input
stringlengths
33
5k
output
stringlengths
32
5k
_base_ = './yolov3_d53_mstrain-608_273e_coco.py' # dataset settings # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), # `mean` and `to_rgb` should be the same with the `preprocess_cfg` dict(type='Expand', mean=[0, 0, 0], to_rgb=True, ratio_range=(1, 2)), dict( type='MinIoURandomCrop', min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9), min_crop_size=0.3), dict(type='RandomResize', scale=[(320, 320), (416, 416)]), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(416, 416), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
_base_ = './yolov3_d53_mstrain-608_273e_coco.py' # dataset settings img_norm_cfg = dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 2)), dict( type='MinIoURandomCrop', min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=[(320, 320), (416, 416)], keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(416, 416), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
from typing import ( TYPE_CHECKING, TypeVar, Sequence, List, Union, Optional, Dict, ) import numpy as np from .... import Document, DocumentArray from ....math import ndarray from ....math.helper import EPSILON from ....math.ndarray import to_numpy_array from ....score import NamedScore from ....array.mixins.find import FindMixin as BaseFindMixin if TYPE_CHECKING: import tensorflow import torch ElasticArrayType = TypeVar( 'ElasticArrayType', np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float], ) class FindMixin(BaseFindMixin): def _find_similar_vectors(self, query: 'ElasticArrayType', limit=10): query = to_numpy_array(query) is_all_zero = np.all(query == 0) if is_all_zero: query = query + EPSILON resp = self._client.knn_search( index=self._config.index_name, knn={ 'field': 'embedding', 'query_vector': query, 'k': limit, 'num_candidates': 10000, }, ) list_of_hits = resp['hits']['hits'] da = DocumentArray() for result in list_of_hits: doc = Document.from_base64(result['_source']['blob']) doc.scores['score'] = NamedScore(value=result['_score']) doc.embedding = result['_source']['embedding'] da.append(doc) return da def _find_similar_documents_from_text( self, query: str, index: str = 'text', limit: int = 10 ): """ Return keyword matches for the input query :param query: text used for keyword search :param limit: number of items to be retrieved :return: DocumentArray containing the closest documents to the query if it is a single query, otherwise a list of DocumentArrays containing the closest Document objects for each of the queries in `query`. """ resp = self._client.search( index=self._config.index_name, query={'match': {index: query}}, source=['id', 'blob', 'text'], size=limit, ) list_of_hits = resp['hits']['hits'] da = DocumentArray() for result in list_of_hits[:limit]: doc = Document.from_base64(result['_source']['blob']) doc.scores['score'] = NamedScore(value=result['_score']) da.append(doc) return da def _find_by_text( self, query: Union[str, List[str]], index: str = 'text', limit: int = 10 ): if isinstance(query, str): query = [query] return [ self._find_similar_documents_from_text(q, index=index, limit=limit) for q in query ] def _find( self, query: 'ElasticArrayType', limit: int = 10, filter: Optional[Dict] = None, **kwargs, ) -> List['DocumentArray']: """Returns approximate nearest neighbors given a batch of input queries. :param query: input supported to be stored in Elastic. This includes any from the list '[np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float]]' :param limit: number of retrieved items :param filter: filter query used for pre-filtering :return: DocumentArray containing the closest documents to the query if it is a single query, otherwise a list of DocumentArrays containing the closest Document objects for each of the queries in `query`. """ if filter is not None: raise ValueError( 'Filtered vector search is not supported for ElasticSearch backend' ) query = np.array(query) num_rows, n_dim = ndarray.get_array_rows(query) if n_dim != 2: query = query.reshape((num_rows, -1)) return [self._find_similar_vectors(q, limit=limit) for q in query]
from typing import ( TYPE_CHECKING, TypeVar, Sequence, List, Union, ) import numpy as np from .... import Document, DocumentArray from ....math import ndarray from ....math.helper import EPSILON from ....math.ndarray import to_numpy_array from ....score import NamedScore from ....array.mixins.find import FindMixin as BaseFindMixin if TYPE_CHECKING: import tensorflow import torch ElasticArrayType = TypeVar( 'ElasticArrayType', np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float], ) class FindMixin(BaseFindMixin): def _find_similar_vectors(self, query: 'ElasticArrayType', limit=10): query = to_numpy_array(query) is_all_zero = np.all(query == 0) if is_all_zero: query = query + EPSILON resp = self._client.knn_search( index=self._config.index_name, knn={ 'field': 'embedding', 'query_vector': query, 'k': limit, 'num_candidates': 10000, }, ) list_of_hits = resp['hits']['hits'] da = DocumentArray() for result in list_of_hits: doc = Document.from_base64(result['_source']['blob']) doc.scores['score'] = NamedScore(value=result['_score']) doc.embedding = result['_source']['embedding'] da.append(doc) return da def _find_similar_documents_from_text( self, query: str, index: str = 'text', limit: int = 10 ): """ Return keyword matches for the input query :param query: text used for keyword search :param limit: number of items to be retrieved :return: DocumentArray containing the closest documents to the query if it is a single query, otherwise a list of DocumentArrays containing the closest Document objects for each of the queries in `query`. """ resp = self._client.search( index=self._config.index_name, query={'match': {index: query}}, source=['id', 'blob', 'text'], size=limit, ) list_of_hits = resp['hits']['hits'] da = DocumentArray() for result in list_of_hits[:limit]: doc = Document.from_base64(result['_source']['blob']) doc.scores['score'] = NamedScore(value=result['_score']) da.append(doc) return da def _find_by_text( self, query: Union[str, List[str]], index: str = 'text', limit: int = 10 ): if isinstance(query, str): query = [query] return [ self._find_similar_documents_from_text(q, index=index, limit=limit) for q in query ] def _find( self, query: 'ElasticArrayType', limit: int = 10, **kwargs, ) -> List['DocumentArray']: """Returns approximate nearest neighbors given a batch of input queries. :param query: input supported to be stored in Elastic. This includes any from the list '[np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float]]' :param limit: number of retrieved items :return: DocumentArray containing the closest documents to the query if it is a single query, otherwise a list of DocumentArrays containing the closest Document objects for each of the queries in `query`. """ query = np.array(query) num_rows, n_dim = ndarray.get_array_rows(query) if n_dim != 2: query = query.reshape((num_rows, -1)) return [self._find_similar_vectors(q, limit=limit) for q in query]
# Copyright (c) OpenMMLab. All rights reserved. from .batch_sampler import (AspectRatioBatchSampler, TrackAspectRatioBatchSampler) from .class_aware_sampler import ClassAwareSampler from .multi_source_sampler import GroupMultiSourceSampler, MultiSourceSampler from .track_img_sampler import TrackImgSampler __all__ = [ 'ClassAwareSampler', 'AspectRatioBatchSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler', 'TrackImgSampler', 'TrackAspectRatioBatchSampler' ]
# Copyright (c) OpenMMLab. All rights reserved. from .batch_sampler import AspectRatioBatchSampler from .class_aware_sampler import ClassAwareSampler from .multi_source_sampler import GroupMultiSourceSampler, MultiSourceSampler __all__ = [ 'ClassAwareSampler', 'AspectRatioBatchSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler' ]
from typing import Any import pytest from langchain_community.vectorstores import LanceDB from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings def import_lancedb() -> Any: try: import lancedb except ImportError as e: raise ImportError( "Could not import lancedb package. " "Please install it with `pip install lancedb`." ) from e return lancedb @pytest.mark.requires("lancedb") def test_lancedb_with_connection() -> None: lancedb = import_lancedb() embeddings = FakeEmbeddings() db = lancedb.connect("/tmp/lancedb_connection") texts = ["text 1", "text 2", "item 3"] store = LanceDB(connection=db, embedding=embeddings) store.add_texts(texts) result = store.similarity_search("text 1") result_texts = [doc.page_content for doc in result] assert "text 1" in result_texts store.delete(filter="text = 'text 1'") assert store.get_table().count_rows() == 2 @pytest.mark.requires("lancedb") def test_lancedb_without_connection() -> None: embeddings = FakeEmbeddings() texts = ["text 1", "text 2", "item 3"] store = LanceDB(embedding=embeddings) store.add_texts(texts) result = store.similarity_search("text 1") result_texts = [doc.page_content for doc in result] assert "text 1" in result_texts @pytest.mark.requires("lancedb") def test_lancedb_add_texts() -> None: embeddings = FakeEmbeddings() store = LanceDB(embedding=embeddings) store.add_texts(["text 2"]) result = store.similarity_search("text 2") result_texts = [doc.page_content for doc in result] assert "text 2" in result_texts @pytest.mark.requires("lancedb") def test_mmr() -> None: embeddings = FakeEmbeddings() store = LanceDB(embedding=embeddings) store.add_texts(["text 1", "text 2", "item 3"]) result = store.max_marginal_relevance_search(query="text") result_texts = [doc.page_content for doc in result] assert "text 1" in result_texts result = store.max_marginal_relevance_search_by_vector( embeddings.embed_query("text") ) result_texts = [doc.page_content for doc in result] assert "text 1" in result_texts @pytest.mark.requires("lancedb") def test_lancedb_delete() -> None: embeddings = FakeEmbeddings() store = LanceDB(embedding=embeddings) store.add_texts(["text 1", "text 2", "item 3"]) store.delete(filter="text = 'text 1'") assert store.get_table().count_rows() == 2 @pytest.mark.requires("lancedb") def test_lancedb_delete_by_ids() -> None: embeddings = FakeEmbeddings() store = LanceDB(embedding=embeddings, id_key="pk") ids = store.add_texts(["text 1", "text 2", "item 3"]) store.delete(ids=ids) assert store.get_table().count_rows() == 0 @pytest.mark.requires("lancedb") def test_lancedb_all_searches() -> None: embeddings = FakeEmbeddings() store = LanceDB(embedding=embeddings) store.add_texts(["text 1", "text 2", "item 3"]) result_1 = store.similarity_search_with_relevance_scores( "text 1", distance="cosine" ) assert len(result_1[0]) == 2 assert "text 1" in result_1[0][0].page_content result_2 = store.similarity_search_by_vector(embeddings.embed_query("text 1")) assert "text 1" in result_2[0].page_content result_3 = store.similarity_search_by_vector_with_relevance_scores( embeddings.embed_query("text 1") ) assert len(result_3[0]) == 2 assert "text 1" in result_3[0][0].page_content @pytest.mark.requires("lancedb") def test_lancedb_no_metadata() -> None: lancedb = import_lancedb() embeddings = FakeEmbeddings() # Connect to a temporary LanceDB instance db = lancedb.connect("/tmp/lancedb_no_metadata_test") # Create data without the 'metadata' field texts = ["text 1", "text 2", "item 3"] data = [] for idx, text in enumerate(texts): embedding = embeddings.embed_documents([text])[0] data.append( { "vector": embedding, "id": str(idx), "text": text, # Note: We're deliberately not including 'metadata' here } ) # Create the table without 'metadata' column db.create_table("vectorstore_no_metadata", data=data) # Initialize LanceDB with the existing connection and table name store = LanceDB( connection=db, embedding=embeddings, table_name="vectorstore_no_metadata", ) # Perform a similarity search result = store.similarity_search("text 1") # Verify that the metadata in the Document objects is an empty dictionary for doc in result: assert doc.metadata == {}, ( "Expected empty metadata when 'metadata' column is missing" ) # Clean up by deleting the table (optional) db.drop_table("vectorstore_no_metadata")
from typing import Any import pytest from langchain_community.vectorstores import LanceDB from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings def import_lancedb() -> Any: try: import lancedb except ImportError as e: raise ImportError( "Could not import lancedb package. " "Please install it with `pip install lancedb`." ) from e return lancedb @pytest.mark.requires("lancedb") def test_lancedb_with_connection() -> None: lancedb = import_lancedb() embeddings = FakeEmbeddings() db = lancedb.connect("/tmp/lancedb_connection") texts = ["text 1", "text 2", "item 3"] store = LanceDB(connection=db, embedding=embeddings) store.add_texts(texts) result = store.similarity_search("text 1") result_texts = [doc.page_content for doc in result] assert "text 1" in result_texts store.delete(filter="text = 'text 1'") assert store.get_table().count_rows() == 2 @pytest.mark.requires("lancedb") def test_lancedb_without_connection() -> None: embeddings = FakeEmbeddings() texts = ["text 1", "text 2", "item 3"] store = LanceDB(embedding=embeddings) store.add_texts(texts) result = store.similarity_search("text 1") result_texts = [doc.page_content for doc in result] assert "text 1" in result_texts @pytest.mark.requires("lancedb") def test_lancedb_add_texts() -> None: embeddings = FakeEmbeddings() store = LanceDB(embedding=embeddings) store.add_texts(["text 2"]) result = store.similarity_search("text 2") result_texts = [doc.page_content for doc in result] assert "text 2" in result_texts @pytest.mark.requires("lancedb") def test_mmr() -> None: embeddings = FakeEmbeddings() store = LanceDB(embedding=embeddings) store.add_texts(["text 1", "text 2", "item 3"]) result = store.max_marginal_relevance_search(query="text") result_texts = [doc.page_content for doc in result] assert "text 1" in result_texts result = store.max_marginal_relevance_search_by_vector( embeddings.embed_query("text") ) result_texts = [doc.page_content for doc in result] assert "text 1" in result_texts @pytest.mark.requires("lancedb") def test_lancedb_delete() -> None: embeddings = FakeEmbeddings() store = LanceDB(embedding=embeddings) store.add_texts(["text 1", "text 2", "item 3"]) store.delete(filter="text = 'text 1'") assert store.get_table().count_rows() == 2 @pytest.mark.requires("lancedb") def test_lancedb_delete_by_ids() -> None: embeddings = FakeEmbeddings() store = LanceDB(embedding=embeddings, id_key="pk") ids = store.add_texts(["text 1", "text 2", "item 3"]) store.delete(ids=ids) assert store.get_table().count_rows() == 0 @pytest.mark.requires("lancedb") def test_lancedb_all_searches() -> None: embeddings = FakeEmbeddings() store = LanceDB(embedding=embeddings) store.add_texts(["text 1", "text 2", "item 3"]) result_1 = store.similarity_search_with_relevance_scores( "text 1", distance="cosine" ) assert len(result_1[0]) == 2 assert "text 1" in result_1[0][0].page_content result_2 = store.similarity_search_by_vector(embeddings.embed_query("text 1")) assert "text 1" in result_2[0].page_content result_3 = store.similarity_search_by_vector_with_relevance_scores( embeddings.embed_query("text 1") ) assert len(result_3[0]) == 2 # type: ignore assert "text 1" in result_3[0][0].page_content # type: ignore @pytest.mark.requires("lancedb") def test_lancedb_no_metadata() -> None: lancedb = import_lancedb() embeddings = FakeEmbeddings() # Connect to a temporary LanceDB instance db = lancedb.connect("/tmp/lancedb_no_metadata_test") # Create data without the 'metadata' field texts = ["text 1", "text 2", "item 3"] data = [] for idx, text in enumerate(texts): embedding = embeddings.embed_documents([text])[0] data.append( { "vector": embedding, "id": str(idx), "text": text, # Note: We're deliberately not including 'metadata' here } ) # Create the table without 'metadata' column db.create_table("vectorstore_no_metadata", data=data) # Initialize LanceDB with the existing connection and table name store = LanceDB( connection=db, embedding=embeddings, table_name="vectorstore_no_metadata", ) # Perform a similarity search result = store.similarity_search("text 1") # Verify that the metadata in the Document objects is an empty dictionary for doc in result: assert doc.metadata == {}, ( "Expected empty metadata when 'metadata' column is missing" ) # Clean up by deleting the table (optional) db.drop_table("vectorstore_no_metadata")
# Copyright (c) OpenMMLab. All rights reserved. from .optimizer import (OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS, AmpOptimWrapper, ApexOptimWrapper, DefaultOptimWrapperConstructor, OptimWrapper, OptimWrapperDict, build_optim_wrapper) # yapf: disable from .scheduler import (ConstantLR, ConstantMomentum, ConstantParamScheduler, CosineAnnealingLR, CosineAnnealingMomentum, CosineAnnealingParamScheduler, ExponentialLR, ExponentialMomentum, ExponentialParamScheduler, LinearLR, LinearMomentum, LinearParamScheduler, MultiStepLR, MultiStepMomentum, MultiStepParamScheduler, OneCycleLR, OneCycleParamScheduler, PolyLR, PolyMomentum, PolyParamScheduler, ReduceOnPlateauLR, ReduceOnPlateauMomentum, ReduceOnPlateauParamScheduler, StepLR, StepMomentum, StepParamScheduler, _ParamScheduler) # yapf: enable __all__ = [ 'OPTIM_WRAPPER_CONSTRUCTORS', 'OPTIMIZERS', 'build_optim_wrapper', 'DefaultOptimWrapperConstructor', 'ConstantLR', 'CosineAnnealingLR', 'ExponentialLR', 'LinearLR', 'MultiStepLR', 'StepLR', 'ConstantMomentum', 'CosineAnnealingMomentum', 'ExponentialMomentum', 'LinearMomentum', 'MultiStepMomentum', 'StepMomentum', 'ConstantParamScheduler', 'CosineAnnealingParamScheduler', 'ExponentialParamScheduler', 'LinearParamScheduler', 'MultiStepParamScheduler', 'StepParamScheduler', '_ParamScheduler', 'OptimWrapper', 'AmpOptimWrapper', 'ApexOptimWrapper', 'OptimWrapperDict', 'OneCycleParamScheduler', 'OneCycleLR', 'PolyLR', 'PolyMomentum', 'PolyParamScheduler', 'ReduceOnPlateauLR', 'ReduceOnPlateauMomentum', 'ReduceOnPlateauParamScheduler' ]
# Copyright (c) OpenMMLab. All rights reserved. from .optimizer import (OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS, AmpOptimWrapper, DefaultOptimWrapperConstructor, OptimWrapper, OptimWrapperDict, build_optim_wrapper) # yapf: disable from .scheduler import (ConstantLR, ConstantMomentum, ConstantParamScheduler, CosineAnnealingLR, CosineAnnealingMomentum, CosineAnnealingParamScheduler, ExponentialLR, ExponentialMomentum, ExponentialParamScheduler, LinearLR, LinearMomentum, LinearParamScheduler, MultiStepLR, MultiStepMomentum, MultiStepParamScheduler, OneCycleLR, OneCycleParamScheduler, PolyLR, PolyMomentum, PolyParamScheduler, ReduceOnPlateauLR, ReduceOnPlateauMomentum, ReduceOnPlateauParamScheduler, StepLR, StepMomentum, StepParamScheduler, _ParamScheduler) # yapf: enable __all__ = [ 'OPTIM_WRAPPER_CONSTRUCTORS', 'OPTIMIZERS', 'build_optim_wrapper', 'DefaultOptimWrapperConstructor', 'ConstantLR', 'CosineAnnealingLR', 'ExponentialLR', 'LinearLR', 'MultiStepLR', 'StepLR', 'ConstantMomentum', 'CosineAnnealingMomentum', 'ExponentialMomentum', 'LinearMomentum', 'MultiStepMomentum', 'StepMomentum', 'ConstantParamScheduler', 'CosineAnnealingParamScheduler', 'ExponentialParamScheduler', 'LinearParamScheduler', 'MultiStepParamScheduler', 'StepParamScheduler', '_ParamScheduler', 'OptimWrapper', 'AmpOptimWrapper', 'OptimWrapperDict', 'OneCycleParamScheduler', 'OneCycleLR', 'PolyLR', 'PolyMomentum', 'PolyParamScheduler', 'ReduceOnPlateauLR', 'ReduceOnPlateauMomentum', 'ReduceOnPlateauParamScheduler' ]
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.16.1.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.16.0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
_base_ = 'mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_32xb2-ssj-270k_coco.py' # noqa # training schedule for 90k max_iters = 90000 # learning rate policy # lr steps at [0.9, 0.95, 0.975] of the maximum iterations param_scheduler = [ dict( type='LinearLR', start_factor=0.067, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=90000, by_epoch=False, milestones=[81000, 85500, 87750], gamma=0.1) ]
_base_ = 'mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_ssj_32x2_270k_coco.py' # training schedule for 90k max_iters = 90000 # learning rate policy # lr steps at [0.9, 0.95, 0.975] of the maximum iterations param_scheduler = [ dict( type='LinearLR', start_factor=0.067, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=90000, by_epoch=False, milestones=[81000, 85500, 87750], gamma=0.1) ]
from jina import Executor, requests from docarray import DocList from docarray.documents import TextDoc class MyExecutor(Executor): @requests def foo(self, docs: DocList[TextDoc], **kwargs) -> DocList[TextDoc]: docs[0].text = 'hello, world!' docs[1].text = 'goodbye, world!' return docs
from jina import Executor, requests, DocumentArray class MyExecutor(Executor): @requests def foo(self, docs: DocumentArray, **kwargs): docs[0].text = 'hello, world!' docs[1].text = 'goodbye, world!'
# model settings preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) norm_cfg = dict(type='BN', requires_grad=False) model = dict( type='FasterRCNN', preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNet', depth=50, num_stages=4, strides=(1, 2, 2, 1), dilations=(1, 1, 1, 2), out_indices=(3, ), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), rpn_head=dict( type='RPNHead', in_channels=2048, feat_channels=2048, anchor_generator=dict( type='AnchorGenerator', scales=[2, 4, 8, 16, 32], ratios=[0.5, 1.0, 2.0], strides=[16]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=2048, featmap_strides=[16]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=2048, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=12000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms=dict(type='nms', iou_threshold=0.7), nms_pre=6000, max_per_img=1000, min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)))
# model settings preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) norm_cfg = dict(type='BN', requires_grad=False) model = dict( preprocess_cfg=preprocess_cfg, type='FasterRCNN', backbone=dict( type='ResNet', depth=50, num_stages=4, strides=(1, 2, 2, 1), dilations=(1, 1, 1, 2), out_indices=(3, ), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), rpn_head=dict( type='RPNHead', in_channels=2048, feat_channels=2048, anchor_generator=dict( type='AnchorGenerator', scales=[2, 4, 8, 16, 32], ratios=[0.5, 1.0, 2.0], strides=[16]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=2048, featmap_strides=[16]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=2048, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=12000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms=dict(type='nms', iou_threshold=0.7), nms_pre=6000, max_per_img=1000, min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)))
import logging from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseNanoBEIREvaluator, SpladePooling, ) logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Create evaluator for some NanoBEIR datasets evaluator = SparseNanoBEIREvaluator( dataset_names=["QuoraRetrieval", "MSMARCO"], show_progress_bar=True, batch_size=32, ) # Run evaluation results = evaluator(model) # Print the results print(f"Primary metric: {evaluator.primary_metric}") print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}")
from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseNanoBEIREvaluator, SpladePooling, ) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Create evaluator for some NanoBEIR datasets evaluator = SparseNanoBEIREvaluator( dataset_names=["QuoraRetrieval", "MSMARCO"], show_progress_bar=True, batch_size=32, ) # Run evaluation print("Starting evaluation on all NanoBEIR datasets") results = evaluator(model) print(f"Primary metric: {evaluator.primary_metric}") print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # Print results for each dataset for key, value in results.items(): if key.startswith("Nano"): print(f"{key}: {value:.4f}")
from typing import Literal, Optional from langchain_core.agents import AgentAction def _escape(xml: str) -> str: """Replace XML tags with custom safe delimiters.""" replacements = { "<tool>": "[[tool]]", "</tool>": "[[/tool]]", "<tool_input>": "[[tool_input]]", "</tool_input>": "[[/tool_input]]", "<observation>": "[[observation]]", "</observation>": "[[/observation]]", } for orig, repl in replacements.items(): xml = xml.replace(orig, repl) return xml def format_xml( intermediate_steps: list[tuple[AgentAction, str]], *, escape_format: Optional[Literal["minimal"]] = "minimal", ) -> str: """Format the intermediate steps as XML. Args: intermediate_steps: The intermediate steps. escape_format: The escaping format to use. Currently only 'minimal' is supported, which replaces XML tags with custom delimiters to prevent conflicts. Returns: The intermediate steps as XML. """ log = "" for action, observation in intermediate_steps: if escape_format == "minimal": # Escape XML tags in tool names and inputs using custom delimiters tool = _escape(action.tool) tool_input = _escape(str(action.tool_input)) observation = _escape(str(observation)) else: tool = action.tool tool_input = str(action.tool_input) observation = str(observation) log += ( f"<tool>{tool}</tool><tool_input>{tool_input}" f"</tool_input><observation>{observation}</observation>" ) return log
from langchain_core.agents import AgentAction def format_xml( intermediate_steps: list[tuple[AgentAction, str]], ) -> str: """Format the intermediate steps as XML. Args: intermediate_steps: The intermediate steps. Returns: The intermediate steps as XML. """ log = "" for action, observation in intermediate_steps: log += ( f"<tool>{action.tool}</tool><tool_input>{action.tool_input}" f"</tool_input><observation>{observation}</observation>" ) return log
"""Integration test for Stack Exchange.""" from langchain_community.utilities import StackExchangeAPIWrapper def test_call() -> None: """Test that call runs.""" stackexchange = StackExchangeAPIWrapper() output = stackexchange.run("zsh: command not found: python") assert output != "hello" def test_failure() -> None: """Test that call that doesn't run.""" stackexchange = StackExchangeAPIWrapper() output = stackexchange.run("sjefbsmnf") assert output == "No relevant results found for 'sjefbsmnf' on Stack Overflow" def test_success() -> None: """Test that call that doesn't run.""" stackexchange = StackExchangeAPIWrapper() output = stackexchange.run("zsh: command not found: python") assert "zsh: command not found: python" in output
"""Integration test for Stack Exchange.""" from langchain_community.utilities import StackExchangeAPIWrapper def test_call() -> None: """Test that call runs.""" stackexchange = StackExchangeAPIWrapper() # type: ignore[call-arg] output = stackexchange.run("zsh: command not found: python") assert output != "hello" def test_failure() -> None: """Test that call that doesn't run.""" stackexchange = StackExchangeAPIWrapper() # type: ignore[call-arg] output = stackexchange.run("sjefbsmnf") assert output == "No relevant results found for 'sjefbsmnf' on Stack Overflow" def test_success() -> None: """Test that call that doesn't run.""" stackexchange = StackExchangeAPIWrapper() # type: ignore[call-arg] output = stackexchange.run("zsh: command not found: python") assert "zsh: command not found: python" in output
_base_ = '../gcnet/mask-rcnn_r101-syncbn-gcb-r4-c3-c5_fpn_1x_coco.py' # model settings model = dict( roi_head=dict( bbox_roi_extractor=dict( type='GenericRoIExtractor', aggregation='sum', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=2), out_channels=256, featmap_strides=[4, 8, 16, 32], pre_cfg=dict( type='ConvModule', in_channels=256, out_channels=256, kernel_size=5, padding=2, inplace=False, ), post_cfg=dict( type='GeneralizedAttention', in_channels=256, spatial_range=-1, num_heads=6, attention_type='0100', kv_stride=2)), mask_roi_extractor=dict( type='GenericRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=2), out_channels=256, featmap_strides=[4, 8, 16, 32], pre_cfg=dict( type='ConvModule', in_channels=256, out_channels=256, kernel_size=5, padding=2, inplace=False, ), post_cfg=dict( type='GeneralizedAttention', in_channels=256, spatial_range=-1, num_heads=6, attention_type='0100', kv_stride=2))))
_base_ = '../gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py' # model settings model = dict( roi_head=dict( bbox_roi_extractor=dict( type='GenericRoIExtractor', aggregation='sum', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=2), out_channels=256, featmap_strides=[4, 8, 16, 32], pre_cfg=dict( type='ConvModule', in_channels=256, out_channels=256, kernel_size=5, padding=2, inplace=False, ), post_cfg=dict( type='GeneralizedAttention', in_channels=256, spatial_range=-1, num_heads=6, attention_type='0100', kv_stride=2)), mask_roi_extractor=dict( type='GenericRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=2), out_channels=256, featmap_strides=[4, 8, 16, 32], pre_cfg=dict( type='ConvModule', in_channels=256, out_channels=256, kernel_size=5, padding=2, inplace=False, ), post_cfg=dict( type='GeneralizedAttention', in_channels=256, spatial_range=-1, num_heads=6, attention_type='0100', kv_stride=2))))
import random import numpy as np from keras.src import backend from keras.src.api_export import keras_export from keras.src.backend.common import global_state from keras.src.utils.module_utils import tensorflow as tf GLOBAL_RANDOM_SEED = "global_random_seed" @keras_export("keras.utils.set_random_seed") def set_random_seed(seed): """Sets all random seeds (Python, NumPy, and backend framework, e.g. TF). You can use this utility to make almost any Keras program fully deterministic. Some limitations apply in cases where network communications are involved (e.g. parameter server distribution), which creates additional sources of randomness, or when certain non-deterministic cuDNN ops are involved. Calling this utility is equivalent to the following: ```python import random random.seed(seed) import numpy as np np.random.seed(seed) import tensorflow as tf # Only if TF is installed tf.random.set_seed(seed) import torch # Only if the backend is 'torch' torch.manual_seed(seed) ``` Note that the TensorFlow seed is set even if you're not using TensorFlow as your backend framework, since many workflows leverage `tf.data` pipelines (which feature random shuffling). Likewise many workflows might leverage NumPy APIs. Arguments: seed: Integer, the random seed to use. """ if not isinstance(seed, int): raise ValueError( "Expected `seed` argument to be an integer. " f"Received: seed={seed} (of type {type(seed)})" ) # Store seed in global state so we can query it if set. global_state.set_global_attribute(GLOBAL_RANDOM_SEED, seed) random.seed(seed) np.random.seed(seed) if tf.available: tf.random.set_seed(seed) if backend.backend() == "torch": import torch torch.manual_seed(seed) def get_random_seed(): """Returns the explicit integer random seed if set. If the seed has been explicitly set via `set_random_seed`, then returns the seed. Otherwise, returns `None`. """ return global_state.get_global_attribute(GLOBAL_RANDOM_SEED)
import random import numpy as np from keras.src import backend from keras.src.api_export import keras_export from keras.src.utils.module_utils import tensorflow as tf @keras_export("keras.utils.set_random_seed") def set_random_seed(seed): """Sets all random seeds (Python, NumPy, and backend framework, e.g. TF). You can use this utility to make almost any Keras program fully deterministic. Some limitations apply in cases where network communications are involved (e.g. parameter server distribution), which creates additional sources of randomness, or when certain non-deterministic cuDNN ops are involved. Calling this utility is equivalent to the following: ```python import random random.seed(seed) import numpy as np np.random.seed(seed) import tensorflow as tf # Only if TF is installed tf.random.set_seed(seed) import torch # Only if the backend is 'torch' torch.manual_seed(seed) ``` Note that the TensorFlow seed is set even if you're not using TensorFlow as your backend framework, since many workflows leverage `tf.data` pipelines (which feature random shuffling). Likewise many workflows might leverage NumPy APIs. Arguments: seed: Integer, the random seed to use. """ if not isinstance(seed, int): raise ValueError( "Expected `seed` argument to be an integer. " f"Received: seed={seed} (of type {type(seed)})" ) random.seed(seed) np.random.seed(seed) if tf.available: tf.random.set_seed(seed) if backend.backend() == "torch": import torch torch.manual_seed(seed)
import torch from ._bounding_boxes import BoundingBoxes, BoundingBoxFormat from ._image import Image from ._mask import Mask from ._torch_function_helpers import set_return_type from ._tv_tensor import TVTensor from ._video import Video def wrap(wrappee, *, like, **kwargs): """[BETA] Convert a :class:`torch.Tensor` (``wrappee``) into the same :class:`~torchvision.tv_tensors.TVTensor` subclass as ``like``. If ``like`` is a :class:`~torchvision.tv_tensors.BoundingBoxes`, the ``format`` and ``canvas_size`` of ``like`` are assigned to ``wrappee``, unless they are passed as ``kwargs``. Args: wrappee (Tensor): The tensor to convert. like (:class:`~torchvision.tv_tensors.TVTensor`): The reference. ``wrappee`` will be converted into the same subclass as ``like``. kwargs: Can contain "format" and "canvas_size" if ``like`` is a :class:`~torchvision.tv_tensor.BoundingBoxes`. Ignored otherwise. """ if isinstance(like, BoundingBoxes): return BoundingBoxes._wrap( wrappee, format=kwargs.get("format", like.format), canvas_size=kwargs.get("canvas_size", like.canvas_size), ) else: return wrappee.as_subclass(type(like))
import torch from ._bounding_box import BoundingBoxes, BoundingBoxFormat from ._image import Image from ._mask import Mask from ._torch_function_helpers import set_return_type from ._tv_tensor import TVTensor from ._video import Video def wrap(wrappee, *, like, **kwargs): """[BETA] Convert a :class:`torch.Tensor` (``wrappee``) into the same :class:`~torchvision.tv_tensors.TVTensor` subclass as ``like``. If ``like`` is a :class:`~torchvision.tv_tensors.BoundingBoxes`, the ``format`` and ``canvas_size`` of ``like`` are assigned to ``wrappee``, unless they are passed as ``kwargs``. Args: wrappee (Tensor): The tensor to convert. like (:class:`~torchvision.tv_tensors.TVTensor`): The reference. ``wrappee`` will be converted into the same subclass as ``like``. kwargs: Can contain "format" and "canvas_size" if ``like`` is a :class:`~torchvision.tv_tensor.BoundingBoxes`. Ignored otherwise. """ if isinstance(like, BoundingBoxes): return BoundingBoxes._wrap( wrappee, format=kwargs.get("format", like.format), canvas_size=kwargs.get("canvas_size", like.canvas_size), ) else: return wrappee.as_subclass(type(like))
from typing import Any, Optional from langchain_core.language_models import BaseLanguageModel from langchain_core.memory import BaseMemory from langchain_core.messages import SystemMessage from langchain_core.prompts.chat import MessagesPlaceholder from langchain_core.tools import BaseTool from langchain.agents.agent import AgentExecutor from langchain.agents.openai_functions_agent.agent_token_buffer_memory import ( AgentTokenBufferMemory, ) from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent from langchain.memory.token_buffer import ConversationTokenBufferMemory def _get_default_system_message() -> SystemMessage: return SystemMessage( content=( "Do your best to answer the questions. " "Feel free to use any tools available to look up " "relevant information, only if necessary" ) ) def create_conversational_retrieval_agent( llm: BaseLanguageModel, tools: list[BaseTool], remember_intermediate_steps: bool = True, memory_key: str = "chat_history", system_message: Optional[SystemMessage] = None, verbose: bool = False, max_token_limit: int = 2000, **kwargs: Any, ) -> AgentExecutor: """A convenience method for creating a conversational retrieval agent. Args: llm: The language model to use, should be ChatOpenAI tools: A list of tools the agent has access to remember_intermediate_steps: Whether the agent should remember intermediate steps or not. Intermediate steps refer to prior action/observation pairs from previous questions. The benefit of remembering these is if there is relevant information in there, the agent can use it to answer follow up questions. The downside is it will take up more tokens. memory_key: The name of the memory key in the prompt. system_message: The system message to use. By default, a basic one will be used. verbose: Whether or not the final AgentExecutor should be verbose or not, defaults to False. max_token_limit: The max number of tokens to keep around in memory. Defaults to 2000. Returns: An agent executor initialized appropriately """ if remember_intermediate_steps: memory: BaseMemory = AgentTokenBufferMemory( memory_key=memory_key, llm=llm, max_token_limit=max_token_limit ) else: memory = ConversationTokenBufferMemory( memory_key=memory_key, return_messages=True, output_key="output", llm=llm, max_token_limit=max_token_limit, ) _system_message = system_message or _get_default_system_message() prompt = OpenAIFunctionsAgent.create_prompt( system_message=_system_message, extra_prompt_messages=[MessagesPlaceholder(variable_name=memory_key)], ) agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt) return AgentExecutor( agent=agent, tools=tools, memory=memory, verbose=verbose, return_intermediate_steps=remember_intermediate_steps, **kwargs, )
from typing import Any, List, Optional from langchain_core.language_models import BaseLanguageModel from langchain_core.memory import BaseMemory from langchain_core.messages import SystemMessage from langchain_core.prompts.chat import MessagesPlaceholder from langchain_core.tools import BaseTool from langchain.agents.agent import AgentExecutor from langchain.agents.openai_functions_agent.agent_token_buffer_memory import ( AgentTokenBufferMemory, ) from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent from langchain.memory.token_buffer import ConversationTokenBufferMemory def _get_default_system_message() -> SystemMessage: return SystemMessage( content=( "Do your best to answer the questions. " "Feel free to use any tools available to look up " "relevant information, only if necessary" ) ) def create_conversational_retrieval_agent( llm: BaseLanguageModel, tools: List[BaseTool], remember_intermediate_steps: bool = True, memory_key: str = "chat_history", system_message: Optional[SystemMessage] = None, verbose: bool = False, max_token_limit: int = 2000, **kwargs: Any, ) -> AgentExecutor: """A convenience method for creating a conversational retrieval agent. Args: llm: The language model to use, should be ChatOpenAI tools: A list of tools the agent has access to remember_intermediate_steps: Whether the agent should remember intermediate steps or not. Intermediate steps refer to prior action/observation pairs from previous questions. The benefit of remembering these is if there is relevant information in there, the agent can use it to answer follow up questions. The downside is it will take up more tokens. memory_key: The name of the memory key in the prompt. system_message: The system message to use. By default, a basic one will be used. verbose: Whether or not the final AgentExecutor should be verbose or not, defaults to False. max_token_limit: The max number of tokens to keep around in memory. Defaults to 2000. Returns: An agent executor initialized appropriately """ if remember_intermediate_steps: memory: BaseMemory = AgentTokenBufferMemory( memory_key=memory_key, llm=llm, max_token_limit=max_token_limit ) else: memory = ConversationTokenBufferMemory( memory_key=memory_key, return_messages=True, output_key="output", llm=llm, max_token_limit=max_token_limit, ) _system_message = system_message or _get_default_system_message() prompt = OpenAIFunctionsAgent.create_prompt( system_message=_system_message, extra_prompt_messages=[MessagesPlaceholder(variable_name=memory_key)], ) agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt) return AgentExecutor( agent=agent, tools=tools, memory=memory, verbose=verbose, return_intermediate_steps=remember_intermediate_steps, **kwargs, )
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/voc0712.py', '../_base_/default_runtime.py' ] model = dict(roi_head=dict(bbox_head=dict(num_classes=20))) # training schedule, voc dataset is repeated 3 times, in # `_base_/datasets/voc0712.py`, so the actual epoch = 4 * 3 = 12 max_epochs = 4 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[3], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/voc0712.py', '../_base_/default_runtime.py' ] model = dict(roi_head=dict(bbox_head=dict(num_classes=20))) # training schedule, voc dataset is repeated 3 times, in # `_base_/datasets/voc0712.py`, so the actual epoch = 4 * 3 = 12 max_epochs = 4 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[3], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
from __future__ import annotations import os from copy import deepcopy import numpy as np import pytest from tokenizers import Tokenizer from sentence_transformers import SentenceTransformer from sentence_transformers.models import Pooling, StaticEmbedding, Transformer from sentence_transformers.util import is_datasets_available from tests.utils import SafeTemporaryDirectory if is_datasets_available(): from datasets import DatasetDict, load_dataset @pytest.fixture(scope="session") def _stsb_bert_tiny_model() -> SentenceTransformer: model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") model.model_card_data.generate_widget_examples = False # Disable widget examples generation for testing return model @pytest.fixture() def stsb_bert_tiny_model(_stsb_bert_tiny_model: SentenceTransformer) -> SentenceTransformer: return deepcopy(_stsb_bert_tiny_model) @pytest.fixture() def stsb_bert_tiny_model_onnx() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-onnx") @pytest.fixture() def stsb_bert_tiny_model_openvino() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-openvino") @pytest.fixture() def paraphrase_distilroberta_base_v1_model() -> SentenceTransformer: return SentenceTransformer("paraphrase-distilroberta-base-v1") @pytest.fixture() def clip_vit_b_32_model() -> SentenceTransformer: return SentenceTransformer("clip-ViT-B-32") @pytest.fixture(scope="session") def tokenizer() -> Tokenizer: return Tokenizer.from_pretrained("bert-base-uncased") @pytest.fixture def embedding_weights(): return np.random.rand(30522, 768) @pytest.fixture def static_embedding_model(tokenizer: Tokenizer, embedding_weights) -> StaticEmbedding: return StaticEmbedding(tokenizer, embedding_weights=embedding_weights) @pytest.fixture() def distilbert_base_uncased_model() -> SentenceTransformer: word_embedding_model = Transformer("distilbert-base-uncased") pooling_model = Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) return model @pytest.fixture(scope="session") def stsb_dataset_dict() -> DatasetDict: return load_dataset("sentence-transformers/stsb") @pytest.fixture() def cache_dir(): """ In the CI environment, we use a temporary directory as `cache_dir` to avoid keeping the downloaded models on disk after the test. """ if os.environ.get("CI", None): # Note: `ignore_cleanup_errors=True` is used to avoid NotADirectoryError in Windows on GitHub Actions. # See https://github.com/python/cpython/issues/107408, https://www.scivision.dev/python-tempfile-permission-error-windows/ with SafeTemporaryDirectory() as tmp_dir: yield tmp_dir else: yield None
from __future__ import annotations import os import pytest from sentence_transformers import SentenceTransformer from sentence_transformers.models import Pooling, Transformer from sentence_transformers.util import is_datasets_available from tests.utils import SafeTemporaryDirectory if is_datasets_available(): from datasets import DatasetDict, load_dataset @pytest.fixture() def stsb_bert_tiny_model() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") @pytest.fixture(scope="session") def stsb_bert_tiny_model_reused() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") @pytest.fixture() def stsb_bert_tiny_model_onnx() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-onnx") @pytest.fixture() def stsb_bert_tiny_model_openvino() -> SentenceTransformer: return SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-openvino") @pytest.fixture() def paraphrase_distilroberta_base_v1_model() -> SentenceTransformer: return SentenceTransformer("paraphrase-distilroberta-base-v1") @pytest.fixture() def clip_vit_b_32_model() -> SentenceTransformer: return SentenceTransformer("clip-ViT-B-32") @pytest.fixture() def distilbert_base_uncased_model() -> SentenceTransformer: word_embedding_model = Transformer("distilbert-base-uncased") pooling_model = Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) return model @pytest.fixture(scope="session") def stsb_dataset_dict() -> DatasetDict: return load_dataset("sentence-transformers/stsb") @pytest.fixture() def cache_dir(): """ In the CI environment, we use a temporary directory as `cache_dir` to avoid keeping the downloaded models on disk after the test. """ if os.environ.get("CI", None): # Note: `ignore_cleanup_errors=True` is used to avoid NotADirectoryError in Windows on GitHub Actions. # See https://github.com/python/cpython/issues/107408, https://www.scivision.dev/python-tempfile-permission-error-windows/ with SafeTemporaryDirectory() as tmp_dir: yield tmp_dir else: yield None
from docarray import BaseDocument, DocumentArray from docarray.documents import Image from docarray.typing import NdArray class MyDoc(BaseDocument): embedding: NdArray text: str image: Image def test_from_to_json(): da = DocumentArray[MyDoc]( [ MyDoc(embedding=[1, 2, 3, 4, 5], text='hello', image=Image(url='aux.png')), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=Image()), ] ) json_da = da.to_json() da2 = DocumentArray[MyDoc].from_json(json_da) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None
import pytest from docarray import BaseDocument from docarray.typing import NdArray from docarray.documents import Image from docarray import DocumentArray class MyDoc(BaseDocument): embedding: NdArray text: str image: Image def test_from_to_json(): da = DocumentArray[MyDoc]( [ MyDoc(embedding=[1, 2, 3, 4, 5], text='hello', image=Image(url='aux.png')), MyDoc(embedding=[5, 4, 3, 2, 1], text='hello world', image=Image()), ] ) json_da = da.to_json() da2 = DocumentArray[MyDoc].from_json(json_da) assert len(da2) == 2 assert len(da) == len(da2) for d1, d2 in zip(da, da2): assert d1.embedding.tolist() == d2.embedding.tolist() assert d1.text == d2.text assert d1.image.url == d2.image.url assert da[1].image.url is None assert da2[1].image.url is None
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class DownloadConfig: """Configuration for our cached path manager. Attributes: cache_dir (`str` or `Path`, *optional*): Specify a cache directory to save the file to (overwrite the default cache dir). force_download (`bool`, defaults to `False`): If `True`, re-dowload the file even if it's already cached in the cache dir. resume_download (`bool`, defaults to `False`): If `True`, resume the download if an incompletely received file is found. proxies (`dict`, *optional*): user_agent (`str`, *optional*): Optional string or dict that will be appended to the user-agent on remote requests. extract_compressed_file (`bool`, defaults to `False`): If `True` and the path point to a zip or tar file, extract the compressed file in a folder along the archive. force_extract (`bool`, defaults to `False`): If `True` when `extract_compressed_file` is `True` and the archive was already extracted, re-extract the archive and override the folder where it was extracted. delete_extracted (`bool`, defaults to `False`): Whether to delete (or keep) the extracted files. use_etag (`bool`, defaults to `True`): Whether to use the ETag HTTP response header to validate the cached files. num_proc (`int`, *optional*): The number of processes to launch to download the files in parallel. max_retries (`int`, default to `1`): The number of times to retry an HTTP request if it fails. use_auth_token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. ignore_url_params (`bool`, defaults to `False`): Whether to strip all query parameters and fragments from the download URL before using it for caching the file. storage_options (`dict`, *optional*): Key/value pairs to be passed on to the dataset file-system backend, if any. download_desc (`str`, *optional*): A description to be displayed alongside with the progress bar while downloading the files. """ cache_dir: Optional[Union[str, Path]] = None force_download: bool = False resume_download: bool = False local_files_only: bool = False proxies: Optional[Dict] = None user_agent: Optional[str] = None extract_compressed_file: bool = False force_extract: bool = False delete_extracted: bool = False use_etag: bool = True num_proc: Optional[int] = None max_retries: int = 1 use_auth_token: Optional[Union[str, bool]] = None ignore_url_params: bool = False storage_options: Optional[Dict] = None download_desc: Optional[str] = None def copy(self) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()})
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class DownloadConfig: """Configuration for our cached path manager. Attributes: cache_dir (`str` or `Path`, *optional*): Specify a cache directory to save the file to (overwrite the default cache dir). force_download (`bool`, defaults to `False`): If `True`, re-dowload the file even if it's already cached in the cache dir. resume_download (`bool`, defaults to `False`): If `True`, resume the download if an incompletely received file is found. proxies (`dict`, *optional*): user_agent (`str`, *optional*): Optional string or dict that will be appended to the user-agent on remote requests. extract_compressed_file (`bool`, defaults to `False`): If `True` and the path point to a zip or tar file, extract the compressed file in a folder along the archive. force_extract (`bool`, defaults to `False`): If `True` when `extract_compressed_file` is `True` and the archive was already extracted, re-extract the archive and override the folder where it was extracted. delete_extracted (`bool`, defaults to `False`): Whether to delete (or keep) the extracted files. use_etag (`bool`, defaults to `True`): Whether to use the ETag HTTP response header to validate the cached files. num_proc (`int`, *optional*): The number of processes to launch to download the files in parallel. max_retries (`int`, default to `1`): The number of times to retry an HTTP request if it fails. use_auth_token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. ignore_url_params (`bool`, defaults to `False`): Whether to strip all query parameters and fragments from the download URL before using it for caching the file. download_desc (`str`, *optional*): A description to be displayed alongside with the progress bar while downloading the files. """ cache_dir: Optional[Union[str, Path]] = None force_download: bool = False resume_download: bool = False local_files_only: bool = False proxies: Optional[Dict] = None user_agent: Optional[str] = None extract_compressed_file: bool = False force_extract: bool = False delete_extracted: bool = False use_etag: bool = True num_proc: Optional[int] = None max_retries: int = 1 use_auth_token: Optional[Union[str, bool]] = None ignore_url_params: bool = False download_desc: Optional[str] = None def copy(self) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()})
"""Base classes for chain routing.""" from __future__ import annotations from abc import ABC from collections.abc import Mapping from typing import Any, NamedTuple, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, Callbacks, ) from pydantic import ConfigDict from langchain.chains.base import Chain class Route(NamedTuple): destination: Optional[str] next_inputs: dict[str, Any] class RouterChain(Chain, ABC): """Chain that outputs the name of a destination chain and the inputs to it.""" @property def output_keys(self) -> list[str]: return ["destination", "next_inputs"] def route(self, inputs: dict[str, Any], callbacks: Callbacks = None) -> Route: """ Route inputs to a destination chain. Args: inputs: inputs to the chain callbacks: callbacks to use for the chain Returns: a Route object """ result = self(inputs, callbacks=callbacks) return Route(result["destination"], result["next_inputs"]) async def aroute( self, inputs: dict[str, Any], callbacks: Callbacks = None ) -> Route: result = await self.acall(inputs, callbacks=callbacks) return Route(result["destination"], result["next_inputs"]) class MultiRouteChain(Chain): """Use a single chain to route an input to one of multiple candidate chains.""" router_chain: RouterChain """Chain that routes inputs to destination chains.""" destination_chains: Mapping[str, Chain] """Chains that return final answer to inputs.""" default_chain: Chain """Default chain to use when none of the destination chains are suitable.""" silent_errors: bool = False """If True, use default_chain when an invalid destination name is provided. Defaults to False.""" model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @property def input_keys(self) -> list[str]: """Will be whatever keys the router chain prompt expects. :meta private: """ return self.router_chain.input_keys @property def output_keys(self) -> list[str]: """Will always return text key. :meta private: """ return [] def _call( self, inputs: dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() route = self.router_chain.route(inputs, callbacks=callbacks) _run_manager.on_text( str(route.destination) + ": " + str(route.next_inputs), verbose=self.verbose ) if not route.destination: return self.default_chain(route.next_inputs, callbacks=callbacks) if route.destination in self.destination_chains: return self.destination_chains[route.destination]( route.next_inputs, callbacks=callbacks ) if self.silent_errors: return self.default_chain(route.next_inputs, callbacks=callbacks) msg = f"Received invalid destination chain name '{route.destination}'" raise ValueError(msg) async def _acall( self, inputs: dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> dict[str, Any]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() route = await self.router_chain.aroute(inputs, callbacks=callbacks) await _run_manager.on_text( str(route.destination) + ": " + str(route.next_inputs), verbose=self.verbose ) if not route.destination: return await self.default_chain.acall( route.next_inputs, callbacks=callbacks ) if route.destination in self.destination_chains: return await self.destination_chains[route.destination].acall( route.next_inputs, callbacks=callbacks ) if self.silent_errors: return await self.default_chain.acall( route.next_inputs, callbacks=callbacks ) msg = f"Received invalid destination chain name '{route.destination}'" raise ValueError(msg)
"""Base classes for chain routing.""" from __future__ import annotations from abc import ABC from collections.abc import Mapping from typing import Any, NamedTuple, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, Callbacks, ) from pydantic import ConfigDict from langchain.chains.base import Chain class Route(NamedTuple): destination: Optional[str] next_inputs: dict[str, Any] class RouterChain(Chain, ABC): """Chain that outputs the name of a destination chain and the inputs to it.""" @property def output_keys(self) -> list[str]: return ["destination", "next_inputs"] def route(self, inputs: dict[str, Any], callbacks: Callbacks = None) -> Route: """ Route inputs to a destination chain. Args: inputs: inputs to the chain callbacks: callbacks to use for the chain Returns: a Route object """ result = self(inputs, callbacks=callbacks) return Route(result["destination"], result["next_inputs"]) async def aroute( self, inputs: dict[str, Any], callbacks: Callbacks = None ) -> Route: result = await self.acall(inputs, callbacks=callbacks) return Route(result["destination"], result["next_inputs"]) class MultiRouteChain(Chain): """Use a single chain to route an input to one of multiple candidate chains.""" router_chain: RouterChain """Chain that routes inputs to destination chains.""" destination_chains: Mapping[str, Chain] """Chains that return final answer to inputs.""" default_chain: Chain """Default chain to use when none of the destination chains are suitable.""" silent_errors: bool = False """If True, use default_chain when an invalid destination name is provided. Defaults to False.""" model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @property def input_keys(self) -> list[str]: """Will be whatever keys the router chain prompt expects. :meta private: """ return self.router_chain.input_keys @property def output_keys(self) -> list[str]: """Will always return text key. :meta private: """ return [] def _call( self, inputs: dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() route = self.router_chain.route(inputs, callbacks=callbacks) _run_manager.on_text( str(route.destination) + ": " + str(route.next_inputs), verbose=self.verbose ) if not route.destination: return self.default_chain(route.next_inputs, callbacks=callbacks) elif route.destination in self.destination_chains: return self.destination_chains[route.destination]( route.next_inputs, callbacks=callbacks ) elif self.silent_errors: return self.default_chain(route.next_inputs, callbacks=callbacks) else: msg = f"Received invalid destination chain name '{route.destination}'" raise ValueError(msg) async def _acall( self, inputs: dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> dict[str, Any]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() route = await self.router_chain.aroute(inputs, callbacks=callbacks) await _run_manager.on_text( str(route.destination) + ": " + str(route.next_inputs), verbose=self.verbose ) if not route.destination: return await self.default_chain.acall( route.next_inputs, callbacks=callbacks ) elif route.destination in self.destination_chains: return await self.destination_chains[route.destination].acall( route.next_inputs, callbacks=callbacks ) elif self.silent_errors: return await self.default_chain.acall( route.next_inputs, callbacks=callbacks ) else: msg = f"Received invalid destination chain name '{route.destination}'" raise ValueError(msg)
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.image import affine_transform from keras.src.ops.image import crop_images from keras.src.ops.image import elastic_transform from keras.src.ops.image import extract_patches from keras.src.ops.image import gaussian_blur from keras.src.ops.image import hsv_to_rgb from keras.src.ops.image import map_coordinates from keras.src.ops.image import pad_images from keras.src.ops.image import perspective_transform from keras.src.ops.image import resize from keras.src.ops.image import rgb_to_grayscale from keras.src.ops.image import rgb_to_hsv
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.image import affine_transform from keras.src.ops.image import crop_images from keras.src.ops.image import extract_patches from keras.src.ops.image import gaussian_blur from keras.src.ops.image import hsv_to_rgb from keras.src.ops.image import map_coordinates from keras.src.ops.image import pad_images from keras.src.ops.image import perspective_transform from keras.src.ops.image import resize from keras.src.ops.image import rgb_to_grayscale from keras.src.ops.image import rgb_to_hsv
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys import pytorch_sphinx_theme sys.path.insert(0, os.path.abspath('../..')) # -- Project information ----------------------------------------------------- project = 'mmengine' copyright = '2022, mmengine contributors' author = 'mmengine contributors' version_file = '../../mmengine/version.py' with open(version_file, 'r') as f: exec(compile(f.read(), version_file, 'exec')) __version__ = locals()['__version__'] # The short X.Y version version = __version__ # The full version, including alpha/beta/rc tags release = __version__ # -- General configuration --------------------------------------------------- # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = 'zh_CN' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'sphinx.ext.autosectionlabel', 'sphinx_markdown_tables', 'myst_parser', 'sphinx_copybutton', 'sphinx.ext.autodoc.typehints', ] # yapf: disable autodoc_typehints = 'description' # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'pytorch_sphinx_theme' html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()] html_theme_options = { 'menu': [ { 'name': 'GitHub', 'url': 'https://github.com/open-mmlab/mmengine' }, ], # Specify the language of shared menu 'menu_lang': 'cn', } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Extension configuration ------------------------------------------------- # Ignore >>> when copying code copybutton_prompt_text = r'>>> |\.\.\. ' copybutton_prompt_is_regexp = True
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys import pytorch_sphinx_theme sys.path.insert(0, os.path.abspath('../..')) # -- Project information ----------------------------------------------------- project = 'mmengine' copyright = '2022, mmengine contributors' author = 'mmengine contributors' version_file = '../../mmengine/version.py' with open(version_file, 'r') as f: exec(compile(f.read(), version_file, 'exec')) __version__ = locals()['__version__'] # The short X.Y version version = __version__ # The full version, including alpha/beta/rc tags release = __version__ # -- General configuration --------------------------------------------------- # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = 'zh_CN' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'sphinx.ext.autosectionlabel', 'sphinx_markdown_tables', 'myst_parser', 'sphinx_copybutton', ] # yapf: disable # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'pytorch_sphinx_theme' html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()] html_theme_options = { 'menu': [ { 'name': 'GitHub', 'url': 'https://github.com/open-mmlab/mmengine' }, ], # Specify the language of shared menu 'menu_lang': 'cn', } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Extension configuration ------------------------------------------------- # Ignore >>> when copying code copybutton_prompt_text = r'>>> |\.\.\. ' copybutton_prompt_is_regexp = True
from typing import Optional from llama_index.core.storage.index_store.keyval_index_store import KVIndexStore from llama_index.storage.kvstore.elasticsearch import ElasticsearchKVStore class ElasticsearchIndexStore(KVIndexStore): """ Elasticsearch Index store. Args: elasticsearch_kvstore (ElasticsearchKVStore): Elasticsearch key-value store namespace (str): namespace for the index store """ def __init__( self, elasticsearch_kvstore: ElasticsearchKVStore, collection_index: Optional[str] = None, namespace: Optional[str] = None, collection_suffix: Optional[str] = None, ) -> None: """Init a ElasticsearchIndexStore.""" super().__init__( elasticsearch_kvstore, namespace=namespace, collection_suffix=collection_suffix, ) if collection_index: self._collection = collection_index else: self._collection = f"llama_index-index_store.data-{self._namespace}"
from typing import Optional from llama_index.core.storage.index_store.keyval_index_store import KVIndexStore from llama_index.storage.kvstore.elasticsearch import ElasticsearchKVStore class ElasticsearchIndexStore(KVIndexStore): """Elasticsearch Index store. Args: elasticsearch_kvstore (ElasticsearchKVStore): Elasticsearch key-value store namespace (str): namespace for the index store """ def __init__( self, elasticsearch_kvstore: ElasticsearchKVStore, collection_index: Optional[str] = None, namespace: Optional[str] = None, collection_suffix: Optional[str] = None, ) -> None: """Init a ElasticsearchIndexStore.""" super().__init__( elasticsearch_kvstore, namespace=namespace, collection_suffix=collection_suffix, ) if collection_index: self._collection = collection_index else: self._collection = f"llama_index-index_store.data-{self._namespace}"
"""LLM Compiler agent pack.""" from typing import Any, Dict, List, Optional from llama_index.core.agent import AgentRunner from llama_index.core.callbacks import CallbackManager from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.llms.llm import LLM from llama_index.core.settings import Settings from llama_index.core.tools.types import BaseTool from .step import CoAAgentWorker class CoAAgentPack(BaseLlamaPack): """ Chain-of-abstraction Agent Pack. Args: tools (List[BaseTool]): List of tools to use. llm (Optional[LLM]): LLM to use. Defaults to gpt-4. """ def __init__( self, tools: List[BaseTool], llm: Optional[LLM] = None, callback_manager: Optional[CallbackManager] = None, agent_worker_kwargs: Optional[Dict[str, Any]] = None, agent_runner_kwargs: Optional[Dict[str, Any]] = None, ) -> None: """Init params.""" self.llm = llm or Settings.llm self.callback_manager = callback_manager or self.llm.callback_manager self.agent_worker = CoAAgentWorker.from_tools( tools=tools, llm=llm, verbose=True, callback_manager=self.callback_manager, **(agent_worker_kwargs or {}) ) self.agent = AgentRunner( self.agent_worker, callback_manager=self.callback_manager, **(agent_runner_kwargs or {}) ) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "llm": self.llm, "callback_manager": self.callback_manager, "agent_worker": self.agent_worker, "agent": self.agent, } def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.agent.chat(*args, **kwargs)
"""LLM Compiler agent pack.""" from typing import Any, Dict, List, Optional from llama_index.core.agent import AgentRunner from llama_index.core.callbacks import CallbackManager from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.llms.llm import LLM from llama_index.core.settings import Settings from llama_index.core.tools.types import BaseTool from .step import CoAAgentWorker class CoAAgentPack(BaseLlamaPack): """Chain-of-abstraction Agent Pack. Args: tools (List[BaseTool]): List of tools to use. llm (Optional[LLM]): LLM to use. Defaults to gpt-4. """ def __init__( self, tools: List[BaseTool], llm: Optional[LLM] = None, callback_manager: Optional[CallbackManager] = None, agent_worker_kwargs: Optional[Dict[str, Any]] = None, agent_runner_kwargs: Optional[Dict[str, Any]] = None, ) -> None: """Init params.""" self.llm = llm or Settings.llm self.callback_manager = callback_manager or self.llm.callback_manager self.agent_worker = CoAAgentWorker.from_tools( tools=tools, llm=llm, verbose=True, callback_manager=self.callback_manager, **(agent_worker_kwargs or {}) ) self.agent = AgentRunner( self.agent_worker, callback_manager=self.callback_manager, **(agent_runner_kwargs or {}) ) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "llm": self.llm, "callback_manager": self.callback_manager, "agent_worker": self.agent_worker, "agent": self.agent, } def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.agent.chat(*args, **kwargs)
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline))) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox') test_evaluator = val_evaluator # training schedule for 3x with `RepeatDataset` train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate # Experiments show that using milestones=[9, 11] has higher performance param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[9, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline))) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox') test_evaluator = val_evaluator # training schedule for 3x with `RepeatDataset` train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate # Experiments show that using milestones=[9, 11] has higher performance param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[9, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, install_requires=['numpy', 'rich>=12.0.0', 'jina-hubble-sdk>=0.13.1'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', ], 'qdrant': [ 'qdrant-client==0.8.0', ], 'annlite': [ 'annlite', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'redis': [ 'redis>=4.3.0', ], 'benchmark': [ 'pandas', 'seaborn', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov==3.0.0', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite', 'elasticsearch>=8.2.0', 'redis>=4.3.0', 'jina', 'rocksdict<=0.2.16', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0', 'jina-hubble-sdk>=0.13.1'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', ], 'qdrant': [ 'qdrant-client==0.8.0', ], 'annlite': [ 'annlite', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'redis': [ 'redis>=4.3.0', ], 'benchmark': [ 'pandas', 'seaborn', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov==3.0.0', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite', 'elasticsearch>=8.2.0', 'redis>=4.3.0', 'jina', 'rocksdict<=0.2.16', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
from typing import Optional, Type, TypeVar, Union from uuid import UUID from pydantic import BaseConfig, parse_obj_as from pydantic.fields import ModelField from docarray.document.base_node import BaseNode from docarray.proto import NodeProto T = TypeVar('T', bound='ID') class ID(str, BaseNode): """ Represent an unique ID """ @classmethod def __get_validators__(cls): yield cls.validate @classmethod def validate( cls: Type[T], value: Union[str, int, UUID], field: Optional['ModelField'] = None, config: Optional['BaseConfig'] = None, ) -> T: try: id: str = str(value) return cls(id) except Exception: raise ValueError(f'Expected a str, int or UUID, got {type(value)}') def _to_node_protobuf(self) -> NodeProto: """Convert an ID into a NodeProto message. This function should be called when the self is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(id=self) @classmethod def from_protobuf(cls: Type[T], pb_msg: 'str') -> T: """ read ndarray from a proto msg :param pb_msg: :return: a string """ return parse_obj_as(cls, pb_msg)
from typing import TYPE_CHECKING, Optional, Type, TypeVar, Union from uuid import UUID from docarray.document.base_node import BaseNode from docarray.proto import NodeProto if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='ID') class ID(str, BaseNode): """ Represent an unique ID """ @classmethod def __get_validators__(cls): yield cls.validate @classmethod def validate( cls: Type[T], value: Union[str, int, UUID], field: Optional['ModelField'] = None, config: Optional['BaseConfig'] = None, ) -> T: try: id: str = str(value) return cls(id) except Exception: raise ValueError(f'Expected a str, int or UUID, got {type(value)}') def _to_node_protobuf(self) -> NodeProto: """Convert an ID into a NodeProto message. This function should be called when the self is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(id=self)
_base_ = './maskformer_r50_mstrain_16x1_75e_coco.py' pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth' # noqa depths = [2, 2, 18, 2] model = dict( backbone=dict( _delete_=True, type='SwinTransformer', pretrain_img_size=384, embed_dims=192, patch_size=4, window_size=12, mlp_ratio=4, depths=depths, num_heads=[6, 12, 24, 48], qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), panoptic_head=dict( in_channels=[192, 384, 768, 1536], # pass to pixel_decoder inside pixel_decoder=dict( _delete_=True, type='PixelDecoder', norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU')), enforce_decoder_input_project=True)) # optimizer # weight_decay = 0.01 # norm_weight_decay = 0.0 # embed_weight_decay = 0.0 embed_multi = dict(lr_mult=1.0, decay_mult=0.0) norm_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'norm': norm_multi, 'absolute_pos_embed': embed_multi, 'relative_position_bias_table': embed_multi, 'query_embed': embed_multi } optim_wrapper = dict( optimizer=dict(lr=6e-5, weight_decay=0.01), paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0)) max_epochs = 300 # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[250], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (64 GPUs) x (1 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = './maskformer_r50_mstrain_16x1_75e_coco.py' pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth' # noqa depths = [2, 2, 18, 2] model = dict( backbone=dict( _delete_=True, type='SwinTransformer', pretrain_img_size=384, embed_dims=192, patch_size=4, window_size=12, mlp_ratio=4, depths=depths, num_heads=[6, 12, 24, 48], qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), panoptic_head=dict( in_channels=[192, 384, 768, 1536], # pass to pixel_decoder inside pixel_decoder=dict( _delete_=True, type='PixelDecoder', norm_cfg=dict(type='GN', num_groups=32), act_cfg=dict(type='ReLU')), enforce_decoder_input_project=True)) # optimizer # weight_decay = 0.01 # norm_weight_decay = 0.0 # embed_weight_decay = 0.0 embed_multi = dict(lr_mult=1.0, decay_mult=0.0) norm_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'norm': norm_multi, 'absolute_pos_embed': embed_multi, 'relative_position_bias_table': embed_multi, 'query_embed': embed_multi } optim_wrapper = dict( optimizer=dict(lr=6e-5, weight_decay=0.01), paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0)) max_epochs = 300 # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[250], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs)
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from typing import List, Tuple from mmcv.runner import BaseModule from torch import Tensor from mmdet.core.utils import (InstanceList, OptConfigType, OptMultiConfig, SampleList) from mmdet.registry import MODELS class BaseRoIHead(BaseModule, metaclass=ABCMeta): """Base class for RoIHeads.""" def __init__(self, bbox_roi_extractor: OptMultiConfig = None, bbox_head: OptMultiConfig = None, mask_roi_extractor: OptMultiConfig = None, mask_head: OptMultiConfig = None, shared_head: OptConfigType = None, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__(init_cfg=init_cfg) self.train_cfg = train_cfg self.test_cfg = test_cfg if shared_head is not None: self.shared_head = MODELS.build(shared_head) if bbox_head is not None: self.init_bbox_head(bbox_roi_extractor, bbox_head) if mask_head is not None: self.init_mask_head(mask_roi_extractor, mask_head) self.init_assigner_sampler() @property def with_bbox(self) -> bool: """bool: whether the RoI head contains a `bbox_head`""" return hasattr(self, 'bbox_head') and self.bbox_head is not None @property def with_mask(self) -> bool: """bool: whether the RoI head contains a `mask_head`""" return hasattr(self, 'mask_head') and self.mask_head is not None @property def with_shared_head(self) -> bool: """bool: whether the RoI head contains a `shared_head`""" return hasattr(self, 'shared_head') and self.shared_head is not None @abstractmethod def init_bbox_head(self, *args, **kwargs): """Initialize ``bbox_head``""" pass @abstractmethod def init_mask_head(self, *args, **kwargs): """Initialize ``mask_head``""" pass @abstractmethod def init_assigner_sampler(self, *args, **kwargs): """Initialize assigner and sampler.""" pass @abstractmethod def forward_train(self, x: Tuple[Tensor], rpn_results_list: InstanceList, batch_data_samples: SampleList, **kwargs): """Forward function during training.""" # TODO: Currently not supported async def async_simple_test(self, x, proposal_list, img_metas, proposals=None, rescale=False, **kwargs): """Asynchronized test function.""" raise NotImplementedError def simple_test(self, x: Tuple[Tensor], proposal_list: InstanceList, batch_img_metas: List[dict], rescale: bool = False, **kwargs): """Test without augmentation.""" # TODO: Currently not supported def aug_test(self, x, proposal_list, img_metas, rescale=False, **kwargs): """Test with augmentations. If rescale is False, then returned bboxes and masks will fit the scale of imgs[0]. """
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from typing import List, Optional, Tuple, Union from mmcv.runner import BaseModule from mmengine.config import ConfigDict from mmengine.data import InstanceData from torch import Tensor from mmdet.core import DetDataSample from mmdet.registry import MODELS class BaseRoIHead(BaseModule, metaclass=ABCMeta): """Base class for RoIHeads.""" def __init__(self, bbox_roi_extractor: Optional[Union[ConfigDict, dict]] = None, bbox_head: Optional[Union[ConfigDict, dict]] = None, mask_roi_extractor: Optional[Union[ConfigDict, dict]] = None, mask_head: Optional[Union[ConfigDict, dict]] = None, shared_head: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, pretrained: Optional[str] = None, init_cfg: Optional[Union[ConfigDict, dict]] = None) -> None: super().__init__(init_cfg=init_cfg) self.train_cfg = train_cfg self.test_cfg = test_cfg if shared_head is not None: shared_head.pretrained = pretrained self.shared_head = MODELS.build(shared_head) if bbox_head is not None: self.init_bbox_head(bbox_roi_extractor, bbox_head) if mask_head is not None: self.init_mask_head(mask_roi_extractor, mask_head) self.init_assigner_sampler() @property def with_bbox(self) -> bool: """bool: whether the RoI head contains a `bbox_head`""" return hasattr(self, 'bbox_head') and self.bbox_head is not None @property def with_mask(self) -> bool: """bool: whether the RoI head contains a `mask_head`""" return hasattr(self, 'mask_head') and self.mask_head is not None @property def with_shared_head(self) -> bool: """bool: whether the RoI head contains a `shared_head`""" return hasattr(self, 'shared_head') and self.shared_head is not None @abstractmethod def init_bbox_head(self, *args, **kwargs): """Initialize ``bbox_head``""" pass @abstractmethod def init_mask_head(self, *args, **kwargs): """Initialize ``mask_head``""" pass @abstractmethod def init_assigner_sampler(self, *args, **kwargs): """Initialize assigner and sampler.""" pass @abstractmethod def forward_train(self, x: Tuple[Tensor], proposal_list: List[InstanceData], batch_data_samples: List[DetDataSample], **kwargs): """Forward function during training.""" # TODO: Currently not supported async def async_simple_test(self, x, proposal_list, img_metas, proposals=None, rescale=False, **kwargs): """Asynchronized test function.""" raise NotImplementedError def simple_test(self, x: Tuple[Tensor], proposal_list: List[InstanceData], batch_img_metas: List[dict], rescale: bool = False, **kwargs): """Test without augmentation.""" # TODO: Currently not supported def aug_test(self, x, proposal_list, img_metas, rescale=False, **kwargs): """Test with augmentations. If rescale is False, then returned bboxes and masks will fit the scale of imgs[0]. """
from keras.src import tree from keras.src.trainers.data_adapters import data_adapter_utils from keras.src.trainers.data_adapters.data_adapter import DataAdapter class TFDatasetAdapter(DataAdapter): """Adapter that handles `tf.data.Dataset`.""" def __init__(self, dataset, class_weight=None, distribution=None): """Initialize the TFDatasetAdapter. Args: dataset: The input `tf.data.Dataset` instance. class_weight: A map where the keys are integer class ids and values are the class weights, e.g. `{0: 0.2, 1: 0.6, 2: 0.3}`. distribution: A `keras.distribution.Distribution` instance. Used to shard the input dataset into per worker/process dataset instance. """ from keras.src.utils.module_utils import tensorflow as tf if not isinstance( dataset, (tf.data.Dataset, tf.distribute.DistributedDataset) ): raise ValueError( "Expected argument `dataset` to be a tf.data.Dataset. " f"Received: {dataset}" ) if class_weight is not None: dataset = dataset.map( make_class_weight_map_fn(class_weight) ).prefetch(tf.data.AUTOTUNE) if distribution is not None: dataset = distribution.distribute_dataset(dataset) self._dataset = dataset def get_numpy_iterator(self): from keras.src.backend.tensorflow.core import convert_to_numpy for batch in self._dataset: yield tree.map_structure(convert_to_numpy, batch) def get_jax_iterator(self): from keras.src.backend.tensorflow.core import convert_to_numpy from keras.src.utils.module_utils import tensorflow as tf def convert_to_jax(x): if isinstance(x, tf.SparseTensor): return data_adapter_utils.tf_sparse_to_jax_sparse(x) else: # We use numpy as an intermediary because it is faster. return convert_to_numpy(x) for batch in self._dataset: yield tree.map_structure(convert_to_jax, batch) def get_tf_dataset(self): return self._dataset def get_torch_dataloader(self): return data_adapter_utils.get_torch_dataloader(self._dataset) @property def num_batches(self): cardinality = self._dataset.cardinality if callable(cardinality): # `dataset.cardinality` is normally expected to be a callable. cardinality = int(self._dataset.cardinality()) else: # However, in the case of `DistributedDataset`, it's a np.int64. cardinality = int(cardinality) # Return None for Unknown and Infinite cardinality datasets if cardinality < 0: return None return cardinality @property def batch_size(self): first_element_spec = tree.flatten(self._dataset.element_spec)[0] return first_element_spec.shape[0] @property def has_partial_batch(self): return None @property def partial_batch_size(self): return None def make_class_weight_map_fn(class_weight): """Applies class weighting to a `Dataset`. The `Dataset` is assumed to be in format `(x, y)` or `(x, y, sw)`, where `y` must be a single `Tensor`. Args: class_weight: A map where the keys are integer class ids and values are the class weights, e.g. `{0: 0.2, 1: 0.6, 2: 0.3}` Returns: A function that can be used with `tf.data.Dataset.map` to apply class weighting. """ from keras.src.utils.module_utils import tensorflow as tf class_weight_tensor = tf.convert_to_tensor( [ class_weight.get(int(c), 1.0) for c in range(max(class_weight.keys()) + 1) ] ) def class_weights_map_fn(*data): """Convert `class_weight` to `sample_weight`.""" x, y, sw = data_adapter_utils.unpack_x_y_sample_weight(data) if sw is not None: raise ValueError( "You cannot `class_weight` and `sample_weight` " "at the same time." ) if tree.is_nested(y): raise ValueError( "`class_weight` is only supported for Models with a single " "output." ) if y.shape.rank >= 2: y_classes = tf.__internal__.smart_cond.smart_cond( tf.shape(y)[-1] > 1, lambda: tf.argmax(y, axis=-1), lambda: tf.cast(tf.round(tf.squeeze(y, axis=-1)), tf.int32), ) else: # Special casing for rank 1, where we can guarantee sparse encoding. y_classes = tf.cast(tf.round(y), tf.int32) cw = tf.gather(class_weight_tensor, y_classes) return x, y, cw return class_weights_map_fn
from keras.src import tree from keras.src.trainers.data_adapters import data_adapter_utils from keras.src.trainers.data_adapters.data_adapter import DataAdapter class TFDatasetAdapter(DataAdapter): """Adapter that handles `tf.data.Dataset`.""" def __init__(self, dataset, class_weight=None, distribution=None): """Iniitialize the TFDatasetAdapter. Args: dataset: The input `tf.data.Dataset` instance. class_weight: A map where the keys are integer class ids and values are the class weights, e.g. `{0: 0.2, 1: 0.6, 2: 0.3}`. distribution: A `keras.distribution.Distribution` instance. Used to shard the input dataset into per worker/process dataset instance. """ from keras.src.utils.module_utils import tensorflow as tf if not isinstance( dataset, (tf.data.Dataset, tf.distribute.DistributedDataset) ): raise ValueError( "Expected argument `dataset` to be a tf.data.Dataset. " f"Received: {dataset}" ) if class_weight is not None: dataset = dataset.map( make_class_weight_map_fn(class_weight) ).prefetch(tf.data.AUTOTUNE) if distribution is not None: dataset = distribution.distribute_dataset(dataset) self._dataset = dataset def get_numpy_iterator(self): from keras.src.backend.tensorflow.core import convert_to_numpy for batch in self._dataset: yield tree.map_structure(convert_to_numpy, batch) def get_jax_iterator(self): from keras.src.backend.tensorflow.core import convert_to_numpy from keras.src.utils.module_utils import tensorflow as tf def convert_to_jax(x): if isinstance(x, tf.SparseTensor): return data_adapter_utils.tf_sparse_to_jax_sparse(x) else: # We use numpy as an intermediary because it is faster. return convert_to_numpy(x) for batch in self._dataset: yield tree.map_structure(convert_to_jax, batch) def get_tf_dataset(self): return self._dataset def get_torch_dataloader(self): return data_adapter_utils.get_torch_dataloader(self._dataset) @property def num_batches(self): cardinality = self._dataset.cardinality if callable(cardinality): # `dataset.cardinality` is normally expected to be a callable. cardinality = int(self._dataset.cardinality()) else: # However, in the case of `DistributedDataset`, it's a np.int64. cardinality = int(cardinality) # Return None for Unknown and Infinite cardinality datasets if cardinality < 0: return None return cardinality @property def batch_size(self): first_element_spec = tree.flatten(self._dataset.element_spec)[0] return first_element_spec.shape[0] @property def has_partial_batch(self): return None @property def partial_batch_size(self): return None def make_class_weight_map_fn(class_weight): """Applies class weighting to a `Dataset`. The `Dataset` is assumed to be in format `(x, y)` or `(x, y, sw)`, where `y` must be a single `Tensor`. Args: class_weight: A map where the keys are integer class ids and values are the class weights, e.g. `{0: 0.2, 1: 0.6, 2: 0.3}` Returns: A function that can be used with `tf.data.Dataset.map` to apply class weighting. """ from keras.src.utils.module_utils import tensorflow as tf class_weight_tensor = tf.convert_to_tensor( [ class_weight.get(int(c), 1.0) for c in range(max(class_weight.keys()) + 1) ] ) def class_weights_map_fn(*data): """Convert `class_weight` to `sample_weight`.""" x, y, sw = data_adapter_utils.unpack_x_y_sample_weight(data) if sw is not None: raise ValueError( "You cannot `class_weight` and `sample_weight` " "at the same time." ) if tree.is_nested(y): raise ValueError( "`class_weight` is only supported for Models with a single " "output." ) if y.shape.rank >= 2: y_classes = tf.__internal__.smart_cond.smart_cond( tf.shape(y)[-1] > 1, lambda: tf.argmax(y, axis=-1), lambda: tf.cast(tf.round(tf.squeeze(y, axis=-1)), tf.int32), ) else: # Special casing for rank 1, where we can guarantee sparse encoding. y_classes = tf.cast(tf.round(y), tf.int32) cw = tf.gather(class_weight_tensor, y_classes) return x, y, cw return class_weights_map_fn
import os import json import time import pytest from urllib import request from jina import Flow from jina.serve.runtimes.gateway.http.models import _to_camel_case from docarray import Document from jina import helper from jina import Executor, requests from tests import validate_callback cur_dir = os.path.dirname(os.path.abspath(__file__)) # check if this can be bypassed IGNORED_FIELDS = ['embedding', 'scores', 'graphInfo', 'evaluations'] @pytest.fixture def docs(): return [Document(id=f'{idx}', text=f'doc{idx}') for idx in range(10)] def test_no_matches_grpc(mocker, docs): def validate_response(resp): for doc in resp.data.docs: assert len(doc.matches) == 0 mock_on_done = mocker.Mock() with Flow().add() as f: f.search(inputs=docs, on_done=mock_on_done) validate_callback(mock_on_done, validate_response) @pytest.fixture def query_dict(): return {'top_k': 3, 'mode': 'search', 'data': [{'text': 'query'}]} class MockExecutor(Executor): @requests def foo(self, docs, *args, **kwargs): for doc in docs: doc.tags['tag'] = 'test' def test_no_matches_rest(query_dict): port = helper.random_port() with Flow( protocol='http', port=port, including_default_value_fields=True, ).add(uses=MockExecutor): # temporarily adding sleep time.sleep(0.5) query = json.dumps(query_dict).encode('utf-8') req = request.Request( f'http://localhost:{port}/search', data=query, headers={'content-type': 'application/json'}, ) resp = request.urlopen(req).read().decode('utf8') doc = json.loads(resp)['data'][0] assert len(Document.from_dict(doc).matches) == 0 assert Document.from_dict(doc).tags['tag'] == 'test'
import os import json import time import pytest from urllib import request from jina import Flow from jina.serve.runtimes.gateway.http.models import _to_camel_case from jina import Document from jina import helper from jina import Executor, requests from tests import validate_callback cur_dir = os.path.dirname(os.path.abspath(__file__)) # check if this can be bypassed IGNORED_FIELDS = ['embedding', 'scores', 'graphInfo', 'evaluations'] @pytest.fixture def docs(): return [Document(id=f'{idx}', text=f'doc{idx}') for idx in range(10)] def test_no_matches_grpc(mocker, docs): def validate_response(resp): for doc in resp.data.docs: assert len(doc.matches) == 0 mock_on_done = mocker.Mock() with Flow().add() as f: f.search(inputs=docs, on_done=mock_on_done) validate_callback(mock_on_done, validate_response) @pytest.fixture def query_dict(): return {'top_k': 3, 'mode': 'search', 'data': [{'text': 'query'}]} class MockExecutor(Executor): @requests def foo(self, docs, *args, **kwargs): for doc in docs: doc.tags['tag'] = 'test' def test_no_matches_rest(query_dict): port = helper.random_port() with Flow( protocol='http', port=port, including_default_value_fields=True, ).add(uses=MockExecutor): # temporarily adding sleep time.sleep(0.5) query = json.dumps(query_dict).encode('utf-8') req = request.Request( f'http://localhost:{port}/search', data=query, headers={'content-type': 'application/json'}, ) resp = request.urlopen(req).read().decode('utf8') doc = json.loads(resp)['data'][0] assert len(Document.from_dict(doc).matches) == 0 assert Document.from_dict(doc).tags['tag'] == 'test'
from llama_index.multi_modal_llms.openai import OpenAIMultiModal from llama_index.multi_modal_llms.nebius import NebiusMultiModal def test_multi_modal_class(): names_of_base_classes = [b.__name__ for b in NebiusMultiModal.__mro__] assert OpenAIMultiModal.__name__ in names_of_base_classes
from llama_index.core.multi_modal_llms.base import MultiModalLLM from llama_index.multi_modal_llms.nebius import NebiusMultiModal def test_multi_modal_class(): names_of_base_classes = [b.__name__ for b in NebiusMultiModal.__mro__] assert MultiModalLLM.__name__ in names_of_base_classes
_base_ = [ '../_base_/models/faster-rcnn_r50_fpn.py', '../_base_/datasets/voc0712.py', '../_base_/default_runtime.py' ] model = dict(roi_head=dict(bbox_head=dict(num_classes=20))) METAINFO = { 'CLASSES': ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'), # PALETTE is a list of color tuples, which is used for visualization. 'PALETTE': [(106, 0, 228), (119, 11, 32), (165, 42, 42), (0, 0, 192), (197, 226, 255), (0, 60, 100), (0, 0, 142), (255, 77, 255), (153, 69, 1), (120, 166, 157), (0, 182, 199), (0, 226, 252), (182, 182, 255), (0, 0, 230), (220, 20, 60), (163, 255, 0), (0, 82, 0), (3, 95, 161), (0, 80, 100), (183, 130, 88)] } # dataset settings dataset_type = 'CocoDataset' data_root = 'data/VOCdevkit/' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1000, 600), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(1000, 600), keep_ratio=True), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( dataset=dict( type='RepeatDataset', times=3, dataset=dict( _delete_=True, type=dataset_type, data_root=data_root, ann_file='annotations/voc0712_trainval.json', data_prefix=dict(img=''), metainfo=METAINFO, filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( dataset=dict( type=dataset_type, ann_file='annotations/voc07_test.json', data_prefix=dict(img=''), metainfo=METAINFO, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/voc07_test.json', metric='bbox', format_only=False) test_evaluator = val_evaluator # training schedule, the dataset is repeated 3 times, so the # actual epoch = 4 * 3 = 12 max_epochs = 4 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[3], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/voc0712.py', '../_base_/default_runtime.py' ] model = dict(roi_head=dict(bbox_head=dict(num_classes=20))) METAINFO = { 'CLASSES': ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'), # PALETTE is a list of color tuples, which is used for visualization. 'PALETTE': [(106, 0, 228), (119, 11, 32), (165, 42, 42), (0, 0, 192), (197, 226, 255), (0, 60, 100), (0, 0, 142), (255, 77, 255), (153, 69, 1), (120, 166, 157), (0, 182, 199), (0, 226, 252), (182, 182, 255), (0, 0, 230), (220, 20, 60), (163, 255, 0), (0, 82, 0), (3, 95, 161), (0, 80, 100), (183, 130, 88)] } # dataset settings dataset_type = 'CocoDataset' data_root = 'data/VOCdevkit/' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1000, 600), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(1000, 600), keep_ratio=True), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( dataset=dict( type='RepeatDataset', times=3, dataset=dict( _delete_=True, type=dataset_type, data_root=data_root, ann_file='annotations/voc0712_trainval.json', data_prefix=dict(img=''), metainfo=METAINFO, filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( dataset=dict( type=dataset_type, ann_file='annotations/voc07_test.json', data_prefix=dict(img=''), metainfo=METAINFO, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/voc07_test.json', metric='bbox', format_only=False) test_evaluator = val_evaluator # training schedule, the dataset is repeated 3 times, so the # actual epoch = 4 * 3 = 12 max_epochs = 4 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[3], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)
""" OpenAI Agent. Simple wrapper around AgentRunner + OpenAIAgentWorker. For the legacy implementation see: ```python from llama_index.agent.legacy.openai.base import OpenAIAgent ``` """ from typing import ( Any, Dict, List, Callable, Optional, Type, ) from llama_index.agent.openai.step import OpenAIAgentWorker from llama_index.core.agent.runner.base import AgentRunner from llama_index.core.callbacks import CallbackManager from llama_index.core.base.llms.types import ChatMessage from llama_index.core.llms.llm import LLM from llama_index.core.memory.chat_memory_buffer import ChatMemoryBuffer from llama_index.core.memory.types import BaseMemory from llama_index.core.objects.base import ObjectRetriever from llama_index.core.settings import Settings from llama_index.core.tools import BaseTool from llama_index.llms.openai import OpenAI from llama_index.llms.openai.utils import OpenAIToolCall DEFAULT_MAX_FUNCTION_CALLS = 5 class OpenAIAgent(AgentRunner): """ OpenAI agent. Subclasses AgentRunner with a OpenAIAgentWorker. For the legacy implementation see: ```python from llama_index.agent.legacy.openai.base import OpenAIAgent ``` """ def __init__( self, tools: List[BaseTool], llm: OpenAI, memory: BaseMemory, prefix_messages: List[ChatMessage], verbose: bool = False, max_function_calls: int = DEFAULT_MAX_FUNCTION_CALLS, default_tool_choice: str = "auto", callback_manager: Optional[CallbackManager] = None, tool_retriever: Optional[ObjectRetriever[BaseTool]] = None, tool_call_parser: Optional[Callable[[OpenAIToolCall], Dict]] = None, ) -> None: """Init params.""" callback_manager = callback_manager or llm.callback_manager step_engine = OpenAIAgentWorker.from_tools( tools=tools, tool_retriever=tool_retriever, llm=llm, verbose=verbose, max_function_calls=max_function_calls, callback_manager=callback_manager, prefix_messages=prefix_messages, tool_call_parser=tool_call_parser, ) super().__init__( step_engine, memory=memory, llm=llm, callback_manager=callback_manager, default_tool_choice=default_tool_choice, ) @classmethod def from_tools( cls, tools: Optional[List[BaseTool]] = None, tool_retriever: Optional[ObjectRetriever[BaseTool]] = None, llm: Optional[LLM] = None, chat_history: Optional[List[ChatMessage]] = None, memory: Optional[BaseMemory] = None, memory_cls: Type[BaseMemory] = ChatMemoryBuffer, verbose: bool = False, max_function_calls: int = DEFAULT_MAX_FUNCTION_CALLS, default_tool_choice: str = "auto", callback_manager: Optional[CallbackManager] = None, system_prompt: Optional[str] = None, prefix_messages: Optional[List[ChatMessage]] = None, tool_call_parser: Optional[Callable[[OpenAIToolCall], Dict]] = None, **kwargs: Any, ) -> "OpenAIAgent": """ Create an OpenAIAgent from a list of tools. Similar to `from_defaults` in other classes, this method will infer defaults for a variety of parameters, including the LLM, if they are not specified. """ tools = tools or [] chat_history = chat_history or [] llm = llm or Settings.llm if not isinstance(llm, OpenAI): raise ValueError("llm must be a OpenAI instance") if callback_manager is not None: llm.callback_manager = callback_manager memory = memory or memory_cls.from_defaults(chat_history, llm=llm) if not llm.metadata.is_function_calling_model: raise ValueError( f"Model name {llm.model} does not support function calling API. " ) if system_prompt is not None: if prefix_messages is not None: raise ValueError( "Cannot specify both system_prompt and prefix_messages" ) prefix_messages = [ChatMessage(content=system_prompt, role="system")] prefix_messages = prefix_messages or [] return cls( tools=tools, tool_retriever=tool_retriever, llm=llm, memory=memory, prefix_messages=prefix_messages, verbose=verbose, max_function_calls=max_function_calls, callback_manager=callback_manager, default_tool_choice=default_tool_choice, tool_call_parser=tool_call_parser, )
"""OpenAI Agent. Simple wrapper around AgentRunner + OpenAIAgentWorker. For the legacy implementation see: ```python from llama_index.agent.legacy.openai.base import OpenAIAgent ``` """ from typing import ( Any, Dict, List, Callable, Optional, Type, ) from llama_index.agent.openai.step import OpenAIAgentWorker from llama_index.core.agent.runner.base import AgentRunner from llama_index.core.callbacks import CallbackManager from llama_index.core.base.llms.types import ChatMessage from llama_index.core.llms.llm import LLM from llama_index.core.memory.chat_memory_buffer import ChatMemoryBuffer from llama_index.core.memory.types import BaseMemory from llama_index.core.objects.base import ObjectRetriever from llama_index.core.settings import Settings from llama_index.core.tools import BaseTool from llama_index.llms.openai import OpenAI from llama_index.llms.openai.utils import OpenAIToolCall DEFAULT_MAX_FUNCTION_CALLS = 5 class OpenAIAgent(AgentRunner): """OpenAI agent. Subclasses AgentRunner with a OpenAIAgentWorker. For the legacy implementation see: ```python from llama_index.agent.legacy.openai.base import OpenAIAgent ``` """ def __init__( self, tools: List[BaseTool], llm: OpenAI, memory: BaseMemory, prefix_messages: List[ChatMessage], verbose: bool = False, max_function_calls: int = DEFAULT_MAX_FUNCTION_CALLS, default_tool_choice: str = "auto", callback_manager: Optional[CallbackManager] = None, tool_retriever: Optional[ObjectRetriever[BaseTool]] = None, tool_call_parser: Optional[Callable[[OpenAIToolCall], Dict]] = None, ) -> None: """Init params.""" callback_manager = callback_manager or llm.callback_manager step_engine = OpenAIAgentWorker.from_tools( tools=tools, tool_retriever=tool_retriever, llm=llm, verbose=verbose, max_function_calls=max_function_calls, callback_manager=callback_manager, prefix_messages=prefix_messages, tool_call_parser=tool_call_parser, ) super().__init__( step_engine, memory=memory, llm=llm, callback_manager=callback_manager, default_tool_choice=default_tool_choice, ) @classmethod def from_tools( cls, tools: Optional[List[BaseTool]] = None, tool_retriever: Optional[ObjectRetriever[BaseTool]] = None, llm: Optional[LLM] = None, chat_history: Optional[List[ChatMessage]] = None, memory: Optional[BaseMemory] = None, memory_cls: Type[BaseMemory] = ChatMemoryBuffer, verbose: bool = False, max_function_calls: int = DEFAULT_MAX_FUNCTION_CALLS, default_tool_choice: str = "auto", callback_manager: Optional[CallbackManager] = None, system_prompt: Optional[str] = None, prefix_messages: Optional[List[ChatMessage]] = None, tool_call_parser: Optional[Callable[[OpenAIToolCall], Dict]] = None, **kwargs: Any, ) -> "OpenAIAgent": """Create an OpenAIAgent from a list of tools. Similar to `from_defaults` in other classes, this method will infer defaults for a variety of parameters, including the LLM, if they are not specified. """ tools = tools or [] chat_history = chat_history or [] llm = llm or Settings.llm if not isinstance(llm, OpenAI): raise ValueError("llm must be a OpenAI instance") if callback_manager is not None: llm.callback_manager = callback_manager memory = memory or memory_cls.from_defaults(chat_history, llm=llm) if not llm.metadata.is_function_calling_model: raise ValueError( f"Model name {llm.model} does not support function calling API. " ) if system_prompt is not None: if prefix_messages is not None: raise ValueError( "Cannot specify both system_prompt and prefix_messages" ) prefix_messages = [ChatMessage(content=system_prompt, role="system")] prefix_messages = prefix_messages or [] return cls( tools=tools, tool_retriever=tool_retriever, llm=llm, memory=memory, prefix_messages=prefix_messages, verbose=verbose, max_function_calls=max_function_calls, callback_manager=callback_manager, default_tool_choice=default_tool_choice, tool_call_parser=tool_call_parser, )
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..utils import is_torch_available if is_torch_available(): from .faster_cache import FasterCacheConfig, apply_faster_cache from .first_block_cache import FirstBlockCacheConfig, apply_first_block_cache from .group_offloading import apply_group_offloading from .hooks import HookRegistry, ModelHook from .layerwise_casting import apply_layerwise_casting, apply_layerwise_casting_hook from .pyramid_attention_broadcast import PyramidAttentionBroadcastConfig, apply_pyramid_attention_broadcast
from ..utils import is_torch_available if is_torch_available(): from .faster_cache import FasterCacheConfig, apply_faster_cache from .group_offloading import apply_group_offloading from .hooks import HookRegistry, ModelHook from .layerwise_casting import apply_layerwise_casting, apply_layerwise_casting_hook from .pyramid_attention_broadcast import PyramidAttentionBroadcastConfig, apply_pyramid_attention_broadcast
from docarray.typing.tensor.embedding import AnyEmbedding, NdArrayEmbedding from docarray.typing.tensor.image import ImageNdArray, ImageTensor from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor __all__ = [ 'NdArray', 'AnyTensor', 'AnyEmbedding', 'NdArrayEmbedding', 'ImageNdArray', 'ImageTensor', 'TensorFlowTensor', ] from docarray.utils.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.embedding import TorchEmbedding # noqa: F401 from docarray.typing.tensor.image import ImageTorchTensor # noqa: F401 from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 __all__.extend(['TorchEmbedding', 'TorchTensor', 'ImageTorchTensor']) torch_available = is_torch_available() tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.embedding import TensorFlowEmbedding # noqa: F401 from docarray.typing.tensor.image import ImageTensorFlowTensor # noqa: F401 from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor # noqa: F401 __all__.extend(['TensorFlowEmbedding', 'TensorFlowTensor', 'ImageTensorFlowTensor'])
from docarray.typing.tensor.embedding import AnyEmbedding, NdArrayEmbedding from docarray.typing.tensor.image import ImageNdArray, ImageTensor from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import AnyTensor __all__ = [ 'NdArray', 'AnyTensor', 'AnyEmbedding', 'NdArrayEmbedding', 'ImageNdArray', 'ImageTensor', 'TensorFlowTensor', ] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor.embedding import TorchEmbedding # noqa: F401 from docarray.typing.tensor.image import ImageTorchTensor # noqa: F401 from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 __all__.extend(['TorchEmbedding', 'TorchTensor', 'ImageTorchTensor']) try: import tensorflow as tf # type: ignore # noqa: F401 except (ImportError, TypeError): pass else: from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor # noqa: F401 __all__.extend(['TensorFlowTensor'])
from keras.src.utils.module_utils import dmtree def register_tree_node_class(cls): return cls def is_nested(structure): return dmtree.is_nested(structure) def traverse(func, structure, top_down=True): return dmtree.traverse(func, structure, top_down=top_down) def flatten(structure): return dmtree.flatten(structure) def map_structure(func, *structures): return dmtree.map_structure(func, *structures) def map_structure_up_to(shallow_structure, func, *structures): return dmtree.map_structure_up_to(shallow_structure, func, *structures) def assert_same_structure(a, b, check_types=True): return dmtree.assert_same_structure(a, b, check_types=check_types) def pack_sequence_as(structure, flat_sequence, sequence_fn=None): is_nested_fn = dmtree.is_nested sequence_fn = sequence_fn or dmtree._sequence_like def truncate(value, length): value_str = str(value) return value_str[:length] + (value_str[length:] and "...") if not is_nested_fn(flat_sequence): raise TypeError( "Attempted to pack value:\n {}\ninto a structure, but found " "incompatible type `{}` instead.".format( truncate(flat_sequence, 100), type(flat_sequence) ) ) if not is_nested_fn(structure): if len(flat_sequence) != 1: raise ValueError( "The target structure is of type `{}`\n {}\nHowever the input " "is a sequence ({}) of length {}.\n {}\nnest cannot " "guarantee that it is safe to map one to the other.".format( type(structure), truncate(structure, 100), type(flat_sequence), len(flat_sequence), truncate(flat_sequence, 100), ) ) return flat_sequence[0] packed = [] try: final_index, packed = packed_nest_with_indices( structure, flat_sequence, 0, is_nested_fn, sequence_fn ) if final_index < len(flat_sequence): raise IndexError except IndexError: flat_structure = dmtree.flatten(structure) if len(flat_structure) != len(flat_sequence): # pylint: disable=raise-missing-from raise ValueError( "Could not pack sequence. " f"Structure had {len(flat_structure)} atoms, but " f"flat_sequence had {len(flat_sequence)} items. " f"Structure: {structure}, flat_sequence: {flat_sequence}." ) return sequence_fn(structure, packed) def packed_nest_with_indices( structure, flat, index, is_nested_fn, sequence_fn=None ): """Helper function for pack_sequence_as. Args: structure: structure to mimic. flat: Flattened values to output substructure for. index: Index at which to start reading from flat. is_nested_fn: Function used to test if a value should be treated as a nested structure. sequence_fn: Function used to generate a new structure instance. Returns: The tuple (new_index, child), where: * new_index - the updated index into `flat` having processed `structure`. * packed - the subset of `flat` corresponding to `structure`, having started at `index`, and packed into the same nested format. """ packed = [] sequence_fn = sequence_fn or dmtree._sequence_like for s in yield_value(structure): if is_nested_fn(s): new_index, child = packed_nest_with_indices( s, flat, index, is_nested_fn, sequence_fn ) packed.append(sequence_fn(s, child)) index = new_index else: packed.append(flat[index]) index += 1 return index, packed def yield_value(iterable): for _, v in dmtree._yield_sorted_items(iterable): yield v def lists_to_tuples(structure): def sequence_fn(instance, args): if isinstance(instance, list): return tuple(args) return dmtree._sequence_like(instance, args) return pack_sequence_as( structure, dmtree.flatten(structure), sequence_fn=sequence_fn, ) def is_shape_tuple(x): if isinstance(x, (list, tuple)): if all(isinstance(e, (int, type(None))) for e in x): return True return False def map_shape_structure(func, structure): if is_shape_tuple(structure): return func(tuple(structure)) if isinstance(structure, list): return [map_shape_structure(func, e) for e in structure] if isinstance(structure, tuple): return tuple(map_shape_structure(func, e) for e in structure) if isinstance(structure, dict): return {k: map_shape_structure(func, v) for k, v in structure.items()} else: raise ValueError(f"Cannot map function to unknown object {structure}")
from keras.src.utils.module_utils import dmtree def register_tree_node_class(cls): return cls def is_nested(structure): return dmtree.is_nested(structure) def traverse(func, structure, top_down=True): return dmtree.traverse(func, structure, top_down=top_down) def flatten(structure): return dmtree.flatten(structure) def map_structure(func, *structures): return dmtree.map_structure(func, *structures) def map_structure_up_to(shallow_structure, func, *structures): return dmtree.map_structure_up_to(shallow_structure, func, *structures) def assert_same_structure(a, b, check_types=True): return dmtree.assert_same_structure(a, b, check_types=check_types) def pack_sequence_as(structure, flat_sequence, sequence_fn=None): is_nested_fn = dmtree.is_nested sequence_fn = sequence_fn or dmtree._sequence_like def truncate(value, length): value_str = str(value) return value_str[:length] + (value_str[length:] and "...") if not is_nested_fn(flat_sequence): raise TypeError( "Attempted to pack value:\n {}\ninto a structure, but found " "incompatible type `{}` instead.".format( truncate(flat_sequence, 100), type(flat_sequence) ) ) if not is_nested_fn(structure): if len(flat_sequence) != 1: raise ValueError( "The target structure is of type `{}`\n {}\nHowever the input " "is a sequence ({}) of length {}.\n {}\nnest cannot " "guarantee that it is safe to map one to the other.".format( type(structure), truncate(structure, 100), type(flat_sequence), len(flat_sequence), truncate(flat_sequence, 100), ) ) return flat_sequence[0] try: final_index, packed = packed_nest_with_indices( structure, flat_sequence, 0, is_nested_fn, sequence_fn ) if final_index < len(flat_sequence): raise IndexError except IndexError: flat_structure = dmtree.flatten(structure) if len(flat_structure) != len(flat_sequence): # pylint: disable=raise-missing-from raise ValueError( "Could not pack sequence. " f"Structure had {len(flat_structure)} atoms, but " f"flat_sequence had {len(flat_sequence)} items. " f"Structure: {structure}, flat_sequence: {flat_sequence}." ) return sequence_fn(structure, packed) def packed_nest_with_indices( structure, flat, index, is_nested_fn, sequence_fn=None ): """Helper function for pack_sequence_as. Args: structure: structure to mimic. flat: Flattened values to output substructure for. index: Index at which to start reading from flat. is_nested_fn: Function used to test if a value should be treated as a nested structure. sequence_fn: Function used to generate a new structure instance. Returns: The tuple (new_index, child), where: * new_index - the updated index into `flat` having processed `structure`. * packed - the subset of `flat` corresponding to `structure`, having started at `index`, and packed into the same nested format. """ packed = [] sequence_fn = sequence_fn or dmtree._sequence_like for s in yield_value(structure): if is_nested_fn(s): new_index, child = packed_nest_with_indices( s, flat, index, is_nested_fn, sequence_fn ) packed.append(sequence_fn(s, child)) index = new_index else: packed.append(flat[index]) index += 1 return index, packed def yield_value(iterable): for _, v in dmtree._yield_sorted_items(iterable): yield v def lists_to_tuples(structure): def sequence_fn(instance, args): if isinstance(instance, list): return tuple(args) return dmtree._sequence_like(instance, args) return pack_sequence_as( structure, dmtree.flatten(structure), sequence_fn=sequence_fn, ) def is_shape_tuple(x): if isinstance(x, (list, tuple)): if all(isinstance(e, (int, type(None))) for e in x): return True return False def map_shape_structure(func, structure): if is_shape_tuple(structure): return func(tuple(structure)) if isinstance(structure, list): return [map_shape_structure(func, e) for e in structure] if isinstance(structure, tuple): return tuple(map_shape_structure(func, e) for e in structure) if isinstance(structure, dict): return {k: map_shape_structure(func, v) for k, v in structure.items()} else: raise ValueError(f"Cannot map function to unknown object {structure}")
from typing import TYPE_CHECKING, Any, Dict, Type, TypeVar from docarray.document.abstract_document import AbstractDocument from docarray.document.base_node import BaseNode if TYPE_CHECKING: from docarray.proto import DocumentProto, NodeProto try: import torch # noqa: F401 except ImportError: torch_imported = False else: from docarray.typing import TorchTensor torch_imported = True T = TypeVar('T', bound='ProtoMixin') class ProtoMixin(AbstractDocument, BaseNode): @classmethod def from_protobuf(cls: Type[T], pb_msg: 'DocumentProto') -> T: """create a Document from a protobuf message""" from docarray.typing import ( # TorchTensor, ID, AnyUrl, Embedding, ImageUrl, NdArray, TextUrl, ) fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type = value.WhichOneof('content') # this if else statement need to be refactored it is too long # the check should be delegated to the type level content_type_dict = dict( ndarray=NdArray, embedding=Embedding, any_url=AnyUrl, text_url=TextUrl, image_url=ImageUrl, id=ID, ) if torch_imported: content_type_dict['torch_tensor'] = TorchTensor if content_type in content_type_dict: fields[field] = content_type_dict[content_type].from_protobuf( getattr(value, content_type) ) elif content_type == 'text': fields[field] = value.text elif content_type == 'nested': fields[field] = cls._get_nested_document_class(field).from_protobuf( value.nested ) # we get to the parent class elif content_type == 'chunks': from docarray import DocumentArray fields[field] = DocumentArray.from_protobuf( value.chunks ) # we get to the parent class elif content_type is None: fields[field] = None else: raise ValueError( f'type {content_type} is not supported for deserialization' ) return cls(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ from docarray.proto import DocumentProto, NodeProto data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif type(value) is str: nested_item = NodeProto(text=value) elif type(value) is bytes: nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> 'NodeProto': from docarray.proto import NodeProto """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(nested=self.to_protobuf())
from typing import Any, Dict, Type, TypeVar from docarray.document.abstract_document import AbstractDocument from docarray.document.base_node import BaseNode from docarray.proto import DocumentProto, NodeProto from docarray.typing import ( ID, AnyUrl, Embedding, ImageUrl, NdArray, TextUrl, TorchTensor, ) T = TypeVar('T', bound='ProtoMixin') class ProtoMixin(AbstractDocument, BaseNode): @classmethod def from_protobuf(cls: Type[T], pb_msg: 'DocumentProto') -> T: """create a Document from a protobuf message""" fields: Dict[str, Any] = {} for field in pb_msg.data: value = pb_msg.data[field] content_type = value.WhichOneof('content') # this if else statement need to be refactored it is too long # the check should be delegated to the type level content_type_dict = dict( ndarray=NdArray, torch_tensor=TorchTensor, embedding=Embedding, any_url=AnyUrl, text_url=TextUrl, image_url=ImageUrl, id=ID, ) if content_type in content_type_dict: fields[field] = content_type_dict[content_type].from_protobuf( getattr(value, content_type) ) elif content_type == 'text': fields[field] = value.text elif content_type == 'nested': fields[field] = cls._get_nested_document_class(field).from_protobuf( value.nested ) # we get to the parent class elif content_type == 'chunks': from docarray import DocumentArray fields[field] = DocumentArray.from_protobuf( value.chunks ) # we get to the parent class elif content_type is None: fields[field] = None else: raise ValueError( f'type {content_type} is not supported for deserialization' ) return cls(**fields) def to_protobuf(self) -> 'DocumentProto': """Convert Document into a Protobuf message. :return: the protobuf message """ data = {} for field, value in self: try: if isinstance(value, BaseNode): nested_item = value._to_node_protobuf() elif type(value) is str: nested_item = NodeProto(text=value) elif type(value) is bytes: nested_item = NodeProto(blob=value) elif value is None: nested_item = NodeProto() else: raise ValueError(f'field {field} with {value} is not supported') data[field] = nested_item except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( ( f'Field `{field}` contains cyclic reference in memory. ' 'Could it be your Document is referring to itself?' ), ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{field}` is problematic',) + ex.args raise return DocumentProto(data=data) def _to_node_protobuf(self) -> NodeProto: """Convert Document into a NodeProto protobuf message. This function should be called when the Document is nest into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(nested=self.to_protobuf())
import os import pathlib from typing import Any, Callable, Optional, Tuple import PIL.Image from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class DTD(VisionDataset): """`Describable Textures Dataset (DTD) <https://www.robots.ox.ac.uk/~vgg/data/dtd/>`_. Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``. partition (int, optional): The dataset partition. Should be ``1 <= partition <= 10``. Defaults to ``1``. .. note:: The partition only changes which split each image belongs to. Thus, regardless of the selected partition, combining all splits will result in all images. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Default is False. """ _URL = "https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz" _MD5 = "fff73e5086ae6bdbea199a49dfb8a4c1" def __init__( self, root: str, split: str = "train", partition: int = 1, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: self._split = verify_str_arg(split, "split", ("train", "val", "test")) if not isinstance(partition, int) and not (1 <= partition <= 10): raise ValueError( f"Parameter 'partition' should be an integer with `1 <= partition <= 10`, " f"but got {partition} instead" ) self._partition = partition super().__init__(root, transform=transform, target_transform=target_transform) self._base_folder = pathlib.Path(self.root) / type(self).__name__.lower() self._data_folder = self._base_folder / "dtd" self._meta_folder = self._data_folder / "labels" self._images_folder = self._data_folder / "images" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") self._image_files = [] classes = [] with open(self._meta_folder / f"{self._split}{self._partition}.txt") as file: for line in file: cls, name = line.strip().split("/") self._image_files.append(self._images_folder.joinpath(cls, name)) classes.append(cls) self.classes = sorted(set(classes)) self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) self._labels = [self.class_to_idx[cls] for cls in classes] def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def extra_repr(self) -> str: return f"split={self._split}, partition={self._partition}" def _check_exists(self) -> bool: return os.path.exists(self._data_folder) and os.path.isdir(self._data_folder) def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=str(self._base_folder), md5=self._MD5)
import os import pathlib from typing import Callable, Optional import PIL.Image from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class DTD(VisionDataset): """`Describable Textures Dataset (DTD) <https://www.robots.ox.ac.uk/~vgg/data/dtd/>`_. Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``. partition (int, optional): The dataset partition. Should be ``1 <= partition <= 10``. Defaults to ``1``. .. note:: The partition only changes which split each image belongs to. Thus, regardless of the selected partition, combining all splits will result in all images. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Default is False. """ _URL = "https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz" _MD5 = "fff73e5086ae6bdbea199a49dfb8a4c1" def __init__( self, root: str, split: str = "train", partition: int = 1, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: self._split = verify_str_arg(split, "split", ("train", "val", "test")) if not isinstance(partition, int) and not (1 <= partition <= 10): raise ValueError( f"Parameter 'partition' should be an integer with `1 <= partition <= 10`, " f"but got {partition} instead" ) self._partition = partition super().__init__(root, transform=transform, target_transform=target_transform) self._base_folder = pathlib.Path(self.root) / type(self).__name__.lower() self._data_folder = self._base_folder / "dtd" self._meta_folder = self._data_folder / "labels" self._images_folder = self._data_folder / "images" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") self._image_files = [] classes = [] with open(self._meta_folder / f"{self._split}{self._partition}.txt") as file: for line in file: cls, name = line.strip().split("/") self._image_files.append(self._images_folder.joinpath(cls, name)) classes.append(cls) self.classes = sorted(set(classes)) self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) self._labels = [self.class_to_idx[cls] for cls in classes] def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx): image_file, label = self._image_files[idx], self._labels[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def extra_repr(self) -> str: return f"split={self._split}, partition={self._partition}" def _check_exists(self) -> bool: return os.path.exists(self._data_folder) and os.path.isdir(self._data_folder) def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=str(self._base_folder), md5=self._MD5)
_base_ = 'ssd300_coco.py' # model settings input_size = 512 model = dict( neck=dict( out_channels=(512, 1024, 512, 256, 256, 256, 256), level_strides=(2, 2, 2, 2, 1), level_paddings=(1, 1, 1, 1, 1), last_kernel_size=4), bbox_head=dict( in_channels=(512, 1024, 512, 256, 256, 256, 256), anchor_generator=dict( type='SSDAnchorGenerator', scale_major=False, input_size=input_size, basesize_ratio_range=(0.1, 0.9), strides=[8, 16, 32, 64, 128, 256, 512], ratios=[[2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]]))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=[123.675, 116.28, 103.53], to_rgb=True, ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # TODO support auto_scale_lr # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) # auto_scale_lr = dict(base_batch_size=64)
_base_ = 'ssd300_coco.py' input_size = 512 model = dict( neck=dict( out_channels=(512, 1024, 512, 256, 256, 256, 256), level_strides=(2, 2, 2, 2, 1), level_paddings=(1, 1, 1, 1, 1), last_kernel_size=4), bbox_head=dict( in_channels=(512, 1024, 512, 256, 256, 256, 256), anchor_generator=dict( type='SSDAnchorGenerator', scale_major=False, input_size=input_size, basesize_ratio_range=(0.1, 0.9), strides=[8, 16, 32, 64, 128, 256, 512], ratios=[[2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]]))) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(512, 512), keep_ratio=False), dict(type='RandomFlip', flip_ratio=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(512, 512), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=3, train=dict( _delete_=True, type='RepeatDataset', times=5, dataset=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4) optimizer_config = dict(_delete_=True) custom_hooks = [ dict(type='NumClassCheckHook'), dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW') ] # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
from __future__ import annotations import pytest from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer from sentence_transformers.util import is_training_available @pytest.mark.parametrize( ("revision", "expected_base_revision"), [ ("f3cb857cba53019a20df283396bcca179cf051a4", "f3cb857cba53019a20df283396bcca179cf051a4"), ("f3cb857", "f3cb857"), ("main", "valid-revision"), (None, "valid-revision"), ], ) def test_model_card_data(revision, expected_base_revision) -> None: model_name = "sentence-transformers-testing/stsb-bert-tiny-safetensors" model = SentenceTransformer(model_name, revision=revision) assert model.model_card_data.base_model == model_name if expected_base_revision == "valid-revision": assert model.model_card_data.base_model_revision assert len(model.model_card_data.base_model_revision) == 40 else: assert model.model_card_data.base_model_revision == expected_base_revision @pytest.mark.skipif( not is_training_available(), reason='Sentence Transformers was not installed with the `["train"]` extra.' ) def test_generated_from_trainer_tag(stsb_bert_tiny_model: SentenceTransformer) -> None: model = stsb_bert_tiny_model assert "generated_from_trainer" not in model.model_card_data.tags SentenceTransformerTrainer(model) assert "generated_from_trainer" in model.model_card_data.tags
from __future__ import annotations import pytest from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer @pytest.mark.parametrize( ("revision", "expected_base_revision"), [ ("f3cb857cba53019a20df283396bcca179cf051a4", "f3cb857cba53019a20df283396bcca179cf051a4"), ("f3cb857", "f3cb857"), ("main", "valid-revision"), (None, "valid-revision"), ], ) def test_model_card_data(revision, expected_base_revision) -> None: model_name = "sentence-transformers-testing/stsb-bert-tiny-safetensors" model = SentenceTransformer(model_name, revision=revision) assert model.model_card_data.base_model == model_name if expected_base_revision == "valid-revision": assert model.model_card_data.base_model_revision assert len(model.model_card_data.base_model_revision) == 40 else: assert model.model_card_data.base_model_revision == expected_base_revision def test_generated_from_trainer_tag(stsb_bert_tiny_model: SentenceTransformer) -> None: model = stsb_bert_tiny_model assert "generated_from_trainer" not in model.model_card_data.tags SentenceTransformerTrainer(model) assert "generated_from_trainer" in model.model_card_data.tags
from __future__ import annotations from .CSRLoss import CSRLoss, CSRReconstructionLoss from .RegularizerLoss import FlopsLoss from .SparseAnglELoss import SparseAnglELoss from .SparseCachedGISTEmbedLoss import SparseCachedGISTEmbedLoss from .SparseCachedMultipleNegativesRankingLoss import SparseCachedMultipleNegativesRankingLoss from .SparseCoSENTLoss import SparseCoSENTLoss from .SparseCosineSimilarityLoss import SparseCosineSimilarityLoss from .SparseDistillKLDivLoss import SparseDistillKLDivLoss from .SparseGISTEmbedLoss import SparseGISTEmbedLoss from .SparseMarginMSELoss import SparseMarginMSELoss from .SparseMSELoss import SparseMSELoss from .SparseMultipleNegativesRankingLoss import SparseMultipleNegativesRankingLoss from .SparseTripletLoss import SparseTripletLoss from .SpladeLoss import SpladeLoss __all__ = [ "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", "FlopsLoss", "SpladeLoss", ] # TODO: Test cached losses
from __future__ import annotations from .CSRLoss import CSRLoss, CSRReconstructionLoss from .RegularizerLoss import FlopsLoss, L0FlopsLoss from .SparseAnglELoss import SparseAnglELoss from .SparseCachedGISTEmbedLoss import SparseCachedGISTEmbedLoss from .SparseCachedMultipleNegativesRankingLoss import SparseCachedMultipleNegativesRankingLoss from .SparseCoSENTLoss import SparseCoSENTLoss from .SparseCosineSimilarityLoss import SparseCosineSimilarityLoss from .SparseDistillKLDivLoss import SparseDistillKLDivLoss from .SparseGISTEmbedLoss import SparseGISTEmbedLoss from .SparseMarginMSELoss import SparseMarginMSELoss from .SparseMSELoss import SparseMSELoss from .SparseMultipleNegativesRankingLoss import SparseMultipleNegativesRankingLoss from .SparseTripletLoss import SparseTripletLoss from .SpladeLoss import SpladeLoss __all__ = [ "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", "FlopsLoss", "L0FlopsLoss", "SpladeLoss", ] # TODO: Test cached losses
from llama_index.core.exec_utils import _contains_protected_access def test_contains_protected_access() -> None: assert not _contains_protected_access("def _a(b): pass"), ( "definition of dunder function" ) assert _contains_protected_access("a = _b(c)"), "call to protected function" assert not _contains_protected_access("a = b(c)"), "call to public function" assert _contains_protected_access("_b"), "access to protected name" assert not _contains_protected_access("b"), "access to public name" assert _contains_protected_access("_b[0]"), "subscript access to protected name" assert not _contains_protected_access("b[0]"), "subscript access to public name" assert _contains_protected_access("_a.b"), "access to attribute of a protected name" assert not _contains_protected_access("a.b"), "access to attribute of a public name" assert _contains_protected_access("a._b"), "access to protected attribute of a name" assert not _contains_protected_access("a.b"), "access to public attribute of a name"
from llama_index.core.exec_utils import _contains_protected_access def test_contains_protected_access() -> None: assert not _contains_protected_access( "def _a(b): pass" ), "definition of dunder function" assert _contains_protected_access("a = _b(c)"), "call to protected function" assert not _contains_protected_access("a = b(c)"), "call to public function" assert _contains_protected_access("_b"), "access to protected name" assert not _contains_protected_access("b"), "access to public name" assert _contains_protected_access("_b[0]"), "subscript access to protected name" assert not _contains_protected_access("b[0]"), "subscript access to public name" assert _contains_protected_access("_a.b"), "access to attribute of a protected name" assert not _contains_protected_access("a.b"), "access to attribute of a public name" assert _contains_protected_access("a._b"), "access to protected attribute of a name" assert not _contains_protected_access("a.b"), "access to public attribute of a name"
_base_ = './faster-rcnn_r50-caffe_fpn_ms-1x_coco.py' # MMEngine support the following two ways, users can choose # according to convenience # param_scheduler = [ # dict( # type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), # noqa # dict( # type='MultiStepLR', # begin=0, # end=12, # by_epoch=True, # milestones=[16, 23], # gamma=0.1) # ] _base_.param_scheduler[1].milestones = [16, 23] train_cfg = dict(max_epochs=24)
_base_ = './faster-rcnn_r50-caffe_fpn_ms-1x_coco.py' # learning policy lr_config = dict(step=[16, 23]) runner = dict(type='EpochBasedRunner', max_epochs=24)
from __future__ import annotations from sentence_transformers.training_args import SentenceTransformerTrainingArguments class CrossEncoderTrainingArguments(SentenceTransformerTrainingArguments): r""" CrossEncoderTrainingArguments extends :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. prompts (`Union[Dict[str, Dict[str, str]], Dict[str, str], str]`, *optional*): The prompts to use for each column in the training, evaluation and test datasets. Four formats are accepted: 1. `str`: A single prompt to use for all columns in the datasets, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 2. `Dict[str, str]`: A dictionary mapping column names to prompts, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 3. `Dict[str, str]`: A dictionary mapping dataset names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. 4. `Dict[str, Dict[str, str]]`: A dictionary mapping dataset names to dictionaries mapping column names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. learning_rate_mapping (`Optional[Dict[str, float]]`, *optional*): A mapping of parameter names to learning rates. This allows you to set different learning rates for different parts of the model, e.g., `{'IDF\.*': 1e-3}` for the IDF module. This is useful when you want to fine-tune specific parts of the model with different learning rates. """
from __future__ import annotations from sentence_transformers.training_args import SentenceTransformerTrainingArguments class CrossEncoderTrainingArguments(SentenceTransformerTrainingArguments): r""" CrossEncoderTrainingArguments extends :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. prompts (`Union[Dict[str, Dict[str, str]], Dict[str, str], str]`, *optional*): The prompts to use for each column in the training, evaluation and test datasets. Four formats are accepted: 1. `str`: A single prompt to use for all columns in the datasets, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 2. `Dict[str, str]`: A dictionary mapping column names to prompts, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 3. `Dict[str, str]`: A dictionary mapping dataset names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. 4. `Dict[str, Dict[str, str]]`: A dictionary mapping dataset names to dictionaries mapping column names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. router_mapping (`Optional[Dict[str, str]]`, *optional*): A mapping of dataset names to Router routes, like "query" or "document". This is used to specify which Router module to use for each dataset. Two formats are accepted: 1. `Dict[str, str]`: A mapping of dataset names to routes for single-dataset training/evaluation. 2. `Dict[str, Dict[str, str]]`: A mapping of dataset names to a mapping of column names to routes for multi-dataset training/evaluation. learning_rate_mapping (`Optional[Dict[str, float]]`, *optional*): A mapping of parameter names to learning rates. This allows you to set different learning rates for different parts of the model, e.g., `{'IDF\.*': 1e-3}` for the IDF module. This is useful when you want to fine-tune specific parts of the model with different learning rates. """
# Copyright (c) OpenMMLab. All rights reserved. from .utils import ort_validate __all__ = ['ort_validate']
from .utils import ort_validate __all__ = ['ort_validate']
"""Test yamlOutputParser""" from enum import Enum from typing import Optional import pytest from langchain_core.exceptions import OutputParserException from pydantic import BaseModel, Field from langchain.output_parsers.yaml import YamlOutputParser class Actions(Enum): SEARCH = "Search" CREATE = "Create" UPDATE = "Update" DELETE = "Delete" class TestModel(BaseModel): action: Actions = Field(description="Action to be performed") action_input: str = Field(description="Input to be used in the action") additional_fields: Optional[str] = Field( description="Additional fields", default=None, ) for_new_lines: str = Field(description="To be used to test newlines") # Prevent pytest from trying to run tests on TestModel TestModel.__test__ = False # type: ignore[attr-defined] DEF_RESULT = """```yaml --- action: Update action_input: The yamlOutputParser class is powerful additional_fields: null for_new_lines: | not_escape_newline: escape_newline: ```""" DEF_RESULT_NO_BACKTICKS = """ action: Update action_input: The yamlOutputParser class is powerful additional_fields: null for_new_lines: | not_escape_newline: escape_newline: """ # action 'update' with a lowercase 'u' to test schema validation failure. DEF_RESULT_FAIL = """```yaml action: update action_input: The yamlOutputParser class is powerful additional_fields: null ```""" DEF_EXPECTED_RESULT = TestModel( action=Actions.UPDATE, action_input="The yamlOutputParser class is powerful", additional_fields=None, for_new_lines="not_escape_newline:\n escape_newline:\n", ) @pytest.mark.parametrize("result", [DEF_RESULT, DEF_RESULT_NO_BACKTICKS]) def test_yaml_output_parser(result: str) -> None: """Test yamlOutputParser.""" yaml_parser: YamlOutputParser[TestModel] = YamlOutputParser( pydantic_object=TestModel, ) model = yaml_parser.parse(result) print("parse_result:", result) # noqa: T201 assert model == DEF_EXPECTED_RESULT def test_yaml_output_parser_fail() -> None: """Test YamlOutputParser where completion result fails schema validation.""" yaml_parser: YamlOutputParser[TestModel] = YamlOutputParser( pydantic_object=TestModel, ) try: yaml_parser.parse(DEF_RESULT_FAIL) except OutputParserException as e: print("parse_result:", e) # noqa: T201 assert "Failed to parse TestModel from completion" in str(e) else: msg = "Expected OutputParserException" raise AssertionError(msg) def test_yaml_output_parser_output_type() -> None: """Test YamlOutputParser OutputType.""" yaml_parser = YamlOutputParser(pydantic_object=TestModel) assert yaml_parser.OutputType is TestModel
"""Test yamlOutputParser""" from enum import Enum from typing import Optional import pytest from langchain_core.exceptions import OutputParserException from pydantic import BaseModel, Field from langchain.output_parsers.yaml import YamlOutputParser class Actions(Enum): SEARCH = "Search" CREATE = "Create" UPDATE = "Update" DELETE = "Delete" class TestModel(BaseModel): action: Actions = Field(description="Action to be performed") action_input: str = Field(description="Input to be used in the action") additional_fields: Optional[str] = Field( description="Additional fields", default=None, ) for_new_lines: str = Field(description="To be used to test newlines") # Prevent pytest from trying to run tests on TestModel TestModel.__test__ = False # type: ignore[attr-defined] DEF_RESULT = """```yaml --- action: Update action_input: The yamlOutputParser class is powerful additional_fields: null for_new_lines: | not_escape_newline: escape_newline: ```""" DEF_RESULT_NO_BACKTICKS = """ action: Update action_input: The yamlOutputParser class is powerful additional_fields: null for_new_lines: | not_escape_newline: escape_newline: """ # action 'update' with a lowercase 'u' to test schema validation failure. DEF_RESULT_FAIL = """```yaml action: update action_input: The yamlOutputParser class is powerful additional_fields: null ```""" DEF_EXPECTED_RESULT = TestModel( action=Actions.UPDATE, action_input="The yamlOutputParser class is powerful", additional_fields=None, for_new_lines="not_escape_newline:\n escape_newline:\n", ) @pytest.mark.parametrize("result", [DEF_RESULT, DEF_RESULT_NO_BACKTICKS]) def test_yaml_output_parser(result: str) -> None: """Test yamlOutputParser.""" yaml_parser: YamlOutputParser[TestModel] = YamlOutputParser( pydantic_object=TestModel, ) model = yaml_parser.parse(result) print("parse_result:", result) # noqa: T201 assert model == DEF_EXPECTED_RESULT def test_yaml_output_parser_fail() -> None: """Test YamlOutputParser where completion result fails schema validation.""" yaml_parser: YamlOutputParser[TestModel] = YamlOutputParser( pydantic_object=TestModel, ) try: yaml_parser.parse(DEF_RESULT_FAIL) except OutputParserException as e: print("parse_result:", e) # noqa: T201 assert "Failed to parse TestModel from completion" in str(e) else: assert False, "Expected OutputParserException" def test_yaml_output_parser_output_type() -> None: """Test YamlOutputParser OutputType.""" yaml_parser = YamlOutputParser(pydantic_object=TestModel) assert yaml_parser.OutputType is TestModel
import glob import os import cv2 import pytest from jina import Document, DocumentArray cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture(scope='package') def build_da(): def _build_da(): return DocumentArray( [ Document(blob=cv2.imread(path), tags={'filename': path.split('/')[-1]}) for path in glob.glob(os.path.join(cur_dir, 'data/img/*.jpg')) ] ) return _build_da
import glob import os import cv2 import pytest from jina import DocumentArray, Document cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture(scope='package') def build_da(): def _build_da(): return DocumentArray([ Document(blob=cv2.imread(path), tags={'filename': path.split('/')[-1]}) for path in glob.glob(os.path.join(cur_dir, 'data/img/*.jpg')) ]) return _build_da
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet import * # noqa from mmdet.core import DetDataSample from mmdet.testing import demo_mm_inputs, get_detector_cfg class TestRPN(TestCase): @parameterized.expand(['rpn/rpn_r50_fpn_1x_coco.py']) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) assert detector.backbone assert detector.neck assert detector.rpn_head assert detector.device.type == 'cpu' # if rpn.num_classes > 1, force set rpn.num_classes = 1 model.rpn_head.num_classes = 2 detector = build_detector(model) assert detector.rpn_head.num_classes == 1 @parameterized.expand([('rpn/rpn_r50_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_rpn_forward_train(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() assert detector.device.type == device packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) # Test forward train losses = detector.forward(packed_inputs, return_loss=True) assert isinstance(losses, dict) # Test forward_dummy batch = torch.ones((1, 3, 64, 64)).to(device=device) out = detector.forward_dummy(batch) assert isinstance(out, tuple) assert len(out) == 2 @parameterized.expand([('rpn/rpn_r50_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_single_stage_forward_test(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() assert detector.device.type == device packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward( packed_inputs, return_loss=False) assert len(batch_results) == 2 isinstance(batch_results[0], DetDataSample)
# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet import * # noqa from mmdet.core import DetDataSample from .utils import demo_mm_inputs, get_detector_cfg class TestRPN(TestCase): @parameterized.expand(['rpn/rpn_r50_fpn_1x_coco.py']) def test_init(self, cfg_file): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector detector = build_detector(model) assert detector.backbone assert detector.neck assert detector.rpn_head assert detector.device.type == 'cpu' # if rpn.num_classes > 1, force set rpn.num_classes = 1 model.rpn_head.num_classes = 2 detector = build_detector(model) assert detector.rpn_head.num_classes == 1 @parameterized.expand([('rpn/rpn_r50_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_rpn_forward_train(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() assert detector.device.type == device packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) # Test forward train losses = detector.forward(packed_inputs, return_loss=True) assert isinstance(losses, dict) # Test forward_dummy batch = torch.ones((1, 3, 64, 64)).to(device=device) out = detector.forward_dummy(batch) assert isinstance(out, tuple) assert len(out) == 2 @parameterized.expand([('rpn/rpn_r50_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_single_stage_forward_test(self, cfg_file, devices): model = get_detector_cfg(cfg_file) # backbone convert to ResNet18 model.backbone.depth = 18 model.neck.in_channels = [64, 128, 256, 512] model.backbone.init_cfg = None from mmdet.models import build_detector assert all([device in ['cpu', 'cuda'] for device in devices]) for device in devices: detector = build_detector(model) if device == 'cuda': if not torch.cuda.is_available(): return unittest.skip('test requires GPU and torch+cuda') detector = detector.cuda() assert detector.device.type == device packed_inputs = demo_mm_inputs(2, [[3, 128, 128], [3, 125, 130]]) # Test forward test detector.eval() with torch.no_grad(): batch_results = detector.forward( packed_inputs, return_loss=False) assert len(batch_results) == 2 isinstance(batch_results[0], DetDataSample)
import os from typing import BinaryIO, Optional, Union import pyarrow as pa import pyarrow.parquet as pq from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class ParquetDatasetReader(AbstractDatasetReader): def __init__( self, path_or_paths: NestedDataStructureLike[PathLike], split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, **kwargs, ): super().__init__( path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, **kwargs, ) path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths} hash = _PACKAGED_DATASETS_MODULES["parquet"][1] self.builder = Parquet( cache_dir=cache_dir, data_files=path_or_paths, features=features, hash=hash, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: download_config = None download_mode = None ignore_verifications = False use_auth_token = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, use_auth_token=use_auth_token, ) dataset = self.builder.as_dataset( split=self.split, ignore_verifications=ignore_verifications, in_memory=self.keep_in_memory ) return dataset class ParquetDatasetWriter: def __init__( self, dataset: Dataset, path_or_buf: Union[PathLike, BinaryIO], batch_size: Optional[int] = None, **parquet_writer_kwargs, ): self.dataset = dataset self.path_or_buf = path_or_buf self.batch_size = batch_size self.parquet_writer_kwargs = parquet_writer_kwargs def write(self) -> int: batch_size = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf, (str, bytes, os.PathLike)): with open(self.path_or_buf, "wb+") as buffer: written = self._write(file_obj=buffer, batch_size=batch_size, **self.parquet_writer_kwargs) else: written = self._write(file_obj=self.path_or_buf, batch_size=batch_size, **self.parquet_writer_kwargs) return written def _write(self, file_obj: BinaryIO, batch_size: int, **parquet_writer_kwargs) -> int: """Writes the pyarrow table as Parquet to a binary file handle. Caller is responsible for opening and closing the handle. """ written = 0 _ = parquet_writer_kwargs.pop("path_or_buf", None) schema = pa.schema(self.dataset.features.type) writer = pq.ParquetWriter(file_obj, schema=schema, **parquet_writer_kwargs) for offset in range(0, len(self.dataset), batch_size): batch = query_table( table=self.dataset._data, key=slice(offset, offset + batch_size), indices=self.dataset._indices if self.dataset._indices is not None else None, ) writer.write_table(batch) written += batch.nbytes writer.close() return written
import os from typing import BinaryIO, Optional, Union import pyarrow as pa import pyarrow.parquet as pq from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class ParquetDatasetReader(AbstractDatasetReader): def __init__( self, path_or_paths: NestedDataStructureLike[PathLike], split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, **kwargs, ): super().__init__( path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, **kwargs ) path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths} hash = _PACKAGED_DATASETS_MODULES["parquet"][1] self.builder = Parquet( cache_dir=cache_dir, data_files=path_or_paths, features=features, hash=hash, **kwargs, ) def read(self): download_config = None download_mode = None ignore_verifications = False use_auth_token = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, use_auth_token=use_auth_token, ) # Build dataset for splits dataset = self.builder.as_dataset( split=self.split, ignore_verifications=ignore_verifications, in_memory=self.keep_in_memory ) return dataset class ParquetDatasetWriter: def __init__( self, dataset: Dataset, path_or_buf: Union[PathLike, BinaryIO], batch_size: Optional[int] = None, **parquet_writer_kwargs, ): self.dataset = dataset self.path_or_buf = path_or_buf self.batch_size = batch_size self.parquet_writer_kwargs = parquet_writer_kwargs def write(self) -> int: batch_size = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf, (str, bytes, os.PathLike)): with open(self.path_or_buf, "wb+") as buffer: written = self._write(file_obj=buffer, batch_size=batch_size, **self.parquet_writer_kwargs) else: written = self._write(file_obj=self.path_or_buf, batch_size=batch_size, **self.parquet_writer_kwargs) return written def _write(self, file_obj: BinaryIO, batch_size: int, **parquet_writer_kwargs) -> int: """Writes the pyarrow table as Parquet to a binary file handle. Caller is responsible for opening and closing the handle. """ written = 0 _ = parquet_writer_kwargs.pop("path_or_buf", None) schema = pa.schema(self.dataset.features.type) writer = pq.ParquetWriter(file_obj, schema=schema, **parquet_writer_kwargs) for offset in range(0, len(self.dataset), batch_size): batch = query_table( table=self.dataset._data, key=slice(offset, offset + batch_size), indices=self.dataset._indices if self.dataset._indices is not None else None, ) writer.write_table(batch) written += batch.nbytes writer.close() return written
from typing import Any, Optional, Type, TypeVar, Union from docarray.base_doc import BaseDoc from docarray.typing import TextUrl from docarray.typing.tensor.embedding import AnyEmbedding T = TypeVar('T', bound='TextDoc') class TextDoc(BaseDoc): """ Document for handling text. It can contain: - a [`TextUrl`][docarray.typing.url.TextUrl] (`TextDoc.url`) - a `str` (`TextDoc.text`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`TextDoc.embedding`) - a `bytes` object (`TextDoc.bytes_`) You can use this Document directly: ```python from docarray.documents import TextDoc # use it directly txt_doc = TextDoc(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() # model = MyEmbeddingModel() # txt_doc.embedding = model(txt_doc.text) ``` You can initialize directly from a string: ```python from docarray.documents import TextDoc txt_doc = TextDoc('hello world') ``` You can extend this Document: ```python from docarray.documents import TextDoc from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyText(TextDoc): second_embedding: Optional[AnyEmbedding] txt_doc = MyText(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() # model = MyEmbeddingModel() # txt_doc.embedding = model(txt_doc.text) # txt_doc.second_embedding = model(txt_doc.text) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import ImageDoc, TextDoc # compose it class MultiModalDoc(BaseDoc): image_doc: ImageDoc text_doc: TextDoc mmdoc = MultiModalDoc( image_doc=ImageDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ), text_doc=TextDoc(text='hello world, how are you doing?'), ) mmdoc.image_doc.tensor = mmdoc.image_doc.url.load() # or mmdoc.image_doc.bytes_ = mmdoc.image_doc.url.load_bytes() mmdoc.image_doc.tensor = mmdoc.image_doc.bytes_.load() ``` This Document can be compared against another Document of the same type or a string. When compared against another object of the same type, the pydantic BaseModel equality check will apply which checks the equality of every attribute, excluding `id`. When compared against a str, it will check the equality of the `text` attribute against the given string. ```python from docarray.documents import TextDoc doc = TextDoc(text='This is the main text', url='exampleurl.com') doc2 = TextDoc(text='This is the main text', url='exampleurl.com') doc == 'This is the main text' # True doc == doc2 # True ``` """ text: Optional[str] url: Optional[TextUrl] embedding: Optional[AnyEmbedding] bytes_: Optional[bytes] def __init__(self, text: Optional[str] = None, **kwargs): if 'text' not in kwargs: kwargs['text'] = text super().__init__(**kwargs) @classmethod def validate( cls: Type[T], value: Union[str, Any], ) -> T: if isinstance(value, str): value = cls(text=value) return super().validate(value) def __eq__(self, other: Any) -> bool: if isinstance(other, str): return self.text == other else: # BaseModel has a default equality return super().__eq__(other) def __contains__(self, item: str) -> bool: """ This method makes `TextDoc` behave the same as an `str`. :param item: A string to be checked if is a substring of `text` attribute :return: A boolean determining the presence of `item` as a substring in `text` ```python from docarray.documents import TextDoc t = TextDoc(text='this is my text document') assert 'text' in t assert 'docarray' not in t ``` """ if self.text is not None: return self.text.__contains__(item) else: return False def _get_string_for_regex_filter(self): return self.text
from typing import Any, Optional, Type, TypeVar, Union from docarray.base_doc import BaseDoc from docarray.typing import TextUrl from docarray.typing.tensor.embedding import AnyEmbedding T = TypeVar('T', bound='TextDoc') class TextDoc(BaseDoc): """ Document for handling text. It can contain: - a [`TextUrl`][docarray.typing.url.TextUrl] (`TextDoc.url`) - a `str` (`TextDoc.text`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`TextDoc.embedding`) - a `bytes` object (`TextDoc.bytes_`) You can use this Document directly: ```python from docarray.documents import TextDoc # use it directly txt_doc = TextDoc(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() # model = MyEmbeddingModel() # txt_doc.embedding = model(txt_doc.text) ``` You can initialize directly from a string: ```python from docarray.documents import TextDoc txt_doc = TextDoc('hello world') ``` You can extend this Document: ```python from docarray.documents import TextDoc from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyText(TextDoc): second_embedding: Optional[AnyEmbedding] txt_doc = MyText(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() # model = MyEmbeddingModel() # txt_doc.embedding = model(txt_doc.text) # txt_doc.second_embedding = model(txt_doc.text) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import ImageDoc, TextDoc # compose it class MultiModalDoc(BaseDoc): image_doc: ImageDoc text_doc: TextDoc mmdoc = MultiModalDoc( image_doc=ImageDoc( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/image-data/apple.png?raw=true' ), text_doc=TextDoc(text='hello world, how are you doing?'), ) mmdoc.image_doc.tensor = mmdoc.image_doc.url.load() # or mmdoc.image_doc.bytes_ = mmdoc.image_doc.url.load_bytes() mmdoc.image_doc.tensor = mmdoc.image_doc.bytes_.load() ``` This Document can be compared against another Document of the same type or a string. When compared against another object of the same type, the pydantic BaseModel equality check will apply which checks the equality of every attribute, excluding `id`. When compared against a str, it will check the equality of the `text` attribute against the given string. ```python from docarray.documents import TextDoc doc = TextDoc(text='This is the main text', url='exampleurl.com') doc2 = TextDoc(text='This is the main text', url='exampleurl.com') doc == 'This is the main text' # True doc == doc2 # True ``` """ text: Optional[str] url: Optional[TextUrl] embedding: Optional[AnyEmbedding] bytes_: Optional[bytes] def __init__(self, text: Optional[str] = None, **kwargs): if 'text' not in kwargs: kwargs['text'] = text super().__init__(**kwargs) @classmethod def validate( cls: Type[T], value: Union[str, Any], ) -> T: if isinstance(value, str): value = cls(text=value) return super().validate(value) def __eq__(self, other: Any) -> bool: if isinstance(other, str): return self.text == other else: # BaseModel has a default equality return super().__eq__(other) def __contains__(self, item: str) -> bool: """ This method makes `TextDoc` behave the same as an `str`. :param item: A string to be checked if is a substring of `text` attribute :return: A boolean determining the presence of `item` as a substring in `text` ```python from docarray.documents import TextDoc t = TextDoc(text='this is my text document') assert 'text' in t assert 'docarray' not in t ``` """ if self.text is not None: return self.text.__contains__(item) else: return False def _get_string_for_regex_filter(self): return self.text
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.31.0' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.30.0' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel, Field from langchain_community.utilities.financial_datasets import FinancialDatasetsAPIWrapper class BalanceSheetsSchema(BaseModel): """Input for BalanceSheets.""" ticker: str = Field( description="The ticker symbol to fetch balance sheets for.", ) period: str = Field( description="The period of the balance sheets. " "Possible values are: " "annual, quarterly, ttm. " "Default is 'annual'.", ) limit: int = Field( description="The number of balance sheets to return. Default is 10.", ) class BalanceSheets(BaseTool): """ Tool that gets balance sheets for a given ticker over a given period. """ mode: str = "get_balance_sheets" name: str = "balance_sheets" description: str = ( "A wrapper around financial datasets's Balance Sheets API. " "This tool is useful for fetching balance sheets for a given ticker." "The tool fetches balance sheets for a given ticker over a given period." "The period can be annual, quarterly, or trailing twelve months (ttm)." "The number of balance sheets to return can also be " "specified using the limit parameter." ) args_schema: Type[BalanceSheetsSchema] = BalanceSheetsSchema api_wrapper: FinancialDatasetsAPIWrapper = Field(..., exclude=True) def __init__(self, api_wrapper: FinancialDatasetsAPIWrapper): super().__init__(api_wrapper=api_wrapper) def _run( self, ticker: str, period: str, limit: Optional[int], run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Balance Sheets API tool.""" return self.api_wrapper.run( mode=self.mode, ticker=ticker, period=period, limit=limit, )
from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel, Field from langchain_community.utilities.financial_datasets import FinancialDatasetsAPIWrapper class BalanceSheetsSchema(BaseModel): """Input for BalanceSheets.""" ticker: str = Field( description="The ticker symbol to fetch balance sheets for.", ) period: str = Field( description="The period of the balance sheets. " "Possible values are: " "annual, quarterly, ttm. " "Default is 'annual'.", ) limit: int = Field( description="The number of balance sheets to return. Default is 10.", ) class BalanceSheets(BaseTool): # type: ignore[override, override] """ Tool that gets balance sheets for a given ticker over a given period. """ mode: str = "get_balance_sheets" name: str = "balance_sheets" description: str = ( "A wrapper around financial datasets's Balance Sheets API. " "This tool is useful for fetching balance sheets for a given ticker." "The tool fetches balance sheets for a given ticker over a given period." "The period can be annual, quarterly, or trailing twelve months (ttm)." "The number of balance sheets to return can also be " "specified using the limit parameter." ) args_schema: Type[BalanceSheetsSchema] = BalanceSheetsSchema api_wrapper: FinancialDatasetsAPIWrapper = Field(..., exclude=True) def __init__(self, api_wrapper: FinancialDatasetsAPIWrapper): super().__init__(api_wrapper=api_wrapper) def _run( self, ticker: str, period: str, limit: Optional[int], run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Balance Sheets API tool.""" return self.api_wrapper.run( mode=self.mode, ticker=ticker, period=period, limit=limit, )
__version__ = '0.1.0' from docarray.array.array import DocumentArray from docarray.document.document import BaseDocument from docarray.predefined_document import Audio, Image, Mesh3D, PointCloud3D, Text __all__ = [ 'BaseDocument', 'DocumentArray', 'Image', 'Audio', 'Text', 'Mesh3D', 'PointCloud3D', ]
__version__ = '0.1.0' from docarray.array.array import DocumentArray from docarray.document.document import BaseDocument from docarray.predefined_document import Image, Mesh3D, PointCloud3D, Text __all__ = ['BaseDocument', 'DocumentArray', 'Image', 'Text', 'Mesh3D', 'PointCloud3D']
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from mmengine.utils import digit_version from torch import Tensor from mmdet.registry import MODELS MODELS.register_module('Linear', module=nn.Linear) @MODELS.register_module(name='NormedLinear') class NormedLinear(nn.Linear): """Normalized Linear Layer. Args: tempeature (float, optional): Tempeature term. Defaults to 20. power (int, optional): Power term. Defaults to 1.0. eps (float, optional): The minimal value of divisor to keep numerical stability. Defaults to 1e-6. """ def __init__(self, *args, tempearture: float = 20, power: int = 1.0, eps: float = 1e-6, **kwargs) -> None: super().__init__(*args, **kwargs) self.tempearture = tempearture self.power = power self.eps = eps self.init_weights() def init_weights(self) -> None: """Initialize the weights.""" nn.init.normal_(self.weight, mean=0, std=0.01) if self.bias is not None: nn.init.constant_(self.bias, 0) def forward(self, x: Tensor) -> Tensor: """Forward function for `NormedLinear`.""" weight_ = self.weight / ( self.weight.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x / (x.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x_ * self.tempearture return F.linear(x_, weight_, self.bias) @MODELS.register_module(name='NormedConv2d') class NormedConv2d(nn.Conv2d): """Normalized Conv2d Layer. Args: tempeature (float, optional): Tempeature term. Defaults to 20. power (int, optional): Power term. Defaults to 1.0. eps (float, optional): The minimal value of divisor to keep numerical stability. Defaults to 1e-6. norm_over_kernel (bool, optional): Normalize over kernel. Defaults to False. """ def __init__(self, *args, tempearture: float = 20, power: int = 1.0, eps: float = 1e-6, norm_over_kernel: bool = False, **kwargs) -> None: super().__init__(*args, **kwargs) self.tempearture = tempearture self.power = power self.norm_over_kernel = norm_over_kernel self.eps = eps def forward(self, x: Tensor) -> Tensor: """Forward function for `NormedConv2d`.""" if not self.norm_over_kernel: weight_ = self.weight / ( self.weight.norm(dim=1, keepdim=True).pow(self.power) + self.eps) else: weight_ = self.weight / ( self.weight.view(self.weight.size(0), -1).norm( dim=1, keepdim=True).pow(self.power)[..., None, None] + self.eps) x_ = x / (x.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x_ * self.tempearture if hasattr(self, 'conv2d_forward'): x_ = self.conv2d_forward(x_, weight_) else: if digit_version(torch.__version__) >= digit_version('1.8'): x_ = self._conv_forward(x_, weight_, self.bias) else: x_ = self._conv_forward(x_, weight_) return x_
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from mmdet.registry import MODELS MODELS.register_module('Linear', module=nn.Linear) @MODELS.register_module(name='NormedLinear') class NormedLinear(nn.Linear): """Normalized Linear Layer. Args: tempeature (float, optional): Tempeature term. Defaults to 20. power (int, optional): Power term. Defaults to 1.0. eps (float, optional): The minimal value of divisor to keep numerical stability. Defaults to 1e-6. """ def __init__(self, *args, tempearture: float = 20, power: int = 1.0, eps: float = 1e-6, **kwargs) -> None: super().__init__(*args, **kwargs) self.tempearture = tempearture self.power = power self.eps = eps self.init_weights() def init_weights(self) -> None: """Initialize the weights.""" nn.init.normal_(self.weight, mean=0, std=0.01) if self.bias is not None: nn.init.constant_(self.bias, 0) def forward(self, x: Tensor) -> Tensor: """Forward function for `NormedLinear`.""" weight_ = self.weight / ( self.weight.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x / (x.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x_ * self.tempearture return F.linear(x_, weight_, self.bias) @MODELS.register_module(name='NormedConv2d') class NormedConv2d(nn.Conv2d): """Normalized Conv2d Layer. Args: tempeature (float, optional): Tempeature term. Defaults to 20. power (int, optional): Power term. Defaults to 1.0. eps (float, optional): The minimal value of divisor to keep numerical stability. Defaults to 1e-6. norm_over_kernel (bool, optional): Normalize over kernel. Defaults to False. """ def __init__(self, *args, tempearture: float = 20, power: int = 1.0, eps: float = 1e-6, norm_over_kernel: bool = False, **kwargs) -> None: super().__init__(*args, **kwargs) self.tempearture = tempearture self.power = power self.norm_over_kernel = norm_over_kernel self.eps = eps def forward(self, x: Tensor) -> Tensor: """Forward function for `NormedConv2d`.""" if not self.norm_over_kernel: weight_ = self.weight / ( self.weight.norm(dim=1, keepdim=True).pow(self.power) + self.eps) else: weight_ = self.weight / ( self.weight.view(self.weight.size(0), -1).norm( dim=1, keepdim=True).pow(self.power)[..., None, None] + self.eps) x_ = x / (x.norm(dim=1, keepdim=True).pow(self.power) + self.eps) x_ = x_ * self.tempearture if hasattr(self, 'conv2d_forward'): x_ = self.conv2d_forward(x_, weight_) else: if torch.__version__ >= '1.8': x_ = self._conv_forward(x_, weight_, self.bias) else: x_ = self._conv_forward(x_, weight_) return x_
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder logger = datasets.utils.logging.get_logger(__name__) class AudioFolderConfig(folder_based_builder.FolderBasedBuilderConfig): """Builder Config for AudioFolder.""" drop_labels: bool = None drop_metadata: bool = None def __post_init__(self): super().__post_init__() class AudioFolder(folder_based_builder.FolderBasedBuilder): BASE_FEATURE = datasets.Audio BASE_COLUMN_NAME = "audio" BUILDER_CONFIG_CLASS = AudioFolderConfig EXTENSIONS: List[str] # definition at the bottom of the script CLASSIFICATION_TASK = AudioClassification(audio_column="audio", label_column="label") # Obtained with: # ``` # import soundfile as sf # # AUDIO_EXTENSIONS = [f".{format.lower()}" for format in sf.available_formats().keys()] # # # .opus decoding is supported if libsndfile >= 1.0.31: # AUDIO_EXTENSIONS.extend([".opus"]) # ``` # We intentionally do not run this code on launch because: # (1) Soundfile is an optional dependency, so importing it in global namespace is not allowed # (2) To ensure the list of supported extensions is deterministic AUDIO_EXTENSIONS = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] AudioFolder.EXTENSIONS = AUDIO_EXTENSIONS
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder logger = datasets.utils.logging.get_logger(__name__) class AudioFolderConfig(folder_based_builder.FolderBasedBuilderConfig): """Builder Config for AudioFolder.""" drop_labels: bool = None drop_metadata: bool = None class AudioFolder(folder_based_builder.FolderBasedBuilder): BASE_FEATURE = datasets.Audio BASE_COLUMN_NAME = "audio" BUILDER_CONFIG_CLASS = AudioFolderConfig EXTENSIONS: List[str] # definition at the bottom of the script CLASSIFICATION_TASK = AudioClassification(audio_column="audio", label_column="label") # Obtained with: # ``` # import soundfile as sf # # AUDIO_EXTENSIONS = [f".{format.lower()}" for format in sf.available_formats().keys()] # # # .opus decoding is supported if libsndfile >= 1.0.31: # AUDIO_EXTENSIONS.extend([".opus"]) # ``` # We intentionally do not run this code on launch because: # (1) Soundfile is an optional dependency, so importing it in global namespace is not allowed # (2) To ensure the list of supported extensions is deterministic AUDIO_EXTENSIONS = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] AudioFolder.EXTENSIONS = AUDIO_EXTENSIONS
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .autoassign_head import AutoAssignHead from .boxinst_head import BoxInstBboxHead, BoxInstMaskHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centernet_update_head import CenterNetUpdateHead from .centripetal_head import CentripetalHead from .condinst_head import CondInstBboxHead, CondInstMaskHead from .conditional_detr_head import ConditionalDETRHead from .corner_head import CornerHead from .ddod_head import DDODHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .dino_head import DINOHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .mask2former_head import Mask2FormerHead from .maskformer_head import MaskFormerHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .rtmdet_head import RTMDetHead, RTMDetSepBNHead from .rtmdet_ins_head import RTMDetInsHead, RTMDetInsSepBNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .solov2_head import SOLOV2Head from .ssd_head import SSDHead from .tood_head import TOODHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'CenterNetHead', 'YOLOXHead', 'SOLOHead', 'DecoupledSOLOHead', 'DecoupledSOLOLightHead', 'SOLOV2Head', 'LADHead', 'TOODHead', 'MaskFormerHead', 'Mask2FormerHead', 'DDODHead', 'CenterNetUpdateHead', 'RTMDetHead', 'RTMDetSepBNHead', 'CondInstBboxHead', 'CondInstMaskHead', 'RTMDetInsHead', 'RTMDetInsSepBNHead', 'BoxInstBboxHead', 'BoxInstMaskHead', 'ConditionalDETRHead', 'DINOHead' ]
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .autoassign_head import AutoAssignHead from .boxinst_head import BoxInstBboxHead, BoxInstMaskHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centernet_update_head import CenterNetUpdateHead from .centripetal_head import CentripetalHead from .condinst_head import CondInstBboxHead, CondInstMaskHead from .conditional_detr_head import ConditionalDETRHead from .corner_head import CornerHead from .ddod_head import DDODHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .mask2former_head import Mask2FormerHead from .maskformer_head import MaskFormerHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .rtmdet_head import RTMDetHead, RTMDetSepBNHead from .rtmdet_ins_head import RTMDetInsHead, RTMDetInsSepBNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .solov2_head import SOLOV2Head from .ssd_head import SSDHead from .tood_head import TOODHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'CenterNetHead', 'YOLOXHead', 'SOLOHead', 'DecoupledSOLOHead', 'DecoupledSOLOLightHead', 'SOLOV2Head', 'LADHead', 'TOODHead', 'MaskFormerHead', 'Mask2FormerHead', 'DDODHead', 'CenterNetUpdateHead', 'RTMDetHead', 'RTMDetSepBNHead', 'CondInstBboxHead', 'CondInstMaskHead', 'RTMDetInsHead', 'RTMDetInsSepBNHead', 'BoxInstBboxHead', 'BoxInstMaskHead', 'ConditionalDETRHead' ]
import inspect import re from typing import Dict, List from huggingface_hub.utils import insecure_hashlib from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return insecure_hashlib.sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _EXTENSION_TO_MODULE = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name _MODULE_TO_EXTENSIONS: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) for _module in _MODULE_TO_EXTENSIONS: _MODULE_TO_EXTENSIONS[_module].append(".zip")
import inspect import re from hashlib import sha256 from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _EXTENSION_TO_MODULE = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name _MODULE_TO_EXTENSIONS: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) for _module in _MODULE_TO_EXTENSIONS: _MODULE_TO_EXTENSIONS[_module].append(".zip")
from unittest.mock import MagicMock, patch import pytest from llama_index.core.llms import ChatMessage, MessageRole from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI STUB_MODEL_NAME = "placeholder_model" @pytest.fixture(name="hf_inference_api") def fixture_hf_inference_api() -> HuggingFaceInferenceAPI: with patch.dict("sys.modules", huggingface_hub=MagicMock()): return HuggingFaceInferenceAPI(model_name=STUB_MODEL_NAME) class TestHuggingFaceInferenceAPI: def test_class_name(self, hf_inference_api: HuggingFaceInferenceAPI) -> None: assert HuggingFaceInferenceAPI.class_name() == HuggingFaceInferenceAPI.__name__ assert hf_inference_api.class_name() == HuggingFaceInferenceAPI.__name__ def test_instantiation(self) -> None: mock_hub = MagicMock() with patch.dict("sys.modules", huggingface_hub=mock_hub): llm = HuggingFaceInferenceAPI(model_name=STUB_MODEL_NAME) assert llm.model_name == STUB_MODEL_NAME # Check can be both a large language model and an embedding model assert isinstance(llm, HuggingFaceInferenceAPI) # Confirm Clients are instantiated correctly # mock_hub.InferenceClient.assert_called_once_with( # model=STUB_MODEL_NAME, token=None, timeout=None, headers=None, cookies=None # ) # mock_hub.AsyncInferenceClient.assert_called_once_with( # model=STUB_MODEL_NAME, token=None, timeout=None, headers=None, cookies=None # ) def test_chat(self, hf_inference_api: HuggingFaceInferenceAPI) -> None: messages = [ ChatMessage(content="Which movie is the best?"), ChatMessage(content="It's Die Hard for sure.", role=MessageRole.ASSISTANT), ChatMessage(content="Can you explain why?"), ] generated_response = ( " It's based on the book of the same name by James Fenimore Cooper." ) conversational_return = { "choices": [ { "message": { "content": generated_response, } } ], } with patch.object( hf_inference_api._sync_client, "chat_completion", return_value=conversational_return, ) as mock_conversational: response = hf_inference_api.chat(messages=messages) assert response.message.role == MessageRole.ASSISTANT assert response.message.content == generated_response mock_conversational.assert_called_once_with( messages=[{"role": m.role.value, "content": m.content} for m in messages], model=STUB_MODEL_NAME, ) def test_chat_text_generation( self, hf_inference_api: HuggingFaceInferenceAPI ) -> None: mock_message_to_prompt = MagicMock( return_value="System: You are an expert movie reviewer\nUser: Which movie is the best?\nAssistant:" ) hf_inference_api.task = "text-generation" hf_inference_api.messages_to_prompt = mock_message_to_prompt messages = [ ChatMessage( role=MessageRole.SYSTEM, content="You are an expert movie reviewer" ), ChatMessage(role=MessageRole.USER, content="Which movie is the best?"), ] conversational_return = "It's Die Hard for sure." with patch.object( hf_inference_api._sync_client, "text_generation", return_value=conversational_return, ) as mock_complete: response = hf_inference_api.chat(messages=messages) hf_inference_api.messages_to_prompt.assert_called_once_with(messages) assert response.message.role == MessageRole.ASSISTANT assert response.message.content == conversational_return mock_complete.assert_called_once_with( "System: You are an expert movie reviewer\nUser: Which movie is the best?\nAssistant:", max_new_tokens=256, ) def test_complete(self, hf_inference_api: HuggingFaceInferenceAPI) -> None: prompt = "My favorite color is " generated_text = '"green" and I love to paint. I have been painting for 30 years and have been' with patch.object( hf_inference_api._sync_client, "text_generation", return_value=generated_text, ) as mock_text_generation: response = hf_inference_api.complete(prompt) mock_text_generation.assert_called_once_with(prompt, max_new_tokens=256) assert response.text == generated_text
from unittest.mock import MagicMock, patch import pytest from llama_index.core.llms import ChatMessage, MessageRole from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI STUB_MODEL_NAME = "placeholder_model" @pytest.fixture(name="hf_inference_api") def fixture_hf_inference_api() -> HuggingFaceInferenceAPI: with patch.dict("sys.modules", huggingface_hub=MagicMock()): return HuggingFaceInferenceAPI(model_name=STUB_MODEL_NAME) class TestHuggingFaceInferenceAPI: def test_class_name(self, hf_inference_api: HuggingFaceInferenceAPI) -> None: assert HuggingFaceInferenceAPI.class_name() == HuggingFaceInferenceAPI.__name__ assert hf_inference_api.class_name() == HuggingFaceInferenceAPI.__name__ def test_instantiation(self) -> None: mock_hub = MagicMock() with patch.dict("sys.modules", huggingface_hub=mock_hub): llm = HuggingFaceInferenceAPI(model_name=STUB_MODEL_NAME) assert llm.model_name == STUB_MODEL_NAME # Check can be both a large language model and an embedding model assert isinstance(llm, HuggingFaceInferenceAPI) # Confirm Clients are instantiated correctly # mock_hub.InferenceClient.assert_called_once_with( # model=STUB_MODEL_NAME, token=None, timeout=None, headers=None, cookies=None # ) # mock_hub.AsyncInferenceClient.assert_called_once_with( # model=STUB_MODEL_NAME, token=None, timeout=None, headers=None, cookies=None # ) def test_chat(self, hf_inference_api: HuggingFaceInferenceAPI) -> None: messages = [ ChatMessage(content="Which movie is the best?"), ChatMessage(content="It's Die Hard for sure.", role=MessageRole.ASSISTANT), ChatMessage(content="Can you explain why?"), ] generated_response = ( " It's based on the book of the same name by James Fenimore Cooper." ) conversational_return = { "generated_text": generated_response, "conversation": { "generated_responses": ["It's Die Hard for sure.", generated_response], "past_user_inputs": [ "Which movie is the best?", "Can you explain why?", ], }, } with patch.object( hf_inference_api._sync_client, "conversational", return_value=conversational_return, ) as mock_conversational: response = hf_inference_api.chat(messages=messages) assert response.message.role == MessageRole.ASSISTANT assert response.message.content == generated_response mock_conversational.assert_called_once_with( text="Can you explain why?", past_user_inputs=["Which movie is the best?"], generated_responses=["It's Die Hard for sure."], ) def test_chat_text_generation( self, hf_inference_api: HuggingFaceInferenceAPI ) -> None: mock_message_to_prompt = MagicMock( return_value="System: You are an expert movie reviewer\nUser: Which movie is the best?\nAssistant:" ) hf_inference_api.task = "text-generation" hf_inference_api.messages_to_prompt = mock_message_to_prompt messages = [ ChatMessage( role=MessageRole.SYSTEM, content="You are an expert movie reviewer" ), ChatMessage(role=MessageRole.USER, content="Which movie is the best?"), ] conversational_return = "It's Die Hard for sure." with patch.object( hf_inference_api._sync_client, "text_generation", return_value=conversational_return, ) as mock_complete: response = hf_inference_api.chat(messages=messages) hf_inference_api.messages_to_prompt.assert_called_once_with(messages) assert response.message.role == MessageRole.ASSISTANT assert response.message.content == conversational_return mock_complete.assert_called_once_with( "System: You are an expert movie reviewer\nUser: Which movie is the best?\nAssistant:", max_new_tokens=256, ) def test_complete(self, hf_inference_api: HuggingFaceInferenceAPI) -> None: prompt = "My favorite color is " generated_text = '"green" and I love to paint. I have been painting for 30 years and have been' with patch.object( hf_inference_api._sync_client, "text_generation", return_value=generated_text, ) as mock_text_generation: response = hf_inference_api.complete(prompt) mock_text_generation.assert_called_once_with(prompt, max_new_tokens=256) assert response.text == generated_text
_base_ = './gfl_r50_fpn_1x_coco.py' max_epochs = 24 # learning policy param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # multi-scale training train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './gfl_r50_fpn_1x_coco.py' # learning policy lr_config = dict(step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24) # multi-scale training img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 480), (1333, 800)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] data = dict(train=dict(pipeline=train_pipeline))
""" This example runs a BiLSTM after the word embedding lookup. The output of the BiLSTM is than pooled, for example with max-pooling (which gives a system like InferSent) or with mean-pooling. Note, you can also pass BERT embeddings to the BiLSTM. """ import logging import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers import SentenceTransformer, losses, models from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) num_train_epochs = 1 batch_size = 32 output_dir = "output/training_stsbenchmark_bilstm-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 2. Define the model # Map tokens to traditional word embeddings like GloVe word_embedding_model = models.WordEmbeddings.from_text_file("glove.6B.300d.txt.gz") lstm = models.LSTM(word_embedding_dimension=word_embedding_model.get_word_embedding_dimension(), hidden_dim=1024) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( lstm.get_word_embedding_dimension(), pooling_mode="mean", ) model = SentenceTransformer(modules=[word_embedding_model, lstm, pooling_model]) # 3. Define our training loss # CosineSimilarityLoss (https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) needs two text columns and # one similarity score column (between 0 and 1) train_loss = losses.CosineSimilarityLoss(model=model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_train_epochs, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="glove-bilstm-sts", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 8. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = "glove-bilstm-sts" try: model.push_to_hub(model_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}')`." )
""" This example runs a BiLSTM after the word embedding lookup. The output of the BiLSTM is than pooled, for example with max-pooling (which gives a system like InferSent) or with mean-pooling. Note, you can also pass BERT embeddings to the BiLSTM. """ import traceback from datasets import load_dataset from sentence_transformers import models, losses from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator import logging from datetime import datetime from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) num_train_epochs = 1 batch_size = 32 output_dir = "output/training_stsbenchmark_bilstm-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 2. Define the model # Map tokens to traditional word embeddings like GloVe word_embedding_model = models.WordEmbeddings.from_text_file("glove.6B.300d.txt.gz") lstm = models.LSTM(word_embedding_dimension=word_embedding_model.get_word_embedding_dimension(), hidden_dim=1024) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( lstm.get_word_embedding_dimension(), pooling_mode="mean", ) model = SentenceTransformer(modules=[word_embedding_model, lstm, pooling_model]) # 3. Define our training loss # CosineSimilarityLoss (https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) needs two text columns and # one similarity score column (between 0 and 1) train_loss = losses.CosineSimilarityLoss(model=model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_train_epochs, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="glove-bilstm-sts", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 8. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = "glove-bilstm-sts" try: model.push_to_hub(model_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}')`." )
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp from typing import Optional, Sequence, Tuple, Union import cv2 import numpy as np from mmengine.hooks import Hook from mmengine.registry import HOOKS from mmengine.utils.dl_utils import tensor2imgs DATA_BATCH = Optional[Union[dict, tuple, list]] # TODO: Due to interface changes, the current class # functions incorrectly @HOOKS.register_module() class NaiveVisualizationHook(Hook): """Show or Write the predicted results during the process of testing. Args: interval (int): Visualization interval. Defaults to 1. draw_gt (bool): Whether to draw the ground truth. Defaults to True. draw_pred (bool): Whether to draw the predicted result. Defaults to True. """ priority = 'NORMAL' def __init__(self, interval: int = 1, draw_gt: bool = True, draw_pred: bool = True): self.draw_gt = draw_gt self.draw_pred = draw_pred self._interval = interval def _unpad(self, input: np.ndarray, unpad_shape: Tuple[int, int]) -> np.ndarray: """Unpad the input image. Args: input (np.ndarray): The image to unpad. unpad_shape (tuple): The shape of image before padding. Returns: np.ndarray: The image before padding. """ unpad_width, unpad_height = unpad_shape unpad_image = input[:unpad_height, :unpad_width] return unpad_image def before_train(self, runner) -> None: """Call add_graph method of visualizer. Args: runner (Runner): The runner of the training process. """ runner.visualizer.add_graph(runner.model, None) def after_test_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Sequence] = None) -> None: """Show or Write the predicted results. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the test loop. data_batch (dict or tuple or list, optional): Data from dataloader. outputs (Sequence, optional): Outputs from model. """ if self.every_n_inner_iters(batch_idx, self._interval): for data, output in zip(data_batch, outputs): # type: ignore input = data['inputs'] data_sample = data['data_sample'] input = tensor2imgs(input, **data_sample.get('img_norm_cfg', dict()))[0] # TODO We will implement a function to revert the augmentation # in the future. ori_shape = (data_sample.ori_width, data_sample.ori_height) if 'pad_shape' in data_sample: input = self._unpad(input, data_sample.get('scale', ori_shape)) origin_image = cv2.resize(input, ori_shape) name = osp.basename(data_sample.img_path) runner.visualizer.add_datasample(name, origin_image, data_sample, output, self.draw_gt, self.draw_pred)
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp from typing import Optional, Sequence, Tuple, Union import cv2 import numpy as np from mmengine.hooks import Hook from mmengine.registry import HOOKS from mmengine.utils.dl_utils import tensor2imgs DATA_BATCH = Optional[Union[dict, tuple, list]] # TODO: Due to interface changes, the current class # functions incorrectly @HOOKS.register_module() class NaiveVisualizationHook(Hook): """Show or Write the predicted results during the process of testing. Args: interval (int): Visualization interval. Defaults to 1. draw_gt (bool): Whether to draw the ground truth. Default to True. draw_pred (bool): Whether to draw the predicted result. Default to True. """ priority = 'NORMAL' def __init__(self, interval: int = 1, draw_gt: bool = True, draw_pred: bool = True): self.draw_gt = draw_gt self.draw_pred = draw_pred self._interval = interval def _unpad(self, input: np.ndarray, unpad_shape: Tuple[int, int]) -> np.ndarray: """Unpad the input image. Args: input (np.ndarray): The image to unpad. unpad_shape (tuple): The shape of image before padding. Returns: np.ndarray: The image before padding. """ unpad_width, unpad_height = unpad_shape unpad_image = input[:unpad_height, :unpad_width] return unpad_image def before_train(self, runner) -> None: """Call add_graph method of visualizer. Args: runner (Runner): The runner of the training process. """ runner.visualizer.add_graph(runner.model, None) def after_test_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Sequence] = None) -> None: """Show or Write the predicted results. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the test loop. data_batch (dict or tuple or list, optional): Data from dataloader. outputs (Sequence, optional): Outputs from model. """ if self.every_n_inner_iters(batch_idx, self._interval): for data, output in zip(data_batch, outputs): # type: ignore input = data['inputs'] data_sample = data['data_sample'] input = tensor2imgs(input, **data_sample.get('img_norm_cfg', dict()))[0] # TODO We will implement a function to revert the augmentation # in the future. ori_shape = (data_sample.ori_width, data_sample.ori_height) if 'pad_shape' in data_sample: input = self._unpad(input, data_sample.get('scale', ori_shape)) origin_image = cv2.resize(input, ori_shape) name = osp.basename(data_sample.img_path) runner.visualizer.add_datasample(name, origin_image, data_sample, output, self.draw_gt, self.draw_pred)
from typing import Any, Optional, Sequence from llama_index.core.evaluation.base import BaseEvaluator, EvaluationResult from llama_index.core.prompts.mixin import PromptDictType, PromptMixinType from tonic_validate.metrics.answer_similarity_metric import ( AnswerSimilarityMetric, ) from tonic_validate.services.openai_service import OpenAIService class AnswerSimilarityEvaluator(BaseEvaluator): """ Tonic Validate's answer similarity metric. The output score is a float between 0.0 and 5.0. See https://docs.tonic.ai/validate/ for more details. Args: openai_service(OpenAIService): The OpenAI service to use. Specifies the chat completion model to use as the LLM evaluator. Defaults to "gpt-4". """ def __init__(self, openai_service: Optional[Any] = None): if openai_service is None: openai_service = OpenAIService("gpt-4") self.openai_service = openai_service self.metric = AnswerSimilarityMetric() async def aevaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, reference_response: Optional[str] = None, **kwargs: Any, ) -> EvaluationResult: from tonic_validate.classes.benchmark import BenchmarkItem from tonic_validate.classes.llm_response import LLMResponse benchmark_item = BenchmarkItem(question=query, answer=reference_response) llm_response = LLMResponse( llm_answer=response, llm_context_list=contexts, benchmark_item=benchmark_item, ) score = self.metric.score(llm_response, self.openai_service) return EvaluationResult( query=query, contexts=contexts, response=response, score=score ) def _get_prompts(self) -> PromptDictType: return {} def _get_prompt_modules(self) -> PromptMixinType: return {} def _update_prompts(self, prompts_dict: PromptDictType) -> None: return
from typing import Any, Optional, Sequence from llama_index.core.evaluation.base import BaseEvaluator, EvaluationResult from llama_index.core.prompts.mixin import PromptDictType, PromptMixinType from tonic_validate.metrics.answer_similarity_metric import ( AnswerSimilarityMetric, ) from tonic_validate.services.openai_service import OpenAIService class AnswerSimilarityEvaluator(BaseEvaluator): """ Tonic Validate's answer similarity metric. The output score is a float between 0.0 and 5.0. See https://docs.tonic.ai/validate/ for more details. Args: openai_service(OpenAIService): The OpenAI service to use. Specifies the chat completion model to use as the LLM evaluator. Defaults to "gpt-4". """ def __init__(self, openai_service: Optional[Any] = None): if openai_service is None: openai_service = OpenAIService("gpt-4") self.openai_service = openai_service self.metric = AnswerSimilarityMetric() async def aevaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, reference_response: Optional[str] = None, **kwargs: Any ) -> EvaluationResult: from tonic_validate.classes.benchmark import BenchmarkItem from tonic_validate.classes.llm_response import LLMResponse benchmark_item = BenchmarkItem(question=query, answer=reference_response) llm_response = LLMResponse( llm_answer=response, llm_context_list=contexts, benchmark_item=benchmark_item, ) score = self.metric.score(llm_response, self.openai_service) return EvaluationResult( query=query, contexts=contexts, response=response, score=score ) def _get_prompts(self) -> PromptDictType: return {} def _get_prompt_modules(self) -> PromptMixinType: return {} def _update_prompts(self, prompts_dict: PromptDictType) -> None: return
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp from typing import List, Optional from mmengine.dataset import BaseDataset from mmengine.fileio import load from mmengine.utils import is_abs from ..registry import DATASETS @DATASETS.register_module() class BaseDetDataset(BaseDataset): """Base dataset for detection. Args: proposal_file (str, optional): Proposals file path. Defaults to None. file_client_args (dict): Arguments to instantiate the corresponding backend in mmdet <= 3.0.0rc6. Defaults to None. backend_args (dict, optional): Arguments to instantiate the corresponding backend. Defaults to None. """ def __init__(self, *args, seg_map_suffix: str = '.png', proposal_file: Optional[str] = None, file_client_args: dict = None, backend_args: dict = None, return_caption: Optional[bool] = False, **kwargs) -> None: self.seg_map_suffix = seg_map_suffix self.proposal_file = proposal_file self.backend_args = backend_args self.return_caption = return_caption if file_client_args is not None: raise RuntimeError( 'The `file_client_args` is deprecated, ' 'please use `backend_args` instead, please refer to' 'https://github.com/open-mmlab/mmdetection/blob/main/configs/_base_/datasets/coco_detection.py' # noqa: E501 ) super().__init__(*args, **kwargs) def full_init(self) -> None: """Load annotation file and set ``BaseDataset._fully_initialized`` to True. If ``lazy_init=False``, ``full_init`` will be called during the instantiation and ``self._fully_initialized`` will be set to True. If ``obj._fully_initialized=False``, the class method decorated by ``force_full_init`` will call ``full_init`` automatically. Several steps to initialize annotation: - load_data_list: Load annotations from annotation file. - load_proposals: Load proposals from proposal file, if `self.proposal_file` is not None. - filter data information: Filter annotations according to filter_cfg. - slice_data: Slice dataset according to ``self._indices`` - serialize_data: Serialize ``self.data_list`` if ``self.serialize_data`` is True. """ if self._fully_initialized: return # load data information self.data_list = self.load_data_list() # get proposals from file if self.proposal_file is not None: self.load_proposals() # filter illegal data, such as data that has no annotations. self.data_list = self.filter_data() # Get subset data according to indices. if self._indices is not None: self.data_list = self._get_unserialized_subset(self._indices) # serialize data_list if self.serialize_data: self.data_bytes, self.data_address = self._serialize_data() self._fully_initialized = True def load_proposals(self) -> None: """Load proposals from proposals file. The `proposals_list` should be a dict[img_path: proposals] with the same length as `data_list`. And the `proposals` should be a `dict` or :obj:`InstanceData` usually contains following keys. - bboxes (np.ndarry): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). - scores (np.ndarry): Classification scores, has a shape (num_instance, ). """ # TODO: Add Unit Test after fully support Dump-Proposal Metric if not is_abs(self.proposal_file): self.proposal_file = osp.join(self.data_root, self.proposal_file) proposals_list = load( self.proposal_file, backend_args=self.backend_args) assert len(self.data_list) == len(proposals_list) for data_info in self.data_list: img_path = data_info['img_path'] # `file_name` is the key to obtain the proposals from the # `proposals_list`. file_name = osp.join( osp.split(osp.split(img_path)[0])[-1], osp.split(img_path)[-1]) proposals = proposals_list[file_name] data_info['proposals'] = proposals def get_cat_ids(self, idx: int) -> List[int]: """Get COCO category ids by index. Args: idx (int): Index of data. Returns: List[int]: All categories in the image of specified index. """ instances = self.get_data_info(idx)['instances'] return [instance['bbox_label'] for instance in instances]
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp from typing import List, Optional from mmengine.dataset import BaseDataset from mmengine.fileio import load from mmengine.utils import is_abs from ..registry import DATASETS @DATASETS.register_module() class BaseDetDataset(BaseDataset): """Base dataset for detection. Args: proposal_file (str, optional): Proposals file path. Defaults to None. file_client_args (dict): Arguments to instantiate the corresponding backend in mmdet <= 3.0.0rc6. Defaults to None. backend_args (dict, optional): Arguments to instantiate the corresponding backend. Defaults to None. """ def __init__(self, *args, seg_map_suffix: str = '.png', proposal_file: Optional[str] = None, file_client_args: dict = None, backend_args: dict = None, **kwargs) -> None: self.seg_map_suffix = seg_map_suffix self.proposal_file = proposal_file self.backend_args = backend_args if file_client_args is not None: raise RuntimeError( 'The `file_client_args` is deprecated, ' 'please use `backend_args` instead, please refer to' 'https://github.com/open-mmlab/mmdetection/blob/main/configs/_base_/datasets/coco_detection.py' # noqa: E501 ) super().__init__(*args, **kwargs) def full_init(self) -> None: """Load annotation file and set ``BaseDataset._fully_initialized`` to True. If ``lazy_init=False``, ``full_init`` will be called during the instantiation and ``self._fully_initialized`` will be set to True. If ``obj._fully_initialized=False``, the class method decorated by ``force_full_init`` will call ``full_init`` automatically. Several steps to initialize annotation: - load_data_list: Load annotations from annotation file. - load_proposals: Load proposals from proposal file, if `self.proposal_file` is not None. - filter data information: Filter annotations according to filter_cfg. - slice_data: Slice dataset according to ``self._indices`` - serialize_data: Serialize ``self.data_list`` if ``self.serialize_data`` is True. """ if self._fully_initialized: return # load data information self.data_list = self.load_data_list() # get proposals from file if self.proposal_file is not None: self.load_proposals() # filter illegal data, such as data that has no annotations. self.data_list = self.filter_data() # Get subset data according to indices. if self._indices is not None: self.data_list = self._get_unserialized_subset(self._indices) # serialize data_list if self.serialize_data: self.data_bytes, self.data_address = self._serialize_data() self._fully_initialized = True def load_proposals(self) -> None: """Load proposals from proposals file. The `proposals_list` should be a dict[img_path: proposals] with the same length as `data_list`. And the `proposals` should be a `dict` or :obj:`InstanceData` usually contains following keys. - bboxes (np.ndarry): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). - scores (np.ndarry): Classification scores, has a shape (num_instance, ). """ # TODO: Add Unit Test after fully support Dump-Proposal Metric if not is_abs(self.proposal_file): self.proposal_file = osp.join(self.data_root, self.proposal_file) proposals_list = load( self.proposal_file, backend_args=self.backend_args) assert len(self.data_list) == len(proposals_list) for data_info in self.data_list: img_path = data_info['img_path'] # `file_name` is the key to obtain the proposals from the # `proposals_list`. file_name = osp.join( osp.split(osp.split(img_path)[0])[-1], osp.split(img_path)[-1]) proposals = proposals_list[file_name] data_info['proposals'] = proposals def get_cat_ids(self, idx: int) -> List[int]: """Get COCO category ids by index. Args: idx (int): Index of data. Returns: List[int]: All categories in the image of specified index. """ instances = self.get_data_info(idx)['instances'] return [instance['bbox_label'] for instance in instances]
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp import matplotlib.patches as mpatches import matplotlib.pyplot as plt import mmcv import numpy as np try: import imageio except ImportError: imageio = None def parse_args(): parser = argparse.ArgumentParser(description='Create GIF for demo') parser.add_argument( 'image_dir', help='directory where result ' 'images save path generated by ‘analyze_results.py’') parser.add_argument( '--out', type=str, default='result.gif', help='gif path where will be saved') args = parser.parse_args() return args def _generate_batch_data(sampler, batch_size): batch = [] for idx in sampler: batch.append(idx) if len(batch) == batch_size: yield batch batch = [] if len(batch) > 0: yield batch def create_gif(frames, gif_name, duration=2): """Create gif through imageio. Args: frames (list[ndarray]): Image frames gif_name (str): Saved gif name duration (int): Display interval (s), Default: 2 """ if imageio is None: raise RuntimeError('imageio is not installed,' 'Please use “pip install imageio” to install') imageio.mimsave(gif_name, frames, 'GIF', duration=duration) def create_frame_by_matplotlib(image_dir, nrows=1, fig_size=(300, 300), font_size=15): """Create gif frame image through matplotlib. Args: image_dir (str): Root directory of result images nrows (int): Number of rows displayed, Default: 1 fig_size (tuple): Figure size of the pyplot figure. Default: (300, 300) font_size (int): Font size of texts. Default: 15 Returns: list[ndarray]: image frames """ result_dir_names = os.listdir(image_dir) assert len(result_dir_names) == 2 # Longer length has higher priority result_dir_names.reverse() images_list = [] for dir_names in result_dir_names: images_list.append(mmcv.scandir(osp.join(image_dir, dir_names))) frames = [] for paths in _generate_batch_data(zip(*images_list), nrows): fig, axes = plt.subplots(nrows=nrows, ncols=2) fig.suptitle('Good/bad case selected according ' 'to the COCO mAP of the single image') det_patch = mpatches.Patch(color='salmon', label='prediction') gt_patch = mpatches.Patch(color='royalblue', label='ground truth') # bbox_to_anchor may need to be finetuned plt.legend( handles=[det_patch, gt_patch], bbox_to_anchor=(1, -0.18), loc='lower right', borderaxespad=0.) if nrows == 1: axes = [axes] dpi = fig.get_dpi() # set fig size and margin fig.set_size_inches( (fig_size[0] * 2 + fig_size[0] // 20) / dpi, (fig_size[1] * nrows + fig_size[1] // 3) / dpi, ) fig.tight_layout() # set subplot margin plt.subplots_adjust( hspace=.05, wspace=0.05, left=0.02, right=0.98, bottom=0.02, top=0.98) for i, (path_tuple, ax_tuple) in enumerate(zip(paths, axes)): image_path_left = osp.join( osp.join(image_dir, result_dir_names[0], path_tuple[0])) image_path_right = osp.join( osp.join(image_dir, result_dir_names[1], path_tuple[1])) image_left = mmcv.imread(image_path_left) image_left = mmcv.rgb2bgr(image_left) image_right = mmcv.imread(image_path_right) image_right = mmcv.rgb2bgr(image_right) if i == 0: ax_tuple[0].set_title( result_dir_names[0], fontdict={'size': font_size}) ax_tuple[1].set_title( result_dir_names[1], fontdict={'size': font_size}) ax_tuple[0].imshow( image_left, extent=(0, *fig_size, 0), interpolation='bilinear') ax_tuple[0].axis('off') ax_tuple[1].imshow( image_right, extent=(0, *fig_size, 0), interpolation='bilinear') ax_tuple[1].axis('off') canvas = fig.canvas s, (width, height) = canvas.print_to_buffer() buffer = np.frombuffer(s, dtype='uint8') img_rgba = buffer.reshape(height, width, 4) rgb, alpha = np.split(img_rgba, [3], axis=2) img = rgb.astype('uint8') frames.append(img) return frames def main(): args = parse_args() frames = create_frame_by_matplotlib(args.image_dir) create_gif(frames, args.out) if __name__ == '__main__': main()
import argparse import os import os.path as osp import matplotlib.patches as mpatches import matplotlib.pyplot as plt import mmcv import numpy as np try: import imageio except ImportError: imageio = None def parse_args(): parser = argparse.ArgumentParser(description='Create GIF for demo') parser.add_argument( 'image_dir', help='directory where result ' 'images save path generated by ‘analyze_results.py’') parser.add_argument( '--out', type=str, default='result.gif', help='gif path where will be saved') args = parser.parse_args() return args def _generate_batch_data(sampler, batch_size): batch = [] for idx in sampler: batch.append(idx) if len(batch) == batch_size: yield batch batch = [] if len(batch) > 0: yield batch def create_gif(frames, gif_name, duration=2): """Create gif through imageio. Args: frames (list[ndarray]): Image frames gif_name (str): Saved gif name duration (int): Display interval (s), Default: 2 """ if imageio is None: raise RuntimeError('imageio is not installed,' 'Please use “pip install imageio” to install') imageio.mimsave(gif_name, frames, 'GIF', duration=duration) def create_frame_by_matplotlib(image_dir, nrows=1, fig_size=(300, 300), font_size=15): """Create gif frame image through matplotlib. Args: image_dir (str): Root directory of result images nrows (int): Number of rows displayed, Default: 1 fig_size (tuple): Figure size of the pyplot figure. Default: (300, 300) font_size (int): Font size of texts. Default: 15 Returns: list[ndarray]: image frames """ result_dir_names = os.listdir(image_dir) assert len(result_dir_names) == 2 # Longer length has higher priority result_dir_names.reverse() images_list = [] for dir_names in result_dir_names: images_list.append(mmcv.scandir(osp.join(image_dir, dir_names))) frames = [] for paths in _generate_batch_data(zip(*images_list), nrows): fig, axes = plt.subplots(nrows=nrows, ncols=2) fig.suptitle('Good/bad case selected according ' 'to the COCO mAP of the single image') det_patch = mpatches.Patch(color='salmon', label='prediction') gt_patch = mpatches.Patch(color='royalblue', label='ground truth') # bbox_to_anchor may need to be finetuned plt.legend( handles=[det_patch, gt_patch], bbox_to_anchor=(1, -0.18), loc='lower right', borderaxespad=0.) if nrows == 1: axes = [axes] dpi = fig.get_dpi() # set fig size and margin fig.set_size_inches( (fig_size[0] * 2 + fig_size[0] // 20) / dpi, (fig_size[1] * nrows + fig_size[1] // 3) / dpi, ) fig.tight_layout() # set subplot margin plt.subplots_adjust( hspace=.05, wspace=0.05, left=0.02, right=0.98, bottom=0.02, top=0.98) for i, (path_tuple, ax_tuple) in enumerate(zip(paths, axes)): image_path_left = osp.join( osp.join(image_dir, result_dir_names[0], path_tuple[0])) image_path_right = osp.join( osp.join(image_dir, result_dir_names[1], path_tuple[1])) image_left = mmcv.imread(image_path_left) image_left = mmcv.rgb2bgr(image_left) image_right = mmcv.imread(image_path_right) image_right = mmcv.rgb2bgr(image_right) if i == 0: ax_tuple[0].set_title( result_dir_names[0], fontdict={'size': font_size}) ax_tuple[1].set_title( result_dir_names[1], fontdict={'size': font_size}) ax_tuple[0].imshow( image_left, extent=(0, *fig_size, 0), interpolation='bilinear') ax_tuple[0].axis('off') ax_tuple[1].imshow( image_right, extent=(0, *fig_size, 0), interpolation='bilinear') ax_tuple[1].axis('off') canvas = fig.canvas s, (width, height) = canvas.print_to_buffer() buffer = np.frombuffer(s, dtype='uint8') img_rgba = buffer.reshape(height, width, 4) rgb, alpha = np.split(img_rgba, [3], axis=2) img = rgb.astype('uint8') frames.append(img) return frames def main(): args = parse_args() frames = create_frame_by_matplotlib(args.image_dir) create_gif(frames, args.out) if __name__ == '__main__': main()
from typing import Any, Union from ..utils import add_end_docstrings from .base import GenericTensor, Pipeline, build_pipeline_init_args @add_end_docstrings( build_pipeline_init_args(has_tokenizer=True, supports_binary_output=False), r""" tokenize_kwargs (`dict`, *optional*): Additional dictionary of keyword arguments passed along to the tokenizer. return_tensors (`bool`, *optional*): If `True`, returns a tensor according to the specified framework, otherwise returns a list.""", ) class FeatureExtractionPipeline(Pipeline): """ Feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks. Example: ```python >>> from transformers import pipeline >>> extractor = pipeline(model="google-bert/bert-base-uncased", task="feature-extraction") >>> result = extractor("This is a simple test.", return_tensors=True) >>> result.shape # This is a tensor of shape [1, sequence_length, hidden_dimension] representing the input string. torch.Size([1, 8, 768]) ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier: `"feature-extraction"`. All models may be used for this pipeline. See a list of all models, including community-contributed models on [huggingface.co/models](https://huggingface.co/models). """ def _sanitize_parameters(self, truncation=None, tokenize_kwargs=None, return_tensors=None, **kwargs): if tokenize_kwargs is None: tokenize_kwargs = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( "truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" ) tokenize_kwargs["truncation"] = truncation preprocess_params = tokenize_kwargs postprocess_params = {} if return_tensors is not None: postprocess_params["return_tensors"] = return_tensors return preprocess_params, {}, postprocess_params def preprocess(self, inputs, **tokenize_kwargs) -> dict[str, GenericTensor]: model_inputs = self.tokenizer(inputs, return_tensors=self.framework, **tokenize_kwargs) return model_inputs def _forward(self, model_inputs): model_outputs = self.model(**model_inputs) return model_outputs def postprocess(self, model_outputs, return_tensors=False): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__(self, *args: Union[str, list[str]], **kwargs: Any) -> Union[Any, list[Any]]: """ Extract the features of the input(s) text. Args: args (`str` or `list[str]`): One or several texts (or one list of texts) to get the features of. Return: A nested list of `float`: The features computed by the model. """ return super().__call__(*args, **kwargs)
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings from .base import GenericTensor, Pipeline, build_pipeline_init_args @add_end_docstrings( build_pipeline_init_args(has_tokenizer=True, supports_binary_output=False), r""" tokenize_kwargs (`dict`, *optional*): Additional dictionary of keyword arguments passed along to the tokenizer. return_tensors (`bool`, *optional*): If `True`, returns a tensor according to the specified framework, otherwise returns a list.""", ) class FeatureExtractionPipeline(Pipeline): """ Feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks. Example: ```python >>> from transformers import pipeline >>> extractor = pipeline(model="google-bert/bert-base-uncased", task="feature-extraction") >>> result = extractor("This is a simple test.", return_tensors=True) >>> result.shape # This is a tensor of shape [1, sequence_length, hidden_dimension] representing the input string. torch.Size([1, 8, 768]) ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier: `"feature-extraction"`. All models may be used for this pipeline. See a list of all models, including community-contributed models on [huggingface.co/models](https://huggingface.co/models). """ def _sanitize_parameters(self, truncation=None, tokenize_kwargs=None, return_tensors=None, **kwargs): if tokenize_kwargs is None: tokenize_kwargs = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( "truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" ) tokenize_kwargs["truncation"] = truncation preprocess_params = tokenize_kwargs postprocess_params = {} if return_tensors is not None: postprocess_params["return_tensors"] = return_tensors return preprocess_params, {}, postprocess_params def preprocess(self, inputs, **tokenize_kwargs) -> Dict[str, GenericTensor]: model_inputs = self.tokenizer(inputs, return_tensors=self.framework, **tokenize_kwargs) return model_inputs def _forward(self, model_inputs): model_outputs = self.model(**model_inputs) return model_outputs def postprocess(self, model_outputs, return_tensors=False): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__(self, *args: Union[str, List[str]], **kwargs: Any) -> Union[Any, List[Any]]: """ Extract the features of the input(s) text. Args: args (`str` or `List[str]`): One or several texts (or one list of texts) to get the features of. Return: A nested list of `float`: The features computed by the model. """ return super().__call__(*args, **kwargs)
import pathlib import pytest from mktestdocs import grab_code_blocks from mktestdocs.__main__ import _executors, check_raw_string def check_raw_file_full(raw, lang="python", keyword_ignore=[]): if lang not in _executors: raise LookupError( f"{lang} is not a supported language to check\n" "\tHint: you can add support for any language by using register_executor" ) executor = _executors[lang] all_code = "" add_code_block = True for b in grab_code_blocks(raw, lang=lang): add_code_block = True for keyword in keyword_ignore: if keyword in b: add_code_block = False break if add_code_block: all_code = f"{all_code}\n{b}" executor(all_code) def check_md_file(fpath, memory=False, lang="python", keyword_ignore=[]): """ NOTE: copy paste from mktestdocs.__main__ and add the keyword ignore Given a markdown file, parse the contents for python code blocks and check that each independent block does not cause an error. Arguments: fpath: path to markdown file memory: whether or not previous code-blocks should be remembered """ text = pathlib.Path(fpath).read_text() if not memory: check_raw_string(text, lang=lang) else: check_raw_file_full(text, lang=lang, keyword_ignore=keyword_ignore) @pytest.mark.parametrize( 'fpath', pathlib.Path('docs/user_guide').glob('**/*.md'), ids=str ) def test_files_good(fpath): check_md_file(fpath=fpath, memory=True) def test_readme(): check_md_file( fpath='README.md', memory=True, keyword_ignore=['tensorflow', 'fastapi', 'push'] )
import pathlib import pytest from mktestdocs import check_md_file # @pytest.mark.parametrize('fpath', pathlib.Path("docs").glob("**/*.md"), ids=str) # to use later @pytest.mark.parametrize( 'fpath', pathlib.Path('docs/user_guide').glob('**/*.md'), ids=str ) def test_files_good(fpath): check_md_file(fpath=fpath, memory=True)
import json from jina.orchestrate.flow.base import Flow from jina.orchestrate.deployments import Deployment from jina.jaml import JAML from jina.logging.predefined import default_logger from jina.schemas import get_full_schema from jina_cli.export import api_to_dict def export_kubernetes(args): """Export to k8s yaml files :param args: args from CLI """ from jina.jaml import JAMLCompatible obj = JAMLCompatible.load_config(args.config_path) if isinstance(obj, (Flow, Deployment)): obj.to_kubernetes_yaml( output_base_path=args.outpath, k8s_namespace=args.k8s_namespace ) else: raise NotImplementedError(f'Object of class {obj.__class__.__name__} cannot be exported to Kubernetes') def export_docker_compose(args): """Export to Docker compose yaml files :param args: args from CLI """ Flow.load_config(args.config_path).to_docker_compose_yaml( output_path=args.outpath, network_name=args.network_name ) def export_flowchart(args): """Export to flowchart file :param args: args from CLI """ Flow.load_config(args.config_path).plot( args.outpath, vertical_layout=args.vertical_layout ) def export_schema(args): """Export to JSON Schemas :param args: args from CLI """ from jina import __version__ if args.yaml_path: dump_api = api_to_dict() for yp in args.yaml_path: f_name = (yp % __version__) if '%s' in yp else yp with open(f_name, 'w', encoding='utf8') as fp: JAML.dump(dump_api, fp) default_logger.info(f'API is exported to {f_name}') if args.json_path: dump_api = api_to_dict() for jp in args.json_path: f_name = (jp % __version__) if '%s' in jp else jp with open(f_name, 'w', encoding='utf8') as fp: json.dump(dump_api, fp, sort_keys=True) default_logger.info(f'API is exported to {f_name}') if args.schema_path: dump_api = get_full_schema() for jp in args.schema_path: f_name = (jp % __version__) if '%s' in jp else jp with open(f_name, 'w', encoding='utf8') as fp: json.dump(dump_api, fp, sort_keys=True) default_logger.info(f'API is exported to {f_name}')
import json from jina.orchestrate.flow.base import Flow from jina.jaml import JAML from jina.logging.predefined import default_logger from jina.schemas import get_full_schema from jina_cli.export import api_to_dict def export_kubernetes(args): """Export to k8s yaml files :param args: args from CLI """ Flow.load_config(args.flowpath).to_kubernetes_yaml( output_base_path=args.outpath, k8s_namespace=args.k8s_namespace ) def export_docker_compose(args): """Export to Docker compose yaml files :param args: args from CLI """ Flow.load_config(args.flowpath).to_docker_compose_yaml( output_path=args.outpath, network_name=args.network_name ) def export_flowchart(args): """Export to flowchart file :param args: args from CLI """ Flow.load_config(args.flowpath).plot( args.outpath, vertical_layout=args.vertical_layout ) def export_schema(args): """Export to JSON Schemas :param args: args from CLI """ from jina import __version__ if args.yaml_path: dump_api = api_to_dict() for yp in args.yaml_path: f_name = (yp % __version__) if '%s' in yp else yp with open(f_name, 'w', encoding='utf8') as fp: JAML.dump(dump_api, fp) default_logger.info(f'API is exported to {f_name}') if args.json_path: dump_api = api_to_dict() for jp in args.json_path: f_name = (jp % __version__) if '%s' in jp else jp with open(f_name, 'w', encoding='utf8') as fp: json.dump(dump_api, fp, sort_keys=True) default_logger.info(f'API is exported to {f_name}') if args.schema_path: dump_api = get_full_schema() for jp in args.schema_path: f_name = (jp % __version__) if '%s' in jp else jp with open(f_name, 'w', encoding='utf8') as fp: json.dump(dump_api, fp, sort_keys=True) default_logger.info(f'API is exported to {f_name}')
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from docarray.typing.url.url_3d.mesh_url import Mesh3DUrl from docarray.typing.url.url_3d.point_cloud_url import PointCloud3DUrl __all__ = ['Mesh3DUrl', 'PointCloud3DUrl']
from docarray.typing.url.url_3d.mesh_url import Mesh3DUrl from docarray.typing.url.url_3d.point_cloud_url import PointCloud3DUrl __all__ = ['Mesh3DUrl', 'PointCloud3DUrl']
# model settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) model = dict( type='FasterRCNN', img_norm_cfg=img_norm_cfg, backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100) # soft-nms is also supported for rcnn testing # e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05) ))
# model settings model = dict( type='FasterRCNN', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100) # soft-nms is also supported for rcnn testing # e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05) ))
from typing import Any from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import BaseDocumentCompressor, Document from langchain_core.retrievers import BaseRetriever, RetrieverLike from pydantic import ConfigDict class ContextualCompressionRetriever(BaseRetriever): """Retriever that wraps a base retriever and compresses the results.""" base_compressor: BaseDocumentCompressor """Compressor for compressing retrieved documents.""" base_retriever: RetrieverLike """Base Retriever to use for getting relevant documents.""" model_config = ConfigDict( arbitrary_types_allowed=True, ) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any, ) -> list[Document]: """Get documents relevant for a query. Args: query: string to find relevant documents for Returns: Sequence of relevant documents """ docs = self.base_retriever.invoke( query, config={"callbacks": run_manager.get_child()}, **kwargs ) if docs: compressed_docs = self.base_compressor.compress_documents( docs, query, callbacks=run_manager.get_child() ) return list(compressed_docs) return [] async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, **kwargs: Any, ) -> list[Document]: """Get documents relevant for a query. Args: query: string to find relevant documents for Returns: List of relevant documents """ docs = await self.base_retriever.ainvoke( query, config={"callbacks": run_manager.get_child()}, **kwargs ) if docs: compressed_docs = await self.base_compressor.acompress_documents( docs, query, callbacks=run_manager.get_child() ) return list(compressed_docs) return []
from typing import Any from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import BaseDocumentCompressor, Document from langchain_core.retrievers import BaseRetriever, RetrieverLike from pydantic import ConfigDict class ContextualCompressionRetriever(BaseRetriever): """Retriever that wraps a base retriever and compresses the results.""" base_compressor: BaseDocumentCompressor """Compressor for compressing retrieved documents.""" base_retriever: RetrieverLike """Base Retriever to use for getting relevant documents.""" model_config = ConfigDict( arbitrary_types_allowed=True, ) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any, ) -> list[Document]: """Get documents relevant for a query. Args: query: string to find relevant documents for Returns: Sequence of relevant documents """ docs = self.base_retriever.invoke( query, config={"callbacks": run_manager.get_child()}, **kwargs ) if docs: compressed_docs = self.base_compressor.compress_documents( docs, query, callbacks=run_manager.get_child() ) return list(compressed_docs) else: return [] async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, **kwargs: Any, ) -> list[Document]: """Get documents relevant for a query. Args: query: string to find relevant documents for Returns: List of relevant documents """ docs = await self.base_retriever.ainvoke( query, config={"callbacks": run_manager.get_child()}, **kwargs ) if docs: compressed_docs = await self.base_compressor.acompress_documents( docs, query, callbacks=run_manager.get_child() ) return list(compressed_docs) else: return []
"""This module is deprecated and will be removed in a future release. Please use LangChainTracer instead. """ from typing import Any def get_headers(*args: Any, **kwargs: Any) -> Any: """Throw an error because this has been replaced by get_headers.""" msg = ( "get_headers for LangChainTracerV1 is no longer supported. " "Please use LangChainTracer instead." ) raise RuntimeError(msg) def LangChainTracerV1(*args: Any, **kwargs: Any) -> Any: # noqa: N802 """Throw an error because this has been replaced by LangChainTracer.""" msg = ( "LangChainTracerV1 is no longer supported. Please use LangChainTracer instead." ) raise RuntimeError(msg)
from typing import Any def get_headers(*args: Any, **kwargs: Any) -> Any: """Throw an error because this has been replaced by get_headers.""" msg = ( "get_headers for LangChainTracerV1 is no longer supported. " "Please use LangChainTracer instead." ) raise RuntimeError(msg) def LangChainTracerV1(*args: Any, **kwargs: Any) -> Any: # noqa: N802 """Throw an error because this has been replaced by LangChainTracer.""" msg = ( "LangChainTracerV1 is no longer supported. Please use LangChainTracer instead." ) raise RuntimeError(msg)
import torch from torchvision.prototype import features def uniform_temporal_subsample_video(video: torch.Tensor, num_samples: int, temporal_dim: int = -4) -> torch.Tensor: # Reference: https://github.com/facebookresearch/pytorchvideo/blob/a0a131e/pytorchvideo/transforms/functional.py#L19 t_max = video.shape[temporal_dim] - 1 indices = torch.linspace(0, t_max, num_samples, device=video.device).long() return torch.index_select(video, temporal_dim, indices) def uniform_temporal_subsample( inpt: features.VideoTypeJIT, num_samples: int, temporal_dim: int = -4 ) -> features.VideoTypeJIT: if isinstance(inpt, torch.Tensor) and (torch.jit.is_scripting() or not isinstance(inpt, features.Video)): return uniform_temporal_subsample_video(inpt, num_samples, temporal_dim=temporal_dim) elif isinstance(inpt, features.Video): if temporal_dim != -4 and inpt.ndim - 4 != temporal_dim: raise ValueError("Video inputs must have temporal_dim equivalent to -4") output = uniform_temporal_subsample_video( inpt.as_subclass(torch.Tensor), num_samples, temporal_dim=temporal_dim ) return features.Video.wrap_like(inpt, output) else: raise TypeError( f"Input can either be a plain tensor or a `Video` tensor subclass, but got {type(inpt)} instead." )
import torch from torchvision.prototype import features def uniform_temporal_subsample_video(video: torch.Tensor, num_samples: int, temporal_dim: int = -4) -> torch.Tensor: # Reference: https://github.com/facebookresearch/pytorchvideo/blob/a0a131e/pytorchvideo/transforms/functional.py#L19 t_max = video.shape[temporal_dim] - 1 indices = torch.linspace(0, t_max, num_samples, device=video.device).long() return torch.index_select(video, temporal_dim, indices) def uniform_temporal_subsample( inpt: features.VideoTypeJIT, num_samples: int, temporal_dim: int = -4 ) -> features.VideoTypeJIT: if isinstance(inpt, torch.Tensor) and (torch.jit.is_scripting() or not isinstance(inpt, features.Video)): return uniform_temporal_subsample_video(inpt, num_samples, temporal_dim=temporal_dim) else: # isinstance(inpt, features.Video) if temporal_dim != -4 and inpt.ndim - 4 != temporal_dim: raise ValueError("Video inputs must have temporal_dim equivalent to -4") output = uniform_temporal_subsample_video( inpt.as_subclass(torch.Tensor), num_samples, temporal_dim=temporal_dim ) return features.Video.wrap_like(inpt, output)
import io import warnings from abc import ABC import numpy as np from typing_extensions import TYPE_CHECKING from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils._internal.misc import import_library, is_notebook if TYPE_CHECKING: from docarray.typing.bytes.image_bytes import ImageBytes class AbstractImageTensor(AbstractTensor, ABC): def to_bytes(self, format: str = 'PNG') -> 'ImageBytes': """ Convert image tensor to [`ImageBytes`][docarray.typing.ImageBytes]. :param format: the image format use to store the image, can be 'PNG' , 'JPG' ... :return: an ImageBytes object """ PIL = import_library('PIL', raise_error=True) # noqa: F841 from PIL import Image as PILImage if format == 'jpg': format = 'jpeg' # unify it to ISO standard tensor = self.get_comp_backend().to_numpy(self) mode = 'RGB' if tensor.ndim == 3 else 'L' pil_image = PILImage.fromarray(tensor, mode=mode) with io.BytesIO() as buffer: pil_image.save(buffer, format=format) img_byte_arr = buffer.getvalue() from docarray.typing.bytes.image_bytes import ImageBytes return ImageBytes(img_byte_arr) def save(self, file_path: str) -> None: """ Save image tensor to an image file. :param file_path: path to an image file. If file is a string, open the file by that name, otherwise treat it as a file-like object. """ PIL = import_library('PIL', raise_error=True) # noqa: F841 from PIL import Image as PILImage comp_backend = self.get_comp_backend() np_img = comp_backend.to_numpy(self).astype(np.uint8) pil_img = PILImage.fromarray(np_img) pil_img.save(file_path) def display(self) -> None: """ Display image data from tensor in notebook. """ if is_notebook(): PIL = import_library('PIL', raise_error=True) # noqa: F841 from PIL import Image as PILImage np_array = self.get_comp_backend().to_numpy(self) img = PILImage.fromarray(np_array) from IPython.display import display display(img) else: warnings.warn('Display of image is only possible in a notebook.')
import io import warnings from abc import ABC import numpy as np from typing_extensions import TYPE_CHECKING from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils._internal.misc import import_library, is_notebook if TYPE_CHECKING: from docarray.typing.bytes.image_bytes import ImageBytes class AbstractImageTensor(AbstractTensor, ABC): def to_bytes(self, format: str = 'PNG') -> 'ImageBytes': """ Convert image tensor to ImageBytes. :param format: the image format use to store the image, can be 'PNG' , 'JPG' ... :return: an ImageBytes object """ PIL = import_library('PIL', raise_error=True) # noqa: F841 from PIL import Image as PILImage if format == 'jpg': format = 'jpeg' # unify it to ISO standard tensor = self.get_comp_backend().to_numpy(self) mode = 'RGB' if tensor.ndim == 3 else 'L' pil_image = PILImage.fromarray(tensor, mode=mode) with io.BytesIO() as buffer: pil_image.save(buffer, format=format) img_byte_arr = buffer.getvalue() from docarray.typing.bytes.image_bytes import ImageBytes return ImageBytes(img_byte_arr) def save(self, file_path: str) -> None: """ Save image tensor to an image file. :param file_path: path to an image file. If file is a string, open the file by that name, otherwise treat it as a file-like object. """ PIL = import_library('PIL', raise_error=True) # noqa: F841 from PIL import Image as PILImage comp_backend = self.get_comp_backend() np_img = comp_backend.to_numpy(self).astype(np.uint8) pil_img = PILImage.fromarray(np_img) pil_img.save(file_path) def display(self) -> None: """ Display image data from tensor in notebook. """ if is_notebook(): PIL = import_library('PIL', raise_error=True) # noqa: F841 from PIL import Image as PILImage np_array = self.get_comp_backend().to_numpy(self) img = PILImage.fromarray(np_array) from IPython.display import display display(img) else: warnings.warn('Display of image is only possible in a notebook.')
""" Utility Tools for the Portkey Class. This file module contains a collection of utility functions designed to enhance the functionality and usability of the Portkey class """ from typing import TYPE_CHECKING, List from llama_index.core.base.llms.types import LLMMetadata from llama_index.llms.anthropic import Anthropic from llama_index.llms.anthropic.utils import CLAUDE_MODELS from llama_index.llms.openai import OpenAI from llama_index.llms.openai.utils import ( AZURE_TURBO_MODELS, GPT3_5_MODELS, GPT3_MODELS, GPT4_MODELS, TURBO_MODELS, ) if TYPE_CHECKING: from portkey import ( LLMOptions, PortkeyResponse, ) IMPORT_ERROR_MESSAGE = ( "Portkey is not installed.Please install it with `pip install portkey-ai`." ) DISCONTINUED_MODELS = { "code-davinci-002": 8001, "code-davinci-001": 8001, "code-cushman-002": 2048, "code-cushman-001": 2048, } DEFAULT_MODEL = "gpt-3.5-turbo" AVAILABLE_INTEGRATIONS = (OpenAI, Anthropic) CLUADE_MODEL_FULLVERSION_MAP = { "claude-instant-1": "claude-instant-1.2", "claude-2": "claude-2.0", } ALL_AVAILABLE_MODELS = { **GPT4_MODELS, **TURBO_MODELS, **GPT3_5_MODELS, **GPT3_MODELS, **AZURE_TURBO_MODELS, **CLAUDE_MODELS, } CHAT_MODELS = { **GPT4_MODELS, **TURBO_MODELS, **AZURE_TURBO_MODELS, } def is_chat_model(model: str) -> bool: """ Check if a given model is a chat-based language model. This function takes a model name or identifier as input and determines whether the model is designed for chat-based language generation, conversation, or interaction. Args: model (str): The name or identifier of the model to be checked. Returns: bool: True if the provided model is a chat-based language model, False otherwise. """ return model in CHAT_MODELS def modelname_to_contextsize(modelname: str) -> int: """ Calculate the maximum number of tokens possible to generate for a model. Args: modelname: The modelname we want to know the context size for. Returns: The maximum context size Example: .. code-block:: python max_tokens = modelname_to_contextsize("text-davinci-003") """ # handling finetuned models if "ft-" in modelname: # legacy fine-tuning modelname = modelname.split(":")[0] elif modelname.startswith("ft:"): modelname = modelname.split(":")[1] if modelname in DISCONTINUED_MODELS: raise ValueError( f"Model {modelname} has been discontinued. Please choose another model." ) context_size = ALL_AVAILABLE_MODELS.get(modelname) if context_size is None: raise ValueError( f"Unknown model: {modelname}. Please provide a valid model name." "Known models are: " + ", ".join(ALL_AVAILABLE_MODELS.keys()) ) return context_size def generate_llm_metadata(llm: "LLMOptions") -> LLMMetadata: """ Generate metadata for a Language Model (LLM) instance. This function takes an instance of a Language Model (LLM) and generates metadata based on the provided instance. The metadata includes information such as the context window, number of output tokens, chat model status, and model name. Parameters ---------- llm (LLM): An instance of a Language Model (LLM) from which metadata will be generated. Returns ------- LLMMetadata: A data structure containing metadata attributes such as context window, number of output tokens, chat model status, and model name. Raises ------ ValueError: If the provided 'llm' is not an instance of llama_index.core.llms.LLM. """ try: from portkey import LLMOptions except ImportError as exc: raise ImportError(IMPORT_ERROR_MESSAGE) from exc if not isinstance(llm, LLMOptions): raise ValueError("llm must be an instance of portkey.LLMOptions") return LLMMetadata( _context_window=modelname_to_contextsize(llm.model or ""), is_chat_model=is_chat_model(llm.model or ""), model_name=llm.model, ) def get_llm(response: "PortkeyResponse", llms: List["LLMOptions"]) -> "LLMOptions": # TODO: Update this logic over here. try: from portkey import LLMOptions except ImportError as exc: raise ImportError(IMPORT_ERROR_MESSAGE) from exc fallback_llm = LLMOptions.construct() for llm in llms: model = llm.model if model == response.model: fallback_llm = llm break if fallback_llm is None: raise ValueError("Failed to get the fallback LLM") return fallback_llm
""" Utility Tools for the Portkey Class. This file module contains a collection of utility functions designed to enhance the functionality and usability of the Portkey class """ from typing import TYPE_CHECKING, List from llama_index.core.base.llms.types import LLMMetadata from llama_index.llms.anthropic import Anthropic from llama_index.llms.anthropic.utils import CLAUDE_MODELS from llama_index.llms.openai import OpenAI from llama_index.llms.openai.utils import ( AZURE_TURBO_MODELS, GPT3_5_MODELS, GPT3_MODELS, GPT4_MODELS, TURBO_MODELS, ) if TYPE_CHECKING: from portkey import ( LLMOptions, PortkeyResponse, ) IMPORT_ERROR_MESSAGE = ( "Portkey is not installed.Please install it with `pip install portkey-ai`." ) DISCONTINUED_MODELS = { "code-davinci-002": 8001, "code-davinci-001": 8001, "code-cushman-002": 2048, "code-cushman-001": 2048, } DEFAULT_MODEL = "gpt-3.5-turbo" AVAILABLE_INTEGRATIONS = (OpenAI, Anthropic) CLUADE_MODEL_FULLVERSION_MAP = { "claude-instant-1": "claude-instant-1.2", "claude-2": "claude-2.0", } ALL_AVAILABLE_MODELS = { **GPT4_MODELS, **TURBO_MODELS, **GPT3_5_MODELS, **GPT3_MODELS, **AZURE_TURBO_MODELS, **CLAUDE_MODELS, } CHAT_MODELS = { **GPT4_MODELS, **TURBO_MODELS, **AZURE_TURBO_MODELS, } def is_chat_model(model: str) -> bool: """ Check if a given model is a chat-based language model. This function takes a model name or identifier as input and determines whether the model is designed for chat-based language generation, conversation, or interaction. Args: model (str): The name or identifier of the model to be checked. Returns: bool: True if the provided model is a chat-based language model, False otherwise. """ return model in CHAT_MODELS def modelname_to_contextsize(modelname: str) -> int: """ Calculate the maximum number of tokens possible to generate for a model. Args: modelname: The modelname we want to know the context size for. Returns: The maximum context size Example: .. code-block:: python max_tokens = modelname_to_contextsize("text-davinci-003") """ # handling finetuned models if "ft-" in modelname: # legacy fine-tuning modelname = modelname.split(":")[0] elif modelname.startswith("ft:"): modelname = modelname.split(":")[1] if modelname in DISCONTINUED_MODELS: raise ValueError( f"Model {modelname} has been discontinued. " "Please choose another model." ) context_size = ALL_AVAILABLE_MODELS.get(modelname) if context_size is None: raise ValueError( f"Unknown model: {modelname}. Please provide a valid model name." "Known models are: " + ", ".join(ALL_AVAILABLE_MODELS.keys()) ) return context_size def generate_llm_metadata(llm: "LLMOptions") -> LLMMetadata: """ Generate metadata for a Language Model (LLM) instance. This function takes an instance of a Language Model (LLM) and generates metadata based on the provided instance. The metadata includes information such as the context window, number of output tokens, chat model status, and model name. Parameters ---------- llm (LLM): An instance of a Language Model (LLM) from which metadata will be generated. Returns ------- LLMMetadata: A data structure containing metadata attributes such as context window, number of output tokens, chat model status, and model name. Raises ------ ValueError: If the provided 'llm' is not an instance of llama_index.core.llms.LLM. """ try: from portkey import LLMOptions except ImportError as exc: raise ImportError(IMPORT_ERROR_MESSAGE) from exc if not isinstance(llm, LLMOptions): raise ValueError("llm must be an instance of portkey.LLMOptions") return LLMMetadata( _context_window=modelname_to_contextsize(llm.model or ""), is_chat_model=is_chat_model(llm.model or ""), model_name=llm.model, ) def get_llm(response: "PortkeyResponse", llms: List["LLMOptions"]) -> "LLMOptions": # TODO: Update this logic over here. try: from portkey import LLMOptions except ImportError as exc: raise ImportError(IMPORT_ERROR_MESSAGE) from exc fallback_llm = LLMOptions.construct() for llm in llms: model = llm.model if model == response.model: fallback_llm = llm break if fallback_llm is None: raise ValueError("Failed to get the fallback LLM") return fallback_llm
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.legacy.preprocessing.sequence import ( TimeseriesGenerator as TimeseriesGenerator, ) from keras.src.legacy.preprocessing.sequence import ( make_sampling_table as make_sampling_table, ) from keras.src.legacy.preprocessing.sequence import skipgrams as skipgrams from keras.src.utils.sequence_utils import pad_sequences as pad_sequences
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.legacy.preprocessing.sequence import TimeseriesGenerator from keras.src.legacy.preprocessing.sequence import make_sampling_table from keras.src.legacy.preprocessing.sequence import skipgrams from keras.src.utils.sequence_utils import pad_sequences
from llama_index.observability.otel.base import LlamaIndexOpenTelemetry __all__ = [ "LlamaIndexOpenTelemetry", ]
from llama_index.observability.otel.base import ( LlamaIndexOpenTelemetry ) __all__ = [ "LlamaIndexOpenTelemetry", ]
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.activations import deserialize from keras.src.activations import get from keras.src.activations import serialize from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_shrink from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_silu as hard_swish from keras.src.activations.activations import hard_tanh from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_sigmoid from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import silu as swish from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import tanh from keras.src.activations.activations import tanh_shrink
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.activations import deserialize from keras.src.activations import get from keras.src.activations import serialize from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_shrink from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_silu as hard_swish from keras.src.activations.activations import hard_tanh from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_sigmoid from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import silu as swish from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import tanh
"""Global Gemini Utilities (shared between Gemini LLM and Vertex).""" from __future__ import annotations from collections.abc import Sequence from llama_index.core.base.llms.types import ChatMessage, MessageRole ROLES_TO_GEMINI: dict[MessageRole, MessageRole] = { MessageRole.USER: MessageRole.USER, MessageRole.ASSISTANT: MessageRole.MODEL, ## Gemini chat mode only has user and model roles. Put the rest in user role. MessageRole.SYSTEM: MessageRole.USER, MessageRole.MODEL: MessageRole.MODEL, ## Gemini has function role, but chat mode only accepts user and model roles. ## https://medium.com/@smallufo/openai-vs-gemini-function-calling-a664f7f2b29f ## Agent response's 'tool/function' role is converted to 'user' role. MessageRole.TOOL: MessageRole.USER, MessageRole.FUNCTION: MessageRole.USER, } ROLES_FROM_GEMINI: dict[str, MessageRole] = { ## Gemini has user, model and function roles. "user": MessageRole.USER, "model": MessageRole.ASSISTANT, "function": MessageRole.TOOL, } def merge_neighboring_same_role_messages( messages: Sequence[ChatMessage], ) -> Sequence[ChatMessage]: if len(messages) < 2: # Nothing to merge return messages # Gemini does not support multiple messages of the same role in a row, so we merge them merged_messages = [] i = 0 while i < len(messages): current_message = messages[i] # Initialize merged content with current message content merged_content = current_message.blocks # Check if the next message exists and has the same role while ( i + 1 < len(messages) and ROLES_TO_GEMINI[messages[i + 1].role] == ROLES_TO_GEMINI[current_message.role] ): i += 1 next_message = messages[i] merged_content.extend(next_message.blocks) # Create a new ChatMessage or similar object with merged content merged_message = ChatMessage( role=ROLES_TO_GEMINI[current_message.role], blocks=merged_content, additional_kwargs=current_message.additional_kwargs, ) merged_messages.append(merged_message) i += 1 return merged_messages
"""Global Gemini Utilities (shared between Gemini LLM and Vertex).""" from __future__ import annotations from collections.abc import Sequence from llama_index.core.base.llms.types import ChatMessage, MessageRole ROLES_TO_GEMINI: dict[MessageRole, MessageRole] = { MessageRole.USER: MessageRole.USER, MessageRole.ASSISTANT: MessageRole.MODEL, ## Gemini chat mode only has user and model roles. Put the rest in user role. MessageRole.SYSTEM: MessageRole.USER, MessageRole.MODEL: MessageRole.MODEL, ## Gemini has function role, but chat mode only accepts user and model roles. ## https://medium.com/@smallufo/openai-vs-gemini-function-calling-a664f7f2b29f ## Agent response's 'tool/function' role is converted to 'user' role. MessageRole.TOOL: MessageRole.USER, MessageRole.FUNCTION: MessageRole.USER, } ROLES_FROM_GEMINI: dict[str, MessageRole] = { ## Gemini has user, model and function roles. "user": MessageRole.USER, "model": MessageRole.ASSISTANT, "function": MessageRole.TOOL, } def merge_neighboring_same_role_messages( messages: Sequence[ChatMessage], ) -> Sequence[ChatMessage]: if len(messages) < 2: # Nothing to merge return messages # Gemini does not support multiple messages of the same role in a row, so we merge them merged_messages = [] i = 0 while i < len(messages): current_message = messages[i] # Initialize merged content with current message content merged_content = [current_message.content] # Check if the next message exists and has the same role while ( i + 1 < len(messages) and ROLES_TO_GEMINI[messages[i + 1].role] == ROLES_TO_GEMINI[current_message.role] ): i += 1 next_message = messages[i] merged_content.extend([next_message.content]) # Create a new ChatMessage or similar object with merged content merged_message = ChatMessage( role=ROLES_TO_GEMINI[current_message.role], content="\n".join([str(msg_content) for msg_content in merged_content]), additional_kwargs=current_message.additional_kwargs, ) merged_messages.append(merged_message) i += 1 return merged_messages
# Copyright (c) OpenMMLab. All rights reserved. from .history_buffer import HistoryBuffer from .logger import MMLogger, print_log from .message_hub import MessageHub __all__ = ['HistoryBuffer', 'MessageHub', 'MMLogger', 'print_log']
# Copyright (c) OpenMMLab. All rights reserved. from .log_buffer import LogBuffer from .logger import MMLogger, print_log from .message_hub import MessageHub __all__ = ['LogBuffer', 'MessageHub', 'MMLogger', 'print_log']
# Copyright (c) OpenMMLab. All rights reserved. import unittest from mmdet.datasets import CocoDataset class TestCocoDataset(unittest.TestCase): def test_coco_dataset(self): # test CocoDataset metainfo = dict(classes=('bus', 'car'), task_name='new_task') dataset = CocoDataset( data_prefix=dict(img='imgs'), ann_file='tests/data/coco_sample.json', metainfo=metainfo, filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=[], serialize_data=False, lazy_init=False) self.assertEqual(dataset.metainfo['classes'], ('bus', 'car')) self.assertEqual(dataset.metainfo['task_name'], 'new_task') self.assertListEqual(dataset.get_cat_ids(0), [0, 1]) def test_coco_dataset_without_filter_cfg(self): # test CocoDataset without filter_cfg dataset = CocoDataset( data_prefix=dict(img='imgs'), ann_file='tests/data/coco_sample.json', pipeline=[]) self.assertEqual(len(dataset), 4) # test with test_mode = True dataset = CocoDataset( data_prefix=dict(img='imgs'), ann_file='tests/data/coco_sample.json', test_mode=True, pipeline=[]) self.assertEqual(len(dataset), 4) def test_coco_annotation_ids_unique(self): # test annotation ids not unique error metainfo = dict(classes=('car', ), task_name='new_task') with self.assertRaisesRegex(AssertionError, 'are not unique!'): CocoDataset( data_prefix=dict(img='imgs'), ann_file='tests/data/coco_wrong_format_sample.json', metainfo=metainfo, pipeline=[])
# Copyright (c) OpenMMLab. All rights reserved. import unittest from mmdet.datasets import CocoDataset class TestCocoDataset(unittest.TestCase): def test_coco_dataset(self): # test CocoDataset metainfo = dict(CLASSES=('bus', 'car'), task_name='new_task') dataset = CocoDataset( data_prefix=dict(img='imgs'), ann_file='tests/data/coco_sample.json', metainfo=metainfo, filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=[], serialize_data=False, lazy_init=False) self.assertEqual(dataset.metainfo['CLASSES'], ('bus', 'car')) self.assertEqual(dataset.metainfo['task_name'], 'new_task') self.assertListEqual(dataset.get_cat_ids(0), [0, 1]) def test_coco_dataset_without_filter_cfg(self): # test CocoDataset without filter_cfg dataset = CocoDataset( data_prefix=dict(img='imgs'), ann_file='tests/data/coco_sample.json', pipeline=[]) self.assertEqual(len(dataset), 4) # test with test_mode = True dataset = CocoDataset( data_prefix=dict(img='imgs'), ann_file='tests/data/coco_sample.json', test_mode=True, pipeline=[]) self.assertEqual(len(dataset), 4) def test_coco_annotation_ids_unique(self): # test annotation ids not unique error metainfo = dict(CLASSES=('car', ), task_name='new_task') with self.assertRaisesRegex(AssertionError, 'are not unique!'): CocoDataset( data_prefix=dict(img='imgs'), ann_file='tests/data/coco_wrong_format_sample.json', metainfo=metainfo, pipeline=[])
__version__ = '0.12.3' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
__version__ = '0.12.2' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
from typing import List import datasets from ..folder_based_builder import folder_based_builder logger = datasets.utils.logging.get_logger(__name__) class ImageFolderConfig(folder_based_builder.FolderBasedBuilderConfig): """BuilderConfig for ImageFolder.""" drop_labels: bool = None drop_metadata: bool = None def __post_init__(self): super().__post_init__() class ImageFolder(folder_based_builder.FolderBasedBuilder): BASE_FEATURE = datasets.Image BASE_COLUMN_NAME = "image" BUILDER_CONFIG_CLASS = ImageFolderConfig EXTENSIONS: List[str] # definition at the bottom of the script # Obtained with: # ``` # import PIL.Image # IMAGE_EXTENSIONS = [] # PIL.Image.init() # for ext, format in PIL.Image.EXTENSION.items(): # if format in PIL.Image.OPEN: # IMAGE_EXTENSIONS.append(ext[1:]) # ``` # We intentionally do not run this code on launch because: # (1) Pillow is an optional dependency, so importing Pillow in global namespace is not allowed # (2) To ensure the list of supported extensions is deterministic IMAGE_EXTENSIONS = [ ".blp", ".bmp", ".dib", ".bufr", ".cur", ".pcx", ".dcx", ".dds", ".ps", ".eps", ".fit", ".fits", ".fli", ".flc", ".ftc", ".ftu", ".gbr", ".gif", ".grib", ".h5", ".hdf", ".png", ".apng", ".jp2", ".j2k", ".jpc", ".jpf", ".jpx", ".j2c", ".icns", ".ico", ".im", ".iim", ".tif", ".tiff", ".jfif", ".jpe", ".jpg", ".jpeg", ".mpg", ".mpeg", ".msp", ".pcd", ".pxr", ".pbm", ".pgm", ".ppm", ".pnm", ".psd", ".bw", ".rgb", ".rgba", ".sgi", ".ras", ".tga", ".icb", ".vda", ".vst", ".webp", ".wmf", ".emf", ".xbm", ".xpm", ] ImageFolder.EXTENSIONS = IMAGE_EXTENSIONS
from typing import List import datasets from datasets.tasks import ImageClassification from ..folder_based_builder import folder_based_builder logger = datasets.utils.logging.get_logger(__name__) class ImageFolderConfig(folder_based_builder.FolderBasedBuilderConfig): """BuilderConfig for ImageFolder.""" drop_labels: bool = None drop_metadata: bool = None def __post_init__(self): super().__post_init__() class ImageFolder(folder_based_builder.FolderBasedBuilder): BASE_FEATURE = datasets.Image BASE_COLUMN_NAME = "image" BUILDER_CONFIG_CLASS = ImageFolderConfig EXTENSIONS: List[str] # definition at the bottom of the script CLASSIFICATION_TASK = ImageClassification(image_column="image", label_column="label") # Obtained with: # ``` # import PIL.Image # IMAGE_EXTENSIONS = [] # PIL.Image.init() # for ext, format in PIL.Image.EXTENSION.items(): # if format in PIL.Image.OPEN: # IMAGE_EXTENSIONS.append(ext[1:]) # ``` # We intentionally do not run this code on launch because: # (1) Pillow is an optional dependency, so importing Pillow in global namespace is not allowed # (2) To ensure the list of supported extensions is deterministic IMAGE_EXTENSIONS = [ ".blp", ".bmp", ".dib", ".bufr", ".cur", ".pcx", ".dcx", ".dds", ".ps", ".eps", ".fit", ".fits", ".fli", ".flc", ".ftc", ".ftu", ".gbr", ".gif", ".grib", ".h5", ".hdf", ".png", ".apng", ".jp2", ".j2k", ".jpc", ".jpf", ".jpx", ".j2c", ".icns", ".ico", ".im", ".iim", ".tif", ".tiff", ".jfif", ".jpe", ".jpg", ".jpeg", ".mpg", ".mpeg", ".msp", ".pcd", ".pxr", ".pbm", ".pgm", ".ppm", ".pnm", ".psd", ".bw", ".rgb", ".rgba", ".sgi", ".ras", ".tga", ".icb", ".vda", ".vst", ".webp", ".wmf", ".emf", ".xbm", ".xpm", ] ImageFolder.EXTENSIONS = IMAGE_EXTENSIONS
import asyncio from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever class MergerRetriever(BaseRetriever): """Retriever that merges the results of multiple retrievers.""" retrievers: list[BaseRetriever] """A list of retrievers to merge.""" def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, ) -> list[Document]: """ Get the relevant documents for a given query. Args: query: The query to search for. Returns: A list of relevant documents. """ # Merge the results of the retrievers. merged_documents = self.merge_documents(query, run_manager) return merged_documents async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, ) -> list[Document]: """ Asynchronously get the relevant documents for a given query. Args: query: The query to search for. Returns: A list of relevant documents. """ # Merge the results of the retrievers. merged_documents = await self.amerge_documents(query, run_manager) return merged_documents def merge_documents( self, query: str, run_manager: CallbackManagerForRetrieverRun ) -> list[Document]: """ Merge the results of the retrievers. Args: query: The query to search for. Returns: A list of merged documents. """ # Get the results of all retrievers. retriever_docs = [ retriever.invoke( query, config={"callbacks": run_manager.get_child(f"retriever_{i + 1}")}, ) for i, retriever in enumerate(self.retrievers) ] # Merge the results of the retrievers. merged_documents = [] max_docs = max(map(len, retriever_docs), default=0) for i in range(max_docs): for retriever, doc in zip(self.retrievers, retriever_docs): if i < len(doc): merged_documents.append(doc[i]) return merged_documents async def amerge_documents( self, query: str, run_manager: AsyncCallbackManagerForRetrieverRun ) -> list[Document]: """ Asynchronously merge the results of the retrievers. Args: query: The query to search for. Returns: A list of merged documents. """ # Get the results of all retrievers. retriever_docs = await asyncio.gather( *( retriever.ainvoke( query, config={"callbacks": run_manager.get_child(f"retriever_{i + 1}")}, ) for i, retriever in enumerate(self.retrievers) ) ) # Merge the results of the retrievers. merged_documents = [] max_docs = max(map(len, retriever_docs), default=0) for i in range(max_docs): for retriever, doc in zip(self.retrievers, retriever_docs): if i < len(doc): merged_documents.append(doc[i]) return merged_documents
import asyncio from typing import List from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever class MergerRetriever(BaseRetriever): """Retriever that merges the results of multiple retrievers.""" retrievers: List[BaseRetriever] """A list of retrievers to merge.""" def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, ) -> List[Document]: """ Get the relevant documents for a given query. Args: query: The query to search for. Returns: A list of relevant documents. """ # Merge the results of the retrievers. merged_documents = self.merge_documents(query, run_manager) return merged_documents async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, ) -> List[Document]: """ Asynchronously get the relevant documents for a given query. Args: query: The query to search for. Returns: A list of relevant documents. """ # Merge the results of the retrievers. merged_documents = await self.amerge_documents(query, run_manager) return merged_documents def merge_documents( self, query: str, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """ Merge the results of the retrievers. Args: query: The query to search for. Returns: A list of merged documents. """ # Get the results of all retrievers. retriever_docs = [ retriever.invoke( query, config={ "callbacks": run_manager.get_child("retriever_{}".format(i + 1)) }, ) for i, retriever in enumerate(self.retrievers) ] # Merge the results of the retrievers. merged_documents = [] max_docs = max(map(len, retriever_docs), default=0) for i in range(max_docs): for retriever, doc in zip(self.retrievers, retriever_docs): if i < len(doc): merged_documents.append(doc[i]) return merged_documents async def amerge_documents( self, query: str, run_manager: AsyncCallbackManagerForRetrieverRun ) -> List[Document]: """ Asynchronously merge the results of the retrievers. Args: query: The query to search for. Returns: A list of merged documents. """ # Get the results of all retrievers. retriever_docs = await asyncio.gather( *( retriever.ainvoke( query, config={ "callbacks": run_manager.get_child("retriever_{}".format(i + 1)) }, ) for i, retriever in enumerate(self.retrievers) ) ) # Merge the results of the retrievers. merged_documents = [] max_docs = max(map(len, retriever_docs), default=0) for i in range(max_docs): for retriever, doc in zip(self.retrievers, retriever_docs): if i < len(doc): merged_documents.append(doc[i]) return merged_documents
from __future__ import annotations from typing import Any, Union from langchain_core.retrievers import ( BaseRetriever, RetrieverOutput, ) from langchain_core.runnables import Runnable, RunnablePassthrough def create_retrieval_chain( retriever: Union[BaseRetriever, Runnable[dict, RetrieverOutput]], combine_docs_chain: Runnable[dict[str, Any], str], ) -> Runnable: """Create retrieval chain that retrieves documents and then passes them on. Args: retriever: Retriever-like object that returns list of documents. Should either be a subclass of BaseRetriever or a Runnable that returns a list of documents. If a subclass of BaseRetriever, then it is expected that an `input` key be passed in - this is what is will be used to pass into the retriever. If this is NOT a subclass of BaseRetriever, then all the inputs will be passed into this runnable, meaning that runnable should take a dictionary as input. combine_docs_chain: Runnable that takes inputs and produces a string output. The inputs to this will be any original inputs to this chain, a new context key with the retrieved documents, and chat_history (if not present in the inputs) with a value of `[]` (to easily enable conversational retrieval. Returns: An LCEL Runnable. The Runnable return is a dictionary containing at the very least a `context` and `answer` key. Example: .. code-block:: python # pip install -U langchain langchain-community from langchain_community.chat_models import ChatOpenAI from langchain.chains.combine_documents import create_stuff_documents_chain from langchain.chains import create_retrieval_chain from langchain import hub retrieval_qa_chat_prompt = hub.pull("langchain-ai/retrieval-qa-chat") llm = ChatOpenAI() retriever = ... combine_docs_chain = create_stuff_documents_chain( llm, retrieval_qa_chat_prompt ) retrieval_chain = create_retrieval_chain(retriever, combine_docs_chain) retrieval_chain.invoke({"input": "..."}) """ if not isinstance(retriever, BaseRetriever): retrieval_docs: Runnable[dict, RetrieverOutput] = retriever else: retrieval_docs = (lambda x: x["input"]) | retriever retrieval_chain = ( RunnablePassthrough.assign( context=retrieval_docs.with_config(run_name="retrieve_documents"), ).assign(answer=combine_docs_chain) ).with_config(run_name="retrieval_chain") return retrieval_chain
from __future__ import annotations from typing import Any, Dict, Union from langchain_core.retrievers import ( BaseRetriever, RetrieverOutput, ) from langchain_core.runnables import Runnable, RunnablePassthrough def create_retrieval_chain( retriever: Union[BaseRetriever, Runnable[dict, RetrieverOutput]], combine_docs_chain: Runnable[Dict[str, Any], str], ) -> Runnable: """Create retrieval chain that retrieves documents and then passes them on. Args: retriever: Retriever-like object that returns list of documents. Should either be a subclass of BaseRetriever or a Runnable that returns a list of documents. If a subclass of BaseRetriever, then it is expected that an `input` key be passed in - this is what is will be used to pass into the retriever. If this is NOT a subclass of BaseRetriever, then all the inputs will be passed into this runnable, meaning that runnable should take a dictionary as input. combine_docs_chain: Runnable that takes inputs and produces a string output. The inputs to this will be any original inputs to this chain, a new context key with the retrieved documents, and chat_history (if not present in the inputs) with a value of `[]` (to easily enable conversational retrieval. Returns: An LCEL Runnable. The Runnable return is a dictionary containing at the very least a `context` and `answer` key. Example: .. code-block:: python # pip install -U langchain langchain-community from langchain_community.chat_models import ChatOpenAI from langchain.chains.combine_documents import create_stuff_documents_chain from langchain.chains import create_retrieval_chain from langchain import hub retrieval_qa_chat_prompt = hub.pull("langchain-ai/retrieval-qa-chat") llm = ChatOpenAI() retriever = ... combine_docs_chain = create_stuff_documents_chain( llm, retrieval_qa_chat_prompt ) retrieval_chain = create_retrieval_chain(retriever, combine_docs_chain) retrieval_chain.invoke({"input": "..."}) """ if not isinstance(retriever, BaseRetriever): retrieval_docs: Runnable[dict, RetrieverOutput] = retriever else: retrieval_docs = (lambda x: x["input"]) | retriever retrieval_chain = ( RunnablePassthrough.assign( context=retrieval_docs.with_config(run_name="retrieve_documents"), ).assign(answer=combine_docs_chain) ).with_config(run_name="retrieval_chain") return retrieval_chain
from typing import Union import PIL.Image import torch from torchvision.prototype import datapoints from torchvision.transforms.functional import pil_to_tensor, to_pil_image from torchvision.utils import _log_api_usage_once from ._utils import is_simple_tensor def erase_image_tensor( image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: if not inplace: image = image.clone() image[..., i : i + h, j : j + w] = v return image @torch.jit.unused def erase_image_pil( image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> PIL.Image.Image: t_img = pil_to_tensor(image) output = erase_image_tensor(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace) return to_pil_image(output, mode=image.mode) def erase_video( video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: return erase_image_tensor(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace) def erase( inpt: Union[datapoints.ImageTypeJIT, datapoints.VideoTypeJIT], i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False, ) -> Union[datapoints.ImageTypeJIT, datapoints.VideoTypeJIT]: if not torch.jit.is_scripting(): _log_api_usage_once(erase) if torch.jit.is_scripting() or is_simple_tensor(inpt): return erase_image_tensor(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) elif isinstance(inpt, datapoints.Image): output = erase_image_tensor(inpt.as_subclass(torch.Tensor), i=i, j=j, h=h, w=w, v=v, inplace=inplace) return datapoints.Image.wrap_like(inpt, output) elif isinstance(inpt, datapoints.Video): output = erase_video(inpt.as_subclass(torch.Tensor), i=i, j=j, h=h, w=w, v=v, inplace=inplace) return datapoints.Video.wrap_like(inpt, output) elif isinstance(inpt, PIL.Image.Image): return erase_image_pil(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) else: raise TypeError( f"Input can either be a plain tensor, an `Image` or `Video` datapoint, or a PIL image, " f"but got {type(inpt)} instead." )
from typing import Union import PIL.Image import torch from torchvision.prototype import datapoints from torchvision.transforms.functional import pil_to_tensor, to_pil_image from torchvision.utils import _log_api_usage_once def erase_image_tensor( image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: if not inplace: image = image.clone() image[..., i : i + h, j : j + w] = v return image @torch.jit.unused def erase_image_pil( image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> PIL.Image.Image: t_img = pil_to_tensor(image) output = erase_image_tensor(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace) return to_pil_image(output, mode=image.mode) def erase_video( video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: return erase_image_tensor(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace) def erase( inpt: Union[datapoints.ImageTypeJIT, datapoints.VideoTypeJIT], i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False, ) -> Union[datapoints.ImageTypeJIT, datapoints.VideoTypeJIT]: if not torch.jit.is_scripting(): _log_api_usage_once(erase) if isinstance(inpt, torch.Tensor) and ( torch.jit.is_scripting() or not isinstance(inpt, (datapoints.Image, datapoints.Video)) ): return erase_image_tensor(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) elif isinstance(inpt, datapoints.Image): output = erase_image_tensor(inpt.as_subclass(torch.Tensor), i=i, j=j, h=h, w=w, v=v, inplace=inplace) return datapoints.Image.wrap_like(inpt, output) elif isinstance(inpt, datapoints.Video): output = erase_video(inpt.as_subclass(torch.Tensor), i=i, j=j, h=h, w=w, v=v, inplace=inplace) return datapoints.Video.wrap_like(inpt, output) elif isinstance(inpt, PIL.Image.Image): return erase_image_pil(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) else: raise TypeError( f"Input can either be a plain tensor, an `Image` or `Video` datapoint, or a PIL image, " f"but got {type(inpt)} instead." )
import copy as cp import dataclasses from dataclasses import fields from functools import lru_cache from typing import TYPE_CHECKING, Optional, Tuple, Dict from docarray.dataclasses import is_multimodal from docarray.helper import typename if TYPE_CHECKING: # pragma: no cover from docarray.typing import T @lru_cache() def _get_fields(dc): return [f.name for f in fields(dc)] class BaseDCType: _data_class = None def __init__( self: 'T', _obj: Optional['T'] = None, copy: bool = False, field_resolver: Optional[Dict[str, str]] = None, unknown_fields_handler: str = 'catch', **kwargs, ): self._data = None if isinstance(_obj, type(self)): if copy: self.copy_from(_obj) else: self._data = _obj._data elif isinstance(_obj, dict): kwargs.update(_obj) elif is_multimodal(_obj): self._data = type(self)._from_dataclass(_obj)._data if kwargs: try: if self._data is not None: if self._unresolved_fields_dest in kwargs.keys(): getattr(self, self._unresolved_fields_dest).update( kwargs[self._unresolved_fields_dest] ) kwargs.pop(self._unresolved_fields_dest) self._data = dataclasses.replace(self._data, **kwargs) else: self._data = self._data_class(self, **kwargs) except TypeError as ex: if unknown_fields_handler == 'raise': raise AttributeError(f'unknown attributes') from ex else: if field_resolver: kwargs = { field_resolver.get(k, k): v for k, v in kwargs.items() } _fields = _get_fields(self._data_class) _unknown_kwargs = None _unresolved = set(kwargs.keys()).difference(_fields) if _unresolved: _unknown_kwargs = {k: kwargs[k] for k in _unresolved} for k in _unresolved: kwargs.pop(k) if self._data is not None: self._data = dataclasses.replace(self._data, **kwargs) else: self._data = self._data_class(self, **kwargs) if _unknown_kwargs and unknown_fields_handler == 'catch': getattr(self, self._unresolved_fields_dest).update( _unknown_kwargs ) for k in self._post_init_fields: if k in kwargs: setattr(self, k, kwargs[k]) if not _obj and not kwargs and self._data is None: self._data = self._data_class(self) if self._data is None: raise ValueError( f'Failed to initialize {typename(self)} from obj={_obj}, kwargs={kwargs}' ) def copy_from(self: 'T', other: 'T') -> None: """Overwrite self by copying from another :class:`Document`. :param other: the other Document to copy from """ self._data = cp.deepcopy(other._data) def clear(self) -> None: """Clear all fields from this :class:`Document` to their default values.""" for f in self.non_empty_fields: setattr(self._data, f, None) def pop(self, *fields) -> None: """Clear some fields from this :class:`Document` to their default values. :param fields: field names to clear. """ for f in fields: if hasattr(self, f): setattr(self._data, f, None) @property def non_empty_fields(self) -> Tuple[str]: """Get all non-emtpy fields of this :class:`Document`. Non-empty fields are the fields with not-`None` and not-default values. :return: field names in a tuple. """ return self._data._non_empty_fields @property def nbytes(self) -> int: """Return total bytes consumed by protobuf. :return: number of bytes """ return len(bytes(self)) def __hash__(self): return hash(self._data) def __repr__(self): content = str(self.non_empty_fields) content += f' at {getattr(self, "id", id(self))}' return f'<{self.__class__.__name__} {content.strip()}>' def __bytes__(self): return self.to_bytes() def __eq__(self, other): if type(self) is type(other): return self._data == other._data return False
import copy as cp from dataclasses import fields from functools import lru_cache from typing import TYPE_CHECKING, Optional, Tuple, Dict from docarray.dataclasses import is_multimodal from docarray.helper import typename if TYPE_CHECKING: # pragma: no cover from docarray.typing import T @lru_cache() def _get_fields(dc): return [f.name for f in fields(dc)] class BaseDCType: _data_class = None def __init__( self: 'T', _obj: Optional['T'] = None, copy: bool = False, field_resolver: Optional[Dict[str, str]] = None, unknown_fields_handler: str = 'catch', **kwargs, ): self._data = None if isinstance(_obj, type(self)): if copy: self.copy_from(_obj) else: self._data = _obj._data elif isinstance(_obj, dict): kwargs.update(_obj) elif is_multimodal(_obj): self._data = type(self)._from_dataclass(_obj)._data if kwargs: try: self._data = self._data_class(self, **kwargs) except TypeError as ex: if unknown_fields_handler == 'raise': raise AttributeError(f'unknown attributes') from ex else: if field_resolver: kwargs = { field_resolver.get(k, k): v for k, v in kwargs.items() } _fields = _get_fields(self._data_class) _unknown_kwargs = None _unresolved = set(kwargs.keys()).difference(_fields) if _unresolved: _unknown_kwargs = {k: kwargs[k] for k in _unresolved} for k in _unresolved: kwargs.pop(k) self._data = self._data_class(self, **kwargs) if _unknown_kwargs and unknown_fields_handler == 'catch': getattr(self, self._unresolved_fields_dest).update( _unknown_kwargs ) for k in self._post_init_fields: if k in kwargs: setattr(self, k, kwargs[k]) if not _obj and not kwargs and self._data is None: self._data = self._data_class(self) if self._data is None: raise ValueError( f'Failed to initialize {typename(self)} from obj={_obj}, kwargs={kwargs}' ) def copy_from(self: 'T', other: 'T') -> None: """Overwrite self by copying from another :class:`Document`. :param other: the other Document to copy from """ self._data = cp.deepcopy(other._data) def clear(self) -> None: """Clear all fields from this :class:`Document` to their default values.""" for f in self.non_empty_fields: setattr(self._data, f, None) def pop(self, *fields) -> None: """Clear some fields from this :class:`Document` to their default values. :param fields: field names to clear. """ for f in fields: if hasattr(self, f): setattr(self._data, f, None) @property def non_empty_fields(self) -> Tuple[str]: """Get all non-emtpy fields of this :class:`Document`. Non-empty fields are the fields with not-`None` and not-default values. :return: field names in a tuple. """ return self._data._non_empty_fields @property def nbytes(self) -> int: """Return total bytes consumed by protobuf. :return: number of bytes """ return len(bytes(self)) def __hash__(self): return hash(self._data) def __repr__(self): content = str(self.non_empty_fields) content += f' at {getattr(self, "id", id(self))}' return f'<{self.__class__.__name__} {content.strip()}>' def __bytes__(self): return self.to_bytes() def __eq__(self, other): if type(self) is type(other): return self._data == other._data return False
import torch from docarray import BaseDoc from docarray.typing import TorchTensor def test_tensor_ops(): class A(BaseDoc): tensor: TorchTensor[3, 224, 224] class B(BaseDoc): tensor: TorchTensor[3, 112, 224] tensor = A(tensor=torch.ones(3, 224, 224)).tensor tensord = A(tensor=torch.ones(3, 224, 224)).tensor tensorn = torch.zeros(3, 224, 224) tensorhalf = B(tensor=torch.ones(3, 112, 224)).tensor tensorfull = torch.cat([tensorhalf, tensorhalf], dim=1) assert type(tensor) == TorchTensor assert type(tensor + tensord) == TorchTensor assert type(tensor + tensorn) == TorchTensor assert type(tensor + tensorfull) == TorchTensor
import torch from docarray import BaseDocument from docarray.typing import TorchTensor def test_tensor_ops(): class A(BaseDocument): tensor: TorchTensor[3, 224, 224] class B(BaseDocument): tensor: TorchTensor[3, 112, 224] tensor = A(tensor=torch.ones(3, 224, 224)).tensor tensord = A(tensor=torch.ones(3, 224, 224)).tensor tensorn = torch.zeros(3, 224, 224) tensorhalf = B(tensor=torch.ones(3, 112, 224)).tensor tensorfull = torch.cat([tensorhalf, tensorhalf], dim=1) assert type(tensor) == TorchTensor assert type(tensor + tensord) == TorchTensor assert type(tensor + tensorn) == TorchTensor assert type(tensor + tensorfull) == TorchTensor
import numpy as np import numpy.typing as npt def oscillator_bank( frequencies, amplitudes, sample_rate: float, time_axis: int = -2, ): """Reference implementation of oscillator_bank""" invalid = np.abs(frequencies) >= sample_rate / 2 if np.any(invalid): amplitudes = np.where(invalid, 0.0, amplitudes) pi2 = 2.0 * np.pi freqs = frequencies * pi2 / sample_rate % pi2 phases = np.cumsum(freqs, axis=time_axis, dtype=freqs.dtype) waveform = amplitudes * np.sin(phases) return waveform def sinc_ir(cutoff, window_size: int = 513, high_pass: bool = False): if window_size % 2 == 0: raise ValueError(f"`window_size` must be odd. Given: {window_size}") half = window_size // 2 dtype = cutoff.dtype idx = np.linspace(-half, half, window_size, dtype=dtype) filt = np.sinc(cutoff[..., None] * idx[None, ...]) filt *= np.hamming(window_size).astype(dtype)[None, ...] filt /= np.abs(filt.sum(axis=-1, keepdims=True)) if high_pass: filt *= -1 filt[..., half] = 1.0 + filt[..., half] return filt def freq_ir(magnitudes): ir = np.fft.fftshift(np.fft.irfft(magnitudes), axes=-1) window = np.hanning(ir.shape[-1]) return (ir * window).astype(magnitudes.dtype) def exp_sigmoid( input: npt.NDArray, exponent: float = 10.0, max_value: float = 2.0, threshold: float = 1e-7 ) -> npt.NDArray: """Exponential Sigmoid pointwise nonlinearity (Numpy version). Implements the equation: ``max_value`` * sigmoid(``input``) ** (log(``exponent``)) + ``threshold`` The output has a range of [``threshold``, ``max_value``]. ``exponent`` controls the slope of the output. Args: input (np.ndarray): Input array exponent (float, optional): Exponent. Controls the slope of the output max_value (float, optional): Maximum value of the output threshold (float, optional): Minimum value of the output Returns: np.ndarray: Exponential Sigmoid output. Shape: same as input """ return max_value * (1 / (1 + np.exp(-input, dtype=input.dtype))) ** np.log(exponent, dtype=input.dtype) + threshold
import numpy as np def oscillator_bank( frequencies, amplitudes, sample_rate: float, time_axis: int = -2, ): """Reference implementation of oscillator_bank""" invalid = np.abs(frequencies) >= sample_rate / 2 if np.any(invalid): amplitudes = np.where(invalid, 0.0, amplitudes) pi2 = 2.0 * np.pi freqs = frequencies * pi2 / sample_rate % pi2 phases = np.cumsum(freqs, axis=time_axis, dtype=freqs.dtype) waveform = amplitudes * np.sin(phases) return waveform def sinc_ir(cutoff, window_size: int = 513, high_pass: bool = False): if window_size % 2 == 0: raise ValueError(f"`window_size` must be odd. Given: {window_size}") half = window_size // 2 dtype = cutoff.dtype idx = np.linspace(-half, half, window_size, dtype=dtype) filt = np.sinc(cutoff[..., None] * idx[None, ...]) filt *= np.hamming(window_size).astype(dtype)[None, ...] filt /= np.abs(filt.sum(axis=-1, keepdims=True)) if high_pass: filt *= -1 filt[..., half] = 1.0 + filt[..., half] return filt def freq_ir(magnitudes): ir = np.fft.fftshift(np.fft.irfft(magnitudes), axes=-1) window = np.hanning(ir.shape[-1]) return (ir * window).astype(magnitudes.dtype) def exp_sigmoid( input: np.ndarray, exponent: float = 10.0, max_value: float = 2.0, threshold: float = 1e-7 ) -> np.ndarray: """Exponential Sigmoid pointwise nonlinearity (Numpy version). Implements the equation: ``max_value`` * sigmoid(``input``) ** (log(``exponent``)) + ``threshold`` The output has a range of [``threshold``, ``max_value``]. ``exponent`` controls the slope of the output. Args: input (np.ndarray): Input array exponent (float, optional): Exponent. Controls the slope of the output max_value (float, optional): Maximum value of the output threshold (float, optional): Minimum value of the output Returns: np.ndarray: Exponential Sigmoid output. Shape: same as input """ return max_value * (1 / (1 + np.exp(-input, dtype=input.dtype))) ** np.log(exponent, dtype=input.dtype) + threshold
__version__ = '0.30.0' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler)
__version__ = '0.30.0a3' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.structures import InstanceData from mmdet.models.task_modules.assigners import ApproxMaxIoUAssigner class TestApproxIoUAssigner(TestCase): def test_approx_iou_assigner(self): assigner = ApproxMaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ) bboxes = torch.FloatTensor([ [0, 0, 10, 10], [10, 10, 20, 20], [5, 5, 15, 15], [32, 32, 38, 42], ]) gt_bboxes = torch.FloatTensor([ [0, 0, 10, 9], [0, 10, 10, 19], ]) gt_labels = torch.LongTensor([2, 3]) pred_instances = InstanceData() pred_instances.priors = bboxes pred_instances.approxs = bboxes[:, None, :] gt_instances = InstanceData() gt_instances.bboxes = gt_bboxes gt_instances.labels = gt_labels assign_result = assigner.assign(pred_instances, gt_instances) expected_gt_inds = torch.LongTensor([1, 0, 2, 0]) self.assertTrue(torch.all(assign_result.gt_inds == expected_gt_inds)) def test_approx_iou_assigner_with_empty_gt(self): """Test corner case where an image might have no true detections.""" assigner = ApproxMaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ) bboxes = torch.FloatTensor([ [0, 0, 10, 10], [10, 10, 20, 20], [5, 5, 15, 15], [32, 32, 38, 42], ]) gt_bboxes = torch.FloatTensor([]) gt_labels = torch.LongTensor([]) pred_instances = InstanceData() pred_instances.priors = bboxes pred_instances.approxs = bboxes[:, None, :] gt_instances = InstanceData() gt_instances.bboxes = gt_bboxes gt_instances.labels = gt_labels assign_result = assigner.assign(pred_instances, gt_instances) expected_gt_inds = torch.LongTensor([0, 0, 0, 0]) self.assertTrue(torch.all(assign_result.gt_inds == expected_gt_inds)) def test_approx_iou_assigner_with_empty_boxes(self): """Test corner case where an network might predict no boxes.""" assigner = ApproxMaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ) bboxes = torch.empty((0, 4)) gt_bboxes = torch.FloatTensor([ [0, 0, 10, 9], [0, 10, 10, 19], ]) gt_labels = torch.LongTensor([2, 3]) pred_instances = InstanceData() pred_instances.priors = bboxes pred_instances.approxs = bboxes[:, None, :] gt_instances = InstanceData() gt_instances.bboxes = gt_bboxes gt_instances.labels = gt_labels assign_result = assigner.assign(pred_instances, gt_instances) self.assertEqual(len(assign_result.gt_inds), 0) def test_approx_iou_assigner_with_empty_boxes_and_gt(self): """Test corner case where an network might predict no boxes and no gt.""" assigner = ApproxMaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ) bboxes = torch.empty((0, 4)) gt_bboxes = torch.empty((0, 4)) gt_labels = torch.LongTensor([]) pred_instances = InstanceData() pred_instances.priors = bboxes pred_instances.approxs = bboxes[:, None, :] gt_instances = InstanceData() gt_instances.bboxes = gt_bboxes gt_instances.labels = gt_labels assign_result = assigner.assign(pred_instances, gt_instances) self.assertEqual(len(assign_result.gt_inds), 0)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.data import InstanceData from mmdet.models.task_modules.assigners import ApproxMaxIoUAssigner class TestApproxIoUAssigner(TestCase): def test_approx_iou_assigner(self): assigner = ApproxMaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ) bboxes = torch.FloatTensor([ [0, 0, 10, 10], [10, 10, 20, 20], [5, 5, 15, 15], [32, 32, 38, 42], ]) gt_bboxes = torch.FloatTensor([ [0, 0, 10, 9], [0, 10, 10, 19], ]) gt_labels = torch.LongTensor([2, 3]) pred_instances = InstanceData() pred_instances.priors = bboxes pred_instances.approxs = bboxes[:, None, :] gt_instances = InstanceData() gt_instances.bboxes = gt_bboxes gt_instances.labels = gt_labels assign_result = assigner.assign(pred_instances, gt_instances) expected_gt_inds = torch.LongTensor([1, 0, 2, 0]) self.assertTrue(torch.all(assign_result.gt_inds == expected_gt_inds)) def test_approx_iou_assigner_with_empty_gt(self): """Test corner case where an image might have no true detections.""" assigner = ApproxMaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ) bboxes = torch.FloatTensor([ [0, 0, 10, 10], [10, 10, 20, 20], [5, 5, 15, 15], [32, 32, 38, 42], ]) gt_bboxes = torch.FloatTensor([]) gt_labels = torch.LongTensor([]) pred_instances = InstanceData() pred_instances.priors = bboxes pred_instances.approxs = bboxes[:, None, :] gt_instances = InstanceData() gt_instances.bboxes = gt_bboxes gt_instances.labels = gt_labels assign_result = assigner.assign(pred_instances, gt_instances) expected_gt_inds = torch.LongTensor([0, 0, 0, 0]) self.assertTrue(torch.all(assign_result.gt_inds == expected_gt_inds)) def test_approx_iou_assigner_with_empty_boxes(self): """Test corner case where an network might predict no boxes.""" assigner = ApproxMaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ) bboxes = torch.empty((0, 4)) gt_bboxes = torch.FloatTensor([ [0, 0, 10, 9], [0, 10, 10, 19], ]) gt_labels = torch.LongTensor([2, 3]) pred_instances = InstanceData() pred_instances.priors = bboxes pred_instances.approxs = bboxes[:, None, :] gt_instances = InstanceData() gt_instances.bboxes = gt_bboxes gt_instances.labels = gt_labels assign_result = assigner.assign(pred_instances, gt_instances) self.assertEqual(len(assign_result.gt_inds), 0) def test_approx_iou_assigner_with_empty_boxes_and_gt(self): """Test corner case where an network might predict no boxes and no gt.""" assigner = ApproxMaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ) bboxes = torch.empty((0, 4)) gt_bboxes = torch.empty((0, 4)) gt_labels = torch.LongTensor([]) pred_instances = InstanceData() pred_instances.priors = bboxes pred_instances.approxs = bboxes[:, None, :] gt_instances = InstanceData() gt_instances.bboxes = gt_bboxes gt_instances.labels = gt_labels assign_result = assigner.assign(pred_instances, gt_instances) self.assertEqual(len(assign_result.gt_inds), 0)
from .backend_utils import set_audio_backend from .case_utils import ( HttpServerMixin, is_ffmpeg_available, PytorchTestCase, skipIfCudaSmallMemory, skipIfNoAudioDevice, skipIfNoCtcDecoder, skipIfNoCuda, skipIfNoExec, skipIfNoFFmpeg, skipIfNoKaldi, skipIfNoMacOS, skipIfNoModule, skipIfNoQengine, skipIfNoSox, skipIfPy310, skipIfRocm, TempDirMixin, TestBaseMixin, TorchaudioTestCase, zip_equal, ) from .data_utils import get_asset_path, get_sinusoid, get_spectrogram, get_whitenoise from .func_utils import torch_script from .image_utils import get_image, rgb_to_gray, rgb_to_yuv_ccir, save_image from .parameterized_utils import load_params, nested_params from .wav_utils import get_wav_data, load_wav, normalize_wav, save_wav __all__ = [ "get_asset_path", "get_whitenoise", "get_sinusoid", "get_spectrogram", "set_audio_backend", "TempDirMixin", "HttpServerMixin", "TestBaseMixin", "PytorchTestCase", "TorchaudioTestCase", "is_ffmpeg_available", "skipIfNoAudioDevice", "skipIfNoCtcDecoder", "skipIfNoCuda", "skipIfCudaSmallMemory", "skipIfNoExec", "skipIfNoMacOS", "skipIfNoModule", "skipIfNoKaldi", "skipIfNoSox", "skipIfNoSoxBackend", "skipIfRocm", "skipIfNoQengine", "skipIfNoFFmpeg", "skipIfPy310", "get_wav_data", "normalize_wav", "load_wav", "save_wav", "load_params", "nested_params", "torch_script", "save_image", "get_image", "rgb_to_gray", "rgb_to_yuv_ccir", "zip_equal", ]
from .backend_utils import set_audio_backend from .case_utils import ( HttpServerMixin, is_ffmpeg_available, PytorchTestCase, skipIfCudaSmallMemory, skipIfNoCtcDecoder, skipIfNoCuda, skipIfNoExec, skipIfNoFFmpeg, skipIfNoKaldi, skipIfNoModule, skipIfNoQengine, skipIfNoSox, skipIfPy310, skipIfRocm, TempDirMixin, TestBaseMixin, TorchaudioTestCase, zip_equal, ) from .data_utils import get_asset_path, get_sinusoid, get_spectrogram, get_whitenoise from .func_utils import torch_script from .image_utils import get_image, rgb_to_gray, rgb_to_yuv_ccir, save_image from .parameterized_utils import load_params, nested_params from .wav_utils import get_wav_data, load_wav, normalize_wav, save_wav __all__ = [ "get_asset_path", "get_whitenoise", "get_sinusoid", "get_spectrogram", "set_audio_backend", "TempDirMixin", "HttpServerMixin", "TestBaseMixin", "PytorchTestCase", "TorchaudioTestCase", "is_ffmpeg_available", "skipIfNoCtcDecoder", "skipIfNoCuda", "skipIfCudaSmallMemory", "skipIfNoExec", "skipIfNoModule", "skipIfNoKaldi", "skipIfNoSox", "skipIfNoSoxBackend", "skipIfRocm", "skipIfNoQengine", "skipIfNoFFmpeg", "skipIfPy310", "get_wav_data", "normalize_wav", "load_wav", "save_wav", "load_params", "nested_params", "torch_script", "save_image", "get_image", "rgb_to_gray", "rgb_to_yuv_ccir", "zip_equal", ]
from typing import Any, Dict, Optional, Union import numpy as np import PIL.Image import torch from torchvision import datapoints from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2.utils import is_simple_tensor class PILToTensor(Transform): """[BETA] Convert a ``PIL Image`` to a tensor of the same type. .. betastatus:: PILToTensor transform This transform does not support torchscript. Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W). """ _transformed_types = (PIL.Image.Image,) def _transform(self, inpt: PIL.Image.Image, params: Dict[str, Any]) -> torch.Tensor: return F.pil_to_tensor(inpt) class ToImageTensor(Transform): """[BETA] Convert a tensor or an ndarray or PIL Image to :class:`~torchvision.datapoints.Image`. .. betastatus:: ToImageTensor transform This transform does not support torchscript. """ _transformed_types = (is_simple_tensor, PIL.Image.Image, np.ndarray) def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> datapoints.Image: return F.to_image_tensor(inpt) class ToImagePIL(Transform): """[BETA] Convert a tensor or an ndarray to PIL Image. .. betastatus:: ToImagePIL transform This transform does not support torchscript. Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape H x W x C to a PIL Image while preserving the value range. Args: mode (`PIL.Image mode`_): color space and pixel depth of input data (optional). If ``mode`` is ``None`` (default) there are some assumptions made about the input data: - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``. - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``. - If the input has 2 channels, the ``mode`` is assumed to be ``LA``. - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``, ``short``). .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes """ _transformed_types = (is_simple_tensor, datapoints.Image, np.ndarray) def __init__(self, mode: Optional[str] = None) -> None: super().__init__() self.mode = mode def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> PIL.Image.Image: return F.to_image_pil(inpt, mode=self.mode) # We changed the name to align them with the new naming scheme. Still, `ToPILImage` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ToPILImage = ToImagePIL
from typing import Any, Dict, Optional, Union import numpy as np import PIL.Image import torch from torchvision import datapoints from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2.utils import is_simple_tensor class PILToTensor(Transform): """[BETA] Convert a ``PIL Image`` to a tensor of the same type. .. betastatus:: PILToTensor transform This transform does not support torchscript. Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W). """ _transformed_types = (PIL.Image.Image,) def _transform(self, inpt: PIL.Image.Image, params: Dict[str, Any]) -> torch.Tensor: return F.pil_to_tensor(inpt) class ToImageTensor(Transform): _transformed_types = (is_simple_tensor, PIL.Image.Image, np.ndarray) def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> datapoints.Image: return F.to_image_tensor(inpt) class ToImagePIL(Transform): """[BETA] Convert a tensor or an ndarray to PIL Image. .. betastatus:: ToImagePIL transform This transform does not support torchscript. Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape H x W x C to a PIL Image while preserving the value range. Args: mode (`PIL.Image mode`_): color space and pixel depth of input data (optional). If ``mode`` is ``None`` (default) there are some assumptions made about the input data: - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``. - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``. - If the input has 2 channels, the ``mode`` is assumed to be ``LA``. - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``, ``short``). .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes """ _transformed_types = (is_simple_tensor, datapoints.Image, np.ndarray) def __init__(self, mode: Optional[str] = None) -> None: super().__init__() self.mode = mode def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> PIL.Image.Image: return F.to_image_pil(inpt, mode=self.mode) # We changed the name to align them with the new naming scheme. Still, `ToPILImage` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ToPILImage = ToImagePIL
from llama_index.core.graph_stores.types import GraphStore from llama_index.graph_stores.neptune import ( NeptuneAnalyticsGraphStore, NeptuneDatabaseGraphStore, ) from llama_index.graph_stores.neptune.base import NeptuneBaseGraphStore def test_neptune_analytics_graph_store(): names_of_bases = [b.__name__ for b in NeptuneAnalyticsGraphStore.__bases__] assert NeptuneBaseGraphStore.__name__ in names_of_bases def test_neptune_database_graph_store(): names_of_bases = [b.__name__ for b in NeptuneDatabaseGraphStore.__bases__] assert NeptuneBaseGraphStore.__name__ in names_of_bases def test_neptune_base_graph_store(): names_of_bases = [b.__name__ for b in NeptuneBaseGraphStore.__bases__] assert GraphStore.__name__ in names_of_bases
from unittest.mock import MagicMock, patch from llama_index.core.graph_stores.types import GraphStore from llama_index.graph_stores.neptune import ( NeptuneAnalyticsGraphStore, NeptuneDatabaseGraphStore, ) @patch("llama_index.graph_stores.neptune.NeptuneAnalyticsGraphStore") def test_neptune_analytics_graph_store(MockNeptuneAnalyticsGraphStore: MagicMock): instance: NeptuneAnalyticsGraphStore = MockNeptuneAnalyticsGraphStore.return_value() assert isinstance(instance, GraphStore) @patch("llama_index.graph_stores.neptune.NeptuneDatabaseGraphStore") def test_neptune_analytics_graph_store(MockNeptuneDatabaseGraphStore: MagicMock): instance: NeptuneDatabaseGraphStore = MockNeptuneDatabaseGraphStore.return_value() assert isinstance(instance, GraphStore)
"""Test PandasDataframeParser""" from typing import Any import pandas as pd from langchain_core.exceptions import OutputParserException from langchain.output_parsers.pandas_dataframe import PandasDataFrameOutputParser df = pd.DataFrame( { "chicken": [1, 2, 3, 4], "veggies": [5, 4, 3, 2], "steak": [9, 8, 7, 6], } ) parser = PandasDataFrameOutputParser(dataframe=df) # Test Invalid Column def test_pandas_output_parser_col_no_array() -> None: try: parser.parse("column:num_legs") assert False, "Should have raised OutputParserException" except OutputParserException: assert True # Test Column with invalid array (above DataFrame max index) def test_pandas_output_parser_col_oob() -> None: try: parser.parse("row:10") assert False, "Should have raised OutputParserException" except OutputParserException: assert True # Test Column with array [x] def test_pandas_output_parser_col_first_elem() -> None: expected_output = {"chicken": 1} actual_output = parser.parse("column:chicken[0]") assert actual_output == expected_output # Test Column with array [x,y,z] def test_pandas_output_parser_col_multi_elem() -> None: expected_output = {"chicken": pd.Series([1, 2], name="chicken", dtype="int64")} actual_output = parser.parse("column:chicken[0, 1]") for key in actual_output.keys(): assert expected_output["chicken"].equals(actual_output[key]) # Test Row with invalid row entry def test_pandas_output_parser_row_no_array() -> None: try: parser.parse("row:5") assert False, "Should have raised OutputParserException" except OutputParserException: assert True # Test Row with valid row entry def test_pandas_output_parser_row_first() -> None: expected_output = {"1": pd.Series({"chicken": 2, "veggies": 4, "steak": 8})} actual_output = parser.parse("row:1") assert actual_output["1"].equals(expected_output["1"]) # Test Row with invalid col entry def test_pandas_output_parser_row_no_column() -> None: try: parser.parse("row:1[num_legs]") assert False, "Should have raised OutputParserException" except OutputParserException: assert True # Test Row with valid col entry def test_pandas_output_parser_row_col_1() -> None: expected_output = {"1": 2} actual_output = parser.parse("row:1[chicken]") assert actual_output == expected_output def test_pandas_output_parser_special_ops() -> None: actual_output = [ {"mean": 3.0}, {"median": 3.0}, {"min": 2}, {"max": 4}, {"var": 1.0}, {"std": 1.0}, {"count": 3}, {"quantile": 3.0}, ] expected_output = [ parser.parse("mean:chicken[1..3]"), parser.parse("median:chicken[1..3]"), parser.parse("min:chicken[1..3]"), parser.parse("max:chicken[1..3]"), parser.parse("var:chicken[1..3]"), parser.parse("std:chicken[1..3]"), parser.parse("count:chicken[1..3]"), parser.parse("quantile:chicken[1..3]"), ] assert actual_output == expected_output def test_pandas_output_parser_invalid_special_op() -> None: try: parser.parse("riemann_sum:chicken") assert False, "Should have raised OutputParserException" except OutputParserException: assert True def test_pandas_output_parser_output_type() -> None: """Test the output type of the pandas dataframe output parser is a pandas dataframe.""" # noqa: E501 assert parser.OutputType == dict[str, Any]
"""Test PandasDataframeParser""" from typing import Any, Dict import pandas as pd from langchain_core.exceptions import OutputParserException from langchain.output_parsers.pandas_dataframe import PandasDataFrameOutputParser df = pd.DataFrame( { "chicken": [1, 2, 3, 4], "veggies": [5, 4, 3, 2], "steak": [9, 8, 7, 6], } ) parser = PandasDataFrameOutputParser(dataframe=df) # Test Invalid Column def test_pandas_output_parser_col_no_array() -> None: try: parser.parse("column:num_legs") assert False, "Should have raised OutputParserException" except OutputParserException: assert True # Test Column with invalid array (above DataFrame max index) def test_pandas_output_parser_col_oob() -> None: try: parser.parse("row:10") assert False, "Should have raised OutputParserException" except OutputParserException: assert True # Test Column with array [x] def test_pandas_output_parser_col_first_elem() -> None: expected_output = {"chicken": 1} actual_output = parser.parse("column:chicken[0]") assert actual_output == expected_output # Test Column with array [x,y,z] def test_pandas_output_parser_col_multi_elem() -> None: expected_output = {"chicken": pd.Series([1, 2], name="chicken", dtype="int64")} actual_output = parser.parse("column:chicken[0, 1]") for key in actual_output.keys(): assert expected_output["chicken"].equals(actual_output[key]) # Test Row with invalid row entry def test_pandas_output_parser_row_no_array() -> None: try: parser.parse("row:5") assert False, "Should have raised OutputParserException" except OutputParserException: assert True # Test Row with valid row entry def test_pandas_output_parser_row_first() -> None: expected_output = {"1": pd.Series({"chicken": 2, "veggies": 4, "steak": 8})} actual_output = parser.parse("row:1") assert actual_output["1"].equals(expected_output["1"]) # Test Row with invalid col entry def test_pandas_output_parser_row_no_column() -> None: try: parser.parse("row:1[num_legs]") assert False, "Should have raised OutputParserException" except OutputParserException: assert True # Test Row with valid col entry def test_pandas_output_parser_row_col_1() -> None: expected_output = {"1": 2} actual_output = parser.parse("row:1[chicken]") assert actual_output == expected_output def test_pandas_output_parser_special_ops() -> None: actual_output = [ {"mean": 3.0}, {"median": 3.0}, {"min": 2}, {"max": 4}, {"var": 1.0}, {"std": 1.0}, {"count": 3}, {"quantile": 3.0}, ] expected_output = [ parser.parse("mean:chicken[1..3]"), parser.parse("median:chicken[1..3]"), parser.parse("min:chicken[1..3]"), parser.parse("max:chicken[1..3]"), parser.parse("var:chicken[1..3]"), parser.parse("std:chicken[1..3]"), parser.parse("count:chicken[1..3]"), parser.parse("quantile:chicken[1..3]"), ] assert actual_output == expected_output def test_pandas_output_parser_invalid_special_op() -> None: try: parser.parse("riemann_sum:chicken") assert False, "Should have raised OutputParserException" except OutputParserException: assert True def test_pandas_output_parser_output_type() -> None: """Test the output type of the pandas dataframe output parser is a pandas dataframe.""" # noqa: E501 assert parser.OutputType is Dict[str, Any]
""" Experimental support for external memory ======================================== This is similar to the one in `quantile_data_iterator.py`, but for external memory instead of Quantile DMatrix. The feature is not ready for production use yet. .. versionadded:: 1.5.0 See :doc:`the tutorial </tutorials/external_memory>` for more details. """ import os import tempfile from typing import Callable, List, Tuple import numpy as np from sklearn.datasets import make_regression import xgboost def make_batches( n_samples_per_batch: int, n_features: int, n_batches: int, tmpdir: str, ) -> List[Tuple[str, str]]: files: List[Tuple[str, str]] = [] rng = np.random.RandomState(1994) for i in range(n_batches): X, y = make_regression(n_samples_per_batch, n_features, random_state=rng) X_path = os.path.join(tmpdir, "X-" + str(i) + ".npy") y_path = os.path.join(tmpdir, "y-" + str(i) + ".npy") np.save(X_path, X) np.save(y_path, y) files.append((X_path, y_path)) return files class Iterator(xgboost.DataIter): """A custom iterator for loading files in batches.""" def __init__(self, file_paths: List[Tuple[str, str]]): self._file_paths = file_paths self._it = 0 # XGBoost will generate some cache files under current directory with the prefix # "cache" super().__init__(cache_prefix=os.path.join(".", "cache")) def load_file(self) -> Tuple[np.ndarray, np.ndarray]: X_path, y_path = self._file_paths[self._it] X = np.load(X_path) y = np.load(y_path) assert X.shape[0] == y.shape[0] return X, y def next(self, input_data: Callable) -> int: """Advance the iterator by 1 step and pass the data to XGBoost. This function is called by XGBoost during the construction of ``DMatrix`` """ if self._it == len(self._file_paths): # return 0 to let XGBoost know this is the end of iteration return 0 # input_data is a function passed in by XGBoost who has the similar signature to # the ``DMatrix`` constructor. X, y = self.load_file() input_data(data=X, label=y) self._it += 1 return 1 def reset(self) -> None: """Reset the iterator to its beginning""" self._it = 0 def main(tmpdir: str) -> xgboost.Booster: # generate some random data for demo files = make_batches(1024, 17, 31, tmpdir) it = Iterator(files) # For non-data arguments, specify it here once instead of passing them by the `next` # method. missing = np.NaN Xy = xgboost.DMatrix(it, missing=missing, enable_categorical=False) # ``approx`` is also supported, but less efficient due to sketching. GPU behaves # differently than CPU tree methods as it uses a hybrid approach. See tutorial in # doc for details. booster = xgboost.train( {"tree_method": "hist", "max_depth": 4}, Xy, evals=[(Xy, "Train")], num_boost_round=10, ) return booster if __name__ == "__main__": with tempfile.TemporaryDirectory() as tmpdir: main(tmpdir)
""" Experimental support for external memory ======================================== This is similar to the one in `quantile_data_iterator.py`, but for external memory instead of Quantile DMatrix. The feature is not ready for production use yet. .. versionadded:: 1.5.0 See :doc:`the tutorial </tutorials/external_memory>` for more details. """ import os import tempfile from typing import Callable, List, Tuple import numpy as np from sklearn.datasets import make_regression import xgboost def make_batches( n_samples_per_batch: int, n_features: int, n_batches: int, tmpdir: str, ) -> List[Tuple[str, str]]: files: List[Tuple[str, str]] = [] rng = np.random.RandomState(1994) for i in range(n_batches): X, y = make_regression(n_samples_per_batch, n_features, random_state=rng) X_path = os.path.join(tmpdir, "X-" + str(i) + ".npy") y_path = os.path.join(tmpdir, "y-" + str(i) + ".npy") np.save(X_path, X) np.save(y_path, y) files.append((X_path, y_path)) return files class Iterator(xgboost.DataIter): """A custom iterator for loading files in batches.""" def __init__(self, file_paths: List[Tuple[str, str]]): self._file_paths = file_paths self._it = 0 # XGBoost will generate some cache files under current directory with the prefix # "cache" super().__init__(cache_prefix=os.path.join(".", "cache")) def load_file(self) -> Tuple[np.ndarray, np.ndarray]: X_path, y_path = self._file_paths[self._it] X = np.load(X_path) y = np.load(y_path) assert X.shape[0] == y.shape[0] return X, y def next(self, input_data: Callable) -> int: """Advance the iterator by 1 step and pass the data to XGBoost. This function is called by XGBoost during the construction of ``DMatrix`` """ if self._it == len(self._file_paths): # return 0 to let XGBoost know this is the end of iteration return 0 # input_data is a function passed in by XGBoost who has the similar signature to # the ``DMatrix`` constructor. X, y = self.load_file() input_data(data=X, label=y) self._it += 1 return 1 def reset(self) -> None: """Reset the iterator to its beginning""" self._it = 0 def main(tmpdir: str) -> xgboost.Booster: # generate some random data for demo files = make_batches(1024, 17, 31, tmpdir) it = Iterator(files) # For non-data arguments, specify it here once instead of passing them by the `next` # method. missing = np.NaN Xy = xgboost.DMatrix(it, missing=missing, enable_categorical=False) # ``approx`` is also supported, but less efficient due to sketching. GPU behaves # differently than CPU tree methods as it uses a hybrid approach. See tutorial in # doc for details. booster = xgboost.train( {"tree_method": "hist", "max_depth": 4}, Xy, evals=[(Xy, "Train")], num_boost_round=10, ) return booster if __name__ == "__main__": with tempfile.TemporaryDirectory() as tmpdir: main(tmpdir)
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression _has_s3fs = importlib.util.find_spec("s3fs") is not None if _has_s3fs: from .s3filesystem import S3FileSystem # noqa: F401 COMPRESSION_FILESYSTEMS: List[compression.BaseCompressedFileFileSystem] = [ compression.Bz2FileSystem, compression.GzipFileSystem, compression.Lz4FileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def extract_path_from_uri(dataset_path: str) -> str: """ Preprocesses `dataset_path` and removes remote filesystem (e.g. removing `s3://`). Args: dataset_path (`str`): Path (e.g. `dataset/train`) or remote uri (e.g. `s3://my-bucket/dataset/train`) of the dataset directory. """ if "://" in dataset_path: dataset_path = dataset_path.split("://")[1] return dataset_path def is_remote_filesystem(fs: fsspec.AbstractFileSystem) -> bool: """ Validates if filesystem has remote protocol. Args: fs (`fsspec.spec.AbstractFileSystem`): An abstract super-class for pythonic file-systems, e.g. `fsspec.filesystem(\'file\')` or [`datasets.filesystems.S3FileSystem`]. """ if fs is not None: protocols = (p,) if isinstance(p := fs.protocol, str) else p if "file" not in protocols: return True return False def rename(fs: fsspec.AbstractFileSystem, src: str, dst: str): """ Renames the file `src` in `fs` to `dst`. """ is_local = not is_remote_filesystem(fs) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(src), fs._strip_protocol(dst)) else: fs.mv(src, dst, recursive=True) def _reset_fsspec_lock() -> None: """ Clear reference to the loop and thread. This is necessary otherwise HTTPFileSystem hangs in the ML training loop. Only required for fsspec >= 0.9.0 See https://github.com/fsspec/gcsfs/issues/379 """ if hasattr(fsspec.asyn, "reset_lock"): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: fsspec.asyn.iothread[0] = None fsspec.asyn.loop[0] = None fsspec.asyn.lock = threading.Lock()
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression _has_s3fs = importlib.util.find_spec("s3fs") is not None if _has_s3fs: from .s3filesystem import S3FileSystem # noqa: F401 COMPRESSION_FILESYSTEMS: List[compression.BaseCompressedFileFileSystem] = [ compression.Bz2FileSystem, compression.GzipFileSystem, compression.Lz4FileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def extract_path_from_uri(dataset_path: str) -> str: """ Preprocesses `dataset_path` and removes remote filesystem (e.g. removing `s3://`). Args: dataset_path (`str`): Path (e.g. `dataset/train`) or remote uri (e.g. `s3://my-bucket/dataset/train`) of the dataset directory. """ if "://" in dataset_path: dataset_path = dataset_path.split("://")[1] return dataset_path def is_remote_filesystem(fs: fsspec.AbstractFileSystem) -> bool: """ Validates if filesystem has remote protocol. Args: fs (`fsspec.spec.AbstractFileSystem`): An abstract super-class for pythonic file-systems, e.g. `fsspec.filesystem(\'file\')` or [`datasets.filesystems.S3FileSystem`]. """ if fs is not None and fs.protocol != "file": return True else: return False def rename(fs: fsspec.AbstractFileSystem, src: str, dst: str): """ Renames the file `src` in `fs` to `dst`. """ is_local = not is_remote_filesystem(fs) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(src), fs._strip_protocol(dst)) else: fs.mv(src, dst, recursive=True) def _reset_fsspec_lock() -> None: """ Clear reference to the loop and thread. This is necessary otherwise HTTPFileSystem hangs in the ML training loop. Only required for fsspec >= 0.9.0 See https://github.com/fsspec/gcsfs/issues/379 """ if hasattr(fsspec.asyn, "reset_lock"): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: fsspec.asyn.iothread[0] = None fsspec.asyn.loop[0] = None fsspec.asyn.lock = threading.Lock()
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='DocArray team', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, install_requires=['numpy', 'rich>=12.0.0', 'jina-hubble-sdk>=0.13.1'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0', 'grpcio>=1.46.0,<1.48.1', 'grpcio-reflection>=1.46.0,<1.48.1', 'grpcio-health-checking>=1.46.0,<1.48.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', ], 'qdrant': [ 'qdrant-client~=0.10.3', ], 'annlite': [ 'annlite', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'redis': [ 'redis>=4.3.0', ], 'benchmark': [ 'pandas', 'seaborn', ], 'test': [ 'protobuf>=3.13.0,<=3.20.0', # pip dependency resolution does not respect this restriction from paddle 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov==3.0.0', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite', 'elasticsearch>=8.2.0', 'redis>=4.3.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='hello@jina.ai', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, install_requires=['numpy', 'rich>=12.0.0', 'jina-hubble-sdk>=0.13.1'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0', 'grpcio>=1.46.0,<1.48.1', 'grpcio-reflection>=1.46.0,<1.48.1', 'grpcio-health-checking>=1.46.0,<1.48.1', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'strawberry-graphql', ], 'qdrant': [ 'qdrant-client~=0.10.3', ], 'annlite': [ 'annlite', ], 'weaviate': [ 'weaviate-client~=3.3.0', ], 'elasticsearch': [ 'elasticsearch>=8.2.0', ], 'redis': [ 'redis>=4.3.0', ], 'benchmark': [ 'pandas', 'seaborn', ], 'test': [ 'protobuf>=3.13.0,<=3.20.0', # pip dependency resolution does not respect this restriction from paddle 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov==3.0.0', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite', 'elasticsearch>=8.2.0', 'redis>=4.3.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
from typing import Literal from langchain_core.documents import Document from langchain_core.indexing.api import _get_document_with_hash def test_hashed_document_hashing() -> None: document = Document( uid="123", page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) hashed_document = _get_document_with_hash(document, key_encoder="sha1") assert isinstance(hashed_document.id, str) def test_to_document() -> None: """Test to_document method.""" original_doc = Document( page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) hashed_doc = _get_document_with_hash(original_doc, key_encoder="sha1") assert isinstance(hashed_doc, Document) assert hashed_doc is not original_doc assert hashed_doc.page_content == "Lorem ipsum dolor sit amet" assert hashed_doc.metadata["key"] == "value" def test_hashing() -> None: """Test from document class method.""" document = Document( page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) hashed_document = _get_document_with_hash(document, key_encoder="sha1") # hash should be deterministic assert hashed_document.id == "fd1dc827-051b-537d-a1fe-1fa043e8b276" # Verify that hashing with sha1 is determinstic another_hashed_document = _get_document_with_hash(document, key_encoder="sha1") assert another_hashed_document.id == hashed_document.id # Verify that the result is different from SHA256, SHA512, blake2b values: list[Literal["sha256", "sha512", "blake2b"]] = [ "sha256", "sha512", "blake2b", ] for key_encoder in values: different_hashed_document = _get_document_with_hash( document, key_encoder=key_encoder ) assert different_hashed_document.id != hashed_document.id def test_hashing_custom_key_encoder() -> None: """Test hashing with a custom key encoder.""" def custom_key_encoder(doc: Document) -> str: return f"quack-{doc.metadata['key']}" document = Document( page_content="Lorem ipsum dolor sit amet", metadata={"key": "like a duck"} ) hashed_document = _get_document_with_hash(document, key_encoder=custom_key_encoder) assert hashed_document.id == "quack-like a duck" assert isinstance(hashed_document.id, str)
import pytest from langchain_core.documents import Document from langchain_core.indexing.api import _HashedDocument def test_hashed_document_hashing() -> None: hashed_document = _HashedDocument( # type: ignore[call-arg] uid="123", page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) assert isinstance(hashed_document.hash_, str) def test_hashing_with_missing_content() -> None: """Check that ValueError is raised if page_content is missing.""" with pytest.raises(TypeError): _HashedDocument( metadata={"key": "value"}, ) # type: ignore[call-arg] def test_uid_auto_assigned_to_hash() -> None: """Test uid is auto-assigned to the hashed_document hash.""" hashed_document = _HashedDocument( # type: ignore[call-arg] page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) assert hashed_document.uid == hashed_document.hash_ def test_to_document() -> None: """Test to_document method.""" hashed_document = _HashedDocument( # type: ignore[call-arg] page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) doc = hashed_document.to_document() assert isinstance(doc, Document) assert doc.page_content == "Lorem ipsum dolor sit amet" assert doc.metadata == {"key": "value"} def test_from_document() -> None: """Test from document class method.""" document = Document( page_content="Lorem ipsum dolor sit amet", metadata={"key": "value"} ) hashed_document = _HashedDocument.from_document(document) # hash should be deterministic assert hashed_document.hash_ == "fd1dc827-051b-537d-a1fe-1fa043e8b276" assert hashed_document.uid == hashed_document.hash_