input
stringlengths
33
5k
output
stringlengths
32
5k
from __future__ import annotations from .CSRLoss import CSRLoss, CSRReconstructionLoss from .FlopsLoss import FlopsLoss from .SparseAnglELoss import SparseAnglELoss from .SparseCachedGISTEmbedLoss import SparseCachedGISTEmbedLoss from .SparseCachedMultipleNegativesRankingLoss import SparseCachedMultipleNegativesRankingLoss from .SparseCoSENTLoss import SparseCoSENTLoss from .SparseCosineSimilarityLoss import SparseCosineSimilarityLoss from .SparseDistillKLDivLoss import SparseDistillKLDivLoss from .SparseGISTEmbedLoss import SparseGISTEmbedLoss from .SparseMarginMSELoss import SparseMarginMSELoss from .SparseMSELoss import SparseMSELoss from .SparseMultipleNegativesRankingLoss import SparseMultipleNegativesRankingLoss from .SparseTripletLoss import SparseTripletLoss from .SpladeLoss import SpladeLoss __all__ = [ "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", "FlopsLoss", "SpladeLoss", ] # TODO: Test cached losses
from __future__ import annotations from .CSRLoss import CSRLoss from .CSRReconstructionLoss import CSRReconstructionLoss from .FlopsLoss import FlopsLoss from .SparseAnglELoss import SparseAnglELoss from .SparseCachedGISTEmbedLoss import SparseCachedGISTEmbedLoss from .SparseCachedMultipleNegativesRankingLoss import SparseCachedMultipleNegativesRankingLoss from .SparseCoSENTLoss import SparseCoSENTLoss from .SparseCosineSimilarityLoss import SparseCosineSimilarityLoss from .SparseDistillKLDivLoss import SparseDistillKLDivLoss from .SparseGISTEmbedLoss import SparseGISTEmbedLoss from .SparseMarginMSELoss import SparseMarginMSELoss from .SparseMSELoss import SparseMSELoss from .SparseMultipleNegativesRankingLoss import SparseMultipleNegativesRankingLoss from .SparseTripletLoss import SparseTripletLoss from .SpladeLoss import SpladeLoss __all__ = [ "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", "FlopsLoss", "SpladeLoss", ] # TODO: Test cached losses
"""Copyright 2024, XGBoost contributors""" import pytest from dask_cuda import LocalCUDACluster from distributed import Client import xgboost as xgb from xgboost import dask as dxgb from xgboost.testing.dask import check_external_memory @pytest.mark.parametrize("is_qdm", [True, False]) def test_external_memory(is_qdm: bool) -> None: n_workers = 2 with LocalCUDACluster(n_workers=2) as cluster: with Client(cluster) as client: args = client.sync( dxgb._get_rabit_args, 2, None, client, ) futs = client.map( check_external_memory, range(n_workers), n_workers=n_workers, device="cuda", comm_args=args, is_qdm=is_qdm, ) client.gather(futs)
"""Copyright 2024, XGBoost contributors""" import pytest from dask_cuda import LocalCUDACluster from distributed import Client import xgboost as xgb from xgboost.testing.dask import check_external_memory @pytest.mark.parametrize("is_qdm", [True, False]) def test_external_memory(is_qdm: bool) -> None: n_workers = 2 with LocalCUDACluster(n_workers=2) as cluster: with Client(cluster) as client: args = client.sync( xgb.dask._get_rabit_args, 2, None, client, ) futs = client.map( check_external_memory, range(n_workers), n_workers=n_workers, device="cuda", comm_args=args, is_qdm=is_qdm, ) client.gather(futs)
from functools import partial from inspect import isclass from typing import Any, Union, cast from pydantic import BaseModel from langchain_core.language_models import FakeListChatModel from langchain_core.load.dump import dumps from langchain_core.load.load import loads from langchain_core.messages import HumanMessage from langchain_core.prompts.structured import StructuredPrompt from langchain_core.runnables.base import Runnable, RunnableLambda from langchain_core.utils.pydantic import is_basemodel_subclass def _fake_runnable( _: Any, *, schema: Union[dict, type[BaseModel]], value: Any = 42, **_kwargs: Any ) -> Union[BaseModel, dict]: if isclass(schema) and is_basemodel_subclass(schema): return schema(name="yo", value=value) params = cast("dict", schema)["parameters"] return {k: 1 if k != "value" else value for k, v in params.items()} class FakeStructuredChatModel(FakeListChatModel): """Fake ChatModel for testing purposes.""" def with_structured_output( self, schema: Union[dict, type[BaseModel]], **kwargs: Any ) -> Runnable: return RunnableLambda(partial(_fake_runnable, schema=schema, **kwargs)) @property def _llm_type(self) -> str: return "fake-messages-list-chat-model" def test_structured_prompt_pydantic() -> None: class OutputSchema(BaseModel): name: str value: int prompt = StructuredPrompt( [ ("human", "I'm very structured, how about you?"), ], OutputSchema, ) model = FakeStructuredChatModel(responses=[]) chain = prompt | model assert chain.invoke({"hello": "there"}) == OutputSchema(name="yo", value=42) def test_structured_prompt_dict() -> None: prompt = StructuredPrompt( [ ("human", "I'm very structured, how about you?"), ], { "name": "yo", "description": "a structured output", "parameters": { "name": {"type": "string"}, "value": {"type": "integer"}, }, }, ) model = FakeStructuredChatModel(responses=[]) chain = prompt | model assert chain.invoke({"hello": "there"}) == {"name": 1, "value": 42} assert loads(dumps(prompt)).model_dump() == prompt.model_dump() chain = loads(dumps(prompt)) | model assert chain.invoke({"hello": "there"}) == {"name": 1, "value": 42} def test_structured_prompt_kwargs() -> None: prompt = StructuredPrompt( [ ("human", "I'm very structured, how about you?"), ], { "name": "yo", "description": "a structured output", "parameters": { "name": {"type": "string"}, "value": {"type": "integer"}, }, }, value=7, ) model = FakeStructuredChatModel(responses=[]) chain = prompt | model assert chain.invoke({"hello": "there"}) == {"name": 1, "value": 7} assert loads(dumps(prompt)).model_dump() == prompt.model_dump() chain = loads(dumps(prompt)) | model assert chain.invoke({"hello": "there"}) == {"name": 1, "value": 7} class OutputSchema(BaseModel): name: str value: int prompt = StructuredPrompt( [("human", "I'm very structured, how about you?")], OutputSchema, value=7 ) model = FakeStructuredChatModel(responses=[]) chain = prompt | model assert chain.invoke({"hello": "there"}) == OutputSchema(name="yo", value=7) def test_structured_prompt_template_format() -> None: prompt = StructuredPrompt( [("human", "hi {{person.name}}")], schema={}, template_format="mustache" ) assert prompt.messages[0].prompt.template_format == "mustache" # type: ignore[union-attr, union-attr] assert prompt.input_variables == ["person"] assert prompt.invoke({"person": {"name": "foo"}}).to_messages() == [ HumanMessage("hi foo") ]
from functools import partial from inspect import isclass from typing import Any, Union, cast from pydantic import BaseModel from langchain_core.language_models import FakeListChatModel from langchain_core.load.dump import dumps from langchain_core.load.load import loads from langchain_core.messages import HumanMessage from langchain_core.prompts.structured import StructuredPrompt from langchain_core.runnables.base import Runnable, RunnableLambda from langchain_core.utils.pydantic import is_basemodel_subclass def _fake_runnable( _: Any, *, schema: Union[dict, type[BaseModel]], value: Any = 42, **_kwargs: Any ) -> Union[BaseModel, dict]: if isclass(schema) and is_basemodel_subclass(schema): return schema(name="yo", value=value) params = cast("dict", schema)["parameters"] return {k: 1 if k != "value" else value for k, v in params.items()} class FakeStructuredChatModel(FakeListChatModel): """Fake ChatModel for testing purposes.""" def with_structured_output( self, schema: Union[dict, type[BaseModel]], **kwargs: Any ) -> Runnable: return RunnableLambda(partial(_fake_runnable, schema=schema, **kwargs)) @property def _llm_type(self) -> str: return "fake-messages-list-chat-model" FakeStructuredChatModel.model_rebuild() def test_structured_prompt_pydantic() -> None: class OutputSchema(BaseModel): name: str value: int prompt = StructuredPrompt( [ ("human", "I'm very structured, how about you?"), ], OutputSchema, ) model = FakeStructuredChatModel(responses=[]) chain = prompt | model assert chain.invoke({"hello": "there"}) == OutputSchema(name="yo", value=42) def test_structured_prompt_dict() -> None: prompt = StructuredPrompt( [ ("human", "I'm very structured, how about you?"), ], { "name": "yo", "description": "a structured output", "parameters": { "name": {"type": "string"}, "value": {"type": "integer"}, }, }, ) model = FakeStructuredChatModel(responses=[]) chain = prompt | model assert chain.invoke({"hello": "there"}) == {"name": 1, "value": 42} assert loads(dumps(prompt)).model_dump() == prompt.model_dump() chain = loads(dumps(prompt)) | model assert chain.invoke({"hello": "there"}) == {"name": 1, "value": 42} def test_structured_prompt_kwargs() -> None: prompt = StructuredPrompt( [ ("human", "I'm very structured, how about you?"), ], { "name": "yo", "description": "a structured output", "parameters": { "name": {"type": "string"}, "value": {"type": "integer"}, }, }, value=7, ) model = FakeStructuredChatModel(responses=[]) chain = prompt | model assert chain.invoke({"hello": "there"}) == {"name": 1, "value": 7} assert loads(dumps(prompt)).model_dump() == prompt.model_dump() chain = loads(dumps(prompt)) | model assert chain.invoke({"hello": "there"}) == {"name": 1, "value": 7} class OutputSchema(BaseModel): name: str value: int prompt = StructuredPrompt( [("human", "I'm very structured, how about you?")], OutputSchema, value=7 ) model = FakeStructuredChatModel(responses=[]) chain = prompt | model assert chain.invoke({"hello": "there"}) == OutputSchema(name="yo", value=7) def test_structured_prompt_template_format() -> None: prompt = StructuredPrompt( [("human", "hi {{person.name}}")], schema={}, template_format="mustache" ) assert prompt.messages[0].prompt.template_format == "mustache" # type: ignore[union-attr, union-attr] assert prompt.input_variables == ["person"] assert prompt.invoke({"person": {"name": "foo"}}).to_messages() == [ HumanMessage("hi foo") ]
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( type='DDOD', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='DDODHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), loss_iou=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), train_cfg=dict( # assigner is mean cls_assigner assigner=dict(type='ATSSAssigner', topk=9, alpha=0.8), reg_assigner=dict(type='ATSSAssigner', topk=9, alpha=0.5), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( type='DDOD', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='DDODHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), loss_iou=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), train_cfg=dict( # assigner is mean cls_assigner assigner=dict(type='ATSSAssigner', topk=9, alpha=0.8), reg_assigner=dict(type='ATSSAssigner', topk=9, alpha=0.5), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # This `persistent_workers` is only valid when PyTorch>=1.7.0 data = dict(persistent_workers=True) # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
from __future__ import annotations __version__ = "4.2.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" import importlib import os from sentence_transformers.backend import ( export_dynamic_quantized_onnx_model, export_optimized_onnx_model, export_static_quantized_openvino_model, ) from sentence_transformers.cross_encoder import ( CrossEncoder, CrossEncoderModelCardData, CrossEncoderTrainer, CrossEncoderTrainingArguments, ) from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset from sentence_transformers.LoggingHandler import LoggingHandler from sentence_transformers.model_card import SentenceTransformerModelCardData from sentence_transformers.quantization import quantize_embeddings from sentence_transformers.readers import InputExample from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments from sentence_transformers.util import mine_hard_negatives # If codecarbon is installed and the log level is not defined, # automatically overwrite the default to "error" if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ: os.environ["CODECARBON_LOG_LEVEL"] = "error" __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "SimilarityFunction", "InputExample", "CrossEncoder", "CrossEncoderTrainer", "CrossEncoderTrainingArguments", "CrossEncoderModelCardData", "SentenceTransformerTrainer", "SentenceTransformerTrainingArguments", "SentenceTransformerModelCardData", "quantize_embeddings", "export_optimized_onnx_model", "export_dynamic_quantized_onnx_model", "export_static_quantized_openvino_model", "mine_hard_negatives", ]
from __future__ import annotations __version__ = "4.1.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" import importlib import os from sentence_transformers.backend import ( export_dynamic_quantized_onnx_model, export_optimized_onnx_model, export_static_quantized_openvino_model, ) from sentence_transformers.cross_encoder import ( CrossEncoder, CrossEncoderModelCardData, CrossEncoderTrainer, CrossEncoderTrainingArguments, ) from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset from sentence_transformers.LoggingHandler import LoggingHandler from sentence_transformers.model_card import SentenceTransformerModelCardData from sentence_transformers.quantization import quantize_embeddings from sentence_transformers.readers import InputExample from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments from sentence_transformers.util import mine_hard_negatives # If codecarbon is installed and the log level is not defined, # automatically overwrite the default to "error" if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ: os.environ["CODECARBON_LOG_LEVEL"] = "error" __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "SimilarityFunction", "InputExample", "CrossEncoder", "CrossEncoderTrainer", "CrossEncoderTrainingArguments", "CrossEncoderModelCardData", "SentenceTransformerTrainer", "SentenceTransformerTrainingArguments", "SentenceTransformerModelCardData", "quantize_embeddings", "export_optimized_onnx_model", "export_dynamic_quantized_onnx_model", "export_static_quantized_openvino_model", "mine_hard_negatives", ]
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import copy from typing import Dict from jina import DocumentArray, Executor, requests from jinahub.indexers.searcher.FaissSearcher import FaissSearcher from jinahub.indexers.storage.LMDBStorage import LMDBStorage class FaissLMDBSearcher(Executor): """ `Document` with `.embedding` the same shape as the `Documents` stored in the `FaissSearcher`. The ids of the `Documents` stored in `FaissSearcher` need to exist in the `FileSearcher`. Otherwise you will not get back the original metadata. The `FaissSearcher` attaches matches to the `Documents` sent as inputs, with the id of the match, and its embedding. Then, the `FileSearcher` retrieves the full metadata (original text or image blob) and attaches those to the `Document`. You receive back the full `Document`. """ def __init__(self, dump_path=None, *args, **kwargs): super().__init__(*args, **kwargs) self._vec_indexer = FaissSearcher(dump_path=dump_path, *args, **kwargs) self._kv_indexer = LMDBStorage(dump_path=dump_path, *args, **kwargs) @requests(on="/search") def search(self, docs: "DocumentArray", parameters: Dict = None, **kwargs): self._vec_indexer.search(docs, parameters) kv_parameters = copy.deepcopy(parameters) kv_parameters["traversal_paths"] = [ path + "m" for path in kv_parameters.get("traversal_paths", ["r"]) ] self._kv_indexer.search(docs, parameters=kv_parameters)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import copy from typing import Dict from jina import DocumentArray, Executor, requests from jinahub.indexers.searcher.FaissSearcher import FaissSearcher from jinahub.indexers.storage.LMDBStorage import LMDBStorage class FaissLMDBSearcher(Executor): def __init__(self, dump_path=None, *args, **kwargs): super().__init__(*args, **kwargs) self._vec_indexer = FaissSearcher(dump_path=dump_path, *args, **kwargs) self._kv_indexer = LMDBStorage(dump_path=dump_path, *args, **kwargs) @requests(on="/search") def search(self, docs: "DocumentArray", parameters: Dict = None, **kwargs): self._vec_indexer.search(docs, parameters) kv_parameters = copy.deepcopy(parameters) kv_parameters["traversal_paths"] = [ path + "m" for path in kv_parameters.get("traversal_paths", ["r"]) ] self._kv_indexer.search(docs, parameters=kv_parameters)
from __future__ import annotations from typing import Any, Dict, Optional from docarray import BaseDoc, DocList from docarray.typing import AnyEmbedding, AnyTensor class LegacyDocument(BaseDoc): """ This Document is the LegacyDocument. It follows the same schema as in DocList v1. It can be useful to start migrating a codebase from v1 to v2. Nevertheless, the API is not totally compatible with DocAray v1 `Document`. Indeed, none of the method associated with `Document` are present. Only the schema of the data is similar. ```python from docarray import DocList from docarray.documents.legacy import LegacyDocument import numpy as np doc = LegacyDocument(text='hello') doc.url = 'http://myimg.png' doc.tensor = np.zeros((3, 224, 224)) doc.embedding = np.zeros((100, 1)) doc.tags['price'] = 10 doc.chunks = DocList[Document]([Document() for _ in range(10)]) doc.chunks = DocList[Document]([Document() for _ in range(10)]) ``` """ tensor: Optional[AnyTensor] chunks: Optional[DocList[LegacyDocument]] matches: Optional[DocList[LegacyDocument]] blob: Optional[bytes] text: Optional[str] url: Optional[str] embedding: Optional[AnyEmbedding] tags: Dict[str, Any] = dict() scores: Optional[Dict[str, Any]]
from __future__ import annotations from typing import Any, Dict, Optional from docarray import BaseDoc, DocList from docarray.typing import AnyEmbedding, AnyTensor class LegacyDocument(BaseDoc): """ This Document is the LegacyDocument. It follows the same schema as in DocList v1. It can be useful to start migrating a codebase from v1 to v2. Nevertheless, the API is not totally compatible with DocAray v1 `Document`. Indeed, none of the method associated with `Document` are present. Only the schema of the data is similar. .. code-block:: python from docarray import DocList from docarray.documents.legacy import LegacyDocument import numpy as np doc = LegacyDocument(text='hello') doc.url = 'http://myimg.png' doc.tensor = np.zeros((3, 224, 224)) doc.embedding = np.zeros((100, 1)) doc.tags['price'] = 10 doc.chunks = DocList[Document]([Document() for _ in range(10)]) doc.chunks = DocList[Document]([Document() for _ in range(10)]) """ tensor: Optional[AnyTensor] chunks: Optional[DocList[LegacyDocument]] matches: Optional[DocList[LegacyDocument]] blob: Optional[bytes] text: Optional[str] url: Optional[str] embedding: Optional[AnyEmbedding] tags: Dict[str, Any] = dict() scores: Optional[Dict[str, Any]]
__copyright__ = 'Copyright (c) 2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' from typing import Dict, Callable import pytest from jina import DocumentArray from ...transform_encoder import TransformerTorchEncoder MODELS_TO_TEST = [ 'sentence-transformers/distilbert-base-nli-stsb-mean-tokens', 'bert-base-uncased', 'distilroberta-base', 'distilbert-base-cased-distilled-squad', ] @pytest.mark.parametrize( 'model_name', MODELS_TO_TEST ) def test_load_torch_models(model_name: str, data_generator: Callable): encoder = TransformerTorchEncoder(pretrained_model_name_or_path=model_name) docs = DocumentArray([doc for doc in data_generator()]) encoder.encode( docs=docs, parameters={} ) for doc in docs: assert doc.embedding is not None
__copyright__ = 'Copyright (c) 2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' from typing import Dict, Callable import pytest from jina import DocumentArray from jinahub.encoder.transform_encoder import TransformerTorchEncoder MODELS_TO_TEST = [ 'sentence-transformers/distilbert-base-nli-stsb-mean-tokens', 'bert-base-uncased', 'distilroberta-base', 'distilbert-base-cased-distilled-squad', ] @pytest.mark.parametrize( 'model_name', MODELS_TO_TEST ) def test_load_torch_models(model_name: str, data_generator: Callable): encoder = TransformerTorchEncoder(pretrained_model_name_or_path=model_name) docs = DocumentArray([doc for doc in data_generator()]) encoder.encode( docs=docs, parameters={} ) for doc in docs: assert doc.embedding is not None
from functools import wraps from typing import Any, Callable, Concatenate, Coroutine, ParamSpec, TypeVar, cast from backend.data.credit import get_user_credit_model from backend.data.execution import ( ExecutionResult, create_graph_execution, get_execution_results, get_incomplete_executions, get_latest_execution, update_execution_status, update_graph_execution_stats, update_node_execution_stats, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import get_graph, get_node from backend.data.queue import RedisExecutionEventBus from backend.data.user import ( get_user_integrations, get_user_metadata, update_user_integrations, update_user_metadata, ) from backend.util.service import AppService, expose from backend.util.settings import Config P = ParamSpec("P") R = TypeVar("R") class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.event_queue = RedisExecutionEventBus() @classmethod def get_port(cls) -> int: return Config().database_api_port @expose def send_execution_update(self, execution_result_dict: dict[Any, Any]): self.event_queue.publish(ExecutionResult(**execution_result_dict)) @staticmethod def exposed_run_and_wait( f: Callable[P, Coroutine[None, None, R]] ) -> Callable[Concatenate[object, P], R]: @expose @wraps(f) def wrapper(self, *args: P.args, **kwargs: P.kwargs) -> R: coroutine = f(*args, **kwargs) res = self.run_and_wait(coroutine) return res return wrapper # Executions create_graph_execution = exposed_run_and_wait(create_graph_execution) get_execution_results = exposed_run_and_wait(get_execution_results) get_incomplete_executions = exposed_run_and_wait(get_incomplete_executions) get_latest_execution = exposed_run_and_wait(get_latest_execution) update_execution_status = exposed_run_and_wait(update_execution_status) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) # Credits user_credit_model = get_user_credit_model() get_or_refill_credit = cast( Callable[[Any, str], int], exposed_run_and_wait(user_credit_model.get_or_refill_credit), ) spend_credits = cast( Callable[[Any, str, int, str, dict[str, str], float, float], int], exposed_run_and_wait(user_credit_model.spend_credits), ) # User + User Metadata + User Integrations get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata) get_user_integrations = exposed_run_and_wait(get_user_integrations) update_user_integrations = exposed_run_and_wait(update_user_integrations)
from functools import wraps from typing import Any, Callable, Concatenate, Coroutine, ParamSpec, TypeVar, cast from backend.data.credit import get_user_credit_model from backend.data.execution import ( ExecutionResult, create_graph_execution, get_execution_results, get_incomplete_executions, get_latest_execution, update_execution_status, update_graph_execution_stats, update_node_execution_stats, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import get_graph, get_node from backend.data.queue import RedisExecutionEventBus from backend.data.user import get_user_metadata, update_user_metadata from backend.util.service import AppService, expose from backend.util.settings import Config P = ParamSpec("P") R = TypeVar("R") class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.event_queue = RedisExecutionEventBus() @classmethod def get_port(cls) -> int: return Config().database_api_port @expose def send_execution_update(self, execution_result_dict: dict[Any, Any]): self.event_queue.publish(ExecutionResult(**execution_result_dict)) @staticmethod def exposed_run_and_wait( f: Callable[P, Coroutine[None, None, R]] ) -> Callable[Concatenate[object, P], R]: @expose @wraps(f) def wrapper(self, *args: P.args, **kwargs: P.kwargs) -> R: coroutine = f(*args, **kwargs) res = self.run_and_wait(coroutine) return res return wrapper # Executions create_graph_execution = exposed_run_and_wait(create_graph_execution) get_execution_results = exposed_run_and_wait(get_execution_results) get_incomplete_executions = exposed_run_and_wait(get_incomplete_executions) get_latest_execution = exposed_run_and_wait(get_latest_execution) update_execution_status = exposed_run_and_wait(update_execution_status) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) # Credits user_credit_model = get_user_credit_model() get_or_refill_credit = cast( Callable[[Any, str], int], exposed_run_and_wait(user_credit_model.get_or_refill_credit), ) spend_credits = cast( Callable[[Any, str, int, str, dict[str, str], float, float], int], exposed_run_and_wait(user_credit_model.spend_credits), ) # User + User Metadata get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata)
from enum import Enum from typing import Any from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField class ComparisonOperator(Enum): EQUAL = "==" NOT_EQUAL = "!=" GREATER_THAN = ">" LESS_THAN = "<" GREATER_THAN_OR_EQUAL = ">=" LESS_THAN_OR_EQUAL = "<=" class ConditionBlock(Block): class Input(BlockSchema): value1: Any = SchemaField( description="Enter the first value for comparison", placeholder="For example: 10 or 'hello' or True", ) operator: ComparisonOperator = SchemaField( description="Choose the comparison operator", placeholder="Select an operator", ) value2: Any = SchemaField( description="Enter the second value for comparison", placeholder="For example: 20 or 'world' or False", ) yes_value: Any = SchemaField( description="(Optional) Value to output if the condition is true. If not provided, value1 will be used.", placeholder="Leave empty to use value1, or enter a specific value", default=None, ) no_value: Any = SchemaField( description="(Optional) Value to output if the condition is false. If not provided, value1 will be used.", placeholder="Leave empty to use value1, or enter a specific value", default=None, ) class Output(BlockSchema): result: bool = SchemaField( description="The result of the condition evaluation (True or False)" ) yes_output: Any = SchemaField( description="The output value if the condition is true" ) no_output: Any = SchemaField( description="The output value if the condition is false" ) def __init__(self): super().__init__( id="715696a0-e1da-45c8-b209-c2fa9c3b0be6", input_schema=ConditionBlock.Input, output_schema=ConditionBlock.Output, description="Handles conditional logic based on comparison operators", categories={BlockCategory.LOGIC}, test_input={ "value1": 10, "operator": ComparisonOperator.GREATER_THAN.value, "value2": 5, "yes_value": "Greater", "no_value": "Not greater", }, test_output=[ ("result", True), ("yes_output", "Greater"), ], ) def run(self, input_data: Input, **kwargs) -> BlockOutput: operator = input_data.operator value1 = input_data.value1 if isinstance(value1, str): value1 = float(value1.strip()) value2 = input_data.value2 if isinstance(value2, str): value2 = float(value2.strip()) yes_value = input_data.yes_value if input_data.yes_value is not None else value1 no_value = input_data.no_value if input_data.no_value is not None else value2 comparison_funcs = { ComparisonOperator.EQUAL: lambda a, b: a == b, ComparisonOperator.NOT_EQUAL: lambda a, b: a != b, ComparisonOperator.GREATER_THAN: lambda a, b: a > b, ComparisonOperator.LESS_THAN: lambda a, b: a < b, ComparisonOperator.GREATER_THAN_OR_EQUAL: lambda a, b: a >= b, ComparisonOperator.LESS_THAN_OR_EQUAL: lambda a, b: a <= b, } result = comparison_funcs[operator](value1, value2) yield "result", result if result: yield "yes_output", yes_value else: yield "no_output", no_value
from enum import Enum from typing import Any from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema from backend.data.model import SchemaField class ComparisonOperator(Enum): EQUAL = "==" NOT_EQUAL = "!=" GREATER_THAN = ">" LESS_THAN = "<" GREATER_THAN_OR_EQUAL = ">=" LESS_THAN_OR_EQUAL = "<=" class ConditionBlock(Block): class Input(BlockSchema): value1: Any = SchemaField( description="Enter the first value for comparison", placeholder="For example: 10 or 'hello' or True", ) operator: ComparisonOperator = SchemaField( description="Choose the comparison operator", placeholder="Select an operator", ) value2: Any = SchemaField( description="Enter the second value for comparison", placeholder="For example: 20 or 'world' or False", ) yes_value: Any = SchemaField( description="(Optional) Value to output if the condition is true. If not provided, value1 will be used.", placeholder="Leave empty to use value1, or enter a specific value", default=None, ) no_value: Any = SchemaField( description="(Optional) Value to output if the condition is false. If not provided, value1 will be used.", placeholder="Leave empty to use value1, or enter a specific value", default=None, ) class Output(BlockSchema): result: bool = SchemaField( description="The result of the condition evaluation (True or False)" ) yes_output: Any = SchemaField( description="The output value if the condition is true" ) no_output: Any = SchemaField( description="The output value if the condition is false" ) def __init__(self): super().__init__( id="715696a0-e1da-45c8-b209-c2fa9c3b0be6", input_schema=ConditionBlock.Input, output_schema=ConditionBlock.Output, description="Handles conditional logic based on comparison operators", categories={BlockCategory.LOGIC}, test_input={ "value1": 10, "operator": ComparisonOperator.GREATER_THAN.value, "value2": 5, "yes_value": "Greater", "no_value": "Not greater", }, test_output=[ ("result", True), ("yes_output", "Greater"), ], ) def run(self, input_data: Input, **kwargs) -> BlockOutput: value1 = input_data.value1 operator = input_data.operator value2 = input_data.value2 yes_value = input_data.yes_value if input_data.yes_value is not None else value1 no_value = input_data.no_value if input_data.no_value is not None else value1 comparison_funcs = { ComparisonOperator.EQUAL: lambda a, b: a == b, ComparisonOperator.NOT_EQUAL: lambda a, b: a != b, ComparisonOperator.GREATER_THAN: lambda a, b: a > b, ComparisonOperator.LESS_THAN: lambda a, b: a < b, ComparisonOperator.GREATER_THAN_OR_EQUAL: lambda a, b: a >= b, ComparisonOperator.LESS_THAN_OR_EQUAL: lambda a, b: a <= b, } try: result = comparison_funcs[operator](value1, value2) yield "result", result if result: yield "yes_output", yes_value else: yield "no_output", no_value except Exception: yield "result", None yield "yes_output", None yield "no_output", None
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py', './retinanet_tta.py' ] # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
import os from pathlib import Path from typing import List, Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import _extract_tar _RELEASE_CONFIGS = { "release1": { "folder_in_archive": "waves_yesno", "url": "http://www.openslr.org/resources/1/waves_yesno.tar.gz", "checksum": "c3f49e0cca421f96b75b41640749167b52118f232498667ca7a5f9416aef8e73", } } class YESNO(Dataset): """*YesNo* :cite:`YesNo` dataset. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. url (str, optional): The URL to download the dataset from. (default: ``"http://www.openslr.org/resources/1/waves_yesno.tar.gz"``) folder_in_archive (str, optional): The top-level directory of the dataset. (default: ``"waves_yesno"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ def __init__( self, root: Union[str, Path], url: str = _RELEASE_CONFIGS["release1"]["url"], folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"], download: bool = False, ) -> None: self._parse_filesystem(root, url, folder_in_archive, download) def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None: root = Path(root) archive = os.path.basename(url) archive = root / archive self._path = root / folder_in_archive if download: if not os.path.isdir(self._path): if not os.path.isfile(archive): checksum = _RELEASE_CONFIGS["release1"]["checksum"] download_url_to_file(url, archive, hash_prefix=checksum) _extract_tar(archive) if not os.path.isdir(self._path): raise RuntimeError("Dataset not found. Please use `download=True` to download it.") self._walker = sorted(str(p.stem) for p in Path(self._path).glob("*.wav")) def _load_item(self, fileid: str, path: str): labels = [int(c) for c in fileid.split("_")] file_audio = os.path.join(path, fileid + ".wav") waveform, sample_rate = torchaudio.load(file_audio) return waveform, sample_rate, labels def __getitem__(self, n: int) -> Tuple[Tensor, int, List[int]]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; Tensor: Waveform int: Sample rate List[int]: labels """ fileid = self._walker[n] item = self._load_item(fileid, self._path) return item def __len__(self) -> int: return len(self._walker)
import os from pathlib import Path from typing import List, Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import extract_archive _RELEASE_CONFIGS = { "release1": { "folder_in_archive": "waves_yesno", "url": "http://www.openslr.org/resources/1/waves_yesno.tar.gz", "checksum": "c3f49e0cca421f96b75b41640749167b52118f232498667ca7a5f9416aef8e73", } } class YESNO(Dataset): """*YesNo* :cite:`YesNo` dataset. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. url (str, optional): The URL to download the dataset from. (default: ``"http://www.openslr.org/resources/1/waves_yesno.tar.gz"``) folder_in_archive (str, optional): The top-level directory of the dataset. (default: ``"waves_yesno"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ def __init__( self, root: Union[str, Path], url: str = _RELEASE_CONFIGS["release1"]["url"], folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"], download: bool = False, ) -> None: self._parse_filesystem(root, url, folder_in_archive, download) def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None: root = Path(root) archive = os.path.basename(url) archive = root / archive self._path = root / folder_in_archive if download: if not os.path.isdir(self._path): if not os.path.isfile(archive): checksum = _RELEASE_CONFIGS["release1"]["checksum"] download_url_to_file(url, archive, hash_prefix=checksum) extract_archive(archive) if not os.path.isdir(self._path): raise RuntimeError("Dataset not found. Please use `download=True` to download it.") self._walker = sorted(str(p.stem) for p in Path(self._path).glob("*.wav")) def _load_item(self, fileid: str, path: str): labels = [int(c) for c in fileid.split("_")] file_audio = os.path.join(path, fileid + ".wav") waveform, sample_rate = torchaudio.load(file_audio) return waveform, sample_rate, labels def __getitem__(self, n: int) -> Tuple[Tensor, int, List[int]]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; Tensor: Waveform int: Sample rate List[int]: labels """ fileid = self._walker[n] item = self._load_item(fileid, self._path) return item def __len__(self) -> int: return len(self._walker)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class PointRend(TwoStageDetector): """PointRend: Image Segmentation as Rendering This detector is the implementation of `PointRend <https://arxiv.org/abs/1912.08193>`_. """ def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(PointRend, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg)
from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class PointRend(TwoStageDetector): """PointRend: Image Segmentation as Rendering This detector is the implementation of `PointRend <https://arxiv.org/abs/1912.08193>`_. """ def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(PointRend, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from .base_sampler import BaseSampler from .combined_sampler import CombinedSampler from .instance_balanced_pos_sampler import InstanceBalancedPosSampler from .iou_balanced_neg_sampler import IoUBalancedNegSampler from .ohem_sampler import OHEMSampler from .pseudo_sampler import PseudoSampler from .random_sampler import RandomSampler from .sampling_result import SamplingResult from .score_hlr_sampler import ScoreHLRSampler __all__ = [ 'BaseSampler', 'PseudoSampler', 'RandomSampler', 'InstanceBalancedPosSampler', 'IoUBalancedNegSampler', 'CombinedSampler', 'OHEMSampler', 'SamplingResult', 'ScoreHLRSampler' ]
from .base_sampler import BaseSampler from .combined_sampler import CombinedSampler from .instance_balanced_pos_sampler import InstanceBalancedPosSampler from .iou_balanced_neg_sampler import IoUBalancedNegSampler from .ohem_sampler import OHEMSampler from .pseudo_sampler import PseudoSampler from .random_sampler import RandomSampler from .sampling_result import SamplingResult from .score_hlr_sampler import ScoreHLRSampler __all__ = [ 'BaseSampler', 'PseudoSampler', 'RandomSampler', 'InstanceBalancedPosSampler', 'IoUBalancedNegSampler', 'CombinedSampler', 'OHEMSampler', 'SamplingResult', 'ScoreHLRSampler' ]
""" Tatoeba (https://tatoeba.org/) is a collection of sentences and translation, mainly aiming for language learning. It is available for more than 300 languages. This script downloads the Tatoeba corpus and extracts the sentences & translations in the languages you like """ import gzip import os import tarfile import sentence_transformers # Note: Tatoeba uses 3 letter languages codes (ISO-639-2), # while other datasets like OPUS use 2 letter language codes (ISO-639-1) # For training of sentence transformers, which type of language code is used doesn't matter. # For language codes, see: https://en.wikipedia.org/wiki/List_of_ISO_639-2_codes source_languages = set(["eng"]) target_languages = set(["deu", "ara", "tur", "spa", "ita", "fra"]) num_dev_sentences = 1000 # Number of sentences that are used to create a development set tatoeba_folder = "../datasets/tatoeba" output_folder = "parallel-sentences/" sentences_file_bz2 = os.path.join(tatoeba_folder, "sentences.tar.bz2") sentences_file = os.path.join(tatoeba_folder, "sentences.csv") links_file_bz2 = os.path.join(tatoeba_folder, "links.tar.bz2") links_file = os.path.join(tatoeba_folder, "links.csv") download_url = "https://downloads.tatoeba.org/exports/" os.makedirs(tatoeba_folder, exist_ok=True) os.makedirs(output_folder, exist_ok=True) # Download files if needed for filepath in [sentences_file_bz2, links_file_bz2]: if not os.path.exists(filepath): url = download_url + os.path.basename(filepath) print("Download", url) sentence_transformers.util.http_get(url, filepath) # Extract files if needed if not os.path.exists(sentences_file): print("Extract", sentences_file_bz2) tar = tarfile.open(sentences_file_bz2, "r:bz2") tar.extract("sentences.csv", path=tatoeba_folder) tar.close() if not os.path.exists(links_file): print("Extract", links_file_bz2) tar = tarfile.open(links_file_bz2, "r:bz2") tar.extract("links.csv", path=tatoeba_folder) tar.close() # Read sentences sentences = {} all_langs = target_languages.union(source_languages) print("Read sentences.csv file") with open(sentences_file, encoding="utf8") as fIn: for line in fIn: id, lang, sentence = line.strip().split("\t") if lang in all_langs: sentences[id] = (lang, sentence) # Read links that map the translations between different languages print("Read links.csv") translations = {src_lang: {trg_lang: {} for trg_lang in target_languages} for src_lang in source_languages} with open(links_file, encoding="utf8") as fIn: for line in fIn: src_id, target_id = line.strip().split() if src_id in sentences and target_id in sentences: src_lang, src_sent = sentences[src_id] trg_lang, trg_sent = sentences[target_id] if src_lang in source_languages and trg_lang in target_languages: if src_sent not in translations[src_lang][trg_lang]: translations[src_lang][trg_lang][src_sent] = [] translations[src_lang][trg_lang][src_sent].append(trg_sent) # Write everything to the output folder print("Write output files") for src_lang in source_languages: for trg_lang in target_languages: source_sentences = list(translations[src_lang][trg_lang]) train_sentences = source_sentences[num_dev_sentences:] dev_sentences = source_sentences[0:num_dev_sentences] print("{}-{} has {} sentences".format(src_lang, trg_lang, len(source_sentences))) if len(dev_sentences) > 0: with gzip.open( os.path.join(output_folder, "Tatoeba-{}-{}-dev.tsv.gz".format(src_lang, trg_lang)), "wt", encoding="utf8", ) as fOut: for sent in dev_sentences: fOut.write("\t".join([sent] + translations[src_lang][trg_lang][sent])) fOut.write("\n") if len(train_sentences) > 0: with gzip.open( os.path.join(output_folder, "Tatoeba-{}-{}-train.tsv.gz".format(src_lang, trg_lang)), "wt", encoding="utf8", ) as fOut: for sent in train_sentences: fOut.write("\t".join([sent] + translations[src_lang][trg_lang][sent])) fOut.write("\n") print("---DONE---")
""" Tatoeba (https://tatoeba.org/) is a collection of sentences and translation, mainly aiming for language learning. It is available for more than 300 languages. This script downloads the Tatoeba corpus and extracts the sentences & translations in the languages you like """ import os import sentence_transformers import tarfile import gzip # Note: Tatoeba uses 3 letter languages codes (ISO-639-2), # while other datasets like OPUS use 2 letter language codes (ISO-639-1) # For training of sentence transformers, which type of language code is used doesn't matter. # For language codes, see: https://en.wikipedia.org/wiki/List_of_ISO_639-2_codes source_languages = set(["eng"]) target_languages = set(["deu", "ara", "tur", "spa", "ita", "fra"]) num_dev_sentences = 1000 # Number of sentences that are used to create a development set tatoeba_folder = "../datasets/tatoeba" output_folder = "parallel-sentences/" sentences_file_bz2 = os.path.join(tatoeba_folder, "sentences.tar.bz2") sentences_file = os.path.join(tatoeba_folder, "sentences.csv") links_file_bz2 = os.path.join(tatoeba_folder, "links.tar.bz2") links_file = os.path.join(tatoeba_folder, "links.csv") download_url = "https://downloads.tatoeba.org/exports/" os.makedirs(tatoeba_folder, exist_ok=True) os.makedirs(output_folder, exist_ok=True) # Download files if needed for filepath in [sentences_file_bz2, links_file_bz2]: if not os.path.exists(filepath): url = download_url + os.path.basename(filepath) print("Download", url) sentence_transformers.util.http_get(url, filepath) # Extract files if needed if not os.path.exists(sentences_file): print("Extract", sentences_file_bz2) tar = tarfile.open(sentences_file_bz2, "r:bz2") tar.extract("sentences.csv", path=tatoeba_folder) tar.close() if not os.path.exists(links_file): print("Extract", links_file_bz2) tar = tarfile.open(links_file_bz2, "r:bz2") tar.extract("links.csv", path=tatoeba_folder) tar.close() # Read sentences sentences = {} all_langs = target_languages.union(source_languages) print("Read sentences.csv file") with open(sentences_file, encoding="utf8") as fIn: for line in fIn: id, lang, sentence = line.strip().split("\t") if lang in all_langs: sentences[id] = (lang, sentence) # Read links that map the translations between different languages print("Read links.csv") translations = {src_lang: {trg_lang: {} for trg_lang in target_languages} for src_lang in source_languages} with open(links_file, encoding="utf8") as fIn: for line in fIn: src_id, target_id = line.strip().split() if src_id in sentences and target_id in sentences: src_lang, src_sent = sentences[src_id] trg_lang, trg_sent = sentences[target_id] if src_lang in source_languages and trg_lang in target_languages: if src_sent not in translations[src_lang][trg_lang]: translations[src_lang][trg_lang][src_sent] = [] translations[src_lang][trg_lang][src_sent].append(trg_sent) # Write everything to the output folder print("Write output files") for src_lang in source_languages: for trg_lang in target_languages: source_sentences = list(translations[src_lang][trg_lang]) train_sentences = source_sentences[num_dev_sentences:] dev_sentences = source_sentences[0:num_dev_sentences] print("{}-{} has {} sentences".format(src_lang, trg_lang, len(source_sentences))) if len(dev_sentences) > 0: with gzip.open( os.path.join(output_folder, "Tatoeba-{}-{}-dev.tsv.gz".format(src_lang, trg_lang)), "wt", encoding="utf8", ) as fOut: for sent in dev_sentences: fOut.write("\t".join([sent] + translations[src_lang][trg_lang][sent])) fOut.write("\n") if len(train_sentences) > 0: with gzip.open( os.path.join(output_folder, "Tatoeba-{}-{}-train.tsv.gz".format(src_lang, trg_lang)), "wt", encoding="utf8", ) as fOut: for sent in train_sentences: fOut.write("\t".join([sent] + translations[src_lang][trg_lang][sent])) fOut.write("\n") print("---DONE---")
import torch import torchaudio.prototype.functional as F from torchaudio_unittest.common_utils import nested_params, TorchaudioTestCase class BatchConsistencyTest(TorchaudioTestCase): @nested_params( [F.convolve, F.fftconvolve], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (2, 3) L_x, L_y = 89, 43 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) actual = fn(x, y, mode) expected = torch.stack( [ torch.stack( [fn(x[i, j].unsqueeze(0), y[i, j].unsqueeze(0), mode).squeeze(0) for j in range(leading_dims[1])] ) for i in range(leading_dims[0]) ] ) self.assertEqual(expected, actual) def test_add_noise(self): leading_dims = (5, 2, 3) L = 51 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device) * 10 actual = F.add_noise(waveform, noise, snr, lengths) expected = [] for i in range(leading_dims[0]): for j in range(leading_dims[1]): for k in range(leading_dims[2]): expected.append(F.add_noise(waveform[i][j][k], noise[i][j][k], snr[i][j][k], lengths[i][j][k])) self.assertEqual(torch.stack(expected), actual.reshape(-1, L)) def test_speed(self): B = 5 orig_freq = 100 factor = 0.8 input_lengths = torch.randint(1, 1000, (B,), dtype=torch.int32) unbatched_input = [torch.ones((int(length),)) * 1.0 for length in input_lengths] batched_input = torch.nn.utils.rnn.pad_sequence(unbatched_input, batch_first=True) output, output_lengths = F.speed(batched_input, input_lengths, orig_freq=orig_freq, factor=factor) unbatched_output = [] unbatched_output_lengths = [] for idx in range(len(unbatched_input)): w, l = F.speed(unbatched_input[idx], input_lengths[idx], orig_freq=orig_freq, factor=factor) unbatched_output.append(w) unbatched_output_lengths.append(l) self.assertEqual(output_lengths, torch.stack(unbatched_output_lengths)) for idx in range(len(unbatched_output)): w, l = output[idx], output_lengths[idx] self.assertEqual(unbatched_output[idx], w[:l]) def test_preemphasis(self): waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype) coeff = 0.9 actual = F.preemphasis(waveform, coeff=coeff) expected = [] for i in range(waveform.size(0)): expected.append(F.preemphasis(waveform[i], coeff=coeff)) self.assertEqual(torch.stack(expected), actual) def test_deemphasis(self): waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype) coeff = 0.9 actual = F.deemphasis(waveform, coeff=coeff) expected = [] for i in range(waveform.size(0)): expected.append(F.deemphasis(waveform[i], coeff=coeff)) self.assertEqual(torch.stack(expected), actual)
import torch import torchaudio.prototype.functional as F from torchaudio_unittest.common_utils import nested_params, TorchaudioTestCase class BatchConsistencyTest(TorchaudioTestCase): @nested_params( [F.convolve, F.fftconvolve], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (2, 3) L_x, L_y = 89, 43 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) actual = fn(x, y, mode) expected = torch.stack( [ torch.stack( [fn(x[i, j].unsqueeze(0), y[i, j].unsqueeze(0), mode).squeeze(0) for j in range(leading_dims[1])] ) for i in range(leading_dims[0]) ] ) self.assertEqual(expected, actual) def test_add_noise(self): leading_dims = (5, 2, 3) L = 51 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device) * 10 actual = F.add_noise(waveform, noise, lengths, snr) expected = [] for i in range(leading_dims[0]): for j in range(leading_dims[1]): for k in range(leading_dims[2]): expected.append(F.add_noise(waveform[i][j][k], noise[i][j][k], lengths[i][j][k], snr[i][j][k])) self.assertEqual(torch.stack(expected), actual.reshape(-1, L)) def test_speed(self): B = 5 orig_freq = 100 factor = 0.8 input_lengths = torch.randint(1, 1000, (B,), dtype=torch.int32) unbatched_input = [torch.ones((int(length),)) * 1.0 for length in input_lengths] batched_input = torch.nn.utils.rnn.pad_sequence(unbatched_input, batch_first=True) output, output_lengths = F.speed(batched_input, input_lengths, orig_freq=orig_freq, factor=factor) unbatched_output = [] unbatched_output_lengths = [] for idx in range(len(unbatched_input)): w, l = F.speed(unbatched_input[idx], input_lengths[idx], orig_freq=orig_freq, factor=factor) unbatched_output.append(w) unbatched_output_lengths.append(l) self.assertEqual(output_lengths, torch.stack(unbatched_output_lengths)) for idx in range(len(unbatched_output)): w, l = output[idx], output_lengths[idx] self.assertEqual(unbatched_output[idx], w[:l]) def test_preemphasis(self): waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype) coeff = 0.9 actual = F.preemphasis(waveform, coeff=coeff) expected = [] for i in range(waveform.size(0)): expected.append(F.preemphasis(waveform[i], coeff=coeff)) self.assertEqual(torch.stack(expected), actual) def test_deemphasis(self): waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype) coeff = 0.9 actual = F.deemphasis(waveform, coeff=coeff) expected = [] for i in range(waveform.size(0)): expected.append(F.deemphasis(waveform[i], coeff=coeff)) self.assertEqual(torch.stack(expected), actual)
# Copyright (c) OpenMMLab. All rights reserved. from .auto_augment import (AutoAugment, BrightnessTransform, ColorTransform, ContrastTransform, EqualizeTransform, Rotate, Shear, Translate) from .compose import Compose from .formatting import (Collect, DefaultFormatBundle, ImageToTensor, ToDataContainer, ToTensor, Transpose, to_tensor) from .instaboost import InstaBoost from .loading import (FilterAnnotations, LoadAnnotations, LoadImageFromFile, LoadImageFromWebcam, LoadMultiChannelImageFromFiles, LoadPanopticAnnotations, LoadProposals) from .test_time_aug import MultiScaleFlipAug from .transforms import (Albu, CopyPaste, CutOut, Expand, MinIoURandomCrop, MixUp, Mosaic, Normalize, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) __all__ = [ 'Compose', 'to_tensor', 'ToTensor', 'ImageToTensor', 'ToDataContainer', 'Transpose', 'Collect', 'DefaultFormatBundle', 'LoadAnnotations', 'LoadImageFromFile', 'LoadImageFromWebcam', 'LoadPanopticAnnotations', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'FilterAnnotations', 'MultiScaleFlipAug', 'Resize', 'RandomFlip', 'Pad', 'RandomCrop', 'Normalize', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'Shear', 'Rotate', 'ColorTransform', 'EqualizeTransform', 'BrightnessTransform', 'ContrastTransform', 'Translate', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug', 'CopyPaste' ]
# Copyright (c) OpenMMLab. All rights reserved. from .auto_augment import (AutoAugment, BrightnessTransform, ColorTransform, ContrastTransform, EqualizeTransform, Rotate, Shear, Translate) from .compose import Compose from .formatting import (Collect, DefaultFormatBundle, ImageToTensor, ToDataContainer, ToTensor, Transpose, to_tensor) from .instaboost import InstaBoost from .loading import (LoadAnnotations, LoadImageFromFile, LoadImageFromWebcam, LoadMultiChannelImageFromFiles, LoadPanopticAnnotations, LoadProposals) from .test_time_aug import MultiScaleFlipAug from .transforms import (Albu, CopyPaste, CutOut, Expand, MinIoURandomCrop, MixUp, Mosaic, Normalize, Pad, PhotoMetricDistortion, RandomAffine, RandomCenterCropPad, RandomCrop, RandomFlip, RandomShift, Resize, SegRescale, YOLOXHSVRandomAug) __all__ = [ 'Compose', 'to_tensor', 'ToTensor', 'ImageToTensor', 'ToDataContainer', 'Transpose', 'Collect', 'DefaultFormatBundle', 'LoadAnnotations', 'LoadImageFromFile', 'LoadImageFromWebcam', 'LoadPanopticAnnotations', 'LoadMultiChannelImageFromFiles', 'LoadProposals', 'MultiScaleFlipAug', 'Resize', 'RandomFlip', 'Pad', 'RandomCrop', 'Normalize', 'SegRescale', 'MinIoURandomCrop', 'Expand', 'PhotoMetricDistortion', 'Albu', 'InstaBoost', 'RandomCenterCropPad', 'AutoAugment', 'CutOut', 'Shear', 'Rotate', 'ColorTransform', 'EqualizeTransform', 'BrightnessTransform', 'ContrastTransform', 'Translate', 'RandomShift', 'Mosaic', 'MixUp', 'RandomAffine', 'YOLOXHSVRandomAug', 'CopyPaste' ]
from __future__ import annotations import re from typing import TYPE_CHECKING, Any if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SentenceEvaluator: """ Base class for all evaluators. Notably, this class introduces the ``greater_is_better`` and ``primary_metric`` attributes. The former is a boolean indicating whether a higher evaluation score is better, which is used for choosing the best checkpoint if ``load_best_model_at_end`` is set to ``True`` in the training arguments. The latter is a string indicating the primary metric for the evaluator. This has to be defined whenever the evaluator returns a dictionary of metrics, and the primary metric is the key pointing to the primary metric, i.e. the one that is used for model selection and/or logging. Extend this class and implement __call__ for custom evaluators. """ def __init__(self): self.greater_is_better = True self.primary_metric = None def __call__( self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> float | dict[str, float]: """ This is called during training to evaluate the model. It returns a score for the evaluation with a higher score indicating a better result. Args: model: the model to evaluate output_path: path where predictions and metrics are written to epoch: the epoch where the evaluation takes place. This is used for the file prefixes. If this is -1, then we assume evaluation on test data. steps: the steps in the current epoch at time of the evaluation. This is used for the file prefixes. If this is -1, then we assume evaluation at the end of the epoch. Returns: Either a score for the evaluation with a higher score indicating a better result, or a dictionary with scores. If the latter is chosen, then `evaluator.primary_metric` must be defined """ pass def prefix_name_to_metrics(self, metrics: dict[str, float], name: str) -> dict[str, float]: if not name: return metrics def maybe_to_float(value: Any) -> Any: try: return float(value) except ValueError: return value metrics = {name + "_" + key: maybe_to_float(value) for key, value in metrics.items()} if hasattr(self, "primary_metric") and not self.primary_metric.startswith(name + "_"): self.primary_metric = name + "_" + self.primary_metric return metrics def store_metrics_in_model_card_data( self, model: SentenceTransformer, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch, step) @property def description(self) -> str: """ Returns a human-readable description of the evaluator: BinaryClassificationEvaluator -> Binary Classification 1. Replace "CE" prefix with "CrossEncoder" 2. Remove "Evaluator" from the class name 3. Add a space before every capital letter """ class_name = self.__class__.__name__ if class_name.startswith("CE"): class_name = "CrossEncoder" + class_name[2:] try: index = class_name.index("Evaluator") class_name = class_name[:index] except IndexError: pass return re.sub(r"([a-z])([A-Z])", r"\g<1> \g<2>", class_name)
from __future__ import annotations import re from typing import TYPE_CHECKING, Any if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SentenceEvaluator: """ Base class for all evaluators Extend this class and implement __call__ for custom evaluators. """ def __init__(self): """ Base class for all evaluators. Notably, this class introduces the ``greater_is_better`` and ``primary_metric`` attributes. The former is a boolean indicating whether a higher evaluation score is better, which is used for choosing the best checkpoint if ``load_best_model_at_end`` is set to ``True`` in the training arguments. The latter is a string indicating the primary metric for the evaluator. This has to be defined whenever the evaluator returns a dictionary of metrics, and the primary metric is the key pointing to the primary metric, i.e. the one that is used for model selection and/or logging. """ self.greater_is_better = True self.primary_metric = None def __call__( self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> float | dict[str, float]: """ This is called during training to evaluate the model. It returns a score for the evaluation with a higher score indicating a better result. Args: model: the model to evaluate output_path: path where predictions and metrics are written to epoch: the epoch where the evaluation takes place. This is used for the file prefixes. If this is -1, then we assume evaluation on test data. steps: the steps in the current epoch at time of the evaluation. This is used for the file prefixes. If this is -1, then we assume evaluation at the end of the epoch. Returns: Either a score for the evaluation with a higher score indicating a better result, or a dictionary with scores. If the latter is chosen, then `evaluator.primary_metric` must be defined """ pass def prefix_name_to_metrics(self, metrics: dict[str, float], name: str) -> dict[str, float]: if not name: return metrics def maybe_to_float(value: Any) -> Any: try: return float(value) except ValueError: return value metrics = {name + "_" + key: maybe_to_float(value) for key, value in metrics.items()} if hasattr(self, "primary_metric") and not self.primary_metric.startswith(name + "_"): self.primary_metric = name + "_" + self.primary_metric return metrics def store_metrics_in_model_card_data( self, model: SentenceTransformer, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch, step) @property def description(self) -> str: """ Returns a human-readable description of the evaluator: BinaryClassificationEvaluator -> Binary Classification 1. Replace "CE" prefix with "CrossEncoder" 2. Remove "Evaluator" from the class name 3. Add a space before every capital letter """ class_name = self.__class__.__name__ if class_name.startswith("CE"): class_name = "CrossEncoder" + class_name[2:] try: index = class_name.index("Evaluator") class_name = class_name[:index] except IndexError: pass return re.sub(r"([a-z])([A-Z])", r"\g<1> \g<2>", class_name)
""" ============================================== Regularization path of L1- Logistic Regression ============================================== Train l1-penalized logistic regression models on a binary classification problem derived from the Iris dataset. The models are ordered from strongest regularized to least regularized. The 4 coefficients of the models are collected and plotted as a "regularization path": on the left-hand side of the figure (strong regularizers), all the coefficients are exactly 0. When regularization gets progressively looser, coefficients can get non-zero values one after the other. Here we choose the liblinear solver because it can efficiently optimize for the Logistic Regression loss with a non-smooth, sparsity inducing l1 penalty. Also note that we set a low value for the tolerance to make sure that the model has converged before collecting the coefficients. We also use warm_start=True which means that the coefficients of the models are reused to initialize the next model fit to speed-up the computation of the full-path. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # Load data # --------- from sklearn import datasets iris = datasets.load_iris() X = iris.data y = iris.target feature_names = iris.feature_names # %% # Here we remove the third class to make the problem a binary classification X = X[y != 2] y = y[y != 2] # %% # Compute regularization path # --------------------------- import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.svm import l1_min_c cs = l1_min_c(X, y, loss="log") * np.logspace(0, 1, 16) # %% # Create a pipeline with `StandardScaler` and `LogisticRegression`, to normalize # the data before fitting a linear model, in order to speed-up convergence and # make the coefficients comparable. Also, as a side effect, since the data is now # centered around 0, we don't need to fit an intercept. clf = make_pipeline( StandardScaler(), LogisticRegression( penalty="l1", solver="liblinear", tol=1e-6, max_iter=int(1e6), warm_start=True, fit_intercept=False, ), ) coefs_ = [] for c in cs: clf.set_params(logisticregression__C=c) clf.fit(X, y) coefs_.append(clf["logisticregression"].coef_.ravel().copy()) coefs_ = np.array(coefs_) # %% # Plot regularization path # ------------------------ import matplotlib.pyplot as plt # Colorblind-friendly palette (IBM Color Blind Safe palette) colors = ["#648FFF", "#785EF0", "#DC267F", "#FE6100"] plt.figure(figsize=(10, 6)) for i in range(coefs_.shape[1]): plt.semilogx(cs, coefs_[:, i], marker="o", color=colors[i], label=feature_names[i]) ymin, ymax = plt.ylim() plt.xlabel("C") plt.ylabel("Coefficients") plt.title("Logistic Regression Path") plt.legend() plt.axis("tight") plt.show()
""" ============================================== Regularization path of L1- Logistic Regression ============================================== Train l1-penalized logistic regression models on a binary classification problem derived from the Iris dataset. The models are ordered from strongest regularized to least regularized. The 4 coefficients of the models are collected and plotted as a "regularization path": on the left-hand side of the figure (strong regularizers), all the coefficients are exactly 0. When regularization gets progressively looser, coefficients can get non-zero values one after the other. Here we choose the liblinear solver because it can efficiently optimize for the Logistic Regression loss with a non-smooth, sparsity inducing l1 penalty. Also note that we set a low value for the tolerance to make sure that the model has converged before collecting the coefficients. We also use warm_start=True which means that the coefficients of the models are reused to initialize the next model fit to speed-up the computation of the full-path. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # Load data # --------- from sklearn import datasets iris = datasets.load_iris() X = iris.data y = iris.target X = X[y != 2] y = y[y != 2] X /= X.max() # Normalize X to speed-up convergence # %% # Compute regularization path # --------------------------- import numpy as np from sklearn import linear_model from sklearn.svm import l1_min_c cs = l1_min_c(X, y, loss="log") * np.logspace(0, 10, 16) clf = linear_model.LogisticRegression( penalty="l1", solver="liblinear", tol=1e-6, max_iter=int(1e6), warm_start=True, intercept_scaling=10000.0, ) coefs_ = [] for c in cs: clf.set_params(C=c) clf.fit(X, y) coefs_.append(clf.coef_.ravel().copy()) coefs_ = np.array(coefs_) # %% # Plot regularization path # ------------------------ import matplotlib.pyplot as plt plt.plot(np.log10(cs), coefs_, marker="o") ymin, ymax = plt.ylim() plt.xlabel("log(C)") plt.ylabel("Coefficients") plt.title("Logistic Regression Path") plt.axis("tight") plt.show()
""" LocalAI is a free, open source, and self-hosted OpenAI alternative. Docs: https://localai.io/ Source: https://github.com/go-skynet/LocalAI """ import warnings from types import MappingProxyType from typing import Any, Callable, Dict, Optional, Sequence from llama_index.core.base.llms.types import ChatMessage, LLMMetadata from llama_index.core.bridge.pydantic import Field from llama_index.core.constants import DEFAULT_CONTEXT_WINDOW from llama_index.core.types import BaseOutputParser, PydanticProgramMode from llama_index.llms.openai import OpenAI from llama_index.llms.openai.utils import is_function_calling_model from llama_index.llms.openai_like import OpenAILike # Use these as kwargs for OpenAILike to connect to LocalAIs DEFAULT_LOCALAI_PORT = 8080 # TODO: move to MappingProxyType[str, Any] once Python 3.9+ LOCALAI_DEFAULTS: Dict[str, Any] = MappingProxyType( # type: ignore[assignment] { "api_key": "localai_fake", "api_type": "localai_fake", "api_base": f"http://localhost:{DEFAULT_LOCALAI_PORT}/v1", } ) class LocalAI(OpenAI): """ LocalAI LLM class. Examples: `pip install llama-index-llms-localai` ```python from llama_index.llms.localai import LocalAI llm = LocalAI(api_base="http://localhost:8080/v1") response = llm.complete("Hello!") print(str(response)) ``` """ context_window: int = Field( default=DEFAULT_CONTEXT_WINDOW, description="The maximum number of context tokens for the model.", gt=0, ) globally_use_chat_completions: Optional[bool] = Field( default=None, description=( "Set None (default) to per-invocation decide on using /chat/completions" " vs /completions endpoints with query keyword arguments," " set False to universally use /completions endpoint," " set True to universally use /chat/completions endpoint." ), ) def __init__( self, api_key: Optional[str] = LOCALAI_DEFAULTS["api_key"], api_base: Optional[str] = LOCALAI_DEFAULTS["api_base"], system_prompt: Optional[str] = None, messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None, completion_to_prompt: Optional[Callable[[str], str]] = None, pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT, output_parser: Optional[BaseOutputParser] = None, **kwargs: Any, ) -> None: super().__init__( api_key=api_key, api_base=api_base, system_prompt=system_prompt, messages_to_prompt=messages_to_prompt, completion_to_prompt=completion_to_prompt, pydantic_program_mode=pydantic_program_mode, output_parser=output_parser, **kwargs, ) warnings.warn( ( f"{type(self).__name__} subclass is deprecated in favor of" f" {OpenAILike.__name__} composition. The deprecation cycle" " will complete sometime in late December 2023." ), DeprecationWarning, stacklevel=2, ) @classmethod def class_name(cls) -> str: return "LocalAI" @property def metadata(self) -> LLMMetadata: return LLMMetadata( context_window=self.context_window, num_output=self.max_tokens or -1, is_chat_model=self._is_chat_model, is_function_calling_model=is_function_calling_model( model=self._get_model_name() ), model_name=self.model, ) def _update_max_tokens(self, all_kwargs: Dict[str, Any], prompt: str) -> None: # This subclass only supports max_tokens via LocalAI(..., max_tokens=123) del all_kwargs, prompt # Unused # do nothing @property def _is_chat_model(self) -> bool: if self.globally_use_chat_completions is not None: return self.globally_use_chat_completions raise NotImplementedError( "Inferring of when to use /chat/completions is unsupported by" f" {type(self).__name__}. Please either set 'globally_use_chat_completions'" " arg during construction, or pass the arg 'use_chat_completions' in your" " query, setting True for /chat/completions or False for /completions." )
""" LocalAI is a free, open source, and self-hosted OpenAI alternative. Docs: https://localai.io/ Source: https://github.com/go-skynet/LocalAI """ import warnings from types import MappingProxyType from typing import Any, Callable, Dict, Optional, Sequence from llama_index.core.base.llms.types import ChatMessage, LLMMetadata from llama_index.core.bridge.pydantic import Field from llama_index.core.constants import DEFAULT_CONTEXT_WINDOW from llama_index.core.types import BaseOutputParser, PydanticProgramMode from llama_index.llms.openai import OpenAI from llama_index.llms.openai.utils import is_function_calling_model from llama_index.llms.openai_like import OpenAILike # Use these as kwargs for OpenAILike to connect to LocalAIs DEFAULT_LOCALAI_PORT = 8080 # TODO: move to MappingProxyType[str, Any] once Python 3.9+ LOCALAI_DEFAULTS: Dict[str, Any] = MappingProxyType( # type: ignore[assignment] { "api_key": "localai_fake", "api_type": "localai_fake", "api_base": f"http://localhost:{DEFAULT_LOCALAI_PORT}/v1", } ) class LocalAI(OpenAI): """LocalAI LLM class. Examples: `pip install llama-index-llms-localai` ```python from llama_index.llms.localai import LocalAI llm = LocalAI(api_base="http://localhost:8080/v1") response = llm.complete("Hello!") print(str(response)) ``` """ context_window: int = Field( default=DEFAULT_CONTEXT_WINDOW, description="The maximum number of context tokens for the model.", gt=0, ) globally_use_chat_completions: Optional[bool] = Field( default=None, description=( "Set None (default) to per-invocation decide on using /chat/completions" " vs /completions endpoints with query keyword arguments," " set False to universally use /completions endpoint," " set True to universally use /chat/completions endpoint." ), ) def __init__( self, api_key: Optional[str] = LOCALAI_DEFAULTS["api_key"], api_base: Optional[str] = LOCALAI_DEFAULTS["api_base"], system_prompt: Optional[str] = None, messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None, completion_to_prompt: Optional[Callable[[str], str]] = None, pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT, output_parser: Optional[BaseOutputParser] = None, **kwargs: Any, ) -> None: super().__init__( api_key=api_key, api_base=api_base, system_prompt=system_prompt, messages_to_prompt=messages_to_prompt, completion_to_prompt=completion_to_prompt, pydantic_program_mode=pydantic_program_mode, output_parser=output_parser, **kwargs, ) warnings.warn( ( f"{type(self).__name__} subclass is deprecated in favor of" f" {OpenAILike.__name__} composition. The deprecation cycle" " will complete sometime in late December 2023." ), DeprecationWarning, stacklevel=2, ) @classmethod def class_name(cls) -> str: return "LocalAI" @property def metadata(self) -> LLMMetadata: return LLMMetadata( context_window=self.context_window, num_output=self.max_tokens or -1, is_chat_model=self._is_chat_model, is_function_calling_model=is_function_calling_model( model=self._get_model_name() ), model_name=self.model, ) def _update_max_tokens(self, all_kwargs: Dict[str, Any], prompt: str) -> None: # This subclass only supports max_tokens via LocalAI(..., max_tokens=123) del all_kwargs, prompt # Unused # do nothing @property def _is_chat_model(self) -> bool: if self.globally_use_chat_completions is not None: return self.globally_use_chat_completions raise NotImplementedError( "Inferring of when to use /chat/completions is unsupported by" f" {type(self).__name__}. Please either set 'globally_use_chat_completions'" " arg during construction, or pass the arg 'use_chat_completions' in your" " query, setting True for /chat/completions or False for /completions." )
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( frozen_stages=0, norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, init_cfg=dict( type='Pretrained', checkpoint='./mocov2_r50_800ep_pretrain.pth'))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( frozen_stages=0, norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, init_cfg=dict( type='Pretrained', checkpoint='./mocov2_r50_800ep_pretrain.pth'))) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='Resize', img_scale=[(1333, 640), (1333, 800)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']) ] data = dict(train=dict(pipeline=train_pipeline))
from typing import Union from docarray.typing.tensor.image.image_ndarray import ImageNdArray from docarray.utils._internal.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.image.image_torch_tensor import ImageTorchTensor tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.image.image_tensorflow_tensor import ( ImageTensorFlowTensor as ImageTFTensor, ) ImageTensor = Union[ImageNdArray] # type: ignore if tf_available and torch_available: ImageTensor = Union[ImageNdArray, ImageTorchTensor, ImageTFTensor] # type: ignore elif tf_available: ImageTensor = Union[ImageNdArray, ImageTFTensor] # type: ignore elif torch_available: ImageTensor = Union[ImageNdArray, ImageTorchTensor] # type: ignore
from typing import Union from docarray.typing.tensor.image.image_ndarray import ImageNdArray from docarray.utils.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.image.image_torch_tensor import ImageTorchTensor tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.image.image_tensorflow_tensor import ( ImageTensorFlowTensor as ImageTFTensor, ) ImageTensor = Union[ImageNdArray] # type: ignore if tf_available and torch_available: ImageTensor = Union[ImageNdArray, ImageTorchTensor, ImageTFTensor] # type: ignore elif tf_available: ImageTensor = Union[ImageNdArray, ImageTFTensor] # type: ignore elif torch_available: ImageTensor = Union[ImageNdArray, ImageTorchTensor] # type: ignore
from typing import TYPE_CHECKING, Union, BinaryIO from docarray.document.mixins.helper import _uri_to_blob, _to_datauri, _get_file_context if TYPE_CHECKING: from docarray.typing import T class BlobDataMixin: """Provide helper functions for :class:`Document` to handle binary data.""" def load_uri_to_blob(self: 'T') -> 'T': """Convert :attr:`.uri` to :attr:`.blob` inplace. Internally it downloads from the URI and set :attr:`blob`. :return: itself after processed """ self.blob = _uri_to_blob(self.uri) return self def convert_blob_to_datauri( self: 'T', charset: str = 'utf-8', base64: bool = False ) -> 'T': """Convert :attr:`.blob` to data :attr:`.uri` in place. Internally it first reads into blob and then converts it to data URI. :param charset: charset may be any character set registered with IANA :param base64: used to encode arbitrary octet sequences into a form that satisfies the rules of 7bit. Designed to be efficient for non-text 8 bit and binary data. Sometimes used for text data that frequently uses non-US-ASCII characters. :return: itself after processed """ if not self.mime_type: raise ValueError( f'{self.mime_type} is unset, can not convert it to data uri' ) self.uri = _to_datauri(self.mime_type, self.blob, charset, base64, binary=True) return self def save_blob_to_file(self: 'T', file: Union[str, BinaryIO]) -> 'T': """Save :attr:`.blob` into a file :param file: File or filename to which the data is saved. :return: itself after processed """ fp = _get_file_context(file) with fp: fp.write(self.blob) return self
from typing import TYPE_CHECKING, Union, BinaryIO from .helper import _uri_to_blob, _to_datauri, _get_file_context if TYPE_CHECKING: from ...typing import T class BlobDataMixin: """Provide helper functions for :class:`Document` to handle binary data.""" def load_uri_to_blob(self: 'T') -> 'T': """Convert :attr:`.uri` to :attr:`.blob` inplace. Internally it downloads from the URI and set :attr:`blob`. :return: itself after processed """ self.blob = _uri_to_blob(self.uri) return self def convert_blob_to_datauri( self: 'T', charset: str = 'utf-8', base64: bool = False ) -> 'T': """Convert :attr:`.blob` to data :attr:`.uri` in place. Internally it first reads into blob and then converts it to data URI. :param charset: charset may be any character set registered with IANA :param base64: used to encode arbitrary octet sequences into a form that satisfies the rules of 7bit. Designed to be efficient for non-text 8 bit and binary data. Sometimes used for text data that frequently uses non-US-ASCII characters. :return: itself after processed """ if not self.mime_type: raise ValueError( f'{self.mime_type} is unset, can not convert it to data uri' ) self.uri = _to_datauri(self.mime_type, self.blob, charset, base64, binary=True) return self def save_blob_to_file(self: 'T', file: Union[str, BinaryIO]) -> 'T': """Save :attr:`.blob` into a file :param file: File or filename to which the data is saved. :return: itself after processed """ fp = _get_file_context(file) with fp: fp.write(self.blob) return self
from pathlib import Path from typing import List import numpy as np import pytest import scipy from jina import Document, DocumentArray, Executor from jina.excepts import PretrainedModelFileDoesNotExist from ...tfidf_text_executor import TFIDFTextEncoder _EMBEDDING_DIM = 130107 @pytest.fixture(scope='session') def basic_encoder() -> TFIDFTextEncoder: return TFIDFTextEncoder() def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.__class__.__name__ == 'TFIDFTextEncoder' def test_error_no_file(): with pytest.raises(PretrainedModelFileDoesNotExist): TFIDFTextEncoder(path_vectorizer='does/not/exist') def test_no_document(basic_encoder: TFIDFTextEncoder): basic_encoder.encode(None, {}) def test_empty_documents(basic_encoder: TFIDFTextEncoder): docs = DocumentArray([]) basic_encoder.encode(docs, {}) assert len(docs) == 0 def test_no_text_documents(basic_encoder: TFIDFTextEncoder): docs = DocumentArray([Document()]) basic_encoder.encode(docs, {}) assert len(docs) == 1 assert docs[0].embedding is None def test_tfidf_text_encoder(basic_encoder: TFIDFTextEncoder): doc = Document(text='Han likes eating pizza') docarray = DocumentArray([doc]) basic_encoder.encode(docarray, parameters={}) embedding = doc.embedding assert embedding.shape == (1, _EMBEDDING_DIM) assert embedding.size == 4 def test_tfidf_text_encoder_batch(basic_encoder: TFIDFTextEncoder): # Input text_batch = ['Han likes eating pizza', 'Han likes pizza', 'Jina rocks'] # Encoder embedding docarray = DocumentArray([Document(text=text) for text in text_batch]) basic_encoder.encode(docarray, parameters={}) embeddeding_batch = scipy.sparse.vstack(docarray.get_attributes('embedding')) assert embeddeding_batch.shape == (3, _EMBEDDING_DIM) assert embeddeding_batch.size == 8 embs = np.asarray(embeddeding_batch.todense()) # They overlap in Han assert (embs[0] * embs[1]).sum() > 0.1 # They do not overlap assert (embs[0] * embs[2]).sum() == 0 @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: TFIDFTextEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: TFIDFTextEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (1, _EMBEDDING_DIM)
from pathlib import Path import numpy as np import scipy from jina import Document, DocumentArray, Executor from ...tfidf_text_executor import TFIDFTextEncoder def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.path_vectorizer.endswith('tfidf_vectorizer.pickle') def test_tfidf_text_encoder(): text = 'Han likes eating pizza' encoder = TFIDFTextEncoder() doc = Document(text=text) docarray = DocumentArray([doc]) encoder.encode(docarray, parameters={}) embedding = doc.embedding expected = scipy.sparse.load_npz(Path(__file__).parent / 'expected.npz') np.testing.assert_almost_equal(embedding.todense(), expected.todense(), decimal=4) assert expected.shape[0] == 1 def test_tfidf_text_encoder_batch(): # Input text_batch = ['Han likes eating pizza', 'Han likes pizza', 'Jina rocks'] # Encoder embedding encoder = TFIDFTextEncoder() doc0 = Document(text=text_batch[0]) doc1 = Document(text=text_batch[1]) doc2 = Document(text=text_batch[2]) docarray = DocumentArray([doc0, doc1, doc2]) encoder.encode(docarray, parameters={}) embeddeding_batch = scipy.sparse.vstack(docarray.get_attributes('embedding')) # Compare with ouptut expected_batch = scipy.sparse.load_npz(Path(__file__).parent / 'expected_batch.npz') np.testing.assert_almost_equal( embeddeding_batch.todense(), expected_batch.todense(), decimal=2 ) assert expected_batch.shape[0] == len(text_batch)
import logging from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") datasets = ["QuoraRetrieval", "MSMARCO"] evaluator = SparseNanoBEIREvaluator( dataset_names=datasets, show_progress_bar=True, batch_size=32, ) # Run evaluation results = evaluator(model) """ Evaluating NanoQuoraRetrieval Information Retrieval Evaluation of the model on the NanoQuoraRetrieval dataset: Queries: 50 Corpus: 5046 Score-Function: dot Accuracy@1: 92.00% Accuracy@3: 96.00% Accuracy@5: 98.00% Accuracy@10: 100.00% Precision@1: 92.00% Precision@3: 40.00% Precision@5: 24.80% Precision@10: 13.20% Recall@1: 79.73% Recall@3: 92.53% Recall@5: 94.93% Recall@10: 98.27% MRR@10: 0.9439 NDCG@10: 0.9339 MAP@100: 0.9072 Model Query Sparsity: Active Dimensions: 63.0, Sparsity Ratio: 0.9979 Model Corpus Sparsity: Active Dimensions: 63.4, Sparsity Ratio: 0.9979 Information Retrieval Evaluation of the model on the NanoMSMARCO dataset: Queries: 50 Corpus: 5043 Score-Function: dot Accuracy@1: 48.00% Accuracy@3: 74.00% Accuracy@5: 76.00% Accuracy@10: 88.00% Precision@1: 48.00% Precision@3: 24.67% Precision@5: 15.20% Precision@10: 8.80% Recall@1: 48.00% Recall@3: 74.00% Recall@5: 76.00% Recall@10: 88.00% MRR@10: 0.6211 NDCG@10: 0.6838 MAP@100: 0.6277 Model Query Sparsity: Active Dimensions: 48.1, Sparsity Ratio: 0.9984 Model Corpus Sparsity: Active Dimensions: 125.4, Sparsity Ratio: 0.9959 Average Queries: 50.0 Average Corpus: 5044.5 Aggregated for Score Function: dot Accuracy@1: 70.00% Accuracy@3: 85.00% Accuracy@5: 87.00% Accuracy@10: 94.00% Precision@1: 70.00% Recall@1: 63.87% Precision@3: 32.33% Recall@3: 83.27% Precision@5: 20.00% Recall@5: 85.47% Precision@10: 11.00% Recall@10: 93.13% MRR@10: 0.7825 NDCG@10: 0.8089 Model Query Sparsity: Active Dimensions: 55.5, Sparsity Ratio: 0.9982 Model Corpus Sparsity: Active Dimensions: 94.4, Sparsity Ratio: 0.9969 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8089
import logging from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") datasets = ["QuoraRetrieval", "MSMARCO"] evaluator = SparseNanoBEIREvaluator( dataset_names=datasets, show_progress_bar=True, batch_size=32, ) # Run evaluation results = evaluator(model) """ Evaluating NanoQuoraRetrieval Information Retrieval Evaluation of the model on the NanoQuoraRetrieval dataset: Queries: 50 Corpus: 5046 Score-Function: dot Accuracy@1: 92.00% Accuracy@3: 96.00% Accuracy@5: 98.00% Accuracy@10: 100.00% Precision@1: 92.00% Precision@3: 40.00% Precision@5: 24.80% Precision@10: 13.20% Recall@1: 79.73% Recall@3: 92.53% Recall@5: 94.93% Recall@10: 98.27% MRR@10: 0.9439 NDCG@10: 0.9339 MAP@100: 0.9072 Model Sparsity Stats Query : Row Non-Zero Mean: 62.97999954223633, Row Sparsity Mean: 0.9979365468025208 Model Sparsity Stats Corpus : Row Non-Zero Mean: 63.39932632446289, Row Sparsity Mean: 0.9979228377342224 Information Retrieval Evaluation of the model on the NanoMSMARCO dataset: Queries: 50 Corpus: 5043 Score-Function: dot Accuracy@1: 48.00% Accuracy@3: 74.00% Accuracy@5: 76.00% Accuracy@10: 88.00% Precision@1: 48.00% Precision@3: 24.67% Precision@5: 15.20% Precision@10: 8.80% Recall@1: 48.00% Recall@3: 74.00% Recall@5: 76.00% Recall@10: 88.00% MRR@10: 0.6211 NDCG@10: 0.6838 MAP@100: 0.6277 Model Sparsity Stats Query : Row Non-Zero Mean: 48.08000183105469, Row Sparsity Mean: 0.9984247088432312 Model Sparsity Stats Corpus : Row Non-Zero Mean: 125.3604965209961, Row Sparsity Mean: 0.9958928227424622 Average Queries: 50.0 Average Corpus: 5044.5 Aggregated for Score Function: dot Accuracy@1: 70.00% Accuracy@3: 85.00% Accuracy@5: 87.00% Accuracy@10: 94.00% Precision@1: 70.00% Recall@1: 63.87% Precision@3: 32.33% Recall@3: 83.27% Precision@5: 20.00% Recall@5: 85.47% Precision@10: 11.00% Recall@10: 93.13% MRR@10: 0.7825 NDCG@10: 0.8089 Model Sparsity Stats Query : Row Non-Zero Mean: 55.53000068664551, Row Sparsity Mean: 0.998180627822876 Model Sparsity Stats Corpus : Row Non-Zero Mean: 94.37991142272949, Row Sparsity Mean: 0.9969078302383423 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8089
"""Google Finance API Toolkit.""" from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.google_finance.tool import GoogleFinanceQueryRun # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GoogleFinanceQueryRun": "langchain_community.tools.google_finance.tool", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GoogleFinanceQueryRun", ]
"""Google Finance API Toolkit.""" from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.google_finance.tool import GoogleFinanceQueryRun # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GoogleFinanceQueryRun": "langchain_community.tools.google_finance.tool" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GoogleFinanceQueryRun", ]
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .compat_config import compat_cfg from .dist_utils import (all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .logger import get_caller_name, log_img_scale from .memory import AvoidCUDAOOM, AvoidOOM from .misc import find_latest_checkpoint, update_data_root from .replace_cfg_vals import replace_cfg_vals from .setup_env import register_all_modules, setup_multi_processes from .split_batch import split_batch from .typing import (ConfigType, InstanceList, MultiConfig, OptConfigType, OptInstanceList, OptMultiConfig, OptPixelList, PixelList, RangeType) __all__ = [ 'collect_env', 'find_latest_checkpoint', 'update_data_root', 'setup_multi_processes', 'get_caller_name', 'log_img_scale', 'compat_cfg', 'split_batch', 'register_all_modules', 'replace_cfg_vals', 'AvoidOOM', 'AvoidCUDAOOM', 'all_reduce_dict', 'allreduce_grads', 'reduce_mean', 'sync_random_seed', 'ConfigType', 'InstanceList', 'MultiConfig', 'OptConfigType', 'OptInstanceList', 'OptMultiConfig', 'OptPixelList', 'PixelList', 'RangeType' ]
# Copyright (c) OpenMMLab. All rights reserved. from .collect_env import collect_env from .compat_config import compat_cfg from .dist_utils import (all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .logger import get_caller_name, log_img_scale from .memory import AvoidCUDAOOM, AvoidOOM from .misc import add_dump_metric, find_latest_checkpoint, update_data_root from .replace_cfg_vals import replace_cfg_vals from .setup_env import register_all_modules, setup_multi_processes from .split_batch import split_batch from .typing import (ConfigType, InstanceList, MultiConfig, OptConfigType, OptInstanceList, OptMultiConfig, OptPixelList, PixelList, RangeType) __all__ = [ 'collect_env', 'find_latest_checkpoint', 'update_data_root', 'setup_multi_processes', 'get_caller_name', 'log_img_scale', 'compat_cfg', 'split_batch', 'register_all_modules', 'replace_cfg_vals', 'AvoidOOM', 'AvoidCUDAOOM', 'all_reduce_dict', 'allreduce_grads', 'reduce_mean', 'sync_random_seed', 'ConfigType', 'InstanceList', 'MultiConfig', 'OptConfigType', 'OptInstanceList', 'OptMultiConfig', 'OptPixelList', 'PixelList', 'RangeType', 'add_dump_metric' ]
# Copyright (c) OpenMMLab. All rights reserved. from .bfp import BFP from .channel_mapper import ChannelMapper from .cspnext_pafpn import CSPNeXtPAFPN from .ct_resnet_neck import CTResNetNeck from .dilated_encoder import DilatedEncoder from .dyhead import DyHead from .fpg import FPG from .fpn import FPN from .fpn_carafe import FPN_CARAFE from .hrfpn import HRFPN from .nas_fpn import NASFPN from .nasfcos_fpn import NASFCOS_FPN from .pafpn import PAFPN from .rfp import RFP from .ssd_neck import SSDNeck from .ssh import SSH from .yolo_neck import YOLOV3Neck from .yolox_pafpn import YOLOXPAFPN __all__ = [ 'FPN', 'BFP', 'ChannelMapper', 'HRFPN', 'NASFPN', 'FPN_CARAFE', 'PAFPN', 'NASFCOS_FPN', 'RFP', 'YOLOV3Neck', 'FPG', 'DilatedEncoder', 'CTResNetNeck', 'SSDNeck', 'YOLOXPAFPN', 'DyHead', 'CSPNeXtPAFPN', 'SSH' ]
# Copyright (c) OpenMMLab. All rights reserved. from .bfp import BFP from .channel_mapper import ChannelMapper from .cspnext_pafpn import CSPNeXtPAFPN from .ct_resnet_neck import CTResNetNeck from .dilated_encoder import DilatedEncoder from .dyhead import DyHead from .fpg import FPG from .fpn import FPN from .fpn_carafe import FPN_CARAFE from .hrfpn import HRFPN from .nas_fpn import NASFPN from .nasfcos_fpn import NASFCOS_FPN from .pafpn import PAFPN from .rfp import RFP from .ssd_neck import SSDNeck from .yolo_neck import YOLOV3Neck from .yolox_pafpn import YOLOXPAFPN __all__ = [ 'FPN', 'BFP', 'ChannelMapper', 'HRFPN', 'NASFPN', 'FPN_CARAFE', 'PAFPN', 'NASFCOS_FPN', 'RFP', 'YOLOV3Neck', 'FPG', 'DilatedEncoder', 'CTResNetNeck', 'SSDNeck', 'YOLOXPAFPN', 'DyHead', 'CSPNeXtPAFPN' ]
from __future__ import annotations import json from json import JSONDecodeError from typing import Annotated, Any, Optional, TypeVar, Union import jsonpatch # type: ignore[import] import pydantic from pydantic import SkipValidation from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers.format_instructions import JSON_FORMAT_INSTRUCTIONS from langchain_core.output_parsers.transform import BaseCumulativeTransformOutputParser from langchain_core.outputs import Generation from langchain_core.utils.json import ( parse_and_check_json_markdown, parse_json_markdown, parse_partial_json, ) from langchain_core.utils.pydantic import PYDANTIC_MAJOR_VERSION if PYDANTIC_MAJOR_VERSION < 2: PydanticBaseModel = pydantic.BaseModel else: from pydantic.v1 import BaseModel # Union type needs to be last assignment to PydanticBaseModel to make mypy happy. PydanticBaseModel = Union[BaseModel, pydantic.BaseModel] # type: ignore TBaseModel = TypeVar("TBaseModel", bound=PydanticBaseModel) class JsonOutputParser(BaseCumulativeTransformOutputParser[Any]): """Parse the output of an LLM call to a JSON object. When used in streaming mode, it will yield partial JSON objects containing all the keys that have been returned so far. In streaming, if `diff` is set to `True`, yields JSONPatch operations describing the difference between the previous and the current object. """ pydantic_object: Annotated[Optional[type[TBaseModel]], SkipValidation()] = None # type: ignore """The Pydantic object to use for validation. If None, no validation is performed.""" def _diff(self, prev: Optional[Any], next: Any) -> Any: return jsonpatch.make_patch(prev, next).patch def _get_schema(self, pydantic_object: type[TBaseModel]) -> dict[str, Any]: if issubclass(pydantic_object, pydantic.BaseModel): return pydantic_object.model_json_schema() elif issubclass(pydantic_object, pydantic.v1.BaseModel): return pydantic_object.schema() def parse_result(self, result: list[Generation], *, partial: bool = False) -> Any: """Parse the result of an LLM call to a JSON object. Args: result: The result of the LLM call. partial: Whether to parse partial JSON objects. If True, the output will be a JSON object containing all the keys that have been returned so far. If False, the output will be the full JSON object. Default is False. Returns: The parsed JSON object. Raises: OutputParserException: If the output is not valid JSON. """ text = result[0].text text = text.strip() if partial: try: return parse_json_markdown(text) except JSONDecodeError: return None else: try: return parse_json_markdown(text) except JSONDecodeError as e: msg = f"Invalid json output: {text}" raise OutputParserException(msg, llm_output=text) from e def parse(self, text: str) -> Any: """Parse the output of an LLM call to a JSON object. Args: text: The output of the LLM call. Returns: The parsed JSON object. """ return self.parse_result([Generation(text=text)]) def get_format_instructions(self) -> str: """Return the format instructions for the JSON output. Returns: The format instructions for the JSON output. """ if self.pydantic_object is None: return "Return a JSON object." else: # Copy schema to avoid altering original Pydantic schema. schema = dict(self._get_schema(self.pydantic_object).items()) # Remove extraneous fields. reduced_schema = schema if "title" in reduced_schema: del reduced_schema["title"] if "type" in reduced_schema: del reduced_schema["type"] # Ensure json in context is well-formed with double quotes. schema_str = json.dumps(reduced_schema, ensure_ascii=False) return JSON_FORMAT_INSTRUCTIONS.format(schema=schema_str) @property def _type(self) -> str: return "simple_json_output_parser" # For backwards compatibility SimpleJsonOutputParser = JsonOutputParser __all__ = [ "JsonOutputParser", "SimpleJsonOutputParser", # For backwards compatibility "parse_partial_json", # For backwards compatibility "parse_and_check_json_markdown", # For backwards compatibility ]
from __future__ import annotations import json from json import JSONDecodeError from typing import Annotated, Any, Optional, TypeVar, Union import jsonpatch # type: ignore[import] import pydantic from pydantic import SkipValidation from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers.format_instructions import JSON_FORMAT_INSTRUCTIONS from langchain_core.output_parsers.transform import BaseCumulativeTransformOutputParser from langchain_core.outputs import Generation from langchain_core.utils.json import ( parse_and_check_json_markdown, parse_json_markdown, parse_partial_json, ) from langchain_core.utils.pydantic import PYDANTIC_MAJOR_VERSION if PYDANTIC_MAJOR_VERSION < 2: PydanticBaseModel = pydantic.BaseModel else: from pydantic.v1 import BaseModel # Union type needs to be last assignment to PydanticBaseModel to make mypy happy. PydanticBaseModel = Union[BaseModel, pydantic.BaseModel] # type: ignore TBaseModel = TypeVar("TBaseModel", bound=PydanticBaseModel) class JsonOutputParser(BaseCumulativeTransformOutputParser[Any]): """Parse the output of an LLM call to a JSON object. When used in streaming mode, it will yield partial JSON objects containing all the keys that have been returned so far. In streaming, if `diff` is set to `True`, yields JSONPatch operations describing the difference between the previous and the current object. """ pydantic_object: Annotated[Optional[type[TBaseModel]], SkipValidation()] = None # type: ignore """The Pydantic object to use for validation. If None, no validation is performed.""" def _diff(self, prev: Optional[Any], next: Any) -> Any: return jsonpatch.make_patch(prev, next).patch def _get_schema(self, pydantic_object: type[TBaseModel]) -> dict[str, Any]: if issubclass(pydantic_object, pydantic.BaseModel): return pydantic_object.model_json_schema() elif issubclass(pydantic_object, pydantic.v1.BaseModel): return pydantic_object.schema() def parse_result(self, result: list[Generation], *, partial: bool = False) -> Any: """Parse the result of an LLM call to a JSON object. Args: result: The result of the LLM call. partial: Whether to parse partial JSON objects. If True, the output will be a JSON object containing all the keys that have been returned so far. If False, the output will be the full JSON object. Default is False. Returns: The parsed JSON object. Raises: OutputParserException: If the output is not valid JSON. """ text = result[0].text text = text.strip() if partial: try: return parse_json_markdown(text) except JSONDecodeError: return None else: try: return parse_json_markdown(text) except JSONDecodeError as e: msg = f"Invalid json output: {text}" raise OutputParserException(msg, llm_output=text) from e def parse(self, text: str) -> Any: """Parse the output of an LLM call to a JSON object. Args: text: The output of the LLM call. Returns: The parsed JSON object. """ return self.parse_result([Generation(text=text)]) def get_format_instructions(self) -> str: """Return the format instructions for the JSON output. Returns: The format instructions for the JSON output. """ if self.pydantic_object is None: return "Return a JSON object." else: # Copy schema to avoid altering original Pydantic schema. schema = dict(self._get_schema(self.pydantic_object).items()) # Remove extraneous fields. reduced_schema = schema if "title" in reduced_schema: del reduced_schema["title"] if "type" in reduced_schema: del reduced_schema["type"] # Ensure json in context is well-formed with double quotes. schema_str = json.dumps(reduced_schema, ensure_ascii=False) return JSON_FORMAT_INSTRUCTIONS.format(schema=schema_str) @property def _type(self) -> str: return "simple_json_output_parser" # For backwards compatibility SimpleJsonOutputParser = JsonOutputParser parse_partial_json = parse_partial_json parse_and_check_json_markdown = parse_and_check_json_markdown
import torch from torchaudio.models import emformer_rnnt_model, RNNTBeamSearch from torchaudio_unittest.common_utils import TestBaseMixin, torch_script class RNNTBeamSearchTestImpl(TestBaseMixin): def _get_input_config(self): model_config = self._get_model_config() return { "batch_size": 1, "max_input_length": 61, "num_symbols": model_config["num_symbols"], "input_dim": model_config["input_dim"], "right_context_length": model_config["right_context_length"], "segment_length": model_config["segment_length"], } def _get_model_config(self): return { "input_dim": 80, "encoding_dim": 128, "num_symbols": 256, "segment_length": 16, "right_context_length": 4, "time_reduction_input_dim": 128, "time_reduction_stride": 4, "transformer_num_heads": 4, "transformer_ffn_dim": 64, "transformer_num_layers": 3, "transformer_dropout": 0.0, "transformer_activation": "relu", "transformer_left_context_length": 30, "transformer_max_memory_size": 0, "transformer_weight_init_scale_strategy": "depthwise", "transformer_tanh_on_mem": True, "symbol_embedding_dim": 64, "num_lstm_layers": 2, "lstm_layer_norm": True, "lstm_layer_norm_epsilon": 1e-3, "lstm_dropout": 0.0, } def _get_model(self): return emformer_rnnt_model(**self._get_model_config()).to(device=self.device, dtype=self.dtype).eval() def test_torchscript_consistency_forward(self): r"""Verify that scripting RNNTBeamSearch does not change the behavior of method `forward`.""" input_config = self._get_input_config() batch_size = input_config["batch_size"] max_input_length = input_config["max_input_length"] right_context_length = input_config["right_context_length"] input_dim = input_config["input_dim"] num_symbols = input_config["num_symbols"] blank_idx = num_symbols - 1 beam_width = 5 input = torch.rand(batch_size, max_input_length + right_context_length, input_dim).to( device=self.device, dtype=self.dtype ) lengths = torch.randint(1, max_input_length + 1, (batch_size,)).to(device=self.device, dtype=torch.int32) model = self._get_model() beam_search = RNNTBeamSearch(model, blank_idx) scripted = torch_script(beam_search) res = beam_search(input, lengths, beam_width) scripted_res = scripted(input, lengths, beam_width) self.assertEqual(res, scripted_res) def test_torchscript_consistency_infer(self): r"""Verify that scripting RNNTBeamSearch does not change the behavior of method `infer`.""" input_config = self._get_input_config() segment_length = input_config["segment_length"] right_context_length = input_config["right_context_length"] input_dim = input_config["input_dim"] num_symbols = input_config["num_symbols"] blank_idx = num_symbols - 1 beam_width = 5 input = torch.rand(segment_length + right_context_length, input_dim).to(device=self.device, dtype=self.dtype) lengths = torch.randint(1, segment_length + right_context_length + 1, ()).to( device=self.device, dtype=torch.int32 ) model = self._get_model() state, hypo = None, None scripted_state, scripted_hypo = None, None for _ in range(2): beam_search = RNNTBeamSearch(model, blank_idx) scripted = torch_script(beam_search) res = beam_search.infer(input, lengths, beam_width, state=state, hypothesis=hypo) scripted_res = scripted.infer(input, lengths, beam_width, state=scripted_state, hypothesis=scripted_hypo) self.assertEqual(res, scripted_res) state = res[1] hypo = res[0][0] scripted_state = scripted_res[1] scripted_hypo = scripted_res[0][0]
import torch from torchaudio.models import emformer_rnnt_model, RNNTBeamSearch from torchaudio_unittest.common_utils import TestBaseMixin, torch_script class RNNTBeamSearchTestImpl(TestBaseMixin): def _get_input_config(self): model_config = self._get_model_config() return { "batch_size": 1, "max_input_length": 61, "num_symbols": model_config["num_symbols"], "input_dim": model_config["input_dim"], "right_context_length": model_config["right_context_length"], "segment_length": model_config["segment_length"], } def _get_model_config(self): return { "input_dim": 80, "encoding_dim": 128, "num_symbols": 256, "segment_length": 16, "right_context_length": 4, "time_reduction_input_dim": 128, "time_reduction_stride": 4, "transformer_num_heads": 4, "transformer_ffn_dim": 64, "transformer_num_layers": 3, "transformer_dropout": 0.0, "transformer_activation": "relu", "transformer_left_context_length": 30, "transformer_max_memory_size": 0, "transformer_weight_init_scale_strategy": "depthwise", "transformer_tanh_on_mem": True, "symbol_embedding_dim": 64, "num_lstm_layers": 2, "lstm_layer_norm": True, "lstm_layer_norm_epsilon": 1e-3, "lstm_dropout": 0.0, } def _get_model(self): return emformer_rnnt_model(**self._get_model_config()).to(device=self.device, dtype=self.dtype).eval() def test_torchscript_consistency_forward(self): r"""Verify that scripting RNNTBeamSearch does not change the behavior of method `forward`.""" torch.random.manual_seed(31) input_config = self._get_input_config() batch_size = input_config["batch_size"] max_input_length = input_config["max_input_length"] right_context_length = input_config["right_context_length"] input_dim = input_config["input_dim"] num_symbols = input_config["num_symbols"] blank_idx = num_symbols - 1 beam_width = 5 input = torch.rand(batch_size, max_input_length + right_context_length, input_dim).to( device=self.device, dtype=self.dtype ) lengths = torch.randint(1, max_input_length + 1, (batch_size,)).to(device=self.device, dtype=torch.int32) model = self._get_model() beam_search = RNNTBeamSearch(model, blank_idx) scripted = torch_script(beam_search) res = beam_search(input, lengths, beam_width) scripted_res = scripted(input, lengths, beam_width) self.assertEqual(res, scripted_res) def test_torchscript_consistency_infer(self): r"""Verify that scripting RNNTBeamSearch does not change the behavior of method `infer`.""" torch.random.manual_seed(31) input_config = self._get_input_config() segment_length = input_config["segment_length"] right_context_length = input_config["right_context_length"] input_dim = input_config["input_dim"] num_symbols = input_config["num_symbols"] blank_idx = num_symbols - 1 beam_width = 5 input = torch.rand(segment_length + right_context_length, input_dim).to(device=self.device, dtype=self.dtype) lengths = torch.randint(1, segment_length + right_context_length + 1, ()).to( device=self.device, dtype=torch.int32 ) model = self._get_model() state, hypo = None, None scripted_state, scripted_hypo = None, None for _ in range(2): beam_search = RNNTBeamSearch(model, blank_idx) scripted = torch_script(beam_search) res = beam_search.infer(input, lengths, beam_width, state=state, hypothesis=hypo) scripted_res = scripted.infer(input, lengths, beam_width, state=scripted_state, hypothesis=scripted_hypo) self.assertEqual(res, scripted_res) state = res[1] hypo = res[0][0] scripted_state = scripted_res[1] scripted_hypo = scripted_res[0][0]
from __future__ import annotations from typing import Callable try: from typing import Self except ImportError: from typing_extensions import Self from torch import Tensor, nn from sentence_transformers.models.Module import Module from sentence_transformers.util import fullname, import_from_string class Dense(Module): """ Feed-forward function with activation function. This layer takes a fixed-sized sentence embedding and passes it through a feed-forward layer. Can be used to generate deep averaging networks (DAN). Args: in_features: Size of the input dimension out_features: Output size bias: Add a bias vector activation_function: Pytorch activation function applied on output init_weight: Initial value for the matrix of the linear layer init_bias: Initial value for the bias of the linear layer """ config_keys: list[str] = [ "in_features", "out_features", "bias", "activation_function", ] def __init__( self, in_features: int, out_features: int, bias: bool = True, activation_function: Callable[[Tensor], Tensor] | None = nn.Tanh(), init_weight: Tensor | None = None, init_bias: Tensor | None = None, ): super().__init__() self.in_features = in_features self.out_features = out_features self.bias = bias self.activation_function = nn.Identity() if activation_function is None else activation_function self.linear = nn.Linear(in_features, out_features, bias=bias) if init_weight is not None: self.linear.weight = nn.Parameter(init_weight) if init_bias is not None: self.linear.bias = nn.Parameter(init_bias) def forward(self, features: dict[str, Tensor]): features.update({"sentence_embedding": self.activation_function(self.linear(features["sentence_embedding"]))}) return features def get_sentence_embedding_dimension(self) -> int: return self.out_features def get_config_dict(self): return { "in_features": self.in_features, "out_features": self.out_features, "bias": self.bias, "activation_function": fullname(self.activation_function), } def save(self, output_path: str, *args, safe_serialization: bool = True, **kwargs) -> None: self.save_config(output_path) self.save_torch_weights(output_path, safe_serialization=safe_serialization) def __repr__(self): return f"Dense({self.get_config_dict()})" @classmethod def load( cls, model_name_or_path: str, subfolder: str = "", token: bool | str | None = None, cache_folder: str | None = None, revision: str | None = None, local_files_only: bool = False, **kwargs, ) -> Self: hub_kwargs = { "subfolder": subfolder, "token": token, "cache_folder": cache_folder, "revision": revision, "local_files_only": local_files_only, } config = cls.load_config(model_name_or_path=model_name_or_path, **hub_kwargs) config["activation_function"] = import_from_string(config["activation_function"])() model = cls(**config) model = cls.load_torch_weights(model_name_or_path=model_name_or_path, model=model, **hub_kwargs) return model
from __future__ import annotations import json import os from typing import Callable import torch from safetensors.torch import load_model as load_safetensors_model from safetensors.torch import save_model as save_safetensors_model from torch import Tensor, nn from sentence_transformers.util import fullname, import_from_string class Dense(nn.Module): """ Feed-forward function with activation function. This layer takes a fixed-sized sentence embedding and passes it through a feed-forward layer. Can be used to generate deep averaging networks (DAN). Args: in_features: Size of the input dimension out_features: Output size bias: Add a bias vector activation_function: Pytorch activation function applied on output init_weight: Initial value for the matrix of the linear layer init_bias: Initial value for the bias of the linear layer """ def __init__( self, in_features: int, out_features: int, bias: bool = True, activation_function: Callable[[Tensor], Tensor] | None = nn.Tanh(), init_weight: Tensor | None = None, init_bias: Tensor | None = None, ): super().__init__() self.in_features = in_features self.out_features = out_features self.bias = bias self.activation_function = nn.Identity() if activation_function is None else activation_function self.linear = nn.Linear(in_features, out_features, bias=bias) if init_weight is not None: self.linear.weight = nn.Parameter(init_weight) if init_bias is not None: self.linear.bias = nn.Parameter(init_bias) def forward(self, features: dict[str, Tensor]): features.update({"sentence_embedding": self.activation_function(self.linear(features["sentence_embedding"]))}) return features def get_sentence_embedding_dimension(self) -> int: return self.out_features def get_config_dict(self): return { "in_features": self.in_features, "out_features": self.out_features, "bias": self.bias, "activation_function": fullname(self.activation_function), } def save(self, output_path, safe_serialization: bool = True) -> None: with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut) if safe_serialization: save_safetensors_model(self, os.path.join(output_path, "model.safetensors")) else: torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def __repr__(self): return f"Dense({self.get_config_dict()})" @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) config["activation_function"] = import_from_string(config["activation_function"])() model = Dense(**config) if os.path.exists(os.path.join(input_path, "model.safetensors")): load_safetensors_model(model, os.path.join(input_path, "model.safetensors")) else: model.load_state_dict( torch.load( os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu"), weights_only=True ) ) return model
from typing import Optional from docarray.document import BaseDocument from docarray.typing import AnyEmbedding, AnyTensor, ImageUrl class Image(BaseDocument): """ Document for handling images. It can contain an ImageUrl (`Image.url`), an AnyTensor (`Image.tensor`), and an AnyEmbedding (`Image.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray import Image # use it directly image = Image(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) You can extend this Document: .. code-block:: python from docarray import Image from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(Image): second_embedding: Optional[AnyEmbedding] image = MyImage(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) image.second_embedding = model(image.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument, Image, Text # compose it class MultiModalDoc(BaseDocument): image: Image text: Text mmdoc = MultiModalDoc( image=Image(url="http://www.jina.ai/image.jpg"), text=Text(text="hello world, how are you doing?"), ) mmdoc.image.tensor = mmdoc.image.url.load() """ url: Optional[ImageUrl] tensor: Optional[AnyTensor] embedding: Optional[AnyEmbedding]
from typing import Optional from docarray.document import BaseDocument from docarray.typing import AnyTensor, Embedding, ImageUrl class Image(BaseDocument): """ Document for handling images. It can contain an ImageUrl (`Image.url`), an AnyTensor (`Image.tensor`), and an Embedding (`Image.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray import Image # use it directly image = Image(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) You can extend this Document: .. code-block:: python from docarray import Image from docarray.typing import Embedding from typing import Optional # extend it class MyImage(Image): second_embedding: Optional[Embedding] image = MyImage(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) image.second_embedding = model(image.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument, Image, Text # compose it class MultiModalDoc(BaseDocument): image: Image text: Text mmdoc = MultiModalDoc( image=Image(url="http://www.jina.ai/image.jpg"), text=Text(text="hello world, how are you doing?"), ) mmdoc.image.tensor = mmdoc.image.url.load() """ url: Optional[ImageUrl] tensor: Optional[AnyTensor] embedding: Optional[Embedding]
from pathlib import Path import numpy as np import paddlehub as hub import pytest from jina import Document, DocumentArray, Executor from text_paddle import TextPaddleEncoder @pytest.fixture(scope='function') def model(): return hub.Module(name='ernie_tiny') @pytest.fixture(scope='function') def content(): return 'hello world' @pytest.fixture(scope='function') def document_array(content): return DocumentArray([Document(content=content)]) @pytest.fixture(scope='function') def parameters(): return {'traverse_paths': ['r'], 'batch_size': 10} def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.default_batch_size == 32 def test_text_paddle(model, document_array, content, parameters): ex = TextPaddleEncoder() assert ex.on_gpu is False ex.encode(document_array, parameters) for doc in document_array: assert isinstance(doc.embedding, np.ndarray) assert doc.embedding.shape == (1024,) embeds = model.get_embedding([[content]]) pooled_features = [] for embed in embeds: pooled_feature, _ = embed pooled_features.append(pooled_feature) assert (pooled_features == document_array[0].embedding).all()
from pathlib import Path import numpy as np import paddlehub as hub import pytest from jina import Document, DocumentArray, Executor from ...text_paddle import TextPaddleEncoder @pytest.fixture(scope='function') def model(): return hub.Module(name='ernie_tiny') @pytest.fixture(scope='function') def content(): return 'hello world' @pytest.fixture(scope='function') def document_array(content): return DocumentArray([Document(content=content)]) @pytest.fixture(scope='function') def parameters(): return {'traverse_paths': ['r'], 'batch_size': 10} def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.default_batch_size == 32 def test_text_paddle(model, document_array, content, parameters): ex = TextPaddleEncoder() assert ex.on_gpu is False ex.encode(document_array, parameters) for doc in document_array: assert isinstance(doc.embedding, np.ndarray) assert doc.embedding.shape == (1024,) embeds = model.get_embedding([[content]]) pooled_features = [] for embed in embeds: pooled_feature, _ = embed pooled_features.append(pooled_feature) assert (pooled_features == document_array[0].embedding).all()
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.applications import convnext as convnext from keras.applications import densenet as densenet from keras.applications import efficientnet as efficientnet from keras.applications import efficientnet_v2 as efficientnet_v2 from keras.applications import imagenet_utils as imagenet_utils from keras.applications import inception_resnet_v2 as inception_resnet_v2 from keras.applications import inception_v3 as inception_v3 from keras.applications import mobilenet as mobilenet from keras.applications import mobilenet_v2 as mobilenet_v2 from keras.applications import mobilenet_v3 as mobilenet_v3 from keras.applications import nasnet as nasnet from keras.applications import resnet as resnet from keras.applications import resnet50 as resnet50 from keras.applications import resnet_v2 as resnet_v2 from keras.applications import vgg16 as vgg16 from keras.applications import vgg19 as vgg19 from keras.applications import xception as xception from keras.src.applications.convnext import ConvNeXtBase as ConvNeXtBase from keras.src.applications.convnext import ConvNeXtLarge as ConvNeXtLarge from keras.src.applications.convnext import ConvNeXtSmall as ConvNeXtSmall from keras.src.applications.convnext import ConvNeXtTiny as ConvNeXtTiny from keras.src.applications.convnext import ConvNeXtXLarge as ConvNeXtXLarge from keras.src.applications.densenet import DenseNet121 as DenseNet121 from keras.src.applications.densenet import DenseNet169 as DenseNet169 from keras.src.applications.densenet import DenseNet201 as DenseNet201 from keras.src.applications.efficientnet import EfficientNetB0 as EfficientNetB0 from keras.src.applications.efficientnet import EfficientNetB1 as EfficientNetB1 from keras.src.applications.efficientnet import EfficientNetB2 as EfficientNetB2 from keras.src.applications.efficientnet import EfficientNetB3 as EfficientNetB3 from keras.src.applications.efficientnet import EfficientNetB4 as EfficientNetB4 from keras.src.applications.efficientnet import EfficientNetB5 as EfficientNetB5 from keras.src.applications.efficientnet import EfficientNetB6 as EfficientNetB6 from keras.src.applications.efficientnet import EfficientNetB7 as EfficientNetB7 from keras.src.applications.efficientnet_v2 import ( EfficientNetV2B0 as EfficientNetV2B0, ) from keras.src.applications.efficientnet_v2 import ( EfficientNetV2B1 as EfficientNetV2B1, ) from keras.src.applications.efficientnet_v2 import ( EfficientNetV2B2 as EfficientNetV2B2, ) from keras.src.applications.efficientnet_v2 import ( EfficientNetV2B3 as EfficientNetV2B3, ) from keras.src.applications.efficientnet_v2 import ( EfficientNetV2L as EfficientNetV2L, ) from keras.src.applications.efficientnet_v2 import ( EfficientNetV2M as EfficientNetV2M, ) from keras.src.applications.efficientnet_v2 import ( EfficientNetV2S as EfficientNetV2S, ) from keras.src.applications.inception_resnet_v2 import ( InceptionResNetV2 as InceptionResNetV2, ) from keras.src.applications.inception_v3 import InceptionV3 as InceptionV3 from keras.src.applications.mobilenet import MobileNet as MobileNet from keras.src.applications.mobilenet_v2 import MobileNetV2 as MobileNetV2 from keras.src.applications.mobilenet_v3 import ( MobileNetV3Large as MobileNetV3Large, ) from keras.src.applications.mobilenet_v3 import ( MobileNetV3Small as MobileNetV3Small, ) from keras.src.applications.nasnet import NASNetLarge as NASNetLarge from keras.src.applications.nasnet import NASNetMobile as NASNetMobile from keras.src.applications.resnet import ResNet50 as ResNet50 from keras.src.applications.resnet import ResNet101 as ResNet101 from keras.src.applications.resnet import ResNet152 as ResNet152 from keras.src.applications.resnet_v2 import ResNet50V2 as ResNet50V2 from keras.src.applications.resnet_v2 import ResNet101V2 as ResNet101V2 from keras.src.applications.resnet_v2 import ResNet152V2 as ResNet152V2 from keras.src.applications.vgg16 import VGG16 as VGG16 from keras.src.applications.vgg19 import VGG19 as VGG19 from keras.src.applications.xception import Xception as Xception
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api.applications import convnext from keras.api.applications import densenet from keras.api.applications import efficientnet from keras.api.applications import efficientnet_v2 from keras.api.applications import imagenet_utils from keras.api.applications import inception_resnet_v2 from keras.api.applications import inception_v3 from keras.api.applications import mobilenet from keras.api.applications import mobilenet_v2 from keras.api.applications import mobilenet_v3 from keras.api.applications import nasnet from keras.api.applications import resnet from keras.api.applications import resnet50 from keras.api.applications import resnet_v2 from keras.api.applications import vgg16 from keras.api.applications import vgg19 from keras.api.applications import xception from keras.src.applications.convnext import ConvNeXtBase from keras.src.applications.convnext import ConvNeXtLarge from keras.src.applications.convnext import ConvNeXtSmall from keras.src.applications.convnext import ConvNeXtTiny from keras.src.applications.convnext import ConvNeXtXLarge from keras.src.applications.densenet import DenseNet121 from keras.src.applications.densenet import DenseNet169 from keras.src.applications.densenet import DenseNet201 from keras.src.applications.efficientnet import EfficientNetB0 from keras.src.applications.efficientnet import EfficientNetB1 from keras.src.applications.efficientnet import EfficientNetB2 from keras.src.applications.efficientnet import EfficientNetB3 from keras.src.applications.efficientnet import EfficientNetB4 from keras.src.applications.efficientnet import EfficientNetB5 from keras.src.applications.efficientnet import EfficientNetB6 from keras.src.applications.efficientnet import EfficientNetB7 from keras.src.applications.efficientnet_v2 import EfficientNetV2B0 from keras.src.applications.efficientnet_v2 import EfficientNetV2B1 from keras.src.applications.efficientnet_v2 import EfficientNetV2B2 from keras.src.applications.efficientnet_v2 import EfficientNetV2B3 from keras.src.applications.efficientnet_v2 import EfficientNetV2L from keras.src.applications.efficientnet_v2 import EfficientNetV2M from keras.src.applications.efficientnet_v2 import EfficientNetV2S from keras.src.applications.inception_resnet_v2 import InceptionResNetV2 from keras.src.applications.inception_v3 import InceptionV3 from keras.src.applications.mobilenet import MobileNet from keras.src.applications.mobilenet_v2 import MobileNetV2 from keras.src.applications.mobilenet_v3 import MobileNetV3Large from keras.src.applications.mobilenet_v3 import MobileNetV3Small from keras.src.applications.nasnet import NASNetLarge from keras.src.applications.nasnet import NASNetMobile from keras.src.applications.resnet import ResNet50 from keras.src.applications.resnet import ResNet101 from keras.src.applications.resnet import ResNet152 from keras.src.applications.resnet_v2 import ResNet50V2 from keras.src.applications.resnet_v2 import ResNet101V2 from keras.src.applications.resnet_v2 import ResNet152V2 from keras.src.applications.vgg16 import VGG16 from keras.src.applications.vgg19 import VGG19 from keras.src.applications.xception import Xception
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.registry import HOOKS from .hook import Hook @HOOKS.register_module() class DistSamplerSeedHook(Hook): """Data-loading sampler for distributed training. When distributed training, it is only useful in conjunction with :obj:`EpochBasedRunner`, while :obj:`IterBasedRunner` achieves the same purpose with :obj:`IterLoader`. """ priority = 'NORMAL' def before_train_epoch(self, runner, mode: str = 'train') -> None: """Set the seed for sampler and batch_sampler. Args: runner (Runner): The runner of the training process. """ if hasattr(runner.train_loop.dataloader, 'sampler') and hasattr( runner.train_loop.dataloader.sampler, 'set_epoch'): # In case the` _SingleProcessDataLoaderIter` has no sampler, # or data loader uses `SequentialSampler` in Pytorch. runner.train_loop.dataloader.sampler.set_epoch(runner.epoch) elif hasattr(runner.train_loop.dataloader, 'batch_sampler') and hasattr( runner.train_loop.dataloader.batch_sampler.sampler, 'set_epoch'): # In case the` _SingleProcessDataLoaderIter` has no batch sampler. # batch sampler in pytorch warps the sampler as its attributes. runner.train_loop.dataloader.batch_sampler.sampler.set_epoch( runner.epoch)
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.registry import HOOKS from .hook import Hook @HOOKS.register_module() class DistSamplerSeedHook(Hook): """Data-loading sampler for distributed training. When distributed training, it is only useful in conjunction with :obj:`EpochBasedRunner`, while :obj:`IterBasedRunner` achieves the same purpose with :obj:`IterLoader`. """ priority = 'NORMAL' def before_train_epoch(self, runner, mode: str = 'train') -> None: """Set the seed for sampler and batch_sampler. Args: runner (Runner): The runner of the training process. """ if hasattr(runner.cur_dataloader.sampler, 'set_epoch'): # in case the data loader uses `SequentialSampler` in Pytorch runner.cur_dataloader.sampler.set_epoch(runner.epoch) elif hasattr(runner.cur_dataloader.batch_sampler.sampler, 'set_epoch'): # batch sampler in pytorch warps the sampler as its attributes. runner.cur_dataloader.batch_sampler.sampler.set_epoch(runner.epoch)
# coding: utf-8 """LightGBM, Light Gradient Boosting Machine. Contributors: https://github.com/microsoft/LightGBM/graphs/contributors. """ from pathlib import Path from .basic import Booster, Dataset, Sequence, register_logger from .callback import EarlyStopException, early_stopping, log_evaluation, record_evaluation, reset_parameter from .engine import CVBooster, cv, train try: from .sklearn import LGBMClassifier, LGBMModel, LGBMRanker, LGBMRegressor except ImportError: pass try: from .plotting import create_tree_digraph, plot_importance, plot_metric, plot_split_value_histogram, plot_tree except ImportError: pass try: from .dask import DaskLGBMClassifier, DaskLGBMRanker, DaskLGBMRegressor except ImportError: pass _version_path = Path(__file__).absolute().parent / "VERSION.txt" if _version_path.is_file(): __version__ = _version_path.read_text(encoding="utf-8").strip() __all__ = [ "Dataset", "Booster", "CVBooster", "Sequence", "register_logger", "train", "cv", "LGBMModel", "LGBMRegressor", "LGBMClassifier", "LGBMRanker", "DaskLGBMRegressor", "DaskLGBMClassifier", "DaskLGBMRanker", "log_evaluation", "record_evaluation", "reset_parameter", "early_stopping", "EarlyStopException", "plot_importance", "plot_split_value_histogram", "plot_metric", "plot_tree", "create_tree_digraph", ]
# coding: utf-8 """LightGBM, Light Gradient Boosting Machine. Contributors: https://github.com/microsoft/LightGBM/graphs/contributors. """ from pathlib import Path from .basic import Booster, Dataset, Sequence, register_logger from .callback import EarlyStopException, early_stopping, log_evaluation, record_evaluation, reset_parameter from .engine import CVBooster, cv, train try: from .sklearn import LGBMClassifier, LGBMModel, LGBMRanker, LGBMRegressor except ImportError: pass try: from .plotting import create_tree_digraph, plot_importance, plot_metric, plot_split_value_histogram, plot_tree except ImportError: pass try: from .dask import DaskLGBMClassifier, DaskLGBMRanker, DaskLGBMRegressor except ImportError: pass _version_path = Path(__file__).absolute().parent / "VERSION.txt" if _version_path.is_file(): __version__ = _version_path.read_text(encoding="utf-8").strip() __all__ = [ "Dataset", "Booster", "CVBooster", "Sequence", "register_logger", "train", "cv", "LGBMModel", "LGBMRegressor", "LGBMClassifier", "LGBMRanker", "DaskLGBMRegressor", "DaskLGBMClassifier", "DaskLGBMRanker", "log_evaluation", "record_evaluation", "reset_parameter", "early_stopping", "EarlyStopException", "plot_importance", "plot_split_value_histogram", "plot_metric", "plot_tree", "create_tree_digraph", ]
""" Given a dataset with parallel sentences, one "english" column and one "non_english" column, this script evaluates a model on the translation task. Given a sentence in the "english" column, the model should find the correct translation in the "non_english" column, based on just the embeddings. It then computes an accuracy over all possible source sentences src_i. Equivalently, it computes also the accuracy for the other direction. A high accuracy score indicates that the model is able to find the correct translation out of a large pool with sentences. Good options for datasets are: * sentence-transformers/parallel-sentences-wikimatrix * sentence-transformers/parallel-sentences-tatoeba * sentence-transformers/parallel-sentences-talks As these have development sets. Usage: python examples/evaluation/evaluation_translation_matching.py [model_name_or_path] [dataset_name] [subset1] [subset2] ... For example: python examples/evaluation/evaluation_translation_matching.py distiluse-base-multilingual-cased sentence-transformers/parallel-sentences-tatoeba en-ar en-de en-nl """ import logging import sys from datasets import load_dataset from sentence_transformers import SentenceTransformer, evaluation # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) model_name = sys.argv[1] dataset_name = sys.argv[2] subsets = sys.argv[3:] inference_batch_size = 32 model = SentenceTransformer(model_name) for subset in subsets: dataset = load_dataset(dataset_name, subset) datasets = {} if dataset.column_names == ["train"]: num_samples = min(5000, len(dataset["train"])) datasets[f"train[:{num_samples}]"].append(dataset["train"].select(range(num_samples))) else: for split, sub_dataset in dataset.items(): if split != "train": datasets[split] = sub_dataset for split, sub_dataset in datasets.items(): logging.info(f"{dataset_name}, subset={subset}, split={split}, num_samples={len(sub_dataset)}") translation_evaluator = evaluation.TranslationEvaluator( sub_dataset["english"], sub_dataset["non_english"], name=f"{dataset_name}-{subset}-{split}", batch_size=inference_batch_size, ) translation_evaluator(model)
""" Given a dataset with parallel sentences, one "english" column and one "non_english" column, this script evaluates a model on the translation task. Given a sentence in the "english" column, the model should find the correct translation in the "non_english" column, based on just the embeddings. It then computes an accuracy over all possible source sentences src_i. Equivalently, it computes also the accuracy for the other direction. A high accuracy score indicates that the model is able to find the correct translation out of a large pool with sentences. Good options for datasets are: * sentence-transformers/parallel-sentences-wikimatrix * sentence-transformers/parallel-sentences-tatoeba * sentence-transformers/parallel-sentences-talks As these have development sets. Usage: python examples/evaluation/evaluation_translation_matching.py [model_name_or_path] [dataset_name] [subset1] [subset2] ... For example: python examples/evaluation/evaluation_translation_matching.py distiluse-base-multilingual-cased sentence-transformers/parallel-sentences-tatoeba en-ar en-de en-nl """ from sentence_transformers import SentenceTransformer, evaluation import sys import logging from datasets import load_dataset # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) model_name = sys.argv[1] dataset_name = sys.argv[2] subsets = sys.argv[3:] inference_batch_size = 32 model = SentenceTransformer(model_name) for subset in subsets: dataset = load_dataset(dataset_name, subset) datasets = {} if dataset.column_names == ["train"]: num_samples = min(5000, len(dataset["train"])) datasets[f"train[:{num_samples}]"].append(dataset["train"].select(range(num_samples))) else: for split, sub_dataset in dataset.items(): if split != "train": datasets[split] = sub_dataset for split, sub_dataset in datasets.items(): logging.info(f"{dataset_name}, subset={subset}, split={split}, num_samples={len(sub_dataset)}") translation_evaluator = evaluation.TranslationEvaluator( sub_dataset["english"], sub_dataset["non_english"], name=f"{dataset_name}-{subset}-{split}", batch_size=inference_batch_size, ) translation_evaluator(model)
from __future__ import annotations from collections.abc import Iterable from typing import TYPE_CHECKING from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SequentialEvaluator(SentenceEvaluator): """ This evaluator allows that multiple sub-evaluators are passed. When the model is evaluated, the data is passed sequentially to all sub-evaluators. All scores are passed to 'main_score_function', which derives one final score value Args: evaluators (Iterable[SentenceEvaluator]): A collection of SentenceEvaluator objects. main_score_function (function, optional): A function that takes a list of scores and returns the main score. Defaults to selecting the last score in the list. Example: :: evaluator1 = BinaryClassificationEvaluator(...) evaluator2 = InformationRetrievalEvaluator(...) evaluator3 = MSEEvaluator(...) seq_evaluator = SequentialEvaluator([evaluator1, evaluator2, evaluator3]) """ def __init__(self, evaluators: Iterable[SentenceEvaluator], main_score_function=lambda scores: scores[-1]): super().__init__() self.evaluators = evaluators self.main_score_function = main_score_function def __call__( self, model: SentenceTransformer, output_path: str | None = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: evaluations = [] scores = [] for evaluator_idx, evaluator in enumerate(self.evaluators): evaluation = evaluator(model, output_path, epoch, steps) if not isinstance(evaluation, dict): scores.append(evaluation) evaluation = {f"evaluator_{evaluator_idx}": evaluation} else: if hasattr(evaluator, "primary_metric"): scores.append(evaluation[evaluator.primary_metric]) else: scores.append(evaluation[list(evaluation.keys())[0]]) evaluations.append(evaluation) self.primary_metric = "sequential_score" main_score = self.main_score_function(scores) results = {key: value for evaluation in evaluations for key, value in evaluation.items()} results["sequential_score"] = main_score return results
from __future__ import annotations from collections.abc import Iterable from typing import TYPE_CHECKING from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SequentialEvaluator(SentenceEvaluator): """ This evaluator allows that multiple sub-evaluators are passed. When the model is evaluated, the data is passed sequentially to all sub-evaluators. All scores are passed to 'main_score_function', which derives one final score value Args: evaluators (Iterable[SentenceEvaluator]): A collection of SentenceEvaluator objects. main_score_function (function, optional): A function that takes a list of scores and returns the main score. Defaults to selecting the last score in the list. Example: :: evaluator1 = BinaryClassificationEvaluator(...) evaluator2 = InformationRetrievalEvaluator(...) evaluator3 = MSEEvaluator(...) seq_evaluator = SequentialEvaluator([evaluator1, evaluator2, evaluator3]) """ def __init__(self, evaluators: Iterable[SentenceEvaluator], main_score_function=lambda scores: scores[-1]): super().__init__() self.evaluators = evaluators self.main_score_function = main_score_function def __call__( self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: evaluations = [] scores = [] for evaluator_idx, evaluator in enumerate(self.evaluators): evaluation = evaluator(model, output_path, epoch, steps) if not isinstance(evaluation, dict): scores.append(evaluation) evaluation = {f"evaluator_{evaluator_idx}": evaluation} else: if hasattr(evaluator, "primary_metric"): scores.append(evaluation[evaluator.primary_metric]) else: scores.append(evaluation[list(evaluation.keys())[0]]) evaluations.append(evaluation) self.primary_metric = "sequential_score" main_score = self.main_score_function(scores) results = {key: value for evaluation in evaluations for key, value in evaluation.items()} results["sequential_score"] = main_score return results
""" This examples trains a CrossEncoder for the STSbenchmark task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continuous labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_stsbenchmark.py """ import csv import gzip import logging import math import os from datetime import datetime from torch.utils.data import DataLoader from sentence_transformers import InputExample, LoggingHandler, util from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CrossEncoderCorrelationEvaluator #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # Define our Cross-Encoder train_batch_size = 16 num_epochs = 4 model_save_path = "output/training_stsbenchmark-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # We use distilroberta-base as base model and set num_labels=1, which predicts a continuous score between 0 and 1 model = CrossEncoder("distilroberta-base", num_labels=1) # Read STSb dataset logger.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 if row["split"] == "dev": dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) elif row["split"] == "test": test_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) else: # As we want to get symmetric scores, i.e. CrossEncoder(A,B) = CrossEncoder(B,A), we pass both combinations to the train set train_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) train_samples.append(InputExample(texts=[row["sentence2"], row["sentence1"]], label=score)) # We wrap train_samples (which is a List[InputExample]) into a pytorch DataLoader train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) # We add an evaluator, which evaluates the performance during training evaluator = CrossEncoderCorrelationEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logger.info(f"Warmup-steps: {warmup_steps}") # Train the model model.fit( train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, warmup_steps=warmup_steps, output_path=model_save_path, ) ##### Load model and eval on test set model = CrossEncoder(model_save_path) evaluator = CrossEncoderCorrelationEvaluator.from_input_examples(test_samples, name="sts-test") evaluator(model)
""" This examples trains a CrossEncoder for the STSbenchmark task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continuous labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_stsbenchmark.py """ import csv import gzip import logging import math import os from datetime import datetime from torch.utils.data import DataLoader from sentence_transformers import InputExample, LoggingHandler, util from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # Define our Cross-Encoder train_batch_size = 16 num_epochs = 4 model_save_path = "output/training_stsbenchmark-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # We use distilroberta-base as base model and set num_labels=1, which predicts a continuous score between 0 and 1 model = CrossEncoder("distilroberta-base", num_labels=1) # Read STSb dataset logger.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 if row["split"] == "dev": dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) elif row["split"] == "test": test_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) else: # As we want to get symmetric scores, i.e. CrossEncoder(A,B) = CrossEncoder(B,A), we pass both combinations to the train set train_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) train_samples.append(InputExample(texts=[row["sentence2"], row["sentence1"]], label=score)) # We wrap train_samples (which is a List[InputExample]) into a pytorch DataLoader train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) # We add an evaluator, which evaluates the performance during training evaluator = CECorrelationEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logger.info(f"Warmup-steps: {warmup_steps}") # Train the model model.fit( train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, warmup_steps=warmup_steps, output_path=model_save_path, ) ##### Load model and eval on test set model = CrossEncoder(model_save_path) evaluator = CECorrelationEvaluator.from_input_examples(test_samples, name="sts-test") evaluator(model)
# Copyright (c) OpenMMLab. All rights reserved. from .dropblock import DropBlock __all__ = ['DropBlock']
from .dropblock import DropBlock __all__ = ['DropBlock']
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.resnet import ResNet50 as ResNet50 from keras.src.applications.resnet import ( decode_predictions as decode_predictions, ) from keras.src.applications.resnet import preprocess_input as preprocess_input
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.applications.resnet import ResNet50 from keras.src.applications.resnet import decode_predictions from keras.src.applications.resnet import preprocess_input
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.port = self.runtime_args.port[0] self.host = self.runtime_args.host self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=self.host, port=self.port)) async def run_server(self): await self.server.serve() async def shutdown(self): self.server.should_exit = True await self.server.shutdown()
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.port = self.runtime_args.port[0] self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=__default_host__, port=self.port)) async def run_server(self): await self.server.serve() async def shutdown(self): self.server.should_exit = True await self.server.shutdown()
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.callbacks.comet_ml_callback import CometCallbackHandler # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "CometCallbackHandler": "langchain_community.callbacks.comet_ml_callback", } _import_attribute = create_importer(__file__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "CometCallbackHandler", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.callbacks.comet_ml_callback import CometCallbackHandler # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "CometCallbackHandler": "langchain_community.callbacks.comet_ml_callback" } _import_attribute = create_importer(__file__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "CometCallbackHandler", ]
import os from langchain_core.messages import AIMessage, HumanMessage, ToolMessage from langchain_core.tools import tool from pydantic import BaseModel from langchain_community.chat_models import MiniMaxChat def test_chat_minimax_not_group_id() -> None: if "MINIMAX_GROUP_ID" in os.environ: del os.environ["MINIMAX_GROUP_ID"] chat = MiniMaxChat() # type: ignore[call-arg] response = chat.invoke("你好呀") assert isinstance(response, AIMessage) assert isinstance(response.content, str) def test_chat_minimax_with_stream() -> None: chat = MiniMaxChat() # type: ignore[call-arg] for chunk in chat.stream("你好呀"): assert isinstance(chunk, AIMessage) assert isinstance(chunk.content, str) @tool def add(a: int, b: int) -> int: """Adds a and b.""" return a + b @tool def multiply(a: int, b: int) -> int: """Multiplies a and b.""" return a * b def test_chat_minimax_with_tool() -> None: """Test MinimaxChat with bind tools.""" chat = MiniMaxChat() # type: ignore[call-arg] tools = [add, multiply] chat_with_tools = chat.bind_tools(tools) query = "What is 3 * 12?" messages = [HumanMessage(query)] ai_msg = chat_with_tools.invoke(messages) assert isinstance(ai_msg, AIMessage) assert isinstance(ai_msg.tool_calls, list) assert len(ai_msg.tool_calls) == 1 tool_call = ai_msg.tool_calls[0] assert "args" in tool_call messages.append(ai_msg) # type: ignore[arg-type] for tool_call in ai_msg.tool_calls: selected_tool = {"add": add, "multiply": multiply}[tool_call["name"].lower()] tool_output = selected_tool.invoke(tool_call["args"]) # type: ignore[attr-defined] messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"])) # type: ignore[arg-type] response = chat_with_tools.invoke(messages) assert isinstance(response, AIMessage) class AnswerWithJustification(BaseModel): """An answer to the user question along with justification for the answer.""" answer: str justification: str def test_chat_minimax_with_structured_output() -> None: """Test MiniMaxChat with structured output.""" llm = MiniMaxChat() # type: ignore[call-arg] structured_llm = llm.with_structured_output(AnswerWithJustification) response = structured_llm.invoke( "What weighs more a pound of bricks or a pound of feathers" ) assert isinstance(response, AnswerWithJustification) def test_chat_tongyi_with_structured_output_include_raw() -> None: """Test MiniMaxChat with structured output.""" llm = MiniMaxChat() # type: ignore[call-arg] structured_llm = llm.with_structured_output( AnswerWithJustification, include_raw=True ) response = structured_llm.invoke( "What weighs more a pound of bricks or a pound of feathers" ) assert isinstance(response, dict) assert isinstance(response.get("raw"), AIMessage) assert isinstance(response.get("parsed"), AnswerWithJustification)
import os from langchain_core.messages import AIMessage, HumanMessage, ToolMessage from langchain_core.tools import tool from pydantic import BaseModel from langchain_community.chat_models import MiniMaxChat def test_chat_minimax_not_group_id() -> None: if "MINIMAX_GROUP_ID" in os.environ: del os.environ["MINIMAX_GROUP_ID"] chat = MiniMaxChat() # type: ignore[call-arg] response = chat.invoke("你好呀") assert isinstance(response, AIMessage) assert isinstance(response.content, str) def test_chat_minimax_with_stream() -> None: chat = MiniMaxChat() # type: ignore[call-arg] for chunk in chat.stream("你好呀"): assert isinstance(chunk, AIMessage) assert isinstance(chunk.content, str) @tool def add(a: int, b: int) -> int: """Adds a and b.""" return a + b @tool def multiply(a: int, b: int) -> int: """Multiplies a and b.""" return a * b def test_chat_minimax_with_tool() -> None: """Test MinimaxChat with bind tools.""" chat = MiniMaxChat() # type: ignore[call-arg] tools = [add, multiply] chat_with_tools = chat.bind_tools(tools) query = "What is 3 * 12?" messages = [HumanMessage(query)] ai_msg = chat_with_tools.invoke(messages) assert isinstance(ai_msg, AIMessage) assert isinstance(ai_msg.tool_calls, list) assert len(ai_msg.tool_calls) == 1 tool_call = ai_msg.tool_calls[0] assert "args" in tool_call messages.append(ai_msg) # type: ignore[arg-type] for tool_call in ai_msg.tool_calls: selected_tool = {"add": add, "multiply": multiply}[tool_call["name"].lower()] tool_output = selected_tool.invoke(tool_call["args"]) # type: ignore[attr-defined] messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"])) # type: ignore[arg-type] response = chat_with_tools.invoke(messages) assert isinstance(response, AIMessage) class AnswerWithJustification(BaseModel): """An answer to the user question along with justification for the answer.""" answer: str justification: str def test_chat_minimax_with_structured_output() -> None: """Test MiniMaxChat with structured output.""" llm = MiniMaxChat() # type: ignore structured_llm = llm.with_structured_output(AnswerWithJustification) response = structured_llm.invoke( "What weighs more a pound of bricks or a pound of feathers" ) assert isinstance(response, AnswerWithJustification) def test_chat_tongyi_with_structured_output_include_raw() -> None: """Test MiniMaxChat with structured output.""" llm = MiniMaxChat() # type: ignore structured_llm = llm.with_structured_output( AnswerWithJustification, include_raw=True ) response = structured_llm.invoke( "What weighs more a pound of bricks or a pound of feathers" ) assert isinstance(response, dict) assert isinstance(response.get("raw"), AIMessage) assert isinstance(response.get("parsed"), AnswerWithJustification)
_base_ = './detic_centernet2_r50_fpn_4x_lvis_boxsup.py' dataset_type = ['LVISV1Dataset', 'ImageNetLVISV1Dataset'] image_size_det = (640, 640) image_size_cls = (320, 320) # backend = 'pillow' backend_args = None train_pipeline_det = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size_det, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size_det, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_pipeline_cls = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=False, with_label=True), dict( type='RandomResize', scale=image_size_cls, ratio_range=(0.5, 1.5), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size_cls, recompute_bbox=False, bbox_clip_border=False, allow_negative_crop=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] # 'lvis_v1_train_norare.json' is the annotations of lvis_v1 # removing the labels of 337 rare-class dataset_det = dict( type='ClassBalancedDataset', oversample_thr=1e-3, dataset=dict( type='LVISV1Dataset', data_root='data/lvis/', ann_file='annotations/lvis_v1_train_norare.json', data_prefix=dict(img=''), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline_det, backend_args=backend_args)) dataset_cls = dict( type='ImageNetLVISV1Dataset', data_root='data/imagenet', ann_file='annotations/imagenet_lvis_image_info.json', data_prefix=dict(img='ImageNet-LVIS/'), pipeline=train_pipeline_cls, backend_args=backend_args) train_dataloader = dict( _delete_=True, batch_size=[8, 32], num_workers=2, persistent_workers=True, sampler=dict(type='MultiDataSampler', dataset_ratio=[1, 4]), batch_sampler=dict( type='MultiDataAspectRatioBatchSampler', num_datasets=2), dataset=dict(type='ConcatDataset', datasets=[dataset_det, dataset_cls])) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='CosineAnnealingLR', begin=0, by_epoch=False, T_max=90000, ) ] load_from = './first_stage/detic_centernet2_r50_fpn_4x_lvis-base_boxsup.pth' find_unused_parameters = True
_base_ = './detic_centernet2_r50_fpn_4x_lvis_boxsup.py' image_size_det = (640, 640) image_size_cls = (320, 320) # backend = 'pillow' backend_args = None train_pipeline_det = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size_det, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size_det, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_pipeline_cls = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=False, with_label=True), dict( type='RandomResize', scale=image_size_cls, ratio_range=(0.5, 1.5), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size_cls, recompute_bbox=False, bbox_clip_border=False, allow_negative_crop=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] # 'lvis_v1_train_norare.json' is the annotations of lvis_v1 # removing the labels of 337 rare-class dataset_det = dict( type='ClassBalancedDataset', oversample_thr=1e-3, dataset=dict( type='LVISV1Dataset', data_root='data/lvis/', ann_file='annotations/lvis_v1_train.json', data_prefix=dict(img=''), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline_det, backend_args=backend_args)) dataset_cls = dict( type='ImageNetLVISV1Dataset', data_root='data/imagenet', ann_file='annotations/imagenet_lvis_image_info.json', data_prefix=dict(img='ImageNet-LVIS/'), pipeline=train_pipeline_cls, backend_args=backend_args) train_dataloader = dict( _delete_=True, batch_size=[8, 32], num_workers=2, persistent_workers=True, sampler=dict(type='MultiDataSampler', dataset_ratio=[1, 4]), batch_sampler=dict( type='MultiDataAspectRatioBatchSampler', num_datasets=2), dataset=dict(type='ConcatDataset', datasets=[dataset_det, dataset_cls])) load_from = './first_stage/detic_centernet2_r50_fpn_4x_lvis-base_boxsup.pth' find_unused_parameters = True
_base_ = 'deformable-detr_refine_r50_16xb2-50e_coco.py' model = dict(bbox_head=dict(as_two_stage=True))
_base_ = 'deformable_detr_refine_r50_16x2_50e_coco.py' model = dict(bbox_head=dict(as_two_stage=True))
import io from typing import TYPE_CHECKING, Any, Tuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto if TYPE_CHECKING: from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='AudioBytes') @_register_proto(proto_type_name='audio_bytes') class AudioBytes(bytes, AbstractType): """ Bytes that store an audio and that can be load into an Audio tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load(self) -> Tuple[np.ndarray, int]: """ Load the Audio from the bytes into a numpy.ndarray Audio tensor EXAMPLE USAGE .. code-block:: python from docarray import BaseDoc import numpy as np from docarray.typing import AudioUrl class MyAudio(Document): url: AudioUrl tensor: Optional[NdArray] bytes: Optional[bytes] doc = MyAudio(url="toydata/hello.wav") doc.bytes = doc.url.load_bytes() doc.tensor, doc.frame_rate = doc.bytes.load() # Note this is equivalent to do doc.tensor, doc.frame_rate = doc.url.load() assert isinstance(doc.audio_tensor, np.ndarray) :return: np.ndarray representing the Audio as RGB values """ from pydub import AudioSegment # type: ignore segment = AudioSegment.from_file(io.BytesIO(self)) # Convert to float32 using NumPy samples = np.array(segment.get_array_of_samples()) # Normalise float32 array so that values are between -1.0 and +1.0 samples_norm = samples / 2 ** (segment.sample_width * 8 - 1) return samples_norm, segment.frame_rate
import io from typing import TYPE_CHECKING, Any, Tuple, Type, TypeVar import numpy as np from pydantic import parse_obj_as from pydantic.validators import bytes_validator from docarray.typing.abstract_type import AbstractType from docarray.typing.proto_register import _register_proto if TYPE_CHECKING: from pydantic.fields import BaseConfig, ModelField from docarray.proto import NodeProto T = TypeVar('T', bound='AudioBytes') @_register_proto(proto_type_name='audio_bytes') class AudioBytes(bytes, AbstractType): """ Bytes that store an audio and that can be load into an Audio tensor """ @classmethod def validate( cls: Type[T], value: Any, field: 'ModelField', config: 'BaseConfig', ) -> T: value = bytes_validator(value) return cls(value) @classmethod def from_protobuf(cls: Type[T], pb_msg: T) -> T: return parse_obj_as(cls, pb_msg) def _to_node_protobuf(self: T) -> 'NodeProto': from docarray.proto import NodeProto return NodeProto(blob=self, type=self._proto_type_name) def load(self) -> Tuple[np.ndarray, int]: """ Load the Audio from the bytes into a numpy.ndarray Audio tensor EXAMPLE USAGE .. code-block:: python from docarray import BaseDocument import numpy as np from docarray.typing import AudioUrl class MyAudio(Document): url: AudioUrl tensor: Optional[NdArray] bytes: Optional[bytes] doc = MyAudio(url="toydata/hello.wav") doc.bytes = doc.url.load_bytes() doc.tensor, doc.frame_rate = doc.bytes.load() # Note this is equivalent to do doc.tensor, doc.frame_rate = doc.url.load() assert isinstance(doc.audio_tensor, np.ndarray) :return: np.ndarray representing the Audio as RGB values """ from pydub import AudioSegment # type: ignore segment = AudioSegment.from_file(io.BytesIO(self)) # Convert to float32 using NumPy samples = np.array(segment.get_array_of_samples()) # Normalise float32 array so that values are between -1.0 and +1.0 samples_norm = samples / 2 ** (segment.sample_width * 8 - 1) return samples_norm, segment.frame_rate
""" This is an example how to train SentenceTransformers in a multi-task setup. The system trains BERT on the AllNLI and on the STSbenchmark dataset. """ from torch.utils.data import DataLoader import math from sentence_transformers import models, losses from sentence_transformers import LoggingHandler, SentenceTransformer, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import InputExample import logging from datetime import datetime import gzip import csv import os #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Read the dataset model_name = "bert-base-uncased" batch_size = 16 model_save_path = "output/training_multi-task_" + model_name + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # Check if dataset exists. If not, download and extract it nli_dataset_path = "datasets/AllNLI.tsv.gz" sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(nli_dataset_path): util.http_get("https://sbert.net/datasets/AllNLI.tsv.gz", nli_dataset_path) if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # Use BERT for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False, ) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Convert the dataset to a DataLoader ready for training logging.info("Read AllNLI train dataset") label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} train_nli_samples = [] with gzip.open(nli_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: if row["split"] == "train": label_id = label2int[row["label"]] train_nli_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) train_dataloader_nli = DataLoader(train_nli_samples, shuffle=True, batch_size=batch_size) train_loss_nli = losses.SoftmaxLoss( model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=len(label2int) ) logging.info("Read STSbenchmark train dataset") train_sts_samples = [] dev_sts_samples = [] test_sts_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_sts_samples.append(inp_example) elif row["split"] == "test": test_sts_samples.append(inp_example) else: train_sts_samples.append(inp_example) train_dataloader_sts = DataLoader(train_sts_samples, shuffle=True, batch_size=batch_size) train_loss_sts = losses.CosineSimilarityLoss(model=model) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_sts_samples, name="sts-dev") # Configure the training num_epochs = 4 warmup_steps = math.ceil(len(train_dataloader_sts) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Here we define the two train objectives: train_dataloader_nli with train_loss_nli (i.e., SoftmaxLoss for NLI data) # and train_dataloader_sts with train_loss_sts (i.e., CosineSimilarityLoss for STSbenchmark data) # You can pass as many (dataloader, loss) tuples as you like. They are iterated in a round-robin way. train_objectives = [(train_dataloader_nli, train_loss_nli), (train_dataloader_sts, train_loss_sts)] # Train the model model.fit( train_objectives=train_objectives, evaluator=evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=model_save_path, ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_sts_samples, name="sts-test") test_evaluator(model, output_path=model_save_path)
""" This is an example how to train SentenceTransformers in a multi-task setup. The system trains BERT on the AllNLI and on the STSbenchmark dataset. """ from torch.utils.data import DataLoader import math from sentence_transformers import models, losses from sentence_transformers import LoggingHandler, SentenceTransformer, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import InputExample import logging from datetime import datetime import gzip import csv import os #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Read the dataset model_name = "bert-base-uncased" batch_size = 16 model_save_path = "output/training_multi-task_" + model_name + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # Check if dataset exists. If not, download and extract it nli_dataset_path = "datasets/AllNLI.tsv.gz" sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(nli_dataset_path): util.http_get("https://sbert.net/datasets/AllNLI.tsv.gz", nli_dataset_path) if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # Use BERT for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False, ) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Convert the dataset to a DataLoader ready for training logging.info("Read AllNLI train dataset") label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} train_nli_samples = [] with gzip.open(nli_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: if row["split"] == "train": label_id = label2int[row["label"]] train_nli_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) train_dataloader_nli = DataLoader(train_nli_samples, shuffle=True, batch_size=batch_size) train_loss_nli = losses.SoftmaxLoss( model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=len(label2int) ) logging.info("Read STSbenchmark train dataset") train_sts_samples = [] dev_sts_samples = [] test_sts_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_sts_samples.append(inp_example) elif row["split"] == "test": test_sts_samples.append(inp_example) else: train_sts_samples.append(inp_example) train_dataloader_sts = DataLoader(train_sts_samples, shuffle=True, batch_size=batch_size) train_loss_sts = losses.CosineSimilarityLoss(model=model) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_sts_samples, name="sts-dev") # Configure the training num_epochs = 4 warmup_steps = math.ceil(len(train_dataloader_sts) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Here we define the two train objectives: train_dataloader_nli with train_loss_nli (i.e., SoftmaxLoss for NLI data) # and train_dataloader_sts with train_loss_sts (i.e., CosineSimilarityLoss for STSbenchmark data) # You can pass as many (dataloader, loss) tuples as you like. They are iterated in a round-robin way. train_objectives = [(train_dataloader_nli, train_loss_nli), (train_dataloader_sts, train_loss_sts)] # Train the model model.fit( train_objectives=train_objectives, evaluator=evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=model_save_path, ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_sts_samples, name="sts-test") test_evaluator(model, output_path=model_save_path)
from docarray.typing.id import ID from docarray.typing.tensor import NdArray, Tensor from docarray.typing.tensor.embedding import Embedding from docarray.typing.url import AnyUrl, ImageUrl, TextUrl __all__ = [ 'NdArray', 'Embedding', 'ImageUrl', 'TextUrl', 'AnyUrl', 'ID', 'Tensor', ] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor import TorchEmbedding, TorchTensor # noqa: F401 __all__.extend(['TorchEmbedding', 'TorchTensor'])
from docarray.typing.id import ID from docarray.typing.tensor import NdArray, Tensor, TorchEmbedding, TorchTensor from docarray.typing.tensor.embedding import Embedding from docarray.typing.url import AnyUrl, ImageUrl, TextUrl __all__ = [ 'TorchTensor', 'NdArray', 'Embedding', 'ImageUrl', 'TextUrl', 'AnyUrl', 'ID', 'Tensor', 'TorchEmbedding', ]
import posixpath from pathlib import Path from unittest.mock import patch import pytest from fsspec.implementations.local import AbstractFileSystem, LocalFileSystem, stringify_path from fsspec.registry import _registry as _fsspec_registry class MockFileSystem(AbstractFileSystem): protocol = "mock" def __init__(self, *args, local_root_dir, **kwargs): super().__init__() self._fs = LocalFileSystem(*args, **kwargs) self.local_root_dir = Path(local_root_dir).resolve().as_posix() + "/" def mkdir(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.mkdir(path, *args, **kwargs) def makedirs(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.makedirs(path, *args, **kwargs) def rmdir(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rmdir(path) def ls(self, path, detail=True, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) out = self._fs.ls(path, detail=detail, *args, **kwargs) if detail: return [{**info, "name": info["name"][len(self.local_root_dir) :]} for info in out] else: return [name[len(self.local_root_dir) :] for name in out] def info(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) out = dict(self._fs.info(path, *args, **kwargs)) out["name"] = out["name"][len(self.local_root_dir) :] return out def cp_file(self, path1, path2, *args, **kwargs): path1 = posixpath.join(self.local_root_dir, self._strip_protocol(path1)) path2 = posixpath.join(self.local_root_dir, self._strip_protocol(path2)) return self._fs.cp_file(path1, path2, *args, **kwargs) def rm_file(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rm_file(path, *args, **kwargs) def rm(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rm(path, *args, **kwargs) def _open(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs._open(path, *args, **kwargs) def created(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.created(path) def modified(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.modified(path) @classmethod def _strip_protocol(cls, path): path = stringify_path(path) if path.startswith("mock://"): path = path[7:] return path class TmpDirFileSystem(MockFileSystem): protocol = "tmp" tmp_dir = None def __init__(self, *args, **kwargs): assert self.tmp_dir is not None, "TmpDirFileSystem.tmp_dir is not set" super().__init__(*args, **kwargs, local_root_dir=self.tmp_dir, auto_mkdir=True) @classmethod def _strip_protocol(cls, path): path = stringify_path(path) if path.startswith("tmp://"): path = path[6:] return path @pytest.fixture def mock_fsspec(): _fsspec_registry["mock"] = MockFileSystem _fsspec_registry["tmp"] = TmpDirFileSystem yield del _fsspec_registry["mock"] del _fsspec_registry["tmp"] @pytest.fixture def mockfs(tmp_path_factory, mock_fsspec): local_fs_dir = tmp_path_factory.mktemp("mockfs") return MockFileSystem(local_root_dir=local_fs_dir, auto_mkdir=True) @pytest.fixture def tmpfs(tmp_path_factory, mock_fsspec): tmp_fs_dir = tmp_path_factory.mktemp("tmpfs") with patch.object(TmpDirFileSystem, "tmp_dir", tmp_fs_dir): yield TmpDirFileSystem() TmpDirFileSystem.clear_instance_cache()
import posixpath from pathlib import Path from unittest.mock import patch import pytest from fsspec.implementations.local import AbstractFileSystem, LocalFileSystem, stringify_path from fsspec.registry import _registry as _fsspec_registry class MockFileSystem(AbstractFileSystem): protocol = "mock" def __init__(self, *args, local_root_dir, **kwargs): super().__init__() self._fs = LocalFileSystem(*args, **kwargs) self.local_root_dir = Path(local_root_dir).resolve().as_posix() + "/" def mkdir(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.mkdir(path, *args, **kwargs) def makedirs(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.makedirs(path, *args, **kwargs) def rmdir(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rmdir(path) def ls(self, path, detail=True, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) out = self._fs.ls(path, detail=detail, *args, **kwargs) if detail: return [{**info, "name": info["name"][len(self.local_root_dir) :]} for info in out] else: return [name[len(self.local_root_dir) :] for name in out] def info(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) out = dict(self._fs.info(path, *args, **kwargs)) out["name"] = out["name"][len(self.local_root_dir) :] return out def cp_file(self, path1, path2, *args, **kwargs): path1 = posixpath.join(self.local_root_dir, self._strip_protocol(path1)) path2 = posixpath.join(self.local_root_dir, self._strip_protocol(path2)) return self._fs.cp_file(path1, path2, *args, **kwargs) def rm_file(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rm_file(path, *args, **kwargs) def rm(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rm(path, *args, **kwargs) def _open(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs._open(path, *args, **kwargs) def created(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.created(path) def modified(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.modified(path) @classmethod def _strip_protocol(cls, path): path = stringify_path(path) if path.startswith("mock://"): path = path[7:] return path class TmpDirFileSystem(MockFileSystem): protocol = "tmp" tmp_dir = None def __init__(self, *args, **kwargs): assert self.tmp_dir is not None, "TmpDirFileSystem.tmp_dir is not set" super().__init__(*args, **kwargs, local_root_dir=self.tmp_dir, auto_mkdir=True) @classmethod def _strip_protocol(cls, path): path = stringify_path(path) if path.startswith("tmp://"): path = path[6:] return path @pytest.fixture def mock_fsspec(): _fsspec_registry["mock"] = MockFileSystem _fsspec_registry["tmp"] = TmpDirFileSystem yield del _fsspec_registry["mock"] del _fsspec_registry["tmp"] @pytest.fixture def mockfs(tmp_path_factory, mock_fsspec): local_fs_dir = tmp_path_factory.mktemp("mockfs") return MockFileSystem(local_root_dir=local_fs_dir, auto_mkdir=True) @pytest.fixture def tmpfs(tmp_path_factory, mock_fsspec): tmp_fs_dir = tmp_path_factory.mktemp("tmpfs") with patch.object(TmpDirFileSystem, "tmp_dir", tmp_fs_dir): yield TmpDirFileSystem()
import unittest import torch from mmengine.data import PixelData from mmengine.testing import assert_allclose from mmdet.data_elements import DetDataSample from mmdet.models.seg_heads import PanopticFPNHead class TestPanopticFPNHead(unittest.TestCase): def test_init_weights(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=1, inner_channels=1) head.init_weights() assert_allclose(head.conv_logits.bias.data, torch.zeros_like(head.conv_logits.bias.data)) def test_loss(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=32, inner_channels=32, start_level=0, end_level=1) x = [torch.rand((2, 32, 8, 8)), torch.rand((2, 32, 4, 4))] data_sample1 = DetDataSample() data_sample1.gt_sem_seg = PixelData( sem_seg=torch.randint(0, 4, (1, 7, 8))) data_sample2 = DetDataSample() data_sample2.gt_sem_seg = PixelData( sem_seg=torch.randint(0, 4, (1, 7, 8))) batch_data_samples = [data_sample1, data_sample2] results = head.loss(x, batch_data_samples) self.assertIsInstance(results, dict) def test_predict(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=32, inner_channels=32, start_level=0, end_level=1) x = [torch.rand((2, 32, 8, 8)), torch.rand((2, 32, 4, 4))] img_meta1 = { 'batch_input_shape': (16, 16), 'img_shape': (14, 14), 'ori_shape': (12, 12), } img_meta2 = { 'batch_input_shape': (16, 16), 'img_shape': (16, 16), 'ori_shape': (16, 16), } batch_img_metas = [img_meta1, img_meta2] head.eval() with torch.no_grad(): seg_preds = head.predict(x, batch_img_metas, rescale=False) self.assertTupleEqual(seg_preds[0].shape[-2:], (16, 16)) self.assertTupleEqual(seg_preds[1].shape[-2:], (16, 16)) seg_preds = head.predict(x, batch_img_metas, rescale=True) self.assertTupleEqual(seg_preds[0].shape[-2:], (12, 12)) self.assertTupleEqual(seg_preds[1].shape[-2:], (16, 16))
import unittest import torch from mmengine.data import PixelData from mmengine.testing import assert_allclose from mmdet.core.data_structures import DetDataSample from mmdet.models.seg_heads import PanopticFPNHead class TestPanopticFPNHead(unittest.TestCase): def test_init_weights(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=1, inner_channels=1) head.init_weights() assert_allclose(head.conv_logits.bias.data, torch.zeros_like(head.conv_logits.bias.data)) def test_loss(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=32, inner_channels=32, start_level=0, end_level=1) x = [torch.rand((2, 32, 8, 8)), torch.rand((2, 32, 4, 4))] data_sample1 = DetDataSample() data_sample1.gt_sem_seg = PixelData( sem_seg=torch.randint(0, 4, (1, 7, 8))) data_sample2 = DetDataSample() data_sample2.gt_sem_seg = PixelData( sem_seg=torch.randint(0, 4, (1, 7, 8))) batch_data_samples = [data_sample1, data_sample2] results = head.loss(x, batch_data_samples) self.assertIsInstance(results, dict) def test_predict(self): head = PanopticFPNHead( num_things_classes=2, num_stuff_classes=2, in_channels=32, inner_channels=32, start_level=0, end_level=1) x = [torch.rand((2, 32, 8, 8)), torch.rand((2, 32, 4, 4))] img_meta1 = { 'batch_input_shape': (16, 16), 'img_shape': (14, 14), 'ori_shape': (12, 12), } img_meta2 = { 'batch_input_shape': (16, 16), 'img_shape': (16, 16), 'ori_shape': (16, 16), } batch_img_metas = [img_meta1, img_meta2] head.eval() with torch.no_grad(): seg_preds = head.predict(x, batch_img_metas, rescale=False) self.assertTupleEqual(seg_preds[0].shape[-2:], (16, 16)) self.assertTupleEqual(seg_preds[1].shape[-2:], (16, 16)) seg_preds = head.predict(x, batch_img_metas, rescale=True) self.assertTupleEqual(seg_preds[0].shape[-2:], (12, 12)) self.assertTupleEqual(seg_preds[1].shape[-2:], (16, 16))
# Copyright (c) OpenMMLab. All rights reserved. from collections import OrderedDict from mmcv.utils import print_log from mmdet.core import eval_map, eval_recalls from .builder import DATASETS from .xml_style import XMLDataset @DATASETS.register_module() class VOCDataset(XMLDataset): CLASSES = ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') PALETTE = [(106, 0, 228), (119, 11, 32), (165, 42, 42), (0, 0, 192), (197, 226, 255), (0, 60, 100), (0, 0, 142), (255, 77, 255), (153, 69, 1), (120, 166, 157), (0, 182, 199), (0, 226, 252), (182, 182, 255), (0, 0, 230), (220, 20, 60), (163, 255, 0), (0, 82, 0), (3, 95, 161), (0, 80, 100), (183, 130, 88)] def __init__(self, **kwargs): super(VOCDataset, self).__init__(**kwargs) if 'VOC2007' in self.img_prefix: self.year = 2007 elif 'VOC2012' in self.img_prefix: self.year = 2012 else: raise ValueError('Cannot infer dataset year from img_prefix') def evaluate(self, results, metric='mAP', logger=None, proposal_nums=(100, 300, 1000), iou_thr=0.5, scale_ranges=None): """Evaluate in VOC protocol. Args: results (list[list | tuple]): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. Options are 'mAP', 'recall'. logger (logging.Logger | str, optional): Logger used for printing related information during evaluation. Default: None. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thr (float | list[float]): IoU threshold. Default: 0.5. scale_ranges (list[tuple], optional): Scale ranges for evaluating mAP. If not specified, all bounding boxes would be included in evaluation. Default: None. Returns: dict[str, float]: AP/recall metrics. """ if not isinstance(metric, str): assert len(metric) == 1 metric = metric[0] allowed_metrics = ['mAP', 'recall'] if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') annotations = [self.get_ann_info(i) for i in range(len(self))] eval_results = OrderedDict() iou_thrs = [iou_thr] if isinstance(iou_thr, float) else iou_thr if metric == 'mAP': assert isinstance(iou_thrs, list) if self.year == 2007: ds_name = 'voc07' else: ds_name = self.CLASSES mean_aps = [] for iou_thr in iou_thrs: print_log(f'\n{"-" * 15}iou_thr: {iou_thr}{"-" * 15}') # Follow the official implementation, # http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCdevkit_18-May-2011.tar # we should use the legacy coordinate system in mmdet 1.x, # which means w, h should be computed as 'x2 - x1 + 1` and # `y2 - y1 + 1` mean_ap, _ = eval_map( results, annotations, scale_ranges=None, iou_thr=iou_thr, dataset=ds_name, logger=logger, use_legacy_coordinate=True) mean_aps.append(mean_ap) eval_results[f'AP{int(iou_thr * 100):02d}'] = round(mean_ap, 3) eval_results['mAP'] = sum(mean_aps) / len(mean_aps) eval_results.move_to_end('mAP', last=False) elif metric == 'recall': gt_bboxes = [ann['bboxes'] for ann in annotations] recalls = eval_recalls( gt_bboxes, results, proposal_nums, iou_thrs, logger=logger, use_legacy_coordinate=True) for i, num in enumerate(proposal_nums): for j, iou_thr in enumerate(iou_thrs): eval_results[f'recall@{num}@{iou_thr}'] = recalls[i, j] if recalls.shape[1] > 1: ar = recalls.mean(axis=1) for i, num in enumerate(proposal_nums): eval_results[f'AR@{num}'] = ar[i] return eval_results
# Copyright (c) OpenMMLab. All rights reserved. from collections import OrderedDict from mmcv.utils import print_log from mmdet.core import eval_map, eval_recalls from .builder import DATASETS from .xml_style import XMLDataset @DATASETS.register_module() class VOCDataset(XMLDataset): CLASSES = ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') def __init__(self, **kwargs): super(VOCDataset, self).__init__(**kwargs) if 'VOC2007' in self.img_prefix: self.year = 2007 elif 'VOC2012' in self.img_prefix: self.year = 2012 else: raise ValueError('Cannot infer dataset year from img_prefix') def evaluate(self, results, metric='mAP', logger=None, proposal_nums=(100, 300, 1000), iou_thr=0.5, scale_ranges=None): """Evaluate in VOC protocol. Args: results (list[list | tuple]): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. Options are 'mAP', 'recall'. logger (logging.Logger | str, optional): Logger used for printing related information during evaluation. Default: None. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thr (float | list[float]): IoU threshold. Default: 0.5. scale_ranges (list[tuple], optional): Scale ranges for evaluating mAP. If not specified, all bounding boxes would be included in evaluation. Default: None. Returns: dict[str, float]: AP/recall metrics. """ if not isinstance(metric, str): assert len(metric) == 1 metric = metric[0] allowed_metrics = ['mAP', 'recall'] if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') annotations = [self.get_ann_info(i) for i in range(len(self))] eval_results = OrderedDict() iou_thrs = [iou_thr] if isinstance(iou_thr, float) else iou_thr if metric == 'mAP': assert isinstance(iou_thrs, list) if self.year == 2007: ds_name = 'voc07' else: ds_name = self.CLASSES mean_aps = [] for iou_thr in iou_thrs: print_log(f'\n{"-" * 15}iou_thr: {iou_thr}{"-" * 15}') # Follow the official implementation, # http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCdevkit_18-May-2011.tar # we should use the legacy coordinate system in mmdet 1.x, # which means w, h should be computed as 'x2 - x1 + 1` and # `y2 - y1 + 1` mean_ap, _ = eval_map( results, annotations, scale_ranges=None, iou_thr=iou_thr, dataset=ds_name, logger=logger, use_legacy_coordinate=True) mean_aps.append(mean_ap) eval_results[f'AP{int(iou_thr * 100):02d}'] = round(mean_ap, 3) eval_results['mAP'] = sum(mean_aps) / len(mean_aps) elif metric == 'recall': gt_bboxes = [ann['bboxes'] for ann in annotations] recalls = eval_recalls( gt_bboxes, results, proposal_nums, iou_thrs, logger=logger, use_legacy_coordinate=True) for i, num in enumerate(proposal_nums): for j, iou_thr in enumerate(iou_thrs): eval_results[f'recall@{num}@{iou_thr}'] = recalls[i, j] if recalls.shape[1] > 1: ar = recalls.mean(axis=1) for i, num in enumerate(proposal_nums): eval_results[f'AR@{num}'] = ar[i] return eval_results
# Copyright (c) OpenMMLab. All rights reserved. import argparse import cv2 import mmcv import torch from mmdet.apis import inference_detector, init_detector from mmdet.registry import VISUALIZERS from mmdet.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='MMDetection webcam demo') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--device', type=str, default='cuda:0', help='CPU/CUDA device option') parser.add_argument( '--camera-id', type=int, default=0, help='camera device id') parser.add_argument( '--score-thr', type=float, default=0.5, help='bbox score threshold') args = parser.parse_args() return args def main(): args = parse_args() # register all modules in mmdet into the registries register_all_modules() # build the model from a config file and a checkpoint file device = torch.device(args.device) model = init_detector(args.config, args.checkpoint, device=device) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) # the dataset_meta is loaded from the checkpoint and # then pass to the model in init_detector visualizer.dataset_meta = model.dataset_meta camera = cv2.VideoCapture(args.camera_id) print('Press "Esc", "q" or "Q" to exit.') while True: ret_val, img = camera.read() result = inference_detector(model, img) img = mmcv.imconvert(img, 'bgr', 'rgb') visualizer.add_datasample( name='result', image=img, data_sample=result, draw_gt=False, pred_score_thr=args.score_thr, show=False) img = visualizer.get_image() img = mmcv.imconvert(img, 'bgr', 'rgb') cv2.imshow('result', img) ch = cv2.waitKey(1) if ch == 27 or ch == ord('q') or ch == ord('Q'): break if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import cv2 import mmcv import torch from mmdet.apis import inference_detector, init_detector from mmdet.registry import VISUALIZERS from mmdet.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='MMDetection webcam demo') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--device', type=str, default='cuda:0', help='CPU/CUDA device option') parser.add_argument( '--camera-id', type=int, default=0, help='camera device id') parser.add_argument( '--score-thr', type=float, default=0.5, help='bbox score threshold') args = parser.parse_args() return args def main(): args = parse_args() # register all modules in mmdet into the registries register_all_modules() # build the model from a config file and a checkpoint file device = torch.device(args.device) model = init_detector(args.config, args.checkpoint, device=device) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) # the dataset_meta is loaded from the checkpoint and # then pass to the model in init_detector visualizer.dataset_meta = model.dataset_meta camera = cv2.VideoCapture(args.camera_id) print('Press "Esc", "q" or "Q" to exit.') while True: ret_val, img = camera.read() result = inference_detector(model, img) img = mmcv.imconvert(img, 'bgr', 'rgb') visualizer.add_datasample( name='result', image=img, pred_sample=result, pred_score_thr=args.score_thr, show=False) img = visualizer.get_image() img = mmcv.imconvert(img, 'bgr', 'rgb') cv2.imshow('result', img) ch = cv2.waitKey(1) if ch == 27 or ch == ord('q') or ch == ord('Q'): break if __name__ == '__main__': main()
""" This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It uses AdaptiveLayerLoss with the powerful CoSENTLoss to train models that perform well even when removing some layers. It generates sentence embeddings that can be compared using cosine-similarity to measure the similarity. Usage: python adaptive_layer_sts.py OR python adaptive_layer_sts.py pretrained_transformer_model_name """ import logging import sys import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers import ( SentenceTransformer, SentenceTransformerTrainer, SentenceTransformerTrainingArguments, losses, ) from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator, SimilarityFunction # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) model_name = sys.argv[1] if len(sys.argv) > 1 else "distilbert-base-uncased" batch_size = 16 num_train_epochs = 4 # Save path of the model output_dir = f"output/adaptive_layer_sts_{model_name.replace('/', '-')}-{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}" # 1. Here we define our SentenceTransformer model. If not already a Sentence Transformer model, it will automatically # create one with "mean" pooling. model = SentenceTransformer(model_name) # If we want, we can limit the maximum sequence length for the model # model.max_seq_length = 75 logging.info(model) # 2. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 3. Define our training loss # CoSENTLoss (https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) needs two text # columns and one similarity score column (between 0 and 1) inner_train_loss = losses.CoSENTLoss(model=model) train_loss = losses.AdaptiveLayerLoss(model, inner_train_loss) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_train_epochs, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="adaptive-layer-sts", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-sts-adaptive-layer") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-sts-adaptive-layer')`." )
""" This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It uses AdaptiveLayerLoss with the powerful CoSENTLoss to train models that perform well even when removing some layers. It generates sentence embeddings that can be compared using cosine-similarity to measure the similarity. Usage: python adaptive_layer_sts.py OR python adaptive_layer_sts.py pretrained_transformer_model_name """ import logging import sys import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers import ( SentenceTransformer, SentenceTransformerTrainer, SentenceTransformerTrainingArguments, losses, ) from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator, SimilarityFunction # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) model_name = sys.argv[1] if len(sys.argv) > 1 else "distilbert-base-uncased" batch_size = 16 num_train_epochs = 4 # Save path of the model output_dir = f"output/adaptive_layer_sts_{model_name.replace('/', '-')}-{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}" # 1. Here we define our SentenceTransformer model. If not already a Sentence Transformer model, it will automatically # create one with "mean" pooling. model = SentenceTransformer(model_name) # If we want, we can limit the maximum sequence length for the model # model.max_seq_length = 75 logging.info(model) # 2. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 3. Define our training loss # CoSENTLoss (https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) needs two text # columns and one similarity score column (between 0 and 1) inner_train_loss = losses.CoSENTLoss(model=model) train_loss = losses.AdaptiveLayerLoss(model, inner_train_loss) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_train_epochs, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="adaptive-layer-sts", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-sts-adaptive-layer") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-sts-adaptive-layer')`." )
""" This is a simple application for sentence embeddings: clustering Sentences are mapped to sentence embeddings and then k-mean clustering is applied. """ from sklearn.cluster import KMeans from sentence_transformers import SentenceTransformer embedder = SentenceTransformer("all-MiniLM-L6-v2") # Corpus with example sentences corpus = [ "A man is eating food.", "A man is eating a piece of bread.", "A man is eating pasta.", "The girl is carrying a baby.", "The baby is carried by the woman", "A man is riding a horse.", "A man is riding a white horse on an enclosed ground.", "A monkey is playing drums.", "Someone in a gorilla costume is playing a set of drums.", "A cheetah is running behind its prey.", "A cheetah chases prey on across a field.", ] corpus_embeddings = embedder.encode(corpus) # Perform kmean clustering num_clusters = 5 clustering_model = KMeans(n_clusters=num_clusters) clustering_model.fit(corpus_embeddings) cluster_assignment = clustering_model.labels_ clustered_sentences = [[] for i in range(num_clusters)] for sentence_id, cluster_id in enumerate(cluster_assignment): clustered_sentences[cluster_id].append(corpus[sentence_id]) for i, cluster in enumerate(clustered_sentences): print("Cluster ", i + 1) print(cluster) print("")
""" This is a simple application for sentence embeddings: clustering Sentences are mapped to sentence embeddings and then k-mean clustering is applied. """ from sentence_transformers import SentenceTransformer from sklearn.cluster import KMeans embedder = SentenceTransformer('all-MiniLM-L6-v2') # Corpus with example sentences corpus = ['A man is eating food.', 'A man is eating a piece of bread.', 'A man is eating pasta.', 'The girl is carrying a baby.', 'The baby is carried by the woman', 'A man is riding a horse.', 'A man is riding a white horse on an enclosed ground.', 'A monkey is playing drums.', 'Someone in a gorilla costume is playing a set of drums.', 'A cheetah is running behind its prey.', 'A cheetah chases prey on across a field.' ] corpus_embeddings = embedder.encode(corpus) # Perform kmean clustering num_clusters = 5 clustering_model = KMeans(n_clusters=num_clusters) clustering_model.fit(corpus_embeddings) cluster_assignment = clustering_model.labels_ clustered_sentences = [[] for i in range(num_clusters)] for sentence_id, cluster_id in enumerate(cluster_assignment): clustered_sentences[cluster_id].append(corpus[sentence_id]) for i, cluster in enumerate(clustered_sentences): print("Cluster ", i+1) print(cluster) print("")
""" Python polyfills for sys """ from __future__ import annotations import sys from ..decorators import substitute_in_graph __all__ = [ "intern", "getrecursionlimit", ] @substitute_in_graph(sys.intern, can_constant_fold_through=True) def intern(string: str, /) -> str: return string @substitute_in_graph(sys.getrecursionlimit, can_constant_fold_through=True) def getrecursionlimit() -> int: return sys.getrecursionlimit()
""" Python polyfills for sys """ from __future__ import annotations import sys from ..decorators import substitute_in_graph __all__ = [ "intern", "getrecursionlimit", ] @substitute_in_graph(sys.intern, can_constant_fold_through=True) def intern(string: str, /) -> str: return string @substitute_in_graph(sys.getrecursionlimit, can_constant_fold_through=True) def getrecursionlimit() -> int: return sys.getrecursionlimit() @substitute_in_graph(sys.get_int_max_str_digits, can_constant_fold_through=True) def get_int_max_str_digits() -> int: return sys.get_int_max_str_digits()
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import SchedulerMixin, UNet2DModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput class CustomLocalPipeline(DiffusionPipeline): r""" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Parameters: unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of [`DDPMScheduler`], or [`DDIMScheduler`]. """ def __init__(self, unet: UNet2DModel, scheduler: SchedulerMixin): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, batch_size: int = 1, generator: Optional[torch.Generator] = None, num_inference_steps: int = 50, output_type: Optional[str] = "pil", return_dict: bool = True, **kwargs, ) -> Union[ImagePipelineOutput, Tuple]: r""" Args: batch_size (`int`, *optional*, defaults to 1): The number of images to generate. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. eta (`float`, *optional*, defaults to 0.0): The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM). num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ # Sample gaussian noise to begin loop image = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=generator, ) image = image.to(self.device) # set step values self.scheduler.set_timesteps(num_inference_steps) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output model_output = self.unet(image, t).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 image = self.scheduler.step(model_output, t, image).prev_sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=image), "This is a local test"
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput class CustomLocalPipeline(DiffusionPipeline): r""" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Parameters: unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of [`DDPMScheduler`], or [`DDIMScheduler`]. """ def __init__(self, unet, scheduler): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, batch_size: int = 1, generator: Optional[torch.Generator] = None, num_inference_steps: int = 50, output_type: Optional[str] = "pil", return_dict: bool = True, **kwargs, ) -> Union[ImagePipelineOutput, Tuple]: r""" Args: batch_size (`int`, *optional*, defaults to 1): The number of images to generate. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. eta (`float`, *optional*, defaults to 0.0): The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM). num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ # Sample gaussian noise to begin loop image = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=generator, ) image = image.to(self.device) # set step values self.scheduler.set_timesteps(num_inference_steps) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output model_output = self.unet(image, t).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 image = self.scheduler.step(model_output, t, image).prev_sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=image), "This is a local test"
import os import subprocess import time from typing import List import docker import pytest from jina.logging.logger import JinaLogger client = docker.from_env() cur_dir = os.path.dirname(__file__) @pytest.fixture() def test_dir() -> str: return cur_dir @pytest.fixture def logger(): return JinaLogger('docker-compose-testing') @pytest.fixture def image_name_tag_map(): return { 'reload-executor': '0.13.1', 'test-executor': '0.13.1', #'test-executor-torch': '0.13.1', 'executor-merger': '0.1.1', 'custom-gateway': '0.1.1', 'multiprotocol-gateway': '0.1.1', 'jinaai/jina': 'test-pip', } def build_docker_image(image_name, image_name_tag_map): logger = JinaLogger('docker-compose-testing') image_tag = image_name + ':' + image_name_tag_map[image_name] image, build_logs = client.images.build( path=os.path.join(cur_dir, image_name), tag=image_tag ) for chunk in build_logs: if 'stream' in chunk: for line in chunk['stream'].splitlines(): logger.debug(line) return image.tags[-1] @pytest.fixture(autouse=True) def set_test_pip_version(): os.environ['JINA_GATEWAY_IMAGE'] = 'jinaai/jina:test-pip' yield del os.environ['JINA_GATEWAY_IMAGE'] @pytest.fixture(autouse=True) def build_images(image_name_tag_map): for image in image_name_tag_map.keys(): if image != 'jinaai/jina': build_docker_image(image, image_name_tag_map) @pytest.fixture def docker_images(request, image_name_tag_map): image_names = request.param images = [ image_name + ':' + image_name_tag_map[image_name] for image_name in image_names ] return images class DockerComposeServices: healthy_status = 'healthy' unhealthy_status = 'unhealthy' def __init__(self, dump_path, timeout_second=30): self.dump_path = dump_path self.timeout_second = timeout_second def __enter__(self): subprocess.run( f'docker compose -f {self.dump_path} up --build -d --remove-orphans'.split( ' ' ) ) container_ids = ( subprocess.run( f'docker compose -f {self.dump_path} ps -q'.split(' '), capture_output=True, ) .stdout.decode("utf-8") .split('\n') ) container_ids.remove('') # remove empty return line if not container_ids: raise RuntimeError('docker-compose ps did not detect any launch container') client = docker.from_env() init_time = time.time() healthy = False while time.time() - init_time < self.timeout_second: if self._are_all_container_healthy(container_ids, client): healthy = True break time.sleep(0.1) if not healthy: raise RuntimeError('Docker containers are not healthy') @staticmethod def _are_all_container_healthy( container_ids: List[str], client: docker.client.DockerClient ) -> bool: for id_ in container_ids: status = client.containers.get(id_).attrs['State']['Health']['Status'] if status != DockerComposeServices.healthy_status: return False return True def __exit__(self, exc_type, exc_val, exc_tb): subprocess.run( f'docker compose -f {self.dump_path} down --remove-orphans'.split(' ') )
import os import subprocess import time from typing import List import docker import pytest from jina.logging.logger import JinaLogger client = docker.from_env() cur_dir = os.path.dirname(__file__) @pytest.fixture() def test_dir() -> str: return cur_dir @pytest.fixture def logger(): return JinaLogger('docker-compose-testing') @pytest.fixture def image_name_tag_map(): return { 'reload-executor': '0.13.1', 'test-executor': '0.13.1', 'test-executor-torch': '0.13.1', 'executor-merger': '0.1.1', 'custom-gateway': '0.1.1', 'multiprotocol-gateway': '0.1.1', 'jinaai/jina': 'test-pip', } def build_docker_image(image_name, image_name_tag_map): logger = JinaLogger('docker-compose-testing') image_tag = image_name + ':' + image_name_tag_map[image_name] image, build_logs = client.images.build( path=os.path.join(cur_dir, image_name), tag=image_tag ) for chunk in build_logs: if 'stream' in chunk: for line in chunk['stream'].splitlines(): logger.debug(line) return image.tags[-1] @pytest.fixture(autouse=True) def set_test_pip_version(): os.environ['JINA_GATEWAY_IMAGE'] = 'jinaai/jina:test-pip' yield del os.environ['JINA_GATEWAY_IMAGE'] @pytest.fixture(autouse=True) def build_images(image_name_tag_map): for image in image_name_tag_map.keys(): if image != 'jinaai/jina': build_docker_image(image, image_name_tag_map) @pytest.fixture def docker_images(request, image_name_tag_map): image_names = request.param images = [ image_name + ':' + image_name_tag_map[image_name] for image_name in image_names ] return images class DockerComposeServices: healthy_status = 'healthy' unhealthy_status = 'unhealthy' def __init__(self, dump_path, timeout_second=30): self.dump_path = dump_path self.timeout_second = timeout_second def __enter__(self): subprocess.run( f'docker compose -f {self.dump_path} up --build -d --remove-orphans'.split( ' ' ) ) container_ids = ( subprocess.run( f'docker compose -f {self.dump_path} ps -q'.split(' '), capture_output=True, ) .stdout.decode("utf-8") .split('\n') ) container_ids.remove('') # remove empty return line if not container_ids: raise RuntimeError('docker-compose ps did not detect any launch container') client = docker.from_env() init_time = time.time() healthy = False while time.time() - init_time < self.timeout_second: if self._are_all_container_healthy(container_ids, client): healthy = True break time.sleep(0.1) if not healthy: raise RuntimeError('Docker containers are not healthy') @staticmethod def _are_all_container_healthy( container_ids: List[str], client: docker.client.DockerClient ) -> bool: for id_ in container_ids: status = client.containers.get(id_).attrs['State']['Health']['Status'] if status != DockerComposeServices.healthy_status: return False return True def __exit__(self, exc_type, exc_val, exc_tb): subprocess.run( f'docker compose -f {self.dump_path} down --remove-orphans'.split(' ') )
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Llama4 model.""" import unittest from transformers import is_torch_available from transformers.testing_utils import ( require_read_token, require_torch_large_accelerator, slow, torch_device, ) if is_torch_available(): import torch from transformers import ( Llama4ForConditionalGeneration, Llama4Processor, ) @slow @require_torch_large_accelerator @require_read_token class Llama4IntegrationTest(unittest.TestCase): model_id = "meta-llama/Llama-4-Scout-17B-16E" @classmethod def setUpClass(cls): cls.model = Llama4ForConditionalGeneration.from_pretrained( "meta-llama/Llama-4-Scout-17B-16E", device_map="auto", torch_dtype=torch.float32, attn_implementation="eager", ) def setUp(self): self.processor = Llama4Processor.from_pretrained("meta-llama/Llama-4-Scout-17B-16E", padding_side="left") url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png" self.messages_1 = [ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, { "role": "user", "content": [ {"type": "image", "url": url}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] self.messages_2 = [ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, { "role": "user", "content": [ { "type": "image", "url": "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png", }, {"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}, {"type": "text", "text": "Are these images identical?"}, ], }, ] def test_model_17b_16e_fp16(self): EXPECTED_TEXT = [ 'system\n\nYou are a helpful assistant.user\n\nWhat is shown in this image?assistant\n\nThe image shows a cow standing on a beach, with a blue sky and a body of water in the background. The cow is brown with a white' ] # fmt: skip inputs = self.processor.apply_chat_template( self.messages_1, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True ).to(device=torch_device, dtype=self.model.dtype) output = self.model.generate(**inputs, max_new_tokens=30, do_sample=False) output_text = self.processor.batch_decode(output, skip_special_tokens=True) print(output_text) self.assertEqual(output_text, EXPECTED_TEXT) def test_model_17b_16e_batch(self): inputs = self.processor.apply_chat_template( [self.messages_1, self.messages_2], tokenize=True, return_dict=True, return_tensors="pt", padding=True, add_generation_prompt=True, ).to(device=torch_device, dtype=torch.float32) output = self.model.generate(**inputs, max_new_tokens=30, do_sample=False) output_text = self.processor.batch_decode(output, skip_special_tokens=True) EXPECTED_TEXTS = [ 'system\n\nYou are a helpful assistant.user\n\nWhat is shown in this image?assistant\n\nThe image shows a cow standing on a beach, with a blue sky and a body of water in the background. The cow is brown with a white', 'system\n\nYou are a helpful assistant.user\n\nAre these images identical?assistant\n\nNo, these images are not identical. The first image shows a cow standing on a beach with a blue sky and a white cloud in the background.' ] # fmt: skip self.assertEqual(output_text, EXPECTED_TEXTS)
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Llama4 model.""" import unittest from transformers import is_torch_available from transformers.testing_utils import ( require_read_token, require_torch_large_gpu, slow, torch_device, ) if is_torch_available(): import torch from transformers import ( Llama4ForConditionalGeneration, Llama4Processor, ) @slow @require_torch_large_gpu @require_read_token class Llama4IntegrationTest(unittest.TestCase): model_id = "meta-llama/Llama-4-Scout-17B-16E" @classmethod def setUpClass(cls): cls.model = Llama4ForConditionalGeneration.from_pretrained( "meta-llama/Llama-4-Scout-17B-16E", device_map="auto", torch_dtype=torch.float32, attn_implementation="eager", ) def setUp(self): self.processor = Llama4Processor.from_pretrained("meta-llama/Llama-4-Scout-17B-16E", padding_side="left") url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png" self.messages_1 = [ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, { "role": "user", "content": [ {"type": "image", "url": url}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] self.messages_2 = [ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, { "role": "user", "content": [ { "type": "image", "url": "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png", }, {"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}, {"type": "text", "text": "Are these images identical?"}, ], }, ] def test_model_17b_16e_fp16(self): EXPECTED_TEXT = [ 'system\n\nYou are a helpful assistant.user\n\nWhat is shown in this image?assistant\n\nThe image shows a cow standing on a beach, with a blue sky and a body of water in the background. The cow is brown with a white' ] # fmt: skip inputs = self.processor.apply_chat_template( self.messages_1, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True ).to(device=torch_device, dtype=self.model.dtype) output = self.model.generate(**inputs, max_new_tokens=30, do_sample=False) output_text = self.processor.batch_decode(output, skip_special_tokens=True) print(output_text) self.assertEqual(output_text, EXPECTED_TEXT) def test_model_17b_16e_batch(self): inputs = self.processor.apply_chat_template( [self.messages_1, self.messages_2], tokenize=True, return_dict=True, return_tensors="pt", padding=True, add_generation_prompt=True, ).to(device=torch_device, dtype=torch.float32) output = self.model.generate(**inputs, max_new_tokens=30, do_sample=False) output_text = self.processor.batch_decode(output, skip_special_tokens=True) EXPECTED_TEXTS = [ 'system\n\nYou are a helpful assistant.user\n\nWhat is shown in this image?assistant\n\nThe image shows a cow standing on a beach, with a blue sky and a body of water in the background. The cow is brown with a white', 'system\n\nYou are a helpful assistant.user\n\nAre these images identical?assistant\n\nNo, these images are not identical. The first image shows a cow standing on a beach with a blue sky and a white cloud in the background.' ] # fmt: skip self.assertEqual(output_text, EXPECTED_TEXTS)
import csv import os from pathlib import Path from typing import Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import _extract_tar _RELEASE_CONFIGS = { "release1": { "folder_in_archive": "wavs", "url": "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2", "checksum": "be1a30453f28eb8dd26af4101ae40cbf2c50413b1bb21936cbcdc6fae3de8aa5", } } class LJSPEECH(Dataset): """*LJSpeech-1.1* :cite:`ljspeech17` dataset. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. url (str, optional): The URL to download the dataset from. (default: ``"https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2"``) folder_in_archive (str, optional): The top-level directory of the dataset. (default: ``"wavs"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ def __init__( self, root: Union[str, Path], url: str = _RELEASE_CONFIGS["release1"]["url"], folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"], download: bool = False, ) -> None: self._parse_filesystem(root, url, folder_in_archive, download) def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None: root = Path(root) basename = os.path.basename(url) archive = root / basename basename = Path(basename.split(".tar.bz2")[0]) folder_in_archive = basename / folder_in_archive self._path = root / folder_in_archive self._metadata_path = root / basename / "metadata.csv" if download: if not os.path.isdir(self._path): if not os.path.isfile(archive): checksum = _RELEASE_CONFIGS["release1"]["checksum"] download_url_to_file(url, archive, hash_prefix=checksum) _extract_tar(archive) else: if not os.path.exists(self._path): raise RuntimeError( f"The path {self._path} doesn't exist. " "Please check the ``root`` path or set `download=True` to download it" ) with open(self._metadata_path, "r", newline="") as metadata: flist = csv.reader(metadata, delimiter="|", quoting=csv.QUOTE_NONE) self._flist = list(flist) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; Tensor: Waveform int: Sample rate str: Transcript str: Normalized Transcript """ line = self._flist[n] fileid, transcript, normalized_transcript = line fileid_audio = self._path / (fileid + ".wav") # Load audio waveform, sample_rate = torchaudio.load(fileid_audio) return ( waveform, sample_rate, transcript, normalized_transcript, ) def __len__(self) -> int: return len(self._flist)
import csv import os from pathlib import Path from typing import Tuple, Union import torchaudio from torch import Tensor from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import extract_archive _RELEASE_CONFIGS = { "release1": { "folder_in_archive": "wavs", "url": "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2", "checksum": "be1a30453f28eb8dd26af4101ae40cbf2c50413b1bb21936cbcdc6fae3de8aa5", } } class LJSPEECH(Dataset): """*LJSpeech-1.1* :cite:`ljspeech17` dataset. Args: root (str or Path): Path to the directory where the dataset is found or downloaded. url (str, optional): The URL to download the dataset from. (default: ``"https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2"``) folder_in_archive (str, optional): The top-level directory of the dataset. (default: ``"wavs"``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ def __init__( self, root: Union[str, Path], url: str = _RELEASE_CONFIGS["release1"]["url"], folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"], download: bool = False, ) -> None: self._parse_filesystem(root, url, folder_in_archive, download) def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None: root = Path(root) basename = os.path.basename(url) archive = root / basename basename = Path(basename.split(".tar.bz2")[0]) folder_in_archive = basename / folder_in_archive self._path = root / folder_in_archive self._metadata_path = root / basename / "metadata.csv" if download: if not os.path.isdir(self._path): if not os.path.isfile(archive): checksum = _RELEASE_CONFIGS["release1"]["checksum"] download_url_to_file(url, archive, hash_prefix=checksum) extract_archive(archive) else: if not os.path.exists(self._path): raise RuntimeError( f"The path {self._path} doesn't exist. " "Please check the ``root`` path or set `download=True` to download it" ) with open(self._metadata_path, "r", newline="") as metadata: flist = csv.reader(metadata, delimiter="|", quoting=csv.QUOTE_NONE) self._flist = list(flist) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: Tuple of the following items; Tensor: Waveform int: Sample rate str: Transcript str: Normalized Transcript """ line = self._flist[n] fileid, transcript, normalized_transcript = line fileid_audio = self._path / (fileid + ".wav") # Load audio waveform, sample_rate = torchaudio.load(fileid_audio) return ( waveform, sample_rate, transcript, normalized_transcript, ) def __len__(self) -> int: return len(self._flist)
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/voc0712.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( bbox_head=dict( num_classes=20, anchor_generator=dict(basesize_ratio_range=(0.2, 0.9)))) # dataset settings dataset_type = 'VOCDataset' data_root = 'data/VOCdevkit/' input_size = 300 train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean={{_base_.model.data_preprocessor.mean}}, to_rgb={{_base_.model.data_preprocessor.bgr_to_rgb}}, ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=8, num_workers=3, dataset=dict( # RepeatDataset # the dataset is repeated 10 times, and the training schedule is 2x, # so the actual epoch = 12 * 10 = 120. times=10, dataset=dict( # ConcatDataset # VOCDataset will add different `dataset_type` in dataset.metainfo, # which will get error if using ConcatDataset. Adding # `ignore_keys` can avoid this error. ignore_keys=['dataset_type'], datasets=[ dict( type=dataset_type, data_root=data_root, ann_file='VOC2007/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2007/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline), dict( type=dataset_type, data_root=data_root, ann_file='VOC2012/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2012/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline) ]))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader custom_hooks = [ dict(type='NumClassCheckHook'), dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW') ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=1e-3, momentum=0.9, weight_decay=5e-4)) # learning policy param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 20], gamma=0.1) ] # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/voc0712.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( bbox_head=dict( num_classes=20, anchor_generator=dict(basesize_ratio_range=(0.2, 0.9)))) # dataset settings dataset_type = 'VOCDataset' data_root = 'data/VOCdevkit/' input_size = 300 train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean={{_base_.model.data_preprocessor.mean}}, to_rgb={{_base_.model.data_preprocessor.bgr_to_rgb}}, ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=8, num_workers=3, dataset=dict( # RepeatDataset # the dataset is repeated 10 times, and the training schedule is 2x, # so the actual epoch = 12 * 10 = 120. times=10, dataset=dict( # ConcatDataset # VOCDataset will add different `DATASET_TYPE` in dataset.metainfo, # which will get error if using ConcatDataset. Adding # `ignore_keys` can avoid this error. ignore_keys=['DATASET_TYPE'], datasets=[ dict( type=dataset_type, data_root=data_root, ann_file='VOC2007/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2007/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline), dict( type=dataset_type, data_root=data_root, ann_file='VOC2012/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2012/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline) ]))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader custom_hooks = [ dict(type='NumClassCheckHook'), dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW') ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=1e-3, momentum=0.9, weight_decay=5e-4)) # learning policy param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 20], gamma=0.1) ] # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
import os import platform import sys import pkg_resources from setuptools import find_packages, setup def read_version(fname="whisper/version.py"): exec(compile(open(fname, encoding="utf-8").read(), fname, "exec")) return locals()["__version__"] requirements = [] if sys.platform.startswith("linux") and platform.machine() == "x86_64": requirements.append("triton==2.0.0") setup( name="openai-whisper", py_modules=["whisper"], version=read_version(), description="Robust Speech Recognition via Large-Scale Weak Supervision", long_description=open("README.md", encoding="utf-8").read(), long_description_content_type="text/markdown", readme="README.md", python_requires=">=3.8", author="OpenAI", url="https://github.com/openai/whisper", license="MIT", packages=find_packages(exclude=["tests*"]), install_requires=requirements + [ str(r) for r in pkg_resources.parse_requirements( open(os.path.join(os.path.dirname(__file__), "requirements.txt")) ) ], entry_points={ "console_scripts": ["whisper=whisper.transcribe:cli"], }, include_package_data=True, extras_require={"dev": ["pytest", "scipy", "black", "flake8", "isort"]}, )
import os import platform import sys import pkg_resources from setuptools import find_packages, setup def read_version(fname="whisper/version.py"): exec(compile(open(fname, encoding="utf-8").read(), fname, "exec")) return locals()["__version__"] requirements = [] if sys.platform.startswith("linux") and platform.machine() == "x86_64": triton_requirement = "triton==2.0.0" try: import re import subprocess version_line = ( subprocess.check_output(["nvcc", "--version"]).strip().split(b"\n")[-1] ) major, minor = re.findall(rb"([\d]+)\.([\d]+)", version_line)[0] if (int(major), int(minor)) < (11, 4): # the last version supporting CUDA < 11.4 triton_requirement = "triton==2.0.0.dev20221011" except (IndexError, OSError, subprocess.SubprocessError): pass requirements.append(triton_requirement) setup( name="openai-whisper", py_modules=["whisper"], version=read_version(), description="Robust Speech Recognition via Large-Scale Weak Supervision", long_description=open("README.md", encoding="utf-8").read(), long_description_content_type="text/markdown", readme="README.md", python_requires=">=3.8", author="OpenAI", url="https://github.com/openai/whisper", license="MIT", packages=find_packages(exclude=["tests*"]), install_requires=requirements + [ str(r) for r in pkg_resources.parse_requirements( open(os.path.join(os.path.dirname(__file__), "requirements.txt")) ) ], entry_points={ "console_scripts": ["whisper=whisper.transcribe:cli"], }, include_package_data=True, extras_require={"dev": ["pytest", "scipy", "black", "flake8", "isort"]}, )
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_chameleon import * from .image_processing_chameleon import * from .image_processing_chameleon_fast import * from .modeling_chameleon import * from .processing_chameleon import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_chameleon import * from .image_processing_chameleon import * from .modeling_chameleon import * from .processing_chameleon import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
from __future__ import annotations import csv import logging import os import numpy as np from sentence_transformers import InputExample logger = logging.getLogger(__name__) class CESoftmaxAccuracyEvaluator: """ This evaluator can be used with the CrossEncoder class. It is designed for CrossEncoders with 2 or more outputs. It measure the accuracy of the predict class vs. the gold labels. """ def __init__(self, sentence_pairs: list[list[str]], labels: list[int], name: str = "", write_csv: bool = True): self.sentence_pairs = sentence_pairs self.labels = labels self.name = name self.csv_file = "CESoftmaxAccuracyEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = ["epoch", "steps", "Accuracy"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: list[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CESoftmaxAccuracyEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) pred_labels = np.argmax(pred_scores, axis=1) assert len(pred_labels) == len(self.labels) acc = np.sum(pred_labels == self.labels) / len(self.labels) logger.info("Accuracy: {:.2f}".format(acc * 100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc]) return acc
import csv import logging import os from typing import List import numpy as np from sentence_transformers import InputExample logger = logging.getLogger(__name__) class CESoftmaxAccuracyEvaluator: """ This evaluator can be used with the CrossEncoder class. It is designed for CrossEncoders with 2 or more outputs. It measure the accuracy of the predict class vs. the gold labels. """ def __init__(self, sentence_pairs: List[List[str]], labels: List[int], name: str = "", write_csv: bool = True): self.sentence_pairs = sentence_pairs self.labels = labels self.name = name self.csv_file = "CESoftmaxAccuracyEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = ["epoch", "steps", "Accuracy"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: List[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CESoftmaxAccuracyEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) pred_labels = np.argmax(pred_scores, axis=1) assert len(pred_labels) == len(self.labels) acc = np.sum(pred_labels == self.labels) / len(self.labels) logger.info("Accuracy: {:.2f}".format(acc * 100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc]) return acc
""" ============================================================= Receiver Operating Characteristic (ROC) with cross validation ============================================================= This example presents how to estimate and visualize the variance of the Receiver Operating Characteristic (ROC) metric using cross-validation. ROC curves typically feature true positive rate (TPR) on the Y axis, and false positive rate (FPR) on the X axis. This means that the top left corner of the plot is the "ideal" point - a FPR of zero, and a TPR of one. This is not very realistic, but it does mean that a larger Area Under the Curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the TPR while minimizing the FPR. This example shows the ROC response of different datasets, created from K-fold cross-validation. Taking all of these curves, it is possible to calculate the mean AUC, and see the variance of the curve when the training set is split into different subsets. This roughly shows how the classifier output is affected by changes in the training data, and how different the splits generated by K-fold cross-validation are from one another. .. note:: See :ref:`sphx_glr_auto_examples_model_selection_plot_roc.py` for a complement of the present example explaining the averaging strategies to generalize the metrics for multiclass classifiers. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # Load and prepare data # ===================== # # We import the :ref:`iris_dataset` which contains 3 classes, each one # corresponding to a type of iris plant. One class is linearly separable from # the other 2; the latter are **not** linearly separable from each other. # # In the following we binarize the dataset by dropping the "virginica" class # (`class_id=2`). This means that the "versicolor" class (`class_id=1`) is # regarded as the positive class and "setosa" as the negative class # (`class_id=0`). import numpy as np from sklearn.datasets import load_iris iris = load_iris() target_names = iris.target_names X, y = iris.data, iris.target X, y = X[y != 2], y[y != 2] n_samples, n_features = X.shape # %% # We also add noisy features to make the problem harder. random_state = np.random.RandomState(0) X = np.concatenate([X, random_state.randn(n_samples, 200 * n_features)], axis=1) # %% # Classification and ROC analysis # ------------------------------- # # Here we run a :class:`~sklearn.svm.SVC` classifier with cross-validation and # plot the ROC curves fold-wise. Notice that the baseline to define the chance # level (dashed ROC curve) is a classifier that would always predict the most # frequent class. import matplotlib.pyplot as plt from sklearn import svm from sklearn.metrics import RocCurveDisplay, auc from sklearn.model_selection import StratifiedKFold n_splits = 6 cv = StratifiedKFold(n_splits=n_splits) classifier = svm.SVC(kernel="linear", probability=True, random_state=random_state) tprs = [] aucs = [] mean_fpr = np.linspace(0, 1, 100) fig, ax = plt.subplots(figsize=(6, 6)) for fold, (train, test) in enumerate(cv.split(X, y)): classifier.fit(X[train], y[train]) viz = RocCurveDisplay.from_estimator( classifier, X[test], y[test], name=f"ROC fold {fold}", curve_kwargs=dict(alpha=0.3, lw=1), ax=ax, plot_chance_level=(fold == n_splits - 1), ) interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr) interp_tpr[0] = 0.0 tprs.append(interp_tpr) aucs.append(viz.roc_auc) mean_tpr = np.mean(tprs, axis=0) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) std_auc = np.std(aucs) ax.plot( mean_fpr, mean_tpr, color="b", label=r"Mean ROC (AUC = %0.2f $\pm$ %0.2f)" % (mean_auc, std_auc), lw=2, alpha=0.8, ) std_tpr = np.std(tprs, axis=0) tprs_upper = np.minimum(mean_tpr + std_tpr, 1) tprs_lower = np.maximum(mean_tpr - std_tpr, 0) ax.fill_between( mean_fpr, tprs_lower, tprs_upper, color="grey", alpha=0.2, label=r"$\pm$ 1 std. dev.", ) ax.set( xlabel="False Positive Rate", ylabel="True Positive Rate", title=f"Mean ROC curve with variability\n(Positive label '{target_names[1]}')", ) ax.legend(loc="lower right") plt.show()
""" ============================================================= Receiver Operating Characteristic (ROC) with cross validation ============================================================= This example presents how to estimate and visualize the variance of the Receiver Operating Characteristic (ROC) metric using cross-validation. ROC curves typically feature true positive rate (TPR) on the Y axis, and false positive rate (FPR) on the X axis. This means that the top left corner of the plot is the "ideal" point - a FPR of zero, and a TPR of one. This is not very realistic, but it does mean that a larger Area Under the Curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the TPR while minimizing the FPR. This example shows the ROC response of different datasets, created from K-fold cross-validation. Taking all of these curves, it is possible to calculate the mean AUC, and see the variance of the curve when the training set is split into different subsets. This roughly shows how the classifier output is affected by changes in the training data, and how different the splits generated by K-fold cross-validation are from one another. .. note:: See :ref:`sphx_glr_auto_examples_model_selection_plot_roc.py` for a complement of the present example explaining the averaging strategies to generalize the metrics for multiclass classifiers. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% # Load and prepare data # ===================== # # We import the :ref:`iris_dataset` which contains 3 classes, each one # corresponding to a type of iris plant. One class is linearly separable from # the other 2; the latter are **not** linearly separable from each other. # # In the following we binarize the dataset by dropping the "virginica" class # (`class_id=2`). This means that the "versicolor" class (`class_id=1`) is # regarded as the positive class and "setosa" as the negative class # (`class_id=0`). import numpy as np from sklearn.datasets import load_iris iris = load_iris() target_names = iris.target_names X, y = iris.data, iris.target X, y = X[y != 2], y[y != 2] n_samples, n_features = X.shape # %% # We also add noisy features to make the problem harder. random_state = np.random.RandomState(0) X = np.concatenate([X, random_state.randn(n_samples, 200 * n_features)], axis=1) # %% # Classification and ROC analysis # ------------------------------- # # Here we run a :class:`~sklearn.svm.SVC` classifier with cross-validation and # plot the ROC curves fold-wise. Notice that the baseline to define the chance # level (dashed ROC curve) is a classifier that would always predict the most # frequent class. import matplotlib.pyplot as plt from sklearn import svm from sklearn.metrics import RocCurveDisplay, auc from sklearn.model_selection import StratifiedKFold n_splits = 6 cv = StratifiedKFold(n_splits=n_splits) classifier = svm.SVC(kernel="linear", probability=True, random_state=random_state) tprs = [] aucs = [] mean_fpr = np.linspace(0, 1, 100) fig, ax = plt.subplots(figsize=(6, 6)) for fold, (train, test) in enumerate(cv.split(X, y)): classifier.fit(X[train], y[train]) viz = RocCurveDisplay.from_estimator( classifier, X[test], y[test], name=f"ROC fold {fold}", alpha=0.3, lw=1, ax=ax, plot_chance_level=(fold == n_splits - 1), ) interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr) interp_tpr[0] = 0.0 tprs.append(interp_tpr) aucs.append(viz.roc_auc) mean_tpr = np.mean(tprs, axis=0) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) std_auc = np.std(aucs) ax.plot( mean_fpr, mean_tpr, color="b", label=r"Mean ROC (AUC = %0.2f $\pm$ %0.2f)" % (mean_auc, std_auc), lw=2, alpha=0.8, ) std_tpr = np.std(tprs, axis=0) tprs_upper = np.minimum(mean_tpr + std_tpr, 1) tprs_lower = np.maximum(mean_tpr - std_tpr, 0) ax.fill_between( mean_fpr, tprs_lower, tprs_upper, color="grey", alpha=0.2, label=r"$\pm$ 1 std. dev.", ) ax.set( xlabel="False Positive Rate", ylabel="True Positive Rate", title=f"Mean ROC curve with variability\n(Positive label '{target_names[1]}')", ) ax.legend(loc="lower right") plt.show()
from docarray.base_document.mixins.io import IOMixin from docarray.base_document.mixins.update import UpdateMixin __all__ = ['IOMixin', 'UpdateMixin']
from docarray.base_document.mixins.proto import ProtoMixin from docarray.base_document.mixins.update import UpdateMixin __all__ = ['ProtoMixin', 'UpdateMixin']
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Utilities for file names.""" import itertools import os import re _uppercase_uppercase_re = re.compile(r"([A-Z]+)([A-Z][a-z])") _lowercase_uppercase_re = re.compile(r"([a-z\d])([A-Z])") _single_underscore_re = re.compile(r"(?<!_)_(?!_)") _multiple_underscores_re = re.compile(r"(_{2,})") _split_re = r"^\w+(\.\w+)*$" INVALID_WINDOWS_CHARACTERS_IN_PATH = r"<>:/\|?*" def camelcase_to_snakecase(name): """Convert camel-case string to snake-case.""" name = _uppercase_uppercase_re.sub(r"\1_\2", name) name = _lowercase_uppercase_re.sub(r"\1_\2", name) return name.lower() def snakecase_to_camelcase(name): """Convert snake-case string to camel-case string.""" name = _single_underscore_re.split(name) name = [_multiple_underscores_re.split(n) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(name) if n != "") def filename_prefix_for_name(name): if os.path.basename(name) != name: raise ValueError(f"Should be a dataset name, not a path: {name}") return camelcase_to_snakecase(name) def filename_prefix_for_split(name, split): if os.path.basename(name) != name: raise ValueError(f"Should be a dataset name, not a path: {name}") if not re.match(_split_re, split): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'.") return f"{filename_prefix_for_name(name)}-{split}" def filepattern_for_dataset_split(dataset_name, split, data_dir, filetype_suffix=None): prefix = filename_prefix_for_split(dataset_name, split) if filetype_suffix: prefix += f".{filetype_suffix}" filepath = os.path.join(data_dir, prefix) return f"{filepath}*" def filenames_for_dataset_split(path, dataset_name, split, filetype_suffix=None, shard_lengths=None): prefix = filename_prefix_for_split(dataset_name, split) prefix = os.path.join(path, prefix) if shard_lengths: num_shards = len(shard_lengths) filenames = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(num_shards)] if filetype_suffix: filenames = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: filename = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Utilities for file names.""" import itertools import os import re _uppercase_uppercase_re = re.compile(r"([A-Z]+)([A-Z][a-z])") _lowercase_uppercase_re = re.compile(r"([a-z\d])([A-Z])") _single_underscore_re = re.compile(r"(?<!_)_(?!_)") _multiple_underscores_re = re.compile(r"(_{2,})") _split_re = r"^\w+(\.\w+)*$" INVALID_WINDOWS_CHARACTERS_IN_PATH = r"<>:/\|?*" def camelcase_to_snakecase(name): """Convert camel-case string to snake-case.""" name = _uppercase_uppercase_re.sub(r"\1_\2", name) name = _lowercase_uppercase_re.sub(r"\1_\2", name) return name.lower() def snakecase_to_camelcase(name): """Convert snake-case string to camel-case string.""" name = _single_underscore_re.split(name) name = [_multiple_underscores_re.split(n) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(name) if n != "") def filename_prefix_for_name(name): if os.path.basename(name) != name: raise ValueError(f"Should be a dataset name, not a path: {name}") return camelcase_to_snakecase(name) def filename_prefix_for_split(name, split): if os.path.basename(name) != name: raise ValueError(f"Should be a dataset name, not a path: {name}") if not re.match(_split_re, split): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'.") return f"{filename_prefix_for_name(name)}-{split}" def filepattern_for_dataset_split(dataset_name, split, data_dir, filetype_suffix=None): prefix = filename_prefix_for_split(dataset_name, split) if filetype_suffix: prefix += f".{filetype_suffix}" filepath = os.path.join(data_dir, prefix) return f"{filepath}*" def filename_for_dataset_split(dataset_name, split, filetype_suffix=None): prefix = filename_prefix_for_split(dataset_name, split) if filetype_suffix: prefix += f".{filetype_suffix}" return prefix def filepath_for_dataset_split(dataset_name, split, data_dir, filetype_suffix=None): filename = filename_for_dataset_split( dataset_name=dataset_name, split=split, filetype_suffix=filetype_suffix, ) filepath = os.path.join(data_dir, filename) return filepath
""" Agglomerative clustering with different metrics =============================================== Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high dimension (in particular for euclidean and cityblock). We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are proportional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2. We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain noise. As a result, the l1 norm of this noise (ie "cityblock" distance) is much smaller than its l2 norm ("euclidean" distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread of the class, are much bigger for the Euclidean distance than for the cityblock distance. When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed, for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.patheffects as PathEffects import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import pairwise_distances np.random.seed(0) # Generate waveform data n_features = 2000 t = np.pi * np.linspace(0, 1, n_features) def sqr(x): return np.sign(np.cos(x)) X = list() y = list() for i, (phi, a) in enumerate([(0.5, 0.15), (0.5, 0.6), (0.3, 0.2)]): for _ in range(30): phase_noise = 0.01 * np.random.normal() amplitude_noise = 0.04 * np.random.normal() additional_noise = 1 - 2 * np.random.rand(n_features) # Make the noise sparse additional_noise[np.abs(additional_noise) < 0.997] = 0 X.append( 12 * ( (a + amplitude_noise) * (sqr(6 * (t + phi + phase_noise))) + additional_noise ) ) y.append(i) X = np.array(X) y = np.array(y) n_clusters = 3 labels = ("Waveform 1", "Waveform 2", "Waveform 3") colors = ["#f7bd01", "#377eb8", "#f781bf"] # Plot the ground-truth labelling plt.figure() plt.axes([0, 0, 1, 1]) for l, color, n in zip(range(n_clusters), colors, labels): lines = plt.plot(X[y == l].T, c=color, alpha=0.5) lines[0].set_label(n) plt.legend(loc="best") plt.axis("tight") plt.axis("off") plt.suptitle("Ground truth", size=20, y=1) # Plot the distances for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): avg_dist = np.zeros((n_clusters, n_clusters)) plt.figure(figsize=(5, 4.5)) for i in range(n_clusters): for j in range(n_clusters): avg_dist[i, j] = pairwise_distances( X[y == i], X[y == j], metric=metric ).mean() avg_dist /= avg_dist.max() for i in range(n_clusters): for j in range(n_clusters): t = plt.text( i, j, "%5.3f" % avg_dist[i, j], verticalalignment="center", horizontalalignment="center", ) t.set_path_effects( [PathEffects.withStroke(linewidth=5, foreground="w", alpha=0.5)] ) plt.imshow(avg_dist, interpolation="nearest", cmap="cividis", vmin=0) plt.xticks(range(n_clusters), labels, rotation=45) plt.yticks(range(n_clusters), labels) plt.colorbar() plt.suptitle("Interclass %s distances" % metric, size=18, y=1) plt.tight_layout() # Plot clustering results for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): model = AgglomerativeClustering( n_clusters=n_clusters, linkage="average", metric=metric ) model.fit(X) plt.figure() plt.axes([0, 0, 1, 1]) for l, color in zip(np.arange(model.n_clusters), colors): plt.plot(X[model.labels_ == l].T, c=color, alpha=0.5) plt.axis("tight") plt.axis("off") plt.suptitle("AgglomerativeClustering(metric=%s)" % metric, size=20, y=1) plt.show()
""" Agglomerative clustering with different metrics =============================================== Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high dimension (in particular for euclidean and cityblock). We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are proportional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2. We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain noise. As a result, the l1 norm of this noise (ie "cityblock" distance) is much smaller than it's l2 norm ("euclidean" distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread of the class, are much bigger for the Euclidean distance than for the cityblock distance. When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed, for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.patheffects as PathEffects import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import pairwise_distances np.random.seed(0) # Generate waveform data n_features = 2000 t = np.pi * np.linspace(0, 1, n_features) def sqr(x): return np.sign(np.cos(x)) X = list() y = list() for i, (phi, a) in enumerate([(0.5, 0.15), (0.5, 0.6), (0.3, 0.2)]): for _ in range(30): phase_noise = 0.01 * np.random.normal() amplitude_noise = 0.04 * np.random.normal() additional_noise = 1 - 2 * np.random.rand(n_features) # Make the noise sparse additional_noise[np.abs(additional_noise) < 0.997] = 0 X.append( 12 * ( (a + amplitude_noise) * (sqr(6 * (t + phi + phase_noise))) + additional_noise ) ) y.append(i) X = np.array(X) y = np.array(y) n_clusters = 3 labels = ("Waveform 1", "Waveform 2", "Waveform 3") colors = ["#f7bd01", "#377eb8", "#f781bf"] # Plot the ground-truth labelling plt.figure() plt.axes([0, 0, 1, 1]) for l, color, n in zip(range(n_clusters), colors, labels): lines = plt.plot(X[y == l].T, c=color, alpha=0.5) lines[0].set_label(n) plt.legend(loc="best") plt.axis("tight") plt.axis("off") plt.suptitle("Ground truth", size=20, y=1) # Plot the distances for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): avg_dist = np.zeros((n_clusters, n_clusters)) plt.figure(figsize=(5, 4.5)) for i in range(n_clusters): for j in range(n_clusters): avg_dist[i, j] = pairwise_distances( X[y == i], X[y == j], metric=metric ).mean() avg_dist /= avg_dist.max() for i in range(n_clusters): for j in range(n_clusters): t = plt.text( i, j, "%5.3f" % avg_dist[i, j], verticalalignment="center", horizontalalignment="center", ) t.set_path_effects( [PathEffects.withStroke(linewidth=5, foreground="w", alpha=0.5)] ) plt.imshow(avg_dist, interpolation="nearest", cmap="cividis", vmin=0) plt.xticks(range(n_clusters), labels, rotation=45) plt.yticks(range(n_clusters), labels) plt.colorbar() plt.suptitle("Interclass %s distances" % metric, size=18, y=1) plt.tight_layout() # Plot clustering results for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): model = AgglomerativeClustering( n_clusters=n_clusters, linkage="average", metric=metric ) model.fit(X) plt.figure() plt.axes([0, 0, 1, 1]) for l, color in zip(np.arange(model.n_clusters), colors): plt.plot(X[model.labels_ == l].T, c=color, alpha=0.5) plt.axis("tight") plt.axis("off") plt.suptitle("AgglomerativeClustering(metric=%s)" % metric, size=20, y=1) plt.show()
# coding=utf-8 # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import requests from ..src.diffusers.utils.constants import DIFFUSERS_REQUEST_TIMEOUT # Configuration LIBRARY_NAME = "diffusers" GITHUB_REPO = "huggingface/diffusers" SLACK_WEBHOOK_URL = os.getenv("SLACK_WEBHOOK_URL") def check_pypi_for_latest_release(library_name): """Check PyPI for the latest release of the library.""" response = requests.get(f"https://pypi.org/pypi/{library_name}/json", timeout=DIFFUSERS_REQUEST_TIMEOUT) if response.status_code == 200: data = response.json() return data["info"]["version"] else: print("Failed to fetch library details from PyPI.") return None def get_github_release_info(github_repo): """Fetch the latest release info from GitHub.""" url = f"https://api.github.com/repos/{github_repo}/releases/latest" response = requests.get(url, timeout=DIFFUSERS_REQUEST_TIMEOUT) if response.status_code == 200: data = response.json() return {"tag_name": data["tag_name"], "url": data["html_url"], "release_time": data["published_at"]} else: print("Failed to fetch release info from GitHub.") return None def notify_slack(webhook_url, library_name, version, release_info): """Send a notification to a Slack channel.""" message = ( f"🚀 New release for {library_name} available: version **{version}** 🎉\n" f"📜 Release Notes: {release_info['url']}\n" f"⏱️ Release time: {release_info['release_time']}" ) payload = {"text": message} response = requests.post(webhook_url, json=payload) if response.status_code == 200: print("Notification sent to Slack successfully.") else: print("Failed to send notification to Slack.") def main(): latest_version = check_pypi_for_latest_release(LIBRARY_NAME) release_info = get_github_release_info(GITHUB_REPO) parsed_version = release_info["tag_name"].replace("v", "") if latest_version and release_info and latest_version == parsed_version: notify_slack(SLACK_WEBHOOK_URL, LIBRARY_NAME, latest_version, release_info) else: print(f"{latest_version=}, {release_info=}, {parsed_version=}") raise ValueError("There were some problems.") if __name__ == "__main__": main()
# coding=utf-8 # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import requests # Configuration LIBRARY_NAME = "diffusers" GITHUB_REPO = "huggingface/diffusers" SLACK_WEBHOOK_URL = os.getenv("SLACK_WEBHOOK_URL") def check_pypi_for_latest_release(library_name): """Check PyPI for the latest release of the library.""" response = requests.get(f"https://pypi.org/pypi/{library_name}/json") if response.status_code == 200: data = response.json() return data["info"]["version"] else: print("Failed to fetch library details from PyPI.") return None def get_github_release_info(github_repo): """Fetch the latest release info from GitHub.""" url = f"https://api.github.com/repos/{github_repo}/releases/latest" response = requests.get(url) if response.status_code == 200: data = response.json() return {"tag_name": data["tag_name"], "url": data["html_url"], "release_time": data["published_at"]} else: print("Failed to fetch release info from GitHub.") return None def notify_slack(webhook_url, library_name, version, release_info): """Send a notification to a Slack channel.""" message = ( f"🚀 New release for {library_name} available: version **{version}** 🎉\n" f"📜 Release Notes: {release_info['url']}\n" f"⏱️ Release time: {release_info['release_time']}" ) payload = {"text": message} response = requests.post(webhook_url, json=payload) if response.status_code == 200: print("Notification sent to Slack successfully.") else: print("Failed to send notification to Slack.") def main(): latest_version = check_pypi_for_latest_release(LIBRARY_NAME) release_info = get_github_release_info(GITHUB_REPO) parsed_version = release_info["tag_name"].replace("v", "") if latest_version and release_info and latest_version == parsed_version: notify_slack(SLACK_WEBHOOK_URL, LIBRARY_NAME, latest_version, release_info) else: print(f"{latest_version=}, {release_info=}, {parsed_version=}") raise ValueError("There were some problems.") if __name__ == "__main__": main()
"""Import Hugging Face transformers's wav2vec2.0 pretrained weights to torchaudios's format. """ import logging from torch.nn import Module from ..model import wav2vec2_model, Wav2Vec2Model _LG = logging.getLogger(__name__) def _get_config(cfg): config = { "extractor_mode": f"{cfg.feat_extract_norm}_norm", "extractor_conv_layer_config": list(zip(cfg.conv_dim, cfg.conv_kernel, cfg.conv_stride)), "extractor_conv_bias": cfg.conv_bias, "encoder_embed_dim": cfg.hidden_size, "encoder_projection_dropout": cfg.feat_proj_dropout, "encoder_pos_conv_kernel": cfg.num_conv_pos_embeddings, "encoder_pos_conv_groups": cfg.num_conv_pos_embedding_groups, "encoder_num_layers": cfg.num_hidden_layers, "encoder_num_heads": cfg.num_attention_heads, "encoder_attention_dropout": cfg.attention_dropout, "encoder_ff_interm_features": cfg.intermediate_size, "encoder_ff_interm_dropout": cfg.activation_dropout, "encoder_dropout": cfg.hidden_dropout, "encoder_layer_norm_first": cfg.do_stable_layer_norm, "encoder_layer_drop": cfg.layerdrop, } return config def _build(config, original): if original.__class__.__name__ == "Wav2Vec2ForCTC": aux_num_out = original.config.vocab_size wav2vec2 = original.wav2vec2 else: _LG.warning("The model is not an instance of Wav2Vec2ForCTC. " '"lm_head" module is not imported.') aux_num_out = None wav2vec2 = original imported = wav2vec2_model(**config, aux_num_out=aux_num_out) imported.feature_extractor.load_state_dict(wav2vec2.feature_extractor.state_dict()) imported.encoder.feature_projection.load_state_dict(wav2vec2.feature_projection.state_dict()) imported.encoder.transformer.load_state_dict(wav2vec2.encoder.state_dict()) if original.__class__.__name__ == "Wav2Vec2ForCTC": imported.aux.load_state_dict(original.lm_head.state_dict()) return imported def import_huggingface_model(original: Module) -> Wav2Vec2Model: """Builds :class:`Wav2Vec2Model` from the corresponding model object of `Transformers <https://huggingface.co/transformers/>`_. Args: original (torch.nn.Module): An instance of ``Wav2Vec2ForCTC`` from ``transformers``. Returns: Wav2Vec2Model: Imported model. Example >>> from torchaudio.models.wav2vec2.utils import import_huggingface_model >>> >>> original = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") >>> model = import_huggingface_model(original) >>> >>> waveforms, _ = torchaudio.load("audio.wav") >>> logits, _ = model(waveforms) """ _LG.info("Importing model.") _LG.info("Loading model configuration.") config = _get_config(original.config) _LG.debug(" - config: %s", config) _LG.info("Building model.") imported = _build(config, original) return imported
"""Import Hugging Face transformers's wav2vec2.0 pretrained weights to torchaudios's format. """ import logging from torch.nn import Module from ..model import wav2vec2_model, Wav2Vec2Model _LG = logging.getLogger(__name__) def _get_config(cfg): config = { "extractor_mode": f"{cfg.feat_extract_norm}_norm", "extractor_conv_layer_config": list(zip(cfg.conv_dim, cfg.conv_kernel, cfg.conv_stride)), "extractor_conv_bias": cfg.conv_bias, "encoder_embed_dim": cfg.hidden_size, "encoder_projection_dropout": cfg.feat_proj_dropout, "encoder_pos_conv_kernel": cfg.num_conv_pos_embeddings, "encoder_pos_conv_groups": cfg.num_conv_pos_embedding_groups, "encoder_num_layers": cfg.num_hidden_layers, "encoder_num_heads": cfg.num_attention_heads, "encoder_attention_dropout": cfg.attention_dropout, "encoder_ff_interm_features": cfg.intermediate_size, "encoder_ff_interm_dropout": cfg.activation_dropout, "encoder_dropout": cfg.hidden_dropout, "encoder_layer_norm_first": cfg.do_stable_layer_norm, "encoder_layer_drop": cfg.layerdrop, } return config def _build(config, original): if original.__class__.__name__ == "Wav2Vec2ForCTC": aux_num_out = original.config.vocab_size wav2vec2 = original.wav2vec2 else: _LG.warning("The model is not an instance of Wav2Vec2ForCTC. " '"lm_head" module is not imported.') aux_num_out = None wav2vec2 = original imported = wav2vec2_model(**config, aux_num_out=aux_num_out) imported.feature_extractor.load_state_dict(wav2vec2.feature_extractor.state_dict()) imported.encoder.feature_projection.load_state_dict(wav2vec2.feature_projection.state_dict()) imported.encoder.transformer.load_state_dict(wav2vec2.encoder.state_dict()) if original.__class__.__name__ == "Wav2Vec2ForCTC": imported.aux.load_state_dict(original.lm_head.state_dict()) return imported def import_huggingface_model(original: Module) -> Wav2Vec2Model: """Build Wav2Vec2Model from the corresponding model object of Hugging Face's `Transformers`_. Args: original (torch.nn.Module): An instance of ``Wav2Vec2ForCTC`` from ``transformers``. Returns: Wav2Vec2Model: Imported model. Example >>> from torchaudio.models.wav2vec2.utils import import_huggingface_model >>> >>> original = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") >>> model = import_huggingface_model(original) >>> >>> waveforms, _ = torchaudio.load("audio.wav") >>> logits, _ = model(waveforms) .. _Transformers: https://huggingface.co/transformers/ """ _LG.info("Importing model.") _LG.info("Loading model configuration.") config = _get_config(original.config) _LG.debug(" - config: %s", config) _LG.info("Building model.") imported = _build(config, original) return imported
"""Read PDF files using PyMuPDF library.""" from pathlib import Path from typing import Dict, List, Optional, Union from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class PyMuPDFReader(BaseReader): """Read PDF files using PyMuPDF library.""" def load_data( self, file_path: Union[Path, str], metadata: bool = True, extra_info: Optional[Dict] = None, ) -> List[Document]: """Loads list of documents from PDF file and also accepts extra information in dict format.""" return self.load(file_path, metadata=metadata, extra_info=extra_info) def load( self, file_path: Union[Path, str], metadata: bool = True, extra_info: Optional[Dict] = None, ) -> List[Document]: """ Loads list of documents from PDF file and also accepts extra information in dict format. Args: file_path (Union[Path, str]): file path of PDF file (accepts string or Path). metadata (bool, optional): if metadata to be included or not. Defaults to True. extra_info (Optional[Dict], optional): extra information related to each document in dict format. Defaults to None. Raises: TypeError: if extra_info is not a dictionary. TypeError: if file_path is not a string or Path. Returns: List[Document]: list of documents. """ import fitz # check if file_path is a string or Path if not isinstance(file_path, str) and not isinstance(file_path, Path): raise TypeError("file_path must be a string or Path.") # open PDF file doc = fitz.open(file_path) # if extra_info is not None, check if it is a dictionary if extra_info: if not isinstance(extra_info, dict): raise TypeError("extra_info must be a dictionary.") # if metadata is True, add metadata to each document if metadata: if not extra_info: extra_info = {} extra_info["total_pages"] = len(doc) extra_info["file_path"] = str(file_path) # return list of documents return [ Document( text=page.get_text().encode("utf-8"), extra_info=dict( extra_info, **{ "source": f"{page.number + 1}", }, ), ) for page in doc ] else: return [ Document( text=page.get_text().encode("utf-8"), extra_info=extra_info or {} ) for page in doc ]
"""Read PDF files using PyMuPDF library.""" from pathlib import Path from typing import Dict, List, Optional, Union from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class PyMuPDFReader(BaseReader): """Read PDF files using PyMuPDF library.""" def load_data( self, file_path: Union[Path, str], metadata: bool = True, extra_info: Optional[Dict] = None, ) -> List[Document]: """Loads list of documents from PDF file and also accepts extra information in dict format.""" return self.load(file_path, metadata=metadata, extra_info=extra_info) def load( self, file_path: Union[Path, str], metadata: bool = True, extra_info: Optional[Dict] = None, ) -> List[Document]: """ Loads list of documents from PDF file and also accepts extra information in dict format. Args: file_path (Union[Path, str]): file path of PDF file (accepts string or Path). metadata (bool, optional): if metadata to be included or not. Defaults to True. extra_info (Optional[Dict], optional): extra information related to each document in dict format. Defaults to None. Raises: TypeError: if extra_info is not a dictionary. TypeError: if file_path is not a string or Path. Returns: List[Document]: list of documents. """ import fitz # check if file_path is a string or Path if not isinstance(file_path, str) and not isinstance(file_path, Path): raise TypeError("file_path must be a string or Path.") # open PDF file doc = fitz.open(file_path) # if extra_info is not None, check if it is a dictionary if extra_info: if not isinstance(extra_info, dict): raise TypeError("extra_info must be a dictionary.") # if metadata is True, add metadata to each document if metadata: if not extra_info: extra_info = {} extra_info["total_pages"] = len(doc) extra_info["file_path"] = str(file_path) # return list of documents return [ Document( text=page.get_text().encode("utf-8"), extra_info=dict( extra_info, **{ "source": f"{page.number+1}", }, ), ) for page in doc ] else: return [ Document( text=page.get_text().encode("utf-8"), extra_info=extra_info or {} ) for page in doc ]
import torch from parameterized import parameterized from torchaudio.prototype.models import squim_objective_base from torchaudio_unittest.common_utils import skipIfNoCuda, torch_script, TorchaudioTestCase class TestSQUIM(TorchaudioTestCase): def _smoke_test_objective(self, model, device, dtype): model = model.to(device=device, dtype=dtype) model = model.eval() batch_size, num_frames = 3, 16000 waveforms = torch.randn(batch_size, num_frames, device=device, dtype=dtype) model(waveforms) @parameterized.expand([(torch.float32,), (torch.float64,)]) def test_cpu_smoke_test(self, dtype): model = squim_objective_base() self._smoke_test_objective(model, torch.device("cpu"), dtype) @parameterized.expand([(torch.float32,), (torch.float64,)]) @skipIfNoCuda def test_cuda_smoke_test(self, dtype): model = squim_objective_base() self._smoke_test_objective(model, torch.device("cuda"), dtype) def test_batch_consistency(self): model = squim_objective_base() model.eval() batch_size, num_frames = 3, 16000 waveforms = torch.randn(batch_size, num_frames) ref_scores = model(waveforms) hyp_scores = [torch.zeros(batch_size), torch.zeros(batch_size), torch.zeros(batch_size)] for i in range(batch_size): scores = model(waveforms[i : i + 1]) for j in range(3): hyp_scores[j][i] = scores[j] self.assertEqual(len(hyp_scores), len(ref_scores)) for i in range(len(ref_scores)): self.assertEqual(hyp_scores[i], ref_scores[i]) def test_torchscript_consistency(self): model = squim_objective_base() model.eval() batch_size, num_frames = 3, 16000 waveforms = torch.randn(batch_size, num_frames) ref_scores = model(waveforms) scripted = torch_script(model) hyp_scores = scripted(waveforms) self.assertEqual(len(hyp_scores), len(ref_scores)) for i in range(len(ref_scores)): self.assertEqual(hyp_scores[i], ref_scores[i])
import torch from parameterized import parameterized from torchaudio.prototype.models import squim_objective_base from torchaudio_unittest.common_utils import skipIfNoCuda, torch_script, TorchaudioTestCase class TestSQUIM(TorchaudioTestCase): def _smoke_test_objective(self, model, device, dtype): model = model.to(device=device, dtype=dtype) model = model.eval() batch_size, num_frames = 3, 16000 waveforms = torch.randn(batch_size, num_frames, device=device, dtype=dtype) model(waveforms) @parameterized.expand([(torch.float32,), (torch.float64,)]) def test_cpu_smoke_test(self, dtype): model = squim_objective_base() self._smoke_test_objective(model, torch.device("cpu"), dtype) @parameterized.expand([(torch.float32,), (torch.float64,)]) @skipIfNoCuda def test_cuda_smoke_test(self, dtype): model = squim_objective_base() self._smoke_test_objective(model, torch.device("cuda"), dtype) def test_torchscript_consistency(self): model = squim_objective_base() model.eval() batch_size, num_frames = 3, 16000 waveforms = torch.randn(batch_size, num_frames) ref_scores = model(waveforms) scripted = torch_script(model) hyp_scores = scripted(waveforms) self.assertEqual(len(hyp_scores), len(ref_scores)) for i in range(len(ref_scores)): self.assertEqual(hyp_scores[i], ref_scores[i])
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.losses.losses import binary_crossentropy from keras.src.losses.losses import binary_focal_crossentropy from keras.src.losses.losses import categorical_crossentropy from keras.src.losses.losses import categorical_focal_crossentropy from keras.src.losses.losses import categorical_hinge from keras.src.losses.losses import hinge from keras.src.losses.losses import huber from keras.src.losses.losses import kl_divergence as KLD from keras.src.losses.losses import kl_divergence as kld from keras.src.losses.losses import kl_divergence as kullback_leibler_divergence from keras.src.losses.losses import log_cosh as logcosh from keras.src.losses.losses import mean_absolute_error as MAE from keras.src.losses.losses import mean_absolute_error as mae from keras.src.losses.losses import mean_absolute_percentage_error as MAPE from keras.src.losses.losses import mean_absolute_percentage_error as mape from keras.src.losses.losses import mean_squared_error as MSE from keras.src.losses.losses import mean_squared_error as mse from keras.src.losses.losses import mean_squared_logarithmic_error as MSLE from keras.src.losses.losses import mean_squared_logarithmic_error as msle from keras.src.losses.losses import poisson from keras.src.losses.losses import sparse_categorical_crossentropy from keras.src.losses.losses import squared_hinge from keras.src.metrics import deserialize from keras.src.metrics import get from keras.src.metrics import serialize from keras.src.metrics.accuracy_metrics import Accuracy from keras.src.metrics.accuracy_metrics import BinaryAccuracy from keras.src.metrics.accuracy_metrics import CategoricalAccuracy from keras.src.metrics.accuracy_metrics import SparseCategoricalAccuracy from keras.src.metrics.accuracy_metrics import SparseTopKCategoricalAccuracy from keras.src.metrics.accuracy_metrics import TopKCategoricalAccuracy from keras.src.metrics.accuracy_metrics import binary_accuracy from keras.src.metrics.accuracy_metrics import categorical_accuracy from keras.src.metrics.accuracy_metrics import sparse_categorical_accuracy from keras.src.metrics.accuracy_metrics import sparse_top_k_categorical_accuracy from keras.src.metrics.accuracy_metrics import top_k_categorical_accuracy from keras.src.metrics.confusion_metrics import AUC from keras.src.metrics.confusion_metrics import FalseNegatives from keras.src.metrics.confusion_metrics import FalsePositives from keras.src.metrics.confusion_metrics import Precision from keras.src.metrics.confusion_metrics import PrecisionAtRecall from keras.src.metrics.confusion_metrics import Recall from keras.src.metrics.confusion_metrics import RecallAtPrecision from keras.src.metrics.confusion_metrics import SensitivityAtSpecificity from keras.src.metrics.confusion_metrics import SpecificityAtSensitivity from keras.src.metrics.confusion_metrics import TrueNegatives from keras.src.metrics.confusion_metrics import TruePositives from keras.src.metrics.correlation_metrics import ConcordanceCorrelation from keras.src.metrics.correlation_metrics import PearsonCorrelation from keras.src.metrics.correlation_metrics import concordance_correlation from keras.src.metrics.correlation_metrics import pearson_correlation from keras.src.metrics.f_score_metrics import F1Score from keras.src.metrics.f_score_metrics import FBetaScore from keras.src.metrics.hinge_metrics import CategoricalHinge from keras.src.metrics.hinge_metrics import Hinge from keras.src.metrics.hinge_metrics import SquaredHinge from keras.src.metrics.iou_metrics import BinaryIoU from keras.src.metrics.iou_metrics import IoU from keras.src.metrics.iou_metrics import MeanIoU from keras.src.metrics.iou_metrics import OneHotIoU from keras.src.metrics.iou_metrics import OneHotMeanIoU from keras.src.metrics.metric import Metric from keras.src.metrics.probabilistic_metrics import BinaryCrossentropy from keras.src.metrics.probabilistic_metrics import CategoricalCrossentropy from keras.src.metrics.probabilistic_metrics import KLDivergence from keras.src.metrics.probabilistic_metrics import Poisson from keras.src.metrics.probabilistic_metrics import ( SparseCategoricalCrossentropy, ) from keras.src.metrics.reduction_metrics import Mean from keras.src.metrics.reduction_metrics import MeanMetricWrapper from keras.src.metrics.reduction_metrics import Sum from keras.src.metrics.regression_metrics import CosineSimilarity from keras.src.metrics.regression_metrics import LogCoshError from keras.src.metrics.regression_metrics import MeanAbsoluteError from keras.src.metrics.regression_metrics import MeanAbsolutePercentageError from keras.src.metrics.regression_metrics import MeanSquaredError from keras.src.metrics.regression_metrics import MeanSquaredLogarithmicError from keras.src.metrics.regression_metrics import R2Score from keras.src.metrics.regression_metrics import RootMeanSquaredError
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.losses.losses import binary_crossentropy from keras.src.losses.losses import binary_focal_crossentropy from keras.src.losses.losses import categorical_crossentropy from keras.src.losses.losses import categorical_focal_crossentropy from keras.src.losses.losses import categorical_hinge from keras.src.losses.losses import hinge from keras.src.losses.losses import huber from keras.src.losses.losses import kl_divergence as KLD from keras.src.losses.losses import kl_divergence as kld from keras.src.losses.losses import kl_divergence as kullback_leibler_divergence from keras.src.losses.losses import log_cosh as logcosh from keras.src.losses.losses import mean_absolute_error as MAE from keras.src.losses.losses import mean_absolute_error as mae from keras.src.losses.losses import mean_absolute_percentage_error as MAPE from keras.src.losses.losses import mean_absolute_percentage_error as mape from keras.src.losses.losses import mean_squared_error as MSE from keras.src.losses.losses import mean_squared_error as mse from keras.src.losses.losses import mean_squared_logarithmic_error as MSLE from keras.src.losses.losses import mean_squared_logarithmic_error as msle from keras.src.losses.losses import poisson from keras.src.losses.losses import sparse_categorical_crossentropy from keras.src.losses.losses import squared_hinge from keras.src.metrics import deserialize from keras.src.metrics import get from keras.src.metrics import serialize from keras.src.metrics.accuracy_metrics import Accuracy from keras.src.metrics.accuracy_metrics import BinaryAccuracy from keras.src.metrics.accuracy_metrics import CategoricalAccuracy from keras.src.metrics.accuracy_metrics import SparseCategoricalAccuracy from keras.src.metrics.accuracy_metrics import SparseTopKCategoricalAccuracy from keras.src.metrics.accuracy_metrics import TopKCategoricalAccuracy from keras.src.metrics.accuracy_metrics import binary_accuracy from keras.src.metrics.accuracy_metrics import categorical_accuracy from keras.src.metrics.accuracy_metrics import sparse_categorical_accuracy from keras.src.metrics.accuracy_metrics import sparse_top_k_categorical_accuracy from keras.src.metrics.accuracy_metrics import top_k_categorical_accuracy from keras.src.metrics.confusion_metrics import AUC from keras.src.metrics.confusion_metrics import FalseNegatives from keras.src.metrics.confusion_metrics import FalsePositives from keras.src.metrics.confusion_metrics import Precision from keras.src.metrics.confusion_metrics import PrecisionAtRecall from keras.src.metrics.confusion_metrics import Recall from keras.src.metrics.confusion_metrics import RecallAtPrecision from keras.src.metrics.confusion_metrics import SensitivityAtSpecificity from keras.src.metrics.confusion_metrics import SpecificityAtSensitivity from keras.src.metrics.confusion_metrics import TrueNegatives from keras.src.metrics.confusion_metrics import TruePositives from keras.src.metrics.f_score_metrics import F1Score from keras.src.metrics.f_score_metrics import FBetaScore from keras.src.metrics.hinge_metrics import CategoricalHinge from keras.src.metrics.hinge_metrics import Hinge from keras.src.metrics.hinge_metrics import SquaredHinge from keras.src.metrics.iou_metrics import BinaryIoU from keras.src.metrics.iou_metrics import IoU from keras.src.metrics.iou_metrics import MeanIoU from keras.src.metrics.iou_metrics import OneHotIoU from keras.src.metrics.iou_metrics import OneHotMeanIoU from keras.src.metrics.metric import Metric from keras.src.metrics.probabilistic_metrics import BinaryCrossentropy from keras.src.metrics.probabilistic_metrics import CategoricalCrossentropy from keras.src.metrics.probabilistic_metrics import KLDivergence from keras.src.metrics.probabilistic_metrics import Poisson from keras.src.metrics.probabilistic_metrics import ( SparseCategoricalCrossentropy, ) from keras.src.metrics.reduction_metrics import Mean from keras.src.metrics.reduction_metrics import MeanMetricWrapper from keras.src.metrics.reduction_metrics import Sum from keras.src.metrics.regression_metrics import CosineSimilarity from keras.src.metrics.regression_metrics import LogCoshError from keras.src.metrics.regression_metrics import MeanAbsoluteError from keras.src.metrics.regression_metrics import MeanAbsolutePercentageError from keras.src.metrics.regression_metrics import MeanSquaredError from keras.src.metrics.regression_metrics import MeanSquaredLogarithmicError from keras.src.metrics.regression_metrics import R2Score from keras.src.metrics.regression_metrics import RootMeanSquaredError
import pathlib from argparse import ArgumentParser def main(args): wheel_path = pathlib.Path(args.wheel_path).expanduser().resolve() if not wheel_path.exists(): raise ValueError(f"Wheel cannot be found at path {wheel_path}") if not wheel_path.is_file(): raise ValueError(f"Path {wheel_path} is not a valid file") wheel_dir, wheel_name = wheel_path.parent, wheel_path.name tokens = wheel_name.split("-") assert len(tokens) == 5 version = tokens[1].split("+")[0] keywords = { "pkg_name": tokens[0], "version": version, "commit_id": args.commit_hash, "platform_tag": args.platform_tag, } new_wheel_name = ( "{pkg_name}-{version}+{commit_id}-py3-none-{platform_tag}.whl".format( **keywords ) ) new_wheel_path = wheel_dir / new_wheel_name print(f"Renaming {wheel_name} to {new_wheel_name}...") if new_wheel_name == wheel_name: print("Skipping, as the old name is identical to the new name.") else: if new_wheel_path.is_file(): new_wheel_path.unlink() wheel_path.rename(new_wheel_path) filesize = new_wheel_path.stat().st_size / 1024 / 1024 # MiB print(f"Wheel size: {filesize:.2f} MiB") if filesize > 300: raise RuntimeError( f"Limit of wheel size set by PyPI is exceeded. {new_wheel_name}: {filesize:.2f} MiB" ) if __name__ == "__main__": parser = ArgumentParser( description="Format a Python wheel's name using the git commit hash and platform tag" ) parser.add_argument( "--wheel-path", type=str, required=True, help="Path to the wheel" ) parser.add_argument( "--commit-hash", type=str, required=True, help="Git commit hash" ) parser.add_argument( "--platform-tag", type=str, required=True, help="Platform tag (e.g. manylinux_2_28_x86_64)", ) parsed_args = parser.parse_args() main(parsed_args)
import pathlib from argparse import ArgumentParser def main(args): wheel_path = pathlib.Path(args.wheel_path).expanduser().resolve() if not wheel_path.exists(): raise ValueError(f"Wheel cannot be found at path {wheel_path}") if not wheel_path.is_file(): raise ValueError(f"Path {wheel_path} is not a valid file") wheel_dir, wheel_name = wheel_path.parent, wheel_path.name tokens = wheel_name.split("-") assert len(tokens) == 5 version = tokens[1].split("+")[0] keywords = { "pkg_name": tokens[0], "version": version, "commit_id": args.commit_hash, "platform_tag": args.platform_tag, } new_wheel_name = ( "{pkg_name}-{version}+{commit_id}-py3-none-{platform_tag}.whl".format( **keywords ) ) new_wheel_path = wheel_dir / new_wheel_name print(f"Renaming {wheel_name} to {new_wheel_name}...") if new_wheel_path.is_file(): new_wheel_path.unlink() wheel_path.rename(new_wheel_path) filesize = new_wheel_path.stat().st_size / 1024 / 1024 # MiB print(f"Wheel size: {filesize:.2f} MiB") if filesize > 300: raise RuntimeError( f"Limit of wheel size set by PyPI is exceeded. {new_wheel_name}: {filesize:.2f} MiB" ) if __name__ == "__main__": parser = ArgumentParser( description="Format a Python wheel's name using the git commit hash and platform tag" ) parser.add_argument( "--wheel-path", type=str, required=True, help="Path to the wheel" ) parser.add_argument( "--commit-hash", type=str, required=True, help="Git commit hash" ) parser.add_argument( "--platform-tag", type=str, required=True, help="Platform tag (e.g. manylinux2014_x86_64)", ) parsed_args = parser.parse_args() main(parsed_args)
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "3.4.1.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled from .info import DatasetInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .utils import * from .utils import logging
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "3.4.0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled from .info import DatasetInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .utils import * from .utils import logging
import subprocess import pytest from dpr_text import DPRTextEncoder from jina import Document, DocumentArray, Flow _EMBEDDING_DIM = 768 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=DPRTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'pea', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:"cuda"', ], timeout=30, check=True, )
import subprocess import pytest from dpr_text import DPRTextEncoder from jina import Document, DocumentArray, Flow _EMBEDDING_DIM = 768 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=DPRTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, )
from typing import List, Optional from llama_index.core.instrumentation.events.base import BaseEvent from llama_index.core.schema import NodeWithScore, QueryType from llama_index.core.bridge.pydantic import ConfigDict class ReRankStartEvent(BaseEvent): """ ReRankStartEvent. Args: query (QueryType): Query as a string or query bundle. nodes (List[NodeWithScore]): List of nodes with scores. top_n (int): Number of nodes to return after rerank. model_name (str): Name of the model used for reranking. """ model_config = ConfigDict(protected_namespaces=("pydantic_model_",)) query: Optional[QueryType] nodes: List[NodeWithScore] top_n: int model_name: str @classmethod def class_name(cls) -> str: """Class name.""" return "ReRankStartEvent" class ReRankEndEvent(BaseEvent): """ ReRankEndEvent. Args: nodes (List[NodeWithScore]): List of returned nodes after rerank. """ nodes: List[NodeWithScore] @classmethod def class_name(cls) -> str: """Class name.""" return "ReRankEndEvent"
from typing import List, Optional from llama_index.core.instrumentation.events.base import BaseEvent from llama_index.core.schema import NodeWithScore, QueryType from llama_index.core.bridge.pydantic import ConfigDict class ReRankStartEvent(BaseEvent): """ReRankStartEvent. Args: query (QueryType): Query as a string or query bundle. nodes (List[NodeWithScore]): List of nodes with scores. top_n (int): Number of nodes to return after rerank. model_name (str): Name of the model used for reranking. """ model_config = ConfigDict(protected_namespaces=("pydantic_model_",)) query: Optional[QueryType] nodes: List[NodeWithScore] top_n: int model_name: str @classmethod def class_name(cls) -> str: """Class name.""" return "ReRankStartEvent" class ReRankEndEvent(BaseEvent): """ReRankEndEvent. Args: nodes (List[NodeWithScore]): List of returned nodes after rerank. """ nodes: List[NodeWithScore] @classmethod def class_name(cls) -> str: """Class name.""" return "ReRankEndEvent"
_base_ = ['./mask2former_r50_8xb2-lsj-50e_coco.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa depths = [2, 2, 6, 2] model = dict( type='Mask2Former', backbone=dict( _delete_=True, type='SwinTransformer', embed_dims=96, depths=depths, num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, frozen_stages=-1, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), panoptic_head=dict( type='Mask2FormerHead', in_channels=[96, 192, 384, 768]), init_cfg=None) # set all layers in backbone to lr_mult=0.1 # set all norm layers, position_embeding, # query_embeding, level_embeding to decay_multi=0.0 backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0) backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0) embed_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'backbone': dict(lr_mult=0.1, decay_mult=1.0), 'backbone.patch_embed.norm': backbone_norm_multi, 'backbone.norm': backbone_norm_multi, 'absolute_pos_embed': backbone_embed_multi, 'relative_position_bias_table': backbone_embed_multi, 'query_embed': embed_multi, 'query_feat': embed_multi, 'level_embed': embed_multi } custom_keys.update({ f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi for stage_id, num_blocks in enumerate(depths) for block_id in range(num_blocks) }) custom_keys.update({ f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi for stage_id in range(len(depths) - 1) }) # optimizer optim_wrapper = dict( paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))
_base_ = ['./mask2former_r50_lsj_8x2_50e_coco.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa depths = [2, 2, 6, 2] model = dict( type='Mask2Former', backbone=dict( _delete_=True, type='SwinTransformer', embed_dims=96, depths=depths, num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.3, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, frozen_stages=-1, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), panoptic_head=dict( type='Mask2FormerHead', in_channels=[96, 192, 384, 768]), init_cfg=None) # set all layers in backbone to lr_mult=0.1 # set all norm layers, position_embeding, # query_embeding, level_embeding to decay_multi=0.0 backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0) backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0) embed_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'backbone': dict(lr_mult=0.1, decay_mult=1.0), 'backbone.patch_embed.norm': backbone_norm_multi, 'backbone.norm': backbone_norm_multi, 'absolute_pos_embed': backbone_embed_multi, 'relative_position_bias_table': backbone_embed_multi, 'query_embed': embed_multi, 'query_feat': embed_multi, 'level_embed': embed_multi } custom_keys.update({ f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi for stage_id, num_blocks in enumerate(depths) for block_id in range(num_blocks) }) custom_keys.update({ f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi for stage_id in range(len(depths) - 1) }) # optimizer optim_wrapper = dict( paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.8.1' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.8.0' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.powerbi.base import create_pbi_agent # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "create_pbi_agent": "langchain_community.agent_toolkits.powerbi.base", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "create_pbi_agent", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.powerbi.base import create_pbi_agent # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "create_pbi_agent": "langchain_community.agent_toolkits.powerbi.base" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "create_pbi_agent", ]
import logging import os import threading from functools import wraps from uuid import uuid4 from tenacity import retry, stop_after_attempt, wait_exponential from backend.util.process import get_service_name logger = logging.getLogger(__name__) def _log_prefix(resource_name: str, conn_id: str): """ Returns a prefix string for logging purposes. This needs to be called on the fly to get the current process ID & service name, not the parent process ID & service name. """ return f"[PID-{os.getpid()}|THREAD-{threading.get_native_id()}|{get_service_name()}|{resource_name}-{conn_id}]" def conn_retry(resource_name: str, action_name: str, max_retry: int = 5): conn_id = str(uuid4()) def on_retry(retry_state): prefix = _log_prefix(resource_name, conn_id) exception = retry_state.outcome.exception() logger.error(f"{prefix} {action_name} failed: {exception}. Retrying now...") def decorator(func): @wraps(func) def wrapper(*args, **kwargs): prefix = _log_prefix(resource_name, conn_id) logger.info(f"{prefix} {action_name} started...") # Define the retrying strategy retrying_func = retry( stop=stop_after_attempt(max_retry + 1), wait=wait_exponential(multiplier=1, min=1, max=30), before_sleep=on_retry, reraise=True, )(func) try: result = retrying_func(*args, **kwargs) logger.info(f"{prefix} {action_name} completed successfully.") return result except Exception as e: logger.error(f"{prefix} {action_name} failed after retries: {e}") raise return wrapper return decorator
import logging import os from functools import wraps from uuid import uuid4 from tenacity import retry, stop_after_attempt, wait_exponential from backend.util.process import get_service_name logger = logging.getLogger(__name__) def _log_prefix(resource_name: str, conn_id: str): """ Returns a prefix string for logging purposes. This needs to be called on the fly to get the current process ID & service name, not the parent process ID & service name. """ return f"[PID-{os.getpid()}|{get_service_name()}|{resource_name}-{conn_id}]" def conn_retry(resource_name: str, action_name: str, max_retry: int = 5): conn_id = str(uuid4()) def on_retry(retry_state): prefix = _log_prefix(resource_name, conn_id) exception = retry_state.outcome.exception() logger.info(f"{prefix} {action_name} failed: {exception}. Retrying now...") def decorator(func): @wraps(func) def wrapper(*args, **kwargs): prefix = _log_prefix(resource_name, conn_id) logger.info(f"{prefix} {action_name} started...") # Define the retrying strategy retrying_func = retry( stop=stop_after_attempt(max_retry + 1), wait=wait_exponential(multiplier=1, min=1, max=30), before_sleep=on_retry, reraise=True, )(func) try: result = retrying_func(*args, **kwargs) logger.info(f"{prefix} {action_name} completed successfully.") return result except Exception as e: logger.error(f"{prefix} {action_name} failed after retries: {e}") raise return wrapper return decorator
__version__ = '0.16.3' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
__version__ = '0.16.2' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
class DataAdapter: """Base class for input data adapters. The purpose of a DataAdapter is to provide a unfied interface to iterate over input data provided in a variety of formats -- such as NumPy arrays, tf.Tensors, tf.data.Datasets, Keras PyDatasets, etc. """ def get_numpy_iterator(self): """Get a Python iterable for the `DataAdapter`, that yields NumPy arrays. Returns: A Python iterator. """ raise NotImplementedError def get_tf_dataset(self): """Get a `tf.data.Dataset` instance for the DataAdapter. Note that the dataset returned does not repeat for epoch, so caller might need to create new iterator for the same dataset at the beginning of the epoch. This behavior might change in the future. Returns: A `tf.data.Dataset`. Caller might use the dataset in different context, e.g. iter(dataset) in eager to get the value directly, or in graph mode, provide the iterator tensor to Keras model function. """ raise NotImplementedError def get_jax_iterator(self): """Get a Python iterable for the `DataAdapter`, that yields arrays that that can be fed to JAX. NumPy arrays are preferred for performance. Returns: A Python iterator. """ raise NotImplementedError def get_torch_dataloader(self): """Get a Torch `DataLoader` for the `DataAdapter`. Returns: A Torch `DataLoader`. """ raise NotImplementedError @property def num_batches(self): """Return the size (number of batches) for the dataset created. For certain type of the data input, the number of batches is known, eg for Numpy data, the size is same as (number_of_element / batch_size). Whereas for dataset or python generator, the size is unknown since it may or may not have an end state. Returns: int, the number of batches for the dataset, or None if it is unknown. The caller could use this to control the loop of training, show progress bar, or handle unexpected StopIteration error. """ raise NotImplementedError @property def batch_size(self): """Return the batch size of the dataset created. For certain type of the data input, the batch size is known, and even required, like numpy array. Whereas for dataset, the batch is unknown unless we take a peek. Returns: int, the batch size of the dataset, or None if it is unknown. """ raise NotImplementedError @property def has_partial_batch(self): """Whether the dataset has partial batch at the end.""" raise NotImplementedError @property def partial_batch_size(self): """The size of the final partial batch for dataset. Will return None if has_partial_batch is False or batch_size is None. """ raise NotImplementedError def on_epoch_begin(self): """A hook called before each epoch.""" pass def on_epoch_end(self): """A hook called after each epoch.""" pass
class DataAdapter: """Base class for input data adapters. The purpose of a DataAdapter is to provide a unfied interface to iterate over input data provided in a variety of formats -- such as NumPy arrays, tf.Tensors, tf.data.Datasets, Keras PyDatasets, etc. """ def get_numpy_iterator(self): """Get a Python iterable for the `DataAdapter`, that yields NumPy arrays. Returns: A Python iterator. """ raise NotImplementedError def get_tf_dataset(self): """Get a `tf.data.Dataset` instance for the DataAdapter. Note that the dataset returned does not repeat for epoch, so caller might need to create new iterator for the same dataset at the beginning of the epoch. This behavior might change in the future. Returns: A `tf.data.Dataset`. Caller might use the dataset in different context, e.g. iter(dataset) in eager to get the value directly, or in graph mode, provide the iterator tensor to Keras model function. """ raise NotImplementedError def get_jax_iterator(self): """Get a Python iterable for the `DataAdapter`, that yields JAX arrays. Returns: A Python iterator. """ raise NotImplementedError def get_torch_dataloader(self): """Get a Torch `DataLoader` for the `DataAdapter`. Returns: A Torch `DataLoader`. """ raise NotImplementedError @property def num_batches(self): """Return the size (number of batches) for the dataset created. For certain type of the data input, the number of batches is known, eg for Numpy data, the size is same as (number_of_element / batch_size). Whereas for dataset or python generator, the size is unknown since it may or may not have an end state. Returns: int, the number of batches for the dataset, or None if it is unknown. The caller could use this to control the loop of training, show progress bar, or handle unexpected StopIteration error. """ raise NotImplementedError @property def batch_size(self): """Return the batch size of the dataset created. For certain type of the data input, the batch size is known, and even required, like numpy array. Whereas for dataset, the batch is unknown unless we take a peek. Returns: int, the batch size of the dataset, or None if it is unknown. """ raise NotImplementedError @property def has_partial_batch(self): """Whether the dataset has partial batch at the end.""" raise NotImplementedError @property def partial_batch_size(self): """The size of the final partial batch for dataset. Will return None if has_partial_batch is False or batch_size is None. """ raise NotImplementedError def on_epoch_begin(self): """A hook called before each epoch.""" pass def on_epoch_end(self): """A hook called after each epoch.""" pass
from typing import Union from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers.openai_tools import PydanticToolsParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import Runnable from langchain_core.utils.function_calling import convert_pydantic_to_openai_function from pydantic import BaseModel _EXTRACTION_TEMPLATE = """Extract and save the relevant entities mentioned \ in the following passage together with their properties. If a property is not present and is not required in the function parameters, do not include it in the output.""" # noqa: E501 @deprecated( since="0.1.14", message=( "LangChain has introduced a method called `with_structured_output` that" "is available on ChatModels capable of tool calling." "You can read more about the method here: " "<https://python.langchain.com/docs/modules/model_io/chat/structured_output/>. " "Please follow our extraction use case documentation for more guidelines" "on how to do information extraction with LLMs." "<https://python.langchain.com/docs/use_cases/extraction/>. " "with_structured_output does not currently support a list of pydantic schemas. " "If this is a blocker or if you notice other issues, please provide " "feedback here:" "<https://github.com/langchain-ai/langchain/discussions/18154>" ), removal="1.0", alternative=( """ from pydantic import BaseModel, Field from langchain_anthropic import ChatAnthropic class Joke(BaseModel): setup: str = Field(description="The setup of the joke") punchline: str = Field(description="The punchline to the joke") # Or any other chat model that supports tools. # Please reference to to the documentation of structured_output # to see an up to date list of which models support # with_structured_output. model = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) structured_llm = model.with_structured_output(Joke) structured_llm.invoke("Tell me a joke about cats. Make sure to call the Joke function.") """ ), ) def create_extraction_chain_pydantic( pydantic_schemas: Union[list[type[BaseModel]], type[BaseModel]], llm: BaseLanguageModel, system_message: str = _EXTRACTION_TEMPLATE, ) -> Runnable: """Creates a chain that extracts information from a passage. Args: pydantic_schemas: The schema of the entities to extract. llm: The language model to use. system_message: The system message to use for extraction. Returns: A runnable that extracts information from a passage. """ if not isinstance(pydantic_schemas, list): pydantic_schemas = [pydantic_schemas] prompt = ChatPromptTemplate.from_messages( [ ("system", system_message), ("user", "{input}"), ], ) functions = [convert_pydantic_to_openai_function(p) for p in pydantic_schemas] tools = [{"type": "function", "function": d} for d in functions] model = llm.bind(tools=tools) return prompt | model | PydanticToolsParser(tools=pydantic_schemas)
from typing import Union from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers.openai_tools import PydanticToolsParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import Runnable from langchain_core.utils.function_calling import convert_pydantic_to_openai_function from pydantic import BaseModel _EXTRACTION_TEMPLATE = """Extract and save the relevant entities mentioned \ in the following passage together with their properties. If a property is not present and is not required in the function parameters, do not include it in the output.""" # noqa: E501 @deprecated( since="0.1.14", message=( "LangChain has introduced a method called `with_structured_output` that" "is available on ChatModels capable of tool calling." "You can read more about the method here: " "<https://python.langchain.com/docs/modules/model_io/chat/structured_output/>. " "Please follow our extraction use case documentation for more guidelines" "on how to do information extraction with LLMs." "<https://python.langchain.com/docs/use_cases/extraction/>. " "with_structured_output does not currently support a list of pydantic schemas. " "If this is a blocker or if you notice other issues, please provide " "feedback here:" "<https://github.com/langchain-ai/langchain/discussions/18154>" ), removal="1.0", alternative=( """ from pydantic import BaseModel, Field from langchain_anthropic import ChatAnthropic class Joke(BaseModel): setup: str = Field(description="The setup of the joke") punchline: str = Field(description="The punchline to the joke") # Or any other chat model that supports tools. # Please reference to to the documentation of structured_output # to see an up to date list of which models support # with_structured_output. model = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) structured_llm = model.with_structured_output(Joke) structured_llm.invoke("Tell me a joke about cats. Make sure to call the Joke function.") """ ), ) def create_extraction_chain_pydantic( pydantic_schemas: Union[list[type[BaseModel]], type[BaseModel]], llm: BaseLanguageModel, system_message: str = _EXTRACTION_TEMPLATE, ) -> Runnable: """Creates a chain that extracts information from a passage. Args: pydantic_schemas: The schema of the entities to extract. llm: The language model to use. system_message: The system message to use for extraction. Returns: A runnable that extracts information from a passage. """ if not isinstance(pydantic_schemas, list): pydantic_schemas = [pydantic_schemas] prompt = ChatPromptTemplate.from_messages( [ ("system", system_message), ("user", "{input}"), ] ) functions = [convert_pydantic_to_openai_function(p) for p in pydantic_schemas] tools = [{"type": "function", "function": d} for d in functions] model = llm.bind(tools=tools) return prompt | model | PydanticToolsParser(tools=pydantic_schemas)
import gzip import logging import os from datetime import datetime import torch from sentence_transformers import LoggingHandler, SentenceTransformer, evaluation, losses, models, util #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Some training parameters. We use a batch size of 16, for every positive example we include 8-1=7 negative examples # Sentences are truncated to 75 word pieces model_name = "distilbert-base-uncased" batch_size = 16 pos_neg_ratio = 8 # batch_size must be devisible by pos_neg_ratio max_seq_length = 75 num_epochs = 1 ################# Download AskUbuntu and extract training corpus ################# askubuntu_folder = "askubuntu" output_path = "output/train_askubuntu_ct-{}-{}-{}".format( model_name, batch_size, datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) ## Download the AskUbuntu dataset from https://github.com/taolei87/askubuntu for filename in ["text_tokenized.txt.gz", "dev.txt", "test.txt", "train_random.txt"]: filepath = os.path.join(askubuntu_folder, filename) if not os.path.exists(filepath): util.http_get("https://github.com/taolei87/askubuntu/raw/master/" + filename, filepath) # Read the corpus corpus = {} dev_test_ids = set() with gzip.open(os.path.join(askubuntu_folder, "text_tokenized.txt.gz"), "rt", encoding="utf8") as fIn: for line in fIn: splits = line.strip().split("\t") id = splits[0] title = splits[1] corpus[id] = title # Read dev & test dataset def read_eval_dataset(filepath): dataset = [] with open(filepath) as fIn: for line in fIn: query_id, relevant_id, candidate_ids, bm25_scores = line.strip().split("\t") if len(relevant_id) == 0: # Skip examples without relevant entries continue relevant_id = relevant_id.split(" ") candidate_ids = candidate_ids.split(" ") negative_ids = set(candidate_ids) - set(relevant_id) dataset.append( { "query": corpus[query_id], "positive": [corpus[pid] for pid in relevant_id], "negative": [corpus[pid] for pid in negative_ids], } ) dev_test_ids.add(query_id) dev_test_ids.update(candidate_ids) return dataset dev_dataset = read_eval_dataset(os.path.join(askubuntu_folder, "dev.txt")) test_dataset = read_eval_dataset(os.path.join(askubuntu_folder, "test.txt")) ## Now we need a list of train sentences. ## In this example we simply use all sentences that don't appear in the train/dev set train_sentences = [] for id, sentence in corpus.items(): if id not in dev_test_ids: train_sentences.append(sentence) logging.info(f"{len(train_sentences)} train sentences") ################# Initialize an SBERT model ################# word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Train the model ################# # For ContrastiveTension we need a special data loader to construct batches with the desired properties train_dataloader = losses.ContrastiveTensionDataLoader( train_sentences, batch_size=batch_size, pos_neg_ratio=pos_neg_ratio ) # As loss, we losses.ContrastiveTensionLoss train_loss = losses.ContrastiveTensionLoss(model) # Create a dev evaluator dev_evaluator = evaluation.RerankingEvaluator(dev_dataset, name="AskUbuntu dev") test_evaluator = evaluation.RerankingEvaluator(test_dataset, name="AskUbuntu test") logging.info("Start training") model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=1, weight_decay=0, warmup_steps=0, optimizer_class=torch.optim.RMSprop, optimizer_params={"lr": 1e-5}, use_amp=False, # Set to True, if your GPU has optimized FP16 cores ) latest_output_path = output_path + "-latest" model.save(latest_output_path) ### Run test evaluation on the latest model. This is equivalent to not having a dev dataset model = SentenceTransformer(latest_output_path) test_evaluator(model)
import gzip import logging import os from datetime import datetime import torch from sentence_transformers import LoggingHandler, SentenceTransformer, evaluation, losses, models, util #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Some training parameters. We use a batch size of 16, for every positive example we include 8-1=7 negative examples # Sentences are truncated to 75 word pieces model_name = "distilbert-base-uncased" batch_size = 16 pos_neg_ratio = 8 # batch_size must be devisible by pos_neg_ratio max_seq_length = 75 num_epochs = 1 ################# Download AskUbuntu and extract training corpus ################# askubuntu_folder = "askubuntu" output_path = "output/train_askubuntu_ct-{}-{}-{}".format( model_name, batch_size, datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) ## Download the AskUbuntu dataset from https://github.com/taolei87/askubuntu for filename in ["text_tokenized.txt.gz", "dev.txt", "test.txt", "train_random.txt"]: filepath = os.path.join(askubuntu_folder, filename) if not os.path.exists(filepath): util.http_get("https://github.com/taolei87/askubuntu/raw/master/" + filename, filepath) # Read the corpus corpus = {} dev_test_ids = set() with gzip.open(os.path.join(askubuntu_folder, "text_tokenized.txt.gz"), "rt", encoding="utf8") as fIn: for line in fIn: splits = line.strip().split("\t") id = splits[0] title = splits[1] corpus[id] = title # Read dev & test dataset def read_eval_dataset(filepath): dataset = [] with open(filepath) as fIn: for line in fIn: query_id, relevant_id, candidate_ids, bm25_scores = line.strip().split("\t") if len(relevant_id) == 0: # Skip examples without relevant entries continue relevant_id = relevant_id.split(" ") candidate_ids = candidate_ids.split(" ") negative_ids = set(candidate_ids) - set(relevant_id) dataset.append( { "query": corpus[query_id], "positive": [corpus[pid] for pid in relevant_id], "negative": [corpus[pid] for pid in negative_ids], } ) dev_test_ids.add(query_id) dev_test_ids.update(candidate_ids) return dataset dev_dataset = read_eval_dataset(os.path.join(askubuntu_folder, "dev.txt")) test_dataset = read_eval_dataset(os.path.join(askubuntu_folder, "test.txt")) ## Now we need a list of train sentences. ## In this example we simply use all sentences that don't appear in the train/dev set train_sentences = [] for id, sentence in corpus.items(): if id not in dev_test_ids: train_sentences.append(sentence) logging.info("{} train sentences".format(len(train_sentences))) ################# Initialize an SBERT model ################# word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Train the model ################# # For ContrastiveTension we need a special data loader to construct batches with the desired properties train_dataloader = losses.ContrastiveTensionDataLoader( train_sentences, batch_size=batch_size, pos_neg_ratio=pos_neg_ratio ) # As loss, we losses.ContrastiveTensionLoss train_loss = losses.ContrastiveTensionLoss(model) # Create a dev evaluator dev_evaluator = evaluation.RerankingEvaluator(dev_dataset, name="AskUbuntu dev") test_evaluator = evaluation.RerankingEvaluator(test_dataset, name="AskUbuntu test") logging.info("Start training") model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=1, weight_decay=0, warmup_steps=0, optimizer_class=torch.optim.RMSprop, optimizer_params={"lr": 1e-5}, use_amp=False, # Set to True, if your GPU has optimized FP16 cores ) latest_output_path = output_path + "-latest" model.save(latest_output_path) ### Run test evaluation on the latest model. This is equivalent to not having a dev dataset model = SentenceTransformer(latest_output_path) test_evaluator(model)
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from docarray import BaseDoc from docarray.typing import NdArray def test_set_tensor(): class MyDocument(BaseDoc): tensor: NdArray d = MyDocument(tensor=np.zeros((3, 224, 224))) assert isinstance(d.tensor, NdArray) assert isinstance(d.tensor, np.ndarray) assert (d.tensor == np.zeros((3, 224, 224))).all()
import numpy as np from docarray import BaseDoc from docarray.typing import NdArray def test_set_tensor(): class MyDocument(BaseDoc): tensor: NdArray d = MyDocument(tensor=np.zeros((3, 224, 224))) assert isinstance(d.tensor, NdArray) assert isinstance(d.tensor, np.ndarray) assert (d.tensor == np.zeros((3, 224, 224))).all()
import argparse import os.path as osp from mmengine.fileio import dump, load def parse_args(): parser = argparse.ArgumentParser( description='Generate COCO test image information ' 'for COCO panoptic segmentation.') parser.add_argument('data_root', help='Path to COCO annotation directory.') args = parser.parse_args() return args def main(): args = parse_args() data_root = args.data_root val_info = load(osp.join(data_root, 'panoptic_val2017.json')) test_old_info = load(osp.join(data_root, 'image_info_test-dev2017.json')) # replace categories from image_info_test-dev2017.json # with categories from panoptic_val2017.json which # has attribute `isthing`. test_info = test_old_info test_info.update({'categories': val_info['categories']}) dump(test_info, osp.join(data_root, 'panoptic_image_info_test-dev2017.json')) if __name__ == '__main__': main()
import argparse import os.path as osp import mmcv def parse_args(): parser = argparse.ArgumentParser( description='Generate COCO test image information ' 'for COCO panoptic segmentation.') parser.add_argument('data_root', help='Path to COCO annotation directory.') args = parser.parse_args() return args def main(): args = parse_args() data_root = args.data_root val_info = mmcv.load(osp.join(data_root, 'panoptic_val2017.json')) test_old_info = mmcv.load( osp.join(data_root, 'image_info_test-dev2017.json')) # replace categories from image_info_test-dev2017.json # with categories from panoptic_val2017.json which # has attribute `isthing`. test_info = test_old_info test_info.update({'categories': val_info['categories']}) mmcv.dump(test_info, osp.join(data_root, 'panoptic_image_info_test-dev2017.json')) if __name__ == '__main__': main()
import os import pytest from docarray import Document from jina import Executor, Flow, requests class MyExec(Executor): @requests def foo(self, docs, **kwargs): pass @pytest.fixture def cert_prefix(): cur_dir = os.path.dirname(os.path.abspath(__file__)) return f'{cur_dir}/../../../unit/serve/runtimes/gateway/grpc/cert/' @pytest.fixture def cert_pem(cert_prefix): """This is the cert entry of a self-signed local cert""" return cert_prefix + '/server.crt' @pytest.fixture def key_pem(cert_prefix): """This is the key entry of a self-signed local cert""" return cert_prefix + '/server.key' @pytest.mark.parametrize('protocol', ['http', 'websocket', 'grpc']) @pytest.mark.parametrize('tls', [True, False]) @pytest.mark.parametrize( 'uses', ['jinaai+sandbox://jina-ai/DummyHubExecutor'], ) def test_deployment_protocol(protocol, tls, cert_pem, key_pem, uses): cert = cert_pem if tls else None key = key_pem if tls else None f = ( Flow(protocol=protocol, ssl_certfile=cert, ssl_keyfile=key) .add(uses=MyExec) .add(uses=uses) ) with f: for node, v in f._deployment_nodes.items(): p = v.protocol.lower() if node == 'gateway': assert p == protocol + ('s' if tls else '') elif node == 'executor0': assert p == 'grpc' elif node == 'executor1': assert p == 'grpcs'
import os import pytest from docarray import Document from jina import Executor, Flow, requests class MyExec(Executor): @requests def foo(self, docs, **kwargs): pass @pytest.fixture def cert_prefix(): cur_dir = os.path.dirname(os.path.abspath(__file__)) return f'{cur_dir}/../../../unit/serve/runtimes/gateway/grpc/cert/' @pytest.fixture def cert_pem(cert_prefix): """This is the cert entry of a self-signed local cert""" return cert_prefix + '/server.crt' @pytest.fixture def key_pem(cert_prefix): """This is the key entry of a self-signed local cert""" return cert_prefix + '/server.key' @pytest.mark.parametrize('protocol', ['http', 'websocket', 'grpc']) @pytest.mark.parametrize('tls', [True, False]) def test_deployment_protocol(protocol, tls, cert_pem, key_pem): cert = cert_pem if tls else None key = key_pem if tls else None f = ( Flow(protocol=protocol, ssl_certfile=cert, ssl_keyfile=key) .add(uses=MyExec) .add(uses='jinahub+sandbox://DummyHubExecutor') ) with f: for node, v in f._deployment_nodes.items(): p = v.protocol.lower() if node == 'gateway': assert p == protocol + ('s' if tls else '') elif node == 'executor0': assert p == 'grpc' elif node == 'executor1': assert p == 'grpcs'
import PIL.Image import torch from torchvision import datapoints from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_explicit_noop, _register_kernel_internal @_register_explicit_noop( PIL.Image.Image, datapoints.Image, datapoints.BoundingBoxes, datapoints.Mask, warn_passthrough=True ) def uniform_temporal_subsample(inpt: datapoints._VideoTypeJIT, num_samples: int) -> datapoints._VideoTypeJIT: if torch.jit.is_scripting(): return uniform_temporal_subsample_video(inpt, num_samples=num_samples) _log_api_usage_once(uniform_temporal_subsample) kernel = _get_kernel(uniform_temporal_subsample, type(inpt)) return kernel(inpt, num_samples=num_samples) @_register_kernel_internal(uniform_temporal_subsample, torch.Tensor) @_register_kernel_internal(uniform_temporal_subsample, datapoints.Video) def uniform_temporal_subsample_video(video: torch.Tensor, num_samples: int) -> torch.Tensor: # Reference: https://github.com/facebookresearch/pytorchvideo/blob/a0a131e/pytorchvideo/transforms/functional.py#L19 t_max = video.shape[-4] - 1 indices = torch.linspace(0, t_max, num_samples, device=video.device).long() return torch.index_select(video, -4, indices)
import PIL.Image import torch from torchvision import datapoints from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_explicit_noop, _register_kernel_internal, is_simple_tensor @_register_explicit_noop( PIL.Image.Image, datapoints.Image, datapoints.BoundingBoxes, datapoints.Mask, warn_passthrough=True ) def uniform_temporal_subsample(inpt: datapoints._VideoTypeJIT, num_samples: int) -> datapoints._VideoTypeJIT: if not torch.jit.is_scripting(): _log_api_usage_once(uniform_temporal_subsample) if torch.jit.is_scripting() or is_simple_tensor(inpt): return uniform_temporal_subsample_video(inpt, num_samples) elif isinstance(inpt, datapoints.Datapoint): kernel = _get_kernel(uniform_temporal_subsample, type(inpt)) return kernel(inpt, num_samples) else: raise TypeError( f"Input can either be a plain tensor or any TorchVision datapoint, but got {type(inpt)} instead." ) @_register_kernel_internal(uniform_temporal_subsample, datapoints.Video) def uniform_temporal_subsample_video(video: torch.Tensor, num_samples: int) -> torch.Tensor: # Reference: https://github.com/facebookresearch/pytorchvideo/blob/a0a131e/pytorchvideo/transforms/functional.py#L19 t_max = video.shape[-4] - 1 indices = torch.linspace(0, t_max, num_samples, device=video.device).long() return torch.index_select(video, -4, indices)
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar, Union from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.typing.url.mimetypes import OBJ_MIMETYPE from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import trimesh T = TypeVar('T', bound='Url3D') @_register_proto(proto_type_name='url3d') class Url3D(AnyUrl, ABC): """ URL to a file containing 3D mesh or point cloud information. Can be remote (web) URL, or a local file path. """ @classmethod def mime_type(cls) -> str: return OBJ_MIMETYPE def _load_trimesh_instance( self: T, force: Optional[str] = None, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> Union['trimesh.Trimesh', 'trimesh.Scene']: """ Load the data from the url into a trimesh.Mesh or trimesh.Scene object. :param force: str or None. For 'mesh' try to coerce scenes into a single mesh. For 'scene' try to coerce everything into a scene. :param skip_materials: Skip materials if True, else skip. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: trimesh.Mesh or trimesh.Scene object """ import urllib.parse if TYPE_CHECKING: import trimesh else: trimesh = import_library('trimesh', raise_error=True) if not trimesh_args: trimesh_args = {} scheme = urllib.parse.urlparse(self).scheme loader = trimesh.load_remote if scheme in ['http', 'https'] else trimesh.load mesh = loader(self, force=force, skip_materials=skip_materials, **trimesh_args) return mesh
from abc import ABC from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar, Union from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.typing.url.mimetypes import OBJ_MIMETYPE from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import trimesh T = TypeVar('T', bound='Url3D') @_register_proto(proto_type_name='url3d') class Url3D(AnyUrl, ABC): """ URL to a file containing 3D mesh or point cloud information. Can be remote (web) URL, or a local file path. """ @classmethod def mime_type(cls) -> str: return OBJ_MIMETYPE def _load_trimesh_instance( self: T, force: Optional[str] = None, skip_materials: bool = True, trimesh_args: Optional[Dict[str, Any]] = None, ) -> Union['trimesh.Trimesh', 'trimesh.Scene']: """ Load the data from the url into a trimesh.Mesh or trimesh.Scene object. :param force: str or None. For 'mesh' try to coerce scenes into a single mesh. For 'scene' try to coerce everything into a scene. :param skip_materials: Skip materials if True, else skip. :param trimesh_args: dictionary of additional arguments for `trimesh.load()` or `trimesh.load_remote()`. :return: trimesh.Mesh or trimesh.Scene object """ import urllib.parse if TYPE_CHECKING: import trimesh else: trimesh = import_library('trimesh', raise_error=True) if not trimesh_args: trimesh_args = {} scheme = urllib.parse.urlparse(self).scheme loader = trimesh.load_remote if scheme in ['http', 'https'] else trimesh.load mesh = loader(self, force=force, skip_materials=skip_materials, **trimesh_args) return mesh
from typing import Optional, List, Dict, Any, TYPE_CHECKING, Union from pydantic import BaseModel, validator from docarray.math.ndarray import to_list if TYPE_CHECKING: from docarray.typing import ArrayType # this order must be preserved: https://pydantic-docs.helpmanual.io/usage/types/#unions _ProtoValueType = Optional[Union[bool, float, str, list, dict]] _StructValueType = Union[ _ProtoValueType, List[_ProtoValueType], Dict[str, _ProtoValueType] ] _MetadataType = Dict[str, _StructValueType] def _convert_ndarray_to_list(v: 'ArrayType'): if v is not None: return to_list(v) class _NamedScore(BaseModel): value: Optional[float] = None op_name: Optional[str] = None description: Optional[str] = None ref_id: Optional[str] = None class _MetadataModel(BaseModel): metadata: _MetadataType class PydanticDocument(BaseModel): id: Optional[str] parent_id: Optional[str] granularity: Optional[int] adjacency: Optional[int] blob: Optional[str] tensor: Optional[Any] mime_type: Optional[str] text: Optional[str] weight: Optional[float] uri: Optional[str] tags: Optional[Dict[str, '_StructValueType']] _metadata: Optional[Dict[str, '_StructValueType']] offset: Optional[float] location: Optional[List[float]] embedding: Optional[Any] modality: Optional[str] evaluations: Optional[Dict[str, '_NamedScore']] scores: Optional[Dict[str, '_NamedScore']] chunks: Optional[List['PydanticDocument']] matches: Optional[List['PydanticDocument']] _tensor2list = validator('tensor', allow_reuse=True)(_convert_ndarray_to_list) _embedding2list = validator('embedding', allow_reuse=True)(_convert_ndarray_to_list) class Config: smart_union = True def __init__(self, **data): super().__init__(**data) # underscore attributes need to be set and validated manually _metadata = data.get('_metadata', None) if _metadata is not None: _md_model = _MetadataModel(metadata=_metadata) # validate _metadata object.__setattr__(self, '_metadata', _md_model.metadata) PydanticDocument.update_forward_refs() PydanticDocumentArray = List[PydanticDocument]
from typing import Optional, List, Dict, Any, TYPE_CHECKING, Union from pydantic import BaseModel, validator from ..math.ndarray import to_list if TYPE_CHECKING: from ..typing import ArrayType # this order must be preserved: https://pydantic-docs.helpmanual.io/usage/types/#unions _ProtoValueType = Optional[Union[bool, float, str, list, dict]] _StructValueType = Union[ _ProtoValueType, List[_ProtoValueType], Dict[str, _ProtoValueType] ] _MetadataType = Dict[str, _StructValueType] def _convert_ndarray_to_list(v: 'ArrayType'): if v is not None: return to_list(v) class _NamedScore(BaseModel): value: Optional[float] = None op_name: Optional[str] = None description: Optional[str] = None ref_id: Optional[str] = None class _MetadataModel(BaseModel): metadata: _MetadataType class PydanticDocument(BaseModel): id: Optional[str] parent_id: Optional[str] granularity: Optional[int] adjacency: Optional[int] blob: Optional[str] tensor: Optional[Any] mime_type: Optional[str] text: Optional[str] weight: Optional[float] uri: Optional[str] tags: Optional[Dict[str, '_StructValueType']] _metadata: Optional[Dict[str, '_StructValueType']] offset: Optional[float] location: Optional[List[float]] embedding: Optional[Any] modality: Optional[str] evaluations: Optional[Dict[str, '_NamedScore']] scores: Optional[Dict[str, '_NamedScore']] chunks: Optional[List['PydanticDocument']] matches: Optional[List['PydanticDocument']] _tensor2list = validator('tensor', allow_reuse=True)(_convert_ndarray_to_list) _embedding2list = validator('embedding', allow_reuse=True)(_convert_ndarray_to_list) class Config: smart_union = True def __init__(self, **data): super().__init__(**data) # underscore attributes need to be set and validated manually _metadata = data.get('_metadata', None) if _metadata is not None: _md_model = _MetadataModel(metadata=_metadata) # validate _metadata object.__setattr__(self, '_metadata', _md_model.metadata) PydanticDocument.update_forward_refs() PydanticDocumentArray = List[PydanticDocument]
# model settings norm_cfg = dict(type='BN', requires_grad=False) model = dict( type='FasterRCNN', data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( type='ResNet', depth=50, num_stages=4, strides=(1, 2, 2, 1), dilations=(1, 1, 1, 2), out_indices=(3, ), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), rpn_head=dict( type='RPNHead', in_channels=2048, feat_channels=2048, anchor_generator=dict( type='AnchorGenerator', scales=[2, 4, 8, 16, 32], ratios=[0.5, 1.0, 2.0], strides=[16]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=2048, featmap_strides=[16]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=2048, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=12000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms=dict(type='nms', iou_threshold=0.7), nms_pre=6000, max_per_img=1000, min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)))
# model settings preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) norm_cfg = dict(type='BN', requires_grad=False) model = dict( type='FasterRCNN', preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNet', depth=50, num_stages=4, strides=(1, 2, 2, 1), dilations=(1, 1, 1, 2), out_indices=(3, ), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), rpn_head=dict( type='RPNHead', in_channels=2048, feat_channels=2048, anchor_generator=dict( type='AnchorGenerator', scales=[2, 4, 8, 16, 32], ratios=[0.5, 1.0, 2.0], strides=[16]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=2048, featmap_strides=[16]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=2048, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=12000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms=dict(type='nms', iou_threshold=0.7), nms_pre=6000, max_per_img=1000, min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)))
from __future__ import annotations import re import pytest from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import NanoBEIREvaluator from sentence_transformers.util import is_datasets_available from tests.utils import is_ci if not is_datasets_available(): pytest.skip( reason="Datasets are not installed. Please install `datasets` with `pip install datasets`", allow_module_level=True, ) if is_ci(): pytest.skip( reason="Skip test in CI to try and avoid 429 Client Error", allow_module_level=True, ) def test_nanobeir_evaluator(stsb_bert_tiny_model_reused: SentenceTransformer): """Tests that the NanoBERTEvaluator can be loaded and produces expected metrics""" datasets = ["QuoraRetrieval", "MSMARCO"] query_prompts = { "QuoraRetrieval": "Instruct: Given a question, retrieve questions that are semantically equivalent to the given question\\nQuery: ", "MSMARCO": "Instruct: Given a web search query, retrieve relevant passages that answer the query\\nQuery: ", } model = stsb_bert_tiny_model_reused evaluator = NanoBEIREvaluator( dataset_names=datasets, query_prompts=query_prompts, ) results = evaluator(model) assert len(results) > 0 assert all(isinstance(results[metric], float) for metric in results) def test_nanobeir_evaluator_with_invalid_dataset(): """Test that NanoBEIREvaluator raises an error for invalid dataset names.""" invalid_datasets = ["invalidDataset"] with pytest.raises( ValueError, match=re.escape( r"Dataset(s) ['invalidDataset'] not found in the NanoBEIR collection. " r"Valid dataset names are: ['climatefever', 'dbpedia', 'fever', 'fiqa2018', 'hotpotqa', 'msmarco', 'nfcorpus', 'nq', 'quoraretrieval', 'scidocs', 'arguana', 'scifact', 'touche2020']" ), ): NanoBEIREvaluator(dataset_names=invalid_datasets) def test_nanobeir_evaluator_empty_inputs(): """Test that NanoBEIREvaluator behaves correctly with empty datasets.""" with pytest.raises(ValueError, match="dataset_names cannot be empty. Use None to evaluate on all datasets."): NanoBEIREvaluator(dataset_names=[])
from __future__ import annotations import re import pytest from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import NanoBEIREvaluator from sentence_transformers.util import is_datasets_available if not is_datasets_available(): pytest.skip( reason="Datasets are not installed. Please install `datasets` with `pip install datasets`", allow_module_level=True, ) def test_nanobeir_evaluator(): """Tests that the NanoBERTEvaluator can be loaded and produces expected metrics""" datasets = ["QuoraRetrieval", "MSMARCO"] query_prompts = { "QuoraRetrieval": "Instruct: Given a question, retrieve questions that are semantically equivalent to the given question\\nQuery: ", "MSMARCO": "Instruct: Given a web search query, retrieve relevant passages that answer the query\\nQuery: ", } model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") evaluator = NanoBEIREvaluator( dataset_names=datasets, query_prompts=query_prompts, ) results = evaluator(model) assert len(results) > 0 assert all(isinstance(results[metric], float) for metric in results) def test_nanobeir_evaluator_with_invalid_dataset(): """Test that NanoBEIREvaluator raises an error for invalid dataset names.""" invalid_datasets = ["invalidDataset"] with pytest.raises( ValueError, match=re.escape( r"Dataset(s) ['invalidDataset'] not found in the NanoBEIR collection. " r"Valid dataset names are: ['climatefever', 'dbpedia', 'fever', 'fiqa2018', 'hotpotqa', 'msmarco', 'nfcorpus', 'nq', 'quoraretrieval', 'scidocs', 'arguana', 'scifact', 'touche2020']" ), ): NanoBEIREvaluator(dataset_names=invalid_datasets) def test_nanobeir_evaluator_empty_inputs(): """Test that NanoBEIREvaluator behaves correctly with empty datasets.""" with pytest.raises(ValueError, match="dataset_names cannot be empty. Use None to evaluate on all datasets."): NanoBEIREvaluator(dataset_names=[])
from typing import Optional from docarray.document import BaseDocument from docarray.typing import Embedding, ImageUrl, Tensor class Image(BaseDocument): """ Document for handling images. It can contain an ImageUrl (`Image.url`), a Tensor (`Image.tensor`), and an Embedding (`Image.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray import Image # use it directly image = Image(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = MyEmbeddingModel(image.tensor) You can extend this Document: .. code-block:: python from docarray import Image from docarray.typing import Embedding from typing import Optional # extend it class MyImage(Image): second_embedding: Optional[Embedding] image = MyImage(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = MyEmbeddingModel(image.tensor) image.second_embedding = MyEmbeddingModel(image.tensor) You can use this Document for composition: .. code-block:: python from docarray import Document, Image, Text # compose it class MultiModalDoc(Document): image: Image text: Text mmdoc = MultiModalDoc( image=Image(url="http://www.jina.ai/image.jpg"), text=Text(text="hello world, how are you doing?"), ) mmdoc.image.tensor = mmdoc.image.url.load() """ url: Optional[ImageUrl] tensor: Optional[Tensor] embedding: Optional[Embedding]
from typing import Optional from docarray.document import BaseDocument from docarray.typing import Embedding, ImageUrl, Tensor class Image(BaseDocument): """ base Document for Image handling """ uri: Optional[ImageUrl] tensor: Optional[Tensor] embedding: Optional[Embedding]
from typing import ( TYPE_CHECKING, Sequence, ) import numpy as np from docarray.helper import typename if TYPE_CHECKING: from docarray.typing import ( DocumentArrayIndexType, ) class DelItemMixin: """Provide help function to enable advanced indexing in `__delitem__`""" def __delitem__(self, index: 'DocumentArrayIndexType'): if isinstance(index, (int, np.generic)) and not isinstance(index, bool): self._del_doc_by_offset(int(index)) elif isinstance(index, str): if index.startswith('@'): raise NotImplementedError( 'Delete elements along traversal paths is not implemented' ) else: self._del_doc(index) elif isinstance(index, slice): self._del_docs_by_slice(index) elif index is Ellipsis: self._del_all_docs() elif isinstance(index, Sequence): if ( isinstance(index, tuple) and len(index) == 2 and ( isinstance(index[0], (slice, Sequence, str, int)) or index[0] is Ellipsis ) and isinstance(index[1], (str, Sequence)) ): # TODO: add support for cases such as da[1, ['text', 'id']]? if isinstance(index[0], (str, int)) and isinstance(index[1], str): # ambiguity only comes from the second string if index[1] in self: del self[index[0]] del self[index[1]] else: self._set_doc_attr_by_id(index[0], index[1], None) elif isinstance(index[0], (slice, Sequence)): _attrs = index[1] if isinstance(_attrs, str): _attrs = (index[1],) for _d in self[index[0]]: for _aa in _attrs: self._set_doc_attr_by_id(_d.id, _aa, None) _d.pop(_aa) elif isinstance(index[0], bool): self._del_docs_by_mask(index) elif isinstance(index[0], int): for t in sorted(index, reverse=True): del self[t] elif isinstance(index[0], str): for t in index: del self[t] elif isinstance(index, np.ndarray): index = index.squeeze() if index.ndim == 1: del self[index.tolist()] else: raise IndexError( f'When using np.ndarray as index, its `ndim` must =1. However, receiving ndim={index.ndim}' ) else: raise IndexError(f'Unsupported index type {typename(index)}: {index}')
from typing import ( TYPE_CHECKING, Sequence, ) import numpy as np from ...helper import typename if TYPE_CHECKING: from ...typing import ( DocumentArrayIndexType, ) class DelItemMixin: """Provide help function to enable advanced indexing in `__delitem__`""" def __delitem__(self, index: 'DocumentArrayIndexType'): if isinstance(index, (int, np.generic)) and not isinstance(index, bool): self._del_doc_by_offset(int(index)) elif isinstance(index, str): if index.startswith('@'): raise NotImplementedError( 'Delete elements along traversal paths is not implemented' ) else: self._del_doc(index) elif isinstance(index, slice): self._del_docs_by_slice(index) elif index is Ellipsis: self._del_all_docs() elif isinstance(index, Sequence): if ( isinstance(index, tuple) and len(index) == 2 and ( isinstance(index[0], (slice, Sequence, str, int)) or index[0] is Ellipsis ) and isinstance(index[1], (str, Sequence)) ): # TODO: add support for cases such as da[1, ['text', 'id']]? if isinstance(index[0], (str, int)) and isinstance(index[1], str): # ambiguity only comes from the second string if index[1] in self: del self[index[0]] del self[index[1]] else: self._set_doc_attr_by_id(index[0], index[1], None) elif isinstance(index[0], (slice, Sequence)): _attrs = index[1] if isinstance(_attrs, str): _attrs = (index[1],) for _d in self[index[0]]: for _aa in _attrs: self._set_doc_attr_by_id(_d.id, _aa, None) _d.pop(_aa) elif isinstance(index[0], bool): self._del_docs_by_mask(index) elif isinstance(index[0], int): for t in sorted(index, reverse=True): del self[t] elif isinstance(index[0], str): for t in index: del self[t] elif isinstance(index, np.ndarray): index = index.squeeze() if index.ndim == 1: del self[index.tolist()] else: raise IndexError( f'When using np.ndarray as index, its `ndim` must =1. However, receiving ndim={index.ndim}' ) else: raise IndexError(f'Unsupported index type {typename(index)}: {index}')
from enum import Enum from typing import TYPE_CHECKING, Union, overload import numpy as np if TYPE_CHECKING: import torch class Pooling(str, Enum): """Enum of possible pooling choices with pooling behaviors.""" CLS = "cls" MEAN = "mean" LAST = "last" # last token pooling def __call__(self, array: np.ndarray) -> np.ndarray: if self == self.CLS: return self.cls_pooling(array) elif self == self.LAST: return self.last_pooling(array) return self.mean_pooling(array) @classmethod @overload def cls_pooling(cls, array: np.ndarray) -> np.ndarray: ... @classmethod @overload # TODO: Remove this `type: ignore` after the false positive problem # is addressed in mypy: https://github.com/python/mypy/issues/15683 . def cls_pooling(cls, array: "torch.Tensor") -> "torch.Tensor": # type: ignore ... @classmethod def cls_pooling( cls, array: "Union[np.ndarray, torch.Tensor]" ) -> "Union[np.ndarray, torch.Tensor]": if len(array.shape) == 3: return array[:, 0] if len(array.shape) == 2: return array[0] raise NotImplementedError(f"Unhandled shape {array.shape}.") @classmethod def mean_pooling(cls, array: np.ndarray) -> np.ndarray: if len(array.shape) == 3: return array.mean(axis=1) if len(array.shape) == 2: return array.mean(axis=0) raise NotImplementedError(f"Unhandled shape {array.shape}.") @classmethod @overload def last_pooling(cls, array: np.ndarray) -> np.ndarray: ... @classmethod @overload # TODO: Remove this `type: ignore` after the false positive problem # is addressed in mypy: https://github.com/python/mypy/issues/15683 . def last_pooling(cls, array: "torch.Tensor") -> "torch.Tensor": # type: ignore ... @classmethod def last_pooling( cls, array: "Union[np.ndarray, torch.Tensor]" ) -> "Union[np.ndarray, torch.Tensor]": if len(array.shape) == 3: return array[:, -1] if len(array.shape) == 2: return array[-1] raise NotImplementedError(f"Unhandled shape {array.shape}.")
from enum import Enum from typing import TYPE_CHECKING, Union, overload import numpy as np if TYPE_CHECKING: import torch class Pooling(str, Enum): """Enum of possible pooling choices with pooling behaviors.""" CLS = "cls" MEAN = "mean" LAST = "last" # last token pooling def __call__(self, array: np.ndarray) -> np.ndarray: if self == self.CLS: return self.cls_pooling(array) elif self == self.LAST: return self.last_pooling(array) return self.mean_pooling(array) @classmethod @overload def cls_pooling(cls, array: np.ndarray) -> np.ndarray: ... @classmethod @overload # TODO: Remove this `type: ignore` after the false positive problem # is addressed in mypy: https://github.com/python/mypy/issues/15683 . def cls_pooling(cls, array: "torch.Tensor") -> "torch.Tensor": # type: ignore ... @classmethod def cls_pooling( cls, array: "Union[np.ndarray, torch.Tensor]" ) -> "Union[np.ndarray, torch.Tensor]": if len(array.shape) == 3: return array[:, 0] if len(array.shape) == 2: return array[0] raise NotImplementedError(f"Unhandled shape {array.shape}.") @classmethod def mean_pooling(cls, array: np.ndarray) -> np.ndarray: if len(array.shape) == 3: return array.mean(axis=1) if len(array.shape) == 2: return array.mean(axis=0) raise NotImplementedError(f"Unhandled shape {array.shape}.") @classmethod @overload def last_pooling(cls, array: np.ndarray) -> np.ndarray: ... @classmethod @overload # TODO: Remove this `type: ignore` after the false positive problem # is addressed in mypy: https://github.com/python/mypy/issues/15683 . def last_pooling(cls, array: "torch.Tensor") -> "torch.Tensor": # type: ignore ... @classmethod def last_pooling( cls, array: "Union[np.ndarray, torch.Tensor]" ) -> "Union[np.ndarray, torch.Tensor]": if len(array.shape) == 3: return array[:, -1] if len(array.shape) == 2: return array[-1] raise NotImplementedError(f"Unhandled shape {array.shape}.")
_base_ = './yolox_s_8xb8-300e_coco.py' # model settings model = dict( data_preprocessor=dict(batch_augments=[ dict( type='BatchSyncRandomResize', random_size_range=(320, 640), size_divisor=32, interval=10) ]), backbone=dict(deepen_factor=0.33, widen_factor=0.375), neck=dict(in_channels=[96, 192, 384], out_channels=96), bbox_head=dict(in_channels=96, feat_channels=96)) img_scale = (640, 640) # width, height # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='Mosaic', img_scale=img_scale, pad_val=114.0), dict( type='RandomAffine', scaling_ratio_range=(0.5, 1.5), # img_scale is (width, height) border=(-img_scale[0] // 2, -img_scale[1] // 2)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), # Resize and Pad are for the last 15 epochs when Mosaic and # RandomAffine are closed by YOLOXModeSwitchHook. dict(type='Resize', scale=img_scale, keep_ratio=True), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(416, 416), keep_ratio=True), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
_base_ = './yolox_s_8xb8-300e_coco.py' # model settings model = dict( data_preprocessor=dict(batch_augments=[ dict( type='BatchSyncRandomResize', random_size_range=(320, 640), size_divisor=32, interval=10) ]), backbone=dict(deepen_factor=0.33, widen_factor=0.375), neck=dict(in_channels=[96, 192, 384], out_channels=96), bbox_head=dict(in_channels=96, feat_channels=96)) img_scale = (640, 640) # height, width # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='Mosaic', img_scale=img_scale, pad_val=114.0), dict( type='RandomAffine', scaling_ratio_range=(0.5, 1.5), border=(-img_scale[0] // 2, -img_scale[1] // 2)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), # Resize and Pad are for the last 15 epochs when Mosaic and # RandomAffine are closed by YOLOXModeSwitchHook. dict(type='Resize', scale=img_scale, keep_ratio=True), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(416, 416), keep_ratio=True), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
_base_ = './mask-rcnn_r50_fpn_1x_coco.py' model = dict( # use caffe img_norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False), backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe'))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './mask_rcnn_r50_fpn_1x_coco.py' model = dict( # use caffe img_norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False), backbone=dict( norm_cfg=dict(requires_grad=False), style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe'))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Sequence, Union import torch from mmengine.data import BaseDataElement from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[dict]] @HOOKS.register_module() class EmptyCacheHook(Hook): """Releases all unoccupied cached GPU memory during the process of training. Args: before_epoch (bool): Whether to release cache before an epoch. Defaults to False. after_epoch (bool): Whether to release cache after an epoch. Defaults to True. after_iter (bool): Whether to release cache after an iteration. Defaults to False. """ priority = 'NORMAL' def __init__(self, before_epoch: bool = False, after_epoch: bool = True, after_iter: bool = False) -> None: self._do_before_epoch = before_epoch self._do_after_epoch = after_epoch self._do_after_iter = after_iter def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence[BaseDataElement]]] = None, mode: str = 'train') -> None: """Empty cache after an iteration. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (dict or sequence, optional): Outputs from model. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_iter: torch.cuda.empty_cache() def _before_epoch(self, runner, mode: str = 'train') -> None: """Empty cache before an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_before_epoch: torch.cuda.empty_cache() def _after_epoch(self, runner, mode: str = 'train') -> None: """Empty cache after an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_epoch: torch.cuda.empty_cache()
# Copyright (c) OpenMMLab. All rights reserved. from typing import Any, Optional, Sequence, Tuple, Union import torch from mmengine.data import BaseDataElement from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[Tuple[Any, BaseDataElement]]] @HOOKS.register_module() class EmptyCacheHook(Hook): """Releases all unoccupied cached GPU memory during the process of training. Args: before_epoch (bool): Whether to release cache before an epoch. Defaults to False. after_epoch (bool): Whether to release cache after an epoch. Defaults to True. after_iter (bool): Whether to release cache after an iteration. Defaults to False. """ priority = 'NORMAL' def __init__(self, before_epoch: bool = False, after_epoch: bool = True, after_iter: bool = False) -> None: self._do_before_epoch = before_epoch self._do_after_epoch = after_epoch self._do_after_iter = after_iter def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence[BaseDataElement]]] = None, mode: str = 'train') -> None: """Empty cache after an iteration. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (Sequence[Tuple[Any, BaseDataElement]], optional): Data from dataloader. Defaults to None. outputs (dict or sequence, optional): Outputs from model. Defaults to None. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_iter: torch.cuda.empty_cache() def _before_epoch(self, runner, mode: str = 'train') -> None: """Empty cache before an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_before_epoch: torch.cuda.empty_cache() def _after_epoch(self, runner, mode: str = 'train') -> None: """Empty cache after an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_epoch: torch.cuda.empty_cache()
from __future__ import annotations from typing import Any, Optional, Sequence, Type, TypeVar, Union import torch from torch.utils._pytree import tree_map from torchvision.datapoints._datapoint import Datapoint L = TypeVar("L", bound="_LabelBase") class _LabelBase(Datapoint): categories: Optional[Sequence[str]] @classmethod def _wrap(cls: Type[L], tensor: torch.Tensor, *, categories: Optional[Sequence[str]]) -> L: label_base = tensor.as_subclass(cls) label_base.categories = categories return label_base def __new__( cls: Type[L], data: Any, *, categories: Optional[Sequence[str]] = None, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> L: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor, categories=categories) @classmethod def wrap_like(cls: Type[L], other: L, tensor: torch.Tensor, *, categories: Optional[Sequence[str]] = None) -> L: return cls._wrap( tensor, categories=categories if categories is not None else other.categories, ) @classmethod def from_category( cls: Type[L], category: str, *, categories: Sequence[str], **kwargs: Any, ) -> L: return cls(categories.index(category), categories=categories, **kwargs) class Label(_LabelBase): def to_categories(self) -> Any: if self.categories is None: raise RuntimeError("Label does not have categories") return tree_map(lambda idx: self.categories[idx], self.tolist()) class OneHotLabel(_LabelBase): def __new__( cls, data: Any, *, categories: Optional[Sequence[str]] = None, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: bool = False, ) -> OneHotLabel: one_hot_label = super().__new__( cls, data, categories=categories, dtype=dtype, device=device, requires_grad=requires_grad ) if categories is not None and len(categories) != one_hot_label.shape[-1]: raise ValueError() return one_hot_label
from __future__ import annotations from typing import Any, Optional, Sequence, Type, TypeVar, Union import torch from torch.utils._pytree import tree_map from ._datapoint import Datapoint L = TypeVar("L", bound="_LabelBase") class _LabelBase(Datapoint): categories: Optional[Sequence[str]] @classmethod def _wrap(cls: Type[L], tensor: torch.Tensor, *, categories: Optional[Sequence[str]]) -> L: label_base = tensor.as_subclass(cls) label_base.categories = categories return label_base def __new__( cls: Type[L], data: Any, *, categories: Optional[Sequence[str]] = None, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> L: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor, categories=categories) @classmethod def wrap_like(cls: Type[L], other: L, tensor: torch.Tensor, *, categories: Optional[Sequence[str]] = None) -> L: return cls._wrap( tensor, categories=categories if categories is not None else other.categories, ) @classmethod def from_category( cls: Type[L], category: str, *, categories: Sequence[str], **kwargs: Any, ) -> L: return cls(categories.index(category), categories=categories, **kwargs) class Label(_LabelBase): def to_categories(self) -> Any: if self.categories is None: raise RuntimeError("Label does not have categories") return tree_map(lambda idx: self.categories[idx], self.tolist()) class OneHotLabel(_LabelBase): def __new__( cls, data: Any, *, categories: Optional[Sequence[str]] = None, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: bool = False, ) -> OneHotLabel: one_hot_label = super().__new__( cls, data, categories=categories, dtype=dtype, device=device, requires_grad=requires_grad ) if categories is not None and len(categories) != one_hot_label.shape[-1]: raise ValueError() return one_hot_label