: semantic search We have a corpus with various sentences. Then, for a given query sentence, we want to find the most similar sentence in this corpus. This script outputs for various queries the top 5 most similar sentences in the corpus. """ import torch from sentence_transformers import SentenceTransformer embedder = SentenceTransformer("all-MiniLM-L6-v2") # Corpus with example sentences corpus = [ "A man is eating food.", "A man is eating a piece of bread.", "The girl is carrying a baby.", "A man is riding a horse.", "A woman is playing violin.", "Two men pushed carts through the woods.", "A man is riding a white horse on an enclosed ground.", "A monkey is playing drums.", "A cheetah is running behind its prey.", ] # Use "convert_to_tensor=True" to keep the tensors on GPU (if available) corpus_embeddings = embedder.encode(corpus, convert_to_tensor=True) # Query sentences: queries = [ "A man is eating pasta.", "Someone in a gorilla costume is playing a set of drums.", "A cheetah chases prey on across a field.", ] # Find the closest 5 sentences of the corpus for each query sentence based on cosine similarity top_k = min(5, len(corpus)) for query in queries: query_embedding = embedder.encode(query, convert_to_tensor=True) # We use cosine-similarity and torch.topk to find the highest 5 scores similarity_scores = embedder.similarity(query_embedding, corpus_embeddings)[0] scores, indices = torch.topk(similarity_scores, k=top_k) print("\nQuery:", query) print("Top 5 most similar sentences in corpus:") for score, idx in zip(scores, indices): print(corpus[idx], "(Score: {:.4f})".format(score)) """ # Alternatively, we can also use util.semantic_search to perform cosine similarty + topk hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=5) hits = hits[0] #Get the hits for the first query for hit in hits: print(corpus[hit['corpus_id']], "(Score: {:.4f})".format(hit['score'])) """
""" This is a simple application for sentence embeddings: semantic search We have a corpus with various sentences. Then, for a given query sentence, we want to find the most similar sentence in this corpus. This script outputs for various queries the top 5 most similar sentences in the corpus. """ from sentence_transformers import SentenceTransformer import torch embedder = SentenceTransformer("all-MiniLM-L6-v2") # Corpus with example sentences corpus = [ "A man is eating food.", "A man is eating a piece of bread.", "The girl is carrying a baby.", "A man is riding a horse.", "A woman is playing violin.", "Two men pushed carts through the woods.", "A man is riding a white horse on an enclosed ground.", "A monkey is playing drums.", "A cheetah is running behind its prey.", ] # Use "convert_to_tensor=True" to keep the tensors on GPU (if available) corpus_embeddings = embedder.encode(corpus, convert_to_tensor=True) # Query sentences: queries = [ "A man is eating pasta.", "Someone in a gorilla costume is playing a set of drums.", "A cheetah chases prey on across a field.", ] # Find the closest 5 sentences of the corpus for each query sentence based on cosine similarity top_k = min(5, len(corpus)) for query in queries: query_embedding = embedder.encode(query, convert_to_tensor=True) # We use cosine-similarity and torch.topk to find the highest 5 scores similarity_scores = embedder.similarity(query_embedding, corpus_embeddings)[0] scores, indices = torch.topk(similarity_scores, k=top_k) print("\nQuery:", query) print("Top 5 most similar sentences in corpus:") for score, idx in zip(scores, indices): print(corpus[idx], "(Score: {:.4f})".format(score)) """ # Alternatively, we can also use util.semantic_search to perform cosine similarty + topk hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=5) hits = hits[0] #Get the hits for the first query for hit in hits: print(corpus[hit['corpus_id']], "(Score: {:.4f})".format(hit['score'])) """
try: import sklearn except ImportError: sklearn = None def _validate_data(estimator, *args, **kwargs): """Validate the input data. wrapper for sklearn.utils.validation.validate_data or BaseEstimator._validate_data depending on the scikit-learn version. TODO: remove when minimum scikit-learn version is 1.6 """ try: # scikit-learn >= 1.6 from sklearn.utils.validation import validate_data return validate_data(estimator, *args, **kwargs) except ImportError: return estimator._validate_data(*args, **kwargs) except: raise def type_of_target(y, input_name="", *, raise_unknown=False): def _raise_or_return(target_type): """Depending on the value of raise_unknown, either raise an error or return 'unknown'. """ if raise_unknown and target_type == "unknown": input = input_name if input_name else "data" raise ValueError(f"Unknown label type for {input}: {y!r}") else: return target_type from sklearn.utils.multiclass import type_of_target as sk_type_of_target target_type = sk_type_of_target(y, input_name=input_name) return _raise_or_return(target_type) def _routing_enabled(): """Return whether metadata routing is enabled. Returns: enabled : bool Whether metadata routing is enabled. If the config is not set, it defaults to False. TODO: remove when the config key is no longer available in scikit-learn """ return sklearn.get_config().get("enable_metadata_routing", False) def _raise_for_params(params, owner, method): """Raise an error if metadata routing is not enabled and params are passed. Parameters: params : dict The metadata passed to a method. owner : object The object to which the method belongs. method : str The name of the method, e.g. "fit". Raises: ValueError If metadata routing is not enabled and params are passed. """ caller = ( f"{owner.__class__.__name__}.{method}" if method else owner.__class__.__name__ ) if not _routing_enabled() and params: raise ValueError( f"Passing extra keyword arguments to {caller} is only supported if" " enable_metadata_routing=True, which you can set using" " `sklearn.set_config`. See the User Guide" " <https://scikit-learn.org/stable/metadata_routing.html> for more" f" details. Extra parameters passed are: {set(params)}" )
try: import sklearn except ImportError: sklearn = None def _validate_data(estimator, *args, **kwargs): """Validate the input data. wrapper for sklearn.utils.validation.validate_data or BaseEstimator._validate_data depending on the scikit-learn version. TODO: remove when minimum scikit-learn version is 1.6 """ try: # scikit-learn >= 1.6 from sklearn.utils.validation import validate_data return validate_data(estimator, *args, **kwargs) except ImportError: return estimator._validate_data(*args, **kwargs) except: raise def type_of_target(y, input_name="", *, raise_unknown=False): def _raise_or_return(target_type): """Depending on the value of raise_unknown, either raise an error or return 'unknown'. """ if raise_unknown and target_type == "unknown": input = input_name if input_name else "data" raise ValueError(f"Unknown label type for {input}: {y!r}") else: return target_type target_type = sklearn.utils.multiclass.type_of_target( y, input_name=input_name ) return _raise_or_return(target_type) def _routing_enabled(): """Return whether metadata routing is enabled. Returns: enabled : bool Whether metadata routing is enabled. If the config is not set, it defaults to False. TODO: remove when the config key is no longer available in scikit-learn """ return sklearn.get_config().get("enable_metadata_routing", False) def _raise_for_params(params, owner, method): """Raise an error if metadata routing is not enabled and params are passed. Parameters: params : dict The metadata passed to a method. owner : object The object to which the method belongs. method : str The name of the method, e.g. "fit". Raises: ValueError If metadata routing is not enabled and params are passed. """ caller = ( f"{owner.__class__.__name__}.{method}" if method else owner.__class__.__name__ ) if not _routing_enabled() and params: raise ValueError( f"Passing extra keyword arguments to {caller} is only supported if" " enable_metadata_routing=True, which you can set using" " `sklearn.set_config`. See the User Guide" " <https://scikit-learn.org/stable/metadata_routing.html> for more" f" details. Extra parameters passed are: {set(params)}" )
from llama_index.core.instrumentation.events import BaseEvent class ExceptionEvent(BaseEvent): """ ExceptionEvent. Args: exception (BaseException): exception. """ exception: BaseException @classmethod def class_name(cls) -> str: """Class name.""" return "ExceptionEvent"
from llama_index.core.instrumentation.events import BaseEvent class ExceptionEvent(BaseEvent): """ExceptionEvent. Args: exception (BaseException): exception. """ exception: BaseException @classmethod def class_name(cls) -> str: """Class name.""" return "ExceptionEvent"
from __future__ import annotations from typing import Literal from sentence_transformers.losses.GISTEmbedLoss import GISTEmbedLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseGISTEmbedLoss(GISTEmbedLoss): def __init__( self, model: SparseEncoder, guide: SparseEncoder, temperature: float = 0.1, margin_strategy: Literal["absolute", "relative"] = "absolute", margin: float = 0.0, ) -> None: """ This loss is used to train a SparseEncoder model using the GISTEmbed algorithm. It takes a model and a guide model as input, and uses the guide model to guide the in-batch negative sample selection. The cosine similarity is used to compute the loss and the temperature parameter is used to scale the cosine similarities. You can apply different false-negative filtering strategies to discard hard negatives that are too similar to the positive. Two strategies are supported: - "absolute": Discards negatives whose similarity score is greater than or equal to ``positive_score - margin``. - "relative": Discards negatives whose similarity score is greater than or equal to ``positive_score * (1 - margin)``. Args: model: SparseEncoder model based on a `transformers` model. guide: SparseEncoder model to guide the in-batch negative sample selection. temperature: Temperature parameter to scale the cosine similarities. Defaults to 0.1, adapted for Sparse embeddings. Experimentation is recommended. margin_strategy: Strategy used for false negative filtering. One of {"absolute", "relative"}. margin: The margin value for filtering negatives. Defaults to 0.0, together with the "absolute" strategy, this only removes negatives that are more similar to the query than the positive is to the query. References: - For further details, see: https://arxiv.org/abs/2402.16829 Requirements: 1. (anchor, positive, negative) triplets 2. (anchor, positive) pairs Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ | (anchor, positive) pairs | none | +---------------------------------------+--------+ Recommendations: - Use ``BatchSamplers.NO_DUPLICATES`` (:class:`docs <sentence_transformers.training_args.BatchSamplers>`) to ensure that no in-batch negatives are duplicates of the anchor or positive samples. Relations: - :class:`SparseMultipleNegativesRankingLoss` is similar to this loss, but it does not use a guide model to guide the in-batch negative sample selection. :class:`SparseGISTEmbedLoss` yields a stronger training signal at the cost of some training overhead. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses # Initialize the SPLADE model model = SparseEncoder("distilbert/distilbert-base-uncased") guide = SparseEncoder("naver/splade-cocondenser-ensembledistil") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) loss = losses.SparseGISTEmbedLoss(model, guide=guide) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__( model, guide=guide, temperature=temperature, margin_strategy=margin_strategy, margin=margin )
from __future__ import annotations from typing import Literal from sentence_transformers.losses.GISTEmbedLoss import GISTEmbedLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseGISTEmbedLoss(GISTEmbedLoss): def __init__( self, model: SparseEncoder, guide: SparseEncoder, temperature: float = 0.1, margin_strategy: Literal["absolute", "relative"] = "absolute", margin: float = 0.0, ) -> None: """ This loss is used to train a SparseEncoder model using the GISTEmbed algorithm. It takes a model and a guide model as input, and uses the guide model to guide the in-batch negative sample selection. The cosine similarity is used to compute the loss and the temperature parameter is used to scale the cosine similarities. You can apply different false-negative filtering strategies to discard hard negatives that are too similar to the positive. Two strategies are supported: - "absolute": Discards negatives whose similarity score is greater than or equal to ``positive_score - margin``. - "relative": Discards negatives whose similarity score is greater than or equal to ``positive_score * (1 - margin)``. Args: model: SparseEncoder model based on a `transformers` model. guide: SparseEncoder model to guide the in-batch negative sample selection. temperature: Temperature parameter to scale the cosine similarities, default is 0.1 here adapted for Sparse embeddings, might need some adaptations. margin_strategy: Strategy used for false negative filtering. One of {"absolute", "relative"}. margin: The margin value for filtering negatives. Defaults to 0.0, together with the "absolute" strategy, this only removes negatives that are more similar to the query than the positive is to the query. References: - For further details, see: https://arxiv.org/abs/2402.16829 Requirements: 1. (anchor, positive, negative) triplets 2. (anchor, positive) pairs Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ | (anchor, positive) pairs | none | +---------------------------------------+--------+ Recommendations: - Use ``BatchSamplers.NO_DUPLICATES`` (:class:`docs <sentence_transformers.training_args.BatchSamplers>`) to ensure that no in-batch negatives are duplicates of the anchor or positive samples. Relations: - :class:`SparseMultipleNegativesRankingLoss` is similar to this loss, but it does not use a guide model to guide the in-batch negative sample selection. `SparseGISTEmbedLoss` yields a stronger training signal at the cost of some training overhead. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses # Initialize the SPLADE model model = SparseEncoder("distilbert/distilbert-base-uncased") guide = SparseEncoder("naver/splade-cocondenser-ensembledistil") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) loss = losses.SparseGISTEmbedLoss(model, guide=guide) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__( model, guide=guide, temperature=temperature, margin_strategy=margin_strategy, margin=margin )
import functools import warnings from collections import defaultdict from typing import Any, Dict, Optional, Sequence, Tuple, Type, TypeVar, Union import torch from torchvision import tv_tensors from torchvision.transforms.v2 import Transform from torchvision.transforms.v2._utils import is_pure_tensor T = TypeVar("T") def _default_arg(value: T) -> T: return value def _get_defaultdict(default: T) -> Dict[Any, T]: # This weird looking construct only exists, since `lambda`'s cannot be serialized by pickle. # If it were possible, we could replace this with `defaultdict(lambda: default)` return defaultdict(functools.partial(_default_arg, default)) class PermuteDimensions(Transform): _transformed_types = (is_pure_tensor, tv_tensors.Image, tv_tensors.Video) def __init__(self, dims: Union[Sequence[int], Dict[Type, Optional[Sequence[int]]]]) -> None: super().__init__() if not isinstance(dims, dict): dims = _get_defaultdict(dims) if torch.Tensor in dims and any(cls in dims for cls in [tv_tensors.Image, tv_tensors.Video]): warnings.warn( "Got `dims` values for `torch.Tensor` and either `tv_tensors.Image` or `tv_tensors.Video`. " "Note that a plain `torch.Tensor` will *not* be transformed by this (or any other transformation) " "in case a `tv_tensors.Image` or `tv_tensors.Video` is present in the input." ) self.dims = dims def _transform(self, inpt: Any, params: Dict[str, Any]) -> torch.Tensor: dims = self.dims[type(inpt)] if dims is None: return inpt.as_subclass(torch.Tensor) return inpt.permute(*dims) class TransposeDimensions(Transform): _transformed_types = (is_pure_tensor, tv_tensors.Image, tv_tensors.Video) def __init__(self, dims: Union[Tuple[int, int], Dict[Type, Optional[Tuple[int, int]]]]) -> None: super().__init__() if not isinstance(dims, dict): dims = _get_defaultdict(dims) if torch.Tensor in dims and any(cls in dims for cls in [tv_tensors.Image, tv_tensors.Video]): warnings.warn( "Got `dims` values for `torch.Tensor` and either `tv_tensors.Image` or `tv_tensors.Video`. " "Note that a plain `torch.Tensor` will *not* be transformed by this (or any other transformation) " "in case a `tv_tensors.Image` or `tv_tensors.Video` is present in the input." ) self.dims = dims def _transform(self, inpt: Any, params: Dict[str, Any]) -> torch.Tensor: dims = self.dims[type(inpt)] if dims is None: return inpt.as_subclass(torch.Tensor) return inpt.transpose(*dims)
import functools import warnings from collections import defaultdict from typing import Any, Dict, Optional, Sequence, Tuple, Type, TypeVar, Union import torch from torchvision import datapoints from torchvision.transforms.v2 import Transform from torchvision.transforms.v2._utils import is_pure_tensor T = TypeVar("T") def _default_arg(value: T) -> T: return value def _get_defaultdict(default: T) -> Dict[Any, T]: # This weird looking construct only exists, since `lambda`'s cannot be serialized by pickle. # If it were possible, we could replace this with `defaultdict(lambda: default)` return defaultdict(functools.partial(_default_arg, default)) class PermuteDimensions(Transform): _transformed_types = (is_pure_tensor, datapoints.Image, datapoints.Video) def __init__(self, dims: Union[Sequence[int], Dict[Type, Optional[Sequence[int]]]]) -> None: super().__init__() if not isinstance(dims, dict): dims = _get_defaultdict(dims) if torch.Tensor in dims and any(cls in dims for cls in [datapoints.Image, datapoints.Video]): warnings.warn( "Got `dims` values for `torch.Tensor` and either `datapoints.Image` or `datapoints.Video`. " "Note that a plain `torch.Tensor` will *not* be transformed by this (or any other transformation) " "in case a `datapoints.Image` or `datapoints.Video` is present in the input." ) self.dims = dims def _transform(self, inpt: Any, params: Dict[str, Any]) -> torch.Tensor: dims = self.dims[type(inpt)] if dims is None: return inpt.as_subclass(torch.Tensor) return inpt.permute(*dims) class TransposeDimensions(Transform): _transformed_types = (is_pure_tensor, datapoints.Image, datapoints.Video) def __init__(self, dims: Union[Tuple[int, int], Dict[Type, Optional[Tuple[int, int]]]]) -> None: super().__init__() if not isinstance(dims, dict): dims = _get_defaultdict(dims) if torch.Tensor in dims and any(cls in dims for cls in [datapoints.Image, datapoints.Video]): warnings.warn( "Got `dims` values for `torch.Tensor` and either `datapoints.Image` or `datapoints.Video`. " "Note that a plain `torch.Tensor` will *not* be transformed by this (or any other transformation) " "in case a `datapoints.Image` or `datapoints.Video` is present in the input." ) self.dims = dims def _transform(self, inpt: Any, params: Dict[str, Any]) -> torch.Tensor: dims = self.dims[type(inpt)] if dims is None: return inpt.as_subclass(torch.Tensor) return inpt.transpose(*dims)
from langchain_core.tracers.langchain_v1 import LangChainTracerV1, get_headers __all__ = ["LangChainTracerV1", "get_headers"]
from langchain_core.tracers.langchain_v1 import LangChainTracerV1, get_headers __all__ = ["get_headers", "LangChainTracerV1"]
import os from pathlib import Path from typing import List, Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.librispeech import _get_librispeech_metadata from torchaudio.datasets.utils import _extract_tar _ARCHIVE_NAME = "librispeech_finetuning" _URL = "https://dl.fbaipublicfiles.com/librilight/data/librispeech_finetuning.tgz" _CHECKSUM = "5d1efdc777b548194d7e09ba89126e2188026df9fd57aa57eb14408d2b2342af" _SUBSET_MAP = {"10min": ["1h/0"], "1h": ["1h/*"], "10h": ["1h/*", "9h"]} def _get_fileids_paths(path: Path, folders: List[str], _ext_audio: str) -> List[Tuple[str, str]]: """Get the file names and the corresponding file paths without `speaker_id` and `chapter_id` directories. The format of path is like: {root}/{_ARCHIVE_NAME}/1h/[0-5]/[clean, other] or {root}/{_ARCHIVE_NAME}/9h/[clean, other] Args: path (Path): Root path to the dataset. folders (List[str]): Folders that contain the desired audio files. _ext_audio (str): Extension of audio files. Returns: List[Tuple[str, str]]: List of tuples where the first element is the relative path to the audio file. The format of relative path is like: 1h/[0-5]/[clean, other] or 9h/[clean, other] The second element is the file name without audio extension. """ path = Path(path) files_paths = [] for folder in folders: paths = [p.relative_to(path) for p in path.glob(f"{folder}/*/*/*/*{_ext_audio}")] files_paths += [(str(p.parent.parent.parent), str(p.stem)) for p in paths] # get subset folder and file name files_paths.sort(key=lambda x: x[0] + x[1]) return files_paths class LibriLightLimited(Dataset): """Subset of Libri-light :cite:`librilight` dataset, which was used in HuBERT :cite:`hsu2021hubert` for supervised fine-tuning. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. subset (str, optional): The subset to use. Options: [``"10min"``, ``"1h"``, ``"10h"``] (Default: ``"10min"``). download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ _ext_txt = ".trans.txt" _ext_audio = ".flac" def __init__( self, root: Union[str, Path], subset: str = "10min", download: bool = False, ) -> None: if subset not in _SUBSET_MAP: raise ValueError(f"`subset` must be one of {_SUBSET_MAP.keys()}. Found: {subset}") folders = _SUBSET_MAP[subset] root = os.fspath(root) self._path = os.path.join(root, _ARCHIVE_NAME) archive = os.path.join(root, f"{_ARCHIVE_NAME}.tgz") if not os.path.isdir(self._path): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download") if not os.path.isfile(archive): download_url_to_file(_URL, archive, hash_prefix=_CHECKSUM) _extract_tar(archive) self._fileids_paths = _get_fileids_paths(self._path, folders, self._ext_audio) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, int, int]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; Tensor: Waveform int: Sample rate str: Transcript int: Speaker ID int: Chapter ID int: Utterance ID """ file_path, fileid = self._fileids_paths[n] metadata = _get_librispeech_metadata(fileid, self._path, file_path, self._ext_audio, self._ext_txt) waveform, _ = torchaudio.load(os.path.join(self._path, metadata[0])) return (waveform,) + metadata[1:] def __len__(self) -> int: return len(self._fileids_paths)
import os from pathlib import Path from typing import List, Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.librispeech import _get_librispeech_metadata from torchaudio.datasets.utils import extract_archive _ARCHIVE_NAME = "librispeech_finetuning" _URL = "https://dl.fbaipublicfiles.com/librilight/data/librispeech_finetuning.tgz" _CHECKSUM = "5d1efdc777b548194d7e09ba89126e2188026df9fd57aa57eb14408d2b2342af" _SUBSET_MAP = {"10min": ["1h/0"], "1h": ["1h/*"], "10h": ["1h/*", "9h"]} def _get_fileids_paths(path: Path, folders: List[str], _ext_audio: str) -> List[Tuple[str, str]]: """Get the file names and the corresponding file paths without `speaker_id` and `chapter_id` directories. The format of path is like: {root}/{_ARCHIVE_NAME}/1h/[0-5]/[clean, other] or {root}/{_ARCHIVE_NAME}/9h/[clean, other] Args: path (Path): Root path to the dataset. folders (List[str]): Folders that contain the desired audio files. _ext_audio (str): Extension of audio files. Returns: List[Tuple[str, str]]: List of tuples where the first element is the relative path to the audio file. The format of relative path is like: 1h/[0-5]/[clean, other] or 9h/[clean, other] The second element is the file name without audio extension. """ path = Path(path) files_paths = [] for folder in folders: paths = [p.relative_to(path) for p in path.glob(f"{folder}/*/*/*/*{_ext_audio}")] files_paths += [(str(p.parent.parent.parent), str(p.stem)) for p in paths] # get subset folder and file name files_paths.sort(key=lambda x: x[0] + x[1]) return files_paths class LibriLightLimited(Dataset): """Subset of Libri-light :cite:`librilight` dataset, which was used in HuBERT :cite:`hsu2021hubert` for supervised fine-tuning. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. subset (str, optional): The subset to use. Options: [``"10min"``, ``"1h"``, ``"10h"``] (Default: ``"10min"``). download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ _ext_txt = ".trans.txt" _ext_audio = ".flac" def __init__( self, root: Union[str, Path], subset: str = "10min", download: bool = False, ) -> None: if subset not in _SUBSET_MAP: raise ValueError(f"`subset` must be one of {_SUBSET_MAP.keys()}. Found: {subset}") folders = _SUBSET_MAP[subset] root = os.fspath(root) self._path = os.path.join(root, _ARCHIVE_NAME) archive = os.path.join(root, f"{_ARCHIVE_NAME}.tgz") if not os.path.isdir(self._path): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download") if not os.path.isfile(archive): download_url_to_file(_URL, archive, hash_prefix=_CHECKSUM) extract_archive(archive) self._fileids_paths = _get_fileids_paths(self._path, folders, self._ext_audio) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, int, int]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; Tensor: Waveform int: Sample rate str: Transcript int: Speaker ID int: Chapter ID int: Utterance ID """ file_path, fileid = self._fileids_paths[n] metadata = _get_librispeech_metadata(fileid, self._path, file_path, self._ext_audio, self._ext_txt) waveform, _ = torchaudio.load(os.path.join(self._path, metadata[0])) return (waveform,) + metadata[1:] def __len__(self) -> int: return len(self._fileids_paths)
__version__ = '0.32.1' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
__version__ = '0.32.0' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.documents import ImageDoc from docarray.utils.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image(): image = ImageDoc(url=REMOTE_JPG) image.tensor = image.url.load() assert isinstance(image.tensor, np.ndarray) def test_image_str(): image = parse_obj_as(ImageDoc, 'http://myurl.jpg') assert image.url == 'http://myurl.jpg' def test_image_np(): image = parse_obj_as(ImageDoc, np.zeros((10, 10, 3))) assert (image.tensor == np.zeros((10, 10, 3))).all() def test_image_torch(): image = parse_obj_as(ImageDoc, torch.zeros(10, 10, 3)) assert (image.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_image_tensorflow(): image = ImageDoc(tensor=tf.zeros((10, 10, 3))) assert tnp.allclose(image.tensor.tensor, tf.zeros((10, 10, 3))) def test_image_shortcut_doc(): class MyDoc(BaseDocument): image: ImageDoc image2: ImageDoc image3: ImageDoc doc = MyDoc( image='http://myurl.jpg', image2=np.zeros((10, 10, 3)), image3=torch.zeros(10, 10, 3), ) assert doc.image.url == 'http://myurl.jpg' assert (doc.image2.tensor == np.zeros((10, 10, 3))).all() assert (doc.image3.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.slow @pytest.mark.internet def test_byte(): img = ImageDoc(url=REMOTE_JPG) img.bytes = img.url.load_bytes() @pytest.mark.slow @pytest.mark.internet def test_byte_from_tensor(): img = ImageDoc(url=REMOTE_JPG) img.tensor = img.url.load() img.bytes = img.tensor.to_bytes() assert isinstance(img.bytes, bytes) assert len(img.bytes) > 0
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.documents import Image from docarray.utils.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image(): image = Image(url=REMOTE_JPG) image.tensor = image.url.load() assert isinstance(image.tensor, np.ndarray) def test_image_str(): image = parse_obj_as(Image, 'http://myurl.jpg') assert image.url == 'http://myurl.jpg' def test_image_np(): image = parse_obj_as(Image, np.zeros((10, 10, 3))) assert (image.tensor == np.zeros((10, 10, 3))).all() def test_image_torch(): image = parse_obj_as(Image, torch.zeros(10, 10, 3)) assert (image.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_image_tensorflow(): image = Image(tensor=tf.zeros((10, 10, 3))) assert tnp.allclose(image.tensor.tensor, tf.zeros((10, 10, 3))) def test_image_shortcut_doc(): class MyDoc(BaseDocument): image: Image image2: Image image3: Image doc = MyDoc( image='http://myurl.jpg', image2=np.zeros((10, 10, 3)), image3=torch.zeros(10, 10, 3), ) assert doc.image.url == 'http://myurl.jpg' assert (doc.image2.tensor == np.zeros((10, 10, 3))).all() assert (doc.image3.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.slow @pytest.mark.internet def test_byte(): img = Image(url=REMOTE_JPG) img.bytes = img.url.load_bytes() @pytest.mark.slow @pytest.mark.internet def test_byte_from_tensor(): img = Image(url=REMOTE_JPG) img.tensor = img.url.load() img.bytes = img.tensor.to_bytes() assert isinstance(img.bytes, bytes) assert len(img.bytes) > 0
# TODO: Remove this config after benchmarking all related configs _base_ = 'fcos_r50-caffe_fpn_gn-head_1x_coco.py' # dataset settings train_dataloader = dict(batch_size=4, num_workers=4)
# TODO: Remove this config after benchmarking all related configs _base_ = 'fcos_r50_caffe_fpn_gn-head_1x_coco.py' # dataset settings train_dataloader = dict(batch_size=4, num_workers=4)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any from sentence_transformers.evaluation import TranslationEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseTranslationEvaluator(TranslationEvaluator): """ This evaluator extends TranslationEvaluator but is specifically designed for sparse encoder models. Given two sets of sentences in different languages, e.g. (en_1, en_2, en_3...) and (fr_1, fr_2, fr_3, ...), and assuming that fr_i is the translation of en_i. Checks if vec(en_i) has the highest similarity to vec(fr_i). Computes the accuracy in both directions The labels need to indicate the similarity between the sentences. Args: source_sentences (List[str]): List of sentences in the source language. target_sentences (List[str]): List of sentences in the target language. show_progress_bar (bool): Whether to show a progress bar when computing embeddings. Defaults to False. batch_size (int): The batch size to compute sentence embeddings. Defaults to 16. name (str): The name of the evaluator. Defaults to an empty string. print_wrong_matches (bool): Whether to print incorrect matches. Defaults to False. write_csv (bool): Whether to write the evaluation results to a CSV file. Defaults to True. truncate_dim (int, optional): The dimension to truncate sentence embeddings to. If None, the model's current truncation dimension will be used. Defaults to None. Example: :: import logging from datasets import load_dataset from sentence_transformers.sparse_encoder import ( SparseEncoder, SparseTranslationEvaluator, ) logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model, not mutilingual but hope to see some on the hub soon model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a parallel sentences dataset dataset = load_dataset("sentence-transformers/parallel-sentences-news-commentary", "en-nl", split="train[:1000]") # Initialize the TranslationEvaluator using the same texts from two languages translation_evaluator = SparseTranslationEvaluator( source_sentences=dataset["english"], target_sentences=dataset["non_english"], name="news-commentary-en-nl", ) results = translation_evaluator(model) ''' Evaluating translation matching Accuracy of the model on the news-commentary-en-nl dataset: Accuracy src2trg: 41.40 Accuracy trg2src: 47.70 ''' # Print the results print(f"Primary metric: {translation_evaluator.primary_metric}") # => Primary metric: news-commentary-en-nl_mean_accuracy print(f"Primary metric value: {results[translation_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.4455 """ def __init__( self, source_sentences: list[str], target_sentences: list[str], show_progress_bar: bool = False, batch_size: int = 16, name: str = "", print_wrong_matches: bool = False, write_csv: bool = True, truncate_dim: int | None = None, ): return super().__init__( source_sentences, target_sentences, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, print_wrong_matches=print_wrong_matches, write_csv=write_csv, truncate_dim=truncate_dim, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model, output_path=output_path, epoch=epoch, steps=steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> list[Tensor]: kwargs["truncate_dim"] = self.truncate_dim return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_tensor=False, convert_to_sparse_tensor=True, save_on_cpu=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any from sentence_transformers.evaluation import TranslationEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseTranslationEvaluator(TranslationEvaluator): def __init__( self, source_sentences: list[str], target_sentences: list[str], show_progress_bar: bool = False, batch_size: int = 16, name: str = "", print_wrong_matches: bool = False, write_csv: bool = True, truncate_dim: int | None = None, ): return super().__init__( source_sentences, target_sentences, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, print_wrong_matches=print_wrong_matches, write_csv=write_csv, truncate_dim=truncate_dim, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: return super().__call__(model, output_path=output_path, epoch=epoch, steps=steps) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, **kwargs, ) -> list[Tensor]: kwargs["truncate_dim"] = self.truncate_dim return model.encode( sentences, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_tensor=False, convert_to_sparse_tensor=True, save_on_cpu=True, **kwargs, ) def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
# Copyright (c) OpenMMLab. All rights reserved. import collections from mmdet.registry import TRANSFORMS @TRANSFORMS.register_module() class Compose: """Compose multiple transforms sequentially. Args: transforms (Sequence[dict | callable]): Sequence of transform object or config dict to be composed. """ def __init__(self, transforms): assert isinstance(transforms, collections.abc.Sequence) self.transforms = [] for transform in transforms: if isinstance(transform, dict): transform = TRANSFORMS.build(transform) self.transforms.append(transform) elif callable(transform): self.transforms.append(transform) else: raise TypeError('transform must be callable or a dict') def __call__(self, data): """Call function to apply transforms sequentially. Args: data (dict): A result dict contains the data to transform. Returns: dict: Transformed data. """ for t in self.transforms: data = t(data) if data is None: return None return data def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: str_ = t.__repr__() if 'Compose(' in str_: str_ = str_.replace('\n', '\n ') format_string += '\n' format_string += f' {str_}' format_string += '\n)' return format_string
# Copyright (c) OpenMMLab. All rights reserved. import collections from mmcv.utils import build_from_cfg from ..builder import PIPELINES @PIPELINES.register_module() class Compose: """Compose multiple transforms sequentially. Args: transforms (Sequence[dict | callable]): Sequence of transform object or config dict to be composed. """ def __init__(self, transforms): assert isinstance(transforms, collections.abc.Sequence) self.transforms = [] for transform in transforms: if isinstance(transform, dict): transform = build_from_cfg(transform, PIPELINES) self.transforms.append(transform) elif callable(transform): self.transforms.append(transform) else: raise TypeError('transform must be callable or a dict') def __call__(self, data): """Call function to apply transforms sequentially. Args: data (dict): A result dict contains the data to transform. Returns: dict: Transformed data. """ for t in self.transforms: data = t(data) if data is None: return None return data def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: str_ = t.__repr__() if 'Compose(' in str_: str_ = str_.replace('\n', '\n ') format_string += '\n' format_string += f' {str_}' format_string += '\n)' return format_string
from langchain_core.messages import ( AIMessage, FunctionMessage, HumanMessage, SystemMessage, ) from langchain_core.output_parsers.openai_tools import ( parse_tool_call, ) from langchain_community.chat_models.tongyi import ( convert_dict_to_message, convert_message_to_dict, ) def test__convert_dict_to_message_human() -> None: message_dict = {"role": "user", "content": "foo"} result = convert_dict_to_message(message_dict) expected_output = HumanMessage(content="foo") assert result == expected_output def test__convert_dict_to_message_ai() -> None: message_dict = {"role": "assistant", "content": "foo"} result = convert_dict_to_message(message_dict) expected_output = AIMessage(content="foo") assert result == expected_output def test__convert_dict_to_message_other_role() -> None: message_dict = {"role": "system", "content": "foo"} result = convert_dict_to_message(message_dict) expected_output = SystemMessage(content="foo") assert result == expected_output def test__convert_dict_to_message_function_call() -> None: raw_function_calls = [ { "function": { "name": "get_current_weather", "arguments": '{"location": "Boston", "unit": "fahrenheit"}', }, "type": "function", } ] message_dict = { "role": "assistant", "content": "foo", "tool_calls": raw_function_calls, } result = convert_dict_to_message(message_dict) tool_calls = [ parse_tool_call(raw_tool_call, return_id=True) for raw_tool_call in raw_function_calls ] expected_output = AIMessage( content="foo", additional_kwargs={"tool_calls": raw_function_calls}, tool_calls=tool_calls, invalid_tool_calls=[], ) assert result == expected_output def test__convert_dict_to_message_partial_mode() -> None: message_dict = {"role": "assistant", "content": "foo", "partial": True} result = convert_dict_to_message(message_dict) expected_output = AIMessage(content="foo", additional_kwargs={"partial": True}) assert result == expected_output def test__convert_message_to_dict_human() -> None: message = HumanMessage(content="foo") result = convert_message_to_dict(message) expected_output = {"role": "user", "content": "foo"} assert result == expected_output def test__convert_message_to_dict_ai() -> None: message = AIMessage(content="foo") result = convert_message_to_dict(message) expected_output = {"role": "assistant", "content": "foo"} assert result == expected_output def test__convert_message_to_dict_ai_partial_mode() -> None: message = AIMessage(content="foo", additional_kwargs={"partial": True}) result = convert_message_to_dict(message) expected_output = {"role": "assistant", "content": "foo", "partial": True} assert result == expected_output def test__convert_message_to_dict_system() -> None: message = SystemMessage(content="foo") result = convert_message_to_dict(message) expected_output = {"role": "system", "content": "foo"} assert result == expected_output def test__convert_message_to_dict_tool() -> None: message = FunctionMessage(name="foo", content="bar") result = convert_message_to_dict(message) expected_output = { "role": "tool", "tool_call_id": "", "content": "bar", "name": "foo", } assert result == expected_output
from langchain_core.messages import ( AIMessage, FunctionMessage, HumanMessage, SystemMessage, ) from langchain_core.output_parsers.openai_tools import ( parse_tool_call, ) from langchain_community.chat_models.tongyi import ( convert_dict_to_message, convert_message_to_dict, ) def test__convert_dict_to_message_human() -> None: message_dict = {"role": "user", "content": "foo"} result = convert_dict_to_message(message_dict) expected_output = HumanMessage(content="foo") assert result == expected_output def test__convert_dict_to_message_ai() -> None: message_dict = {"role": "assistant", "content": "foo"} result = convert_dict_to_message(message_dict) expected_output = AIMessage(content="foo") assert result == expected_output def test__convert_dict_to_message_other_role() -> None: message_dict = {"role": "system", "content": "foo"} result = convert_dict_to_message(message_dict) expected_output = SystemMessage(content="foo") assert result == expected_output def test__convert_dict_to_message_function_call() -> None: raw_function_calls = [ { "function": { "name": "get_current_weather", "arguments": '{"location": "Boston", "unit": "fahrenheit"}', }, "type": "function", } ] message_dict = { "role": "assistant", "content": "foo", "tool_calls": raw_function_calls, } result = convert_dict_to_message(message_dict) tool_calls = [ parse_tool_call(raw_tool_call, return_id=True) for raw_tool_call in raw_function_calls ] expected_output = AIMessage( content="foo", additional_kwargs={"tool_calls": raw_function_calls}, tool_calls=tool_calls, # type: ignore[arg-type] invalid_tool_calls=[], ) assert result == expected_output def test__convert_dict_to_message_partial_mode() -> None: message_dict = {"role": "assistant", "content": "foo", "partial": True} result = convert_dict_to_message(message_dict) expected_output = AIMessage(content="foo", additional_kwargs={"partial": True}) assert result == expected_output def test__convert_message_to_dict_human() -> None: message = HumanMessage(content="foo") result = convert_message_to_dict(message) expected_output = {"role": "user", "content": "foo"} assert result == expected_output def test__convert_message_to_dict_ai() -> None: message = AIMessage(content="foo") result = convert_message_to_dict(message) expected_output = {"role": "assistant", "content": "foo"} assert result == expected_output def test__convert_message_to_dict_ai_partial_mode() -> None: message = AIMessage(content="foo", additional_kwargs={"partial": True}) result = convert_message_to_dict(message) expected_output = {"role": "assistant", "content": "foo", "partial": True} assert result == expected_output def test__convert_message_to_dict_system() -> None: message = SystemMessage(content="foo") result = convert_message_to_dict(message) expected_output = {"role": "system", "content": "foo"} assert result == expected_output def test__convert_message_to_dict_tool() -> None: message = FunctionMessage(name="foo", content="bar") result = convert_message_to_dict(message) expected_output = { "role": "tool", "tool_call_id": "", "content": "bar", "name": "foo", } assert result == expected_output
from typing import Optional import numpy as np import pytest import torch from docarray import BaseDoc, DocList, DocVec from docarray.documents import ImageDoc from docarray.typing import NdArray, TorchTensor class MyDoc(BaseDoc): embedding: NdArray text: str image: ImageDoc def test_from_to_json_doclist(): da = DocList[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) json_da = da.to_json() da2 = DocList[MyDoc].from_json(json_da) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None @pytest.mark.parametrize('tensor_type', [TorchTensor, NdArray]) def test_from_to_json_docvec(tensor_type): def generate_docs(tensor_type): class InnerDoc(BaseDoc): tens: tensor_type class MyDoc(BaseDoc): text: str num: Optional[int] tens: tensor_type tens_none: Optional[tensor_type] inner: InnerDoc inner_none: Optional[InnerDoc] inner_vec: DocVec[InnerDoc] inner_vec_none: Optional[DocVec[InnerDoc]] def _rand_vec_gen(tensor_type): arr = np.random.rand(5) if tensor_type == TorchTensor: arr = torch.from_numpy(arr).to(torch.float32) return arr inner = InnerDoc(tens=_rand_vec_gen(tensor_type)) inner_vec = DocVec[InnerDoc]([inner, inner], tensor_type=tensor_type) vec = DocVec[MyDoc]( [ MyDoc( text=str(i), num=None, tens=_rand_vec_gen(tensor_type), inner=inner, inner_none=None, inner_vec=inner_vec, inner_vec_none=None, ) for i in range(5) ], tensor_type=tensor_type, ) return vec v = generate_docs(tensor_type) bytes_ = v.to_json() v_after = DocVec[v.doc_type].from_json(bytes_, tensor_type=tensor_type) assert v_after.tensor_type == v.tensor_type assert set(v_after._storage.columns.keys()) == set(v._storage.columns.keys()) assert v_after._storage == v._storage @pytest.mark.tensorflow def test_from_to_json_docvec_tf(): from docarray.typing import TensorFlowTensor def generate_docs(): class InnerDoc(BaseDoc): tens: TensorFlowTensor class MyDoc(BaseDoc): text: str num: Optional[int] tens: TensorFlowTensor tens_none: Optional[TensorFlowTensor] inner: InnerDoc inner_none: Optional[InnerDoc] inner_vec: DocVec[InnerDoc] inner_vec_none: Optional[DocVec[InnerDoc]] inner = InnerDoc(tens=np.random.rand(5)) inner_vec = DocVec[InnerDoc]([inner, inner], tensor_type=TensorFlowTensor) vec = DocVec[MyDoc]( [ MyDoc( text=str(i), num=None, tens=np.random.rand(5), inner=inner, inner_none=None, inner_vec=inner_vec, inner_vec_none=None, ) for i in range(5) ], tensor_type=TensorFlowTensor, ) return vec v = generate_docs() bytes_ = v.to_json() v_after = DocVec[v.doc_type].from_json(bytes_, tensor_type=TensorFlowTensor) assert v_after.tensor_type == v.tensor_type assert set(v_after._storage.columns.keys()) == set(v._storage.columns.keys()) assert v_after._storage == v._storage def test_union_type(): from typing import Union from docarray.documents import TextDoc class CustomDoc(BaseDoc): ud: Union[TextDoc, ImageDoc] = TextDoc(text='union type') docs = DocList[CustomDoc]([CustomDoc(ud=TextDoc(text='union type'))]) docs_copy = docs.from_json(docs.to_json()) assert docs == docs_copy @pytest.mark.parametrize('tensor_type', [NdArray, TorchTensor]) def test_from_to_json_tensor_type(tensor_type): da = DocVec[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ], tensor_type=tensor_type, ) json_da = da.to_json() da2 = DocVec[MyDoc].from_json(json_da, tensor_type=tensor_type) assert da2.tensor_type == tensor_type assert isinstance(da2.embedding, tensor_type)
from typing import Optional import numpy as np import pytest import torch from docarray import BaseDoc, DocList, DocVec from docarray.documents import ImageDoc from docarray.typing import NdArray, TorchTensor class MyDoc(BaseDoc): embedding: NdArray text: str image: ImageDoc def test_from_to_json_doclist(): da = DocList[MyDoc]( [ MyDoc( embedding=[1, 2, 3, 4, 5], text='hello', image=ImageDoc(url='aux.png') ), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=ImageDoc()), ] ) json_da = da.to_json() da2 = DocList[MyDoc].from_json(json_da) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None @pytest.mark.parametrize('tensor_type', [TorchTensor, NdArray]) def test_from_to_json_docvec(tensor_type): def generate_docs(tensor_type): class InnerDoc(BaseDoc): tens: tensor_type class MyDoc(BaseDoc): text: str num: Optional[int] tens: tensor_type tens_none: Optional[tensor_type] inner: InnerDoc inner_none: Optional[InnerDoc] inner_vec: DocVec[InnerDoc] inner_vec_none: Optional[DocVec[InnerDoc]] def _rand_vec_gen(tensor_type): arr = np.random.rand(5) if tensor_type == TorchTensor: arr = torch.from_numpy(arr).to(torch.float32) return arr inner = InnerDoc(tens=_rand_vec_gen(tensor_type)) inner_vec = DocVec[InnerDoc]([inner, inner], tensor_type=tensor_type) vec = DocVec[MyDoc]( [ MyDoc( text=str(i), num=None, tens=_rand_vec_gen(tensor_type), inner=inner, inner_none=None, inner_vec=inner_vec, inner_vec_none=None, ) for i in range(5) ], tensor_type=tensor_type, ) return vec v = generate_docs(tensor_type) bytes_ = v.to_json() v_after = DocVec[v.doc_type].from_json(bytes_, tensor_type=tensor_type) assert v_after.tensor_type == v.tensor_type assert set(v_after._storage.columns.keys()) == set(v._storage.columns.keys()) assert v_after._storage == v._storage @pytest.mark.tensorflow def test_from_to_json_docvec_tf(): from docarray.typing import TensorFlowTensor def generate_docs(): class InnerDoc(BaseDoc): tens: TensorFlowTensor class MyDoc(BaseDoc): text: str num: Optional[int] tens: TensorFlowTensor tens_none: Optional[TensorFlowTensor] inner: InnerDoc inner_none: Optional[InnerDoc] inner_vec: DocVec[InnerDoc] inner_vec_none: Optional[DocVec[InnerDoc]] inner = InnerDoc(tens=np.random.rand(5)) inner_vec = DocVec[InnerDoc]([inner, inner], tensor_type=TensorFlowTensor) vec = DocVec[MyDoc]( [ MyDoc( text=str(i), num=None, tens=np.random.rand(5), inner=inner, inner_none=None, inner_vec=inner_vec, inner_vec_none=None, ) for i in range(5) ], tensor_type=TensorFlowTensor, ) return vec v = generate_docs() bytes_ = v.to_json() v_after = DocVec[v.doc_type].from_json(bytes_, tensor_type=TensorFlowTensor) assert v_after.tensor_type == v.tensor_type assert set(v_after._storage.columns.keys()) == set(v._storage.columns.keys()) assert v_after._storage == v._storage def test_union_type(): from typing import Union from docarray.documents import TextDoc class CustomDoc(BaseDoc): ud: Union[TextDoc, ImageDoc] = TextDoc(text='union type') docs = DocList[CustomDoc]([CustomDoc(ud=TextDoc(text='union type'))]) docs_copy = docs.from_json(docs.to_json()) assert docs == docs_copy
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from typing import List, Optional import fire from llama import Llama, Dialog def main( ckpt_dir: str, tokenizer_path: str, temperature: float = 0.6, top_p: float = 0.9, max_seq_len: int = 512, max_batch_size: int = 8, max_gen_len: Optional[int] = None, ): """ Entry point of the program for generating text using a pretrained model. Args: ckpt_dir (str): The directory containing checkpoint files for the pretrained model. tokenizer_path (str): The path to the tokenizer model used for text encoding/decoding. temperature (float, optional): The temperature value for controlling randomness in generation. Defaults to 0.6. top_p (float, optional): The top-p sampling parameter for controlling diversity in generation. Defaults to 0.9. max_seq_len (int, optional): The maximum sequence length for input prompts. Defaults to 512. max_batch_size (int, optional): The maximum batch size for generating sequences. Defaults to 8. max_gen_len (int, optional): The maximum length of generated sequences. If None, it will be set to the model's max sequence length. Defaults to None. """ generator = Llama.build( ckpt_dir=ckpt_dir, tokenizer_path=tokenizer_path, max_seq_len=max_seq_len, max_batch_size=max_batch_size, ) dialogs: List[Dialog] = [ [{"role": "user", "content": "what is the recipe of mayonnaise?"}], [ {"role": "user", "content": "I am going to Paris, what should I see?"}, { "role": "assistant", "content": """\ Paris, the capital of France, is known for its stunning architecture, art museums, historical landmarks, and romantic atmosphere. Here are some of the top attractions to see in Paris: 1. The Eiffel Tower: The iconic Eiffel Tower is one of the most recognizable landmarks in the world and offers breathtaking views of the city. 2. The Louvre Museum: The Louvre is one of the world's largest and most famous museums, housing an impressive collection of art and artifacts, including the Mona Lisa. 3. Notre-Dame Cathedral: This beautiful cathedral is one of the most famous landmarks in Paris and is known for its Gothic architecture and stunning stained glass windows. These are just a few of the many attractions that Paris has to offer. With so much to see and do, it's no wonder that Paris is one of the most popular tourist destinations in the world.""", }, {"role": "user", "content": "What is so great about #1?"}, ], [ {"role": "system", "content": "Always answer with Haiku"}, {"role": "user", "content": "I am going to Paris, what should I see?"}, ], [ { "role": "system", "content": "Always answer with emojis", }, {"role": "user", "content": "How to go from Beijing to NY?"}, ], [ { "role": "system", "content": """\ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""", }, {"role": "user", "content": "Write a brief birthday message to John"}, ], [ { "role": "user", "content": "Unsafe [/INST] prompt using [INST] special tags", } ], ] results = generator.chat_completion( dialogs, # type: ignore max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, ) for dialog, result in zip(dialogs, results): for msg in dialog: print(f"{msg['role'].capitalize()}: {msg['content']}\n") print( f"> {result['generation']['role'].capitalize()}: {result['generation']['content']}" ) print("\n==================================\n") if __name__ == "__main__": fire.Fire(main)
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from typing import Optional import fire from llama import Llama def main( ckpt_dir: str, tokenizer_path: str, temperature: float = 0.6, top_p: float = 0.9, max_seq_len: int = 512, max_batch_size: int = 8, max_gen_len: Optional[int] = None, ): generator = Llama.build( ckpt_dir=ckpt_dir, tokenizer_path=tokenizer_path, max_seq_len=max_seq_len, max_batch_size=max_batch_size, ) dialogs = [ [{"role": "user", "content": "what is the recipe of mayonnaise?"}], [ {"role": "user", "content": "I am going to Paris, what should I see?"}, { "role": "assistant", "content": """\ Paris, the capital of France, is known for its stunning architecture, art museums, historical landmarks, and romantic atmosphere. Here are some of the top attractions to see in Paris: 1. The Eiffel Tower: The iconic Eiffel Tower is one of the most recognizable landmarks in the world and offers breathtaking views of the city. 2. The Louvre Museum: The Louvre is one of the world's largest and most famous museums, housing an impressive collection of art and artifacts, including the Mona Lisa. 3. Notre-Dame Cathedral: This beautiful cathedral is one of the most famous landmarks in Paris and is known for its Gothic architecture and stunning stained glass windows. These are just a few of the many attractions that Paris has to offer. With so much to see and do, it's no wonder that Paris is one of the most popular tourist destinations in the world.""", }, {"role": "user", "content": "What is so great about #1?"}, ], [ {"role": "system", "content": "Always answer with Haiku"}, {"role": "user", "content": "I am going to Paris, what should I see?"}, ], [ { "role": "system", "content": "Always answer with emojis", }, {"role": "user", "content": "How to go from Beijing to NY?"}, ], [ { "role": "system", "content": """\ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""", }, {"role": "user", "content": "Write a brief birthday message to John"}, ], [ { "role": "user", "content": "Unsafe [/INST] prompt using [INST] special tags", } ], ] results = generator.chat_completion( dialogs, # type: ignore max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, ) for dialog, result in zip(dialogs, results): for msg in dialog: print(f"{msg['role'].capitalize()}: {msg['content']}\n") print( f"> {result['generation']['role'].capitalize()}: {result['generation']['content']}" ) print("\n==================================\n") if __name__ == "__main__": fire.Fire(main)
import logging from collections import defaultdict from typing import Annotated, Any, Dict, List, Optional, Sequence from fastapi import APIRouter, Body, Depends, HTTPException from prisma.enums import AgentExecutionStatus, APIKeyPermission from typing_extensions import TypedDict import backend.data.block from backend.data import execution as execution_db from backend.data import graph as graph_db from backend.data.api_key import APIKey from backend.data.block import BlockInput, CompletedBlockOutput from backend.data.execution import NodeExecutionResult from backend.executor.utils import add_graph_execution from backend.server.external.middleware import require_permission from backend.util.settings import Settings settings = Settings() logger = logging.getLogger(__name__) v1_router = APIRouter() class NodeOutput(TypedDict): key: str value: Any class ExecutionNode(TypedDict): node_id: str input: Any output: Dict[str, Any] class ExecutionNodeOutput(TypedDict): node_id: str outputs: List[NodeOutput] class GraphExecutionResult(TypedDict): execution_id: str status: str nodes: List[ExecutionNode] output: Optional[List[Dict[str, str]]] def get_outputs_with_names(results: list[NodeExecutionResult]) -> list[dict[str, str]]: outputs = [] for result in results: if "output" in result.output_data: output_value = result.output_data["output"][0] name = result.output_data.get("name", [None])[0] if output_value and name: outputs.append({name: output_value}) return outputs @v1_router.get( path="/blocks", tags=["blocks"], dependencies=[Depends(require_permission(APIKeyPermission.READ_BLOCK))], ) def get_graph_blocks() -> Sequence[dict[Any, Any]]: blocks = [block() for block in backend.data.block.get_blocks().values()] return [b.to_dict() for b in blocks if not b.disabled] @v1_router.post( path="/blocks/{block_id}/execute", tags=["blocks"], dependencies=[Depends(require_permission(APIKeyPermission.EXECUTE_BLOCK))], ) async def execute_graph_block( block_id: str, data: BlockInput, api_key: APIKey = Depends(require_permission(APIKeyPermission.EXECUTE_BLOCK)), ) -> CompletedBlockOutput: obj = backend.data.block.get_block(block_id) if not obj: raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.") output = defaultdict(list) async for name, data in obj.execute(data): output[name].append(data) return output @v1_router.post( path="/graphs/{graph_id}/execute/{graph_version}", tags=["graphs"], ) async def execute_graph( graph_id: str, graph_version: int, node_input: Annotated[dict[str, Any], Body(..., embed=True, default_factory=dict)], api_key: APIKey = Depends(require_permission(APIKeyPermission.EXECUTE_GRAPH)), ) -> dict[str, Any]: try: graph_exec = await add_graph_execution( graph_id=graph_id, user_id=api_key.user_id, inputs=node_input, graph_version=graph_version, ) return {"id": graph_exec.id} except Exception as e: msg = str(e).encode().decode("unicode_escape") raise HTTPException(status_code=400, detail=msg) @v1_router.get( path="/graphs/{graph_id}/executions/{graph_exec_id}/results", tags=["graphs"], ) async def get_graph_execution_results( graph_id: str, graph_exec_id: str, api_key: APIKey = Depends(require_permission(APIKeyPermission.READ_GRAPH)), ) -> GraphExecutionResult: graph = await graph_db.get_graph(graph_id, user_id=api_key.user_id) if not graph: raise HTTPException(status_code=404, detail=f"Graph #{graph_id} not found.") results = await execution_db.get_node_executions(graph_exec_id) last_result = results[-1] if results else None execution_status = ( last_result.status if last_result else AgentExecutionStatus.INCOMPLETE ) outputs = get_outputs_with_names(results) return GraphExecutionResult( execution_id=graph_exec_id, status=execution_status, nodes=[ ExecutionNode( node_id=result.node_id, input=result.input_data.get("value", result.input_data), output={k: v for k, v in result.output_data.items()}, ) for result in results ], output=outputs if execution_status == AgentExecutionStatus.COMPLETED else None, )
import logging from collections import defaultdict from typing import Annotated, Any, Dict, List, Optional, Sequence from fastapi import APIRouter, Body, Depends, HTTPException from prisma.enums import AgentExecutionStatus, APIKeyPermission from typing_extensions import TypedDict import backend.data.block from backend.data import execution as execution_db from backend.data import graph as graph_db from backend.data.api_key import APIKey from backend.data.block import BlockInput, CompletedBlockOutput from backend.data.execution import NodeExecutionResult from backend.executor.utils import add_graph_execution_async from backend.server.external.middleware import require_permission from backend.util.settings import Settings settings = Settings() logger = logging.getLogger(__name__) v1_router = APIRouter() class NodeOutput(TypedDict): key: str value: Any class ExecutionNode(TypedDict): node_id: str input: Any output: Dict[str, Any] class ExecutionNodeOutput(TypedDict): node_id: str outputs: List[NodeOutput] class GraphExecutionResult(TypedDict): execution_id: str status: str nodes: List[ExecutionNode] output: Optional[List[Dict[str, str]]] def get_outputs_with_names(results: list[NodeExecutionResult]) -> list[dict[str, str]]: outputs = [] for result in results: if "output" in result.output_data: output_value = result.output_data["output"][0] name = result.output_data.get("name", [None])[0] if output_value and name: outputs.append({name: output_value}) return outputs @v1_router.get( path="/blocks", tags=["blocks"], dependencies=[Depends(require_permission(APIKeyPermission.READ_BLOCK))], ) def get_graph_blocks() -> Sequence[dict[Any, Any]]: blocks = [block() for block in backend.data.block.get_blocks().values()] return [b.to_dict() for b in blocks if not b.disabled] @v1_router.post( path="/blocks/{block_id}/execute", tags=["blocks"], dependencies=[Depends(require_permission(APIKeyPermission.EXECUTE_BLOCK))], ) def execute_graph_block( block_id: str, data: BlockInput, api_key: APIKey = Depends(require_permission(APIKeyPermission.EXECUTE_BLOCK)), ) -> CompletedBlockOutput: obj = backend.data.block.get_block(block_id) if not obj: raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.") output = defaultdict(list) for name, data in obj.execute(data): output[name].append(data) return output @v1_router.post( path="/graphs/{graph_id}/execute/{graph_version}", tags=["graphs"], ) async def execute_graph( graph_id: str, graph_version: int, node_input: Annotated[dict[str, Any], Body(..., embed=True, default_factory=dict)], api_key: APIKey = Depends(require_permission(APIKeyPermission.EXECUTE_GRAPH)), ) -> dict[str, Any]: try: graph_exec = await add_graph_execution_async( graph_id=graph_id, user_id=api_key.user_id, inputs=node_input, graph_version=graph_version, ) return {"id": graph_exec.id} except Exception as e: msg = str(e).encode().decode("unicode_escape") raise HTTPException(status_code=400, detail=msg) @v1_router.get( path="/graphs/{graph_id}/executions/{graph_exec_id}/results", tags=["graphs"], ) async def get_graph_execution_results( graph_id: str, graph_exec_id: str, api_key: APIKey = Depends(require_permission(APIKeyPermission.READ_GRAPH)), ) -> GraphExecutionResult: graph = await graph_db.get_graph(graph_id, user_id=api_key.user_id) if not graph: raise HTTPException(status_code=404, detail=f"Graph #{graph_id} not found.") results = await execution_db.get_node_executions(graph_exec_id) last_result = results[-1] if results else None execution_status = ( last_result.status if last_result else AgentExecutionStatus.INCOMPLETE ) outputs = get_outputs_with_names(results) return GraphExecutionResult( execution_id=graph_exec_id, status=execution_status, nodes=[ ExecutionNode( node_id=result.node_id, input=result.input_data.get("value", result.input_data), output={k: v for k, v in result.output_data.items()}, ) for result in results ], output=outputs if execution_status == AgentExecutionStatus.COMPLETED else None, )
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.26.0' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.25.3' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
from __future__ import annotations from sentence_transformers.sparse_encoder.data_collator import SparseEncoderDataCollator from sentence_transformers.sparse_encoder.evaluation import ( SparseBinaryClassificationEvaluator, SparseEmbeddingSimilarityEvaluator, SparseInformationRetrievalEvaluator, SparseMSEEvaluator, SparseNanoBEIREvaluator, SparseRerankingEvaluator, SparseTranslationEvaluator, SparseTripletEvaluator, ) from sentence_transformers.sparse_encoder.losses import ( CSRLoss, CSRReconstructionLoss, SparseAnglELoss, SparseCachedGISTEmbedLoss, SparseCachedMultipleNegativesRankingLoss, SparseCoSENTLoss, SparseCosineSimilarityLoss, SparseGISTEmbedLoss, SparseMarginMSELoss, SparseMSELoss, SparseMultipleNegativesRankingLoss, SparseTripletLoss, ) from sentence_transformers.sparse_encoder.models import ( CSRSparsity, MLMTransformer, SpladePooling, ) from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import ( SparseEncoderTrainingArguments, ) __all__ = [ # Core components "SparseEncoder", "SparseEncoderDataCollator", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", # Models "CSRSparsity", "MLMTransformer", "SpladePooling", # Losses "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", # Evaluators "SparseBinaryClassificationEvaluator", "SparseEmbeddingSimilarityEvaluator", "SparseInformationRetrievalEvaluator", "SparseMSEEvaluator", "SparseNanoBEIREvaluator", "SparseTranslationEvaluator", "SparseRerankingEvaluator", "SparseTripletEvaluator", ] # TODO : Complete the SparseEncoder class # TODO : Add tests for all the components # TODO : Ask Update to TOM on loss to implement # TODO : Add the equivalent of the quantization file for the sparse encoder
from __future__ import annotations from sentence_transformers.sparse_encoder.data_collator import SparseEncoderDataCollator from sentence_transformers.sparse_encoder.evaluation import ( SparseBinaryClassificationEvaluator, SparseEmbeddingSimilarityEvaluator, SparseInformationRetrievalEvaluator, SparseMSEEvaluator, SparseNanoBEIREvaluator, SparseRerankingEvaluator, SparseTranslationEvaluator, SparseTripletEvaluator, ) from sentence_transformers.sparse_encoder.losses import ( CSRLoss, CSRReconstructionLoss, SparseCachedGISTEmbedLoss, SparseCachedMultipleNegativesRankingLoss, SparseCoSENTLoss, SparseCosineSimilarityLoss, SparseGISTEmbedLoss, SparseMarginMSELoss, SparseMultipleNegativesRankingLoss, SparseTripletLoss, ) from sentence_transformers.sparse_encoder.models import ( CSRSparsity, MLMTransformer, SpladePooling, ) from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import ( SparseEncoderTrainingArguments, ) __all__ = [ # Core components "SparseEncoder", "SparseEncoderDataCollator", "SparseEncoderTrainer", "SparseEncoderTrainingArguments", # Models "CSRSparsity", "MLMTransformer", "SpladePooling", # Losses "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", # Evaluators "SparseBinaryClassificationEvaluator", "SparseEmbeddingSimilarityEvaluator", "SparseInformationRetrievalEvaluator", "SparseMSEEvaluator", "SparseNanoBEIREvaluator", "SparseTranslationEvaluator", "SparseRerankingEvaluator", "SparseTripletEvaluator", ] # TODO : Complete the SparseEncoder class # TODO : Add tests for all the components # TODO : Ask Update to TOM on loss to implement # TODO : Add the equivalent of the quantization file for the sparse encoder
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.utils import collect_env as collect_base_env from mmengine.utils import get_git_hash import mmdet def collect_env(): """Collect the information of the running environments.""" env_info = collect_base_env() env_info['MMDetection'] = mmdet.__version__ + '+' + get_git_hash()[:7] return env_info if __name__ == '__main__': for name, val in collect_env().items(): print(f'{name}: {val}')
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.utils import collect_env as collect_base_env from mmcv.utils import get_git_hash import mmdet def collect_env(): """Collect the information of the running environments.""" env_info = collect_base_env() env_info['MMDetection'] = mmdet.__version__ + '+' + get_git_hash()[:7] return env_info if __name__ == '__main__': for name, val in collect_env().items(): print(f'{name}: {val}')
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../common/mstrain_3x_coco.py' ] # optimizer model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101)) optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../common/mstrain_3x_coco.py' ] # optimizer model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101)) optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
from typing import Optional, Dict, List, Set, Tuple import numpy as np import pytest import torch from docarray import DocumentArray from docarray.base_document import BaseDocument from docarray.typing import NdArray, TorchTensor @pytest.mark.proto def test_proto_simple(): class CustomDoc(BaseDocument): text: str doc = CustomDoc(text='hello') CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_ndarray(): class CustomDoc(BaseDocument): tensor: NdArray tensor = np.zeros((3, 224, 224)) doc = CustomDoc(tensor=tensor) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) assert (new_doc.tensor == tensor).all() @pytest.mark.proto def test_proto_with_nested_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc(text='hello', inner=CustomInnerDoc(tensor=np.zeros((3, 224, 224)))) CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_with_chunks_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=np.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() @pytest.mark.proto def test_proto_with_nested_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc( text='hello', inner=CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) ) CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_with_chunks_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() @pytest.mark.proto def test_optional_field_in_doc(): class CustomDoc(BaseDocument): text: Optional[str] CustomDoc.from_protobuf(CustomDoc().to_protobuf()) @pytest.mark.proto def test_optional_field_nested_in_doc(): class InnerDoc(BaseDocument): title: str class CustomDoc(BaseDocument): text: Optional[InnerDoc] CustomDoc.from_protobuf(CustomDoc().to_protobuf()) @pytest.mark.proto def test_integer_field(): class Meow(BaseDocument): age: int wealth: float registered: bool d = Meow(age=30, wealth=100.5, registered=True) rebuilt_doc = Meow.from_protobuf(d.to_protobuf()) assert rebuilt_doc.age == 30 assert rebuilt_doc.wealth == 100.5 assert rebuilt_doc.registered @pytest.mark.proto def test_list_set_dict_tuple_field(): class MyDoc(BaseDocument): list_: List dict_: Dict tuple_: Tuple set_: Set d = MyDoc( list_=[0, 1, 2], dict_={'a': 0, 'b': 1}, tuple_=tuple([0, 1]), set_={0, 1} ) rebuilt_doc = MyDoc.from_protobuf(d.to_protobuf()) assert rebuilt_doc.list_ == [0, 1, 2] assert rebuilt_doc.dict_ == {'a': 0, 'b': 1} assert rebuilt_doc.tuple_ == (0, 1) assert rebuilt_doc.set_ == {0, 1}
from typing import Optional import numpy as np import pytest import torch from docarray import DocumentArray from docarray.base_document import BaseDocument from docarray.typing import NdArray, TorchTensor @pytest.mark.proto def test_proto_simple(): class CustomDoc(BaseDocument): text: str doc = CustomDoc(text='hello') CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_ndarray(): class CustomDoc(BaseDocument): tensor: NdArray tensor = np.zeros((3, 224, 224)) doc = CustomDoc(tensor=tensor) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) assert (new_doc.tensor == tensor).all() @pytest.mark.proto def test_proto_with_nested_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc(text='hello', inner=CustomInnerDoc(tensor=np.zeros((3, 224, 224)))) CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_with_chunks_doc(): class CustomInnerDoc(BaseDocument): tensor: NdArray class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=np.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() @pytest.mark.proto def test_proto_with_nested_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str inner: CustomInnerDoc doc = CustomDoc( text='hello', inner=CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) ) CustomDoc.from_protobuf(doc.to_protobuf()) @pytest.mark.proto def test_proto_with_chunks_doc_pytorch(): class CustomInnerDoc(BaseDocument): tensor: TorchTensor class CustomDoc(BaseDocument): text: str chunks: DocumentArray[CustomInnerDoc] doc = CustomDoc( text='hello', chunks=DocumentArray[CustomInnerDoc]( [CustomInnerDoc(tensor=torch.zeros((3, 224, 224))) for _ in range(5)], ), ) new_doc = CustomDoc.from_protobuf(doc.to_protobuf()) for chunk1, chunk2 in zip(doc.chunks, new_doc.chunks): assert (chunk1.tensor == chunk2.tensor).all() @pytest.mark.proto def test_optional_field_in_doc(): class CustomDoc(BaseDocument): text: Optional[str] CustomDoc.from_protobuf(CustomDoc().to_protobuf()) @pytest.mark.proto def test_optional_field_nested_in_doc(): class InnerDoc(BaseDocument): title: str class CustomDoc(BaseDocument): text: Optional[InnerDoc] CustomDoc.from_protobuf(CustomDoc().to_protobuf())
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api import activations from keras.api import applications from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import legacy from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import ops from keras.api import optimizers from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import tree from keras.api import utils from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.backend.common.stateless_scope import StatelessScope from keras.src.backend.exports import Variable from keras.src.backend.exports import device from keras.src.backend.exports import name_scope from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.dtype_policies.dtype_policy import QuantizedDTypePolicy from keras.src.initializers.initializer import Initializer from keras.src.layers.core.input_layer import Input from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer from keras.src.losses.loss import Loss from keras.src.metrics.metric import Metric from keras.src.models.model import Model from keras.src.models.sequential import Sequential from keras.src.ops.function import Function from keras.src.ops.operation import Operation from keras.src.optimizers.optimizer import Optimizer from keras.src.quantizers.quantizers import AbsMaxQuantizer from keras.src.quantizers.quantizers import Quantizer from keras.src.regularizers.regularizers import Regularizer from keras.src.version import version """DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras._tf_keras.keras import backend from keras._tf_keras.keras import layers from keras._tf_keras.keras import losses from keras._tf_keras.keras import metrics from keras._tf_keras.keras import preprocessing
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import saving from keras.api import tree from keras.api import utils from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.backend.common.stateless_scope import StatelessScope from keras.src.backend.exports import Variable from keras.src.backend.exports import device from keras.src.backend.exports import name_scope from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.initializers.initializer import Initializer from keras.src.layers.core.input_layer import Input from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer from keras.src.losses.loss import Loss from keras.src.metrics.metric import Metric from keras.src.models.model import Model from keras.src.models.sequential import Sequential from keras.src.ops.function import Function from keras.src.ops.operation import Operation from keras.src.optimizers.optimizer import Optimizer from keras.src.quantizers.quantizers import Quantizer from keras.src.regularizers.regularizers import Regularizer from keras.src.version import __version__ from keras.src.version import version
import threading import fsspec.asyn import torch from ...iterable_dataset import IterableDataset, _apply_feature_types from ...utils.logging import get_logger logger = get_logger(__name__) def _set_fsspec_for_multiprocess() -> None: """ Clear reference to the loop and thread. This is necessary otherwise HTTPFileSystem hangs in the ML training loop. Only required for fsspec >= 0.9.0 See https://github.com/fsspec/gcsfs/issues/379 """ if hasattr(fsspec.asyn, "reset_lock"): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: fsspec.asyn.iothread[0] = None fsspec.asyn.loop[0] = None fsspec.asyn.lock = threading.Lock() class TorchIterableDataset(IterableDataset, torch.utils.data.IterableDataset): def __iter__(self): # fix for fsspec when using multprocess _set_fsspec_for_multiprocess() worker_info = torch.utils.data.get_worker_info() if worker_info is None: # single-process data loading, return the full iterator yield from IterableDataset.__iter__(self) else: # in a worker process # check if there aren't too many workers if worker_info.id == 0 and self.n_shards < worker_info.num_workers: logger.warning( f"Too many dataloader workers: {worker_info.num_workers} (max is dataset.n_shards={self.n_shards}). " f"Stopping dataloader workers [{self.n_shards}...{worker_info.num_workers -1}]." ) logger.warning( f"To parallelize data loading, we give each process some shards (or data sources) to process. " f"Therefore it's unnecessary to have a number of workers greater than dataset.n_shards={self.n_shards}." f"To enable more parallelism, please split the dataset in more files than {self.n_shards}." ) # split workload shards_indices = list(range(worker_info.id, self.n_shards, worker_info.num_workers)) if shards_indices: logger.debug( f"dataloader worker#{worker_info.id}, ': Starting to iterate over {len(shards_indices)}/{self.n_shards} shards." ) for shard_idx in shards_indices: for key, example in self._iter_shard(shard_idx): if self.features: yield _apply_feature_types( example, self.features, token_per_repo_id=self._token_per_repo_id ) else: yield example logger.debug( f"dataloader worker#{worker_info.id}, ': Finished iterating over {len(shards_indices)}/{self.n_shards} shards." ) else: logger.debug( f"dataloader worker#{worker_info.id}, ': Stopping... Number of dataset shards < num_workers ({self.n_shards}<{worker_info.num_workers})." )
import fsspec.asyn import torch from ...iterable_dataset import IterableDataset, _apply_feature_types from ...utils.logging import get_logger logger = get_logger(__name__) def _set_fsspec_for_multiprocess() -> None: """ Clear reference to the loop and thread. This is necessary otherwise HTTPFileSystem hangs in the ML training loop. Only required for fsspec >= 0.9.0 See https://github.com/fsspec/gcsfs/issues/379 """ fsspec.asyn.iothread[0] = None fsspec.asyn.loop[0] = None class TorchIterableDataset(IterableDataset, torch.utils.data.IterableDataset): def __iter__(self): # fix for fsspec when using multprocess _set_fsspec_for_multiprocess() worker_info = torch.utils.data.get_worker_info() if worker_info is None: # single-process data loading, return the full iterator yield from IterableDataset.__iter__(self) else: # in a worker process # check if there aren't too many workers if worker_info.id == 0 and self.n_shards < worker_info.num_workers: logger.warning( f"Too many dataloader workers: {worker_info.num_workers} (max is dataset.n_shards={self.n_shards}). " f"Stopping dataloader workers [{self.n_shards}...{worker_info.num_workers -1}]." ) logger.warning( f"To parallelize data loading, we give each process some shards (or data sources) to process. " f"Therefore it's unnecessary to have a number of workers greater than dataset.n_shards={self.n_shards}." f"To enable more parallelism, please split the dataset in more files than {self.n_shards}." ) # split workload shards_indices = list(range(worker_info.id, self.n_shards, worker_info.num_workers)) if shards_indices: logger.debug( f"dataloader worker#{worker_info.id}, ': Starting to iterate over {len(shards_indices)}/{self.n_shards} shards." ) for shard_idx in shards_indices: for key, example in self._iter_shard(shard_idx): if self.features: yield _apply_feature_types( example, self.features, token_per_repo_id=self._token_per_repo_id ) else: yield example logger.debug( f"dataloader worker#{worker_info.id}, ': Finished iterating over {len(shards_indices)}/{self.n_shards} shards." ) else: logger.debug( f"dataloader worker#{worker_info.id}, ': Stopping... Number of dataset shards < num_workers ({self.n_shards}<{worker_info.num_workers})." )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import numpy as np import pytest from executor.audioclip_image import AudioCLIPImageEncoder from jina import Document, DocumentArray, Flow @pytest.mark.parametrize("request_size", [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [ Document(blob=np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)) for _ in range(50) ] ) with Flow(return_results=True).add(uses=AudioCLIPImageEncoder) as flow: resp = flow.post( on="/index", inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding is not None assert doc.embedding.shape == (1024,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:cuda', 'download_model:True', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import numpy as np import pytest from executor.audioclip_image import AudioCLIPImageEncoder from jina import Document, DocumentArray, Flow @pytest.mark.parametrize("request_size", [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [ Document(blob=np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)) for _ in range(50) ] ) with Flow(return_results=True).add(uses=AudioCLIPImageEncoder) as flow: resp = flow.post( on="/index", inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding is not None assert doc.embedding.shape == (1024,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:cuda', ], timeout=30, check=True, )
"""Init file of LlamaIndex.""" __version__ = "0.12.25" import logging from logging import NullHandler from typing import Callable, Optional try: # Force pants to install eval_type_backport on 3.9 import eval_type_backport # noqa # type: ignore except ImportError: pass # response from llama_index.core.base.response.schema import Response # import global eval handler from llama_index.core.callbacks.global_handlers import set_global_handler from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.embeddings.mock_embed_model import MockEmbedding # indices # loading from llama_index.core.indices import ( ComposableGraph, DocumentSummaryIndex, GPTDocumentSummaryIndex, GPTKeywordTableIndex, GPTListIndex, GPTRAKEKeywordTableIndex, GPTSimpleKeywordTableIndex, GPTTreeIndex, GPTVectorStoreIndex, KeywordTableIndex, KnowledgeGraphIndex, ListIndex, PropertyGraphIndex, RAKEKeywordTableIndex, SimpleKeywordTableIndex, SummaryIndex, TreeIndex, VectorStoreIndex, load_graph_from_storage, load_index_from_storage, load_indices_from_storage, ) # structured from llama_index.core.indices.common.struct_store.base import ( SQLDocumentContextBuilder, ) # prompt helper from llama_index.core.indices.prompt_helper import PromptHelper # prompts from llama_index.core.prompts import ( BasePromptTemplate, ChatPromptTemplate, # backwards compatibility Prompt, PromptTemplate, SelectorPromptTemplate, ) from llama_index.core.readers import SimpleDirectoryReader, download_loader # Response Synthesizer from llama_index.core.response_synthesizers.factory import get_response_synthesizer from llama_index.core.schema import Document, QueryBundle from llama_index.core.service_context import ( ServiceContext, set_global_service_context, ) # global settings from llama_index.core.settings import Settings # storage from llama_index.core.storage.storage_context import StorageContext # sql wrapper from llama_index.core.utilities.sql_wrapper import SQLDatabase # global tokenizer from llama_index.core.utils import get_tokenizer, set_global_tokenizer # best practices for library logging: # https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library logging.getLogger(__name__).addHandler(NullHandler()) __all__ = [ "StorageContext", "ServiceContext", "ComposableGraph", # indices "SummaryIndex", "VectorStoreIndex", "SimpleKeywordTableIndex", "KeywordTableIndex", "RAKEKeywordTableIndex", "TreeIndex", "DocumentSummaryIndex", "KnowledgeGraphIndex", "PropertyGraphIndex", # indices - legacy names "GPTKeywordTableIndex", "GPTKnowledgeGraphIndex", "GPTSimpleKeywordTableIndex", "GPTRAKEKeywordTableIndex", "GPTListIndex", "ListIndex", "GPTTreeIndex", "GPTVectorStoreIndex", "GPTDocumentSummaryIndex", "Prompt", "PromptTemplate", "BasePromptTemplate", "ChatPromptTemplate", "SelectorPromptTemplate", "SummaryPrompt", "TreeInsertPrompt", "TreeSelectPrompt", "TreeSelectMultiplePrompt", "RefinePrompt", "QuestionAnswerPrompt", "KeywordExtractPrompt", "QueryKeywordExtractPrompt", "Response", "Document", "SimpleDirectoryReader", "VellumPredictor", "VellumPromptRegistry", "MockEmbedding", "SQLDatabase", "SQLDocumentContextBuilder", "SQLContextBuilder", "PromptHelper", "IndexStructType", "download_loader", "load_graph_from_storage", "load_index_from_storage", "load_indices_from_storage", "QueryBundle", "get_response_synthesizer", "set_global_service_context", "set_global_handler", "set_global_tokenizer", "get_tokenizer", "Settings", ] # eval global toggle from llama_index.core.callbacks.base_handler import BaseCallbackHandler global_handler: Optional[BaseCallbackHandler] = None # NOTE: keep for backwards compatibility SQLContextBuilder = SQLDocumentContextBuilder # global tokenizer global_tokenizer: Optional[Callable[[str], list]] = None
"""Init file of LlamaIndex.""" __version__ = "0.12.24.post1" import logging from logging import NullHandler from typing import Callable, Optional try: # Force pants to install eval_type_backport on 3.9 import eval_type_backport # noqa # type: ignore except ImportError: pass # response from llama_index.core.base.response.schema import Response # import global eval handler from llama_index.core.callbacks.global_handlers import set_global_handler from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.embeddings.mock_embed_model import MockEmbedding # indices # loading from llama_index.core.indices import ( ComposableGraph, DocumentSummaryIndex, GPTDocumentSummaryIndex, GPTKeywordTableIndex, GPTListIndex, GPTRAKEKeywordTableIndex, GPTSimpleKeywordTableIndex, GPTTreeIndex, GPTVectorStoreIndex, KeywordTableIndex, KnowledgeGraphIndex, ListIndex, PropertyGraphIndex, RAKEKeywordTableIndex, SimpleKeywordTableIndex, SummaryIndex, TreeIndex, VectorStoreIndex, load_graph_from_storage, load_index_from_storage, load_indices_from_storage, ) # structured from llama_index.core.indices.common.struct_store.base import ( SQLDocumentContextBuilder, ) # prompt helper from llama_index.core.indices.prompt_helper import PromptHelper # prompts from llama_index.core.prompts import ( BasePromptTemplate, ChatPromptTemplate, # backwards compatibility Prompt, PromptTemplate, SelectorPromptTemplate, ) from llama_index.core.readers import SimpleDirectoryReader, download_loader # Response Synthesizer from llama_index.core.response_synthesizers.factory import get_response_synthesizer from llama_index.core.schema import Document, QueryBundle from llama_index.core.service_context import ( ServiceContext, set_global_service_context, ) # global settings from llama_index.core.settings import Settings # storage from llama_index.core.storage.storage_context import StorageContext # sql wrapper from llama_index.core.utilities.sql_wrapper import SQLDatabase # global tokenizer from llama_index.core.utils import get_tokenizer, set_global_tokenizer # best practices for library logging: # https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library logging.getLogger(__name__).addHandler(NullHandler()) __all__ = [ "StorageContext", "ServiceContext", "ComposableGraph", # indices "SummaryIndex", "VectorStoreIndex", "SimpleKeywordTableIndex", "KeywordTableIndex", "RAKEKeywordTableIndex", "TreeIndex", "DocumentSummaryIndex", "KnowledgeGraphIndex", "PropertyGraphIndex", # indices - legacy names "GPTKeywordTableIndex", "GPTKnowledgeGraphIndex", "GPTSimpleKeywordTableIndex", "GPTRAKEKeywordTableIndex", "GPTListIndex", "ListIndex", "GPTTreeIndex", "GPTVectorStoreIndex", "GPTDocumentSummaryIndex", "Prompt", "PromptTemplate", "BasePromptTemplate", "ChatPromptTemplate", "SelectorPromptTemplate", "SummaryPrompt", "TreeInsertPrompt", "TreeSelectPrompt", "TreeSelectMultiplePrompt", "RefinePrompt", "QuestionAnswerPrompt", "KeywordExtractPrompt", "QueryKeywordExtractPrompt", "Response", "Document", "SimpleDirectoryReader", "VellumPredictor", "VellumPromptRegistry", "MockEmbedding", "SQLDatabase", "SQLDocumentContextBuilder", "SQLContextBuilder", "PromptHelper", "IndexStructType", "download_loader", "load_graph_from_storage", "load_index_from_storage", "load_indices_from_storage", "QueryBundle", "get_response_synthesizer", "set_global_service_context", "set_global_handler", "set_global_tokenizer", "get_tokenizer", "Settings", ] # eval global toggle from llama_index.core.callbacks.base_handler import BaseCallbackHandler global_handler: Optional[BaseCallbackHandler] = None # NOTE: keep for backwards compatibility SQLContextBuilder = SQLDocumentContextBuilder # global tokenizer global_tokenizer: Optional[Callable[[str], list]] = None
"""Language models. **Language Model** is a type of model that can generate text or complete text prompts. LangChain has two main classes to work with language models: **Chat Models** and "old-fashioned" **LLMs**. **Chat Models** Language models that use a sequence of messages as inputs and return chat messages as outputs (as opposed to using plain text). These are traditionally newer models ( older models are generally LLMs, see below). Chat models support the assignment of distinct roles to conversation messages, helping to distinguish messages from the AI, users, and instructions such as system messages. The key abstraction for chat models is `BaseChatModel`. Implementations should inherit from this class. Please see LangChain how-to guides with more information on how to implement a custom chat model. To implement a custom Chat Model, inherit from `BaseChatModel`. See the following guide for more information on how to implement a custom Chat Model: https://python.langchain.com/docs/how_to/custom_chat_model/ **LLMs** Language models that takes a string as input and returns a string. These are traditionally older models (newer models generally are Chat Models, see below). Although the underlying models are string in, string out, the LangChain wrappers also allow these models to take messages as input. This gives them the same interface as Chat Models. When messages are passed in as input, they will be formatted into a string under the hood before being passed to the underlying model. To implement a custom LLM, inherit from `BaseLLM` or `LLM`. Please see the following guide for more information on how to implement a custom LLM: https://python.langchain.com/docs/how_to/custom_llm/ """ # noqa: E501 from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from langchain_core.language_models.base import ( BaseLanguageModel, LangSmithParams, LanguageModelInput, LanguageModelLike, LanguageModelOutput, get_tokenizer, ) from langchain_core.language_models.chat_models import ( BaseChatModel, SimpleChatModel, ) from langchain_core.language_models.fake import FakeListLLM, FakeStreamingListLLM from langchain_core.language_models.fake_chat_models import ( FakeListChatModel, FakeMessagesListChatModel, GenericFakeChatModel, ParrotFakeChatModel, ) from langchain_core.language_models.llms import LLM, BaseLLM __all__ = ( "BaseLanguageModel", "BaseChatModel", "SimpleChatModel", "BaseLLM", "LLM", "LanguageModelInput", "get_tokenizer", "LangSmithParams", "LanguageModelOutput", "LanguageModelLike", "FakeListLLM", "FakeStreamingListLLM", "FakeListChatModel", "FakeMessagesListChatModel", "GenericFakeChatModel", "ParrotFakeChatModel", ) _dynamic_imports = { "BaseLanguageModel": "base", "LangSmithParams": "base", "LanguageModelInput": "base", "LanguageModelLike": "base", "LanguageModelOutput": "base", "get_tokenizer": "base", "BaseChatModel": "chat_models", "SimpleChatModel": "chat_models", "FakeListLLM": "fake", "FakeStreamingListLLM": "fake", "FakeListChatModel": "fake_chat_models", "FakeMessagesListChatModel": "fake_chat_models", "GenericFakeChatModel": "fake_chat_models", "ParrotFakeChatModel": "fake_chat_models", "LLM": "llms", "BaseLLM": "llms", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""Language models. **Language Model** is a type of model that can generate text or complete text prompts. LangChain has two main classes to work with language models: **Chat Models** and "old-fashioned" **LLMs**. **Chat Models** Language models that use a sequence of messages as inputs and return chat messages as outputs (as opposed to using plain text). These are traditionally newer models ( older models are generally LLMs, see below). Chat models support the assignment of distinct roles to conversation messages, helping to distinguish messages from the AI, users, and instructions such as system messages. The key abstraction for chat models is `BaseChatModel`. Implementations should inherit from this class. Please see LangChain how-to guides with more information on how to implement a custom chat model. To implement a custom Chat Model, inherit from `BaseChatModel`. See the following guide for more information on how to implement a custom Chat Model: https://python.langchain.com/docs/how_to/custom_chat_model/ **LLMs** Language models that takes a string as input and returns a string. These are traditionally older models (newer models generally are Chat Models, see below). Although the underlying models are string in, string out, the LangChain wrappers also allow these models to take messages as input. This gives them the same interface as Chat Models. When messages are passed in as input, they will be formatted into a string under the hood before being passed to the underlying model. To implement a custom LLM, inherit from `BaseLLM` or `LLM`. Please see the following guide for more information on how to implement a custom LLM: https://python.langchain.com/docs/how_to/custom_llm/ """ # noqa: E501 from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.language_models.base import ( BaseLanguageModel, LangSmithParams, LanguageModelInput, LanguageModelLike, LanguageModelOutput, get_tokenizer, ) from langchain_core.language_models.chat_models import ( BaseChatModel, SimpleChatModel, ) from langchain_core.language_models.fake import FakeListLLM, FakeStreamingListLLM from langchain_core.language_models.fake_chat_models import ( FakeListChatModel, FakeMessagesListChatModel, GenericFakeChatModel, ParrotFakeChatModel, ) from langchain_core.language_models.llms import LLM, BaseLLM __all__ = [ "BaseLanguageModel", "BaseChatModel", "SimpleChatModel", "BaseLLM", "LLM", "LanguageModelInput", "get_tokenizer", "LangSmithParams", "LanguageModelOutput", "LanguageModelLike", "FakeListLLM", "FakeStreamingListLLM", "FakeListChatModel", "FakeMessagesListChatModel", "GenericFakeChatModel", "ParrotFakeChatModel", ] _dynamic_imports = { "BaseLanguageModel": "base", "LangSmithParams": "base", "LanguageModelInput": "base", "LanguageModelLike": "base", "LanguageModelOutput": "base", "get_tokenizer": "base", "BaseChatModel": "chat_models", "SimpleChatModel": "chat_models", "FakeListLLM": "fake", "FakeStreamingListLLM": "fake", "FakeListChatModel": "fake_chat_models", "FakeMessagesListChatModel": "fake_chat_models", "GenericFakeChatModel": "fake_chat_models", "ParrotFakeChatModel": "fake_chat_models", "LLM": "llms", "BaseLLM": "llms", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
import datetime from typing import Any import prisma.models import pydantic import backend.data.block as block_model import backend.data.graph as graph_model import backend.server.model as server_model class LibraryAgent(pydantic.BaseModel): id: str # Changed from agent_id to match GraphMeta agent_id: str agent_version: int # Changed from agent_version to match GraphMeta preset_id: str | None updated_at: datetime.datetime name: str description: str # Made input_schema and output_schema match GraphMeta's type input_schema: dict[str, Any] # Should be BlockIOObjectSubSchema in frontend output_schema: dict[str, Any] # Should be BlockIOObjectSubSchema in frontend is_favorite: bool is_created_by_user: bool is_latest_version: bool @staticmethod def from_db(agent: prisma.models.LibraryAgent): if not agent.Agent: raise ValueError("AgentGraph is required") graph = graph_model.GraphModel.from_db(agent.Agent) agent_updated_at = agent.Agent.updatedAt lib_agent_updated_at = agent.updatedAt # Take the latest updated_at timestamp either when the graph was updated or the library agent was updated updated_at = ( max(agent_updated_at, lib_agent_updated_at) if agent_updated_at else lib_agent_updated_at ) return LibraryAgent( id=agent.id, agent_id=agent.agentId, agent_version=agent.agentVersion, updated_at=updated_at, name=graph.name, description=graph.description, input_schema=graph.input_schema, output_schema=graph.output_schema, is_favorite=agent.isFavorite, is_created_by_user=agent.isCreatedByUser, is_latest_version=graph.is_active, preset_id=agent.AgentPreset.id if agent.AgentPreset else None, ) class LibraryAgentPreset(pydantic.BaseModel): id: str updated_at: datetime.datetime agent_id: str agent_version: int name: str description: str is_active: bool inputs: block_model.BlockInput @staticmethod def from_db(preset: prisma.models.AgentPreset): input_data: block_model.BlockInput = {} for preset_input in preset.InputPresets or []: input_data[preset_input.name] = preset_input.data return LibraryAgentPreset( id=preset.id, updated_at=preset.updatedAt, agent_id=preset.agentId, agent_version=preset.agentVersion, name=preset.name, description=preset.description, is_active=preset.isActive, inputs=input_data, ) class LibraryAgentPresetResponse(pydantic.BaseModel): presets: list[LibraryAgentPreset] pagination: server_model.Pagination class CreateLibraryAgentPresetRequest(pydantic.BaseModel): name: str description: str inputs: block_model.BlockInput agent_id: str agent_version: int is_active: bool
import typing import pydantic class LibraryAgent(pydantic.BaseModel): id: str # Changed from agent_id to match GraphMeta version: int # Changed from agent_version to match GraphMeta is_active: bool # Added to match GraphMeta name: str description: str isCreatedByUser: bool # Made input_schema and output_schema match GraphMeta's type input_schema: dict[str, typing.Any] # Should be BlockIOObjectSubSchema in frontend output_schema: dict[str, typing.Any] # Should be BlockIOObjectSubSchema in frontend
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.34.1' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.34.0' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
"""All minimum dependencies for scikit-learn.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import argparse from collections import defaultdict # scipy and cython should by in sync with pyproject.toml NUMPY_MIN_VERSION = "1.19.5" SCIPY_MIN_VERSION = "1.6.0" JOBLIB_MIN_VERSION = "1.2.0" THREADPOOLCTL_MIN_VERSION = "3.1.0" PYTEST_MIN_VERSION = "7.1.2" CYTHON_MIN_VERSION = "3.0.10" # 'build' and 'install' is included to have structured metadata for CI. # It will NOT be included in setup's extras_require # The values are (version_spec, comma separated tags) dependent_packages = { "numpy": (NUMPY_MIN_VERSION, "build, install"), "scipy": (SCIPY_MIN_VERSION, "build, install"), "joblib": (JOBLIB_MIN_VERSION, "install"), "threadpoolctl": (THREADPOOLCTL_MIN_VERSION, "install"), "cython": (CYTHON_MIN_VERSION, "build"), "meson-python": ("0.16.0", "build"), "matplotlib": ("3.3.4", "benchmark, docs, examples, tests"), "scikit-image": ("0.17.2", "docs, examples, tests"), "pandas": ("1.2.0", "benchmark, docs, examples, tests"), "seaborn": ("0.9.0", "docs, examples"), "memory_profiler": ("0.57.0", "benchmark, docs"), "pytest": (PYTEST_MIN_VERSION, "tests"), "pytest-cov": ("2.9.0", "tests"), "ruff": ("0.5.1", "tests"), "black": ("24.3.0", "tests"), "mypy": ("1.9", "tests"), "pyamg": ("4.0.0", "tests"), "polars": ("0.20.30", "docs, tests"), "pyarrow": ("12.0.0", "tests"), "sphinx": ("7.3.7", "docs"), "sphinx-copybutton": ("0.5.2", "docs"), "sphinx-gallery": ("0.17.1", "docs"), "numpydoc": ("1.2.0", "docs, tests"), "Pillow": ("7.1.2", "docs"), "pooch": ("1.6.0", "docs, examples, tests"), "sphinx-prompt": ("1.4.0", "docs"), "sphinxext-opengraph": ("0.9.1", "docs"), "plotly": ("5.14.0", "docs, examples"), "sphinxcontrib-sass": ("0.3.4", "docs"), "sphinx-remove-toctrees": ("1.0.0.post1", "docs"), "sphinx-design": ("0.6.0", "docs"), "pydata-sphinx-theme": ("0.15.3", "docs"), "towncrier": ("24.8.0", "docs"), # XXX: Pin conda-lock to the latest released version (needs manual update # from time to time) "conda-lock": ("2.5.6", "maintenance"), } # create inverse mapping for setuptools tag_to_packages: dict = defaultdict(list) for package, (min_version, extras) in dependent_packages.items(): for extra in extras.split(", "): tag_to_packages[extra].append("{}>={}".format(package, min_version)) # Used by CI to get the min dependencies if __name__ == "__main__": parser = argparse.ArgumentParser(description="Get min dependencies for a package") parser.add_argument("package", choices=dependent_packages) args = parser.parse_args() min_version = dependent_packages[args.package][0] print(min_version)
"""All minimum dependencies for scikit-learn.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import argparse from collections import defaultdict # scipy and cython should by in sync with pyproject.toml NUMPY_MIN_VERSION = "1.19.5" SCIPY_MIN_VERSION = "1.6.0" JOBLIB_MIN_VERSION = "1.2.0" THREADPOOLCTL_MIN_VERSION = "3.1.0" PYTEST_MIN_VERSION = "7.1.2" CYTHON_MIN_VERSION = "3.0.10" # 'build' and 'install' is included to have structured metadata for CI. # It will NOT be included in setup's extras_require # The values are (version_spec, comma separated tags) dependent_packages = { "numpy": (NUMPY_MIN_VERSION, "build, install"), "scipy": (SCIPY_MIN_VERSION, "build, install"), "joblib": (JOBLIB_MIN_VERSION, "install"), "threadpoolctl": (THREADPOOLCTL_MIN_VERSION, "install"), "cython": (CYTHON_MIN_VERSION, "build"), "meson-python": ("0.16.0", "build"), "matplotlib": ("3.3.4", "benchmark, docs, examples, tests"), "scikit-image": ("0.17.2", "docs, examples, tests"), "pandas": ("1.1.5", "benchmark, docs, examples, tests"), "seaborn": ("0.9.0", "docs, examples"), "memory_profiler": ("0.57.0", "benchmark, docs"), "pytest": (PYTEST_MIN_VERSION, "tests"), "pytest-cov": ("2.9.0", "tests"), "ruff": ("0.5.1", "tests"), "black": ("24.3.0", "tests"), "mypy": ("1.9", "tests"), "pyamg": ("4.0.0", "tests"), "polars": ("0.20.30", "docs, tests"), "pyarrow": ("12.0.0", "tests"), "sphinx": ("7.3.7", "docs"), "sphinx-copybutton": ("0.5.2", "docs"), "sphinx-gallery": ("0.17.1", "docs"), "numpydoc": ("1.2.0", "docs, tests"), "Pillow": ("7.1.2", "docs"), "pooch": ("1.6.0", "docs, examples, tests"), "sphinx-prompt": ("1.4.0", "docs"), "sphinxext-opengraph": ("0.9.1", "docs"), "plotly": ("5.14.0", "docs, examples"), "sphinxcontrib-sass": ("0.3.4", "docs"), "sphinx-remove-toctrees": ("1.0.0.post1", "docs"), "sphinx-design": ("0.6.0", "docs"), "pydata-sphinx-theme": ("0.15.3", "docs"), "towncrier": ("24.8.0", "docs"), # XXX: Pin conda-lock to the latest released version (needs manual update # from time to time) "conda-lock": ("2.5.6", "maintenance"), } # create inverse mapping for setuptools tag_to_packages: dict = defaultdict(list) for package, (min_version, extras) in dependent_packages.items(): for extra in extras.split(", "): tag_to_packages[extra].append("{}>={}".format(package, min_version)) # Used by CI to get the min dependencies if __name__ == "__main__": parser = argparse.ArgumentParser(description="Get min dependencies for a package") parser.add_argument("package", choices=dependent_packages) args = parser.parse_args() min_version = dependent_packages[args.package][0] print(min_version)
import subprocess import pytest from jina import Document, DocumentArray, Flow from tfidf_text_executor import TFIDFTextEncoder _EMBEDDING_DIM = 130107 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=TFIDFTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == ( 1, _EMBEDDING_DIM, ) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, )
import subprocess import pytest from jina import Document, DocumentArray, Flow from ...tfidf_text_executor import TFIDFTextEncoder _EMBEDDING_DIM = 130107 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=TFIDFTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == ( 1, _EMBEDDING_DIM, ) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, )
"""Argparser module for Flow""" from jina.parsers.base import set_base_parser from jina.parsers.helper import KVAppendAction, add_arg_group from jina.parsers.orchestrate.base import mixin_essential_parser def mixin_flow_features_parser(parser): """Add the arguments for the Flow features to the parser :param parser: the parser configure """ from jina.enums import FlowInspectType gp = add_arg_group(parser, title='Flow Feature') gp.add_argument( '--uses', type=str, help='The YAML path represents a flow. It can be either a local file path or a URL.', ) gp.add_argument( '--restart', action='store_true', default=False, help='If set, the Flow will restart while blocked if the YAML configuration source is changed.' ) gp.add_argument( '--env', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The map of environment variables that are available inside runtime', ) gp.add_argument( '--inspect', type=FlowInspectType.from_string, choices=list(FlowInspectType), default=FlowInspectType.COLLECT, help=''' The strategy on those inspect deployments in the flow. If `REMOVE` is given then all inspect deployments are removed when building the flow. ''', ) def set_flow_parser(parser=None): """Set the parser for the flow :param parser: an (optional) initial parser to build upon :return: the parser """ if not parser: parser = set_base_parser() mixin_essential_parser(parser) mixin_flow_features_parser(parser) return parser
"""Argparser module for Flow""" from jina.parsers.base import set_base_parser from jina.parsers.helper import KVAppendAction, add_arg_group from jina.parsers.orchestrate.base import mixin_essential_parser def mixin_flow_features_parser(parser): """Add the arguments for the Flow features to the parser :param parser: the parser configure """ from jina.enums import FlowInspectType gp = add_arg_group(parser, title='Flow Feature') gp.add_argument( '--uses', type=str, help='The YAML path represents a flow. It can be either a local file path or a URL.', ) gp.add_argument( '--env', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The map of environment variables that are available inside runtime', ) gp.add_argument( '--inspect', type=FlowInspectType.from_string, choices=list(FlowInspectType), default=FlowInspectType.COLLECT, help=''' The strategy on those inspect deployments in the flow. If `REMOVE` is given then all inspect deployments are removed when building the flow. ''', ) def set_flow_parser(parser=None): """Set the parser for the flow :param parser: an (optional) initial parser to build upon :return: the parser """ if not parser: parser = set_base_parser() mixin_essential_parser(parser) mixin_flow_features_parser(parser) return parser
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys import pytorch_sphinx_theme sys.path.insert(0, os.path.abspath('../..')) # -- Project information ----------------------------------------------------- project = 'mmengine' copyright = '2022, mmengine contributors' author = 'mmengine contributors' version_file = '../../mmengine/version.py' with open(version_file) as f: exec(compile(f.read(), version_file, 'exec')) __version__ = locals()['__version__'] # The short X.Y version version = __version__ # The full version, including alpha/beta/rc tags release = __version__ # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.intersphinx', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'sphinx.ext.autosectionlabel', 'myst_parser', 'sphinx_copybutton', 'sphinx.ext.autodoc.typehints', ] # yapf: disable autodoc_typehints = 'description' myst_heading_anchors = 4 myst_enable_extensions = ['colon_fence'] # Configuration for intersphinx intersphinx_mapping = { 'python': ('https://docs.python.org/3', None), 'numpy': ('https://numpy.org/doc/stable', None), 'torch': ('https://pytorch.org/docs/stable/', None), 'mmcv': ('https://mmcv.readthedocs.io/en/2.x/', None), } # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'pytorch_sphinx_theme' html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()] html_theme_options = { 'menu': [ { 'name': 'GitHub', 'url': 'https://github.com/open-mmlab/mmengine' }, ], # Specify the language of shared menu 'menu_lang': 'en', } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] html_css_files = ['css/readthedocs.css'] # -- Extension configuration ------------------------------------------------- # Ignore >>> when copying code copybutton_prompt_text = r'>>> |\.\.\. ' copybutton_prompt_is_regexp = True
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys import pytorch_sphinx_theme sys.path.insert(0, os.path.abspath('../..')) # -- Project information ----------------------------------------------------- project = 'mmengine' copyright = '2022, mmengine contributors' author = 'mmengine contributors' version_file = '../../mmengine/version.py' with open(version_file) as f: exec(compile(f.read(), version_file, 'exec')) __version__ = locals()['__version__'] # The short X.Y version version = __version__ # The full version, including alpha/beta/rc tags release = __version__ # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.intersphinx', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'sphinx.ext.autosectionlabel', 'myst_parser', 'sphinx_copybutton', 'sphinx.ext.autodoc.typehints', ] # yapf: disable autodoc_typehints = 'description' myst_heading_anchors = 4 # Configuration for intersphinx intersphinx_mapping = { 'python': ('https://docs.python.org/3', None), 'numpy': ('https://numpy.org/doc/stable', None), 'torch': ('https://pytorch.org/docs/stable/', None), 'mmcv': ('https://mmcv.readthedocs.io/en/2.x/', None), } # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'pytorch_sphinx_theme' html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()] html_theme_options = { 'menu': [ { 'name': 'GitHub', 'url': 'https://github.com/open-mmlab/mmengine' }, ], # Specify the language of shared menu 'menu_lang': 'en', } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] html_css_files = ['css/readthedocs.css'] # -- Extension configuration ------------------------------------------------- # Ignore >>> when copying code copybutton_prompt_text = r'>>> |\.\.\. ' copybutton_prompt_is_regexp = True
# Owner(s): ["module: dynamo"] """ PYTEST_DONT_REWRITE (prevents pytest from rewriting assertions, which interferes with test_adam in OptimizerTests) """ import functools import torch import torch._dynamo import torch._dynamo.test_case import torch._dynamo.testing from torch.nn import Parameter class MyOptimizer(torch.optim.Optimizer): def __init__(self, params): super().__init__(params, {}) def _init_group(self, params, group): any_complex = False for p in group["params"]: params.append(p) any_complex |= p.is_complex() return any_complex def step(self): for group in self.param_groups: params = [] any_complex = self._init_group(params, group) if any_complex: params[0] -= 1 else: params[0] += 1 class End2EndTests(torch._dynamo.test_case.TestCase): # https://github.com/pytorch/torchdynamo/issues/1604 def test_optimizing_over_tensor_with_requires_grad(self): class Net(torch.nn.Module): def forward(self, x, y): z = torch.bmm(x, y) z = torch.flatten(z, 1) return z def training_iter_fn(batch, model, optimizer): optimizer.zero_grad() out = model(**batch) target = torch.tensor([0, 7]) loss = torch.nn.CrossEntropyLoss()(out, target) loss.backward() optimizer.step() return loss net = Net() input1 = torch.randn(2, 1, 4) input2 = torch.randn(2, 4, 8, requires_grad=True) optimizer = torch.optim.Adam([input2], lr=0.1) cnts = torch._dynamo.testing.CompileCounter() opt_training_iter_fn = torch.compile(training_iter_fn, backend=cnts) batch = {"x": input1, "y": input2} for _ in range(2): opt_training_iter_fn(batch, net, optimizer) self.assertEqual(cnts.frame_count, 2) def test_state_dict(self): @torch.compile(backend="eager") def _test_state_dict(weight, bias, input): def fn_base(optimizer, weight, bias): optimizer.zero_grad() i = input loss = (weight.mv(i) + bias).pow(2).sum() loss.backward() return loss optimizer = torch.optim.Adagrad([weight, bias]) fn = functools.partial(fn_base, optimizer, weight, bias) return optimizer, fn optimizer, fn = _test_state_dict( Parameter(torch.randn(10, 5)), Parameter(torch.randn(10)), torch.randn(5, requires_grad=True), ) optimizer.step(fn) def test_init_group(self): for dtype in [torch.float32, torch.cfloat]: tensor = torch.randn(5, 5, dtype=dtype) params = Parameter(tensor.detach().clone(), requires_grad=False) opt_params = Parameter(tensor.detach().clone(), requires_grad=False) optim = MyOptimizer([params]) optim.step() opt_optim = MyOptimizer([opt_params]) opt_step = torch.compile(backend="eager", fullgraph=True)(opt_optim.step) opt_step() self.assertEqual(params, opt_params) if __name__ == "__main__": from torch._dynamo.test_case import run_tests run_tests()
# Owner(s): ["module: dynamo"] """ PYTEST_DONT_REWRITE (prevents pytest from rewriting assertions, which interferes with test_adam in OptimizerTests) """ import functools import torch import torch._dynamo import torch._dynamo.test_case import torch._dynamo.testing from torch.nn import Parameter class MyOptimizer(torch.optim.Optimizer): def __init__(self, params): super().__init__(params, {}) def _init_group(self, params, group): any_complex = False for p in group["params"]: params.append(p) any_complex |= p.is_complex() return any_complex def step(self): for group in self.param_groups: params = [] any_complex = self._init_group(params, group) if any_complex: params[0] -= 1 else: params[0] += 1 class End2EndTests(torch._dynamo.test_case.TestCase): # https://github.com/pytorch/torchdynamo/issues/1604 def test_optimizing_over_tensor_with_requires_grad(self): class Net(torch.nn.Module): def forward(self, x, y): z = torch.bmm(x, y) z = torch.flatten(z, 1) return z def training_iter_fn(batch, model, optimizer): optimizer.zero_grad() out = model(**batch) target = torch.tensor([0, 7]) loss = torch.nn.CrossEntropyLoss()(out, target) loss.backward() optimizer.step() return loss net = Net() input1 = torch.randn(2, 1, 4) input2 = torch.randn(2, 4, 8, requires_grad=True) optimizer = torch.optim.Adam([input2], lr=0.1) cnts = torch._dynamo.testing.CompileCounter() opt_training_iter_fn = torch.compile(training_iter_fn, backend=cnts) batch = {"x": input1, "y": input2} for _ in range(2): opt_training_iter_fn(batch, net, optimizer) self.assertEqual(cnts.frame_count, 2) def test_state_dict(self): @torch.compile(backend="eager") def _test_state_dict(weight, bias, input): def fn_base(optimizer, weight, bias): optimizer.zero_grad() i = input loss = (weight.mv(i) + bias).pow(2).sum() loss.backward() return loss optimizer = torch.optim.Adagrad([weight, bias]) fn = functools.partial(fn_base, optimizer, weight, bias) return optimizer, fn optimizer, fn = _test_state_dict( Parameter(torch.randn(10, 5)), Parameter(torch.randn(10)), torch.randn(5, requires_grad=True), ) optimizer.step(fn) def test_init_group(self): for dtype in [torch.float32, torch.cfloat]: tensor = torch.randn(5, 5, dtype=dtype) params = Parameter(tensor.detach().clone(), requires_grad=False) opt_params = Parameter(tensor.detach().clone(), requires_grad=False) optim = MyOptimizer([params]) optim.step() opt_optim = MyOptimizer([opt_params]) opt_step = torch.compile(backend="eager", fullgraph=True)(opt_optim.step) opt_step() self.assertEqual(params, opt_params) if __name__ == "__main__": from torch._dynamo.test_case import run_tests run_tests()
# Copyright (c) OpenMMLab. All rights reserved. from .distributed_sampler import DistributedSampler from .group_sampler import DistributedGroupSampler, GroupSampler __all__ = ['DistributedSampler', 'DistributedGroupSampler', 'GroupSampler']
from .distributed_sampler import DistributedSampler from .group_sampler import DistributedGroupSampler, GroupSampler __all__ = ['DistributedSampler', 'DistributedGroupSampler', 'GroupSampler']
from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDoc from docarray.base_doc.io.json import orjson_dumps from docarray.typing import ( AudioNdArray, NdArray, VideoBytes, VideoNdArray, VideoTorchTensor, VideoUrl, ) from docarray.utils._internal.misc import is_tf_available from tests import TOYDATA_DIR tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.typing.tensor.video import VideoTensorFlowTensor LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load(file_url): url = parse_obj_as(VideoUrl, file_url) video, audio, indices = url.load() assert isinstance(audio, np.ndarray) assert isinstance(audio, AudioNdArray) assert isinstance(video, np.ndarray) assert isinstance(video, VideoNdArray) assert isinstance(indices, np.ndarray) assert isinstance(indices, NdArray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) @pytest.mark.parametrize( 'field, attr_cls', [ ('video', VideoNdArray), ('audio', AudioNdArray), ('key_frame_indices', NdArray), ], ) def test_load_one_of_named_tuple_results(file_url, field, attr_cls): url = parse_obj_as(VideoUrl, file_url) result = getattr(url.load(), field) assert isinstance(result, np.ndarray) assert isinstance(result, attr_cls) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load_video_url_to_video_torch_tensor_field(file_url): class MyVideoDoc(BaseDoc): video_url: VideoUrl tensor: Optional[VideoTorchTensor] doc = MyVideoDoc(video_url=file_url) doc.tensor = doc.video_url.load().video assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, VideoTorchTensor) @pytest.mark.tensorflow @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load_video_url_to_video_tensorflow_tensor_field(file_url): class MyVideoDoc(BaseDoc): video_url: VideoUrl tensor: Optional[VideoTensorFlowTensor] doc = MyVideoDoc(video_url=file_url) doc.tensor = doc.video_url.load().video assert isinstance(doc.tensor, VideoTensorFlowTensor) assert isinstance(doc.tensor.tensor, tf.Tensor) def test_json_schema(): schema_json_of(VideoUrl) def test_dump_json(): url = parse_obj_as(VideoUrl, REMOTE_VIDEO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_validation(path_to_file): url = parse_obj_as(VideoUrl, path_to_file) assert isinstance(url, VideoUrl) assert isinstance(url, str) @pytest.mark.proto @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_proto_video_url(file_url): uri = parse_obj_as(VideoUrl, file_url) proto = uri._to_node_protobuf() assert 'video_url' in str(proto) def test_load_bytes(): file_url = LOCAL_VIDEO_FILE uri = parse_obj_as(VideoUrl, file_url) video_bytes = uri.load_bytes() assert isinstance(video_bytes, bytes) assert isinstance(video_bytes, VideoBytes) assert len(video_bytes) > 0
from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDoc from docarray.base_doc.io.json import orjson_dumps from docarray.typing import ( AudioNdArray, NdArray, VideoBytes, VideoNdArray, VideoTorchTensor, VideoUrl, ) from docarray.utils._internal.misc import is_tf_available from tests import TOYDATA_DIR tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.typing.tensor.video import VideoTensorFlowTensor LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load(file_url): url = parse_obj_as(VideoUrl, file_url) video, audio, indices = url.load() assert isinstance(audio, np.ndarray) assert isinstance(audio, AudioNdArray) assert isinstance(video, np.ndarray) assert isinstance(video, VideoNdArray) assert isinstance(indices, np.ndarray) assert isinstance(indices, NdArray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) @pytest.mark.parametrize( 'field, attr_cls', [ ('video', VideoNdArray), ('audio', AudioNdArray), ('key_frame_indices', NdArray), ], ) def test_load_one_of_named_tuple_results(file_url, field, attr_cls): url = parse_obj_as(VideoUrl, file_url) result = getattr(url.load(), field) assert isinstance(result, np.ndarray) assert isinstance(result, attr_cls) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load_video_url_to_video_torch_tensor_field(file_url): class MyVideoDoc(BaseDoc): video_url: VideoUrl tensor: Optional[VideoTorchTensor] doc = MyVideoDoc(video_url=file_url) doc.tensor = doc.video_url.load().video assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, VideoTorchTensor) @pytest.mark.tensorflow @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load_video_url_to_video_tensorflow_tensor_field(file_url): class MyVideoDoc(BaseDoc): video_url: VideoUrl tensor: Optional[VideoTensorFlowTensor] doc = MyVideoDoc(video_url=file_url) doc.tensor = doc.video_url.load().video assert isinstance(doc.tensor, VideoTensorFlowTensor) assert isinstance(doc.tensor.tensor, tf.Tensor) def test_json_schema(): schema_json_of(VideoUrl) def test_dump_json(): url = parse_obj_as(VideoUrl, REMOTE_VIDEO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_validation(path_to_file): url = parse_obj_as(VideoUrl, path_to_file) assert isinstance(url, VideoUrl) assert isinstance(url, str) @pytest.mark.proto @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_proto_video_url(file_url): uri = parse_obj_as(VideoUrl, file_url) proto = uri._to_node_protobuf() assert 'video_url' in str(proto) def test_load_bytes(): file_url = LOCAL_VIDEO_FILE uri = parse_obj_as(VideoUrl, file_url) video_bytes = uri.load_bytes() assert isinstance(video_bytes, bytes) assert isinstance(video_bytes, VideoBytes) assert len(video_bytes) > 0
_base_ = './fovea_r50_fpn_4xb4-1x_coco.py' # learning policy max_epochs = 24 param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs)
_base_ = './fovea_r50_fpn_4x4_1x_coco.py' # learning policy max_epochs = 24 param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs)
# Copyright (c) OpenMMLab. All rights reserved. from .approx_max_iou_assigner import ApproxMaxIoUAssigner from .assign_result import AssignResult from .atss_assigner import ATSSAssigner from .base_assigner import BaseAssigner from .center_region_assigner import CenterRegionAssigner from .grid_assigner import GridAssigner from .hungarian_assigner import HungarianAssigner from .max_iou_assigner import MaxIoUAssigner from .point_assigner import PointAssigner from .region_assigner import RegionAssigner from .sim_ota_assigner import SimOTAAssigner from .uniform_assigner import UniformAssigner __all__ = [ 'BaseAssigner', 'MaxIoUAssigner', 'ApproxMaxIoUAssigner', 'AssignResult', 'PointAssigner', 'ATSSAssigner', 'CenterRegionAssigner', 'GridAssigner', 'HungarianAssigner', 'RegionAssigner', 'UniformAssigner', 'SimOTAAssigner' ]
from .approx_max_iou_assigner import ApproxMaxIoUAssigner from .assign_result import AssignResult from .atss_assigner import ATSSAssigner from .base_assigner import BaseAssigner from .center_region_assigner import CenterRegionAssigner from .grid_assigner import GridAssigner from .hungarian_assigner import HungarianAssigner from .max_iou_assigner import MaxIoUAssigner from .point_assigner import PointAssigner from .region_assigner import RegionAssigner from .sim_ota_assigner import SimOTAAssigner from .uniform_assigner import UniformAssigner __all__ = [ 'BaseAssigner', 'MaxIoUAssigner', 'ApproxMaxIoUAssigner', 'AssignResult', 'PointAssigner', 'ATSSAssigner', 'CenterRegionAssigner', 'GridAssigner', 'HungarianAssigner', 'RegionAssigner', 'UniformAssigner', 'SimOTAAssigner' ]
import os import yaml from jina import Gateway from jina.jaml import JAML from jina.serve.executors import BaseExecutor class MyDummyGateway(Gateway): async def setup_server(self): self.server = 'dummy server' async def run_server(self): self.logger.info(self.server) async def shutdown(self): pass def test_cls_from_tag(): assert JAML.cls_from_tag('MyDummyGateway') == MyDummyGateway assert JAML.cls_from_tag('!MyDummyGateway') == MyDummyGateway assert JAML.cls_from_tag('BaseGateway') == Gateway assert JAML.cls_from_tag('Nonexisting') is None def test_base_jtype(tmpdir): gateway_path = os.path.join(tmpdir, 'gateway.yml') g = Gateway() g.save_config(gateway_path) with open(gateway_path, 'r') as file: conf = yaml.safe_load(file) assert 'jtype' in conf assert conf['jtype'] == 'BaseGateway' assert type(Gateway.load_config(gateway_path)) == Gateway def test_custom_jtype(tmpdir): gateway_path = os.path.join(tmpdir, 'gateway.yml') e = MyDummyGateway() e.save_config(gateway_path) with open(gateway_path, 'r') as file: conf = yaml.safe_load(file) assert 'jtype' in conf assert conf['jtype'] == 'MyDummyGateway' assert type(Gateway.load_config(gateway_path)) == MyDummyGateway
import os import yaml from jina import Gateway from jina.jaml import JAML from jina.serve.executors import BaseExecutor class MyDummyGateway(Gateway): async def setup_server(self): self.server = 'dummy server' async def run_server(self): self.logger.info(self.server) async def teardown(self): pass async def stop_server(self): self.server = None def test_cls_from_tag(): assert JAML.cls_from_tag('MyDummyGateway') == MyDummyGateway assert JAML.cls_from_tag('!MyDummyGateway') == MyDummyGateway assert JAML.cls_from_tag('BaseGateway') == Gateway assert JAML.cls_from_tag('Nonexisting') is None def test_base_jtype(tmpdir): gateway_path = os.path.join(tmpdir, 'gateway.yml') g = Gateway() g.save_config(gateway_path) with open(gateway_path, 'r') as file: conf = yaml.safe_load(file) assert 'jtype' in conf assert conf['jtype'] == 'BaseGateway' assert type(Gateway.load_config(gateway_path)) == Gateway def test_custom_jtype(tmpdir): gateway_path = os.path.join(tmpdir, 'gateway.yml') e = MyDummyGateway() e.save_config(gateway_path) with open(gateway_path, 'r') as file: conf = yaml.safe_load(file) assert 'jtype' in conf assert conf['jtype'] == 'MyDummyGateway' assert type(Gateway.load_config(gateway_path)) == MyDummyGateway
""" This scripts runs the evaluation (dev & test) for the AskUbuntu dataset Usage: python eval_askubuntu.py [sbert_model_name_or_path] """ import gzip import logging import os import sys from datasets import Dataset from sentence_transformers import SentenceTransformer, util from sentence_transformers.evaluation import RerankingEvaluator # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) model = SentenceTransformer(sys.argv[1]) ################# Download AskUbuntu and extract training corpus ################# askubuntu_folder = "data/askubuntu" training_corpus = os.path.join(askubuntu_folder, "train.unsupervised.txt") ## Download the AskUbuntu dataset from https://github.com/taolei87/askubuntu for filename in ["text_tokenized.txt.gz", "dev.txt", "test.txt", "train_random.txt"]: filepath = os.path.join(askubuntu_folder, filename) if not os.path.exists(filepath): util.http_get("https://github.com/taolei87/askubuntu/raw/master/" + filename, filepath) # Read the corpus corpus = {} dev_test_ids = set() with gzip.open(os.path.join(askubuntu_folder, "text_tokenized.txt.gz"), "rt", encoding="utf8") as fIn: for line in fIn: id, title, *_ = line.strip().split("\t") corpus[id] = title # Read dev & test dataset def read_eval_dataset(filepath) -> Dataset: data = { "query": [], "positive": [], "negative": [], } with open(filepath) as fIn: for line in fIn: query_id, relevant_id, candidate_ids, bm25_scores = line.strip().split("\t") if len(relevant_id) == 0: # Skip examples without relevant entries continue relevant_id = relevant_id.split(" ") candidate_ids = candidate_ids.split(" ") negative_ids = set(candidate_ids) - set(relevant_id) data["query"].append(corpus[query_id]) data["positive"].append([corpus[pid] for pid in relevant_id]) data["negative"].append([corpus[pid] for pid in negative_ids]) dev_test_ids.add(query_id) dev_test_ids.update(candidate_ids) dataset = Dataset.from_dict(data) return dataset dev_dataset = read_eval_dataset(os.path.join(askubuntu_folder, "dev.txt")) test_dataset = read_eval_dataset(os.path.join(askubuntu_folder, "test.txt")) # Create a dev evaluator dev_evaluator = RerankingEvaluator(dev_dataset, name="AskUbuntu dev") logging.info("Dev performance") dev_evaluator(model) test_evaluator = RerankingEvaluator(test_dataset, name="AskUbuntu test") logging.info("Test performance") test_evaluator(model)
""" This scripts runs the evaluation (dev & test) for the AskUbuntu dataset Usage: python eval_askubuntu.py [sbert_model_name_or_path] """ import gzip import logging import os import sys from sentence_transformers import LoggingHandler, SentenceTransformer, evaluation, util #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout model = SentenceTransformer(sys.argv[1]) ################# Download AskUbuntu and extract training corpus ################# askubuntu_folder = "askubuntu" training_corpus = os.path.join(askubuntu_folder, "train.unsupervised.txt") ## Download the AskUbuntu dataset from https://github.com/taolei87/askubuntu for filename in ["text_tokenized.txt.gz", "dev.txt", "test.txt", "train_random.txt"]: filepath = os.path.join(askubuntu_folder, filename) if not os.path.exists(filepath): util.http_get("https://github.com/taolei87/askubuntu/raw/master/" + filename, filepath) # Read the corpus corpus = {} dev_test_ids = set() with gzip.open(os.path.join(askubuntu_folder, "text_tokenized.txt.gz"), "rt", encoding="utf8") as fIn: for line in fIn: splits = line.strip().split("\t") id = splits[0] title = splits[1] corpus[id] = title # Read dev & test dataset def read_eval_dataset(filepath): dataset = [] with open(filepath) as fIn: for line in fIn: query_id, relevant_id, candidate_ids, bm25_scores = line.strip().split("\t") if len(relevant_id) == 0: # Skip examples without relevant entries continue relevant_id = relevant_id.split(" ") candidate_ids = candidate_ids.split(" ") negative_ids = set(candidate_ids) - set(relevant_id) dataset.append( { "query": corpus[query_id], "positive": [corpus[pid] for pid in relevant_id], "negative": [corpus[pid] for pid in negative_ids], } ) dev_test_ids.add(query_id) dev_test_ids.update(candidate_ids) return dataset dev_dataset = read_eval_dataset(os.path.join(askubuntu_folder, "dev.txt")) test_dataset = read_eval_dataset(os.path.join(askubuntu_folder, "test.txt")) # Create a dev evaluator dev_evaluator = evaluation.RerankingEvaluator(dev_dataset, name="AskUbuntu dev") logging.info("Dev performance before training") dev_evaluator(model) test_evaluator = evaluation.RerankingEvaluator(test_dataset, name="AskUbuntu test") logging.info("Test performance before training") test_evaluator(model)
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.callbacks.backup_and_restore import ( BackupAndRestore as BackupAndRestore, ) from keras.src.callbacks.callback import Callback as Callback from keras.src.callbacks.callback_list import CallbackList as CallbackList from keras.src.callbacks.csv_logger import CSVLogger as CSVLogger from keras.src.callbacks.early_stopping import EarlyStopping as EarlyStopping from keras.src.callbacks.history import History as History from keras.src.callbacks.lambda_callback import LambdaCallback as LambdaCallback from keras.src.callbacks.learning_rate_scheduler import ( LearningRateScheduler as LearningRateScheduler, ) from keras.src.callbacks.model_checkpoint import ( ModelCheckpoint as ModelCheckpoint, ) from keras.src.callbacks.progbar_logger import ProgbarLogger as ProgbarLogger from keras.src.callbacks.reduce_lr_on_plateau import ( ReduceLROnPlateau as ReduceLROnPlateau, ) from keras.src.callbacks.remote_monitor import RemoteMonitor as RemoteMonitor from keras.src.callbacks.swap_ema_weights import ( SwapEMAWeights as SwapEMAWeights, ) from keras.src.callbacks.tensorboard import TensorBoard as TensorBoard from keras.src.callbacks.terminate_on_nan import ( TerminateOnNaN as TerminateOnNaN, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.callbacks.backup_and_restore import BackupAndRestore from keras.src.callbacks.callback import Callback from keras.src.callbacks.callback_list import CallbackList from keras.src.callbacks.csv_logger import CSVLogger from keras.src.callbacks.early_stopping import EarlyStopping from keras.src.callbacks.history import History from keras.src.callbacks.lambda_callback import LambdaCallback from keras.src.callbacks.learning_rate_scheduler import LearningRateScheduler from keras.src.callbacks.model_checkpoint import ModelCheckpoint from keras.src.callbacks.progbar_logger import ProgbarLogger from keras.src.callbacks.reduce_lr_on_plateau import ReduceLROnPlateau from keras.src.callbacks.remote_monitor import RemoteMonitor from keras.src.callbacks.swap_ema_weights import SwapEMAWeights from keras.src.callbacks.tensorboard import TensorBoard from keras.src.callbacks.terminate_on_nan import TerminateOnNaN
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import DistSamplerSeedHook class TestDistSamplerSeedHook: def test_before_epoch(self): hook = DistSamplerSeedHook() # Test dataset sampler runner = Mock() runner.epoch = 1 runner.cur_dataloader = Mock() runner.cur_dataloader.sampler = Mock() runner.cur_dataloader.sampler.set_epoch = Mock() hook.before_train_epoch(runner) runner.cur_dataloader.sampler.set_epoch.assert_called() # Test batch sampler runner = Mock() runner.cur_dataloader = Mock() runner.cur_dataloader.sampler = Mock(spec_set=True) runner.cur_dataloader.batch_sampler = Mock() runner.cur_dataloader.batch_sampler.sampler = Mock() runner.cur_dataloader.batch_sampler.sampler.set_epoch = Mock() hook.before_train_epoch(runner) runner.cur_dataloader.batch_sampler.sampler.set_epoch.assert_called()
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import DistSamplerSeedHook class TestDistSamplerSeedHook: def test_before_epoch(self): hook = DistSamplerSeedHook() # Test dataset sampler runner = Mock() runner.epoch = 1 runner.data_loader = Mock() runner.data_loader.sampler = Mock() runner.data_loader.sampler.set_epoch = Mock() hook.before_epoch(runner) runner.data_loader.sampler.set_epoch.assert_called() # Test batch sampler runner = Mock() runner.data_loader = Mock() runner.data_loader.sampler = Mock(spec_set=True) runner.data_loader.batch_sampler = Mock() runner.data_loader.batch_sampler.sampler = Mock() runner.data_loader.batch_sampler.sampler.set_epoch = Mock() hook.before_epoch(runner) runner.data_loader.batch_sampler.sampler.set_epoch.assert_called()
from __future__ import annotations import logging from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field, HttpUrl from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool logger = logging.getLogger(__name__) class ObjectDetectionInput(BaseModel): query: HttpUrl = Field(description="url of the image to analyze") class EdenAiObjectDetectionTool(EdenaiTool): """Tool that queries the Eden AI Object detection API. for api reference check edenai documentation: https://docs.edenai.co/reference/image_object_detection_create. To use, you should have the environment variable ``EDENAI_API_KEY`` set with your API token. You can find your token here: https://app.edenai.run/admin/account/settings """ name: str = "edenai_object_detection" description: str = ( "A wrapper around edenai Services Object Detection . " """Useful for when you have to do an to identify and locate (with bounding boxes) objects in an image """ "Input should be the string url of the image to identify." ) args_schema: Type[BaseModel] = ObjectDetectionInput show_positions: bool = False feature: str = "image" subfeature: str = "object_detection" def _parse_json(self, json_data: dict) -> str: result = [] label_info = [] for found_obj in json_data["items"]: label_str = f"{found_obj['label']} - Confidence {found_obj['confidence']}" x_min = found_obj.get("x_min") x_max = found_obj.get("x_max") y_min = found_obj.get("y_min") y_max = found_obj.get("y_max") if self.show_positions and all( [ x_min, x_max, y_min, y_max, ] ): # some providers don't return positions label_str += f""",at the position x_min: {x_min}, x_max: {x_max}, y_min: {y_min}, y_max: {y_max}""" label_info.append(label_str) result.append("\n".join(label_info)) return "\n\n".join(result) def _parse_response(self, response: list) -> str: if len(response) == 1: result = self._parse_json(response[0]) else: for entry in response: if entry.get("provider") == "eden-ai": result = self._parse_json(entry) return result def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" query_params = {"file_url": query, "attributes_as_list": False} return self._call_eden_ai(query_params)
from __future__ import annotations import logging from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field, HttpUrl from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool logger = logging.getLogger(__name__) class ObjectDetectionInput(BaseModel): query: HttpUrl = Field(description="url of the image to analyze") class EdenAiObjectDetectionTool(EdenaiTool): # type: ignore[override, override, override] """Tool that queries the Eden AI Object detection API. for api reference check edenai documentation: https://docs.edenai.co/reference/image_object_detection_create. To use, you should have the environment variable ``EDENAI_API_KEY`` set with your API token. You can find your token here: https://app.edenai.run/admin/account/settings """ name: str = "edenai_object_detection" description: str = ( "A wrapper around edenai Services Object Detection . " """Useful for when you have to do an to identify and locate (with bounding boxes) objects in an image """ "Input should be the string url of the image to identify." ) args_schema: Type[BaseModel] = ObjectDetectionInput show_positions: bool = False feature: str = "image" subfeature: str = "object_detection" def _parse_json(self, json_data: dict) -> str: result = [] label_info = [] for found_obj in json_data["items"]: label_str = f"{found_obj['label']} - Confidence {found_obj['confidence']}" x_min = found_obj.get("x_min") x_max = found_obj.get("x_max") y_min = found_obj.get("y_min") y_max = found_obj.get("y_max") if self.show_positions and all( [ x_min, x_max, y_min, y_max, ] ): # some providers don't return positions label_str += f""",at the position x_min: {x_min}, x_max: {x_max}, y_min: {y_min}, y_max: {y_max}""" label_info.append(label_str) result.append("\n".join(label_info)) return "\n\n".join(result) def _parse_response(self, response: list) -> str: if len(response) == 1: result = self._parse_json(response[0]) else: for entry in response: if entry.get("provider") == "eden-ai": result = self._parse_json(entry) return result def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" query_params = {"file_url": query, "attributes_as_list": False} return self._call_eden_ai(query_params)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chains.openapi.requests_chain import ( REQUEST_TEMPLATE, APIRequesterChain, APIRequesterOutputParser, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "APIRequesterChain": "langchain_community.chains.openapi.requests_chain", "APIRequesterOutputParser": "langchain_community.chains.openapi.requests_chain", "REQUEST_TEMPLATE": "langchain_community.chains.openapi.requests_chain", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = ["REQUEST_TEMPLATE", "APIRequesterChain", "APIRequesterOutputParser"]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chains.openapi.requests_chain import ( REQUEST_TEMPLATE, APIRequesterChain, APIRequesterOutputParser, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "APIRequesterChain": "langchain_community.chains.openapi.requests_chain", "APIRequesterOutputParser": "langchain_community.chains.openapi.requests_chain", "REQUEST_TEMPLATE": "langchain_community.chains.openapi.requests_chain", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = ["APIRequesterChain", "APIRequesterOutputParser", "REQUEST_TEMPLATE"]
from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDoc from docarray.base_doc.io.json import orjson_dumps from docarray.typing import AudioBytes, AudioTorchTensor, AudioUrl from docarray.utils._internal.misc import is_tf_available from tests import TOYDATA_DIR tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.typing.tensor.audio import AudioTensorFlowTensor AUDIO_FILES = [ str(TOYDATA_DIR / 'hello.wav'), str(TOYDATA_DIR / 'olleh.wav'), ] REMOTE_AUDIO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/olleh.wav?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_audio_url(file_url): uri = parse_obj_as(AudioUrl, file_url) tensor, _ = uri.load() assert isinstance(tensor, np.ndarray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load_audio_url_to_audio_torch_tensor_field(file_url): class MyAudioDoc(BaseDoc): audio_url: AudioUrl tensor: Optional[AudioTorchTensor] doc = MyAudioDoc(audio_url=file_url) doc.tensor, _ = doc.audio_url.load() assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, AudioTorchTensor) @pytest.mark.tensorflow @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load_audio_url_to_audio_tensorflow_tensor_field(file_url): class MyAudioDoc(BaseDoc): audio_url: AudioUrl tensor: Optional[AudioTensorFlowTensor] doc = MyAudioDoc(audio_url=file_url) doc.tensor, _ = doc.audio_url.load() assert isinstance(doc.tensor, AudioTensorFlowTensor) assert isinstance(doc.tensor.tensor, tf.Tensor) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load(file_url): url = parse_obj_as(AudioUrl, file_url) tensor, _ = url.load() assert isinstance(tensor, np.ndarray) def test_json_schema(): schema_json_of(AudioUrl) def test_dump_json(): url = parse_obj_as(AudioUrl, REMOTE_AUDIO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [ *[file for file in AUDIO_FILES], REMOTE_AUDIO_FILE, ], ) def test_validation(path_to_file): url = parse_obj_as(AudioUrl, path_to_file) assert isinstance(url, AudioUrl) assert isinstance(url, str) @pytest.mark.parametrize( 'path_to_file', [ 'my/local/text/file.txt', 'my/local/text/file.png', ], ) def test_illegal_validation(path_to_file): with pytest.raises(ValueError, match='AudioUrl'): parse_obj_as(AudioUrl, path_to_file) @pytest.mark.proto @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_proto_audio_url(file_url): uri = parse_obj_as(AudioUrl, file_url) proto = uri._to_node_protobuf() assert 'audio_url' in str(proto) def test_load_bytes(): uri = parse_obj_as(AudioUrl, REMOTE_AUDIO_FILE) audio_bytes = uri.load_bytes() assert isinstance(audio_bytes, bytes) assert isinstance(audio_bytes, AudioBytes) assert len(audio_bytes) > 0
from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDoc from docarray.base_doc.io.json import orjson_dumps from docarray.typing import AudioTorchTensor, AudioUrl from docarray.utils._internal.misc import is_tf_available from tests import TOYDATA_DIR tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.typing.tensor.audio import AudioTensorFlowTensor AUDIO_FILES = [ str(TOYDATA_DIR / 'hello.wav'), str(TOYDATA_DIR / 'olleh.wav'), ] REMOTE_AUDIO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/olleh.wav?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_audio_url(file_url): uri = parse_obj_as(AudioUrl, file_url) tensor, _ = uri.load() assert isinstance(tensor, np.ndarray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load_audio_url_to_audio_torch_tensor_field(file_url): class MyAudioDoc(BaseDoc): audio_url: AudioUrl tensor: Optional[AudioTorchTensor] doc = MyAudioDoc(audio_url=file_url) doc.tensor, _ = doc.audio_url.load() assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, AudioTorchTensor) @pytest.mark.tensorflow @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load_audio_url_to_audio_tensorflow_tensor_field(file_url): class MyAudioDoc(BaseDoc): audio_url: AudioUrl tensor: Optional[AudioTensorFlowTensor] doc = MyAudioDoc(audio_url=file_url) doc.tensor, _ = doc.audio_url.load() assert isinstance(doc.tensor, AudioTensorFlowTensor) assert isinstance(doc.tensor.tensor, tf.Tensor) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_load(file_url): url = parse_obj_as(AudioUrl, file_url) tensor, _ = url.load() assert isinstance(tensor, np.ndarray) def test_json_schema(): schema_json_of(AudioUrl) def test_dump_json(): url = parse_obj_as(AudioUrl, REMOTE_AUDIO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [ *[file for file in AUDIO_FILES], REMOTE_AUDIO_FILE, ], ) def test_validation(path_to_file): url = parse_obj_as(AudioUrl, path_to_file) assert isinstance(url, AudioUrl) assert isinstance(url, str) @pytest.mark.parametrize( 'path_to_file', [ 'my/local/text/file.txt', 'my/local/text/file.png', ], ) def test_illegal_validation(path_to_file): with pytest.raises(ValueError, match='AudioUrl'): parse_obj_as(AudioUrl, path_to_file) @pytest.mark.proto @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [*AUDIO_FILES, REMOTE_AUDIO_FILE], ) def test_proto_audio_url(file_url): uri = parse_obj_as(AudioUrl, file_url) proto = uri._to_node_protobuf() assert 'audio_url' in str(proto)
import abc from abc import ABC from typing import TYPE_CHECKING, Any, Generic, List, Tuple, Type, TypeVar, Union from docarray.typing.abstract_type import AbstractType if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='AbstractTensor') ShapeT = TypeVar('ShapeT') class AbstractTensor(AbstractType, Generic[ShapeT], ABC): __parametrized_meta__ = type @classmethod @abc.abstractmethod def __validate_shape__(cls, t: T, shape: Tuple[int]) -> T: """Every tensor has to implement this method in order to enable syntax of the form Tensor[shape]. It is called when a tensor is assigned to a field of this type. i.e. when a tensor is passed to a Document field of type Tensor[shape]. The intended behaviour is as follows: - If the shape of `t` is equal to `shape`, return `t`. - If the shape of `t` is not equal to `shape`, but can be reshaped to `shape`, return `t` reshaped to `shape`. - If the shape of `t` is not equal to `shape` and cannot be reshaped to `shape`, raise a ValueError. :param t: The tensor to validate. :param shape: The shape to validate against. :return: The validated tensor. """ ... @classmethod def __validate_getitem__(cls, item: Any) -> Tuple[int]: """This method validates the input to __class_getitem__. It is called at "class creation time", i.e. when a class is created with syntax of the form Tensor[shape]. The default implementation tries to cast any `item` to a tuple of ints. A subclass can override this method to implement custom validation logic. The output of this is eventually passed to {ref}`AbstractTensor.__validate_shape__` as its `shape` argument. Raises `ValueError` if the input `item` does not pass validation. :param item: The item to validate, passed to __class_getitem__ (`Tensor[item]`). :return: The validated item == the target shape of this tensor. """ if isinstance(item, int): item = (item,) try: item = tuple(item) except TypeError: raise TypeError(f'{item} is not a valid tensor shape.') return item @classmethod def _create_parametrized_type(cls: Type[T], shape: Tuple[int]): shape_str = ', '.join([str(s) for s in shape]) class _ParametrizedTensor( cls, # type: ignore metaclass=cls.__parametrized_meta__, # type: ignore ): _docarray_target_shape = shape __name__ = f'{cls.__name__}[{shape_str}]' __qualname__ = f'{cls.__qualname__}[{shape_str}]' @classmethod def validate( _cls, value: Any, field: 'ModelField', config: 'BaseConfig', ): t = super().validate(value, field, config) return _cls.__validate_shape__(t, _cls._docarray_target_shape) return _ParametrizedTensor def __class_getitem__(cls, item: Any): target_shape = cls.__validate_getitem__(item) return cls._create_parametrized_type(target_shape) @classmethod @abc.abstractmethod def __docarray_stack__(cls: Type[T], seq: Union[List[T], Tuple[T]]) -> T: """Stack a sequence of tensors into a single tensor.""" ...
import abc from abc import ABC from typing import TYPE_CHECKING, Any, Generic, Tuple, Type, TypeVar from docarray.typing.abstract_type import AbstractType if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='AbstractTensor') ShapeT = TypeVar('ShapeT') class AbstractTensor(AbstractType, Generic[ShapeT], ABC): __parametrized_meta__ = type @classmethod @abc.abstractmethod def __validate_shape__(cls, t: T, shape: Tuple[int]) -> T: """Every tensor has to implement this method in order to enable syntax of the form Tensor[shape]. It is called when a tensor is assigned to a field of this type. i.e. when a tensor is passed to a Document field of type Tensor[shape]. The intended behaviour is as follows: - If the shape of `t` is equal to `shape`, return `t`. - If the shape of `t` is not equal to `shape`, but can be reshaped to `shape`, return `t` reshaped to `shape`. - If the shape of `t` is not equal to `shape` and cannot be reshaped to `shape`, raise a ValueError. :param t: The tensor to validate. :param shape: The shape to validate against. :return: The validated tensor. """ ... @classmethod def __validate_getitem__(cls, item: Any) -> Tuple[int]: """This method validates the input to __class_getitem__. It is called at "class creation time", i.e. when a class is created with syntax of the form Tensor[shape]. The default implementation tries to cast any `item` to a tuple of ints. A subclass can override this method to implement custom validation logic. The output of this is eventually passed to {ref}`AbstractTensor.__validate_shape__` as its `shape` argument. Raises `ValueError` if the input `item` does not pass validation. :param item: The item to validate, passed to __class_getitem__ (`Tensor[item]`). :return: The validated item == the target shape of this tensor. """ if isinstance(item, int): item = (item,) try: item = tuple(item) except TypeError: raise TypeError(f'{item} is not a valid tensor shape.') return item @classmethod def _create_parametrized_type(cls: Type[T], shape: Tuple[int]): shape_str = ', '.join([str(s) for s in shape]) class _ParametrizedTensor( cls, # type: ignore metaclass=cls.__parametrized_meta__, # type: ignore ): _docarray_target_shape = shape __name__ = f'{cls.__name__}[{shape_str}]' __qualname__ = f'{cls.__qualname__}[{shape_str}]' @classmethod def validate( _cls, value: Any, field: 'ModelField', config: 'BaseConfig', ): t = super().validate(value, field, config) return _cls.__validate_shape__(t, _cls._docarray_target_shape) return _ParametrizedTensor def __class_getitem__(cls, item: Any): target_shape = cls.__validate_getitem__(item) return cls._create_parametrized_type(target_shape)
from pathlib import Path from typing import Callable, Optional, Tuple, Union from torch import Tensor from torchaudio import AudioMetaData def load( filepath: Union[str, Path], out: Optional[Tensor] = None, normalization: Union[bool, float, Callable] = True, channels_first: bool = True, num_frames: int = 0, offset: int = 0, filetype: Optional[str] = None, ) -> Tuple[Tensor, int]: raise RuntimeError("No audio I/O backend is available.") def save(filepath: str, src: Tensor, sample_rate: int, precision: int = 16, channels_first: bool = True) -> None: raise RuntimeError("No audio I/O backend is available.") def info(filepath: str) -> AudioMetaData: raise RuntimeError("No audio I/O backend is available.")
from pathlib import Path from typing import Callable, Optional, Tuple, Union from torch import Tensor def load( filepath: Union[str, Path], out: Optional[Tensor] = None, normalization: Union[bool, float, Callable] = True, channels_first: bool = True, num_frames: int = 0, offset: int = 0, filetype: Optional[str] = None, ) -> Tuple[Tensor, int]: raise RuntimeError("No audio I/O backend is available.") def save(filepath: str, src: Tensor, sample_rate: int, precision: int = 16, channels_first: bool = True) -> None: raise RuntimeError("No audio I/O backend is available.") def info(filepath: str) -> None: raise RuntimeError("No audio I/O backend is available.")
"""Tool for the Metaphor search API.""" from typing import Dict, List, Optional, Union from langchain_core._api.deprecation import deprecated from langchain_core.callbacks import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain_core.tools import BaseTool from langchain_community.utilities.metaphor_search import MetaphorSearchAPIWrapper @deprecated( since="0.0.15", removal="1.0", alternative="langchain_exa.ExaSearchResults", ) class MetaphorSearchResults(BaseTool): """Tool that queries the Metaphor Search API and gets back json.""" name: str = "metaphor_search_results_json" description: str = ( "A wrapper around Metaphor Search. " "Input should be a Metaphor-optimized query. " "Output is a JSON array of the query results" ) api_wrapper: MetaphorSearchAPIWrapper def _run( self, query: str, num_results: int, include_domains: Optional[List[str]] = None, exclude_domains: Optional[List[str]] = None, start_crawl_date: Optional[str] = None, end_crawl_date: Optional[str] = None, start_published_date: Optional[str] = None, end_published_date: Optional[str] = None, use_autoprompt: Optional[bool] = None, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> Union[List[Dict], str]: """Use the tool.""" try: return self.api_wrapper.results( query, num_results, include_domains, exclude_domains, start_crawl_date, end_crawl_date, start_published_date, end_published_date, use_autoprompt, ) except Exception as e: return repr(e) async def _arun( self, query: str, num_results: int, include_domains: Optional[List[str]] = None, exclude_domains: Optional[List[str]] = None, start_crawl_date: Optional[str] = None, end_crawl_date: Optional[str] = None, start_published_date: Optional[str] = None, end_published_date: Optional[str] = None, use_autoprompt: Optional[bool] = None, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> Union[List[Dict], str]: """Use the tool asynchronously.""" try: return await self.api_wrapper.results_async( query, num_results, include_domains, exclude_domains, start_crawl_date, end_crawl_date, start_published_date, end_published_date, use_autoprompt, ) except Exception as e: return repr(e)
"""Tool for the Metaphor search API.""" from typing import Dict, List, Optional, Union from langchain_core._api.deprecation import deprecated from langchain_core.callbacks import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain_core.tools import BaseTool from langchain_community.utilities.metaphor_search import MetaphorSearchAPIWrapper @deprecated( since="0.0.15", removal="1.0", alternative="langchain_exa.ExaSearchResults", ) class MetaphorSearchResults(BaseTool): # type: ignore[override] """Tool that queries the Metaphor Search API and gets back json.""" name: str = "metaphor_search_results_json" description: str = ( "A wrapper around Metaphor Search. " "Input should be a Metaphor-optimized query. " "Output is a JSON array of the query results" ) api_wrapper: MetaphorSearchAPIWrapper def _run( self, query: str, num_results: int, include_domains: Optional[List[str]] = None, exclude_domains: Optional[List[str]] = None, start_crawl_date: Optional[str] = None, end_crawl_date: Optional[str] = None, start_published_date: Optional[str] = None, end_published_date: Optional[str] = None, use_autoprompt: Optional[bool] = None, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> Union[List[Dict], str]: """Use the tool.""" try: return self.api_wrapper.results( query, num_results, include_domains, exclude_domains, start_crawl_date, end_crawl_date, start_published_date, end_published_date, use_autoprompt, ) except Exception as e: return repr(e) async def _arun( self, query: str, num_results: int, include_domains: Optional[List[str]] = None, exclude_domains: Optional[List[str]] = None, start_crawl_date: Optional[str] = None, end_crawl_date: Optional[str] = None, start_published_date: Optional[str] = None, end_published_date: Optional[str] = None, use_autoprompt: Optional[bool] = None, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> Union[List[Dict], str]: """Use the tool asynchronously.""" try: return await self.api_wrapper.results_async( query, num_results, include_domains, exclude_domains, start_crawl_date, end_crawl_date, start_published_date, end_published_date, use_autoprompt, ) except Exception as e: return repr(e)
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.inception_v3 import InceptionV3 as InceptionV3 from keras.src.applications.inception_v3 import ( decode_predictions as decode_predictions, ) from keras.src.applications.inception_v3 import ( preprocess_input as preprocess_input, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.inception_v3 import InceptionV3 from keras.src.applications.inception_v3 import decode_predictions from keras.src.applications.inception_v3 import preprocess_input
from typing import List, Optional import pytest from langchain_core.documents import Document from langchain_community.vectorstores import SQLiteVec from tests.integration_tests.vectorstores.fake_embeddings import ( FakeEmbeddings, fake_texts, ) def _sqlite_vec_from_texts( metadatas: Optional[List[dict]] = None, drop: bool = True ) -> SQLiteVec: return SQLiteVec.from_texts( fake_texts, FakeEmbeddings(), metadatas=metadatas, table="test", db_file=":memory:", ) @pytest.mark.requires("sqlite-vec") def test_sqlitevec() -> None: """Test end to end construction and search.""" docsearch = _sqlite_vec_from_texts() output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={})] @pytest.mark.requires("sqlite-vec") def test_sqlitevec_with_score() -> None: """Test end to end construction and search with scores and IDs.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = _sqlite_vec_from_texts(metadatas=metadatas) output = docsearch.similarity_search_with_score("foo", k=3) docs = [o[0] for o in output] distances = [o[1] for o in output] assert docs == [ Document(page_content="foo", metadata={"page": 0}), Document(page_content="bar", metadata={"page": 1}), Document(page_content="baz", metadata={"page": 2}), ] assert distances[0] < distances[1] < distances[2] @pytest.mark.requires("sqlite-vec") def test_sqlitevec_add_extra() -> None: """Test end to end construction and MRR search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = _sqlite_vec_from_texts(metadatas=metadatas) docsearch.add_texts(texts, metadatas) output = docsearch.similarity_search("foo", k=10) assert len(output) == 6 @pytest.mark.requires("sqlite-vec") def test_sqlitevec_search_multiple_tables() -> None: """Test end to end construction and search with multiple tables.""" docsearch_1 = SQLiteVec.from_texts( fake_texts, FakeEmbeddings(), table="table_1", db_file=":memory:", ## change to local storage for testing ) docsearch_2 = SQLiteVec.from_texts( fake_texts, FakeEmbeddings(), table="table_2", db_file=":memory:", ) output_1 = docsearch_1.similarity_search("foo", k=1) output_2 = docsearch_2.similarity_search("foo", k=1) assert output_1 == [Document(page_content="foo", metadata={})] assert output_2 == [Document(page_content="foo", metadata={})]
from typing import List, Optional import pytest from langchain_core.documents import Document from langchain_community.vectorstores import SQLiteVec from tests.integration_tests.vectorstores.fake_embeddings import ( FakeEmbeddings, fake_texts, ) def _sqlite_vec_from_texts( metadatas: Optional[List[dict]] = None, drop: bool = True ) -> SQLiteVec: return SQLiteVec.from_texts( fake_texts, FakeEmbeddings(), metadatas=metadatas, table="test", db_file=":memory:", ) @pytest.mark.requires("sqlite-vec") def test_sqlitevec() -> None: """Test end to end construction and search.""" docsearch = _sqlite_vec_from_texts() output = docsearch.similarity_search("foo", k=1) assert output == [Document(page_content="foo", metadata={})] @pytest.mark.requires("sqlite-vec") def test_sqlitevec_with_score() -> None: """Test end to end construction and search with scores and IDs.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = _sqlite_vec_from_texts(metadatas=metadatas) output = docsearch.similarity_search_with_score("foo", k=3) docs = [o[0] for o in output] distances = [o[1] for o in output] assert docs == [ Document(page_content="foo", metadata={"page": 0}), Document(page_content="bar", metadata={"page": 1}), Document(page_content="baz", metadata={"page": 2}), ] assert distances[0] < distances[1] < distances[2] @pytest.mark.requires("sqlite-vec") def test_sqlitevec_add_extra() -> None: """Test end to end construction and MRR search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": i} for i in range(len(texts))] docsearch = _sqlite_vec_from_texts(metadatas=metadatas) docsearch.add_texts(texts, metadatas) output = docsearch.similarity_search("foo", k=10) assert len(output) == 6
"""Base argparser module for Pod and Deployment runtime""" import argparse import os from jina.enums import PollingType from jina.helper import random_identity from jina.parsers.helper import _SHOW_ALL_ARGS, add_arg_group def mixin_essential_parser(parser): """Mixing in arguments required by every module into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Essential') gp.add_argument( '--name', type=str, help=''' The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. ''', ) gp.add_argument( '--workspace', type=str, default=None, help='The working directory for any IO operations in this object. ' 'If not set, then derive from its parent `workspace`.', ) gp.add_argument( '--log-config', type=str, default='default', help='The YAML config of the logger used in this object.', ) gp.add_argument( '--quiet', action='store_true', default=False, help='If set, then no log will be emitted from this object.', ) gp.add_argument( '--quiet-error', action='store_true', default=False, help='If set, then exception stack information will not be added to the log', ) gp.add_argument( '--workspace-id', type=str, default=random_identity(), help='the UUID for identifying the workspace. When not given a random id will be assigned.' 'Multiple Pod/Deployment/Flow will work under the same workspace if they share the same ' '`workspace-id`.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) def mixin_base_deployment_parser(parser, title='Base Deployment'): """Mixing in arguments required by a deployment into the given parser. The Deployment doesn't have scalable features like shards, replicas and polling :param parser: the parser instance to which we add arguments :param title: the title of the create args group :return: returns the created arg group """ mixin_essential_parser(parser) gp = add_arg_group(parser, title=title) gp.add_argument( '--extra-search-paths', type=str, default=[], nargs='*', help='Extra search paths to be used when loading modules and finding YAML config files.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--timeout-ctrl', type=int, default=int(os.getenv('JINA_DEFAULT_TIMEOUT_CTRL', '60')), help='The timeout in milliseconds of the control request, -1 for waiting forever', ) gp.add_argument( '--k8s-namespace', type=str, help='Name of the namespace where Kubernetes deployment should be deployed, to be filled by flow name' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) return gp def mixin_scalable_deployment_parser(parser): """Mixing in arguments required by a scalable deployment into the given parser. The deployment is scalable and can have shards, replicas and polling :param parser: the parser instance to which we add arguments """ gp = mixin_base_deployment_parser(parser, title='Scalable Deployment') gp.add_argument( '--polling', type=str, default=PollingType.ANY.name, help=''' The polling strategy of the Deployment and its endpoints (when `shards>1`). Can be defined for all endpoints of a Deployment or by endpoint. Define per Deployment: - ANY: only one (whoever is idle) Pod polls the message - ALL: all Pods poll the message (like a broadcast) Define per Endpoint: JSON dict, {endpoint: PollingType} {'/custom': 'ALL', '/search': 'ANY', '*': 'ANY'} ''', ) gp.add_argument( '--shards', type=int, default=1, help='The number of shards in the deployment running at the same time. For more details check ' 'https://docs.jina.ai/concepts/flow/create-flow/#complex-flow-topologies', ) gp.add_argument( '--replicas', type=int, default=1, help='The number of replicas in the deployment', ) gp.add_argument( '--native', action='store_true', default=False, help='If set, only native Executors is allowed, and the Executor is always run inside WorkerRuntime.', )
"""Base argparser module for Pod and Deployment runtime""" import argparse import os from jina.enums import PollingType from jina.helper import random_identity from jina.parsers.helper import _SHOW_ALL_ARGS, add_arg_group def mixin_essential_parser(parser): """Mixing in arguments required by every module into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Essential') gp.add_argument( '--name', type=str, help=''' The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. ''', ) gp.add_argument( '--workspace', type=str, default=None, help='The working directory for any IO operations in this object. ' 'If not set, then derive from its parent `workspace`.', ) gp.add_argument( '--log-config', type=str, default='default', help='The YAML config of the logger used in this object.', ) gp.add_argument( '--quiet', action='store_true', default=False, help='If set, then no log will be emitted from this object.', ) gp.add_argument( '--quiet-error', action='store_true', default=False, help='If set, then exception stack information will not be added to the log', ) gp.add_argument( '--workspace-id', type=str, default=random_identity(), help='the UUID for identifying the workspace. When not given a random id will be assigned.' 'Multiple Pod/Deployment/Flow will work under the same workspace if they share the same ' '`workspace-id`.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) def mixin_base_deployment_parser(parser, title='Base Deployment'): """Mixing in arguments required by a deployment into the given parser. The Deployment doesn't have scalable features like shards, replicas and polling :param parser: the parser instance to which we add arguments :param title: the title of the create args group :return: returns the created arg group """ mixin_essential_parser(parser) gp = add_arg_group(parser, title=title) gp.add_argument( '--extra-search-paths', type=str, default=[], nargs='*', help='Extra search paths to be used when loading modules and finding YAML config files.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--timeout-ctrl', type=int, default=int(os.getenv('JINA_DEFAULT_TIMEOUT_CTRL', '60')), help='The timeout in milliseconds of the control request, -1 for waiting forever', ) gp.add_argument( '--k8s-namespace', type=str, help='Name of the namespace where Kubernetes deployment should be deployed, to be filled by flow name' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) return gp def mixin_scalable_deployment_parser(parser): """Mixing in arguments required by a scalable deployment into the given parser. The deployment is scalable and can have shards, replicas and polling :param parser: the parser instance to which we add arguments """ gp = mixin_base_deployment_parser(parser, title='Scalable Deployment') gp.add_argument( '--polling', type=str, default=PollingType.ANY.name, help=''' The polling strategy of the Deployment and its endpoints (when `shards>1`). Can be defined for all endpoints of a Deployment or by endpoint. Define per Deployment: - ANY: only one (whoever is idle) Pod polls the message - ALL: all Pods poll the message (like a broadcast) Define per Endpoint: JSON dict, {endpoint: PollingType} {'/custom': 'ALL', '/search': 'ANY', '*': 'ANY'} ''', ) gp.add_argument( '--shards', type=int, default=1, help='The number of shards in the deployment running at the same time. For more details check ' 'https://docs.jina.ai/fundamentals/flow/create-flow/#complex-flow-topologies', ) gp.add_argument( '--replicas', type=int, default=1, help='The number of replicas in the deployment', ) gp.add_argument( '--native', action='store_true', default=False, help='If set, only native Executors is allowed, and the Executor is always run inside WorkerRuntime.', )
""" Demo for using xgboost with sklearn =================================== """ import multiprocessing from sklearn.datasets import fetch_california_housing from sklearn.model_selection import GridSearchCV import xgboost as xgb if __name__ == "__main__": print("Parallel Parameter optimization") X, y = fetch_california_housing(return_X_y=True) # Make sure the number of threads is balanced. xgb_model = xgb.XGBRegressor( n_jobs=multiprocessing.cpu_count() // 2, tree_method="hist" ) clf = GridSearchCV( xgb_model, {"max_depth": [2, 4, 6], "n_estimators": [50, 100, 200]}, verbose=1, n_jobs=2, ) clf.fit(X, y) print(clf.best_score_) print(clf.best_params_)
""" Demo for using xgboost with sklearn =================================== """ import multiprocessing from sklearn.datasets import fetch_california_housing from sklearn.model_selection import GridSearchCV import xgboost as xgb if __name__ == "__main__": print("Parallel Parameter optimization") X, y = fetch_california_housing(return_X_y=True) # Make sure the number of threads is balanced. xgb_model = xgb.XGBRegressor( n_jobs=multiprocessing.cpu_count() // 2, tree_method="hist" ) clf = GridSearchCV( xgb_model, {"max_depth": [2, 4, 6], "n_estimators": [50, 100, 200]}, verbose=1, n_jobs=2, ) clf.fit(X, y) print(clf.best_score_) print(clf.best_params_)
from langchain_core.documents import Document from langchain_core.language_models import FakeListChatModel from langchain.retrievers.document_compressors import LLMChainExtractor def test_llm_chain_extractor() -> None: documents = [ Document( page_content=( "The sky is blue. Candlepin bowling is popular in New England." ), metadata={"a": 1}, ), Document( page_content=( "Mercury is the closest planet to the Sun. " "Candlepin bowling balls are smaller." ), metadata={"b": 2}, ), Document(page_content="The moon is round.", metadata={"c": 3}), ] llm = FakeListChatModel( responses=[ "Candlepin bowling is popular in New England.", "Candlepin bowling balls are smaller.", "NO_OUTPUT", ], ) doc_compressor = LLMChainExtractor.from_llm(llm) output = doc_compressor.compress_documents( documents, "Tell me about Candlepin bowling.", ) expected = documents = [ Document( page_content="Candlepin bowling is popular in New England.", metadata={"a": 1}, ), Document( page_content="Candlepin bowling balls are smaller.", metadata={"b": 2}, ), ] assert output == expected async def test_llm_chain_extractor_async() -> None: documents = [ Document( page_content=( "The sky is blue. Candlepin bowling is popular in New England." ), metadata={"a": 1}, ), Document( page_content=( "Mercury is the closest planet to the Sun. " "Candlepin bowling balls are smaller." ), metadata={"b": 2}, ), Document(page_content="The moon is round.", metadata={"c": 3}), ] llm = FakeListChatModel( responses=[ "Candlepin bowling is popular in New England.", "Candlepin bowling balls are smaller.", "NO_OUTPUT", ], ) doc_compressor = LLMChainExtractor.from_llm(llm) output = await doc_compressor.acompress_documents( documents, "Tell me about Candlepin bowling.", ) expected = [ Document( page_content="Candlepin bowling is popular in New England.", metadata={"a": 1}, ), Document( page_content="Candlepin bowling balls are smaller.", metadata={"b": 2}, ), ] assert output == expected
from langchain_core.documents import Document from langchain_core.language_models import FakeListChatModel from langchain.retrievers.document_compressors import LLMChainExtractor def test_llm_chain_extractor() -> None: documents = [ Document( page_content=( "The sky is blue. Candlepin bowling is popular in New England." ), metadata={"a": 1}, ), Document( page_content=( "Mercury is the closest planet to the Sun. " "Candlepin bowling balls are smaller." ), metadata={"b": 2}, ), Document(page_content="The moon is round.", metadata={"c": 3}), ] llm = FakeListChatModel( responses=[ "Candlepin bowling is popular in New England.", "Candlepin bowling balls are smaller.", "NO_OUTPUT", ] ) doc_compressor = LLMChainExtractor.from_llm(llm) output = doc_compressor.compress_documents( documents, "Tell me about Candlepin bowling." ) expected = documents = [ Document( page_content="Candlepin bowling is popular in New England.", metadata={"a": 1}, ), Document( page_content="Candlepin bowling balls are smaller.", metadata={"b": 2} ), ] assert output == expected async def test_llm_chain_extractor_async() -> None: documents = [ Document( page_content=( "The sky is blue. Candlepin bowling is popular in New England." ), metadata={"a": 1}, ), Document( page_content=( "Mercury is the closest planet to the Sun. " "Candlepin bowling balls are smaller." ), metadata={"b": 2}, ), Document(page_content="The moon is round.", metadata={"c": 3}), ] llm = FakeListChatModel( responses=[ "Candlepin bowling is popular in New England.", "Candlepin bowling balls are smaller.", "NO_OUTPUT", ] ) doc_compressor = LLMChainExtractor.from_llm(llm) output = await doc_compressor.acompress_documents( documents, "Tell me about Candlepin bowling." ) expected = [ Document( page_content="Candlepin bowling is popular in New England.", metadata={"a": 1}, ), Document( page_content="Candlepin bowling balls are smaller.", metadata={"b": 2} ), ] assert output == expected
from enum import Enum from typing import Callable, List, Union from numpy import ndarray from torch import Tensor from .util import ( cos_sim, dot_score, euclidean_sim, manhattan_sim, pairwise_cos_sim, pairwise_dot_score, pairwise_euclidean_sim, pairwise_manhattan_sim, ) class SimilarityFunction(Enum): """ Enum class for supported similarity functions. The following functions are supported: - ``SimilarityFunction.COSINE`` (``"cosine"``): Cosine similarity - ``SimilarityFunction.DOT_PRODUCT`` (``"dot"``, ``dot_product``): Dot product similarity - ``SimilarityFunction.EUCLIDEAN`` (``"euclidean"``): Euclidean distance - ``SimilarityFunction.MANHATTAN`` (``"manhattan"``): Manhattan distance """ COSINE = "cosine" DOT_PRODUCT = "dot" DOT = "dot" # Alias for DOT_PRODUCT EUCLIDEAN = "euclidean" MANHATTAN = "manhattan" @staticmethod def to_similarity_fn( similarity_function: Union[str, "SimilarityFunction"], ) -> Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: """ Converts a similarity function name or enum value to the corresponding similarity function. Args: similarity_function (Union[str, SimilarityFunction]): The name or enum value of the similarity function. Returns: Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: The corresponding similarity function. Raises: ValueError: If the provided function is not supported. Example: >>> similarity_fn = SimilarityFunction.to_similarity_fn("cosine") >>> similarity_scores = similarity_fn(embeddings1, embeddings2) >>> similarity_scores tensor([[0.3952, 0.0554], [0.0992, 0.1570]]) """ similarity_function = SimilarityFunction(similarity_function) if similarity_function == SimilarityFunction.COSINE: return cos_sim if similarity_function == SimilarityFunction.DOT_PRODUCT: return dot_score if similarity_function == SimilarityFunction.MANHATTAN: return manhattan_sim if similarity_function == SimilarityFunction.EUCLIDEAN: return euclidean_sim raise ValueError( "The provided function {} is not supported. Use one of the supported values: {}.".format( similarity_function, SimilarityFunction.possible_values() ) ) @staticmethod def to_similarity_pairwise_fn( similarity_function: Union[str, "SimilarityFunction"], ) -> Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: """ Converts a similarity function into a pairwise similarity function. The pairwise similarity function returns the diagonal vector from the similarity matrix, i.e. it only computes the similarity(a[i], b[i]) for each i in the range of the input tensors, rather than computing the similarity between all pairs of a and b. Args: similarity_function (Union[str, SimilarityFunction]): The name or enum value of the similarity function. Returns: Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: The pairwise similarity function. Raises: ValueError: If the provided similarity function is not supported. Example: >>> pairwise_fn = SimilarityFunction.to_similarity_pairwise_fn("cosine") >>> similarity_scores = pairwise_fn(embeddings1, embeddings2) >>> similarity_scores tensor([0.3952, 0.1570]) """ similarity_function = SimilarityFunction(similarity_function) if similarity_function == SimilarityFunction.COSINE: return pairwise_cos_sim if similarity_function == SimilarityFunction.DOT_PRODUCT: return pairwise_dot_score if similarity_function == SimilarityFunction.MANHATTAN: return pairwise_manhattan_sim if similarity_function == SimilarityFunction.EUCLIDEAN: return pairwise_euclidean_sim raise ValueError( "The provided function {} is not supported. Use one of the supported values: {}.".format( similarity_function, SimilarityFunction.possible_values() ) ) @staticmethod def possible_values() -> List[str]: """ Returns a list of possible values for the SimilarityFunction enum. Returns: list: A list of possible values for the SimilarityFunction enum. Example: >>> possible_values = SimilarityFunction.possible_values() >>> possible_values ['cosine', 'dot', 'euclidean', 'manhattan'] """ return [m.value for m in SimilarityFunction]
from enum import Enum from typing import Callable, Union from numpy import ndarray from torch import Tensor from .util import ( cos_sim, dot_score, euclidean_sim, manhattan_sim, pairwise_cos_sim, pairwise_dot_score, pairwise_euclidean_sim, pairwise_manhattan_sim, ) class SimilarityFunction(Enum): """ Enum class for supported similarity functions. The following functions are supported: - ``SimilarityFunction.COSINE`` (``"cosine"``): Cosine similarity - ``SimilarityFunction.DOT_PRODUCT`` (``"dot"``, ``dot_product``): Dot product similarity - ``SimilarityFunction.EUCLIDEAN`` (``"euclidean"``): Euclidean distance - ``SimilarityFunction.MANHATTAN`` (``"manhattan"``): Manhattan distance """ COSINE = "cosine" DOT_PRODUCT = "dot" DOT = "dot" # Alias for DOT_PRODUCT EUCLIDEAN = "euclidean" MANHATTAN = "manhattan" @staticmethod def to_similarity_fn( similarity_function: Union[str, "SimilarityFunction"], ) -> Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: """ Converts a similarity function name or enum value to the corresponding similarity function. Args: similarity_function (Union[str, SimilarityFunction]): The name or enum value of the similarity function. Returns: Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: The corresponding similarity function. Raises: ValueError: If the provided function is not supported. Example: >>> similarity_fn = SimilarityFunction.to_similarity_fn("cosine") >>> similarity_scores = similarity_fn(embeddings1, embeddings2) >>> similarity_scores tensor([[0.3952, 0.0554], [0.0992, 0.1570]]) """ similarity_function = SimilarityFunction(similarity_function) if similarity_function == SimilarityFunction.COSINE: return cos_sim if similarity_function == SimilarityFunction.DOT_PRODUCT: return dot_score if similarity_function == SimilarityFunction.MANHATTAN: return manhattan_sim if similarity_function == SimilarityFunction.EUCLIDEAN: return euclidean_sim raise ValueError( "The provided function {} is not supported. Use one of the supported values: {}.".format( similarity_function, SimilarityFunction.possible_values() ) ) @staticmethod def to_similarity_pairwise_fn( similarity_function: Union[str, "SimilarityFunction"], ) -> Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: """ Converts a similarity function into a pairwise similarity function. The pairwise similarity function returns the diagonal vector from the similarity matrix, i.e. it only computes the similarity(a[i], b[i]) for each i in the range of the input tensors, rather than computing the similarity between all pairs of a and b. Args: similarity_function (Union[str, SimilarityFunction]): The name or enum value of the similarity function. Returns: Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: The pairwise similarity function. Raises: ValueError: If the provided similarity function is not supported. Example: >>> pairwise_fn = SimilarityFunction.to_similarity_pairwise_fn("cosine") >>> similarity_scores = pairwise_fn(embeddings1, embeddings2) >>> similarity_scores tensor([0.3952, 0.1570]) """ similarity_function = SimilarityFunction(similarity_function) if similarity_function == SimilarityFunction.COSINE: return pairwise_cos_sim if similarity_function == SimilarityFunction.DOT_PRODUCT: return pairwise_dot_score if similarity_function == SimilarityFunction.MANHATTAN: return pairwise_manhattan_sim if similarity_function == SimilarityFunction.EUCLIDEAN: return pairwise_euclidean_sim raise ValueError( "The provided function {} is not supported. Use one of the supported values: {}.".format( similarity_function, SimilarityFunction.possible_values() ) ) @staticmethod def possible_values(): """ Returns a list of possible values for the SimilarityFunction enum. Returns: list: A list of possible values for the SimilarityFunction enum. Example: >>> possible_values = SimilarityFunction.possible_values() >>> possible_values ['cosine', 'dot', 'euclidean', 'manhattan'] """ return [m.value for m in SimilarityFunction]
import types from typing import TYPE_CHECKING from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) if TYPE_CHECKING: from docarray.index.backends.elastic import ElasticDocIndex # noqa: F401 from docarray.index.backends.elasticv7 import ElasticV7DocIndex # noqa: F401 from docarray.index.backends.hnswlib import HnswDocumentIndex # noqa: F401 __all__ = [] def __getattr__(name: str): lib: types.ModuleType if name == 'HnswDocumentIndex': import_library('hnswlib', raise_error=True) import docarray.index.backends.hnswlib as lib elif name == 'ElasticDocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elastic as lib elif name == 'ElasticV7DocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elasticv7 as lib else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' ) index_cls = getattr(lib, name) if name not in __all__: __all__.append(name) return index_cls
import types from typing import TYPE_CHECKING from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) if TYPE_CHECKING: from docarray.index.backends.elastic import ElasticV7DocIndex # noqa: F401 from docarray.index.backends.hnswlib import HnswDocumentIndex # noqa: F401 __all__ = [] def __getattr__(name: str): lib: types.ModuleType if name == 'HnswDocumentIndex': import_library('hnswlib', raise_error=True) import docarray.index.backends.hnswlib as lib elif name == 'ElasticV7DocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elastic as lib else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' ) index_cls = getattr(lib, name) if name not in __all__: __all__.append(name) return index_cls
# Copyright (c) OpenMMLab. All rights reserved. import time from typing import Any, Optional, Sequence, Tuple, Union from mmengine.data import BaseDataElement from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[Tuple[Any, BaseDataElement]]] @HOOKS.register_module() class IterTimerHook(Hook): """A hook that logs the time spent during iteration. E.g. ``data_time`` for loading data and ``time`` for a model train step. """ priority = 'NORMAL' def __init__(self): self.time_sec_tot = 0 self.start_iter = 0 def before_run(self, runner) -> None: """Synchronize the number of iterations with the runner. Args: runner: The runner of the training, validation or testing process. """ self.start_iter = runner.iter def _before_epoch(self, runner, mode: str = 'train') -> None: """Record timestamp before start an epoch. Args: runner (Runner): The runner of the training validation and testing process. mode (str): Current mode of runner. Defaults to 'train'. """ self.t = time.time() def _before_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, mode: str = 'train') -> None: """Calculating time for loading data and updating "data_time" ``HistoryBuffer`` of ``runner.message_hub``. Args: runner (Runner): The runner of the training, validation and testing process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[Tuple[Any, BaseDataElement]], optional): Data from dataloader. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ # Update data loading time in `runner.message_hub`. runner.message_hub.update_scalar(f'{mode}/data_time', time.time() - self.t) def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence[BaseDataElement]]] = None, mode: str = 'train') -> None: """Calculating time for an iteration and updating "time" ``HistoryBuffer`` of ``runner.message_hub``. Args: runner (Runner): The runner of the training validation and testing process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[Tuple[Any, BaseDataElement]], optional): Data from dataloader. Defaults to None. outputs (dict or sequence, optional): Outputs from model. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ # Update iteration time in `runner.message_hub`. message_hub = runner.message_hub message_hub.update_scalar(f'{mode}/time', time.time() - self.t) self.t = time.time() window_size = runner.log_processor.window_size # Calculate eta every `window_size` iterations. Since test and val # loop will not update runner.iter, use `every_n_innter_iters`to check # the interval. if self.every_n_inner_iters(batch_idx, window_size): iter_time = message_hub.get_scalar(f'{mode}/time').mean( window_size) if mode == 'train': self.time_sec_tot += iter_time * window_size # Calculate average iterative time. time_sec_avg = self.time_sec_tot / ( runner.iter - self.start_iter + 1) # Calculate eta. eta_sec = time_sec_avg * ( runner.train_loop.max_iters - runner.iter - 1) runner.message_hub.update_info('eta', eta_sec) else: if mode == 'val': cur_dataloader = runner.val_loop.dataloader else: cur_dataloader = runner.test_loop.dataloader eta_sec = iter_time * (len(cur_dataloader) - batch_idx - 1) runner.message_hub.update_info('eta', eta_sec)
# Copyright (c) OpenMMLab. All rights reserved. import time from typing import Any, Optional, Sequence, Tuple, Union from mmengine.data import BaseDataElement from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[Tuple[Any, BaseDataElement]]] @HOOKS.register_module() class IterTimerHook(Hook): """A hook that logs the time spent during iteration. E.g. ``data_time`` for loading data and ``time`` for a model train step. """ priority = 'NORMAL' def _before_epoch(self, runner, mode: str = 'train') -> None: """Record time flag before start a epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ self.t = time.time() def _before_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, mode: str = 'train') -> None: """Logging time for loading data and update the time flag. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[Tuple[Any, BaseDataElement]], optional): Data from dataloader. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ # TODO: update for new logging system runner.message_hub.update_scalar(f'{mode}/data_time', time.time() - self.t) def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence[BaseDataElement]]] = None, mode: str = 'train') -> None: """Logging time for a iteration and update the time flag. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[Tuple[Any, BaseDataElement]], optional): Data from dataloader. Defaults to None. outputs (dict or sequence, optional): Outputs from model. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ # TODO: update for new logging system runner.message_hub.update_scalar(f'{mode}/time', time.time() - self.t) self.t = time.time()
_base_ = 'cascade-mask-rcnn_regnetx-3.2GF_fpn_ms-3x_coco.py' model = dict( backbone=dict( type='RegNet', arch='regnetx_800mf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_800mf')), neck=dict( type='FPN', in_channels=[64, 128, 288, 672], out_channels=256, num_outs=5))
_base_ = 'cascade_mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py' model = dict( backbone=dict( type='RegNet', arch='regnetx_800mf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_800mf')), neck=dict( type='FPN', in_channels=[64, 128, 288, 672], out_channels=256, num_outs=5))
from hypothesis import given, note, settings, strategies import xgboost as xgb from xgboost import testing as tm pytestmark = tm.timeout(20) parameter_strategy = strategies.fixed_dictionaries({ 'booster': strategies.just('gblinear'), 'eta': strategies.floats(0.01, 0.25), 'tolerance': strategies.floats(1e-5, 1e-2), 'nthread': strategies.integers(1, 4), }) coord_strategy = strategies.fixed_dictionaries({ 'feature_selector': strategies.sampled_from(['cyclic', 'shuffle', 'greedy', 'thrifty']), 'top_k': strategies.integers(1, 10), }) def train_result(param, dmat, num_rounds): result = {} xgb.train( param, dmat, num_rounds, evals=[(dmat, "train")], verbose_eval=False, evals_result=result, ) return result class TestLinear: @given( parameter_strategy, strategies.integers(10, 50), tm.make_dataset_strategy(), coord_strategy ) @settings(deadline=None, max_examples=20, print_blob=True) def test_coordinate(self, param, num_rounds, dataset, coord_param): param['updater'] = 'coord_descent' param.update(coord_param) param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] note(result) assert tm.non_increasing(result, 5e-4) # Loss is not guaranteed to always decrease because of regularisation parameters # We test a weaker condition that the loss has not increased between the first and last # iteration @given( parameter_strategy, strategies.integers(10, 50), tm.make_dataset_strategy(), coord_strategy, strategies.floats(1e-5, 0.8), strategies.floats(1e-5, 0.8) ) @settings(deadline=None, max_examples=20, print_blob=True) def test_coordinate_regularised(self, param, num_rounds, dataset, coord_param, alpha, lambd): param['updater'] = 'coord_descent' param['alpha'] = alpha param['lambda'] = lambd param.update(coord_param) param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] note(result) assert tm.non_increasing([result[0], result[-1]]) @given( parameter_strategy, strategies.integers(10, 50), tm.make_dataset_strategy() ) @settings(deadline=None, max_examples=20, print_blob=True) def test_shotgun(self, param, num_rounds, dataset): param['updater'] = 'shotgun' param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] note(result) # shotgun is non-deterministic, so we relax the test by only using first and last # iteration. if len(result) > 2: sampled_result = (result[0], result[-1]) else: sampled_result = result assert tm.non_increasing(sampled_result) @given( parameter_strategy, strategies.integers(10, 50), tm.make_dataset_strategy(), strategies.floats(1e-5, 1.0), strategies.floats(1e-5, 1.0) ) @settings(deadline=None, max_examples=20, print_blob=True) def test_shotgun_regularised(self, param, num_rounds, dataset, alpha, lambd): param['updater'] = 'shotgun' param['alpha'] = alpha param['lambda'] = lambd param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] note(result) assert tm.non_increasing([result[0], result[-1]])
from hypothesis import given, note, settings, strategies import xgboost as xgb from xgboost import testing as tm pytestmark = tm.timeout(20) parameter_strategy = strategies.fixed_dictionaries({ 'booster': strategies.just('gblinear'), 'eta': strategies.floats(0.01, 0.25), 'tolerance': strategies.floats(1e-5, 1e-2), 'nthread': strategies.integers(1, 4), }) coord_strategy = strategies.fixed_dictionaries({ 'feature_selector': strategies.sampled_from(['cyclic', 'shuffle', 'greedy', 'thrifty']), 'top_k': strategies.integers(1, 10), }) def train_result(param, dmat, num_rounds): result = {} xgb.train(param, dmat, num_rounds, [(dmat, 'train')], verbose_eval=False, evals_result=result) return result class TestLinear: @given( parameter_strategy, strategies.integers(10, 50), tm.make_dataset_strategy(), coord_strategy ) @settings(deadline=None, max_examples=20, print_blob=True) def test_coordinate(self, param, num_rounds, dataset, coord_param): param['updater'] = 'coord_descent' param.update(coord_param) param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] note(result) assert tm.non_increasing(result, 5e-4) # Loss is not guaranteed to always decrease because of regularisation parameters # We test a weaker condition that the loss has not increased between the first and last # iteration @given( parameter_strategy, strategies.integers(10, 50), tm.make_dataset_strategy(), coord_strategy, strategies.floats(1e-5, 0.8), strategies.floats(1e-5, 0.8) ) @settings(deadline=None, max_examples=20, print_blob=True) def test_coordinate_regularised(self, param, num_rounds, dataset, coord_param, alpha, lambd): param['updater'] = 'coord_descent' param['alpha'] = alpha param['lambda'] = lambd param.update(coord_param) param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] note(result) assert tm.non_increasing([result[0], result[-1]]) @given( parameter_strategy, strategies.integers(10, 50), tm.make_dataset_strategy() ) @settings(deadline=None, max_examples=20, print_blob=True) def test_shotgun(self, param, num_rounds, dataset): param['updater'] = 'shotgun' param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] note(result) # shotgun is non-deterministic, so we relax the test by only using first and last # iteration. if len(result) > 2: sampled_result = (result[0], result[-1]) else: sampled_result = result assert tm.non_increasing(sampled_result) @given( parameter_strategy, strategies.integers(10, 50), tm.make_dataset_strategy(), strategies.floats(1e-5, 1.0), strategies.floats(1e-5, 1.0) ) @settings(deadline=None, max_examples=20, print_blob=True) def test_shotgun_regularised(self, param, num_rounds, dataset, alpha, lambd): param['updater'] = 'shotgun' param['alpha'] = alpha param['lambda'] = lambd param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] note(result) assert tm.non_increasing([result[0], result[-1]])
"""Simple Reader that loads text relevant to a certain search keyword from subreddits.""" from typing import List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class RedditReader(BaseReader): """ Subreddit post and top-level comments reader for Reddit. """ def load_data( self, subreddits: List[str], search_keys: List[str], post_limit: Optional[int] = [10], ) -> List[Document]: """ Load text from relevant posts and top-level comments in subreddit(s), given keyword(s) for search. Args: subreddits (List[str]): List of subreddits you'd like to read from search_keys (List[str]): List of keywords you'd like to use to search from subreddit(s) post_limit (Optional[int]): Maximum number of posts per subreddit you'd like to read from, defaults to 10 """ import os import praw from praw.models import MoreComments reddit = praw.Reddit( client_id=os.getenv("REDDIT_CLIENT_ID"), client_secret=os.getenv("REDDIT_CLIENT_SECRET"), user_agent=os.getenv("REDDIT_USER_AGENT"), username=os.getenv("REDDIT_USERNAME"), password=os.getenv("REDDIT_PASSWORD"), ) posts = [] for sr in subreddits: ml_subreddit = reddit.subreddit(sr) for kw in search_keys: relevant_posts = ml_subreddit.search(kw, limit=post_limit) for post in relevant_posts: posts.append(Document(text=post.selftext)) for top_level_comment in post.comments: if isinstance(top_level_comment, MoreComments): continue posts.append(Document(text=top_level_comment.body)) return posts
"""Simple Reader that loads text relevant to a certain search keyword from subreddits.""" from typing import List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class RedditReader(BaseReader): """ Subreddit post and top-level comments reader for Reddit. """ def load_data( self, subreddits: List[str], search_keys: List[str], post_limit: Optional[int] = [10], ) -> List[Document]: """ Load text from relevant posts and top-level comments in subreddit(s), given keyword(s) for search. Args: subreddits (List[str]): List of subreddits you'd like to read from search_keys (List[str]): List of keywords you'd like to use to search from subreddit(s) post_limit (Optional[int]): Maximum number of posts per subreddit you'd like to read from, defaults to 10 """ import os import praw from praw.models import MoreComments reddit = praw.Reddit( client_id=os.getenv("REDDIT_CLIENT_ID"), client_secret=os.getenv("REDDIT_CLIENT_SECRET"), user_agent=os.getenv("REDDIT_USER_AGENT"), username=os.getenv("REDDIT_USERNAME"), password=os.getenv("REDDIT_PASSWORD"), ) posts = [] for sr in subreddits: ml_subreddit = reddit.subreddit(sr) for kw in search_keys: relevant_posts = ml_subreddit.search(kw, limit=post_limit) for post in relevant_posts: posts.append(Document(text=post.selftext)) for top_level_comment in post.comments: if isinstance(top_level_comment, MoreComments): continue posts.append(Document(text=top_level_comment.body)) return posts
import csv import pathlib from typing import Any, Callable, Optional, Union import PIL from .folder import make_dataset from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class GTSRB(VisionDataset): """`German Traffic Sign Recognition Benchmark (GTSRB) <https://benchmark.ini.rub.de/>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), or ``"test"``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ def __init__( self, root: Union[str, pathlib.Path], split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "test")) self._base_folder = pathlib.Path(root) / "gtsrb" self._target_folder = ( self._base_folder / "GTSRB" / ("Training" if self._split == "train" else "Final_Test/Images") ) if download: self.download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") if self._split == "train": samples = make_dataset(str(self._target_folder), extensions=(".ppm",)) else: with open(self._base_folder / "GT-final_test.csv") as csv_file: samples = [ (str(self._target_folder / row["Filename"]), int(row["ClassId"])) for row in csv.DictReader(csv_file, delimiter=";", skipinitialspace=True) ] self._samples = samples self.transform = transform self.target_transform = target_transform def __len__(self) -> int: return len(self._samples) def __getitem__(self, index: int) -> tuple[Any, Any]: path, target = self._samples[index] sample = PIL.Image.open(path).convert("RGB") if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target def _check_exists(self) -> bool: return self._target_folder.is_dir() def download(self) -> None: if self._check_exists(): return base_url = "https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/" if self._split == "train": download_and_extract_archive( f"{base_url}GTSRB-Training_fixed.zip", download_root=str(self._base_folder), md5="513f3c79a4c5141765e10e952eaa2478", ) else: download_and_extract_archive( f"{base_url}GTSRB_Final_Test_Images.zip", download_root=str(self._base_folder), md5="c7e4e6327067d32654124b0fe9e82185", ) download_and_extract_archive( f"{base_url}GTSRB_Final_Test_GT.zip", download_root=str(self._base_folder), md5="fe31e9c9270bbcd7b84b7f21a9d9d9e5", )
import csv import pathlib from typing import Any, Callable, Optional, Tuple, Union import PIL from .folder import make_dataset from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class GTSRB(VisionDataset): """`German Traffic Sign Recognition Benchmark (GTSRB) <https://benchmark.ini.rub.de/>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), or ``"test"``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ def __init__( self, root: Union[str, pathlib.Path], split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "test")) self._base_folder = pathlib.Path(root) / "gtsrb" self._target_folder = ( self._base_folder / "GTSRB" / ("Training" if self._split == "train" else "Final_Test/Images") ) if download: self.download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") if self._split == "train": samples = make_dataset(str(self._target_folder), extensions=(".ppm",)) else: with open(self._base_folder / "GT-final_test.csv") as csv_file: samples = [ (str(self._target_folder / row["Filename"]), int(row["ClassId"])) for row in csv.DictReader(csv_file, delimiter=";", skipinitialspace=True) ] self._samples = samples self.transform = transform self.target_transform = target_transform def __len__(self) -> int: return len(self._samples) def __getitem__(self, index: int) -> Tuple[Any, Any]: path, target = self._samples[index] sample = PIL.Image.open(path).convert("RGB") if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target def _check_exists(self) -> bool: return self._target_folder.is_dir() def download(self) -> None: if self._check_exists(): return base_url = "https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/" if self._split == "train": download_and_extract_archive( f"{base_url}GTSRB-Training_fixed.zip", download_root=str(self._base_folder), md5="513f3c79a4c5141765e10e952eaa2478", ) else: download_and_extract_archive( f"{base_url}GTSRB_Final_Test_Images.zip", download_root=str(self._base_folder), md5="c7e4e6327067d32654124b0fe9e82185", ) download_and_extract_archive( f"{base_url}GTSRB_Final_Test_GT.zip", download_root=str(self._base_folder), md5="fe31e9c9270bbcd7b84b7f21a9d9d9e5", )
from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDocument from docarray.base_document.io.json import orjson_dumps from docarray.typing import ( AudioNdArray, NdArray, VideoNdArray, VideoTorchTensor, VideoUrl, ) from tests import TOYDATA_DIR LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load(file_url): url = parse_obj_as(VideoUrl, file_url) video, audio, indices = url.load() assert isinstance(audio, np.ndarray) assert isinstance(audio, AudioNdArray) assert isinstance(video, np.ndarray) assert isinstance(video, VideoNdArray) assert isinstance(indices, np.ndarray) assert isinstance(indices, NdArray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) @pytest.mark.parametrize( 'field, attr_cls', [ ('video', VideoNdArray), ('audio', AudioNdArray), ('key_frame_indices', NdArray), ], ) def test_load_one_of_named_tuple_results(file_url, field, attr_cls): url = parse_obj_as(VideoUrl, file_url) result = getattr(url.load(), field) assert isinstance(result, np.ndarray) assert isinstance(result, attr_cls) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load_video_url_to_video_torch_tensor_field(file_url): class MyVideoDoc(BaseDocument): video_url: VideoUrl tensor: Optional[VideoTorchTensor] doc = MyVideoDoc(video_url=file_url) doc.tensor = doc.video_url.load().video assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, VideoTorchTensor) def test_json_schema(): schema_json_of(VideoUrl) def test_dump_json(): url = parse_obj_as(VideoUrl, REMOTE_VIDEO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_validation(path_to_file): url = parse_obj_as(VideoUrl, path_to_file) assert isinstance(url, VideoUrl) assert isinstance(url, str) @pytest.mark.parametrize( 'path_to_file', [ 'illegal', 'https://www.google.com', 'my/local/text/file.txt', 'my/local/text/file.png', 'my/local/file.mp3', ], ) def test_illegal_validation(path_to_file): with pytest.raises(ValueError, match='VideoUrl'): parse_obj_as(VideoUrl, path_to_file) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_proto_video_url(file_url): uri = parse_obj_as(VideoUrl, file_url) proto = uri._to_node_protobuf() assert str(proto).startswith('video_url')
from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDocument from docarray.base_document.io.json import orjson_dumps from docarray.typing import ( AudioNdArray, NdArray, VideoNdArray, VideoTorchTensor, VideoUrl, ) from tests import TOYDATA_DIR LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load(file_url): url = parse_obj_as(VideoUrl, file_url) audio, video, indices = url.load() assert isinstance(audio, np.ndarray) assert isinstance(audio, AudioNdArray) assert isinstance(video, np.ndarray) assert isinstance(video, VideoNdArray) assert isinstance(indices, np.ndarray) assert isinstance(indices, NdArray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load_key_frames(file_url): url = parse_obj_as(VideoUrl, file_url) key_frames = url.load_key_frames() assert isinstance(key_frames, np.ndarray) assert isinstance(key_frames, VideoNdArray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load_video_url_to_video_torch_tensor_field(file_url): class MyVideoDoc(BaseDocument): video_url: VideoUrl tensor: Optional[VideoTorchTensor] doc = MyVideoDoc(video_url=file_url) doc.tensor = doc.video_url.load_key_frames() assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, VideoTorchTensor) def test_json_schema(): schema_json_of(VideoUrl) def test_dump_json(): url = parse_obj_as(VideoUrl, REMOTE_VIDEO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_validation(path_to_file): url = parse_obj_as(VideoUrl, path_to_file) assert isinstance(url, VideoUrl) assert isinstance(url, str) @pytest.mark.parametrize( 'path_to_file', [ 'illegal', 'https://www.google.com', 'my/local/text/file.txt', 'my/local/text/file.png', 'my/local/file.mp3', ], ) def test_illegal_validation(path_to_file): with pytest.raises(ValueError, match='VideoUrl'): parse_obj_as(VideoUrl, path_to_file) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_proto_video_url(file_url): uri = parse_obj_as(VideoUrl, file_url) proto = uri._to_node_protobuf() assert str(proto).startswith('video_url')
from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union import PIL.Image from .folder import make_dataset from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class RenderedSST2(VisionDataset): """`The Rendered SST2 Dataset <https://github.com/openai/CLIP/blob/main/data/rendered-sst2.md>`_. Rendered SST2 is an image classification dataset used to evaluate the models capability on optical character recognition. This dataset was generated by rendering sentences in the Standford Sentiment Treebank v2 dataset. This dataset contains two classes (positive and negative) and is divided in three splits: a train split containing 6920 images (3610 positive and 3310 negative), a validation split containing 872 images (444 positive and 428 negative), and a test split containing 1821 images (909 positive and 912 negative). Args: root (str or ``pathlib.Path``): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), `"val"` and ``"test"``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Default is False. """ _URL = "https://openaipublic.azureedge.net/clip/data/rendered-sst2.tgz" _MD5 = "2384d08e9dcfa4bd55b324e610496ee5" def __init__( self, root: Union[str, Path], split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "val", "test")) self._split_to_folder = {"train": "train", "val": "valid", "test": "test"} self._base_folder = Path(self.root) / "rendered-sst2" self.classes = ["negative", "positive"] self.class_to_idx = {"negative": 0, "positive": 1} if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") self._samples = make_dataset(str(self._base_folder / self._split_to_folder[self._split]), extensions=("png",)) def __len__(self) -> int: return len(self._samples) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._samples[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def extra_repr(self) -> str: return f"split={self._split}" def _check_exists(self) -> bool: for class_label in set(self.classes): if not (self._base_folder / self._split_to_folder[self._split] / class_label).is_dir(): return False return True def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)
from pathlib import Path from typing import Any, Callable, Optional, Tuple import PIL.Image from .folder import make_dataset from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class RenderedSST2(VisionDataset): """`The Rendered SST2 Dataset <https://github.com/openai/CLIP/blob/main/data/rendered-sst2.md>`_. Rendered SST2 is an image classification dataset used to evaluate the models capability on optical character recognition. This dataset was generated by rendering sentences in the Standford Sentiment Treebank v2 dataset. This dataset contains two classes (positive and negative) and is divided in three splits: a train split containing 6920 images (3610 positive and 3310 negative), a validation split containing 872 images (444 positive and 428 negative), and a test split containing 1821 images (909 positive and 912 negative). Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), `"val"` and ``"test"``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Default is False. """ _URL = "https://openaipublic.azureedge.net/clip/data/rendered-sst2.tgz" _MD5 = "2384d08e9dcfa4bd55b324e610496ee5" def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "val", "test")) self._split_to_folder = {"train": "train", "val": "valid", "test": "test"} self._base_folder = Path(self.root) / "rendered-sst2" self.classes = ["negative", "positive"] self.class_to_idx = {"negative": 0, "positive": 1} if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") self._samples = make_dataset(str(self._base_folder / self._split_to_folder[self._split]), extensions=("png",)) def __len__(self) -> int: return len(self._samples) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._samples[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def extra_repr(self) -> str: return f"split={self._split}" def _check_exists(self) -> bool: for class_label in set(self.classes): if not (self._base_folder / self._split_to_folder[self._split] / class_label).is_dir(): return False return True def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTripletEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load triplets from the AllNLI dataset # The dataset contains triplets of (anchor, positive, negative) sentences dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev[:1000]") # Initialize the SparseTripletEvaluator evaluator = SparseTripletEvaluator( anchors=dataset[:1000]["anchor"], positives=dataset[:1000]["positive"], negatives=dataset[:1000]["negative"], name="all_nli_dev", batch_size=32, show_progress_bar=True, ) # Run the evaluation results = evaluator(model) """ TripletEvaluator: Evaluating the model on the all_nli_dev dataset: Accuracy Dot Similarity: 85.10% """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: all_nli_dev_dot_accuracy print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8510
import logging from datasets import load_dataset from sentence_transformers.sparse_encoder import ( SparseEncoder, SparseTripletEvaluator, ) logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load triplets from the AllNLI dataset # The dataset contains triplets of (anchor, positive, negative) sentences dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev[:1000]") # Initialize the SparseTripletEvaluator evaluator = SparseTripletEvaluator( anchors=dataset[:1000]["anchor"], positives=dataset[:1000]["positive"], negatives=dataset[:1000]["negative"], name="all_nli_dev", batch_size=32, show_progress_bar=True, ) # Run the evaluation results = evaluator(model) """ TripletEvaluator: Evaluating the model on the all_nli_dev dataset: Accuracy Dot Similarity: 85.10% """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: all_nli_dev_dot_accuracy print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8510
from __future__ import annotations try: from typing import Self except ImportError: from typing_extensions import Self import torch from torch import nn from sentence_transformers.models.Module import Module class LSTM(Module): """Bidirectional LSTM running over word embeddings.""" config_keys: list[str] = ["word_embedding_dimension", "hidden_dim", "num_layers", "dropout", "bidirectional"] config_file_name: str = "lstm_config.json" def __init__( self, word_embedding_dimension: int, hidden_dim: int, num_layers: int = 1, dropout: float = 0, bidirectional: bool = True, ): super().__init__() self.word_embedding_dimension = word_embedding_dimension self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout = dropout self.bidirectional = bidirectional self.embeddings_dimension = hidden_dim if self.bidirectional: self.embeddings_dimension *= 2 self.encoder = nn.LSTM( word_embedding_dimension, hidden_dim, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional, batch_first=True, ) def forward(self, features): token_embeddings = features["token_embeddings"] sentence_lengths = torch.clamp(features["sentence_lengths"], min=1) packed = nn.utils.rnn.pack_padded_sequence( token_embeddings, sentence_lengths.cpu(), batch_first=True, enforce_sorted=False ) packed = self.encoder(packed) unpack = nn.utils.rnn.pad_packed_sequence(packed[0], batch_first=True)[0] features.update({"token_embeddings": unpack}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def save(self, output_path: str, *args, safe_serialization: bool = True, **kwargs) -> None: self.save_config(output_path) # Saving LSTM models with Safetensors does not work unless the weights are on CPU # See https://github.com/UKPLab/sentence-transformers/pull/2722 device = next(self.parameters()).device self.cpu() self.save_torch_weights(output_path, safe_serialization=safe_serialization) self.to(device) @classmethod def load( cls, model_name_or_path: str, subfolder: str = "", token: bool | str | None = None, cache_folder: str | None = None, revision: str | None = None, local_files_only: bool = False, **kwargs, ) -> Self: hub_kwargs = { "subfolder": subfolder, "token": token, "cache_folder": cache_folder, "revision": revision, "local_files_only": local_files_only, } config = cls.load_config(model_name_or_path=model_name_or_path, **hub_kwargs) model = cls(**config) model = cls.load_torch_weights(model_name_or_path=model_name_or_path, model=model, **hub_kwargs) return model
from __future__ import annotations import json import os import torch from safetensors.torch import load_model as load_safetensors_model from safetensors.torch import save_model as save_safetensors_model from torch import nn class LSTM(nn.Module): """Bidirectional LSTM running over word embeddings.""" def __init__( self, word_embedding_dimension: int, hidden_dim: int, num_layers: int = 1, dropout: float = 0, bidirectional: bool = True, ): nn.Module.__init__(self) self.config_keys = ["word_embedding_dimension", "hidden_dim", "num_layers", "dropout", "bidirectional"] self.word_embedding_dimension = word_embedding_dimension self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout = dropout self.bidirectional = bidirectional self.embeddings_dimension = hidden_dim if self.bidirectional: self.embeddings_dimension *= 2 self.encoder = nn.LSTM( word_embedding_dimension, hidden_dim, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional, batch_first=True, ) def forward(self, features): token_embeddings = features["token_embeddings"] sentence_lengths = torch.clamp(features["sentence_lengths"], min=1) packed = nn.utils.rnn.pack_padded_sequence( token_embeddings, sentence_lengths.cpu(), batch_first=True, enforce_sorted=False ) packed = self.encoder(packed) unpack = nn.utils.rnn.pad_packed_sequence(packed[0], batch_first=True)[0] features.update({"token_embeddings": unpack}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str, **kwargs) -> list[int]: raise NotImplementedError() def save(self, output_path: str, safe_serialization: bool = True): with open(os.path.join(output_path, "lstm_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) device = next(self.parameters()).device if safe_serialization: save_safetensors_model(self.cpu(), os.path.join(output_path, "model.safetensors")) self.to(device) else: torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "lstm_config.json")) as fIn: config = json.load(fIn) model = LSTM(**config) if os.path.exists(os.path.join(input_path, "model.safetensors")): load_safetensors_model(model, os.path.join(input_path, "model.safetensors")) else: model.load_state_dict( torch.load( os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu"), weights_only=True ) ) return model
"""Callback Handler streams to stdout on new llm token.""" from __future__ import annotations import sys from typing import TYPE_CHECKING, Any from typing_extensions import override from langchain_core.callbacks.base import BaseCallbackHandler if TYPE_CHECKING: from langchain_core.agents import AgentAction, AgentFinish from langchain_core.messages import BaseMessage from langchain_core.outputs import LLMResult class StreamingStdOutCallbackHandler(BaseCallbackHandler): """Callback handler for streaming. Only works with LLMs that support streaming.""" def on_llm_start( self, serialized: dict[str, Any], prompts: list[str], **kwargs: Any ) -> None: """Run when LLM starts running. Args: serialized (dict[str, Any]): The serialized LLM. prompts (list[str]): The prompts to run. **kwargs (Any): Additional keyword arguments. """ def on_chat_model_start( self, serialized: dict[str, Any], messages: list[list[BaseMessage]], **kwargs: Any, ) -> None: """Run when LLM starts running. Args: serialized (dict[str, Any]): The serialized LLM. messages (list[list[BaseMessage]]): The messages to run. **kwargs (Any): Additional keyword arguments. """ @override def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Run on new LLM token. Only available when streaming is enabled. Args: token (str): The new token. **kwargs (Any): Additional keyword arguments. """ sys.stdout.write(token) sys.stdout.flush() def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends running. Args: response (LLMResult): The response from the LLM. **kwargs (Any): Additional keyword arguments. """ def on_llm_error(self, error: BaseException, **kwargs: Any) -> None: """Run when LLM errors. Args: error (BaseException): The error that occurred. **kwargs (Any): Additional keyword arguments. """ def on_chain_start( self, serialized: dict[str, Any], inputs: dict[str, Any], **kwargs: Any ) -> None: """Run when a chain starts running. Args: serialized (dict[str, Any]): The serialized chain. inputs (dict[str, Any]): The inputs to the chain. **kwargs (Any): Additional keyword arguments. """ def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None: """Run when a chain ends running. Args: outputs (dict[str, Any]): The outputs of the chain. **kwargs (Any): Additional keyword arguments. """ def on_chain_error(self, error: BaseException, **kwargs: Any) -> None: """Run when chain errors. Args: error (BaseException): The error that occurred. **kwargs (Any): Additional keyword arguments. """ def on_tool_start( self, serialized: dict[str, Any], input_str: str, **kwargs: Any ) -> None: """Run when the tool starts running. Args: serialized (dict[str, Any]): The serialized tool. input_str (str): The input string. **kwargs (Any): Additional keyword arguments. """ def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Run on agent action. Args: action (AgentAction): The agent action. **kwargs (Any): Additional keyword arguments. """ def on_tool_end(self, output: Any, **kwargs: Any) -> None: """Run when tool ends running. Args: output (Any): The output of the tool. **kwargs (Any): Additional keyword arguments. """ def on_tool_error(self, error: BaseException, **kwargs: Any) -> None: """Run when tool errors. Args: error (BaseException): The error that occurred. **kwargs (Any): Additional keyword arguments. """ def on_text(self, text: str, **kwargs: Any) -> None: """Run on an arbitrary text. Args: text (str): The text to print. **kwargs (Any): Additional keyword arguments. """ def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None: """Run on the agent end. Args: finish (AgentFinish): The agent finish. **kwargs (Any): Additional keyword arguments. """
"""Callback Handler streams to stdout on new llm token.""" from __future__ import annotations import sys from typing import TYPE_CHECKING, Any from typing_extensions import override from langchain_core.callbacks.base import BaseCallbackHandler if TYPE_CHECKING: from langchain_core.agents import AgentAction, AgentFinish from langchain_core.messages import BaseMessage from langchain_core.outputs import LLMResult class StreamingStdOutCallbackHandler(BaseCallbackHandler): """Callback handler for streaming. Only works with LLMs that support streaming.""" def on_llm_start( self, serialized: dict[str, Any], prompts: list[str], **kwargs: Any ) -> None: """Run when LLM starts running. Args: serialized (Dict[str, Any]): The serialized LLM. prompts (List[str]): The prompts to run. **kwargs (Any): Additional keyword arguments. """ def on_chat_model_start( self, serialized: dict[str, Any], messages: list[list[BaseMessage]], **kwargs: Any, ) -> None: """Run when LLM starts running. Args: serialized (Dict[str, Any]): The serialized LLM. messages (List[List[BaseMessage]]): The messages to run. **kwargs (Any): Additional keyword arguments. """ @override def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Run on new LLM token. Only available when streaming is enabled. Args: token (str): The new token. **kwargs (Any): Additional keyword arguments. """ sys.stdout.write(token) sys.stdout.flush() def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends running. Args: response (LLMResult): The response from the LLM. **kwargs (Any): Additional keyword arguments. """ def on_llm_error(self, error: BaseException, **kwargs: Any) -> None: """Run when LLM errors. Args: error (BaseException): The error that occurred. **kwargs (Any): Additional keyword arguments. """ def on_chain_start( self, serialized: dict[str, Any], inputs: dict[str, Any], **kwargs: Any ) -> None: """Run when a chain starts running. Args: serialized (Dict[str, Any]): The serialized chain. inputs (Dict[str, Any]): The inputs to the chain. **kwargs (Any): Additional keyword arguments. """ def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None: """Run when a chain ends running. Args: outputs (Dict[str, Any]): The outputs of the chain. **kwargs (Any): Additional keyword arguments. """ def on_chain_error(self, error: BaseException, **kwargs: Any) -> None: """Run when chain errors. Args: error (BaseException): The error that occurred. **kwargs (Any): Additional keyword arguments. """ def on_tool_start( self, serialized: dict[str, Any], input_str: str, **kwargs: Any ) -> None: """Run when the tool starts running. Args: serialized (Dict[str, Any]): The serialized tool. input_str (str): The input string. **kwargs (Any): Additional keyword arguments. """ def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: """Run on agent action. Args: action (AgentAction): The agent action. **kwargs (Any): Additional keyword arguments. """ def on_tool_end(self, output: Any, **kwargs: Any) -> None: """Run when tool ends running. Args: output (Any): The output of the tool. **kwargs (Any): Additional keyword arguments. """ def on_tool_error(self, error: BaseException, **kwargs: Any) -> None: """Run when tool errors. Args: error (BaseException): The error that occurred. **kwargs (Any): Additional keyword arguments. """ def on_text(self, text: str, **kwargs: Any) -> None: """Run on an arbitrary text. Args: text (str): The text to print. **kwargs (Any): Additional keyword arguments. """ def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None: """Run on the agent end. Args: finish (AgentFinish): The agent finish. **kwargs (Any): Additional keyword arguments. """
"""Zendesk reader.""" import json from typing import List from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class ZendeskReader(BaseReader): """ Zendesk reader. Reads data from a Zendesk workspace. Args: zendesk_subdomain (str): Zendesk subdomain locale (str): Locale of articles """ def __init__(self, zendesk_subdomain: str, locale: str = "en-us") -> None: """Initialize Zendesk reader.""" self.zendesk_subdomain = zendesk_subdomain self.locale = locale def load_data(self) -> List[Document]: """ Load data from the workspace. Args: workspace_id (str): Workspace ID. Returns: List[Document]: List of documents. """ from bs4 import BeautifulSoup results = [] articles = self.get_all_articles() for article in articles: body = article["body"] if body is None: continue soup = BeautifulSoup(body, "html.parser") body = soup.get_text() extra_info = { "id": article["id"], "title": article["title"], "url": article["html_url"], "updated_at": article["updated_at"], } results.append( Document( text=body, extra_info=extra_info, ) ) return results def get_all_articles(self): articles = [] next_page = None while True: response = self.get_articles_page(next_page) articles.extend(response["articles"]) next_page = response["next_page"] if next_page is None: break return articles def get_articles_page(self, next_page: str = None): import requests if next_page is None: url = f"https://{self.zendesk_subdomain}.zendesk.com/api/v2/help_center/{self.locale}/articles?per_page=100" else: url = next_page response = requests.get(url) response_json = json.loads(response.text) next_page = response_json.get("next_page", None) articles = response_json.get("articles", []) return {"articles": articles, "next_page": next_page}
"""Zendesk reader.""" import json from typing import List from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class ZendeskReader(BaseReader): """Zendesk reader. Reads data from a Zendesk workspace. Args: zendesk_subdomain (str): Zendesk subdomain locale (str): Locale of articles """ def __init__(self, zendesk_subdomain: str, locale: str = "en-us") -> None: """Initialize Zendesk reader.""" self.zendesk_subdomain = zendesk_subdomain self.locale = locale def load_data(self) -> List[Document]: """Load data from the workspace. Args: workspace_id (str): Workspace ID. Returns: List[Document]: List of documents. """ from bs4 import BeautifulSoup results = [] articles = self.get_all_articles() for article in articles: body = article["body"] if body is None: continue soup = BeautifulSoup(body, "html.parser") body = soup.get_text() extra_info = { "id": article["id"], "title": article["title"], "url": article["html_url"], "updated_at": article["updated_at"], } results.append( Document( text=body, extra_info=extra_info, ) ) return results def get_all_articles(self): articles = [] next_page = None while True: response = self.get_articles_page(next_page) articles.extend(response["articles"]) next_page = response["next_page"] if next_page is None: break return articles def get_articles_page(self, next_page: str = None): import requests if next_page is None: url = f"https://{self.zendesk_subdomain}.zendesk.com/api/v2/help_center/{self.locale}/articles?per_page=100" else: url = next_page response = requests.get(url) response_json = json.loads(response.text) next_page = response_json.get("next_page", None) articles = response_json.get("articles", []) return {"articles": articles, "next_page": next_page}