input
stringlengths
33
5k
output
stringlengths
32
5k
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. TEXT_MIMETYPE = 'text' AUDIO_MIMETYPE = 'audio' IMAGE_MIMETYPE = 'image' OBJ_MIMETYPE = 'application/x-tgif' VIDEO_MIMETYPE = 'video' MESH_EXTRA_EXTENSIONS = [ '3ds', '3mf', 'ac', 'ac3d', 'amf', 'assimp', 'bvh', 'cob', 'collada', 'ctm', 'dxf', 'e57', 'fbx', 'gltf', 'glb', 'ifc', 'lwo', 'lws', 'lxo', 'md2', 'md3', 'md5', 'mdc', 'm3d', 'mdl', 'ms3d', 'nff', 'obj', 'off', 'pcd', 'pod', 'pmd', 'pmx', 'ply', 'q3o', 'q3s', 'raw', 'sib', 'smd', 'stl', 'ter', 'terragen', 'vtk', 'vrml', 'x3d', 'xaml', 'xgl', 'xml', 'xyz', 'zgl', 'vta', ] TEXT_EXTRA_EXTENSIONS = ['md', 'log'] POINT_CLOUD_EXTRA_EXTENSIONS = [ 'ascii', 'bin', 'b3dm', 'bpf', 'dp', 'dxf', 'e57', 'fls', 'fls', 'glb', 'ply', 'gpf', 'las', 'obj', 'osgb', 'pcap', 'pcd', 'pdal', 'pfm', 'ply', 'ply2', 'pod', 'pods', 'pnts', 'ptg', 'ptx', 'pts', 'rcp', 'xyz', 'zfs', ]
TEXT_MIMETYPE = 'text' AUDIO_MIMETYPE = 'audio' IMAGE_MIMETYPE = 'image' OBJ_MIMETYPE = 'application/x-tgif' VIDEO_MIMETYPE = 'video' MESH_EXTRA_EXTENSIONS = [ '3ds', '3mf', 'ac', 'ac3d', 'amf', 'assimp', 'bvh', 'cob', 'collada', 'ctm', 'dxf', 'e57', 'fbx', 'gltf', 'glb', 'ifc', 'lwo', 'lws', 'lxo', 'md2', 'md3', 'md5', 'mdc', 'm3d', 'mdl', 'ms3d', 'nff', 'obj', 'off', 'pcd', 'pod', 'pmd', 'pmx', 'ply', 'q3o', 'q3s', 'raw', 'sib', 'smd', 'stl', 'ter', 'terragen', 'vtk', 'vrml', 'x3d', 'xaml', 'xgl', 'xml', 'xyz', 'zgl', 'vta', ] TEXT_EXTRA_EXTENSIONS = ['md', 'log'] POINT_CLOUD_EXTRA_EXTENSIONS = [ 'ascii', 'bin', 'b3dm', 'bpf', 'dp', 'dxf', 'e57', 'fls', 'fls', 'glb', 'ply', 'gpf', 'las', 'obj', 'osgb', 'pcap', 'pcd', 'pdal', 'pfm', 'ply', 'ply2', 'pod', 'pods', 'pnts', 'ptg', 'ptx', 'pts', 'rcp', 'xyz', 'zfs', ]
import contextlib import os import sqlite3 import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _check_sql_dataset(dataset, expected_features): assert isinstance(dataset, Dataset) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_dataset_from_sql_keep_in_memory(keep_in_memory, sqlite_path, tmp_path, set_sqlalchemy_silence_uber_warning): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = SqlDatasetReader( "dataset", "sqlite:///" + sqlite_path, cache_dir=cache_dir, keep_in_memory=keep_in_memory ).read() _check_sql_dataset(dataset, expected_features) @require_sqlalchemy @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def test_dataset_from_sql_features(features, sqlite_path, tmp_path, set_sqlalchemy_silence_uber_warning): cache_dir = tmp_path / "cache" default_expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = SqlDatasetReader("dataset", "sqlite:///" + sqlite_path, features=features, cache_dir=cache_dir).read() _check_sql_dataset(dataset, expected_features) def iter_sql_file(sqlite_path): with contextlib.closing(sqlite3.connect(sqlite_path)) as con: cur = con.cursor() cur.execute("SELECT * FROM dataset") for row in cur: yield row @require_sqlalchemy def test_dataset_to_sql(sqlite_path, tmp_path, set_sqlalchemy_silence_uber_warning): cache_dir = tmp_path / "cache" output_sqlite_path = os.path.join(cache_dir, "tmp.sql") dataset = SqlDatasetReader("dataset", "sqlite:///" + sqlite_path, cache_dir=cache_dir).read() SqlDatasetWriter(dataset, "dataset", "sqlite:///" + output_sqlite_path, num_proc=1).write() original_sql = iter_sql_file(sqlite_path) expected_sql = iter_sql_file(output_sqlite_path) for row1, row2 in zip(original_sql, expected_sql): assert row1 == row2 @require_sqlalchemy def test_dataset_to_sql_multiproc(sqlite_path, tmp_path, set_sqlalchemy_silence_uber_warning): cache_dir = tmp_path / "cache" output_sqlite_path = os.path.join(cache_dir, "tmp.sql") dataset = SqlDatasetReader("dataset", "sqlite:///" + sqlite_path, cache_dir=cache_dir).read() SqlDatasetWriter(dataset, "dataset", "sqlite:///" + output_sqlite_path, num_proc=2).write() original_sql = iter_sql_file(sqlite_path) expected_sql = iter_sql_file(output_sqlite_path) for row1, row2 in zip(original_sql, expected_sql): assert row1 == row2 @require_sqlalchemy def test_dataset_to_sql_invalidproc(sqlite_path, tmp_path, set_sqlalchemy_silence_uber_warning): cache_dir = tmp_path / "cache" output_sqlite_path = os.path.join(cache_dir, "tmp.sql") dataset = SqlDatasetReader("dataset", "sqlite:///" + sqlite_path, cache_dir=cache_dir).read() with pytest.raises(ValueError): SqlDatasetWriter(dataset, "dataset", "sqlite:///" + output_sqlite_path, num_proc=0).write()
import contextlib import os import sqlite3 import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _check_sql_dataset(dataset, expected_features): assert isinstance(dataset, Dataset) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_dataset_from_sql_keep_in_memory(keep_in_memory, sqlite_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = SqlDatasetReader( "dataset", "sqlite:///" + sqlite_path, cache_dir=cache_dir, keep_in_memory=keep_in_memory ).read() _check_sql_dataset(dataset, expected_features) @require_sqlalchemy @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def test_dataset_from_sql_features(features, sqlite_path, tmp_path): cache_dir = tmp_path / "cache" default_expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = SqlDatasetReader("dataset", "sqlite:///" + sqlite_path, features=features, cache_dir=cache_dir).read() _check_sql_dataset(dataset, expected_features) def iter_sql_file(sqlite_path): with contextlib.closing(sqlite3.connect(sqlite_path)) as con: cur = con.cursor() cur.execute("SELECT * FROM dataset") for row in cur: yield row @require_sqlalchemy def test_dataset_to_sql(sqlite_path, tmp_path): cache_dir = tmp_path / "cache" output_sqlite_path = os.path.join(cache_dir, "tmp.sql") dataset = SqlDatasetReader("dataset", "sqlite:///" + sqlite_path, cache_dir=cache_dir).read() SqlDatasetWriter(dataset, "dataset", "sqlite:///" + output_sqlite_path, num_proc=1).write() original_sql = iter_sql_file(sqlite_path) expected_sql = iter_sql_file(output_sqlite_path) for row1, row2 in zip(original_sql, expected_sql): assert row1 == row2 @require_sqlalchemy def test_dataset_to_sql_multiproc(sqlite_path, tmp_path): cache_dir = tmp_path / "cache" output_sqlite_path = os.path.join(cache_dir, "tmp.sql") dataset = SqlDatasetReader("dataset", "sqlite:///" + sqlite_path, cache_dir=cache_dir).read() SqlDatasetWriter(dataset, "dataset", "sqlite:///" + output_sqlite_path, num_proc=2).write() original_sql = iter_sql_file(sqlite_path) expected_sql = iter_sql_file(output_sqlite_path) for row1, row2 in zip(original_sql, expected_sql): assert row1 == row2 @require_sqlalchemy def test_dataset_to_sql_invalidproc(sqlite_path, tmp_path): cache_dir = tmp_path / "cache" output_sqlite_path = os.path.join(cache_dir, "tmp.sql") dataset = SqlDatasetReader("dataset", "sqlite:///" + sqlite_path, cache_dir=cache_dir).read() with pytest.raises(ValueError): SqlDatasetWriter(dataset, "dataset", "sqlite:///" + output_sqlite_path, num_proc=0).write()
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders.parsers.html.bs4 import BS4HTMLParser # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "BS4HTMLParser": "langchain_community.document_loaders.parsers.html.bs4", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "BS4HTMLParser", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders.parsers.html.bs4 import BS4HTMLParser # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "BS4HTMLParser": "langchain_community.document_loaders.parsers.html.bs4" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "BS4HTMLParser", ]
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import pytest from mmengine import Config, DefaultScope from mmengine.hub import get_config, get_model from mmengine.utils import get_installed_path, is_installed data_path = osp.join(osp.dirname(osp.dirname(__file__)), 'data/') # mmdet has a more typical config structure, while mmpose has a complex # config structure @pytest.mark.skipif( not (is_installed('mmdet') and is_installed('mmpose')), reason='mmdet and mmpose should be installed') def test_get_config(): # Test load base config. base_cfg = get_config('mmdet::_base_/models/faster-rcnn_r50_fpn.py') package_path = get_installed_path('mmdet') test_base_cfg = Config.fromfile( osp.join(package_path, '.mim', 'configs/_base_/models/faster-rcnn_r50_fpn.py')) assert test_base_cfg._cfg_dict == base_cfg._cfg_dict # Test load faster_rcnn config cfg = get_config('mmdet::faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py') test_cfg = Config.fromfile( osp.join(package_path, '.mim', 'configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py')) assert cfg._cfg_dict == test_cfg._cfg_dict # Test pretrained cfg = get_config( 'mmdet::faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py', pretrained=True) assert cfg.model_path == 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # noqa E301 # Test load mmpose get_config( 'mmpose::face_2d_keypoint/topdown_heatmap/wflw/td-hm_hrnetv2-w18_8xb64-60e_wflw-256x256.py' # noqa E501 ) @pytest.mark.skipif( not is_installed('mmdet'), reason='mmdet and mmpose should be installed') def test_get_model(): # TODO compatible with downstream codebase. DefaultScope.get_instance('test_get_model', scope_name='test_scope') get_model('mmdet::faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py') assert DefaultScope.get_current_instance().scope_name == 'test_scope' DefaultScope._instance_dict.pop('test_get_model')
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import pytest from mmengine import Config, DefaultScope from mmengine.hub import get_config, get_model from mmengine.utils import get_installed_path, is_installed data_path = osp.join(osp.dirname(osp.dirname(__file__)), 'data/') # mmdet has a more typical config structure, while mmpose has a complex # config structure @pytest.mark.skipif( not (is_installed('mmdet') and is_installed('mmpose')), reason='mmdet and mmpose should be installed') def test_get_config(): # Test load base config. base_cfg = get_config('mmdet::_base_/models/faster-rcnn_r50_fpn.py') package_path = get_installed_path('mmdet') test_base_cfg = Config.fromfile( osp.join(package_path, '.mim', 'configs/_base_/models/faster-rcnn_r50_fpn.py')) assert test_base_cfg._cfg_dict == base_cfg._cfg_dict # Test load faster_rcnn config cfg = get_config('mmdet::faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py') test_cfg = Config.fromfile( osp.join(package_path, '.mim', 'configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py')) assert cfg._cfg_dict == test_cfg._cfg_dict # Test pretrained cfg = get_config( 'mmdet::faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py', pretrained=True) assert cfg.model_path == 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # noqa E301 # Test load mmpose get_config( 'mmpose::face/2d_kpt_sview_rgb_img/deeppose/wflw/res50_wflw_256x256' '.py') @pytest.mark.skipif( not is_installed('mmdet'), reason='mmdet and mmpose should be installed') def test_get_model(): # TODO compatible with downstream codebase. DefaultScope.get_instance('test_get_model', scope_name='test_scope') get_model('mmdet::faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py') assert DefaultScope.get_current_instance().scope_name == 'test_scope' DefaultScope._instance_dict.pop('test_get_model')
_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py' train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict( type='InstaBoost', action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) max_epochs = 48 param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[32, 44], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # only keep latest 3 checkpoints default_hooks = dict(checkpoint=dict(max_keep_ckpts=3))
_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict( type='InstaBoost', action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) max_epochs = 48 param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[32, 44], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # only keep latest 3 checkpoints default_hooks = dict(checkpoint=dict(max_keep_ckpts=3))
from typing import List, Optional import torchaudio from torchaudio._internal.module_utils import deprecated from . import utils # TODO: Once legacy global backend is removed, move this to torchaudio.__init__ def _init_backend(): torchaudio.info = utils.get_info_func() torchaudio.load = utils.get_load_func() torchaudio.save = utils.get_save_func() def list_audio_backends() -> List[str]: """List available backends Returns: list of str: The list of available backends. The possible values are; - Dispatcher mode: ``"ffmpeg"``, ``"sox"`` and ``"soundfile"``. - Legacy backend mode: ``"sox_io"``, ``"soundfile"``. """ return list(utils.get_available_backends().keys()) # Temporary until global backend is removed @deprecated("With dispatcher enabled, this function is no-op. You can remove the function call.") def get_audio_backend() -> Optional[str]: """Get the name of the current global backend Returns: str or None: If dispatcher mode is enabled, returns ``None`` otherwise, the name of current backend or ``None`` (no backend is set). """ return None # Temporary until global backend is removed @deprecated("With dispatcher enabled, this function is no-op. You can remove the function call.") def set_audio_backend(backend: Optional[str]): # noqa """Set the global backend. This is a no-op when dispatcher mode is enabled. Args: backend (str or None): Name of the backend. One of ``"sox_io"`` or ``"soundfile"`` based on availability of the system. If ``None`` is provided the current backend is unassigned. """ pass
import warnings from typing import List, Optional import torchaudio from . import utils # TODO: Once legacy global backend is removed, move this to torchaudio.__init__ def _init_backend(): torchaudio.info = utils.get_info_func() torchaudio.load = utils.get_load_func() torchaudio.save = utils.get_save_func() def list_audio_backends() -> List[str]: return list(utils.get_available_backends().keys()) # Temporary until global backend is removed def get_audio_backend() -> Optional[str]: warnings.warn("I/O Dispatcher is enabled. There is no global audio backend.", stacklevel=2) return None # Temporary until global backend is removed def set_audio_backend(_: Optional[str]): warnings.warn("I/O Dispatcher is enabled. set_audio_backend is a no-op", stacklevel=2)
from __future__ import annotations from collections.abc import Collection from dataclasses import dataclass, field from typing import Any, Callable import torch from sentence_transformers.data_collator import SentenceTransformerDataCollator @dataclass class CrossEncoderDataCollator(SentenceTransformerDataCollator): """Collator for a CrossEncoder model. This encodes the text columns to {column}_input_ids and {column}_attention_mask columns. This works with the two text dataset that is used as the example in the training overview: https://www.sbert.net/docs/sentence_transformer/training_overview.html It is important that the columns are in the expected order. For example, if your dataset has columns "answer", "question" in that order, then the MultipleNegativesRankingLoss will consider "answer" as the anchor and "question" as the positive, and it will (unexpectedly) optimize for "given the answer, what is the question?". """ tokenize_fn: Callable valid_label_columns: list[str] = field(default_factory=lambda: ["label", "labels", "score", "scores"]) _warned_columns: set[tuple[str]] = field(default_factory=set, init=False, repr=False) def __call__(self, features: list[dict[str, Any]]) -> dict[str, torch.Tensor]: column_names = list(features[0].keys()) # We should always be able to return a loss, label or not: batch = {} if "dataset_name" in column_names: column_names.remove("dataset_name") batch["dataset_name"] = features[0]["dataset_name"] # Extract the label column if it exists for label_column in self.valid_label_columns: if label_column in column_names: # If the label column is a list/tuple/collection, we create a list of tensors if isinstance(features[0][label_column], Collection): batch["label"] = [torch.tensor(row[label_column]) for row in features] else: # Otherwise, if it's e.g. single values, we create a tensor batch["label"] = torch.tensor([row[label_column] for row in features]) column_names.remove(label_column) break for column_name in column_names: # If the prompt length has been set, we should add it to the batch if column_name.endswith("_prompt_length") and column_name[: -len("_prompt_length")] in column_names: batch[column_name] = torch.tensor([row[column_name] for row in features], dtype=torch.int) continue batch[column_name] = [row[column_name] for row in features] return batch
from __future__ import annotations from dataclasses import field from typing import Any, Callable import torch from sentence_transformers.data_collator import SentenceTransformerDataCollator class CrossEncoderDataCollator(SentenceTransformerDataCollator): """Collator for a CrossEncoder model. This encodes the text columns to {column}_input_ids and {column}_attention_mask columns. This works with the two text dataset that is used as the example in the training overview: https://www.sbert.net/docs/sentence_transformer/training_overview.html It is important that the columns are in the expected order. For example, if your dataset has columns "answer", "question" in that order, then the MultipleNegativesRankingLoss will consider "answer" as the anchor and "question" as the positive, and it will (unexpectedly) optimize for "given the answer, what is the question?". """ tokenize_fn: Callable valid_label_columns: list[str] = field(default_factory=lambda: ["label", "score"]) _warned_columns: set[tuple[str]] = field(default_factory=set, init=False, repr=False) def __call__(self, features: list[dict[str, Any]]) -> dict[str, torch.Tensor]: column_names = list(features[0].keys()) # We should always be able to return a loss, label or not: batch = {} if "dataset_name" in column_names: column_names.remove("dataset_name") batch["dataset_name"] = features[0]["dataset_name"] # TODO: # if tuple(column_names) not in self._warned_columns: # self.maybe_warn_about_column_order(column_names) # Extract the label column if it exists for label_column in self.valid_label_columns: if label_column in column_names: batch["label"] = torch.tensor([row[label_column] for row in features]) column_names.remove(label_column) break for column_name in column_names: # If the prompt length has been set, we should add it to the batch if column_name.endswith("_prompt_length") and column_name[: -len("_prompt_length")] in column_names: batch[column_name] = torch.tensor([row[column_name] for row in features], dtype=torch.int) continue # tokenized = self.tokenize_fn([row[column_name] for row in features]) # for key, value in tokenized.items(): # batch[f"{column_name}_{key}"] = value batch[column_name] = [row[column_name] for row in features] return batch
from __future__ import annotations from sentence_transformers.sparse_encoder.evaluation.ReciprocalRankFusionEvaluator import ( ReciprocalRankFusionEvaluator, ) from sentence_transformers.sparse_encoder.evaluation.SparseBinaryClassificationEvaluator import ( SparseBinaryClassificationEvaluator, ) from sentence_transformers.sparse_encoder.evaluation.SparseEmbeddingSimilarityEvaluator import ( SparseEmbeddingSimilarityEvaluator, ) from sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator import ( SparseInformationRetrievalEvaluator, ) from sentence_transformers.sparse_encoder.evaluation.SparseMSEEvaluator import ( SparseMSEEvaluator, ) from sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator import ( SparseNanoBEIREvaluator, ) from sentence_transformers.sparse_encoder.evaluation.SparseRerankingEvaluator import ( SparseRerankingEvaluator, ) from sentence_transformers.sparse_encoder.evaluation.SparseTranslationEvaluator import ( SparseTranslationEvaluator, ) from sentence_transformers.sparse_encoder.evaluation.SparseTripletEvaluator import ( SparseTripletEvaluator, ) __all__ = [ "SparseEmbeddingSimilarityEvaluator", "SparseInformationRetrievalEvaluator", "SparseBinaryClassificationEvaluator", "SparseMSEEvaluator", "SparseNanoBEIREvaluator", "SparseTripletEvaluator", "SparseTranslationEvaluator", "SparseRerankingEvaluator", "ReciprocalRankFusionEvaluator", ]
from __future__ import annotations from sentence_transformers.sparse_encoder.evaluation.SparseBinaryClassificationEvaluator import ( SparseBinaryClassificationEvaluator, ) from sentence_transformers.sparse_encoder.evaluation.SparseEmbeddingSimilarityEvaluator import ( SparseEmbeddingSimilarityEvaluator, ) from sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator import ( SparseInformationRetrievalEvaluator, ) from sentence_transformers.sparse_encoder.evaluation.SparseMSEEvaluator import ( SparseMSEEvaluator, ) from sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator import ( SparseNanoBEIREvaluator, ) from sentence_transformers.sparse_encoder.evaluation.SparseRerankingEvaluator import ( SparseRerankingEvaluator, ) from sentence_transformers.sparse_encoder.evaluation.SparseTranslationEvaluator import ( SparseTranslationEvaluator, ) from sentence_transformers.sparse_encoder.evaluation.SparseTripletEvaluator import ( SparseTripletEvaluator, ) __all__ = [ "SparseEmbeddingSimilarityEvaluator", "SparseInformationRetrievalEvaluator", "SparseBinaryClassificationEvaluator", "SparseMSEEvaluator", "SparseNanoBEIREvaluator", "SparseTripletEvaluator", "SparseTranslationEvaluator", "SparseRerankingEvaluator", ]
from abc import abstractmethod from typing import Iterable, Iterator from qdrant_client import QdrantClient from qdrant_client.http.exceptions import UnexpectedResponse from qdrant_client.http.models.models import ( PointIdsList, PointStruct, VectorParams, ) from docarray import Document from docarray.array.storage.base.getsetdel import BaseGetSetDelMixin from docarray.array.storage.base.helper import Offset2ID class GetSetDelMixin(BaseGetSetDelMixin): @property @abstractmethod def client(self) -> QdrantClient: raise NotImplementedError() @property @abstractmethod def serialization_config(self) -> dict: raise NotImplementedError() @property @abstractmethod def n_dim(self) -> int: raise NotImplementedError() @property @abstractmethod def collection_name(self) -> str: raise NotImplementedError() @property @abstractmethod def scroll_batch_size(self) -> int: raise NotImplementedError() def _upload_batch(self, docs: Iterable['Document']): batch = [] for doc in docs: batch.append(self._document_to_qdrant(doc)) if len(batch) > self.scroll_batch_size: self.client.upsert( collection_name=self.collection_name, points=batch, wait=True, ) batch = [] if len(batch) > 0: self.client.upsert( collection_name=self.collection_name, wait=True, points=batch, ) def _qdrant_to_document(self, qdrant_record: dict) -> 'Document': return Document.from_base64( qdrant_record['_serialized'], **self.serialization_config ) def _document_to_qdrant(self, doc: 'Document') -> 'PointStruct': extra_columns = { col: doc.tags.get(col) for col, _ in self._config.columns.items() } return PointStruct( id=self._map_id(doc.id), payload=dict( _serialized=doc.to_base64(**self.serialization_config), **extra_columns ), vector=self._map_embedding(doc.embedding), ) def _get_doc_by_id(self, _id: str) -> 'Document': try: resp = self.client.retrieve( collection_name=self.collection_name, ids=[self._map_id(_id)] ) if len(resp) == 0: raise KeyError(_id) return self._qdrant_to_document(resp[0].payload) except UnexpectedResponse as response_error: if response_error.status_code in [404, 400]: raise KeyError(_id) def _del_doc_by_id(self, _id: str): self.client.delete( collection_name=self.collection_name, points_selector=PointIdsList(points=[self._map_id(_id)]), wait=True, ) def _set_doc_by_id(self, _id: str, value: 'Document'): if _id != value.id: self._del_doc_by_id(_id) self.client.upsert( collection_name=self.collection_name, wait=True, points=[self._document_to_qdrant(value)], ) def scan(self) -> Iterator['Document']: offset = None while True: response, next_page = self.client.scroll( collection_name=self.collection_name, offset=offset, limit=self.scroll_batch_size, with_payload=['_serialized'], with_vectors=False, ) for point in response: yield self._qdrant_to_document(point.payload) if next_page: offset = next_page else: break def _load_offset2ids(self): ids = self._get_offset2ids_meta() self._offset2ids = Offset2ID(ids) def _save_offset2ids(self): self._update_offset2ids_meta() def _clear_storage(self): self.client.recreate_collection( self.collection_name, vectors_config=VectorParams( size=self.n_dim, distance=self.distance, ), )
from abc import abstractmethod from typing import Iterable, Iterator from qdrant_client import QdrantClient from qdrant_client.http.exceptions import UnexpectedResponse from qdrant_client.http.models.models import ( PointIdsList, PointsList, ScrollRequest, PointStruct, ) from docarray import Document from docarray.array.storage.base.getsetdel import BaseGetSetDelMixin from docarray.array.storage.base.helper import Offset2ID class GetSetDelMixin(BaseGetSetDelMixin): @property @abstractmethod def client(self) -> QdrantClient: raise NotImplementedError() @property @abstractmethod def serialization_config(self) -> dict: raise NotImplementedError() @property @abstractmethod def n_dim(self) -> int: raise NotImplementedError() @property @abstractmethod def collection_name(self) -> str: raise NotImplementedError() @property @abstractmethod def scroll_batch_size(self) -> int: raise NotImplementedError() def _upload_batch(self, docs: Iterable['Document']): batch = [] for doc in docs: batch.append(self._document_to_qdrant(doc)) if len(batch) > self.scroll_batch_size: self.client.http.points_api.upsert_points( collection_name=self.collection_name, wait=True, point_insert_operations=PointsList(points=batch), ) batch = [] if len(batch) > 0: self.client.http.points_api.upsert_points( collection_name=self.collection_name, wait=True, point_insert_operations=PointsList(points=batch), ) def _qdrant_to_document(self, qdrant_record: dict) -> 'Document': return Document.from_base64( qdrant_record['_serialized'], **self.serialization_config ) def _document_to_qdrant(self, doc: 'Document') -> 'PointStruct': extra_columns = { col: doc.tags.get(col) for col, _ in self._config.columns.items() } return PointStruct( id=self._map_id(doc.id), payload=dict( _serialized=doc.to_base64(**self.serialization_config), **extra_columns ), vector=self._map_embedding(doc.embedding), ) def _get_doc_by_id(self, _id: str) -> 'Document': try: resp = self.client.http.points_api.get_point( collection_name=self.collection_name, id=self._map_id(_id) ) return self._qdrant_to_document(resp.result.payload) except UnexpectedResponse as response_error: if response_error.status_code in [404, 400]: raise KeyError(_id) def _del_doc_by_id(self, _id: str): self.client.http.points_api.delete_points( collection_name=self.collection_name, wait=True, points_selector=PointIdsList(points=[self._map_id(_id)]), ) def _set_doc_by_id(self, _id: str, value: 'Document'): if _id != value.id: self._del_doc_by_id(_id) self.client.http.points_api.upsert_points( collection_name=self.collection_name, wait=True, point_insert_operations=PointsList( points=[self._document_to_qdrant(value)] ), ) def scan(self) -> Iterator['Document']: offset = None while True: response = self.client.http.points_api.scroll_points( collection_name=self.collection_name, scroll_request=ScrollRequest( offset=offset, limit=self.scroll_batch_size, with_payload=['_serialized'], with_vector=False, ), ) for point in response.result.points: yield self._qdrant_to_document(point.payload) if response.result.next_page_offset: offset = response.result.next_page_offset else: break def _load_offset2ids(self): ids = self._get_offset2ids_meta() self._offset2ids = Offset2ID(ids) def _save_offset2ids(self): self._update_offset2ids_meta() def _clear_storage(self): self._client.recreate_collection( self.collection_name, vector_size=self.n_dim, distance=self.distance, )
"""OpenAI Finetuning.""" import logging import os import time from typing import Any, Optional import openai from openai import OpenAI as SyncOpenAI from openai.types.fine_tuning import FineTuningJob from llama_index.core.llms.llm import LLM from llama_index.finetuning.callbacks.finetuning_handler import OpenAIFineTuningHandler from llama_index.finetuning.openai.validate_json import validate_json from llama_index.finetuning.types import BaseLLMFinetuneEngine from llama_index.llms.openai import OpenAI logger = logging.getLogger(__name__) class OpenAIFinetuneEngine(BaseLLMFinetuneEngine): """OpenAI Finetuning Engine.""" def __init__( self, base_model: str, data_path: str, verbose: bool = False, start_job_id: Optional[str] = None, validate_json: bool = True, ) -> None: """Init params.""" self.base_model = base_model self.data_path = data_path self._verbose = verbose self._validate_json = validate_json self._start_job: Optional[Any] = None self._client = SyncOpenAI(api_key=os.getenv("OPENAI_API_KEY", None)) if start_job_id is not None: self._start_job = self._client.fine_tuning.jobs.retrieve(start_job_id) @classmethod def from_finetuning_handler( cls, finetuning_handler: OpenAIFineTuningHandler, base_model: str, data_path: str, **kwargs: Any, ) -> "OpenAIFinetuneEngine": """ Initialize from finetuning handler. Used to finetune an OpenAI model into another OpenAI model (e.g. gpt-3.5-turbo on top of GPT-4). """ finetuning_handler.save_finetuning_events(data_path) return cls(base_model=base_model, data_path=data_path, **kwargs) def finetune(self) -> None: """Finetune model.""" if self._validate_json: validate_json(self.data_path) # TODO: figure out how to specify file name in the new API # file_name = os.path.basename(self.data_path) # upload file with open(self.data_path, "rb") as f: output = self._client.files.create(file=f, purpose="fine-tune") logger.info("File uploaded...") if self._verbose: print("File uploaded...") # launch training while True: try: job_output = self._client.fine_tuning.jobs.create( training_file=output.id, model=self.base_model ) self._start_job = job_output break except openai.BadRequestError: print("Waiting for file to be ready...") time.sleep(60) info_str = ( f"Training job {output.id} launched. " "You will be emailed when it's complete." ) logger.info(info_str) if self._verbose: print(info_str) def get_current_job(self) -> FineTuningJob: """Get current job.""" # validate that it works if not self._start_job: raise ValueError("Must call finetune() first") # try getting id, make sure that run succeeded job_id = self._start_job.id return self._client.fine_tuning.jobs.retrieve(job_id) def get_finetuned_model(self, **model_kwargs: Any) -> LLM: """Gets finetuned model.""" current_job = self.get_current_job() job_id = current_job.id status = current_job.status model_id = current_job.fine_tuned_model if model_id is None: raise ValueError( f"Job {job_id} does not have a finetuned model id ready yet." ) if status != "succeeded": raise ValueError(f"Job {job_id} has status {status}, cannot get model") return OpenAI(model=model_id, **model_kwargs)
"""OpenAI Finetuning.""" import logging import os import time from typing import Any, Optional import openai from openai import OpenAI as SyncOpenAI from openai.types.fine_tuning import FineTuningJob from llama_index.core.llms.llm import LLM from llama_index.finetuning.callbacks.finetuning_handler import OpenAIFineTuningHandler from llama_index.finetuning.openai.validate_json import validate_json from llama_index.finetuning.types import BaseLLMFinetuneEngine from llama_index.llms.openai import OpenAI logger = logging.getLogger(__name__) class OpenAIFinetuneEngine(BaseLLMFinetuneEngine): """OpenAI Finetuning Engine.""" def __init__( self, base_model: str, data_path: str, verbose: bool = False, start_job_id: Optional[str] = None, validate_json: bool = True, ) -> None: """Init params.""" self.base_model = base_model self.data_path = data_path self._verbose = verbose self._validate_json = validate_json self._start_job: Optional[Any] = None self._client = SyncOpenAI(api_key=os.getenv("OPENAI_API_KEY", None)) if start_job_id is not None: self._start_job = self._client.fine_tuning.jobs.retrieve(start_job_id) @classmethod def from_finetuning_handler( cls, finetuning_handler: OpenAIFineTuningHandler, base_model: str, data_path: str, **kwargs: Any, ) -> "OpenAIFinetuneEngine": """Initialize from finetuning handler. Used to finetune an OpenAI model into another OpenAI model (e.g. gpt-3.5-turbo on top of GPT-4). """ finetuning_handler.save_finetuning_events(data_path) return cls(base_model=base_model, data_path=data_path, **kwargs) def finetune(self) -> None: """Finetune model.""" if self._validate_json: validate_json(self.data_path) # TODO: figure out how to specify file name in the new API # file_name = os.path.basename(self.data_path) # upload file with open(self.data_path, "rb") as f: output = self._client.files.create(file=f, purpose="fine-tune") logger.info("File uploaded...") if self._verbose: print("File uploaded...") # launch training while True: try: job_output = self._client.fine_tuning.jobs.create( training_file=output.id, model=self.base_model ) self._start_job = job_output break except openai.BadRequestError: print("Waiting for file to be ready...") time.sleep(60) info_str = ( f"Training job {output.id} launched. " "You will be emailed when it's complete." ) logger.info(info_str) if self._verbose: print(info_str) def get_current_job(self) -> FineTuningJob: """Get current job.""" # validate that it works if not self._start_job: raise ValueError("Must call finetune() first") # try getting id, make sure that run succeeded job_id = self._start_job.id return self._client.fine_tuning.jobs.retrieve(job_id) def get_finetuned_model(self, **model_kwargs: Any) -> LLM: """Gets finetuned model.""" current_job = self.get_current_job() job_id = current_job.id status = current_job.status model_id = current_job.fine_tuned_model if model_id is None: raise ValueError( f"Job {job_id} does not have a finetuned model id ready yet." ) if status != "succeeded": raise ValueError(f"Job {job_id} has status {status}, cannot get model") return OpenAI(model=model_id, **model_kwargs)
import torchaudio try: torchaudio._extension._load_lib("libtorchaudio_decoder") from .ctc_decoder import Hypothesis, CTCDecoder, ctc_decoder, lexicon_decoder, download_pretrained_files except ImportError as err: raise ImportError( "flashlight decoder bindings are required to use this functionality. " "Please set BUILD_CTC_DECODER=1 when building from source." ) from err __all__ = [ "Hypothesis", "CTCDecoder", "ctc_decoder", "lexicon_decoder", "download_pretrained_files", ]
import torchaudio try: torchaudio._extension._load_lib("libtorchaudio_decoder") from .ctc_decoder import Hypothesis, LexiconDecoder, lexicon_decoder, download_pretrained_files except ImportError as err: raise ImportError( "flashlight decoder bindings are required to use this functionality. " "Please set BUILD_CTC_DECODER=1 when building from source." ) from err __all__ = [ "Hypothesis", "LexiconDecoder", "lexicon_decoder", "download_pretrained_files", ]
from typing import Dict, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field from langchain_community.tools.gmail.base import GmailBaseTool class GetThreadSchema(BaseModel): """Input for GetMessageTool.""" # From https://support.google.com/mail/answer/7190?hl=en thread_id: str = Field( ..., description="The thread ID.", ) class GmailGetThread(GmailBaseTool): """Tool that gets a thread by ID from Gmail.""" name: str = "get_gmail_thread" description: str = ( "Use this tool to search for email messages." " The input must be a valid Gmail query." " The output is a JSON list of messages." ) args_schema: Type[GetThreadSchema] = GetThreadSchema def _run( self, thread_id: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> Dict: """Run the tool.""" query = self.api_resource.users().threads().get(userId="me", id=thread_id) thread_data = query.execute() if not isinstance(thread_data, dict): raise ValueError("The output of the query must be a list.") messages = thread_data["messages"] thread_data["messages"] = [] keys_to_keep = ["id", "snippet", "snippet"] # TODO: Parse body. for message in messages: thread_data["messages"].append( {k: message[k] for k in keys_to_keep if k in message} ) return thread_data
from typing import Dict, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field from langchain_community.tools.gmail.base import GmailBaseTool class GetThreadSchema(BaseModel): """Input for GetMessageTool.""" # From https://support.google.com/mail/answer/7190?hl=en thread_id: str = Field( ..., description="The thread ID.", ) class GmailGetThread(GmailBaseTool): # type: ignore[override, override] """Tool that gets a thread by ID from Gmail.""" name: str = "get_gmail_thread" description: str = ( "Use this tool to search for email messages." " The input must be a valid Gmail query." " The output is a JSON list of messages." ) args_schema: Type[GetThreadSchema] = GetThreadSchema def _run( self, thread_id: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> Dict: """Run the tool.""" query = self.api_resource.users().threads().get(userId="me", id=thread_id) thread_data = query.execute() if not isinstance(thread_data, dict): raise ValueError("The output of the query must be a list.") messages = thread_data["messages"] thread_data["messages"] = [] keys_to_keep = ["id", "snippet", "snippet"] # TODO: Parse body. for message in messages: thread_data["messages"].append( {k: message[k] for k in keys_to_keep if k in message} ) return thread_data
import os import re import subprocess from keras.src import backend # For torch, use index url to avoid installing nvidia drivers for the test. BACKEND_REQ = { "tensorflow": ("tensorflow-cpu", ""), "torch": ( "torch", "--extra-index-url https://download.pytorch.org/whl/cpu ", ), "jax": ("jax[cpu]", ""), "openvino": ("openvino", ""), } def setup_package(): subprocess.run("rm -rf tmp_build_dir", shell=True) build_process = subprocess.run( "python3 pip_build.py", capture_output=True, text=True, shell=True, ) print(build_process.stdout) whl_path = re.findall( r"[^\s]*\.whl", build_process.stdout, ) if not whl_path: print(build_process.stdout) print(build_process.stderr) raise ValueError("Installing Keras package unsuccessful. ") return whl_path[-1] def create_virtualenv(): env_setup = [ # Create virtual environment "python3 -m venv test_env", ] os.environ["PATH"] = ( "/test_env/bin/" + os.pathsep + os.environ.get("PATH", "") ) run_commands_local(env_setup) def manage_venv_installs(whl_path): other_backends = list(set(BACKEND_REQ.keys()) - {backend.backend()}) backend_pkg, backend_extra_url = BACKEND_REQ[backend.backend()] install_setup = [ # Installs the backend's package and common requirements "pip install " + backend_extra_url + backend_pkg, "pip install -r requirements-common.txt", "pip install pytest", # Ensure other backends are uninstalled "pip uninstall -y " + BACKEND_REQ[other_backends[0]][0] + " " + BACKEND_REQ[other_backends[1]][0] + " " + BACKEND_REQ[other_backends[2]][0], # Install `.whl` package "pip install " + whl_path, ] run_commands_venv(install_setup) def run_keras_flow(): test_script = [ # Runs the example script "python -m pytest integration_tests/basic_full_flow.py", ] run_commands_venv(test_script) def cleanup(): cleanup_script = [ # Exits virtual environment, deletes files, and any # miscellaneous install logs "exit", "rm -rf test_env", "rm -rf tmp_build_dir", "rm -f *+cpu", ] run_commands_local(cleanup_script) def run_commands_local(commands): for command in commands: print(f"Running command: {command}") subprocess.run(command, shell=True) def run_commands_venv(commands): for command in commands: print(f"Running command: {command}") cmd_with_args = command.split(" ") cmd_with_args[0] = "test_env/bin/" + cmd_with_args[0] p = subprocess.Popen(cmd_with_args) assert p.wait() == 0 def test_keras_imports(): try: # Ensures packages from all backends are installed. # Builds Keras core package and returns package file path. whl_path = setup_package() # Creates and activates a virtual environment. create_virtualenv() # Ensures the backend's package is installed # and the other backends are uninstalled. manage_venv_installs(whl_path) # Runs test of basic flow in Keras Core. # Tests for backend-specific imports and `model.fit()`. run_keras_flow() # Removes virtual environment and associated files finally: cleanup() if __name__ == "__main__": test_keras_imports()
import os import re import subprocess from keras.src import backend # For torch, use index url to avoid installing nvidia drivers for the test. BACKEND_REQ = { "tensorflow": ("tensorflow-cpu", ""), "torch": ( "torch", "--extra-index-url https://download.pytorch.org/whl/cpu ", ), "jax": ("jax[cpu]", ""), "openvino": ("openvino", ""), } def setup_package(): subprocess.run("rm -rf tmp_build_dir", shell=True) build_process = subprocess.run( "python3 pip_build.py", capture_output=True, text=True, shell=True, ) print(build_process.stdout) whl_path = re.findall( r"[^\s]*\.whl", build_process.stdout, )[-1] if not whl_path: print(build_process.stderr) raise ValueError("Installing Keras package unsuccessful. ") return whl_path def create_virtualenv(): env_setup = [ # Create virtual environment "python3 -m venv test_env", ] os.environ["PATH"] = ( "/test_env/bin/" + os.pathsep + os.environ.get("PATH", "") ) run_commands_local(env_setup) def manage_venv_installs(whl_path): other_backends = list(set(BACKEND_REQ.keys()) - {backend.backend()}) backend_pkg, backend_extra_url = BACKEND_REQ[backend.backend()] install_setup = [ # Installs the backend's package and common requirements "pip install " + backend_extra_url + backend_pkg, "pip install -r requirements-common.txt", "pip install pytest", # Ensure other backends are uninstalled "pip uninstall -y " + BACKEND_REQ[other_backends[0]][0] + " " + BACKEND_REQ[other_backends[1]][0] + " " + BACKEND_REQ[other_backends[2]][0], # Install `.whl` package "pip install " + whl_path, ] run_commands_venv(install_setup) def run_keras_flow(): test_script = [ # Runs the example script "python -m pytest integration_tests/basic_full_flow.py", ] run_commands_venv(test_script) def cleanup(): cleanup_script = [ # Exits virtual environment, deletes files, and any # miscellaneous install logs "exit", "rm -rf test_env", "rm -rf tmp_build_dir", "rm -f *+cpu", ] run_commands_local(cleanup_script) def run_commands_local(commands): for command in commands: print(f"Running command: {command}") subprocess.run(command, shell=True) def run_commands_venv(commands): for command in commands: print(f"Running command: {command}") cmd_with_args = command.split(" ") cmd_with_args[0] = "test_env/bin/" + cmd_with_args[0] p = subprocess.Popen(cmd_with_args) assert p.wait() == 0 def test_keras_imports(): try: # Ensures packages from all backends are installed. # Builds Keras core package and returns package file path. whl_path = setup_package() # Creates and activates a virtual environment. create_virtualenv() # Ensures the backend's package is installed # and the other backends are uninstalled. manage_venv_installs(whl_path) # Runs test of basic flow in Keras Core. # Tests for backend-specific imports and `model.fit()`. run_keras_flow() # Removes virtual environment and associated files finally: cleanup() if __name__ == "__main__": test_keras_imports()
"""Test embedding utility functions.""" import numpy as np from llama_index.core.indices.query.embedding_utils import ( get_top_k_embeddings, get_top_k_mmr_embeddings, ) def test_get_top_k_mmr_embeddings() -> None: """Test Maximum Marginal Relevance.""" # Results score should follow from the mmr algorithm query_embedding = [5.0, 0.0, 0.0] embeddings = [[4.0, 3.0, 0.0], [3.0, 4.0, 0.0], [-4.0, 3.0, 0.0]] result_similarities, result_ids = get_top_k_mmr_embeddings( query_embedding, embeddings, mmr_threshold=0.8 ) assert np.isclose(0.8 * 4 / 5, result_similarities[0], atol=0.00001) assert np.isclose( 0.8 * 3 / 5 - (1 - 0.8) * (3 * 4 / 25 + 3 * 4 / 25), result_similarities[1], atol=0.00001, ) assert np.isclose( 0.8 * -4 / 5 - (1 - 0.8) * (3 * -4 / 25 + 4 * 3 / 25), result_similarities[2], atol=0.00001, ) assert result_ids == [0, 1, 2] # Tests that if the first embedding vector is close to the second, # it will return the third query_embedding = [1.0, 0.0, 1.0] embeddings = [[1.0, 0.0, 0.9], [1.0, 0.0, 0.8], [0.7, 0.0, 1.0]] _, result_ids = get_top_k_mmr_embeddings( query_embedding, embeddings, mmr_threshold=0.5 ) assert result_ids == [0, 2, 1] # Tests that embedding ids map properly to results _, result_ids = get_top_k_mmr_embeddings( query_embedding, embeddings, embedding_ids=["A", "B", "C"], mmr_threshold=0.5 ) assert result_ids == ["A", "C", "B"] # Test that it will go back to the original order under a high threshold _, result_ids = get_top_k_mmr_embeddings( query_embedding, embeddings, mmr_threshold=1 ) assert result_ids == [0, 1, 2] # Test similarity_top_k works _, result_ids = get_top_k_mmr_embeddings( query_embedding, embeddings, mmr_threshold=1, similarity_top_k=2 ) assert result_ids == [0, 1] # Test the results for get_top_k_embeddings and get_top_k_mmr_embeddings are the # same for threshold = 1 query_embedding = [10, 23, 90, 78] embeddings = [[1, 23, 89, 68], [1, 74, 144, 23], [0.23, 0.0, 1.0, 9]] result_similarities_no_mmr, result_ids_no_mmr = get_top_k_embeddings( query_embedding, embeddings ) result_similarities, result_ids = get_top_k_mmr_embeddings( query_embedding, embeddings, mmr_threshold=1 ) for result_no_mmr, result_with_mmr in zip( result_similarities_no_mmr, result_similarities ): assert np.isclose(result_no_mmr, result_with_mmr, atol=0.00001)
""" Test embedding utility functions.""" import numpy as np from llama_index.core.indices.query.embedding_utils import ( get_top_k_embeddings, get_top_k_mmr_embeddings, ) def test_get_top_k_mmr_embeddings() -> None: """Test Maximum Marginal Relevance.""" # Results score should follow from the mmr algorithm query_embedding = [5.0, 0.0, 0.0] embeddings = [[4.0, 3.0, 0.0], [3.0, 4.0, 0.0], [-4.0, 3.0, 0.0]] result_similarities, result_ids = get_top_k_mmr_embeddings( query_embedding, embeddings, mmr_threshold=0.8 ) assert np.isclose(0.8 * 4 / 5, result_similarities[0], atol=0.00001) assert np.isclose( 0.8 * 3 / 5 - (1 - 0.8) * (3 * 4 / 25 + 3 * 4 / 25), result_similarities[1], atol=0.00001, ) assert np.isclose( 0.8 * -4 / 5 - (1 - 0.8) * (3 * -4 / 25 + 4 * 3 / 25), result_similarities[2], atol=0.00001, ) assert result_ids == [0, 1, 2] # Tests that if the first embedding vector is close to the second, # it will return the third query_embedding = [1.0, 0.0, 1.0] embeddings = [[1.0, 0.0, 0.9], [1.0, 0.0, 0.8], [0.7, 0.0, 1.0]] _, result_ids = get_top_k_mmr_embeddings( query_embedding, embeddings, mmr_threshold=0.5 ) assert result_ids == [0, 2, 1] # Tests that embedding ids map properly to results _, result_ids = get_top_k_mmr_embeddings( query_embedding, embeddings, embedding_ids=["A", "B", "C"], mmr_threshold=0.5 ) assert result_ids == ["A", "C", "B"] # Test that it will go back to the original order under a high threshold _, result_ids = get_top_k_mmr_embeddings( query_embedding, embeddings, mmr_threshold=1 ) assert result_ids == [0, 1, 2] # Test similarity_top_k works _, result_ids = get_top_k_mmr_embeddings( query_embedding, embeddings, mmr_threshold=1, similarity_top_k=2 ) assert result_ids == [0, 1] # Test the results for get_top_k_embeddings and get_top_k_mmr_embeddings are the # same for threshold = 1 query_embedding = [10, 23, 90, 78] embeddings = [[1, 23, 89, 68], [1, 74, 144, 23], [0.23, 0.0, 1.0, 9]] result_similarities_no_mmr, result_ids_no_mmr = get_top_k_embeddings( query_embedding, embeddings ) result_similarities, result_ids = get_top_k_mmr_embeddings( query_embedding, embeddings, mmr_threshold=1 ) for result_no_mmr, result_with_mmr in zip( result_similarities_no_mmr, result_similarities ): assert np.isclose(result_no_mmr, result_with_mmr, atol=0.00001)
from markitdown import MarkItDown from llama_index.core.bridge.pydantic import BaseModel, model_validator import os from pathlib import Path from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document from typing import Tuple, Optional, Union, List from typing_extensions import Self def is_empty(list_it: list) -> Tuple[bool, Optional[list]]: if len(list_it) == 0: return True, None return False, list_it class ValidFilePath(BaseModel): file_path: Union[str, Path, List[str], List[Path]] @model_validator(mode="after") def validate_file_path(self) -> Self: if isinstance(self.file_path, str): if not Path(self.file_path).is_dir(): if not Path(self.file_path).is_file(): raise ValueError("File or directory path does not exist") else: dir_files = [self.file_path] else: dir_files = [] for root, _, files in os.walk(self.file_path): for el in files: dir_files.append(os.path.join(root, el)) self.file_path = dir_files elif isinstance(self.file_path, Path): if not self.file_path.is_dir(): if not self.file_path.is_file(): raise ValueError("File or directory path does not exist") else: dir_files = [self.file_path] else: dir_files = [] for root, _, files in os.walk(self.file_path): for el in files: dir_files.append(os.path.join(root, el)) self.file_path = dir_files empty, fls = is_empty(self.file_path) if empty: raise ValueError("There is no file to parse!") else: files = [] if isinstance(fls[0], str): for fl in fls: if Path(fl).is_file() and os.path.splitext(fl)[1] in [ ".docx", ".html", ".xml", ".csv", ".pdf", ".pptx", ".xlsx", ".json", ".zip", ".txt", "", ".md", ]: files.append(fl) else: for fl in fls: if fl.is_file() and os.path.splitext(fl)[1] in [ ".docx", ".html", ".xml", ".csv", ".pdf", ".pptx", ".xlsx", ".json", ".zip", ".txt", "", ".md", ]: files.append(fl.__str__()) self.file_path = files return self class MarkItDownReader(BaseReader): """ MarkItDownReader is a document reader that utilizes the MarkItDown parser to convert files or collections of files into Document objects. Methods ------- load_data(file_path: str | Path | Iterable[str] | Iterable[Path]) -> List[Document] Loads and parses a directory (if `file_path` is `str` or `Path`) or a list of files specified by `file_path` using the MarkItDown parser. Returns a list of Document objects, each containing the text content and metadata such as file path, file type, and content length. """ _reader: MarkItDown = MarkItDown() @classmethod def class_name(cls) -> str: """Get the name identifier of the class.""" return "MarkItDownReader" def load_data( self, file_path: Union[str, Path, List[str], List[Path]], **kwargs, ) -> List[Document]: docs: List[Document] = [] fl_pt = ValidFilePath(file_path=file_path) fs = fl_pt.file_path for f in fs: res = self._reader.convert(f) docs.append( Document( text=res.text_content, metadata={ "file_path": f.__str__(), "file_type": os.path.splitext(f)[1], "content_length": len(res.text_content), }, ) ) return docs
from markitdown import MarkItDown from llama_index.core.bridge.pydantic import BaseModel, model_validator import os from pathlib import Path from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document from typing import Tuple, Optional, Union, List from typing_extensions import Self def is_empty(list_it: list) -> Tuple[bool, Optional[list]]: if len(list_it) == 0: return True, None return False, list_it class ValidFilePath(BaseModel): file_path: Union[str, Path, List[str], List[Path]] @model_validator(mode="after") def validate_file_path(self) -> Self: if isinstance(self.file_path, str): if not Path(self.file_path).is_dir(): if not Path(self.file_path).is_file(): raise ValueError("File or directory path does not exist") else: dir_files = [self.file_path] else: dir_files = [] for root, _, files in os.walk(self.file_path): for el in files: dir_files.append(os.path.join(root, el)) self.file_path = dir_files elif isinstance(self.file_path, Path): if not self.file_path.is_dir(): if not self.file_path.is_file(): raise ValueError("File or directory path does not exist") else: dir_files = [self.file_path] else: dir_files = [] for root, _, files in os.walk(self.file_path): for el in files: dir_files.append(os.path.join(root, el)) self.file_path = dir_files empty, fls = is_empty(self.file_path) if empty: raise ValueError("There is no file to parse!") else: files = [] if isinstance(fls[0], str): for fl in fls: if Path(fl).is_file() and os.path.splitext(fl)[1] in [".docx", ".html", ".xml", ".csv", ".pdf", ".pptx", ".xlsx", ".json", ".zip", ".txt", "", ".md"]: files.append(fl) else: for fl in fls: if fl.is_file() and os.path.splitext(fl)[1] in [".docx", ".html", ".xml", ".csv", ".pdf", ".pptx", ".xlsx", ".json", ".zip", ".txt", "", ".md"]: files.append(fl.__str__()) self.file_path = files return self class MarkItDownReader(BaseReader): """ MarkItDownReader is a document reader that utilizes the MarkItDown parser to convert files or collections of files into Document objects. Methods ------- load_data(file_path: str | Path | Iterable[str] | Iterable[Path]) -> List[Document] Loads and parses a directory (if `file_path` is `str` or `Path`) or a list of files specified by `file_path` using the MarkItDown parser. Returns a list of Document objects, each containing the text content and metadata such as file path, file type, and content length. """ _reader: MarkItDown = MarkItDown() @classmethod def class_name(cls) -> str: """Get the name identifier of the class.""" return "MarkItDownReader" def load_data( self, file_path: Union[str, Path, List[str], List[Path]], **kwargs, ) -> List[Document]: docs: List[Document] = [] fl_pt = ValidFilePath(file_path=file_path) fs = fl_pt.file_path for f in fs: res = self._reader.convert(f) docs.append(Document(text=res.text_content, metadata={"file_path": f.__str__(), "file_type": os.path.splitext(f)[1], "content_length": len(res.text_content)})) return docs
from __future__ import annotations from sentence_transformers.losses.GISTEmbedLoss import GISTEmbedLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseGISTEmbedLoss(GISTEmbedLoss): def __init__( self, model: SparseEncoder, guide: SparseEncoder, temperature: float = 0.1, ) -> None: """ This loss is used to train a SparseEncoder model using the GISTEmbed algorithm. It takes a model and a guide model as input, and uses the guide model to guide the in-batch negative sample selection. The cosine similarity is used to compute the loss and the temperature parameter is used to scale the cosine similarities. You can apply different false-negative filtering strategies to discard hard negatives that are too similar to the positive. Two strategies are supported: - "absolute": Discards negatives whose similarity score is greater than or equal to ``positive_score - margin``. - "relative": Discards negatives whose similarity score is greater than or equal to ``positive_score * (1 - margin)``. Args: model: SparseEncoder model based on a `transformers` model. guide: SparseEncoder model to guide the in-batch negative sample selection. temperature: Temperature parameter to scale the cosine similarities, default is 0.1 here adapted for Sparse embeddings, might need some adaptations. margin_strategy: Strategy used for false negative filtering. One of {"absolute", "relative"}. margin: The margin value for filtering negatives. Defaults to 0.0, together with the "absolute" strategy, this only removes negatives that are more similar to the query than the positive is to the query. References: - For further details, see: https://arxiv.org/abs/2402.16829 Requirements: 1. (anchor, positive, negative) triplets 2. (anchor, positive) pairs Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ | (anchor, positive) pairs | none | +---------------------------------------+--------+ Recommendations: - Use ``BatchSamplers.NO_DUPLICATES`` (:class:`docs <sentence_transformers.training_args.BatchSamplers>`) to ensure that no in-batch negatives are duplicates of the anchor or positive samples. Relations: - :class:`SparseMultipleNegativesRankingLoss` is similar to this loss, but it does not use a guide model to guide the in-batch negative sample selection. `SparseGISTEmbedLoss` yields a stronger training signal at the cost of some training overhead. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses # Initialize the SPLADE model model = SparseEncoder("distilbert/distilbert-base-uncased") guide = SparseEncoder("naver/splade-cocondenser-ensembledistil") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], } ) loss = losses.SparseGISTEmbedLoss(model, guide=guide) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, guide=guide, temperature=temperature)
from __future__ import annotations from sentence_transformers.losses.GISTEmbedLoss import GISTEmbedLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseGISTEmbedLoss(GISTEmbedLoss): def __init__( self, model: SparseEncoder, guide: SparseEncoder, temperature: float = 0.01, ) -> None: """ This loss is used to train a SparseEncoder model using the GISTEmbed algorithm. It takes a model and a guide model as input, and uses the guide model to guide the in-batch negative sample selection. The cosine similarity is used to compute the loss and the temperature parameter is used to scale the cosine similarities. You can apply different false-negative filtering strategies to discard hard negatives that are too similar to the positive. Two strategies are supported: - "absolute": Discards negatives whose similarity score is greater than or equal to ``positive_score - margin``. - "relative": Discards negatives whose similarity score is greater than or equal to ``positive_score * (1 - margin)``. Args: model: SparseEncoder model based on a `transformers` model. guide: SparseEncoder model to guide the in-batch negative sample selection. temperature: Temperature parameter to scale the cosine similarities. margin_strategy: Strategy used for false negative filtering. One of {"absolute", "relative"}. margin: The margin value for filtering negatives. Defaults to 0.0, together with the "absolute" strategy, this only removes negatives that are more similar to the query than the positive is to the query. References: - For further details, see: https://arxiv.org/abs/2402.16829 Requirements: 1. (anchor, positive, negative) triplets 2. (anchor, positive) pairs Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ | (anchor, positive) pairs | none | +---------------------------------------+--------+ Recommendations: - Use ``BatchSamplers.NO_DUPLICATES`` (:class:`docs <sentence_transformers.training_args.BatchSamplers>`) to ensure that no in-batch negatives are duplicates of the anchor or positive samples. Relations: - :class:`SparseMultipleNegativesRankingLoss` is similar to this loss, but it does not use a guide model to guide the in-batch negative sample selection. `SparseGISTEmbedLoss` yields a stronger training signal at the cost of some training overhead. Example: :: # TODO: Add example but need to be sure it works first """ return super().__init__(model, guide=guide, temperature=temperature)
"""Argparser module for Flow""" from jina.parsers.base import set_base_parser from jina.parsers.helper import KVAppendAction, add_arg_group from jina.parsers.orchestrate.base import mixin_essential_parser def mixin_flow_features_parser(parser): """Add the arguments for the Flow features to the parser :param parser: the parser configure """ from jina.enums import FlowInspectType gp = add_arg_group(parser, title='Flow Feature') gp.add_argument( '--uses', type=str, help='The YAML path represents a flow. It can be either a local file path or a URL.', ) gp.add_argument( '--reload', action='store_true', default=False, help='If set, auto-reloading on file changes is enabled: the Flow will restart while blocked if YAML ' 'configuration source is changed. This also applies apply to underlying Executors, if their source ' 'code or YAML configuration has changed.', ) gp.add_argument( '--env', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The map of environment variables that are available inside runtime', ) gp.add_argument( '--inspect', type=FlowInspectType.from_string, choices=list(FlowInspectType), default=FlowInspectType.COLLECT, help=''' The strategy on those inspect deployments in the flow. If `REMOVE` is given then all inspect deployments are removed when building the flow. ''', ) def set_flow_parser(parser=None): """Set the parser for the flow :param parser: an (optional) initial parser to build upon :return: the parser """ if not parser: parser = set_base_parser() mixin_essential_parser(parser) mixin_flow_features_parser(parser) return parser
"""Argparser module for Flow""" from jina.parsers.base import set_base_parser from jina.parsers.helper import KVAppendAction, add_arg_group from jina.parsers.orchestrate.base import mixin_essential_parser def mixin_flow_features_parser(parser): """Add the arguments for the Flow features to the parser :param parser: the parser configure """ from jina.enums import FlowInspectType gp = add_arg_group(parser, title='Flow Feature') gp.add_argument( '--uses', type=str, help='The YAML path represents a flow. It can be either a local file path or a URL.', ) gp.add_argument( '--restart', action='store_true', default=False, help='If set, the Flow will restart while blocked if the YAML configuration source is changed.' ) gp.add_argument( '--env', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The map of environment variables that are available inside runtime', ) gp.add_argument( '--inspect', type=FlowInspectType.from_string, choices=list(FlowInspectType), default=FlowInspectType.COLLECT, help=''' The strategy on those inspect deployments in the flow. If `REMOVE` is given then all inspect deployments are removed when building the flow. ''', ) def set_flow_parser(parser=None): """Set the parser for the flow :param parser: an (optional) initial parser to build upon :return: the parser """ if not parser: parser = set_base_parser() mixin_essential_parser(parser) mixin_flow_features_parser(parser) return parser
from .faiss_lmdb import FaissLMDBSearcher
from .faiss_lmdb import FaissLMDBSearcher
from typing import Any, Optional, Type, TypeVar, Union from docarray.base_doc import BaseDoc from docarray.typing import TextUrl from docarray.typing.tensor.embedding import AnyEmbedding T = TypeVar('T', bound='TextDoc') class TextDoc(BaseDoc): """ Document for handling text. It can contain: - a [`TextUrl`][docarray.typing.url.TextUrl] (`TextDoc.url`) - a `str` (`TextDoc.text`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`TextDoc.embedding`) - a `bytes` object (`TextDoc.bytes_`) You can use this Document directly: ```python from docarray.documents import TextDoc # use it directly txt_doc = TextDoc(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() # model = MyEmbeddingModel() # txt_doc.embedding = model(txt_doc.text) ``` You can initialize directly from a string: ```python from docarray.documents import TextDoc txt_doc = TextDoc('hello world') ``` You can extend this Document: ```python from docarray.documents import TextDoc from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyText(TextDoc): second_embedding: Optional[AnyEmbedding] txt_doc = MyText(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() # model = MyEmbeddingModel() # txt_doc.embedding = model(txt_doc.text) # txt_doc.second_embedding = model(txt_doc.text) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import ImageDoc, TextDoc # compose it class MultiModalDoc(BaseDoc): image_doc: ImageDoc text_doc: TextDoc mmdoc = MultiModalDoc( image_doc=ImageDoc( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/image-data/apple.png?raw=true' ), text_doc=TextDoc(text='hello world, how are you doing?'), ) mmdoc.image_doc.tensor = mmdoc.image_doc.url.load() # or mmdoc.image_doc.bytes_ = mmdoc.image_doc.url.load_bytes() mmdoc.image_doc.tensor = mmdoc.image_doc.bytes_.load() ``` This Document can be compared against another Document of the same type or a string. When compared against another object of the same type, the pydantic BaseModel equality check will apply which checks the equality of every attribute, excluding `id`. When compared against a str, it will check the equality of the `text` attribute against the given string. ```python from docarray.documents import TextDoc doc = TextDoc(text='This is the main text', url='exampleurl.com') doc2 = TextDoc(text='This is the main text', url='exampleurl.com') doc == 'This is the main text' # True doc == doc2 # True ``` """ text: Optional[str] url: Optional[TextUrl] embedding: Optional[AnyEmbedding] bytes_: Optional[bytes] def __init__(self, text: Optional[str] = None, **kwargs): if 'text' not in kwargs: kwargs['text'] = text super().__init__(**kwargs) @classmethod def validate( cls: Type[T], value: Union[str, Any], ) -> T: if isinstance(value, str): value = cls(text=value) return super().validate(value) def __eq__(self, other: Any) -> bool: if isinstance(other, str): return self.text == other else: # BaseModel has a default equality return super().__eq__(other) def __contains__(self, item: str) -> bool: """ This method makes `TextDoc` behave the same as an `str`. :param item: A string to be checked if is a substring of `text` attribute :return: A boolean determining the presence of `item` as a substring in `text` ```python from docarray.documents import TextDoc t = TextDoc(text='this is my text document') assert 'text' in t assert 'docarray' not in t ``` """ if self.text is not None: return self.text.__contains__(item) else: return False def _get_string_for_regex_filter(self): return self.text
from typing import Any, Optional, Type, TypeVar, Union from docarray.base_doc import BaseDoc from docarray.typing import TextUrl from docarray.typing.tensor.embedding import AnyEmbedding T = TypeVar('T', bound='TextDoc') class TextDoc(BaseDoc): """ Document for handling text. It can contain a TextUrl (`TextDoc.url`), a str (`TextDoc.text`), and an AnyEmbedding (`TextDoc.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import TextDoc # use it directly txt_doc = Text(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() model = MyEmbeddingModel() txt_doc.embedding = model(txt_doc.text) You can initialize directly from a string: .. code-block:: python from docarray.documents import TextDoc txt_doc = Text('hello world') You can extend this Document: .. code-block:: python from docarray.documents import TextDoc from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyText(Text): second_embedding: Optional[AnyEmbedding] txt_doc = MyText(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() model = MyEmbeddingModel() txt_doc.embedding = model(txt_doc.text) txt_doc.second_embedding = model(txt_doc.text) You can use this Document for composition: .. code-block:: python from docarray import BaseDoc from docarray.documents import ImageDoc, TextDoc # compose it class MultiModalDoc(BaseDoc): image_doc: Image text_doc: Text mmdoc = MultiModalDoc( image_doc=Image(url="http://www.jina.ai/image.jpg"), text_doc=Text(text="hello world, how are you doing?"), ) mmdoc.text_doc.text = mmdoc.text_doc.url.load() # or mmdoc.text_doc.bytes_ = mmdoc.text_doc.url.load_bytes() This Document can be compared against another Document of the same type or a string. When compared against another object of the same type, the pydantic BaseModel equality check will apply which checks the equality of every attribute, including `id`. When compared against a str, it will check the equality of the `text` attribute against the given string. .. code-block:: python from docarray.documents import TextDoc doc = Text(text='This is the main text', url='exampleurl.com') doc2 = Text(text='This is the main text', url='exampleurl.com') doc == 'This is the main text' # True doc == doc2 # False, their ids are not equivalent """ text: Optional[str] url: Optional[TextUrl] embedding: Optional[AnyEmbedding] bytes_: Optional[bytes] def __init__(self, text: Optional[str] = None, **kwargs): if 'text' not in kwargs: kwargs['text'] = text super().__init__(**kwargs) @classmethod def validate( cls: Type[T], value: Union[str, Any], ) -> T: if isinstance(value, str): value = cls(text=value) return super().validate(value) def __eq__(self, other: Any) -> bool: if isinstance(other, str): return self.text == other else: # BaseModel has a default equality return super().__eq__(other) def __contains__(self, item: str) -> bool: """ This method makes `Text` behave the same as an `str`. .. code-block:: python from docarray.documents import Text t = Text(text='this is my text document') assert 'text' in t assert 'docarray' not in t :param item: A string to be checked if is a substring of `text` attribute :return: A boolean determining the presence of `item` as a substring in `text` """ if self.text is not None: return self.text.__contains__(item) else: return False def _get_string_for_regex_filter(self): return self.text
from os.path import join from pathlib import Path from typing import Any, Callable, List, Optional, Tuple, Union from PIL import Image from .utils import check_integrity, download_and_extract_archive, list_dir, list_files from .vision import VisionDataset class Omniglot(VisionDataset): """`Omniglot <https://github.com/brendenlake/omniglot>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where directory ``omniglot-py`` exists. background (bool, optional): If True, creates dataset from the "background" set, otherwise creates from the "evaluation" set. This terminology is defined by the authors. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset zip files from the internet and puts it in root directory. If the zip files are already downloaded, they are not downloaded again. loader (callable, optional): A function to load an image given its path. By default, it uses PIL as its image loader, but users could also pass in ``torchvision.io.decode_image`` for decoding image data into tensors directly. """ folder = "omniglot-py" download_url_prefix = "https://raw.githubusercontent.com/brendenlake/omniglot/master/python" zips_md5 = { "images_background": "68d2efa1b9178cc56df9314c21c6e718", "images_evaluation": "6b91aef0f799c5bb55b94e3f2daec811", } def __init__( self, root: Union[str, Path], background: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, loader: Optional[Callable[[Union[str, Path]], Any]] = None, ) -> None: super().__init__(join(root, self.folder), transform=transform, target_transform=target_transform) self.background = background if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") self.target_folder = join(self.root, self._get_target_folder()) self._alphabets = list_dir(self.target_folder) self._characters: List[str] = sum( ([join(a, c) for c in list_dir(join(self.target_folder, a))] for a in self._alphabets), [] ) self._character_images = [ [(image, idx) for image in list_files(join(self.target_folder, character), ".png")] for idx, character in enumerate(self._characters) ] self._flat_character_images: List[Tuple[str, int]] = sum(self._character_images, []) self.loader = loader def __len__(self) -> int: return len(self._flat_character_images) def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target character class. """ image_name, character_class = self._flat_character_images[index] image_path = join(self.target_folder, self._characters[character_class], image_name) image = Image.open(image_path, mode="r").convert("L") if self.loader is None else self.loader(image_path) if self.transform: image = self.transform(image) if self.target_transform: character_class = self.target_transform(character_class) return image, character_class def _check_integrity(self) -> bool: zip_filename = self._get_target_folder() if not check_integrity(join(self.root, zip_filename + ".zip"), self.zips_md5[zip_filename]): return False return True def download(self) -> None: if self._check_integrity(): return filename = self._get_target_folder() zip_filename = filename + ".zip" url = self.download_url_prefix + "/" + zip_filename download_and_extract_archive(url, self.root, filename=zip_filename, md5=self.zips_md5[filename]) def _get_target_folder(self) -> str: return "images_background" if self.background else "images_evaluation"
from os.path import join from pathlib import Path from typing import Any, Callable, List, Optional, Tuple, Union from PIL import Image from .utils import check_integrity, download_and_extract_archive, list_dir, list_files from .vision import VisionDataset class Omniglot(VisionDataset): """`Omniglot <https://github.com/brendenlake/omniglot>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where directory ``omniglot-py`` exists. background (bool, optional): If True, creates dataset from the "background" set, otherwise creates from the "evaluation" set. This terminology is defined by the authors. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset zip files from the internet and puts it in root directory. If the zip files are already downloaded, they are not downloaded again. """ folder = "omniglot-py" download_url_prefix = "https://raw.githubusercontent.com/brendenlake/omniglot/master/python" zips_md5 = { "images_background": "68d2efa1b9178cc56df9314c21c6e718", "images_evaluation": "6b91aef0f799c5bb55b94e3f2daec811", } def __init__( self, root: Union[str, Path], background: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(join(root, self.folder), transform=transform, target_transform=target_transform) self.background = background if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") self.target_folder = join(self.root, self._get_target_folder()) self._alphabets = list_dir(self.target_folder) self._characters: List[str] = sum( ([join(a, c) for c in list_dir(join(self.target_folder, a))] for a in self._alphabets), [] ) self._character_images = [ [(image, idx) for image in list_files(join(self.target_folder, character), ".png")] for idx, character in enumerate(self._characters) ] self._flat_character_images: List[Tuple[str, int]] = sum(self._character_images, []) def __len__(self) -> int: return len(self._flat_character_images) def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target character class. """ image_name, character_class = self._flat_character_images[index] image_path = join(self.target_folder, self._characters[character_class], image_name) image = Image.open(image_path, mode="r").convert("L") if self.transform: image = self.transform(image) if self.target_transform: character_class = self.target_transform(character_class) return image, character_class def _check_integrity(self) -> bool: zip_filename = self._get_target_folder() if not check_integrity(join(self.root, zip_filename + ".zip"), self.zips_md5[zip_filename]): return False return True def download(self) -> None: if self._check_integrity(): return filename = self._get_target_folder() zip_filename = filename + ".zip" url = self.download_url_prefix + "/" + zip_filename download_and_extract_archive(url, self.root, filename=zip_filename, md5=self.zips_md5[filename]) def _get_target_folder(self) -> str: return "images_background" if self.background else "images_evaluation"
import types from typing import TYPE_CHECKING from docarray.index.backends.in_memory import InMemoryExactNNIndex from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) if TYPE_CHECKING: from docarray.index.backends.elastic import ElasticDocIndex # noqa: F401 from docarray.index.backends.elasticv7 import ElasticV7DocIndex # noqa: F401 from docarray.index.backends.epsilla import EpsillaDocumentIndex # noqa: F401 from docarray.index.backends.hnswlib import HnswDocumentIndex # noqa: F401 from docarray.index.backends.milvus import MilvusDocumentIndex # noqa: F401 from docarray.index.backends.mongodb_atlas import ( # noqa: F401 MongoDBAtlasDocumentIndex, ) from docarray.index.backends.qdrant import QdrantDocumentIndex # noqa: F401 from docarray.index.backends.redis import RedisDocumentIndex # noqa: F401 from docarray.index.backends.weaviate import WeaviateDocumentIndex # noqa: F401 __all__ = [ 'InMemoryExactNNIndex', 'ElasticDocIndex', 'ElasticV7DocIndex', 'EpsillaDocumentIndex', 'QdrantDocumentIndex', 'WeaviateDocumentIndex', 'RedisDocumentIndex', 'MilvusDocumentIndex', 'MongoDBAtlasDocumentIndex', ] def __getattr__(name: str): lib: types.ModuleType if name == 'HnswDocumentIndex': import_library('hnswlib', raise_error=True) import docarray.index.backends.hnswlib as lib elif name == 'ElasticDocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elastic as lib elif name == 'ElasticV7DocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elasticv7 as lib elif name == 'EpsillaDocumentIndex': import_library('pyepsilla', raise_error=True) import docarray.index.backends.epsilla as lib elif name == 'QdrantDocumentIndex': import_library('qdrant_client', raise_error=True) import docarray.index.backends.qdrant as lib elif name == 'WeaviateDocumentIndex': import_library('weaviate', raise_error=True) import docarray.index.backends.weaviate as lib elif name == 'MilvusDocumentIndex': import_library('pymilvus', raise_error=True) import docarray.index.backends.milvus as lib elif name == 'RedisDocumentIndex': import_library('redis', raise_error=True) import docarray.index.backends.redis as lib elif name == 'MongoDBAtlasDocumentIndex': import_library('pymongo', raise_error=True) import docarray.index.backends.mongodb_atlas as lib else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' ) index_cls = getattr(lib, name) if name not in __all__: __all__.append(name) return index_cls
import types from typing import TYPE_CHECKING from docarray.index.backends.in_memory import InMemoryExactNNIndex from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) if TYPE_CHECKING: from docarray.index.backends.elastic import ElasticDocIndex # noqa: F401 from docarray.index.backends.elasticv7 import ElasticV7DocIndex # noqa: F401 from docarray.index.backends.epsilla import EpsillaDocumentIndex # noqa: F401 from docarray.index.backends.hnswlib import HnswDocumentIndex # noqa: F401 from docarray.index.backends.milvus import MilvusDocumentIndex # noqa: F401 from docarray.index.backends.qdrant import QdrantDocumentIndex # noqa: F401 from docarray.index.backends.redis import RedisDocumentIndex # noqa: F401 from docarray.index.backends.weaviate import WeaviateDocumentIndex # noqa: F401 __all__ = [ 'InMemoryExactNNIndex', 'ElasticDocIndex', 'ElasticV7DocIndex', 'EpsillaDocumentIndex', 'QdrantDocumentIndex', 'WeaviateDocumentIndex', 'RedisDocumentIndex', 'MilvusDocumentIndex', ] def __getattr__(name: str): lib: types.ModuleType if name == 'HnswDocumentIndex': import_library('hnswlib', raise_error=True) import docarray.index.backends.hnswlib as lib elif name == 'ElasticDocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elastic as lib elif name == 'ElasticV7DocIndex': import_library('elasticsearch', raise_error=True) import docarray.index.backends.elasticv7 as lib elif name == 'EpsillaDocumentIndex': import_library('pyepsilla', raise_error=True) import docarray.index.backends.epsilla as lib elif name == 'QdrantDocumentIndex': import_library('qdrant_client', raise_error=True) import docarray.index.backends.qdrant as lib elif name == 'WeaviateDocumentIndex': import_library('weaviate', raise_error=True) import docarray.index.backends.weaviate as lib elif name == 'MilvusDocumentIndex': import_library('pymilvus', raise_error=True) import docarray.index.backends.milvus as lib elif name == 'RedisDocumentIndex': import_library('redis', raise_error=True) import docarray.index.backends.redis as lib else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' ) index_cls = getattr(lib, name) if name not in __all__: __all__.append(name) return index_cls
import subprocess from pathlib import Path import pytest @pytest.fixture(scope='session') def docker_image_name() -> str: return Path(__file__).parents[1].stem.lower() @pytest.fixture(scope='session') def build_docker_image(docker_image_name: str) -> str: subprocess.run(['docker', 'build', '-t', docker_image_name, '.'], check=True) return docker_image_name
import random import pytest from jina import Document, DocumentArray @pytest.fixture def documents_chunk(): document_array = DocumentArray() document = Document(tags={'query_size': 35, 'query_price': 31, 'query_brand': 1}) for i in range(0, 10): chunk = Document() for j in range(0, 10): match = Document( tags={ 'level': 'chunk', } ) match.scores['cosine'] = random.random() match.parent_id = i chunk.matches.append(match) document.chunks.append(chunk) document_array.extend([document]) return document_array @pytest.fixture def documents_chunk_chunk(): document_array = DocumentArray() document = Document(tags={'query_size': 35, 'query_price': 31, 'query_brand': 1}) for i in range(0, 10): chunk = Document() for j in range(0, 10): chunk_chunk = Document() for k in range(0, 10): match = Document( tags={ 'level': 'chunk', } ) match.scores['cosine'] = random.random() match.parent_id = j chunk_chunk.matches.append(match) chunk.chunks.append(chunk_chunk) document.chunks.append(chunk) document_array.extend([document]) return document_array
"""Argparser module for pinging""" from jina.parsers.base import set_base_parser def set_ping_parser(parser=None): """Set the parser for `ping` :param parser: an existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() parser.add_argument( 'target', type=str, choices=['flow', 'executor'], help='The target type to ping', default='executor', ) parser.add_argument( 'host', type=str, help='The host address with port of a target Executor or a Flow, e.g. 0.0.0.0:8000', ) parser.add_argument( '--timeout', type=int, default=3000, help=''' Timeout in millisecond of one check -1 for waiting forever ''', ) parser.add_argument( '--retries', type=int, default=3, help='The max number of tried health checks before exit with exit code 1', ) return parser
"""Argparser module for pinging""" from jina.parsers.base import set_base_parser def set_ping_parser(parser=None): """Set the parser for `ping` :param parser: an existing parser to build upon :return: the parser """ if not parser: parser = set_base_parser() parser.add_argument( 'host', type=str, help='The host address of the target Pod, e.g. 0.0.0.0' ) parser.add_argument( 'port', type=int, help='The control port of the target deployment/pod' ) parser.add_argument( '--timeout', type=int, default=3000, help=''' Timeout in millisecond of one check -1 for waiting forever ''', ) parser.add_argument( '--retries', type=int, default=3, help='The max number of tried health checks before exit with exit code 1', ) return parser
_base_ = '../fast_rcnn/fast-rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), roi_head=dict( bbox_head=dict(bbox_coder=dict(target_stds=[0.05, 0.05, 0.1, 0.1]))), # model training and testing settings train_cfg=dict( rcnn=dict( assigner=dict(pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6), sampler=dict(num=256))), test_cfg=dict(rcnn=dict(score_thr=1e-3))) dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=300), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'proposals', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=None), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img', 'proposals']), ]) ] # TODO: support loading proposals data = dict( train=dict( proposal_file=data_root + 'proposals/ga_rpn_r50_fpn_1x_train2017.pkl', pipeline=train_pipeline), val=dict( proposal_file=data_root + 'proposals/ga_rpn_r50_fpn_1x_val2017.pkl', pipeline=test_pipeline), test=dict( proposal_file=data_root + 'proposals/ga_rpn_r50_fpn_1x_val2017.pkl', pipeline=test_pipeline)) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
_base_ = '../fast_rcnn/fast_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), roi_head=dict( bbox_head=dict(bbox_coder=dict(target_stds=[0.05, 0.05, 0.1, 0.1]))), # model training and testing settings train_cfg=dict( rcnn=dict( assigner=dict(pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6), sampler=dict(num=256))), test_cfg=dict(rcnn=dict(score_thr=1e-3))) dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=300), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'proposals', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=None), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img', 'proposals']), ]) ] # TODO: support loading proposals data = dict( train=dict( proposal_file=data_root + 'proposals/ga_rpn_r50_fpn_1x_train2017.pkl', pipeline=train_pipeline), val=dict( proposal_file=data_root + 'proposals/ga_rpn_r50_fpn_1x_val2017.pkl', pipeline=test_pipeline), test=dict( proposal_file=data_root + 'proposals/ga_rpn_r50_fpn_1x_val2017.pkl', pipeline=test_pipeline)) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
import asyncio from typing import AsyncIterator, Iterator, Optional, Union from jina.helper import get_or_reuse_loop class _RequestsCounter: """Class used to wrap a count integer so that it can be updated inside methods. .. code-block:: python def count_increment(i: int, rc: _RequestsCounter): i += 1 rc.count += 1 c_int = 0 c_rc = _RequestsCounter() count_increment(c_int, c_rc) assert c_int == 0 assert c_rc.count == 1 """ count = 0 class AsyncRequestsIterator: """Iterator to allow async iteration of blocking/non-blocking iterator from the Client""" def __init__( self, iterator: Union[Iterator, AsyncIterator], request_counter: Optional[_RequestsCounter] = None, prefetch: int = 0, iterate_sync_in_thread: bool = True, ) -> None: """Async request iterator :param iterator: request iterator :param request_counter: counter of the numbers of request being handled at a given moment :param prefetch: The max amount of requests to be handled at a given moment (0 disables feature) :param iterate_sync_in_thread: if True, blocking iterators will call __next__ in a Thread. """ self.iterator = iterator self._request_counter = request_counter self._prefetch = prefetch self._iterate_sync_in_thread = iterate_sync_in_thread def iterator__next__(self): """ Executed inside a `ThreadPoolExecutor` via `loop.run_in_executor` to avoid following exception. "StopIteration interacts badly with generators and cannot be raised into a Future" :return: next request or None """ try: return self.iterator.__next__() except StopIteration: return None def __aiter__(self): return self async def __anext__(self): if isinstance(self.iterator, Iterator): """ An `Iterator` indicates "blocking" code, which might block all tasks in the event loop. Hence we iterate in the default executor provided by asyncio. """ if not self._iterate_sync_in_thread: async def _get_next(): try: req = self.iterator.__next__() except StopIteration: req = None return req request = await asyncio.create_task(_get_next()) else: request = await get_or_reuse_loop().run_in_executor( None, self.iterator__next__ ) """ `iterator.__next__` can be executed directly and that'd raise `StopIteration` in the executor, which raises the following exception while chaining states in futures. "StopIteration interacts badly with generators and cannot be raised into a Future" To avoid that, we handle the raise by a `return None` """ if request is None: raise StopAsyncIteration elif isinstance(self.iterator, AsyncIterator): # we assume that `AsyncIterator` doesn't block the event loop request = await self.iterator.__anext__() if self._prefetch > 0: while self._request_counter.count >= self._prefetch: await asyncio.sleep(0) return request
import asyncio from typing import AsyncIterator, Iterator, Optional, Union from jina.helper import get_or_reuse_loop class _RequestsCounter: """Class used to wrap a count integer so that it can be updated inside methods. .. code-block:: python def count_increment(i: int, rc: _RequestsCounter): i += 1 rc.count += 1 c_int = 0 c_rc = _RequestsCounter() count_increment(c_int, c_rc) assert c_int == 0 assert c_rc.count == 1 """ count = 0 class AsyncRequestsIterator: """Iterator to allow async iteration of blocking/non-blocking iterator from the Client""" def __init__( self, iterator: Union[Iterator, AsyncIterator], request_counter: Optional[_RequestsCounter] = None, prefetch: int = 0, ) -> None: """Async request iterator :param iterator: request iterator :param request_counter: counter of the numbers of request being handled at a given moment :param prefetch: The max amount of requests to be handled at a given moment (0 disables feature) """ self.iterator = iterator self._request_counter = request_counter self._prefetch = prefetch def iterator__next__(self): """ Executed inside a `ThreadPoolExecutor` via `loop.run_in_executor` to avoid following exception. "StopIteration interacts badly with generators and cannot be raised into a Future" :return: next request or None """ try: return self.iterator.__next__() except StopIteration: return None def __aiter__(self): return self async def __anext__(self): if isinstance(self.iterator, Iterator): """ An `Iterator` indicates "blocking" code, which might block all tasks in the event loop. Hence we iterate in the default executor provided by asyncio. """ request = await get_or_reuse_loop().run_in_executor( None, self.iterator__next__ ) """ `iterator.__next__` can be executed directly and that'd raise `StopIteration` in the executor, which raises the following exception while chaining states in futures. "StopIteration interacts badly with generators and cannot be raised into a Future" To avoid that, we handle the raise by a `return None` """ if request is None: raise StopAsyncIteration elif isinstance(self.iterator, AsyncIterator): # we assume that `AsyncIterator` doesn't block the event loop request = await self.iterator.__anext__() if self._prefetch > 0: while self._request_counter.count >= self._prefetch: await asyncio.sleep(0) return request
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.applications import convnext as convnext from keras.applications import densenet as densenet from keras.applications import efficientnet as efficientnet from keras.applications import efficientnet_v2 as efficientnet_v2 from keras.applications import imagenet_utils as imagenet_utils from keras.applications import inception_resnet_v2 as inception_resnet_v2 from keras.applications import inception_v3 as inception_v3 from keras.applications import mobilenet as mobilenet from keras.applications import mobilenet_v2 as mobilenet_v2 from keras.applications import mobilenet_v3 as mobilenet_v3 from keras.applications import nasnet as nasnet from keras.applications import resnet as resnet from keras.applications import resnet50 as resnet50 from keras.applications import resnet_v2 as resnet_v2 from keras.applications import vgg16 as vgg16 from keras.applications import vgg19 as vgg19 from keras.applications import xception as xception from keras.src.applications.convnext import ConvNeXtBase as ConvNeXtBase from keras.src.applications.convnext import ConvNeXtLarge as ConvNeXtLarge from keras.src.applications.convnext import ConvNeXtSmall as ConvNeXtSmall from keras.src.applications.convnext import ConvNeXtTiny as ConvNeXtTiny from keras.src.applications.convnext import ConvNeXtXLarge as ConvNeXtXLarge from keras.src.applications.densenet import DenseNet121 as DenseNet121 from keras.src.applications.densenet import DenseNet169 as DenseNet169 from keras.src.applications.densenet import DenseNet201 as DenseNet201 from keras.src.applications.efficientnet import EfficientNetB0 as EfficientNetB0 from keras.src.applications.efficientnet import EfficientNetB1 as EfficientNetB1 from keras.src.applications.efficientnet import EfficientNetB2 as EfficientNetB2 from keras.src.applications.efficientnet import EfficientNetB3 as EfficientNetB3 from keras.src.applications.efficientnet import EfficientNetB4 as EfficientNetB4 from keras.src.applications.efficientnet import EfficientNetB5 as EfficientNetB5 from keras.src.applications.efficientnet import EfficientNetB6 as EfficientNetB6 from keras.src.applications.efficientnet import EfficientNetB7 as EfficientNetB7 from keras.src.applications.efficientnet_v2 import ( EfficientNetV2B0 as EfficientNetV2B0, ) from keras.src.applications.efficientnet_v2 import ( EfficientNetV2B1 as EfficientNetV2B1, ) from keras.src.applications.efficientnet_v2 import ( EfficientNetV2B2 as EfficientNetV2B2, ) from keras.src.applications.efficientnet_v2 import ( EfficientNetV2B3 as EfficientNetV2B3, ) from keras.src.applications.efficientnet_v2 import ( EfficientNetV2L as EfficientNetV2L, ) from keras.src.applications.efficientnet_v2 import ( EfficientNetV2M as EfficientNetV2M, ) from keras.src.applications.efficientnet_v2 import ( EfficientNetV2S as EfficientNetV2S, ) from keras.src.applications.inception_resnet_v2 import ( InceptionResNetV2 as InceptionResNetV2, ) from keras.src.applications.inception_v3 import InceptionV3 as InceptionV3 from keras.src.applications.mobilenet import MobileNet as MobileNet from keras.src.applications.mobilenet_v2 import MobileNetV2 as MobileNetV2 from keras.src.applications.mobilenet_v3 import ( MobileNetV3Large as MobileNetV3Large, ) from keras.src.applications.mobilenet_v3 import ( MobileNetV3Small as MobileNetV3Small, ) from keras.src.applications.nasnet import NASNetLarge as NASNetLarge from keras.src.applications.nasnet import NASNetMobile as NASNetMobile from keras.src.applications.resnet import ResNet50 as ResNet50 from keras.src.applications.resnet import ResNet101 as ResNet101 from keras.src.applications.resnet import ResNet152 as ResNet152 from keras.src.applications.resnet_v2 import ResNet50V2 as ResNet50V2 from keras.src.applications.resnet_v2 import ResNet101V2 as ResNet101V2 from keras.src.applications.resnet_v2 import ResNet152V2 as ResNet152V2 from keras.src.applications.vgg16 import VGG16 as VGG16 from keras.src.applications.vgg19 import VGG19 as VGG19 from keras.src.applications.xception import Xception as Xception
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api.applications import convnext from keras.api.applications import densenet from keras.api.applications import efficientnet from keras.api.applications import efficientnet_v2 from keras.api.applications import imagenet_utils from keras.api.applications import inception_resnet_v2 from keras.api.applications import inception_v3 from keras.api.applications import mobilenet from keras.api.applications import mobilenet_v2 from keras.api.applications import mobilenet_v3 from keras.api.applications import nasnet from keras.api.applications import resnet from keras.api.applications import resnet50 from keras.api.applications import resnet_v2 from keras.api.applications import vgg16 from keras.api.applications import vgg19 from keras.api.applications import xception from keras.src.applications.convnext import ConvNeXtBase from keras.src.applications.convnext import ConvNeXtLarge from keras.src.applications.convnext import ConvNeXtSmall from keras.src.applications.convnext import ConvNeXtTiny from keras.src.applications.convnext import ConvNeXtXLarge from keras.src.applications.densenet import DenseNet121 from keras.src.applications.densenet import DenseNet169 from keras.src.applications.densenet import DenseNet201 from keras.src.applications.efficientnet import EfficientNetB0 from keras.src.applications.efficientnet import EfficientNetB1 from keras.src.applications.efficientnet import EfficientNetB2 from keras.src.applications.efficientnet import EfficientNetB3 from keras.src.applications.efficientnet import EfficientNetB4 from keras.src.applications.efficientnet import EfficientNetB5 from keras.src.applications.efficientnet import EfficientNetB6 from keras.src.applications.efficientnet import EfficientNetB7 from keras.src.applications.efficientnet_v2 import EfficientNetV2B0 from keras.src.applications.efficientnet_v2 import EfficientNetV2B1 from keras.src.applications.efficientnet_v2 import EfficientNetV2B2 from keras.src.applications.efficientnet_v2 import EfficientNetV2B3 from keras.src.applications.efficientnet_v2 import EfficientNetV2L from keras.src.applications.efficientnet_v2 import EfficientNetV2M from keras.src.applications.efficientnet_v2 import EfficientNetV2S from keras.src.applications.inception_resnet_v2 import InceptionResNetV2 from keras.src.applications.inception_v3 import InceptionV3 from keras.src.applications.mobilenet import MobileNet from keras.src.applications.mobilenet_v2 import MobileNetV2 from keras.src.applications.mobilenet_v3 import MobileNetV3Large from keras.src.applications.mobilenet_v3 import MobileNetV3Small from keras.src.applications.nasnet import NASNetLarge from keras.src.applications.nasnet import NASNetMobile from keras.src.applications.resnet import ResNet50 from keras.src.applications.resnet import ResNet101 from keras.src.applications.resnet import ResNet152 from keras.src.applications.resnet_v2 import ResNet50V2 from keras.src.applications.resnet_v2 import ResNet101V2 from keras.src.applications.resnet_v2 import ResNet152V2 from keras.src.applications.vgg16 import VGG16 from keras.src.applications.vgg19 import VGG19 from keras.src.applications.xception import Xception
# Copyright (c) OpenMMLab. All rights reserved. from .augment_wrappers import AutoAugment, RandAugment from .colorspace import (AutoContrast, Brightness, Color, ColorTransform, Contrast, Equalize, Invert, Posterize, Sharpness, Solarize, SolarizeAdd) from .formatting import ImageToTensor, PackDetInputs, ToTensor, Transpose from .geometric import (GeomTransform, Rotate, ShearX, ShearY, TranslateX, TranslateY) from .instaboost import InstaBoost from .loading import (FilterAnnotations, LoadAnnotations, LoadEmptyAnnotations, LoadImageFromNDArray, LoadMultiChannelImageFromFiles, LoadPanopticAnnotations, LoadProposals) from .transforms import (Albu, CachedMixUp, CachedMosaic, CopyPaste, CutOut, Expand, FixShapeResize, MinIoURandomCrop, MixUp, Mosaic, Normalize, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomErasing, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) from .wrappers import MultiBranch, RandomOrder __all__ = [ 'PackDetInputs', 'ToTensor', 'ImageToTensor', 'Transpose', 'LoadImageFromNDArray', 'LoadAnnotations', 'LoadPanopticAnnotations', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'Resize', 'RandomFlip', 'RandomCrop', 'Normalize', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'ShearX', 'ShearY', 'Rotate', 'Color', 'Equalize', 'Brightness', 'Contrast', 'TranslateX', 'TranslateY', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug', 'CopyPaste', 'FilterAnnotations', 'Pad', 'GeomTransform', 'ColorTransform', 'RandAugment', 'Sharpness', 'Solarize', 'SolarizeAdd', 'Posterize', 'AutoContrast', 'Invert', 'MultiBranch', 'RandomErasing', 'LoadEmptyAnnotations', 'RandomOrder', 'CachedMosaic', 'CachedMixUp', 'FixShapeResize' ]
# Copyright (c) OpenMMLab. All rights reserved. from .augment_wrappers import AutoAugment, RandAugment from .colorspace import (AutoContrast, Brightness, Color, ColorTransform, Contrast, Equalize, Invert, Posterize, Sharpness, Solarize, SolarizeAdd) from .formatting import ImageToTensor, PackDetInputs, ToTensor, Transpose from .geometric import (GeomTransform, Rotate, ShearX, ShearY, TranslateX, TranslateY) from .instaboost import InstaBoost from .loading import (FilterAnnotations, LoadAnnotations, LoadEmptyAnnotations, LoadImageFromNDArray, LoadMultiChannelImageFromFiles, LoadPanopticAnnotations, LoadProposals) from .transforms import (Albu, CachedMixUp, CachedMosaic, CopyPaste, CutOut, Expand, MinIoURandomCrop, MixUp, Mosaic, Normalize, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomErasing, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) from .wrappers import MultiBranch, RandomOrder __all__ = [ 'PackDetInputs', 'ToTensor', 'ImageToTensor', 'Transpose', 'LoadImageFromNDArray', 'LoadAnnotations', 'LoadPanopticAnnotations', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'Resize', 'RandomFlip', 'RandomCrop', 'Normalize', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'ShearX', 'ShearY', 'Rotate', 'Color', 'Equalize', 'Brightness', 'Contrast', 'TranslateX', 'TranslateY', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug', 'CopyPaste', 'FilterAnnotations', 'Pad', 'GeomTransform', 'ColorTransform', 'RandAugment', 'Sharpness', 'Solarize', 'SolarizeAdd', 'Posterize', 'AutoContrast', 'Invert', 'MultiBranch', 'RandomErasing', 'LoadEmptyAnnotations', 'RandomOrder', 'CachedMosaic', 'CachedMixUp' ]
from collections.abc import Sequence from langchain_core.tools import BaseTool def validate_tools_single_input(class_name: str, tools: Sequence[BaseTool]) -> None: """Validate tools for single input. Args: class_name: Name of the class. tools: List of tools to validate. Raises: ValueError: If a multi-input tool is found in tools. """ for tool in tools: if not tool.is_single_input: msg = f"{class_name} does not support multi-input tool {tool.name}." raise ValueError(msg)
from collections.abc import Sequence from langchain_core.tools import BaseTool def validate_tools_single_input(class_name: str, tools: Sequence[BaseTool]) -> None: """Validate tools for single input. Args: class_name: Name of the class. tools: List of tools to validate. Raises: ValueError: If a multi-input tool is found in tools. """ for tool in tools: if not tool.is_single_input: raise ValueError( f"{class_name} does not support multi-input tool {tool.name}." )
"""Zapier Tool.""" from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ZapierNLAListActions, ZapierNLARunAction # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "ZapierNLARunAction": "langchain_community.tools", "ZapierNLAListActions": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "ZapierNLAListActions", "ZapierNLARunAction", ]
"""Zapier Tool.""" from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ZapierNLAListActions, ZapierNLARunAction # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "ZapierNLARunAction": "langchain_community.tools", "ZapierNLAListActions": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "ZapierNLARunAction", "ZapierNLAListActions", ]
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 11 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from .registry import Registry # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner') # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of loops like `EpochBasedTrainLoop` LOOPS = Registry('loop') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model') # mangage all kinds of model wrappers like 'MMDistributedDataParallel' MODEL_WRAPPERS = Registry('model_wrapper') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage constructors that customize the optimization hyperparameters. OPTIMIZER_CONSTRUCTORS = Registry('optimizer constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry('parameter scheduler') # manage all kinds of metrics METRICS = Registry('metric') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util') # manage visualizer VISUALIZERS = Registry('visualizer') # manage writer WRITERS = Registry('writer')
# Copyright (c) OpenMMLab. All rights reserved. """MMEngine provides 11 root registries to support using modules across projects. More datails can be found at https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. """ from .registry import Registry # manage all kinds of runners like `EpochBasedRunner` and `IterBasedRunner` RUNNERS = Registry('runner') # manage runner constructors that define how to initialize runners RUNNER_CONSTRUCTORS = Registry('runner constructor') # manage all kinds of loops like `EpochBasedTrainLoop` LOOPS = Registry('loop') # manage all kinds of hooks like `CheckpointHook` HOOKS = Registry('hook') # manage data-related modules DATASETS = Registry('dataset') DATA_SAMPLERS = Registry('data sampler') TRANSFORMS = Registry('transform') # mangage all kinds of modules inheriting `nn.Module` MODELS = Registry('model') # mangage all kinds of model wrappers like 'MMDistributedDataParallel' MODEL_WRAPPERS = Registry('model_wrapper') # mangage all kinds of weight initialization modules like `Uniform` WEIGHT_INITIALIZERS = Registry('weight initializer') # mangage all kinds of optimizers like `SGD` and `Adam` OPTIMIZERS = Registry('optimizer') # manage constructors that customize the optimization hyperparameters. OPTIMIZER_CONSTRUCTORS = Registry('optimizer constructor') # mangage all kinds of parameter schedulers like `MultiStepLR` PARAM_SCHEDULERS = Registry('parameter scheduler') # manage all kinds of evaluators for computing metrics EVALUATORS = Registry('evaluator') # manage task-specific modules like anchor generators and box coders TASK_UTILS = Registry('task util') # manage visualizer VISUALIZERS = Registry('visualizer') # manage writer WRITERS = Registry('writer')
from collections.abc import Sequence from typing import Callable from langchain_core.agents import AgentAction from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import BaseMessage from langchain_core.prompts.chat import ChatPromptTemplate from langchain_core.runnables import Runnable, RunnablePassthrough from langchain_core.tools import BaseTool from langchain.agents.format_scratchpad.tools import ( format_to_tool_messages, ) from langchain.agents.output_parsers.tools import ToolsAgentOutputParser MessageFormatter = Callable[[Sequence[tuple[AgentAction, str]]], list[BaseMessage]] def create_tool_calling_agent( llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: ChatPromptTemplate, *, message_formatter: MessageFormatter = format_to_tool_messages, ) -> Runnable: """Create an agent that uses tools. Args: llm: LLM to use as the agent. tools: Tools this agent has access to. prompt: The prompt to use. See Prompt section below for more on the expected input variables. message_formatter: Formatter function to convert (AgentAction, tool output) tuples into FunctionMessages. Returns: A Runnable sequence representing an agent. It takes as input all the same input variables as the prompt passed in does. It returns as output either an AgentAction or AgentFinish. Example: .. code-block:: python from langchain.agents import AgentExecutor, create_tool_calling_agent, tool from langchain_anthropic import ChatAnthropic from langchain_core.prompts import ChatPromptTemplate prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a helpful assistant"), ("placeholder", "{chat_history}"), ("human", "{input}"), ("placeholder", "{agent_scratchpad}"), ] ) model = ChatAnthropic(model="claude-3-opus-20240229") @tool def magic_function(input: int) -> int: \"\"\"Applies a magic function to an input.\"\"\" return input + 2 tools = [magic_function] agent = create_tool_calling_agent(model, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) agent_executor.invoke({"input": "what is the value of magic_function(3)?"}) # Using with chat history from langchain_core.messages import AIMessage, HumanMessage agent_executor.invoke( { "input": "what's my name?", "chat_history": [ HumanMessage(content="hi! my name is bob"), AIMessage(content="Hello Bob! How can I assist you today?"), ], } ) Prompt: The agent prompt must have an `agent_scratchpad` key that is a ``MessagesPlaceholder``. Intermediate agent actions and tool output messages will be passed in here. """ missing_vars = {"agent_scratchpad"}.difference( prompt.input_variables + list(prompt.partial_variables) ) if missing_vars: raise ValueError(f"Prompt missing required variables: {missing_vars}") if not hasattr(llm, "bind_tools"): raise ValueError( "This function requires a .bind_tools method be implemented on the LLM.", ) llm_with_tools = llm.bind_tools(tools) agent = ( RunnablePassthrough.assign( agent_scratchpad=lambda x: message_formatter(x["intermediate_steps"]) ) | prompt | llm_with_tools | ToolsAgentOutputParser() ) return agent
from typing import Callable, List, Sequence, Tuple from langchain_core.agents import AgentAction from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import BaseMessage from langchain_core.prompts.chat import ChatPromptTemplate from langchain_core.runnables import Runnable, RunnablePassthrough from langchain_core.tools import BaseTool from langchain.agents.format_scratchpad.tools import ( format_to_tool_messages, ) from langchain.agents.output_parsers.tools import ToolsAgentOutputParser MessageFormatter = Callable[[Sequence[Tuple[AgentAction, str]]], List[BaseMessage]] def create_tool_calling_agent( llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: ChatPromptTemplate, *, message_formatter: MessageFormatter = format_to_tool_messages, ) -> Runnable: """Create an agent that uses tools. Args: llm: LLM to use as the agent. tools: Tools this agent has access to. prompt: The prompt to use. See Prompt section below for more on the expected input variables. message_formatter: Formatter function to convert (AgentAction, tool output) tuples into FunctionMessages. Returns: A Runnable sequence representing an agent. It takes as input all the same input variables as the prompt passed in does. It returns as output either an AgentAction or AgentFinish. Example: .. code-block:: python from langchain.agents import AgentExecutor, create_tool_calling_agent, tool from langchain_anthropic import ChatAnthropic from langchain_core.prompts import ChatPromptTemplate prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a helpful assistant"), ("placeholder", "{chat_history}"), ("human", "{input}"), ("placeholder", "{agent_scratchpad}"), ] ) model = ChatAnthropic(model="claude-3-opus-20240229") @tool def magic_function(input: int) -> int: \"\"\"Applies a magic function to an input.\"\"\" return input + 2 tools = [magic_function] agent = create_tool_calling_agent(model, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) agent_executor.invoke({"input": "what is the value of magic_function(3)?"}) # Using with chat history from langchain_core.messages import AIMessage, HumanMessage agent_executor.invoke( { "input": "what's my name?", "chat_history": [ HumanMessage(content="hi! my name is bob"), AIMessage(content="Hello Bob! How can I assist you today?"), ], } ) Prompt: The agent prompt must have an `agent_scratchpad` key that is a ``MessagesPlaceholder``. Intermediate agent actions and tool output messages will be passed in here. """ missing_vars = {"agent_scratchpad"}.difference( prompt.input_variables + list(prompt.partial_variables) ) if missing_vars: raise ValueError(f"Prompt missing required variables: {missing_vars}") if not hasattr(llm, "bind_tools"): raise ValueError( "This function requires a .bind_tools method be implemented on the LLM.", ) llm_with_tools = llm.bind_tools(tools) agent = ( RunnablePassthrough.assign( agent_scratchpad=lambda x: message_formatter(x["intermediate_steps"]) ) | prompt | llm_with_tools | ToolsAgentOutputParser() ) return agent
import logging import pathlib from postmarker.core import PostmarkClient from postmarker.models.emails import EmailManager from prisma.enums import NotificationType from pydantic import BaseModel from backend.data.notifications import ( NotificationEventModel, NotificationTypeOverride, T_co, ) from backend.util.settings import Settings from backend.util.text import TextFormatter logger = logging.getLogger(__name__) settings = Settings() # The following is a workaround to get the type checker to recognize the EmailManager type # This is a temporary solution and should be removed once the Postmark library is updated # to support type annotations. class TypedPostmarkClient(PostmarkClient): emails: EmailManager class Template(BaseModel): subject_template: str body_template: str base_template: str class EmailSender: def __init__(self): if settings.secrets.postmark_server_api_token: self.postmark = TypedPostmarkClient( server_token=settings.secrets.postmark_server_api_token ) else: logger.warning( "Postmark server API token not found, email sending disabled" ) self.postmark = None self.formatter = TextFormatter() def send_templated( self, notification: NotificationType, user_email: str, data: NotificationEventModel[T_co] | list[NotificationEventModel[T_co]], ): """Send an email to a user using a template pulled from the notification type""" if not self.postmark: logger.warning("Postmark client not initialized, email not sent") return template = self._get_template(notification) try: subject, full_message = self.formatter.format_email( base_template=template.base_template, subject_template=template.subject_template, content_template=template.body_template, data=data, unsubscribe_link="https://platform.agpt.co/profile/settings", ) except Exception as e: logger.error(f"Error formatting full message: {e}") raise e self._send_email(user_email, subject, full_message) def _get_template(self, notification: NotificationType): # convert the notification type to a notification type override notification_type_override = NotificationTypeOverride(notification) # find the template in templates/name.html (the .template returns with the .html) template_path = f"templates/{notification_type_override.template}.jinja2" logger.debug( f"Template full path: {pathlib.Path(__file__).parent / template_path}" ) base_template_path = "templates/base.html.jinja2" with open(pathlib.Path(__file__).parent / base_template_path, "r") as file: base_template = file.read() with open(pathlib.Path(__file__).parent / template_path, "r") as file: template = file.read() return Template( subject_template=notification_type_override.subject, body_template=template, base_template=base_template, ) def _send_email(self, user_email: str, subject: str, body: str): if not self.postmark: logger.warning("Email tried to send without postmark configured") return logger.debug(f"Sending email to {user_email} with subject {subject}") self.postmark.emails.send( From=settings.config.postmark_sender_email, To=user_email, Subject=subject, HtmlBody=body, )
import logging import pathlib from postmarker.core import PostmarkClient from postmarker.models.emails import EmailManager from prisma.enums import NotificationType from pydantic import BaseModel from backend.data.notifications import ( NotificationEventModel, NotificationTypeOverride, T_co, ) from backend.util.settings import Settings from backend.util.text import TextFormatter logger = logging.getLogger(__name__) settings = Settings() # The following is a workaround to get the type checker to recognize the EmailManager type # This is a temporary solution and should be removed once the Postmark library is updated # to support type annotations. class TypedPostmarkClient(PostmarkClient): emails: EmailManager class Template(BaseModel): subject_template: str body_template: str base_template: str class EmailSender: def __init__(self): if settings.secrets.postmark_server_api_token: self.postmark = TypedPostmarkClient( server_token=settings.secrets.postmark_server_api_token ) else: logger.warning( "Postmark server API token not found, email sending disabled" ) self.postmark = None self.formatter = TextFormatter() def send_templated( self, notification: NotificationType, user_email: str, data: NotificationEventModel[T_co] | list[NotificationEventModel[T_co]], ): """Send an email to a user using a template pulled from the notification type""" if not self.postmark: logger.warning("Postmark client not initialized, email not sent") return template = self._get_template(notification) try: subject, full_message = self.formatter.format_email( base_template=template.base_template, subject_template=template.subject_template, content_template=template.body_template, data=data, unsubscribe_link="https://autogpt.com/unsubscribe", ) except Exception as e: logger.error(f"Error formatting full message: {e}") raise e self._send_email(user_email, subject, full_message) def _get_template(self, notification: NotificationType): # convert the notification type to a notification type override notification_type_override = NotificationTypeOverride(notification) # find the template in templates/name.html (the .template returns with the .html) template_path = f"templates/{notification_type_override.template}.jinja2" logger.debug( f"Template full path: {pathlib.Path(__file__).parent / template_path}" ) base_template_path = "templates/base.html.jinja2" with open(pathlib.Path(__file__).parent / base_template_path, "r") as file: base_template = file.read() with open(pathlib.Path(__file__).parent / template_path, "r") as file: template = file.read() return Template( subject_template=notification_type_override.subject, body_template=template, base_template=base_template, ) def _send_email(self, user_email: str, subject: str, body: str): if not self.postmark: logger.warning("Email tried to send without postmark configured") return logger.debug(f"Sending email to {user_email} with subject {subject}") self.postmark.emails.send( From=settings.config.postmark_sender_email, To=user_email, Subject=subject, HtmlBody=body, )
import io import pathlib from collections import namedtuple from typing import Any, Dict, Iterator, List, Optional, Tuple, Union from torchdata.datapipes.iter import IterDataPipe, Mapper, Zipper from torchvision.prototype.datapoints import Image, Label from torchvision.prototype.datasets.utils import Dataset, GDriveResource, OnlineResource from torchvision.prototype.datasets.utils._internal import hint_sharding, hint_shuffling from .._api import register_dataset, register_info NAME = "pcam" class PCAMH5Reader(IterDataPipe[Tuple[str, io.IOBase]]): def __init__( self, datapipe: IterDataPipe[Tuple[str, io.IOBase]], key: Optional[str] = None, # Note: this key thing might be very specific to the PCAM dataset ) -> None: self.datapipe = datapipe self.key = key def __iter__(self) -> Iterator[Tuple[str, io.IOBase]]: import h5py for _, handle in self.datapipe: try: with h5py.File(handle) as data: if self.key is not None: data = data[self.key] yield from data finally: handle.close() _Resource = namedtuple("_Resource", ("file_name", "gdrive_id", "sha256")) @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=["0", "1"]) @register_dataset(NAME) class PCAM(Dataset): # TODO write proper docstring """PCAM Dataset homepage="https://github.com/basveeling/pcam" """ def __init__( self, root: Union[str, pathlib.Path], split: str = "train", *, skip_integrity_check: bool = False ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "val", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check, dependencies=("h5py",)) _RESOURCES = { "train": ( _Resource( # Images file_name="camelyonpatch_level_2_split_train_x.h5.gz", gdrive_id="1Ka0XfEMiwgCYPdTI-vv6eUElOBnKFKQ2", sha256="d619e741468a7ab35c7e4a75e6821b7e7e6c9411705d45708f2a0efc8960656c", ), _Resource( # Targets file_name="camelyonpatch_level_2_split_train_y.h5.gz", gdrive_id="1269yhu3pZDP8UYFQs-NYs3FPwuK-nGSG", sha256="b74126d2c01b20d3661f9b46765d29cf4e4fba6faba29c8e0d09d406331ab75a", ), ), "test": ( _Resource( # Images file_name="camelyonpatch_level_2_split_test_x.h5.gz", gdrive_id="1qV65ZqZvWzuIVthK8eVDhIwrbnsJdbg_", sha256="79174c2201ad521602a5888be8f36ee10875f37403dd3f2086caf2182ef87245", ), _Resource( # Targets file_name="camelyonpatch_level_2_split_test_y.h5.gz", gdrive_id="17BHrSrwWKjYsOgTMmoqrIjDy6Fa2o_gP", sha256="0a522005fccc8bbd04c5a117bfaf81d8da2676f03a29d7499f71d0a0bd6068ef", ), ), "val": ( _Resource( # Images file_name="camelyonpatch_level_2_split_valid_x.h5.gz", gdrive_id="1hgshYGWK8V-eGRy8LToWJJgDU_rXWVJ3", sha256="f82ee1670d027b4ec388048d9eabc2186b77c009655dae76d624c0ecb053ccb2", ), _Resource( # Targets file_name="camelyonpatch_level_2_split_valid_y.h5.gz", gdrive_id="1bH8ZRbhSVAhScTS0p9-ZzGnX91cHT3uO", sha256="ce1ae30f08feb468447971cfd0472e7becd0ad96d877c64120c72571439ae48c", ), ), } def _resources(self) -> List[OnlineResource]: return [ # = [images resource, targets resource] GDriveResource(file_name=file_name, id=gdrive_id, sha256=sha256, preprocess="decompress") for file_name, gdrive_id, sha256 in self._RESOURCES[self._split] ] def _prepare_sample(self, data: Tuple[Any, Any]) -> Dict[str, Any]: image, target = data # They're both numpy arrays at this point return { "image": Image(image.transpose(2, 0, 1)), "label": Label(target.item(), categories=self._categories), } def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: images_dp, targets_dp = resource_dps images_dp = PCAMH5Reader(images_dp, key="x") targets_dp = PCAMH5Reader(targets_dp, key="y") dp = Zipper(images_dp, targets_dp) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 262_144 if self._split == "train" else 32_768
import io import pathlib from collections import namedtuple from typing import Any, Dict, Iterator, List, Optional, Tuple, Union from torchdata.datapipes.iter import IterDataPipe, Mapper, Zipper from torchvision.prototype import features from torchvision.prototype.datasets.utils import Dataset, GDriveResource, OnlineResource from torchvision.prototype.datasets.utils._internal import hint_sharding, hint_shuffling from torchvision.prototype.features import Label from .._api import register_dataset, register_info NAME = "pcam" class PCAMH5Reader(IterDataPipe[Tuple[str, io.IOBase]]): def __init__( self, datapipe: IterDataPipe[Tuple[str, io.IOBase]], key: Optional[str] = None, # Note: this key thing might be very specific to the PCAM dataset ) -> None: self.datapipe = datapipe self.key = key def __iter__(self) -> Iterator[Tuple[str, io.IOBase]]: import h5py for _, handle in self.datapipe: try: with h5py.File(handle) as data: if self.key is not None: data = data[self.key] yield from data finally: handle.close() _Resource = namedtuple("_Resource", ("file_name", "gdrive_id", "sha256")) @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=["0", "1"]) @register_dataset(NAME) class PCAM(Dataset): # TODO write proper docstring """PCAM Dataset homepage="https://github.com/basveeling/pcam" """ def __init__( self, root: Union[str, pathlib.Path], split: str = "train", *, skip_integrity_check: bool = False ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "val", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check, dependencies=("h5py",)) _RESOURCES = { "train": ( _Resource( # Images file_name="camelyonpatch_level_2_split_train_x.h5.gz", gdrive_id="1Ka0XfEMiwgCYPdTI-vv6eUElOBnKFKQ2", sha256="d619e741468a7ab35c7e4a75e6821b7e7e6c9411705d45708f2a0efc8960656c", ), _Resource( # Targets file_name="camelyonpatch_level_2_split_train_y.h5.gz", gdrive_id="1269yhu3pZDP8UYFQs-NYs3FPwuK-nGSG", sha256="b74126d2c01b20d3661f9b46765d29cf4e4fba6faba29c8e0d09d406331ab75a", ), ), "test": ( _Resource( # Images file_name="camelyonpatch_level_2_split_test_x.h5.gz", gdrive_id="1qV65ZqZvWzuIVthK8eVDhIwrbnsJdbg_", sha256="79174c2201ad521602a5888be8f36ee10875f37403dd3f2086caf2182ef87245", ), _Resource( # Targets file_name="camelyonpatch_level_2_split_test_y.h5.gz", gdrive_id="17BHrSrwWKjYsOgTMmoqrIjDy6Fa2o_gP", sha256="0a522005fccc8bbd04c5a117bfaf81d8da2676f03a29d7499f71d0a0bd6068ef", ), ), "val": ( _Resource( # Images file_name="camelyonpatch_level_2_split_valid_x.h5.gz", gdrive_id="1hgshYGWK8V-eGRy8LToWJJgDU_rXWVJ3", sha256="f82ee1670d027b4ec388048d9eabc2186b77c009655dae76d624c0ecb053ccb2", ), _Resource( # Targets file_name="camelyonpatch_level_2_split_valid_y.h5.gz", gdrive_id="1bH8ZRbhSVAhScTS0p9-ZzGnX91cHT3uO", sha256="ce1ae30f08feb468447971cfd0472e7becd0ad96d877c64120c72571439ae48c", ), ), } def _resources(self) -> List[OnlineResource]: return [ # = [images resource, targets resource] GDriveResource(file_name=file_name, id=gdrive_id, sha256=sha256, preprocess="decompress") for file_name, gdrive_id, sha256 in self._RESOURCES[self._split] ] def _prepare_sample(self, data: Tuple[Any, Any]) -> Dict[str, Any]: image, target = data # They're both numpy arrays at this point return { "image": features.Image(image.transpose(2, 0, 1)), "label": Label(target.item(), categories=self._categories), } def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: images_dp, targets_dp = resource_dps images_dp = PCAMH5Reader(images_dp, key="x") targets_dp = PCAMH5Reader(targets_dp, key="y") dp = Zipper(images_dp, targets_dp) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 262_144 if self._split == "train" else 32_768
import logging import os import sys from torchaudio._internal.module_utils import fail_with_message, is_module_available, no_op from .utils import _check_cuda_version, _fail_since_no_ffmpeg, _init_dll_path, _init_ffmpeg, _init_sox, _load_lib _LG = logging.getLogger(__name__) # Note: # `_check_cuda_version` is not meant to be used by regular users. # Builder uses it for debugging purpose, so we export it. # https://github.com/pytorch/builder/blob/e2e4542b8eb0bdf491214451a1a4128bd606cce2/test/smoke_test/smoke_test.py#L80 __all__ = [ "fail_if_no_kaldi", "fail_if_no_sox", "fail_if_no_ffmpeg", "_check_cuda_version", "_IS_TORCHAUDIO_EXT_AVAILABLE", "_IS_KALDI_AVAILABLE", "_IS_RIR_AVAILABLE", "_SOX_INITIALIZED", "_FFMPEG_INITIALIZED", ] if os.name == "nt" and (3, 8) <= sys.version_info < (3, 9): _init_dll_path() # When the extension module is built, we initialize it. # In case of an error, we do not catch the failure as it suggests there is something # wrong with the installation. _IS_TORCHAUDIO_EXT_AVAILABLE = is_module_available("torchaudio.lib._torchaudio") # Kaldi and RIR features are implemented in _torchaudio extension, but they can be individually # turned on/off at build time. Available means that _torchaudio is loaded properly, and # Kaldi or RIR features are found there. _IS_RIR_AVAILABLE = False _IS_KALDI_AVAILABLE = False _IS_ALIGN_AVAILABLE = False if _IS_TORCHAUDIO_EXT_AVAILABLE: _load_lib("libtorchaudio") import torchaudio.lib._torchaudio # noqa _check_cuda_version() _IS_RIR_AVAILABLE = torchaudio.lib._torchaudio.is_rir_available() _IS_KALDI_AVAILABLE = torchaudio.lib._torchaudio.is_kaldi_available() _IS_ALIGN_AVAILABLE = torchaudio.lib._torchaudio.is_align_available() # Similar to libtorchaudio, sox-related features should be importable when present. # # Note: This will be change in the future when sox is dynamically linked. # At that point, this initialization should handle the case where # sox integration is built but libsox is not found. _SOX_INITIALIZED = False if is_module_available("torchaudio.lib._torchaudio_sox"): _init_sox() _SOX_INITIALIZED = True # Initialize FFmpeg-related features _FFMPEG_INITIALIZED = False if is_module_available("torchaudio.lib._torchaudio_ffmpeg"): try: _init_ffmpeg() _FFMPEG_INITIALIZED = True except Exception: # The initialization of FFmpeg extension will fail if supported FFmpeg # libraries are not found in the system. # Since the rest of the torchaudio works without it, we do not report the # error here. # The error will be raised when user code attempts to use these features. _LG.debug("Failed to initialize ffmpeg bindings", exc_info=True) fail_if_no_kaldi = ( no_op if _IS_KALDI_AVAILABLE else fail_with_message( "requires kaldi extension, but TorchAudio is not compiled with it. Please build TorchAudio with kaldi support." ) ) fail_if_no_sox = ( no_op if _SOX_INITIALIZED else fail_with_message( "requires sox extension, but TorchAudio is not compiled with it. Please build TorchAudio with libsox support." ) ) fail_if_no_ffmpeg = no_op if _FFMPEG_INITIALIZED else _fail_since_no_ffmpeg fail_if_no_rir = ( no_op if _IS_RIR_AVAILABLE else fail_with_message( "requires RIR extension, but TorchAudio is not compiled with it. Please build TorchAudio with RIR support." ) ) fail_if_no_align = ( no_op if _IS_ALIGN_AVAILABLE else fail_with_message( "Requires alignment extension, but TorchAudio is not compiled with it. \ Please build TorchAudio with alignment support." ) )
import logging import os import sys from torchaudio._internal.module_utils import fail_with_message, is_module_available, no_op from .utils import _check_cuda_version, _fail_since_no_ffmpeg, _init_dll_path, _init_ffmpeg, _init_sox, _load_lib _LG = logging.getLogger(__name__) # Note: # `_check_cuda_version` is not meant to be used by regular users. # Builder uses it for debugging purpose, so we export it. # https://github.com/pytorch/builder/blob/e2e4542b8eb0bdf491214451a1a4128bd606cce2/test/smoke_test/smoke_test.py#L80 __all__ = [ "fail_if_no_kaldi", "fail_if_no_sox", "fail_if_no_ffmpeg", "_check_cuda_version", "_IS_TORCHAUDIO_EXT_AVAILABLE", "_IS_KALDI_AVAILABLE", "_IS_RIR_AVAILABLE", "_SOX_INITIALIZED", "_FFMPEG_INITIALIZED", ] if os.name == "nt" and (3, 8) <= sys.version_info < (3, 9): _init_dll_path() # When the extension module is built, we initialize it. # In case of an error, we do not catch the failure as it suggests there is something # wrong with the installation. _IS_TORCHAUDIO_EXT_AVAILABLE = is_module_available("torchaudio.lib._torchaudio") # Kaldi and RIR features are implemented in _torchaudio extension, but they can be individually # turned on/off at build time. Available means that _torchaudio is loaded properly, and # Kaldi or RIR features are found there. _IS_RIR_AVAILABLE = False _IS_KALDI_AVAILABLE = False if _IS_TORCHAUDIO_EXT_AVAILABLE: _load_lib("libtorchaudio") import torchaudio.lib._torchaudio # noqa _check_cuda_version() _IS_RIR_AVAILABLE = torchaudio.lib._torchaudio.is_rir_available() _IS_KALDI_AVAILABLE = torchaudio.lib._torchaudio.is_kaldi_available() # Similar to libtorchaudio, sox-related features should be importable when present. # # Note: This will be change in the future when sox is dynamically linked. # At that point, this initialization should handle the case where # sox integration is built but libsox is not found. _SOX_INITIALIZED = False if is_module_available("torchaudio.lib._torchaudio_sox"): _init_sox() _SOX_INITIALIZED = True # Initialize FFmpeg-related features _FFMPEG_INITIALIZED = False if is_module_available("torchaudio.lib._torchaudio_ffmpeg"): try: _init_ffmpeg() _FFMPEG_INITIALIZED = True except Exception: # The initialization of FFmpeg extension will fail if supported FFmpeg # libraries are not found in the system. # Since the rest of the torchaudio works without it, we do not report the # error here. # The error will be raised when user code attempts to use these features. _LG.debug("Failed to initialize ffmpeg bindings", exc_info=True) fail_if_no_kaldi = ( no_op if _IS_KALDI_AVAILABLE else fail_with_message( "requires kaldi extension, but TorchAudio is not compiled with it. Please build TorchAudio with kaldi support." ) ) fail_if_no_sox = ( no_op if _SOX_INITIALIZED else fail_with_message( "requires sox extension, but TorchAudio is not compiled with it. Please build TorchAudio with libsox support." ) ) fail_if_no_ffmpeg = no_op if _FFMPEG_INITIALIZED else _fail_since_no_ffmpeg fail_if_no_rir = ( no_op if _IS_RIR_AVAILABLE else fail_with_message( "requires RIR extension, but TorchAudio is not compiled with it. Please build TorchAudio with RIR support." ) )
""" This script runs the evaluation of an SBERT msmarco model on the MS MARCO dev dataset and reports different performances metrices for cossine similarity & dot-product. Usage: python eval_msmarco.py model_name [max_corpus_size_in_thousands] """ import logging import os import sys import tarfile from sentence_transformers import LoggingHandler, SentenceTransformer, evaluation, util #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Name of the SBERT model model_name = sys.argv[1] # You can limit the approx. max size of the corpus. Pass 100 as second parameter and the corpus has a size of approx 100k docs corpus_max_size = int(sys.argv[2]) * 1000 if len(sys.argv) >= 3 else 0 #### Load model model = SentenceTransformer(model_name) ### Data files data_folder = "msmarco-data" os.makedirs(data_folder, exist_ok=True) collection_filepath = os.path.join(data_folder, "collection.tsv") dev_queries_file = os.path.join(data_folder, "queries.dev.small.tsv") qrels_filepath = os.path.join(data_folder, "qrels.dev.tsv") ### Download files if needed if not os.path.exists(collection_filepath) or not os.path.exists(dev_queries_file): tar_filepath = os.path.join(data_folder, "collectionandqueries.tar.gz") if not os.path.exists(tar_filepath): logging.info("Download: " + tar_filepath) util.http_get( "https://msmarco.z22.web.core.windows.net/msmarcoranking/collectionandqueries.tar.gz", tar_filepath ) with tarfile.open(tar_filepath, "r:gz") as tar: tar.extractall(path=data_folder) if not os.path.exists(qrels_filepath): util.http_get("https://msmarco.z22.web.core.windows.net/msmarcoranking/qrels.dev.tsv", qrels_filepath) ### Load data corpus = {} # Our corpus pid => passage dev_queries = {} # Our dev queries. qid => query dev_rel_docs = {} # Mapping qid => set with relevant pids needed_pids = set() # Passage IDs we need needed_qids = set() # Query IDs we need # Load the 6980 dev queries with open(dev_queries_file, encoding="utf8") as fIn: for line in fIn: qid, query = line.strip().split("\t") dev_queries[qid] = query.strip() # Load which passages are relevant for which queries with open(qrels_filepath) as fIn: for line in fIn: qid, _, pid, _ = line.strip().split("\t") if qid not in dev_queries: continue if qid not in dev_rel_docs: dev_rel_docs[qid] = set() dev_rel_docs[qid].add(pid) needed_pids.add(pid) needed_qids.add(qid) # Read passages with open(collection_filepath, encoding="utf8") as fIn: for line in fIn: pid, passage = line.strip().split("\t") passage = passage if pid in needed_pids or corpus_max_size <= 0 or len(corpus) <= corpus_max_size: corpus[pid] = passage.strip() ## Run evaluator logging.info("Queries: {}".format(len(dev_queries))) logging.info("Corpus: {}".format(len(corpus))) ir_evaluator = evaluation.InformationRetrievalEvaluator( dev_queries, corpus, dev_rel_docs, show_progress_bar=True, corpus_chunk_size=100000, precision_recall_at_k=[10, 100], name="msmarco dev", ) ir_evaluator(model)
""" This script runs the evaluation of an SBERT msmarco model on the MS MARCO dev dataset and reports different performances metrices for cossine similarity & dot-product. Usage: python eval_msmarco.py model_name [max_corpus_size_in_thousands] """ from sentence_transformers import LoggingHandler, SentenceTransformer, evaluation, util import logging import sys import os import tarfile #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Name of the SBERT model model_name = sys.argv[1] # You can limit the approx. max size of the corpus. Pass 100 as second parameter and the corpus has a size of approx 100k docs corpus_max_size = int(sys.argv[2]) * 1000 if len(sys.argv) >= 3 else 0 #### Load model model = SentenceTransformer(model_name) ### Data files data_folder = "msmarco-data" os.makedirs(data_folder, exist_ok=True) collection_filepath = os.path.join(data_folder, "collection.tsv") dev_queries_file = os.path.join(data_folder, "queries.dev.small.tsv") qrels_filepath = os.path.join(data_folder, "qrels.dev.tsv") ### Download files if needed if not os.path.exists(collection_filepath) or not os.path.exists(dev_queries_file): tar_filepath = os.path.join(data_folder, "collectionandqueries.tar.gz") if not os.path.exists(tar_filepath): logging.info("Download: " + tar_filepath) util.http_get( "https://msmarco.z22.web.core.windows.net/msmarcoranking/collectionandqueries.tar.gz", tar_filepath ) with tarfile.open(tar_filepath, "r:gz") as tar: tar.extractall(path=data_folder) if not os.path.exists(qrels_filepath): util.http_get("https://msmarco.z22.web.core.windows.net/msmarcoranking/qrels.dev.tsv", qrels_filepath) ### Load data corpus = {} # Our corpus pid => passage dev_queries = {} # Our dev queries. qid => query dev_rel_docs = {} # Mapping qid => set with relevant pids needed_pids = set() # Passage IDs we need needed_qids = set() # Query IDs we need # Load the 6980 dev queries with open(dev_queries_file, encoding="utf8") as fIn: for line in fIn: qid, query = line.strip().split("\t") dev_queries[qid] = query.strip() # Load which passages are relevant for which queries with open(qrels_filepath) as fIn: for line in fIn: qid, _, pid, _ = line.strip().split("\t") if qid not in dev_queries: continue if qid not in dev_rel_docs: dev_rel_docs[qid] = set() dev_rel_docs[qid].add(pid) needed_pids.add(pid) needed_qids.add(qid) # Read passages with open(collection_filepath, encoding="utf8") as fIn: for line in fIn: pid, passage = line.strip().split("\t") passage = passage if pid in needed_pids or corpus_max_size <= 0 or len(corpus) <= corpus_max_size: corpus[pid] = passage.strip() ## Run evaluator logging.info("Queries: {}".format(len(dev_queries))) logging.info("Corpus: {}".format(len(corpus))) ir_evaluator = evaluation.InformationRetrievalEvaluator( dev_queries, corpus, dev_rel_docs, show_progress_bar=True, corpus_chunk_size=100000, precision_recall_at_k=[10, 100], name="msmarco dev", ) ir_evaluator(model)
from io import BytesIO from typing import TYPE_CHECKING, Any, NamedTuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing import AudioNdArray, NdArray, VideoNdArray from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto if TYPE_CHECKING: from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='VideoBytes') class VideoLoadResult(NamedTuple): video: VideoNdArray audio: AudioNdArray key_frame_indices: NdArray @_register_proto(proto_type_name='video_bytes') class VideoBytes(bytes, AbstractType): """ Bytes that store a video and that can be load into a video tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load(self, **kwargs) -> VideoLoadResult: """ Load the video from the bytes into a VideoLoadResult object consisting of a VideoNdArray (`VideoLoadResult.video`), an AudioNdArray (`VideoLoadResult.audio`) and an NdArray containing the key frame indices (`VideoLoadResult.key_frame_indices`). EXAMPLE USAGE .. code-block:: python from docarray import BaseDoc from docarray.typing import VideoUrl import numpy as np class MyDoc(BaseDoc): video_url: VideoUrl doc = MyDoc(video_url="toydata/mp_.mp4") video, audio, key_frame_indices = doc.video_url.load() assert isinstance(video, np.ndarray) assert isinstance(audio, np.ndarray) assert isinstance(key_frame_indices, np.ndarray) :param kwargs: supports all keyword arguments that are being supported by av.open() as described in: https://pyav.org/docs/stable/api/_globals.html?highlight=open#av.open :return: a VideoLoadResult instance with video, audio and keyframe indices """ import av with av.open(BytesIO(self), **kwargs) as container: audio_frames = [] video_frames = [] keyframe_indices = [] for frame in container.decode(): if type(frame) == av.audio.frame.AudioFrame: audio_frames.append(frame.to_ndarray()) elif type(frame) == av.video.frame.VideoFrame: video_frames.append(frame.to_ndarray(format='rgb24')) if frame.key_frame == 1: curr_index = len(video_frames) keyframe_indices.append(curr_index) if len(audio_frames) == 0: audio = parse_obj_as(AudioNdArray, np.array(audio_frames)) else: audio = parse_obj_as(AudioNdArray, np.stack(audio_frames)) video = parse_obj_as(VideoNdArray, np.stack(video_frames)) indices = parse_obj_as(NdArray, keyframe_indices) return VideoLoadResult(video=video, audio=audio, key_frame_indices=indices)
from io import BytesIO from typing import TYPE_CHECKING, Any, NamedTuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing import AudioNdArray, NdArray, VideoNdArray from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto if TYPE_CHECKING: from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='VideoBytes') class VideoLoadResult(NamedTuple): video: VideoNdArray audio: AudioNdArray key_frame_indices: NdArray @_register_proto(proto_type_name='video_bytes') class VideoBytes(bytes, AbstractType): """ Bytes that store a video and that can be load into a video tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load(self, **kwargs) -> VideoLoadResult: """ Load the video from the bytes into a VideoLoadResult object consisting of a VideoNdArray (`VideoLoadResult.video`), an AudioNdArray (`VideoLoadResult.audio`) and an NdArray containing the key frame indices (`VideoLoadResult.key_frame_indices`). EXAMPLE USAGE .. code-block:: python from docarray import BaseDocument from docarray.typing import VideoUrl import numpy as np class MyDoc(BaseDocument): video_url: VideoUrl doc = MyDoc(video_url="toydata/mp_.mp4") video, audio, key_frame_indices = doc.video_url.load() assert isinstance(video, np.ndarray) assert isinstance(audio, np.ndarray) assert isinstance(key_frame_indices, np.ndarray) :param kwargs: supports all keyword arguments that are being supported by av.open() as described in: https://pyav.org/docs/stable/api/_globals.html?highlight=open#av.open :return: a VideoLoadResult instance with video, audio and keyframe indices """ import av with av.open(BytesIO(self), **kwargs) as container: audio_frames = [] video_frames = [] keyframe_indices = [] for frame in container.decode(): if type(frame) == av.audio.frame.AudioFrame: audio_frames.append(frame.to_ndarray()) elif type(frame) == av.video.frame.VideoFrame: video_frames.append(frame.to_ndarray(format='rgb24')) if frame.key_frame == 1: curr_index = len(video_frames) keyframe_indices.append(curr_index) if len(audio_frames) == 0: audio = parse_obj_as(AudioNdArray, np.array(audio_frames)) else: audio = parse_obj_as(AudioNdArray, np.stack(audio_frames)) video = parse_obj_as(VideoNdArray, np.stack(video_frames)) indices = parse_obj_as(NdArray, keyframe_indices) return VideoLoadResult(video=video, audio=audio, key_frame_indices=indices)
import logging import aiohttp from fastapi import APIRouter from backend.util.settings import Settings from .models import TurnstileVerifyRequest, TurnstileVerifyResponse logger = logging.getLogger(__name__) router = APIRouter() settings = Settings() @router.post("/verify", response_model=TurnstileVerifyResponse) async def verify_turnstile_token( request: TurnstileVerifyRequest, ) -> TurnstileVerifyResponse: """ Verify a Cloudflare Turnstile token. This endpoint verifies a token returned by the Cloudflare Turnstile challenge on the client side. It returns whether the verification was successful. """ logger.info(f"Verifying Turnstile token for action: {request.action}") return await verify_token(request) async def verify_token(request: TurnstileVerifyRequest) -> TurnstileVerifyResponse: """ Verify a Cloudflare Turnstile token by making a request to the Cloudflare API. """ # Get the secret key from settings turnstile_secret_key = settings.secrets.turnstile_secret_key turnstile_verify_url = settings.secrets.turnstile_verify_url if not turnstile_secret_key: logger.error( "Turnstile secret key missing. Set TURNSTILE_SECRET_KEY to enable verification." ) return TurnstileVerifyResponse( success=False, error="CONFIGURATION_ERROR", challenge_timestamp=None, hostname=None, action=None, ) try: async with aiohttp.ClientSession() as session: payload = { "secret": turnstile_secret_key, "response": request.token, } if request.action: payload["action"] = request.action logger.debug(f"Verifying Turnstile token with action: {request.action}") async with session.post( turnstile_verify_url, data=payload, timeout=aiohttp.ClientTimeout(total=10), ) as response: if response.status != 200: error_text = await response.text() logger.error(f"Turnstile API error: {error_text}") return TurnstileVerifyResponse( success=False, error=f"API_ERROR: {response.status}", challenge_timestamp=None, hostname=None, action=None, ) data = await response.json() logger.debug(f"Turnstile API response: {data}") # Parse the response and return a structured object return TurnstileVerifyResponse( success=data.get("success", False), error=( data.get("error-codes", None)[0] if data.get("error-codes") else None ), challenge_timestamp=data.get("challenge_timestamp"), hostname=data.get("hostname"), action=data.get("action"), ) except aiohttp.ClientError as e: logger.error(f"Connection error to Turnstile API: {str(e)}") return TurnstileVerifyResponse( success=False, error=f"CONNECTION_ERROR: {str(e)}", challenge_timestamp=None, hostname=None, action=None, ) except Exception as e: logger.error(f"Unexpected error in Turnstile verification: {str(e)}") return TurnstileVerifyResponse( success=False, error=f"UNEXPECTED_ERROR: {str(e)}", challenge_timestamp=None, hostname=None, action=None, )
import logging import aiohttp from fastapi import APIRouter from backend.util.settings import Settings from .models import TurnstileVerifyRequest, TurnstileVerifyResponse logger = logging.getLogger(__name__) router = APIRouter() settings = Settings() @router.post("/verify", response_model=TurnstileVerifyResponse) async def verify_turnstile_token( request: TurnstileVerifyRequest, ) -> TurnstileVerifyResponse: """ Verify a Cloudflare Turnstile token. This endpoint verifies a token returned by the Cloudflare Turnstile challenge on the client side. It returns whether the verification was successful. """ logger.info(f"Verifying Turnstile token for action: {request.action}") return await verify_token(request) async def verify_token(request: TurnstileVerifyRequest) -> TurnstileVerifyResponse: """ Verify a Cloudflare Turnstile token by making a request to the Cloudflare API. """ # Get the secret key from settings turnstile_secret_key = settings.secrets.turnstile_secret_key turnstile_verify_url = settings.secrets.turnstile_verify_url if not turnstile_secret_key: logger.error("Turnstile secret key is not configured") return TurnstileVerifyResponse( success=False, error="CONFIGURATION_ERROR", challenge_timestamp=None, hostname=None, action=None, ) try: async with aiohttp.ClientSession() as session: payload = { "secret": turnstile_secret_key, "response": request.token, } if request.action: payload["action"] = request.action logger.debug(f"Verifying Turnstile token with action: {request.action}") async with session.post( turnstile_verify_url, data=payload, timeout=aiohttp.ClientTimeout(total=10), ) as response: if response.status != 200: error_text = await response.text() logger.error(f"Turnstile API error: {error_text}") return TurnstileVerifyResponse( success=False, error=f"API_ERROR: {response.status}", challenge_timestamp=None, hostname=None, action=None, ) data = await response.json() logger.debug(f"Turnstile API response: {data}") # Parse the response and return a structured object return TurnstileVerifyResponse( success=data.get("success", False), error=( data.get("error-codes", None)[0] if data.get("error-codes") else None ), challenge_timestamp=data.get("challenge_timestamp"), hostname=data.get("hostname"), action=data.get("action"), ) except aiohttp.ClientError as e: logger.error(f"Connection error to Turnstile API: {str(e)}") return TurnstileVerifyResponse( success=False, error=f"CONNECTION_ERROR: {str(e)}", challenge_timestamp=None, hostname=None, action=None, ) except Exception as e: logger.error(f"Unexpected error in Turnstile verification: {str(e)}") return TurnstileVerifyResponse( success=False, error=f"UNEXPECTED_ERROR: {str(e)}", challenge_timestamp=None, hostname=None, action=None, )
import os import fsspec import pytest from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from datasets.utils._hf_hub_fixes import dataset_info as hf_api_dataset_info from .utils import require_lz4, require_zstandard def test_extract_path_from_uri(): mock_bucket = "mock-s3-bucket" dataset_path = f"s3://{mock_bucket}" dataset_path = extract_path_from_uri(dataset_path) assert dataset_path.startswith("s3://") is False dataset_path = "./local/path" new_dataset_path = extract_path_from_uri(dataset_path) assert dataset_path == new_dataset_path def test_is_remote_filesystem(mockfs): is_remote = is_remote_filesystem(mockfs) assert is_remote is True fs = fsspec.filesystem("file") is_remote = is_remote_filesystem(fs) assert is_remote is False @pytest.mark.parametrize("compression_fs_class", COMPRESSION_FILESYSTEMS) def test_compression_filesystems(compression_fs_class, gz_file, bz2_file, lz4_file, zstd_file, xz_file, text_file): input_paths = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bz2_file, "lz4": lz4_file} input_path = input_paths[compression_fs_class.protocol] if input_path is None: reason = f"for '{compression_fs_class.protocol}' compression protocol, " if compression_fs_class.protocol == "lz4": reason += require_lz4.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(reason) fs = fsspec.filesystem(compression_fs_class.protocol, fo=input_path) assert isinstance(fs, compression_fs_class) expected_filename = os.path.basename(input_path) expected_filename = expected_filename[: expected_filename.rindex(".")] assert fs.ls("/") == [expected_filename] with fs.open(expected_filename, "r", encoding="utf-8") as f, open(text_file, encoding="utf-8") as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol", ["zip", "gzip"]) def test_fs_isfile(protocol, zip_jsonl_path, jsonl_gz_path): compressed_file_paths = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} compressed_file_path = compressed_file_paths[protocol] member_file_path = "dataset.jsonl" path = f"{protocol}://{member_file_path}::{compressed_file_path}" fs, *_ = fsspec.get_fs_token_paths(path) assert fs.isfile(member_file_path) assert not fs.isfile("non_existing_" + member_file_path) @pytest.mark.integration def test_hf_filesystem(hf_token, hf_api, hf_private_dataset_repo_txt_data, text_file): repo_info = hf_api_dataset_info(hf_api, hf_private_dataset_repo_txt_data, use_auth_token=hf_token) hffs = HfFileSystem(repo_info=repo_info, token=hf_token) assert sorted(hffs.glob("*")) == [".gitattributes", "data"] assert hffs.isdir("data") assert hffs.isfile(".gitattributes") and hffs.isfile("data/text_data.txt") with open(text_file) as f: assert hffs.open("data/text_data.txt", "r").read() == f.read()
import os import fsspec import pytest from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from datasets.utils._hf_hub_fixes import dataset_info as hf_api_dataset_info from .utils import require_lz4, require_zstandard def test_extract_path_from_uri(): mock_bucket = "mock-s3-bucket" dataset_path = f"s3://{mock_bucket}" dataset_path = extract_path_from_uri(dataset_path) assert dataset_path.startswith("s3://") is False dataset_path = "./local/path" new_dataset_path = extract_path_from_uri(dataset_path) assert dataset_path == new_dataset_path def test_is_remote_filesystem(mockfs): is_remote = is_remote_filesystem(mockfs) assert is_remote is True fs = fsspec.filesystem("file") is_remote = is_remote_filesystem(fs) assert is_remote is False @pytest.mark.parametrize("compression_fs_class", COMPRESSION_FILESYSTEMS) def test_compression_filesystems(compression_fs_class, gz_file, bz2_file, lz4_file, zstd_file, xz_file, text_file): input_paths = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bz2_file, "lz4": lz4_file} input_path = input_paths[compression_fs_class.protocol] if input_path is None: reason = f"for '{compression_fs_class.protocol}' compression protocol, " if compression_fs_class.protocol == "lz4": reason += require_lz4.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(reason) fs = fsspec.filesystem(compression_fs_class.protocol, fo=input_path) assert isinstance(fs, compression_fs_class) expected_filename = os.path.basename(input_path) expected_filename = expected_filename[: expected_filename.rindex(".")] assert fs.ls("/") == [expected_filename] with fs.open(expected_filename, "r", encoding="utf-8") as f, open(text_file, encoding="utf-8") as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol", ["zip", "gzip"]) def test_fs_isfile(protocol, zip_jsonl_path, jsonl_gz_path): compressed_file_paths = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} compressed_file_path = compressed_file_paths[protocol] member_file_path = "dataset.jsonl" path = f"{protocol}://{member_file_path}::{compressed_file_path}" fs, *_ = fsspec.get_fs_token_paths(path) assert fs.isfile(member_file_path) assert not fs.isfile("non_existing_" + member_file_path) @pytest.mark.integration def test_hf_filesystem(hf_token, hf_api, hf_private_dataset_repo_txt_data, text_file): repo_info = hf_api_dataset_info(hf_api, hf_private_dataset_repo_txt_data, use_auth_token=hf_token) hffs = HfFileSystem(repo_info=repo_info, token=hf_token) assert sorted(hffs.glob("*")) == [".gitattributes", "data"] assert hffs.isdir("data") assert hffs.isfile(".gitattributes") and hffs.isfile("data/text_data.txt") with open(text_file) as f: assert hffs.open("data/text_data.txt", "r").read() == f.read()
""" This script downloads the WikiMatrix corpus (https://github.com/facebookresearch/LASER/tree/master/tasks/WikiMatrix) and create parallel sentences tsv files that can be used to extend existent sentence embedding models to new languages. The WikiMatrix mined parallel sentences from Wikipedia in various languages. Further information can be found in our paper: Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation https://arxiv.org/abs/2004.09813 """ import gzip import os import sentence_transformers.util source_languages = set(["en"]) # Languages our (monolingual) teacher model understands target_languages = set(["de", "es", "it", "fr", "ar", "tr"]) # New languages we want to extend to num_dev_sentences = 1000 # Number of sentences we want to use for development threshold = 1.075 # Only use sentences with a LASER similarity score above the threshold download_url = "https://dl.fbaipublicfiles.com/laser/WikiMatrix/v1/" download_folder = "../datasets/WikiMatrix/" parallel_sentences_folder = "parallel-sentences/" os.makedirs(os.path.dirname(download_folder), exist_ok=True) os.makedirs(parallel_sentences_folder, exist_ok=True) for source_lang in source_languages: for target_lang in target_languages: filename_train = os.path.join( parallel_sentences_folder, "WikiMatrix-{}-{}-train.tsv.gz".format(source_lang, target_lang) ) filename_dev = os.path.join( parallel_sentences_folder, "WikiMatrix-{}-{}-dev.tsv.gz".format(source_lang, target_lang) ) if not os.path.exists(filename_train) and not os.path.exists(filename_dev): langs_ordered = sorted([source_lang, target_lang]) wikimatrix_filename = "WikiMatrix.{}-{}.tsv.gz".format(*langs_ordered) wikimatrix_filepath = os.path.join(download_folder, wikimatrix_filename) if not os.path.exists(wikimatrix_filepath): print("Download", download_url + wikimatrix_filename) try: sentence_transformers.util.http_get(download_url + wikimatrix_filename, wikimatrix_filepath) except Exception: print("Was not able to download", download_url + wikimatrix_filename) continue if not os.path.exists(wikimatrix_filepath): continue train_sentences = [] dev_sentences = [] dev_sentences_set = set() extract_dev_sentences = True with gzip.open(wikimatrix_filepath, "rt", encoding="utf8") as fIn: for line in fIn: score, sent1, sent2 = line.strip().split("\t") sent1 = sent1.strip() sent2 = sent2.strip() score = float(score) if score < threshold: break if sent1 == sent2: continue if langs_ordered.index(source_lang) == 1: # Swap, so that src lang is sent1 sent1, sent2 = sent2, sent1 # Avoid duplicates in development set if sent1 in dev_sentences_set or sent2 in dev_sentences_set: continue if extract_dev_sentences: dev_sentences.append([sent1, sent2]) dev_sentences_set.add(sent1) dev_sentences_set.add(sent2) if len(dev_sentences) >= num_dev_sentences: extract_dev_sentences = False else: train_sentences.append([sent1, sent2]) print("Write", len(dev_sentences), "dev sentences", filename_dev) with gzip.open(filename_dev, "wt", encoding="utf8") as fOut: for sents in dev_sentences: fOut.write("\t".join(sents)) fOut.write("\n") print("Write", len(train_sentences), "train sentences", filename_train) with gzip.open(filename_train, "wt", encoding="utf8") as fOut: for sents in train_sentences: fOut.write("\t".join(sents)) fOut.write("\n") print("---DONE---")
""" This script downloads the WikiMatrix corpus (https://github.com/facebookresearch/LASER/tree/master/tasks/WikiMatrix) and create parallel sentences tsv files that can be used to extend existent sentence embedding models to new languages. The WikiMatrix mined parallel sentences from Wikipedia in various languages. Further information can be found in our paper: Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation https://arxiv.org/abs/2004.09813 """ import os import sentence_transformers.util import gzip import csv from tqdm.autonotebook import tqdm source_languages = set(['en']) #Languages our (monolingual) teacher model understands target_languages = set(['de', 'es', 'it', 'fr', 'ar', 'tr']) #New languages we want to extend to num_dev_sentences = 1000 #Number of sentences we want to use for development threshold = 1.075 #Only use sentences with a LASER similarity score above the threshold download_url = "https://dl.fbaipublicfiles.com/laser/WikiMatrix/v1/" download_folder = "../datasets/WikiMatrix/" parallel_sentences_folder = "parallel-sentences/" os.makedirs(os.path.dirname(download_folder), exist_ok=True) os.makedirs(parallel_sentences_folder, exist_ok=True) for source_lang in source_languages: for target_lang in target_languages: filename_train = os.path.join(parallel_sentences_folder, "WikiMatrix-{}-{}-train.tsv.gz".format(source_lang, target_lang)) filename_dev = os.path.join(parallel_sentences_folder, "WikiMatrix-{}-{}-dev.tsv.gz".format(source_lang, target_lang)) if not os.path.exists(filename_train) and not os.path.exists(filename_dev): langs_ordered = sorted([source_lang, target_lang]) wikimatrix_filename = "WikiMatrix.{}-{}.tsv.gz".format(*langs_ordered) wikimatrix_filepath = os.path.join(download_folder, wikimatrix_filename) if not os.path.exists(wikimatrix_filepath): print("Download", download_url+wikimatrix_filename) try: sentence_transformers.util.http_get(download_url+wikimatrix_filename, wikimatrix_filepath) except: print("Was not able to download", download_url+wikimatrix_filename) continue if not os.path.exists(wikimatrix_filepath): continue train_sentences = [] dev_sentences = [] dev_sentences_set = set() extract_dev_sentences = True with gzip.open(wikimatrix_filepath, 'rt', encoding='utf8') as fIn: for line in fIn: score, sent1, sent2 = line.strip().split('\t') sent1 = sent1.strip() sent2 = sent2.strip() score = float(score) if score < threshold: break if sent1 == sent2: continue if langs_ordered.index(source_lang) == 1: #Swap, so that src lang is sent1 sent1, sent2 = sent2, sent1 # Avoid duplicates in development set if sent1 in dev_sentences_set or sent2 in dev_sentences_set: continue if extract_dev_sentences: dev_sentences.append([sent1, sent2]) dev_sentences_set.add(sent1) dev_sentences_set.add(sent2) if len(dev_sentences) >= num_dev_sentences: extract_dev_sentences = False else: train_sentences.append([sent1, sent2]) print("Write", len(dev_sentences), "dev sentences", filename_dev) with gzip.open(filename_dev, 'wt', encoding='utf8') as fOut: for sents in dev_sentences: fOut.write("\t".join(sents)) fOut.write("\n") print("Write", len(train_sentences), "train sentences", filename_train) with gzip.open(filename_train, 'wt', encoding='utf8') as fOut: for sents in train_sentences: fOut.write("\t".join(sents)) fOut.write("\n") print("---DONE---")
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.optimizers.schedules.learning_rate_schedule import ( CosineDecay as CosineDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( CosineDecayRestarts as CosineDecayRestarts, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( ExponentialDecay as ExponentialDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( InverseTimeDecay as InverseTimeDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( LearningRateSchedule as LearningRateSchedule, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( PiecewiseConstantDecay as PiecewiseConstantDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( PolynomialDecay as PolynomialDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( deserialize as deserialize, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( serialize as serialize, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.optimizers.schedules.learning_rate_schedule import CosineDecay from keras.src.optimizers.schedules.learning_rate_schedule import ( CosineDecayRestarts, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( ExponentialDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( InverseTimeDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( LearningRateSchedule, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( PiecewiseConstantDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import ( PolynomialDecay, ) from keras.src.optimizers.schedules.learning_rate_schedule import deserialize from keras.src.optimizers.schedules.learning_rate_schedule import serialize
import torch from torchvision import _BETA_TRANSFORMS_WARNING, _WARN_ABOUT_BETA_TRANSFORMS from ._bounding_box import BoundingBoxes, BoundingBoxFormat from ._datapoint import Datapoint from ._image import Image from ._mask import Mask from ._torch_function_helpers import set_return_type from ._video import Video if _WARN_ABOUT_BETA_TRANSFORMS: import warnings warnings.warn(_BETA_TRANSFORMS_WARNING)
from torchvision import _BETA_TRANSFORMS_WARNING, _WARN_ABOUT_BETA_TRANSFORMS from ._bounding_box import BoundingBoxes, BoundingBoxFormat from ._datapoint import Datapoint from ._image import Image from ._mask import Mask from ._video import Video if _WARN_ABOUT_BETA_TRANSFORMS: import warnings warnings.warn(_BETA_TRANSFORMS_WARNING)
import numpy as np import pytest from docarray.computation.numpy_backend import NumpyCompBackend def test_to_device(): with pytest.raises(NotImplementedError): NumpyCompBackend.to_device(np.random.rand(10, 3), 'meta') @pytest.mark.parametrize( 'array,result', [ (np.zeros((5)), 1), (np.zeros((1, 5)), 2), (np.zeros((5, 5)), 2), (np.zeros(()), 0), ], ) def test_n_dim(array, result): assert NumpyCompBackend.n_dim(array) == result @pytest.mark.parametrize( 'array,result', [ (np.zeros((10,)), (10,)), (np.zeros((5, 5)), (5, 5)), (np.zeros(()), ()), ], ) def test_shape(array, result): shape = NumpyCompBackend.shape(array) assert shape == result assert type(shape) == tuple def test_empty(): array = NumpyCompBackend.empty((10, 3)) assert array.shape == (10, 3)
import numpy as np import pytest from docarray.computation.numpy_backend import NumpyCompBackend def test_to_device(): with pytest.raises(NotImplementedError): NumpyCompBackend.to_device(np.random.rand(10, 3), 'meta') def test_empty(): array = NumpyCompBackend.empty((10, 3)) assert array.shape == (10, 3)
"""Class for a VectorStore-backed memory object.""" from collections.abc import Sequence from typing import Any, Optional, Union from langchain_core._api import deprecated from langchain_core.documents import Document from langchain_core.memory import BaseMemory from langchain_core.vectorstores import VectorStoreRetriever from pydantic import Field from langchain.memory.utils import get_prompt_input_key @deprecated( since="0.3.1", removal="1.0.0", message=( "Please see the migration guide at: " "https://python.langchain.com/docs/versions/migrating_memory/" ), ) class VectorStoreRetrieverMemory(BaseMemory): """Store the conversation history in a vector store and retrieves the relevant parts of past conversation based on the input. """ retriever: VectorStoreRetriever = Field(exclude=True) """VectorStoreRetriever object to connect to.""" memory_key: str = "history" #: :meta private: """Key name to locate the memories in the result of load_memory_variables.""" input_key: Optional[str] = None """Key name to index the inputs to load_memory_variables.""" return_docs: bool = False """Whether or not to return the result of querying the database directly.""" exclude_input_keys: Sequence[str] = Field(default_factory=tuple) """Input keys to exclude in addition to memory key when constructing the document""" @property def memory_variables(self) -> list[str]: """The list of keys emitted from the load_memory_variables method.""" return [self.memory_key] def _get_prompt_input_key(self, inputs: dict[str, Any]) -> str: """Get the input key for the prompt.""" if self.input_key is None: return get_prompt_input_key(inputs, self.memory_variables) return self.input_key def _documents_to_memory_variables( self, docs: list[Document] ) -> dict[str, Union[list[Document], str]]: result: Union[list[Document], str] if not self.return_docs: result = "\n".join([doc.page_content for doc in docs]) else: result = docs return {self.memory_key: result} def load_memory_variables( self, inputs: dict[str, Any] ) -> dict[str, Union[list[Document], str]]: """Return history buffer.""" input_key = self._get_prompt_input_key(inputs) query = inputs[input_key] docs = self.retriever.invoke(query) return self._documents_to_memory_variables(docs) async def aload_memory_variables( self, inputs: dict[str, Any] ) -> dict[str, Union[list[Document], str]]: """Return history buffer.""" input_key = self._get_prompt_input_key(inputs) query = inputs[input_key] docs = await self.retriever.ainvoke(query) return self._documents_to_memory_variables(docs) def _form_documents( self, inputs: dict[str, Any], outputs: dict[str, str] ) -> list[Document]: """Format context from this conversation to buffer.""" # Each document should only include the current turn, not the chat history exclude = set(self.exclude_input_keys) exclude.add(self.memory_key) filtered_inputs = {k: v for k, v in inputs.items() if k not in exclude} texts = [ f"{k}: {v}" for k, v in list(filtered_inputs.items()) + list(outputs.items()) ] page_content = "\n".join(texts) return [Document(page_content=page_content)] def save_context(self, inputs: dict[str, Any], outputs: dict[str, str]) -> None: """Save context from this conversation to buffer.""" documents = self._form_documents(inputs, outputs) self.retriever.add_documents(documents) async def asave_context( self, inputs: dict[str, Any], outputs: dict[str, str] ) -> None: """Save context from this conversation to buffer.""" documents = self._form_documents(inputs, outputs) await self.retriever.aadd_documents(documents) def clear(self) -> None: """Nothing to clear.""" async def aclear(self) -> None: """Nothing to clear."""
"""Class for a VectorStore-backed memory object.""" from collections.abc import Sequence from typing import Any, Optional, Union from langchain_core._api import deprecated from langchain_core.documents import Document from langchain_core.vectorstores import VectorStoreRetriever from pydantic import Field from langchain.memory.chat_memory import BaseMemory from langchain.memory.utils import get_prompt_input_key @deprecated( since="0.3.1", removal="1.0.0", message=( "Please see the migration guide at: " "https://python.langchain.com/docs/versions/migrating_memory/" ), ) class VectorStoreRetrieverMemory(BaseMemory): """Store the conversation history in a vector store and retrieves the relevant parts of past conversation based on the input. """ retriever: VectorStoreRetriever = Field(exclude=True) """VectorStoreRetriever object to connect to.""" memory_key: str = "history" #: :meta private: """Key name to locate the memories in the result of load_memory_variables.""" input_key: Optional[str] = None """Key name to index the inputs to load_memory_variables.""" return_docs: bool = False """Whether or not to return the result of querying the database directly.""" exclude_input_keys: Sequence[str] = Field(default_factory=tuple) """Input keys to exclude in addition to memory key when constructing the document""" @property def memory_variables(self) -> list[str]: """The list of keys emitted from the load_memory_variables method.""" return [self.memory_key] def _get_prompt_input_key(self, inputs: dict[str, Any]) -> str: """Get the input key for the prompt.""" if self.input_key is None: return get_prompt_input_key(inputs, self.memory_variables) return self.input_key def _documents_to_memory_variables( self, docs: list[Document] ) -> dict[str, Union[list[Document], str]]: result: Union[list[Document], str] if not self.return_docs: result = "\n".join([doc.page_content for doc in docs]) else: result = docs return {self.memory_key: result} def load_memory_variables( self, inputs: dict[str, Any] ) -> dict[str, Union[list[Document], str]]: """Return history buffer.""" input_key = self._get_prompt_input_key(inputs) query = inputs[input_key] docs = self.retriever.invoke(query) return self._documents_to_memory_variables(docs) async def aload_memory_variables( self, inputs: dict[str, Any] ) -> dict[str, Union[list[Document], str]]: """Return history buffer.""" input_key = self._get_prompt_input_key(inputs) query = inputs[input_key] docs = await self.retriever.ainvoke(query) return self._documents_to_memory_variables(docs) def _form_documents( self, inputs: dict[str, Any], outputs: dict[str, str] ) -> list[Document]: """Format context from this conversation to buffer.""" # Each document should only include the current turn, not the chat history exclude = set(self.exclude_input_keys) exclude.add(self.memory_key) filtered_inputs = {k: v for k, v in inputs.items() if k not in exclude} texts = [ f"{k}: {v}" for k, v in list(filtered_inputs.items()) + list(outputs.items()) ] page_content = "\n".join(texts) return [Document(page_content=page_content)] def save_context(self, inputs: dict[str, Any], outputs: dict[str, str]) -> None: """Save context from this conversation to buffer.""" documents = self._form_documents(inputs, outputs) self.retriever.add_documents(documents) async def asave_context( self, inputs: dict[str, Any], outputs: dict[str, str] ) -> None: """Save context from this conversation to buffer.""" documents = self._form_documents(inputs, outputs) await self.retriever.aadd_documents(documents) def clear(self) -> None: """Nothing to clear.""" async def aclear(self) -> None: """Nothing to clear."""
import logging import random from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseInformationRetrievalEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load the NFcorpus IR dataset (https://huggingface.co/datasets/BeIR/nfcorpus, https://huggingface.co/datasets/BeIR/nfcorpus-qrels) corpus = load_dataset("BeIR/nfcorpus", "corpus", split="corpus") queries = load_dataset("BeIR/nfcorpus", "queries", split="queries") relevant_docs_data = load_dataset("BeIR/nfcorpus-qrels", split="test") # For this dataset, we want to concatenate the title and texts for the corpus corpus = corpus.map(lambda x: {"text": x["title"] + " " + x["text"]}, remove_columns=["title"]) # Shrink the corpus size heavily to only the relevant documents + 1,000 random documents required_corpus_ids = set(map(str, relevant_docs_data["corpus-id"])) required_corpus_ids |= set(random.sample(corpus["_id"], k=1000)) corpus = corpus.filter(lambda x: x["_id"] in required_corpus_ids) # Convert the datasets to dictionaries corpus = dict(zip(corpus["_id"], corpus["text"])) # Our corpus (cid => document) queries = dict(zip(queries["_id"], queries["text"])) # Our queries (qid => question) relevant_docs = {} # Query ID to relevant documents (qid => set([relevant_cids]) for qid, corpus_ids in zip(relevant_docs_data["query-id"], relevant_docs_data["corpus-id"]): qid = str(qid) corpus_ids = str(corpus_ids) if qid not in relevant_docs: relevant_docs[qid] = set() relevant_docs[qid].add(corpus_ids) # Given queries, a corpus and a mapping with relevant documents, the SparseInformationRetrievalEvaluator computes different IR metrics. ir_evaluator = SparseInformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="BeIR-nfcorpus-subset-test", show_progress_bar=True, batch_size=16, ) # Run evaluation results = ir_evaluator(model) """ Queries: 323 Corpus: 3269 Score-Function: dot Accuracy@1: 50.46% Accuracy@3: 64.40% Accuracy@5: 67.49% Accuracy@10: 72.14% Precision@1: 50.46% Precision@3: 40.87% Precision@5: 34.12% Precision@10: 26.10% Recall@1: 6.11% Recall@3: 11.73% Recall@5: 13.64% Recall@10: 17.24% MRR@10: 0.5801 NDCG@10: 0.3626 MAP@100: 0.1832 Model Query Sparsity: Active Dimensions: 43.1, Sparsity Ratio: 0.9986 Model Corpus Sparsity: Active Dimensions: 207.0, Sparsity Ratio: 0.9932 """ # Print the results print(f"Primary metric: {ir_evaluator.primary_metric}") # => Primary metric: BeIR-nfcorpus-subset-test_dot_ndcg@10 print(f"Primary metric value: {results[ir_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.3626
import logging import random from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseInformationRetrievalEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load the NFcorpus IR dataset (https://huggingface.co/datasets/BeIR/nfcorpus, https://huggingface.co/datasets/BeIR/nfcorpus-qrels) corpus = load_dataset("BeIR/nfcorpus", "corpus", split="corpus") queries = load_dataset("BeIR/nfcorpus", "queries", split="queries") relevant_docs_data = load_dataset("BeIR/nfcorpus-qrels", split="test") # For this dataset, we want to concatenate the title and texts for the corpus corpus = corpus.map(lambda x: {"text": x["title"] + " " + x["text"]}, remove_columns=["title"]) # Shrink the corpus size heavily to only the relevant documents + 1,000 random documents required_corpus_ids = set(map(str, relevant_docs_data["corpus-id"])) required_corpus_ids |= set(random.sample(corpus["_id"], k=1000)) corpus = corpus.filter(lambda x: x["_id"] in required_corpus_ids) # Convert the datasets to dictionaries corpus = dict(zip(corpus["_id"], corpus["text"])) # Our corpus (cid => document) queries = dict(zip(queries["_id"], queries["text"])) # Our queries (qid => question) relevant_docs = {} # Query ID to relevant documents (qid => set([relevant_cids]) for qid, corpus_ids in zip(relevant_docs_data["query-id"], relevant_docs_data["corpus-id"]): qid = str(qid) corpus_ids = str(corpus_ids) if qid not in relevant_docs: relevant_docs[qid] = set() relevant_docs[qid].add(corpus_ids) # Given queries, a corpus and a mapping with relevant documents, the SparseInformationRetrievalEvaluator computes different IR metrics. ir_evaluator = SparseInformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="BeIR-nfcorpus-subset-test", show_progress_bar=True, batch_size=16, ) # Run evaluation results = ir_evaluator(model) """ Queries: 323 Corpus: 3269 Score-Function: dot Accuracy@1: 50.46% Accuracy@3: 64.40% Accuracy@5: 67.49% Accuracy@10: 72.14% Precision@1: 50.46% Precision@3: 40.87% Precision@5: 34.12% Precision@10: 26.10% Recall@1: 6.11% Recall@3: 11.73% Recall@5: 13.64% Recall@10: 17.24% MRR@10: 0.5801 NDCG@10: 0.3626 MAP@100: 0.1832 Model Sparsity Stats Query : Row Non-Zero Mean: 43.08049392700195, Row Sparsity Mean: 0.9985886216163635 Model Sparsity Stats Corpus : Row Non-Zero Mean: 206.8623504638672, Row Sparsity Mean: 0.9932224750518799 """ # Print the results print(f"Primary metric: {ir_evaluator.primary_metric}") # => Primary metric: BeIR-nfcorpus-subset-test_dot_ndcg@10 print(f"Primary metric value: {results[ir_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.3626
import contextlib import os import shutil import threading import time import pytest from jina import Client, DocumentArray, Executor, Flow, requests, Deployment from jina.helper import random_port cur_dir = os.path.dirname(__file__) @contextlib.contextmanager def _update_file(input_file_path, output_file_path, temp_path): backup_file = os.path.join(temp_path, 'backup.yaml') try: shutil.copy2(output_file_path, backup_file) shutil.copy(input_file_path, output_file_path) time.sleep(2.0) yield finally: shutil.copy2(backup_file, output_file_path) time.sleep(5.0) def flow_run(flow, stop_event): with flow: flow.block(stop_event) def deployment_run(depl, stop_event): with depl: depl.block(stop_event) def test_flow_reload(tmpdir): stop_event = threading.Event() flow = Flow().add( uses=os.path.join(os.path.join(cur_dir, 'exec'), 'config.yml'), reload=True ) t = threading.Thread(target=flow_run, args=(flow, stop_event)) t.start() time.sleep(5) try: client = Client(port=flow.port, protocol=str(flow.protocol)) res = client.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' with _update_file( os.path.join(os.path.join(cur_dir, 'exec'), 'config_alt.yml'), os.path.join(os.path.join(cur_dir, 'exec'), 'config.yml'), str(tmpdir), ): client = Client(port=flow.port, protocol=str(flow.protocol)) res = client.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorAfterReload' client = Client(port=flow.port, protocol=str(flow.protocol)) res = client.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' finally: stop_event.set() t.join() def test_deployment_reload(tmpdir): stop_event = threading.Event() depl = Deployment( uses=os.path.join(os.path.join(cur_dir, 'exec'), 'config.yml'), reload=True ) t = threading.Thread(target=deployment_run, args=(depl, stop_event)) t.start() time.sleep(5) try: client = Client(port=depl.port, protocol=str(depl.protocol)) res = client.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' with _update_file( os.path.join(os.path.join(cur_dir, 'exec'), 'config_alt.yml'), os.path.join(os.path.join(cur_dir, 'exec'), 'config.yml'), str(tmpdir), ): client = Client(port=depl.port, protocol=str(depl.protocol)) res = client.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorAfterReload' client = Client(port=depl.port, protocol=str(depl.protocol)) res = client.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' finally: stop_event.set() t.join()
import contextlib import os import shutil import threading import time import pytest from jina import Client, DocumentArray, Executor, Flow, requests from jina.helper import random_port cur_dir = os.path.dirname(__file__) @contextlib.contextmanager def _update_file(input_file_path, output_file_path, temp_path): backup_file = os.path.join(temp_path, 'backup.yaml') try: shutil.copy2(output_file_path, backup_file) shutil.copy(input_file_path, output_file_path) time.sleep(2.0) yield finally: shutil.copy2(backup_file, output_file_path) time.sleep(5.0) def flow_run(flow, stop_event): with flow: flow.block(stop_event) def test_deployment_reload(tmpdir): stop_event = threading.Event() flow = Flow().add( uses=os.path.join(os.path.join(cur_dir, 'exec'), 'config.yml'), reload=True ) t = threading.Thread(target=flow_run, args=(flow, stop_event)) t.start() time.sleep(5) try: client = Client(port=flow.port, protocol=str(flow.protocol)) res = client.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' with _update_file( os.path.join(os.path.join(cur_dir, 'exec'), 'config_alt.yml'), os.path.join(os.path.join(cur_dir, 'exec'), 'config.yml'), str(tmpdir), ): client = Client(port=flow.port, protocol=str(flow.protocol)) res = client.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorAfterReload' client = Client(port=flow.port, protocol=str(flow.protocol)) res = client.post(on='/', inputs=DocumentArray.empty(10)) assert len(res) == 10 for doc in res: assert doc.text == 'MyExecutorBeforeReload' finally: stop_event.set() t.join()
"""Integration test for JIRA API Wrapper.""" from langchain_community.utilities.jira import JiraAPIWrapper def test_search() -> None: """Test for Searching issues on JIRA""" jql = "project = TP" jira = JiraAPIWrapper() output = jira.run("jql", jql) assert "issues" in output def test_getprojects() -> None: """Test for getting projects on JIRA""" jira = JiraAPIWrapper() output = jira.run("get_projects", "") assert "projects" in output def test_create_ticket() -> None: """Test the Create Ticket Call that Creates a Issue/Ticket on JIRA.""" issue_string = ( '{"summary": "Test Summary", "description": "Test Description",' ' "issuetype": {"name": "Bug"}, "project": {"key": "TP"}}' ) jira = JiraAPIWrapper() output = jira.run("create_issue", issue_string) assert "id" in output assert "key" in output def test_create_confluence_page() -> None: """Test for getting projects on JIRA""" jira = JiraAPIWrapper() create_page_dict = ( '{"space": "ROC", "title":"This is the title",' '"body":"This is the body. You can use ' '<strong>HTML tags</strong>!"}' ) output = jira.run("create_page", create_page_dict) assert "type" in output assert "page" in output def test_other() -> None: """Non-exhaustive test for accessing other JIRA API methods""" jira = JiraAPIWrapper() issue_create_dict = """ { "function":"issue_create", "kwargs": { "fields": { "summary": "Test Summary", "description": "Test Description", "issuetype": {"name": "Bug"}, "project": {"key": "TP"} } } } """ output = jira.run("other", issue_create_dict) assert "id" in output assert "key" in output
"""Integration test for JIRA API Wrapper.""" from langchain_community.utilities.jira import JiraAPIWrapper def test_search() -> None: """Test for Searching issues on JIRA""" jql = "project = TP" jira = JiraAPIWrapper() # type: ignore[call-arg] output = jira.run("jql", jql) assert "issues" in output def test_getprojects() -> None: """Test for getting projects on JIRA""" jira = JiraAPIWrapper() # type: ignore[call-arg] output = jira.run("get_projects", "") assert "projects" in output def test_create_ticket() -> None: """Test the Create Ticket Call that Creates a Issue/Ticket on JIRA.""" issue_string = ( '{"summary": "Test Summary", "description": "Test Description",' ' "issuetype": {"name": "Bug"}, "project": {"key": "TP"}}' ) jira = JiraAPIWrapper() # type: ignore[call-arg] output = jira.run("create_issue", issue_string) assert "id" in output assert "key" in output def test_create_confluence_page() -> None: """Test for getting projects on JIRA""" jira = JiraAPIWrapper() # type: ignore[call-arg] create_page_dict = ( '{"space": "ROC", "title":"This is the title",' '"body":"This is the body. You can use ' '<strong>HTML tags</strong>!"}' ) output = jira.run("create_page", create_page_dict) assert "type" in output assert "page" in output def test_other() -> None: """Non-exhaustive test for accessing other JIRA API methods""" jira = JiraAPIWrapper() # type: ignore[call-arg] issue_create_dict = """ { "function":"issue_create", "kwargs": { "fields": { "summary": "Test Summary", "description": "Test Description", "issuetype": {"name": "Bug"}, "project": {"key": "TP"} } } } """ output = jira.run("other", issue_create_dict) assert "id" in output assert "key" in output
__version__ = '0.13.11' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
__version__ = '0.13.10' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
import asyncio import os import random import string import tempfile import time import pytest from jina import helper @pytest.fixture(scope='function') def random_workspace_name(): """Generate a random workspace name with digits and letters.""" rand = ''.join(random.choices(string.ascii_uppercase + string.digits, k=6)) return f'JINA_TEST_WORKSPACE_{rand}' @pytest.fixture(scope='function') def test_metas(tmpdir, random_workspace_name): from jina.serve.executors.metas import get_default_metas os.environ[random_workspace_name] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ[random_workspace_name] yield metas del os.environ[random_workspace_name] @pytest.fixture() def docker_compose(request): os.system( f"docker-compose -f {request.param} --project-directory . up --build -d --remove-orphans" ) time.sleep(10) yield os.system( f"docker-compose -f {request.param} --project-directory . down --remove-orphans" ) @pytest.fixture(scope='function') def port_generator(): generated_ports = set() def random_port(): port = helper.random_port() while port in generated_ports: port = helper.random_port() generated_ports.add(port) return port return random_port @pytest.fixture(autouse=True) def test_log_level(monkeypatch): monkeypatch.setenv('JINA_LOG_LEVEL', 'DEBUG') @pytest.fixture(autouse=True) def test_grpc_fork_support_true(monkeypatch): monkeypatch.setenv('GRPC_ENABLE_FORK_SUPPORT', 'true') @pytest.fixture(autouse=True) def test_timeout_ctrl_time(monkeypatch): monkeypatch.setenv('JINA_DEFAULT_TIMEOUT_CTRL', '500') @pytest.fixture(autouse=True) def test_disable_telemetry(monkeypatch): monkeypatch.setenv('JINA_OPTOUT_TELEMETRY', 'True') @pytest.fixture(autouse=True) def tmpfile(tmpdir): tmpfile = f'jina_test_{next(tempfile._get_candidate_names())}.db' return tmpdir / tmpfile @pytest.fixture(scope='session') def event_loop(request): """ Valid only for `pytest.mark.asyncio` tests """ loop = asyncio.get_event_loop_policy().new_event_loop() yield loop loop.close() @pytest.fixture(autouse=True) def set_test_pip_version() -> None: os.environ['JINA_GATEWAY_IMAGE'] = 'jinaai/jina:test-pip' yield if 'JINA_GATEWAY_IMAGE' in os.environ: # maybe another fixture has already removed del os.environ['JINA_GATEWAY_IMAGE']
import asyncio import os import random import string import tempfile import time import pytest from jina import helper @pytest.fixture(scope='function') def random_workspace_name(): """Generate a random workspace name with digits and letters.""" rand = ''.join(random.choices(string.ascii_uppercase + string.digits, k=6)) return f'JINA_TEST_WORKSPACE_{rand}' @pytest.fixture(scope='function') def test_metas(tmpdir, random_workspace_name): from jina.serve.executors.metas import get_default_metas os.environ[random_workspace_name] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ[random_workspace_name] yield metas del os.environ[random_workspace_name] @pytest.fixture() def docker_compose(request): os.system( f"docker-compose -f {request.param} --project-directory . up --build -d --remove-orphans" ) time.sleep(10) yield os.system( f"docker-compose -f {request.param} --project-directory . down --remove-orphans" ) @pytest.fixture(scope='function') def port_generator(): generated_ports = set() def random_port(): port = helper.random_port() while port in generated_ports: port = helper.random_port() generated_ports.add(port) return port return random_port @pytest.fixture(autouse=True) def test_log_level(monkeypatch): monkeypatch.setenv('JINA_LOG_LEVEL', 'DEBUG') @pytest.fixture(autouse=True) def test_grpc_fork_support_true(monkeypatch): monkeypatch.setenv('GRPC_ENABLE_FORK_SUPPORT', 'true') @pytest.fixture(autouse=True) def test_timeout_ctrl_time(monkeypatch): monkeypatch.setenv('JINA_DEFAULT_TIMEOUT_CTRL', '500') @pytest.fixture(autouse=True) def test_disable_telemetry(monkeypatch): monkeypatch.setenv('JINA_OPTOUT_TELEMETRY', 'True') @pytest.fixture(autouse=True) def tmpfile(tmpdir): tmpfile = f'jina_test_{next(tempfile._get_candidate_names())}.db' return tmpdir / tmpfile @pytest.fixture(scope='session') def event_loop(request): """ Valid only for `pytest.mark.asyncio` tests """ loop = asyncio.get_event_loop_policy().new_event_loop() yield loop loop.close() @pytest.fixture(autouse=True) def set_test_pip_version() -> None: os.environ['JINA_GATEWAY_IMAGE'] = 'jinaai/jina:test-pip' yield if 'JINA_GATEWAY_IMAGE' in os.environ: # maybe another fixture has already removed del os.environ['JINA_GATEWAY_IMAGE']
import os from typing import Dict DEPLOYMENT_FILES = [ 'statefulset-executor', 'deployment-executor', 'deployment-gateway', 'deployment-uses-before', 'deployment-uses-after', 'deployment-uses-before-after', ] cur_dir = os.path.dirname(__file__) DEFAULT_RESOURCE_DIR = os.path.join( cur_dir, '..', '..', '..', '..', 'resources', 'k8s', 'template' ) def get_yaml(template: str, params: Dict) -> Dict: """Create a resource on Kubernetes based on the `template`. It fills the `template` using the `params`. :param template: path to the template file. :param params: dictionary for replacing the placeholders (keys) with the actual values. :return: The yaml dictionary with the corresponding template filled with parameters """ if template == 'configmap': yaml = _get_configmap_yaml(template, params) elif template in DEPLOYMENT_FILES and params.get('device_plugins'): yaml = _get_yaml(template, params) yaml = _get_deployment_with_device_plugins(yaml, params) else: yaml = _get_yaml(template, params) return yaml def _get_yaml(template: str, params: Dict) -> Dict: import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: content = f.read() for k, v in params.items(): content = content.replace(f'{{{k}}}', str(v)) d = yaml.safe_load(content) return d def _get_configmap_yaml(template: str, params: Dict): import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: config_map = yaml.safe_load(f) config_map['metadata']['name'] = params.get('name') + '-' + 'configmap' config_map['metadata']['namespace'] = params.get('namespace') if params.get('data'): for key, value in params['data'].items(): config_map['data'][key] = str(value) return config_map def _get_device_plugins(params: Dict): data = {'limits': {}} for key, value in params.items(): data['limits'][key] = value return data def _get_deployment_with_device_plugins(deployment: Dict, params: Dict) -> Dict: device_plugins = _get_device_plugins(params['device_plugins']) deployment['spec']['template']['spec']['containers'][0][ 'resources' ] = device_plugins return deployment
import os from typing import Dict DEPLOYMENT_FILES = [ 'statefulset-executor', 'deployment-executor', 'deployment-gateway', 'deployment-uses-before', 'deployment-uses-after', 'deployment-uses-before-after', ] cur_dir = os.path.dirname(__file__) DEFAULT_RESOURCE_DIR = os.path.join( cur_dir, '..', '..', '..', '..', 'resources', 'k8s', 'template' ) def get_yaml(template: str, params: Dict) -> Dict: """Create a resource on Kubernetes based on the `template`. It fills the `template` using the `params`. :param template: path to the template file. :param params: dictionary for replacing the placeholders (keys) with the actual values. :return: The yaml dictionary with the corresponding template filled with parameters """ if template == 'configmap': yaml = _get_configmap_yaml(template, params) elif template in DEPLOYMENT_FILES and params.get('device_plugins'): yaml = _get_yaml(template, params) yaml = _get_deployment_with_device_plugins(yaml, params) else: yaml = _get_yaml(template, params) return yaml def _get_yaml(template: str, params: Dict) -> Dict: import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: content = f.read() for k, v in params.items(): content = content.replace(f'{{{k}}}', str(v)) d = yaml.safe_load(content) return d def _get_configmap_yaml(template: str, params: Dict): import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: config_map = yaml.safe_load(f) config_map['metadata']['name'] = params.get('name') + '-' + 'configmap' config_map['metadata']['namespace'] = params.get('namespace') if params.get('data'): for key, value in params['data'].items(): config_map['data'][key] = value return config_map def _get_device_plugins(params: Dict): data = {'limits': {}} for key, value in params.items(): data['limits'][key] = value return data def _get_deployment_with_device_plugins(deployment: Dict, params: Dict) -> Dict: device_plugins = _get_device_plugins(params['device_plugins']) deployment['spec']['template']['spec']['containers'][0][ 'resources' ] = device_plugins return deployment
from typing import Any, Union from langchain_core.utils.json import parse_json_markdown from typing_extensions import override from langchain.evaluation.schema import StringEvaluator class JsonSchemaEvaluator(StringEvaluator): """An evaluator that validates a JSON prediction against a JSON schema reference. This evaluator checks if a given JSON prediction conforms to the provided JSON schema. If the prediction is valid, the score is True (no errors). Otherwise, the score is False (error occurred). Attributes: requires_input (bool): Whether the evaluator requires input. requires_reference (bool): Whether the evaluator requires reference. evaluation_name (str): The name of the evaluation. Examples: evaluator = JsonSchemaEvaluator() result = evaluator.evaluate_strings( prediction='{"name": "John", "age": 30}', reference={ "type": "object", "properties": { "name": {"type": "string"}, "age": {"type": "integer"} } } ) assert result["score"] is not None """ # noqa: E501 def __init__(self, **kwargs: Any) -> None: """Initializes the JsonSchemaEvaluator. Args: kwargs: Additional keyword arguments. Raises: ImportError: If the jsonschema package is not installed. """ super().__init__() try: import jsonschema # noqa: F401 except ImportError: msg = ( "The JsonSchemaEvaluator requires the jsonschema package." " Please install it with `pip install jsonschema`." ) raise ImportError(msg) @property def requires_input(self) -> bool: """Returns whether the evaluator requires input.""" return False @property def requires_reference(self) -> bool: """Returns whether the evaluator requires reference.""" return True @property def evaluation_name(self) -> str: """Returns the name of the evaluation.""" return "json_schema_validation" def _parse_json(self, node: Any) -> Union[dict, list, None, float, bool, int, str]: if isinstance(node, str): return parse_json_markdown(node) elif hasattr(node, "schema") and callable(getattr(node, "schema")): # Pydantic model return getattr(node, "schema")() return node def _validate(self, prediction: Any, schema: Any) -> dict: from jsonschema import ValidationError, validate try: validate(instance=prediction, schema=schema) return { "score": True, } except ValidationError as e: return {"score": False, "reasoning": repr(e)} @override def _evaluate_strings( self, prediction: Union[str, Any], input: Union[str, Any] = None, reference: Union[str, Any] = None, **kwargs: Any, ) -> dict: parsed_prediction = self._parse_json(prediction) schema = self._parse_json(reference) return self._validate(parsed_prediction, schema)
from typing import Any, Union from langchain_core.utils.json import parse_json_markdown from langchain.evaluation.schema import StringEvaluator class JsonSchemaEvaluator(StringEvaluator): """An evaluator that validates a JSON prediction against a JSON schema reference. This evaluator checks if a given JSON prediction conforms to the provided JSON schema. If the prediction is valid, the score is True (no errors). Otherwise, the score is False (error occurred). Attributes: requires_input (bool): Whether the evaluator requires input. requires_reference (bool): Whether the evaluator requires reference. evaluation_name (str): The name of the evaluation. Examples: evaluator = JsonSchemaEvaluator() result = evaluator.evaluate_strings( prediction='{"name": "John", "age": 30}', reference={ "type": "object", "properties": { "name": {"type": "string"}, "age": {"type": "integer"} } } ) assert result["score"] is not None """ # noqa: E501 def __init__(self, **kwargs: Any) -> None: """Initializes the JsonSchemaEvaluator. Args: kwargs: Additional keyword arguments. Raises: ImportError: If the jsonschema package is not installed. """ super().__init__() try: import jsonschema # noqa: F401 except ImportError: msg = ( "The JsonSchemaEvaluator requires the jsonschema package." " Please install it with `pip install jsonschema`." ) raise ImportError(msg) @property def requires_input(self) -> bool: """Returns whether the evaluator requires input.""" return False @property def requires_reference(self) -> bool: """Returns whether the evaluator requires reference.""" return True @property def evaluation_name(self) -> str: """Returns the name of the evaluation.""" return "json_schema_validation" def _parse_json(self, node: Any) -> Union[dict, list, None, float, bool, int, str]: if isinstance(node, str): return parse_json_markdown(node) elif hasattr(node, "schema") and callable(getattr(node, "schema")): # Pydantic model return getattr(node, "schema")() return node def _validate(self, prediction: Any, schema: Any) -> dict: from jsonschema import ValidationError, validate try: validate(instance=prediction, schema=schema) return { "score": True, } except ValidationError as e: return {"score": False, "reasoning": repr(e)} def _evaluate_strings( self, prediction: Union[str, Any], input: Union[str, Any] = None, reference: Union[str, Any] = None, **kwargs: Any, ) -> dict: parsed_prediction = self._parse_json(prediction) schema = self._parse_json(reference) return self._validate(parsed_prediction, schema)
"""Simple Reader that reads transcript and general info of Bilibili video.""" import warnings from typing import Any, List from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class BilibiliTranscriptReader(BaseReader): """Bilibili Transcript and video info reader.""" @staticmethod def get_bilibili_info_and_subs(bili_url): import json import re import requests from bilibili_api import sync, video bvid = re.search(r"BV\w+", bili_url).group() # Create credential object v = video.Video(bvid=bvid) # Get video info and basic info video_info = sync(v.get_info()) title = video_info["title"] desc = video_info["desc"] # Get subtitle url sub_list = video_info["subtitle"]["list"] if sub_list: sub_url = sub_list[0]["subtitle_url"] result = requests.get(sub_url) raw_sub_titles = json.loads(result.content)["body"] raw_transcript = " ".join([c["content"] for c in raw_sub_titles]) # Add basic video info to transcript return ( f"Video Title: {title}, description: {desc}\nTranscript:" f" {raw_transcript}" ) else: raw_transcript = "" warnings.warn( f"No subtitles found for video: {bili_url}. Return Empty transcript." ) return raw_transcript def load_data(self, video_urls: List[str], **load_kwargs: Any) -> List[Document]: """ Load auto generated Video Transcripts from Bilibili, including additional metadata. Args: video_urls (List[str]): List of Bilibili links for which transcripts are to be read. Returns: List[Document]: A list of Document objects, each containing the transcript for a Bilibili video. """ results = [] for bili_url in video_urls: try: transcript = self.get_bilibili_info_and_subs(bili_url) results.append(Document(text=transcript)) except Exception as e: warnings.warn( f"Error loading transcript for video {bili_url}: {e!s}. Skipping" " video." ) return results
"""Simple Reader that reads transcript and general info of Bilibili video.""" import warnings from typing import Any, List from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class BilibiliTranscriptReader(BaseReader): """Bilibili Transcript and video info reader.""" @staticmethod def get_bilibili_info_and_subs(bili_url): import json import re import requests from bilibili_api import sync, video bvid = re.search(r"BV\w+", bili_url).group() # Create credential object v = video.Video(bvid=bvid) # Get video info and basic info video_info = sync(v.get_info()) title = video_info["title"] desc = video_info["desc"] # Get subtitle url sub_list = video_info["subtitle"]["list"] if sub_list: sub_url = sub_list[0]["subtitle_url"] result = requests.get(sub_url) raw_sub_titles = json.loads(result.content)["body"] raw_transcript = " ".join([c["content"] for c in raw_sub_titles]) # Add basic video info to transcript return ( f"Video Title: {title}, description: {desc}\nTranscript:" f" {raw_transcript}" ) else: raw_transcript = "" warnings.warn( f"No subtitles found for video: {bili_url}. Return Empty transcript." ) return raw_transcript def load_data(self, video_urls: List[str], **load_kwargs: Any) -> List[Document]: """ Load auto generated Video Transcripts from Bilibili, including additional metadata. Args: video_urls (List[str]): List of Bilibili links for which transcripts are to be read. Returns: List[Document]: A list of Document objects, each containing the transcript for a Bilibili video. """ results = [] for bili_url in video_urls: try: transcript = self.get_bilibili_info_and_subs(bili_url) results.append(Document(text=transcript)) except Exception as e: warnings.warn( f"Error loading transcript for video {bili_url}: {e!s}. Skipping" " video." ) return results
__copyright__ = 'Copyright (c) 2020-2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' from typing import Any, Iterable, Optional import librosa as lr import numpy as np import torch from jina import DocumentArray, Executor, requests from .audio_clip.model import AudioCLIP class AudioCLIPEncoder(Executor): """ Encode audio data with AudioCLIP embeddings """ TARGET_SAMPLE_RATE = 44100 # derived from ESResNeXt def __init__( self, model_path: str = '.cache/AudioCLIP-Full-Training.pt', traversal_paths: str = 'r', batch_size: int = 32, device: str = 'cpu', download_model: bool = False, *args, **kwargs, ): """ :param model_path: path of the pre-trained AudioCLIP model :param traversal_paths: default traversal path :param device: Torch device string (e.g. 'cpu', 'cuda', 'cuda:2') :param download_model: whether to download the model at start-up """ super().__init__(*args, **kwargs) torch.set_grad_enabled(False) self.model_path = model_path self.device = device self.traversal_paths = traversal_paths self.batch_size = batch_size if download_model: import os import subprocess root_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) script_name = 'scripts/download_full.sh' if 'Partial' in self.model_path: script_name = 'scripts/download_partial.sh' subprocess.call(['sh', script_name], cwd=root_path) try: self.model = AudioCLIP(pretrained=self.model_path).to(self.device).eval() except FileNotFoundError: raise FileNotFoundError( 'Please download AudioCLIP model and set the `model_path` argument.' ) @requests def encode( self, docs: Optional[DocumentArray] = None, parameters: dict = {}, *args, **kwargs, ) -> Any: """ Encode all Documents with audio data (stored in the ``blob`` attribute) and store the embeddings in the ``embedding`` attribute of the Documents. :param docs: a `DocumentArray` contains `Document`s with `blob` of the size (n,) or (2, n). The `blob` contains audio time-series data. Additionally, `tags` of each `Document` must contain `sample_rate` field, which has the sample rate of the audio data. The `sample_rate` must be a positive scalar value. :param parameters: dictionary to defines the `traversal_paths`. """ if not docs: return traversal_paths = parameters.get('traversal_paths', self.traversal_paths) batch_size = parameters.get('batch_size', self.batch_size) with torch.inference_mode(): for batch in docs.traverse_flat(traversal_paths).batch(batch_size): self._create_embeddings(batch) def _create_embeddings(self, filtered_docs: Iterable): """Update the documents with the embeddings generated by AudioCLIP""" for d in filtered_docs: d.blob, d.tags['sample_rate'] = self._resample( d.blob, dict(d.tags).get('sample_rate', None) ) audio = torch.Tensor(d.blob).unsqueeze(0) embedding = self.model.encode_audio(audio=audio)[0] d.embedding = embedding.cpu().numpy() def _resample(self, blob: np.ndarray, orig_sr: int): if orig_sr is None: raise NotImplementedError( 'sample rate is not given, please provide a valid sample rate' ) if orig_sr == AudioCLIPEncoder.TARGET_SAMPLE_RATE: return blob, orig_sr return ( lr.resample(blob, orig_sr, AudioCLIPEncoder.TARGET_SAMPLE_RATE), AudioCLIPEncoder.TARGET_SAMPLE_RATE, )
__copyright__ = 'Copyright (c) 2020-2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' from typing import Any, Iterable, Optional import librosa as lr import numpy as np import torch from jina import DocumentArray, Executor, requests from jina.excepts import BadDocType from .audio_clip.model import AudioCLIP class AudioCLIPEncoder(Executor): """ Encode audio data with AudioCLIP embeddings """ TARGET_SAMPLE_RATE = 44100 # derived from ESResNeXt def __init__( self, model_path: str = '.cache/AudioCLIP-Full-Training.pt', traversal_paths: str = 'r', batch_size: int = 32, device: str = 'cpu', download_model: bool = False, *args, **kwargs, ): """ :param model_path: path of the pre-trained AudioCLIP model :param traversal_paths: default traversal path :param device: Torch device string (e.g. 'cpu', 'cuda', 'cuda:2') :param download_model: whether to download the model at start-up """ super().__init__(*args, **kwargs) torch.set_grad_enabled(False) self.model_path = model_path self.device = device self.traversal_paths = traversal_paths self.batch_size = batch_size if download_model: import os import subprocess root_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) script_name = 'scripts/download_full.sh' if 'Partial' in self.model_path: script_name = 'scripts/download_partial.sh' subprocess.call(['sh', script_name], cwd=root_path) try: self.model = AudioCLIP(pretrained=self.model_path).to(self.device).eval() except FileNotFoundError: raise FileNotFoundError( 'Please download AudioCLIP model and set the `model_path` argument.' ) @requests def encode( self, docs: Optional[DocumentArray] = None, parameters: dict = {}, *args, **kwargs, ) -> Any: """ Encode all Documents with audio data (stored in the ``blob`` attribute) and store the embeddings in the ``embedding`` attribute of the Documents. :param docs: a `DocumentArray` contains `Document`s with `blob` of the size (n,) or (2, n). The `blob` contains audio time-series data. Additionally, `tags` of each `Document` must contain `sample_rate` field, which has the sample rate of the audio data. The `sample_rate` must be a positive scalar value. :param parameters: dictionary to defines the `traversal_paths`. """ if not docs: return traversal_paths = parameters.get('traversal_paths', self.traversal_paths) batch_size = parameters.get('batch_size', self.batch_size) with torch.inference_mode(): for batch in docs.traverse_flat(traversal_paths).batch(batch_size): self._create_embeddings(batch) def _create_embeddings(self, filtered_docs: Iterable): """Update the documents with the embeddings generated by AudioCLIP""" for d in filtered_docs: d.blob, d.tags['sample_rate'] = self._resample( d.blob, dict(d.tags).get('sample_rate', None) ) audio = torch.Tensor(d.blob).unsqueeze(0) embedding = self.model.encode_audio(audio=audio)[0] d.embedding = embedding.cpu().numpy() def _resample(self, blob: np.ndarray, orig_sr: int): if orig_sr is None: raise BadDocType( 'sample rate is not given, please provide a valid sample rate' ) if orig_sr == AudioCLIPEncoder.TARGET_SAMPLE_RATE: return blob, orig_sr return ( lr.resample(blob, orig_sr, AudioCLIPEncoder.TARGET_SAMPLE_RATE), AudioCLIPEncoder.TARGET_SAMPLE_RATE, )
""" Each spoke runs in an isolated process. We leverage the seccomp and setrlimit system utilities to restrict access to system calls and set limits on the resources a process can consume. To implement them, we define several helper functions here, which can be configured to meet specific security or system requirements for different use scenarios or apps. """ import resource import tldextract import platform # Set timeout for spoke execution TIMEOUT = 180 # Set the memory, cpu and write limits # These are app-specific and can be be adjusted as needed MEMORY_LIMIT = resource.getrlimit(resource.RLIMIT_AS)[1] # 10240 * 1024 * 1024 CPU_TIME_LIMIT = resource.getrlimit(resource.RLIMIT_CPU)[1] # 2 * 60 WRITE_LIMIT = resource.getrlimit(resource.RLIMIT_FSIZE)[1] # 10240 * 1024 * 1024 # Set the allowed root domains # This is a list of root domains (eTLD+1) that the app is allowed to access allowed_domains = ["localhost"] def get_root_domain(url): """ Extract the root domain from a given URL. Args: url (str): The URL to extract the root domain from. Returns: str: The root domain of the URL. """ extracted = tldextract.extract(url) return f"{extracted.domain}.{extracted.suffix}" def is_request_allowed(url): """ Check if a request to a given URL is allowed based on the root domain. Args: url (str): The URL to check. Returns: bool: True if the request is allowed, False otherwise. """ root_domain = get_root_domain(url) return root_domain in allowed_domains def set_mem_limit(): """ Set the CPU time, maximum virtual memory, and write limits for the process. """ # virtual memory resource.setrlimit(resource.RLIMIT_AS, (MEMORY_LIMIT, MEMORY_LIMIT)) # cpu time resource.setrlimit(resource.RLIMIT_CPU, (CPU_TIME_LIMIT, CPU_TIME_LIMIT)) # write limit i.e. don't allow an infinite stream to stdout/stderr resource.setrlimit(resource.RLIMIT_FSIZE, (WRITE_LIMIT, WRITE_LIMIT)) # seccomp only works for Linux if platform.system() == "Linux": import pyseccomp as seccomp def drop_perms(): """ Set restrictions on system calls using seccomp for Linux. The restrictions can be adjusted as needed based on the app's specifications. """ # Create a SyscallFilter instance with ALLOW as the default action filter = seccomp.SyscallFilter(seccomp.ALLOW) # load the filter in the kernel filter.load() else: def drop_perms(): """ Define a placeholder function for non-Linux platforms to restrict system calls. """
""" Each spoke runs in an isolated process. We leverage the seccomp and setrlimit system utilities to restrict access to system calls and set limits on the resources a process can consume. To implement them, we define several helper functions here, which can be configured to meet specific security or system requirements for different use scenarios or apps. """ import resource import tldextract import platform # Set timeout for spoke execution TIMEOUT = 180 # Set the memory, cpu and write limits # These are app-specific and can be be adjusted as needed MEMORY_LIMIT = resource.getrlimit(resource.RLIMIT_AS)[1] # 10240 * 1024 * 1024 CPU_TIME_LIMIT = resource.getrlimit(resource.RLIMIT_CPU)[1] # 2 * 60 WRITE_LIMIT = resource.getrlimit(resource.RLIMIT_FSIZE)[1] # 10240 * 1024 * 1024 # Set the allowed root domains # This is a list of root domains (eTLD+1) that the app is allowed to access allowed_domains = ["localhost"] def get_root_domain(url): """ Extract the root domain from a given URL. Args: url (str): The URL to extract the root domain from. Returns: str: The root domain of the URL. """ extracted = tldextract.extract(url) return f"{extracted.domain}.{extracted.suffix}" def is_request_allowed(url): """ Check if a request to a given URL is allowed based on the root domain. Args: url (str): The URL to check. Returns: bool: True if the request is allowed, False otherwise. """ root_domain = get_root_domain(url) return root_domain in allowed_domains def set_mem_limit(): """ Set the CPU time, maximum virtual memory, and write limits for the process. """ # virtual memory resource.setrlimit(resource.RLIMIT_AS, (MEMORY_LIMIT, MEMORY_LIMIT)) # cpu time resource.setrlimit(resource.RLIMIT_CPU, (CPU_TIME_LIMIT, CPU_TIME_LIMIT)) # write limit i.e. don't allow an infinite stream to stdout/stderr resource.setrlimit(resource.RLIMIT_FSIZE, (WRITE_LIMIT, WRITE_LIMIT)) # seccomp only works for Linux if platform.system() == "Linux": import pyseccomp as seccomp def drop_perms(): """ Set restrictions on system calls using seccomp for Linux. The restrictions can be adjusted as needed based on the app's specifications. """ # Create a SyscallFilter instance with ALLOW as the default action filter = seccomp.SyscallFilter(seccomp.ALLOW) # load the filter in the kernel filter.load() else: def drop_perms(): """ Define a placeholder function for non-Linux platforms to restrict system calls. """
import csv import gzip import os from . import InputExample class STSDataReader: """Reads in the STS dataset. Each line contains two sentences (s1_col_idx, s2_col_idx) and one label (score_col_idx) Default values expects a tab separated file with the first & second column the sentence pair and third column the score (0...1). Default config normalizes scores from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=0, s2_col_idx=1, score_col_idx=2, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): self.dataset_folder = dataset_folder self.score_col_idx = score_col_idx self.s1_col_idx = s1_col_idx self.s2_col_idx = s2_col_idx self.delimiter = delimiter self.quoting = quoting self.normalize_scores = normalize_scores self.min_score = min_score self.max_score = max_score def get_examples(self, filename, max_examples=0): """filename specified which data split to use (train.csv, dev.csv, test.csv).""" filepath = os.path.join(self.dataset_folder, filename) with gzip.open(filepath, "rt", encoding="utf8") if filename.endswith(".gz") else open( filepath, encoding="utf-8" ) as fIn: data = csv.reader(fIn, delimiter=self.delimiter, quoting=self.quoting) examples = [] for id, row in enumerate(data): score = float(row[self.score_col_idx]) if self.normalize_scores: # Normalize to a 0...1 value score = (score - self.min_score) / (self.max_score - self.min_score) s1 = row[self.s1_col_idx] s2 = row[self.s2_col_idx] examples.append(InputExample(guid=filename + str(id), texts=[s1, s2], label=score)) if max_examples > 0 and len(examples) >= max_examples: break return examples class STSBenchmarkDataReader(STSDataReader): """Reader especially for the STS benchmark dataset. There, the sentences are in column 5 and 6, the score is in column 4. Scores are normalized from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=5, s2_col_idx=6, score_col_idx=4, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): super().__init__( dataset_folder=dataset_folder, s1_col_idx=s1_col_idx, s2_col_idx=s2_col_idx, score_col_idx=score_col_idx, delimiter=delimiter, quoting=quoting, normalize_scores=normalize_scores, min_score=min_score, max_score=max_score, )
from . import InputExample import csv import gzip import os class STSDataReader: """Reads in the STS dataset. Each line contains two sentences (s1_col_idx, s2_col_idx) and one label (score_col_idx) Default values expects a tab separated file with the first & second column the sentence pair and third column the score (0...1). Default config normalizes scores from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=0, s2_col_idx=1, score_col_idx=2, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): self.dataset_folder = dataset_folder self.score_col_idx = score_col_idx self.s1_col_idx = s1_col_idx self.s2_col_idx = s2_col_idx self.delimiter = delimiter self.quoting = quoting self.normalize_scores = normalize_scores self.min_score = min_score self.max_score = max_score def get_examples(self, filename, max_examples=0): """filename specified which data split to use (train.csv, dev.csv, test.csv).""" filepath = os.path.join(self.dataset_folder, filename) with gzip.open(filepath, "rt", encoding="utf8") if filename.endswith(".gz") else open( filepath, encoding="utf-8" ) as fIn: data = csv.reader(fIn, delimiter=self.delimiter, quoting=self.quoting) examples = [] for id, row in enumerate(data): score = float(row[self.score_col_idx]) if self.normalize_scores: # Normalize to a 0...1 value score = (score - self.min_score) / (self.max_score - self.min_score) s1 = row[self.s1_col_idx] s2 = row[self.s2_col_idx] examples.append(InputExample(guid=filename + str(id), texts=[s1, s2], label=score)) if max_examples > 0 and len(examples) >= max_examples: break return examples class STSBenchmarkDataReader(STSDataReader): """Reader especially for the STS benchmark dataset. There, the sentences are in column 5 and 6, the score is in column 4. Scores are normalized from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=5, s2_col_idx=6, score_col_idx=4, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): super().__init__( dataset_folder=dataset_folder, s1_col_idx=s1_col_idx, s2_col_idx=s2_col_idx, score_col_idx=score_col_idx, delimiter=delimiter, quoting=quoting, normalize_scores=normalize_scores, min_score=min_score, max_score=max_score, )
import csv import logging import os from typing import List import numpy as np from sentence_transformers import InputExample logger = logging.getLogger(__name__) class CEBinaryAccuracyEvaluator: """ This evaluator can be used with the CrossEncoder class. It is designed for CrossEncoders with 1 outputs. It measure the accuracy of the predict class vs. the gold labels. It uses a fixed threshold to determine the label (0 vs 1). See CEBinaryClassificationEvaluator for an evaluator that determines automatically the optimal threshold. """ def __init__( self, sentence_pairs: List[List[str]], labels: List[int], name: str = "", threshold: float = 0.5, write_csv: bool = True, ): self.sentence_pairs = sentence_pairs self.labels = labels self.name = name self.threshold = threshold self.csv_file = "CEBinaryAccuracyEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = ["epoch", "steps", "Accuracy"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: List[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CEBinaryAccuracyEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) pred_labels = pred_scores > self.threshold assert len(pred_labels) == len(self.labels) acc = np.sum(pred_labels == self.labels) / len(self.labels) logger.info("Accuracy: {:.2f}".format(acc * 100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc]) return acc
import logging import os import csv from typing import List from ... import InputExample import numpy as np logger = logging.getLogger(__name__) class CEBinaryAccuracyEvaluator: """ This evaluator can be used with the CrossEncoder class. It is designed for CrossEncoders with 1 outputs. It measure the accuracy of the predict class vs. the gold labels. It uses a fixed threshold to determine the label (0 vs 1). See CEBinaryClassificationEvaluator for an evaluator that determines automatically the optimal threshold. """ def __init__( self, sentence_pairs: List[List[str]], labels: List[int], name: str = "", threshold: float = 0.5, write_csv: bool = True, ): self.sentence_pairs = sentence_pairs self.labels = labels self.name = name self.threshold = threshold self.csv_file = "CEBinaryAccuracyEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = ["epoch", "steps", "Accuracy"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: List[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CEBinaryAccuracyEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) pred_labels = pred_scores > self.threshold assert len(pred_labels) == len(self.labels) acc = np.sum(pred_labels == self.labels) / len(self.labels) logger.info("Accuracy: {:.2f}".format(acc * 100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc]) return acc
_base_ = 'yolact_r50_1x8_coco.py' # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(lr=8e-3), clip_grad=dict(max_norm=35, norm_type=2)) # learning rate max_epochs = 55 param_scheduler = [ dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[20, 42, 49, 52], gamma=0.1) ] # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = 'yolact_r50_1x8_coco.py' optimizer = dict(type='SGD', lr=8e-3, momentum=0.9, weight_decay=5e-4) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=1000, warmup_ratio=0.1, step=[20, 42, 49, 52]) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
""" ======================== Decision Tree Regression ======================== In this example, we demonstrate the effect of changing the maximum depth of a decision tree on how it fits to the data. We perform this once on a 1D regression task and once on a multi-output regression task. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # Decision Tree on a 1D Regression Task # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Here we fit a tree on a 1D regression task. # # The :ref:`decision trees <tree>` is # used to fit a sine curve with addition noisy observation. As a result, it # learns local linear regressions approximating the sine curve. # # We can see that if the maximum depth of the tree (controlled by the # `max_depth` parameter) is set too high, the decision trees learn too fine # details of the training data and learn from the noise, i.e. they overfit. # # Create a random 1D dataset # -------------------------- import numpy as np rng = np.random.RandomState(1) X = np.sort(5 * rng.rand(80, 1), axis=0) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(16)) # %% # Fit regression model # -------------------- # Here we fit two models with different maximum depths from sklearn.tree import DecisionTreeRegressor regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_1.fit(X, y) regr_2.fit(X, y) # %% # Predict # ------- # Get predictions on the test set X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) # %% # Plot the results # ---------------- import matplotlib.pyplot as plt plt.figure() plt.scatter(X, y, s=20, edgecolor="black", c="darkorange", label="data") plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2) plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Decision Tree Regression") plt.legend() plt.show() # %% # As you can see, the model with a depth of 5 (yellow) learns the details of the # training data to the point that it overfits to the noise. On the other hand, # the model with a depth of 2 (blue) learns the major tendencies in the data well # and does not overfit. In real use cases, you need to make sure that the tree # is not overfitting the training data, which can be done using cross-validation. # %% # Decision Tree Regression with Multi-Output Targets # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Here the :ref:`decision trees <tree>` # is used to predict simultaneously the noisy `x` and `y` observations of a circle # given a single underlying feature. As a result, it learns local linear # regressions approximating the circle. # # We can see that if the maximum depth of the tree (controlled by the # `max_depth` parameter) is set too high, the decision trees learn too fine # details of the training data and learn from the noise, i.e. they overfit. # %% # Create a random dataset # ----------------------- rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += 0.5 - rng.rand(20, 2) # %% # Fit regression model # -------------------- regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_3 = DecisionTreeRegressor(max_depth=8) regr_1.fit(X, y) regr_2.fit(X, y) regr_3.fit(X, y) # %% # Predict # ------- # Get predictions on the test set X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) y_3 = regr_3.predict(X_test) # %% # Plot the results # ---------------- plt.figure() s = 25 plt.scatter(y[:, 0], y[:, 1], c="yellow", s=s, edgecolor="black", label="data") plt.scatter( y_1[:, 0], y_1[:, 1], c="cornflowerblue", s=s, edgecolor="black", label="max_depth=2", ) plt.scatter(y_2[:, 0], y_2[:, 1], c="red", s=s, edgecolor="black", label="max_depth=5") plt.scatter(y_3[:, 0], y_3[:, 1], c="blue", s=s, edgecolor="black", label="max_depth=8") plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("target 1") plt.ylabel("target 2") plt.title("Multi-output Decision Tree Regression") plt.legend(loc="best") plt.show() # %% # As you can see, the higher the value of `max_depth`, the more details of the data # are caught by the model. However, the model also overfits to the data and is # influenced by the noise.
""" =================================================================== Decision Tree Regression =================================================================== A 1D regression with decision tree. The :ref:`decision trees <tree>` is used to fit a sine curve with addition noisy observation. As a result, it learns local linear regressions approximating the sine curve. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # Import the necessary modules and libraries import matplotlib.pyplot as plt import numpy as np from sklearn.tree import DecisionTreeRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(5 * rng.rand(80, 1), axis=0) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(16)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_1.fit(X, y) regr_2.fit(X, y) # Predict X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) # Plot the results plt.figure() plt.scatter(X, y, s=20, edgecolor="black", c="darkorange", label="data") plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2) plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Decision Tree Regression") plt.legend() plt.show()
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.documents.point_cloud.points_and_colors import PointsAndColors from docarray.typing import AnyEmbedding, PointCloud3DUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: tf = import_library('tensorflow', raise_error=False) torch = import_library('torch', raise_error=False) T = TypeVar('T', bound='PointCloud3D') class PointCloud3D(BaseDoc): """ Document for handling point clouds for 3D data representation. Point cloud is a representation of a 3D mesh. It is made by repeatedly and uniformly sampling points within the surface of the 3D body. Compared to the mesh representation, the point cloud is a fixed size ndarray (shape=(n_samples, 3)) and hence easier for deep learning algorithms to handle. A PointCloud3D Document can contain an PointCloud3DUrl (`PointCloud3D.url`), a PointsAndColors object (`PointCloud3D.tensors`), and an AnyEmbedding (`PointCloud3D.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import PointCloud3D # use it directly pc = PointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensors = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensors.points) You can extend this Document: .. code-block:: python from docarray.documents import PointCloud3D from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyPointCloud3D(PointCloud3D): second_embedding: Optional[AnyEmbedding] pc = MyPointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensors = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensors.points) pc.second_embedding = model(pc.tensors.colors) You can use this Document for composition: .. code-block:: python from docarray import BaseDoc from docarray.documents import PointCloud3D, Text # compose it class MultiModalDoc(BaseDoc): point_cloud: PointCloud3D text: Text mmdoc = MultiModalDoc( point_cloud=PointCloud3D( url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.point_cloud.tensors = mmdoc.point_cloud.url.load(samples=100) # or mmdoc.point_cloud.bytes_ = mmdoc.point_cloud.url.load_bytes() You can display your point cloud from either its url, or its tensors: .. code-block:: python from docarray.documents import PointCloud3D # display from url pc = PointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.url.display() # display from tensors pc.tensors = pc.url.load(samples=10000) model = MyEmbeddingModel() pc.embedding = model(pc.tensors.points) """ url: Optional[PointCloud3DUrl] tensors: Optional[PointsAndColors] embedding: Optional[AnyEmbedding] bytes_: Optional[bytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch is not None and isinstance(value, torch.Tensor) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensors=PointsAndColors(points=value)) return super().validate(value)
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.documents.point_cloud.points_and_colors import PointsAndColors from docarray.typing import AnyEmbedding, PointCloud3DUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils._internal.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: import torch tf_available = is_tf_available() if tf_available: import tensorflow as tf # type: ignore T = TypeVar('T', bound='PointCloud3D') class PointCloud3D(BaseDoc): """ Document for handling point clouds for 3D data representation. Point cloud is a representation of a 3D mesh. It is made by repeatedly and uniformly sampling points within the surface of the 3D body. Compared to the mesh representation, the point cloud is a fixed size ndarray (shape=(n_samples, 3)) and hence easier for deep learning algorithms to handle. A PointCloud3D Document can contain an PointCloud3DUrl (`PointCloud3D.url`), a PointsAndColors object (`PointCloud3D.tensors`), and an AnyEmbedding (`PointCloud3D.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import PointCloud3D # use it directly pc = PointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensors = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensors.points) You can extend this Document: .. code-block:: python from docarray.documents import PointCloud3D from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyPointCloud3D(PointCloud3D): second_embedding: Optional[AnyEmbedding] pc = MyPointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensors = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensors.points) pc.second_embedding = model(pc.tensors.colors) You can use this Document for composition: .. code-block:: python from docarray import BaseDoc from docarray.documents import PointCloud3D, Text # compose it class MultiModalDoc(BaseDoc): point_cloud: PointCloud3D text: Text mmdoc = MultiModalDoc( point_cloud=PointCloud3D( url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.point_cloud.tensors = mmdoc.point_cloud.url.load(samples=100) # or mmdoc.point_cloud.bytes_ = mmdoc.point_cloud.url.load_bytes() You can display your point cloud from either its url, or its tensors: .. code-block:: python from docarray.documents import PointCloud3D # display from url pc = PointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.url.display() # display from tensors pc.tensors = pc.url.load(samples=10000) model = MyEmbeddingModel() pc.embedding = model(pc.tensors.points) """ url: Optional[PointCloud3DUrl] tensors: Optional[PointsAndColors] embedding: Optional[AnyEmbedding] bytes_: Optional[bytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) or (tf_available and isinstance(value, tf.Tensor)) ): value = cls(tensors=PointsAndColors(points=value)) return super().validate(value)
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .compat_config import compat_cfg from .dist_utils import (all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .logger import get_caller_name, get_root_logger, log_img_scale from .memory import AvoidCUDAOOM, AvoidOOM from .misc import find_latest_checkpoint, update_data_root from .replace_cfg_vals import replace_cfg_vals from .setup_env import register_all_modules, setup_multi_processes from .split_batch import split_batch from .typing import (ConfigType, InstanceList, MultiConfig, OptConfigType, OptInstanceList, OptMultiConfig, OptPixelList, PixelList, RangeType) __all__ = [ 'get_root_logger', 'collect_env', 'find_latest_checkpoint', 'update_data_root', 'setup_multi_processes', 'get_caller_name', 'log_img_scale', 'compat_cfg', 'split_batch', 'register_all_modules', 'replace_cfg_vals', 'AvoidOOM', 'AvoidCUDAOOM', 'all_reduce_dict', 'allreduce_grads', 'reduce_mean', 'sync_random_seed', 'ConfigType', 'InstanceList', 'MultiConfig', 'OptConfigType', 'OptInstanceList', 'OptMultiConfig', 'OptPixelList', 'PixelList', 'RangeType' ]
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .compat_config import compat_cfg from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .logger import get_caller_name, get_root_logger, log_img_scale from .memory import AvoidCUDAOOM, AvoidOOM from .misc import find_latest_checkpoint, update_data_root from .parallel import MMDataParallel, MMDistributedDataParallel from .replace_cfg_vals import replace_cfg_vals from .setup_env import register_all_modules, setup_multi_processes from .split_batch import split_batch from .typing import (ConfigType, InstanceList, MultiConfig, OptConfigType, OptInstanceList, OptMultiConfig, OptPixelList, PixelList, RangeType) from .util_distribution import build_ddp, build_dp, get_device __all__ = [ 'get_root_logger', 'collect_env', 'find_latest_checkpoint', 'update_data_root', 'setup_multi_processes', 'get_caller_name', 'log_img_scale', 'compat_cfg', 'split_batch', 'build_ddp', 'build_dp', 'get_device', 'MMDataParallel', 'MMDistributedDataParallel', 'register_all_modules', 'replace_cfg_vals', 'AvoidOOM', 'AvoidCUDAOOM', 'DistOptimizerHook', 'all_reduce_dict', 'allreduce_grads', 'reduce_mean', 'sync_random_seed', 'ConfigType', 'InstanceList', 'MultiConfig', 'OptConfigType', 'OptInstanceList', 'OptMultiConfig', 'OptPixelList', 'PixelList', 'RangeType' ]
from collections.abc import AsyncIterator, Iterator, Sequence from typing import ( Any, Callable, Optional, TypeVar, Union, ) from langchain_core.stores import BaseStore K = TypeVar("K") V = TypeVar("V") class EncoderBackedStore(BaseStore[K, V]): """Wraps a store with key and value encoders/decoders. Examples that uses JSON for encoding/decoding: .. code-block:: python import json def key_encoder(key: int) -> str: return json.dumps(key) def value_serializer(value: float) -> str: return json.dumps(value) def value_deserializer(serialized_value: str) -> float: return json.loads(serialized_value) # Create an instance of the abstract store abstract_store = MyCustomStore() # Create an instance of the encoder-backed store store = EncoderBackedStore( store=abstract_store, key_encoder=key_encoder, value_serializer=value_serializer, value_deserializer=value_deserializer ) # Use the encoder-backed store methods store.mset([(1, 3.14), (2, 2.718)]) values = store.mget([1, 2]) # Retrieves [3.14, 2.718] store.mdelete([1, 2]) # Deletes the keys 1 and 2 """ def __init__( self, store: BaseStore[str, Any], key_encoder: Callable[[K], str], value_serializer: Callable[[V], bytes], value_deserializer: Callable[[Any], V], ) -> None: """Initialize an EncodedStore.""" self.store = store self.key_encoder = key_encoder self.value_serializer = value_serializer self.value_deserializer = value_deserializer def mget(self, keys: Sequence[K]) -> list[Optional[V]]: """Get the values associated with the given keys.""" encoded_keys: list[str] = [self.key_encoder(key) for key in keys] values = self.store.mget(encoded_keys) return [ self.value_deserializer(value) if value is not None else value for value in values ] async def amget(self, keys: Sequence[K]) -> list[Optional[V]]: """Get the values associated with the given keys.""" encoded_keys: list[str] = [self.key_encoder(key) for key in keys] values = await self.store.amget(encoded_keys) return [ self.value_deserializer(value) if value is not None else value for value in values ] def mset(self, key_value_pairs: Sequence[tuple[K, V]]) -> None: """Set the values for the given keys.""" encoded_pairs = [ (self.key_encoder(key), self.value_serializer(value)) for key, value in key_value_pairs ] self.store.mset(encoded_pairs) async def amset(self, key_value_pairs: Sequence[tuple[K, V]]) -> None: """Set the values for the given keys.""" encoded_pairs = [ (self.key_encoder(key), self.value_serializer(value)) for key, value in key_value_pairs ] await self.store.amset(encoded_pairs) def mdelete(self, keys: Sequence[K]) -> None: """Delete the given keys and their associated values.""" encoded_keys = [self.key_encoder(key) for key in keys] self.store.mdelete(encoded_keys) async def amdelete(self, keys: Sequence[K]) -> None: """Delete the given keys and their associated values.""" encoded_keys = [self.key_encoder(key) for key in keys] await self.store.amdelete(encoded_keys) def yield_keys( self, *, prefix: Optional[str] = None ) -> Union[Iterator[K], Iterator[str]]: """Get an iterator over keys that match the given prefix.""" # For the time being this does not return K, but str # it's for debugging purposes. Should fix this. yield from self.store.yield_keys(prefix=prefix) async def ayield_keys( self, *, prefix: Optional[str] = None ) -> Union[AsyncIterator[K], AsyncIterator[str]]: """Get an iterator over keys that match the given prefix.""" # For the time being this does not return K, but str # it's for debugging purposes. Should fix this. async for key in self.store.ayield_keys(prefix=prefix): yield key
from typing import ( Any, AsyncIterator, Callable, Iterator, List, Optional, Sequence, Tuple, TypeVar, Union, ) from langchain_core.stores import BaseStore K = TypeVar("K") V = TypeVar("V") class EncoderBackedStore(BaseStore[K, V]): """Wraps a store with key and value encoders/decoders. Examples that uses JSON for encoding/decoding: .. code-block:: python import json def key_encoder(key: int) -> str: return json.dumps(key) def value_serializer(value: float) -> str: return json.dumps(value) def value_deserializer(serialized_value: str) -> float: return json.loads(serialized_value) # Create an instance of the abstract store abstract_store = MyCustomStore() # Create an instance of the encoder-backed store store = EncoderBackedStore( store=abstract_store, key_encoder=key_encoder, value_serializer=value_serializer, value_deserializer=value_deserializer ) # Use the encoder-backed store methods store.mset([(1, 3.14), (2, 2.718)]) values = store.mget([1, 2]) # Retrieves [3.14, 2.718] store.mdelete([1, 2]) # Deletes the keys 1 and 2 """ def __init__( self, store: BaseStore[str, Any], key_encoder: Callable[[K], str], value_serializer: Callable[[V], bytes], value_deserializer: Callable[[Any], V], ) -> None: """Initialize an EncodedStore.""" self.store = store self.key_encoder = key_encoder self.value_serializer = value_serializer self.value_deserializer = value_deserializer def mget(self, keys: Sequence[K]) -> List[Optional[V]]: """Get the values associated with the given keys.""" encoded_keys: List[str] = [self.key_encoder(key) for key in keys] values = self.store.mget(encoded_keys) return [ self.value_deserializer(value) if value is not None else value for value in values ] async def amget(self, keys: Sequence[K]) -> List[Optional[V]]: """Get the values associated with the given keys.""" encoded_keys: List[str] = [self.key_encoder(key) for key in keys] values = await self.store.amget(encoded_keys) return [ self.value_deserializer(value) if value is not None else value for value in values ] def mset(self, key_value_pairs: Sequence[Tuple[K, V]]) -> None: """Set the values for the given keys.""" encoded_pairs = [ (self.key_encoder(key), self.value_serializer(value)) for key, value in key_value_pairs ] self.store.mset(encoded_pairs) async def amset(self, key_value_pairs: Sequence[Tuple[K, V]]) -> None: """Set the values for the given keys.""" encoded_pairs = [ (self.key_encoder(key), self.value_serializer(value)) for key, value in key_value_pairs ] await self.store.amset(encoded_pairs) def mdelete(self, keys: Sequence[K]) -> None: """Delete the given keys and their associated values.""" encoded_keys = [self.key_encoder(key) for key in keys] self.store.mdelete(encoded_keys) async def amdelete(self, keys: Sequence[K]) -> None: """Delete the given keys and their associated values.""" encoded_keys = [self.key_encoder(key) for key in keys] await self.store.amdelete(encoded_keys) def yield_keys( self, *, prefix: Optional[str] = None ) -> Union[Iterator[K], Iterator[str]]: """Get an iterator over keys that match the given prefix.""" # For the time being this does not return K, but str # it's for debugging purposes. Should fix this. yield from self.store.yield_keys(prefix=prefix) async def ayield_keys( self, *, prefix: Optional[str] = None ) -> Union[AsyncIterator[K], AsyncIterator[str]]: """Get an iterator over keys that match the given prefix.""" # For the time being this does not return K, but str # it's for debugging purposes. Should fix this. async for key in self.store.ayield_keys(prefix=prefix): yield key
"""Load agent.""" import contextlib from collections.abc import Sequence from typing import Any, Optional from langchain_core._api import deprecated from langchain_core.callbacks import BaseCallbackManager from langchain_core.language_models import BaseLanguageModel from langchain_core.tools import BaseTool from langchain._api.deprecation import AGENT_DEPRECATION_WARNING from langchain.agents.agent import AgentExecutor from langchain.agents.agent_types import AgentType from langchain.agents.loading import load_agent from langchain.agents.types import AGENT_TO_CLASS @deprecated( "0.1.0", message=AGENT_DEPRECATION_WARNING, removal="1.0", ) def initialize_agent( tools: Sequence[BaseTool], llm: BaseLanguageModel, agent: Optional[AgentType] = None, callback_manager: Optional[BaseCallbackManager] = None, agent_path: Optional[str] = None, agent_kwargs: Optional[dict] = None, *, tags: Optional[Sequence[str]] = None, **kwargs: Any, ) -> AgentExecutor: """Load an agent executor given tools and LLM. Args: tools: List of tools this agent has access to. llm: Language model to use as the agent. agent: Agent type to use. If None and agent_path is also None, will default to AgentType.ZERO_SHOT_REACT_DESCRIPTION. Defaults to None. callback_manager: CallbackManager to use. Global callback manager is used if not provided. Defaults to None. agent_path: Path to serialized agent to use. If None and agent is also None, will default to AgentType.ZERO_SHOT_REACT_DESCRIPTION. Defaults to None. agent_kwargs: Additional keyword arguments to pass to the underlying agent. Defaults to None. tags: Tags to apply to the traced runs. Defaults to None. kwargs: Additional keyword arguments passed to the agent executor. Returns: An agent executor. Raises: ValueError: If both `agent` and `agent_path` are specified. ValueError: If `agent` is not a valid agent type. ValueError: If both `agent` and `agent_path` are None. """ tags_ = list(tags) if tags else [] if agent is None and agent_path is None: agent = AgentType.ZERO_SHOT_REACT_DESCRIPTION if agent is not None and agent_path is not None: msg = ( "Both `agent` and `agent_path` are specified, " "but at most only one should be." ) raise ValueError(msg) if agent is not None: if agent not in AGENT_TO_CLASS: msg = ( f"Got unknown agent type: {agent}. " f"Valid types are: {AGENT_TO_CLASS.keys()}." ) raise ValueError(msg) tags_.append(agent.value if isinstance(agent, AgentType) else agent) agent_cls = AGENT_TO_CLASS[agent] agent_kwargs = agent_kwargs or {} agent_obj = agent_cls.from_llm_and_tools( llm, tools, callback_manager=callback_manager, **agent_kwargs, ) elif agent_path is not None: agent_obj = load_agent( agent_path, llm=llm, tools=tools, callback_manager=callback_manager, ) with contextlib.suppress(NotImplementedError): # TODO: Add tags from the serialized object directly. tags_.append(agent_obj._agent_type) else: msg = ( "Somehow both `agent` and `agent_path` are None, this should never happen." ) raise ValueError(msg) return AgentExecutor.from_agent_and_tools( agent=agent_obj, tools=tools, callback_manager=callback_manager, tags=tags_, **kwargs, )
"""Load agent.""" import contextlib from collections.abc import Sequence from typing import Any, Optional from langchain_core._api import deprecated from langchain_core.callbacks import BaseCallbackManager from langchain_core.language_models import BaseLanguageModel from langchain_core.tools import BaseTool from langchain._api.deprecation import AGENT_DEPRECATION_WARNING from langchain.agents.agent import AgentExecutor from langchain.agents.agent_types import AgentType from langchain.agents.loading import load_agent from langchain.agents.types import AGENT_TO_CLASS @deprecated( "0.1.0", message=AGENT_DEPRECATION_WARNING, removal="1.0", ) def initialize_agent( tools: Sequence[BaseTool], llm: BaseLanguageModel, agent: Optional[AgentType] = None, callback_manager: Optional[BaseCallbackManager] = None, agent_path: Optional[str] = None, agent_kwargs: Optional[dict] = None, *, tags: Optional[Sequence[str]] = None, **kwargs: Any, ) -> AgentExecutor: """Load an agent executor given tools and LLM. Args: tools: List of tools this agent has access to. llm: Language model to use as the agent. agent: Agent type to use. If None and agent_path is also None, will default to AgentType.ZERO_SHOT_REACT_DESCRIPTION. Defaults to None. callback_manager: CallbackManager to use. Global callback manager is used if not provided. Defaults to None. agent_path: Path to serialized agent to use. If None and agent is also None, will default to AgentType.ZERO_SHOT_REACT_DESCRIPTION. Defaults to None. agent_kwargs: Additional keyword arguments to pass to the underlying agent. Defaults to None. tags: Tags to apply to the traced runs. Defaults to None. kwargs: Additional keyword arguments passed to the agent executor. Returns: An agent executor. Raises: ValueError: If both `agent` and `agent_path` are specified. ValueError: If `agent` is not a valid agent type. ValueError: If both `agent` and `agent_path` are None. """ tags_ = list(tags) if tags else [] if agent is None and agent_path is None: agent = AgentType.ZERO_SHOT_REACT_DESCRIPTION if agent is not None and agent_path is not None: msg = ( "Both `agent` and `agent_path` are specified, " "but at most only one should be." ) raise ValueError(msg) if agent is not None: if agent not in AGENT_TO_CLASS: msg = ( f"Got unknown agent type: {agent}. " f"Valid types are: {AGENT_TO_CLASS.keys()}." ) raise ValueError(msg) tags_.append(agent.value if isinstance(agent, AgentType) else agent) agent_cls = AGENT_TO_CLASS[agent] agent_kwargs = agent_kwargs or {} agent_obj = agent_cls.from_llm_and_tools( llm, tools, callback_manager=callback_manager, **agent_kwargs ) elif agent_path is not None: agent_obj = load_agent( agent_path, llm=llm, tools=tools, callback_manager=callback_manager ) with contextlib.suppress(NotImplementedError): # TODO: Add tags from the serialized object directly. tags_.append(agent_obj._agent_type) else: msg = ( "Somehow both `agent` and `agent_path` are None, this should never happen." ) raise ValueError(msg) return AgentExecutor.from_agent_and_tools( agent=agent_obj, tools=tools, callback_manager=callback_manager, tags=tags_, **kwargs, )
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, AudioUrl from docarray.typing.bytes.audio_bytes import AudioBytes from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.audio.audio_tensor import AudioTensor from docarray.utils.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: import torch tf_available = is_tf_available() if tf_available: import tensorflow as tf # type: ignore T = TypeVar('T', bound='Audio') class Audio(BaseDocument): """ Document for handling audios. The Audio Document can contain an AudioUrl (`Audio.url`), an AudioTensor (`Audio.tensor`), and an AnyEmbedding (`Audio.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Audio # use it directly audio = Audio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ) audio.tensor = audio.url.load() model = MyEmbeddingModel() audio.embedding = model(audio.tensor) You can extend this Document: .. code-block:: python from docarray.documents import Audio, Text from typing import Optional # extend it class MyAudio(Audio): name: Optional[Text] audio = MyAudio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ) audio.tensor = audio.url.load() model = MyEmbeddingModel() audio.embedding = model(audio.tensor) audio.name = Text(text='my first audio') You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Audio, Text # compose it class MultiModalDoc(Document): audio: Audio text: Text mmdoc = MultiModalDoc( audio=Audio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.audio.tensor = mmdoc.audio.url.load() # equivalent to mmdoc.audio.bytes = mmdoc.audio.url.load_bytes() mmdoc.audio.tensor = mmdoc.audio.bytes.load() """ url: Optional[AudioUrl] tensor: Optional[AudioTensor] embedding: Optional[AnyEmbedding] bytes: Optional[AudioBytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) or (tf_available and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) return super().validate(value)
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, AudioUrl from docarray.typing.bytes.audio_bytes import AudioBytes from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.audio.audio_tensor import AudioTensor from docarray.utils.misc import is_torch_available torch_available = is_torch_available() if torch_available: import torch T = TypeVar('T', bound='Audio') class Audio(BaseDocument): """ Document for handling audios. The Audio Document can contain an AudioUrl (`Audio.url`), an AudioTensor (`Audio.tensor`), and an AnyEmbedding (`Audio.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Audio # use it directly audio = Audio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ) audio.tensor = audio.url.load() model = MyEmbeddingModel() audio.embedding = model(audio.tensor) You can extend this Document: .. code-block:: python from docarray.documents import Audio, Text from typing import Optional # extend it class MyAudio(Audio): name: Optional[Text] audio = MyAudio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ) audio.tensor = audio.url.load() model = MyEmbeddingModel() audio.embedding = model(audio.tensor) audio.name = Text(text='my first audio') You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Audio, Text # compose it class MultiModalDoc(Document): audio: Audio text: Text mmdoc = MultiModalDoc( audio=Audio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.audio.tensor = mmdoc.audio.url.load() # equivalent to mmdoc.audio.bytes = mmdoc.audio.url.load_bytes() mmdoc.audio.tensor = mmdoc.audio.bytes.load() """ url: Optional[AudioUrl] tensor: Optional[AudioTensor] embedding: Optional[AnyEmbedding] bytes: Optional[AudioBytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) ): value = cls(tensor=value) return super().validate(value)
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.datasets.coco_panoptic import INSTANCE_OFFSET from mmdet.models.builder import HEADS from .base_panoptic_fusion_head import BasePanopticFusionHead @HEADS.register_module() class HeuristicFusionHead(BasePanopticFusionHead): """Fusion Head with Heuristic method.""" def __init__(self, num_things_classes=80, num_stuff_classes=53, test_cfg=None, init_cfg=None, **kwargs): super(HeuristicFusionHead, self).__init__(num_things_classes, num_stuff_classes, test_cfg, None, init_cfg, **kwargs) def forward_train(self, gt_masks=None, gt_semantic_seg=None, **kwargs): """HeuristicFusionHead has no training loss.""" return dict() def _lay_masks(self, bboxes, labels, masks, overlap_thr=0.5): """Lay instance masks to a result map. Args: bboxes: The bboxes results, (K, 4). labels: The labels of bboxes, (K, ). masks: The instance masks, (K, H, W). overlap_thr: Threshold to determine whether two masks overlap. default: 0.5. Returns: Tensor: The result map, (H, W). """ num_insts = bboxes.shape[0] id_map = torch.zeros( masks.shape[-2:], device=bboxes.device, dtype=torch.long) if num_insts == 0: return id_map, labels scores, bboxes = bboxes[:, -1], bboxes[:, :4] # Sort by score to use heuristic fusion order = torch.argsort(-scores) bboxes = bboxes[order] labels = labels[order] segm_masks = masks[order] instance_id = 1 left_labels = [] for idx in range(bboxes.shape[0]): _cls = labels[idx] _mask = segm_masks[idx] instance_id_map = torch.ones_like( _mask, dtype=torch.long) * instance_id area = _mask.sum() if area == 0: continue pasted = id_map > 0 intersect = (_mask * pasted).sum() if (intersect / (area + 1e-5)) > overlap_thr: continue _part = _mask * (~pasted) id_map = torch.where(_part, instance_id_map, id_map) left_labels.append(_cls) instance_id += 1 if len(left_labels) > 0: instance_labels = torch.stack(left_labels) else: instance_labels = bboxes.new_zeros((0, ), dtype=torch.long) assert instance_id == (len(instance_labels) + 1) return id_map, instance_labels def simple_test(self, det_bboxes, det_labels, mask_preds, seg_preds, **kwargs): """Fuse the results of instance and semantic segmentations. Args: det_bboxes: The bboxes results, (K, 4). det_labels: The labels of bboxes, (K,). mask_preds: The masks results, (K, H, W). seg_preds: The semantic segmentation results, (K, num_stuff + 1, H, W). Returns: Tensor : The panoptic segmentation result, (H, W). """ mask_preds = mask_preds >= self.test_cfg.mask_thr_binary id_map, labels = self._lay_masks(det_bboxes, det_labels, mask_preds, self.test_cfg.mask_overlap) seg_results = seg_preds.argmax(dim=0) seg_results = seg_results + self.num_things_classes pan_results = seg_results instance_id = 1 for idx in range(det_labels.shape[0]): _mask = id_map == (idx + 1) if _mask.sum() == 0: continue _cls = labels[idx] # simply trust detection segment_id = _cls + instance_id * INSTANCE_OFFSET pan_results[_mask] = segment_id instance_id += 1 ids, counts = torch.unique( pan_results % INSTANCE_OFFSET, return_counts=True) stuff_ids = ids[ids >= self.num_things_classes] stuff_counts = counts[ids >= self.num_things_classes] ignore_stuff_ids = stuff_ids[ stuff_counts < self.test_cfg.stuff_area_limit] assert pan_results.ndim == 2 pan_results[(pan_results.unsqueeze(2) == ignore_stuff_ids.reshape( 1, 1, -1)).any(dim=2)] = self.num_classes return pan_results
import torch from mmdet.datasets.coco_panoptic import INSTANCE_OFFSET from mmdet.models.builder import HEADS from .base_panoptic_fusion_head import BasePanopticFusionHead @HEADS.register_module() class HeuristicFusionHead(BasePanopticFusionHead): """Fusion Head with Heuristic method.""" def __init__(self, num_things_classes=80, num_stuff_classes=53, test_cfg=None, init_cfg=None, **kwargs): super(HeuristicFusionHead, self).__init__(num_things_classes, num_stuff_classes, test_cfg, None, init_cfg, **kwargs) def forward_train(self, gt_masks=None, gt_semantic_seg=None, **kwargs): """HeuristicFusionHead has no training loss.""" return dict() def _lay_masks(self, bboxes, labels, masks, overlap_thr=0.5): """Lay instance masks to a result map. Args: bboxes: The bboxes results, (K, 4). labels: The labels of bboxes, (K, ). masks: The instance masks, (K, H, W). overlap_thr: Threshold to determine whether two masks overlap. default: 0.5. Returns: Tensor: The result map, (H, W). """ num_insts = bboxes.shape[0] id_map = torch.zeros( masks.shape[-2:], device=bboxes.device, dtype=torch.long) if num_insts == 0: return id_map, labels scores, bboxes = bboxes[:, -1], bboxes[:, :4] # Sort by score to use heuristic fusion order = torch.argsort(-scores) bboxes = bboxes[order] labels = labels[order] segm_masks = masks[order] instance_id = 1 left_labels = [] for idx in range(bboxes.shape[0]): _cls = labels[idx] _mask = segm_masks[idx] instance_id_map = torch.ones_like( _mask, dtype=torch.long) * instance_id area = _mask.sum() if area == 0: continue pasted = id_map > 0 intersect = (_mask * pasted).sum() if (intersect / (area + 1e-5)) > overlap_thr: continue _part = _mask * (~pasted) id_map = torch.where(_part, instance_id_map, id_map) left_labels.append(_cls) instance_id += 1 if len(left_labels) > 0: instance_labels = torch.stack(left_labels) else: instance_labels = bboxes.new_zeros((0, ), dtype=torch.long) assert instance_id == (len(instance_labels) + 1) return id_map, instance_labels def simple_test(self, det_bboxes, det_labels, mask_preds, seg_preds, **kwargs): """Fuse the results of instance and semantic segmentations. Args: det_bboxes: The bboxes results, (K, 4). det_labels: The labels of bboxes, (K,). mask_preds: The masks results, (K, H, W). seg_preds: The semantic segmentation results, (K, num_stuff + 1, H, W). Returns: Tensor : The panoptic segmentation result, (H, W). """ mask_preds = mask_preds >= self.test_cfg.mask_thr_binary id_map, labels = self._lay_masks(det_bboxes, det_labels, mask_preds, self.test_cfg.mask_overlap) seg_results = seg_preds.argmax(dim=0) seg_results = seg_results + self.num_things_classes pan_results = seg_results instance_id = 1 for idx in range(det_labels.shape[0]): _mask = id_map == (idx + 1) if _mask.sum() == 0: continue _cls = labels[idx] # simply trust detection segment_id = _cls + instance_id * INSTANCE_OFFSET pan_results[_mask] = segment_id instance_id += 1 ids, counts = torch.unique( pan_results % INSTANCE_OFFSET, return_counts=True) stuff_ids = ids[ids >= self.num_things_classes] stuff_counts = counts[ids >= self.num_things_classes] ignore_stuff_ids = stuff_ids[ stuff_counts < self.test_cfg.stuff_area_limit] assert pan_results.ndim == 2 pan_results[(pan_results.unsqueeze(2) == ignore_stuff_ids.reshape( 1, 1, -1)).any(dim=2)] = self.num_classes return pan_results
import numpy as np from docarray.array import DocumentArray from docarray.document import BaseDocument from docarray.typing import NdArray def test_get_bulk_attributes_function(): class Mmdoc(BaseDocument): text: str tensor: NdArray N = 10 da = DocumentArray[Mmdoc]( (Mmdoc(text=f'hello{i}', tensor=np.zeros((3, 224, 224))) for i in range(N)) ) tensors = da._get_array_attribute('tensor') assert len(tensors) == N for tensor in tensors: assert tensor.shape == (3, 224, 224) texts = da._get_array_attribute('text') assert len(texts) == N for i, text in enumerate(texts): assert text == f'hello{i}' def test_set_attributes(): class InnerDoc(BaseDocument): text: str class Mmdoc(BaseDocument): inner: InnerDoc N = 10 da = DocumentArray[Mmdoc]( (Mmdoc(inner=InnerDoc(text=f'hello{i}')) for i in range(N)) ) list_docs = [InnerDoc(text=f'hello{i}') for i in range(N)] da._set_array_attribute('inner', list_docs) for doc, list_doc in zip(da, list_docs): assert doc.inner is list_doc def test_get_bulk_attributes(): class Mmdoc(BaseDocument): text: str tensor: NdArray N = 10 da = DocumentArray[Mmdoc]( (Mmdoc(text=f'hello{i}', tensor=np.zeros((3, 224, 224))) for i in range(N)) ) tensors = da.tensor assert len(tensors) == N for tensor in tensors: assert tensor.shape == (3, 224, 224) texts = da.text assert len(texts) == N for i, text in enumerate(texts): assert text == f'hello{i}' def test_get_bulk_attributes_document(): class InnerDoc(BaseDocument): text: str class Mmdoc(BaseDocument): inner: InnerDoc N = 10 da = DocumentArray[Mmdoc]( (Mmdoc(inner=InnerDoc(text=f'hello{i}')) for i in range(N)) ) assert isinstance(da.inner, DocumentArray)
import numpy as np from docarray.array import DocumentArray from docarray.document import BaseDocument from docarray.typing import NdArray def test_get_bulk_attributes_function(): class Mmdoc(BaseDocument): text: str tensor: NdArray N = 10 da = DocumentArray[Mmdoc]( (Mmdoc(text=f'hello{i}', tensor=np.zeros((3, 224, 224))) for i in range(N)) ) tensors = da._get_documents_attribute('tensor') assert len(tensors) == N for tensor in tensors: assert tensor.shape == (3, 224, 224) texts = da._get_documents_attribute('text') assert len(texts) == N for i, text in enumerate(texts): assert text == f'hello{i}' def test_get_bulk_attributes(): class Mmdoc(BaseDocument): text: str tensor: NdArray N = 10 da = DocumentArray[Mmdoc]( (Mmdoc(text=f'hello{i}', tensor=np.zeros((3, 224, 224))) for i in range(N)) ) tensors = da.tensor assert len(tensors) == N for tensor in tensors: assert tensor.shape == (3, 224, 224) texts = da.text assert len(texts) == N for i, text in enumerate(texts): assert text == f'hello{i}' def test_get_bulk_attributes_document(): class InnerDoc(BaseDocument): text: str class Mmdoc(BaseDocument): inner: InnerDoc N = 10 da = DocumentArray[Mmdoc]( (Mmdoc(inner=InnerDoc(text=f'hello{i}')) for i in range(N)) ) assert isinstance(da.inner, DocumentArray)
from __future__ import annotations import logging from typing import Literal import torch from torch import Tensor from sentence_transformers.models.InputModule import InputModule from .tokenizer import WhitespaceTokenizer logger = logging.getLogger(__name__) class BoW(InputModule): """Implements a Bag-of-Words (BoW) model to derive sentence embeddings. A weighting can be added to allow the generation of tf-idf vectors. The output vector has the size of the vocab. """ save_in_root: bool = False config_keys: list[str] = ["vocab", "word_weights", "unknown_word_weight", "cumulative_term_frequency"] def __init__( self, vocab: list[str], word_weights: dict[str, float] = {}, unknown_word_weight: float = 1, cumulative_term_frequency: bool = True, ): super().__init__() vocab = list(dict.fromkeys(vocab)) # Ensure vocab is unique self.vocab = vocab self.word_weights = word_weights self.unknown_word_weight = unknown_word_weight self.cumulative_term_frequency = cumulative_term_frequency # Maps wordIdx -> word weight self.weights = [] num_unknown_words = 0 for word in vocab: weight = unknown_word_weight if word in word_weights: weight = word_weights[word] elif word.lower() in word_weights: weight = word_weights[word.lower()] else: num_unknown_words += 1 self.weights.append(weight) logger.info( f"{num_unknown_words} out of {len(vocab)} words without a weighting value. Set weight to {unknown_word_weight}" ) self.tokenizer = WhitespaceTokenizer(vocab, stop_words=set(), do_lower_case=False) self.sentence_embedding_dimension = len(vocab) def forward(self, features: dict[str, Tensor]): # Nothing to do, everything is done in get_sentence_features return features def tokenize(self, texts: list[str], **kwargs) -> list[int]: tokenized = [self.tokenizer.tokenize(text, **kwargs) for text in texts] return self.get_sentence_features(tokenized) def get_sentence_embedding_dimension(self): return self.sentence_embedding_dimension def get_sentence_features( self, tokenized_texts: list[list[int]], pad_seq_length: int = 0 ) -> dict[Literal["sentence_embedding"], torch.Tensor]: vectors = [] for tokens in tokenized_texts: vector = torch.zeros(self.get_sentence_embedding_dimension(), dtype=torch.float32) for token in tokens: if self.cumulative_term_frequency: vector[token] += self.weights[token] else: vector[token] = self.weights[token] vectors.append(vector) return {"sentence_embedding": torch.stack(vectors)} def save(self, output_path: str, *args, safe_serialization: bool = True, **kwargs) -> None: self.save_config(output_path)
from __future__ import annotations import json import logging import os from typing import Literal import torch from torch import Tensor, nn from .tokenizer import WhitespaceTokenizer logger = logging.getLogger(__name__) class BoW(nn.Module): """Implements a Bag-of-Words (BoW) model to derive sentence embeddings. A weighting can be added to allow the generation of tf-idf vectors. The output vector has the size of the vocab. """ def __init__( self, vocab: list[str], word_weights: dict[str, float] = {}, unknown_word_weight: float = 1, cumulative_term_frequency: bool = True, ): super().__init__() vocab = list(set(vocab)) # Ensure vocab is unique self.config_keys = ["vocab", "word_weights", "unknown_word_weight", "cumulative_term_frequency"] self.vocab = vocab self.word_weights = word_weights self.unknown_word_weight = unknown_word_weight self.cumulative_term_frequency = cumulative_term_frequency # Maps wordIdx -> word weight self.weights = [] num_unknown_words = 0 for word in vocab: weight = unknown_word_weight if word in word_weights: weight = word_weights[word] elif word.lower() in word_weights: weight = word_weights[word.lower()] else: num_unknown_words += 1 self.weights.append(weight) logger.info( f"{num_unknown_words} out of {len(vocab)} words without a weighting value. Set weight to {unknown_word_weight}" ) self.tokenizer = WhitespaceTokenizer(vocab, stop_words=set(), do_lower_case=False) self.sentence_embedding_dimension = len(vocab) def forward(self, features: dict[str, Tensor]): # Nothing to do, everything is done in get_sentence_features return features def tokenize(self, texts: list[str], **kwargs) -> list[int]: tokenized = [self.tokenizer.tokenize(text, **kwargs) for text in texts] return self.get_sentence_features(tokenized) def get_sentence_embedding_dimension(self): return self.sentence_embedding_dimension def get_sentence_features( self, tokenized_texts: list[list[int]], pad_seq_length: int = 0 ) -> dict[Literal["sentence_embedding"], torch.Tensor]: vectors = [] for tokens in tokenized_texts: vector = torch.zeros(self.get_sentence_embedding_dimension(), dtype=torch.float32) for token in tokens: if self.cumulative_term_frequency: vector[token] += self.weights[token] else: vector[token] = self.weights[token] vectors.append(vector) return {"sentence_embedding": torch.stack(vectors)} def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return BoW(**config)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from pathlib import Path from typing import List import pytest from jina import Document, DocumentArray, Executor from laser_encoder import LaserEncoder _EMBEDDING_DIM = 1024 @pytest.fixture(scope='session') def basic_encoder() -> LaserEncoder: return LaserEncoder() def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.language == 'en' def test_no_document(basic_encoder: LaserEncoder): basic_encoder.encode(None, {}) def test_empty_documents(basic_encoder: LaserEncoder): docs = DocumentArray([]) basic_encoder.encode(docs, {}) assert len(docs) == 0 @pytest.mark.gpu def test_encoding_gpu(): encoder = LaserEncoder(device='cuda') docs = DocumentArray((Document(text='random text'))) encoder.encode(docs, {}) assert len(docs.get_attributes('embedding')) == 1 assert docs[0].embedding.shape == (1024,) def test_no_text_documents(basic_encoder: LaserEncoder): docs = DocumentArray([Document()]) basic_encoder.encode(docs, {}) assert len(docs) == 1 assert docs[0].embedding is None def test_encoding_cpu(basic_encoder: LaserEncoder): docs = DocumentArray([Document(text='hello there')]) basic_encoder.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'language, sentence', [ ('en', 'Today is a nice day'), ('es', 'hoy es un buen día'), ('ru', 'сегодня хороший день'), ], ) def test_languages(language: str, sentence: str, basic_encoder: LaserEncoder): docs = DocumentArray([Document(text=sentence)]) basic_encoder.encode(docs, {'language': language}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: LaserEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count def test_no_documents(): encoder = LaserEncoder() docs = [] encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['r']}) assert not docs @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: LaserEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) def test_quality_embeddings(basic_encoder: LaserEncoder): docs = DocumentArray( [ # Different than usual example - because embeddings suck (manually verified # using the laser embedings module) Document(id='A', text='car'), Document(id='B', text='truck'), Document(id='C', text='radio'), Document(id='D', text='TV'), ] ) basic_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ['B', 'A', 'D', 'C'] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i]
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from pathlib import Path from typing import List import pytest from jina import Document, DocumentArray, Executor from laser_encoder import LaserEncoder _EMBEDDING_DIM = 1024 @pytest.fixture(scope='session') def basic_encoder() -> LaserEncoder: return LaserEncoder() def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.default_language == 'en' def test_no_document(basic_encoder: LaserEncoder): basic_encoder.encode(None, {}) def test_empty_documents(basic_encoder: LaserEncoder): docs = DocumentArray([]) basic_encoder.encode(docs, {}) assert len(docs) == 0 @pytest.mark.gpu def test_encoding_gpu(): encoder = LaserEncoder(device='cuda') docs = DocumentArray((Document(text='random text'))) encoder.encode(docs, {}) assert len(docs.get_attributes('embedding')) == 1 assert docs[0].embedding.shape == (1024,) def test_no_text_documents(basic_encoder: LaserEncoder): docs = DocumentArray([Document()]) basic_encoder.encode(docs, {}) assert len(docs) == 1 assert docs[0].embedding is None def test_encoding_cpu(basic_encoder: LaserEncoder): docs = DocumentArray([Document(text='hello there')]) basic_encoder.encode(docs, {}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'language, sentence', [ ('en', 'Today is a nice day'), ('es', 'hoy es un buen día'), ('ru', 'сегодня хороший день'), ], ) def test_languages(language: str, sentence: str, basic_encoder: LaserEncoder): docs = DocumentArray([Document(text=sentence)]) basic_encoder.encode(docs, {'language': language}) assert docs[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: LaserEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count def test_no_documents(): encoder = LaserEncoder() docs = [] encoder.encode(docs, parameters={'batch_size': 10, 'traversal_paths': ['r']}) assert not docs @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: LaserEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) def test_quality_embeddings(basic_encoder: LaserEncoder): docs = DocumentArray( [ # Different than usual example - because embeddings suck (manually verified # using the laser embedings module) Document(id='A', text='car'), Document(id='B', text='truck'), Document(id='C', text='radio'), Document(id='D', text='TV'), ] ) basic_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ['B', 'A', 'D', 'C'] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i]
# Copyright (c) OpenMMLab. All rights reserved. from .data_preprocessor import (BatchFixedSizePad, BatchResize, BatchSyncRandomResize, DetDataPreprocessor, MultiBranchDataPreprocessor) __all__ = [ 'DetDataPreprocessor', 'BatchSyncRandomResize', 'BatchFixedSizePad', 'MultiBranchDataPreprocessor', 'BatchResize' ]
# Copyright (c) OpenMMLab. All rights reserved. from .data_preprocessor import (BatchFixedSizePad, BatchSyncRandomResize, DetDataPreprocessor, MultiBranchDataPreprocessor) __all__ = [ 'DetDataPreprocessor', 'BatchSyncRandomResize', 'BatchFixedSizePad', 'MultiBranchDataPreprocessor' ]
from functools import partial from typing import Any, Optional import torch import torch.nn as nn from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = ["AlexNet", "AlexNet_Weights", "alexnet"] class AlexNet(nn.Module): def __init__(self, num_classes: int = 1000, dropout: float = 0.5) -> None: super().__init__() _log_api_usage_once(self) self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.classifier = nn.Sequential( nn.Dropout(p=dropout), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(p=dropout), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x class AlexNet_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/alexnet-owt-7be5be79.pth", transforms=partial(ImageClassification, crop_size=224), meta={ "num_params": 61100840, "min_size": (63, 63), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#alexnet-and-vgg", "_metrics": { "ImageNet-1K": { "acc@1": 56.522, "acc@5": 79.066, } }, "_ops": 0.714, "_file_size": 233.087, "_docs": """ These weights reproduce closely the results of the paper using a simplified training recipe. """, }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", AlexNet_Weights.IMAGENET1K_V1)) def alexnet(*, weights: Optional[AlexNet_Weights] = None, progress: bool = True, **kwargs: Any) -> AlexNet: """AlexNet model architecture from `One weird trick for parallelizing convolutional neural networks <https://arxiv.org/abs/1404.5997>`__. .. note:: AlexNet was originally introduced in the `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html>`__ paper. Our implementation is based instead on the "One weird trick" paper above. Args: weights (:class:`~torchvision.models.AlexNet_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.AlexNet_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.squeezenet.AlexNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/alexnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.AlexNet_Weights :members: """ weights = AlexNet_Weights.verify(weights) if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = AlexNet(**kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress)) return model
from functools import partial from typing import Any, Optional import torch import torch.nn as nn from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import register_model, Weights, WeightsEnum from ._meta import _IMAGENET_CATEGORIES from ._utils import _ovewrite_named_param, handle_legacy_interface __all__ = ["AlexNet", "AlexNet_Weights", "alexnet"] class AlexNet(nn.Module): def __init__(self, num_classes: int = 1000, dropout: float = 0.5) -> None: super().__init__() _log_api_usage_once(self) self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.classifier = nn.Sequential( nn.Dropout(p=dropout), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(p=dropout), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x class AlexNet_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/alexnet-owt-7be5be79.pth", transforms=partial(ImageClassification, crop_size=224), meta={ "num_params": 61100840, "min_size": (63, 63), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#alexnet-and-vgg", "_metrics": { "ImageNet-1K": { "acc@1": 56.522, "acc@5": 79.066, } }, "_ops": 0.714, "_file_size": 233.087, "_docs": """ These weights reproduce closely the results of the paper using a simplified training recipe. """, }, ) DEFAULT = IMAGENET1K_V1 @register_model() @handle_legacy_interface(weights=("pretrained", AlexNet_Weights.IMAGENET1K_V1)) def alexnet(*, weights: Optional[AlexNet_Weights] = None, progress: bool = True, **kwargs: Any) -> AlexNet: """AlexNet model architecture from `One weird trick for parallelizing convolutional neural networks <https://arxiv.org/abs/1404.5997>`__. .. note:: AlexNet was originally introduced in the `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html>`__ paper. Our implementation is based instead on the "One weird trick" paper above. Args: weights (:class:`~torchvision.models.AlexNet_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.AlexNet_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.squeezenet.AlexNet`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/alexnet.py>`_ for more details about this class. .. autoclass:: torchvision.models.AlexNet_Weights :members: """ weights = AlexNet_Weights.verify(weights) if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = AlexNet(**kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress)) return model # The dictionary below is internal implementation detail and will be removed in v0.15 from ._utils import _ModelURLs model_urls = _ModelURLs( { "alexnet": AlexNet_Weights.IMAGENET1K_V1.url, } )
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class SparkDatasetReader(AbstractDatasetReader): """A dataset reader that reads from a Spark DataFrame. When caching, cache materialization is parallelized over Spark; an NFS that is accessible to the driver must be provided. Streaming is not currently supported. """ def __init__( self, df: pyspark.sql.DataFrame, split: Optional[NamedSplit] = None, features: Optional[Features] = None, streaming: bool = True, cache_dir: str = None, keep_in_memory: bool = False, working_dir: str = None, load_from_cache_file: bool = True, file_format: str = "arrow", **kwargs, ): super().__init__( split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, **kwargs, ) self._load_from_cache_file = load_from_cache_file self._file_format = file_format self.builder = Spark( df=df, features=features, cache_dir=cache_dir, working_dir=working_dir, **kwargs, ) def read(self): if self.streaming: return self.builder.as_streaming_dataset(split=self.split) download_mode = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=download_mode, file_format=self._file_format, ) return self.builder.as_dataset(split=self.split)
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class SparkDatasetReader(AbstractDatasetReader): """A dataset reader that reads from a Spark DataFrame. When caching, cache materialization is parallelized over Spark; an NFS that is accessible to the driver must be provided. Streaming is not currently supported. """ def __init__( self, df: pyspark.sql.DataFrame, split: Optional[NamedSplit] = None, features: Optional[Features] = None, streaming: bool = True, cache_dir: str = None, keep_in_memory: bool = False, load_from_cache_file: bool = True, file_format: str = "arrow", **kwargs, ): super().__init__( split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, **kwargs, ) self._load_from_cache_file = load_from_cache_file self._file_format = file_format self.builder = Spark( df=df, features=features, cache_dir=cache_dir, **kwargs, ) def read(self): if self.streaming: return self.builder.as_streaming_dataset(split=self.split) download_mode = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=download_mode, file_format=self._file_format, ) return self.builder.as_dataset(split=self.split)
from typing import Any import pytest from langchain_tests.conftest import CustomPersister, CustomSerializer from langchain_tests.conftest import _base_vcr_config as _base_vcr_config from vcr import VCR # type: ignore[import-untyped] def remove_request_headers(request: Any) -> Any: for k in request.headers: request.headers[k] = "**REDACTED**" return request def remove_response_headers(response: dict) -> dict: for k in response["headers"]: response["headers"][k] = "**REDACTED**" return response @pytest.fixture(scope="session") def vcr_config(_base_vcr_config: dict) -> dict: # noqa: F811 """ Extend the default configuration coming from langchain_tests. """ config = _base_vcr_config.copy() config["before_record_request"] = remove_request_headers config["before_record_response"] = remove_response_headers config["serializer"] = "yaml.gz" config["path_transformer"] = VCR.ensure_suffix(".yaml.gz") return config def pytest_recording_configure(config: dict, vcr: VCR) -> None: vcr.register_persister(CustomPersister()) vcr.register_serializer("yaml.gz", CustomSerializer())
from typing import Any import pytest from langchain_tests.conftest import YamlGzipSerializer from langchain_tests.conftest import _base_vcr_config as _base_vcr_config from vcr import VCR # type: ignore[import-untyped] def remove_request_headers(request: Any) -> Any: for k in request.headers: request.headers[k] = "**REDACTED**" return request def remove_response_headers(response: dict) -> dict: for k in response["headers"]: response["headers"][k] = "**REDACTED**" return response @pytest.fixture(scope="session") def vcr_config(_base_vcr_config: dict) -> dict: # noqa: F811 """ Extend the default configuration coming from langchain_tests. """ config = _base_vcr_config.copy() config["before_record_request"] = remove_request_headers config["before_record_response"] = remove_response_headers config["serializer"] = "yaml.gz" config["path_transformer"] = VCR.ensure_suffix(".yaml.gz") return config @pytest.fixture def vcr(vcr_config: dict) -> VCR: """Override the default vcr fixture to include custom serializers""" my_vcr = VCR(**vcr_config) my_vcr.register_serializer("yaml.gz", YamlGzipSerializer) return my_vcr
import warnings from typing import Any, List, Union import PIL.Image import torch from torchvision.prototype import features from torchvision.transforms import functional as _F @torch.jit.unused def to_grayscale(inpt: PIL.Image.Image, num_output_channels: int = 1) -> PIL.Image.Image: call = ", num_output_channels=3" if num_output_channels == 3 else "" replacement = "convert_color_space(..., color_space=features.ColorSpace.GRAY)" if num_output_channels == 3: replacement = f"convert_color_space({replacement}, color_space=features.ColorSpace.RGB)" warnings.warn( f"The function `to_grayscale(...{call})` is deprecated in will be removed in a future release. " f"Instead, please use `{replacement}`.", ) return _F.to_grayscale(inpt, num_output_channels=num_output_channels) def rgb_to_grayscale( inpt: Union[features.LegacyImageTypeJIT, features.LegacyVideoTypeJIT], num_output_channels: int = 1 ) -> Union[features.LegacyImageTypeJIT, features.LegacyVideoTypeJIT]: if not torch.jit.is_scripting() and isinstance(inpt, (features.Image, features.Video)): inpt = inpt.as_subclass(torch.Tensor) old_color_space = None elif isinstance(inpt, torch.Tensor): old_color_space = features._image._from_tensor_shape(inpt.shape) # type: ignore[arg-type] else: old_color_space = None call = ", num_output_channels=3" if num_output_channels == 3 else "" replacement = ( f"convert_color_space(..., color_space=features.ColorSpace.GRAY" f"{f', old_color_space=features.ColorSpace.{old_color_space}' if old_color_space is not None else ''})" ) if num_output_channels == 3: replacement = ( f"convert_color_space({replacement}, color_space=features.ColorSpace.RGB" f"{f', old_color_space=features.ColorSpace.GRAY' if old_color_space is not None else ''})" ) warnings.warn( f"The function `rgb_to_grayscale(...{call})` is deprecated in will be removed in a future release. " f"Instead, please use `{replacement}`.", ) return _F.rgb_to_grayscale(inpt, num_output_channels=num_output_channels) @torch.jit.unused def to_tensor(inpt: Any) -> torch.Tensor: warnings.warn( "The function `to_tensor(...)` is deprecated and will be removed in a future release. " "Instead, please use `to_image_tensor(...)` followed by `convert_image_dtype(...)`." ) return _F.to_tensor(inpt) def get_image_size(inpt: Union[features.ImageTypeJIT, features.VideoTypeJIT]) -> List[int]: warnings.warn( "The function `get_image_size(...)` is deprecated and will be removed in a future release. " "Instead, please use `get_spatial_size(...)` which returns `[h, w]` instead of `[w, h]`." ) return _F.get_image_size(inpt)
import warnings from typing import Any, List, Union import PIL.Image import torch from torchvision.prototype import features from torchvision.transforms import functional as _F @torch.jit.unused def to_grayscale(inpt: PIL.Image.Image, num_output_channels: int = 1) -> PIL.Image.Image: call = ", num_output_channels=3" if num_output_channels == 3 else "" replacement = "convert_color_space(..., color_space=features.ColorSpace.GRAY)" if num_output_channels == 3: replacement = f"convert_color_space({replacement}, color_space=features.ColorSpace.RGB)" warnings.warn( f"The function `to_grayscale(...{call})` is deprecated in will be removed in a future release. " f"Instead, please use `{replacement}`.", ) return _F.to_grayscale(inpt, num_output_channels=num_output_channels) def rgb_to_grayscale( inpt: Union[features.LegacyImageTypeJIT, features.LegacyVideoTypeJIT], num_output_channels: int = 1 ) -> Union[features.LegacyImageTypeJIT, features.LegacyVideoTypeJIT]: old_color_space = ( features._image._from_tensor_shape(inpt.shape) # type: ignore[arg-type] if isinstance(inpt, torch.Tensor) and (torch.jit.is_scripting() or not isinstance(inpt, (features.Image, features.Video))) else None ) call = ", num_output_channels=3" if num_output_channels == 3 else "" replacement = ( f"convert_color_space(..., color_space=features.ColorSpace.GRAY" f"{f', old_color_space=features.ColorSpace.{old_color_space}' if old_color_space is not None else ''})" ) if num_output_channels == 3: replacement = ( f"convert_color_space({replacement}, color_space=features.ColorSpace.RGB" f"{f', old_color_space=features.ColorSpace.GRAY' if old_color_space is not None else ''})" ) warnings.warn( f"The function `rgb_to_grayscale(...{call})` is deprecated in will be removed in a future release. " f"Instead, please use `{replacement}`.", ) return _F.rgb_to_grayscale(inpt, num_output_channels=num_output_channels) @torch.jit.unused def to_tensor(inpt: Any) -> torch.Tensor: warnings.warn( "The function `to_tensor(...)` is deprecated and will be removed in a future release. " "Instead, please use `to_image_tensor(...)` followed by `convert_image_dtype(...)`." ) return _F.to_tensor(inpt) def get_image_size(inpt: Union[features.ImageTypeJIT, features.VideoTypeJIT]) -> List[int]: warnings.warn( "The function `get_image_size(...)` is deprecated and will be removed in a future release. " "Instead, please use `get_spatial_size(...)` which returns `[h, w]` instead of `[w, h]`." ) return _F.get_image_size(inpt)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.data import InstanceData from mmdet.models.dense_heads import NASFCOSHead class TestNASFCOSHead(TestCase): def test_nasfcos_head_loss(self): """Tests nasfcos head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1, }] nasfcos_head = NASFCOSHead( num_classes=4, in_channels=2, # the same as `deform_groups` in dconv3x3_config feat_channels=2, norm_cfg=None) # Nasfcos head expects a multiple levels of features per image feats = ( torch.rand(1, 2, s // stride[1], s // stride[0]).float() for stride in nasfcos_head.prior_generator.strides) cls_scores, bbox_preds, centernesses = nasfcos_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = nasfcos_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but # box loss and centerness loss should be zero empty_cls_loss = empty_gt_losses['loss_cls'].item() empty_box_loss = empty_gt_losses['loss_bbox'].item() empty_ctr_loss = empty_gt_losses['loss_centerness'].item() self.assertGreater(empty_cls_loss, 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss, 0, 'there should be no box loss when there are no true boxes') self.assertEqual( empty_ctr_loss, 0, 'there should be no centerness loss when there are no true boxes') # When truth is non-empty then all cls, box loss and centerness loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = nasfcos_head.loss_by_feat(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) onegt_cls_loss = one_gt_losses['loss_cls'].item() onegt_box_loss = one_gt_losses['loss_bbox'].item() onegt_ctr_loss = one_gt_losses['loss_centerness'].item() self.assertGreater(onegt_cls_loss, 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss, 0, 'box loss should be non-zero') self.assertGreater(onegt_ctr_loss, 0, 'centerness loss should be non-zero')
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.data import InstanceData from mmdet.models.dense_heads import NASFCOSHead class TestNASFCOSHead(TestCase): def test_nasfcos_head_loss(self): """Tests nasfcos head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] nasfcos_head = NASFCOSHead( num_classes=4, in_channels=2, # the same as `deform_groups` in dconv3x3_config feat_channels=2, norm_cfg=None) # Nasfcos head expects a multiple levels of features per image feats = ( torch.rand(1, 2, s // stride[1], s // stride[0]).float() for stride in nasfcos_head.prior_generator.strides) cls_scores, bbox_preds, centernesses = nasfcos_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = nasfcos_head.loss(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but # box loss and centerness loss should be zero empty_cls_loss = empty_gt_losses['loss_cls'].item() empty_box_loss = empty_gt_losses['loss_bbox'].item() empty_ctr_loss = empty_gt_losses['loss_centerness'].item() self.assertGreater(empty_cls_loss, 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss, 0, 'there should be no box loss when there are no true boxes') self.assertEqual( empty_ctr_loss, 0, 'there should be no centerness loss when there are no true boxes') # When truth is non-empty then all cls, box loss and centerness loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = nasfcos_head.loss(cls_scores, bbox_preds, centernesses, [gt_instances], img_metas) onegt_cls_loss = one_gt_losses['loss_cls'].item() onegt_box_loss = one_gt_losses['loss_bbox'].item() onegt_ctr_loss = one_gt_losses['loss_centerness'].item() self.assertGreater(onegt_cls_loss, 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss, 0, 'box loss should be non-zero') self.assertGreater(onegt_ctr_loss, 0, 'centerness loss should be non-zero')
from typing import Literal from pydantic import SecretStr from backend.data.model import ( APIKeyCredentials, CredentialsField, CredentialsMetaInput, OAuth2Credentials, ) from backend.util.settings import Secrets secrets = Secrets() GITHUB_OAUTH_IS_CONFIGURED = bool( secrets.github_client_id and secrets.github_client_secret ) GithubCredentials = APIKeyCredentials | OAuth2Credentials GithubCredentialsInput = CredentialsMetaInput[ Literal["github"], Literal["api_key", "oauth2"] if GITHUB_OAUTH_IS_CONFIGURED else Literal["api_key"], ] def GithubCredentialsField(scope: str) -> GithubCredentialsInput: """ Creates a GitHub credentials input on a block. Params: scope: The authorization scope needed for the block to work. ([list of available scopes](https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps#available-scopes)) """ # noqa return CredentialsField( provider="github", supported_credential_types=( {"api_key", "oauth2"} if GITHUB_OAUTH_IS_CONFIGURED else {"api_key"} ), required_scopes={scope}, description="The GitHub integration can be used with OAuth, " "or any API key with sufficient permissions for the blocks it is used on.", ) TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="github", api_key=SecretStr("mock-github-api-key"), title="Mock GitHub API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.type, }
from typing import Literal from autogpt_libs.supabase_integration_credentials_store.types import ( APIKeyCredentials, OAuth2Credentials, ) from pydantic import SecretStr from backend.data.model import CredentialsField, CredentialsMetaInput from backend.util.settings import Secrets secrets = Secrets() GITHUB_OAUTH_IS_CONFIGURED = bool( secrets.github_client_id and secrets.github_client_secret ) GithubCredentials = APIKeyCredentials | OAuth2Credentials GithubCredentialsInput = CredentialsMetaInput[ Literal["github"], Literal["api_key", "oauth2"] if GITHUB_OAUTH_IS_CONFIGURED else Literal["api_key"], ] def GithubCredentialsField(scope: str) -> GithubCredentialsInput: """ Creates a GitHub credentials input on a block. Params: scope: The authorization scope needed for the block to work. ([list of available scopes](https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps#available-scopes)) """ # noqa return CredentialsField( provider="github", supported_credential_types=( {"api_key", "oauth2"} if GITHUB_OAUTH_IS_CONFIGURED else {"api_key"} ), required_scopes={scope}, description="The GitHub integration can be used with OAuth, " "or any API key with sufficient permissions for the blocks it is used on.", ) TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="github", api_key=SecretStr("mock-github-api-key"), title="Mock GitHub API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.type, }
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.core.evaluation.panoptic_utils import INSTANCE_OFFSET from mmdet.registry import MODELS from .base_panoptic_fusion_head import BasePanopticFusionHead @MODELS.register_module() class HeuristicFusionHead(BasePanopticFusionHead): """Fusion Head with Heuristic method.""" def __init__(self, num_things_classes=80, num_stuff_classes=53, test_cfg=None, init_cfg=None, **kwargs): super(HeuristicFusionHead, self).__init__(num_things_classes, num_stuff_classes, test_cfg, None, init_cfg, **kwargs) def forward_train(self, gt_masks=None, gt_semantic_seg=None, **kwargs): """HeuristicFusionHead has no training loss.""" return dict() def _lay_masks(self, bboxes, labels, masks, overlap_thr=0.5): """Lay instance masks to a result map. Args: bboxes: The bboxes results, (K, 4). labels: The labels of bboxes, (K, ). masks: The instance masks, (K, H, W). overlap_thr: Threshold to determine whether two masks overlap. default: 0.5. Returns: Tensor: The result map, (H, W). """ num_insts = bboxes.shape[0] id_map = torch.zeros( masks.shape[-2:], device=bboxes.device, dtype=torch.long) if num_insts == 0: return id_map, labels scores, bboxes = bboxes[:, -1], bboxes[:, :4] # Sort by score to use heuristic fusion order = torch.argsort(-scores) bboxes = bboxes[order] labels = labels[order] segm_masks = masks[order] instance_id = 1 left_labels = [] for idx in range(bboxes.shape[0]): _cls = labels[idx] _mask = segm_masks[idx] instance_id_map = torch.ones_like( _mask, dtype=torch.long) * instance_id area = _mask.sum() if area == 0: continue pasted = id_map > 0 intersect = (_mask * pasted).sum() if (intersect / (area + 1e-5)) > overlap_thr: continue _part = _mask * (~pasted) id_map = torch.where(_part, instance_id_map, id_map) left_labels.append(_cls) instance_id += 1 if len(left_labels) > 0: instance_labels = torch.stack(left_labels) else: instance_labels = bboxes.new_zeros((0, ), dtype=torch.long) assert instance_id == (len(instance_labels) + 1) return id_map, instance_labels def simple_test(self, det_bboxes, det_labels, mask_preds, seg_preds, **kwargs): """Fuse the results of instance and semantic segmentations. Args: det_bboxes: The bboxes results, (K, 4). det_labels: The labels of bboxes, (K,). mask_preds: The masks results, (K, H, W). seg_preds: The semantic segmentation results, (K, num_stuff + 1, H, W). Returns: Tensor : The panoptic segmentation result, (H, W). """ mask_preds = mask_preds >= self.test_cfg.mask_thr_binary id_map, labels = self._lay_masks(det_bboxes, det_labels, mask_preds, self.test_cfg.mask_overlap) seg_results = seg_preds.argmax(dim=0) seg_results = seg_results + self.num_things_classes pan_results = seg_results instance_id = 1 for idx in range(det_labels.shape[0]): _mask = id_map == (idx + 1) if _mask.sum() == 0: continue _cls = labels[idx] # simply trust detection segment_id = _cls + instance_id * INSTANCE_OFFSET pan_results[_mask] = segment_id instance_id += 1 ids, counts = torch.unique( pan_results % INSTANCE_OFFSET, return_counts=True) stuff_ids = ids[ids >= self.num_things_classes] stuff_counts = counts[ids >= self.num_things_classes] ignore_stuff_ids = stuff_ids[ stuff_counts < self.test_cfg.stuff_area_limit] assert pan_results.ndim == 2 pan_results[(pan_results.unsqueeze(2) == ignore_stuff_ids.reshape( 1, 1, -1)).any(dim=2)] = self.num_classes return pan_results
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.core.evaluation.panoptic_utils import INSTANCE_OFFSET from mmdet.models.builder import HEADS from .base_panoptic_fusion_head import BasePanopticFusionHead @HEADS.register_module() class HeuristicFusionHead(BasePanopticFusionHead): """Fusion Head with Heuristic method.""" def __init__(self, num_things_classes=80, num_stuff_classes=53, test_cfg=None, init_cfg=None, **kwargs): super(HeuristicFusionHead, self).__init__(num_things_classes, num_stuff_classes, test_cfg, None, init_cfg, **kwargs) def forward_train(self, gt_masks=None, gt_semantic_seg=None, **kwargs): """HeuristicFusionHead has no training loss.""" return dict() def _lay_masks(self, bboxes, labels, masks, overlap_thr=0.5): """Lay instance masks to a result map. Args: bboxes: The bboxes results, (K, 4). labels: The labels of bboxes, (K, ). masks: The instance masks, (K, H, W). overlap_thr: Threshold to determine whether two masks overlap. default: 0.5. Returns: Tensor: The result map, (H, W). """ num_insts = bboxes.shape[0] id_map = torch.zeros( masks.shape[-2:], device=bboxes.device, dtype=torch.long) if num_insts == 0: return id_map, labels scores, bboxes = bboxes[:, -1], bboxes[:, :4] # Sort by score to use heuristic fusion order = torch.argsort(-scores) bboxes = bboxes[order] labels = labels[order] segm_masks = masks[order] instance_id = 1 left_labels = [] for idx in range(bboxes.shape[0]): _cls = labels[idx] _mask = segm_masks[idx] instance_id_map = torch.ones_like( _mask, dtype=torch.long) * instance_id area = _mask.sum() if area == 0: continue pasted = id_map > 0 intersect = (_mask * pasted).sum() if (intersect / (area + 1e-5)) > overlap_thr: continue _part = _mask * (~pasted) id_map = torch.where(_part, instance_id_map, id_map) left_labels.append(_cls) instance_id += 1 if len(left_labels) > 0: instance_labels = torch.stack(left_labels) else: instance_labels = bboxes.new_zeros((0, ), dtype=torch.long) assert instance_id == (len(instance_labels) + 1) return id_map, instance_labels def simple_test(self, det_bboxes, det_labels, mask_preds, seg_preds, **kwargs): """Fuse the results of instance and semantic segmentations. Args: det_bboxes: The bboxes results, (K, 4). det_labels: The labels of bboxes, (K,). mask_preds: The masks results, (K, H, W). seg_preds: The semantic segmentation results, (K, num_stuff + 1, H, W). Returns: Tensor : The panoptic segmentation result, (H, W). """ mask_preds = mask_preds >= self.test_cfg.mask_thr_binary id_map, labels = self._lay_masks(det_bboxes, det_labels, mask_preds, self.test_cfg.mask_overlap) seg_results = seg_preds.argmax(dim=0) seg_results = seg_results + self.num_things_classes pan_results = seg_results instance_id = 1 for idx in range(det_labels.shape[0]): _mask = id_map == (idx + 1) if _mask.sum() == 0: continue _cls = labels[idx] # simply trust detection segment_id = _cls + instance_id * INSTANCE_OFFSET pan_results[_mask] = segment_id instance_id += 1 ids, counts = torch.unique( pan_results % INSTANCE_OFFSET, return_counts=True) stuff_ids = ids[ids >= self.num_things_classes] stuff_counts = counts[ids >= self.num_things_classes] ignore_stuff_ids = stuff_ids[ stuff_counts < self.test_cfg.stuff_area_limit] assert pan_results.ndim == 2 pan_results[(pan_results.unsqueeze(2) == ignore_stuff_ids.reshape( 1, 1, -1)).any(dim=2)] = self.num_classes return pan_results
import numpy as np import pytest from docarray.proto import DocumentProto, NodeProto from docarray.typing import NdArray @pytest.mark.proto def test_ndarray(): original_ndarray = np.zeros((3, 224, 224)) custom_ndarray = NdArray._docarray_from_native(original_ndarray) tensor = NdArray.from_protobuf(custom_ndarray.to_protobuf()) assert (tensor == original_ndarray).all() @pytest.mark.proto def test_document_proto_set(): data = {} nested_item1 = NodeProto(text='hello') ndarray = NdArray._docarray_from_native(np.zeros((3, 224, 224))) nd_proto = ndarray.to_protobuf() nested_item2 = NodeProto(ndarray=nd_proto) data['a'] = nested_item1 data['b'] = nested_item2 DocumentProto(data=data)
import numpy as np from docarray.proto import DocumentProto, NodeProto from docarray.typing import NdArray def test_ndarray(): original_ndarray = np.zeros((3, 224, 224)) custom_ndarray = NdArray._docarray_from_native(original_ndarray) tensor = NdArray.from_protobuf(custom_ndarray.to_protobuf()) assert (tensor == original_ndarray).all() def test_document_proto_set(): data = {} nested_item1 = NodeProto(text='hello') ndarray = NdArray._docarray_from_native(np.zeros((3, 224, 224))) nd_proto = ndarray.to_protobuf() nested_item2 = NodeProto(ndarray=nd_proto) data['a'] = nested_item1 data['b'] = nested_item2 DocumentProto(data=data)
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # model settings input_size = 300 model = dict( bbox_head=dict( type='SSDHead', anchor_generator=dict( type='LegacySSDAnchorGenerator', scale_major=False, input_size=input_size, basesize_ratio_range=(0.15, 0.9), strides=[8, 16, 32, 64, 100, 300], ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]), bbox_coder=dict( type='LegacyDeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2])))
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # model settings input_size = 300 model = dict( bbox_head=dict( type='SSDHead', anchor_generator=dict( type='LegacySSDAnchorGenerator', scale_major=False, input_size=input_size, basesize_ratio_range=(0.15, 0.9), strides=[8, 16, 32, 64, 100, 300], ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]), bbox_coder=dict( type='LegacyDeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]))) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(300, 300), keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='RandomFlip', flip_ratio=0.5), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(300, 300), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=3, train=dict( _delete_=True, type='RepeatDataset', times=5, dataset=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4) optimizer_config = dict(_delete_=True) dist_params = dict(backend='nccl', port=29555) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
import pytest from jina.enums import ProtocolType from jina.helper import ArgNamespace from jina.parsers import set_gateway_parser, set_pod_parser @pytest.mark.parametrize( 'port,expected_port', [ ('12345', [12345]), ([12345], [12345]), ([12345, 12344], [12345, 12344]), ], ) @pytest.mark.parametrize( 'protocol,expected_protocol', [ ('http', [ProtocolType.HTTP]), (['GRPC'], [ProtocolType.GRPC]), (['grpc', 'http'], [ProtocolType.GRPC, ProtocolType.HTTP]), ], ) def test_multiple_port_protocol_gateway_kwargs( port, protocol, expected_port, expected_protocol ): args = ArgNamespace.kwargs2namespace( {'port': port, 'protocol': protocol}, set_gateway_parser() ) assert args.port == expected_port assert args.protocol == expected_protocol @pytest.mark.parametrize( 'port,expected_port', [ (['12345'], [12345]), (['12345', '12344'], [12345, 12344]), (['12345, 12344'], [12345, 12344]), ], ) @pytest.mark.parametrize( 'protocol,expected_protocol', [ (['http'], [ProtocolType.HTTP]), (['GRPC'], [ProtocolType.GRPC]), (['grpc', 'http'], [ProtocolType.GRPC, ProtocolType.HTTP]), ], ) def test_multiple_port_protocol_gateway_args_list( port, protocol, expected_port, expected_protocol ): args = set_gateway_parser().parse_args( ['--port'] + port + ['--protocol'] + protocol ) assert args.port == expected_port assert args.protocol == expected_protocol @pytest.mark.parametrize( 'port,expected_port', [ (['12345'], [12345]), (['12345', '12344'], [12345, 12344]), (['12345, 12344'], [12345, 12344]), ], ) def test_pod_port_cast(port, expected_port): args = set_pod_parser().parse_args(['--port'] + port) assert args.port == expected_port def test_pod_port_default(): args = set_pod_parser().parse_args([]) assert isinstance(args.port, list) assert len(args.port) == 1 @pytest.mark.parametrize( 'host,expected_host', [ (['localhost'], ['localhost']), (['0.0.0.0,localhost'], ['0.0.0.0', 'localhost']), (['0.0.0.0,localhost', '127.0.0.1'], ['0.0.0.0', 'localhost', '127.0.0.1']), ], ) def test_pod_host_cast(host, expected_host): args = set_pod_parser().parse_args(['--host'] + host) assert args.host == expected_host def test_pod_host_default(): from jina.constants import __default_host__ args = set_pod_parser().parse_args([]) assert args.host == [__default_host__] def test_default_port_protocol_gateway(): args = set_gateway_parser().parse_args([]) assert len(args.port) == 1 assert args.protocol == [ProtocolType.GRPC] def test_get_non_defaults_args(): args = set_gateway_parser().parse_args( [ '--port', '12345', '12344', '--protocol', 'grpc', '--uses', 'MyCustomGateway', '--uses-with', '{"arg":"value"}', ] ) non_defaults = ArgNamespace.get_non_defaults_args( args, set_gateway_parser(), ) assert non_defaults['port'] == [12345, 12344] assert 'protocol' not in non_defaults assert non_defaults['uses'] == 'MyCustomGateway' assert non_defaults['uses_with'] == {'arg': 'value'}
import pytest from jina.enums import GatewayProtocolType from jina.helper import ArgNamespace from jina.parsers import set_gateway_parser, set_pod_parser @pytest.mark.parametrize( 'port,expected_port', [ ('12345', [12345]), ([12345], [12345]), ([12345, 12344], [12345, 12344]), ], ) @pytest.mark.parametrize( 'protocol,expected_protocol', [ ('http', [GatewayProtocolType.HTTP]), (['GRPC'], [GatewayProtocolType.GRPC]), (['grpc', 'http'], [GatewayProtocolType.GRPC, GatewayProtocolType.HTTP]), ], ) def test_multiple_port_protocol_gateway_kwargs( port, protocol, expected_port, expected_protocol ): args = ArgNamespace.kwargs2namespace( {'port': port, 'protocol': protocol}, set_gateway_parser() ) assert args.port == expected_port assert args.protocol == expected_protocol @pytest.mark.parametrize( 'port,expected_port', [ (['12345'], [12345]), (['12345', '12344'], [12345, 12344]), (['12345, 12344'], [12345, 12344]), ], ) @pytest.mark.parametrize( 'protocol,expected_protocol', [ (['http'], [GatewayProtocolType.HTTP]), (['GRPC'], [GatewayProtocolType.GRPC]), (['grpc', 'http'], [GatewayProtocolType.GRPC, GatewayProtocolType.HTTP]), ], ) def test_multiple_port_protocol_gateway_args_list( port, protocol, expected_port, expected_protocol ): args = set_gateway_parser().parse_args( ['--port'] + port + ['--protocol'] + protocol ) assert args.port == expected_port assert args.protocol == expected_protocol @pytest.mark.parametrize( 'port,expected_port', [ (['12345'], [12345]), (['12345', '12344'], [12345, 12344]), (['12345, 12344'], [12345, 12344]), ], ) def test_pod_port_cast(port, expected_port): args = set_pod_parser().parse_args(['--port'] + port) assert args.port == expected_port def test_pod_port_default(): args = set_pod_parser().parse_args([]) assert isinstance(args.port, list) assert len(args.port) == 1 @pytest.mark.parametrize( 'host,expected_host', [ (['localhost'], ['localhost']), (['0.0.0.0,localhost'], ['0.0.0.0', 'localhost']), (['0.0.0.0,localhost', '127.0.0.1'], ['0.0.0.0', 'localhost', '127.0.0.1']), ], ) def test_pod_host_cast(host, expected_host): args = set_pod_parser().parse_args(['--host'] + host) assert args.host == expected_host def test_pod_host_default(): from jina.constants import __default_host__ args = set_pod_parser().parse_args([]) assert args.host == [__default_host__] def test_default_port_protocol_gateway(): args = set_gateway_parser().parse_args([]) assert len(args.port) == 1 assert args.protocol == [GatewayProtocolType.GRPC] def test_get_non_defaults_args(): args = set_gateway_parser().parse_args( [ '--port', '12345', '12344', '--protocol', 'grpc', '--uses', 'MyCustomGateway', '--uses-with', '{"arg":"value"}', ] ) non_defaults = ArgNamespace.get_non_defaults_args( args, set_gateway_parser(), ) assert non_defaults['port'] == [12345, 12344] assert 'protocol' not in non_defaults assert non_defaults['uses'] == 'MyCustomGateway' assert non_defaults['uses_with'] == {'arg': 'value'}
import re from typing import Any, Optional from langchain_text_splitters import RecursiveCharacterTextSplitter class JSFrameworkTextSplitter(RecursiveCharacterTextSplitter): """Text splitter that handles React (JSX), Vue, and Svelte code. This splitter extends RecursiveCharacterTextSplitter to handle React (JSX), Vue, and Svelte code by: 1. Detecting and extracting custom component tags from the text 2. Using those tags as additional separators along with standard JS syntax The splitter combines: - Custom component tags as separators (e.g. <Component, <div) - JavaScript syntax elements (function, const, if, etc) - Standard text splitting on newlines This allows chunks to break at natural boundaries in React, Vue, and Svelte component code. """ def __init__( self, separators: Optional[list[str]] = None, chunk_size: int = 2000, chunk_overlap: int = 0, **kwargs: Any, ) -> None: """Initialize the JS Framework text splitter. Args: separators: Optional list of custom separator strings to use chunk_size: Maximum size of chunks to return chunk_overlap: Overlap in characters between chunks **kwargs: Additional arguments to pass to parent class """ super().__init__(chunk_size=chunk_size, chunk_overlap=chunk_overlap, **kwargs) self._separators = separators or [] def split_text(self, text: str) -> list[str]: """Split text into chunks. This method splits the text into chunks by: - Extracting unique opening component tags using regex - Creating separators list with extracted tags and JS separators - Splitting the text using the separators by calling the parent class method Args: text: String containing code to split Returns: List of text chunks split on component and JS boundaries """ # Extract unique opening component tags using regex # Regex to match opening tags, excluding self-closing tags opening_tags = re.findall(r"<\s*([a-zA-Z0-9]+)[^>]*>", text) component_tags = [] for tag in opening_tags: if tag not in component_tags: component_tags.append(tag) component_separators = [f"<{tag}" for tag in component_tags] js_separators = [ "\nexport ", " export ", "\nfunction ", "\nasync function ", " async function ", "\nconst ", "\nlet ", "\nvar ", "\nclass ", " class ", "\nif ", " if ", "\nfor ", " for ", "\nwhile ", " while ", "\nswitch ", " switch ", "\ncase ", " case ", "\ndefault ", " default ", ] separators = ( self._separators + js_separators + component_separators + ["<>", "\n\n", "&&\n", "||\n"] ) self._separators = separators return super().split_text(text)
import re from typing import Any, Optional from langchain_text_splitters import RecursiveCharacterTextSplitter class JSFrameworkTextSplitter(RecursiveCharacterTextSplitter): """Text splitter that handles React (JSX), Vue, and Svelte code. This splitter extends RecursiveCharacterTextSplitter to handle React (JSX), Vue, and Svelte code by: 1. Detecting and extracting custom component tags from the text 2. Using those tags as additional separators along with standard JS syntax The splitter combines: - Custom component tags as separators (e.g. <Component, <div) - JavaScript syntax elements (function, const, if, etc) - Standard text splitting on newlines This allows chunks to break at natural boundaries in React, Vue, and Svelte component code. """ def __init__( self, separators: Optional[list[str]] = None, chunk_size: int = 2000, chunk_overlap: int = 0, **kwargs: Any, ) -> None: """Initialize the JS Framework text splitter. Args: separators: Optional list of custom separator strings to use chunk_size: Maximum size of chunks to return chunk_overlap: Overlap in characters between chunks **kwargs: Additional arguments to pass to parent class """ super().__init__(chunk_size=chunk_size, chunk_overlap=chunk_overlap, **kwargs) self._separators = separators or [] def split_text(self, text: str) -> list[str]: """Split text into chunks. This method splits the text into chunks by: - Extracting unique opening component tags using regex - Creating separators list with extracted tags and JS separators - Splitting the text using the separators by calling the parent class method Args: text: String containing code to split Returns: List of text chunks split on component and JS boundaries """ # Extract unique opening component tags using regex # Regex to match opening tags, excluding self-closing tags opening_tags = re.findall(r"<\s*([a-zA-Z0-9]+)[^>]*>", text) component_tags = [] for tag in opening_tags: if tag not in component_tags: component_tags.append(tag) component_separators = [f"<{tag}" for tag in component_tags] js_separators = [ "\nexport ", " export ", "\nfunction ", "\nasync function ", " async function ", "\nconst ", "\nlet ", "\nvar ", "\nclass ", " class ", "\nif ", " if ", "\nfor ", " for ", "\nwhile ", " while ", "\nswitch ", " switch ", "\ncase ", " case ", "\ndefault ", " default ", ] separators = ( self._separators + js_separators + component_separators + ["<>", "\n\n", "&&\n", "||\n"] ) self._separators = separators chunks = super().split_text(text) return chunks
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class NASFCOS(SingleStageDetector): """NAS-FCOS: Fast Neural Architecture Search for Object Detection. https://arxiv.org/abs/1906.0442 """ def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(NASFCOS, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class NASFCOS(SingleStageDetector): """NAS-FCOS: Fast Neural Architecture Search for Object Detection. https://arxiv.org/abs/1906.0442 """ def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(NASFCOS, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
import types from typing import Any import torch._C class _ClassNamespace(types.ModuleType): def __init__(self, name: str) -> None: super().__init__("torch.classes" + name) self.name = name def __getattr__(self, attr: str) -> Any: proxy = torch._C._get_custom_class_python_wrapper(self.name, attr) if proxy is None: raise RuntimeError(f"Class {self.name}.{attr} not registered!") return proxy class _Classes(types.ModuleType): __file__ = "_classes.py" def __init__(self) -> None: super().__init__("torch.classes") def __getattr__(self, name: str) -> _ClassNamespace: namespace = _ClassNamespace(name) setattr(self, name, namespace) return namespace @property def loaded_libraries(self) -> Any: return torch.ops.loaded_libraries def load_library(self, path: str) -> None: """ Loads a shared library from the given path into the current process. The library being loaded may run global initialization code to register custom classes with the PyTorch JIT runtime. This allows dynamically loading custom classes. For this, you should compile your class and the static registration code into a shared library object, and then call ``torch.classes.load_library('path/to/libcustom.so')`` to load the shared object. After the library is loaded, it is added to the ``torch.classes.loaded_libraries`` attribute, a set that may be inspected for the paths of all libraries loaded using this function. Args: path (str): A path to a shared library to load. """ torch.ops.load_library(path) # The classes "namespace" classes = _Classes()
# mypy: allow-untyped-defs import types import torch._C class _ClassNamespace(types.ModuleType): def __init__(self, name): super().__init__("torch.classes" + name) self.name = name def __getattr__(self, attr): proxy = torch._C._get_custom_class_python_wrapper(self.name, attr) if proxy is None: raise RuntimeError(f"Class {self.name}.{attr} not registered!") return proxy class _Classes(types.ModuleType): __file__ = "_classes.py" def __init__(self) -> None: super().__init__("torch.classes") def __getattr__(self, name): namespace = _ClassNamespace(name) setattr(self, name, namespace) return namespace @property def loaded_libraries(self): return torch.ops.loaded_libraries def load_library(self, path): """ Loads a shared library from the given path into the current process. The library being loaded may run global initialization code to register custom classes with the PyTorch JIT runtime. This allows dynamically loading custom classes. For this, you should compile your class and the static registration code into a shared library object, and then call ``torch.classes.load_library('path/to/libcustom.so')`` to load the shared object. After the library is loaded, it is added to the ``torch.classes.loaded_libraries`` attribute, a set that may be inspected for the paths of all libraries loaded using this function. Args: path (str): A path to a shared library to load. """ torch.ops.load_library(path) # The classes "namespace" classes = _Classes()
import torch def get_modules(use_v2): # We need a protected import to avoid the V2 warning in case just V1 is used if use_v2: import torchvision.datapoints import torchvision.transforms.v2 import v2_extras return torchvision.transforms.v2, torchvision.datapoints, v2_extras else: import transforms return transforms, None, None class SegmentationPresetTrain: def __init__( self, *, base_size, crop_size, hflip_prob=0.5, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), backend="pil", use_v2=False, ): T, datapoints, v2_extras = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "datapoint": transforms.append(T.ToImage()) elif backend == "tensor": transforms.append(T.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") transforms += [T.RandomResize(min_size=int(0.5 * base_size), max_size=int(2.0 * base_size))] if hflip_prob > 0: transforms += [T.RandomHorizontalFlip(hflip_prob)] if use_v2: # We need a custom pad transform here, since the padding we want to perform here is fundamentally # different from the padding in `RandomCrop` if `pad_if_needed=True`. transforms += [v2_extras.PadIfSmaller(crop_size, fill={datapoints.Mask: 255, "others": 0})] transforms += [T.RandomCrop(crop_size)] if backend == "pil": transforms += [T.PILToTensor()] if use_v2: img_type = datapoints.Image if backend == "datapoint" else torch.Tensor transforms += [ T.ToDtype(dtype={img_type: torch.float32, datapoints.Mask: torch.int64, "others": None}, scale=True) ] else: # No need to explicitly convert masks as they're magically int64 already transforms += [T.ConvertImageDtype(torch.float)] transforms += [T.Normalize(mean=mean, std=std)] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target) class SegmentationPresetEval: def __init__( self, *, base_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), backend="pil", use_v2=False ): T, _, _ = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "tensor": transforms += [T.PILToTensor()] elif backend == "datapoint": transforms += [T.ToImage()] elif backend != "pil": raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") if use_v2: transforms += [T.Resize(size=(base_size, base_size))] else: transforms += [T.RandomResize(min_size=base_size, max_size=base_size)] if backend == "pil": # Note: we could just convert to pure tensors even in v2? transforms += [T.ToImage() if use_v2 else T.PILToTensor()] transforms += [ T.ConvertImageDtype(torch.float), T.Normalize(mean=mean, std=std), ] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target)
import torch def get_modules(use_v2): # We need a protected import to avoid the V2 warning in case just V1 is used if use_v2: import torchvision.datapoints import torchvision.transforms.v2 import v2_extras return torchvision.transforms.v2, torchvision.datapoints, v2_extras else: import transforms return transforms, None, None class SegmentationPresetTrain: def __init__( self, *, base_size, crop_size, hflip_prob=0.5, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), backend="pil", use_v2=False, ): T, datapoints, v2_extras = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "datapoint": transforms.append(T.ToImageTensor()) elif backend == "tensor": transforms.append(T.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") transforms += [T.RandomResize(min_size=int(0.5 * base_size), max_size=int(2.0 * base_size))] if hflip_prob > 0: transforms += [T.RandomHorizontalFlip(hflip_prob)] if use_v2: # We need a custom pad transform here, since the padding we want to perform here is fundamentally # different from the padding in `RandomCrop` if `pad_if_needed=True`. transforms += [v2_extras.PadIfSmaller(crop_size, fill={datapoints.Mask: 255, "others": 0})] transforms += [T.RandomCrop(crop_size)] if backend == "pil": transforms += [T.PILToTensor()] if use_v2: img_type = datapoints.Image if backend == "datapoint" else torch.Tensor transforms += [ T.ToDtype(dtype={img_type: torch.float32, datapoints.Mask: torch.int64, "others": None}, scale=True) ] else: # No need to explicitly convert masks as they're magically int64 already transforms += [T.ConvertImageDtype(torch.float)] transforms += [T.Normalize(mean=mean, std=std)] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target) class SegmentationPresetEval: def __init__( self, *, base_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), backend="pil", use_v2=False ): T, _, _ = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "tensor": transforms += [T.PILToTensor()] elif backend == "datapoint": transforms += [T.ToImageTensor()] elif backend != "pil": raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") if use_v2: transforms += [T.Resize(size=(base_size, base_size))] else: transforms += [T.RandomResize(min_size=base_size, max_size=base_size)] if backend == "pil": # Note: we could just convert to pure tensors even in v2? transforms += [T.ToImageTensor() if use_v2 else T.PILToTensor()] transforms += [ T.ConvertImageDtype(torch.float), T.Normalize(mean=mean, std=std), ] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target)
import os from jina import Flow, DocumentArray cur_dir = os.path.dirname(__file__) def test_install_reqs(): f = Flow().add( install_requirements=True, uses=os.path.join(os.path.join(cur_dir, 'exec'), 'config.yml'), ) with f: resp = f.post(on='/', inputs=DocumentArray.empty(2)) assert len(resp) == 2
import os from jina import Flow, DocumentArray cur_dir = os.path.dirname(__file__) def test_install_reqs(): f = Flow().add(install_requirements=True, uses=os.path.join(os.path.join(cur_dir, 'exec'), 'config.yml')) with f: resp = f.post(on='/', inputs=DocumentArray.empty(2)) assert len(resp) == 2
# Copyright (c) OpenMMLab. All rights reserved. from .assigners import (AssignResult, BaseAssigner, CenterRegionAssigner, MaxIoUAssigner, RegionAssigner) from .builder import build_assigner, build_bbox_coder, build_sampler from .coder import (BaseBBoxCoder, DeltaXYWHBBoxCoder, DistancePointBBoxCoder, PseudoBBoxCoder, TBLRBBoxCoder) from .iou_calculators import BboxOverlaps2D, bbox_overlaps from .samplers import (BaseSampler, CombinedSampler, InstanceBalancedPosSampler, IoUBalancedNegSampler, OHEMSampler, PseudoSampler, RandomSampler, SamplingResult, ScoreHLRSampler) from .transforms import (bbox2distance, bbox2result, bbox2roi, bbox_cxcywh_to_xyxy, bbox_flip, bbox_mapping, bbox_mapping_back, bbox_rescale, bbox_xyxy_to_cxcywh, distance2bbox, find_inside_bboxes, roi2bbox) __all__ = [ 'bbox_overlaps', 'BboxOverlaps2D', 'BaseAssigner', 'MaxIoUAssigner', 'AssignResult', 'BaseSampler', 'PseudoSampler', 'RandomSampler', 'InstanceBalancedPosSampler', 'IoUBalancedNegSampler', 'CombinedSampler', 'OHEMSampler', 'SamplingResult', 'ScoreHLRSampler', 'build_assigner', 'build_sampler', 'bbox_flip', 'bbox_mapping', 'bbox_mapping_back', 'bbox2roi', 'roi2bbox', 'bbox2result', 'distance2bbox', 'bbox2distance', 'build_bbox_coder', 'BaseBBoxCoder', 'PseudoBBoxCoder', 'DeltaXYWHBBoxCoder', 'TBLRBBoxCoder', 'DistancePointBBoxCoder', 'CenterRegionAssigner', 'bbox_rescale', 'bbox_cxcywh_to_xyxy', 'bbox_xyxy_to_cxcywh', 'RegionAssigner', 'find_inside_bboxes' ]
# Copyright (c) OpenMMLab. All rights reserved. from .assigners import (AssignResult, BaseAssigner, CenterRegionAssigner, MaxIoUAssigner, RegionAssigner) from .builder import build_assigner, build_bbox_coder, build_sampler from .coder import (BaseBBoxCoder, DeltaXYWHBBoxCoder, DistancePointBBoxCoder, PseudoBBoxCoder, TBLRBBoxCoder) from .iou_calculators import BboxOverlaps2D, bbox_overlaps from .samplers import (BaseSampler, CombinedSampler, InstanceBalancedPosSampler, IoUBalancedNegSampler, OHEMSampler, PseudoSampler, RandomSampler, SamplingResult, ScoreHLRSampler) from .transforms import (bbox2distance, bbox2result, bbox2roi, bbox_cxcywh_to_xyxy, bbox_flip, bbox_mapping, bbox_mapping_back, bbox_rescale, bbox_xyxy_to_cxcywh, distance2bbox, roi2bbox) __all__ = [ 'bbox_overlaps', 'BboxOverlaps2D', 'BaseAssigner', 'MaxIoUAssigner', 'AssignResult', 'BaseSampler', 'PseudoSampler', 'RandomSampler', 'InstanceBalancedPosSampler', 'IoUBalancedNegSampler', 'CombinedSampler', 'OHEMSampler', 'SamplingResult', 'ScoreHLRSampler', 'build_assigner', 'build_sampler', 'bbox_flip', 'bbox_mapping', 'bbox_mapping_back', 'bbox2roi', 'roi2bbox', 'bbox2result', 'distance2bbox', 'bbox2distance', 'build_bbox_coder', 'BaseBBoxCoder', 'PseudoBBoxCoder', 'DeltaXYWHBBoxCoder', 'TBLRBBoxCoder', 'DistancePointBBoxCoder', 'CenterRegionAssigner', 'bbox_rescale', 'bbox_cxcywh_to_xyxy', 'bbox_xyxy_to_cxcywh', 'RegionAssigner' ]
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.constraints import deserialize as deserialize from keras.src.constraints import get as get from keras.src.constraints import serialize as serialize from keras.src.constraints.constraints import Constraint as Constraint from keras.src.constraints.constraints import MaxNorm as MaxNorm from keras.src.constraints.constraints import MaxNorm as max_norm from keras.src.constraints.constraints import MinMaxNorm as MinMaxNorm from keras.src.constraints.constraints import MinMaxNorm as min_max_norm from keras.src.constraints.constraints import NonNeg as NonNeg from keras.src.constraints.constraints import NonNeg as non_neg from keras.src.constraints.constraints import UnitNorm as UnitNorm from keras.src.constraints.constraints import UnitNorm as unit_norm
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.constraints import deserialize from keras.src.constraints import get from keras.src.constraints import serialize from keras.src.constraints.constraints import Constraint from keras.src.constraints.constraints import MaxNorm from keras.src.constraints.constraints import MaxNorm as max_norm from keras.src.constraints.constraints import MinMaxNorm from keras.src.constraints.constraints import MinMaxNorm as min_max_norm from keras.src.constraints.constraints import NonNeg from keras.src.constraints.constraints import NonNeg as non_neg from keras.src.constraints.constraints import UnitNorm from keras.src.constraints.constraints import UnitNorm as unit_norm
from typing import Optional from docarray.document import BaseDocument from docarray.typing import TextUrl from docarray.typing.tensor.embedding import AnyEmbedding class Text(BaseDocument): """ Document for handling text. It can contain a TextUrl (`Text.url`), a str (`Text.text`), and an AnyEmbedding (`Text.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray import Text # use it directly txt_doc = Text(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() model = MyEmbeddingModel() txt_doc.embedding = model(txt_doc.text) You can extend this Document: .. code-block:: python from docarray import Text from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyText(Text): second_embedding: Optional[AnyEmbedding] txt_doc = MyText(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() model = MyEmbeddingModel() txt_doc.embedding = model(txt_doc.text) txt_doc.second_embedding = model(txt_doc.text) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument, Image, Text # compose it class MultiModalDoc(BaseDocument): image_doc: Image text_doc: Text mmdoc = MultiModalDoc( image_doc=Image(url="http://www.jina.ai/image.jpg"), text_doc=Text(text="hello world, how are you doing?"), ) mmdoc.text_doc.text = mmdoc.text_doc.url.load() """ text: Optional[str] = None url: Optional[TextUrl] = None embedding: Optional[AnyEmbedding] = None
from typing import Optional from docarray.document import BaseDocument from docarray.typing import TextUrl from docarray.typing.tensor.embedding import Embedding class Text(BaseDocument): """ Document for handling text. It can contain a TextUrl (`Text.url`), a str (`Text.text`), and an Embedding (`Text.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray import Text # use it directly txt_doc = Text(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() model = MyEmbeddingModel() txt_doc.embedding = model(txt_doc.text) You can extend this Document: .. code-block:: python from docarray import Text from docarray.typing import Embedding from typing import Optional # extend it class MyText(Text): second_embedding: Optional[Embedding] txt_doc = MyText(url='http://www.jina.ai/') txt_doc.text = txt_doc.url.load() model = MyEmbeddingModel() txt_doc.embedding = model(txt_doc.text) txt_doc.second_embedding = model(txt_doc.text) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument, Image, Text # compose it class MultiModalDoc(BaseDocument): image_doc: Image text_doc: Text mmdoc = MultiModalDoc( image_doc=Image(url="http://www.jina.ai/image.jpg"), text_doc=Text(text="hello world, how are you doing?"), ) mmdoc.text_doc.text = mmdoc.text_doc.url.load() """ text: Optional[str] = None url: Optional[TextUrl] = None embedding: Optional[Embedding] = None
_base_ = ['./yolov3_mobilenetv2_mstrain-416_300e_coco.py'] # yapf:disable model = dict( bbox_head=dict( anchor_generator=dict( base_sizes=[[(220, 125), (128, 222), (264, 266)], [(35, 87), (102, 96), (60, 170)], [(10, 15), (24, 36), (72, 42)]]))) # yapf:enable # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') input_size = (320, 320) train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), # `mean` and `to_rgb` should be the same with the `preprocess_cfg` dict( type='Expand', mean=[123.675, 116.28, 103.53], to_rgb=True, ratio_range=(1, 2)), dict( type='MinIoURandomCrop', min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9), min_crop_size=0.3), dict(type='Resize', scale=input_size, keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=input_size, keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
_base_ = ['./yolov3_mobilenetv2_mstrain-416_300e_coco.py'] # yapf:disable model = dict( bbox_head=dict( anchor_generator=dict( base_sizes=[[(220, 125), (128, 222), (264, 266)], [(35, 87), (102, 96), (60, 170)], [(10, 15), (24, 36), (72, 42)]]))) # yapf:enable # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 2)), dict( type='MinIoURandomCrop', min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(320, 320), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(320, 320), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']) ]) ] data = dict( train=dict(dataset=dict(pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_doc.io.json import orjson_dumps from docarray.typing import Mesh3DUrl, NdArray from docarray.typing.url.mimetypes import ( OBJ_MIMETYPE, AUDIO_MIMETYPE, VIDEO_MIMETYPE, IMAGE_MIMETYPE, TEXT_MIMETYPE, ) from tests import TOYDATA_DIR MESH_FILES = { 'obj': str(TOYDATA_DIR / 'tetrahedron.obj'), 'glb': str(TOYDATA_DIR / 'test.glb'), 'ply': str(TOYDATA_DIR / 'cube.ply'), } REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_format, file_path', [ ('obj', MESH_FILES['obj']), ('glb', MESH_FILES['glb']), ('ply', MESH_FILES['ply']), ('remote-obj', REMOTE_OBJ_FILE), ], ) def test_load(file_format, file_path): url = parse_obj_as(Mesh3DUrl, file_path) tensors = url.load() assert isinstance(tensors.vertices, np.ndarray) assert isinstance(tensors.vertices, NdArray) assert isinstance(tensors.faces, np.ndarray) assert isinstance(tensors.faces, NdArray) assert tensors.vertices.shape[1] == 3 assert tensors.faces.shape[1] == 3 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_path', [*MESH_FILES.values(), REMOTE_OBJ_FILE], ) @pytest.mark.parametrize('field', ['vertices', 'faces']) def test_load_one_of_fields(file_path, field): url = parse_obj_as(Mesh3DUrl, file_path) field = getattr(url.load(), field) assert isinstance(field, np.ndarray) assert isinstance(field, NdArray) def test_json_schema(): schema_json_of(Mesh3DUrl) def test_dump_json(): url = parse_obj_as(Mesh3DUrl, REMOTE_OBJ_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [*MESH_FILES.values(), REMOTE_OBJ_FILE], ) def test_validation(path_to_file): url = parse_obj_as(Mesh3DUrl, path_to_file) assert isinstance(url, Mesh3DUrl) assert isinstance(url, str) @pytest.mark.proto def test_proto_mesh_url(): uri = parse_obj_as(Mesh3DUrl, REMOTE_OBJ_FILE) uri._to_node_protobuf() @pytest.mark.parametrize( 'file_type, file_source', [ (OBJ_MIMETYPE, MESH_FILES['obj']), (OBJ_MIMETYPE, MESH_FILES['glb']), (OBJ_MIMETYPE, MESH_FILES['ply']), (OBJ_MIMETYPE, REMOTE_OBJ_FILE), (AUDIO_MIMETYPE, os.path.join(TOYDATA_DIR, 'hello.aac')), (AUDIO_MIMETYPE, os.path.join(TOYDATA_DIR, 'hello.mp3')), (AUDIO_MIMETYPE, os.path.join(TOYDATA_DIR, 'hello.ogg')), (VIDEO_MIMETYPE, os.path.join(TOYDATA_DIR, 'mov_bbb.mp4')), (IMAGE_MIMETYPE, os.path.join(TOYDATA_DIR, 'test.png')), (TEXT_MIMETYPE, os.path.join(TOYDATA_DIR, 'test' 'test.html')), (TEXT_MIMETYPE, os.path.join(TOYDATA_DIR, 'test' 'test.md')), (TEXT_MIMETYPE, os.path.join(TOYDATA_DIR, 'penal_colony.txt')), ], ) def test_file_validation(file_type, file_source): if file_type != Mesh3DUrl.mime_type(): with pytest.raises(ValueError): parse_obj_as(Mesh3DUrl, file_source) else: parse_obj_as(Mesh3DUrl, file_source)
import os import numpy as np import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_doc.io.json import orjson_dumps from docarray.typing import Mesh3DUrl, NdArray from docarray.typing.url.mimetypes import ( OBJ_MIMETYPE, AUDIO_MIMETYPE, VIDEO_MIMETYPE, IMAGE_MIMETYPE, TEXT_MIMETYPE, ) from tests import TOYDATA_DIR MESH_FILES = { 'obj': str(TOYDATA_DIR / 'tetrahedron.obj'), 'glb': str(TOYDATA_DIR / 'test.glb'), 'ply': str(TOYDATA_DIR / 'cube.ply'), } REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_format, file_path', [ ('obj', MESH_FILES['obj']), ('glb', MESH_FILES['glb']), ('ply', MESH_FILES['ply']), ('remote-obj', REMOTE_OBJ_FILE), ], ) def test_load(file_format, file_path): url = parse_obj_as(Mesh3DUrl, file_path) tensors = url.load() assert isinstance(tensors.vertices, np.ndarray) assert isinstance(tensors.vertices, NdArray) assert isinstance(tensors.faces, np.ndarray) assert isinstance(tensors.faces, NdArray) assert tensors.vertices.shape[1] == 3 assert tensors.faces.shape[1] == 3 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'file_path', [*MESH_FILES.values(), REMOTE_OBJ_FILE], ) @pytest.mark.parametrize('field', ['vertices', 'faces']) def test_load_one_of_fields(file_path, field): url = parse_obj_as(Mesh3DUrl, file_path) field = getattr(url.load(), field) assert isinstance(field, np.ndarray) assert isinstance(field, NdArray) def test_json_schema(): schema_json_of(Mesh3DUrl) def test_dump_json(): url = parse_obj_as(Mesh3DUrl, REMOTE_OBJ_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [*MESH_FILES.values(), REMOTE_OBJ_FILE], ) def test_validation(path_to_file): url = parse_obj_as(Mesh3DUrl, path_to_file) assert isinstance(url, Mesh3DUrl) assert isinstance(url, str) @pytest.mark.proto def test_proto_mesh_url(): uri = parse_obj_as(Mesh3DUrl, REMOTE_OBJ_FILE) uri._to_node_protobuf() @pytest.mark.parametrize( 'file_type, file_source', [ (OBJ_MIMETYPE, MESH_FILES['obj']), (OBJ_MIMETYPE, MESH_FILES['glb']), (OBJ_MIMETYPE, MESH_FILES['ply']), (OBJ_MIMETYPE, REMOTE_OBJ_FILE), (AUDIO_MIMETYPE, os.path.join(TOYDATA_DIR, 'hello.aac')), (AUDIO_MIMETYPE, os.path.join(TOYDATA_DIR, 'hello.mp3')), (AUDIO_MIMETYPE, os.path.join(TOYDATA_DIR, 'hello.ogg')), (VIDEO_MIMETYPE, os.path.join(TOYDATA_DIR, 'mov_bbb.mp4')), (IMAGE_MIMETYPE, os.path.join(TOYDATA_DIR, 'test.png')), (TEXT_MIMETYPE, os.path.join(TOYDATA_DIR, 'test' 'test.html')), (TEXT_MIMETYPE, os.path.join(TOYDATA_DIR, 'test' 'test.md')), (TEXT_MIMETYPE, os.path.join(TOYDATA_DIR, 'penal_colony.txt')), ], ) def test_file_validation(file_type, file_source): if file_type != Mesh3DUrl.mime_type(): with pytest.raises(ValueError): parse_obj_as(Mesh3DUrl, file_source) else: parse_obj_as(Mesh3DUrl, file_source)
"""Output classes. **Output** classes are used to represent the output of a language model call and the output of a chat. The top container for information is the `LLMResult` object. `LLMResult` is used by both chat models and LLMs. This object contains the output of the language model and any additional information that the model provider wants to return. When invoking models via the standard runnable methods (e.g. invoke, batch, etc.): - Chat models will return `AIMessage` objects. - LLMs will return regular text strings. In addition, users can access the raw output of either LLMs or chat models via callbacks. The on_chat_model_end and on_llm_end callbacks will return an LLMResult object containing the generated outputs and any additional information returned by the model provider. In general, if information is already available in the AIMessage object, it is recommended to access it from there rather than from the `LLMResult` object. """ from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.outputs.chat_generation import ( ChatGeneration, ChatGenerationChunk, ) from langchain_core.outputs.chat_result import ChatResult from langchain_core.outputs.generation import Generation, GenerationChunk from langchain_core.outputs.llm_result import LLMResult from langchain_core.outputs.run_info import RunInfo __all__ = [ "ChatGeneration", "ChatGenerationChunk", "ChatResult", "Generation", "GenerationChunk", "LLMResult", "RunInfo", ] _dynamic_imports = { "ChatGeneration": "chat_generation", "ChatGenerationChunk": "chat_generation", "ChatResult": "chat_result", "Generation": "generation", "GenerationChunk": "generation", "LLMResult": "llm_result", "RunInfo": "run_info", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""Output classes. **Output** classes are used to represent the output of a language model call and the output of a chat. The top container for information is the `LLMResult` object. `LLMResult` is used by both chat models and LLMs. This object contains the output of the language model and any additional information that the model provider wants to return. When invoking models via the standard runnable methods (e.g. invoke, batch, etc.): - Chat models will return `AIMessage` objects. - LLMs will return regular text strings. In addition, users can access the raw output of either LLMs or chat models via callbacks. The on_chat_model_end and on_llm_end callbacks will return an LLMResult object containing the generated outputs and any additional information returned by the model provider. In general, if information is already available in the AIMessage object, it is recommended to access it from there rather than from the `LLMResult` object. """ from langchain_core.outputs.chat_generation import ChatGeneration, ChatGenerationChunk from langchain_core.outputs.chat_result import ChatResult from langchain_core.outputs.generation import Generation, GenerationChunk from langchain_core.outputs.llm_result import LLMResult from langchain_core.outputs.run_info import RunInfo __all__ = [ "ChatGeneration", "ChatGenerationChunk", "ChatResult", "Generation", "GenerationChunk", "LLMResult", "RunInfo", ]
from abc import ABC, abstractmethod from typing import Callable, List, Sequence, Optional, Union from llama_index.core.agent.workflow.workflow_events import ( AgentOutput, ToolCallResult, ) from llama_index.core.bridge.pydantic import ( BaseModel, Field, ConfigDict, field_validator, ) from llama_index.core.llms import ChatMessage, LLM from llama_index.core.memory import BaseMemory from llama_index.core.prompts.mixin import PromptMixin, PromptMixinType, PromptDictType from llama_index.core.tools import BaseTool, AsyncBaseTool, FunctionTool from llama_index.core.workflow import Context from llama_index.core.objects import ObjectRetriever from llama_index.core.settings import Settings def get_default_llm() -> LLM: return Settings.llm class BaseWorkflowAgent(BaseModel, PromptMixin, ABC): """Base class for all agents, combining config and logic.""" model_config = ConfigDict(arbitrary_types_allowed=True) name: str = Field(description="The name of the agent") description: str = Field( description="The description of what the agent does and is responsible for" ) system_prompt: Optional[str] = Field( default=None, description="The system prompt for the agent" ) tools: Optional[List[BaseTool]] = Field( default=None, description="The tools that the agent can use" ) tool_retriever: Optional[ObjectRetriever] = Field( default=None, description="The tool retriever for the agent, can be provided instead of tools", ) can_handoff_to: Optional[List[str]] = Field( default=None, description="The agent names that this agent can hand off to" ) llm: LLM = Field( default_factory=get_default_llm, description="The LLM that the agent uses" ) @field_validator("tools", mode="before") def validate_tools( cls, v: Optional[Sequence[Union[BaseTool, Callable]]] ) -> Optional[Sequence[BaseTool]]: """Validate tools. If tools are not of type BaseTool, they will be converted to FunctionTools. This assumes the inputs are tools or callable functions. """ if v is None: return None validated_tools: List[BaseTool] = [] for tool in v: if not isinstance(tool, BaseTool): validated_tools.append(FunctionTool.from_defaults(tool)) else: validated_tools.append(tool) for tool in validated_tools: if tool.metadata.name == "handoff": raise ValueError( "'handoff' is a reserved tool name. Please use a different name." ) return validated_tools # type: ignore[return-value] def _get_prompts(self) -> PromptDictType: """Get prompts.""" return {} def _get_prompt_modules(self) -> PromptMixinType: """Get prompt sub-modules.""" return {} def _update_prompts(self, prompts_dict: PromptDictType) -> None: """Update prompts.""" @abstractmethod async def take_step( self, ctx: Context, llm_input: List[ChatMessage], tools: Sequence[AsyncBaseTool], memory: BaseMemory, ) -> AgentOutput: """Take a single step with the agent.""" @abstractmethod async def handle_tool_call_results( self, ctx: Context, results: List[ToolCallResult], memory: BaseMemory ) -> None: """Handle tool call results.""" @abstractmethod async def finalize( self, ctx: Context, output: AgentOutput, memory: BaseMemory ) -> AgentOutput: """Finalize the agent's execution."""
from abc import ABC, abstractmethod from typing import Callable, List, Sequence, Optional, Union from llama_index.core.agent.workflow.workflow_events import ( AgentOutput, ToolCallResult, ) from llama_index.core.bridge.pydantic import ( BaseModel, Field, ConfigDict, field_validator, ) from llama_index.core.llms import ChatMessage, LLM from llama_index.core.memory import BaseMemory from llama_index.core.prompts.mixin import PromptMixin, PromptMixinType, PromptDictType from llama_index.core.tools import BaseTool, AsyncBaseTool, FunctionTool from llama_index.core.workflow import Context from llama_index.core.objects import ObjectRetriever from llama_index.core.settings import Settings def get_default_llm() -> LLM: return Settings.llm class BaseWorkflowAgent(BaseModel, PromptMixin, ABC): """Base class for all agents, combining config and logic.""" model_config = ConfigDict(arbitrary_types_allowed=True) name: str = Field(description="The name of the agent") description: str = Field( description="The description of what the agent does and is responsible for" ) system_prompt: Optional[str] = Field( default=None, description="The system prompt for the agent" ) tools: Optional[List[BaseTool]] = Field( default=None, description="The tools that the agent can use" ) tool_retriever: Optional[ObjectRetriever] = Field( default=None, description="The tool retriever for the agent, can be provided instead of tools", ) can_handoff_to: Optional[List[str]] = Field( default=None, description="The agent names that this agent can hand off to" ) llm: LLM = Field( default_factory=get_default_llm, description="The LLM that the agent uses" ) @field_validator("tools", mode="before") def validate_tools( cls, v: Optional[Sequence[Union[BaseTool, Callable]]] ) -> Optional[Sequence[BaseTool]]: """Validate tools. If tools are not of type BaseTool, they will be converted to FunctionTools. This assumes the inputs are tools or callable functions. """ if v is None: return None validated_tools: List[BaseTool] = [] for tool in v: if not isinstance(tool, BaseTool): validated_tools.append(FunctionTool.from_defaults(tool)) else: validated_tools.append(tool) return validated_tools # type: ignore[return-value] def _get_prompts(self) -> PromptDictType: """Get prompts.""" return {} def _get_prompt_modules(self) -> PromptMixinType: """Get prompt sub-modules.""" return {} def _update_prompts(self, prompts_dict: PromptDictType) -> None: """Update prompts.""" @abstractmethod async def take_step( self, ctx: Context, llm_input: List[ChatMessage], tools: Sequence[AsyncBaseTool], memory: BaseMemory, ) -> AgentOutput: """Take a single step with the agent.""" @abstractmethod async def handle_tool_call_results( self, ctx: Context, results: List[ToolCallResult], memory: BaseMemory ) -> None: """Handle tool call results.""" @abstractmethod async def finalize( self, ctx: Context, output: AgentOutput, memory: BaseMemory ) -> AgentOutput: """Finalize the agent's execution."""
from docarray.typing.id import ID from docarray.typing.tensor import Tensor, TorchTensor from docarray.typing.tensor.embedding import Embedding from docarray.typing.url import AnyUrl, ImageUrl __all__ = [ 'TorchTensor', 'Tensor', 'Embedding', 'ImageUrl', 'AnyUrl', 'ID', ]
from docarray.typing.embedding import Embedding from docarray.typing.id import ID from docarray.typing.tensor import Tensor, TorchTensor from docarray.typing.url import AnyUrl, ImageUrl __all__ = ['Tensor', 'Embedding', 'ImageUrl', 'AnyUrl', 'ID', 'TorchTensor']
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core.utils import ConfigType, OptConfigType, OptMultiConfig from ..builder import DETECTORS from .single_stage_instance_seg import SingleStageInstanceSegmentor @DETECTORS.register_module() class SOLOv2(SingleStageInstanceSegmentor): """`SOLOv2: Dynamic and Fast Instance Segmentation <https://arxiv.org/abs/2003.10152>`_ """ def __init__(self, backbone: ConfigType, neck: OptConfigType = None, bbox_head: OptConfigType = None, mask_head: OptConfigType = None, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, mask_head=mask_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .single_stage_instance_seg import SingleStageInstanceSegmentor @DETECTORS.register_module() class SOLOv2(SingleStageInstanceSegmentor): """`SOLOv2: Dynamic and Fast Instance Segmentation <https://arxiv.org/abs/2003.10152>`_ """ def __init__(self, backbone, neck=None, bbox_head=None, mask_head=None, train_cfg=None, test_cfg=None, init_cfg=None, pretrained=None): super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, mask_head=mask_head, train_cfg=train_cfg, test_cfg=test_cfg, init_cfg=init_cfg, pretrained=pretrained)
import logging from backend.data import integrations from backend.data.model import Credentials from ._base import WT, BaseWebhooksManager logger = logging.getLogger(__name__) class ManualWebhookManagerBase(BaseWebhooksManager[WT]): async def _register_webhook( self, credentials: Credentials, webhook_type: WT, resource: str, events: list[str], ingress_url: str, secret: str, ) -> tuple[str, dict]: print(ingress_url) # FIXME: pass URL to user in front end return "", {} async def _deregister_webhook( self, webhook: integrations.Webhook, credentials: Credentials, ) -> None: pass
import logging from backend.data import integrations from backend.data.model import APIKeyCredentials, Credentials, OAuth2Credentials from ._base import WT, BaseWebhooksManager logger = logging.getLogger(__name__) class ManualWebhookManagerBase(BaseWebhooksManager[WT]): async def _register_webhook( self, credentials: Credentials, webhook_type: WT, resource: str, events: list[str], ingress_url: str, secret: str, ) -> tuple[str, dict]: print(ingress_url) # FIXME: pass URL to user in front end return "", {} async def _deregister_webhook( self, webhook: integrations.Webhook, credentials: OAuth2Credentials | APIKeyCredentials, ) -> None: pass
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # TODO: delete custom_imports after mmcls supports auto import # please install mmcls>=1.0 # import mmcls.models to trigger register_module in mmcls custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False) checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-tiny_3rdparty_32xb128-noema_in1k_20220301-795e9634.pth' # noqa model = dict( backbone=dict( _delete_=True, type='mmcls.ConvNeXt', arch='tiny', out_indices=[0, 1, 2, 3], drop_path_rate=0.4, layer_scale_init_value=1.0, gap_before_final_norm=False, init_cfg=dict( type='Pretrained', checkpoint=checkpoint_file, prefix='backbone.')), neck=dict(in_channels=[96, 192, 384, 768])) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[[ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', scales=[(400, 1333), (500, 1333), (600, 1333)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ]]), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) max_epochs = 36 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[27, 33], gamma=0.1) ] # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', constructor='LearningRateDecayOptimizerConstructor', paramwise_cfg={ 'decay_rate': 0.95, 'decay_type': 'layer_wise', 'num_layers': 6 }, optimizer=dict( _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, ))
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # TODO: delete custom_imports after mmcls supports auto import # please install mmcls>=1.0 # import mmcls.models to trigger register_module in mmcls custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False) checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-tiny_3rdparty_32xb128-noema_in1k_20220301-795e9634.pth' # noqa model = dict( backbone=dict( _delete_=True, type='mmcls.ConvNeXt', arch='tiny', out_indices=[0, 1, 2, 3], drop_path_rate=0.4, layer_scale_init_value=1.0, gap_before_final_norm=False, init_cfg=dict( type='Pretrained', checkpoint=checkpoint_file, prefix='backbone.')), neck=dict(in_channels=[96, 192, 384, 768])) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[[ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', scales=[(400, 1333), (500, 1333), (600, 1333)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ]]), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) max_epochs = 36 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[27, 33], gamma=0.1) ] # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', constructor='LearningRateDecayOptimizerConstructor', paramwise_cfg={ 'decay_rate': 0.95, 'decay_type': 'layer_wise', 'num_layers': 6 }, optimizer=dict( _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, ))
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.cnn import ConvModule, Linear from mmcv.runner import ModuleList, auto_fp16 from mmdet.models.builder import HEADS from .fcn_mask_head import FCNMaskHead @HEADS.register_module() class CoarseMaskHead(FCNMaskHead): """Coarse mask head used in PointRend. Compared with standard ``FCNMaskHead``, ``CoarseMaskHead`` will downsample the input feature map instead of upsample it. Args: num_convs (int): Number of conv layers in the head. Default: 0. num_fcs (int): Number of fc layers in the head. Default: 2. fc_out_channels (int): Number of output channels of fc layer. Default: 1024. downsample_factor (int): The factor that feature map is downsampled by. Default: 2. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_convs=0, num_fcs=2, fc_out_channels=1024, downsample_factor=2, init_cfg=dict( type='Xavier', override=[ dict(name='fcs'), dict(type='Constant', val=0.001, name='fc_logits') ]), *arg, **kwarg): super(CoarseMaskHead, self).__init__( *arg, num_convs=num_convs, upsample_cfg=dict(type=None), init_cfg=None, **kwarg) self.init_cfg = init_cfg self.num_fcs = num_fcs assert self.num_fcs > 0 self.fc_out_channels = fc_out_channels self.downsample_factor = downsample_factor assert self.downsample_factor >= 1 # remove conv_logit delattr(self, 'conv_logits') if downsample_factor > 1: downsample_in_channels = ( self.conv_out_channels if self.num_convs > 0 else self.in_channels) self.downsample_conv = ConvModule( downsample_in_channels, self.conv_out_channels, kernel_size=downsample_factor, stride=downsample_factor, padding=0, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) else: self.downsample_conv = None self.output_size = (self.roi_feat_size[0] // downsample_factor, self.roi_feat_size[1] // downsample_factor) self.output_area = self.output_size[0] * self.output_size[1] last_layer_dim = self.conv_out_channels * self.output_area self.fcs = ModuleList() for i in range(num_fcs): fc_in_channels = ( last_layer_dim if i == 0 else self.fc_out_channels) self.fcs.append(Linear(fc_in_channels, self.fc_out_channels)) last_layer_dim = self.fc_out_channels output_channels = self.num_classes * self.output_area self.fc_logits = Linear(last_layer_dim, output_channels) def init_weights(self): super(FCNMaskHead, self).init_weights() @auto_fp16() def forward(self, x): for conv in self.convs: x = conv(x) if self.downsample_conv is not None: x = self.downsample_conv(x) x = x.flatten(1) for fc in self.fcs: x = self.relu(fc(x)) mask_pred = self.fc_logits(x).view( x.size(0), self.num_classes, *self.output_size) return mask_pred
from mmcv.cnn import ConvModule, Linear from mmcv.runner import ModuleList, auto_fp16 from mmdet.models.builder import HEADS from .fcn_mask_head import FCNMaskHead @HEADS.register_module() class CoarseMaskHead(FCNMaskHead): """Coarse mask head used in PointRend. Compared with standard ``FCNMaskHead``, ``CoarseMaskHead`` will downsample the input feature map instead of upsample it. Args: num_convs (int): Number of conv layers in the head. Default: 0. num_fcs (int): Number of fc layers in the head. Default: 2. fc_out_channels (int): Number of output channels of fc layer. Default: 1024. downsample_factor (int): The factor that feature map is downsampled by. Default: 2. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_convs=0, num_fcs=2, fc_out_channels=1024, downsample_factor=2, init_cfg=dict( type='Xavier', override=[ dict(name='fcs'), dict(type='Constant', val=0.001, name='fc_logits') ]), *arg, **kwarg): super(CoarseMaskHead, self).__init__( *arg, num_convs=num_convs, upsample_cfg=dict(type=None), init_cfg=None, **kwarg) self.init_cfg = init_cfg self.num_fcs = num_fcs assert self.num_fcs > 0 self.fc_out_channels = fc_out_channels self.downsample_factor = downsample_factor assert self.downsample_factor >= 1 # remove conv_logit delattr(self, 'conv_logits') if downsample_factor > 1: downsample_in_channels = ( self.conv_out_channels if self.num_convs > 0 else self.in_channels) self.downsample_conv = ConvModule( downsample_in_channels, self.conv_out_channels, kernel_size=downsample_factor, stride=downsample_factor, padding=0, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) else: self.downsample_conv = None self.output_size = (self.roi_feat_size[0] // downsample_factor, self.roi_feat_size[1] // downsample_factor) self.output_area = self.output_size[0] * self.output_size[1] last_layer_dim = self.conv_out_channels * self.output_area self.fcs = ModuleList() for i in range(num_fcs): fc_in_channels = ( last_layer_dim if i == 0 else self.fc_out_channels) self.fcs.append(Linear(fc_in_channels, self.fc_out_channels)) last_layer_dim = self.fc_out_channels output_channels = self.num_classes * self.output_area self.fc_logits = Linear(last_layer_dim, output_channels) def init_weights(self): super(FCNMaskHead, self).init_weights() @auto_fp16() def forward(self, x): for conv in self.convs: x = conv(x) if self.downsample_conv is not None: x = self.downsample_conv(x) x = x.flatten(1) for fc in self.fcs: x = self.relu(fc(x)) mask_pred = self.fc_logits(x).view( x.size(0), self.num_classes, *self.output_size) return mask_pred
_base_ = ['./mask2former_r50_8xb2-lsj-50e_coco-panoptic.py'] num_things_classes = 80 num_stuff_classes = 0 num_classes = num_things_classes + num_stuff_classes image_size = (1024, 1024) batch_augments = [ dict( type='BatchFixedSizePad', size=image_size, img_pad_value=0, pad_mask=True, mask_pad_value=0, pad_seg=False) ] data_preprocessor = dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32, pad_mask=True, mask_pad_value=0, pad_seg=False, batch_augments=batch_augments) model = dict( data_preprocessor=data_preprocessor, panoptic_head=dict( num_things_classes=num_things_classes, num_stuff_classes=num_stuff_classes, loss_cls=dict(class_weight=[1.0] * num_classes + [0.1])), panoptic_fusion_head=dict( num_things_classes=num_things_classes, num_stuff_classes=num_stuff_classes), test_cfg=dict(panoptic_on=False)) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', prob=0.5), # large scale jittering dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), resize_type='Resize', keep_ratio=True), dict( type='RandomCrop', crop_size=image_size, crop_type='absolute', recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-5, 1e-5), by_mask=True), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), # If you don't have a gt annotation, delete the pipeline dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] dataset_type = 'CocoDataset' data_root = 'data/coco/' train_dataloader = dict( dataset=dict( type=dataset_type, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), pipeline=train_pipeline)) val_dataloader = dict( dataset=dict( type=dataset_type, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( _delete_=True, type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric=['bbox', 'segm'], format_only=False) test_evaluator = val_evaluator
_base_ = ['./mask2former_r50_8xb2-lsj-50e_coco-panoptic.py'] num_things_classes = 80 num_stuff_classes = 0 num_classes = num_things_classes + num_stuff_classes image_size = (1024, 1024) batch_augments = [ dict( type='BatchFixedSizePad', size=image_size, img_pad_value=0, pad_mask=True, mask_pad_value=0, pad_seg=False) ] data_preprocessor = dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32, pad_mask=True, mask_pad_value=0, pad_seg=False, batch_augments=batch_augments) model = dict( data_preprocessor=data_preprocessor, panoptic_head=dict( num_things_classes=num_things_classes, num_stuff_classes=num_stuff_classes, loss_cls=dict(class_weight=[1.0] * num_classes + [0.1])), panoptic_fusion_head=dict( num_things_classes=num_things_classes, num_stuff_classes=num_stuff_classes), test_cfg=dict(panoptic_on=False)) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', prob=0.5), # large scale jittering dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), resize_type='Resize', keep_ratio=True), dict( type='RandomCrop', crop_size=image_size, crop_type='absolute', recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-5, 1e-5), by_mask=True), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), # If you don't have a gt annotation, delete the pipeline dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] dataset_type = 'CocoDataset' data_root = 'data/coco/' train_dataloader = dict( dataset=dict( type=dataset_type, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), pipeline=train_pipeline)) val_dataloader = dict( dataset=dict( type=dataset_type, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( _delete_=True, type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric=['bbox', 'segm'], format_only=False) test_evaluator = val_evaluator
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest import pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser NOT_DEVICE_TESTS = { "test_tokenization", "test_tokenization_mistral_common", "test_processor", "test_processing", "test_beam_constraints", "test_configuration_utils", "test_data_collator", "test_trainer_callback", "test_trainer_utils", "test_feature_extraction", "test_image_processing", "test_image_processor", "test_image_transforms", "test_optimization", "test_retrieval", "test_config", "test_from_pretrained_no_checkpoint", "test_keep_in_fp32_modules", "test_gradient_checkpointing_backward_compatibility", "test_gradient_checkpointing_enable_disable", "test_torch_save_load", "test_initialization", "test_forward_signature", "test_model_get_set_embeddings", "test_model_main_input_name", "test_correct_missing_keys", "test_tie_model_weights", "test_can_use_safetensors", "test_load_save_without_tied_weights", "test_tied_weights_keys", "test_model_weights_reload_no_missing_tied_weights", "test_mismatched_shapes_have_properly_initialized_weights", "test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist", "test_model_is_small", "test_tf_from_pt_safetensors", "test_flax_from_pt_safetensors", "ModelTest::test_pipeline_", # None of the pipeline tests from PipelineTesterMixin (of which XxxModelTest inherits from) are running on device "ModelTester::test_pipeline_", "/repo_utils/", "/utils/", } # allow having multiple repository checkouts and not needing to remember to rerun # `pip install -e '.[dev]'` when switching between checkouts and running tests. git_repo_path = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def pytest_configure(config): config.addinivalue_line("markers", "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers", "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers", "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers", "not_device_test: mark the tests always running on cpu") def pytest_collection_modifyitems(items): for item in items: if any(test_name in item.nodeid for test_name in NOT_DEVICE_TESTS): item.add_marker(pytest.mark.not_device_test) def pytest_addoption(parser): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(parser) def pytest_terminal_summary(terminalreporter): from transformers.testing_utils import pytest_terminal_summary_main make_reports = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(terminalreporter, id=make_reports) def pytest_sessionfinish(session, exitstatus): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: session.exitstatus = 0 # Doctest custom flag to ignore output. IGNORE_RESULT = doctest.register_optionflag("IGNORE_RESULT") OutputChecker = doctest.OutputChecker class CustomOutputChecker(OutputChecker): def check_output(self, want, got, optionflags): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self, want, got, optionflags) doctest.OutputChecker = CustomOutputChecker _pytest.doctest.DoctestModule = HfDoctestModule doctest.DocTestParser = HfDocTestParser
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest import pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser NOT_DEVICE_TESTS = { "test_tokenization", "test_processor", "test_processing", "test_beam_constraints", "test_configuration_utils", "test_data_collator", "test_trainer_callback", "test_trainer_utils", "test_feature_extraction", "test_image_processing", "test_image_processor", "test_image_transforms", "test_optimization", "test_retrieval", "test_config", "test_from_pretrained_no_checkpoint", "test_keep_in_fp32_modules", "test_gradient_checkpointing_backward_compatibility", "test_gradient_checkpointing_enable_disable", "test_torch_save_load", "test_initialization", "test_forward_signature", "test_model_get_set_embeddings", "test_model_main_input_name", "test_correct_missing_keys", "test_tie_model_weights", "test_can_use_safetensors", "test_load_save_without_tied_weights", "test_tied_weights_keys", "test_model_weights_reload_no_missing_tied_weights", "test_mismatched_shapes_have_properly_initialized_weights", "test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist", "test_model_is_small", "test_tf_from_pt_safetensors", "test_flax_from_pt_safetensors", "ModelTest::test_pipeline_", # None of the pipeline tests from PipelineTesterMixin (of which XxxModelTest inherits from) are running on device "ModelTester::test_pipeline_", "/repo_utils/", "/utils/", } # allow having multiple repository checkouts and not needing to remember to rerun # `pip install -e '.[dev]'` when switching between checkouts and running tests. git_repo_path = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def pytest_configure(config): config.addinivalue_line("markers", "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers", "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers", "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers", "not_device_test: mark the tests always running on cpu") def pytest_collection_modifyitems(items): for item in items: if any(test_name in item.nodeid for test_name in NOT_DEVICE_TESTS): item.add_marker(pytest.mark.not_device_test) def pytest_addoption(parser): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(parser) def pytest_terminal_summary(terminalreporter): from transformers.testing_utils import pytest_terminal_summary_main make_reports = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(terminalreporter, id=make_reports) def pytest_sessionfinish(session, exitstatus): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: session.exitstatus = 0 # Doctest custom flag to ignore output. IGNORE_RESULT = doctest.register_optionflag("IGNORE_RESULT") OutputChecker = doctest.OutputChecker class CustomOutputChecker(OutputChecker): def check_output(self, want, got, optionflags): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self, want, got, optionflags) doctest.OutputChecker = CustomOutputChecker _pytest.doctest.DoctestModule = HfDoctestModule doctest.DocTestParser = HfDocTestParser
"""Test OCI Generative AI embedding service.""" from unittest.mock import MagicMock import pytest from pytest import MonkeyPatch from langchain_community.embeddings import OCIGenAIEmbeddings class MockResponseDict(dict): def __getattr__(self, val): # type: ignore[no-untyped-def] return self[val] @pytest.mark.requires("oci") @pytest.mark.parametrize( "test_model_id", ["cohere.embed-english-light-v3.0", "cohere.embed-english-v3.0"] ) def test_embedding_call(monkeypatch: MonkeyPatch, test_model_id: str) -> None: """Test valid call to OCI Generative AI embedding service.""" oci_gen_ai_client = MagicMock() embeddings = OCIGenAIEmbeddings( model_id=test_model_id, service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com", client=oci_gen_ai_client, ) def mocked_response(invocation_obj): # type: ignore[no-untyped-def] docs = invocation_obj.inputs embeddings = [] for d in docs: if "Hello" in d: v = [1.0, 0.0, 0.0] elif "World" in d: v = [0.0, 1.0, 0.0] else: v = [0.0, 0.0, 1.0] embeddings.append(v) return MockResponseDict( { "status": 200, "data": MockResponseDict({"embeddings": embeddings}), } ) monkeypatch.setattr(embeddings.client, "embed_text", mocked_response) output = embeddings.embed_documents(["Hello", "World"]) correct_output = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]] assert output == correct_output
"""Test OCI Generative AI embedding service.""" from unittest.mock import MagicMock import pytest from pytest import MonkeyPatch from langchain_community.embeddings import OCIGenAIEmbeddings class MockResponseDict(dict): def __getattr__(self, val): # type: ignore[no-untyped-def] return self[val] @pytest.mark.requires("oci") @pytest.mark.parametrize( "test_model_id", ["cohere.embed-english-light-v3.0", "cohere.embed-english-v3.0"] ) def test_embedding_call(monkeypatch: MonkeyPatch, test_model_id: str) -> None: """Test valid call to OCI Generative AI embedding service.""" oci_gen_ai_client = MagicMock() embeddings = OCIGenAIEmbeddings( # type: ignore[call-arg] model_id=test_model_id, service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com", client=oci_gen_ai_client, ) def mocked_response(invocation_obj): # type: ignore[no-untyped-def] docs = invocation_obj.inputs embeddings = [] for d in docs: if "Hello" in d: v = [1.0, 0.0, 0.0] elif "World" in d: v = [0.0, 1.0, 0.0] else: v = [0.0, 0.0, 1.0] embeddings.append(v) return MockResponseDict( { "status": 200, "data": MockResponseDict({"embeddings": embeddings}), } ) monkeypatch.setattr(embeddings.client, "embed_text", mocked_response) output = embeddings.embed_documents(["Hello", "World"]) correct_output = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]] assert output == correct_output
import keras.src.backend from keras.src import tree from keras.src.layers.layer import Layer from keras.src.random.seed_generator import SeedGenerator from keras.src.utils import backend_utils from keras.src.utils import jax_utils from keras.src.utils import tracking class TFDataLayer(Layer): """Layer that can safely used in a tf.data pipeline. The `call()` method must solely rely on `self.backend` ops. Only supports a single input tensor argument. """ def __init__(self, **kwargs): super().__init__(**kwargs) self.backend = backend_utils.DynamicBackend() self._allow_non_tensor_positional_args = True def __call__(self, inputs, **kwargs): sample_input = tree.flatten(inputs)[0] if ( not isinstance(sample_input, keras.KerasTensor) and backend_utils.in_tf_graph() and not jax_utils.is_in_jax_tracing_scope(sample_input) ): # We're in a TF graph, e.g. a tf.data pipeline. self.backend.set_backend("tensorflow") inputs = tree.map_structure( lambda x: self.backend.convert_to_tensor( x, dtype=self.compute_dtype ), inputs, ) switch_convert_input_args = False if self._convert_input_args: self._convert_input_args = False switch_convert_input_args = True try: outputs = super().__call__(inputs, **kwargs) finally: self.backend.reset() if switch_convert_input_args: self._convert_input_args = True return outputs return super().__call__(inputs, **kwargs) @tracking.no_automatic_dependency_tracking def _get_seed_generator(self, backend=None): if backend is None or backend == keras.backend.backend(): return self.generator if not hasattr(self, "_backend_generators"): self._backend_generators = {} if backend in self._backend_generators: return self._backend_generators[backend] seed_generator = SeedGenerator(self.seed, backend=self.backend) self._backend_generators[backend] = seed_generator return seed_generator def convert_weight(self, weight): """Convert the weight if it is from the a different backend.""" if self.backend.name == keras.backend.backend(): return weight else: weight = keras.ops.convert_to_numpy(weight) return self.backend.convert_to_tensor(weight)
import keras.src.backend from keras.src import tree from keras.src.layers.layer import Layer from keras.src.random.seed_generator import SeedGenerator from keras.src.utils import backend_utils from keras.src.utils import tracking class TFDataLayer(Layer): """Layer that can safely used in a tf.data pipeline. The `call()` method must solely rely on `self.backend` ops. Only supports a single input tensor argument. """ def __init__(self, **kwargs): super().__init__(**kwargs) self.backend = backend_utils.DynamicBackend() self._allow_non_tensor_positional_args = True def __call__(self, inputs, **kwargs): if backend_utils.in_tf_graph() and not isinstance( inputs, keras.KerasTensor ): # We're in a TF graph, e.g. a tf.data pipeline. self.backend.set_backend("tensorflow") inputs = tree.map_structure( lambda x: self.backend.convert_to_tensor( x, dtype=self.compute_dtype ), inputs, ) switch_convert_input_args = False if self._convert_input_args: self._convert_input_args = False switch_convert_input_args = True try: outputs = super().__call__(inputs, **kwargs) finally: self.backend.reset() if switch_convert_input_args: self._convert_input_args = True return outputs return super().__call__(inputs, **kwargs) @tracking.no_automatic_dependency_tracking def _get_seed_generator(self, backend=None): if backend is None or backend == keras.backend.backend(): return self.generator if not hasattr(self, "_backend_generators"): self._backend_generators = {} if backend in self._backend_generators: return self._backend_generators[backend] seed_generator = SeedGenerator(self.seed, backend=self.backend) self._backend_generators[backend] = seed_generator return seed_generator def convert_weight(self, weight): """Convert the weight if it is from the a different backend.""" if self.backend.name == keras.backend.backend(): return weight else: weight = keras.ops.convert_to_numpy(weight) return self.backend.convert_to_tensor(weight)
import numpy as np import torch from docarray import BaseDocument, DocumentArray, Image, Text from docarray.typing import ( AnyTensor, AnyUrl, Embedding, ImageUrl, Mesh3DUrl, NdArray, PointCloud3DUrl, TextUrl, TorchEmbedding, TorchTensor, ) from docarray.typing.tensor import NdArrayEmbedding def test_multi_modal_doc_proto(): class MyMultiModalDoc(BaseDocument): image: Image text: Text class MySUperDoc(BaseDocument): doc: MyMultiModalDoc description: str doc = MyMultiModalDoc( image=Image(tensor=np.zeros((3, 224, 224))), text=Text(text='hello') ) MyMultiModalDoc.from_protobuf(doc.to_protobuf()) def test_all_types(): class NestedDoc(BaseDocument): tensor: NdArray class MyDoc(BaseDocument): img_url: ImageUrl txt_url: TextUrl mesh_url: Mesh3DUrl point_cloud_url: PointCloud3DUrl any_url: AnyUrl torch_tensor: TorchTensor torch_tensor_param: TorchTensor[224, 224, 3] np_array: NdArray np_array_param: NdArray[224, 224, 3] generic_nd_array: AnyTensor generic_torch_tensor: AnyTensor embedding: Embedding torch_embedding: TorchEmbedding[128] np_embedding: NdArrayEmbedding[128] nested_docs: DocumentArray[NestedDoc] doc = MyDoc( img_url='test.png', txt_url='test.txt', mesh_url='test.obj', point_cloud_url='test.obj', any_url='www.jina.ai', torch_tensor=torch.zeros((3, 224, 224)), torch_tensor_param=torch.zeros((3, 224, 224)), np_array=np.zeros((3, 224, 224)), np_array_param=np.zeros((3, 224, 224)), generic_nd_array=np.zeros((3, 224, 224)), generic_torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((3, 224, 224)), torch_embedding=torch.zeros((128,)), np_embedding=np.zeros((128,)), nested_docs=DocumentArray[NestedDoc]([NestedDoc(tensor=np.zeros((128,)))]), ) doc = MyDoc.from_protobuf(doc.to_protobuf()) assert doc.img_url == 'test.png' assert doc.txt_url == 'test.txt' assert doc.mesh_url == 'test.obj' assert doc.point_cloud_url == 'test.obj' assert doc.any_url == 'www.jina.ai' assert (doc.torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.torch_tensor, torch.Tensor) assert (doc.torch_tensor_param == torch.zeros((224, 224, 3))).all() assert isinstance(doc.torch_tensor_param, torch.Tensor) assert (doc.np_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.np_array, np.ndarray) assert doc.np_array.flags.writeable assert (doc.np_array_param == np.zeros((224, 224, 3))).all() assert isinstance(doc.np_array_param, np.ndarray) assert (doc.generic_nd_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.generic_nd_array, np.ndarray) assert (doc.generic_torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.generic_torch_tensor, torch.Tensor) assert (doc.torch_embedding == torch.zeros((128,))).all() assert isinstance(doc.torch_embedding, torch.Tensor) assert (doc.np_embedding == np.zeros((128,))).all() assert isinstance(doc.np_embedding, np.ndarray) assert (doc.embedding == np.zeros((3, 224, 224))).all()
import numpy as np import torch from docarray import Document, DocumentArray, Image, Text from docarray.typing import ( AnyTensor, AnyUrl, Embedding, ImageUrl, Mesh3DUrl, NdArray, PointCloud3DUrl, TextUrl, TorchEmbedding, TorchTensor, ) from docarray.typing.tensor import NdArrayEmbedding def test_multi_modal_doc_proto(): class MyMultiModalDoc(Document): image: Image text: Text class MySUperDoc(Document): doc: MyMultiModalDoc description: str doc = MyMultiModalDoc( image=Image(tensor=np.zeros((3, 224, 224))), text=Text(text='hello') ) MyMultiModalDoc.from_protobuf(doc.to_protobuf()) def test_all_types(): class NestedDoc(Document): tensor: NdArray class MyDoc(Document): img_url: ImageUrl txt_url: TextUrl mesh_url: Mesh3DUrl point_cloud_url: PointCloud3DUrl any_url: AnyUrl torch_tensor: TorchTensor torch_tensor_param: TorchTensor[224, 224, 3] np_array: NdArray np_array_param: NdArray[224, 224, 3] generic_nd_array: AnyTensor generic_torch_tensor: AnyTensor embedding: Embedding torch_embedding: TorchEmbedding[128] np_embedding: NdArrayEmbedding[128] nested_docs: DocumentArray[NestedDoc] doc = MyDoc( img_url='test.png', txt_url='test.txt', mesh_url='test.obj', point_cloud_url='test.obj', any_url='www.jina.ai', torch_tensor=torch.zeros((3, 224, 224)), torch_tensor_param=torch.zeros((3, 224, 224)), np_array=np.zeros((3, 224, 224)), np_array_param=np.zeros((3, 224, 224)), generic_nd_array=np.zeros((3, 224, 224)), generic_torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((3, 224, 224)), torch_embedding=torch.zeros((128,)), np_embedding=np.zeros((128,)), nested_docs=DocumentArray[NestedDoc]([NestedDoc(tensor=np.zeros((128,)))]), ) doc = MyDoc.from_protobuf(doc.to_protobuf()) assert doc.img_url == 'test.png' assert doc.txt_url == 'test.txt' assert doc.mesh_url == 'test.obj' assert doc.point_cloud_url == 'test.obj' assert doc.any_url == 'www.jina.ai' assert (doc.torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.torch_tensor, torch.Tensor) assert (doc.torch_tensor_param == torch.zeros((224, 224, 3))).all() assert isinstance(doc.torch_tensor_param, torch.Tensor) assert (doc.np_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.np_array, np.ndarray) assert doc.np_array.flags.writeable assert (doc.np_array_param == np.zeros((224, 224, 3))).all() assert isinstance(doc.np_array_param, np.ndarray) assert (doc.generic_nd_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.generic_nd_array, np.ndarray) assert (doc.generic_torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.generic_torch_tensor, torch.Tensor) assert (doc.torch_embedding == torch.zeros((128,))).all() assert isinstance(doc.torch_embedding, torch.Tensor) assert (doc.np_embedding == np.zeros((128,))).all() assert isinstance(doc.np_embedding, np.ndarray) assert (doc.embedding == np.zeros((3, 224, 224))).all()
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Sequence, Union import torch from mmengine.data import BaseDataElement from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[dict]] @HOOKS.register_module() class EmptyCacheHook(Hook): """Releases all unoccupied cached GPU memory during the process of training. Args: before_epoch (bool): Whether to release cache before an epoch. Defaults to False. after_epoch (bool): Whether to release cache after an epoch. Defaults to True. after_iter (bool): Whether to release cache after an iteration. Defaults to False. """ priority = 'NORMAL' def __init__(self, before_epoch: bool = False, after_epoch: bool = True, after_iter: bool = False) -> None: self._do_before_epoch = before_epoch self._do_after_epoch = after_epoch self._do_after_iter = after_iter def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence[BaseDataElement]]] = None, mode: str = 'train') -> None: """Empty cache after an iteration. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (dict or sequence, optional): Outputs from model. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_iter: torch.cuda.empty_cache() def _before_epoch(self, runner, mode: str = 'train') -> None: """Empty cache before an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_before_epoch: torch.cuda.empty_cache() def _after_epoch(self, runner, mode: str = 'train') -> None: """Empty cache after an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_epoch: torch.cuda.empty_cache()
# Copyright (c) OpenMMLab. All rights reserved. from typing import Any, Optional, Sequence, Tuple, Union import torch from mmengine.data import BaseDataElement from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[Tuple[Any, BaseDataElement]]] @HOOKS.register_module() class EmptyCacheHook(Hook): """Releases all unoccupied cached GPU memory during the process of training. Args: before_epoch (bool): Whether to release cache before an epoch. Defaults to False. after_epoch (bool): Whether to release cache after an epoch. Defaults to True. after_iter (bool): Whether to release cache after an iteration. Defaults to False. """ priority = 'NORMAL' def __init__(self, before_epoch: bool = False, after_epoch: bool = True, after_iter: bool = False) -> None: self._do_before_epoch = before_epoch self._do_after_epoch = after_epoch self._do_after_iter = after_iter def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence[BaseDataElement]]] = None, mode: str = 'train') -> None: """Empty cache after an iteration. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[Tuple[Any, BaseDataElement]], optional): Data from dataloader. Defaults to None. outputs (dict or sequence, optional): Outputs from model. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_iter: torch.cuda.empty_cache() def _before_epoch(self, runner, mode: str = 'train') -> None: """Empty cache before an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_before_epoch: torch.cuda.empty_cache() def _after_epoch(self, runner, mode: str = 'train') -> None: """Empty cache after an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_epoch: torch.cuda.empty_cache()