input
stringlengths
33
5k
output
stringlengths
32
5k
# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Tuple, Union import mmcv import numpy as np from mmengine.utils import is_str def palette_val(palette: List[tuple]) -> List[tuple]: """Convert palette to matplotlib palette. Args: palette (List[tuple]): A list of color tuples. Returns: List[tuple[float]]: A list of RGB matplotlib color tuples. """ new_palette = [] for color in palette: color = [c / 255 for c in color] new_palette.append(tuple(color)) return new_palette def get_palette(palette: Union[List[tuple], str, tuple], num_classes: int) -> List[Tuple[int]]: """Get palette from various inputs. Args: palette (list[tuple] | str | tuple): palette inputs. num_classes (int): the number of classes. Returns: list[tuple[int]]: A list of color tuples. """ assert isinstance(num_classes, int) if isinstance(palette, list): dataset_palette = palette elif isinstance(palette, tuple): dataset_palette = [palette] * num_classes elif palette == 'random' or palette is None: state = np.random.get_state() # random color np.random.seed(42) palette = np.random.randint(0, 256, size=(num_classes, 3)) np.random.set_state(state) dataset_palette = [tuple(c) for c in palette] elif palette == 'coco': from mmdet.datasets import CocoDataset, CocoPanopticDataset dataset_palette = CocoDataset.METAINFO['palette'] if len(dataset_palette) < num_classes: dataset_palette = CocoPanopticDataset.METAINFO['palette'] elif palette == 'citys': from mmdet.datasets import CityscapesDataset dataset_palette = CityscapesDataset.METAINFO['palette'] elif palette == 'voc': from mmdet.datasets import VOCDataset dataset_palette = VOCDataset.METAINFO['palette'] elif is_str(palette): dataset_palette = [mmcv.color_val(palette)[::-1]] * num_classes else: raise TypeError(f'Invalid type for palette: {type(palette)}') assert len(dataset_palette) >= num_classes, \ 'The length of palette should not be less than `num_classes`.' return dataset_palette def _get_adaptive_scales(areas: np.ndarray, min_area: int = 800, max_area: int = 30000) -> np.ndarray: """Get adaptive scales according to areas. The scale range is [0.5, 1.0]. When the area is less than ``min_area``, the scale is 0.5 while the area is larger than ``max_area``, the scale is 1.0. Args: areas (ndarray): The areas of bboxes or masks with the shape of (n, ). min_area (int): Lower bound areas for adaptive scales. Defaults to 800. max_area (int): Upper bound areas for adaptive scales. Defaults to 30000. Returns: ndarray: The adaotive scales with the shape of (n, ). """ scales = 0.5 + (areas - min_area) // (max_area - min_area) scales = np.clip(scales, 0.5, 1.0) return scales def jitter_color(color: tuple) -> tuple: """Randomly jitter the given color in order to better distinguish instances with the same class. Args: color (tuple): The RGB color tuple. Each value is between [0, 255]. Returns: tuple: The jittered color tuple. """ jitter = np.random.rand(3) jitter = (jitter / np.linalg.norm(jitter) - 0.5) * 0.5 * 255 color = np.clip(jitter + color, 0, 255).astype(np.uint8) return tuple(color)
# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Tuple, Union import mmcv import numpy as np from mmengine.utils import is_str def palette_val(palette: List[tuple]) -> List[tuple]: """Convert palette to matplotlib palette. Args: palette (List[tuple]): A list of color tuples. Returns: List[tuple[float]]: A list of RGB matplotlib color tuples. """ new_palette = [] for color in palette: color = [c / 255 for c in color] new_palette.append(tuple(color)) return new_palette def get_palette(palette: Union[List[tuple], str, tuple], num_classes: int) -> List[Tuple[int]]: """Get palette from various inputs. Args: palette (list[tuple] | str | tuple): palette inputs. num_classes (int): the number of classes. Returns: list[tuple[int]]: A list of color tuples. """ assert isinstance(num_classes, int) if isinstance(palette, list): dataset_palette = palette elif isinstance(palette, tuple): dataset_palette = [palette] * num_classes elif palette == 'random' or palette is None: state = np.random.get_state() # random color np.random.seed(42) palette = np.random.randint(0, 256, size=(num_classes, 3)) np.random.set_state(state) dataset_palette = [tuple(c) for c in palette] elif palette == 'coco': from mmdet.datasets import CocoDataset, CocoPanopticDataset dataset_palette = CocoDataset.METAINFO['palette'] if len(dataset_palette) < num_classes: dataset_palette = CocoPanopticDataset.METAINFO['palette'] elif palette == 'citys': from mmdet.datasets import CityscapesDataset dataset_palette = CityscapesDataset.METAINFO['palette'] elif palette == 'voc': from mmdet.datasets import VOCDataset dataset_palette = VOCDataset.METAINFO['palette'] elif is_str(palette): dataset_palette = [mmcv.color_val(palette)[::-1]] * num_classes else: raise TypeError(f'Invalid type for palette: {type(palette)}') assert len(dataset_palette) >= num_classes, \ 'The length of palette should not be less than `num_classes`.' return dataset_palette def _get_adaptive_scales(areas: np.ndarray, min_area: int = 800, max_area: int = 30000) -> np.ndarray: """Get adaptive scales according to areas. The scale range is [0.5, 1.0]. When the area is less than ``min_area``, the scale is 0.5 while the area is larger than ``max_area``, the scale is 1.0. Args: areas (ndarray): The areas of bboxes or masks with the shape of (n, ). min_area (int): Lower bound areas for adaptive scales. Defaults to 800. max_area (int): Upper bound areas for adaptive scales. Defaults to 30000. Returns: ndarray: The adaotive scales with the shape of (n, ). """ scales = 0.5 + (areas - min_area) / (max_area - min_area) scales = np.clip(scales, 0.5, 1.0) return scales def jitter_color(color: tuple) -> tuple: """Randomly jitter the given color in order to better distinguish instances with the same class. Args: color (tuple): The RGB color tuple. Each value is between [0, 255]. Returns: tuple: The jittered color tuple. """ jitter = np.random.rand(3) jitter = (jitter / np.linalg.norm(jitter) - 0.5) * 0.5 * 255 color = np.clip(jitter + color, 0, 255).astype(np.uint8) return tuple(color)
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmdet.models.utils import SELayer def test_se_layer(): with pytest.raises(AssertionError): # act_cfg sequence length must equal to 2 SELayer(channels=32, act_cfg=(dict(type='ReLU'), )) with pytest.raises(AssertionError): # act_cfg sequence must be a tuple of dict SELayer(channels=32, act_cfg=[dict(type='ReLU'), dict(type='ReLU')]) # Test SELayer forward layer = SELayer(channels=32) layer.init_weights() layer.train() x = torch.randn((1, 32, 10, 10)) x_out = layer(x) assert x_out.shape == torch.Size((1, 32, 10, 10))
import pytest import torch from mmdet.models.utils import SELayer def test_se_layer(): with pytest.raises(AssertionError): # act_cfg sequence length must equal to 2 SELayer(channels=32, act_cfg=(dict(type='ReLU'), )) with pytest.raises(AssertionError): # act_cfg sequence must be a tuple of dict SELayer(channels=32, act_cfg=[dict(type='ReLU'), dict(type='ReLU')]) # Test SELayer forward layer = SELayer(channels=32) layer.init_weights() layer.train() x = torch.randn((1, 32, 10, 10)) x_out = layer(x) assert x_out.shape == torch.Size((1, 32, 10, 10))
import logging import os import pytest from dotenv import load_dotenv from backend.util.logging import configure_logging load_dotenv() # NOTE: You can run tests like with the --log-cli-level=INFO to see the logs # Set up logging configure_logging() logger = logging.getLogger(__name__) # Reduce Prisma log spam unless PRISMA_DEBUG is set if not os.getenv("PRISMA_DEBUG"): prisma_logger = logging.getLogger("prisma") prisma_logger.setLevel(logging.INFO) @pytest.fixture(scope="session") async def server(): from backend.util.test import SpinTestServer async with SpinTestServer() as server: yield server @pytest.fixture(scope="session", autouse=True) async def graph_cleanup(server): created_graph_ids = [] original_create_graph = server.agent_server.test_create_graph async def create_graph_wrapper(*args, **kwargs): created_graph = await original_create_graph(*args, **kwargs) # Extract user_id correctly user_id = kwargs.get("user_id", args[2] if len(args) > 2 else None) created_graph_ids.append((created_graph.id, user_id)) return created_graph try: server.agent_server.test_create_graph = create_graph_wrapper yield # This runs the test function finally: server.agent_server.test_create_graph = original_create_graph # Delete the created graphs and assert they were deleted for graph_id, user_id in created_graph_ids: if user_id: resp = await server.agent_server.test_delete_graph(graph_id, user_id) num_deleted = resp["version_counts"] assert num_deleted > 0, f"Graph {graph_id} was not deleted."
import logging import os import pytest from backend.util.logging import configure_logging # NOTE: You can run tests like with the --log-cli-level=INFO to see the logs # Set up logging configure_logging() logger = logging.getLogger(__name__) # Reduce Prisma log spam unless PRISMA_DEBUG is set if not os.getenv("PRISMA_DEBUG"): prisma_logger = logging.getLogger("prisma") prisma_logger.setLevel(logging.INFO) @pytest.fixture(scope="session") async def server(): from backend.util.test import SpinTestServer async with SpinTestServer() as server: yield server @pytest.fixture(scope="session", autouse=True) async def graph_cleanup(server): created_graph_ids = [] original_create_graph = server.agent_server.test_create_graph async def create_graph_wrapper(*args, **kwargs): created_graph = await original_create_graph(*args, **kwargs) # Extract user_id correctly user_id = kwargs.get("user_id", args[2] if len(args) > 2 else None) created_graph_ids.append((created_graph.id, user_id)) return created_graph try: server.agent_server.test_create_graph = create_graph_wrapper yield # This runs the test function finally: server.agent_server.test_create_graph = original_create_graph # Delete the created graphs and assert they were deleted for graph_id, user_id in created_graph_ids: if user_id: resp = await server.agent_server.test_delete_graph(graph_id, user_id) num_deleted = resp["version_counts"] assert num_deleted > 0, f"Graph {graph_id} was not deleted."
import os from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDoc from docarray.base_doc.io.json import orjson_dumps from docarray.typing import ( AudioNdArray, NdArray, VideoBytes, VideoNdArray, VideoTorchTensor, VideoUrl, ) from docarray.typing.url.mimetypes import ( AUDIO_MIMETYPE, IMAGE_MIMETYPE, OBJ_MIMETYPE, TEXT_MIMETYPE, VIDEO_MIMETYPE, ) from docarray.utils._internal.misc import is_tf_available from tests import TOYDATA_DIR tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.typing.tensor.video import VideoTensorFlowTensor LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load(file_url): url = parse_obj_as(VideoUrl, file_url) video, audio, indices = url.load() assert isinstance(audio, np.ndarray) assert isinstance(audio, AudioNdArray) assert isinstance(video, np.ndarray) assert isinstance(video, VideoNdArray) assert isinstance(indices, np.ndarray) assert isinstance(indices, NdArray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) @pytest.mark.parametrize( 'field, attr_cls', [ ('video', VideoNdArray), ('audio', AudioNdArray), ('key_frame_indices', NdArray), ], ) def test_load_one_of_named_tuple_results(file_url, field, attr_cls): url = parse_obj_as(VideoUrl, file_url) result = getattr(url.load(), field) assert isinstance(result, np.ndarray) assert isinstance(result, attr_cls) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load_video_url_to_video_torch_tensor_field(file_url): class MyVideoDoc(BaseDoc): video_url: VideoUrl tensor: Optional[VideoTorchTensor] = None doc = MyVideoDoc(video_url=file_url) doc.tensor = doc.video_url.load().video assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, VideoTorchTensor) @pytest.mark.tensorflow @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load_video_url_to_video_tensorflow_tensor_field(file_url): class MyVideoDoc(BaseDoc): video_url: VideoUrl tensor: Optional[VideoTensorFlowTensor] = None doc = MyVideoDoc(video_url=file_url) doc.tensor = doc.video_url.load().video assert isinstance(doc.tensor, VideoTensorFlowTensor) assert isinstance(doc.tensor.tensor, tf.Tensor) def test_json_schema(): schema_json_of(VideoUrl) def test_dump_json(): url = parse_obj_as(VideoUrl, REMOTE_VIDEO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_validation(path_to_file): url = parse_obj_as(VideoUrl, path_to_file) assert isinstance(url, VideoUrl) assert isinstance(url, str) @pytest.mark.proto @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_proto_video_url(file_url): uri = parse_obj_as(VideoUrl, file_url) proto = uri._to_node_protobuf() assert 'video_url' in str(proto) def test_load_bytes(): file_url = LOCAL_VIDEO_FILE uri = parse_obj_as(VideoUrl, file_url) video_bytes = uri.load_bytes() assert isinstance(video_bytes, bytes) assert isinstance(video_bytes, VideoBytes) assert len(video_bytes) > 0 @pytest.mark.parametrize( 'file_type, file_source', [ (VIDEO_MIMETYPE, LOCAL_VIDEO_FILE), (VIDEO_MIMETYPE, REMOTE_VIDEO_FILE), (AUDIO_MIMETYPE, os.path.join(TOYDATA_DIR, 'hello.aac')), (AUDIO_MIMETYPE, os.path.join(TOYDATA_DIR, 'hello.mp3')), (AUDIO_MIMETYPE, os.path.join(TOYDATA_DIR, 'hello.ogg')), (IMAGE_MIMETYPE, os.path.join(TOYDATA_DIR, 'test.png')), (TEXT_MIMETYPE, os.path.join(TOYDATA_DIR, 'test' 'test.html')), (TEXT_MIMETYPE, os.path.join(TOYDATA_DIR, 'test' 'test.md')), (TEXT_MIMETYPE, os.path.join(TOYDATA_DIR, 'penal_colony.txt')), (OBJ_MIMETYPE, os.path.join(TOYDATA_DIR, 'test.glb')), ], ) def test_file_validation(file_type, file_source): if file_type != VideoUrl.mime_type(): with pytest.raises(ValueError): parse_obj_as(VideoUrl, file_source) else: parse_obj_as(VideoUrl, file_source)
import os from typing import Optional import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDoc from docarray.base_doc.io.json import orjson_dumps from docarray.typing import ( AudioNdArray, NdArray, VideoBytes, VideoNdArray, VideoTorchTensor, VideoUrl, ) from docarray.typing.url.mimetypes import ( OBJ_MIMETYPE, AUDIO_MIMETYPE, VIDEO_MIMETYPE, IMAGE_MIMETYPE, TEXT_MIMETYPE, ) from docarray.utils._internal.misc import is_tf_available from tests import TOYDATA_DIR tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.typing.tensor.video import VideoTensorFlowTensor LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/main/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load(file_url): url = parse_obj_as(VideoUrl, file_url) video, audio, indices = url.load() assert isinstance(audio, np.ndarray) assert isinstance(audio, AudioNdArray) assert isinstance(video, np.ndarray) assert isinstance(video, VideoNdArray) assert isinstance(indices, np.ndarray) assert isinstance(indices, NdArray) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) @pytest.mark.parametrize( 'field, attr_cls', [ ('video', VideoNdArray), ('audio', AudioNdArray), ('key_frame_indices', NdArray), ], ) def test_load_one_of_named_tuple_results(file_url, field, attr_cls): url = parse_obj_as(VideoUrl, file_url) result = getattr(url.load(), field) assert isinstance(result, np.ndarray) assert isinstance(result, attr_cls) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load_video_url_to_video_torch_tensor_field(file_url): class MyVideoDoc(BaseDoc): video_url: VideoUrl tensor: Optional[VideoTorchTensor] doc = MyVideoDoc(video_url=file_url) doc.tensor = doc.video_url.load().video assert isinstance(doc.tensor, torch.Tensor) assert isinstance(doc.tensor, VideoTorchTensor) @pytest.mark.tensorflow @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_load_video_url_to_video_tensorflow_tensor_field(file_url): class MyVideoDoc(BaseDoc): video_url: VideoUrl tensor: Optional[VideoTensorFlowTensor] doc = MyVideoDoc(video_url=file_url) doc.tensor = doc.video_url.load().video assert isinstance(doc.tensor, VideoTensorFlowTensor) assert isinstance(doc.tensor.tensor, tf.Tensor) def test_json_schema(): schema_json_of(VideoUrl) def test_dump_json(): url = parse_obj_as(VideoUrl, REMOTE_VIDEO_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_validation(path_to_file): url = parse_obj_as(VideoUrl, path_to_file) assert isinstance(url, VideoUrl) assert isinstance(url, str) @pytest.mark.proto @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE], ) def test_proto_video_url(file_url): uri = parse_obj_as(VideoUrl, file_url) proto = uri._to_node_protobuf() assert 'video_url' in str(proto) def test_load_bytes(): file_url = LOCAL_VIDEO_FILE uri = parse_obj_as(VideoUrl, file_url) video_bytes = uri.load_bytes() assert isinstance(video_bytes, bytes) assert isinstance(video_bytes, VideoBytes) assert len(video_bytes) > 0 @pytest.mark.parametrize( 'file_type, file_source', [ (VIDEO_MIMETYPE, LOCAL_VIDEO_FILE), (VIDEO_MIMETYPE, REMOTE_VIDEO_FILE), (AUDIO_MIMETYPE, os.path.join(TOYDATA_DIR, 'hello.aac')), (AUDIO_MIMETYPE, os.path.join(TOYDATA_DIR, 'hello.mp3')), (AUDIO_MIMETYPE, os.path.join(TOYDATA_DIR, 'hello.ogg')), (IMAGE_MIMETYPE, os.path.join(TOYDATA_DIR, 'test.png')), (TEXT_MIMETYPE, os.path.join(TOYDATA_DIR, 'test' 'test.html')), (TEXT_MIMETYPE, os.path.join(TOYDATA_DIR, 'test' 'test.md')), (TEXT_MIMETYPE, os.path.join(TOYDATA_DIR, 'penal_colony.txt')), (OBJ_MIMETYPE, os.path.join(TOYDATA_DIR, 'test.glb')), ], ) def test_file_validation(file_type, file_source): if file_type != VideoUrl.mime_type(): with pytest.raises(ValueError): parse_obj_as(VideoUrl, file_source) else: parse_obj_as(VideoUrl, file_source)
# Copyright (c) OpenMMLab. All rights reserved. from typing import Any, List, Optional, Tuple, Type, Union import cv2 import matplotlib import numpy as np import torch def tensor2ndarray(value: Union[np.ndarray, torch.Tensor]) -> np.ndarray: """If the type of value is torch.Tensor, convert the value to np.ndarray. Args: value (np.ndarray, torch.Tensor): value. Returns: Any: value. """ if isinstance(value, torch.Tensor): value = value.detach().cpu().numpy() return value def value2list(value: Any, valid_type: Union[Type, Tuple[Type, ...]], expand_dim: int) -> List[Any]: """If the type of ``value`` is ``valid_type``, convert the value to list and expand to ``expand_dim``. Args: value (Any): value. valid_type (Union[Type, Tuple[Type, ...]): valid type. expand_dim (int): expand dim. Returns: List[Any]: value. """ if isinstance(value, valid_type): value = [value] * expand_dim return value def check_type(name: str, value: Any, valid_type: Union[Type, Tuple[Type, ...]]) -> None: """Check whether the type of value is in ``valid_type``. Args: name (str): value name. value (Any): value. valid_type (Type, Tuple[Type, ...]): expected type. """ if not isinstance(value, valid_type): raise TypeError(f'`{name}` should be {valid_type} ' f' but got {type(value)}') def check_length(name: str, value: Any, valid_length: int) -> None: """If type of the ``value`` is list, check whether its length is equal with or greater than ``valid_length``. Args: name (str): value name. value (Any): value. valid_length (int): expected length. """ if isinstance(value, list): if len(value) < valid_length: raise AssertionError( f'The length of {name} must equal with or ' f'greater than {valid_length}, but got {len(value)}') def check_type_and_length(name: str, value: Any, valid_type: Union[Type, Tuple[Type, ...]], valid_length: int) -> None: """Check whether the type of value is in ``valid_type``. If type of the ``value`` is list, check whether its length is equal with or greater than ``valid_length``. Args: value (Any): value. legal_type (Type, Tuple[Type, ...]): legal type. valid_length (int): expected length. Returns: List[Any]: value. """ check_type(name, value, valid_type) check_length(name, value, valid_length) def color_val_matplotlib(colors): """Convert various input in RGB order to normalized RGB matplotlib color tuples, Args: color (:obj:`mmcv.Color`/str/tuple/int/ndarray): Color inputs Returns: tuple[float]: A tuple of 3 normalized floats indicating RGB channels. """ if isinstance(colors, str): return colors elif isinstance(colors, tuple): assert len(colors) == 3 for channel in colors: assert 0 <= channel <= 255 colors = [channel / 255 for channel in colors] return tuple(colors) elif isinstance(colors, list): colors = [color_val_matplotlib(color) for color in colors] return colors else: raise TypeError(f'Invalid type for color: {type(colors)}') def str_color_to_rgb(color): color = matplotlib.colors.to_rgb(color) color = tuple([int(c * 255) for c in color]) return color def convert_overlay_heatmap(feat_map: Union[np.ndarray, torch.Tensor], img: Optional[np.ndarray] = None, alpha: float = 0.5) -> np.ndarray: """Convert feat_map to heatmap and overlay on image, if image is not None. Args: feat_map (np.ndarray, torch.Tensor): The feat_map to convert with of shape (H, W), where H is the image height and W is the image width. img (np.ndarray, optional): The origin image. The format should be RGB. Defaults to None. alpha (float): The transparency of origin image. Defaults to 0.5. Returns: np.ndarray: heatmap """ if isinstance(feat_map, torch.Tensor): feat_map = feat_map.detach().cpu().numpy() norm_img = np.zeros(feat_map.shape) norm_img = cv2.normalize(feat_map, norm_img, 0, 255, cv2.NORM_MINMAX) norm_img = np.asarray(norm_img, dtype=np.uint8) heat_img = cv2.applyColorMap(norm_img, cv2.COLORMAP_JET) heat_img = cv2.cvtColor(heat_img, cv2.COLOR_BGR2RGB) if img is not None: heat_img = cv2.addWeighted(img, alpha, heat_img, 1 - alpha, 0) return heat_img
# Copyright (c) OpenMMLab. All rights reserved. from typing import Any, List, Tuple, Type, Union import numpy as np import torch def tensor2ndarray(value: Union[np.ndarray, torch.Tensor]) -> np.ndarray: """If the type of value is torch.Tensor, convert the value to np.ndarray. Args: value (np.ndarray, torch.Tensor): value. Returns: Any: value. """ if isinstance(value, torch.Tensor): value = value.detach().cpu().numpy() return value def value2list(value: Any, valid_type: Union[Type, Tuple[Type, ...]], expand_dim: int) -> List[Any]: """If the type of ``value`` is ``valid_type``, convert the value to list and expand to ``expand_dim``. Args: value (Any): value. valid_type (Union[Type, Tuple[Type, ...]): valid type. expand_dim (int): expand dim. Returns: List[Any]: value. """ if isinstance(value, valid_type): value = [value] * expand_dim return value def check_type(name: str, value: Any, valid_type: Union[Type, Tuple[Type, ...]]) -> None: """Check whether the type of value is in ``valid_type``. Args: name (str): value name. value (Any): value. valid_type (Type, Tuple[Type, ...]): expected type. """ if not isinstance(value, valid_type): raise TypeError(f'`{name}` should be {valid_type} ' f' but got {type(value)}') def check_length(name: str, value: Any, valid_length: int) -> None: """If type of the ``value`` is list, check whether its length is equal with or greater than ``valid_length``. Args: name (str): value name. value (Any): value. valid_length (int): expected length. """ if isinstance(value, list): if len(value) < valid_length: raise AssertionError( f'The length of {name} must equal with or ' f'greater than {valid_length}, but got {len(value)}') def check_type_and_length(name: str, value: Any, valid_type: Union[Type, Tuple[Type, ...]], valid_length: int) -> None: """Check whether the type of value is in ``valid_type``. If type of the ``value`` is list, check whether its length is equal with or greater than ``valid_length``. Args: value (Any): value. legal_type (Type, Tuple[Type, ...]): legal type. valid_length (int): expected length. Returns: List[Any]: value. """ check_type(name, value, valid_type) check_length(name, value, valid_length)
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from typing import List, Optional import fire from llama import Llama, Dialog def main( ckpt_dir: str, tokenizer_path: str, temperature: float = 0.6, top_p: float = 0.9, max_seq_len: int = 512, max_batch_size: int = 8, max_gen_len: Optional[int] = None, ): """ Entry point of the program for generating text using a pretrained model. Args: ckpt_dir (str): The directory containing checkpoint files for the pretrained model. tokenizer_path (str): The path to the tokenizer model used for text encoding/decoding. temperature (float, optional): The temperature value for controlling randomness in generation. Defaults to 0.6. top_p (float, optional): The top-p sampling parameter for controlling diversity in generation. Defaults to 0.9. max_seq_len (int, optional): The maximum sequence length for input prompts. Defaults to 512. max_batch_size (int, optional): The maximum batch size for generating sequences. Defaults to 8. max_gen_len (int, optional): The maximum length of generated sequences. If None, it will be set to the model's max sequence length. Defaults to None. """ generator = Llama.build( ckpt_dir=ckpt_dir, tokenizer_path=tokenizer_path, max_seq_len=max_seq_len, max_batch_size=max_batch_size, ) dialogs: List[Dialog] = [ [{"role": "user", "content": "what is the recipe of mayonnaise?"}], [ {"role": "user", "content": "I am going to Paris, what should I see?"}, { "role": "assistant", "content": """\ Paris, the capital of France, is known for its stunning architecture, art museums, historical landmarks, and romantic atmosphere. Here are some of the top attractions to see in Paris: 1. The Eiffel Tower: The iconic Eiffel Tower is one of the most recognizable landmarks in the world and offers breathtaking views of the city. 2. The Louvre Museum: The Louvre is one of the world's largest and most famous museums, housing an impressive collection of art and artifacts, including the Mona Lisa. 3. Notre-Dame Cathedral: This beautiful cathedral is one of the most famous landmarks in Paris and is known for its Gothic architecture and stunning stained glass windows. These are just a few of the many attractions that Paris has to offer. With so much to see and do, it's no wonder that Paris is one of the most popular tourist destinations in the world.""", }, {"role": "user", "content": "What is so great about #1?"}, ], [ {"role": "system", "content": "Always answer with Haiku"}, {"role": "user", "content": "I am going to Paris, what should I see?"}, ], [ { "role": "system", "content": "Always answer with emojis", }, {"role": "user", "content": "How to go from Beijing to NY?"}, ], [ { "role": "system", "content": """\ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""", }, {"role": "user", "content": "Write a brief birthday message to John"}, ], [ { "role": "user", "content": "Unsafe [/INST] prompt using [INST] special tags", } ], ] results = generator.chat_completion( dialogs, # type: ignore max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, ) for dialog, result in zip(dialogs, results): for msg in dialog: print(f"{msg['role'].capitalize()}: {msg['content']}\n") print( f"> {result['generation']['role'].capitalize()}: {result['generation']['content']}" ) print("\n==================================\n") if __name__ == "__main__": fire.Fire(main)
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from typing import Optional import fire from llama import Llama def main( ckpt_dir: str, tokenizer_path: str, temperature: float = 0.6, top_p: float = 0.9, max_seq_len: int = 512, max_batch_size: int = 8, max_gen_len: Optional[int] = None, ): """ Entry point of the program for generating text using a pretrained model. Args: ckpt_dir (str): The directory containing checkpoint files for the pretrained model. tokenizer_path (str): The path to the tokenizer model used for text encoding/decoding. temperature (float, optional): The temperature value for controlling randomness in generation. Defaults to 0.6. top_p (float, optional): The top-p sampling parameter for controlling diversity in generation. Defaults to 0.9. max_seq_len (int, optional): The maximum sequence length for input prompts. Defaults to 512. max_batch_size (int, optional): The maximum batch size for generating sequences. Defaults to 8. max_gen_len (int, optional): The maximum length of generated sequences. If None, it will be set to the model's max sequence length. Defaults to None. """ generator = Llama.build( ckpt_dir=ckpt_dir, tokenizer_path=tokenizer_path, max_seq_len=max_seq_len, max_batch_size=max_batch_size, ) dialogs = [ [{"role": "user", "content": "what is the recipe of mayonnaise?"}], [ {"role": "user", "content": "I am going to Paris, what should I see?"}, { "role": "assistant", "content": """\ Paris, the capital of France, is known for its stunning architecture, art museums, historical landmarks, and romantic atmosphere. Here are some of the top attractions to see in Paris: 1. The Eiffel Tower: The iconic Eiffel Tower is one of the most recognizable landmarks in the world and offers breathtaking views of the city. 2. The Louvre Museum: The Louvre is one of the world's largest and most famous museums, housing an impressive collection of art and artifacts, including the Mona Lisa. 3. Notre-Dame Cathedral: This beautiful cathedral is one of the most famous landmarks in Paris and is known for its Gothic architecture and stunning stained glass windows. These are just a few of the many attractions that Paris has to offer. With so much to see and do, it's no wonder that Paris is one of the most popular tourist destinations in the world.""", }, {"role": "user", "content": "What is so great about #1?"}, ], [ {"role": "system", "content": "Always answer with Haiku"}, {"role": "user", "content": "I am going to Paris, what should I see?"}, ], [ { "role": "system", "content": "Always answer with emojis", }, {"role": "user", "content": "How to go from Beijing to NY?"}, ], [ { "role": "system", "content": """\ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""", }, {"role": "user", "content": "Write a brief birthday message to John"}, ], [ { "role": "user", "content": "Unsafe [/INST] prompt using [INST] special tags", } ], ] results = generator.chat_completion( dialogs, # type: ignore max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, ) for dialog, result in zip(dialogs, results): for msg in dialog: print(f"{msg['role'].capitalize()}: {msg['content']}\n") print( f"> {result['generation']['role'].capitalize()}: {result['generation']['content']}" ) print("\n==================================\n") if __name__ == "__main__": fire.Fire(main)
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch import torch.nn.functional as F from mmcv.cnn import constant_init from mmdet.models.utils import DyReLU, SELayer def test_se_layer(): with pytest.raises(AssertionError): # act_cfg sequence length must equal to 2 SELayer(channels=32, act_cfg=(dict(type='ReLU'), )) with pytest.raises(AssertionError): # act_cfg sequence must be a tuple of dict SELayer(channels=32, act_cfg=[dict(type='ReLU'), dict(type='ReLU')]) # Test SELayer forward layer = SELayer(channels=32) layer.init_weights() layer.train() x = torch.randn((1, 32, 10, 10)) x_out = layer(x) assert x_out.shape == torch.Size((1, 32, 10, 10)) def test_dyrelu(): with pytest.raises(AssertionError): # act_cfg sequence length must equal to 2 DyReLU(channels=32, act_cfg=(dict(type='ReLU'), )) with pytest.raises(AssertionError): # act_cfg sequence must be a tuple of dict DyReLU(channels=32, act_cfg=[dict(type='ReLU'), dict(type='ReLU')]) # Test DyReLU forward layer = DyReLU(channels=32) layer.init_weights() layer.train() x = torch.randn((1, 32, 10, 10)) x_out = layer(x) assert x_out.shape == torch.Size((1, 32, 10, 10)) # DyReLU should act as standard (static) ReLU # when eliminating the effect of SE-like module layer = DyReLU(channels=32) constant_init(layer.conv2.conv, 0) layer.train() x = torch.randn((1, 32, 10, 10)) x_out = layer(x) relu_out = F.relu(x) assert torch.equal(x_out, relu_out)
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmdet.models.utils import SELayer def test_se_layer(): with pytest.raises(AssertionError): # act_cfg sequence length must equal to 2 SELayer(channels=32, act_cfg=(dict(type='ReLU'), )) with pytest.raises(AssertionError): # act_cfg sequence must be a tuple of dict SELayer(channels=32, act_cfg=[dict(type='ReLU'), dict(type='ReLU')]) # Test SELayer forward layer = SELayer(channels=32) layer.init_weights() layer.train() x = torch.randn((1, 32, 10, 10)) x_out = layer(x) assert x_out.shape == torch.Size((1, 32, 10, 10))
from pathlib import Path from typing import List, Tuple, Union import torch import torchaudio from torch.utils.data import Dataset SampleType = Tuple[int, torch.Tensor, List[torch.Tensor]] class LibriMix(Dataset): r"""Create the *LibriMix* [:footcite:`cosentino2020librimix`] dataset. Args: root (str or Path): The path to the directory where the directory ``Libri2Mix`` or ``Libri3Mix`` is stored. subset (str, optional): The subset to use. Options: [``train-360`, ``train-100``, ``dev``, and ``test``] (Default: ``train-360``). num_speakers (int, optional): The number of speakers, which determines the directories to traverse. The Dataset will traverse ``s1`` to ``sN`` directories to collect N source audios. (Default: 2) sample_rate (int, optional): sample rate of audio files. The ``sample_rate`` determines which subdirectory the audio are fetched. If any of the audio has a different sample rate, raises ``ValueError``. Options: [8000, 16000] (Default: 8000) task (str, optional): the task of LibriMix. Options: [``enh_single``, ``enh_both``, ``sep_clean``, ``sep_noisy``] (Default: ``sep_clean``) Note: The LibriMix dataset needs to be manually generated. Please check https://github.com/JorisCos/LibriMix """ def __init__( self, root: Union[str, Path], subset: str = "train-360", num_speakers: int = 2, sample_rate: int = 8000, task: str = "sep_clean", ): self.root = Path(root) / f"Libri{num_speakers}Mix" if sample_rate == 8000: self.root = self.root / "wav8k/min" / subset elif sample_rate == 16000: self.root = self.root / "wav16k/min" / subset else: raise ValueError(f"Unsupported sample rate. Found {sample_rate}.") self.sample_rate = sample_rate self.task = task self.mix_dir = (self.root / f"mix_{task.split('_')[1]}").resolve() self.src_dirs = [(self.root / f"s{i+1}").resolve() for i in range(num_speakers)] self.files = [p.name for p in self.mix_dir.glob("*wav")] self.files.sort() def _load_audio(self, path) -> torch.Tensor: waveform, sample_rate = torchaudio.load(path) if sample_rate != self.sample_rate: raise ValueError( f"The dataset contains audio file of sample rate {sample_rate}, " f"but the requested sample rate is {self.sample_rate}." ) return waveform def _load_sample(self, filename) -> SampleType: mixed = self._load_audio(str(self.mix_dir / filename)) srcs = [] for i, dir_ in enumerate(self.src_dirs): src = self._load_audio(str(dir_ / filename)) if mixed.shape != src.shape: raise ValueError(f"Different waveform shapes. mixed: {mixed.shape}, src[{i}]: {src.shape}") srcs.append(src) return self.sample_rate, mixed, srcs def __len__(self) -> int: return len(self.files) def __getitem__(self, key: int) -> SampleType: """Load the n-th sample from the dataset. Args: key (int): The index of the sample to be loaded Returns: (int, Tensor, List[Tensor]): ``(sample_rate, mix_waveform, list_of_source_waveforms)`` """ return self._load_sample(self.files[key])
from pathlib import Path from typing import Union, Tuple, List import torch import torchaudio from torch.utils.data import Dataset SampleType = Tuple[int, torch.Tensor, List[torch.Tensor]] class LibriMix(Dataset): r"""Create the *LibriMix* [:footcite:`cosentino2020librimix`] dataset. Args: root (str or Path): The path to the directory where the directory ``Libri2Mix`` or ``Libri3Mix`` is stored. subset (str, optional): The subset to use. Options: [``train-360`, ``train-100``, ``dev``, and ``test``] (Default: ``train-360``). num_speakers (int, optional): The number of speakers, which determines the directories to traverse. The Dataset will traverse ``s1`` to ``sN`` directories to collect N source audios. (Default: 2) sample_rate (int, optional): sample rate of audio files. The ``sample_rate`` determines which subdirectory the audio are fetched. If any of the audio has a different sample rate, raises ``ValueError``. Options: [8000, 16000] (Default: 8000) task (str, optional): the task of LibriMix. Options: [``enh_single``, ``enh_both``, ``sep_clean``, ``sep_noisy``] (Default: ``sep_clean``) Note: The LibriMix dataset needs to be manually generated. Please check https://github.com/JorisCos/LibriMix """ def __init__( self, root: Union[str, Path], subset: str = "train-360", num_speakers: int = 2, sample_rate: int = 8000, task: str = "sep_clean", ): self.root = Path(root) / f"Libri{num_speakers}Mix" if sample_rate == 8000: self.root = self.root / "wav8k/min" / subset elif sample_rate == 16000: self.root = self.root / "wav16k/min" / subset else: raise ValueError(f"Unsupported sample rate. Found {sample_rate}.") self.sample_rate = sample_rate self.task = task self.mix_dir = (self.root / f"mix_{task.split('_')[1]}").resolve() self.src_dirs = [(self.root / f"s{i+1}").resolve() for i in range(num_speakers)] self.files = [p.name for p in self.mix_dir.glob("*wav")] self.files.sort() def _load_audio(self, path) -> torch.Tensor: waveform, sample_rate = torchaudio.load(path) if sample_rate != self.sample_rate: raise ValueError( f"The dataset contains audio file of sample rate {sample_rate}, " f"but the requested sample rate is {self.sample_rate}." ) return waveform def _load_sample(self, filename) -> SampleType: mixed = self._load_audio(str(self.mix_dir / filename)) srcs = [] for i, dir_ in enumerate(self.src_dirs): src = self._load_audio(str(dir_ / filename)) if mixed.shape != src.shape: raise ValueError(f"Different waveform shapes. mixed: {mixed.shape}, src[{i}]: {src.shape}") srcs.append(src) return self.sample_rate, mixed, srcs def __len__(self) -> int: return len(self.files) def __getitem__(self, key: int) -> SampleType: """Load the n-th sample from the dataset. Args: key (int): The index of the sample to be loaded Returns: (int, Tensor, List[Tensor]): ``(sample_rate, mix_waveform, list_of_source_waveforms)`` """ return self._load_sample(self.files[key])
import contextlib import logging import typing import fastapi import fastapi.responses import starlette.middleware.cors import uvicorn from autogpt_libs.feature_flag.client import ( initialize_launchdarkly, shutdown_launchdarkly, ) import backend.data.block import backend.data.db import backend.data.graph import backend.data.user import backend.server.routers.v1 import backend.server.v2.library.routes import backend.server.v2.store.routes import backend.util.service import backend.util.settings from backend.server.external.api import external_app settings = backend.util.settings.Settings() logger = logging.getLogger(__name__) logging.getLogger("autogpt_libs").setLevel(logging.INFO) @contextlib.contextmanager def launch_darkly_context(): if settings.config.app_env != backend.util.settings.AppEnvironment.LOCAL: initialize_launchdarkly() try: yield finally: shutdown_launchdarkly() else: yield @contextlib.asynccontextmanager async def lifespan_context(app: fastapi.FastAPI): await backend.data.db.connect() await backend.data.block.initialize_blocks() await backend.data.user.migrate_and_encrypt_user_integrations() await backend.data.graph.fix_llm_provider_credentials() with launch_darkly_context(): yield await backend.data.db.disconnect() docs_url = ( "/docs" if settings.config.app_env == backend.util.settings.AppEnvironment.LOCAL else None ) app = fastapi.FastAPI( title="AutoGPT Agent Server", description=( "This server is used to execute agents that are created by the " "AutoGPT system." ), summary="AutoGPT Agent Server", version="0.1", lifespan=lifespan_context, docs_url=docs_url, ) def handle_internal_http_error(status_code: int = 500, log_error: bool = True): def handler(request: fastapi.Request, exc: Exception): if log_error: logger.exception(f"{request.method} {request.url.path} failed: {exc}") return fastapi.responses.JSONResponse( content={ "message": f"{request.method} {request.url.path} failed", "detail": str(exc), }, status_code=status_code, ) return handler app.add_exception_handler(ValueError, handle_internal_http_error(400)) app.add_exception_handler(Exception, handle_internal_http_error(500)) app.include_router(backend.server.routers.v1.v1_router, tags=["v1"], prefix="/api") app.include_router( backend.server.v2.store.routes.router, tags=["v2"], prefix="/api/store" ) app.include_router( backend.server.v2.library.routes.router, tags=["v2"], prefix="/api/library" ) app.mount("/external-api", external_app) @app.get(path="/health", tags=["health"], dependencies=[]) async def health(): return {"status": "healthy"} class AgentServer(backend.util.service.AppProcess): def run(self): server_app = starlette.middleware.cors.CORSMiddleware( app=app, allow_origins=settings.config.backend_cors_allow_origins, allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) uvicorn.run( server_app, host=backend.util.settings.Config().agent_api_host, port=backend.util.settings.Config().agent_api_port, ) @staticmethod async def test_execute_graph( graph_id: str, node_input: dict[typing.Any, typing.Any], user_id: str ): return backend.server.routers.v1.execute_graph(graph_id, node_input, user_id) @staticmethod async def test_create_graph( create_graph: backend.server.routers.v1.CreateGraph, user_id: str, ): return await backend.server.routers.v1.create_new_graph(create_graph, user_id) @staticmethod async def test_get_graph_run_status(graph_exec_id: str, user_id: str): execution = await backend.data.graph.get_execution( user_id=user_id, execution_id=graph_exec_id ) if not execution: raise ValueError(f"Execution {graph_exec_id} not found") return execution.status @staticmethod async def test_get_graph_run_node_execution_results( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_node_execution_results( graph_id, graph_exec_id, user_id ) @staticmethod async def test_delete_graph(graph_id: str, user_id: str): return await backend.server.routers.v1.delete_graph(graph_id, user_id) def set_test_dependency_overrides(self, overrides: dict): app.dependency_overrides.update(overrides)
import contextlib import logging import typing import fastapi import fastapi.responses import starlette.middleware.cors import uvicorn from autogpt_libs.feature_flag.client import ( initialize_launchdarkly, shutdown_launchdarkly, ) import backend.data.block import backend.data.db import backend.data.graph import backend.data.user import backend.server.routers.v1 import backend.server.v2.library.routes import backend.server.v2.store.routes import backend.util.service import backend.util.settings settings = backend.util.settings.Settings() logger = logging.getLogger(__name__) logging.getLogger("autogpt_libs").setLevel(logging.INFO) @contextlib.contextmanager def launch_darkly_context(): if settings.config.app_env != backend.util.settings.AppEnvironment.LOCAL: initialize_launchdarkly() try: yield finally: shutdown_launchdarkly() else: yield @contextlib.asynccontextmanager async def lifespan_context(app: fastapi.FastAPI): await backend.data.db.connect() await backend.data.block.initialize_blocks() await backend.data.user.migrate_and_encrypt_user_integrations() await backend.data.graph.fix_llm_provider_credentials() with launch_darkly_context(): yield await backend.data.db.disconnect() docs_url = ( "/docs" if settings.config.app_env == backend.util.settings.AppEnvironment.LOCAL else None ) app = fastapi.FastAPI( title="AutoGPT Agent Server", description=( "This server is used to execute agents that are created by the " "AutoGPT system." ), summary="AutoGPT Agent Server", version="0.1", lifespan=lifespan_context, docs_url=docs_url, ) def handle_internal_http_error(status_code: int = 500, log_error: bool = True): def handler(request: fastapi.Request, exc: Exception): if log_error: logger.exception(f"{request.method} {request.url.path} failed: {exc}") return fastapi.responses.JSONResponse( content={ "message": f"{request.method} {request.url.path} failed", "detail": str(exc), }, status_code=status_code, ) return handler app.add_exception_handler(ValueError, handle_internal_http_error(400)) app.add_exception_handler(Exception, handle_internal_http_error(500)) app.include_router(backend.server.routers.v1.v1_router, tags=["v1"], prefix="/api") app.include_router( backend.server.v2.store.routes.router, tags=["v2"], prefix="/api/store" ) app.include_router( backend.server.v2.library.routes.router, tags=["v2"], prefix="/api/library" ) @app.get(path="/health", tags=["health"], dependencies=[]) async def health(): return {"status": "healthy"} class AgentServer(backend.util.service.AppProcess): def run(self): server_app = starlette.middleware.cors.CORSMiddleware( app=app, allow_origins=settings.config.backend_cors_allow_origins, allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) uvicorn.run( server_app, host=backend.util.settings.Config().agent_api_host, port=backend.util.settings.Config().agent_api_port, ) @staticmethod async def test_execute_graph( graph_id: str, node_input: dict[typing.Any, typing.Any], user_id: str ): return backend.server.routers.v1.execute_graph(graph_id, node_input, user_id) @staticmethod async def test_create_graph( create_graph: backend.server.routers.v1.CreateGraph, user_id: str, ): return await backend.server.routers.v1.create_new_graph(create_graph, user_id) @staticmethod async def test_get_graph_run_status(graph_exec_id: str, user_id: str): execution = await backend.data.graph.get_execution( user_id=user_id, execution_id=graph_exec_id ) if not execution: raise ValueError(f"Execution {graph_exec_id} not found") return execution.status @staticmethod async def test_get_graph_run_node_execution_results( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_node_execution_results( graph_id, graph_exec_id, user_id ) @staticmethod async def test_delete_graph(graph_id: str, user_id: str): return await backend.server.routers.v1.delete_graph(graph_id, user_id) def set_test_dependency_overrides(self, overrides: dict): app.dependency_overrides.update(overrides)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from unittest.mock import MagicMock, patch import pytest import torch import torch.nn as nn from mmengine.model.wrappers import (MMDataParallel, MMDistributedDataParallel, is_model_wrapper) from mmengine.registry import MODEL_WRAPPERS def mock(*args, **kwargs): pass @patch('torch.distributed._broadcast_coalesced', mock) @patch('torch.distributed.broadcast', mock) @patch('torch.nn.parallel.DistributedDataParallel._ddp_init_helper', mock) def test_is_model_wrapper(): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(2, 2, 1) def forward(self, x): return self.conv(x) # _verify_model_across_ranks is added in torch1.9.0 so we should check # whether _verify_model_across_ranks is the member of torch.distributed # before mocking if hasattr(torch.distributed, '_verify_model_across_ranks'): torch.distributed._verify_model_across_ranks = mock model = Model() assert not is_model_wrapper(model) mmdp = MMDataParallel(model) assert is_model_wrapper(mmdp) mmddp = MMDistributedDataParallel(model, process_group=MagicMock()) assert is_model_wrapper(mmddp) # test model wrapper registry @MODEL_WRAPPERS.register_module() class ModelWrapper(object): def __init__(self, module): self.module = module def forward(self, *args, **kwargs): return self.module(*args, **kwargs) model_wrapper = ModelWrapper(model) assert is_model_wrapper(model_wrapper) class TestMMDataParallel(TestCase): def setUp(self): """Setup the demo image in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x): return self.conv(x) def train_step(self, x): return self.forward(x) def val_step(self, x): return self.forward(x) self.model = Model() def test_train_step(self): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x): return self.conv(x) model = Model() mmdp = MMDataParallel(model) # test without train_step attribute with pytest.raises(AssertionError): mmdp.train_step(torch.zeros([1, 1, 3, 3])) out = self.model.train_step(torch.zeros([1, 1, 3, 3])) assert out.shape == (1, 2, 3, 3) def test_val_step(self): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x): return self.conv(x) model = Model() mmdp = MMDataParallel(model) # test without val_step attribute with pytest.raises(AssertionError): mmdp.val_step(torch.zeros([1, 1, 3, 3])) out = self.model.val_step(torch.zeros([1, 1, 3, 3])) assert out.shape == (1, 2, 3, 3)
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import MagicMock, patch import pytest import torch import torch.nn as nn from mmengine.model.wrappers import (MMDataParallel, MMDistributedDataParallel, is_model_wrapper) from mmengine.registry import MODEL_WRAPPERS def mock(*args, **kwargs): pass @patch('torch.distributed._broadcast_coalesced', mock) @patch('torch.distributed.broadcast', mock) @patch('torch.nn.parallel.DistributedDataParallel._ddp_init_helper', mock) def test_is_model_wrapper(): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(2, 2, 1) def forward(self, x): return self.conv(x) # _verify_model_across_ranks is added in torch1.9.0 so we should check # whether _verify_model_across_ranks is the member of torch.distributed # before mocking if hasattr(torch.distributed, '_verify_model_across_ranks'): torch.distributed._verify_model_across_ranks = mock model = Model() assert not is_model_wrapper(model) mmdp = MMDataParallel(model) assert is_model_wrapper(mmdp) mmddp = MMDistributedDataParallel(model, process_group=MagicMock()) assert is_model_wrapper(mmddp) # test model wrapper registry @MODEL_WRAPPERS.register_module() class ModelWrapper(object): def __init__(self, module): self.module = module def forward(self, *args, **kwargs): return self.module(*args, **kwargs) model_wrapper = ModelWrapper(model) assert is_model_wrapper(model_wrapper) class TestMMDataParallel: def setUp(self): """Setup the demo image in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(2, 2, 1) def forward(self, x): return self.conv(x) def train_step(self, x): return self.forward(x) def val_step(self, x): return self.forward(x) self.model = Model() def test_train_step(self): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x): return self.conv(x) model = Model() mmdp = MMDataParallel(model) # test without train_step attribute with pytest.raises(AssertionError): mmdp.train_step(torch.zeros([1, 1, 3, 3])) out = self.model.train_step([torch.zeros([1, 1, 3, 3])]) assert out.shape == (1, 2, 3, 3) def test_val_step(self): class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x): return self.conv(x) model = Model() mmdp = MMDataParallel(model) # test without val_step attribute with pytest.raises(AssertionError): mmdp.val_step(torch.zeros([1, 1, 3, 3])) out = self.model.val_step([torch.zeros([1, 1, 3, 3])]) assert out.shape == (1, 2, 3, 3)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.3.1' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.3.0' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import pytest from jina import Document, Flow from ...video_torch_encoder import VideoTorchEncoder cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture() def kinects_videos(): from torchvision.datasets import Kinetics400 dataset = Kinetics400( root=os.path.join(cur_dir, '../data/kinetics400'), frames_per_clip=20 ) return [dataset[0][0], dataset[0][0]] def test_video_torch_encoder(kinects_videos): f = Flow().add(uses=VideoTorchEncoder) with f: resp = f.post( on='/test', inputs=[Document(blob=video.detach().numpy()) for video in kinects_videos], return_results=True, ) assert resp[0].docs[0].embedding.shape == (512,) assert resp[0].docs[1].embedding.shape == (512,)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import pytest from jina import Document, Flow try: from video_torch_encoder import VideoTorchEncoder except: from ...video_torch_encoder import VideoTorchEncoder cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture() def kinects_videos(): from torchvision.datasets import Kinetics400 dataset = Kinetics400(root=os.path.join(cur_dir, '../data/kinetics400'), frames_per_clip=20) return [dataset[0][0], dataset[0][0]] def test_video_torch_encoder(kinects_videos): f = Flow().add(uses=VideoTorchEncoder) with f: resp = f.post(on='/test', inputs=[Document(blob=video.detach().numpy()) for video in kinects_videos], return_results=True) assert resp[0].docs[0].embedding.shape == (512, ) assert resp[0].docs[1].embedding.shape == (512,)
"""Browser tools and toolkit.""" from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ( ClickTool, CurrentWebPageTool, ExtractHyperlinksTool, ExtractTextTool, GetElementsTool, NavigateBackTool, NavigateTool, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "NavigateTool": "langchain_community.tools", "NavigateBackTool": "langchain_community.tools", "ExtractTextTool": "langchain_community.tools", "ExtractHyperlinksTool": "langchain_community.tools", "GetElementsTool": "langchain_community.tools", "ClickTool": "langchain_community.tools", "CurrentWebPageTool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "ClickTool", "CurrentWebPageTool", "ExtractHyperlinksTool", "ExtractTextTool", "GetElementsTool", "NavigateBackTool", "NavigateTool", ]
"""Browser tools and toolkit.""" from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ( ClickTool, CurrentWebPageTool, ExtractHyperlinksTool, ExtractTextTool, GetElementsTool, NavigateBackTool, NavigateTool, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "NavigateTool": "langchain_community.tools", "NavigateBackTool": "langchain_community.tools", "ExtractTextTool": "langchain_community.tools", "ExtractHyperlinksTool": "langchain_community.tools", "GetElementsTool": "langchain_community.tools", "ClickTool": "langchain_community.tools", "CurrentWebPageTool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "NavigateTool", "NavigateBackTool", "ExtractTextTool", "ExtractHyperlinksTool", "GetElementsTool", "ClickTool", "CurrentWebPageTool", ]
"""Use a single chain to route an input to one of multiple retrieval qa chains.""" from __future__ import annotations from collections.abc import Mapping from typing import Any, Optional from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import PromptTemplate from langchain_core.retrievers import BaseRetriever from langchain.chains import ConversationChain from langchain.chains.base import Chain from langchain.chains.conversation.prompt import DEFAULT_TEMPLATE from langchain.chains.retrieval_qa.base import BaseRetrievalQA, RetrievalQA from langchain.chains.router.base import MultiRouteChain from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser from langchain.chains.router.multi_retrieval_prompt import ( MULTI_RETRIEVAL_ROUTER_TEMPLATE, ) class MultiRetrievalQAChain(MultiRouteChain): """A multi-route chain that uses an LLM router chain to choose amongst retrieval qa chains.""" router_chain: LLMRouterChain """Chain for deciding a destination chain and the input to it.""" destination_chains: Mapping[str, BaseRetrievalQA] """Map of name to candidate chains that inputs can be routed to.""" default_chain: Chain """Default chain to use when router doesn't map input to one of the destinations.""" @property def output_keys(self) -> list[str]: return ["result"] @classmethod def from_retrievers( cls, llm: BaseLanguageModel, retriever_infos: list[dict[str, Any]], default_retriever: Optional[BaseRetriever] = None, default_prompt: Optional[PromptTemplate] = None, default_chain: Optional[Chain] = None, *, default_chain_llm: Optional[BaseLanguageModel] = None, **kwargs: Any, ) -> MultiRetrievalQAChain: if default_prompt and not default_retriever: raise ValueError( "`default_retriever` must be specified if `default_prompt` is " "provided. Received only `default_prompt`." ) destinations = [f"{r['name']}: {r['description']}" for r in retriever_infos] destinations_str = "\n".join(destinations) router_template = MULTI_RETRIEVAL_ROUTER_TEMPLATE.format( destinations=destinations_str ) router_prompt = PromptTemplate( template=router_template, input_variables=["input"], output_parser=RouterOutputParser(next_inputs_inner_key="query"), ) router_chain = LLMRouterChain.from_llm(llm, router_prompt) destination_chains = {} for r_info in retriever_infos: prompt = r_info.get("prompt") retriever = r_info["retriever"] chain = RetrievalQA.from_llm(llm, prompt=prompt, retriever=retriever) name = r_info["name"] destination_chains[name] = chain if default_chain: _default_chain = default_chain elif default_retriever: _default_chain = RetrievalQA.from_llm( llm, prompt=default_prompt, retriever=default_retriever ) else: prompt_template = DEFAULT_TEMPLATE.replace("input", "query") prompt = PromptTemplate( template=prompt_template, input_variables=["history", "query"] ) if default_chain_llm is None: raise NotImplementedError( "conversation_llm must be provided if default_chain is not " "specified. This API has been changed to avoid instantiating " "default LLMs on behalf of users." "You can provide a conversation LLM like so:\n" "from langchain_openai import ChatOpenAI\n" "llm = ChatOpenAI()" ) _default_chain = ConversationChain( llm=default_chain_llm, prompt=prompt, input_key="query", output_key="result", ) return cls( router_chain=router_chain, destination_chains=destination_chains, default_chain=_default_chain, **kwargs, )
"""Use a single chain to route an input to one of multiple retrieval qa chains.""" from __future__ import annotations from collections.abc import Mapping from typing import Any, Optional from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import PromptTemplate from langchain_core.retrievers import BaseRetriever from langchain.chains import ConversationChain from langchain.chains.base import Chain from langchain.chains.conversation.prompt import DEFAULT_TEMPLATE from langchain.chains.retrieval_qa.base import BaseRetrievalQA, RetrievalQA from langchain.chains.router.base import MultiRouteChain from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser from langchain.chains.router.multi_retrieval_prompt import ( MULTI_RETRIEVAL_ROUTER_TEMPLATE, ) class MultiRetrievalQAChain(MultiRouteChain): # type: ignore[override] """A multi-route chain that uses an LLM router chain to choose amongst retrieval qa chains.""" router_chain: LLMRouterChain """Chain for deciding a destination chain and the input to it.""" destination_chains: Mapping[str, BaseRetrievalQA] """Map of name to candidate chains that inputs can be routed to.""" default_chain: Chain """Default chain to use when router doesn't map input to one of the destinations.""" @property def output_keys(self) -> list[str]: return ["result"] @classmethod def from_retrievers( cls, llm: BaseLanguageModel, retriever_infos: list[dict[str, Any]], default_retriever: Optional[BaseRetriever] = None, default_prompt: Optional[PromptTemplate] = None, default_chain: Optional[Chain] = None, *, default_chain_llm: Optional[BaseLanguageModel] = None, **kwargs: Any, ) -> MultiRetrievalQAChain: if default_prompt and not default_retriever: raise ValueError( "`default_retriever` must be specified if `default_prompt` is " "provided. Received only `default_prompt`." ) destinations = [f"{r['name']}: {r['description']}" for r in retriever_infos] destinations_str = "\n".join(destinations) router_template = MULTI_RETRIEVAL_ROUTER_TEMPLATE.format( destinations=destinations_str ) router_prompt = PromptTemplate( template=router_template, input_variables=["input"], output_parser=RouterOutputParser(next_inputs_inner_key="query"), ) router_chain = LLMRouterChain.from_llm(llm, router_prompt) destination_chains = {} for r_info in retriever_infos: prompt = r_info.get("prompt") retriever = r_info["retriever"] chain = RetrievalQA.from_llm(llm, prompt=prompt, retriever=retriever) name = r_info["name"] destination_chains[name] = chain if default_chain: _default_chain = default_chain elif default_retriever: _default_chain = RetrievalQA.from_llm( llm, prompt=default_prompt, retriever=default_retriever ) else: prompt_template = DEFAULT_TEMPLATE.replace("input", "query") prompt = PromptTemplate( template=prompt_template, input_variables=["history", "query"] ) if default_chain_llm is None: raise NotImplementedError( "conversation_llm must be provided if default_chain is not " "specified. This API has been changed to avoid instantiating " "default LLMs on behalf of users." "You can provide a conversation LLM like so:\n" "from langchain_openai import ChatOpenAI\n" "llm = ChatOpenAI()" ) _default_chain = ConversationChain( llm=default_chain_llm, prompt=prompt, input_key="query", output_key="result", ) return cls( router_chain=router_chain, destination_chains=destination_chains, default_chain=_default_chain, **kwargs, )
from io import BytesIO from pathlib import Path from typing import Any, List, Tuple, Union import requests from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseLoader class ImageCaptionLoader(BaseLoader): """Load image captions. By default, the loader utilizes the pre-trained Salesforce BLIP image captioning model. https://huggingface.co/Salesforce/blip-image-captioning-base """ def __init__( self, images: Union[str, Path, bytes, List[Union[str, bytes, Path]]], blip_processor: str = "Salesforce/blip-image-captioning-base", blip_model: str = "Salesforce/blip-image-captioning-base", ): """Initialize with a list of image data (bytes) or file paths Args: images: Either a single image or a list of images. Accepts image data (bytes) or file paths to images. blip_processor: The name of the pre-trained BLIP processor. blip_model: The name of the pre-trained BLIP model. """ if isinstance(images, (str, Path, bytes)): self.images = [images] else: self.images = images self.blip_processor = blip_processor self.blip_model = blip_model def load(self) -> List[Document]: """Load from a list of image data or file paths""" try: from transformers import BlipForConditionalGeneration, BlipProcessor except ImportError: raise ImportError( "`transformers` package not found, please install with " "`pip install transformers`." ) processor = BlipProcessor.from_pretrained(self.blip_processor) model = BlipForConditionalGeneration.from_pretrained(self.blip_model) results = [] for image in self.images: caption, metadata = self._get_captions_and_metadata( model=model, processor=processor, image=image ) doc = Document(page_content=caption, metadata=metadata) results.append(doc) return results def _get_captions_and_metadata( self, model: Any, processor: Any, image: Union[str, Path, bytes] ) -> Tuple[str, dict]: """Helper function for getting the captions and metadata of an image.""" try: from PIL import Image except ImportError: raise ImportError( "`PIL` package not found, please install with `pip install pillow`" ) image_source = image # Save the original source for later reference try: if isinstance(image, bytes): image = Image.open(BytesIO(image)).convert("RGB") elif isinstance(image, str) and ( image.startswith("http://") or image.startswith("https://") ): image = Image.open(requests.get(image, stream=True).raw).convert("RGB") else: image = Image.open(image).convert("RGB") except Exception: if isinstance(image_source, bytes): msg = "Could not get image data from bytes" else: msg = f"Could not get image data for {image_source}" raise ValueError(msg) inputs = processor(image, "an image of", return_tensors="pt") output = model.generate(**inputs) caption: str = processor.decode(output[0]) if isinstance(image_source, bytes): metadata: dict = {"image_source": "Image bytes provided"} else: metadata = {"image_path": str(image_source)} return caption, metadata
from io import BytesIO from pathlib import Path from typing import Any, List, Tuple, Union import requests from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseLoader class ImageCaptionLoader(BaseLoader): """Load image captions. By default, the loader utilizes the pre-trained Salesforce BLIP image captioning model. https://huggingface.co/Salesforce/blip-image-captioning-base """ def __init__( self, images: Union[str, Path, bytes, List[Union[str, bytes, Path]]], blip_processor: str = "Salesforce/blip-image-captioning-base", blip_model: str = "Salesforce/blip-image-captioning-base", ): """Initialize with a list of image data (bytes) or file paths Args: images: Either a single image or a list of images. Accepts image data (bytes) or file paths to images. blip_processor: The name of the pre-trained BLIP processor. blip_model: The name of the pre-trained BLIP model. """ if isinstance(images, (str, Path, bytes)): self.images = [images] else: self.images = images self.blip_processor = blip_processor self.blip_model = blip_model def load(self) -> List[Document]: """Load from a list of image data or file paths""" try: from transformers import BlipForConditionalGeneration, BlipProcessor except ImportError: raise ImportError( "`transformers` package not found, please install with " "`pip install transformers`." ) processor = BlipProcessor.from_pretrained(self.blip_processor) model = BlipForConditionalGeneration.from_pretrained(self.blip_model) results = [] for image in self.images: caption, metadata = self._get_captions_and_metadata( model=model, processor=processor, image=image ) doc = Document(page_content=caption, metadata=metadata) results.append(doc) return results def _get_captions_and_metadata( self, model: Any, processor: Any, image: Union[str, Path, bytes] ) -> Tuple[str, dict]: """Helper function for getting the captions and metadata of an image.""" try: from PIL import Image except ImportError: raise ImportError( "`PIL` package not found, please install with `pip install pillow`" ) image_source = image # Save the original source for later reference try: if isinstance(image, bytes): image = Image.open(BytesIO(image)).convert("RGB") # type: ignore[assignment] elif isinstance(image, str) and ( image.startswith("http://") or image.startswith("https://") ): image = Image.open(requests.get(image, stream=True).raw).convert("RGB") # type: ignore[assignment, arg-type] else: image = Image.open(image).convert("RGB") # type: ignore[assignment] except Exception: if isinstance(image_source, bytes): msg = "Could not get image data from bytes" else: msg = f"Could not get image data for {image_source}" raise ValueError(msg) inputs = processor(image, "an image of", return_tensors="pt") output = model.generate(**inputs) caption: str = processor.decode(output[0]) if isinstance(image_source, bytes): metadata: dict = {"image_source": "Image bytes provided"} else: metadata = {"image_path": str(image_source)} return caption, metadata
import numpy as np import pytest import torch from docarray.typing import ( AudioNdArray, AudioTorchTensor, NdArrayEmbedding, TorchEmbedding, ) from docarray.utils._internal.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.typing import AudioTensorFlowTensor, TensorFlowEmbedding def test_torch_tensors_interop(): t1 = AudioTorchTensor(torch.rand(128)) t2 = TorchEmbedding(torch.rand(128)) t_result = t1 + t2 assert isinstance(t_result, AudioTorchTensor) assert isinstance(t_result, torch.Tensor) assert t_result.shape == (128,) @pytest.mark.tensorflow def test_tensorflow_tensors_interop(): t1 = AudioTensorFlowTensor(tf.random.normal((128,))) t2 = TensorFlowEmbedding(tf.random.normal((128,))) t_result = t1.tensor + t2.tensor assert isinstance(t_result, tf.Tensor) assert t_result.shape == (128,) def test_np_arrays_interop(): t1 = AudioNdArray((128,)) t2 = NdArrayEmbedding((128,)) t_result = t1 + t2 assert isinstance(t_result, AudioNdArray) assert isinstance(t_result, np.ndarray) assert t_result.shape == (128,)
import numpy as np import pytest import torch from docarray.typing import ( AudioNdArray, AudioTorchTensor, NdArrayEmbedding, TorchEmbedding, ) from docarray.utils.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.typing import AudioTensorFlowTensor, TensorFlowEmbedding def test_torch_tensors_interop(): t1 = AudioTorchTensor(torch.rand(128)) t2 = TorchEmbedding(torch.rand(128)) t_result = t1 + t2 assert isinstance(t_result, AudioTorchTensor) assert isinstance(t_result, torch.Tensor) assert t_result.shape == (128,) @pytest.mark.tensorflow def test_tensorflow_tensors_interop(): t1 = AudioTensorFlowTensor(tf.random.normal((128,))) t2 = TensorFlowEmbedding(tf.random.normal((128,))) t_result = t1.tensor + t2.tensor assert isinstance(t_result, tf.Tensor) assert t_result.shape == (128,) def test_np_arrays_interop(): t1 = AudioNdArray((128,)) t2 = NdArrayEmbedding((128,)) t_result = t1 + t2 assert isinstance(t_result, AudioNdArray) assert isinstance(t_result, np.ndarray) assert t_result.shape == (128,)
"""Support vector machine algorithms.""" # See http://scikit-learn.sourceforge.net/modules/svm.html for complete # documentation. # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._bounds import l1_min_c from ._classes import SVC, SVR, LinearSVC, LinearSVR, NuSVC, NuSVR, OneClassSVM __all__ = [ "SVC", "SVR", "LinearSVC", "LinearSVR", "NuSVC", "NuSVR", "OneClassSVM", "l1_min_c", ]
"""Support vector machine algorithms.""" # See http://scikit-learn.sourceforge.net/modules/svm.html for complete # documentation. # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._bounds import l1_min_c from ._classes import SVC, SVR, LinearSVC, LinearSVR, NuSVC, NuSVR, OneClassSVM __all__ = [ "LinearSVC", "LinearSVR", "NuSVC", "NuSVR", "OneClassSVM", "SVC", "SVR", "l1_min_c", ]
"""Document loaders.""" from typing import TYPE_CHECKING from langchain_core._import_utils import import_attr if TYPE_CHECKING: from langchain_core.document_loaders.base import BaseBlobParser, BaseLoader from langchain_core.document_loaders.blob_loaders import Blob, BlobLoader, PathLike from langchain_core.document_loaders.langsmith import LangSmithLoader __all__ = ( "BaseBlobParser", "BaseLoader", "Blob", "BlobLoader", "PathLike", "LangSmithLoader", ) _dynamic_imports = { "BaseBlobParser": "base", "BaseLoader": "base", "Blob": "blob_loaders", "BlobLoader": "blob_loaders", "PathLike": "blob_loaders", "LangSmithLoader": "langsmith", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) result = import_attr(attr_name, module_name, __spec__.parent) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""Document loaders.""" from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.document_loaders.base import BaseBlobParser, BaseLoader from langchain_core.document_loaders.blob_loaders import Blob, BlobLoader, PathLike from langchain_core.document_loaders.langsmith import LangSmithLoader __all__ = [ "BaseBlobParser", "BaseLoader", "Blob", "BlobLoader", "PathLike", "LangSmithLoader", ] _dynamic_imports = { "BaseBlobParser": "base", "BaseLoader": "base", "Blob": "blob_loaders", "BlobLoader": "blob_loaders", "PathLike": "blob_loaders", "LangSmithLoader": "langsmith", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
__all__ = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "LargeList", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import Array2D, Array3D, Array4D, Array5D, ClassLabel, Features, LargeList, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
__all__ = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import Array2D, Array3D, Array4D, Array5D, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
from sentence_transformers import SentenceTransformer, losses, util class AnglELoss(losses.CoSENTLoss): def __init__(self, model: SentenceTransformer, scale: float = 20.0) -> None: """ This class implements AnglE (Angle Optimized) loss. This is a modification of :class:`CoSENTLoss`, designed to address the following issue: The cosine function's gradient approaches 0 as the wave approaches the top or bottom of its form. This can hinder the optimization process, so AnglE proposes to instead optimize the angle difference in complex space in order to mitigate this effect. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. This is the same as CoSENTLoss, with a different similarity function. Args: model: SentenceTransformerModel scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://arxiv.org/abs/2309.12871v1 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Relations: - :class:`CoSENTLoss` is AnglELoss with ``pairwise_cos_sim`` as the metric, rather than ``pairwise_angle_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than ``CoSENTLoss`` or ``AnglELoss``. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.AnglELoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim) @property def citation(self) -> str: return """ @misc{li2023angleoptimized, title={AnglE-optimized Text Embeddings}, author={Xianming Li and Jing Li}, year={2023}, eprint={2309.12871}, archivePrefix={arXiv}, primaryClass={cs.CL} } """
from sentence_transformers import SentenceTransformer, losses, util class AnglELoss(losses.CoSENTLoss): def __init__(self, model: SentenceTransformer, scale: float = 20.0): """ This class implements AnglE (Angle Optimized) loss. This is a modification of :class:`CoSENTLoss`, designed to address the following issue: The cosine function's gradient approaches 0 as the wave approaches the top or bottom of its form. This can hinder the optimization process, so AnglE proposes to instead optimize the angle difference in complex space in order to mitigate this effect. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. This is the same as CoSENTLoss, with a different similarity function. Args: model: SentenceTransformerModel scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://arxiv.org/abs/2309.12871v1 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Relations: - :class:`CoSENTLoss` is AnglELoss with ``pairwise_cos_sim`` as the metric, rather than ``pairwise_angle_sim``. - :class:`CosineSimilarityLoss` seems to produce a weaker training signal than ``CoSENTLoss`` or ``AnglELoss``. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.AnglELoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim) @property def citation(self) -> str: return """ @misc{li2023angleoptimized, title={AnglE-optimized Text Embeddings}, author={Xianming Li and Jing Li}, year={2023}, eprint={2309.12871}, archivePrefix={arXiv}, primaryClass={cs.CL} } """
__version__ = '0.13.21' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
__version__ = '0.13.20' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.33.0' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.32.0' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Optional, Union from mmcv.cnn import ConvModule from torch import Tensor from mmdet.registry import MODELS from .fcn_mask_head import FCNMaskHead @MODELS.register_module() class HTCMaskHead(FCNMaskHead): """Mask head for HTC. Args: with_conv_res (bool): Whether add conv layer for ``res_feat``. Defaults to True. """ def __init__(self, with_conv_res: bool = True, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.with_conv_res = with_conv_res if self.with_conv_res: self.conv_res = ConvModule( self.conv_out_channels, self.conv_out_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) def forward(self, x: Tensor, res_feat: Optional[Tensor] = None, return_logits: bool = True, return_feat: bool = True) -> Union[Tensor, List[Tensor]]: """ Args: x (Tensor): Feature map. res_feat (Tensor, optional): Feature for residual connection. Defaults to None. return_logits (bool): Whether return mask logits. Defaults to True. return_feat (bool): Whether return feature map. Defaults to True. Returns: Union[Tensor, List[Tensor]]: The return result is one of three results: res_feat, logits, or [logits, res_feat]. """ assert not (not return_logits and not return_feat) if res_feat is not None: assert self.with_conv_res res_feat = self.conv_res(res_feat) x = x + res_feat for conv in self.convs: x = conv(x) res_feat = x outs = [] if return_logits: x = self.upsample(x) if self.upsample_method == 'deconv': x = self.relu(x) mask_preds = self.conv_logits(x) outs.append(mask_preds) if return_feat: outs.append(res_feat) return outs if len(outs) > 1 else outs[0]
# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Optional, Union from mmcv.cnn import ConvModule from torch import Tensor from mmdet.registry import MODELS from .fcn_mask_head import FCNMaskHead @MODELS.register_module() class HTCMaskHead(FCNMaskHead): """Mask head for HTC. Args: with_conv_res (bool): Whether add conv layer for ``res_feat``. Defaults to True. """ def __init__(self, with_conv_res: bool = True, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.with_conv_res = with_conv_res if self.with_conv_res: self.conv_res = ConvModule( self.conv_out_channels, self.conv_out_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) def forward(self, x: Tensor, res_feat: Optional[Tensor] = None, return_logits: bool = True, return_feat: bool = True) -> Union[Tensor, List[Tensor]]: """ Args: x (Tensor): Feature map. res_feat (Tensor, optional): Feature for residual connection. Defaults to None. return_logits (bool): Whether return mask logits. Defaults to True. return_feat (bool): Whether return feature map. Defaults to True. Returns: Union[Tensor, List[Tensor]]: The return result is one of three results: res_feat, logits, or [logits, res_feat]. """ assert not (not return_logits and not return_feat) if res_feat is not None: assert self.with_conv_res res_feat = self.conv_res(res_feat) x = x + res_feat for conv in self.convs: x = conv(x) res_feat = x outs = [] if return_logits: x = self.upsample(x) if self.upsample_method == 'deconv': x = self.relu(x) mask_pred = self.conv_logits(x) outs.append(mask_pred) if return_feat: outs.append(res_feat) return outs if len(outs) > 1 else outs[0]
from typing import Any def get_prompt_input_key(inputs: dict[str, Any], memory_variables: list[str]) -> str: """ Get the prompt input key. Args: inputs: Dict[str, Any] memory_variables: List[str] Returns: A prompt input key. """ # "stop" is a special key that can be passed as input but is not used to # format the prompt. prompt_input_keys = list(set(inputs).difference(memory_variables + ["stop"])) if len(prompt_input_keys) != 1: raise ValueError(f"One input key expected got {prompt_input_keys}") return prompt_input_keys[0]
from typing import Any, Dict, List def get_prompt_input_key(inputs: Dict[str, Any], memory_variables: List[str]) -> str: """ Get the prompt input key. Args: inputs: Dict[str, Any] memory_variables: List[str] Returns: A prompt input key. """ # "stop" is a special key that can be passed as input but is not used to # format the prompt. prompt_input_keys = list(set(inputs).difference(memory_variables + ["stop"])) if len(prompt_input_keys) != 1: raise ValueError(f"One input key expected got {prompt_input_keys}") return prompt_input_keys[0]
__version__ = '0.32.0' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
__version__ = '0.31.2' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
_base_ = './cascade-mask-rcnn_r50_fpn_instaboost-4x_coco.py' model = dict( backbone=dict( type='ResNeXt', depth=101, groups=64, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
_base_ = './cascade_mask_rcnn_r50_fpn_instaboost_4x_coco.py' model = dict( backbone=dict( type='ResNeXt', depth=101, groups=64, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import shutil import time from unittest import TestCase from unittest.mock import Mock import torch from mmengine.data import InstanceData from mmdet.core import DetDataSample from mmdet.core.hook import DetVisualizationHook from mmdet.core.visualization import DetLocalVisualizer def _rand_bboxes(num_boxes, h, w): cx, cy, bw, bh = torch.rand(num_boxes, 4).T tl_x = ((cx * w) - (w * bw / 2)).clip(0, w) tl_y = ((cy * h) - (h * bh / 2)).clip(0, h) br_x = ((cx * w) + (w * bw / 2)).clip(0, w) br_y = ((cy * h) + (h * bh / 2)).clip(0, h) bboxes = torch.vstack([tl_x, tl_y, br_x, br_y]).T return bboxes class TestVisualizationHook(TestCase): def setUp(self) -> None: DetLocalVisualizer.get_instance('visualizer') data_sample = DetDataSample() data_sample.set_metainfo({ 'img_path': osp.join(osp.dirname(__file__), '../../data/color.jpg') }) self.data_batch = [{'data_sample': data_sample}] * 2 pred_instances = InstanceData() pred_instances.bboxes = _rand_bboxes(5, 10, 12) pred_instances.labels = torch.randint(0, 2, (5, )) pred_instances.scores = torch.rand((5, )) pred_det_data_sample = DetDataSample() pred_det_data_sample.pred_instances = pred_instances self.outputs = [pred_det_data_sample] * 2 def test_after_val_iter(self): runner = Mock() runner.iter = 1 hook = DetVisualizationHook() hook.after_val_iter(runner, 1, self.data_batch, self.outputs) def test_after_test_iter(self): runner = Mock() runner.iter = 1 hook = DetVisualizationHook(draw=True) hook.after_test_iter(runner, 1, self.data_batch, self.outputs) self.assertEqual(hook._test_index, 2) # test timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) test_out_dir = timestamp + '1' runner.work_dir = timestamp runner.timestamp = '1' hook = DetVisualizationHook(draw=False, test_out_dir=test_out_dir) hook.after_test_iter(runner, 1, self.data_batch, self.outputs) self.assertTrue(not osp.exists(f'{timestamp}/1/{test_out_dir}')) hook = DetVisualizationHook(draw=True, test_out_dir=test_out_dir) hook.after_test_iter(runner, 1, self.data_batch, self.outputs) self.assertTrue(osp.exists(f'{timestamp}/1/{test_out_dir}')) shutil.rmtree(f'{timestamp}')
# Copyright (c) OpenMMLab. All rights reserved. import os import shutil import time from unittest import TestCase from unittest.mock import Mock import torch from mmengine.data import InstanceData from mmdet.core import DetDataSample from mmdet.core.hook import DetVisualizationHook from mmdet.core.visualization import DetLocalVisualizer def _rand_bboxes(num_boxes, h, w): cx, cy, bw, bh = torch.rand(num_boxes, 4).T tl_x = ((cx * w) - (w * bw / 2)).clip(0, w) tl_y = ((cy * h) - (h * bh / 2)).clip(0, h) br_x = ((cx * w) + (w * bw / 2)).clip(0, w) br_y = ((cy * h) + (h * bh / 2)).clip(0, h) bboxes = torch.vstack([tl_x, tl_y, br_x, br_y]).T return bboxes class TestVisualizationHook(TestCase): def setUp(self) -> None: DetLocalVisualizer.get_instance('visualizer') data_sample = DetDataSample() data_sample.set_metainfo({'img_path': 'tests/data/color.jpg'}) self.data_batch = [{'data_sample': data_sample}] * 2 pred_instances = InstanceData() pred_instances.bboxes = _rand_bboxes(5, 10, 12) pred_instances.labels = torch.randint(0, 2, (5, )) pred_instances.scores = torch.rand((5, )) pred_det_data_sample = DetDataSample() pred_det_data_sample.pred_instances = pred_instances self.outputs = [pred_det_data_sample] * 2 def test_after_val_iter(self): runner = Mock() runner.iter = 1 hook = DetVisualizationHook() hook.after_val_iter(runner, 1, self.data_batch, self.outputs) def test_after_test_iter(self): runner = Mock() runner.iter = 1 hook = DetVisualizationHook(draw=True) hook.after_test_iter(runner, 1, self.data_batch, self.outputs) self.assertEqual(hook._test_index, 2) # test timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) test_out_dir = timestamp + '1' runner.work_dir = timestamp runner.timestamp = '1' hook = DetVisualizationHook(draw=False, test_out_dir=test_out_dir) hook.after_test_iter(runner, 1, self.data_batch, self.outputs) self.assertTrue(not os.path.exists(f'{timestamp}/1/{test_out_dir}')) hook = DetVisualizationHook(draw=True, test_out_dir=test_out_dir) hook.after_test_iter(runner, 1, self.data_batch, self.outputs) self.assertTrue(os.path.exists(f'{timestamp}/1/{test_out_dir}')) shutil.rmtree(f'{timestamp}/1/{test_out_dir}')
from __future__ import annotations from abc import abstractmethod from typing import Any import torch from tokenizers import Tokenizer from transformers.tokenization_utils_base import PreTrainedTokenizerBase from sentence_transformers.models.Module import Module class InputModule(Module): """ Subclass of :class:`sentence_transformers.models.Module`, base class for all input modules in the Sentence Transformers library, i.e. modules that are used to process inputs and optionally also perform processing in the forward pass. This class provides a common interface for all input modules, including methods for loading and saving the module's configuration and weights, as well as input processing. It also provides a method for performing the forward pass of the module. Three abstract methods are defined in this class, which must be implemented by subclasses: - :meth:`sentence_transformers.models.Module.forward`: The forward pass of the module. - :meth:`sentence_transformers.models.Module.save`: Save the module to disk. - :meth:`sentence_transformers.models.InputModule.tokenize`: Tokenize the input texts and return a dictionary of tokenized features. Optionally, you may also have to override: - :meth:`sentence_transformers.models.Module.load`: Load the module from disk. To assist with loading and saving the module, several utility methods are provided: - :meth:`sentence_transformers.models.Module.load_config`: Load the module's configuration from a JSON file. - :meth:`sentence_transformers.models.Module.load_file_path`: Load a file from the module's directory, regardless of whether the module is saved locally or on Hugging Face. - :meth:`sentence_transformers.models.Module.load_dir_path`: Load a directory from the module's directory, regardless of whether the module is saved locally or on Hugging Face. - :meth:`sentence_transformers.models.Module.load_torch_weights`: Load the PyTorch weights of the module, regardless of whether the module is saved locally or on Hugging Face. - :meth:`sentence_transformers.models.Module.save_config`: Save the module's configuration to a JSON file. - :meth:`sentence_transformers.models.Module.save_torch_weights`: Save the PyTorch weights of the module. - :meth:`sentence_transformers.models.InputModule.save_tokenizer`: Save the tokenizer used by the module. - :meth:`sentence_transformers.models.Module.get_config_dict`: Get the module's configuration as a dictionary. And several class variables are defined to assist with loading and saving the module: - :attr:`sentence_transformers.models.Module.config_file_name`: The name of the configuration file used to save the module's configuration. - :attr:`sentence_transformers.models.Module.config_keys`: A list of keys used to save the module's configuration. - :attr:`sentence_transformers.models.InputModule.save_in_root`: Whether to save the module's configuration in the root directory of the model or in a subdirectory named after the module. - :attr:`sentence_transformers.models.InputModule.tokenizer`: The tokenizer used by the module. """ save_in_root: bool = True tokenizer: PreTrainedTokenizerBase | Tokenizer """ The tokenizer used for tokenizing the input texts. It can be either a :class:`transformers.PreTrainedTokenizerBase` subclass or a Tokenizer from the ``tokenizers`` library. """ @abstractmethod def tokenize(self, texts: list[str], **kwargs) -> dict[str, torch.Tensor | Any]: """ Tokenizes the input texts and returns a dictionary of tokenized features. Args: texts (list[str]): List of input texts to tokenize. **kwargs: Additional keyword arguments for tokenization, e.g. ``task``. Returns: dict[str, torch.Tensor | Any]: Dictionary containing tokenized features, e.g. ``{"input_ids": ..., "attention_mask": ...}`` """ def save_tokenizer(self, output_path: str, **kwargs) -> None: """ Saves the tokenizer to the specified output path. Args: output_path (str): Path to save the tokenizer. **kwargs: Additional keyword arguments for saving the tokenizer. Returns: None """ if not hasattr(self, "tokenizer"): return if isinstance(self.tokenizer, PreTrainedTokenizerBase): self.tokenizer.save_pretrained(output_path, **kwargs) elif isinstance(self.tokenizer, Tokenizer): self.tokenizer.save(output_path, **kwargs) return
from __future__ import annotations from abc import abstractmethod from typing import Any import torch from tokenizers import Tokenizer from transformers.tokenization_utils_base import PreTrainedTokenizerBase from sentence_transformers.models.Module import Module class InputModule(Module): """ Subclass of :class:`sentence_transformers.models.Module`, base class for all input modules in the Sentence Transformers library, i.e. modules that are used to process inputs and optionally also perform processing in the forward pass. This class provides a common interface for all input modules, including methods for loading and saving the module's configuration and weights, as well as input processing. It also provides a method for performing the forward pass of the module. Three abstract methods are defined in this class, which must be implemented by subclasses: - :meth:`sentence_transformers.models.Module.forward`: The forward pass of the module. - :meth:`sentence_transformers.models.Module.save`: Save the module to disk. - :meth:`sentence_transformers.models.InputModule.tokenize`: Tokenize the input texts and return a dictionary of tokenized features. Optionally, you may also have to override: - :meth:`sentence_transformers.models.Module.load`: Load the module from disk. To assist with loading and saving the module, several utility methods are provided: - :meth:`sentence_transformers.models.Module.load_config`: Load the module's configuration from a JSON file. - :meth:`sentence_transformers.models.Module.load_file_path`: Load a file from the module's directory, regardless of whether the module is saved locally or on Hugging Face. - :meth:`sentence_transformers.models.Module.load_dir_path`: Load a directory from the module's directory, regardless of whether the module is saved locally or on Hugging Face. - :meth:`sentence_transformers.models.Module.load_torch_weights`: Load the PyTorch weights of the module, regardless of whether the module is saved locally or on Hugging Face. - :meth:`sentence_transformers.models.Module.save_config`: Save the module's configuration to a JSON file. - :meth:`sentence_transformers.models.Module.save_torch_weights`: Save the PyTorch weights of the module. - :meth:`sentence_transformers.models.InputModule.save_tokenizer`: Save the tokenizer used by the module. - :meth:`sentence_transformers.models.Module.get_config_dict`: Get the module's configuration as a dictionary. And several class variables are defined to assist with loading and saving the module: - :attr:`sentence_transformers.models.Module.config_file_name`: The name of the configuration file used to save the module's configuration. - :attr:`sentence_transformers.models.Module.config_keys`: A list of keys used to save the module's configuration. - :attr:`sentence_transformers.models.InputModule.save_in_root`: Whether to save the module's configuration in the root directory of the model or in a subdirectory named after the module. - :attr:`sentence_transformers.models.InputModule.tokenizer`: The tokenizer used by the module. """ save_in_root: bool = True tokenizer: PreTrainedTokenizerBase | Tokenizer """ The tokenizer used for tokenizing the input texts. It can be either a :class:`transformers.PreTrainedTokenizerBase` subclass or a Tokenizer from the ``tokenizers`` library. """ @abstractmethod def tokenize(self, texts: list[str], **kwargs) -> dict[str, torch.Tensor | Any]: """ Tokenizes the input texts and returns a dictionary of tokenized features. Args: texts (list[str]): List of input texts to tokenize. **kwargs: Additional keyword arguments for tokenization. Returns: dict[str, torch.Tensor | Any]: Dictionary containing tokenized features, e.g. ``{"input_ids": ..., "attention_mask": ...}`` """ def save_tokenizer(self, output_path: str, **kwargs) -> None: """ Saves the tokenizer to the specified output path. Args: output_path (str): Path to save the tokenizer. **kwargs: Additional keyword arguments for saving the tokenizer. Returns: None """ if not hasattr(self, "tokenizer"): return if isinstance(self.tokenizer, PreTrainedTokenizerBase): self.tokenizer.save_pretrained(output_path, **kwargs) elif isinstance(self.tokenizer, Tokenizer): self.tokenizer.save(output_path, **kwargs) return
from keras.src.backend.common.name_scope import name_scope from keras.src.backend.jax import core from keras.src.backend.jax import distribution_lib from keras.src.backend.jax import image from keras.src.backend.jax import linalg from keras.src.backend.jax import math from keras.src.backend.jax import nn from keras.src.backend.jax import numpy from keras.src.backend.jax import random from keras.src.backend.jax.core import IS_THREAD_SAFE from keras.src.backend.jax.core import SUPPORTS_SPARSE_TENSORS from keras.src.backend.jax.core import Variable from keras.src.backend.jax.core import cast from keras.src.backend.jax.core import compute_output_spec from keras.src.backend.jax.core import cond from keras.src.backend.jax.core import convert_to_numpy from keras.src.backend.jax.core import convert_to_tensor from keras.src.backend.jax.core import device_scope from keras.src.backend.jax.core import is_tensor from keras.src.backend.jax.core import random_seed_dtype from keras.src.backend.jax.core import scatter from keras.src.backend.jax.core import shape from keras.src.backend.jax.core import stop_gradient from keras.src.backend.jax.core import vectorized_map from keras.src.backend.jax.rnn import cudnn_ok from keras.src.backend.jax.rnn import gru from keras.src.backend.jax.rnn import lstm from keras.src.backend.jax.rnn import rnn
from keras.src.backend.common.name_scope import name_scope from keras.src.backend.jax import core from keras.src.backend.jax import distribution_lib from keras.src.backend.jax import image from keras.src.backend.jax import linalg from keras.src.backend.jax import math from keras.src.backend.jax import nn from keras.src.backend.jax import numpy from keras.src.backend.jax import random from keras.src.backend.jax.core import SUPPORTS_SPARSE_TENSORS from keras.src.backend.jax.core import Variable from keras.src.backend.jax.core import cast from keras.src.backend.jax.core import compute_output_spec from keras.src.backend.jax.core import cond from keras.src.backend.jax.core import convert_to_numpy from keras.src.backend.jax.core import convert_to_tensor from keras.src.backend.jax.core import device_scope from keras.src.backend.jax.core import is_tensor from keras.src.backend.jax.core import random_seed_dtype from keras.src.backend.jax.core import scatter from keras.src.backend.jax.core import shape from keras.src.backend.jax.core import stop_gradient from keras.src.backend.jax.core import vectorized_map from keras.src.backend.jax.rnn import cudnn_ok from keras.src.backend.jax.rnn import gru from keras.src.backend.jax.rnn import lstm from keras.src.backend.jax.rnn import rnn
# model settings preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) norm_cfg = dict(type='BN', requires_grad=False) model = dict( type='FasterRCNN', preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNet', depth=50, num_stages=3, strides=(1, 2, 2), dilations=(1, 1, 1), out_indices=(2, ), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), rpn_head=dict( type='RPNHead', in_channels=1024, feat_channels=1024, anchor_generator=dict( type='AnchorGenerator', scales=[2, 4, 8, 16, 32], ratios=[0.5, 1.0, 2.0], strides=[16]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', shared_head=dict( type='ResLayer', depth=50, stage=3, stride=2, dilation=1, style='caffe', norm_cfg=norm_cfg, norm_eval=True, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=1024, featmap_strides=[16]), bbox_head=dict( type='BBoxHead', with_avg_pool=True, roi_feat_size=7, in_channels=2048, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=12000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=6000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)))
# model settings preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) norm_cfg = dict(type='BN', requires_grad=False) model = dict( preprocess_cfg=preprocess_cfg, type='FasterRCNN', backbone=dict( type='ResNet', depth=50, num_stages=3, strides=(1, 2, 2), dilations=(1, 1, 1), out_indices=(2, ), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), rpn_head=dict( type='RPNHead', in_channels=1024, feat_channels=1024, anchor_generator=dict( type='AnchorGenerator', scales=[2, 4, 8, 16, 32], ratios=[0.5, 1.0, 2.0], strides=[16]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', shared_head=dict( type='ResLayer', depth=50, stage=3, stride=2, dilation=1, style='caffe', norm_cfg=norm_cfg, norm_eval=True, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=1024, featmap_strides=[16]), bbox_head=dict( type='BBoxHead', with_avg_pool=True, roi_feat_size=7, in_channels=2048, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=12000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=6000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)))
""" In this example we train a semantic search model to search through Wikipedia articles about programming articles & technologies. We use the text paragraphs from the following Wikipedia articles: Assembly language, C , C Sharp , C++, Go , Java , JavaScript, Keras, Laravel, MATLAB, Matplotlib, MongoDB, MySQL, Natural Language Toolkit, NumPy, pandas (software), Perl, PHP, PostgreSQL, Python , PyTorch, R , React, Rust , Scala , scikit-learn, SciPy, Swift , TensorFlow, Vue.js In: 1_programming_query_generation.py - We generate queries for all paragraphs from these articles 2_programming_train_bi-encoder.py - We train a SentenceTransformer bi-encoder with these generated queries. This results in a model we can then use for semantic search (for the given Wikipedia articles). 3_programming_semantic_search.py - Shows how the trained model can be used for semantic search """ import gzip import json import os from sentence_transformers import SentenceTransformer, util # Load the model we trained in 2_programming_train_bi-encoder.py model = SentenceTransformer("output/programming-model") # Load the corpus docs = [] corpus_filepath = "wiki-programmming-20210101.jsonl.gz" if not os.path.exists(corpus_filepath): util.http_get("https://sbert.net/datasets/wiki-programmming-20210101.jsonl.gz", corpus_filepath) with gzip.open(corpus_filepath, "rt") as fIn: for line in fIn: data = json.loads(line.strip()) title = data["title"] for p in data["paragraphs"]: if len(p) > 100: # Only take paragraphs with at least 100 chars docs.append((title, p)) paragraph_emb = model.encode([d[1] for d in docs], convert_to_tensor=True) print("Available Wikipedia Articles:") print(", ".join(sorted(list(set([d[0] for d in docs]))))) # Example for semantic search while True: query = input("Query: ") query_emb = model.encode(query, convert_to_tensor=True) hits = util.semantic_search(query_emb, paragraph_emb, top_k=3)[0] for hit in hits: doc = docs[hit["corpus_id"]] print("{:.2f}\t{}\t\t{}".format(hit["score"], doc[0], doc[1])) print("\n=================\n")
""" In this example we train a semantic search model to search through Wikipedia articles about programming articles & technologies. We use the text paragraphs from the following Wikipedia articles: Assembly language, C , C Sharp , C++, Go , Java , JavaScript, Keras, Laravel, MATLAB, Matplotlib, MongoDB, MySQL, Natural Language Toolkit, NumPy, pandas (software), Perl, PHP, PostgreSQL, Python , PyTorch, R , React, Rust , Scala , scikit-learn, SciPy, Swift , TensorFlow, Vue.js In: 1_programming_query_generation.py - We generate queries for all paragraphs from these articles 2_programming_train_bi-encoder.py - We train a SentenceTransformer bi-encoder with these generated queries. This results in a model we can then use for sematic search (for the given Wikipedia articles). 3_programming_semantic_search.py - Shows how the trained model can be used for semantic search """ from sentence_transformers import SentenceTransformer, util import gzip import json import os # Load the model we trained in 2_programming_train_bi-encoder.py model = SentenceTransformer('output/programming-model') # Load the corpus docs = [] corpus_filepath = 'wiki-programmming-20210101.jsonl.gz' if not os.path.exists(corpus_filepath): util.http_get('https://sbert.net/datasets/wiki-programmming-20210101.jsonl.gz', corpus_filepath) with gzip.open(corpus_filepath, 'rt') as fIn: for line in fIn: data = json.loads(line.strip()) title = data['title'] for p in data['paragraphs']: if len(p) > 100: #Only take paragraphs with at least 100 chars docs.append((title, p)) paragraph_emb = model.encode([d[1] for d in docs], convert_to_tensor=True) print("Available Wikipedia Articles:") print(", ".join(sorted(list(set([d[0] for d in docs]))))) # Example for semantic search while True: query = input("Query: ") query_emb = model.encode(query, convert_to_tensor=True) hits = util.semantic_search(query_emb, paragraph_emb, top_k=3)[0] for hit in hits: doc = docs[hit['corpus_id']] print("{:.2f}\t{}\t\t{}".format(hit['score'], doc[0], doc[1])) print("\n=================\n")
from prisma.models import User from backend.blocks.basic import AgentInputBlock, PrintToConsoleBlock from backend.blocks.text import FillTextTemplateBlock from backend.data import graph from backend.data.graph import create_graph from backend.data.user import get_or_create_user from backend.util.test import SpinTestServer, wait_execution async def create_test_user(alt_user: bool = False) -> User: if alt_user: test_user_data = { "sub": "3e53486c-cf57-477e-ba2a-cb02dc828e1b", "email": "testuser2@example.com", "name": "Test User 2", } else: test_user_data = { "sub": "ef3b97d7-1161-4eb4-92b2-10c24fb154c1", "email": "testuser@example.com", "name": "Test User", } user = await get_or_create_user(test_user_data) return user def create_test_graph() -> graph.Graph: """ InputBlock \ ---- FillTextTemplateBlock ---- PrintToConsoleBlock / InputBlock """ nodes = [ graph.Node( block_id=AgentInputBlock().id, input_default={"name": "input_1"}, ), graph.Node( block_id=AgentInputBlock().id, input_default={"name": "input_2"}, ), graph.Node( block_id=FillTextTemplateBlock().id, input_default={ "format": "{{a}}, {{b}}{{c}}", "values_#_c": "!!!", }, ), graph.Node(block_id=PrintToConsoleBlock().id), ] links = [ graph.Link( source_id=nodes[0].id, sink_id=nodes[2].id, source_name="result", sink_name="values_#_a", ), graph.Link( source_id=nodes[1].id, sink_id=nodes[2].id, source_name="result", sink_name="values_#_b", ), graph.Link( source_id=nodes[2].id, sink_id=nodes[3].id, source_name="output", sink_name="text", ), ] return graph.Graph( name="TestGraph", description="Test graph", nodes=nodes, links=links, ) async def sample_agent(): async with SpinTestServer() as server: test_user = await create_test_user() test_graph = await create_graph(create_test_graph(), test_user.id) input_data = {"input_1": "Hello", "input_2": "World"} response = await server.agent_server.test_execute_graph( graph_id=test_graph.id, user_id=test_user.id, node_input=input_data, ) print(response) result = await wait_execution( test_user.id, test_graph.id, response.graph_exec_id, 10 ) print(result) if __name__ == "__main__": import asyncio asyncio.run(sample_agent())
from prisma.models import User from backend.blocks.basic import AgentInputBlock, PrintToConsoleBlock from backend.blocks.text import FillTextTemplateBlock from backend.data import graph from backend.data.graph import create_graph from backend.data.user import get_or_create_user from backend.util.test import SpinTestServer, wait_execution async def create_test_user(alt_user: bool = False) -> User: if alt_user: test_user_data = { "sub": "3e53486c-cf57-477e-ba2a-cb02dc828e1b", "email": "testuser2@example.com", "name": "Test User 2", } else: test_user_data = { "sub": "ef3b97d7-1161-4eb4-92b2-10c24fb154c1", "email": "testuser@example.com", "name": "Test User", } user = await get_or_create_user(test_user_data) return user def create_test_graph() -> graph.Graph: """ InputBlock \ ---- FillTextTemplateBlock ---- PrintToConsoleBlock / InputBlock """ nodes = [ graph.Node( block_id=AgentInputBlock().id, input_default={"name": "input_1"}, ), graph.Node( block_id=AgentInputBlock().id, input_default={"name": "input_2"}, ), graph.Node( block_id=FillTextTemplateBlock().id, input_default={ "format": "{{a}}, {{b}}{{c}}", "values_#_c": "!!!", }, ), graph.Node(block_id=PrintToConsoleBlock().id), ] links = [ graph.Link( source_id=nodes[0].id, sink_id=nodes[2].id, source_name="result", sink_name="values_#_a", ), graph.Link( source_id=nodes[1].id, sink_id=nodes[2].id, source_name="result", sink_name="values_#_b", ), graph.Link( source_id=nodes[2].id, sink_id=nodes[3].id, source_name="output", sink_name="text", ), ] return graph.Graph( name="TestGraph", description="Test graph", nodes=nodes, links=links, ) async def sample_agent(): async with SpinTestServer() as server: test_user = await create_test_user() test_graph = await create_graph(create_test_graph(), test_user.id) input_data = {"input_1": "Hello", "input_2": "World"} response = await server.agent_server.test_execute_graph( test_graph.id, input_data, test_user.id ) print(response) result = await wait_execution( test_user.id, test_graph.id, response.graph_exec_id, 10 ) print(result) if __name__ == "__main__": import asyncio asyncio.run(sample_agent())
import grpc from grpc_health.v1 import health, health_pb2, health_pb2_grpc from grpc_reflection.v1alpha import reflection from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.proto import jina_pb2, jina_pb2_grpc class DummyResponseModel(BaseModel): protocol: str class MultiProtocolGateway(Gateway): def __init__(self, **kwargs): super().__init__(**kwargs) self.http_port = self.runtime_args.port[0] self.grpc_port = self.runtime_args.port[1] self.health_servicer = health.HealthServicer(experimental_non_blocking=True) async def _setup_http_server(self): from fastapi import FastAPI app = FastAPI( title='HTTP Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return {'protocol': 'http'} self.http_server = Server( Config(app, host=__default_host__, port=self.http_port) ) async def _setup_grpc_server(self): self.grpc_server = grpc.aio.server() jina_pb2_grpc.add_JinaRPCServicer_to_server( self.streamer._streamer, self.grpc_server ) service_names = ( jina_pb2.DESCRIPTOR.services_by_name['JinaRPC'].full_name, reflection.SERVICE_NAME, ) # Mark all services as healthy. health_pb2_grpc.add_HealthServicer_to_server( self.health_servicer, self.grpc_server ) for service in service_names: self.health_servicer.set(service, health_pb2.HealthCheckResponse.SERVING) reflection.enable_server_reflection(service_names, self.grpc_server) self.grpc_server.add_insecure_port(f'{__default_host__}:{self.grpc_port}') await self.grpc_server.start() async def setup_server(self): await self._setup_http_server() await self._setup_grpc_server() async def run_server(self): await self.http_server.serve() await self.grpc_server.wait_for_termination() async def shutdown(self): self.http_server.should_exit = True await self.grpc_server.stop(0) await self.http_server.shutdown() self.health_servicer.enter_graceful_shutdown() @property def _should_exit(self) -> bool: return self.http_server.should_exit
import grpc from grpc_health.v1 import health, health_pb2, health_pb2_grpc from grpc_reflection.v1alpha import reflection from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.proto import jina_pb2, jina_pb2_grpc class DummyResponseModel(BaseModel): protocol: str class MultiProtocolGateway(Gateway): def __init__(self, **kwargs): super().__init__(**kwargs) self.http_port = self.runtime_args.port[0] self.grpc_port = self.runtime_args.port[1] self.health_servicer = health.HealthServicer(experimental_non_blocking=True) async def _setup_http_server(self): from fastapi import FastAPI app = FastAPI( title='HTTP Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return {'protocol': 'http'} self.http_server = Server( Config(app, host=__default_host__, port=self.http_port) ) async def _setup_grpc_server(self): self.grpc_server = grpc.aio.server() jina_pb2_grpc.add_JinaRPCServicer_to_server( self.streamer._streamer, self.grpc_server ) service_names = ( jina_pb2.DESCRIPTOR.services_by_name['JinaRPC'].full_name, reflection.SERVICE_NAME, ) # Mark all services as healthy. health_pb2_grpc.add_HealthServicer_to_server( self.health_servicer, self.grpc_server ) for service in service_names: self.health_servicer.set(service, health_pb2.HealthCheckResponse.SERVING) reflection.enable_server_reflection(service_names, self.grpc_server) self.grpc_server.add_insecure_port(f'{__default_host__}:{self.grpc_port}') await self.grpc_server.start() async def setup_server(self): await self._setup_http_server() await self._setup_grpc_server() async def run_server(self): await self.http_server.serve() await self.grpc_server.wait_for_termination() async def teardown(self): await super().teardown() await self.http_server.shutdown() self.health_servicer.enter_graceful_shutdown() async def stop_server(self): self.http_server.should_exit = True await self.grpc_server.stop(0) @property def should_exit(self) -> bool: return self.http_server.should_exit
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for docs in self.streamer.stream_docs( docs=DocumentArray([Document(text=text)]), exec_endpoint='/', ): doc = docs[0] return {'text': doc.text, 'tags': doc.tags} self.server = Server(Config(app, host=self.host, port=self.port)) async def run_server(self): await self.server.serve() async def shutdown(self): self.server.should_exit = True await self.server.shutdown()
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=self.host, port=self.port)) async def run_server(self): await self.server.serve() async def shutdown(self): self.server.should_exit = True await self.server.shutdown()
from typing import Any, Optional, Union, cast from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import HumanMessage, SystemMessage from langchain_core.output_parsers import BaseLLMOutputParser from langchain_core.output_parsers.openai_functions import ( OutputFunctionsParser, PydanticOutputFunctionsParser, ) from langchain_core.prompts import PromptTemplate from langchain_core.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate from langchain_core.utils.pydantic import is_basemodel_subclass from pydantic import BaseModel, Field from langchain.chains.llm import LLMChain from langchain.chains.openai_functions.utils import get_llm_kwargs class AnswerWithSources(BaseModel): """An answer to the question, with sources.""" answer: str = Field(..., description="Answer to the question that was asked") sources: list[str] = Field( ..., description="List of sources used to answer the question" ) @deprecated( since="0.2.13", removal="1.0", message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with structured responses: " "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" # noqa: E501 ), ) def create_qa_with_structure_chain( llm: BaseLanguageModel, schema: Union[dict, type[BaseModel]], output_parser: str = "base", prompt: Optional[Union[PromptTemplate, ChatPromptTemplate]] = None, verbose: bool = False, ) -> LLMChain: """Create a question answering chain that returns an answer with sources based on schema. Args: llm: Language model to use for the chain. schema: Pydantic schema to use for the output. output_parser: Output parser to use. Should be one of `pydantic` or `base`. Default to `base`. prompt: Optional prompt to use for the chain. Returns: """ if output_parser == "pydantic": if not (isinstance(schema, type) and is_basemodel_subclass(schema)): raise ValueError( "Must provide a pydantic class for schema when output_parser is " "'pydantic'." ) _output_parser: BaseLLMOutputParser = PydanticOutputFunctionsParser( pydantic_schema=schema ) elif output_parser == "base": _output_parser = OutputFunctionsParser() else: raise ValueError( f"Got unexpected output_parser: {output_parser}. " f"Should be one of `pydantic` or `base`." ) if isinstance(schema, type) and is_basemodel_subclass(schema): if hasattr(schema, "model_json_schema"): schema_dict = cast(dict, schema.model_json_schema()) else: schema_dict = cast(dict, schema.schema()) else: schema_dict = cast(dict, schema) function = { "name": schema_dict["title"], "description": schema_dict["description"], "parameters": schema_dict, } llm_kwargs = get_llm_kwargs(function) messages = [ SystemMessage( content=( "You are a world class algorithm to answer " "questions in a specific format." ) ), HumanMessage(content="Answer question using the following context"), HumanMessagePromptTemplate.from_template("{context}"), HumanMessagePromptTemplate.from_template("Question: {question}"), HumanMessage(content="Tips: Make sure to answer in the correct format"), ] prompt = prompt or ChatPromptTemplate(messages=messages) # type: ignore[arg-type, call-arg] chain = LLMChain( llm=llm, prompt=prompt, llm_kwargs=llm_kwargs, output_parser=_output_parser, verbose=verbose, ) return chain @deprecated( since="0.2.13", removal="1.0", message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with sources: " "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" # noqa: E501 ), ) def create_qa_with_sources_chain( llm: BaseLanguageModel, verbose: bool = False, **kwargs: Any ) -> LLMChain: """Create a question answering chain that returns an answer with sources. Args: llm: Language model to use for the chain. verbose: Whether to print the details of the chain **kwargs: Keyword arguments to pass to `create_qa_with_structure_chain`. Returns: Chain (LLMChain) that can be used to answer questions with citations. """ return create_qa_with_structure_chain( llm, AnswerWithSources, verbose=verbose, **kwargs )
from typing import Any, List, Optional, Type, Union, cast from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import HumanMessage, SystemMessage from langchain_core.output_parsers import BaseLLMOutputParser from langchain_core.output_parsers.openai_functions import ( OutputFunctionsParser, PydanticOutputFunctionsParser, ) from langchain_core.prompts import PromptTemplate from langchain_core.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate from langchain_core.utils.pydantic import is_basemodel_subclass from pydantic import BaseModel, Field from langchain.chains.llm import LLMChain from langchain.chains.openai_functions.utils import get_llm_kwargs class AnswerWithSources(BaseModel): """An answer to the question, with sources.""" answer: str = Field(..., description="Answer to the question that was asked") sources: List[str] = Field( ..., description="List of sources used to answer the question" ) @deprecated( since="0.2.13", removal="1.0", message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with structured responses: " "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" # noqa: E501 ), ) def create_qa_with_structure_chain( llm: BaseLanguageModel, schema: Union[dict, Type[BaseModel]], output_parser: str = "base", prompt: Optional[Union[PromptTemplate, ChatPromptTemplate]] = None, verbose: bool = False, ) -> LLMChain: """Create a question answering chain that returns an answer with sources based on schema. Args: llm: Language model to use for the chain. schema: Pydantic schema to use for the output. output_parser: Output parser to use. Should be one of `pydantic` or `base`. Default to `base`. prompt: Optional prompt to use for the chain. Returns: """ if output_parser == "pydantic": if not (isinstance(schema, type) and is_basemodel_subclass(schema)): raise ValueError( "Must provide a pydantic class for schema when output_parser is " "'pydantic'." ) _output_parser: BaseLLMOutputParser = PydanticOutputFunctionsParser( pydantic_schema=schema ) elif output_parser == "base": _output_parser = OutputFunctionsParser() else: raise ValueError( f"Got unexpected output_parser: {output_parser}. " f"Should be one of `pydantic` or `base`." ) if isinstance(schema, type) and is_basemodel_subclass(schema): if hasattr(schema, "model_json_schema"): schema_dict = cast(dict, schema.model_json_schema()) else: schema_dict = cast(dict, schema.schema()) else: schema_dict = cast(dict, schema) function = { "name": schema_dict["title"], "description": schema_dict["description"], "parameters": schema_dict, } llm_kwargs = get_llm_kwargs(function) messages = [ SystemMessage( content=( "You are a world class algorithm to answer " "questions in a specific format." ) ), HumanMessage(content="Answer question using the following context"), HumanMessagePromptTemplate.from_template("{context}"), HumanMessagePromptTemplate.from_template("Question: {question}"), HumanMessage(content="Tips: Make sure to answer in the correct format"), ] prompt = prompt or ChatPromptTemplate(messages=messages) # type: ignore[arg-type, call-arg] chain = LLMChain( llm=llm, prompt=prompt, llm_kwargs=llm_kwargs, output_parser=_output_parser, verbose=verbose, ) return chain @deprecated( since="0.2.13", removal="1.0", message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with sources: " "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" # noqa: E501 ), ) def create_qa_with_sources_chain( llm: BaseLanguageModel, verbose: bool = False, **kwargs: Any ) -> LLMChain: """Create a question answering chain that returns an answer with sources. Args: llm: Language model to use for the chain. verbose: Whether to print the details of the chain **kwargs: Keyword arguments to pass to `create_qa_with_structure_chain`. Returns: Chain (LLMChain) that can be used to answer questions with citations. """ return create_qa_with_structure_chain( llm, AnswerWithSources, verbose=verbose, **kwargs )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.datasets import boston_housing as boston_housing from keras.datasets import california_housing as california_housing from keras.datasets import cifar10 as cifar10 from keras.datasets import cifar100 as cifar100 from keras.datasets import fashion_mnist as fashion_mnist from keras.datasets import imdb as imdb from keras.datasets import mnist as mnist from keras.datasets import reuters as reuters
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api.datasets import boston_housing from keras.api.datasets import california_housing from keras.api.datasets import cifar10 from keras.api.datasets import cifar100 from keras.api.datasets import fashion_mnist from keras.api.datasets import imdb from keras.api.datasets import mnist from keras.api.datasets import reuters
"""Internal utilities for the in memory implementation of VectorStore. These are part of a private API, and users should not use them directly as they can change without notice. """ from __future__ import annotations import logging from typing import TYPE_CHECKING, Union if TYPE_CHECKING: import numpy as np Matrix = Union[list[list[float]], list[np.ndarray], np.ndarray] logger = logging.getLogger(__name__) def _cosine_similarity(x: Matrix, y: Matrix) -> np.ndarray: """Row-wise cosine similarity between two equal-width matrices. Args: x: A matrix of shape (n, m). y: A matrix of shape (k, m). Returns: A matrix of shape (n, k) where each element (i, j) is the cosine similarity between the ith row of X and the jth row of Y. Raises: ValueError: If the number of columns in X and Y are not the same. ImportError: If numpy is not installed. """ try: import numpy as np except ImportError as e: msg = ( "cosine_similarity requires numpy to be installed. " "Please install numpy with `pip install numpy`." ) raise ImportError(msg) from e if len(x) == 0 or len(y) == 0: return np.array([[]]) x = np.array(x) y = np.array(y) if x.shape[1] != y.shape[1]: msg = ( f"Number of columns in X and Y must be the same. X has shape {x.shape} " f"and Y has shape {y.shape}." ) raise ValueError(msg) try: import simsimd as simd # type: ignore[import-not-found] except ImportError: logger.debug( "Unable to import simsimd, defaulting to NumPy implementation. If you want " "to use simsimd please install with `pip install simsimd`." ) x_norm = np.linalg.norm(x, axis=1) y_norm = np.linalg.norm(y, axis=1) # Ignore divide by zero errors run time warnings as those are handled below. with np.errstate(divide="ignore", invalid="ignore"): similarity = np.dot(x, y.T) / np.outer(x_norm, y_norm) similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0 return similarity x = np.array(x, dtype=np.float32) y = np.array(y, dtype=np.float32) return 1 - np.array(simd.cdist(x, y, metric="cosine")) def maximal_marginal_relevance( query_embedding: np.ndarray, embedding_list: list, lambda_mult: float = 0.5, k: int = 4, ) -> list[int]: """Calculate maximal marginal relevance. Args: query_embedding: The query embedding. embedding_list: A list of embeddings. lambda_mult: The lambda parameter for MMR. Default is 0.5. k: The number of embeddings to return. Default is 4. Returns: A list of indices of the embeddings to return. Raises: ImportError: If numpy is not installed. """ try: import numpy as np except ImportError as e: msg = ( "maximal_marginal_relevance requires numpy to be installed. " "Please install numpy with `pip install numpy`." ) raise ImportError(msg) from e if min(k, len(embedding_list)) <= 0: return [] if query_embedding.ndim == 1: query_embedding = np.expand_dims(query_embedding, axis=0) similarity_to_query = _cosine_similarity(query_embedding, embedding_list)[0] most_similar = int(np.argmax(similarity_to_query)) idxs = [most_similar] selected = np.array([embedding_list[most_similar]]) while len(idxs) < min(k, len(embedding_list)): best_score = -np.inf idx_to_add = -1 similarity_to_selected = _cosine_similarity(embedding_list, selected) for i, query_score in enumerate(similarity_to_query): if i in idxs: continue redundant_score = max(similarity_to_selected[i]) equation_score = ( lambda_mult * query_score - (1 - lambda_mult) * redundant_score ) if equation_score > best_score: best_score = equation_score idx_to_add = i idxs.append(idx_to_add) selected = np.append(selected, [embedding_list[idx_to_add]], axis=0) return idxs
"""Internal utilities for the in memory implementation of VectorStore. These are part of a private API, and users should not use them directly as they can change without notice. """ from __future__ import annotations import logging from typing import TYPE_CHECKING, Union if TYPE_CHECKING: import numpy as np Matrix = Union[list[list[float]], list[np.ndarray], np.ndarray] logger = logging.getLogger(__name__) def _cosine_similarity(x: Matrix, y: Matrix) -> np.ndarray: """Row-wise cosine similarity between two equal-width matrices. Args: x: A matrix of shape (n, m). y: A matrix of shape (k, m). Returns: A matrix of shape (n, k) where each element (i, j) is the cosine similarity between the ith row of X and the jth row of Y. Raises: ValueError: If the number of columns in X and Y are not the same. ImportError: If numpy is not installed. """ try: import numpy as np except ImportError as e: msg = ( "cosine_similarity requires numpy to be installed. " "Please install numpy with `pip install numpy`." ) raise ImportError(msg) from e if len(x) == 0 or len(y) == 0: return np.array([]) x = np.array(x) y = np.array(y) if x.shape[1] != y.shape[1]: msg = ( f"Number of columns in X and Y must be the same. X has shape {x.shape} " f"and Y has shape {y.shape}." ) raise ValueError(msg) try: import simsimd as simd # type: ignore[import-not-found] except ImportError: logger.debug( "Unable to import simsimd, defaulting to NumPy implementation. If you want " "to use simsimd please install with `pip install simsimd`." ) x_norm = np.linalg.norm(x, axis=1) y_norm = np.linalg.norm(y, axis=1) # Ignore divide by zero errors run time warnings as those are handled below. with np.errstate(divide="ignore", invalid="ignore"): similarity = np.dot(x, y.T) / np.outer(x_norm, y_norm) similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0 return similarity x = np.array(x, dtype=np.float32) y = np.array(y, dtype=np.float32) return 1 - np.array(simd.cdist(x, y, metric="cosine")) def maximal_marginal_relevance( query_embedding: np.ndarray, embedding_list: list, lambda_mult: float = 0.5, k: int = 4, ) -> list[int]: """Calculate maximal marginal relevance. Args: query_embedding: The query embedding. embedding_list: A list of embeddings. lambda_mult: The lambda parameter for MMR. Default is 0.5. k: The number of embeddings to return. Default is 4. Returns: A list of indices of the embeddings to return. Raises: ImportError: If numpy is not installed. """ try: import numpy as np except ImportError as e: msg = ( "maximal_marginal_relevance requires numpy to be installed. " "Please install numpy with `pip install numpy`." ) raise ImportError(msg) from e if min(k, len(embedding_list)) <= 0: return [] if query_embedding.ndim == 1: query_embedding = np.expand_dims(query_embedding, axis=0) similarity_to_query = _cosine_similarity(query_embedding, embedding_list)[0] most_similar = int(np.argmax(similarity_to_query)) idxs = [most_similar] selected = np.array([embedding_list[most_similar]]) while len(idxs) < min(k, len(embedding_list)): best_score = -np.inf idx_to_add = -1 similarity_to_selected = _cosine_similarity(embedding_list, selected) for i, query_score in enumerate(similarity_to_query): if i in idxs: continue redundant_score = max(similarity_to_selected[i]) equation_score = ( lambda_mult * query_score - (1 - lambda_mult) * redundant_score ) if equation_score > best_score: best_score = equation_score idx_to_add = i idxs.append(idx_to_add) selected = np.append(selected, [embedding_list[idx_to_add]], axis=0) return idxs
"""Base classes for chain routing.""" from __future__ import annotations from abc import ABC from collections.abc import Mapping from typing import Any, NamedTuple, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, Callbacks, ) from pydantic import ConfigDict from langchain.chains.base import Chain class Route(NamedTuple): destination: Optional[str] next_inputs: dict[str, Any] class RouterChain(Chain, ABC): """Chain that outputs the name of a destination chain and the inputs to it.""" @property def output_keys(self) -> list[str]: return ["destination", "next_inputs"] def route(self, inputs: dict[str, Any], callbacks: Callbacks = None) -> Route: """ Route inputs to a destination chain. Args: inputs: inputs to the chain callbacks: callbacks to use for the chain Returns: a Route object """ result = self(inputs, callbacks=callbacks) return Route(result["destination"], result["next_inputs"]) async def aroute( self, inputs: dict[str, Any], callbacks: Callbacks = None, ) -> Route: result = await self.acall(inputs, callbacks=callbacks) return Route(result["destination"], result["next_inputs"]) class MultiRouteChain(Chain): """Use a single chain to route an input to one of multiple candidate chains.""" router_chain: RouterChain """Chain that routes inputs to destination chains.""" destination_chains: Mapping[str, Chain] """Chains that return final answer to inputs.""" default_chain: Chain """Default chain to use when none of the destination chains are suitable.""" silent_errors: bool = False """If True, use default_chain when an invalid destination name is provided. Defaults to False.""" model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @property def input_keys(self) -> list[str]: """Will be whatever keys the router chain prompt expects. :meta private: """ return self.router_chain.input_keys @property def output_keys(self) -> list[str]: """Will always return text key. :meta private: """ return [] def _call( self, inputs: dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() route = self.router_chain.route(inputs, callbacks=callbacks) _run_manager.on_text( str(route.destination) + ": " + str(route.next_inputs), verbose=self.verbose, ) if not route.destination: return self.default_chain(route.next_inputs, callbacks=callbacks) if route.destination in self.destination_chains: return self.destination_chains[route.destination]( route.next_inputs, callbacks=callbacks, ) if self.silent_errors: return self.default_chain(route.next_inputs, callbacks=callbacks) msg = f"Received invalid destination chain name '{route.destination}'" raise ValueError(msg) async def _acall( self, inputs: dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> dict[str, Any]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() route = await self.router_chain.aroute(inputs, callbacks=callbacks) await _run_manager.on_text( str(route.destination) + ": " + str(route.next_inputs), verbose=self.verbose, ) if not route.destination: return await self.default_chain.acall( route.next_inputs, callbacks=callbacks, ) if route.destination in self.destination_chains: return await self.destination_chains[route.destination].acall( route.next_inputs, callbacks=callbacks, ) if self.silent_errors: return await self.default_chain.acall( route.next_inputs, callbacks=callbacks, ) msg = f"Received invalid destination chain name '{route.destination}'" raise ValueError(msg)
"""Base classes for chain routing.""" from __future__ import annotations from abc import ABC from collections.abc import Mapping from typing import Any, NamedTuple, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, Callbacks, ) from pydantic import ConfigDict from langchain.chains.base import Chain class Route(NamedTuple): destination: Optional[str] next_inputs: dict[str, Any] class RouterChain(Chain, ABC): """Chain that outputs the name of a destination chain and the inputs to it.""" @property def output_keys(self) -> list[str]: return ["destination", "next_inputs"] def route(self, inputs: dict[str, Any], callbacks: Callbacks = None) -> Route: """ Route inputs to a destination chain. Args: inputs: inputs to the chain callbacks: callbacks to use for the chain Returns: a Route object """ result = self(inputs, callbacks=callbacks) return Route(result["destination"], result["next_inputs"]) async def aroute( self, inputs: dict[str, Any], callbacks: Callbacks = None ) -> Route: result = await self.acall(inputs, callbacks=callbacks) return Route(result["destination"], result["next_inputs"]) class MultiRouteChain(Chain): """Use a single chain to route an input to one of multiple candidate chains.""" router_chain: RouterChain """Chain that routes inputs to destination chains.""" destination_chains: Mapping[str, Chain] """Chains that return final answer to inputs.""" default_chain: Chain """Default chain to use when none of the destination chains are suitable.""" silent_errors: bool = False """If True, use default_chain when an invalid destination name is provided. Defaults to False.""" model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @property def input_keys(self) -> list[str]: """Will be whatever keys the router chain prompt expects. :meta private: """ return self.router_chain.input_keys @property def output_keys(self) -> list[str]: """Will always return text key. :meta private: """ return [] def _call( self, inputs: dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() route = self.router_chain.route(inputs, callbacks=callbacks) _run_manager.on_text( str(route.destination) + ": " + str(route.next_inputs), verbose=self.verbose ) if not route.destination: return self.default_chain(route.next_inputs, callbacks=callbacks) if route.destination in self.destination_chains: return self.destination_chains[route.destination]( route.next_inputs, callbacks=callbacks ) if self.silent_errors: return self.default_chain(route.next_inputs, callbacks=callbacks) msg = f"Received invalid destination chain name '{route.destination}'" raise ValueError(msg) async def _acall( self, inputs: dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> dict[str, Any]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() route = await self.router_chain.aroute(inputs, callbacks=callbacks) await _run_manager.on_text( str(route.destination) + ": " + str(route.next_inputs), verbose=self.verbose ) if not route.destination: return await self.default_chain.acall( route.next_inputs, callbacks=callbacks ) if route.destination in self.destination_chains: return await self.destination_chains[route.destination].acall( route.next_inputs, callbacks=callbacks ) if self.silent_errors: return await self.default_chain.acall( route.next_inputs, callbacks=callbacks ) msg = f"Received invalid destination chain name '{route.destination}'" raise ValueError(msg)
from __future__ import annotations from .Asym import Asym from .BoW import BoW from .CLIPModel import CLIPModel from .CNN import CNN from .Dense import Dense from .Dropout import Dropout from .InputModule import InputModule from .LayerNorm import LayerNorm from .LSTM import LSTM from .Module import Module from .Normalize import Normalize from .Pooling import Pooling from .StaticEmbedding import StaticEmbedding from .Transformer import Transformer from .WeightedLayerPooling import WeightedLayerPooling from .WordEmbeddings import WordEmbeddings from .WordWeights import WordWeights __all__ = [ "Transformer", "StaticEmbedding", "Asym", "BoW", "CNN", "Dense", "Dropout", "LayerNorm", "LSTM", "Normalize", "Pooling", "WeightedLayerPooling", "WordEmbeddings", "WordWeights", "CLIPModel", "Module", "InputModule", ]
from __future__ import annotations from .Asym import Asym from .BoW import BoW from .CLIPModel import CLIPModel from .CNN import CNN from .Dense import Dense from .Dropout import Dropout from .LayerNorm import LayerNorm from .LSTM import LSTM from .Normalize import Normalize from .Pooling import Pooling from .StaticEmbedding import StaticEmbedding from .Transformer import Transformer from .WeightedLayerPooling import WeightedLayerPooling from .WordEmbeddings import WordEmbeddings from .WordWeights import WordWeights __all__ = [ "Transformer", "StaticEmbedding", "Asym", "BoW", "CNN", "Dense", "Dropout", "LayerNorm", "LSTM", "Normalize", "Pooling", "WeightedLayerPooling", "WordEmbeddings", "WordWeights", "CLIPModel", ]
from typing import Any, Literal, Optional, Union from exa_py import Exa # type: ignore[untyped-import] from exa_py.api import ( HighlightsContentsOptions, # type: ignore[untyped-import] TextContentsOptions, # type: ignore[untyped-import] ) from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from pydantic import Field, SecretStr, model_validator from langchain_exa._utilities import initialize_client def _get_metadata(result: Any) -> dict[str, Any]: """Get the metadata from a result object.""" metadata = { "title": result.title, "url": result.url, "id": result.id, "score": result.score, "published_date": result.published_date, "author": result.author, } if getattr(result, "highlights"): metadata["highlights"] = result.highlights if getattr(result, "highlight_scores"): metadata["highlight_scores"] = result.highlight_scores if getattr(result, "summary"): metadata["summary"] = result.summary return metadata class ExaSearchRetriever(BaseRetriever): """Exa Search retriever.""" k: int = 10 # num_results """The number of search results to return (1 to 100).""" include_domains: Optional[list[str]] = None """A list of domains to include in the search.""" exclude_domains: Optional[list[str]] = None """A list of domains to exclude from the search.""" start_crawl_date: Optional[str] = None """The start date for the crawl (in YYYY-MM-DD format).""" end_crawl_date: Optional[str] = None """The end date for the crawl (in YYYY-MM-DD format).""" start_published_date: Optional[str] = None """The start date for when the document was published (in YYYY-MM-DD format).""" end_published_date: Optional[str] = None """The end date for when the document was published (in YYYY-MM-DD format).""" use_autoprompt: Optional[bool] = None """Whether to use autoprompt for the search.""" type: str = "neural" """The type of search, 'keyword', 'neural', or 'auto'. Default: neural""" highlights: Optional[Union[HighlightsContentsOptions, bool]] = None """Whether to set the page content to the highlights of the results.""" text_contents_options: Union[TextContentsOptions, dict[str, Any], Literal[True]] = ( True ) """How to set the page content of the results. Can be True or a dict with options like max_characters.""" livecrawl: Optional[Literal["always", "fallback", "never"]] = None """Option to crawl live webpages if content is not in the index. Options: "always", "fallback", "never".""" summary: Optional[Union[bool, dict[str, str]]] = None """Whether to include a summary of the content. Can be a boolean or a dict with a custom query.""" client: Exa = Field(default=None) exa_api_key: SecretStr = Field(default=None) exa_base_url: Optional[str] = None @model_validator(mode="before") @classmethod def validate_environment(cls, values: dict) -> Any: """Validate the environment.""" values = initialize_client(values) return values def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> list[Document]: response = self.client.search_and_contents( # type: ignore[misc] query, num_results=self.k, text=self.text_contents_options, highlights=self.highlights, # type: ignore include_domains=self.include_domains, exclude_domains=self.exclude_domains, start_crawl_date=self.start_crawl_date, end_crawl_date=self.end_crawl_date, start_published_date=self.start_published_date, end_published_date=self.end_published_date, use_autoprompt=self.use_autoprompt, livecrawl=self.livecrawl, summary=self.summary, type=self.type, ) results = response.results return [ Document( page_content=(result.text), metadata=_get_metadata(result), ) for result in results ]
from typing import Any, Literal, Optional, Union from exa_py import Exa # type: ignore[untyped-import] from exa_py.api import ( HighlightsContentsOptions, # type: ignore[untyped-import] TextContentsOptions, # type: ignore[untyped-import] ) from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from pydantic import Field, SecretStr, model_validator from langchain_exa._utilities import initialize_client def _get_metadata(result: Any) -> dict[str, Any]: """Get the metadata from a result object.""" metadata = { "title": result.title, "url": result.url, "id": result.id, "score": result.score, "published_date": result.published_date, "author": result.author, } if getattr(result, "highlights"): metadata["highlights"] = result.highlights if getattr(result, "highlight_scores"): metadata["highlight_scores"] = result.highlight_scores return metadata class ExaSearchRetriever(BaseRetriever): """Exa Search retriever.""" k: int = 10 # num_results """The number of search results to return.""" include_domains: Optional[list[str]] = None """A list of domains to include in the search.""" exclude_domains: Optional[list[str]] = None """A list of domains to exclude from the search.""" start_crawl_date: Optional[str] = None """The start date for the crawl (in YYYY-MM-DD format).""" end_crawl_date: Optional[str] = None """The end date for the crawl (in YYYY-MM-DD format).""" start_published_date: Optional[str] = None """The start date for when the document was published (in YYYY-MM-DD format).""" end_published_date: Optional[str] = None """The end date for when the document was published (in YYYY-MM-DD format).""" use_autoprompt: Optional[bool] = None """Whether to use autoprompt for the search.""" type: str = "neural" """The type of search, 'keyword' or 'neural'. Default: neural""" highlights: Optional[Union[HighlightsContentsOptions, bool]] = None """Whether to set the page content to the highlights of the results.""" text_contents_options: Union[TextContentsOptions, Literal[True]] = True """How to set the page content of the results""" client: Exa = Field(default=None) exa_api_key: SecretStr = Field(default=None) exa_base_url: Optional[str] = None @model_validator(mode="before") @classmethod def validate_environment(cls, values: dict) -> Any: """Validate the environment.""" values = initialize_client(values) return values def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> list[Document]: response = self.client.search_and_contents( # type: ignore[misc] query, num_results=self.k, text=self.text_contents_options, highlights=self.highlights, # type: ignore include_domains=self.include_domains, exclude_domains=self.exclude_domains, start_crawl_date=self.start_crawl_date, end_crawl_date=self.end_crawl_date, start_published_date=self.start_published_date, end_published_date=self.end_published_date, use_autoprompt=self.use_autoprompt, ) results = response.results return [ Document( page_content=(result.text), metadata=_get_metadata(result), ) for result in results ]
import abc from abc import ABC from typing import TYPE_CHECKING, Any, Generic, List, Tuple, Type, TypeVar, Union from docarray.computation import AbstractComputationalBackend from docarray.typing.abstract_type import AbstractType if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='AbstractTensor') ShapeT = TypeVar('ShapeT') class AbstractTensor(AbstractType, Generic[ShapeT], ABC): __parametrized_meta__ = type _PROTO_FIELD_NAME: str @classmethod @abc.abstractmethod def __docarray_validate_shape__(cls, t: T, shape: Tuple[int]) -> T: """Every tensor has to implement this method in order to enable syntax of the form AnyTensor[shape]. It is called when a tensor is assigned to a field of this type. i.e. when a tensor is passed to a Document field of type AnyTensor[shape]. The intended behaviour is as follows: - If the shape of `t` is equal to `shape`, return `t`. - If the shape of `t` is not equal to `shape`, but can be reshaped to `shape`, return `t` reshaped to `shape`. - If the shape of `t` is not equal to `shape` and cannot be reshaped to `shape`, raise a ValueError. :param t: The tensor to validate. :param shape: The shape to validate against. :return: The validated tensor. """ ... @classmethod def __docarray_validate_getitem__(cls, item: Any) -> Tuple[int]: """This method validates the input to __class_getitem__. It is called at "class creation time", i.e. when a class is created with syntax of the form AnyTensor[shape]. The default implementation tries to cast any `item` to a tuple of ints. A subclass can override this method to implement custom validation logic. The output of this is eventually passed to {ref}`AbstractTensor.__validate_shape__` as its `shape` argument. Raises `ValueError` if the input `item` does not pass validation. :param item: The item to validate, passed to __class_getitem__ (`Tensor[item]`). :return: The validated item == the target shape of this tensor. """ if isinstance(item, int): item = (item,) try: item = tuple(item) except TypeError: raise TypeError(f'{item} is not a valid tensor shape.') return item @classmethod def _docarray_create_parametrized_type(cls: Type[T], shape: Tuple[int]): shape_str = ', '.join([str(s) for s in shape]) class _ParametrizedTensor( cls, # type: ignore metaclass=cls.__parametrized_meta__, # type: ignore ): _docarray_target_shape = shape @classmethod def validate( _cls, value: Any, field: 'ModelField', config: 'BaseConfig', ): t = super().validate(value, field, config) return _cls.__docarray_validate_shape__(t, _cls._docarray_target_shape) _ParametrizedTensor.__name__ = f'{cls.__name__}[{shape_str}]' _ParametrizedTensor.__qualname__ = f'{cls.__qualname__}[{shape_str}]' return _ParametrizedTensor def __class_getitem__(cls, item: Any): target_shape = cls.__docarray_validate_getitem__(item) return cls._docarray_create_parametrized_type(target_shape) @classmethod def __docarray_stack__(cls: Type[T], seq: Union[List[T], Tuple[T]]) -> T: """Stack a sequence of tensors into a single tensor.""" comp_backend = cls.get_comp_backend() # at runtime, 'T' is always the correct input type for .stack() # but mypy doesn't know that, so we ignore it here return cls.__docarray_from_native__(comp_backend.stack(seq)) # type: ignore @classmethod @abc.abstractmethod def __docarray_from_native__(cls: Type[T], value: Any) -> T: """ Create a DocArray tensor from a tensor that is native to the given framework, e.g. from numpy.ndarray or torch.Tensor. """ ... @staticmethod @abc.abstractmethod def get_comp_backend() -> Type[AbstractComputationalBackend]: """The computational backend compatible with this tensor type.""" ...
import abc from abc import ABC from typing import TYPE_CHECKING, Any, Generic, List, Tuple, Type, TypeVar, Union from docarray.computation import AbstractComputationalBackend from docarray.typing.abstract_type import AbstractType if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='AbstractTensor') ShapeT = TypeVar('ShapeT') class AbstractTensor(AbstractType, Generic[ShapeT], ABC): __parametrized_meta__ = type @classmethod @abc.abstractmethod def __docarray_validate_shape__(cls, t: T, shape: Tuple[int]) -> T: """Every tensor has to implement this method in order to enable syntax of the form AnyTensor[shape]. It is called when a tensor is assigned to a field of this type. i.e. when a tensor is passed to a Document field of type AnyTensor[shape]. The intended behaviour is as follows: - If the shape of `t` is equal to `shape`, return `t`. - If the shape of `t` is not equal to `shape`, but can be reshaped to `shape`, return `t` reshaped to `shape`. - If the shape of `t` is not equal to `shape` and cannot be reshaped to `shape`, raise a ValueError. :param t: The tensor to validate. :param shape: The shape to validate against. :return: The validated tensor. """ ... @classmethod def __docarray_validate_getitem__(cls, item: Any) -> Tuple[int]: """This method validates the input to __class_getitem__. It is called at "class creation time", i.e. when a class is created with syntax of the form AnyTensor[shape]. The default implementation tries to cast any `item` to a tuple of ints. A subclass can override this method to implement custom validation logic. The output of this is eventually passed to {ref}`AbstractTensor.__validate_shape__` as its `shape` argument. Raises `ValueError` if the input `item` does not pass validation. :param item: The item to validate, passed to __class_getitem__ (`Tensor[item]`). :return: The validated item == the target shape of this tensor. """ if isinstance(item, int): item = (item,) try: item = tuple(item) except TypeError: raise TypeError(f'{item} is not a valid tensor shape.') return item @classmethod def _docarray_create_parametrized_type(cls: Type[T], shape: Tuple[int]): shape_str = ', '.join([str(s) for s in shape]) class _ParametrizedTensor( cls, # type: ignore metaclass=cls.__parametrized_meta__, # type: ignore ): _docarray_target_shape = shape @classmethod def validate( _cls, value: Any, field: 'ModelField', config: 'BaseConfig', ): t = super().validate(value, field, config) return _cls.__docarray_validate_shape__(t, _cls._docarray_target_shape) _ParametrizedTensor.__name__ = f'{cls.__name__}[{shape_str}]' _ParametrizedTensor.__qualname__ = f'{cls.__qualname__}[{shape_str}]' return _ParametrizedTensor def __class_getitem__(cls, item: Any): target_shape = cls.__docarray_validate_getitem__(item) return cls._docarray_create_parametrized_type(target_shape) @classmethod def __docarray_stack__(cls: Type[T], seq: Union[List[T], Tuple[T]]) -> T: """Stack a sequence of tensors into a single tensor.""" comp_backend = cls.get_comp_backend() # at runtime, 'T' is always the correct input type for .stack() # but mypy doesn't know that, so we ignore it here return cls.__docarray_from_native__(comp_backend.stack(seq)) # type: ignore @classmethod @abc.abstractmethod def __docarray_from_native__(cls: Type[T], value: Any) -> T: """ Create a DocArray tensor from a tensor that is native to the given framework, e.g. from numpy.ndarray or torch.Tensor. """ ... @staticmethod @abc.abstractmethod def get_comp_backend() -> Type[AbstractComputationalBackend]: """The computational backend compatible with this tensor type.""" ...
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( affine_transform as affine_transform, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( clip_to_image_size as clip_to_image_size, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( convert_format as convert_format, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( crop as crop, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( decode_deltas_to_boxes as decode_deltas_to_boxes, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( encode_box_to_deltas as encode_box_to_deltas, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( pad as pad, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.iou import ( compute_ciou as compute_ciou, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.iou import ( compute_iou as compute_iou, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( affine_transform, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( clip_to_image_size, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( convert_format, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( crop, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( decode_deltas_to_boxes, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( encode_box_to_deltas, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( pad, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.iou import ( compute_ciou, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.iou import ( compute_iou, )
from typing import Any, Union from langchain_core.utils.json import parse_json_markdown from typing_extensions import override from langchain.evaluation.schema import StringEvaluator class JsonSchemaEvaluator(StringEvaluator): """An evaluator that validates a JSON prediction against a JSON schema reference. This evaluator checks if a given JSON prediction conforms to the provided JSON schema. If the prediction is valid, the score is True (no errors). Otherwise, the score is False (error occurred). Attributes: requires_input (bool): Whether the evaluator requires input. requires_reference (bool): Whether the evaluator requires reference. evaluation_name (str): The name of the evaluation. Examples: evaluator = JsonSchemaEvaluator() result = evaluator.evaluate_strings( prediction='{"name": "John", "age": 30}', reference={ "type": "object", "properties": { "name": {"type": "string"}, "age": {"type": "integer"} } } ) assert result["score"] is not None """ # noqa: E501 def __init__(self, **kwargs: Any) -> None: """Initializes the JsonSchemaEvaluator. Args: kwargs: Additional keyword arguments. Raises: ImportError: If the jsonschema package is not installed. """ super().__init__() try: import jsonschema # noqa: F401 except ImportError: msg = ( "The JsonSchemaEvaluator requires the jsonschema package." " Please install it with `pip install jsonschema`." ) raise ImportError(msg) @property def requires_input(self) -> bool: """Returns whether the evaluator requires input.""" return False @property def requires_reference(self) -> bool: """Returns whether the evaluator requires reference.""" return True @property def evaluation_name(self) -> str: """Returns the name of the evaluation.""" return "json_schema_validation" def _parse_json(self, node: Any) -> Union[dict, list, None, float, bool, int, str]: if isinstance(node, str): return parse_json_markdown(node) if hasattr(node, "schema") and callable(getattr(node, "schema")): # Pydantic model return getattr(node, "schema")() return node def _validate(self, prediction: Any, schema: Any) -> dict: from jsonschema import ValidationError, validate try: validate(instance=prediction, schema=schema) return { "score": True, } except ValidationError as e: return {"score": False, "reasoning": repr(e)} @override def _evaluate_strings( self, prediction: Union[str, Any], input: Union[str, Any] = None, reference: Union[str, Any] = None, **kwargs: Any, ) -> dict: parsed_prediction = self._parse_json(prediction) schema = self._parse_json(reference) return self._validate(parsed_prediction, schema)
from typing import Any, Union from langchain_core.utils.json import parse_json_markdown from typing_extensions import override from langchain.evaluation.schema import StringEvaluator class JsonSchemaEvaluator(StringEvaluator): """An evaluator that validates a JSON prediction against a JSON schema reference. This evaluator checks if a given JSON prediction conforms to the provided JSON schema. If the prediction is valid, the score is True (no errors). Otherwise, the score is False (error occurred). Attributes: requires_input (bool): Whether the evaluator requires input. requires_reference (bool): Whether the evaluator requires reference. evaluation_name (str): The name of the evaluation. Examples: evaluator = JsonSchemaEvaluator() result = evaluator.evaluate_strings( prediction='{"name": "John", "age": 30}', reference={ "type": "object", "properties": { "name": {"type": "string"}, "age": {"type": "integer"} } } ) assert result["score"] is not None """ # noqa: E501 def __init__(self, **kwargs: Any) -> None: """Initializes the JsonSchemaEvaluator. Args: kwargs: Additional keyword arguments. Raises: ImportError: If the jsonschema package is not installed. """ super().__init__() try: import jsonschema # noqa: F401 except ImportError: msg = ( "The JsonSchemaEvaluator requires the jsonschema package." " Please install it with `pip install jsonschema`." ) raise ImportError(msg) @property def requires_input(self) -> bool: """Returns whether the evaluator requires input.""" return False @property def requires_reference(self) -> bool: """Returns whether the evaluator requires reference.""" return True @property def evaluation_name(self) -> str: """Returns the name of the evaluation.""" return "json_schema_validation" def _parse_json(self, node: Any) -> Union[dict, list, None, float, bool, int, str]: if isinstance(node, str): return parse_json_markdown(node) elif hasattr(node, "schema") and callable(getattr(node, "schema")): # Pydantic model return getattr(node, "schema")() return node def _validate(self, prediction: Any, schema: Any) -> dict: from jsonschema import ValidationError, validate try: validate(instance=prediction, schema=schema) return { "score": True, } except ValidationError as e: return {"score": False, "reasoning": repr(e)} @override def _evaluate_strings( self, prediction: Union[str, Any], input: Union[str, Any] = None, reference: Union[str, Any] = None, **kwargs: Any, ) -> dict: parsed_prediction = self._parse_json(prediction) schema = self._parse_json(reference) return self._validate(parsed_prediction, schema)
""" This script is identical to examples/training/sts/training_stsbenchmark.py with seed optimization. We apply early stopping and evaluate the models over the dev set, to find out the best performing seeds. For more details refer to - Fine-Tuning Pretrained Language Models: Weight Initializations, Data Orders, and Early Stopping by Dodge et al. 2020 https://arxiv.org/pdf/2002.06305.pdf Why Seed Optimization? Dodge et al. (2020) show a high dependence on the random seed for transformer based models like BERT, as it converges to different minima that generalize differently to unseen data. This is especially the case for small training datasets. Citation: https://arxiv.org/abs/2010.08240 Usage: python train_sts_seed_optimization.py OR python train_sts_seed_optimization.py pretrained_transformer_model_name seed_count stop_after python train_sts_seed_optimization.py bert-base-uncased 10 0.3 """ import csv import gzip import logging import math import os import random import sys import numpy as np import torch from torch.utils.data import DataLoader from sentence_transformers import LoggingHandler, SentenceTransformer, losses, models, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import InputExample #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "bert-base-uncased" seed_count = int(sys.argv[2]) if len(sys.argv) > 2 else 10 stop_after = float(sys.argv[3]) if len(sys.argv) > 3 else 0.3 logging.info(f"Train and Evaluate: {seed_count} Random Seeds") for seed in range(seed_count): # Setting seed for all random initializations logging.info(f"##### Seed {seed} #####") random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) # Read the dataset train_batch_size = 16 num_epochs = 1 model_save_path = "output/bi-encoder/training_stsbenchmark_" + model_name + "/seed-" + str(seed) # Use Hugging Face/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False, ) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) else: train_samples.append(inp_example) train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) train_loss = losses.CosineSimilarityLoss(model=model) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training. We skip evaluation in this example warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up # Stopping and Evaluating after 30% of training data (less than 1 epoch) # We find from (Dodge et al.) that 20-30% is often ideal for convergence of random seed steps_per_epoch = math.ceil(len(train_dataloader) * stop_after) logging.info(f"Warmup-steps: {warmup_steps}") logging.info(f"Early-stopping: {int(stop_after * 100)}% of the training-data") # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, steps_per_epoch=steps_per_epoch, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=model_save_path, )
""" This script is identical to examples/training/sts/training_stsbenchmark.py with seed optimization. We apply early stopping and evaluate the models over the dev set, to find out the best performing seeds. For more details refer to - Fine-Tuning Pretrained Language Models: Weight Initializations, Data Orders, and Early Stopping by Dodge et al. 2020 https://arxiv.org/pdf/2002.06305.pdf Why Seed Optimization? Dodge et al. (2020) show a high dependence on the random seed for transformer based models like BERT, as it converges to different minima that generalize differently to unseen data. This is especially the case for small training datasets. Citation: https://arxiv.org/abs/2010.08240 Usage: python train_sts_seed_optimization.py OR python train_sts_seed_optimization.py pretrained_transformer_model_name seed_count stop_after python train_sts_seed_optimization.py bert-base-uncased 10 0.3 """ import csv import gzip import logging import math import os import random import sys import numpy as np import torch from torch.utils.data import DataLoader from sentence_transformers import LoggingHandler, SentenceTransformer, losses, models, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import InputExample #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "bert-base-uncased" seed_count = int(sys.argv[2]) if len(sys.argv) > 2 else 10 stop_after = float(sys.argv[3]) if len(sys.argv) > 3 else 0.3 logging.info(f"Train and Evaluate: {seed_count} Random Seeds") for seed in range(seed_count): # Setting seed for all random initializations logging.info(f"##### Seed {seed} #####") random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) # Read the dataset train_batch_size = 16 num_epochs = 1 model_save_path = "output/bi-encoder/training_stsbenchmark_" + model_name + "/seed-" + str(seed) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False, ) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) else: train_samples.append(inp_example) train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) train_loss = losses.CosineSimilarityLoss(model=model) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training. We skip evaluation in this example warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up # Stopping and Evaluating after 30% of training data (less than 1 epoch) # We find from (Dodge et al.) that 20-30% is often ideal for convergence of random seed steps_per_epoch = math.ceil(len(train_dataloader) * stop_after) logging.info(f"Warmup-steps: {warmup_steps}") logging.info(f"Early-stopping: {int(stop_after * 100)}% of the training-data") # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, steps_per_epoch=steps_per_epoch, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=model_save_path, )
__version__ = '0.18.2' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
__version__ = '0.18.1' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
# Copyright (c) OpenMMLab. All rights reserved. from .checkpoint_hook import CheckpointHook from .empty_cache_hook import EmptyCacheHook from .hook import Hook from .iter_timer_hook import IterTimerHook from .logger_hook import LoggerHook from .optimizer_hook import OptimizerHook from .param_scheduler_hook import ParamSchedulerHook from .sampler_seed_hook import DistSamplerSeedHook from .sync_buffer_hook import SyncBuffersHook __all__ = [ 'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook', 'OptimizerHook', 'SyncBuffersHook', 'EmptyCacheHook', 'CheckpointHook', 'LoggerHook' ]
# Copyright (c) OpenMMLab. All rights reserved. from .checkpoint_hook import CheckpointHook from .empty_cache_hook import EmptyCacheHook from .hook import Hook from .iter_timer_hook import IterTimerHook from .optimizer_hook import OptimizerHook from .param_scheduler_hook import ParamSchedulerHook from .sampler_seed_hook import DistSamplerSeedHook from .sync_buffer_hook import SyncBuffersHook __all__ = [ 'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook', 'OptimizerHook', 'SyncBuffersHook', 'EmptyCacheHook', 'CheckpointHook' ]
import asyncio import logging import os import threading from functools import wraps from uuid import uuid4 from tenacity import retry, stop_after_attempt, wait_exponential from backend.util.process import get_service_name logger = logging.getLogger(__name__) def _log_prefix(resource_name: str, conn_id: str): """ Returns a prefix string for logging purposes. This needs to be called on the fly to get the current process ID & service name, not the parent process ID & service name. """ return f"[PID-{os.getpid()}|THREAD-{threading.get_native_id()}|{get_service_name()}|{resource_name}-{conn_id}]" def conn_retry( resource_name: str, action_name: str, max_retry: int = 5, multiplier: int = 1, min_wait: float = 1, max_wait: float = 30, ): conn_id = str(uuid4()) def on_retry(retry_state): prefix = _log_prefix(resource_name, conn_id) exception = retry_state.outcome.exception() logger.warning(f"{prefix} {action_name} failed: {exception}. Retrying now...") def decorator(func): is_coroutine = asyncio.iscoroutinefunction(func) retry_decorator = retry( stop=stop_after_attempt(max_retry + 1), wait=wait_exponential(multiplier=multiplier, min=min_wait, max=max_wait), before_sleep=on_retry, reraise=True, ) wrapped_func = retry_decorator(func) @wraps(func) def sync_wrapper(*args, **kwargs): prefix = _log_prefix(resource_name, conn_id) logger.info(f"{prefix} {action_name} started...") try: result = wrapped_func(*args, **kwargs) logger.info(f"{prefix} {action_name} completed successfully.") return result except Exception as e: logger.error(f"{prefix} {action_name} failed after retries: {e}") raise @wraps(func) async def async_wrapper(*args, **kwargs): prefix = _log_prefix(resource_name, conn_id) logger.info(f"{prefix} {action_name} started...") try: result = await wrapped_func(*args, **kwargs) logger.info(f"{prefix} {action_name} completed successfully.") return result except Exception as e: logger.error(f"{prefix} {action_name} failed after retries: {e}") raise return async_wrapper if is_coroutine else sync_wrapper return decorator
import asyncio import logging import os import threading from functools import wraps from uuid import uuid4 from tenacity import retry, stop_after_attempt, wait_exponential from backend.util.process import get_service_name logger = logging.getLogger(__name__) def _log_prefix(resource_name: str, conn_id: str): """ Returns a prefix string for logging purposes. This needs to be called on the fly to get the current process ID & service name, not the parent process ID & service name. """ return f"[PID-{os.getpid()}|THREAD-{threading.get_native_id()}|{get_service_name()}|{resource_name}-{conn_id}]" def conn_retry( resource_name: str, action_name: str, max_retry: int = 5, multiplier: int = 1, min_wait: float = 1, max_wait: float = 30, ): conn_id = str(uuid4()) def on_retry(retry_state): prefix = _log_prefix(resource_name, conn_id) exception = retry_state.outcome.exception() logger.error(f"{prefix} {action_name} failed: {exception}. Retrying now...") def decorator(func): is_coroutine = asyncio.iscoroutinefunction(func) retry_decorator = retry( stop=stop_after_attempt(max_retry + 1), wait=wait_exponential(multiplier=multiplier, min=min_wait, max=max_wait), before_sleep=on_retry, reraise=True, ) wrapped_func = retry_decorator(func) @wraps(func) def sync_wrapper(*args, **kwargs): prefix = _log_prefix(resource_name, conn_id) logger.info(f"{prefix} {action_name} started...") try: result = wrapped_func(*args, **kwargs) logger.info(f"{prefix} {action_name} completed successfully.") return result except Exception as e: logger.error(f"{prefix} {action_name} failed after retries: {e}") raise @wraps(func) async def async_wrapper(*args, **kwargs): prefix = _log_prefix(resource_name, conn_id) logger.info(f"{prefix} {action_name} started...") try: result = await wrapped_func(*args, **kwargs) logger.info(f"{prefix} {action_name} completed successfully.") return result except Exception as e: logger.error(f"{prefix} {action_name} failed after retries: {e}") raise return async_wrapper if is_coroutine else sync_wrapper return decorator
# Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import tempfile import unittest from transformers.modelcard import ModelCard, TrainingSummary class ModelCardTester(unittest.TestCase): def setUp(self): self.inputs_dict = { "model_details": { "Organization": "testing", "Model date": "today", "Model version": "v2.1, Developed by Test Corp in 2019.", "Architecture": "Convolutional Neural Network.", }, "metrics": "BLEU and ROUGE-1", "evaluation_data": { "Datasets": {"BLEU": "My-great-dataset-v1", "ROUGE-1": "My-short-dataset-v2.1"}, "Preprocessing": "See details on https://huggingface.co/papers/1810.03993", }, "training_data": { "Dataset": "English Wikipedia dump dated 2018-12-01", "Preprocessing": ( "Using SentencePiece vocabulary of size 52k tokens. See details on" " https://huggingface.co/papers/1810.03993" ), }, "quantitative_analyses": {"BLEU": 55.1, "ROUGE-1": 76}, } def test_model_card_common_properties(self): modelcard = ModelCard.from_dict(self.inputs_dict) self.assertTrue(hasattr(modelcard, "model_details")) self.assertTrue(hasattr(modelcard, "intended_use")) self.assertTrue(hasattr(modelcard, "factors")) self.assertTrue(hasattr(modelcard, "metrics")) self.assertTrue(hasattr(modelcard, "evaluation_data")) self.assertTrue(hasattr(modelcard, "training_data")) self.assertTrue(hasattr(modelcard, "quantitative_analyses")) self.assertTrue(hasattr(modelcard, "ethical_considerations")) self.assertTrue(hasattr(modelcard, "caveats_and_recommendations")) def test_model_card_to_json_string(self): modelcard = ModelCard.from_dict(self.inputs_dict) obj = json.loads(modelcard.to_json_string()) for key, value in self.inputs_dict.items(): self.assertEqual(obj[key], value) def test_model_card_to_json_file(self): model_card_first = ModelCard.from_dict(self.inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: filename = os.path.join(tmpdirname, "modelcard.json") model_card_first.to_json_file(filename) model_card_second = ModelCard.from_json_file(filename) self.assertEqual(model_card_second.to_dict(), model_card_first.to_dict()) def test_model_card_from_and_save_pretrained(self): model_card_first = ModelCard.from_dict(self.inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: model_card_first.save_pretrained(tmpdirname) model_card_second = ModelCard.from_pretrained(tmpdirname) self.assertEqual(model_card_second.to_dict(), model_card_first.to_dict()) def test_model_summary_modelcard_base_metadata(self): metadata = TrainingSummary("Model name").create_metadata() self.assertTrue("library_name" in metadata) self.assertTrue(metadata["library_name"] == "transformers")
# Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import tempfile import unittest from transformers.modelcard import ModelCard, TrainingSummary class ModelCardTester(unittest.TestCase): def setUp(self): self.inputs_dict = { "model_details": { "Organization": "testing", "Model date": "today", "Model version": "v2.1, Developed by Test Corp in 2019.", "Architecture": "Convolutional Neural Network.", }, "metrics": "BLEU and ROUGE-1", "evaluation_data": { "Datasets": {"BLEU": "My-great-dataset-v1", "ROUGE-1": "My-short-dataset-v2.1"}, "Preprocessing": "See details on https://arxiv.org/pdf/1810.03993.pdf", }, "training_data": { "Dataset": "English Wikipedia dump dated 2018-12-01", "Preprocessing": ( "Using SentencePiece vocabulary of size 52k tokens. See details on" " https://arxiv.org/pdf/1810.03993.pdf" ), }, "quantitative_analyses": {"BLEU": 55.1, "ROUGE-1": 76}, } def test_model_card_common_properties(self): modelcard = ModelCard.from_dict(self.inputs_dict) self.assertTrue(hasattr(modelcard, "model_details")) self.assertTrue(hasattr(modelcard, "intended_use")) self.assertTrue(hasattr(modelcard, "factors")) self.assertTrue(hasattr(modelcard, "metrics")) self.assertTrue(hasattr(modelcard, "evaluation_data")) self.assertTrue(hasattr(modelcard, "training_data")) self.assertTrue(hasattr(modelcard, "quantitative_analyses")) self.assertTrue(hasattr(modelcard, "ethical_considerations")) self.assertTrue(hasattr(modelcard, "caveats_and_recommendations")) def test_model_card_to_json_string(self): modelcard = ModelCard.from_dict(self.inputs_dict) obj = json.loads(modelcard.to_json_string()) for key, value in self.inputs_dict.items(): self.assertEqual(obj[key], value) def test_model_card_to_json_file(self): model_card_first = ModelCard.from_dict(self.inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: filename = os.path.join(tmpdirname, "modelcard.json") model_card_first.to_json_file(filename) model_card_second = ModelCard.from_json_file(filename) self.assertEqual(model_card_second.to_dict(), model_card_first.to_dict()) def test_model_card_from_and_save_pretrained(self): model_card_first = ModelCard.from_dict(self.inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: model_card_first.save_pretrained(tmpdirname) model_card_second = ModelCard.from_pretrained(tmpdirname) self.assertEqual(model_card_second.to_dict(), model_card_first.to_dict()) def test_model_summary_modelcard_base_metadata(self): metadata = TrainingSummary("Model name").create_metadata() self.assertTrue("library_name" in metadata) self.assertTrue(metadata["library_name"] == "transformers")
from typing import TYPE_CHECKING from .github import GitHubOAuthHandler from .google import GoogleOAuthHandler from .notion import NotionOAuthHandler from .twitter import TwitterOAuthHandler if TYPE_CHECKING: from ..providers import ProviderName from .base import BaseOAuthHandler # --8<-- [start:HANDLERS_BY_NAMEExample] HANDLERS_BY_NAME: dict["ProviderName", type["BaseOAuthHandler"]] = { handler.PROVIDER_NAME: handler for handler in [ GitHubOAuthHandler, GoogleOAuthHandler, NotionOAuthHandler, TwitterOAuthHandler, ] } # --8<-- [end:HANDLERS_BY_NAMEExample] __all__ = ["HANDLERS_BY_NAME"]
from typing import TYPE_CHECKING from .github import GitHubOAuthHandler from .google import GoogleOAuthHandler from .notion import NotionOAuthHandler if TYPE_CHECKING: from ..providers import ProviderName from .base import BaseOAuthHandler # --8<-- [start:HANDLERS_BY_NAMEExample] HANDLERS_BY_NAME: dict["ProviderName", type["BaseOAuthHandler"]] = { handler.PROVIDER_NAME: handler for handler in [ GitHubOAuthHandler, GoogleOAuthHandler, NotionOAuthHandler, ] } # --8<-- [end:HANDLERS_BY_NAMEExample] __all__ = ["HANDLERS_BY_NAME"]
""" This example starts multiple processes (1 per GPU), which encode sentences in parallel. This gives a near linear speed-up when encoding large text collections. """ import logging from sentence_transformers import LoggingHandler, SentenceTransformer logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) # Important, you need to shield your code with if __name__. Otherwise, CUDA runs into issues when spawning new processes. if __name__ == "__main__": # Create a large list of 100k sentences sentences = ["This is sentence {}".format(i) for i in range(100000)] # Define the model model = SentenceTransformer("all-MiniLM-L6-v2") # Start the multi-process pool on all available CUDA devices pool = model.start_multi_process_pool() # Compute the embeddings using the multi-process pool emb = model.encode_multi_process(sentences, pool) print("Embeddings computed. Shape:", emb.shape) # Optional: Stop the processes in the pool model.stop_multi_process_pool(pool)
""" This example starts multiple processes (1 per GPU), which encode sentences in parallel. This gives a near linear speed-up when encoding large text collections. """ from sentence_transformers import SentenceTransformer, LoggingHandler import logging logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) # Important, you need to shield your code with if __name__. Otherwise, CUDA runs into issues when spawning new processes. if __name__ == "__main__": # Create a large list of 100k sentences sentences = ["This is sentence {}".format(i) for i in range(100000)] # Define the model model = SentenceTransformer("all-MiniLM-L6-v2") # Start the multi-process pool on all available CUDA devices pool = model.start_multi_process_pool() # Compute the embeddings using the multi-process pool emb = model.encode_multi_process(sentences, pool) print("Embeddings computed. Shape:", emb.shape) # Optional: Stop the processes in the pool model.stop_multi_process_pool(pool)
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.utils import Registry, build_from_cfg TRANSFORMER = Registry('Transformer') LINEAR_LAYERS = Registry('linear layers') def build_transformer(cfg, default_args=None): """Builder for Transformer.""" return build_from_cfg(cfg, TRANSFORMER, default_args) LINEAR_LAYERS.register_module('Linear', module=nn.Linear) def build_linear_layer(cfg, *args, **kwargs): """Build linear layer. Args: cfg (None or dict): The linear layer config, which should contain: - type (str): Layer type. - layer args: Args needed to instantiate an linear layer. args (argument list): Arguments passed to the `__init__` method of the corresponding linear layer. kwargs (keyword arguments): Keyword arguments passed to the `__init__` method of the corresponding linear layer. Returns: nn.Module: Created linear layer. """ if cfg is None: cfg_ = dict(type='Linear') else: if not isinstance(cfg, dict): raise TypeError('cfg must be a dict') if 'type' not in cfg: raise KeyError('the cfg dict must contain the key "type"') cfg_ = cfg.copy() layer_type = cfg_.pop('type') if layer_type not in LINEAR_LAYERS: raise KeyError(f'Unrecognized linear type {layer_type}') else: linear_layer = LINEAR_LAYERS.get(layer_type) layer = linear_layer(*args, **kwargs, **cfg_) return layer
import torch.nn as nn from mmcv.utils import Registry, build_from_cfg TRANSFORMER = Registry('Transformer') LINEAR_LAYERS = Registry('linear layers') def build_transformer(cfg, default_args=None): """Builder for Transformer.""" return build_from_cfg(cfg, TRANSFORMER, default_args) LINEAR_LAYERS.register_module('Linear', module=nn.Linear) def build_linear_layer(cfg, *args, **kwargs): """Build linear layer. Args: cfg (None or dict): The linear layer config, which should contain: - type (str): Layer type. - layer args: Args needed to instantiate an linear layer. args (argument list): Arguments passed to the `__init__` method of the corresponding linear layer. kwargs (keyword arguments): Keyword arguments passed to the `__init__` method of the corresponding linear layer. Returns: nn.Module: Created linear layer. """ if cfg is None: cfg_ = dict(type='Linear') else: if not isinstance(cfg, dict): raise TypeError('cfg must be a dict') if 'type' not in cfg: raise KeyError('the cfg dict must contain the key "type"') cfg_ = cfg.copy() layer_type = cfg_.pop('type') if layer_type not in LINEAR_LAYERS: raise KeyError(f'Unrecognized linear type {layer_type}') else: linear_layer = LINEAR_LAYERS.get(layer_type) layer = linear_layer(*args, **kwargs, **cfg_) return layer
from __future__ import annotations import json import os import torch from safetensors.torch import load_model as load_safetensors_model from safetensors.torch import save_model as save_safetensors_model from torch import nn class CNN(nn.Module): """CNN-layer with multiple kernel-sizes over the word embeddings""" def __init__( self, in_word_embedding_dimension: int, out_channels: int = 256, kernel_sizes: list[int] = [1, 3, 5], stride_sizes: list[int] = None, ): nn.Module.__init__(self) self.config_keys = ["in_word_embedding_dimension", "out_channels", "kernel_sizes"] self.in_word_embedding_dimension = in_word_embedding_dimension self.out_channels = out_channels self.kernel_sizes = kernel_sizes self.embeddings_dimension = out_channels * len(kernel_sizes) self.convs = nn.ModuleList() in_channels = in_word_embedding_dimension if stride_sizes is None: stride_sizes = [1] * len(kernel_sizes) for kernel_size, stride in zip(kernel_sizes, stride_sizes): padding_size = int((kernel_size - 1) / 2) conv = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding_size, ) self.convs.append(conv) def forward(self, features): token_embeddings = features["token_embeddings"] token_embeddings = token_embeddings.transpose(1, -1) vectors = [conv(token_embeddings) for conv in self.convs] out = torch.cat(vectors, 1).transpose(1, -1) features.update({"token_embeddings": out}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str, **kwargs) -> list[int]: raise NotImplementedError() def save(self, output_path: str, safe_serialization: bool = True): with open(os.path.join(output_path, "cnn_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) if safe_serialization: save_safetensors_model(self, os.path.join(output_path, "model.safetensors")) else: torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "cnn_config.json")) as fIn: config = json.load(fIn) model = CNN(**config) if os.path.exists(os.path.join(input_path, "model.safetensors")): load_safetensors_model(model, os.path.join(input_path, "model.safetensors")) else: model.load_state_dict( torch.load(os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu")) ) return model
from __future__ import annotations import json import os import torch from safetensors.torch import load_model as load_safetensors_model from safetensors.torch import save_model as save_safetensors_model from torch import nn class CNN(nn.Module): """CNN-layer with multiple kernel-sizes over the word embeddings""" def __init__( self, in_word_embedding_dimension: int, out_channels: int = 256, kernel_sizes: list[int] = [1, 3, 5], stride_sizes: list[int] = None, ): nn.Module.__init__(self) self.config_keys = ["in_word_embedding_dimension", "out_channels", "kernel_sizes"] self.in_word_embedding_dimension = in_word_embedding_dimension self.out_channels = out_channels self.kernel_sizes = kernel_sizes self.embeddings_dimension = out_channels * len(kernel_sizes) self.convs = nn.ModuleList() in_channels = in_word_embedding_dimension if stride_sizes is None: stride_sizes = [1] * len(kernel_sizes) for kernel_size, stride in zip(kernel_sizes, stride_sizes): padding_size = int((kernel_size - 1) / 2) conv = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding_size, ) self.convs.append(conv) def forward(self, features): token_embeddings = features["token_embeddings"] token_embeddings = token_embeddings.transpose(1, -1) vectors = [conv(token_embeddings) for conv in self.convs] out = torch.cat(vectors, 1).transpose(1, -1) features.update({"token_embeddings": out}) return features def get_word_embedding_dimension(self) -> int: return self.embeddings_dimension def tokenize(self, text: str, **kwargs) -> list[int]: raise NotImplementedError() def save(self, output_path: str, safe_serialization: bool = True): with open(os.path.join(output_path, "cnn_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) if safe_serialization: save_safetensors_model(self, os.path.join(output_path, "model.safetensors")) else: torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} @staticmethod def load(input_path: str): with open(os.path.join(input_path, "cnn_config.json"), "r") as fIn: config = json.load(fIn) model = CNN(**config) if os.path.exists(os.path.join(input_path, "model.safetensors")): load_safetensors_model(model, os.path.join(input_path, "model.safetensors")) else: model.load_state_dict( torch.load(os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu")) ) return model
# Copyright (c) OpenMMLab. All rights reserved. import time from typing import Any, Optional, Sequence, Tuple from mmengine.data import BaseDataSample from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[Tuple[Any, BaseDataSample]]] @HOOKS.register_module() class IterTimerHook(Hook): """A hook that logs the time spent during iteration. Eg. ``data_time`` for loading data and ``time`` for a model train step. """ priority = 'NORMAL' def before_epoch(self, runner) -> None: """Record time flag before start a epoch. Args: runner (Runner): The runner of the training process. """ self.t = time.time() def before_iter(self, runner, data_batch: DATA_BATCH = None) -> None: """Logging time for loading data and update the time flag. Args: runner (Runner): The runner of the training process. data_batch (Sequence[Tuple[Any, BaseDataSample]], optional): Data from dataloader. Defaults to None. """ # TODO: update for new logging system runner.log_buffer.update({'data_time': time.time() - self.t}) def after_iter(self, runner, data_batch: DATA_BATCH = None, outputs: Optional[Sequence[BaseDataSample]] = None) -> None: """Logging time for a iteration and update the time flag. Args: runner (Runner): The runner of the training process. data_batch (Sequence[Tuple[Any, BaseDataSample]], optional): Data from dataloader. Defaults to None. outputs (Sequence[BaseDataSample]): Outputs from model. Defaults to None. """ # TODO: update for new logging system runner.log_buffer.update({'time': time.time() - self.t}) self.t = time.time()
# Copyright (c) OpenMMLab. All rights reserved. import time from typing import Optional, Sequence from mmengine.data import BaseDataSample from mmengine.registry import HOOKS from .hook import Hook @HOOKS.register_module() class IterTimerHook(Hook): """A hook that logs the time spent during iteration. Eg. ``data_time`` for loading data and ``time`` for a model train step. """ priority = 'NORMAL' def before_epoch(self, runner: object) -> None: """Record time flag before start a epoch. Args: runner (object): The runner of the training process. """ self.t = time.time() def before_iter( self, runner: object, data_batch: Optional[Sequence[BaseDataSample]] = None) -> None: """Logging time for loading data and update the time flag. Args: runner (object): The runner of the training process. data_batch (Sequence[BaseDataSample]): Data from dataloader. Defaults to None. """ # TODO: update for new logging system runner.log_buffer.update({ # type: ignore 'data_time': time.time() - self.t }) def after_iter(self, runner: object, data_batch: Optional[Sequence[BaseDataSample]] = None, outputs: Optional[Sequence[BaseDataSample]] = None) -> None: """Logging time for a iteration and update the time flag. Args: runner (object): The runner of the training process. data_batch (Sequence[BaseDataSample]): Data from dataloader. Defaults to None. outputs (Sequence[BaseDataSample]): Outputs from model. Defaults to None. """ # TODO: update for new logging system runner.log_buffer.update({ # type: ignore 'time': time.time() - self.t }) self.t = time.time()
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import copy from typing import Dict from jina import DocumentArray, Executor, requests from jinahub.indexers.searcher.FaissSearcher import FaissSearcher from jinahub.indexers.storage.LMDBStorage import LMDBStorage class FaissLMDBSearcher(Executor): def __init__(self, dump_path=None, *args, **kwargs): super().__init__(*args, **kwargs) self._vec_indexer = FaissSearcher(dump_path=dump_path, *args, **kwargs) self._kv_indexer = LMDBStorage(dump_path=dump_path, *args, **kwargs) @requests(on="/search") def search(self, docs: "DocumentArray", parameters: Dict = None, **kwargs): self._vec_indexer.search(docs, parameters) kv_parameters = copy.deepcopy(parameters) kv_parameters["traversal_paths"] = [ path + "m" for path in kv_parameters.get("traversal_paths", ["r"]) ] self._kv_indexer.search(docs, parameters=kv_parameters)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import copy from typing import Dict from jina import requests, DocumentArray, Executor try: from jinahub.indexers.searcher.FaissSearcher import FaissSearcher except: # broken import paths in previous release from jina_executors.indexers.searcher.FaissSearcher.faiss_searcher import FaissSearcher try: from jinahub.indexers.storage.LMDBStorage import LMDBStorage except: # broken import paths in previous release from jina_executors.indexers.storage.LMDBStorage.lmdb_storage import LMDBStorage class FaissLMDBSearcher(Executor): def __init__(self, dump_path=None, *args, **kwargs): super().__init__(*args, **kwargs) self._vec_indexer = FaissSearcher(dump_path=dump_path, *args, **kwargs) self._kv_indexer = LMDBStorage(dump_path=dump_path, *args, **kwargs) @requests(on='/search') def search(self, docs: 'DocumentArray', parameters: Dict = None, **kwargs): self._vec_indexer.search(docs, parameters) kv_parameters = copy.deepcopy(parameters) kv_parameters['traversal_paths'] = [ path + 'm' for path in kv_parameters.get('traversal_paths', ['r']) ] self._kv_indexer.search(docs, parameters=kv_parameters)
from keras.src.api_export import keras_export # Unique source of truth for the version number. __version__ = "3.7.0" @keras_export("keras.version") def version(): return __version__
from keras.src.api_export import keras_export # Unique source of truth for the version number. __version__ = "3.6.0" @keras_export("keras.version") def version(): return __version__
import importlib import pytest from dirty_equals import IsDict from fastapi.testclient import TestClient from ...utils import needs_py39, needs_py310 @pytest.fixture( name="client", params=[ "tutorial002", pytest.param("tutorial002_py310", marks=needs_py310), "tutorial002_an", pytest.param("tutorial002_an_py39", marks=needs_py39), pytest.param("tutorial002_an_py310", marks=needs_py310), ], ) def get_client(request: pytest.FixtureRequest): mod = importlib.import_module(f"docs_src.header_params.{request.param}") client = TestClient(mod.app) return client @pytest.mark.parametrize( "path,headers,expected_status,expected_response", [ ("/items", None, 200, {"strange_header": None}), ("/items", {"X-Header": "notvalid"}, 200, {"strange_header": None}), ( "/items", {"strange_header": "FastAPI test"}, 200, {"strange_header": "FastAPI test"}, ), ( "/items", {"strange-header": "Not really underscore"}, 200, {"strange_header": None}, ), ], ) def test(path, headers, expected_status, expected_response, client: TestClient): response = client.get(path, headers=headers) assert response.status_code == expected_status assert response.json() == expected_response def test_openapi_schema(client: TestClient): response = client.get("/openapi.json") assert response.status_code == 200 assert response.json() == { "openapi": "3.1.0", "info": {"title": "FastAPI", "version": "0.1.0"}, "paths": { "/items/": { "get": { "responses": { "200": { "description": "Successful Response", "content": {"application/json": {"schema": {}}}, }, "422": { "description": "Validation Error", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/HTTPValidationError" } } }, }, }, "summary": "Read Items", "operationId": "read_items_items__get", "parameters": [ { "required": False, "schema": IsDict( { "anyOf": [{"type": "string"}, {"type": "null"}], "title": "Strange Header", } ) | IsDict( # TODO: remove when deprecating Pydantic v1 {"title": "Strange Header", "type": "string"} ), "name": "strange_header", "in": "header", } ], } } }, "components": { "schemas": { "ValidationError": { "title": "ValidationError", "required": ["loc", "msg", "type"], "type": "object", "properties": { "loc": { "title": "Location", "type": "array", "items": { "anyOf": [{"type": "string"}, {"type": "integer"}] }, }, "msg": {"title": "Message", "type": "string"}, "type": {"title": "Error Type", "type": "string"}, }, }, "HTTPValidationError": { "title": "HTTPValidationError", "type": "object", "properties": { "detail": { "title": "Detail", "type": "array", "items": {"$ref": "#/components/schemas/ValidationError"}, } }, }, } }, }
import pytest from dirty_equals import IsDict from fastapi.testclient import TestClient from docs_src.header_params.tutorial002 import app client = TestClient(app) @pytest.mark.parametrize( "path,headers,expected_status,expected_response", [ ("/items", None, 200, {"strange_header": None}), ("/items", {"X-Header": "notvalid"}, 200, {"strange_header": None}), ( "/items", {"strange_header": "FastAPI test"}, 200, {"strange_header": "FastAPI test"}, ), ( "/items", {"strange-header": "Not really underscore"}, 200, {"strange_header": None}, ), ], ) def test(path, headers, expected_status, expected_response): response = client.get(path, headers=headers) assert response.status_code == expected_status assert response.json() == expected_response def test_openapi_schema(): response = client.get("/openapi.json") assert response.status_code == 200 assert response.json() == { "openapi": "3.1.0", "info": {"title": "FastAPI", "version": "0.1.0"}, "paths": { "/items/": { "get": { "responses": { "200": { "description": "Successful Response", "content": {"application/json": {"schema": {}}}, }, "422": { "description": "Validation Error", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/HTTPValidationError" } } }, }, }, "summary": "Read Items", "operationId": "read_items_items__get", "parameters": [ { "required": False, "schema": IsDict( { "anyOf": [{"type": "string"}, {"type": "null"}], "title": "Strange Header", } ) | IsDict( # TODO: remove when deprecating Pydantic v1 {"title": "Strange Header", "type": "string"} ), "name": "strange_header", "in": "header", } ], } } }, "components": { "schemas": { "ValidationError": { "title": "ValidationError", "required": ["loc", "msg", "type"], "type": "object", "properties": { "loc": { "title": "Location", "type": "array", "items": { "anyOf": [{"type": "string"}, {"type": "integer"}] }, }, "msg": {"title": "Message", "type": "string"}, "type": {"title": "Error Type", "type": "string"}, }, }, "HTTPValidationError": { "title": "HTTPValidationError", "type": "object", "properties": { "detail": { "title": "Detail", "type": "array", "items": {"$ref": "#/components/schemas/ValidationError"}, } }, }, } }, }
_base_ = './lsj-100e_coco-detection.py' # 8x25=200e train_dataloader = dict(dataset=dict(times=8)) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.067, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=25, by_epoch=True, milestones=[22, 24], gamma=0.1) ]
_base_ = './lsj_100e_coco_detection.py' # 8x25=200e train_dataloader = dict(dataset=dict(times=8)) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.067, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=25, by_epoch=True, milestones=[22, 24], gamma=0.1) ]
# Copyright (c) OpenMMLab. All rights reserved. import time from typing import Optional, Union import torch from mmengine.device import is_cuda_available, is_musa_available from mmengine.dist.utils import master_only from mmengine.logging import MMLogger, print_log class TimeCounter: """A tool that counts the average running time of a function or a method. Users can use it as a decorator or context manager to calculate the average running time of code blocks. Args: log_interval (int): The interval of logging. Defaults to 1. warmup_interval (int): The interval of warmup. Defaults to 1. with_sync (bool): Whether to synchronize cuda. Defaults to True. tag (str, optional): Function tag. Used to distinguish between different functions or methods being called. Defaults to None. logger (MMLogger, optional): Formatted logger used to record messages. Defaults to None. Examples: >>> import time >>> from mmengine.utils.dl_utils import TimeCounter >>> @TimeCounter() ... def fun1(): ... time.sleep(0.1) ... fun1() [fun1]-time per run averaged in the past 1 runs: 100.0 ms >>> @@TimeCounter(log_interval=2, tag='fun') ... def fun2(): ... time.sleep(0.2) >>> for _ in range(3): ... fun2() [fun]-time per run averaged in the past 2 runs: 200.0 ms >>> with TimeCounter(tag='fun3'): ... time.sleep(0.3) [fun3]-time per run averaged in the past 1 runs: 300.0 ms """ instance_dict: dict = dict() log_interval: int warmup_interval: int logger: Optional[MMLogger] __count: int __pure_inf_time: float def __new__(cls, log_interval: int = 1, warmup_interval: int = 1, with_sync: bool = True, tag: Optional[str] = None, logger: Optional[MMLogger] = None): assert warmup_interval >= 1 if tag is not None and tag in cls.instance_dict: return cls.instance_dict[tag] instance = super().__new__(cls) cls.instance_dict[tag] = instance instance.log_interval = log_interval instance.warmup_interval = warmup_interval instance.with_sync = with_sync # type: ignore instance.tag = tag instance.logger = logger instance.__count = 0 instance.__pure_inf_time = 0. instance.__start_time = 0. return instance @master_only def __call__(self, fn): if self.tag is None: self.tag = fn.__name__ def wrapper(*args, **kwargs): self.__count += 1 if self.with_sync: if is_cuda_available(): torch.cuda.synchronize() elif is_musa_available(): torch.musa.synchronize() start_time = time.perf_counter() result = fn(*args, **kwargs) if self.with_sync: if is_cuda_available(): torch.cuda.synchronize() elif is_musa_available(): torch.musa.synchronize() elapsed = time.perf_counter() - start_time self.print_time(elapsed) return result return wrapper @master_only def __enter__(self): assert self.tag is not None, 'In order to clearly distinguish ' \ 'printing information in different ' \ 'contexts, please specify the ' \ 'tag parameter' self.__count += 1 if self.with_sync and torch.cuda.is_available(): torch.cuda.synchronize() self.__start_time = time.perf_counter() @master_only def __exit__(self, exc_type, exc_val, exc_tb): if self.with_sync and torch.cuda.is_available(): torch.cuda.synchronize() elapsed = time.perf_counter() - self.__start_time self.print_time(elapsed) def print_time(self, elapsed: Union[int, float]) -> None: """Print times per count.""" if self.__count >= self.warmup_interval: self.__pure_inf_time += elapsed if self.__count % self.log_interval == 0: times_per_count = 1000 * self.__pure_inf_time / ( self.__count - self.warmup_interval + 1) print_log( f'[{self.tag}]-time per run averaged in the past ' f'{self.__count} runs: {times_per_count:.1f} ms', self.logger)
# Copyright (c) OpenMMLab. All rights reserved. import time from typing import Optional, Union import torch from mmengine.device import is_cuda_available, is_musa_available from mmengine.dist.utils import master_only from mmengine.logging import MMLogger, print_log class TimeCounter: """A tool that counts the average running time of a function or a method. Users can use it as a decorator or context manager to calculate the average running time of code blocks. Args: log_interval (int): The interval of logging. Defaults to 1. warmup_interval (int): The interval of warmup. Defaults to 1. with_sync (bool): Whether to synchronize cuda. Defaults to True. tag (str, optional): Function tag. Used to distinguish between different functions or methods being called. Defaults to None. logger (MMLogger, optional): Formatted logger used to record messages. Defaults to None. Examples: >>> import time >>> from mmengine.utils.dl_utils import TimeCounter >>> @TimeCounter() ... def fun1(): ... time.sleep(0.1) ... fun1() [fun1]-time per run averaged in the past 1 runs: 100.0 ms >>> @@TimeCounter(log_interval=2, tag='fun') ... def fun2(): ... time.sleep(0.2) >>> for _ in range(3): ... fun2() [fun]-time per run averaged in the past 2 runs: 200.0 ms >>> with TimeCounter(tag='fun3'): ... time.sleep(0.3) [fun3]-time per run averaged in the past 1 runs: 300.0 ms """ instance_dict: dict = dict() log_interval: int warmup_interval: int logger: Optional[MMLogger] __count: int __pure_inf_time: float def __new__(cls, log_interval: int = 1, warmup_interval: int = 1, with_sync: bool = True, tag: Optional[str] = None, logger: Optional[MMLogger] = None): assert warmup_interval >= 1 if tag is not None and tag in cls.instance_dict: return cls.instance_dict[tag] instance = super().__new__(cls) cls.instance_dict[tag] = instance instance.log_interval = log_interval instance.warmup_interval = warmup_interval instance.with_sync = with_sync instance.tag = tag instance.logger = logger instance.__count = 0 instance.__pure_inf_time = 0. instance.__start_time = 0. return instance @master_only def __call__(self, fn): if self.tag is None: self.tag = fn.__name__ def wrapper(*args, **kwargs): self.__count += 1 if self.with_sync: if is_cuda_available(): torch.cuda.synchronize() elif is_musa_available(): torch.musa.synchronize() start_time = time.perf_counter() result = fn(*args, **kwargs) if self.with_sync: if is_cuda_available(): torch.cuda.synchronize() elif is_musa_available(): torch.musa.synchronize() elapsed = time.perf_counter() - start_time self.print_time(elapsed) return result return wrapper @master_only def __enter__(self): assert self.tag is not None, 'In order to clearly distinguish ' \ 'printing information in different ' \ 'contexts, please specify the ' \ 'tag parameter' self.__count += 1 if self.with_sync and torch.cuda.is_available(): torch.cuda.synchronize() self.__start_time = time.perf_counter() @master_only def __exit__(self, exc_type, exc_val, exc_tb): if self.with_sync and torch.cuda.is_available(): torch.cuda.synchronize() elapsed = time.perf_counter() - self.__start_time self.print_time(elapsed) def print_time(self, elapsed: Union[int, float]) -> None: """print times per count.""" if self.__count >= self.warmup_interval: self.__pure_inf_time += elapsed if self.__count % self.log_interval == 0: times_per_count = 1000 * self.__pure_inf_time / ( self.__count - self.warmup_interval + 1) print_log( f'[{self.tag}]-time per run averaged in the past ' f'{self.__count} runs: {times_per_count:.1f} ms', self.logger)
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.legacy.saving.serialization import ( deserialize_keras_object as deserialize_keras_object, ) from keras.src.legacy.saving.serialization import ( serialize_keras_object as serialize_keras_object, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.legacy.saving.serialization import deserialize_keras_object from keras.src.legacy.saving.serialization import serialize_keras_object
"""Optimization related classes and functions.""" import logging from typing import Any, Dict, List, Optional, Literal from llama_index.core.bridge.pydantic import Field, PrivateAttr from llama_index.core.postprocessor.types import BaseNodePostprocessor from llama_index.core.schema import NodeWithScore, QueryBundle, TextNode logger = logging.getLogger(__name__) DEFAULT_INSTRUCTION_STR = "Given the context, please answer the final question" def format_metadata(nodes=List[NodeWithScore]): return {node.node.id_: node.metadata for node in nodes} class LongLLMLinguaPostprocessor(BaseNodePostprocessor): """ Optimization of nodes. Compress using LongLLMLingua paper. """ instruction_str: str = Field( default=DEFAULT_INSTRUCTION_STR, description="Instruction string." ) target_token: int = Field( default=-1, description="Target number of compressed tokens." ) use_llmlingua2: bool = Field( default=False, description="Whether to use the llmlingua2 approach" ) rank_method: str = Field(default="longllmlingua", description="Ranking method.") additional_compress_kwargs: Dict[str, Any] = Field( default_factory=dict, description="Additional compress kwargs." ) _llm_lingua: Any = PrivateAttr() def __init__( self, model_name: str = "NousResearch/Llama-2-7b-hf", device_map: Literal["cuda", "cpu", "mps"] = "cuda", model_config: Optional[dict] = {}, open_api_config: Optional[dict] = {}, instruction_str: str = DEFAULT_INSTRUCTION_STR, target_token: float = -1, rank_method: str = "longllmlingua", additional_compress_kwargs: Optional[Dict[str, Any]] = {}, use_llmlingua2: bool = False, ): """LongLLMLingua Compressor for Node Context.""" from llmlingua import PromptCompressor super().__init__( instruction_str=instruction_str, target_token=target_token, rank_method=rank_method, additional_compress_kwargs=additional_compress_kwargs, use_llmlingua2=use_llmlingua2, ) open_api_config = open_api_config or {} additional_compress_kwargs = additional_compress_kwargs or {} if self.use_llmlingua2 is True: assert ( model_name == "microsoft/llmlingua-2-xlm-roberta-large-meetingbank" ), 'Must use "microsoft/llmlingua-2-xlm-roberta-large-meetingbank" as the model name for llmlingua2' self._llm_lingua = PromptCompressor( model_name=model_name, device_map=device_map, model_config=model_config, open_api_config=open_api_config, use_llmlingua2=self.use_llmlingua2, ) @classmethod def class_name(cls) -> str: return "LongLLMLinguaPostprocessor" def _postprocess_nodes( self, nodes: List[NodeWithScore], query_bundle: Optional[QueryBundle] = None, ) -> List[NodeWithScore]: """Optimize a node text given the query by shortening the node text.""" if query_bundle is None: raise ValueError("Query bundle is required.") # The prompt compression for llmlingua2 works on raw texts, that's why it's better to just extract metadata texts. context_texts = [n.text for n in nodes] # Preserve metadata for prompt compressed nodes metadata = format_metadata(nodes) new_context_texts = "".join(context_texts) # You can use it this way, although the question-aware fine-grained compression hasn't been enabled. compressed_prompt = self._llm_lingua.compress_prompt( new_context_texts, # ! Replace the previous context_list instruction=self.instruction_str, question=query_bundle.query_str, # target_token=2000, target_token=self.target_token, rank_method=self.rank_method, **self.additional_compress_kwargs, ) compressed_prompt_txt = compressed_prompt["compressed_prompt"] # separate out the question and instruction (appended to top and bottom) compressed_prompt_txt_list = compressed_prompt_txt.split("\n\n") if self.use_llmlingua2 is False: compressed_prompt_txt_list = compressed_prompt_txt_list[1:-1] # return nodes for each list keys_to_exclude = list(metadata.keys()) return [ NodeWithScore( node=TextNode( text=t, metadata=metadata, excluded_llm_metadata_keys=keys_to_exclude, excluded_embed_metadata_keys=keys_to_exclude, ) ) for t in compressed_prompt_txt_list ]
"""Optimization related classes and functions.""" import logging from typing import Any, Dict, List, Optional, Literal from llama_index.core.bridge.pydantic import Field, PrivateAttr from llama_index.core.postprocessor.types import BaseNodePostprocessor from llama_index.core.schema import NodeWithScore, QueryBundle, TextNode logger = logging.getLogger(__name__) DEFAULT_INSTRUCTION_STR = "Given the context, please answer the final question" def format_metadata(nodes=List[NodeWithScore]): return {node.node.id_: node.metadata for node in nodes} class LongLLMLinguaPostprocessor(BaseNodePostprocessor): """Optimization of nodes. Compress using LongLLMLingua paper. """ instruction_str: str = Field( default=DEFAULT_INSTRUCTION_STR, description="Instruction string." ) target_token: int = Field( default=-1, description="Target number of compressed tokens." ) use_llmlingua2: bool = Field( default=False, description="Whether to use the llmlingua2 approach" ) rank_method: str = Field(default="longllmlingua", description="Ranking method.") additional_compress_kwargs: Dict[str, Any] = Field( default_factory=dict, description="Additional compress kwargs." ) _llm_lingua: Any = PrivateAttr() def __init__( self, model_name: str = "NousResearch/Llama-2-7b-hf", device_map: Literal["cuda", "cpu", "mps"] = "cuda", model_config: Optional[dict] = {}, open_api_config: Optional[dict] = {}, instruction_str: str = DEFAULT_INSTRUCTION_STR, target_token: float = -1, rank_method: str = "longllmlingua", additional_compress_kwargs: Optional[Dict[str, Any]] = {}, use_llmlingua2: bool = False, ): """LongLLMLingua Compressor for Node Context.""" from llmlingua import PromptCompressor super().__init__( instruction_str=instruction_str, target_token=target_token, rank_method=rank_method, additional_compress_kwargs=additional_compress_kwargs, use_llmlingua2=use_llmlingua2, ) open_api_config = open_api_config or {} additional_compress_kwargs = additional_compress_kwargs or {} if self.use_llmlingua2 is True: assert ( model_name == "microsoft/llmlingua-2-xlm-roberta-large-meetingbank" ), 'Must use "microsoft/llmlingua-2-xlm-roberta-large-meetingbank" as the model name for llmlingua2' self._llm_lingua = PromptCompressor( model_name=model_name, device_map=device_map, model_config=model_config, open_api_config=open_api_config, use_llmlingua2=self.use_llmlingua2, ) @classmethod def class_name(cls) -> str: return "LongLLMLinguaPostprocessor" def _postprocess_nodes( self, nodes: List[NodeWithScore], query_bundle: Optional[QueryBundle] = None, ) -> List[NodeWithScore]: """Optimize a node text given the query by shortening the node text.""" if query_bundle is None: raise ValueError("Query bundle is required.") # The prompt compression for llmlingua2 works on raw texts, that's why it's better to just extract metadata texts. context_texts = [n.text for n in nodes] # Preserve metadata for prompt compressed nodes metadata = format_metadata(nodes) new_context_texts = "".join(context_texts) # You can use it this way, although the question-aware fine-grained compression hasn't been enabled. compressed_prompt = self._llm_lingua.compress_prompt( new_context_texts, # ! Replace the previous context_list instruction=self.instruction_str, question=query_bundle.query_str, # target_token=2000, target_token=self.target_token, rank_method=self.rank_method, **self.additional_compress_kwargs, ) compressed_prompt_txt = compressed_prompt["compressed_prompt"] # separate out the question and instruction (appended to top and bottom) compressed_prompt_txt_list = compressed_prompt_txt.split("\n\n") if self.use_llmlingua2 is False: compressed_prompt_txt_list = compressed_prompt_txt_list[1:-1] # return nodes for each list keys_to_exclude = list(metadata.keys()) return [ NodeWithScore( node=TextNode( text=t, metadata=metadata, excluded_llm_metadata_keys=keys_to_exclude, excluded_embed_metadata_keys=keys_to_exclude, ) ) for t in compressed_prompt_txt_list ]
from datetime import datetime, timezone import pytest from prisma.enums import CreditTransactionType from prisma.models import CreditTransaction from backend.blocks.llm import AITextGeneratorBlock from backend.data.block import get_block from backend.data.credit import BetaUserCredit, UsageTransactionMetadata from backend.data.execution import NodeExecutionEntry from backend.data.user import DEFAULT_USER_ID from backend.executor.utils import block_usage_cost from backend.integrations.credentials_store import openai_credentials from backend.util.test import SpinTestServer REFILL_VALUE = 1000 user_credit = BetaUserCredit(REFILL_VALUE) async def disable_test_user_transactions(): await CreditTransaction.prisma().delete_many(where={"userId": DEFAULT_USER_ID}) async def top_up(amount: int): await user_credit._add_transaction( DEFAULT_USER_ID, amount, CreditTransactionType.TOP_UP, ) async def spend_credits(entry: NodeExecutionEntry) -> int: block = get_block(entry.block_id) if not block: raise RuntimeError(f"Block {entry.block_id} not found") cost, matching_filter = block_usage_cost(block=block, input_data=entry.inputs) await user_credit.spend_credits( entry.user_id, cost, UsageTransactionMetadata( graph_exec_id=entry.graph_exec_id, graph_id=entry.graph_id, node_id=entry.node_id, node_exec_id=entry.node_exec_id, block_id=entry.block_id, block=entry.block_id, input=matching_filter, reason=f"Ran block {entry.block_id} {block.name}", ), ) return cost @pytest.mark.asyncio(loop_scope="session") async def test_block_credit_usage(server: SpinTestServer): await disable_test_user_transactions() await top_up(100) current_credit = await user_credit.get_credits(DEFAULT_USER_ID) spending_amount_1 = await spend_credits( NodeExecutionEntry( user_id=DEFAULT_USER_ID, graph_id="test_graph", node_id="test_node", graph_exec_id="test_graph_exec", node_exec_id="test_node_exec", block_id=AITextGeneratorBlock().id, inputs={ "model": "gpt-4-turbo", "credentials": { "id": openai_credentials.id, "provider": openai_credentials.provider, "type": openai_credentials.type, }, }, ), ) assert spending_amount_1 > 0 spending_amount_2 = await spend_credits( NodeExecutionEntry( user_id=DEFAULT_USER_ID, graph_id="test_graph", node_id="test_node", graph_exec_id="test_graph_exec", node_exec_id="test_node_exec", block_id=AITextGeneratorBlock().id, inputs={"model": "gpt-4-turbo", "api_key": "owned_api_key"}, ), ) assert spending_amount_2 == 0 new_credit = await user_credit.get_credits(DEFAULT_USER_ID) assert new_credit == current_credit - spending_amount_1 - spending_amount_2 @pytest.mark.asyncio(loop_scope="session") async def test_block_credit_top_up(server: SpinTestServer): await disable_test_user_transactions() current_credit = await user_credit.get_credits(DEFAULT_USER_ID) await top_up(100) new_credit = await user_credit.get_credits(DEFAULT_USER_ID) assert new_credit == current_credit + 100 @pytest.mark.asyncio(loop_scope="session") async def test_block_credit_reset(server: SpinTestServer): await disable_test_user_transactions() month1 = 1 month2 = 2 # set the calendar to month 2 but use current time from now user_credit.time_now = lambda: datetime.now(timezone.utc).replace( month=month2, day=1 ) month2credit = await user_credit.get_credits(DEFAULT_USER_ID) # Month 1 result should only affect month 1 user_credit.time_now = lambda: datetime.now(timezone.utc).replace( month=month1, day=1 ) month1credit = await user_credit.get_credits(DEFAULT_USER_ID) await top_up(100) assert await user_credit.get_credits(DEFAULT_USER_ID) == month1credit + 100 # Month 2 balance is unaffected user_credit.time_now = lambda: datetime.now(timezone.utc).replace( month=month2, day=1 ) assert await user_credit.get_credits(DEFAULT_USER_ID) == month2credit @pytest.mark.asyncio(loop_scope="session") async def test_credit_refill(server: SpinTestServer): await disable_test_user_transactions() balance = await user_credit.get_credits(DEFAULT_USER_ID) assert balance == REFILL_VALUE
from datetime import datetime, timezone import pytest from prisma.enums import CreditTransactionType from prisma.models import CreditTransaction from backend.blocks.llm import AITextGeneratorBlock from backend.data.block import get_block from backend.data.credit import BetaUserCredit, UsageTransactionMetadata from backend.data.execution import NodeExecutionEntry from backend.data.user import DEFAULT_USER_ID from backend.executor.utils import block_usage_cost from backend.integrations.credentials_store import openai_credentials from backend.util.test import SpinTestServer REFILL_VALUE = 1000 user_credit = BetaUserCredit(REFILL_VALUE) async def disable_test_user_transactions(): await CreditTransaction.prisma().delete_many(where={"userId": DEFAULT_USER_ID}) async def top_up(amount: int): await user_credit._add_transaction( DEFAULT_USER_ID, amount, CreditTransactionType.TOP_UP, ) async def spend_credits(entry: NodeExecutionEntry) -> int: block = get_block(entry.block_id) if not block: raise RuntimeError(f"Block {entry.block_id} not found") cost, matching_filter = block_usage_cost(block=block, input_data=entry.data) await user_credit.spend_credits( entry.user_id, cost, UsageTransactionMetadata( graph_exec_id=entry.graph_exec_id, graph_id=entry.graph_id, node_id=entry.node_id, node_exec_id=entry.node_exec_id, block_id=entry.block_id, block=entry.block_id, input=matching_filter, reason=f"Ran block {entry.block_id} {block.name}", ), ) return cost @pytest.mark.asyncio(loop_scope="session") async def test_block_credit_usage(server: SpinTestServer): await disable_test_user_transactions() await top_up(100) current_credit = await user_credit.get_credits(DEFAULT_USER_ID) spending_amount_1 = await spend_credits( NodeExecutionEntry( user_id=DEFAULT_USER_ID, graph_id="test_graph", node_id="test_node", graph_exec_id="test_graph_exec", node_exec_id="test_node_exec", block_id=AITextGeneratorBlock().id, data={ "model": "gpt-4-turbo", "credentials": { "id": openai_credentials.id, "provider": openai_credentials.provider, "type": openai_credentials.type, }, }, ), ) assert spending_amount_1 > 0 spending_amount_2 = await spend_credits( NodeExecutionEntry( user_id=DEFAULT_USER_ID, graph_id="test_graph", node_id="test_node", graph_exec_id="test_graph_exec", node_exec_id="test_node_exec", block_id=AITextGeneratorBlock().id, data={"model": "gpt-4-turbo", "api_key": "owned_api_key"}, ), ) assert spending_amount_2 == 0 new_credit = await user_credit.get_credits(DEFAULT_USER_ID) assert new_credit == current_credit - spending_amount_1 - spending_amount_2 @pytest.mark.asyncio(loop_scope="session") async def test_block_credit_top_up(server: SpinTestServer): await disable_test_user_transactions() current_credit = await user_credit.get_credits(DEFAULT_USER_ID) await top_up(100) new_credit = await user_credit.get_credits(DEFAULT_USER_ID) assert new_credit == current_credit + 100 @pytest.mark.asyncio(loop_scope="session") async def test_block_credit_reset(server: SpinTestServer): await disable_test_user_transactions() month1 = 1 month2 = 2 # set the calendar to month 2 but use current time from now user_credit.time_now = lambda: datetime.now(timezone.utc).replace( month=month2, day=1 ) month2credit = await user_credit.get_credits(DEFAULT_USER_ID) # Month 1 result should only affect month 1 user_credit.time_now = lambda: datetime.now(timezone.utc).replace( month=month1, day=1 ) month1credit = await user_credit.get_credits(DEFAULT_USER_ID) await top_up(100) assert await user_credit.get_credits(DEFAULT_USER_ID) == month1credit + 100 # Month 2 balance is unaffected user_credit.time_now = lambda: datetime.now(timezone.utc).replace( month=month2, day=1 ) assert await user_credit.get_credits(DEFAULT_USER_ID) == month2credit @pytest.mark.asyncio(loop_scope="session") async def test_credit_refill(server: SpinTestServer): await disable_test_user_transactions() balance = await user_credit.get_credits(DEFAULT_USER_ID) assert balance == REFILL_VALUE
"""Methods and algorithms to robustly estimate covariance. They estimate the covariance of features at given sets of points, as well as the precision matrix defined as the inverse of the covariance. Covariance estimation is closely related to the theory of Gaussian graphical models. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._elliptic_envelope import EllipticEnvelope from ._empirical_covariance import ( EmpiricalCovariance, empirical_covariance, log_likelihood, ) from ._graph_lasso import GraphicalLasso, GraphicalLassoCV, graphical_lasso from ._robust_covariance import MinCovDet, fast_mcd from ._shrunk_covariance import ( OAS, LedoitWolf, ShrunkCovariance, ledoit_wolf, ledoit_wolf_shrinkage, oas, shrunk_covariance, ) __all__ = [ "OAS", "EllipticEnvelope", "EmpiricalCovariance", "GraphicalLasso", "GraphicalLassoCV", "LedoitWolf", "MinCovDet", "ShrunkCovariance", "empirical_covariance", "fast_mcd", "graphical_lasso", "ledoit_wolf", "ledoit_wolf_shrinkage", "log_likelihood", "oas", "shrunk_covariance", ]
"""Methods and algorithms to robustly estimate covariance. They estimate the covariance of features at given sets of points, as well as the precision matrix defined as the inverse of the covariance. Covariance estimation is closely related to the theory of Gaussian graphical models. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._elliptic_envelope import EllipticEnvelope from ._empirical_covariance import ( EmpiricalCovariance, empirical_covariance, log_likelihood, ) from ._graph_lasso import GraphicalLasso, GraphicalLassoCV, graphical_lasso from ._robust_covariance import MinCovDet, fast_mcd from ._shrunk_covariance import ( OAS, LedoitWolf, ShrunkCovariance, ledoit_wolf, ledoit_wolf_shrinkage, oas, shrunk_covariance, ) __all__ = [ "EllipticEnvelope", "EmpiricalCovariance", "GraphicalLasso", "GraphicalLassoCV", "LedoitWolf", "MinCovDet", "OAS", "ShrunkCovariance", "empirical_covariance", "fast_mcd", "graphical_lasso", "ledoit_wolf", "ledoit_wolf_shrinkage", "log_likelihood", "oas", "shrunk_covariance", ]
# mypy: ignore-errors import contextlib import functools import inspect import torch # Test whether hardware BF32 math mode enabled. It is enabled only on: # - MKLDNN is available # - BF16 is supported by MKLDNN def bf32_is_not_fp32(): if not torch.backends.mkldnn.is_available(): return False if not torch.ops.mkldnn._is_mkldnn_bf16_supported(): return False return True @contextlib.contextmanager def bf32_off(): old_matmul_precision = torch.backends.mkldnn.matmul.fp32_precision old_conv_precision = torch.backends.mkldnn.conv.fp32_precision try: torch.backends.mkldnn.matmul.fp32_precision = "ieee" torch.backends.mkldnn.conv.fp32_precision = "ieee" yield finally: torch.backends.mkldnn.matmul.fp32_precision = old_matmul_precision torch.backends.mkldnn.conv.fp32_precision = old_conv_precision @contextlib.contextmanager def bf32_on(self, bf32_precision=1e-2): old_matmul_precision = torch.backends.mkldnn.matmul.fp32_precision old_conv_precision = torch.backends.mkldnn.conv.fp32_precision old_precision = self.precision try: torch.backends.mkldnn.matmul.fp32_precision = "bf16" torch.backends.mkldnn.conv.fp32_precision = "bf16" self.precision = bf32_precision yield finally: torch.backends.mkldnn.matmul.fp32_precision = old_matmul_precision torch.backends.mkldnn.conv.fp32_precision = old_conv_precision self.precision = old_precision # This is a wrapper that wraps a test to run this test twice, one with # allow_bf32=True, another with allow_bf32=False. When running with # allow_bf32=True, it will use reduced precision as specified by the # argument def bf32_on_and_off(bf32_precision=1e-2): def with_bf32_disabled(self, function_call): with bf32_off(): function_call() def with_bf32_enabled(self, function_call): with bf32_on(self, bf32_precision): function_call() def wrapper(f): params = inspect.signature(f).parameters arg_names = tuple(params.keys()) @functools.wraps(f) def wrapped(*args, **kwargs): kwargs.update(zip(arg_names, args)) cond = bf32_is_not_fp32() if "device" in kwargs: cond = cond and (torch.device(kwargs["device"]).type == "cpu") if "dtype" in kwargs: cond = cond and (kwargs["dtype"] == torch.float) if cond: with_bf32_disabled(kwargs["self"], lambda: f(**kwargs)) with_bf32_enabled(kwargs["self"], lambda: f(**kwargs)) else: f(**kwargs) return wrapped return wrapper
# mypy: ignore-errors import contextlib import functools import inspect import torch # Test whether hardware BF32 math mode enabled. It is enabled only on: # - MKLDNN is available # - BF16 is supported by MKLDNN def bf32_is_not_fp32(): if not torch.backends.mkldnn.is_available(): return False if not torch.ops.mkldnn._is_mkldnn_bf16_supported(): return False return True @contextlib.contextmanager def bf32_off(): old_matmul_precision = torch.get_float32_matmul_precision() try: torch.set_float32_matmul_precision("highest") yield finally: torch.set_float32_matmul_precision(old_matmul_precision) @contextlib.contextmanager def bf32_on(self, bf32_precision=1e-5): old_matmul_precision = torch.get_float32_matmul_precision() old_precision = self.precision try: torch.set_float32_matmul_precision("medium") self.precision = bf32_precision yield finally: torch.set_float32_matmul_precision(old_matmul_precision) self.precision = old_precision # This is a wrapper that wraps a test to run this test twice, one with # allow_bf32=True, another with allow_bf32=False. When running with # allow_bf32=True, it will use reduced precision as specified by the # argument def bf32_on_and_off(bf32_precision=1e-5): def with_bf32_disabled(self, function_call): with bf32_off(): function_call() def with_bf32_enabled(self, function_call): with bf32_on(self, bf32_precision): function_call() def wrapper(f): params = inspect.signature(f).parameters arg_names = tuple(params.keys()) @functools.wraps(f) def wrapped(*args, **kwargs): kwargs.update(zip(arg_names, args)) cond = bf32_is_not_fp32() if "device" in kwargs: cond = cond and (torch.device(kwargs["device"]).type == "cpu") if "dtype" in kwargs: cond = cond and (kwargs["dtype"] == torch.float) if cond: with_bf32_disabled(kwargs["self"], lambda: f(**kwargs)) with_bf32_enabled(kwargs["self"], lambda: f(**kwargs)) else: f(**kwargs) return wrapped return wrapper
import warnings from typing import Any, Dict, Union import numpy as np import PIL.Image import torch from torchvision.transforms import functional as _F from torchvision.transforms.v2 import Transform class ToTensor(Transform): """[DEPRECATED] Use ``v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])`` instead. Convert a PIL Image or ndarray to tensor and scale the values accordingly. .. warning:: :class:`v2.ToTensor` is deprecated and will be removed in a future release. Please use instead ``v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])``. This transform does not support torchscript. Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8 In the other cases, tensors are returned without scaling. .. note:: Because the input image is scaled to [0.0, 1.0], this transformation should not be used when transforming target image masks. See the `references`_ for implementing the transforms for image masks. .. _references: https://github.com/pytorch/vision/tree/main/references/segmentation """ _transformed_types = (PIL.Image.Image, np.ndarray) def __init__(self) -> None: warnings.warn( "The transform `ToTensor()` is deprecated and will be removed in a future release. " "Instead, please use `v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])`." ) super().__init__() def _transform(self, inpt: Union[PIL.Image.Image, np.ndarray], params: Dict[str, Any]) -> torch.Tensor: return _F.to_tensor(inpt)
import warnings from typing import Any, Dict, Union import numpy as np import PIL.Image import torch from torchvision.transforms import functional as _F from torchvision.transforms.v2 import Transform class ToTensor(Transform): """[BETA] [DEPRECATED] Use ``v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])`` instead. Convert a PIL Image or ndarray to tensor and scale the values accordingly. .. v2betastatus:: ToTensor transform .. warning:: :class:`v2.ToTensor` is deprecated and will be removed in a future release. Please use instead ``v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])``. This transform does not support torchscript. Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8 In the other cases, tensors are returned without scaling. .. note:: Because the input image is scaled to [0.0, 1.0], this transformation should not be used when transforming target image masks. See the `references`_ for implementing the transforms for image masks. .. _references: https://github.com/pytorch/vision/tree/main/references/segmentation """ _transformed_types = (PIL.Image.Image, np.ndarray) def __init__(self) -> None: warnings.warn( "The transform `ToTensor()` is deprecated and will be removed in a future release. " "Instead, please use `v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])`." ) super().__init__() def _transform(self, inpt: Union[PIL.Image.Image, np.ndarray], params: Dict[str, Any]) -> torch.Tensor: return _F.to_tensor(inpt)
import time from queue import Queue from threading import Event from typing import Any, Generator, List, Optional from uuid import UUID from llama_index.core.bridge.langchain import BaseCallbackHandler, LLMResult class StreamingGeneratorCallbackHandler(BaseCallbackHandler): """Streaming callback handler.""" def __init__(self) -> None: self._token_queue: Queue = Queue() self._done = Event() def __deepcopy__(self, memo: Any) -> "StreamingGeneratorCallbackHandler": # NOTE: hack to bypass deepcopy in langchain return self def on_llm_new_token(self, token: str, **kwargs: Any) -> Any: """Run on new LLM token. Only available when streaming is enabled.""" self._token_queue.put_nowait(token) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: self._done.set() def on_llm_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: self._done.set() def get_response_gen(self, timeout: float = 120.0) -> Generator: """ Get response generator with timeout. Args: timeout (float): Maximum time in seconds to wait for the complete response. Defaults to 120 seconds. """ start_time = time.time() while True: if time.time() - start_time > timeout: raise TimeoutError( f"Response generation timed out after {timeout} seconds" ) if not self._token_queue.empty(): token = self._token_queue.get_nowait() yield token elif self._done.is_set(): break else: # Small sleep to prevent CPU spinning time.sleep(0.01)
import time from queue import Queue from threading import Event from typing import Any, Generator, List, Optional from uuid import UUID from llama_index.core.bridge.langchain import BaseCallbackHandler, LLMResult class StreamingGeneratorCallbackHandler(BaseCallbackHandler): """Streaming callback handler.""" def __init__(self) -> None: self._token_queue: Queue = Queue() self._done = Event() def __deepcopy__(self, memo: Any) -> "StreamingGeneratorCallbackHandler": # NOTE: hack to bypass deepcopy in langchain return self def on_llm_new_token(self, token: str, **kwargs: Any) -> Any: """Run on new LLM token. Only available when streaming is enabled.""" self._token_queue.put_nowait(token) def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: self._done.set() def on_llm_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any, ) -> None: self._done.set() def get_response_gen(self, timeout: float = 120.0) -> Generator: """Get response generator with timeout. Args: timeout (float): Maximum time in seconds to wait for the complete response. Defaults to 120 seconds. """ start_time = time.time() while True: if time.time() - start_time > timeout: raise TimeoutError( f"Response generation timed out after {timeout} seconds" ) if not self._token_queue.empty(): token = self._token_queue.get_nowait() yield token elif self._done.is_set(): break else: # Small sleep to prevent CPU spinning time.sleep(0.01)
import pytest # type: ignore[import-not-found, import-not-found] @pytest.mark.compile def test_placeholder() -> None: """Used for compiling integration tests without running any real tests."""
import pytest # type: ignore[import-not-found, import-not-found] @pytest.mark.compile def test_placeholder() -> None: """Used for compiling integration tests without running any real tests.""" pass
from typing import List, Optional from llama_index.core.node_parser.text import TokenTextSplitter from llama_index.core.node_parser.text.utils import truncate_text from llama_index.core.schema import BaseNode def get_numbered_text_from_nodes( node_list: List[BaseNode], text_splitter: Optional[TokenTextSplitter] = None, ) -> str: """ Get text from nodes in the format of a numbered list. Used by tree-structured indices. """ results = [] number = 1 for node in node_list: node_text = " ".join(node.get_content().splitlines()) if text_splitter is not None: node_text = truncate_text(node_text, text_splitter) text = f"({number}) {node_text}" results.append(text) number += 1 return "\n\n".join(results)
from typing import List, Optional from llama_index.core.node_parser.text import TokenTextSplitter from llama_index.core.node_parser.text.utils import truncate_text from llama_index.core.schema import BaseNode def get_numbered_text_from_nodes( node_list: List[BaseNode], text_splitter: Optional[TokenTextSplitter] = None, ) -> str: """Get text from nodes in the format of a numbered list. Used by tree-structured indices. """ results = [] number = 1 for node in node_list: node_text = " ".join(node.get_content().splitlines()) if text_splitter is not None: node_text = truncate_text(node_text, text_splitter) text = f"({number}) {node_text}" results.append(text) number += 1 return "\n\n".join(results)
from docarray.typing.bytes import AudioBytes, ImageBytes, VideoBytes from docarray.typing.id import ID from docarray.typing.tensor import ImageNdArray, ImageTensor from docarray.typing.tensor.audio import AudioNdArray from docarray.typing.tensor.embedding.embedding import AnyEmbedding, NdArrayEmbedding from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor from docarray.typing.tensor.video import VideoNdArray from docarray.typing.url import ( AnyUrl, AudioUrl, ImageUrl, Mesh3DUrl, PointCloud3DUrl, TextUrl, VideoUrl, ) __all__ = [ 'NdArray', 'NdArrayEmbedding', 'AudioNdArray', 'VideoNdArray', 'AnyEmbedding', 'ImageUrl', 'AudioUrl', 'TextUrl', 'Mesh3DUrl', 'PointCloud3DUrl', 'VideoUrl', 'AnyUrl', 'ID', 'AnyTensor', 'NdArrayEmbedding', 'ImageBytes', 'ImageTensor', 'ImageNdArray', 'ImageBytes', 'VideoBytes', 'AudioBytes', ] from docarray.utils._internal.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor import TorchEmbedding, TorchTensor # noqa: F401 from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor # noqa from docarray.typing.tensor.image import ImageTorchTensor # noqa: F401 from docarray.typing.tensor.video.video_torch_tensor import VideoTorchTensor # noqa __all__.extend( [ 'AudioTorchTensor', 'TorchEmbedding', 'TorchTensor', 'VideoTorchTensor', 'ImageTorchTensor', ] ) tf_available = is_tf_available() if tf_available: from docarray.typing.tensor import TensorFlowTensor # noqa: F401 from docarray.typing.tensor.audio import AudioTensorFlowTensor # noqa: F401 from docarray.typing.tensor.embedding import TensorFlowEmbedding # noqa: F401 from docarray.typing.tensor.image import ImageTensorFlowTensor # noqa: F401 from docarray.typing.tensor.video import VideoTensorFlowTensor # noqa __all__.extend( [ 'TensorFlowTensor', 'TensorFlowEmbedding', 'AudioTensorFlowTensor', 'ImageTensorFlowTensor', 'VideoTensorFlowTensor', ] )
from docarray.typing.bytes import ImageBytes from docarray.typing.id import ID from docarray.typing.tensor import ImageNdArray, ImageTensor from docarray.typing.tensor.audio import AudioNdArray from docarray.typing.tensor.embedding.embedding import AnyEmbedding, NdArrayEmbedding from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor from docarray.typing.tensor.video import VideoNdArray from docarray.typing.url import ( AnyUrl, AudioUrl, ImageUrl, Mesh3DUrl, PointCloud3DUrl, TextUrl, VideoUrl, ) __all__ = [ 'NdArray', 'NdArrayEmbedding', 'AudioNdArray', 'VideoNdArray', 'AnyEmbedding', 'ImageUrl', 'AudioUrl', 'TextUrl', 'Mesh3DUrl', 'PointCloud3DUrl', 'VideoUrl', 'AnyUrl', 'ID', 'AnyTensor', 'NdArrayEmbedding', 'ImageBytes', 'ImageTensor', 'ImageNdArray', ] from docarray.utils._internal.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor import TorchEmbedding, TorchTensor # noqa: F401 from docarray.typing.tensor.audio.audio_torch_tensor import AudioTorchTensor # noqa from docarray.typing.tensor.image import ImageTorchTensor # noqa: F401 from docarray.typing.tensor.video.video_torch_tensor import VideoTorchTensor # noqa __all__.extend( [ 'AudioTorchTensor', 'TorchEmbedding', 'TorchTensor', 'VideoTorchTensor', 'ImageTorchTensor', ] ) tf_available = is_tf_available() if tf_available: from docarray.typing.tensor import TensorFlowTensor # noqa: F401 from docarray.typing.tensor.audio import AudioTensorFlowTensor # noqa: F401 from docarray.typing.tensor.embedding import TensorFlowEmbedding # noqa: F401 from docarray.typing.tensor.image import ImageTensorFlowTensor # noqa: F401 from docarray.typing.tensor.video import VideoTensorFlowTensor # noqa __all__.extend( [ 'TensorFlowTensor', 'TensorFlowEmbedding', 'AudioTensorFlowTensor', 'ImageTensorFlowTensor', 'VideoTensorFlowTensor', ] )
"""System message.""" from typing import Any, Literal, Union from langchain_core.messages.base import BaseMessage, BaseMessageChunk class SystemMessage(BaseMessage): """Message for priming AI behavior. The system message is usually passed in as the first of a sequence of input messages. Example: .. code-block:: python from langchain_core.messages import HumanMessage, SystemMessage messages = [ SystemMessage( content="You are a helpful assistant! Your name is Bob." ), HumanMessage( content="What is your name?" ) ] # Define a chat model and invoke it with the messages print(model.invoke(messages)) """ type: Literal["system"] = "system" """The type of the message (used for serialization). Defaults to "system".""" def __init__( self, content: Union[str, list[Union[str, dict]]], **kwargs: Any ) -> None: """Pass in content as positional arg. Args: content: The string contents of the message. kwargs: Additional fields to pass to the message. """ super().__init__(content=content, **kwargs) SystemMessage.model_rebuild() class SystemMessageChunk(SystemMessage, BaseMessageChunk): """System Message chunk.""" # Ignoring mypy re-assignment here since we're overriding the value # to make sure that the chunk variant can be discriminated from the # non-chunk variant. type: Literal["SystemMessageChunk"] = "SystemMessageChunk" # type: ignore[assignment] """The type of the message (used for serialization). Defaults to "SystemMessageChunk"."""
from typing import Any, Literal, Union from langchain_core.messages.base import BaseMessage, BaseMessageChunk class SystemMessage(BaseMessage): """Message for priming AI behavior. The system message is usually passed in as the first of a sequence of input messages. Example: .. code-block:: python from langchain_core.messages import HumanMessage, SystemMessage messages = [ SystemMessage( content="You are a helpful assistant! Your name is Bob." ), HumanMessage( content="What is your name?" ) ] # Define a chat model and invoke it with the messages print(model.invoke(messages)) """ type: Literal["system"] = "system" """The type of the message (used for serialization). Defaults to "system".""" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"]. """ return ["langchain", "schema", "messages"] def __init__( self, content: Union[str, list[Union[str, dict]]], **kwargs: Any ) -> None: """Pass in content as positional arg. Args: content: The string contents of the message. kwargs: Additional fields to pass to the message. """ super().__init__(content=content, **kwargs) SystemMessage.model_rebuild() class SystemMessageChunk(SystemMessage, BaseMessageChunk): """System Message chunk.""" # Ignoring mypy re-assignment here since we're overriding the value # to make sure that the chunk variant can be discriminated from the # non-chunk variant. type: Literal["SystemMessageChunk"] = "SystemMessageChunk" # type: ignore[assignment] """The type of the message (used for serialization). Defaults to "SystemMessageChunk".""" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"]. """ return ["langchain", "schema", "messages"]
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../common/mstrain_3x_coco.py' ] # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../common/mstrain_3x_coco.py' ] # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
import json import os import pytest from hubble.executor import HubExecutor from hubble.executor.hubio import HubIO from jina import __version__ from jina.orchestrate.deployments.config.helper import ( get_base_executor_version, get_image_name, to_compatible_name, ) @pytest.mark.parametrize('is_master', (True, False)) def test_version(is_master, requests_mock): if is_master: count = 0 else: # current version is published already count = 3 requests_mock.get( 'https://registry.hub.docker.com/v2/repositories/jinaai/jina/tags', text=json.dumps( { 'count': count, 'next': 'abc', 'previous': 'def', 'results': [{'a': 'b', 'c': 'd'}], } ), ) v = get_base_executor_version() if is_master: assert v == 'master' else: assert v == __version__ def test_to_compatible_name(): assert to_compatible_name('executor/hey-ha_HO') == 'executor-hey-ha-ho' @pytest.mark.parametrize('uses', ['jinaai://jina-ai/DummyExecutor']) def test_get_image_name(mocker, monkeypatch, uses): mock = mocker.Mock() def _mock_fetch( name, tag, image_required=True, rebuild_image=True, *, prefer_platform=None, secret=None, force=False, ): mock(name=name, rebuild_image=rebuild_image) return ( HubExecutor( uuid='hello', name=name, tag='v0', image_name=f'jinahub/{name}', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) image_name = get_image_name(uses) assert image_name in {'jinahub/DummyExecutor', 'jinahub/jina-ai/DummyExecutor'} _, mock_kwargs = mock.call_args_list[0] assert mock_kwargs['rebuild_image'] is True # default value must be True os.environ['JINA_HUB_NO_IMAGE_REBUILD'] = '1' get_image_name(uses) del os.environ['JINA_HUB_NO_IMAGE_REBUILD'] _, mock_kwargs = mock.call_args_list[1] assert mock_kwargs['rebuild_image'] is False # env var is set, so it must be False
import json import os import pytest from hubble.executor import HubExecutor from hubble.executor.hubio import HubIO from jina import __version__ from jina.orchestrate.deployments.config.helper import ( get_base_executor_version, get_image_name, to_compatible_name, ) @pytest.mark.parametrize('is_master', (True, False)) def test_version(is_master, requests_mock): if is_master: count = 0 else: # current version is published already count = 3 requests_mock.get( 'https://registry.hub.docker.com/v2/repositories/jinaai/jina/tags', text=json.dumps( { 'count': count, 'next': 'abc', 'previous': 'def', 'results': [{'a': 'b', 'c': 'd'}], } ), ) v = get_base_executor_version() if is_master: assert v == 'master' else: assert v == __version__ def test_to_compatible_name(): assert to_compatible_name('executor/hey-ha_HO') == 'executor-hey-ha-ho' @pytest.mark.parametrize( 'uses', ['jinaai://jina-ai/DummyExecutor'] ) def test_get_image_name(mocker, monkeypatch, uses): mock = mocker.Mock() def _mock_fetch( name, tag, image_required=True, rebuild_image=True, *, secret=None, force=False, ): mock(name=name, rebuild_image=rebuild_image) return ( HubExecutor( uuid='hello', name=name, tag='v0', image_name=f'jinahub/{name}', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) image_name = get_image_name(uses) assert image_name in {'jinahub/DummyExecutor', 'jinahub/jina-ai/DummyExecutor'} _, mock_kwargs = mock.call_args_list[0] assert mock_kwargs['rebuild_image'] is True # default value must be True os.environ['JINA_HUB_NO_IMAGE_REBUILD'] = '1' get_image_name(uses) del os.environ['JINA_HUB_NO_IMAGE_REBUILD'] _, mock_kwargs = mock.call_args_list[1] assert mock_kwargs['rebuild_image'] is False # env var is set, so it must be False
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_dpt import * from .feature_extraction_dpt import * from .image_processing_dpt import * from .image_processing_dpt_fast import * from .modeling_dpt import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_dpt import * from .feature_extraction_dpt import * from .image_processing_dpt import * from .modeling_dpt import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
import numpy as np import pytest from docarray.documents import Mesh3D from tests import TOYDATA_DIR LOCAL_OBJ_FILE = str(TOYDATA_DIR / 'tetrahedron.obj') REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_OBJ_FILE, REMOTE_OBJ_FILE]) def test_mesh(file_url): mesh = Mesh3D(url=file_url) mesh.vertices, mesh.faces = mesh.url.load() assert isinstance(mesh.vertices, np.ndarray) assert isinstance(mesh.faces, np.ndarray)
import numpy as np import pytest from docarray import Mesh3D from tests import TOYDATA_DIR LOCAL_OBJ_FILE = str(TOYDATA_DIR / 'tetrahedron.obj') REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_OBJ_FILE, REMOTE_OBJ_FILE]) def test_mesh(file_url): mesh = Mesh3D(url=file_url) mesh.vertices, mesh.faces = mesh.url.load() assert isinstance(mesh.vertices, np.ndarray) assert isinstance(mesh.faces, np.ndarray)
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.activations import deserialize from keras.src.activations import get from keras.src.activations import serialize from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_shrink from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_silu as hard_swish from keras.src.activations.activations import hard_tanh from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_sigmoid from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import silu as swish from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import tanh from keras.src.activations.activations import tanh_shrink
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.activations import deserialize from keras.src.activations import get from keras.src.activations import serialize from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_shrink from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_silu as hard_swish from keras.src.activations.activations import hard_tanh from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_sigmoid from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import silu as swish from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import tanh
from keras.src import activations from keras.src import backend from keras.src.api_export import keras_export from keras.src.layers.layer import Layer def _large_negative_number(dtype): """Return a Large negative number based on dtype.""" if backend.standardize_dtype(dtype) == "float16": return -3e4 return -1e9 @keras_export("keras.layers.Softmax") class Softmax(Layer): """Softmax activation layer. Formula: ``` python exp_x = exp(x - max(x)) f(x) = exp_x / sum(exp_x) ``` Example: >>> softmax_layer = keras.layers.Softmax() >>> input = np.array([1.0, 2.0, 1.0]) >>> result = softmax_layer(input) >>> result [0.21194157, 0.5761169, 0.21194157] Args: axis: Integer, or list of Integers, axis along which the softmax normalization is applied. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. Call arguments: inputs: The inputs (logits) to the softmax layer. mask: A boolean mask of the same shape as `inputs`. The mask specifies 1 to keep and 0 to mask. Defaults to `None`. Returns: Softmaxed output with the same shape as `inputs`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) self.axis = axis self.supports_masking = True self._build_at_init() def call(self, inputs, mask=None): if mask is not None: adder = ( 1.0 - backend.cast(mask, inputs.dtype) ) * _large_negative_number(inputs.dtype) inputs += adder if isinstance(self.axis, (tuple, list)): if len(self.axis) > 1: return backend.numpy.exp( inputs - backend.math.logsumexp( inputs, axis=self.axis, keepdims=True ) ) else: return activations.softmax(inputs, axis=self.axis[0]) return activations.softmax(inputs, axis=self.axis) def get_config(self): config = super().get_config() config.update({"axis": self.axis}) return config def compute_output_shape(self, input_shape): return input_shape
from keras.src import activations from keras.src import backend from keras.src.api_export import keras_export from keras.src.layers.layer import Layer def _large_negative_number(dtype): """Return a Large negative number based on dtype.""" if backend.standardize_dtype(dtype) == "float16": return -3e4 return -1e9 @keras_export("keras.layers.Softmax") class Softmax(Layer): """Softmax activation layer. Formula: ``` python exp_x = exp(x - max(x)) f(x) = exp_x / sum(exp_x) ``` Example: >>> softmax_layer = keras.layers.Softmax() >>> input = np.array([1.0, 2.0, 1.0]) >>> result = softmax_layer(input) >>> result [0.21194157, 0.5761169, 0.21194157] Args: axis: Integer, or list of Integers, axis along which the softmax normalization is applied. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. Call arguments: inputs: The inputs (logits) to the softmax layer. mask: A boolean mask of the same shape as `inputs`. The mask specifies 1 to keep and 0 to mask. Defaults to `None`. Returns: Softmaxed output with the same shape as `inputs`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) self.axis = axis self.supports_masking = True self.built = True def call(self, inputs, mask=None): if mask is not None: adder = ( 1.0 - backend.cast(mask, inputs.dtype) ) * _large_negative_number(inputs.dtype) inputs += adder if isinstance(self.axis, (tuple, list)): if len(self.axis) > 1: return backend.numpy.exp( inputs - backend.math.logsumexp( inputs, axis=self.axis, keepdims=True ) ) else: return activations.softmax(inputs, axis=self.axis[0]) return activations.softmax(inputs, axis=self.axis) def get_config(self): config = super().get_config() config.update({"axis": self.axis}) return config def compute_output_shape(self, input_shape): return input_shape
_base_ = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py' model = dict( roi_head=dict( type='DoubleHeadRoIHead', reg_roi_scale_factor=1.3, bbox_head=dict( _delete_=True, type='DoubleConvFCBBoxHead', num_convs=4, num_fcs=2, in_channels=256, conv_out_channels=1024, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=2.0))))
_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' model = dict( roi_head=dict( type='DoubleHeadRoIHead', reg_roi_scale_factor=1.3, bbox_head=dict( _delete_=True, type='DoubleConvFCBBoxHead', num_convs=4, num_fcs=2, in_channels=256, conv_out_channels=1024, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=2.0))))
import warnings from typing import Any, List, Union import PIL.Image import torch from torchvision.prototype import datapoints from torchvision.transforms import functional as _F @torch.jit.unused def to_grayscale(inpt: PIL.Image.Image, num_output_channels: int = 1) -> PIL.Image.Image: call = ", num_output_channels=3" if num_output_channels == 3 else "" replacement = "convert_color_space(..., color_space=datapoints.ColorSpace.GRAY)" if num_output_channels == 3: replacement = f"convert_color_space({replacement}, color_space=datapoints.ColorSpace.RGB)" warnings.warn( f"The function `to_grayscale(...{call})` is deprecated in will be removed in a future release. " f"Instead, please use `{replacement}`.", ) return _F.to_grayscale(inpt, num_output_channels=num_output_channels) def rgb_to_grayscale( inpt: Union[datapoints.ImageTypeJIT, datapoints.VideoTypeJIT], num_output_channels: int = 1 ) -> Union[datapoints.ImageTypeJIT, datapoints.VideoTypeJIT]: if not torch.jit.is_scripting() and isinstance(inpt, (datapoints.Image, datapoints.Video)): inpt = inpt.as_subclass(torch.Tensor) old_color_space = None elif isinstance(inpt, torch.Tensor): old_color_space = datapoints._image._from_tensor_shape(inpt.shape) # type: ignore[arg-type] else: old_color_space = None call = ", num_output_channels=3" if num_output_channels == 3 else "" replacement = ( f"convert_color_space(..., color_space=datapoints.ColorSpace.GRAY" f"{f', old_color_space=datapoints.ColorSpace.{old_color_space}' if old_color_space is not None else ''})" ) if num_output_channels == 3: replacement = ( f"convert_color_space({replacement}, color_space=datapoints.ColorSpace.RGB" f"{f', old_color_space=datapoints.ColorSpace.GRAY' if old_color_space is not None else ''})" ) warnings.warn( f"The function `rgb_to_grayscale(...{call})` is deprecated in will be removed in a future release. " f"Instead, please use `{replacement}`.", ) return _F.rgb_to_grayscale(inpt, num_output_channels=num_output_channels) @torch.jit.unused def to_tensor(inpt: Any) -> torch.Tensor: warnings.warn( "The function `to_tensor(...)` is deprecated and will be removed in a future release. " "Instead, please use `to_image_tensor(...)` followed by `convert_image_dtype(...)`." ) return _F.to_tensor(inpt) def get_image_size(inpt: Union[datapoints.ImageTypeJIT, datapoints.VideoTypeJIT]) -> List[int]: warnings.warn( "The function `get_image_size(...)` is deprecated and will be removed in a future release. " "Instead, please use `get_spatial_size(...)` which returns `[h, w]` instead of `[w, h]`." ) return _F.get_image_size(inpt)
import warnings from typing import Any, List, Union import PIL.Image import torch from torchvision.prototype import features from torchvision.transforms import functional as _F @torch.jit.unused def to_grayscale(inpt: PIL.Image.Image, num_output_channels: int = 1) -> PIL.Image.Image: call = ", num_output_channels=3" if num_output_channels == 3 else "" replacement = "convert_color_space(..., color_space=features.ColorSpace.GRAY)" if num_output_channels == 3: replacement = f"convert_color_space({replacement}, color_space=features.ColorSpace.RGB)" warnings.warn( f"The function `to_grayscale(...{call})` is deprecated in will be removed in a future release. " f"Instead, please use `{replacement}`.", ) return _F.to_grayscale(inpt, num_output_channels=num_output_channels) def rgb_to_grayscale( inpt: Union[features.ImageTypeJIT, features.VideoTypeJIT], num_output_channels: int = 1 ) -> Union[features.ImageTypeJIT, features.VideoTypeJIT]: if not torch.jit.is_scripting() and isinstance(inpt, (features.Image, features.Video)): inpt = inpt.as_subclass(torch.Tensor) old_color_space = None elif isinstance(inpt, torch.Tensor): old_color_space = features._image._from_tensor_shape(inpt.shape) # type: ignore[arg-type] else: old_color_space = None call = ", num_output_channels=3" if num_output_channels == 3 else "" replacement = ( f"convert_color_space(..., color_space=features.ColorSpace.GRAY" f"{f', old_color_space=features.ColorSpace.{old_color_space}' if old_color_space is not None else ''})" ) if num_output_channels == 3: replacement = ( f"convert_color_space({replacement}, color_space=features.ColorSpace.RGB" f"{f', old_color_space=features.ColorSpace.GRAY' if old_color_space is not None else ''})" ) warnings.warn( f"The function `rgb_to_grayscale(...{call})` is deprecated in will be removed in a future release. " f"Instead, please use `{replacement}`.", ) return _F.rgb_to_grayscale(inpt, num_output_channels=num_output_channels) @torch.jit.unused def to_tensor(inpt: Any) -> torch.Tensor: warnings.warn( "The function `to_tensor(...)` is deprecated and will be removed in a future release. " "Instead, please use `to_image_tensor(...)` followed by `convert_image_dtype(...)`." ) return _F.to_tensor(inpt) def get_image_size(inpt: Union[features.ImageTypeJIT, features.VideoTypeJIT]) -> List[int]: warnings.warn( "The function `get_image_size(...)` is deprecated and will be removed in a future release. " "Instead, please use `get_spatial_size(...)` which returns `[h, w]` instead of `[w, h]`." ) return _F.get_image_size(inpt)
_base_ = './cascade-rcnn_hrnetv2p-w32-20e_coco.py' # model settings model = dict( backbone=dict( type='HRNet', extra=dict( stage2=dict(num_channels=(40, 80)), stage3=dict(num_channels=(40, 80, 160)), stage4=dict(num_channels=(40, 80, 160, 320))), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w40')), neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
_base_ = './cascade_rcnn_hrnetv2p_w32_20e_coco.py' # model settings model = dict( backbone=dict( type='HRNet', extra=dict( stage2=dict(num_channels=(40, 80)), stage3=dict(num_channels=(40, 80, 160)), stage4=dict(num_channels=(40, 80, 160, 320))), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w40')), neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
import base64 import os import pytest from unittest import mock from llama_index.core.base.llms.types import ChatMessage, ChatResponse, MessageRole from llama_index.core.multi_modal_llms.base import MultiModalLLM from llama_index.multi_modal_llms.zhipuai import ZhipuAIMultiModal from zhipuai.types.chat.chat_completion import ( Completion, CompletionChoice, CompletionMessage, CompletionUsage, ) _FAKE_API_KEY = "ZHIPUAI_API_KEY" _FAKE_CHAT_COMPLETIONS_RESPONSE = Completion( id="some_id", choices=[ CompletionChoice( index=0, finish_reason="stop", message=CompletionMessage( role=MessageRole.ASSISTANT, content="nothing in the video", ), ) ], usage=CompletionUsage( prompt_tokens=10, completion_tokens=10, total_tokens=20, ), ) def test_multi_modal_llm_class(): names_of_base_classes = [b.__name__ for b in ZhipuAIMultiModal.__mro__] assert MultiModalLLM.__name__ in names_of_base_classes def test_multi_modal_llm_series(): llm = ZhipuAIMultiModal(model="glm-4v-plus", api_key="") assert llm.has_completions_api() is True llm = ZhipuAIMultiModal(model="cogview-3-plus", api_key="") assert llm.has_completions_api() is False llm = ZhipuAIMultiModal(model="cogvideox", api_key="") assert llm.has_videos_generations_api() is True def test_get_glm_model_context_size(): llm = ZhipuAIMultiModal(model="glm-4v", api_key="") assert llm.metadata.context_window > 0 assert llm.model_kwargs with pytest.raises(ValueError): llm = ZhipuAIMultiModal(model="glm-x", api_key="") assert llm.metadata.context_window def test_fake_llm_chat_and_complete(): messages = [ChatMessage(role=MessageRole.USER, content="describe the video")] expected_response = ChatResponse( message=ChatMessage( role=MessageRole.ASSISTANT, content="nothing in the video", additional_kwargs={"tool_calls": None}, ), raw=_FAKE_CHAT_COMPLETIONS_RESPONSE, ) llm = ZhipuAIMultiModal(model="glm-4v-plus", api_key=_FAKE_API_KEY) with mock.patch.object( llm._client.chat.completions, "create", return_value=_FAKE_CHAT_COMPLETIONS_RESPONSE, ): actual_response = llm.chat(messages=messages) assert actual_response == expected_response @pytest.mark.skipif( os.getenv("ZHIPUAI_API_KEY") is None, reason="ZHIPUAI_API_KEY not set" ) def test_llm_chat_and_complete(): # test glm-4v completion llm = ZhipuAIMultiModal(model="glm-4v", api_key=os.getenv("ZHIPUAI_API_KEY")) with open(os.getenv("ZHIPUAI_TEST_VIDEO"), "rb") as video_file: video_base = base64.b64encode(video_file.read()).decode("utf-8") messages = [ ChatMessage( role=MessageRole.USER, content=[ {"type": "video_url", "video_url": {"url": video_base}}, {"type": "text", "text": "descript the video"}, ], ), ] assert llm.chat(messages) assert llm.complete("descript the video", video_url=video_base) assert llm.stream_chat(messages) assert llm.stream_complete("descript the video", video_url=video_base) # test cogview or cogvideox llm = ZhipuAIMultiModal( model="cogvideox", api_key=os.getenv("ZHIPUAI_API_KEY"), size="768x1344" ) messages = [ ChatMessage( role=MessageRole.USER, content=[{"type": "text", "text": "a bird flying in the sky"}], ), ] assert llm.chat(messages) assert llm.complete("a bird flying in the sky") @pytest.mark.asyncio @pytest.mark.skipif( os.getenv("ZHIPUAI_API_KEY") is None, reason="ZHIPUAI_API_KEY not set" ) async def test_async_llm_chat_and_complete(): # test glm-4v completion llm = ZhipuAIMultiModal(model="glm-4v", api_key=os.getenv("ZHIPUAI_API_KEY")) with open(os.getenv("ZHIPUAI_TEST_VIDEO"), "rb") as video_file: video_base = base64.b64encode(video_file.read()).decode("utf-8") messages = [ ChatMessage( role=MessageRole.USER, content=[ {"type": "video_url", "video_url": {"url": video_base}}, {"type": "text", "text": "descript the video"}, ], ), ] assert await llm.astream_chat(messages) assert await llm.astream_complete("descript the video", video_url=video_base) llm = ZhipuAIMultiModal( model="cogview-3-plus", api_key=os.getenv("ZHIPUAI_API_KEY") ) assert await llm.acomplete("draw a bird flying in the sky")
import base64 import os import pytest from unittest import mock from llama_index.core.base.llms.types import ChatMessage, ChatResponse, MessageRole from llama_index.core.multi_modal_llms.base import MultiModalLLM from llama_index.multi_modal_llms.zhipuai import ZhipuAIMultiModal from zhipuai.types.chat.chat_completion import ( Completion, CompletionChoice, CompletionMessage, CompletionUsage, ) _FAKE_API_KEY = "ZHIPUAI_API_KEY" _FAKE_CHAT_COMPLETIONS_RESPONSE = Completion( id="some_id", choices=[ CompletionChoice( index=0, finish_reason="stop", message=CompletionMessage( role=MessageRole.ASSISTANT, content="nothing in the video", ), ) ], usage=CompletionUsage( prompt_tokens=10, completion_tokens=10, total_tokens=20, ), ) def test_multi_modal_llm_class(): names_of_base_classes = [b.__name__ for b in ZhipuAIMultiModal.__mro__] assert MultiModalLLM.__name__ in names_of_base_classes def test_multi_modal_llm_series(): llm = ZhipuAIMultiModal(model="glm-4v-plus", api_key="") assert llm.has_completions_api() is True llm = ZhipuAIMultiModal(model="cogview-3-plus", api_key="") assert llm.has_completions_api() is False llm = ZhipuAIMultiModal(model="cogvideox", api_key="") assert llm.has_videos_generations_api() is True def test_get_glm_model_context_size(): llm = ZhipuAIMultiModal(model="glm-4v", api_key="") assert llm.metadata.context_window > 0 assert llm.model_kwargs with pytest.raises(ValueError): llm = ZhipuAIMultiModal(model="glm-x", api_key="") assert llm.metadata.context_window def test_fake_llm_chat_and_complete(): messages = [ChatMessage(role=MessageRole.USER, content="describe the video")] expected_response = ChatResponse( message=ChatMessage( role=MessageRole.ASSISTANT, content="nothing in the video", additional_kwargs={"tool_calls": None}, ), raw=_FAKE_CHAT_COMPLETIONS_RESPONSE, ) llm = ZhipuAIMultiModal(model="glm-4v-plus", api_key=_FAKE_API_KEY) with mock.patch.object( llm._client.chat.completions, "create", return_value=_FAKE_CHAT_COMPLETIONS_RESPONSE, ): actual_response = llm.chat(messages=messages) assert actual_response == expected_response @pytest.mark.skipif( os.getenv("ZHIPUAI_API_KEY") is None, reason="ZHIPUAI_API_KEY not set" ) def test_llm_chat_and_complete(): # test glm-4v completion llm = ZhipuAIMultiModal(model="glm-4v", api_key=os.getenv("ZHIPUAI_API_KEY")) with open(os.getenv("ZHIPUAI_TEST_VIDEO"), "rb") as video_file: video_base = base64.b64encode(video_file.read()).decode("utf-8") messages = [ ChatMessage( role=MessageRole.USER, content=[ {"type": "video_url", "video_url": {"url": video_base}}, {"type": "text", "text": "descript the video"}, ], ), ] assert llm.chat(messages) assert llm.complete("descript the video", video_url=video_base) assert llm.stream_chat(messages) assert llm.stream_complete("descript the video", video_url=video_base) # test cogview or cogvideox llm = ZhipuAIMultiModal( model="cogvideox", api_key=os.getenv("ZHIPUAI_API_KEY"), size="768x1344" ) messages = [ ChatMessage( role=MessageRole.USER, content=[{"type": "text", "text": "a bird flying in the sky"}], ), ] assert llm.chat(messages) assert llm.complete("a bird flying in the sky") @pytest.mark.asyncio() @pytest.mark.skipif( os.getenv("ZHIPUAI_API_KEY") is None, reason="ZHIPUAI_API_KEY not set" ) async def test_async_llm_chat_and_complete(): # test glm-4v completion llm = ZhipuAIMultiModal(model="glm-4v", api_key=os.getenv("ZHIPUAI_API_KEY")) with open(os.getenv("ZHIPUAI_TEST_VIDEO"), "rb") as video_file: video_base = base64.b64encode(video_file.read()).decode("utf-8") messages = [ ChatMessage( role=MessageRole.USER, content=[ {"type": "video_url", "video_url": {"url": video_base}}, {"type": "text", "text": "descript the video"}, ], ), ] assert await llm.astream_chat(messages) assert await llm.astream_complete("descript the video", video_url=video_base) llm = ZhipuAIMultiModal( model="cogview-3-plus", api_key=os.getenv("ZHIPUAI_API_KEY") ) assert await llm.acomplete("draw a bird flying in the sky")
__copyright__ = 'Copyright (c) 2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' import subprocess import pytest from jina import Document, DocumentArray, Flow from transform_encoder import TransformerTorchEncoder _EMBEDDING_DIM = 768 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=TransformerTorchEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:cuda', ], timeout=30, check=True, ) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( ['jina', 'executor', f'--uses=docker://{build_docker_image}'], timeout=30, check=True, )
__copyright__ = 'Copyright (c) 2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' import subprocess import pytest from jina import Document, DocumentArray, Flow from ...transform_encoder import TransformerTorchEncoder _EMBEDDING_DIM = 768 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=TransformerTorchEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:cuda', ], timeout=30, check=True, ) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( ['jina', 'executor', f'--uses=docker://{build_docker_image}'], timeout=30, check=True, )
from typing import Any, Dict, Iterable import torch from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.util import fullname class CosineSimilarityLoss(nn.Module): def __init__( self, model: SentenceTransformer, loss_fct: nn.Module = nn.MSELoss(), cos_score_transformation: nn.Module = nn.Identity(), ) -> None: """ CosineSimilarityLoss expects that the InputExamples consists of two texts and a float label. It computes the vectors ``u = model(sentence_A)`` and ``v = model(sentence_B)`` and measures the cosine-similarity between the two. By default, it minimizes the following loss: ``||input_label - cos_score_transformation(cosine_sim(u,v))||_2``. Args: model: SentenceTransformer model loss_fct: Which pytorch loss function should be used to compare the ``cosine_similarity(u, v)`` with the input_label? By default, MSE is used: ``||input_label - cosine_sim(u, v)||_2`` cos_score_transformation: The cos_score_transformation function is applied on top of cosine_similarity. By default, the identify function is used (i.e. no change). References: - `Training Examples > Semantic Textual Similarity <../../examples/training/sts/README.html>`_ Requirements: 1. Sentence pairs with corresponding similarity scores in range `[0, 1]` Relations: - :class:`CoSENTLoss` seems to produce a stronger training signal than CosineSimilarityLoss. In our experiments, CoSENTLoss is recommended. - :class:`AnglELoss` is :class:`CoSENTLoss` with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. It also produces a stronger training signal than CosineSimilarityLoss. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.CosineSimilarityLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(CosineSimilarityLoss, self).__init__() self.model = model self.loss_fct = loss_fct self.cos_score_transformation = cos_score_transformation def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor) -> Tensor: embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] output = self.cos_score_transformation(torch.cosine_similarity(embeddings[0], embeddings[1])) return self.loss_fct(output, labels.float().view(-1)) def get_config_dict(self) -> Dict[str, Any]: return {"loss_fct": fullname(self.loss_fct)}
from typing import Any, Dict, Iterable import torch from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.util import fullname class CosineSimilarityLoss(nn.Module): def __init__(self, model: SentenceTransformer, loss_fct=nn.MSELoss(), cos_score_transformation=nn.Identity()): """ CosineSimilarityLoss expects that the InputExamples consists of two texts and a float label. It computes the vectors ``u = model(sentence_A)`` and ``v = model(sentence_B)`` and measures the cosine-similarity between the two. By default, it minimizes the following loss: ``||input_label - cos_score_transformation(cosine_sim(u,v))||_2``. Args: model: SentenceTransformer model loss_fct: Which pytorch loss function should be used to compare the ``cosine_similarity(u, v)`` with the input_label? By default, MSE is used: ``||input_label - cosine_sim(u, v)||_2`` cos_score_transformation: The cos_score_transformation function is applied on top of cosine_similarity. By default, the identify function is used (i.e. no change). References: - `Training Examples > Semantic Textual Similarity <../../examples/training/sts/README.html>`_ Requirements: 1. Sentence pairs with corresponding similarity scores in range `[0, 1]` Relations: - :class:`CoSENTLoss` seems to produce a stronger training signal than CosineSimilarityLoss. In our experiments, CoSENTLoss is recommended. - :class:`AnglELoss` is :class:`CoSENTLoss` with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. It also produces a stronger training signal than CosineSimilarityLoss. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], }) loss = losses.CosineSimilarityLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(CosineSimilarityLoss, self).__init__() self.model = model self.loss_fct = loss_fct self.cos_score_transformation = cos_score_transformation def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor): embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] output = self.cos_score_transformation(torch.cosine_similarity(embeddings[0], embeddings[1])) return self.loss_fct(output, labels.float().view(-1)) def get_config_dict(self) -> Dict[str, Any]: return {"loss_fct": fullname(self.loss_fct)}
from textwrap import dedent from types import SimpleNamespace from unittest.mock import patch from urllib.parse import quote import pytest from huggingface_hub import CommitOperationAdd, CommitOperationDelete import datasets from datasets.config import METADATA_CONFIGS_FIELD from datasets.hub import delete_from_hub from datasets.utils.hub import hf_dataset_url DUMMY_DATASET_SCRIPT = dedent("""\ import datasets class NewDataset(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig(name="first"), datasets.BuilderConfig(name="second"), ] DEFAULT_CONFIG_NAME = "first" def _info(self): return datasets.DatasetInfo( features=datasets.Features({"text": datasets.Value("string")}), ) def _split_generators(self, dl_manager): return [datasets.SplitGenerator(name=datasets.Split.TRAIN)] def _generate_examples(self): for key in range(5): yield key, {"text": f"{self.config.name}-{key}"} """) @pytest.mark.parametrize("repo_id", ["canonical_dataset_name", "org-name/dataset-name"]) @pytest.mark.parametrize("filename", ["filename.csv", "filename with blanks.csv"]) @pytest.mark.parametrize("revision", [None, "v2"]) def test_dataset_url(repo_id, filename, revision): url = hf_dataset_url(repo_id=repo_id, filename=filename, revision=revision) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(filename)}" def test_delete_from_hub(temporary_repo, hf_api, hf_token, csv_path, ci_hub_config) -> None: with temporary_repo() as repo_id: hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset") hf_api.upload_file( path_or_fileobj=str(csv_path), path_in_repo="cats/train/0000.csv", repo_id=repo_id, repo_type="dataset", token=hf_token, ) hf_api.upload_file( path_or_fileobj=str(csv_path), path_in_repo="dogs/train/0000.csv", repo_id=repo_id, repo_type="dataset", token=hf_token, ) hf_api.upload_file( token=hf_token, path_or_fileobj=dedent(f"""\ --- {METADATA_CONFIGS_FIELD}: - config_name: cats data_files: - split: train path: cats/train/* - config_name: dogs data_files: - split: train path: dogs/train/* --- """).encode(), path_in_repo="README.md", repo_id=repo_id, repo_type="dataset", ) commit_info = SimpleNamespace( pr_url="https:///hub-ci.huggingface.co/datasets/__DUMMY_USER__/__DUMMY_DATASET__/refs%2Fpr%2F1" ) with patch.object(datasets.hub.HfApi, "create_commit", return_value=commit_info) as mock_method: _ = delete_from_hub(repo_id, "dogs") assert mock_method.called assert mock_method.call_args.kwargs.get("commit_message") == "Delete 'dogs' config" assert mock_method.call_args.kwargs.get("create_pr") expected_operations = [ CommitOperationDelete(path_in_repo="dogs/train/0000.csv", is_folder=False), CommitOperationAdd( path_in_repo="README.md", path_or_fileobj=dedent(f"""\ --- {METADATA_CONFIGS_FIELD}: - config_name: cats data_files: - split: train path: cats/train/* --- """).encode(), ), ] assert mock_method.call_args.kwargs.get("operations") == expected_operations
from textwrap import dedent from types import SimpleNamespace from unittest.mock import patch from urllib.parse import quote import pytest from huggingface_hub import CommitOperationAdd, CommitOperationDelete import datasets from datasets.config import METADATA_CONFIGS_FIELD from datasets.hub import delete_from_hub from datasets.utils.hub import hf_dataset_url DUMMY_DATASET_SCRIPT = dedent("""\ import datasets class NewDataset(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig(name="first"), datasets.BuilderConfig(name="second"), ] DEFAULT_CONFIG_NAME = "first" def _info(self): return datasets.DatasetInfo( features=datasets.Features({"text": datasets.Value("string")}), ) def _split_generators(self, dl_manager): return [datasets.SplitGenerator(name=datasets.Split.TRAIN)] def _generate_examples(self): for key in range(5): yield key, {"text": f"{self.config.name}-{key}"} """) @pytest.mark.parametrize("repo_id", ["canonical_dataset_name", "org-name/dataset-name"]) @pytest.mark.parametrize("filename", ["filename.csv", "filename with blanks.csv"]) @pytest.mark.parametrize("revision", [None, "v2"]) def test_dataset_url(repo_id, filename, revision): url = hf_dataset_url(repo_id=repo_id, filename=filename, revision=revision) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(filename)}" def test_delete_from_hub(temporary_repo, hf_api, hf_token, csv_path, ci_hub_config, ci_hfh_hf_hub_url) -> None: with temporary_repo() as repo_id: hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset") hf_api.upload_file( path_or_fileobj=str(csv_path), path_in_repo="cats/train/0000.csv", repo_id=repo_id, repo_type="dataset", token=hf_token, ) hf_api.upload_file( path_or_fileobj=str(csv_path), path_in_repo="dogs/train/0000.csv", repo_id=repo_id, repo_type="dataset", token=hf_token, ) hf_api.upload_file( token=hf_token, path_or_fileobj=dedent(f"""\ --- {METADATA_CONFIGS_FIELD}: - config_name: cats data_files: - split: train path: cats/train/* - config_name: dogs data_files: - split: train path: dogs/train/* --- """).encode(), path_in_repo="README.md", repo_id=repo_id, repo_type="dataset", ) commit_info = SimpleNamespace( pr_url="https:///hub-ci.huggingface.co/datasets/__DUMMY_USER__/__DUMMY_DATASET__/refs%2Fpr%2F1" ) with patch.object(datasets.hub.HfApi, "create_commit", return_value=commit_info) as mock_method: _ = delete_from_hub(repo_id, "dogs") assert mock_method.called assert mock_method.call_args.kwargs.get("commit_message") == "Delete 'dogs' config" assert mock_method.call_args.kwargs.get("create_pr") expected_operations = [ CommitOperationDelete(path_in_repo="dogs/train/0000.csv", is_folder=False), CommitOperationAdd( path_in_repo="README.md", path_or_fileobj=dedent(f"""\ --- {METADATA_CONFIGS_FIELD}: - config_name: cats data_files: - split: train path: cats/train/* --- """).encode(), ), ] assert mock_method.call_args.kwargs.get("operations") == expected_operations
import base64 import json from typing import List, Dict, Union, NewType, Any, Optional import numpy as np import strawberry from docarray.math.ndarray import to_list _ProtoValueType = Union[bool, float, str] _StructValueType = Union[ _ProtoValueType, List[_ProtoValueType], Dict[str, _ProtoValueType] ] JSONScalar = strawberry.scalar( NewType('JSONScalar', Any), serialize=lambda v: v, parse_value=lambda v: json.loads(v), description="The GenericScalar scalar type represents a generic GraphQL scalar value that could be: List or Object.", ) Base64 = strawberry.scalar( NewType('Base64', bytes), serialize=lambda v: base64.b64encode(v).decode('utf-8'), parse_value=lambda v: base64.b64decode(v.encode('utf-8')), ) NdArray = strawberry.scalar( NewType('NdArray', bytes), serialize=lambda v: to_list(v), parse_value=lambda v: np.array(v), ) ### interface @strawberry.interface class _NamedScoreInterface: value: Optional[float] = None op_name: Optional[str] = None description: Optional[str] = None ref_id: Optional[str] = None @strawberry.interface class _BaseStrawberryDocumentInterface: id: Optional[str] = None parent_id: Optional[str] = None granularity: Optional[int] = None adjacency: Optional[int] = None blob: Optional[Base64] = None tensor: Optional[NdArray] = None mime_type: Optional[str] = None text: Optional[str] = None weight: Optional[float] = None uri: Optional[str] = None tags: Optional[JSONScalar] = None offset: Optional[float] = None location: Optional[List[float]] = None embedding: Optional[NdArray] = None modality: Optional[str] = None ### type @strawberry.type class _NamedScore(_NamedScoreInterface): ... @strawberry.type class _NameScoreItem: name: str score: _NamedScore @strawberry.type class StrawberryDocument(strawberry.type(_BaseStrawberryDocumentInterface)): evaluations: Optional[List[_NameScoreItem]] = None scores: Optional[List[_NameScoreItem]] = None chunks: Optional[List['StrawberryDocument']] = None matches: Optional[List['StrawberryDocument']] = None ### input @strawberry.input class _NamedScoreInput(_NamedScoreInterface): ... @strawberry.input class _NameScoreItemInput: name: str score: _NamedScoreInput @strawberry.input class StrawberryDocumentInput(strawberry.input(_BaseStrawberryDocumentInterface)): evaluations: Optional[List[_NameScoreItemInput]] = None scores: Optional[List[_NameScoreItemInput]] = None chunks: Optional[List['StrawberryDocumentInput']] = None matches: Optional[List['StrawberryDocumentInput']] = None
import base64 import json from typing import List, Dict, Union, NewType, Any, Optional import numpy as np import strawberry from ..math.ndarray import to_list _ProtoValueType = Union[bool, float, str] _StructValueType = Union[ _ProtoValueType, List[_ProtoValueType], Dict[str, _ProtoValueType] ] JSONScalar = strawberry.scalar( NewType('JSONScalar', Any), serialize=lambda v: v, parse_value=lambda v: json.loads(v), description="The GenericScalar scalar type represents a generic GraphQL scalar value that could be: List or Object.", ) Base64 = strawberry.scalar( NewType('Base64', bytes), serialize=lambda v: base64.b64encode(v).decode('utf-8'), parse_value=lambda v: base64.b64decode(v.encode('utf-8')), ) NdArray = strawberry.scalar( NewType('NdArray', bytes), serialize=lambda v: to_list(v), parse_value=lambda v: np.array(v), ) ### interface @strawberry.interface class _NamedScoreInterface: value: Optional[float] = None op_name: Optional[str] = None description: Optional[str] = None ref_id: Optional[str] = None @strawberry.interface class _BaseStrawberryDocumentInterface: id: Optional[str] = None parent_id: Optional[str] = None granularity: Optional[int] = None adjacency: Optional[int] = None blob: Optional[Base64] = None tensor: Optional[NdArray] = None mime_type: Optional[str] = None text: Optional[str] = None weight: Optional[float] = None uri: Optional[str] = None tags: Optional[JSONScalar] = None offset: Optional[float] = None location: Optional[List[float]] = None embedding: Optional[NdArray] = None modality: Optional[str] = None ### type @strawberry.type class _NamedScore(_NamedScoreInterface): ... @strawberry.type class _NameScoreItem: name: str score: _NamedScore @strawberry.type class StrawberryDocument(strawberry.type(_BaseStrawberryDocumentInterface)): evaluations: Optional[List[_NameScoreItem]] = None scores: Optional[List[_NameScoreItem]] = None chunks: Optional[List['StrawberryDocument']] = None matches: Optional[List['StrawberryDocument']] = None ### input @strawberry.input class _NamedScoreInput(_NamedScoreInterface): ... @strawberry.input class _NameScoreItemInput: name: str score: _NamedScoreInput @strawberry.input class StrawberryDocumentInput(strawberry.input(_BaseStrawberryDocumentInterface)): evaluations: Optional[List[_NameScoreItemInput]] = None scores: Optional[List[_NameScoreItemInput]] = None chunks: Optional[List['StrawberryDocumentInput']] = None matches: Optional[List['StrawberryDocumentInput']] = None
from rich.progress import ( Progress, BarColumn, SpinnerColumn, MofNCompleteColumn, TextColumn, TimeRemainingColumn, Text, ) class QPSColumn(TextColumn): def render(self, task) -> Text: if task.speed: _text = f'{task.speed:.0f} QPS' else: _text = 'unknown' if self.markup: text = Text.from_markup(_text, style=self.style, justify=self.justify) else: text = Text(_text, style=self.style, justify=self.justify) if self.highlighter: self.highlighter.highlight(text) return text def get_pbar(disable): return Progress( SpinnerColumn(), TextColumn('[bold]{task.description}'), BarColumn(), MofNCompleteColumn(), '•', QPSColumn('{task.speed} QPS', justify='right', style='progress.data.speed'), '•', TimeRemainingColumn(), '•', TextColumn( '[bold blue]{task.fields[total_size]}', justify='right', style='progress.filesize', ), transient=False, disable=disable, ) def get_progressbar(description, disable, total): progress = get_pbar(disable) task = progress.add_task(description, total=total, start=False, total_size=0) return progress, task
from rich.progress import ( Progress, BarColumn, SpinnerColumn, MofNCompleteColumn, TextColumn, TimeRemainingColumn, Text, ) class QPSColumn(TextColumn): def render(self, task) -> Text: if task.speed: _text = f'{task.speed:.0f} QPS' else: _text = 'unknown' if self.markup: text = Text.from_markup(_text, style=self.style, justify=self.justify) else: text = Text(_text, style=self.style, justify=self.justify) if self.highlighter: self.highlighter.highlight(text) return text def get_pbar(disable): return Progress( SpinnerColumn(), TextColumn('[bold]{task.description}'), BarColumn(), MofNCompleteColumn(), '•', QPSColumn('{task.speed} QPS', justify='right', style='progress.data.speed'), '•', TimeRemainingColumn(), '•', TextColumn( '[bold blue]{task.fields[total_size]}', justify='right', style='progress.filesize', ), transient=True, disable=disable, ) def get_progressbar(description, disable, total): progress = get_pbar(disable) task = progress.add_task(description, total=total, start=False, total_size=0) return progress, task
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class TextDatasetReader(AbstractDatasetReader): def __init__( self, path_or_paths: NestedDataStructureLike[PathLike], split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, **kwargs, ): super().__init__( path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, **kwargs, ) path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths} self.builder = Text( cache_dir=cache_dir, data_files=path_or_paths, features=features, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: download_config = None download_mode = None ignore_verifications = False use_auth_token = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, use_auth_token=use_auth_token, ) dataset = self.builder.as_dataset( split=self.split, ignore_verifications=ignore_verifications, in_memory=self.keep_in_memory ) return dataset
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class TextDatasetReader(AbstractDatasetReader): def __init__( self, path_or_paths: NestedDataStructureLike[PathLike], split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, **kwargs, ): super().__init__( path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, **kwargs ) path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths} self.builder = Text( cache_dir=cache_dir, data_files=path_or_paths, features=features, **kwargs, ) def read(self): download_config = None download_mode = None ignore_verifications = False use_auth_token = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, use_auth_token=use_auth_token, ) # Build dataset for splits dataset = self.builder.as_dataset( split=self.split, ignore_verifications=ignore_verifications, in_memory=self.keep_in_memory ) return dataset
from typing import Any from langchain_core.memory import BaseMemory class SimpleMemory(BaseMemory): """Simple memory for storing context or other information that shouldn't ever change between prompts. """ memories: dict[str, Any] = {} @property def memory_variables(self) -> list[str]: return list(self.memories.keys()) def load_memory_variables(self, inputs: dict[str, Any]) -> dict[str, str]: return self.memories def save_context(self, inputs: dict[str, Any], outputs: dict[str, str]) -> None: """Nothing should be saved or changed, my memory is set in stone.""" def clear(self) -> None: """Nothing to clear, got a memory like a vault."""
from typing import Any from langchain_core.memory import BaseMemory class SimpleMemory(BaseMemory): """Simple memory for storing context or other information that shouldn't ever change between prompts. """ memories: dict[str, Any] = dict() @property def memory_variables(self) -> list[str]: return list(self.memories.keys()) def load_memory_variables(self, inputs: dict[str, Any]) -> dict[str, str]: return self.memories def save_context(self, inputs: dict[str, Any], outputs: dict[str, str]) -> None: """Nothing should be saved or changed, my memory is set in stone.""" def clear(self) -> None: """Nothing to clear, got a memory like a vault."""
_base_ = 'mask-rcnn_regnetx-3.2GF_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_3.2gf')))
_base_ = 'mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True), init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_3.2gf')))
from __future__ import annotations import pytest from torch.utils.data import BatchSampler, ConcatDataset, SequentialSampler from sentence_transformers.sampler import RoundRobinBatchSampler from sentence_transformers.util import is_datasets_available if is_datasets_available(): from datasets import Dataset else: pytest.skip( reason='Sentence Transformers was not installed with the `["train"]` extra.', allow_module_level=True, ) DATASET_LENGTH = 25 @pytest.fixture def dummy_concat_dataset() -> ConcatDataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": [0, 1, 2, ... , 23, 24, 100, 101, ..., 123, 124], "label": [0, 1, 0, 1, ..., 0, 1], } """ values_1 = list(range(DATASET_LENGTH)) labels = [x % 2 for x in values_1] dataset_1 = Dataset.from_dict({"data": values_1, "label": labels}) values_2 = [x + 100 for x in values_1] + [x + 200 for x in values_1] dataset_2 = Dataset.from_dict({"data": values_2, "label": labels + labels}) return ConcatDataset([dataset_1, dataset_2]) def test_round_robin_batch_sampler(dummy_concat_dataset: ConcatDataset) -> None: batch_size = 4 batch_sampler_1 = BatchSampler( SequentialSampler(range(len(dummy_concat_dataset.datasets[0]))), batch_size=batch_size, drop_last=True ) batch_sampler_2 = BatchSampler( SequentialSampler(range(len(dummy_concat_dataset.datasets[1]))), batch_size=batch_size, drop_last=True ) sampler = RoundRobinBatchSampler(dataset=dummy_concat_dataset, batch_samplers=[batch_sampler_1, batch_sampler_2]) batches = list(iter(sampler)) # Despite the second dataset being larger (2 * DATASET_LENGTH), we still only sample DATASET_LENGTH // batch_size batches from each dataset # because the RoundRobinBatchSampler should stop sampling once it has sampled all elements from one dataset assert len(batches) == 2 * DATASET_LENGTH // batch_size assert len(sampler) == len(batches) # Assert that batches are produced in a round-robin fashion for i in range(0, len(batches), 2): # Batch from the first part of the dataset batch_1 = batches[i] assert all( dummy_concat_dataset[idx]["data"] < 100 for idx in batch_1 ), f"Batch {i} contains data from the second part of the dataset: {[dummy_concat_dataset[idx]['data'] for idx in batch_1]}" # Batch from the second part of the dataset batch_2 = batches[i + 1] assert all( dummy_concat_dataset[idx]["data"] >= 100 for idx in batch_2 ), f"Batch {i+1} contains data from the first part of the dataset: {[dummy_concat_dataset[idx]['data'] for idx in batch_2]}" def test_round_robin_batch_sampler_value_error(dummy_concat_dataset: ConcatDataset) -> None: batch_size = 4 batch_sampler_1 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) batch_sampler_2 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) batch_sampler_3 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) with pytest.raises( ValueError, match="The number of batch samplers must match the number of datasets in the ConcatDataset" ): RoundRobinBatchSampler( dataset=dummy_concat_dataset, batch_samplers=[batch_sampler_1, batch_sampler_2, batch_sampler_3] )
from __future__ import annotations import pytest from datasets import Dataset from torch.utils.data import BatchSampler, ConcatDataset, SequentialSampler from sentence_transformers.sampler import RoundRobinBatchSampler DATASET_LENGTH = 25 @pytest.fixture def dummy_concat_dataset() -> ConcatDataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": [0, 1, 2, ... , 23, 24, 100, 101, ..., 123, 124], "label": [0, 1, 0, 1, ..., 0, 1], } """ values_1 = list(range(DATASET_LENGTH)) labels = [x % 2 for x in values_1] dataset_1 = Dataset.from_dict({"data": values_1, "label": labels}) values_2 = [x + 100 for x in values_1] + [x + 200 for x in values_1] dataset_2 = Dataset.from_dict({"data": values_2, "label": labels + labels}) return ConcatDataset([dataset_1, dataset_2]) def test_round_robin_batch_sampler(dummy_concat_dataset: ConcatDataset) -> None: batch_size = 4 batch_sampler_1 = BatchSampler( SequentialSampler(range(len(dummy_concat_dataset.datasets[0]))), batch_size=batch_size, drop_last=True ) batch_sampler_2 = BatchSampler( SequentialSampler(range(len(dummy_concat_dataset.datasets[1]))), batch_size=batch_size, drop_last=True ) sampler = RoundRobinBatchSampler(dataset=dummy_concat_dataset, batch_samplers=[batch_sampler_1, batch_sampler_2]) batches = list(iter(sampler)) # Despite the second dataset being larger (2 * DATASET_LENGTH), we still only sample DATASET_LENGTH // batch_size batches from each dataset # because the RoundRobinBatchSampler should stop sampling once it has sampled all elements from one dataset assert len(batches) == 2 * DATASET_LENGTH // batch_size assert len(sampler) == len(batches) # Assert that batches are produced in a round-robin fashion for i in range(0, len(batches), 2): # Batch from the first part of the dataset batch_1 = batches[i] assert all( dummy_concat_dataset[idx]["data"] < 100 for idx in batch_1 ), f"Batch {i} contains data from the second part of the dataset: {[dummy_concat_dataset[idx]['data'] for idx in batch_1]}" # Batch from the second part of the dataset batch_2 = batches[i + 1] assert all( dummy_concat_dataset[idx]["data"] >= 100 for idx in batch_2 ), f"Batch {i+1} contains data from the first part of the dataset: {[dummy_concat_dataset[idx]['data'] for idx in batch_2]}" def test_round_robin_batch_sampler_value_error(dummy_concat_dataset: ConcatDataset) -> None: batch_size = 4 batch_sampler_1 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) batch_sampler_2 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) batch_sampler_3 = BatchSampler(SequentialSampler(range(DATASET_LENGTH)), batch_size=batch_size, drop_last=True) with pytest.raises( ValueError, match="The number of batch samplers must match the number of datasets in the ConcatDataset" ): RoundRobinBatchSampler( dataset=dummy_concat_dataset, batch_samplers=[batch_sampler_1, batch_sampler_2, batch_sampler_3] )
from abc import abstractmethod import logging from typing import Any, Dict, List, Optional from llama_index.core.graph_stores.types import GraphStore from .neptune import refresh_schema logger = logging.getLogger(__name__) class NeptuneBaseGraphStore(GraphStore): """This is an abstract base class that represents the shared features across the NeptuneDatabaseGraphStore and NeptuneAnalyticsGraphStore classes. """ def __init__() -> None: pass @property def client(self) -> Any: return self._client def get(self, subj: str) -> List[List[str]]: """Get triplets.""" query = """ MATCH (n1:%s)-[r]->(n2:%s) WHERE n1.id = $subj RETURN type(r), n2.id; """ prepared_statement = query % (self.node_label, self.node_label) with self._driver.session(database=self._database) as session: data = session.run(prepared_statement, {"subj": subj}) return [record.values() for record in data] def get_rel_map( self, subjs: Optional[List[str]] = None, depth: int = 2, limit: int = 30 ) -> Dict[str, List[List[str]]]: """Get flat rel map.""" rel_map: Dict[Any, List[Any]] = {} if subjs is None or len(subjs) == 0: return rel_map query = f"""MATCH p=(n1:{self.node_label})-[*1..{depth}]->() WHERE n1.id IN $subjs UNWIND relationships(p) AS rel WITH n1.id AS subj, p, collect([type(rel), endNode(rel).id])AS flattened_rels UNWIND flattened_rels as fr WITH DISTINCT fr, subj RETURN subj, collect(fr) AS flattened_rels LIMIT {limit}""" data = list(self.query(query, {"subjs": subjs})) if not data: return rel_map for record in data: rel_map[record["subj"]] = record["flattened_rels"] return rel_map def upsert_triplet(self, subj: str, rel: str, obj: str) -> None: """Add triplet to the graph.""" query = """ MERGE (n1:`%s` {id:$subj}) MERGE (n2:`%s` {id:$obj}) MERGE (n1)-[:`%s`]->(n2) """ prepared_statement = query % ( self.node_label.replace("`", ""), self.node_label.replace("`", ""), rel.replace(" ", "_").replace("`", "").upper(), ) self.query( prepared_statement, {"subj": subj.replace("`", ""), "obj": obj.replace("`", "")}, ) def delete(self, subj: str, rel: str, obj: str) -> None: """Delete triplet from the graph.""" def delete_rel(subj: str, obj: str, rel: str) -> None: with self._driver.session(database=self._database) as session: session.run( ( "MATCH (n1:{})-[r:{}]->(n2:{}) WHERE n1.id = $subj AND n2.id" " = $obj DELETE r" ).format(self.node_label, rel, self.node_label), {"subj": subj, "obj": obj}, ) def delete_entity(entity: str) -> None: with self._driver.session(database=self._database) as session: session.run( "MATCH (n:%s) WHERE n.id = $entity DETACH DELETE n" % self.node_label, {"entity": entity}, ) delete_rel(subj, obj, rel) delete_entity(subj) def get_schema(self, refresh: bool = False) -> str: """Get the schema of the Neptune KG store.""" if refresh or not self.schema: self.schema = refresh_schema(self.query, self._get_summary())["schema_str"] return self.schema @abstractmethod def query(self, query: str, params: dict = {}) -> Dict[str, Any]: raise NotImplementedError @abstractmethod def _get_summary(self) -> Dict: raise NotImplementedError
from abc import abstractmethod import logging from typing import Any, Dict, List, Optional from llama_index.core.graph_stores.types import GraphStore from .neptune import refresh_schema logger = logging.getLogger(__name__) class NeptuneBaseGraphStore(GraphStore): """This is an abstract base class that represents the shared features across the NeptuneDatabaseGraphStore and NeptuneAnalyticsGraphStore classes. """ def __init__() -> None: pass @property def client(self) -> Any: return self._client def get(self, subj: str) -> List[List[str]]: """Get triplets.""" query = """ MATCH (n1:%s)-[r]->(n2:%s) WHERE n1.id = $subj RETURN type(r), n2.id; """ prepared_statement = query % (self.node_label, self.node_label) with self._driver.session(database=self._database) as session: data = session.run(prepared_statement, {"subj": subj}) return [record.values() for record in data] def get_rel_map( self, subjs: Optional[List[str]] = None, depth: int = 2, limit: int = 30 ) -> Dict[str, List[List[str]]]: """Get flat rel map.""" rel_map: Dict[Any, List[Any]] = {} if subjs is None or len(subjs) == 0: return rel_map query = f"""MATCH p=(n1:{self.node_label})-[*1..{depth}]->() WHERE n1.id IN $subjs UNWIND relationships(p) AS rel WITH n1.id AS subj, p, collect([type(rel), endNode(rel).id])AS flattened_rels UNWIND flattened_rels as fr WITH DISTINCT fr, subj RETURN subj, collect(fr) AS flattened_rels LIMIT {limit}""" data = list(self.query(query, {"subjs": subjs})) if not data: return rel_map for record in data: rel_map[record["subj"]] = record["flattened_rels"] return rel_map def upsert_triplet(self, subj: str, rel: str, obj: str) -> None: """Add triplet to the graph.""" query = """ MERGE (n1:`%s` {id:$subj}) MERGE (n2:`%s` {id:$obj}) MERGE (n1)-[:`%s`]->(n2) """ prepared_statement = query % ( self.node_label.replace("`", ""), rel.replace(" ", "_").replace("`", "").upper(), ) self.query( prepared_statement, {"subj": subj.replace("`", ""), "obj": obj.replace("`", "")}, ) def delete(self, subj: str, rel: str, obj: str) -> None: """Delete triplet from the graph.""" def delete_rel(subj: str, obj: str, rel: str) -> None: with self._driver.session(database=self._database) as session: session.run( ( "MATCH (n1:{})-[r:{}]->(n2:{}) WHERE n1.id = $subj AND n2.id" " = $obj DELETE r" ).format(self.node_label, rel, self.node_label), {"subj": subj, "obj": obj}, ) def delete_entity(entity: str) -> None: with self._driver.session(database=self._database) as session: session.run( "MATCH (n:%s) WHERE n.id = $entity DETACH DELETE n" % self.node_label, {"entity": entity}, ) delete_rel(subj, obj, rel) delete_entity(subj) def get_schema(self, refresh: bool = False) -> str: """Get the schema of the Neptune KG store.""" if refresh or not self.schema: self.schema = refresh_schema(self.query, self._get_summary())["schema_str"] return self.schema @abstractmethod def query(self, query: str, params: dict = {}) -> Dict[str, Any]: raise NotImplementedError @abstractmethod def _get_summary(self) -> Dict: raise NotImplementedError
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.registry import TASK_UTILS from .base_sampler import BaseSampler @TASK_UTILS.register_module() class RandomSampler(BaseSampler): """Random sampler. Args: num (int): Number of samples pos_fraction (float): Fraction of positive samples neg_pos_up (int, optional): Upper bound number of negative and positive samples. Defaults to -1. add_gt_as_proposals (bool, optional): Whether to add ground truth boxes as proposals. Defaults to True. """ def __init__(self, num, pos_fraction, neg_pos_ub=-1, add_gt_as_proposals=True, **kwargs): from mmdet.core.bbox import demodata super(RandomSampler, self).__init__(num, pos_fraction, neg_pos_ub, add_gt_as_proposals) self.rng = demodata.ensure_rng(kwargs.get('rng', None)) def random_choice(self, gallery, num): """Random select some elements from the gallery. If `gallery` is a Tensor, the returned indices will be a Tensor; If `gallery` is a ndarray or list, the returned indices will be a ndarray. Args: gallery (Tensor | ndarray | list): indices pool. num (int): expected sample num. Returns: Tensor or ndarray: sampled indices. """ assert len(gallery) >= num is_tensor = isinstance(gallery, torch.Tensor) if not is_tensor: if torch.cuda.is_available(): device = torch.cuda.current_device() else: device = 'cpu' gallery = torch.tensor(gallery, dtype=torch.long, device=device) # This is a temporary fix. We can revert the following code # when PyTorch fixes the abnormal return of torch.randperm. # See: https://github.com/open-mmlab/mmdetection/pull/5014 perm = torch.randperm(gallery.numel())[:num].to(device=gallery.device) rand_inds = gallery[perm] if not is_tensor: rand_inds = rand_inds.cpu().numpy() return rand_inds def _sample_pos(self, assign_result, num_expected, **kwargs): """Randomly sample some positive samples.""" pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False) if pos_inds.numel() != 0: pos_inds = pos_inds.squeeze(1) if pos_inds.numel() <= num_expected: return pos_inds else: return self.random_choice(pos_inds, num_expected) def _sample_neg(self, assign_result, num_expected, **kwargs): """Randomly sample some negative samples.""" neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False) if neg_inds.numel() != 0: neg_inds = neg_inds.squeeze(1) if len(neg_inds) <= num_expected: return neg_inds else: return self.random_choice(neg_inds, num_expected)
# Copyright (c) OpenMMLab. All rights reserved. import torch from ..builder import BBOX_SAMPLERS from .base_sampler import BaseSampler @BBOX_SAMPLERS.register_module() class RandomSampler(BaseSampler): """Random sampler. Args: num (int): Number of samples pos_fraction (float): Fraction of positive samples neg_pos_up (int, optional): Upper bound number of negative and positive samples. Defaults to -1. add_gt_as_proposals (bool, optional): Whether to add ground truth boxes as proposals. Defaults to True. """ def __init__(self, num, pos_fraction, neg_pos_ub=-1, add_gt_as_proposals=True, **kwargs): from mmdet.core.bbox import demodata super(RandomSampler, self).__init__(num, pos_fraction, neg_pos_ub, add_gt_as_proposals) self.rng = demodata.ensure_rng(kwargs.get('rng', None)) def random_choice(self, gallery, num): """Random select some elements from the gallery. If `gallery` is a Tensor, the returned indices will be a Tensor; If `gallery` is a ndarray or list, the returned indices will be a ndarray. Args: gallery (Tensor | ndarray | list): indices pool. num (int): expected sample num. Returns: Tensor or ndarray: sampled indices. """ assert len(gallery) >= num is_tensor = isinstance(gallery, torch.Tensor) if not is_tensor: if torch.cuda.is_available(): device = torch.cuda.current_device() else: device = 'cpu' gallery = torch.tensor(gallery, dtype=torch.long, device=device) # This is a temporary fix. We can revert the following code # when PyTorch fixes the abnormal return of torch.randperm. # See: https://github.com/open-mmlab/mmdetection/pull/5014 perm = torch.randperm(gallery.numel())[:num].to(device=gallery.device) rand_inds = gallery[perm] if not is_tensor: rand_inds = rand_inds.cpu().numpy() return rand_inds def _sample_pos(self, assign_result, num_expected, **kwargs): """Randomly sample some positive samples.""" pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False) if pos_inds.numel() != 0: pos_inds = pos_inds.squeeze(1) if pos_inds.numel() <= num_expected: return pos_inds else: return self.random_choice(pos_inds, num_expected) def _sample_neg(self, assign_result, num_expected, **kwargs): """Randomly sample some negative samples.""" neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False) if neg_inds.numel() != 0: neg_inds = neg_inds.squeeze(1) if len(neg_inds) <= num_expected: return neg_inds else: return self.random_choice(neg_inds, num_expected)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ZapierNLAListActions, ZapierNLARunAction # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "ZapierNLARunAction": "langchain_community.tools", "ZapierNLAListActions": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "ZapierNLAListActions", "ZapierNLARunAction", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ZapierNLAListActions, ZapierNLARunAction # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "ZapierNLARunAction": "langchain_community.tools", "ZapierNLAListActions": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "ZapierNLARunAction", "ZapierNLAListActions", ]
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from pathlib import Path from typing import List import pytest from jina import Document, DocumentArray, Executor from laser_encoder import LaserEncoder _EMBEDDING_DIM = 1024 @pytest.fixture(scope='session') def basic_encoder() -> LaserEncoder: return LaserEncoder() def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.language == 'en' def test_no_document(basic_encoder: LaserEncoder): basic_encoder.encode(None, {}) def test_empty_documents(basic_encoder: LaserEncoder): docs = DocumentArray([]) basic_encoder.encode(docs, {}) assert len(docs) == 0 @pytest.mark.gpu def test_encoding_gpu(): encoder = LaserEncoder(device='cuda') docs = DocumentArray((Document(text='random text'))) encoder.encode(docs, {}) assert len(docs.get_attributes('embedding')) == 1 assert docs[0].embedding.shape == (1024,) def test_no_text_documents(basic_encoder: LaserEncoder): docs = DocumentArray([Document()]) basic_encoder.encode(docs, {}) assert len(docs) == 1 assert docs[0].embedding is None def test_encoding_cpu(basic_encoder: LaserEncoder): docs = DocumentArray([Document(text='hello there')]) basic_encoder.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'language, sentence', [ ('en', 'Today is a nice day'), ('es', 'hoy es un buen día'), ('ru', 'сегодня хороший день'), ], ) def test_languages(language: str, sentence: str, basic_encoder: LaserEncoder): docs = DocumentArray([Document(text=sentence)]) basic_encoder.encode(docs, {'language': language}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: LaserEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: LaserEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) def test_quality_embeddings(basic_encoder: LaserEncoder): docs = DocumentArray( [ # Different than usual example - because embeddings suck (manually verified # using the laser embedings module) Document(id='A', text='car'), Document(id='B', text='truck'), Document(id='C', text='radio'), Document(id='D', text='TV'), ] ) basic_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ['B', 'A', 'D', 'C'] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i]
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from pathlib import Path from typing import List import pytest from jina import Document, DocumentArray, Executor from laser_encoder import LaserEncoder _EMBEDDING_DIM = 1024 @pytest.fixture(scope='session') def basic_encoder() -> LaserEncoder: return LaserEncoder() def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.language == 'en' def test_no_document(basic_encoder: LaserEncoder): basic_encoder.encode(None, {}) def test_empty_documents(basic_encoder: LaserEncoder): docs = DocumentArray([]) basic_encoder.encode(docs, {}) assert len(docs) == 0 @pytest.mark.gpu def test_encoding_gpu(): encoder = LaserEncoder(device='cuda') docs = DocumentArray((Document(text='random text'))) encoder.encode(docs, {}) assert len(docs.get_attributes('embedding')) == 1 assert docs[0].embedding.shape == (1024,) def test_no_text_documents(basic_encoder: LaserEncoder): docs = DocumentArray([Document()]) basic_encoder.encode(docs, {}) assert len(docs) == 1 assert docs[0].embedding is None def test_encoding_cpu(basic_encoder: LaserEncoder): docs = DocumentArray([Document(text='hello there')]) basic_encoder.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'language, sentence', [ ('en', 'Today is a nice day'), ('es', 'hoy es un buen día'), ('ru', 'сегодня хороший день'), ], ) def test_languages(language: str, sentence: str, basic_encoder: LaserEncoder): docs = DocumentArray([Document(text=sentence)]) basic_encoder.encode(docs, {'language': language}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: LaserEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count def test_no_documents(): encoder = LaserEncoder() docs = [] encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['r']}) assert not docs @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: LaserEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) def test_quality_embeddings(basic_encoder: LaserEncoder): docs = DocumentArray( [ # Different than usual example - because embeddings suck (manually verified # using the laser embedings module) Document(id='A', text='car'), Document(id='B', text='truck'), Document(id='C', text='radio'), Document(id='D', text='TV'), ] ) basic_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ['B', 'A', 'D', 'C'] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i]
# Copyright (c) OpenMMLab. All rights reserved. from .config import Config, ConfigDict, DictAction, read_base __all__ = ['Config', 'ConfigDict', 'DictAction', 'read_base']
# Copyright (c) OpenMMLab. All rights reserved. from .config import Config, ConfigDict, DictAction __all__ = ['Config', 'ConfigDict', 'DictAction']
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import (ConvModule, caffe2_xavier_init, constant_init, is_norm, normal_init) from torch.nn import BatchNorm2d from ..builder import NECKS class Bottleneck(nn.Module): """Bottleneck block for DilatedEncoder used in `YOLOF. <https://arxiv.org/abs/2103.09460>`. The Bottleneck contains three ConvLayers and one residual connection. Args: in_channels (int): The number of input channels. mid_channels (int): The number of middle output channels. dilation (int): Dilation rate. norm_cfg (dict): Dictionary to construct and config norm layer. """ def __init__(self, in_channels, mid_channels, dilation, norm_cfg=dict(type='BN', requires_grad=True)): super(Bottleneck, self).__init__() self.conv1 = ConvModule( in_channels, mid_channels, 1, norm_cfg=norm_cfg) self.conv2 = ConvModule( mid_channels, mid_channels, 3, padding=dilation, dilation=dilation, norm_cfg=norm_cfg) self.conv3 = ConvModule( mid_channels, in_channels, 1, norm_cfg=norm_cfg) def forward(self, x): identity = x out = self.conv1(x) out = self.conv2(out) out = self.conv3(out) out = out + identity return out @NECKS.register_module() class DilatedEncoder(nn.Module): """Dilated Encoder for YOLOF <https://arxiv.org/abs/2103.09460>`. This module contains two types of components: - the original FPN lateral convolution layer and fpn convolution layer, which are 1x1 conv + 3x3 conv - the dilated residual block Args: in_channels (int): The number of input channels. out_channels (int): The number of output channels. block_mid_channels (int): The number of middle block output channels num_residual_blocks (int): The number of residual blocks. block_dilations (list): The list of residual blocks dilation. """ def __init__(self, in_channels, out_channels, block_mid_channels, num_residual_blocks, block_dilations): super(DilatedEncoder, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.block_mid_channels = block_mid_channels self.num_residual_blocks = num_residual_blocks self.block_dilations = block_dilations self._init_layers() def _init_layers(self): self.lateral_conv = nn.Conv2d( self.in_channels, self.out_channels, kernel_size=1) self.lateral_norm = BatchNorm2d(self.out_channels) self.fpn_conv = nn.Conv2d( self.out_channels, self.out_channels, kernel_size=3, padding=1) self.fpn_norm = BatchNorm2d(self.out_channels) encoder_blocks = [] for i in range(self.num_residual_blocks): dilation = self.block_dilations[i] encoder_blocks.append( Bottleneck( self.out_channels, self.block_mid_channels, dilation=dilation)) self.dilated_encoder_blocks = nn.Sequential(*encoder_blocks) def init_weights(self): caffe2_xavier_init(self.lateral_conv) caffe2_xavier_init(self.fpn_conv) for m in [self.lateral_norm, self.fpn_norm]: constant_init(m, 1) for m in self.dilated_encoder_blocks.modules(): if isinstance(m, nn.Conv2d): normal_init(m, mean=0, std=0.01) if is_norm(m): constant_init(m, 1) def forward(self, feature): out = self.lateral_norm(self.lateral_conv(feature[-1])) out = self.fpn_norm(self.fpn_conv(out)) return self.dilated_encoder_blocks(out),
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import (ConvModule, caffe2_xavier_init, constant_init, is_norm, normal_init) from torch.nn import BatchNorm2d from ..builder import NECKS class Bottleneck(nn.Module): """Bottleneck block for DilatedEncoder used in `YOLOF. <https://arxiv.org/abs/2103.09460>`. The Bottleneck contains three ConvLayers and one residual connection. Args: in_channels (int): The number of input channels. mid_channels (int): The number of middle output channels. dilation (int): Dilation rate. norm_cfg (dict): Dictionary to construct and config norm layer. """ def __init__(self, in_channels, mid_channels, dilation, norm_cfg=dict(type='BN', requires_grad=True)): super(Bottleneck, self).__init__() self.conv1 = ConvModule( in_channels, mid_channels, 1, norm_cfg=norm_cfg) self.conv2 = ConvModule( mid_channels, mid_channels, 3, padding=dilation, dilation=dilation, norm_cfg=norm_cfg) self.conv3 = ConvModule( mid_channels, in_channels, 1, norm_cfg=norm_cfg) def forward(self, x): identity = x out = self.conv1(x) out = self.conv2(out) out = self.conv3(out) out = out + identity return out @NECKS.register_module() class DilatedEncoder(nn.Module): """Dilated Encoder for YOLOF <https://arxiv.org/abs/2103.09460>`. This module contains two types of components: - the original FPN lateral convolution layer and fpn convolution layer, which are 1x1 conv + 3x3 conv - the dilated residual block Args: in_channels (int): The number of input channels. out_channels (int): The number of output channels. block_mid_channels (int): The number of middle block output channels num_residual_blocks (int): The number of residual blocks. """ def __init__(self, in_channels, out_channels, block_mid_channels, num_residual_blocks): super(DilatedEncoder, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.block_mid_channels = block_mid_channels self.num_residual_blocks = num_residual_blocks self.block_dilations = [2, 4, 6, 8] self._init_layers() def _init_layers(self): self.lateral_conv = nn.Conv2d( self.in_channels, self.out_channels, kernel_size=1) self.lateral_norm = BatchNorm2d(self.out_channels) self.fpn_conv = nn.Conv2d( self.out_channels, self.out_channels, kernel_size=3, padding=1) self.fpn_norm = BatchNorm2d(self.out_channels) encoder_blocks = [] for i in range(self.num_residual_blocks): dilation = self.block_dilations[i] encoder_blocks.append( Bottleneck( self.out_channels, self.block_mid_channels, dilation=dilation)) self.dilated_encoder_blocks = nn.Sequential(*encoder_blocks) def init_weights(self): caffe2_xavier_init(self.lateral_conv) caffe2_xavier_init(self.fpn_conv) for m in [self.lateral_norm, self.fpn_norm]: constant_init(m, 1) for m in self.dilated_encoder_blocks.modules(): if isinstance(m, nn.Conv2d): normal_init(m, mean=0, std=0.01) if is_norm(m): constant_init(m, 1) def forward(self, feature): out = self.lateral_norm(self.lateral_conv(feature[-1])) out = self.fpn_norm(self.fpn_conv(out)) return self.dilated_encoder_blocks(out),
"""Async utils.""" import asyncio import concurrent.futures from itertools import zip_longest from typing import Any, Coroutine, Iterable, List, Optional, TypeVar import llama_index.core.instrumentation as instrument dispatcher = instrument.get_dispatcher(__name__) def asyncio_module(show_progress: bool = False) -> Any: if show_progress: from tqdm.asyncio import tqdm_asyncio module = tqdm_asyncio else: module = asyncio return module def asyncio_run(coro: Coroutine) -> Any: """ Gets an existing event loop to run the coroutine. If there is no existing event loop, creates a new one. If an event loop is already running, uses threading to run in a separate thread. """ try: # Check if there's an existing event loop loop = asyncio.get_event_loop() # Check if the loop is already running if loop.is_running(): # If loop is already running, run in a separate thread def run_coro_in_thread() -> Any: new_loop = asyncio.new_event_loop() asyncio.set_event_loop(new_loop) try: return new_loop.run_until_complete(coro) finally: new_loop.close() with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor: future = executor.submit(run_coro_in_thread) return future.result() else: # If we're here, there's an existing loop but it's not running return loop.run_until_complete(coro) except RuntimeError as e: # If we can't get the event loop, we're likely in a different thread try: return asyncio.run(coro) except RuntimeError as e: raise RuntimeError( "Detected nested async. Please use nest_asyncio.apply() to allow nested event loops." "Or, use async entry methods like `aquery()`, `aretriever`, `achat`, etc." ) def run_async_tasks( tasks: List[Coroutine], show_progress: bool = False, progress_bar_desc: str = "Running async tasks", ) -> List[Any]: """Run a list of async tasks.""" tasks_to_execute: List[Any] = tasks if show_progress: try: import nest_asyncio from tqdm.asyncio import tqdm # jupyter notebooks already have an event loop running # we need to reuse it instead of creating a new one nest_asyncio.apply() loop = asyncio.get_event_loop() async def _tqdm_gather() -> List[Any]: return await tqdm.gather(*tasks_to_execute, desc=progress_bar_desc) tqdm_outputs: List[Any] = loop.run_until_complete(_tqdm_gather()) return tqdm_outputs # run the operation w/o tqdm on hitting a fatal # may occur in some environments where tqdm.asyncio # is not supported except Exception: pass async def _gather() -> List[Any]: return await asyncio.gather(*tasks_to_execute) outputs: List[Any] = asyncio_run(_gather()) return outputs def chunks(iterable: Iterable, size: int) -> Iterable: args = [iter(iterable)] * size return zip_longest(*args, fillvalue=None) async def batch_gather( tasks: List[Coroutine], batch_size: int = 10, verbose: bool = False ) -> List[Any]: output: List[Any] = [] for task_chunk in chunks(tasks, batch_size): task_chunk = (task for task in task_chunk if task is not None) output_chunk = await asyncio.gather(*task_chunk) output.extend(output_chunk) if verbose: print(f"Completed {len(output)} out of {len(tasks)} tasks") return output def get_asyncio_module(show_progress: bool = False) -> Any: if show_progress: from tqdm.asyncio import tqdm_asyncio module = tqdm_asyncio else: module = asyncio return module DEFAULT_NUM_WORKERS = 4 T = TypeVar("T") @dispatcher.span async def run_jobs( jobs: List[Coroutine[Any, Any, T]], show_progress: bool = False, workers: int = DEFAULT_NUM_WORKERS, desc: Optional[str] = None, ) -> List[T]: """ Run jobs. Args: jobs (List[Coroutine]): List of jobs to run. show_progress (bool): Whether to show progress bar. Returns: List[Any]: List of results. """ semaphore = asyncio.Semaphore(workers) @dispatcher.span async def worker(job: Coroutine) -> Any: async with semaphore: return await job pool_jobs = [worker(job) for job in jobs] if show_progress: from tqdm.asyncio import tqdm_asyncio results = await tqdm_asyncio.gather(*pool_jobs, desc=desc) else: results = await asyncio.gather(*pool_jobs) return results
"""Async utils.""" import asyncio from itertools import zip_longest from typing import Any, Coroutine, Iterable, List, Optional, TypeVar import llama_index.core.instrumentation as instrument dispatcher = instrument.get_dispatcher(__name__) def asyncio_module(show_progress: bool = False) -> Any: if show_progress: from tqdm.asyncio import tqdm_asyncio module = tqdm_asyncio else: module = asyncio return module def asyncio_run(coro: Coroutine) -> Any: """ Gets an existing event loop to run the coroutine. If there is no existing event loop, creates a new one. """ try: # Check if there's an existing event loop loop = asyncio.get_event_loop() # If we're here, there's an existing loop but it's not running return loop.run_until_complete(coro) except RuntimeError as e: # If we can't get the event loop, we're likely in a different thread, or its already running try: return asyncio.run(coro) except RuntimeError as e: raise RuntimeError( "Detected nested async. Please use nest_asyncio.apply() to allow nested event loops." "Or, use async entry methods like `aquery()`, `aretriever`, `achat`, etc." ) def run_async_tasks( tasks: List[Coroutine], show_progress: bool = False, progress_bar_desc: str = "Running async tasks", ) -> List[Any]: """Run a list of async tasks.""" tasks_to_execute: List[Any] = tasks if show_progress: try: import nest_asyncio from tqdm.asyncio import tqdm # jupyter notebooks already have an event loop running # we need to reuse it instead of creating a new one nest_asyncio.apply() loop = asyncio.get_event_loop() async def _tqdm_gather() -> List[Any]: return await tqdm.gather(*tasks_to_execute, desc=progress_bar_desc) tqdm_outputs: List[Any] = loop.run_until_complete(_tqdm_gather()) return tqdm_outputs # run the operation w/o tqdm on hitting a fatal # may occur in some environments where tqdm.asyncio # is not supported except Exception: pass async def _gather() -> List[Any]: return await asyncio.gather(*tasks_to_execute) outputs: List[Any] = asyncio_run(_gather()) return outputs def chunks(iterable: Iterable, size: int) -> Iterable: args = [iter(iterable)] * size return zip_longest(*args, fillvalue=None) async def batch_gather( tasks: List[Coroutine], batch_size: int = 10, verbose: bool = False ) -> List[Any]: output: List[Any] = [] for task_chunk in chunks(tasks, batch_size): task_chunk = (task for task in task_chunk if task is not None) output_chunk = await asyncio.gather(*task_chunk) output.extend(output_chunk) if verbose: print(f"Completed {len(output)} out of {len(tasks)} tasks") return output def get_asyncio_module(show_progress: bool = False) -> Any: if show_progress: from tqdm.asyncio import tqdm_asyncio module = tqdm_asyncio else: module = asyncio return module DEFAULT_NUM_WORKERS = 4 T = TypeVar("T") @dispatcher.span async def run_jobs( jobs: List[Coroutine[Any, Any, T]], show_progress: bool = False, workers: int = DEFAULT_NUM_WORKERS, desc: Optional[str] = None, ) -> List[T]: """ Run jobs. Args: jobs (List[Coroutine]): List of jobs to run. show_progress (bool): Whether to show progress bar. Returns: List[Any]: List of results. """ semaphore = asyncio.Semaphore(workers) @dispatcher.span async def worker(job: Coroutine) -> Any: async with semaphore: return await job pool_jobs = [worker(job) for job in jobs] if show_progress: from tqdm.asyncio import tqdm_asyncio results = await tqdm_asyncio.gather(*pool_jobs, desc=desc) else: results = await asyncio.gather(*pool_jobs) return results
"""Load agent.""" from collections.abc import Sequence from typing import Any, Optional from langchain_core._api import deprecated from langchain_core.callbacks import BaseCallbackManager from langchain_core.language_models import BaseLanguageModel from langchain_core.tools import BaseTool from langchain._api.deprecation import AGENT_DEPRECATION_WARNING from langchain.agents.agent import AgentExecutor from langchain.agents.agent_types import AgentType from langchain.agents.loading import load_agent from langchain.agents.types import AGENT_TO_CLASS @deprecated( "0.1.0", message=AGENT_DEPRECATION_WARNING, removal="1.0", ) def initialize_agent( tools: Sequence[BaseTool], llm: BaseLanguageModel, agent: Optional[AgentType] = None, callback_manager: Optional[BaseCallbackManager] = None, agent_path: Optional[str] = None, agent_kwargs: Optional[dict] = None, *, tags: Optional[Sequence[str]] = None, **kwargs: Any, ) -> AgentExecutor: """Load an agent executor given tools and LLM. Args: tools: List of tools this agent has access to. llm: Language model to use as the agent. agent: Agent type to use. If None and agent_path is also None, will default to AgentType.ZERO_SHOT_REACT_DESCRIPTION. Defaults to None. callback_manager: CallbackManager to use. Global callback manager is used if not provided. Defaults to None. agent_path: Path to serialized agent to use. If None and agent is also None, will default to AgentType.ZERO_SHOT_REACT_DESCRIPTION. Defaults to None. agent_kwargs: Additional keyword arguments to pass to the underlying agent. Defaults to None. tags: Tags to apply to the traced runs. Defaults to None. kwargs: Additional keyword arguments passed to the agent executor. Returns: An agent executor. Raises: ValueError: If both `agent` and `agent_path` are specified. ValueError: If `agent` is not a valid agent type. ValueError: If both `agent` and `agent_path` are None. """ tags_ = list(tags) if tags else [] if agent is None and agent_path is None: agent = AgentType.ZERO_SHOT_REACT_DESCRIPTION if agent is not None and agent_path is not None: msg = ( "Both `agent` and `agent_path` are specified, " "but at most only one should be." ) raise ValueError(msg) if agent is not None: if agent not in AGENT_TO_CLASS: msg = ( f"Got unknown agent type: {agent}. " f"Valid types are: {AGENT_TO_CLASS.keys()}." ) raise ValueError(msg) tags_.append(agent.value if isinstance(agent, AgentType) else agent) agent_cls = AGENT_TO_CLASS[agent] agent_kwargs = agent_kwargs or {} agent_obj = agent_cls.from_llm_and_tools( llm, tools, callback_manager=callback_manager, **agent_kwargs ) elif agent_path is not None: agent_obj = load_agent( agent_path, llm=llm, tools=tools, callback_manager=callback_manager ) try: # TODO: Add tags from the serialized object directly. tags_.append(agent_obj._agent_type) except NotImplementedError: pass else: msg = ( "Somehow both `agent` and `agent_path` are None, this should never happen." ) raise ValueError(msg) return AgentExecutor.from_agent_and_tools( agent=agent_obj, tools=tools, callback_manager=callback_manager, tags=tags_, **kwargs, )
"""Load agent.""" from collections.abc import Sequence from typing import Any, Optional from langchain_core._api import deprecated from langchain_core.callbacks import BaseCallbackManager from langchain_core.language_models import BaseLanguageModel from langchain_core.tools import BaseTool from langchain._api.deprecation import AGENT_DEPRECATION_WARNING from langchain.agents.agent import AgentExecutor from langchain.agents.agent_types import AgentType from langchain.agents.loading import load_agent from langchain.agents.types import AGENT_TO_CLASS @deprecated( "0.1.0", message=AGENT_DEPRECATION_WARNING, removal="1.0", ) def initialize_agent( tools: Sequence[BaseTool], llm: BaseLanguageModel, agent: Optional[AgentType] = None, callback_manager: Optional[BaseCallbackManager] = None, agent_path: Optional[str] = None, agent_kwargs: Optional[dict] = None, *, tags: Optional[Sequence[str]] = None, **kwargs: Any, ) -> AgentExecutor: """Load an agent executor given tools and LLM. Args: tools: List of tools this agent has access to. llm: Language model to use as the agent. agent: Agent type to use. If None and agent_path is also None, will default to AgentType.ZERO_SHOT_REACT_DESCRIPTION. Defaults to None. callback_manager: CallbackManager to use. Global callback manager is used if not provided. Defaults to None. agent_path: Path to serialized agent to use. If None and agent is also None, will default to AgentType.ZERO_SHOT_REACT_DESCRIPTION. Defaults to None. agent_kwargs: Additional keyword arguments to pass to the underlying agent. Defaults to None. tags: Tags to apply to the traced runs. Defaults to None. kwargs: Additional keyword arguments passed to the agent executor. Returns: An agent executor. Raises: ValueError: If both `agent` and `agent_path` are specified. ValueError: If `agent` is not a valid agent type. ValueError: If both `agent` and `agent_path` are None. """ tags_ = list(tags) if tags else [] if agent is None and agent_path is None: agent = AgentType.ZERO_SHOT_REACT_DESCRIPTION if agent is not None and agent_path is not None: raise ValueError( "Both `agent` and `agent_path` are specified, " "but at most only one should be." ) if agent is not None: if agent not in AGENT_TO_CLASS: raise ValueError( f"Got unknown agent type: {agent}. " f"Valid types are: {AGENT_TO_CLASS.keys()}." ) tags_.append(agent.value if isinstance(agent, AgentType) else agent) agent_cls = AGENT_TO_CLASS[agent] agent_kwargs = agent_kwargs or {} agent_obj = agent_cls.from_llm_and_tools( llm, tools, callback_manager=callback_manager, **agent_kwargs ) elif agent_path is not None: agent_obj = load_agent( agent_path, llm=llm, tools=tools, callback_manager=callback_manager ) try: # TODO: Add tags from the serialized object directly. tags_.append(agent_obj._agent_type) except NotImplementedError: pass else: raise ValueError( "Somehow both `agent` and `agent_path` are None, this should never happen." ) return AgentExecutor.from_agent_and_tools( agent=agent_obj, tools=tools, callback_manager=callback_manager, tags=tags_, **kwargs, )
"""Functionality for loading agents.""" import json import logging from pathlib import Path from typing import Any, Optional, Union import yaml from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.tools import Tool from langchain.agents.agent import BaseMultiActionAgent, BaseSingleActionAgent from langchain.agents.types import AGENT_TO_CLASS from langchain.chains.loading import load_chain, load_chain_from_config logger = logging.getLogger(__file__) URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/agents/" def _load_agent_from_tools( config: dict, llm: BaseLanguageModel, tools: list[Tool], **kwargs: Any, ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: msg = f"Loading {config_type} agent not supported" raise ValueError(msg) agent_cls = AGENT_TO_CLASS[config_type] combined_config = {**config, **kwargs} return agent_cls.from_llm_and_tools(llm, tools, **combined_config) @deprecated("0.1.0", removal="1.0") def load_agent_from_config( config: dict, llm: Optional[BaseLanguageModel] = None, tools: Optional[list[Tool]] = None, **kwargs: Any, ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: """Load agent from Config Dict. Args: config: Config dict to load agent from. llm: Language model to use as the agent. tools: List of tools this agent has access to. kwargs: Additional keyword arguments passed to the agent executor. Returns: An agent executor. Raises: ValueError: If agent type is not specified in the config. """ if "_type" not in config: msg = "Must specify an agent Type in config" raise ValueError(msg) load_from_tools = config.pop("load_from_llm_and_tools", False) if load_from_tools: if llm is None: msg = ( "If `load_from_llm_and_tools` is set to True, then LLM must be provided" ) raise ValueError(msg) if tools is None: msg = ( "If `load_from_llm_and_tools` is set to True, " "then tools must be provided" ) raise ValueError(msg) return _load_agent_from_tools(config, llm, tools, **kwargs) config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: msg = f"Loading {config_type} agent not supported" raise ValueError(msg) agent_cls = AGENT_TO_CLASS[config_type] if "llm_chain" in config: config["llm_chain"] = load_chain_from_config(config.pop("llm_chain")) elif "llm_chain_path" in config: config["llm_chain"] = load_chain(config.pop("llm_chain_path")) else: msg = "One of `llm_chain` and `llm_chain_path` should be specified." raise ValueError(msg) if "output_parser" in config: logger.warning( "Currently loading output parsers on agent is not supported, " "will just use the default one.", ) del config["output_parser"] combined_config = {**config, **kwargs} return agent_cls(**combined_config) @deprecated("0.1.0", removal="1.0") def load_agent( path: Union[str, Path], **kwargs: Any, ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: """Unified method for loading an agent from LangChainHub or local fs. Args: path: Path to the agent file. kwargs: Additional keyword arguments passed to the agent executor. Returns: An agent executor. Raises: RuntimeError: If loading from the deprecated github-based Hub is attempted. """ if isinstance(path, str) and path.startswith("lc://"): msg = ( "Loading from the deprecated github-based Hub is no longer supported. " "Please use the new LangChain Hub at https://smith.langchain.com/hub " "instead." ) raise RuntimeError(msg) return _load_agent_from_file(path, **kwargs) def _load_agent_from_file( file: Union[str, Path], **kwargs: Any, ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: """Load agent from file.""" valid_suffixes = {"json", "yaml"} # Convert file to Path object. file_path = Path(file) if isinstance(file, str) else file # Load from either json or yaml. if file_path.suffix[1:] == "json": with open(file_path) as f: config = json.load(f) elif file_path.suffix[1:] == "yaml": with open(file_path) as f: config = yaml.safe_load(f) else: msg = f"Unsupported file type, must be one of {valid_suffixes}." raise ValueError(msg) # Load the agent from the config now. return load_agent_from_config(config, **kwargs)
"""Functionality for loading agents.""" import json import logging from pathlib import Path from typing import Any, Optional, Union import yaml from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.tools import Tool from langchain.agents.agent import BaseMultiActionAgent, BaseSingleActionAgent from langchain.agents.types import AGENT_TO_CLASS from langchain.chains.loading import load_chain, load_chain_from_config logger = logging.getLogger(__file__) URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/agents/" def _load_agent_from_tools( config: dict, llm: BaseLanguageModel, tools: list[Tool], **kwargs: Any ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: msg = f"Loading {config_type} agent not supported" raise ValueError(msg) agent_cls = AGENT_TO_CLASS[config_type] combined_config = {**config, **kwargs} return agent_cls.from_llm_and_tools(llm, tools, **combined_config) @deprecated("0.1.0", removal="1.0") def load_agent_from_config( config: dict, llm: Optional[BaseLanguageModel] = None, tools: Optional[list[Tool]] = None, **kwargs: Any, ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: """Load agent from Config Dict. Args: config: Config dict to load agent from. llm: Language model to use as the agent. tools: List of tools this agent has access to. kwargs: Additional keyword arguments passed to the agent executor. Returns: An agent executor. Raises: ValueError: If agent type is not specified in the config. """ if "_type" not in config: msg = "Must specify an agent Type in config" raise ValueError(msg) load_from_tools = config.pop("load_from_llm_and_tools", False) if load_from_tools: if llm is None: msg = ( "If `load_from_llm_and_tools` is set to True, then LLM must be provided" ) raise ValueError(msg) if tools is None: msg = ( "If `load_from_llm_and_tools` is set to True, " "then tools must be provided" ) raise ValueError(msg) return _load_agent_from_tools(config, llm, tools, **kwargs) config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: msg = f"Loading {config_type} agent not supported" raise ValueError(msg) agent_cls = AGENT_TO_CLASS[config_type] if "llm_chain" in config: config["llm_chain"] = load_chain_from_config(config.pop("llm_chain")) elif "llm_chain_path" in config: config["llm_chain"] = load_chain(config.pop("llm_chain_path")) else: msg = "One of `llm_chain` and `llm_chain_path` should be specified." raise ValueError(msg) if "output_parser" in config: logger.warning( "Currently loading output parsers on agent is not supported, " "will just use the default one." ) del config["output_parser"] combined_config = {**config, **kwargs} return agent_cls(**combined_config) @deprecated("0.1.0", removal="1.0") def load_agent( path: Union[str, Path], **kwargs: Any ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: """Unified method for loading an agent from LangChainHub or local fs. Args: path: Path to the agent file. kwargs: Additional keyword arguments passed to the agent executor. Returns: An agent executor. Raises: RuntimeError: If loading from the deprecated github-based Hub is attempted. """ if isinstance(path, str) and path.startswith("lc://"): msg = ( "Loading from the deprecated github-based Hub is no longer supported. " "Please use the new LangChain Hub at https://smith.langchain.com/hub " "instead." ) raise RuntimeError(msg) return _load_agent_from_file(path, **kwargs) def _load_agent_from_file( file: Union[str, Path], **kwargs: Any ) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: """Load agent from file.""" valid_suffixes = {"json", "yaml"} # Convert file to Path object. file_path = Path(file) if isinstance(file, str) else file # Load from either json or yaml. if file_path.suffix[1:] == "json": with open(file_path) as f: config = json.load(f) elif file_path.suffix[1:] == "yaml": with open(file_path) as f: config = yaml.safe_load(f) else: msg = f"Unsupported file type, must be one of {valid_suffixes}." raise ValueError(msg) # Load the agent from the config now. return load_agent_from_config(config, **kwargs)
import datetime from typing import List import prisma.enums import pydantic class Pagination(pydantic.BaseModel): total_items: int = pydantic.Field( description="Total number of items.", examples=[42] ) total_pages: int = pydantic.Field( description="Total number of pages.", examples=[97] ) current_page: int = pydantic.Field( description="Current_page page number.", examples=[1] ) page_size: int = pydantic.Field( description="Number of items per page.", examples=[25] ) class MyAgent(pydantic.BaseModel): agent_id: str agent_version: int agent_name: str description: str last_edited: datetime.datetime class MyAgentsResponse(pydantic.BaseModel): agents: list[MyAgent] pagination: Pagination class StoreAgent(pydantic.BaseModel): slug: str agent_name: str agent_image: str creator: str creator_avatar: str sub_heading: str description: str runs: int rating: float class StoreAgentsResponse(pydantic.BaseModel): agents: list[StoreAgent] pagination: Pagination class StoreAgentDetails(pydantic.BaseModel): store_listing_version_id: str slug: str agent_name: str agent_video: str agent_image: list[str] creator: str creator_avatar: str sub_heading: str description: str categories: list[str] runs: int rating: float versions: list[str] last_updated: datetime.datetime class Creator(pydantic.BaseModel): name: str username: str description: str avatar_url: str num_agents: int agent_rating: float agent_runs: int is_featured: bool class CreatorsResponse(pydantic.BaseModel): creators: List[Creator] pagination: Pagination class CreatorDetails(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str agent_rating: float agent_runs: int top_categories: list[str] class Profile(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str is_featured: bool = False class StoreSubmission(pydantic.BaseModel): agent_id: str agent_version: int name: str sub_heading: str slug: str description: str image_urls: list[str] date_submitted: datetime.datetime status: prisma.enums.SubmissionStatus runs: int rating: float store_listing_version_id: str | None = None class StoreSubmissionsResponse(pydantic.BaseModel): submissions: list[StoreSubmission] pagination: Pagination class StoreSubmissionRequest(pydantic.BaseModel): agent_id: str agent_version: int slug: str name: str sub_heading: str video_url: str | None = None image_urls: list[str] = [] description: str = "" categories: list[str] = [] class ProfileDetails(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str | None = None class StoreReview(pydantic.BaseModel): score: int comments: str | None = None class StoreReviewCreate(pydantic.BaseModel): store_listing_version_id: str score: int comments: str | None = None class ReviewSubmissionRequest(pydantic.BaseModel): store_listing_version_id: str isApproved: bool comments: str
import datetime from typing import List import prisma.enums import pydantic class Pagination(pydantic.BaseModel): total_items: int = pydantic.Field( description="Total number of items.", examples=[42] ) total_pages: int = pydantic.Field( description="Total number of pages.", examples=[97] ) current_page: int = pydantic.Field( description="Current_page page number.", examples=[1] ) page_size: int = pydantic.Field( description="Number of items per page.", examples=[25] ) class MyAgent(pydantic.BaseModel): agent_id: str agent_version: int agent_name: str description: str last_edited: datetime.datetime class MyAgentsResponse(pydantic.BaseModel): agents: list[MyAgent] pagination: Pagination class StoreAgent(pydantic.BaseModel): slug: str agent_name: str agent_image: str creator: str creator_avatar: str sub_heading: str description: str runs: int rating: float class StoreAgentsResponse(pydantic.BaseModel): agents: list[StoreAgent] pagination: Pagination class StoreAgentDetails(pydantic.BaseModel): store_listing_version_id: str slug: str agent_name: str agent_video: str agent_image: list[str] creator: str creator_avatar: str sub_heading: str description: str categories: list[str] runs: int rating: float versions: list[str] last_updated: datetime.datetime class Creator(pydantic.BaseModel): name: str username: str description: str avatar_url: str num_agents: int agent_rating: float agent_runs: int is_featured: bool class CreatorsResponse(pydantic.BaseModel): creators: List[Creator] pagination: Pagination class CreatorDetails(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str agent_rating: float agent_runs: int top_categories: list[str] class Profile(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str is_featured: bool = False class StoreSubmission(pydantic.BaseModel): agent_id: str agent_version: int name: str sub_heading: str slug: str description: str image_urls: list[str] date_submitted: datetime.datetime status: prisma.enums.SubmissionStatus runs: int rating: float class StoreSubmissionsResponse(pydantic.BaseModel): submissions: list[StoreSubmission] pagination: Pagination class StoreSubmissionRequest(pydantic.BaseModel): agent_id: str agent_version: int slug: str name: str sub_heading: str video_url: str | None = None image_urls: list[str] = [] description: str = "" categories: list[str] = [] class ProfileDetails(pydantic.BaseModel): name: str username: str description: str links: list[str] avatar_url: str | None = None class StoreReview(pydantic.BaseModel): score: int comments: str | None = None class StoreReviewCreate(pydantic.BaseModel): store_listing_version_id: str score: int comments: str | None = None
from __future__ import annotations from typing import Any, Dict, Optional from docarray import BaseDoc, DocList from docarray.typing import AnyEmbedding, AnyTensor class LegacyDocument(BaseDoc): """ This Document is the LegacyDocument. It follows the same schema as in DocArray v1. It can be useful to start migrating a codebase from v1 to v2. Nevertheless, the API is not totally compatible with DocArray v1 `Document`. Indeed, none of the method associated with `Document` are present. Only the schema of the data is similar. ```python from docarray import DocList from docarray.documents.legacy import LegacyDocument import numpy as np doc = LegacyDocument(text='hello') doc.url = 'http://myimg.png' doc.tensor = np.zeros((3, 224, 224)) doc.embedding = np.zeros((100, 1)) doc.tags['price'] = 10 doc.chunks = DocList[Document]([Document() for _ in range(10)]) doc.chunks = DocList[Document]([Document() for _ in range(10)]) ``` """ tensor: Optional[AnyTensor] chunks: Optional[DocList[LegacyDocument]] matches: Optional[DocList[LegacyDocument]] blob: Optional[bytes] text: Optional[str] url: Optional[str] embedding: Optional[AnyEmbedding] tags: Dict[str, Any] = dict() scores: Optional[Dict[str, Any]]
from __future__ import annotations from typing import Any, Dict, Optional from docarray import BaseDoc, DocList from docarray.typing import AnyEmbedding, AnyTensor class LegacyDocument(BaseDoc): """ This Document is the LegacyDocument. It follows the same schema as in DocList v1. It can be useful to start migrating a codebase from v1 to v2. Nevertheless, the API is not totally compatible with DocAray v1 `Document`. Indeed, none of the method associated with `Document` are present. Only the schema of the data is similar. ```python from docarray import DocList from docarray.documents.legacy import LegacyDocument import numpy as np doc = LegacyDocument(text='hello') doc.url = 'http://myimg.png' doc.tensor = np.zeros((3, 224, 224)) doc.embedding = np.zeros((100, 1)) doc.tags['price'] = 10 doc.chunks = DocList[Document]([Document() for _ in range(10)]) doc.chunks = DocList[Document]([Document() for _ in range(10)]) ``` """ tensor: Optional[AnyTensor] chunks: Optional[DocList[LegacyDocument]] matches: Optional[DocList[LegacyDocument]] blob: Optional[bytes] text: Optional[str] url: Optional[str] embedding: Optional[AnyEmbedding] tags: Dict[str, Any] = dict() scores: Optional[Dict[str, Any]]
import json import logging from abc import ABC, abstractmethod from datetime import datetime from typing import Any, AsyncGenerator, Generator, Generic, TypeVar from pydantic import BaseModel from redis.asyncio.client import PubSub as AsyncPubSub from redis.client import PubSub from backend.data import redis logger = logging.getLogger(__name__) class DateTimeEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, datetime): return o.isoformat() return super().default(o) M = TypeVar("M", bound=BaseModel) class BaseRedisEventBus(Generic[M], ABC): Model: type[M] @property @abstractmethod def event_bus_name(self) -> str: pass def _serialize_message(self, item: M, channel_key: str) -> tuple[str, str]: message = json.dumps(item.model_dump(), cls=DateTimeEncoder) channel_name = f"{self.event_bus_name}/{channel_key}" logger.info(f"[{channel_name}] Publishing an event to Redis {message}") return message, channel_name def _deserialize_message(self, msg: Any, channel_key: str) -> M | None: message_type = "pmessage" if "*" in channel_key else "message" if msg["type"] != message_type: return None try: data = json.loads(msg["data"]) logger.info(f"Consuming an event from Redis {data}") return self.Model(**data) except Exception as e: logger.error(f"Failed to parse event result from Redis {msg} {e}") def _subscribe( self, connection: redis.Redis | redis.AsyncRedis, channel_key: str ) -> tuple[PubSub | AsyncPubSub, str]: channel_name = f"{self.event_bus_name}/{channel_key}" pubsub = connection.pubsub() return pubsub, channel_name class RedisEventBus(BaseRedisEventBus[M], ABC): Model: type[M] @property def connection(self) -> redis.Redis: return redis.get_redis() def publish_event(self, event: M, channel_key: str): message, channel_name = self._serialize_message(event, channel_key) self.connection.publish(channel_name, message) def listen_events(self, channel_key: str) -> Generator[M, None, None]: pubsub, channel_name = self._subscribe(self.connection, channel_key) assert isinstance(pubsub, PubSub) if "*" in channel_key: pubsub.psubscribe(channel_name) else: pubsub.subscribe(channel_name) for message in pubsub.listen(): if event := self._deserialize_message(message, channel_key): yield event class AsyncRedisEventBus(BaseRedisEventBus[M], ABC): Model: type[M] @property async def connection(self) -> redis.AsyncRedis: return await redis.get_redis_async() async def publish_event(self, event: M, channel_key: str): message, channel_name = self._serialize_message(event, channel_key) connection = await self.connection await connection.publish(channel_name, message) async def listen_events(self, channel_key: str) -> AsyncGenerator[M, None]: pubsub, channel_name = self._subscribe(await self.connection, channel_key) assert isinstance(pubsub, AsyncPubSub) if "*" in channel_key: await pubsub.psubscribe(channel_name) else: await pubsub.subscribe(channel_name) async for message in pubsub.listen(): if event := self._deserialize_message(message, channel_key): yield event
import json import logging from abc import ABC, abstractmethod from datetime import datetime from typing import Any, AsyncGenerator, Generator, Generic, TypeVar from pydantic import BaseModel from redis.asyncio.client import PubSub as AsyncPubSub from redis.client import PubSub from backend.data import redis from backend.data.execution import ExecutionResult from backend.util.settings import Config logger = logging.getLogger(__name__) config = Config() class DateTimeEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, datetime): return o.isoformat() return super().default(o) M = TypeVar("M", bound=BaseModel) class BaseRedisEventBus(Generic[M], ABC): Model: type[M] @property @abstractmethod def event_bus_name(self) -> str: pass def _serialize_message(self, item: M, channel_key: str) -> tuple[str, str]: message = json.dumps(item.model_dump(), cls=DateTimeEncoder) channel_name = f"{self.event_bus_name}-{channel_key}" logger.info(f"[{channel_name}] Publishing an event to Redis {message}") return message, channel_name def _deserialize_message(self, msg: Any, channel_key: str) -> M | None: message_type = "pmessage" if "*" in channel_key else "message" if msg["type"] != message_type: return None try: data = json.loads(msg["data"]) logger.info(f"Consuming an event from Redis {data}") return self.Model(**data) except Exception as e: logger.error(f"Failed to parse event result from Redis {msg} {e}") def _subscribe( self, connection: redis.Redis | redis.AsyncRedis, channel_key: str ) -> tuple[PubSub | AsyncPubSub, str]: channel_name = f"{self.event_bus_name}-{channel_key}" pubsub = connection.pubsub() return pubsub, channel_name class RedisEventBus(BaseRedisEventBus[M], ABC): Model: type[M] @property def connection(self) -> redis.Redis: return redis.get_redis() def publish_event(self, event: M, channel_key: str): message, channel_name = self._serialize_message(event, channel_key) self.connection.publish(channel_name, message) def listen_events(self, channel_key: str) -> Generator[M, None, None]: pubsub, channel_name = self._subscribe(self.connection, channel_key) assert isinstance(pubsub, PubSub) if "*" in channel_key: pubsub.psubscribe(channel_name) else: pubsub.subscribe(channel_name) for message in pubsub.listen(): if event := self._deserialize_message(message, channel_key): yield event class AsyncRedisEventBus(BaseRedisEventBus[M], ABC): Model: type[M] @property async def connection(self) -> redis.AsyncRedis: return await redis.get_redis_async() async def publish_event(self, event: M, channel_key: str): message, channel_name = self._serialize_message(event, channel_key) connection = await self.connection await connection.publish(channel_name, message) async def listen_events(self, channel_key: str) -> AsyncGenerator[M, None]: pubsub, channel_name = self._subscribe(await self.connection, channel_key) assert isinstance(pubsub, AsyncPubSub) if "*" in channel_key: await pubsub.psubscribe(channel_name) else: await pubsub.subscribe(channel_name) async for message in pubsub.listen(): if event := self._deserialize_message(message, channel_key): yield event class RedisExecutionEventBus(RedisEventBus[ExecutionResult]): Model = ExecutionResult @property def event_bus_name(self) -> str: return config.execution_event_bus_name def publish(self, res: ExecutionResult): self.publish_event(res, f"{res.graph_id}-{res.graph_exec_id}") def listen( self, graph_id: str = "*", graph_exec_id: str = "*" ) -> Generator[ExecutionResult, None, None]: for execution_result in self.listen_events(f"{graph_id}-{graph_exec_id}"): yield execution_result class AsyncRedisExecutionEventBus(AsyncRedisEventBus[ExecutionResult]): Model = ExecutionResult @property def event_bus_name(self) -> str: return config.execution_event_bus_name async def publish(self, res: ExecutionResult): await self.publish_event(res, f"{res.graph_id}-{res.graph_exec_id}") async def listen( self, graph_id: str = "*", graph_exec_id: str = "*" ) -> AsyncGenerator[ExecutionResult, None]: async for execution_result in self.listen_events(f"{graph_id}-{graph_exec_id}"): yield execution_result