input
stringlengths
33
5k
output
stringlengths
32
5k
import os from typing import Dict DEPLOYMENT_FILES = [ 'statefulset-executor', 'deployment-executor', 'deployment-gateway', 'deployment-uses-before', 'deployment-uses-after', 'deployment-uses-before-after', ] cur_dir = os.path.dirname(__file__) DEFAULT_RESOURCE_DIR = os.path.join( cur_dir, '..', '..', '..', '..', 'resources', 'k8s', 'template' ) def get_yaml(template: str, params: Dict) -> Dict: """Create a resource on Kubernetes based on the `template`. It fills the `template` using the `params`. :param template: path to the template file. :param params: dictionary for replacing the placeholders (keys) with the actual values. :return: The yaml dictionary with the corresponding template filled with parameters """ if template == 'configmap': yaml = _get_configmap_yaml(template, params) elif template in DEPLOYMENT_FILES: yaml = _get_yaml(template, params) if params.get('device_plugins'): yaml = _get_deployment_with_device_plugins(yaml, params) if params.get('env_from_secret'): yaml = _get_deployment_with_env_secret(yaml, params) else: yaml = _get_yaml(template, params) return yaml def _get_yaml(template: str, params: Dict) -> Dict: import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: content = f.read() for k, v in params.items(): content = content.replace(f'{{{k}}}', str(v)) d = yaml.safe_load(content) return d def _get_configmap_yaml(template: str, params: Dict): import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: config_map = yaml.safe_load(f) config_map['metadata']['name'] = params.get('name') + '-' + 'configmap' config_map['metadata']['namespace'] = params.get('namespace') if params.get('data'): for key, value in params['data'].items(): config_map['data'][key] = str(value) return config_map def _get_device_plugins(params: Dict): data = {'limits': {}} for key, value in params.items(): data['limits'][key] = value return data def _get_deployment_with_device_plugins(deployment: Dict, params: Dict) -> Dict: device_plugins = _get_device_plugins(params['device_plugins']) deployment['spec']['template']['spec']['containers'][0][ 'resources' ] = device_plugins return deployment def _get_deployment_with_env_secret(deployment: Dict, params: Dict) -> Dict: for k,v in params['env_from_secret'].items(): env_var = {} env_var['name'] = k env_var['valueFrom'] = {'secretKeyRef': {'name': v['name'], 'key': v['key']}} deployment['spec']['template']['spec']['containers'][0]['env'].append(env_var) return deployment
import os from typing import Dict DEPLOYMENT_FILES = [ 'statefulset-executor', 'deployment-executor', 'deployment-gateway', 'deployment-uses-before', 'deployment-uses-after', 'deployment-uses-before-after', ] cur_dir = os.path.dirname(__file__) DEFAULT_RESOURCE_DIR = os.path.join( cur_dir, '..', '..', '..', '..', 'resources', 'k8s', 'template' ) def get_yaml(template: str, params: Dict) -> Dict: """Create a resource on Kubernetes based on the `template`. It fills the `template` using the `params`. :param template: path to the template file. :param params: dictionary for replacing the placeholders (keys) with the actual values. :return: The yaml dictionary with the corresponding template filled with parameters """ if template == 'configmap': yaml = _get_configmap_yaml(template, params) elif template in DEPLOYMENT_FILES and params.get('device_plugins'): yaml = _get_yaml(template, params) yaml = _get_deployment_with_device_plugins(yaml, params) else: yaml = _get_yaml(template, params) return yaml def _get_yaml(template: str, params: Dict) -> Dict: import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: content = f.read() for k, v in params.items(): content = content.replace(f'{{{k}}}', str(v)) d = yaml.safe_load(content) return d def _get_configmap_yaml(template: str, params: Dict): import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: config_map = yaml.safe_load(f) config_map['metadata']['name'] = params.get('name') + '-' + 'configmap' config_map['metadata']['namespace'] = params.get('namespace') if params.get('data'): for key, value in params['data'].items(): config_map['data'][key] = str(value) return config_map def _get_device_plugins(params: Dict): data = {'limits': {}} for key, value in params.items(): data['limits'][key] = value return data def _get_deployment_with_device_plugins(deployment: Dict, params: Dict) -> Dict: device_plugins = _get_device_plugins(params['device_plugins']) deployment['spec']['template']['spec']['containers'][0][ 'resources' ] = device_plugins return deployment
# dataset settings dataset_type = 'VOCDataset' data_root = 'data/VOCdevkit/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1000, 600), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1000, 600), keep_ratio=True), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type='ConcatDataset', # VOCDataset will add different `DATASET_TYPE` in dataset.metainfo, # which will get error if using ConcatDataset. Adding # `ignore_keys` can avoid this error. ignore_keys=['DATASET_TYPE'], datasets=[ dict( type=dataset_type, data_root=data_root, ann_file='VOC2007/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2007/'), filter_cfg=dict( filter_empty_gt=True, min_size=32, bbox_min_size=32), pipeline=train_pipeline), dict( type=dataset_type, data_root=data_root, ann_file='VOC2012/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2012/'), filter_cfg=dict( filter_empty_gt=True, min_size=32, bbox_min_size=32), pipeline=train_pipeline) ]))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='VOC2007/ImageSets/Main/test.txt', data_prefix=dict(sub_data_root='VOC2007/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader # Pascal VOC2007 uses `11points` as default evaluate mode, while PASCAL # VOC2012 defaults to use 'area'. val_evaluator = dict(type='VOCMetric', metric='mAP', eval_mode='11points') test_evaluator = val_evaluator
# dataset settings dataset_type = 'VOCDataset' data_root = 'data/VOCdevkit/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1000, 600), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1000, 600), keep_ratio=True), # avoid bboxes being resized dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type='ConcatDataset', datasets=[ dict( type=dataset_type, data_root=data_root, ann_file='VOC2007/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2007/'), filter_cfg=dict( filter_empty_gt=True, min_size=32, bbox_min_size=32), pipeline=train_pipeline), dict( type=dataset_type, data_root=data_root, ann_file='VOC2012/ImageSets/Main/trainval.txt', data_prefix=dict(sub_data_root='VOC2012/'), filter_cfg=dict( filter_empty_gt=True, min_size=32, bbox_min_size=32), pipeline=train_pipeline) ]))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='VOC2007/ImageSets/Main/test.txt', data_prefix=dict(sub_data_root='VOC2007/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader # Pascal VOC2007 uses `11points` as default evaluate mode, while PASCAL # VOC2012 defaults to use 'area'. val_evaluator = dict(type='VOCMetric', metric='mAP', eval_mode='11points') test_evaluator = val_evaluator
import os from typing import Callable, List import numpy as np import pytest import torch from jina import Document, DocumentArray from jinahub.encoder.transform_encoder import TransformerTorchEncoder cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_compute_tokens(): enc = TransformerTorchEncoder() tokens = enc._generate_input_tokens(["hello this is a test", "and another test"]) assert tokens["input_ids"].shape == (2, 7) assert tokens["attention_mask"].shape == (2, 7) @pytest.mark.parametrize( 'hidden_seqlen', [4, 8] ) def test_compute_embeddings(hidden_seqlen): embedding_size = 10 enc = TransformerTorchEncoder() tokens = enc._generate_input_tokens(["hello world"]) hidden_states = tuple(torch.zeros(1, hidden_seqlen, embedding_size) for _ in range(7)) embeddings = enc._compute_embedding( hidden_states=hidden_states, input_tokens=tokens ) assert embeddings.shape == (1, embedding_size) def test_encoding_cpu(): enc = TransformerTorchEncoder(device="cpu") input_data = DocumentArray([Document(text="hello world")]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (768,) @pytest.mark.skipif(not torch.cuda.is_available(), reason="GPU is needed for this test") def test_encoding_gpu(): enc = TransformerTorchEncoder(device="cuda") input_data = DocumentArray([Document(text="hello world")]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (768,) def test_encodes_semantic_meaning(): sentences = dict() sentences["A"] = "Hello, my name is Michael." sentences["B"] = "Today we are going to Disney World." sentences["C"] = "There are animals on the road" sentences["D"] = "A dog is running down the road" encoder = TransformerTorchEncoder() embeddings = {} for id_, sentence in sentences.items(): docs = DocumentArray([Document(text=sentence)]) encoder.encode(docs, parameters={}) embeddings[id_] = docs[0].embedding def dist(a, b): a_embedding = embeddings[a] b_embedding = embeddings[b] return np.linalg.norm(a_embedding - b_embedding) small_distance = dist("C", "D") assert small_distance < dist("C", "B") assert small_distance < dist("C", "A") assert small_distance < dist("B", "A") @pytest.mark.parametrize( ["docs", "docs_per_path", "traversal_path"], [ (pytest.lazy_fixture("docs_with_text"), [["r", 10], ["c", 0], ["cc", 0]], "r"), ( pytest.lazy_fixture("docs_with_chunk_text"), [["r", 0], ["c", 10], ["cc", 0]], "c", ), ( pytest.lazy_fixture("docs_with_chunk_chunk_text"), [["r", 0], ["c", 0], ["cc", 10]], "cc", ), ], ) def test_traversal_path( docs: DocumentArray, docs_per_path: List[List[str]], traversal_path: str ): def validate_traversal(expected_docs_per_path: List[List[str]]): def validate(res): for path, count in expected_docs_per_path: embeddings = ( DocumentArray(res).traverse_flat([path]).get_attributes("embedding") ) for emb in embeddings: if emb is None: return False return len(embeddings) == count return validate encoder = TransformerTorchEncoder(default_traversal_paths=[traversal_path]) encoder.encode(docs, {"traversal_paths": [traversal_path]}) assert validate_traversal(docs_per_path)(docs) def test_multiple_traversal_paths(): sentences = list() sentences.append("Hello, my name is Michael.") sentences.append("Today we are going to Disney World.") sentences.append("There are animals on the road") sentences.append("A dog is running down the road") docs = DocumentArray([Document(text=sentence) for sentence in sentences]) for index, sent in enumerate(sentences): docs[index].chunks.append(Document(text=sent)) docs[index].chunks[0].chunks.append(Document(text=sentences[3 - index])) encoder = TransformerTorchEncoder(default_traversal_paths=["r", "c", "cc"]) encoder.encode(docs, {}) for doc in docs: assert doc.embedding.shape == (768,) assert doc.chunks[0].embedding.shape == (768,) assert doc.chunks[0].chunks[0].embedding.shape == (768,)
import os from typing import Callable, List import numpy as np import pytest import torch from jina import Document, DocumentArray from jinahub.encoder.transform_encoder import TransformerTorchEncoder cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_compute_tokens(): enc = TransformerTorchEncoder(base_tokenizer_model="bert-base-cased") tokens = enc._generate_input_tokens(["hello this is a test", "and another test"]) assert tokens["input_ids"].shape == (2, 7) assert tokens["token_type_ids"].shape == (2, 7) assert tokens["attention_mask"].shape == (2, 7) @pytest.mark.parametrize( 'hidden_seqlen', [4, 8] ) def test_compute_embeddings(hidden_seqlen): embedding_size = 10 enc = TransformerTorchEncoder() tokens = enc._generate_input_tokens(["hello world"]) hidden_states = tuple(torch.zeros(1, hidden_seqlen, embedding_size) for _ in range(7)) embeddings = enc._compute_embedding( hidden_states=hidden_states, input_tokens=tokens ) assert embeddings.shape == (1, embedding_size) def test_encoding_cpu(): enc = TransformerTorchEncoder(device="cpu") input_data = DocumentArray([Document(text="hello world")]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (768,) @pytest.mark.skipif(not torch.cuda.is_available(), reason="GPU is needed for this test") def test_encoding_gpu(): enc = TransformerTorchEncoder(device="cuda") input_data = DocumentArray([Document(text="hello world")]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (768,) def test_encodes_semantic_meaning(): sentences = dict() sentences["A"] = "Hello, my name is Michael." sentences["B"] = "Today we are going to Disney World." sentences["C"] = "There are animals on the road" sentences["D"] = "A dog is running down the road" encoder = TransformerTorchEncoder() embeddings = {} for id_, sentence in sentences.items(): docs = DocumentArray([Document(text=sentence)]) encoder.encode(docs, parameters={}) embeddings[id_] = docs[0].embedding def dist(a, b): a_embedding = embeddings[a] b_embedding = embeddings[b] return np.linalg.norm(a_embedding - b_embedding) small_distance = dist("C", "D") assert small_distance < dist("C", "B") assert small_distance < dist("C", "A") assert small_distance < dist("B", "A") @pytest.mark.parametrize( ["docs", "docs_per_path", "traversal_path"], [ (pytest.lazy_fixture("docs_with_text"), [["r", 10], ["c", 0], ["cc", 0]], "r"), ( pytest.lazy_fixture("docs_with_chunk_text"), [["r", 0], ["c", 10], ["cc", 0]], "c", ), ( pytest.lazy_fixture("docs_with_chunk_chunk_text"), [["r", 0], ["c", 0], ["cc", 10]], "cc", ), ], ) def test_traversal_path( docs: DocumentArray, docs_per_path: List[List[str]], traversal_path: str ): def validate_traversal(expected_docs_per_path: List[List[str]]): def validate(res): for path, count in expected_docs_per_path: embeddings = ( DocumentArray(res).traverse_flat([path]).get_attributes("embedding") ) for emb in embeddings: if emb is None: return False return len(embeddings) == count return validate encoder = TransformerTorchEncoder(default_traversal_paths=[traversal_path]) encoder.encode(docs, {"traversal_paths": [traversal_path]}) assert validate_traversal(docs_per_path)(docs) def test_multiple_traversal_paths(): sentences = list() sentences.append("Hello, my name is Michael.") sentences.append("Today we are going to Disney World.") sentences.append("There are animals on the road") sentences.append("A dog is running down the road") docs = DocumentArray([Document(text=sentence) for sentence in sentences]) for index, sent in enumerate(sentences): docs[index].chunks.append(Document(text=sent)) docs[index].chunks[0].chunks.append(Document(text=sentences[3 - index])) encoder = TransformerTorchEncoder(default_traversal_paths=["r", "c", "cc"]) encoder.encode(docs, {}) for doc in docs: assert doc.embedding.shape == (768,) assert doc.chunks[0].embedding.shape == (768,) assert doc.chunks[0].chunks[0].embedding.shape == (768,)
"""A class for JAX specific optimizer logic. Its purpose is to route around statelessness requirements in cond ops used for EMA handling and gradient accumulation handling. We do this by skipping conditionals entirely. """ import jax from jax import numpy as jnp from keras.src.optimizers import base_optimizer class JaxOptimizer(base_optimizer.BaseOptimizer): def _backend_apply_gradients(self, grads, trainable_variables): if self.gradient_accumulation_steps: is_update_step = ( self._iterations + 1 ) % self.gradient_accumulation_steps == 0 steps = self.gradient_accumulation_steps current_trainable_vars_value = [ v.value for v in trainable_variables ] current_optimizer_vars_value = [v.value for v in self.variables] # `trainable_variables` might have been filtered in previous # processing steps, so we need to ensure the correct mapping between # `self._accumulated_gradients` and `trainable_variables` acc_grads = [ self._accumulated_gradients[self._get_variable_index(v)] for v in trainable_variables ] new_g_accs = jax.lax.cond( is_update_step, lambda: [jnp.zeros(g.shape, dtype=g.dtype) for g in acc_grads], lambda: [g + acc_g for g, acc_g in zip(grads, acc_grads)], ) grads = jax.lax.cond( is_update_step, lambda: [ (g + acc_g) / steps for g, acc_g in zip(grads, acc_grads) ], lambda: list(grads), ) # Apply clipping and weight decay. grads = self._clip_gradients(grads) self._apply_weight_decay(trainable_variables) self._backend_update_step( grads, trainable_variables, self.learning_rate ) new_trainable_vars = jax.lax.cond( is_update_step, lambda: [v.value for v in trainable_variables], lambda: current_trainable_vars_value, ) new_opt_vars = jax.lax.cond( is_update_step, lambda: [v.value for v in self.variables], lambda: current_optimizer_vars_value, ) for value, v in zip(new_trainable_vars, trainable_variables): v.assign(value) for value, v in zip(new_opt_vars, self.variables): v.assign(value) for n_g_acc, g_acc in zip(new_g_accs, acc_grads): g_acc.assign(n_g_acc) else: # Apply clipping and weight decay. grads = self._clip_gradients(grads) self._apply_weight_decay(trainable_variables) self._backend_update_step( grads, trainable_variables, self.learning_rate ) if self.use_ema: self._update_model_variables_moving_average( self._trainable_variables ) if self.ema_overwrite_frequency is not None: should_overwrite_model_vars = ( self.iterations + 1 ) % self.ema_overwrite_frequency == 0 should_overwrite_model_vars_int = ( should_overwrite_model_vars.astype("int32") ) should_not_overwrite_model_vars_int = jnp.logical_not( should_overwrite_model_vars ).astype("int32") current_trainable_vars_value = [ v.value for v in self._trainable_variables ] for var, average_var in zip( self._trainable_variables, self._model_variables_moving_average, ): var.assign( average_var * should_overwrite_model_vars_int + var.value * should_not_overwrite_model_vars_int ) self._iterations.assign_add(1)
"""A class for JAX specific optimizer logic. Its purpose is to route around statelessness requirements in cond ops used for EMA handling and gradient accumulation handling. We do this by skipping conditionals entirely. """ import jax from jax import numpy as jnp from keras.src.optimizers import base_optimizer class JaxOptimizer(base_optimizer.BaseOptimizer): def _backend_apply_gradients(self, grads, trainable_variables): if self.gradient_accumulation_steps: is_update_step = ( self._iterations + 1 ) % self.gradient_accumulation_steps == 0 steps = self.gradient_accumulation_steps current_trainable_vars_value = [ v.value for v in trainable_variables ] current_optimizer_vars_value = [v.value for v in self.variables] # `trainable_variables` might have been filtered in previous # processing steps, so we need to ensure the correct mapping between # `self._accumulated_gradients` and `trainable_variables` acc_grads = [ self._accumulated_gradients[self._get_variable_index(v)] for v in trainable_variables ] new_g_accs = jax.lax.cond( is_update_step, lambda: [jnp.zeros(g.shape, dtype=g.dtype) for g in acc_grads], lambda: [g + acc_g for g, acc_g in zip(grads, acc_grads)], ) grads = jax.lax.cond( is_update_step, lambda: [ (g + acc_g) / steps for g, acc_g in zip(grads, acc_grads) ], lambda: list(grads), ) # Apply clipping and weight decay. grads = self._clip_gradients(grads) self._apply_weight_decay(trainable_variables) self._backend_update_step( grads, trainable_variables, self.learning_rate ) new_trainable_vars = jax.lax.cond( is_update_step, lambda: [v.value for v in trainable_variables], lambda: current_trainable_vars_value, ) new_opt_vars = jax.lax.cond( is_update_step, lambda: [v.value for v in self.variables], lambda: current_optimizer_vars_value, ) for value, v in zip(new_trainable_vars, trainable_variables): v.assign(value) for value, v in zip(new_opt_vars, self.variables): v.assign(value) for n_g_acc, g_acc in zip(new_g_accs, acc_grads): g_acc.assign(n_g_acc) else: # Apply clipping and weight decay. grads = self._clip_gradients(grads) self._apply_weight_decay(trainable_variables) self._backend_update_step( grads, trainable_variables, self.learning_rate ) if self.use_ema: self._update_model_variables_moving_average( self._trainable_variables ) if self.ema_overwrite_frequency is not None: should_overwrite_model_vars = ( self.iterations + 1 ) % self.ema_overwrite_frequency == 0 should_overwrite_model_vars_int = ( should_overwrite_model_vars.astype("int32") ) should_not_overwrite_model_vars_int = jnp.logical_not( should_overwrite_model_vars ).astype("int32") current_trainable_vars_value = [ v.value for v in self._trainable_variables ] for var, average_var in zip( self._trainable_variables, self._model_variables_moving_average, ): var.assign( average_var * should_overwrite_model_vars_int + var.value * should_not_overwrite_model_vars_int ) self._iterations.assign_add(1)
from __future__ import annotations import logging from datasets import load_dataset from sentence_transformers.evaluation import SequentialEvaluator from sentence_transformers.models import Pooling, Transformer from sentence_transformers.sparse_encoder import SparseEncoder from sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator import SparseNanoBEIREvaluator from sentence_transformers.sparse_encoder.losses import CSRLoss from sentence_transformers.sparse_encoder.models import CSRSparsity from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import SparseEncoderTrainingArguments from sentence_transformers.training_args import BatchSamplers # Set up logging logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) def main(): # Initialize model components model_name = "microsoft/mpnet-base" transformer = Transformer(model_name) # transformer.requires_grad_(False) # Freeze the transformer model pooling = Pooling(transformer.get_word_embedding_dimension(), pooling_mode="mean") csr_sparsity = CSRSparsity( input_dim=transformer.get_word_embedding_dimension(), hidden_dim=4 * transformer.get_word_embedding_dimension(), k=256, # Number of top values to keep k_aux=512, # Number of top values for auxiliary loss ) # Create the SparseEncoder model model = SparseEncoder(modules=[transformer, pooling, csr_sparsity]) # 2a. Load the NQ dataset: https://huggingface.co/datasets/sentence-transformers/natural-questions logging.info("Read the Natural Questions training dataset") full_dataset = load_dataset("sentence-transformers/natural-questions", split="train").select(range(100_000)) dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12) train_dataset = dataset_dict["train"] eval_dataset = dataset_dict["test"] logging.info(train_dataset) logging.info(eval_dataset) # 3. Initialize the loss loss = CSRLoss( model=model, beta=0.1, # Weight for auxiliary loss gamma=1, # Weight for ranking loss scale=20.0, # Scale for similarity computation ) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. evaluators = [] for k_dim in [16, 32, 64, 128, 256]: evaluators.append(SparseNanoBEIREvaluator(["msmarco", "nfcorpus", "nq"], truncate_dim=k_dim)) dev_evaluator = SequentialEvaluator(evaluators, main_score_function=lambda scores: scores[-1]) dev_evaluator(model) # Set up training arguments run_name = "sparse-mpnet-base-nq-fresh" training_args = SparseEncoderTrainingArguments( output_dir=f"models/{run_name}", num_train_epochs=1, per_device_train_batch_size=32, per_device_eval_batch_size=32, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch logging_steps=200, eval_strategy="steps", eval_steps=400, save_strategy="steps", save_steps=400, learning_rate=4e-5, optim="adamw_torch", weight_decay=1e-4, adam_epsilon=6.25e-10, run_name=run_name, ) # Initialize trainer trainer = SparseEncoderTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, ) # Train model trainer.train() # 7. Evaluate the model performance again after training dev_evaluator(model) # 8. Save the trained & evaluated model locally model.save_pretrained(f"models/{run_name}/final") model.push_to_hub(run_name) if __name__ == "__main__": main()
from __future__ import annotations import logging from datasets import load_dataset from sentence_transformers.evaluation import SequentialEvaluator from sentence_transformers.models import Pooling, Transformer from sentence_transformers.sparse_encoder import SparseEncoder from sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator import SparseNanoBEIREvaluator from sentence_transformers.sparse_encoder.losses import CSRLoss from sentence_transformers.sparse_encoder.models import CSRSparsity from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer from sentence_transformers.sparse_encoder.training_args import ( SparseEncoderTrainingArguments, ) from sentence_transformers.training_args import BatchSamplers # Set up logging logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) def main(): # Initialize model components model_name = "microsoft/mpnet-base" transformer = Transformer(model_name) # transformer.requires_grad_(False) # Freeze the transformer model pooling = Pooling(transformer.get_word_embedding_dimension(), pooling_mode="mean") csr_sparsity = CSRSparsity( input_dim=transformer.get_word_embedding_dimension(), hidden_dim=4 * transformer.get_word_embedding_dimension(), k=256, # Number of top values to keep k_aux=512, # Number of top values for auxiliary loss ) # Create the SparseEncoder model model = SparseEncoder(modules=[transformer, pooling, csr_sparsity]) # 2a. Load the NQ dataset: https://huggingface.co/datasets/sentence-transformers/natural-questions logging.info("Read the Natural Questions training dataset") full_dataset = load_dataset("sentence-transformers/natural-questions", split="train").select(range(100_000)) dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12) train_dataset = dataset_dict["train"] eval_dataset = dataset_dict["test"] logging.info(train_dataset) logging.info(eval_dataset) # 3. Initialize the loss loss = CSRLoss( model=model, beta=0.1, # Weight for auxiliary loss gamma=1, # Weight for ranking loss scale=20.0, # Scale for similarity computation ) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. evaluators = [] for k_dim in [16, 32, 64, 128, 256]: evaluators.append(SparseNanoBEIREvaluator(["msmarco", "nfcorpus", "nq"], truncate_dim=k_dim)) dev_evaluator = SequentialEvaluator(evaluators, main_score_function=lambda scores: scores[-1]) dev_evaluator(model) # Set up training arguments run_name = "sparse-mpnet-base-nq-fresh" training_args = SparseEncoderTrainingArguments( output_dir=f"models/{run_name}", num_train_epochs=1, per_device_train_batch_size=32, per_device_eval_batch_size=32, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch logging_steps=200, eval_strategy="steps", eval_steps=400, save_strategy="steps", save_steps=400, learning_rate=4e-5, optim="adamw_torch", weight_decay=1e-4, adam_epsilon=6.25e-10, run_name=run_name, ) # Initialize trainer trainer = SparseEncoderTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, ) # Train model trainer.train() # 7. Evaluate the model performance again after training dev_evaluator(model) # 8. Save the trained & evaluated model locally model.save_pretrained(f"models/{run_name}/final") model.push_to_hub(run_name) if __name__ == "__main__": main()
from torchaudio_unittest.common_utils import PytorchTestCase, skipIfNoCuda from .autograd_test_impl import AutogradTestFloat32, AutogradTestMixin @skipIfNoCuda class AutogradCUDATest(AutogradTestMixin, PytorchTestCase): device = "cuda" @skipIfNoCuda class AutogradRNNTCUDATest(AutogradTestFloat32, PytorchTestCase): device = "cuda"
from torchaudio_unittest.common_utils import ( PytorchTestCase, skipIfNoCuda, ) from .autograd_test_impl import AutogradTestMixin, AutogradTestFloat32 @skipIfNoCuda class AutogradCUDATest(AutogradTestMixin, PytorchTestCase): device = "cuda" @skipIfNoCuda class AutogradRNNTCUDATest(AutogradTestFloat32, PytorchTestCase): device = "cuda"
# Copyright (c) OpenMMLab. All rights reserved. """Collecting some commonly used type hint in mmdetection.""" from typing import List, Optional, Union from mmengine.config import ConfigDict from mmengine.data import InstanceData from ..bbox.samplers import SamplingResult from ..data_structures import DetDataSample # Type hint of config data ConfigType = Union[ConfigDict, dict] OptConfigType = Optional[ConfigType] # Type hint of one or more config data MultiConfig = Union[ConfigType, List[ConfigType]] OptMultiConfig = Optional[MultiConfig] InstanceList = List[InstanceData] OptInstanceList = Optional[InstanceList] SampleList = List[DetDataSample] OptSampleList = Optional[SampleList] SamplingResultList = List[SamplingResult] OptSamplingResultList = Optional[SamplingResultList]
# Copyright (c) OpenMMLab. All rights reserved. """Collecting some commonly used type hint in mmdetection.""" from typing import List, Optional, Union from mmengine.config import ConfigDict from mmengine.data import InstanceData from ..bbox.samplers import SamplingResult from ..data_structures import DetDataSample # Type hint of config data ConfigType = Union[ConfigDict, dict] OptConfigType = Optional[ConfigType] # Type hint of one or more config data MultiConfig = Union[ConfigType, List[ConfigType]] OptMultiConfig = Optional[MultiConfig] InstanceList = List[InstanceData] OptInstanceList = Optional[InstanceList] SampleList = List[DetDataSample] OptSampleList = Optional[SampleList] SamplingResultList = List[SamplingResult]
# Copyright (c) OpenMMLab. All rights reserved. from .assigners import (AssignResult, BaseAssigner, CenterRegionAssigner, MaxIoUAssigner, RegionAssigner) from .builder import build_assigner, build_bbox_coder, build_sampler from .coder import (BaseBBoxCoder, DeltaXYWHBBoxCoder, DistancePointBBoxCoder, PseudoBBoxCoder, TBLRBBoxCoder) from .iou_calculators import BboxOverlaps2D, bbox_overlaps from .samplers import (BaseSampler, CombinedSampler, InstanceBalancedPosSampler, IoUBalancedNegSampler, OHEMSampler, PseudoSampler, RandomSampler, SamplingResult, ScoreHLRSampler) from .transforms import (bbox2distance, bbox2result, bbox2roi, bbox_cxcywh_to_xyxy, bbox_flip, bbox_mapping, bbox_mapping_back, bbox_rescale, bbox_xyxy_to_cxcywh, distance2bbox, roi2bbox) __all__ = [ 'bbox_overlaps', 'BboxOverlaps2D', 'BaseAssigner', 'MaxIoUAssigner', 'AssignResult', 'BaseSampler', 'PseudoSampler', 'RandomSampler', 'InstanceBalancedPosSampler', 'IoUBalancedNegSampler', 'CombinedSampler', 'OHEMSampler', 'SamplingResult', 'ScoreHLRSampler', 'build_assigner', 'build_sampler', 'bbox_flip', 'bbox_mapping', 'bbox_mapping_back', 'bbox2roi', 'roi2bbox', 'bbox2result', 'distance2bbox', 'bbox2distance', 'build_bbox_coder', 'BaseBBoxCoder', 'PseudoBBoxCoder', 'DeltaXYWHBBoxCoder', 'TBLRBBoxCoder', 'DistancePointBBoxCoder', 'CenterRegionAssigner', 'bbox_rescale', 'bbox_cxcywh_to_xyxy', 'bbox_xyxy_to_cxcywh', 'RegionAssigner' ]
# Copyright (c) OpenMMLab. All rights reserved. from .assigners import (AssignResult, BaseAssigner, CenterRegionAssigner, MaxIoUAssigner, RegionAssigner) from .builder import build_assigner, build_bbox_coder, build_sampler from .coder import (BaseBBoxCoder, DeltaXYWHBBoxCoder, PseudoBBoxCoder, TBLRBBoxCoder) from .iou_calculators import BboxOverlaps2D, bbox_overlaps from .samplers import (BaseSampler, CombinedSampler, InstanceBalancedPosSampler, IoUBalancedNegSampler, OHEMSampler, PseudoSampler, RandomSampler, SamplingResult, ScoreHLRSampler) from .transforms import (bbox2distance, bbox2result, bbox2roi, bbox_cxcywh_to_xyxy, bbox_flip, bbox_mapping, bbox_mapping_back, bbox_rescale, bbox_xyxy_to_cxcywh, distance2bbox, roi2bbox) __all__ = [ 'bbox_overlaps', 'BboxOverlaps2D', 'BaseAssigner', 'MaxIoUAssigner', 'AssignResult', 'BaseSampler', 'PseudoSampler', 'RandomSampler', 'InstanceBalancedPosSampler', 'IoUBalancedNegSampler', 'CombinedSampler', 'OHEMSampler', 'SamplingResult', 'ScoreHLRSampler', 'build_assigner', 'build_sampler', 'bbox_flip', 'bbox_mapping', 'bbox_mapping_back', 'bbox2roi', 'roi2bbox', 'bbox2result', 'distance2bbox', 'bbox2distance', 'build_bbox_coder', 'BaseBBoxCoder', 'PseudoBBoxCoder', 'DeltaXYWHBBoxCoder', 'TBLRBBoxCoder', 'CenterRegionAssigner', 'bbox_rescale', 'bbox_cxcywh_to_xyxy', 'bbox_xyxy_to_cxcywh', 'RegionAssigner' ]
import json from typing import Any, Type, TypeGuard, TypeVar, overload import jsonschema from fastapi.encoders import jsonable_encoder from pydantic import BaseModel from .type import type_match def to_dict(data) -> dict: if isinstance(data, BaseModel): data = data.model_dump() return jsonable_encoder(data) def dumps(data) -> str: return json.dumps(to_dict(data)) T = TypeVar("T") @overload def loads(data: str | bytes, *args, target_type: Type[T], **kwargs) -> T: ... @overload def loads(data: str | bytes, *args, **kwargs) -> Any: ... def loads( data: str | bytes, *args, target_type: Type[T] | None = None, **kwargs ) -> Any: if isinstance(data, bytes): data = data.decode("utf-8") parsed = json.loads(data, *args, **kwargs) if target_type: return type_match(parsed, target_type) return parsed def validate_with_jsonschema( schema: dict[str, Any], data: dict[str, Any] ) -> str | None: """ Validate the data against the schema. Returns the validation error message if the data does not match the schema. """ try: jsonschema.validate(data, schema) return None except jsonschema.ValidationError as e: return str(e) def is_list_of_basemodels(value: object) -> TypeGuard[list[BaseModel]]: return isinstance(value, list) and all( isinstance(item, BaseModel) for item in value ) def convert_pydantic_to_json(output_data: Any) -> Any: if isinstance(output_data, BaseModel): return output_data.model_dump() if is_list_of_basemodels(output_data): return [item.model_dump() for item in output_data] return output_data
import json from typing import Any, Type, TypeGuard, TypeVar, overload import jsonschema from fastapi.encoders import jsonable_encoder from pydantic import BaseModel from .type import type_match def to_dict(data) -> dict: if isinstance(data, BaseModel): data = data.model_dump() return jsonable_encoder(data) def dumps(data) -> str: return json.dumps(jsonable_encoder(data)) T = TypeVar("T") @overload def loads(data: str, *args, target_type: Type[T], **kwargs) -> T: ... @overload def loads(data: str, *args, **kwargs) -> Any: ... def loads(data: str, *args, target_type: Type[T] | None = None, **kwargs) -> Any: parsed = json.loads(data, *args, **kwargs) if target_type: return type_match(parsed, target_type) return parsed def validate_with_jsonschema( schema: dict[str, Any], data: dict[str, Any] ) -> str | None: """ Validate the data against the schema. Returns the validation error message if the data does not match the schema. """ try: jsonschema.validate(data, schema) return None except jsonschema.ValidationError as e: return str(e) def is_list_of_basemodels(value: object) -> TypeGuard[list[BaseModel]]: return isinstance(value, list) and all( isinstance(item, BaseModel) for item in value ) def convert_pydantic_to_json(output_data: Any) -> Any: if isinstance(output_data, BaseModel): return output_data.model_dump() if is_list_of_basemodels(output_data): return [item.model_dump() for item in output_data] return output_data
import pytest import datasets import datasets.config # Import fixture modules as plugins pytest_plugins = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def pytest_collection_modifyitems(config, items): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["integration", "unit"]): continue item.add_marker(pytest.mark.unit) @pytest.fixture(autouse=True) def set_test_cache_config(tmp_path_factory, monkeypatch): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? test_hf_cache_home = tmp_path_factory.getbasetemp() / "cache" test_hf_datasets_cache = test_hf_cache_home / "datasets" test_hf_modules_cache = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE", str(test_hf_datasets_cache)) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE", str(test_hf_modules_cache)) test_downloaded_datasets_path = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH", str(test_downloaded_datasets_path)) test_extracted_datasets_path = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(test_extracted_datasets_path)) @pytest.fixture(autouse=True, scope="session") def disable_tqdm_output(): datasets.disable_progress_bar() @pytest.fixture(autouse=True) def set_update_download_counts_to_false(monkeypatch): # don't take tests into account when counting downloads monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS", False) @pytest.fixture def set_sqlalchemy_silence_uber_warning(monkeypatch): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported try: monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING", True) except AttributeError: pass @pytest.fixture(autouse=True, scope="session") def zero_time_out_for_remote_code(): datasets.config.TIME_OUT_REMOTE_CODE = 0
import pytest import datasets import datasets.config # Import fixture modules as plugins pytest_plugins = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def pytest_collection_modifyitems(config, items): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["integration", "unit"]): continue item.add_marker(pytest.mark.unit) @pytest.fixture(autouse=True) def set_test_cache_config(tmp_path_factory, monkeypatch): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? test_hf_cache_home = tmp_path_factory.getbasetemp() / "cache" test_hf_datasets_cache = test_hf_cache_home / "datasets" test_hf_metrics_cache = test_hf_cache_home / "metrics" test_hf_modules_cache = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE", str(test_hf_datasets_cache)) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE", str(test_hf_metrics_cache)) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE", str(test_hf_modules_cache)) test_downloaded_datasets_path = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH", str(test_downloaded_datasets_path)) test_extracted_datasets_path = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(test_extracted_datasets_path)) @pytest.fixture(autouse=True, scope="session") def disable_tqdm_output(): datasets.disable_progress_bar() @pytest.fixture(autouse=True) def set_update_download_counts_to_false(monkeypatch): # don't take tests into account when counting downloads monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS", False) @pytest.fixture def set_sqlalchemy_silence_uber_warning(monkeypatch): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported try: monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING", True) except AttributeError: pass @pytest.fixture(autouse=True, scope="session") def zero_time_out_for_remote_code(): datasets.config.TIME_OUT_REMOTE_CODE = 0
_base_ = './ga-retinanet_r101-caffe_fpn_1x_coco.py' train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 960)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # learning policy max_epochs = 24 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3.0, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './ga-retinanet_r101-caffe_fpn_1x_coco.py' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 960)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # learning policy max_epochs = 24 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3.0, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
"""Abstract interface for document loader implementations.""" from __future__ import annotations from abc import ABC, abstractmethod from typing import TYPE_CHECKING, Optional from langchain_core.runnables import run_in_executor if TYPE_CHECKING: from collections.abc import AsyncIterator, Iterator from langchain_text_splitters import TextSplitter from langchain_core.documents import Document from langchain_core.documents.base import Blob class BaseLoader(ABC): # noqa: B024 """Interface for Document Loader. Implementations should implement the lazy-loading method using generators to avoid loading all Documents into memory at once. `load` is provided just for user convenience and should not be overridden. """ # Sub-classes should not implement this method directly. Instead, they # should implement the lazy load method. def load(self) -> list[Document]: """Load data into Document objects.""" return list(self.lazy_load()) async def aload(self) -> list[Document]: """Load data into Document objects.""" return [document async for document in self.alazy_load()] def load_and_split( self, text_splitter: Optional[TextSplitter] = None ) -> list[Document]: """Load Documents and split into chunks. Chunks are returned as Documents. Do not override this method. It should be considered to be deprecated! Args: text_splitter: TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns: List of Documents. """ if text_splitter is None: try: from langchain_text_splitters import RecursiveCharacterTextSplitter except ImportError as e: msg = ( "Unable to import from langchain_text_splitters. Please specify " "text_splitter or install langchain_text_splitters with " "`pip install -U langchain-text-splitters`." ) raise ImportError(msg) from e text_splitter_: TextSplitter = RecursiveCharacterTextSplitter() else: text_splitter_ = text_splitter docs = self.load() return text_splitter_.split_documents(docs) # Attention: This method will be upgraded into an abstractmethod once it's # implemented in all the existing subclasses. def lazy_load(self) -> Iterator[Document]: """A lazy loader for Documents.""" if type(self).load != BaseLoader.load: return iter(self.load()) msg = f"{self.__class__.__name__} does not implement lazy_load()" raise NotImplementedError(msg) async def alazy_load(self) -> AsyncIterator[Document]: """A lazy loader for Documents.""" iterator = await run_in_executor(None, self.lazy_load) done = object() while True: doc = await run_in_executor(None, next, iterator, done) if doc is done: break yield doc # type: ignore[misc] class BaseBlobParser(ABC): """Abstract interface for blob parsers. A blob parser provides a way to parse raw data stored in a blob into one or more documents. The parser can be composed with blob loaders, making it easy to reuse a parser independent of how the blob was originally loaded. """ @abstractmethod def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Lazy parsing interface. Subclasses are required to implement this method. Args: blob: Blob instance Returns: Generator of documents """ def parse(self, blob: Blob) -> list[Document]: """Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Args: blob: Blob instance Returns: List of documents """ return list(self.lazy_parse(blob))
"""Abstract interface for document loader implementations.""" from __future__ import annotations from abc import ABC, abstractmethod from typing import TYPE_CHECKING, Optional from langchain_core.runnables import run_in_executor if TYPE_CHECKING: from collections.abc import AsyncIterator, Iterator from langchain_text_splitters import TextSplitter from langchain_core.documents import Document from langchain_core.documents.base import Blob class BaseLoader(ABC): # noqa: B024 """Interface for Document Loader. Implementations should implement the lazy-loading method using generators to avoid loading all Documents into memory at once. `load` is provided just for user convenience and should not be overridden. """ # Sub-classes should not implement this method directly. Instead, they # should implement the lazy load method. def load(self) -> list[Document]: """Load data into Document objects.""" return list(self.lazy_load()) async def aload(self) -> list[Document]: """Load data into Document objects.""" return [document async for document in self.alazy_load()] def load_and_split( self, text_splitter: Optional[TextSplitter] = None ) -> list[Document]: """Load Documents and split into chunks. Chunks are returned as Documents. Do not override this method. It should be considered to be deprecated! Args: text_splitter: TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns: List of Documents. """ if text_splitter is None: try: from langchain_text_splitters import RecursiveCharacterTextSplitter except ImportError as e: msg = ( "Unable to import from langchain_text_splitters. Please specify " "text_splitter or install langchain_text_splitters with " "`pip install -U langchain-text-splitters`." ) raise ImportError(msg) from e _text_splitter: TextSplitter = RecursiveCharacterTextSplitter() else: _text_splitter = text_splitter docs = self.load() return _text_splitter.split_documents(docs) # Attention: This method will be upgraded into an abstractmethod once it's # implemented in all the existing subclasses. def lazy_load(self) -> Iterator[Document]: """A lazy loader for Documents.""" if type(self).load != BaseLoader.load: return iter(self.load()) msg = f"{self.__class__.__name__} does not implement lazy_load()" raise NotImplementedError(msg) async def alazy_load(self) -> AsyncIterator[Document]: """A lazy loader for Documents.""" iterator = await run_in_executor(None, self.lazy_load) done = object() while True: doc = await run_in_executor(None, next, iterator, done) if doc is done: break yield doc # type: ignore[misc] class BaseBlobParser(ABC): """Abstract interface for blob parsers. A blob parser provides a way to parse raw data stored in a blob into one or more documents. The parser can be composed with blob loaders, making it easy to reuse a parser independent of how the blob was originally loaded. """ @abstractmethod def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Lazy parsing interface. Subclasses are required to implement this method. Args: blob: Blob instance Returns: Generator of documents """ def parse(self, blob: Blob) -> list[Document]: """Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Args: blob: Blob instance Returns: List of documents """ return list(self.lazy_parse(blob))
"""XGBoost: eXtreme Gradient Boosting library. Contributors: https://github.com/dmlc/xgboost/blob/master/CONTRIBUTORS.md """ from . import tracker # noqa from . import collective, dask from .core import ( Booster, DataIter, DMatrix, ExtMemQuantileDMatrix, QuantileDMatrix, _py_version, build_info, ) from .tracker import RabitTracker # noqa from .training import cv, train try: from .config import config_context, get_config, set_config from .plotting import plot_importance, plot_tree, to_graphviz from .sklearn import ( XGBClassifier, XGBModel, XGBRanker, XGBRegressor, XGBRFClassifier, XGBRFRegressor, ) except ImportError: pass __version__ = _py_version() __all__ = [ # core "DMatrix", "QuantileDMatrix", "ExtMemQuantileDMatrix", "Booster", "DataIter", "train", "cv", # utilities "RabitTracker", "build_info", "plot_importance", "plot_tree", "to_graphviz", "set_config", "get_config", "config_context", # sklearn "XGBModel", "XGBClassifier", "XGBRegressor", "XGBRanker", "XGBRFClassifier", "XGBRFRegressor", # dask "dask", # collective "collective", ]
"""XGBoost: eXtreme Gradient Boosting library. Contributors: https://github.com/dmlc/xgboost/blob/master/CONTRIBUTORS.md """ from . import tracker # noqa from . import collective, dask from .core import Booster, DataIter, DMatrix, QuantileDMatrix, _py_version, build_info from .tracker import RabitTracker # noqa from .training import cv, train try: from .config import config_context, get_config, set_config from .plotting import plot_importance, plot_tree, to_graphviz from .sklearn import ( XGBClassifier, XGBModel, XGBRanker, XGBRegressor, XGBRFClassifier, XGBRFRegressor, ) except ImportError: pass __version__ = _py_version() __all__ = [ # core "DMatrix", "QuantileDMatrix", "Booster", "DataIter", "train", "cv", # utilities "RabitTracker", "build_info", "plot_importance", "plot_tree", "to_graphviz", "set_config", "get_config", "config_context", # sklearn "XGBModel", "XGBClassifier", "XGBRegressor", "XGBRanker", "XGBRFClassifier", "XGBRFRegressor", # dask "dask", # collective "collective", ]
from typing import Any, Callable, Optional, Sequence from llama_index.core.base.embeddings.base import ( BaseEmbedding, SimilarityMode, similarity, ) from llama_index.core.evaluation.base import BaseEvaluator, EvaluationResult from llama_index.core.prompts.mixin import PromptDictType from llama_index.core.settings import Settings class SemanticSimilarityEvaluator(BaseEvaluator): """ Embedding similarity evaluator. Evaluate the quality of a question answering system by comparing the similarity between embeddings of the generated answer and the reference answer. Inspired by this paper: - Semantic Answer Similarity for Evaluating Question Answering Models https://arxiv.org/pdf/2108.06130.pdf Args: similarity_threshold (float): Embedding similarity threshold for "passing". Defaults to 0.8. """ def __init__( self, embed_model: Optional[BaseEmbedding] = None, similarity_fn: Optional[Callable[..., float]] = None, similarity_mode: Optional[SimilarityMode] = None, similarity_threshold: float = 0.8, ) -> None: self._embed_model = embed_model or Settings.embed_model if similarity_fn is None: similarity_mode = similarity_mode or SimilarityMode.DEFAULT self._similarity_fn = lambda x, y: similarity(x, y, mode=similarity_mode) else: if similarity_mode is not None: raise ValueError( "Cannot specify both similarity_fn and similarity_mode" ) self._similarity_fn = similarity_fn self._similarity_threshold = similarity_threshold def _get_prompts(self) -> PromptDictType: """Get prompts.""" return {} def _update_prompts(self, prompts: PromptDictType) -> None: """Update prompts.""" async def aevaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, reference: Optional[str] = None, **kwargs: Any, ) -> EvaluationResult: del query, contexts, kwargs # Unused if response is None or reference is None: raise ValueError("Must specify both response and reference") response_embedding = await self._embed_model.aget_text_embedding(response) reference_embedding = await self._embed_model.aget_text_embedding(reference) similarity_score = self._similarity_fn(response_embedding, reference_embedding) passing = similarity_score >= self._similarity_threshold return EvaluationResult( score=similarity_score, passing=passing, feedback=f"Similarity score: {similarity_score}", )
from typing import Any, Callable, Optional, Sequence from llama_index.core.base.embeddings.base import ( BaseEmbedding, SimilarityMode, similarity, ) from llama_index.core.evaluation.base import BaseEvaluator, EvaluationResult from llama_index.core.prompts.mixin import PromptDictType from llama_index.core.settings import Settings class SemanticSimilarityEvaluator(BaseEvaluator): """Embedding similarity evaluator. Evaluate the quality of a question answering system by comparing the similarity between embeddings of the generated answer and the reference answer. Inspired by this paper: - Semantic Answer Similarity for Evaluating Question Answering Models https://arxiv.org/pdf/2108.06130.pdf Args: similarity_threshold (float): Embedding similarity threshold for "passing". Defaults to 0.8. """ def __init__( self, embed_model: Optional[BaseEmbedding] = None, similarity_fn: Optional[Callable[..., float]] = None, similarity_mode: Optional[SimilarityMode] = None, similarity_threshold: float = 0.8, ) -> None: self._embed_model = embed_model or Settings.embed_model if similarity_fn is None: similarity_mode = similarity_mode or SimilarityMode.DEFAULT self._similarity_fn = lambda x, y: similarity(x, y, mode=similarity_mode) else: if similarity_mode is not None: raise ValueError( "Cannot specify both similarity_fn and similarity_mode" ) self._similarity_fn = similarity_fn self._similarity_threshold = similarity_threshold def _get_prompts(self) -> PromptDictType: """Get prompts.""" return {} def _update_prompts(self, prompts: PromptDictType) -> None: """Update prompts.""" async def aevaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, reference: Optional[str] = None, **kwargs: Any, ) -> EvaluationResult: del query, contexts, kwargs # Unused if response is None or reference is None: raise ValueError("Must specify both response and reference") response_embedding = await self._embed_model.aget_text_embedding(response) reference_embedding = await self._embed_model.aget_text_embedding(reference) similarity_score = self._similarity_fn(response_embedding, reference_embedding) passing = similarity_score >= self._similarity_threshold return EvaluationResult( score=similarity_score, passing=passing, feedback=f"Similarity score: {similarity_score}", )
from pathlib import Path from typing import List import pytest from executor.audioclip_text import AudioCLIPTextEncoder from jina import Document, DocumentArray, Executor _EMBEDDING_DIM = 1024 @pytest.fixture(scope='module') def basic_encoder() -> AudioCLIPTextEncoder: return AudioCLIPTextEncoder( model_path=str(Path(__file__).parents[2] / '.cache/AudioCLIP-Full-Training.pt'), tokenizer_path=str( Path(__file__).parents[2] / '.cache/bpe_simple_vocab_16e6.txt.gz' ), ) def test_config(): ex = Executor.load_config( str(Path(__file__).parents[2] / 'config.yml'), override_with={ 'model_path': str( Path(__file__).parents[2] / '.cache/AudioCLIP-Full-Training.pt' ), 'tokenizer_path': str( Path(__file__).parents[2] / '.cache/bpe_simple_vocab_16e6.txt.gz' ), }, ) assert ex.batch_size == 32 def test_no_document(basic_encoder: AudioCLIPTextEncoder): basic_encoder.encode(None, {}) def test_empty_documents(basic_encoder: AudioCLIPTextEncoder): docs = DocumentArray([]) basic_encoder.encode(docs, {}) assert len(docs) == 0 def test_no_text_documents(basic_encoder: AudioCLIPTextEncoder): docs = DocumentArray([Document()]) basic_encoder.encode(docs, {}) assert len(docs) == 1 assert docs[0].embedding is None def test_encoding_cpu(): enc = AudioCLIPTextEncoder(device='cpu') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.gpu def test_encoding_gpu(): enc = AudioCLIPTextEncoder(device='cuda', download_model=True) input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: AudioCLIPTextEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: AudioCLIPTextEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) def test_quality_embeddings(basic_encoder: AudioCLIPTextEncoder): docs = DocumentArray( [ Document(id='A', text='a furry animal that with a long tail'), Document(id='B', text='a domesticated mammal with four legs'), Document(id='C', text='a type of aircraft that uses rotating wings'), Document(id='D', text='flying vehicle that has fixed wings and engines'), ] ) basic_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ['B', 'A', 'D', 'C'] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i]
from pathlib import Path from typing import List import pytest from executor.audioclip_text import AudioCLIPTextEncoder from jina import Document, DocumentArray, Executor _EMBEDDING_DIM = 1024 @pytest.fixture(scope='module') def basic_encoder() -> AudioCLIPTextEncoder: return AudioCLIPTextEncoder( model_path=str(Path(__file__).parents[2] / '.cache/AudioCLIP-Full-Training.pt'), tokenizer_path=str( Path(__file__).parents[2] / '.cache/bpe_simple_vocab_16e6.txt.gz' ), ) def test_config(): ex = Executor.load_config( str(Path(__file__).parents[2] / 'config.yml'), override_with={ 'model_path': str( Path(__file__).parents[2] / '.cache/AudioCLIP-Full-Training.pt' ), 'tokenizer_path': str( Path(__file__).parents[2] / '.cache/bpe_simple_vocab_16e6.txt.gz' ), }, ) assert ex.batch_size == 32 def test_no_document(basic_encoder: AudioCLIPTextEncoder): basic_encoder.encode(None, {}) def test_empty_documents(basic_encoder: AudioCLIPTextEncoder): docs = DocumentArray([]) basic_encoder.encode(docs, {}) assert len(docs) == 0 def test_no_text_documents(basic_encoder: AudioCLIPTextEncoder): docs = DocumentArray([Document()]) basic_encoder.encode(docs, {}) assert len(docs) == 1 assert docs[0].embedding is None def test_encoding_cpu(): enc = AudioCLIPTextEncoder(device='cpu') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.gpu def test_encoding_gpu(): enc = AudioCLIPTextEncoder(device='cuda') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: AudioCLIPTextEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: AudioCLIPTextEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) def test_quality_embeddings(basic_encoder: AudioCLIPTextEncoder): docs = DocumentArray( [ Document(id='A', text='a furry animal that with a long tail'), Document(id='B', text='a domesticated mammal with four legs'), Document(id='C', text='a type of aircraft that uses rotating wings'), Document(id='D', text='flying vehicle that has fixed wings and engines'), ] ) basic_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ['B', 'A', 'D', 'C'] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i]
from sentence_transformers import models from sentence_transformers.sparse_encoder import SparseEncoder from sentence_transformers.sparse_encoder.models import IDF, MLMTransformer, SpladePooling print("# ------------------------------------------example with v2 distill-----------------------------------------") doc_encoder = MLMTransformer("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill") asym = models.Asym( { "query": [ IDF.from_json( "opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill", tokenizer=doc_encoder.tokenizer, frozen=True, ), ], "doc": [ doc_encoder, SpladePooling("max"), ], } ) model = SparseEncoder( modules=[asym], similarity_fn_name="dot", ) query = "What's the weather in ny now?" document = "Currently New York is rainy." query_embed = model.encode([{"query": query}]) document_embed = model.encode([{"doc": document}]) sim = model.similarity(query_embed, document_embed) print(f"Similarity: {sim}") # Visualize top tokens for each text top_k = 3 print(f"\nTop tokens {top_k} for each text:") decoded_query = model.decode(query_embed)[0] decoded_document = model.decode(document_embed[0], top_k=100) for i in range(top_k): query_token, query_score = decoded_query[i] doc_score = next((score for token, score in decoded_document if token == query_token), 0) if doc_score != 0: print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}") """ # ------------------------------------------example with v2 distill----------------------------------------- Similarity: tensor([[17.5307]], device='cuda:0') Top tokens 3 for each text: Token: ny, Query score: 5.7729, Document score: 1.4109 Token: weather, Query score: 4.5684, Document score: 1.4673 Token: now, Query score: 3.5895, Document score: 0.7473 """ print("# -----------------------------------------example with v3 distill-----------------------------------------") doc_encoder = MLMTransformer("opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill") asym = models.Asym( { "query": [ IDF.from_json( "opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill", tokenizer=doc_encoder.tokenizer, frozen=True, ), ], "doc": [ doc_encoder, SpladePooling(pooling_strategy="max", activation_function="log1p_relu"), ], } ) model = SparseEncoder( modules=[asym], similarity_fn_name="dot", ) query = "What's the weather in ny now?" document = "Currently New York is rainy." query_embed = model.encode([{"query": query}]) document_embed = model.encode([{"doc": document}]) sim = model.similarity(query_embed, document_embed) print(f"Similarity: {sim}") # Visualize top tokens for each text top_k = 10 print(f"\nTop tokens {top_k} for each text:") decoded_query = model.decode(query_embed)[0] decoded_document = model.decode(document_embed[0], top_k=100) for i in range(top_k): query_token, query_score = decoded_query[i] doc_score = next((score for token, score in decoded_document if token == query_token), 0) if doc_score != 0: print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}") """ # -----------------------------------------example with v3 distill----------------------------------------- Similarity: tensor([[11.1105]], device='cuda:0') Top tokens 10 for each text: Token: ny, Query score: 5.7729, Document score: 0.8049 Token: weather, Query score: 4.5684, Document score: 0.9710 Token: now, Query score: 3.5895, Document score: 0.4720 Token: ?, Query score: 3.3313, Document score: 0.0286 Token: what, Query score: 2.7699, Document score: 0.0787 Token: in, Query score: 0.4989, Document score: 0.0417 """
import numpy as np from sentence_transformers import models from sentence_transformers.sparse_encoder import SparseEncoder from sentence_transformers.sparse_encoder.models import IDF, MLMTransformer, SpladePooling print("# ------------------------------------------example with v2 distill-----------------------------------------") doc_encoder = MLMTransformer("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill") asym = models.Asym( { "query": [ IDF.from_json( "opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill", tokenizer=doc_encoder.tokenizer, frozen=True, ), ], "doc": [ doc_encoder, SpladePooling("max"), ], } ) model = SparseEncoder( modules=[asym], similarity_fn_name="dot", ) query = "What's the weather in ny now?" document = "Currently New York is rainy." query_embed = model.encode([{"query": query}]) document_embed = model.encode([{"doc": document}]) sim = model.similarity(query_embed, document_embed) print(f"Similarity: {sim}") # Visualize top tokens for each text top_k = 3 print(f"\nTop tokens {top_k} for each text:") # Get top k indices in sparse tensor (sorted from highest to lowest) top_indices = np.argsort(-query_embed.to_dense().cpu().numpy())[:top_k][0] top_tokens = [model.tokenizer.decode([idx]) for idx in top_indices] top_value_query_associate_score = query_embed.to_dense().cpu().numpy()[0, top_indices] top_value_doc_associate_score = document_embed.to_dense().cpu().numpy()[0, top_indices] for i in range(top_k): if top_value_doc_associate_score[i] != 0: print( f"Token: {top_tokens[i]}, " f"Query score: {top_value_query_associate_score[i]:.4f}, " f"Document score: {top_value_doc_associate_score[i]:.4f}" ) """ # ------------------------------------------example with v2 distill----------------------------------------- Similarity: tensor([[17.5307]], device='cuda:0') Top tokens 3 for each text: Token: ny, Query score: 5.7729, Document score: 1.4109 Token: weather, Query score: 4.5684, Document score: 1.4673 Token: now, Query score: 3.5895, Document score: 0.7473 """ print("# -----------------------------------------example with v3 distill-----------------------------------------") doc_encoder = MLMTransformer("opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill") asym = models.Asym( { "query": [ IDF.from_json( "opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill", tokenizer=doc_encoder.tokenizer, frozen=True, ), ], "doc": [ doc_encoder, SpladePooling(pooling_strategy="max", activation_function="log1p_relu"), ], } ) model = SparseEncoder( modules=[asym], similarity_fn_name="dot", ) query = "What's the weather in ny now?" document = "Currently New York is rainy." query_embed = model.encode([{"query": query}]) document_embed = model.encode([{"doc": document}]) sim = model.similarity(query_embed, document_embed) print(f"Similarity: {sim}") # Visualize top tokens for each text top_k = 10 print(f"\nTop tokens {top_k} for each text:") # Get top k indices in sparse tensor (sorted from highest to lowest) top_indices = np.argsort(-query_embed.to_dense().cpu().numpy())[:top_k][0] top_tokens = [model.tokenizer.decode([idx]) for idx in top_indices] top_value_query_associate_score = query_embed.to_dense().cpu().numpy()[0, top_indices] top_value_doc_associate_score = document_embed.to_dense().cpu().numpy()[0, top_indices] for i in range(top_k): if top_value_doc_associate_score[i] != 0: print( f"Token: {top_tokens[i]}, " f"Query score: {top_value_query_associate_score[i]:.4f}, " f"Document score: {top_value_doc_associate_score[i]:.4f}" ) """ # -----------------------------------------example with v3 distill----------------------------------------- Similarity: tensor([[11.1105]], device='cuda:0') Top tokens 10 for each text: Token: ny, Query score: 5.7729, Document score: 0.8049 Token: weather, Query score: 4.5684, Document score: 0.9710 Token: now, Query score: 3.5895, Document score: 0.4720 Token: ?, Query score: 3.3313, Document score: 0.0286 Token: what, Query score: 2.7699, Document score: 0.0787 Token: in, Query score: 0.4989, Document score: 0.0417 """
import os import sys import numpy as np import pytest import xgboost as xgb from xgboost import testing as tm from xgboost.core import DataSplitMode pytestmark = pytest.mark.skipif( tm.no_arrow()["condition"] or tm.no_pandas()["condition"], reason=tm.no_arrow()["reason"] + " or " + tm.no_pandas()["reason"], ) import pandas as pd import pyarrow as pa import pyarrow.csv as pc class TestArrowTable: def test_arrow_table(self): df = pd.DataFrame( [[0, 1, 2.0, 3.0], [1, 2, 3.0, 4.0]], columns=["a", "b", "c", "d"] ) table = pa.Table.from_pandas(df) dm = xgb.DMatrix(table) assert dm.num_row() == 2 assert dm.num_col() == 4 def test_arrow_table_with_label(self): df = pd.DataFrame([[1, 2.0, 3.0], [2, 3.0, 4.0]], columns=["a", "b", "c"]) table = pa.Table.from_pandas(df) label = np.array([0, 1]) dm = xgb.DMatrix(table) dm.set_label(label) assert dm.num_row() == 2 assert dm.num_col() == 3 np.testing.assert_array_equal(dm.get_label(), np.array([0, 1])) def test_arrow_table_from_np(self): coldata = np.array( [[1.0, 1.0, 0.0, 0.0], [2.0, 0.0, 1.0, 0.0], [3.0, 0.0, 0.0, 1.0]] ) cols = list(map(pa.array, coldata)) table = pa.Table.from_arrays(cols, ["a", "b", "c"]) dm = xgb.DMatrix(table) assert dm.num_row() == 4 assert dm.num_col() == 3 @pytest.mark.parametrize("DMatrixT", [xgb.DMatrix, xgb.QuantileDMatrix]) def test_arrow_train(self, DMatrixT): import pandas as pd rows = 100 X = pd.DataFrame( { "A": np.random.randint(0, 10, size=rows), "B": np.random.randn(rows), "C": np.random.permutation([1, 0] * (rows // 2)), } ) y = pd.Series(np.random.randn(rows)) table = pa.Table.from_pandas(X) dtrain1 = DMatrixT(table) dtrain1.set_label(pa.Table.from_pandas(pd.DataFrame(y))) bst1 = xgb.train({}, dtrain1, num_boost_round=10) preds1 = bst1.predict(DMatrixT(X)) dtrain2 = DMatrixT(X, y) bst2 = xgb.train({}, dtrain2, num_boost_round=10) preds2 = bst2.predict(DMatrixT(X)) np.testing.assert_allclose(preds1, preds2) preds3 = bst2.inplace_predict(table) np.testing.assert_allclose(preds1, preds3) assert bst2.feature_names == ["A", "B", "C"] assert bst2.feature_types == ["int", "float", "int"] def test_arrow_survival(self): data = os.path.join(tm.data_dir(__file__), "veterans_lung_cancer.csv") table = pc.read_csv(data) y_lower_bound = table["Survival_label_lower_bound"] y_upper_bound = table["Survival_label_upper_bound"] X = table.drop(["Survival_label_lower_bound", "Survival_label_upper_bound"]) dtrain = xgb.DMatrix( X, label_lower_bound=y_lower_bound, label_upper_bound=y_upper_bound ) y_np_up = dtrain.get_float_info("label_upper_bound") y_np_low = dtrain.get_float_info("label_lower_bound") np.testing.assert_equal(y_np_up, y_upper_bound.to_pandas().values) np.testing.assert_equal(y_np_low, y_lower_bound.to_pandas().values) @pytest.mark.skipif(tm.is_windows(), reason="Rabit does not run on windows") class TestArrowTableColumnSplit: def test_arrow_table(self): def verify_arrow_table(): df = pd.DataFrame( [[0, 1, 2.0, 3.0], [1, 2, 3.0, 4.0]], columns=["a", "b", "c", "d"] ) table = pa.Table.from_pandas(df) dm = xgb.DMatrix(table, data_split_mode=DataSplitMode.COL) assert dm.num_row() == 2 assert dm.num_col() == 4 * xgb.collective.get_world_size() tm.run_with_rabit(world_size=3, test_fn=verify_arrow_table)
import os import sys import numpy as np import pytest import xgboost as xgb from xgboost import testing as tm from xgboost.core import DataSplitMode try: import pandas as pd import pyarrow as pa import pyarrow.csv as pc except ImportError: pass pytestmark = pytest.mark.skipif( tm.no_arrow()["condition"] or tm.no_pandas()["condition"], reason=tm.no_arrow()["reason"] + " or " + tm.no_pandas()["reason"], ) dpath = "demo/data/" class TestArrowTable: def test_arrow_table(self): df = pd.DataFrame( [[0, 1, 2.0, 3.0], [1, 2, 3.0, 4.0]], columns=["a", "b", "c", "d"] ) table = pa.Table.from_pandas(df) dm = xgb.DMatrix(table) assert dm.num_row() == 2 assert dm.num_col() == 4 def test_arrow_table_with_label(self): df = pd.DataFrame([[1, 2.0, 3.0], [2, 3.0, 4.0]], columns=["a", "b", "c"]) table = pa.Table.from_pandas(df) label = np.array([0, 1]) dm = xgb.DMatrix(table) dm.set_label(label) assert dm.num_row() == 2 assert dm.num_col() == 3 np.testing.assert_array_equal(dm.get_label(), np.array([0, 1])) def test_arrow_table_from_np(self): coldata = np.array( [[1.0, 1.0, 0.0, 0.0], [2.0, 0.0, 1.0, 0.0], [3.0, 0.0, 0.0, 1.0]] ) cols = list(map(pa.array, coldata)) table = pa.Table.from_arrays(cols, ["a", "b", "c"]) dm = xgb.DMatrix(table) assert dm.num_row() == 4 assert dm.num_col() == 3 @pytest.mark.parametrize("DMatrixT", [xgb.DMatrix, xgb.QuantileDMatrix]) def test_arrow_train(self, DMatrixT): import pandas as pd rows = 100 X = pd.DataFrame( { "A": np.random.randint(0, 10, size=rows), "B": np.random.randn(rows), "C": np.random.permutation([1, 0] * (rows // 2)), } ) y = pd.Series(np.random.randn(rows)) table = pa.Table.from_pandas(X) dtrain1 = DMatrixT(table) dtrain1.set_label(pa.Table.from_pandas(pd.DataFrame(y))) bst1 = xgb.train({}, dtrain1, num_boost_round=10) preds1 = bst1.predict(DMatrixT(X)) dtrain2 = DMatrixT(X, y) bst2 = xgb.train({}, dtrain2, num_boost_round=10) preds2 = bst2.predict(DMatrixT(X)) np.testing.assert_allclose(preds1, preds2) preds3 = bst2.inplace_predict(table) np.testing.assert_allclose(preds1, preds3) assert bst2.feature_names == ["A", "B", "C"] assert bst2.feature_types == ["int", "float", "int"] def test_arrow_survival(self): data = os.path.join(tm.data_dir(__file__), "veterans_lung_cancer.csv") table = pc.read_csv(data) y_lower_bound = table["Survival_label_lower_bound"] y_upper_bound = table["Survival_label_upper_bound"] X = table.drop(["Survival_label_lower_bound", "Survival_label_upper_bound"]) dtrain = xgb.DMatrix( X, label_lower_bound=y_lower_bound, label_upper_bound=y_upper_bound ) y_np_up = dtrain.get_float_info("label_upper_bound") y_np_low = dtrain.get_float_info("label_lower_bound") np.testing.assert_equal(y_np_up, y_upper_bound.to_pandas().values) np.testing.assert_equal(y_np_low, y_lower_bound.to_pandas().values) @pytest.mark.skipif(tm.is_windows(), reason="Rabit does not run on windows") class TestArrowTableColumnSplit: def test_arrow_table(self): def verify_arrow_table(): df = pd.DataFrame( [[0, 1, 2.0, 3.0], [1, 2, 3.0, 4.0]], columns=["a", "b", "c", "d"] ) table = pa.Table.from_pandas(df) dm = xgb.DMatrix(table, data_split_mode=DataSplitMode.COL) assert dm.num_row() == 2 assert dm.num_col() == 4 * xgb.collective.get_world_size() tm.run_with_rabit(world_size=3, test_fn=verify_arrow_table)
from typing import Any, Dict, Optional, Union import numpy as np import PIL.Image import torch from torchvision import datapoints from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2.utils import is_simple_tensor class PILToTensor(Transform): """[BETA] Convert a PIL Image to a tensor of the same type - this does not scale values. .. v2betastatus:: PILToTensor transform This transform does not support torchscript. Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W). """ _transformed_types = (PIL.Image.Image,) def _transform(self, inpt: PIL.Image.Image, params: Dict[str, Any]) -> torch.Tensor: return F.pil_to_tensor(inpt) class ToImage(Transform): """[BETA] Convert a tensor, ndarray, or PIL Image to :class:`~torchvision.datapoints.Image` ; this does not scale values. .. v2betastatus:: ToImage transform This transform does not support torchscript. """ _transformed_types = (is_simple_tensor, PIL.Image.Image, np.ndarray) def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> datapoints.Image: return F.to_image(inpt) class ToPILImage(Transform): """[BETA] Convert a tensor or an ndarray to PIL Image - this does not scale values. .. v2betastatus:: ToPILImage transform This transform does not support torchscript. Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape H x W x C to a PIL Image while preserving the value range. Args: mode (`PIL.Image mode`_): color space and pixel depth of input data (optional). If ``mode`` is ``None`` (default) there are some assumptions made about the input data: - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``. - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``. - If the input has 2 channels, the ``mode`` is assumed to be ``LA``. - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``, ``short``). .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes """ _transformed_types = (is_simple_tensor, datapoints.Image, np.ndarray) def __init__(self, mode: Optional[str] = None) -> None: super().__init__() self.mode = mode def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> PIL.Image.Image: return F.to_pil_image(inpt, mode=self.mode) class ToPureTensor(Transform): """[BETA] Convert all datapoints to pure tensors, removing associated metadata (if any). .. v2betastatus:: ToPureTensor transform This doesn't scale or change the values, only the type. """ _transformed_types = (datapoints.Datapoint,) def _transform(self, inpt: Any, params: Dict[str, Any]) -> torch.Tensor: return inpt.as_subclass(torch.Tensor)
from typing import Any, Dict, Optional, Union import numpy as np import PIL.Image import torch from torchvision import datapoints from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2.utils import is_simple_tensor class PILToTensor(Transform): """[BETA] Convert a PIL Image to a tensor of the same type - this does not scale values. .. v2betastatus:: PILToTensor transform This transform does not support torchscript. Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W). """ _transformed_types = (PIL.Image.Image,) def _transform(self, inpt: PIL.Image.Image, params: Dict[str, Any]) -> torch.Tensor: return F.pil_to_tensor(inpt) class ToImage(Transform): """[BETA] Convert a tensor, ndarray, or PIL Image to :class:`~torchvision.datapoints.Image` ; this does not scale values. .. v2betastatus:: ToImage transform This transform does not support torchscript. """ _transformed_types = (is_simple_tensor, PIL.Image.Image, np.ndarray) def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> datapoints.Image: return F.to_image(inpt) class ToPILImage(Transform): """[BETA] Convert a tensor or an ndarray to PIL Image - this does not scale values. .. v2betastatus:: ToPILImage transform This transform does not support torchscript. Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape H x W x C to a PIL Image while preserving the value range. Args: mode (`PIL.Image mode`_): color space and pixel depth of input data (optional). If ``mode`` is ``None`` (default) there are some assumptions made about the input data: - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``. - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``. - If the input has 2 channels, the ``mode`` is assumed to be ``LA``. - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``, ``short``). .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes """ _transformed_types = (is_simple_tensor, datapoints.Image, np.ndarray) def __init__(self, mode: Optional[str] = None) -> None: super().__init__() self.mode = mode def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> PIL.Image.Image: return F.to_pil_image(inpt, mode=self.mode)
import datetime import prisma.fields import prisma.models import pytest import backend.server.v2.library.model as library_model @pytest.mark.asyncio async def test_agent_preset_from_db(): # Create mock DB agent db_agent = prisma.models.AgentPreset( id="test-agent-123", createdAt=datetime.datetime.now(), updatedAt=datetime.datetime.now(), agentGraphId="agent-123", agentGraphVersion=1, name="Test Agent", description="Test agent description", isActive=True, userId="test-user-123", isDeleted=False, InputPresets=[ prisma.models.AgentNodeExecutionInputOutput( id="input-123", time=datetime.datetime.now(), name="input1", data=prisma.Json({"type": "string", "value": "test value"}), ) ], ) # Convert to LibraryAgentPreset agent = library_model.LibraryAgentPreset.from_db(db_agent) assert agent.id == "test-agent-123" assert agent.graph_version == 1 assert agent.is_active is True assert agent.name == "Test Agent" assert agent.description == "Test agent description" assert agent.inputs == {"input1": {"type": "string", "value": "test value"}}
import datetime import prisma.fields import prisma.models import pytest import backend.server.v2.library.model as library_model from backend.util import json @pytest.mark.asyncio async def test_agent_preset_from_db(): # Create mock DB agent db_agent = prisma.models.AgentPreset( id="test-agent-123", createdAt=datetime.datetime.now(), updatedAt=datetime.datetime.now(), agentId="agent-123", agentVersion=1, name="Test Agent", description="Test agent description", isActive=True, userId="test-user-123", isDeleted=False, InputPresets=[ prisma.models.AgentNodeExecutionInputOutput( id="input-123", time=datetime.datetime.now(), name="input1", data=json.dumps({"type": "string", "value": "test value"}), # type: ignore ) ], ) # Convert to LibraryAgentPreset agent = library_model.LibraryAgentPreset.from_db(db_agent) assert agent.id == "test-agent-123" assert agent.agent_version == 1 assert agent.is_active is True assert agent.name == "Test Agent" assert agent.description == "Test agent description" assert agent.inputs == {"input1": {"type": "string", "value": "test value"}}
# Copyright (c) OpenMMLab. All rights reserved. from typing import Dict, Optional, Sequence from ..registry import HOOKS from ..utils import get_git_hash from .hook import Hook DATA_BATCH = Optional[Sequence[dict]] @HOOKS.register_module() class RuntimeInfoHook(Hook): """A hook that updates runtime information into message hub. E.g. ``epoch``, ``iter``, ``max_epochs``, and ``max_iters`` for the training state. Components that cannot access the runner can get runtime information through the message hub. """ priority = 'VERY_HIGH' def before_run(self, runner) -> None: import mmengine metainfo = dict( cfg=runner.cfg.pretty_text, seed=runner.seed, experiment_name=runner.experiment_name, mmengine_version=mmengine.__version__ + get_git_hash()) runner.message_hub.update_info_dict(metainfo) def before_train(self, runner) -> None: """Update resumed training state.""" runner.message_hub.update_info('epoch', runner.epoch) runner.message_hub.update_info('iter', runner.iter) runner.message_hub.update_info('max_epochs', runner.max_epochs) runner.message_hub.update_info('max_iters', runner.max_iters) runner.message_hub.update_info( 'dataset_meta', runner.train_dataloader.dataset.metainfo) def before_train_epoch(self, runner) -> None: """Update current epoch information before every epoch.""" runner.message_hub.update_info('epoch', runner.epoch) def before_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None) -> None: """Update current iter and learning rate information before every iteration.""" runner.message_hub.update_info('iter', runner.iter) lr_dict = runner.optim_wrapper.get_lr() assert isinstance(lr_dict, dict), ( '`runner.optim_wrapper.get_lr()` should return a dict ' 'of learning rate when training with OptimWrapper(single ' 'optimizer) or OptimWrapperDict(multiple optimizer), ' f'but got {type(lr_dict)} please check your optimizer ' 'constructor return an `OptimWrapper` or `OptimWrapperDict` ' 'instance') for name, lr in lr_dict.items(): runner.message_hub.update_scalar(f'train/{name}', lr[0]) def after_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """Update ``log_vars`` in model outputs every iteration.""" if outputs is not None: for key, value in outputs.items(): runner.message_hub.update_scalar(f'train/{key}', value) def after_val_epoch(self, runner, metrics: Optional[Dict[str, float]] = None) -> None: """All subclasses should override this method, if they need any operations after each validation epoch. Args: runner (Runner): The runner of the validation process. metrics (Dict[str, float], optional): Evaluation results of all metrics on validation dataset. The keys are the names of the metrics, and the values are corresponding results. """ if metrics is not None: for key, value in metrics.items(): runner.message_hub.update_scalar(f'val/{key}', value) def after_test_epoch(self, runner, metrics: Optional[Dict[str, float]] = None) -> None: """All subclasses should override this method, if they need any operations after each test epoch. Args: runner (Runner): The runner of the testing process. metrics (Dict[str, float], optional): Evaluation results of all metrics on test dataset. The keys are the names of the metrics, and the values are corresponding results. """ if metrics is not None: for key, value in metrics.items(): runner.message_hub.update_scalar(f'test/{key}', value)
# Copyright (c) OpenMMLab. All rights reserved. from typing import Dict, Optional, Sequence from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[dict]] @HOOKS.register_module() class RuntimeInfoHook(Hook): """A hook that updates runtime information into message hub. E.g. ``epoch``, ``iter``, ``max_epochs``, and ``max_iters`` for the training state. Components that cannot access the runner can get runtime information through the message hub. """ priority = 'VERY_HIGH' def before_train(self, runner) -> None: """Update resumed training state.""" runner.message_hub.update_info('epoch', runner.epoch) runner.message_hub.update_info('iter', runner.iter) runner.message_hub.update_info('max_epochs', runner.max_epochs) runner.message_hub.update_info('max_iters', runner.max_iters) def before_train_epoch(self, runner) -> None: """Update current epoch information before every epoch.""" runner.message_hub.update_info('epoch', runner.epoch) def before_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None) -> None: """Update current iter and learning rate information before every iteration.""" runner.message_hub.update_info('iter', runner.iter) lr_dict = runner.optim_wrapper.get_lr() assert isinstance(lr_dict, dict), ( '`runner.optim_wrapper.get_lr()` should return a dict ' 'of learning rate when training with OptimWrapper(single ' 'optimizer) or OptimWrapperDict(multiple optimizer), ' f'but got {type(lr_dict)} please check your optimizer ' 'constructor return an `OptimWrapper` or `OptimWrapperDict` ' 'instance') for name, lr in lr_dict.items(): runner.message_hub.update_scalar(f'train/{name}', lr[0]) def after_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """Update ``log_vars`` in model outputs every iteration.""" if outputs is not None: for key, value in outputs.items(): runner.message_hub.update_scalar(f'train/{key}', value) def after_val_epoch(self, runner, metrics: Optional[Dict[str, float]] = None) -> None: """All subclasses should override this method, if they need any operations after each validation epoch. Args: runner (Runner): The runner of the validation process. metrics (Dict[str, float], optional): Evaluation results of all metrics on validation dataset. The keys are the names of the metrics, and the values are corresponding results. """ if metrics is not None: for key, value in metrics.items(): runner.message_hub.update_scalar(f'val/{key}', value) def after_test_epoch(self, runner, metrics: Optional[Dict[str, float]] = None) -> None: """All subclasses should override this method, if they need any operations after each test epoch. Args: runner (Runner): The runner of the testing process. metrics (Dict[str, float], optional): Evaluation results of all metrics on test dataset. The keys are the names of the metrics, and the values are corresponding results. """ if metrics is not None: for key, value in metrics.items(): runner.message_hub.update_scalar(f'test/{key}', value)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import numpy as np import pytest from executor.audioclip_image import AudioCLIPImageEncoder from jina import Document, DocumentArray, Flow @pytest.mark.parametrize("request_size", [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [ Document(blob=np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)) for _ in range(50) ] ) with Flow(return_results=True).add(uses=AudioCLIPImageEncoder) as flow: resp = flow.post( on="/index", inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding is not None assert doc.embedding.shape == (1024,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:cuda', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import numpy as np import pytest from executor.audioclip_image import AudioCLIPImageEncoder from jina import Document, DocumentArray, Flow @pytest.mark.parametrize("request_size", [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [ Document(blob=np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)) for _ in range(50) ] ) with Flow(return_results=True).add(uses=AudioCLIPImageEncoder) as flow: resp = flow.post( on="/index", inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding is not None assert doc.embedding.shape == (1024,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', '--volumes=.cache:/workdir/.cache', ], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:cuda', '--volumes=.cache:/workdir/.cache', ], timeout=30, check=True, )
# Copyright (c) OpenMMLab. All rights reserved. from .averaged_model import (ExponentialMovingAverage, MomentumAnnealingEMA, StochasticWeightAverage) from .base_model import BaseDataPreprocessor, BaseModel, ImgDataPreprocessor from .base_module import BaseModule from .utils import detect_anomalous_params, merge_dict, stack_batch from .wrappers import (MMDistributedDataParallel, MMSeparateDistributedDataParallel, is_model_wrapper) __all__ = [ 'MMDistributedDataParallel', 'is_model_wrapper', 'StochasticWeightAverage', 'ExponentialMovingAverage', 'MomentumAnnealingEMA', 'BaseModel', 'BaseDataPreprocessor', 'ImgDataPreprocessor', 'MMSeparateDistributedDataParallel', 'BaseModule', 'stack_batch', 'merge_dict', 'detect_anomalous_params' ]
# Copyright (c) OpenMMLab. All rights reserved. from .averaged_model import (ExponentialMovingAverage, MomentumAnnealingEMA, StochasticWeightAverage) from .base_model import BaseDataPreprocessor, BaseModel, ImgDataPreprocessor from .base_module import BaseModule from .utils import detect_anomalous_params, merge_dict, stach_batch_imgs from .wrappers import (MMDistributedDataParallel, MMSeparateDistributedDataParallel, is_model_wrapper) __all__ = [ 'MMDistributedDataParallel', 'is_model_wrapper', 'StochasticWeightAverage', 'ExponentialMovingAverage', 'MomentumAnnealingEMA', 'BaseModel', 'BaseDataPreprocessor', 'ImgDataPreprocessor', 'MMSeparateDistributedDataParallel', 'BaseModule', 'stach_batch_imgs', 'merge_dict', 'detect_anomalous_params' ]
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py' # model settings model = dict( data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), backbone=dict( type='ResNeXt', depth=101, groups=64, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d'))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scale=[(1333, 640), (1333, 800)], resize_cfg=dict(type='Resize', keep_ratio=True)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 2x train_cfg = dict(max_epochs=24) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py' # model settings preprocess_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True, pad_size_divisor=32) model = dict( preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNeXt', depth=101, groups=64, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d'))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scale=[(1333, 640), (1333, 800)], resize_cfg=dict(type='Resize', keep_ratio=True)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 2x train_cfg = dict(max_epochs=24) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
import pytest import datasets import datasets.config # Import fixture modules as plugins pytest_plugins = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def pytest_collection_modifyitems(config, items): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["integration", "unit"]): continue item.add_marker(pytest.mark.unit) @pytest.fixture(autouse=True) def set_test_cache_config(tmp_path_factory, monkeypatch): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? test_hf_cache_home = tmp_path_factory.getbasetemp() / "cache" test_hf_datasets_cache = test_hf_cache_home / "datasets" test_hf_modules_cache = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE", str(test_hf_datasets_cache)) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE", str(test_hf_modules_cache)) test_downloaded_datasets_path = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH", str(test_downloaded_datasets_path)) test_extracted_datasets_path = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(test_extracted_datasets_path)) @pytest.fixture(autouse=True) def disable_implicit_token(monkeypatch): monkeypatch.setattr("huggingface_hub.constants.HF_HUB_DISABLE_IMPLICIT_TOKEN", True) @pytest.fixture(autouse=True, scope="session") def disable_tqdm_output(): datasets.disable_progress_bar() @pytest.fixture(autouse=True) def set_update_download_counts_to_false(monkeypatch): # don't take tests into account when counting downloads monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS", False) @pytest.fixture def set_sqlalchemy_silence_uber_warning(monkeypatch): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported try: monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING", True) except AttributeError: pass @pytest.fixture(autouse=True, scope="session") def zero_time_out_for_remote_code(): datasets.config.TIME_OUT_REMOTE_CODE = 0
import pytest import datasets import datasets.config # Import fixture modules as plugins pytest_plugins = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def pytest_collection_modifyitems(config, items): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["integration", "unit"]): continue item.add_marker(pytest.mark.unit) @pytest.fixture(autouse=True) def set_test_cache_config(tmp_path_factory, monkeypatch): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? test_hf_cache_home = tmp_path_factory.getbasetemp() / "cache" test_hf_datasets_cache = test_hf_cache_home / "datasets" test_hf_modules_cache = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE", str(test_hf_datasets_cache)) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE", str(test_hf_modules_cache)) test_downloaded_datasets_path = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH", str(test_downloaded_datasets_path)) test_extracted_datasets_path = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(test_extracted_datasets_path)) @pytest.fixture(autouse=True, scope="session") def disable_tqdm_output(): datasets.disable_progress_bar() @pytest.fixture(autouse=True) def set_update_download_counts_to_false(monkeypatch): # don't take tests into account when counting downloads monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS", False) @pytest.fixture def set_sqlalchemy_silence_uber_warning(monkeypatch): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported try: monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING", True) except AttributeError: pass @pytest.fixture(autouse=True, scope="session") def zero_time_out_for_remote_code(): datasets.config.TIME_OUT_REMOTE_CODE = 0
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import torch from diffusers import ( AutoencoderKL, ) from diffusers.utils.testing_utils import ( backend_empty_cache, enable_full_determinism, load_hf_numpy, numpy_cosine_similarity_distance, require_torch_accelerator, slow, torch_device, ) enable_full_determinism() @slow @require_torch_accelerator class AutoencoderKLSingleFileTests(unittest.TestCase): model_class = AutoencoderKL ckpt_path = ( "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" ) repo_id = "stabilityai/sd-vae-ft-mse" main_input_name = "sample" base_precision = 1e-2 def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def get_file_format(self, seed, shape): return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): dtype = torch.float16 if fp16 else torch.float32 image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) return image def test_single_file_inference_same_as_pretrained(self): model_1 = self.model_class.from_pretrained(self.repo_id).to(torch_device) model_2 = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id).to(torch_device) image = self.get_sd_image(33) generator = torch.Generator(torch_device) with torch.no_grad(): sample_1 = model_1(image, generator=generator.manual_seed(0)).sample sample_2 = model_2(image, generator=generator.manual_seed(0)).sample assert sample_1.shape == sample_2.shape output_slice_1 = sample_1.flatten().float().cpu() output_slice_2 = sample_2.flatten().float().cpu() assert numpy_cosine_similarity_distance(output_slice_1, output_slice_2) < 1e-4 def test_single_file_components(self): model = self.model_class.from_pretrained(self.repo_id) model_single_file = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert ( model.config[param_name] == param_value ), f"{param_name} differs between pretrained loading and single file loading" def test_single_file_arguments(self): model_default = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id) assert model_default.config.scaling_factor == 0.18215 assert model_default.config.sample_size == 256 assert model_default.dtype == torch.float32 scaling_factor = 2.0 sample_size = 512 torch_dtype = torch.float16 model = self.model_class.from_single_file( self.ckpt_path, config=self.repo_id, sample_size=sample_size, scaling_factor=scaling_factor, torch_dtype=torch_dtype, ) assert model.config.scaling_factor == scaling_factor assert model.config.sample_size == sample_size assert model.dtype == torch_dtype
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import torch from diffusers import ( AutoencoderKL, ) from diffusers.utils.testing_utils import ( enable_full_determinism, load_hf_numpy, numpy_cosine_similarity_distance, require_torch_gpu, slow, torch_device, ) enable_full_determinism() @slow @require_torch_gpu class AutoencoderKLSingleFileTests(unittest.TestCase): model_class = AutoencoderKL ckpt_path = ( "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" ) repo_id = "stabilityai/sd-vae-ft-mse" main_input_name = "sample" base_precision = 1e-2 def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_file_format(self, seed, shape): return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): dtype = torch.float16 if fp16 else torch.float32 image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) return image def test_single_file_inference_same_as_pretrained(self): model_1 = self.model_class.from_pretrained(self.repo_id).to(torch_device) model_2 = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id).to(torch_device) image = self.get_sd_image(33) generator = torch.Generator(torch_device) with torch.no_grad(): sample_1 = model_1(image, generator=generator.manual_seed(0)).sample sample_2 = model_2(image, generator=generator.manual_seed(0)).sample assert sample_1.shape == sample_2.shape output_slice_1 = sample_1.flatten().float().cpu() output_slice_2 = sample_2.flatten().float().cpu() assert numpy_cosine_similarity_distance(output_slice_1, output_slice_2) < 1e-4 def test_single_file_components(self): model = self.model_class.from_pretrained(self.repo_id) model_single_file = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert ( model.config[param_name] == param_value ), f"{param_name} differs between pretrained loading and single file loading" def test_single_file_arguments(self): model_default = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id) assert model_default.config.scaling_factor == 0.18215 assert model_default.config.sample_size == 256 assert model_default.dtype == torch.float32 scaling_factor = 2.0 sample_size = 512 torch_dtype = torch.float16 model = self.model_class.from_single_file( self.ckpt_path, config=self.repo_id, sample_size=sample_size, scaling_factor=scaling_factor, torch_dtype=torch_dtype, ) assert model.config.scaling_factor == scaling_factor assert model.config.sample_size == sample_size assert model.dtype == torch_dtype
from typing import Union, BinaryIO, TYPE_CHECKING from docarray.document.mixins.helper import _uri_to_blob, _get_file_context if TYPE_CHECKING: # pragma: no cover from docarray.typing import T class UriFileMixin: """Provide helper functions for :class:`Document` to dump content to a file.""" def save_uri_to_file(self: 'T', file: Union[str, BinaryIO]) -> 'T': """Save :attr:`.uri` into a file :param file: File or filename to which the data is saved. :return: itself after processed """ fp = _get_file_context(file) with fp: blob = _uri_to_blob(self.uri) fp.write(blob) return self
from typing import Union, BinaryIO, TYPE_CHECKING from docarray.document.mixins.helper import _uri_to_blob, _get_file_context if TYPE_CHECKING: from docarray.typing import T class UriFileMixin: """Provide helper functions for :class:`Document` to dump content to a file.""" def save_uri_to_file(self: 'T', file: Union[str, BinaryIO]) -> 'T': """Save :attr:`.uri` into a file :param file: File or filename to which the data is saved. :return: itself after processed """ fp = _get_file_context(file) with fp: blob = _uri_to_blob(self.uri) fp.write(blob) return self
from __future__ import annotations from typing import Any import torch from torch import nn from transformers import AutoConfig, AutoModelForMaskedLM, AutoTokenizer class MLMTransformer(nn.Module): """A minimal Transformer model that uses MLM (Masked Language Modeling). This model implements only the essential functionality needed for MLM, without inheriting from the base Transformer class. Args: model_name_or_path: Hugging Face models name max_seq_length: Truncate any inputs longer than max_seq_length model_args: Keyword arguments passed to the Hugging Face Transformers model tokenizer_args: Keyword arguments passed to the Hugging Face Transformers tokenizer config_args: Keyword arguments passed to the Hugging Face Transformers config cache_dir: Cache dir for Hugging Face Transformers to store/load models do_lower_case: If true, lowercases the input tokenizer_name_or_path: Name or path of the tokenizer """ def __init__( self, model_name_or_path: str, max_seq_length: int | None = None, model_args: dict[str, Any] | None = None, tokenizer_args: dict[str, Any] | None = None, config_args: dict[str, Any] | None = None, cache_dir: str | None = None, do_lower_case: bool = False, tokenizer_name_or_path: str | None = None, ) -> None: super().__init__() # Set default values for optional arguments if model_args is None: model_args = {} if tokenizer_args is None: tokenizer_args = {} if config_args is None: config_args = {} # Load config self.config = AutoConfig.from_pretrained(model_name_or_path, cache_dir=cache_dir, **config_args) # Load tokenizer if max_seq_length is not None and "model_max_length" not in tokenizer_args: tokenizer_args["model_max_length"] = max_seq_length self.tokenizer = AutoTokenizer.from_pretrained( (tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path), cache_dir=cache_dir, **tokenizer_args, ) # Set max_seq_length self.max_seq_length = max_seq_length if max_seq_length is None: if hasattr(self.config, "max_position_embeddings") and hasattr(self.tokenizer, "model_max_length"): self.max_seq_length = min(self.config.max_position_embeddings, self.tokenizer.model_max_length) # Load MLM model self.auto_model = AutoModelForMaskedLM.from_pretrained( model_name_or_path, config=self.config, cache_dir=cache_dir, **model_args ) def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: """Forward pass of the model. Args: features: Dictionary containing input features Returns: Dictionary containing token embeddings and MLM logits """ # Get MLM outputs mlm_outputs = self.auto_model(**features) # Get the MLM head logits (shape: batch_size, seq_length, vocab_size) mlm_logits = mlm_outputs.logits return {"mlm_logits": mlm_logits} def get_sentence_embedding_dimension(self) -> int: """Get the dimension of the token embeddings""" return self.auto_model.config.hidden_size def tokenize(self, texts: list[str], padding: bool = True) -> dict[str, torch.Tensor]: """Tokenize the input texts. Args: texts: List of texts to tokenize padding: Whether to pad the sequences Returns: Dictionary containing tokenized inputs """ # Check if the model is a DistilBERT model is_distilbert = "distilbert" in self.auto_model.config.model_type.lower() # For DistilBERT models, we need to exclude token_type_ids if is_distilbert: return self.tokenizer( texts, padding=padding, truncation=True, max_length=self.max_seq_length, return_tensors="pt", return_token_type_ids=False, # Exclude token_type_ids for DistilBERT ) else: return self.tokenizer( texts, padding=padding, truncation=True, max_length=self.max_seq_length, return_tensors="pt", )
from __future__ import annotations from typing import Any import torch from torch import nn from transformers import AutoConfig, AutoModelForMaskedLM, AutoTokenizer class MLMTransformer(nn.Module): """A minimal Transformer model that uses MLM (Masked Language Modeling). This model implements only the essential functionality needed for MLM, without inheriting from the base Transformer class. Args: model_name_or_path: Hugging Face models name max_seq_length: Truncate any inputs longer than max_seq_length model_args: Keyword arguments passed to the Hugging Face Transformers model tokenizer_args: Keyword arguments passed to the Hugging Face Transformers tokenizer config_args: Keyword arguments passed to the Hugging Face Transformers config cache_dir: Cache dir for Hugging Face Transformers to store/load models do_lower_case: If true, lowercases the input tokenizer_name_or_path: Name or path of the tokenizer """ def __init__( self, model_name_or_path: str, max_seq_length: int | None = None, model_args: dict[str, Any] | None = None, tokenizer_args: dict[str, Any] | None = None, config_args: dict[str, Any] | None = None, cache_dir: str | None = None, do_lower_case: bool = False, tokenizer_name_or_path: str | None = None, ) -> None: super().__init__() # Set default values for optional arguments if model_args is None: model_args = {} if tokenizer_args is None: tokenizer_args = {} if config_args is None: config_args = {} # Load config self.config = AutoConfig.from_pretrained(model_name_or_path, cache_dir=cache_dir, **config_args) # Load tokenizer if max_seq_length is not None and "model_max_length" not in tokenizer_args: tokenizer_args["model_max_length"] = max_seq_length self.tokenizer = AutoTokenizer.from_pretrained( (tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path), cache_dir=cache_dir, **tokenizer_args, ) # Set max_seq_length self.max_seq_length = max_seq_length if max_seq_length is None: if hasattr(self.config, "max_position_embeddings") and hasattr(self.tokenizer, "model_max_length"): self.max_seq_length = min(self.config.max_position_embeddings, self.tokenizer.model_max_length) # Load MLM model self.auto_model = AutoModelForMaskedLM.from_pretrained( model_name_or_path, config=self.config, cache_dir=cache_dir, **model_args ) def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: """Forward pass of the model. Args: features: Dictionary containing input features Returns: Dictionary containing token embeddings and MLM logits """ # Get MLM outputs mlm_outputs = self.auto_model(**features, output_hidden_states=True) # Get the MLM head logits (shape: batch_size, seq_length, vocab_size) mlm_logits = mlm_outputs.logits return {"mlm_logits": mlm_logits} def get_sentence_embedding_dimension(self) -> int: """Get the dimension of the token embeddings""" return self.auto_model.config.hidden_size def tokenize(self, texts: list[str], padding: bool = True) -> dict[str, torch.Tensor]: """Tokenize the input texts. Args: texts: List of texts to tokenize padding: Whether to pad the sequences Returns: Dictionary containing tokenized inputs """ # Check if the model is a DistilBERT model is_distilbert = "distilbert" in self.auto_model.config.model_type.lower() # For DistilBERT models, we need to exclude token_type_ids if is_distilbert: return self.tokenizer( texts, padding=padding, truncation=True, max_length=self.max_seq_length, return_tensors="pt", return_token_type_ids=False, # Exclude token_type_ids for DistilBERT ) else: return self.tokenizer( texts, padding=padding, truncation=True, max_length=self.max_seq_length, return_tensors="pt", )
from . import InputExample import gzip import os class NLIDataReader(object): """Reads in the Stanford NLI dataset and the MultiGenre NLI dataset""" def __init__(self, dataset_folder): self.dataset_folder = dataset_folder def get_examples(self, filename, max_examples=0): """ data_splits specified which data split to use (train, dev, test). Expects that self.dataset_folder contains the files s1.$data_split.gz, s2.$data_split.gz, labels.$data_split.gz, e.g., for the train split, s1.train.gz, s2.train.gz, labels.train.gz """ s1 = gzip.open(os.path.join(self.dataset_folder, "s1." + filename), mode="rt", encoding="utf-8").readlines() s2 = gzip.open(os.path.join(self.dataset_folder, "s2." + filename), mode="rt", encoding="utf-8").readlines() labels = gzip.open( os.path.join(self.dataset_folder, "labels." + filename), mode="rt", encoding="utf-8" ).readlines() examples = [] id = 0 for sentence_a, sentence_b, label in zip(s1, s2, labels): guid = "%s-%d" % (filename, id) id += 1 examples.append(InputExample(guid=guid, texts=[sentence_a, sentence_b], label=self.map_label(label))) if 0 < max_examples <= len(examples): break return examples @staticmethod def get_labels(): return {"contradiction": 0, "entailment": 1, "neutral": 2} def get_num_labels(self): return len(self.get_labels()) def map_label(self, label): return self.get_labels()[label.strip().lower()]
from . import InputExample import gzip import os class NLIDataReader(object): """ Reads in the Stanford NLI dataset and the MultiGenre NLI dataset """ def __init__(self, dataset_folder): self.dataset_folder = dataset_folder def get_examples(self, filename, max_examples=0): """ data_splits specified which data split to use (train, dev, test). Expects that self.dataset_folder contains the files s1.$data_split.gz, s2.$data_split.gz, labels.$data_split.gz, e.g., for the train split, s1.train.gz, s2.train.gz, labels.train.gz """ s1 = gzip.open(os.path.join(self.dataset_folder, "s1." + filename), mode="rt", encoding="utf-8").readlines() s2 = gzip.open(os.path.join(self.dataset_folder, "s2." + filename), mode="rt", encoding="utf-8").readlines() labels = gzip.open( os.path.join(self.dataset_folder, "labels." + filename), mode="rt", encoding="utf-8" ).readlines() examples = [] id = 0 for sentence_a, sentence_b, label in zip(s1, s2, labels): guid = "%s-%d" % (filename, id) id += 1 examples.append(InputExample(guid=guid, texts=[sentence_a, sentence_b], label=self.map_label(label))) if 0 < max_examples <= len(examples): break return examples @staticmethod def get_labels(): return {"contradiction": 0, "entailment": 1, "neutral": 2} def get_num_labels(self): return len(self.get_labels()) def map_label(self, label): return self.get_labels()[label.strip().lower()]
import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_document.io.json import orjson_dumps from docarray.typing import TorchEmbedding, TorchTensor def test_proto_tensor(): tensor = parse_obj_as(TorchTensor, torch.zeros(3, 224, 224)) tensor._to_node_protobuf() def test_json_schema(): schema_json_of(TorchTensor) def test_dump_json(): tensor = parse_obj_as(TorchTensor, torch.zeros(3, 224, 224)) orjson_dumps(tensor) def test_unwrap(): tensor = parse_obj_as(TorchTensor, torch.zeros(3, 224, 224)) ndarray = tensor.unwrap() assert not isinstance(ndarray, TorchTensor) assert isinstance(tensor, TorchTensor) assert isinstance(ndarray, torch.Tensor) assert tensor.data_ptr() == ndarray.data_ptr() assert (ndarray == torch.zeros(3, 224, 224)).all() def test_parametrized(): # correct shape, single axis tensor = parse_obj_as(TorchTensor[128], torch.zeros(128)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (128,) # correct shape, multiple axis tensor = parse_obj_as(TorchTensor[3, 224, 224], torch.zeros(3, 224, 224)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (3, 224, 224) # wrong but reshapable shape tensor = parse_obj_as(TorchTensor[3, 224, 224], torch.zeros(224, 3, 224)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (3, 224, 224) # wrong and not reshapable shape with pytest.raises(ValueError): parse_obj_as(TorchTensor[3, 224, 224], torch.zeros(224, 224)) @pytest.mark.parametrize('shape', [(3, 224, 224), (224, 224, 3)]) def test_parameterized_tensor_class_name(shape): tensor = parse_obj_as(TorchTensor[3, 224, 224], torch.zeros(shape)) assert tensor.__class__.__name__ == 'TorchTensor[3, 224, 224]' assert tensor.__class__.__qualname__ == 'TorchTensor[3, 224, 224]' assert f'{tensor[0][0][0]}' == 'TorchTensor[3, 224, 224](0.)' def test_torch_embedding(): # correct shape tensor = parse_obj_as(TorchEmbedding[128], torch.zeros(128)) assert isinstance(tensor, TorchEmbedding) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (128,) # wrong shape at data setting time with pytest.raises(ValueError): parse_obj_as(TorchEmbedding[128], torch.zeros(256)) # illegal shape at class creation time with pytest.raises(ValueError): parse_obj_as(TorchEmbedding[128, 128], torch.zeros(128, 128)) def test_parametrized_subclass(): c1 = TorchTensor[128] c2 = TorchTensor[128] assert issubclass(c1, c2) assert issubclass(c1, TorchTensor) assert issubclass(c1, torch.Tensor) assert not issubclass(c1, TorchTensor[256]) def test_parametrized_instance(): t = parse_obj_as(TorchTensor[128], torch.zeros(128)) assert isinstance(t, TorchTensor[128]) assert isinstance(t, TorchTensor) assert isinstance(t, torch.Tensor) assert not isinstance(t, TorchTensor[256]) def test_parametrized_equality(): t1 = parse_obj_as(TorchTensor[128], torch.zeros(128)) t2 = parse_obj_as(TorchTensor[128], torch.zeros(128)) t3 = parse_obj_as(TorchTensor[256], torch.zeros(256)) assert (t1 == t2).all() assert not t1 == t3 def test_parametrized_operations(): t1 = parse_obj_as(TorchTensor[128], torch.zeros(128)) t2 = parse_obj_as(TorchTensor[128], torch.zeros(128)) t_result = t1 + t2 assert isinstance(t_result, torch.Tensor) assert isinstance(t_result, TorchTensor) assert isinstance(t_result, TorchTensor[128])
import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_document.io.json import orjson_dumps from docarray.typing import TorchEmbedding, TorchTensor def test_proto_tensor(): tensor = parse_obj_as(TorchTensor, torch.zeros(3, 224, 224)) tensor._to_node_protobuf() def test_json_schema(): schema_json_of(TorchTensor) def test_dump_json(): tensor = parse_obj_as(TorchTensor, torch.zeros(3, 224, 224)) orjson_dumps(tensor) def test_unwrap(): tensor = parse_obj_as(TorchTensor, torch.zeros(3, 224, 224)) ndarray = tensor.unwrap() assert not isinstance(ndarray, TorchTensor) assert isinstance(tensor, TorchTensor) assert isinstance(ndarray, torch.Tensor) assert tensor.data_ptr() == ndarray.data_ptr() assert (ndarray == torch.zeros(3, 224, 224)).all() def test_parametrized(): # correct shape, single axis tensor = parse_obj_as(TorchTensor[128], torch.zeros(128)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (128,) # correct shape, multiple axis tensor = parse_obj_as(TorchTensor[3, 224, 224], torch.zeros(3, 224, 224)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (3, 224, 224) # wrong but reshapable shape tensor = parse_obj_as(TorchTensor[3, 224, 224], torch.zeros(224, 3, 224)) assert isinstance(tensor, TorchTensor) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (3, 224, 224) # wrong and not reshapable shape with pytest.raises(ValueError): parse_obj_as(TorchTensor[3, 224, 224], torch.zeros(224, 224)) @pytest.mark.parametrize('shape', [(3, 224, 224), (224, 224, 3)]) def test_parameterized_tensor_class_name(shape): tensor = parse_obj_as(TorchTensor[3, 224, 224], torch.zeros(shape)) assert tensor.__class__.__name__ == 'TorchTensor[3, 224, 224]' assert tensor.__class__.__qualname__ == 'TorchTensor[3, 224, 224]' assert f'{tensor[0][0][0]}' == 'TorchTensor[3, 224, 224](0.)' def test_torch_embedding(): # correct shape tensor = parse_obj_as(TorchEmbedding[128], torch.zeros(128)) assert isinstance(tensor, TorchEmbedding) assert isinstance(tensor, torch.Tensor) assert tensor.shape == (128,) # wrong shape at data setting time with pytest.raises(ValueError): parse_obj_as(TorchEmbedding[128], torch.zeros(256)) # illegal shape at class creation time with pytest.raises(ValueError): parse_obj_as(TorchEmbedding[128, 128], torch.zeros(128, 128))
_base_ = [ '../_base_/models/cascade-mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), roi_head=dict( bbox_head=[ dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], mask_head=dict(num_classes=1203)), test_cfg=dict( rcnn=dict( score_thr=0.0001, # LVIS allows up to 300 max_per_img=300))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] dataset_type = 'LVISV1Dataset' data_root = 'data/lvis_v1/' train_dataloader = dict( dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/lvis_v1_train.json', data_prefix=dict(img=''), pipeline=train_pipeline)) val_dataloader = dict( dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/lvis_v1_val.json', data_prefix=dict(img=''))) test_dataloader = val_dataloader val_evaluator = dict( type='LVISMetric', ann_file=data_root + 'annotations/lvis_v1_val.json', metric=['bbox', 'segm']) test_evaluator = val_evaluator train_cfg = dict(val_interval=24)
_base_ = [ '../_base_/models/cascade-mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), roi_head=dict( bbox_head=[ dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1203, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], mask_head=dict(num_classes=1203)), test_cfg=dict( rcnn=dict( score_thr=0.0001, # LVIS allows up to 300 max_per_img=300))) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] dataset_type = 'LVISV1Dataset' data_root = 'data/lvis_v1/' train_dataloader = dict( dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/lvis_v1_train.json', data_prefix=dict(img=''), pipeline=train_pipeline)) val_dataloader = dict( dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/lvis_v1_val.json', data_prefix=dict(img=''))) test_dataloader = val_dataloader val_evaluator = dict( type='LVISMetric', ann_file=data_root + 'annotations/lvis_v1_val.json', metric=['bbox', 'segm']) test_evaluator = val_evaluator train_cfg = dict(val_interval=24)
import types from typing_extensions import TYPE_CHECKING from docarray.typing.tensor.image.image_ndarray import ImageNdArray from docarray.typing.tensor.image.image_tensor import ImageTensor from docarray.utils._internal.misc import ( _get_path_from_docarray_root_level, import_library, ) if TYPE_CHECKING: from docarray.typing.tensor.image.image_tensorflow_tensor import ( # noqa ImageTensorFlowTensor, ) from docarray.typing.tensor.image.image_torch_tensor import ImageTorchTensor # noqa __all__ = ['ImageNdArray', 'ImageTensor'] def __getattr__(name: str): lib: types.ModuleType if name == 'ImageTorchTensor': import_library('torch', raise_error=True) import docarray.typing.tensor.image.image_torch_tensor as lib elif name == 'ImageTensorFlowTensor': import_library('tensorflow', raise_error=True) import docarray.typing.tensor.image.image_tensorflow_tensor as lib else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' ) tensor_cls = getattr(lib, name) if name not in __all__: __all__.append(name) return tensor_cls
from docarray.typing.tensor.image.image_ndarray import ImageNdArray from docarray.typing.tensor.image.image_tensor import ImageTensor __all__ = ['ImageNdArray', 'ImageTensor'] from docarray.utils._internal.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.image.image_torch_tensor import ImageTorchTensor # noqa __all__.extend(['ImageTorchTensor']) tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.image.image_tensorflow_tensor import ( # noqa ImageTensorFlowTensor, ) __all__.extend(['ImageTensorFlowTensor'])
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' input_size = 300 train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean={{_base_.model.data_preprocessor.mean}}, to_rgb={{_base_.model.data_preprocessor.bgr_to_rgb}}, ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=8, num_workers=2, batch_sampler=None, dataset=dict( _delete_=True, type='RepeatDataset', times=5, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=8, num_workers=2, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4)) custom_hooks = [ dict(type='NumClassCheckHook'), dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW') ] # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/models/ssd300.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' input_size = 300 train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=[123.675, 116.28, 103.53], to_rgb=True, ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict(type='RandomFlip', prob=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=8, num_workers=2, batch_sampler=None, dataset=dict( _delete_=True, type='RepeatDataset', times=5, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=8, num_workers=2, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4)) custom_hooks = [ dict(type='NumClassCheckHook'), dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW') ] # TODO support auto_scale_lr # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) # auto_scale_lr = dict(base_batch_size=64)
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import mmengine from mmengine.utils import digit_version from .version import __version__, version_info mmcv_minimum_version = '2.0.0rc4' mmcv_maximum_version = '2.2.0' mmcv_version = digit_version(mmcv.__version__) mmengine_minimum_version = '0.7.1' mmengine_maximum_version = '1.0.0' mmengine_version = digit_version(mmengine.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version < digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <{mmcv_maximum_version}.' assert (mmengine_version >= digit_version(mmengine_minimum_version) and mmengine_version < digit_version(mmengine_maximum_version)), \ f'MMEngine=={mmengine.__version__} is used but incompatible. ' \ f'Please install mmengine>={mmengine_minimum_version}, ' \ f'<{mmengine_maximum_version}.' __all__ = ['__version__', 'version_info', 'digit_version']
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import mmengine from mmengine.utils import digit_version from .version import __version__, version_info mmcv_minimum_version = '2.0.0rc4' mmcv_maximum_version = '2.1.0' mmcv_version = digit_version(mmcv.__version__) mmengine_minimum_version = '0.7.1' mmengine_maximum_version = '1.0.0' mmengine_version = digit_version(mmengine.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version < digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <{mmcv_maximum_version}.' assert (mmengine_version >= digit_version(mmengine_minimum_version) and mmengine_version < digit_version(mmengine_maximum_version)), \ f'MMEngine=={mmengine.__version__} is used but incompatible. ' \ f'Please install mmengine>={mmengine_minimum_version}, ' \ f'<{mmengine_maximum_version}.' __all__ = ['__version__', 'version_info', 'digit_version']
_base_ = ['./mask2former_swin-b-p4-w12-384_8xb2-lsj-50e_coco-panoptic.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth' # noqa model = dict( backbone=dict(init_cfg=dict(type='Pretrained', checkpoint=pretrained)))
_base_ = ['./mask2former_swin-b-p4-w12-384_lsj_8x2_50e_coco-panoptic.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth' # noqa model = dict( backbone=dict(init_cfg=dict(type='Pretrained', checkpoint=pretrained)))
from jina.serve.runtimes.gateway.http.fastapi import FastAPIBaseGateway # keep import here for backwards compatibility from jina.serve.runtimes.gateway.gateway import BaseGateway from jina.serve.runtimes.servers.http import HTTPServer __all__ = ['HTTPGateway'] class HTTPGateway(HTTPServer, BaseGateway): """ :class:`HTTPGateway` is a FastAPIBaseGateway that uses the default FastAPI app """ pass
from jina.serve.runtimes.gateway.http.fastapi import FastAPIBaseGateway __all__ = ['HTTPGateway'] class HTTPGateway(FastAPIBaseGateway): """ :class:`HTTPGateway` is a FastAPIBaseGateway that uses the default FastAPI app """ @property def app(self): """Get the default base API app for HTTPGateway :return: Return a FastAPI app for the default HTTPGateway """ return self._request_handler._http_fastapi_default_app(title=self.title, description=self.description, no_crud_endpoints=self.no_crud_endpoints, no_debug_endpoints=self.no_debug_endpoints, expose_endpoints=self.expose_endpoints, expose_graphql_endpoint=self.expose_graphql_endpoint, tracing=self.tracing, tracer_provider=self.tracer_provider, cors=self.cors)
"""Argparser module for WorkerRuntime""" from jina.parsers.helper import KVAppendAction, add_arg_group from jina.parsers.orchestrate.runtimes.runtime import mixin_base_runtime_parser def mixin_worker_runtime_parser(parser): """Mixing in arguments required by :class:`WorkerRuntime` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='WorkerRuntime') from jina import __default_executor__ gp.add_argument( '--uses', type=str, default=__default_executor__, help=''' The config of the executor, it could be one of the followings: * the string literal of an Executor class name * an Executor YAML file (.yml, .yaml, .jaml) * a Jina Hub Executor (must start with `jinahub://` or `jinahub+docker://`) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface ''', ) gp.add_argument( '--uses-with', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `with` configuration in `uses` ''', ) gp.add_argument( '--uses-metas', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `metas` configuration in `uses` ''', ) gp.add_argument( '--uses-requests', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `requests` configuration in `uses` ''', ) gp.add_argument( '--py-modules', type=str, nargs='*', metavar='PATH', help=''' The customized python modules need to be imported before loading the executor Note that the recommended way is to only import a single module - a simple python file, if your executor can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. For more details, please see the `Executor cookbook <https://docs.jina.ai/fundamentals/executor/executor-files/>`__ ''', ) gp.add_argument( '--output-array-type', type=str, default=None, help=''' The type of array `tensor` and `embedding` will be serialized to. Supports the same types as `docarray.to_protobuf(.., ndarray_type=...)`, which can be found `here <https://docarray.jina.ai/fundamentals/document/serialization/#from-to-protobuf>`. Defaults to retaining whatever type is returned by the Executor. ''', ) gp.add_argument( '--exit-on-exceptions', type=str, default=[], nargs='*', help='List of exceptions that will cause the Executor to shut down.', ) mixin_base_runtime_parser(gp)
"""Argparser module for WorkerRuntime""" from jina import __default_host__, helper from jina.enums import PollingType from jina.parsers.helper import KVAppendAction, add_arg_group from jina.parsers.orchestrate.runtimes.runtime import mixin_base_runtime_parser def mixin_worker_runtime_parser(parser): """Mixing in arguments required by :class:`WorkerRuntime` into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='WorkerRuntime') from jina import __default_executor__ gp.add_argument( '--uses', type=str, default=__default_executor__, help=''' The config of the executor, it could be one of the followings: * the string literal of an Executor class name * an Executor YAML file (.yml, .yaml, .jaml) * a Jina Hub Executor (must start with `jinahub://` or `jinahub+docker://`) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface ''', ) gp.add_argument( '--uses-with', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `with` configuration in `uses` ''', ) gp.add_argument( '--uses-metas', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `metas` configuration in `uses` ''', ) gp.add_argument( '--uses-requests', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help=''' Dictionary of keyword arguments that will override the `requests` configuration in `uses` ''', ) gp.add_argument( '--py-modules', type=str, nargs='*', metavar='PATH', help=''' The customized python modules need to be imported before loading the executor Note that the recommended way is to only import a single module - a simple python file, if your executor can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. For more details, please see the `Executor cookbook <https://docs.jina.ai/fundamentals/executor/executor-files/>`__ ''', ) gp.add_argument( '--output-array-type', type=str, default=None, help=''' The type of array `tensor` and `embedding` will be serialized to. Supports the same types as `docarray.to_protobuf(.., ndarray_type=...)`, which can be found `here <https://docarray.jina.ai/fundamentals/document/serialization/#from-to-protobuf>`. Defaults to retaining whatever type is returned by the Executor. ''', ) gp.add_argument( '--exit-on-exceptions', type=str, default=[], nargs='*', help='List of exceptions that will cause the Executor to shut down.', ) mixin_base_runtime_parser(gp)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import O365SendEvent from langchain_community.tools.office365.send_event import SendEventSchema # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "SendEventSchema": "langchain_community.tools.office365.send_event", "O365SendEvent": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "O365SendEvent", "SendEventSchema", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import O365SendEvent from langchain_community.tools.office365.send_event import SendEventSchema # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "SendEventSchema": "langchain_community.tools.office365.send_event", "O365SendEvent": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "SendEventSchema", "O365SendEvent", ]
_base_ = './yolox_s_8x8_300e_coco.py' # model settings model = dict( data_preprocessor=dict(batch_augments=[ dict( type='BatchSyncRandomResize', random_size_range=(320, 640), size_divisor=32, interval=10) ]), backbone=dict(deepen_factor=0.33, widen_factor=0.375), neck=dict(in_channels=[96, 192, 384], out_channels=96), bbox_head=dict(in_channels=96, feat_channels=96)) img_scale = (640, 640) # height, width # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='Mosaic', img_scale=img_scale, pad_val=114.0), dict( type='RandomAffine', scaling_ratio_range=(0.5, 1.5), border=(-img_scale[0] // 2, -img_scale[1] // 2)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), # Resize and Pad are for the last 15 epochs when Mosaic and # RandomAffine are closed by YOLOXModeSwitchHook. dict(type='Resize', scale=img_scale, keep_ratio=True), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(416, 416), keep_ratio=True), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
_base_ = './yolox_s_8x8_300e_coco.py' # model settings model = dict( data_preprocessor=dict(batch_augments=[ dict( type='BatchSyncRandomResize', random_size_range=(320, 640), size_divisor=32, interval=10) ]), backbone=dict(deepen_factor=0.33, widen_factor=0.375), neck=dict(in_channels=[96, 192, 384], out_channels=96), bbox_head=dict(in_channels=96, feat_channels=96)) img_scale = (640, 640) # height, width # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='Mosaic', img_scale=img_scale, pad_val=114.0), dict( type='RandomAffine', scaling_ratio_range=(0.5, 1.5), border=(-img_scale[0] // 2, -img_scale[1] // 2)), dict(type='YOLOXHSVRandomAug'), dict(type='RandomFlip', prob=0.5), # Resize and Pad are for the last 15 epochs when Mosaic and # RandomAffine are closed by YOLOXModeSwitchHook. dict(type='Resize', scale=img_scale, keep_ratio=True), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(416, 416), keep_ratio=True), dict( type='Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) # auto_scale_lr = dict(base_batch_size=64)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine import Config from mmengine.structures import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import YOLOFHead class TestYOLOFHead(TestCase): def test_yolof_head_loss(self): """Tests yolof head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = Config( dict( assigner=dict( type='UniformAssigner', pos_ignore_thr=0.15, neg_ignore_thr=0.7), allowed_border=-1, pos_weight=-1, debug=False)) yolof_head = YOLOFHead( num_classes=4, in_channels=1, feat_channels=1, reg_decoded_bbox=True, train_cfg=train_cfg, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[1, 2, 4, 8, 16], strides=[32]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1., 1., 1., 1.], add_ctr_clamp=True, ctr_clamp=32), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.0)) feat = [torch.rand(1, 1, s // 32, s // 32)] cls_scores, bbox_preds = yolof_head.forward(feat) # Test that empty ground truth encourages the network to predict # background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = yolof_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'] empty_box_loss = empty_gt_losses['loss_bbox'] self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = yolof_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = one_gt_losses['loss_cls'] onegt_box_loss = one_gt_losses['loss_bbox'] self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero')
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine import Config from mmengine.data import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import YOLOFHead class TestYOLOFHead(TestCase): def test_yolof_head_loss(self): """Tests yolof head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = Config( dict( assigner=dict( type='UniformAssigner', pos_ignore_thr=0.15, neg_ignore_thr=0.7), allowed_border=-1, pos_weight=-1, debug=False)) yolof_head = YOLOFHead( num_classes=4, in_channels=1, feat_channels=1, reg_decoded_bbox=True, train_cfg=train_cfg, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[1, 2, 4, 8, 16], strides=[32]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1., 1., 1., 1.], add_ctr_clamp=True, ctr_clamp=32), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.0)) feat = [torch.rand(1, 1, s // 32, s // 32)] cls_scores, bbox_preds = yolof_head.forward(feat) # Test that empty ground truth encourages the network to predict # background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = yolof_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'] empty_box_loss = empty_gt_losses['loss_bbox'] self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = yolof_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = one_gt_losses['loss_cls'] onegt_box_loss = one_gt_losses['loss_bbox'] self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero')
# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest from diffusers import ( FluxTransformer2DModel, ) from diffusers.utils.testing_utils import ( backend_empty_cache, enable_full_determinism, require_torch_accelerator, torch_device, ) enable_full_determinism() @require_torch_accelerator class FluxTransformer2DModelSingleFileTests(unittest.TestCase): model_class = FluxTransformer2DModel ckpt_path = "https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/flux1-dev.safetensors" alternate_keys_ckpt_paths = ["https://huggingface.co/Comfy-Org/flux1-dev/blob/main/flux1-dev-fp8.safetensors"] repo_id = "black-forest-labs/FLUX.1-dev" def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def test_single_file_components(self): model = self.model_class.from_pretrained(self.repo_id, subfolder="transformer") model_single_file = self.model_class.from_single_file(self.ckpt_path) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert model.config[param_name] == param_value, ( f"{param_name} differs between single file loading and pretrained loading" ) def test_checkpoint_loading(self): for ckpt_path in self.alternate_keys_ckpt_paths: backend_empty_cache(torch_device) model = self.model_class.from_single_file(ckpt_path) del model gc.collect() backend_empty_cache(torch_device)
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest from diffusers import ( FluxTransformer2DModel, ) from diffusers.utils.testing_utils import ( backend_empty_cache, enable_full_determinism, require_torch_accelerator, torch_device, ) enable_full_determinism() @require_torch_accelerator class FluxTransformer2DModelSingleFileTests(unittest.TestCase): model_class = FluxTransformer2DModel ckpt_path = "https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/flux1-dev.safetensors" alternate_keys_ckpt_paths = ["https://huggingface.co/Comfy-Org/flux1-dev/blob/main/flux1-dev-fp8.safetensors"] repo_id = "black-forest-labs/FLUX.1-dev" def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def test_single_file_components(self): model = self.model_class.from_pretrained(self.repo_id, subfolder="transformer") model_single_file = self.model_class.from_single_file(self.ckpt_path) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert model.config[param_name] == param_value, ( f"{param_name} differs between single file loading and pretrained loading" ) def test_checkpoint_loading(self): for ckpt_path in self.alternate_keys_ckpt_paths: backend_empty_cache(torch_device) model = self.model_class.from_single_file(ckpt_path) del model gc.collect() backend_empty_cache(torch_device)
from enum import Enum from typing import Any, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from langchain_core.stores import BaseStore, ByteStore from langchain_core.vectorstores import VectorStore from pydantic import Field, model_validator from langchain.storage._lc_store import create_kv_docstore class SearchType(str, Enum): """Enumerator of the types of search to perform.""" similarity = "similarity" """Similarity search.""" similarity_score_threshold = "similarity_score_threshold" """Similarity search with a score threshold.""" mmr = "mmr" """Maximal Marginal Relevance reranking of similarity search.""" class MultiVectorRetriever(BaseRetriever): """Retrieve from a set of multiple embeddings for the same document.""" vectorstore: VectorStore """The underlying vectorstore to use to store small chunks and their embedding vectors""" byte_store: Optional[ByteStore] = None """The lower-level backing storage layer for the parent documents""" docstore: BaseStore[str, Document] """The storage interface for the parent documents""" id_key: str = "doc_id" search_kwargs: dict = Field(default_factory=dict) """Keyword arguments to pass to the search function.""" search_type: SearchType = SearchType.similarity """Type of search to perform (similarity / mmr)""" @model_validator(mode="before") @classmethod def shim_docstore(cls, values: dict) -> Any: byte_store = values.get("byte_store") docstore = values.get("docstore") if byte_store is not None: docstore = create_kv_docstore(byte_store) elif docstore is None: msg = "You must pass a `byte_store` parameter." raise ValueError(msg) values["docstore"] = docstore return values def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, ) -> list[Document]: """Get documents relevant to a query. Args: query: String to find relevant documents for run_manager: The callbacks handler to use Returns: List of relevant documents """ if self.search_type == SearchType.mmr: sub_docs = self.vectorstore.max_marginal_relevance_search( query, **self.search_kwargs, ) elif self.search_type == SearchType.similarity_score_threshold: sub_docs_and_similarities = ( self.vectorstore.similarity_search_with_relevance_scores( query, **self.search_kwargs, ) ) sub_docs = [sub_doc for sub_doc, _ in sub_docs_and_similarities] else: sub_docs = self.vectorstore.similarity_search(query, **self.search_kwargs) # We do this to maintain the order of the ids that are returned ids = [] for d in sub_docs: if self.id_key in d.metadata and d.metadata[self.id_key] not in ids: ids.append(d.metadata[self.id_key]) docs = self.docstore.mget(ids) return [d for d in docs if d is not None] async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, ) -> list[Document]: """Asynchronously get documents relevant to a query. Args: query: String to find relevant documents for run_manager: The callbacks handler to use Returns: List of relevant documents """ if self.search_type == SearchType.mmr: sub_docs = await self.vectorstore.amax_marginal_relevance_search( query, **self.search_kwargs, ) elif self.search_type == SearchType.similarity_score_threshold: sub_docs_and_similarities = ( await self.vectorstore.asimilarity_search_with_relevance_scores( query, **self.search_kwargs, ) ) sub_docs = [sub_doc for sub_doc, _ in sub_docs_and_similarities] else: sub_docs = await self.vectorstore.asimilarity_search( query, **self.search_kwargs, ) # We do this to maintain the order of the ids that are returned ids = [] for d in sub_docs: if self.id_key in d.metadata and d.metadata[self.id_key] not in ids: ids.append(d.metadata[self.id_key]) docs = await self.docstore.amget(ids) return [d for d in docs if d is not None]
from enum import Enum from typing import Any, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from langchain_core.stores import BaseStore, ByteStore from langchain_core.vectorstores import VectorStore from pydantic import Field, model_validator from langchain.storage._lc_store import create_kv_docstore class SearchType(str, Enum): """Enumerator of the types of search to perform.""" similarity = "similarity" """Similarity search.""" similarity_score_threshold = "similarity_score_threshold" """Similarity search with a score threshold.""" mmr = "mmr" """Maximal Marginal Relevance reranking of similarity search.""" class MultiVectorRetriever(BaseRetriever): """Retrieve from a set of multiple embeddings for the same document.""" vectorstore: VectorStore """The underlying vectorstore to use to store small chunks and their embedding vectors""" byte_store: Optional[ByteStore] = None """The lower-level backing storage layer for the parent documents""" docstore: BaseStore[str, Document] """The storage interface for the parent documents""" id_key: str = "doc_id" search_kwargs: dict = Field(default_factory=dict) """Keyword arguments to pass to the search function.""" search_type: SearchType = SearchType.similarity """Type of search to perform (similarity / mmr)""" @model_validator(mode="before") @classmethod def shim_docstore(cls, values: dict) -> Any: byte_store = values.get("byte_store") docstore = values.get("docstore") if byte_store is not None: docstore = create_kv_docstore(byte_store) elif docstore is None: msg = "You must pass a `byte_store` parameter." raise Exception(msg) values["docstore"] = docstore return values def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, ) -> list[Document]: """Get documents relevant to a query. Args: query: String to find relevant documents for run_manager: The callbacks handler to use Returns: List of relevant documents """ if self.search_type == SearchType.mmr: sub_docs = self.vectorstore.max_marginal_relevance_search( query, **self.search_kwargs, ) elif self.search_type == SearchType.similarity_score_threshold: sub_docs_and_similarities = ( self.vectorstore.similarity_search_with_relevance_scores( query, **self.search_kwargs, ) ) sub_docs = [sub_doc for sub_doc, _ in sub_docs_and_similarities] else: sub_docs = self.vectorstore.similarity_search(query, **self.search_kwargs) # We do this to maintain the order of the ids that are returned ids = [] for d in sub_docs: if self.id_key in d.metadata and d.metadata[self.id_key] not in ids: ids.append(d.metadata[self.id_key]) docs = self.docstore.mget(ids) return [d for d in docs if d is not None] async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, ) -> list[Document]: """Asynchronously get documents relevant to a query. Args: query: String to find relevant documents for run_manager: The callbacks handler to use Returns: List of relevant documents """ if self.search_type == SearchType.mmr: sub_docs = await self.vectorstore.amax_marginal_relevance_search( query, **self.search_kwargs, ) elif self.search_type == SearchType.similarity_score_threshold: sub_docs_and_similarities = ( await self.vectorstore.asimilarity_search_with_relevance_scores( query, **self.search_kwargs, ) ) sub_docs = [sub_doc for sub_doc, _ in sub_docs_and_similarities] else: sub_docs = await self.vectorstore.asimilarity_search( query, **self.search_kwargs, ) # We do this to maintain the order of the ids that are returned ids = [] for d in sub_docs: if self.id_key in d.metadata and d.metadata[self.id_key] not in ids: ids.append(d.metadata[self.id_key]) docs = await self.docstore.amget(ids) return [d for d in docs if d is not None]
from typing import Union, Iterable from docarray.array.storage.base.seqlike import BaseSequenceLikeMixin from docarray.array.storage.registry import _REGISTRY from docarray import Document class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods for DocumentArray with weaviate as storage""" def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self._client.get_meta() == other._client.get_meta() and self._config == other._config ) def __len__(self): """Return the length of :class:`DocumentArray` that uses weaviate as storage :return: the length of this :class:`DocumentArrayWeaviate` object """ cls_data = ( self._client.query.aggregate(self._class_name) .with_meta_count() .do() .get('data', {}) .get('Aggregate', {}) .get(self._class_name, []) ) if not cls_data: return 0 return cls_data[0]['meta']['count'] def __contains__(self, x: Union[str, 'Document']): """Check if ``x`` is contained in this :class:`DocumentArray` with weaviate storage :param x: the id of the document to check or the document object itself :return: True if ``x`` is contained in self """ if isinstance(x, str): return self._client.data_object.exists(self._map_id(x)) elif isinstance(x, Document): return self._client.data_object.exists(self._map_id(x.id)) else: return False def __repr__(self): """Return the string representation of :class:`DocumentArrayWeaviate` object :return: string representation of this object """ return f'<{self.__class__.__name__} (length={len(self)}) at {id(self)}>' def _extend(self, values: Iterable['Document'], **kwargs) -> None: """Extends the array with the given values :param values: Documents to be added """ with self._client.batch(batch_size=50) as _b: for d in values: _b.add_data_object(**self._doc2weaviate_create_payload(d)) self._offset2ids.append(d.id)
from typing import Union, Iterable from docarray.array.storage.base.seqlike import BaseSequenceLikeMixin from docarray.array.storage.registry import _REGISTRY from docarray import Document class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods for DocumentArray with weaviate as storage""" def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self._client.get_meta() == other._client.get_meta() and self._config == other._config ) def __len__(self): """Return the length of :class:`DocumentArray` that uses weaviate as storage :return: the length of this :class:`DocumentArrayWeaviate` object """ cls_data = ( self._client.query.aggregate(self._class_name) .with_meta_count() .do() .get('data', {}) .get('Aggregate', {}) .get(self._class_name, []) ) if not cls_data: return 0 return cls_data[0]['meta']['count'] def __contains__(self, x: Union[str, 'Document']): """Check if ``x`` is contained in this :class:`DocumentArray` with weaviate storage :param x: the id of the document to check or the document object itself :return: True if ``x`` is contained in self """ if isinstance(x, str): return self._client.data_object.exists(self._map_id(x)) elif isinstance(x, Document): return self._client.data_object.exists(self._map_id(x.id)) else: return False def __del__(self): """Delete this :class:`DocumentArrayWeaviate` object""" super().__del__() if ( not self._persist and len(_REGISTRY[self.__class__.__name__][self._class_name]) == 1 ): self._client.schema.delete_class(self._class_name) self._client.schema.delete_class(self._meta_name) _REGISTRY[self.__class__.__name__][self._class_name].remove(self) def __repr__(self): """Return the string representation of :class:`DocumentArrayWeaviate` object :return: string representation of this object """ return f'<{self.__class__.__name__} (length={len(self)}) at {id(self)}>' def _extend(self, values: Iterable['Document'], **kwargs) -> None: """Extends the array with the given values :param values: Documents to be added """ with self._client.batch(batch_size=50) as _b: for d in values: _b.add_data_object(**self._doc2weaviate_create_payload(d)) self._offset2ids.append(d.id)
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import subprocess import librosa import pytest from executor.vggish import vggish_input from jina import Document, DocumentArray, Flow cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_flow_from_yml(): doc = DocumentArray([Document()]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: resp = f.post(on='test', inputs=doc, return_results=True) assert resp is not None def test_embedding_exists(): x_audio, sample_rate = librosa.load( os.path.join(cur_dir, '../test_data/sample.wav') ) log_mel_examples = vggish_input.waveform_to_examples(x_audio, sample_rate) doc = DocumentArray([Document(blob=log_mel_examples)]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: responses = f.post(on='index', inputs=doc, return_results=True) assert responses[0].docs[0].embedding is not None @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( ['jina', 'executor', f'--uses=docker://{build_docker_image}'], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:"/GPU:0"', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import subprocess import librosa import pytest from jina import Document, DocumentArray, Flow from ...vggish import vggish_input cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_flow_from_yml(): doc = DocumentArray([Document()]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: resp = f.post(on='test', inputs=doc, return_results=True) assert resp is not None def test_embedding_exists(): x_audio, sample_rate = librosa.load( os.path.join(cur_dir, '../test_data/sample.wav') ) log_mel_examples = vggish_input.waveform_to_examples(x_audio, sample_rate) doc = DocumentArray([Document(blob=log_mel_examples)]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: responses = f.post(on='index', inputs=doc, return_results=True) assert responses[0].docs[0].embedding is not None @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( ['jina', 'executor', f'--uses=docker://{build_docker_image}'], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'pea', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:"/GPU:0"', ], timeout=30, check=True, )
import pytest @pytest.mark.compile def test_placeholder() -> None: """Used for compiling integration tests without running any real tests."""
import pytest @pytest.mark.compile def test_placeholder() -> None: """Used for compiling integration tests without running any real tests.""" pass
import warnings from typing import Optional, Union, TYPE_CHECKING, Callable import numpy as np from docarray.score import NamedScore if TYPE_CHECKING: from docarray import Document, DocumentArray class EvaluationMixin: """A mixin that provides ranking evaluation functionality to DocumentArrayLike objects""" def evaluate( self, other: 'DocumentArray', metric: Union[str, Callable[..., float]], hash_fn: Optional[Callable[['Document'], str]] = None, metric_name: Optional[str] = None, strict: bool = True, **kwargs, ) -> Optional[float]: """Compute ranking evaluation metrics for a given `DocumentArray` when compared with a groundtruth. This implementation expects to provide a `groundtruth` DocumentArray that is structurally identical to `self`. It is based on comparing the `matches` of `documents` inside the `DocumentArray. This method will fill the `evaluations` field of Documents inside this `DocumentArray` and will return the average of the computations :param other: The groundtruth DocumentArray` that the `DocumentArray` compares to. :param metric: The name of the metric, or multiple metrics to be computed :param hash_fn: The function used for identifying the uniqueness of Documents. If not given, then ``Document.id`` is used. :param metric_name: If provided, the results of the metrics computation will be stored in the `evaluations` field of each Document. If not provided, the name will be computed based on the metrics name. :param strict: If set, then left and right sides are required to be fully aligned: on the length, and on the semantic of length. These are preventing you to evaluate on irrelevant matches accidentally. :param kwargs: Additional keyword arguments to be passed to `metric_fn` :return: The average evaluation computed or a list of them if multiple metrics are required """ if strict: self._check_length(len(other)) if hash_fn is None: hash_fn = lambda d: d.id if callable(metric): metric_fn = metric elif isinstance(metric, str): from docarray.math import evaluation metric_fn = getattr(evaluation, metric) metric_name = metric_name or metric_fn.__name__ results = [] caller_max_rel = kwargs.pop('max_rel', None) for d, gd in zip(self, other): max_rel = caller_max_rel or len(gd.matches) if strict and hash_fn(d) != hash_fn(gd): raise ValueError( f'Document {d} from the left-hand side and ' f'{gd} from the right-hand are not hashed to the same value. ' f'This means your left and right DocumentArray may not be aligned; or it means your ' f'`hash_fn` is badly designed.' ) if not d.matches or not gd.matches: raise ValueError( f'Document {d!r} or {gd!r} has no matches, please check your Document' ) targets = gd.matches[:max_rel] desired = {hash_fn(m) for m in targets} if len(desired) != len(targets): warnings.warn( f'{hash_fn!r} may not be valid, as it maps multiple Documents into the same hash. ' f'Evaluation results may be affected' ) binary_relevance = [1 if hash_fn(m) in desired else 0 for m in d.matches] r = metric_fn(binary_relevance, max_rel=max_rel, **kwargs) d.evaluations[metric_name] = NamedScore( value=r, op_name=str(metric_fn), ref_id=d.id ) results.append(r) if results: return float(np.mean(results))
import warnings from typing import Optional, Union, TYPE_CHECKING, Callable import numpy as np from ...score import NamedScore if TYPE_CHECKING: from ... import Document, DocumentArray class EvaluationMixin: """A mixin that provides ranking evaluation functionality to DocumentArrayLike objects""" def evaluate( self, other: 'DocumentArray', metric: Union[str, Callable[..., float]], hash_fn: Optional[Callable[['Document'], str]] = None, metric_name: Optional[str] = None, strict: bool = True, **kwargs, ) -> Optional[float]: """Compute ranking evaluation metrics for a given `DocumentArray` when compared with a groundtruth. This implementation expects to provide a `groundtruth` DocumentArray that is structurally identical to `self`. It is based on comparing the `matches` of `documents` inside the `DocumentArray. This method will fill the `evaluations` field of Documents inside this `DocumentArray` and will return the average of the computations :param other: The groundtruth DocumentArray` that the `DocumentArray` compares to. :param metric: The name of the metric, or multiple metrics to be computed :param hash_fn: The function used for identifying the uniqueness of Documents. If not given, then ``Document.id`` is used. :param metric_name: If provided, the results of the metrics computation will be stored in the `evaluations` field of each Document. If not provided, the name will be computed based on the metrics name. :param strict: If set, then left and right sides are required to be fully aligned: on the length, and on the semantic of length. These are preventing you to evaluate on irrelevant matches accidentally. :param kwargs: Additional keyword arguments to be passed to `metric_fn` :return: The average evaluation computed or a list of them if multiple metrics are required """ if strict: self._check_length(len(other)) if hash_fn is None: hash_fn = lambda d: d.id if callable(metric): metric_fn = metric elif isinstance(metric, str): from ...math import evaluation metric_fn = getattr(evaluation, metric) metric_name = metric_name or metric_fn.__name__ results = [] caller_max_rel = kwargs.pop('max_rel', None) for d, gd in zip(self, other): max_rel = caller_max_rel or len(gd.matches) if strict and hash_fn(d) != hash_fn(gd): raise ValueError( f'Document {d} from the left-hand side and ' f'{gd} from the right-hand are not hashed to the same value. ' f'This means your left and right DocumentArray may not be aligned; or it means your ' f'`hash_fn` is badly designed.' ) if not d.matches or not gd.matches: raise ValueError( f'Document {d!r} or {gd!r} has no matches, please check your Document' ) targets = gd.matches[:max_rel] desired = {hash_fn(m) for m in targets} if len(desired) != len(targets): warnings.warn( f'{hash_fn!r} may not be valid, as it maps multiple Documents into the same hash. ' f'Evaluation results may be affected' ) binary_relevance = [1 if hash_fn(m) in desired else 0 for m in d.matches] r = metric_fn(binary_relevance, max_rel=max_rel, **kwargs) d.evaluations[metric_name] = NamedScore( value=r, op_name=str(metric_fn), ref_id=d.id ) results.append(r) if results: return float(np.mean(results))
import importlib import os import re import types from typing import Any, Optional import numpy as np try: import torch # noqa: F401 except ImportError: torch_imported = False else: torch_imported = True try: import tensorflow as tf # type: ignore # noqa: F401 except (ImportError, TypeError): tf_imported = False else: tf_imported = True INSTALL_INSTRUCTIONS = { 'google.protobuf': '"docarray[proto]"', 'lz4': '"docarray[proto]"', 'pandas': '"docarray[pandas]"', 'PIL': '"docarray[image]"', 'pydub': '"docarray[audio]"', 'av': '"docarray[video]"', 'trimesh': '"docarray[mesh]"', 'hnswlib': '"docarray[hnswlib]"', 'elasticsearch': '"docarray[elasticsearch]"', 'weaviate': '"docarray[weaviate]"', 'qdrant_client': '"docarray[qdrant]"', 'fastapi': '"docarray[web]"', 'torch': '"docarray[torch]"', 'tensorflow': 'protobuf==3.19.0 tensorflow', 'hubble': '"docarray[jac]"', 'smart_open': '"docarray[aws]"', 'boto3': '"docarray[aws]"', 'botocore': '"docarray[aws]"', } def import_library( package: str, raise_error: bool = True ) -> Optional[types.ModuleType]: lib: Optional[types.ModuleType] try: lib = importlib.import_module(package) except (ModuleNotFoundError, ImportError): lib = None if lib is None and raise_error: raise ImportError( f'The following required library is not installed: {package} \n' f'To install all necessary libraries, run: `pip install {INSTALL_INSTRUCTIONS[package]}`.' ) else: return lib def _get_path_from_docarray_root_level(file_path: str) -> str: path = os.path.dirname(file_path) rel_path = re.sub('(?s:.*)docarray', 'docarray', path).replace('/', '.') return rel_path def is_torch_available(): return torch_imported def is_tf_available(): return tf_imported def is_np_int(item: Any) -> bool: dtype = getattr(item, 'dtype', None) ndim = getattr(item, 'ndim', None) if dtype is not None and ndim is not None: try: return ndim == 0 and np.issubdtype(dtype, np.integer) except TypeError: return False return False # this is unreachable, but mypy wants it def is_notebook() -> bool: """ Check if we're running in a Jupyter notebook, using magic command `get_ipython` that only available in Jupyter. :return: True if run in a Jupyter notebook else False. """ try: shell = get_ipython().__class__.__name__ # type: ignore except NameError: return False if shell == 'ZMQInteractiveShell': return True elif shell == 'Shell': return True elif shell == 'TerminalInteractiveShell': return False else: return False
import importlib import os import re import types from typing import Any, Optional import numpy as np try: import torch # noqa: F401 except ImportError: torch_imported = False else: torch_imported = True try: import tensorflow as tf # type: ignore # noqa: F401 except (ImportError, TypeError): tf_imported = False else: tf_imported = True INSTALL_INSTRUCTIONS = { 'google.protobuf': '"docarray[common]"', 'lz4': '"docarray[common]"', 'pandas': '"docarray[pandas]"', 'PIL': '"docarray[image]"', 'pydub': '"docarray[audio]"', 'av': '"docarray[video]"', 'trimesh': '"docarray[mesh]"', 'hnswlib': '"docarray[hnswlib]"', 'elasticsearch': '"docarray[elasticsearch]"', 'weaviate': '"docarray[weaviate]"', 'qdrant_client': '"docarray[qdrant]"', 'fastapi': '"docarray[web]"', 'torch': '"docarray[torch]"', 'tensorflow': 'protobuf==3.19.0 tensorflow', 'hubble': '"docarray[jac]"', 'smart_open': '"docarray[aws]"', 'boto3': '"docarray[aws]"', 'botocore': '"docarray[aws]"', } def import_library( package: str, raise_error: bool = True ) -> Optional[types.ModuleType]: lib: Optional[types.ModuleType] try: lib = importlib.import_module(package) except (ModuleNotFoundError, ImportError): lib = None if lib is None and raise_error: raise ImportError( f'The following required library is not installed: {package} \n' f'To install all necessary libraries, run: `pip install {INSTALL_INSTRUCTIONS[package]}`.' ) else: return lib def _get_path_from_docarray_root_level(file_path: str) -> str: path = os.path.dirname(file_path) rel_path = re.sub('(?s:.*)docarray', 'docarray', path).replace('/', '.') return rel_path def is_torch_available(): return torch_imported def is_tf_available(): return tf_imported def is_np_int(item: Any) -> bool: dtype = getattr(item, 'dtype', None) ndim = getattr(item, 'ndim', None) if dtype is not None and ndim is not None: try: return ndim == 0 and np.issubdtype(dtype, np.integer) except TypeError: return False return False # this is unreachable, but mypy wants it def is_notebook() -> bool: """ Check if we're running in a Jupyter notebook, using magic command `get_ipython` that only available in Jupyter. :return: True if run in a Jupyter notebook else False. """ try: shell = get_ipython().__class__.__name__ # type: ignore except NameError: return False if shell == 'ZMQInteractiveShell': return True elif shell == 'Shell': return True elif shell == 'TerminalInteractiveShell': return False else: return False
"""**Utility functions** for LangChain. These functions do not depend on any other LangChain module. """ from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: # for type checking and IDE support, we include the imports here # but we don't want to eagerly import them at runtime from langchain_core.utils import image from langchain_core.utils.aiter import abatch_iterate from langchain_core.utils.env import get_from_dict_or_env, get_from_env from langchain_core.utils.formatting import StrictFormatter, formatter from langchain_core.utils.input import ( get_bolded_text, get_color_mapping, get_colored_text, print_text, ) from langchain_core.utils.iter import batch_iterate from langchain_core.utils.loading import try_load_from_hub from langchain_core.utils.pydantic import pre_init from langchain_core.utils.strings import comma_list, stringify_dict, stringify_value from langchain_core.utils.utils import ( build_extra_kwargs, check_package_version, convert_to_secret_str, from_env, get_pydantic_field_names, guard_import, mock_now, raise_for_status_with_text, secret_from_env, xor_args, ) __all__ = [ "build_extra_kwargs", "StrictFormatter", "check_package_version", "convert_to_secret_str", "formatter", "get_bolded_text", "get_color_mapping", "get_colored_text", "get_pydantic_field_names", "guard_import", "mock_now", "print_text", "raise_for_status_with_text", "xor_args", "try_load_from_hub", "image", "get_from_env", "get_from_dict_or_env", "stringify_dict", "comma_list", "stringify_value", "pre_init", "batch_iterate", "abatch_iterate", "from_env", "secret_from_env", ] _dynamic_imports = { "image": "__module__", "abatch_iterate": "aiter", "get_from_dict_or_env": "env", "get_from_env": "env", "StrictFormatter": "formatting", "formatter": "formatting", "get_bolded_text": "input", "get_color_mapping": "input", "get_colored_text": "input", "print_text": "input", "batch_iterate": "iter", "try_load_from_hub": "loading", "pre_init": "pydantic", "comma_list": "strings", "stringify_dict": "strings", "stringify_value": "strings", "build_extra_kwargs": "utils", "check_package_version": "utils", "convert_to_secret_str": "utils", "from_env": "utils", "get_pydantic_field_names": "utils", "guard_import": "utils", "mock_now": "utils", "secret_from_env": "utils", "xor_args": "utils", "raise_for_status_with_text": "utils", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""**Utility functions** for LangChain. These functions do not depend on any other LangChain module. """ from langchain_core.utils import image from langchain_core.utils.aiter import abatch_iterate from langchain_core.utils.env import get_from_dict_or_env, get_from_env from langchain_core.utils.formatting import StrictFormatter, formatter from langchain_core.utils.input import ( get_bolded_text, get_color_mapping, get_colored_text, print_text, ) from langchain_core.utils.iter import batch_iterate from langchain_core.utils.loading import try_load_from_hub from langchain_core.utils.pydantic import pre_init from langchain_core.utils.strings import comma_list, stringify_dict, stringify_value from langchain_core.utils.utils import ( build_extra_kwargs, check_package_version, convert_to_secret_str, from_env, get_pydantic_field_names, guard_import, mock_now, raise_for_status_with_text, secret_from_env, xor_args, ) __all__ = [ "build_extra_kwargs", "StrictFormatter", "check_package_version", "convert_to_secret_str", "formatter", "get_bolded_text", "get_color_mapping", "get_colored_text", "get_pydantic_field_names", "guard_import", "mock_now", "print_text", "raise_for_status_with_text", "xor_args", "try_load_from_hub", "image", "get_from_env", "get_from_dict_or_env", "stringify_dict", "comma_list", "stringify_value", "pre_init", "batch_iterate", "abatch_iterate", "from_env", "secret_from_env", ]
import multiprocessing import pytest from jina import Client from jina.parsers import set_gateway_parser, set_pod_parser from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime def _create_worker_runtime(port, name='', executor=None): args = set_pod_parser().parse_args([]) args.port = port args.name = name if executor: args.uses = executor with WorkerRuntime(args) as runtime: runtime.run_forever() def _create_gateway_runtime(graph_description, pod_addresses, port, protocol='grpc'): with GatewayRuntime( set_gateway_parser().parse_args( [ '--graph-description', graph_description, '--deployments-addresses', pod_addresses, '--port', str(port), '--protocol', protocol, ] ) ) as runtime: runtime.run_forever() def _setup(worker_port, port, protocol): graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{worker_port}"]}}' # create a single worker runtime worker_process = multiprocessing.Process( target=_create_worker_runtime, args=(worker_port,) ) worker_process.start() # create a single gateway runtime gateway_process = multiprocessing.Process( target=_create_gateway_runtime, args=(graph_description, pod_addresses, port, protocol), ) gateway_process.start() AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{worker_port}', ready_or_shutdown_event=multiprocessing.Event(), ) AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) return worker_process, gateway_process @pytest.mark.parametrize('protocol', ['http']) def test_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', port=port, protocol=protocol) dry_run_alive = c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0 @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) async def test_async_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', asyncio=True, port=port, protocol=protocol) dry_run_alive = await c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = await c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0
import multiprocessing import pytest from jina import Client from jina.parsers import set_gateway_parser, set_pod_parser from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.gateway.grpc import GRPCGatewayRuntime from jina.serve.runtimes.gateway.http import HTTPGatewayRuntime from jina.serve.runtimes.gateway.websocket import WebSocketGatewayRuntime from jina.serve.runtimes.worker import WorkerRuntime def _create_worker_runtime(port, name='', executor=None): args = set_pod_parser().parse_args([]) args.port = port args.name = name if executor: args.uses = executor with WorkerRuntime(args) as runtime: runtime.run_forever() def _create_gateway_runtime(graph_description, pod_addresses, port, protocol='grpc'): if protocol == 'http': gateway_runtime = HTTPGatewayRuntime elif protocol == 'websocket': gateway_runtime = WebSocketGatewayRuntime else: gateway_runtime = GRPCGatewayRuntime with gateway_runtime( set_gateway_parser().parse_args( [ '--graph-description', graph_description, '--deployments-addresses', pod_addresses, '--port', str(port), ] ) ) as runtime: runtime.run_forever() def _setup(worker_port, port, protocol): graph_description = '{"start-gateway": ["pod0"], "pod0": ["end-gateway"]}' pod_addresses = f'{{"pod0": ["0.0.0.0:{worker_port}"]}}' # create a single worker runtime worker_process = multiprocessing.Process( target=_create_worker_runtime, args=(worker_port,) ) worker_process.start() # create a single gateway runtime gateway_process = multiprocessing.Process( target=_create_gateway_runtime, args=(graph_description, pod_addresses, port, protocol), ) gateway_process.start() AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{worker_port}', ready_or_shutdown_event=multiprocessing.Event(), ) AsyncNewLoopRuntime.wait_for_ready_or_shutdown( timeout=5.0, ctrl_address=f'0.0.0.0:{port}', ready_or_shutdown_event=multiprocessing.Event(), ) return worker_process, gateway_process @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) def test_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', port=port, protocol=protocol) dry_run_alive = c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0 @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc', 'http', 'websocket']) async def test_async_dry_run_of_flow(port_generator, protocol): worker_port = port_generator() port = port_generator() worker_process, gateway_process = _setup(worker_port, port, protocol) # send requests to the gateway c = Client(host='localhost', asyncio=True, port=port, protocol=protocol) dry_run_alive = await c.is_flow_ready() # _teardown(worker_process, gateway_process, dry_run_alive) worker_process.terminate() worker_process.join() dry_run_worker_removed = await c.is_flow_ready() gateway_process.terminate() gateway_process.join() assert dry_run_alive assert not dry_run_worker_removed assert gateway_process.exitcode == 0 assert worker_process.exitcode == 0
import warnings from typing import TYPE_CHECKING, Any, Optional, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.utils._internal.misc import is_notebook if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='ImageUrl') IMAGE_FILE_FORMATS = ('png', 'jpeg', 'jpg') @_register_proto(proto_type_name='image_url') class ImageUrl(AnyUrl): """ URL to a .png, .jpeg, or .jpg file. Can be remote (web) URL, or a local file path. """ @classmethod def validate( cls: Type[T], value: Union[T, str, Any], field: 'ModelField', config: 'BaseConfig', ) -> T: url = super().validate(value, field, config) # basic url validation has_image_extension = any(url.endswith(ext) for ext in IMAGE_FILE_FORMATS) if not has_image_extension: raise ValueError( f'Image URL must have one of the following extensions:' f'{IMAGE_FILE_FORMATS}' ) return cls(str(url), scheme=None) def load( self, width: Optional[int] = None, height: Optional[int] = None, axis_layout: Tuple[str, str, str] = ('H', 'W', 'C'), timeout: Optional[float] = None, ) -> np.ndarray: """ Load the data from the url into a numpy.ndarray image tensor EXAMPLE USAGE .. code-block:: python from docarray import BaseDoc from docarray.typing import ImageUrl import numpy as np class MyDoc(BaseDoc): img_url: ImageUrl doc = MyDoc( img_url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg" ) img_tensor = doc.img_url.load() assert isinstance(img_tensor, np.ndarray) img_tensor = doc.img_url.load(height=224, width=224) assert img_tensor.shape == (224, 224, 3) layout = ('C', 'W', 'H') img_tensor = doc.img_url.load(height=100, width=200, axis_layout=layout) assert img_tensor.shape == (3, 200, 100) :param width: width of the image tensor. :param height: height of the image tensor. :param axis_layout: ordering of the different image axes. 'H' = height, 'W' = width, 'C' = color channel :param timeout: timeout (sec) for urlopen network request. Only relevant if URL is not local :return: np.ndarray representing the image as RGB values """ from docarray.typing.bytes.image_bytes import ImageBytes buffer = ImageBytes(self.load_bytes(timeout=timeout)) return buffer.load(width, height, axis_layout) def display(self) -> None: """ Display image data from url in notebook. """ if is_notebook(): from IPython.display import Image, display remote_url = True if self.startswith('http') else False if remote_url: display(Image(url=self)) else: display(Image(filename=self)) else: warnings.warn('Display of image is only possible in a notebook.')
import warnings from typing import TYPE_CHECKING, Any, Optional, Tuple, Type, TypeVar, Union import numpy as np from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.utils.misc import is_notebook if TYPE_CHECKING: from pydantic import BaseConfig from pydantic.fields import ModelField T = TypeVar('T', bound='ImageUrl') IMAGE_FILE_FORMATS = ('png', 'jpeg', 'jpg') @_register_proto(proto_type_name='image_url') class ImageUrl(AnyUrl): """ URL to a .png, .jpeg, or .jpg file. Can be remote (web) URL, or a local file path. """ @classmethod def validate( cls: Type[T], value: Union[T, str, Any], field: 'ModelField', config: 'BaseConfig', ) -> T: url = super().validate(value, field, config) # basic url validation has_image_extension = any(url.endswith(ext) for ext in IMAGE_FILE_FORMATS) if not has_image_extension: raise ValueError( f'Image URL must have one of the following extensions:' f'{IMAGE_FILE_FORMATS}' ) return cls(str(url), scheme=None) def load( self, width: Optional[int] = None, height: Optional[int] = None, axis_layout: Tuple[str, str, str] = ('H', 'W', 'C'), timeout: Optional[float] = None, ) -> np.ndarray: """ Load the data from the url into a numpy.ndarray image tensor EXAMPLE USAGE .. code-block:: python from docarray import BaseDoc from docarray.typing import ImageUrl import numpy as np class MyDoc(BaseDoc): img_url: ImageUrl doc = MyDoc( img_url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg" ) img_tensor = doc.img_url.load() assert isinstance(img_tensor, np.ndarray) img_tensor = doc.img_url.load(height=224, width=224) assert img_tensor.shape == (224, 224, 3) layout = ('C', 'W', 'H') img_tensor = doc.img_url.load(height=100, width=200, axis_layout=layout) assert img_tensor.shape == (3, 200, 100) :param width: width of the image tensor. :param height: height of the image tensor. :param axis_layout: ordering of the different image axes. 'H' = height, 'W' = width, 'C' = color channel :param timeout: timeout (sec) for urlopen network request. Only relevant if URL is not local :return: np.ndarray representing the image as RGB values """ from docarray.typing.bytes.image_bytes import ImageBytes buffer = ImageBytes(self.load_bytes(timeout=timeout)) return buffer.load(width, height, axis_layout) def display(self) -> None: """ Display image data from url in notebook. """ if is_notebook(): from IPython.display import Image, display remote_url = True if self.startswith('http') else False if remote_url: display(Image(url=self)) else: display(Image(filename=self)) else: warnings.warn('Display of image is only possible in a notebook.')
_base_ = [ '../_base_/models/rpn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] val_evaluator = dict(metric='proposal_fast') test_evaluator = val_evaluator # inference on val dataset and dump the proposals with evaluate metric # data_root = 'data/coco/' # test_evaluator = [ # dict( # type='DumpProposals', # output_dir=data_root + 'proposals/', # proposals_file='rpn_r50_fpn_1x_val2017.pkl'), # dict( # type='CocoMetric', # ann_file=data_root + 'annotations/instances_val2017.json', # metric='proposal_fast', # file_client_args={{_base_.file_client_args}}, # format_only=False) # ] # inference on training dataset and dump the proposals without evaluate metric # data_root = 'data/coco/' # test_dataloader = dict( # dataset=dict( # ann_file='annotations/instances_train2017.json', # data_prefix=dict(img='train2017/'))) # # test_evaluator = [ # dict( # type='DumpProposals', # output_dir=data_root + 'proposals/', # proposals_file='rpn_r50_fpn_1x_train2017.pkl'), # ]
_base_ = [ '../_base_/models/rpn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] val_evaluator = dict(metric='proposal_fast') test_evaluator = val_evaluator
from typing import Literal from pydantic import SecretStr from backend.data.model import ( APIKeyCredentials, CredentialsField, CredentialsMetaInput, OAuth2Credentials, ) from backend.integrations.providers import ProviderName from backend.util.settings import Secrets secrets = Secrets() GITHUB_OAUTH_IS_CONFIGURED = bool( secrets.github_client_id and secrets.github_client_secret ) GithubCredentials = APIKeyCredentials | OAuth2Credentials GithubCredentialsInput = CredentialsMetaInput[ Literal[ProviderName.GITHUB], Literal["api_key", "oauth2"] if GITHUB_OAUTH_IS_CONFIGURED else Literal["api_key"], ] def GithubCredentialsField(scope: str) -> GithubCredentialsInput: """ Creates a GitHub credentials input on a block. Params: scope: The authorization scope needed for the block to work. ([list of available scopes](https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps#available-scopes)) """ # noqa return CredentialsField( required_scopes={scope}, description="The GitHub integration can be used with OAuth, " "or any API key with sufficient permissions for the blocks it is used on.", ) TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="github", api_key=SecretStr("mock-github-api-key"), title="Mock GitHub API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.type, }
from typing import Literal from pydantic import SecretStr from backend.data.model import ( APIKeyCredentials, CredentialsField, CredentialsMetaInput, OAuth2Credentials, ) from backend.util.settings import Secrets secrets = Secrets() GITHUB_OAUTH_IS_CONFIGURED = bool( secrets.github_client_id and secrets.github_client_secret ) GithubCredentials = APIKeyCredentials | OAuth2Credentials GithubCredentialsInput = CredentialsMetaInput[ Literal["github"], Literal["api_key", "oauth2"] if GITHUB_OAUTH_IS_CONFIGURED else Literal["api_key"], ] def GithubCredentialsField(scope: str) -> GithubCredentialsInput: """ Creates a GitHub credentials input on a block. Params: scope: The authorization scope needed for the block to work. ([list of available scopes](https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/scopes-for-oauth-apps#available-scopes)) """ # noqa return CredentialsField( provider="github", supported_credential_types=( {"api_key", "oauth2"} if GITHUB_OAUTH_IS_CONFIGURED else {"api_key"} ), required_scopes={scope}, description="The GitHub integration can be used with OAuth, " "or any API key with sufficient permissions for the blocks it is used on.", ) TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="github", api_key=SecretStr("mock-github-api-key"), title="Mock GitHub API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.type, }
import copy import importlib import os import sys from keras.src import backend as backend_module from keras.src.api_export import keras_export from keras.src.backend.common import global_state def in_tf_graph(): if global_state.get_global_attribute("in_tf_graph_scope", False): return True if "tensorflow" in sys.modules: from keras.src.utils.module_utils import tensorflow as tf return not tf.executing_eagerly() return False def convert_tf_tensor(outputs, dtype=None): if backend_module.backend() != "tensorflow" and not in_tf_graph(): outputs = backend_module.convert_to_tensor(outputs, dtype=dtype) return outputs class TFGraphScope: def __init__(self): self._original_value = global_state.get_global_attribute( "in_tf_graph_scope", False ) def __enter__(self): global_state.set_global_attribute("in_tf_graph_scope", True) def __exit__(self, *args, **kwargs): global_state.set_global_attribute( "in_tf_graph_scope", self._original_value ) class DynamicBackend: """A class that can be used to switch from one backend to another. Example: ```python backend = DynamicBackend("tensorflow") y = backend.square(tf.constant(...)) backend.set_backend("jax") y = backend.square(jax.numpy.array(...)) ``` Args: backend: Initial backend to use (string). """ def __init__(self, backend=None): self._backend = backend or backend_module.backend() def set_backend(self, backend): if backend not in ("tensorflow", "jax", "torch", "numpy"): raise ValueError( "Available backends are ('tensorflow', 'jax', 'torch' and " f"'numpy'). Received: backend={backend}" ) self._backend = backend def reset(self): self._backend = backend_module.backend() @property def name(self): return self._backend def __getattr__(self, name): if self._backend == "tensorflow": module = importlib.import_module("keras.src.backend.tensorflow") return getattr(module, name) if self._backend == "jax": module = importlib.import_module("keras.src.backend.jax") return getattr(module, name) if self._backend == "torch": module = importlib.import_module("keras.src.backend.torch") return getattr(module, name) if self._backend == "numpy": if backend_module.backend() == "numpy": return getattr(backend_module, name) else: raise NotImplementedError( "Currently, we cannot dynamically import the numpy backend " "because it would disrupt the namespace of the import." ) @keras_export("keras.config.set_backend") def set_backend(backend): """Reload the backend (and the Keras package). Example: ```python keras.config.set_backend("jax") ``` ⚠️ WARNING ⚠️: Using this function is dangerous and should be done carefully. Changing the backend will **NOT** convert the type of any already-instantiated objects. Thus, any layers / tensors / etc. already created will no longer be usable without errors. It is strongly recommended **not** to keep around **any** Keras-originated objects instances created before calling `set_backend()`. This includes any function or class instance that uses any Keras functionality. All such code needs to be re-executed after calling `set_backend()`. """ os.environ["KERAS_BACKEND"] = backend # Clear module cache. loaded_modules = [ key for key in sys.modules.keys() if key.startswith("keras") ] for key in loaded_modules: del sys.modules[key] # Reimport Keras with the new backend (set via KERAS_BACKEND). import keras # Finally: refresh all imported Keras submodules. globs = copy.copy(globals()) for key, value in globs.items(): if value.__class__ == keras.__class__: if str(value).startswith("<module 'keras."): module_name = str(value) module_name = module_name[module_name.find("'") + 1 :] module_name = module_name[: module_name.find("'")] globals()[key] = importlib.import_module(module_name)
import copy import importlib import os import sys from keras.src import backend as backend_module from keras.src.api_export import keras_export from keras.src.backend.common import global_state def in_tf_graph(): if global_state.get_global_attribute("in_tf_graph_scope", False): return True if "tensorflow" in sys.modules: from keras.src.utils.module_utils import tensorflow as tf return not tf.executing_eagerly() return False def convert_tf_tensor(outputs, dtype=None): if backend_module.backend() != "tensorflow" and not in_tf_graph(): outputs = backend_module.convert_to_tensor(outputs, dtype=dtype) return outputs class TFGraphScope: def __init__(self): self._original_value = global_state.get_global_attribute( "in_tf_graph_scope", False ) def __enter__(self): global_state.set_global_attribute("in_tf_graph_scope", True) def __exit__(self, *args, **kwargs): global_state.set_global_attribute( "in_tf_graph_scope", self._original_value ) class DynamicBackend: """A class that can be used to switch from one backend to another. Example: ```python backend = DynamicBackend("tensorflow") y = backend.square(tf.constant(...)) backend.set_backend("jax") y = backend.square(jax.numpy.array(...)) ``` Args: backend: Initial backend to use (string). """ def __init__(self, backend=None): self._backend = backend or backend_module.backend() def set_backend(self, backend): self._backend = backend def reset(self): self._backend = backend_module.backend() @property def name(self): return self._backend def __getattr__(self, name): if self._backend == "tensorflow": from keras.src.backend import tensorflow as tf_backend return getattr(tf_backend, name) if self._backend == "jax": from keras.src.backend import jax as jax_backend return getattr(jax_backend, name) if self._backend == "torch": from keras.src.backend import torch as torch_backend return getattr(torch_backend, name) if self._backend == "numpy": # TODO (ariG23498): # The import `from keras.src.backend import numpy as numpy_backend` # is not working. This is a temporary fix. # The import is redirected to `keras.backend.numpy.numpy.py` from keras.src import backend as numpy_backend return getattr(numpy_backend, name) @keras_export("keras.config.set_backend") def set_backend(backend): """Reload the backend (and the Keras package). Example: ```python keras.config.set_backend("jax") ``` ⚠️ WARNING ⚠️: Using this function is dangerous and should be done carefully. Changing the backend will **NOT** convert the type of any already-instantiated objects. Thus, any layers / tensors / etc. already created will no longer be usable without errors. It is strongly recommended **not** to keep around **any** Keras-originated objects instances created before calling `set_backend()`. This includes any function or class instance that uses any Keras functionality. All such code needs to be re-executed after calling `set_backend()`. """ os.environ["KERAS_BACKEND"] = backend # Clear module cache. loaded_modules = [ key for key in sys.modules.keys() if key.startswith("keras") ] for key in loaded_modules: del sys.modules[key] # Reimport Keras with the new backend (set via KERAS_BACKEND). import keras # Finally: refresh all imported Keras submodules. globs = copy.copy(globals()) for key, value in globs.items(): if value.__class__ == keras.__class__: if str(value).startswith("<module 'keras."): module_name = str(value) module_name = module_name[module_name.find("'") + 1 :] module_name = module_name[: module_name.find("'")] globals()[key] = importlib.import_module(module_name)
import logging import typing from autogpt_libs.auth import requires_admin_user from autogpt_libs.auth.depends import get_user_id from fastapi import APIRouter, Body, Depends from prisma import Json from prisma.enums import CreditTransactionType from backend.data.credit import admin_get_user_history, get_user_credit_model from backend.server.v2.admin.model import AddUserCreditsResponse, UserHistoryResponse logger = logging.getLogger(__name__) _user_credit_model = get_user_credit_model() router = APIRouter( prefix="/admin", tags=["credits", "admin"], dependencies=[Depends(requires_admin_user)], ) @router.post( "/add_credits", response_model=AddUserCreditsResponse, summary="Add Credits to User" ) async def add_user_credits( user_id: typing.Annotated[str, Body()], amount: typing.Annotated[int, Body()], comments: typing.Annotated[str, Body()], admin_user: typing.Annotated[ str, Depends(get_user_id), ], ): """ """ logger.info(f"Admin user {admin_user} is adding {amount} credits to user {user_id}") new_balance, transaction_key = await _user_credit_model._add_transaction( user_id, amount, transaction_type=CreditTransactionType.GRANT, metadata=Json({"admin_id": admin_user, "reason": comments}), ) return { "new_balance": new_balance, "transaction_key": transaction_key, } @router.get( "/users_history", response_model=UserHistoryResponse, summary="Get All Users History", ) async def admin_get_all_user_history( admin_user: typing.Annotated[ str, Depends(get_user_id), ], search: typing.Optional[str] = None, page: int = 1, page_size: int = 20, transaction_filter: typing.Optional[CreditTransactionType] = None, ): """ """ logger.info(f"Admin user {admin_user} is getting grant history") try: resp = await admin_get_user_history( page=page, page_size=page_size, search=search, transaction_filter=transaction_filter, ) logger.info(f"Admin user {admin_user} got {len(resp.history)} grant history") return resp except Exception as e: logger.exception(f"Error getting grant history: {e}") raise e
import logging import typing from autogpt_libs.auth import requires_admin_user from autogpt_libs.auth.depends import get_user_id from fastapi import APIRouter, Body, Depends from prisma import Json from prisma.enums import CreditTransactionType from backend.data.credit import admin_get_user_history, get_user_credit_model from backend.server.v2.admin.model import AddUserCreditsResponse, UserHistoryResponse logger = logging.getLogger(__name__) _user_credit_model = get_user_credit_model() router = APIRouter( prefix="/admin", tags=["credits", "admin"], dependencies=[Depends(requires_admin_user)], ) @router.post("/add_credits", response_model=AddUserCreditsResponse) async def add_user_credits( user_id: typing.Annotated[str, Body()], amount: typing.Annotated[int, Body()], comments: typing.Annotated[str, Body()], admin_user: typing.Annotated[ str, Depends(get_user_id), ], ): """ """ logger.info(f"Admin user {admin_user} is adding {amount} credits to user {user_id}") new_balance, transaction_key = await _user_credit_model._add_transaction( user_id, amount, transaction_type=CreditTransactionType.GRANT, metadata=Json({"admin_id": admin_user, "reason": comments}), ) return { "new_balance": new_balance, "transaction_key": transaction_key, } @router.get( "/users_history", response_model=UserHistoryResponse, ) async def admin_get_all_user_history( admin_user: typing.Annotated[ str, Depends(get_user_id), ], search: typing.Optional[str] = None, page: int = 1, page_size: int = 20, transaction_filter: typing.Optional[CreditTransactionType] = None, ): """ """ logger.info(f"Admin user {admin_user} is getting grant history") try: resp = await admin_get_user_history( page=page, page_size=page_size, search=search, transaction_filter=transaction_filter, ) logger.info(f"Admin user {admin_user} got {len(resp.history)} grant history") return resp except Exception as e: logger.exception(f"Error getting grant history: {e}") raise e
import torch from torchaudio.models import emformer_rnnt_model, RNNTBeamSearch from torchaudio_unittest.common_utils import TestBaseMixin, torch_script class RNNTBeamSearchTestImpl(TestBaseMixin): def _get_input_config(self): model_config = self._get_model_config() return { "batch_size": 1, "max_input_length": 61, "num_symbols": model_config["num_symbols"], "input_dim": model_config["input_dim"], "right_context_length": model_config["right_context_length"], "segment_length": model_config["segment_length"], } def _get_model_config(self): return { "input_dim": 80, "encoding_dim": 128, "num_symbols": 256, "segment_length": 16, "right_context_length": 4, "time_reduction_input_dim": 128, "time_reduction_stride": 4, "transformer_num_heads": 4, "transformer_ffn_dim": 64, "transformer_num_layers": 3, "transformer_dropout": 0.0, "transformer_activation": "relu", "transformer_left_context_length": 30, "transformer_max_memory_size": 0, "transformer_weight_init_scale_strategy": "depthwise", "transformer_tanh_on_mem": True, "symbol_embedding_dim": 64, "num_lstm_layers": 2, "lstm_layer_norm": True, "lstm_layer_norm_epsilon": 1e-3, "lstm_dropout": 0.0, } def _get_model(self): return emformer_rnnt_model(**self._get_model_config()).to(device=self.device, dtype=self.dtype).eval() def test_torchscript_consistency_forward(self): r"""Verify that scripting RNNTBeamSearch does not change the behavior of method `forward`.""" input_config = self._get_input_config() batch_size = input_config["batch_size"] max_input_length = input_config["max_input_length"] right_context_length = input_config["right_context_length"] input_dim = input_config["input_dim"] num_symbols = input_config["num_symbols"] blank_idx = num_symbols - 1 beam_width = 5 input = torch.rand(batch_size, max_input_length + right_context_length, input_dim).to( device=self.device, dtype=self.dtype ) lengths = torch.randint(1, max_input_length + 1, (batch_size,)).to(device=self.device, dtype=torch.int32) model = self._get_model() beam_search = RNNTBeamSearch(model, blank_idx) scripted = torch_script(beam_search) res = beam_search(input, lengths, beam_width) scripted_res = scripted(input, lengths, beam_width) self.assertEqual(res, scripted_res) def test_torchscript_consistency_infer(self): r"""Verify that scripting RNNTBeamSearch does not change the behavior of method `infer`.""" input_config = self._get_input_config() segment_length = input_config["segment_length"] right_context_length = input_config["right_context_length"] input_dim = input_config["input_dim"] num_symbols = input_config["num_symbols"] blank_idx = num_symbols - 1 beam_width = 5 input = torch.rand(segment_length + right_context_length, input_dim).to(device=self.device, dtype=self.dtype) lengths = torch.randint(1, segment_length + right_context_length + 1, ()).to( device=self.device, dtype=torch.int32 ) model = self._get_model() state, hypo = None, None scripted_state, scripted_hypo = None, None for _ in range(2): beam_search = RNNTBeamSearch(model, blank_idx) scripted = torch_script(beam_search) res = beam_search.infer(input, lengths, beam_width, state=state, hypothesis=hypo) scripted_res = scripted.infer(input, lengths, beam_width, state=scripted_state, hypothesis=scripted_hypo) self.assertEqual(res, scripted_res) state = res[1] hypo = res[0] scripted_state = scripted_res[1] scripted_hypo = scripted_res[0]
import torch from torchaudio.models import emformer_rnnt_model, RNNTBeamSearch from torchaudio_unittest.common_utils import TestBaseMixin, torch_script class RNNTBeamSearchTestImpl(TestBaseMixin): def _get_input_config(self): model_config = self._get_model_config() return { "batch_size": 1, "max_input_length": 61, "num_symbols": model_config["num_symbols"], "input_dim": model_config["input_dim"], "right_context_length": model_config["right_context_length"], "segment_length": model_config["segment_length"], } def _get_model_config(self): return { "input_dim": 80, "encoding_dim": 128, "num_symbols": 256, "segment_length": 16, "right_context_length": 4, "time_reduction_input_dim": 128, "time_reduction_stride": 4, "transformer_num_heads": 4, "transformer_ffn_dim": 64, "transformer_num_layers": 3, "transformer_dropout": 0.0, "transformer_activation": "relu", "transformer_left_context_length": 30, "transformer_max_memory_size": 0, "transformer_weight_init_scale_strategy": "depthwise", "transformer_tanh_on_mem": True, "symbol_embedding_dim": 64, "num_lstm_layers": 2, "lstm_layer_norm": True, "lstm_layer_norm_epsilon": 1e-3, "lstm_dropout": 0.0, } def _get_model(self): return emformer_rnnt_model(**self._get_model_config()).to(device=self.device, dtype=self.dtype).eval() def test_torchscript_consistency_forward(self): r"""Verify that scripting RNNTBeamSearch does not change the behavior of method `forward`.""" input_config = self._get_input_config() batch_size = input_config["batch_size"] max_input_length = input_config["max_input_length"] right_context_length = input_config["right_context_length"] input_dim = input_config["input_dim"] num_symbols = input_config["num_symbols"] blank_idx = num_symbols - 1 beam_width = 5 input = torch.rand(batch_size, max_input_length + right_context_length, input_dim).to( device=self.device, dtype=self.dtype ) lengths = torch.randint(1, max_input_length + 1, (batch_size,)).to(device=self.device, dtype=torch.int32) model = self._get_model() beam_search = RNNTBeamSearch(model, blank_idx) scripted = torch_script(beam_search) res = beam_search(input, lengths, beam_width) scripted_res = scripted(input, lengths, beam_width) self.assertEqual(res, scripted_res) def test_torchscript_consistency_infer(self): r"""Verify that scripting RNNTBeamSearch does not change the behavior of method `infer`.""" input_config = self._get_input_config() segment_length = input_config["segment_length"] right_context_length = input_config["right_context_length"] input_dim = input_config["input_dim"] num_symbols = input_config["num_symbols"] blank_idx = num_symbols - 1 beam_width = 5 input = torch.rand(segment_length + right_context_length, input_dim).to(device=self.device, dtype=self.dtype) lengths = torch.randint(1, segment_length + right_context_length + 1, ()).to( device=self.device, dtype=torch.int32 ) model = self._get_model() state, hypo = None, None scripted_state, scripted_hypo = None, None for _ in range(2): beam_search = RNNTBeamSearch(model, blank_idx) scripted = torch_script(beam_search) res = beam_search.infer(input, lengths, beam_width, state=state, hypothesis=hypo) scripted_res = scripted.infer(input, lengths, beam_width, state=scripted_state, hypothesis=scripted_hypo) self.assertEqual(res, scripted_res) state = res[1] hypo = res[0][0] scripted_state = scripted_res[1] scripted_hypo = scripted_res[0][0]
"""Standard LangChain interface tests.""" import pytest from langchain_core.language_models import BaseChatModel from langchain_tests.unit_tests import ChatModelUnitTests from pytest_benchmark.fixture import BenchmarkFixture # type: ignore[import-untyped] from langchain_anthropic import ChatAnthropic class TestAnthropicStandard(ChatModelUnitTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatAnthropic @property def chat_model_params(self) -> dict: return {"model": "claude-3-haiku-20240307"} @pytest.mark.benchmark def test_init_time_with_client(benchmark: BenchmarkFixture) -> None: """Test initialization time, accounting for lazy loading of client.""" def _init_in_loop_with_clients() -> None: for _ in range(10): llm = ChatAnthropic(model="claude-3-5-haiku-latest") _ = llm._client _ = llm._async_client benchmark(_init_in_loop_with_clients)
"""Standard LangChain interface tests""" import pytest from langchain_core.language_models import BaseChatModel from langchain_tests.unit_tests import ChatModelUnitTests from pytest_benchmark.fixture import BenchmarkFixture # type: ignore[import-untyped] from langchain_anthropic import ChatAnthropic class TestAnthropicStandard(ChatModelUnitTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatAnthropic @property def chat_model_params(self) -> dict: return {"model": "claude-3-haiku-20240307"} @pytest.mark.benchmark def test_init_time_with_client(benchmark: BenchmarkFixture) -> None: """Test initialization time, accounting for lazy loading of client.""" def _init_in_loop_with_clients() -> None: for _ in range(10): llm = ChatAnthropic(model="claude-3-5-haiku-latest") _ = llm._client _ = llm._async_client benchmark(_init_in_loop_with_clients)
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = '0.40.2' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level from docarray.utils._internal.pydantic import is_pydantic_v2 def unpickle_doclist(doc_type, b): return DocList[doc_type].from_bytes(b, protocol="protobuf") def unpickle_docvec(doc_type, tensor_type, b): return DocVec[doc_type].from_bytes(b, protocol="protobuf", tensor_type=tensor_type) if is_pydantic_v2: # Register the pickle functions def register_serializers(): import copyreg from functools import partial unpickle_doc_fn = partial(BaseDoc.from_bytes, protocol="protobuf") def pickle_doc(doc): b = doc.to_bytes(protocol='protobuf') return unpickle_doc_fn, (doc.__class__, b) # Register BaseDoc serialization copyreg.pickle(BaseDoc, pickle_doc) # For DocList, we need to hook into __reduce__ since it's a generic def pickle_doclist(doc_list): b = doc_list.to_bytes(protocol='protobuf') doc_type = doc_list.doc_type return unpickle_doclist, (doc_type, b) # Replace DocList.__reduce__ with a method that returns the correct format def doclist_reduce(self): return pickle_doclist(self) DocList.__reduce__ = doclist_reduce # For DocVec, we need to hook into __reduce__ since it's a generic def pickle_docvec(doc_vec): b = doc_vec.to_bytes(protocol='protobuf') doc_type = doc_vec.doc_type tensor_type = doc_vec.tensor_type return unpickle_docvec, (doc_type, tensor_type, b) # Replace DocList.__reduce__ with a method that returns the correct format def docvec_reduce(self): return pickle_docvec(self) DocVec.__reduce__ = docvec_reduce register_serializers() __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = '0.40.1' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level from docarray.utils._internal.pydantic import is_pydantic_v2 def unpickle_doclist(doc_type, b): return DocList[doc_type].from_bytes(b, protocol="protobuf") def unpickle_docvec(doc_type, tensor_type, b): return DocVec[doc_type].from_bytes(b, protocol="protobuf", tensor_type=tensor_type) if is_pydantic_v2: # Register the pickle functions def register_serializers(): import copyreg from functools import partial unpickle_doc_fn = partial(BaseDoc.from_bytes, protocol="protobuf") def pickle_doc(doc): b = doc.to_bytes(protocol='protobuf') return unpickle_doc_fn, (doc.__class__, b) # Register BaseDoc serialization copyreg.pickle(BaseDoc, pickle_doc) # For DocList, we need to hook into __reduce__ since it's a generic def pickle_doclist(doc_list): b = doc_list.to_bytes(protocol='protobuf') doc_type = doc_list.doc_type return unpickle_doclist, (doc_type, b) # Replace DocList.__reduce__ with a method that returns the correct format def doclist_reduce(self): return pickle_doclist(self) DocList.__reduce__ = doclist_reduce # For DocVec, we need to hook into __reduce__ since it's a generic def pickle_docvec(doc_vec): b = doc_vec.to_bytes(protocol='protobuf') doc_type = doc_vec.doc_type tensor_type = doc_vec.tensor_type return unpickle_docvec, (doc_type, tensor_type, b) # Replace DocList.__reduce__ with a method that returns the correct format def docvec_reduce(self): return pickle_docvec(self) DocVec.__reduce__ = docvec_reduce register_serializers() __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
from __future__ import annotations from collections.abc import Iterable from enum import Enum from typing import Any import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer class SiameseDistanceMetric(Enum): """The metric for the contrastive loss""" EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2) MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1) COSINE_DISTANCE = lambda x, y: 1 - F.cosine_similarity(x, y) class ContrastiveLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5, size_average: bool = True, ) -> None: """ Contrastive loss. Expects as input two texts and a label of either 0 or 1. If the label == 1, then the distance between the two embeddings is reduced. If the label == 0, then the distance between the embeddings is increased. Args: model: SentenceTransformer model distance_metric: Function that returns a distance between two embeddings. The class SiameseDistanceMetric contains pre-defined metrices that can be used margin: Negative samples (label == 0) should have a distance of at least the margin value. size_average: Average by the size of the mini-batch. References: * Further information: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf * `Training Examples > Quora Duplicate Questions <../../../examples/sentence_transformer/training/quora_duplicate_questions/README.html>`_ Requirements: 1. (anchor, positive/negative) pairs Inputs: +-----------------------------------------------+------------------------------+ | Texts | Labels | +===============================================+==============================+ | (anchor, positive/negative) pairs | 1 if positive, 0 if negative | +-----------------------------------------------+------------------------------+ Relations: - :class:`OnlineContrastiveLoss` is similar, but uses hard positive and hard negative pairs. It often yields better results. Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "label": [1, 0], }) loss = losses.ContrastiveLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.distance_metric = distance_metric self.margin = margin self.model = model self.size_average = size_average def get_config_dict(self) -> dict[str, Any]: distance_metric_name = self.distance_metric.__name__ for name, value in vars(SiameseDistanceMetric).items(): if value == self.distance_metric: distance_metric_name = f"SiameseDistanceMetric.{name}" break return {"distance_metric": distance_metric_name, "margin": self.margin, "size_average": self.size_average} def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] assert len(reps) == 2 rep_anchor, rep_other = reps distances = self.distance_metric(rep_anchor, rep_other) losses = 0.5 * ( labels.float() * distances.pow(2) + (1 - labels).float() * F.relu(self.margin - distances).pow(2) ) return losses.mean() if self.size_average else losses.sum() @property def citation(self) -> str: return """ @inproceedings{hadsell2006dimensionality, author={Hadsell, R. and Chopra, S. and LeCun, Y.}, booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, title={Dimensionality Reduction by Learning an Invariant Mapping}, year={2006}, volume={2}, number={}, pages={1735-1742}, doi={10.1109/CVPR.2006.100} } """
from __future__ import annotations from collections.abc import Iterable from enum import Enum from typing import Any import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer class SiameseDistanceMetric(Enum): """The metric for the contrastive loss""" EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2) MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1) COSINE_DISTANCE = lambda x, y: 1 - F.cosine_similarity(x, y) class ContrastiveLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5, size_average: bool = True, ) -> None: """ Contrastive loss. Expects as input two texts and a label of either 0 or 1. If the label == 1, then the distance between the two embeddings is reduced. If the label == 0, then the distance between the embeddings is increased. Args: model: SentenceTransformer model distance_metric: Function that returns a distance between two embeddings. The class SiameseDistanceMetric contains pre-defined metrices that can be used margin: Negative samples (label == 0) should have a distance of at least the margin value. size_average: Average by the size of the mini-batch. References: * Further information: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf * `Training Examples > Quora Duplicate Questions <../../examples/training/quora_duplicate_questions/README.html>`_ Requirements: 1. (anchor, positive/negative) pairs Inputs: +-----------------------------------------------+------------------------------+ | Texts | Labels | +===============================================+==============================+ | (anchor, positive/negative) pairs | 1 if positive, 0 if negative | +-----------------------------------------------+------------------------------+ Relations: - :class:`OnlineContrastiveLoss` is similar, but uses hard positive and hard negative pairs. It often yields better results. Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "label": [1, 0], }) loss = losses.ContrastiveLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.distance_metric = distance_metric self.margin = margin self.model = model self.size_average = size_average def get_config_dict(self) -> dict[str, Any]: distance_metric_name = self.distance_metric.__name__ for name, value in vars(SiameseDistanceMetric).items(): if value == self.distance_metric: distance_metric_name = f"SiameseDistanceMetric.{name}" break return {"distance_metric": distance_metric_name, "margin": self.margin, "size_average": self.size_average} def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] assert len(reps) == 2 rep_anchor, rep_other = reps distances = self.distance_metric(rep_anchor, rep_other) losses = 0.5 * ( labels.float() * distances.pow(2) + (1 - labels).float() * F.relu(self.margin - distances).pow(2) ) return losses.mean() if self.size_average else losses.sum() @property def citation(self) -> str: return """ @inproceedings{hadsell2006dimensionality, author={Hadsell, R. and Chopra, S. and LeCun, Y.}, booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, title={Dimensionality Reduction by Learning an Invariant Mapping}, year={2006}, volume={2}, number={}, pages={1735-1742}, doi={10.1109/CVPR.2006.100} } """
from langchain_anthropic import __all__ EXPECTED_ALL = [ "ChatAnthropicMessages", "ChatAnthropic", "convert_to_anthropic_tool", "Anthropic", "AnthropicLLM", ] def test_all_imports() -> None: assert sorted(EXPECTED_ALL) == sorted(__all__)
from langchain_anthropic import __all__ EXPECTED_ALL = ["ChatAnthropicMessages", "ChatAnthropic", "Anthropic", "AnthropicLLM"] def test_all_imports() -> None: assert sorted(EXPECTED_ALL) == sorted(__all__)
__copyright__ = 'Copyright (c) 2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' import subprocess import pytest from jina import Document, DocumentArray, Flow from ...transform_encoder import TransformerTorchEncoder _EMBEDDING_DIM = 768 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=TransformerTorchEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:cuda', ], timeout=30, check=True, ) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( ['jina', 'executor', f'--uses=docker://{build_docker_image}'], timeout=30, check=True, )
__copyright__ = 'Copyright (c) 2021 Jina AI Limited. All rights reserved.' __license__ = 'Apache-2.0' import subprocess from typing import Callable, List import pytest from jina import DocumentArray, Flow from ...transform_encoder import TransformerTorchEncoder @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(data_generator: Callable, request_size: int): with Flow(return_results=True).add(uses=TransformerTorchEncoder) as flow: resp = flow.post( on='/index', inputs=data_generator(), request_size=request_size, return_results=True, ) assert min(len(resp) * request_size, 50) == 50 for r in resp: for doc in r.docs: assert doc.embedding is not None def filter_none(elements): return list(filter(lambda e: e is not None, elements)) @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_path'], [ (pytest.lazy_fixture('docs_with_text'), [['r', 10], ['c', 0], ['cc', 0]], 'r'), ( pytest.lazy_fixture('docs_with_chunk_text'), [['r', 0], ['c', 10], ['cc', 0]], 'c', ), ( pytest.lazy_fixture('docs_with_chunk_chunk_text'), [['r', 0], ['c', 0], ['cc', 10]], 'cc', ), ], ) def test_traversal_path( docs: DocumentArray, docs_per_path: List[List[str]], traversal_path: str ): def validate_traversal(expected_docs_per_path: List[List[str]]): def validate(res): for path, count in expected_docs_per_path: assert ( len( filter_none( DocumentArray(res[0].docs) .traverse_flat([path]) .get_attributes('embedding') ) ) == count ) return validate flow = Flow(return_results=True).add(uses=TransformerTorchEncoder) with flow: resp = flow.post( on='/test', inputs=docs, parameters={'traversal_paths': [traversal_path]}, return_results=True, ) validate_traversal(docs_per_path)(resp) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'pea', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:cuda', ], timeout=30, check=True, ) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( ['jina', 'executor', f'--uses=docker://{build_docker_image}'], timeout=30, check=True, )
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import tempfile from unittest import TestCase from unittest.mock import Mock import torch import torch.nn as nn from torch.utils.data import Dataset from mmengine.hooks import EMAHook from mmengine.model import ExponentialMovingAverage from mmengine.optim import OptimWrapper from mmengine.registry import DATASETS, MODEL_WRAPPERS from mmengine.runner import Runner class ToyModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(2, 1) def forward(self, data_batch, return_loss=False): inputs, labels = [], [] for x in data_batch: inputs.append(x['inputs']) labels.append(x['data_sample']) device = 'cuda:0' if torch.cuda.is_available() else 'cpu' inputs = torch.stack(inputs).to(device) labels = torch.stack(labels).to(device) outputs = self.linear(inputs) if return_loss: loss = (labels - outputs).sum() outputs = dict(loss=loss, log_vars=dict(loss=loss.item())) return outputs else: outputs = dict(log_vars=dict(a=1, b=0.5)) return outputs @DATASETS.register_module() class DummyDataset(Dataset): METAINFO = dict() # type: ignore data = torch.randn(12, 2) label = torch.ones(12) def __len__(self): return self.data.size(0) def __getitem__(self, index): return dict(inputs=self.data[index], data_sample=self.label[index]) class TestEMAHook(TestCase): def setUp(self): self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_ema_hook(self): device = 'cuda:0' if torch.cuda.is_available() else 'cpu' model = ToyModel().to(device) evaluator = Mock() evaluator.evaluate = Mock(return_value=dict(acc=0.5)) runner = Runner( model=model, train_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), val_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=False), batch_size=3, num_workers=0), val_evaluator=evaluator, work_dir=self.temp_dir.name, optim_wrapper=OptimWrapper( torch.optim.Adam(ToyModel().parameters())), train_cfg=dict(by_epoch=True, max_epochs=2, val_interval=1), val_cfg=dict(), default_hooks=dict(logger=None), custom_hooks=[dict(type='EMAHook', )], experiment_name='test1') runner.train() for hook in runner.hooks: if isinstance(hook, EMAHook): self.assertTrue( isinstance(hook.ema_model, ExponentialMovingAverage)) self.assertTrue( osp.exists(osp.join(self.temp_dir.name, 'epoch_2.pth'))) checkpoint = torch.load(osp.join(self.temp_dir.name, 'epoch_2.pth')) self.assertTrue('ema_state_dict' in checkpoint) self.assertTrue(checkpoint['ema_state_dict']['steps'] == 8) # load and testing runner = Runner( model=model, test_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), test_evaluator=evaluator, test_cfg=dict(), work_dir=self.temp_dir.name, load_from=osp.join(self.temp_dir.name, 'epoch_2.pth'), default_hooks=dict(logger=None), custom_hooks=[dict(type='EMAHook')], experiment_name='test2') runner.test() @MODEL_WRAPPERS.register_module() class DummyWrapper(nn.Module): def __init__(self, model): super().__init__() self.module = model def forward(self, *args, **kwargs): return self.module(*args, **kwargs) # with model wrapper runner = Runner( model=DummyWrapper(model), test_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), test_evaluator=evaluator, test_cfg=dict(), work_dir=self.temp_dir.name, load_from=osp.join(self.temp_dir.name, 'epoch_2.pth'), default_hooks=dict(logger=None), custom_hooks=[dict(type='EMAHook')], experiment_name='test3') runner.test()
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import tempfile from unittest import TestCase from unittest.mock import Mock import torch import torch.nn as nn from torch.utils.data import Dataset from mmengine.hooks import EMAHook from mmengine.model import ExponentialMovingAverage from mmengine.optim import OptimWrapper from mmengine.registry import DATASETS, MODEL_WRAPPERS from mmengine.runner import Runner class ToyModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(2, 1) def forward(self, data_batch, return_loss=False): inputs, labels = [], [] for x in data_batch: inputs.append(x['inputs']) labels.append(x['data_sample']) device = 'cuda:0' if torch.cuda.is_available() else 'cpu' inputs = torch.stack(inputs).to(device) labels = torch.stack(labels).to(device) outputs = self.linear(inputs) if return_loss: loss = (labels - outputs).sum() outputs = dict(loss=loss, log_vars=dict(loss=loss.item())) return outputs else: outputs = dict(log_vars=dict(a=1, b=0.5)) return outputs @DATASETS.register_module() class DummyDataset(Dataset): METAINFO = dict() # type: ignore data = torch.randn(12, 2) label = torch.ones(12) def __len__(self): return self.data.size(0) def __getitem__(self, index): return dict(inputs=self.data[index], data_sample=self.label[index]) class TestEMAHook(TestCase): def setUp(self): self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_ema_hook(self): device = 'cuda:0' if torch.cuda.is_available() else 'cpu' model = ToyModel().to(device) evaluator = Mock() evaluator.evaluate = Mock(return_value=dict(acc=0.5)) runner = Runner( model=model, train_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), val_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=False), batch_size=3, num_workers=0), val_evaluator=evaluator, work_dir=self.temp_dir.name, optim_wrapper=OptimWrapper( torch.optim.Adam(ToyModel().parameters())), train_cfg=dict(by_epoch=True, max_epochs=2), val_cfg=dict(interval=1), default_hooks=dict(logger=None), custom_hooks=[dict(type='EMAHook', )], experiment_name='test1') runner.train() for hook in runner.hooks: if isinstance(hook, EMAHook): self.assertTrue( isinstance(hook.ema_model, ExponentialMovingAverage)) self.assertTrue( osp.exists(osp.join(self.temp_dir.name, 'epoch_2.pth'))) checkpoint = torch.load(osp.join(self.temp_dir.name, 'epoch_2.pth')) self.assertTrue('ema_state_dict' in checkpoint) self.assertTrue(checkpoint['ema_state_dict']['steps'] == 8) # load and testing runner = Runner( model=model, test_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), test_evaluator=evaluator, test_cfg=dict(), work_dir=self.temp_dir.name, load_from=osp.join(self.temp_dir.name, 'epoch_2.pth'), default_hooks=dict(logger=None), custom_hooks=[dict(type='EMAHook')], experiment_name='test2') runner.test() @MODEL_WRAPPERS.register_module() class DummyWrapper(nn.Module): def __init__(self, model): super().__init__() self.module = model def forward(self, *args, **kwargs): return self.module(*args, **kwargs) # with model wrapper runner = Runner( model=DummyWrapper(model), test_dataloader=dict( dataset=dict(type='DummyDataset'), sampler=dict(type='DefaultSampler', shuffle=True), batch_size=3, num_workers=0), test_evaluator=evaluator, test_cfg=dict(), work_dir=self.temp_dir.name, load_from=osp.join(self.temp_dir.name, 'epoch_2.pth'), default_hooks=dict(logger=None), custom_hooks=[dict(type='EMAHook')], experiment_name='test3') runner.test()
from langchain_huggingface.chat_models import ( ChatHuggingFace, # type: ignore[import-not-found] ) from langchain_huggingface.embeddings import ( HuggingFaceEmbeddings, HuggingFaceEndpointEmbeddings, ) from langchain_huggingface.llms import ( HuggingFaceEndpoint, HuggingFacePipeline, ) __all__ = [ "ChatHuggingFace", "HuggingFaceEmbeddings", "HuggingFaceEndpoint", "HuggingFaceEndpointEmbeddings", "HuggingFacePipeline", ]
from langchain_huggingface.chat_models import ( ChatHuggingFace, # type: ignore[import-not-found] ) from langchain_huggingface.embeddings import ( HuggingFaceEmbeddings, HuggingFaceEndpointEmbeddings, ) from langchain_huggingface.llms import ( HuggingFaceEndpoint, HuggingFacePipeline, ) __all__ = [ "ChatHuggingFace", "HuggingFaceEndpointEmbeddings", "HuggingFaceEmbeddings", "HuggingFaceEndpoint", "HuggingFacePipeline", ]
""" Prompts for implementing Chain of Abstraction. While official prompts are not given (and the paper finetunes models for the task), we can take inspiration and use few-shot prompting to generate a prompt for implementing chain of abstraction in an LLM agent. """ REASONING_PROMPT_TEMPALTE = """Generate an abstract plan of reasoning using placeholders for the specific values and function calls needed. The placeholders should be labeled y1, y2, etc. Function calls should be represented as inline strings like [FUNC {{function_name}}({{input1}}, {{input2}}, ...) = {{output_placeholder}}]. Assume someone will read the plan after the functions have been executed in order to make a final response. Not every question will require function calls to answer. If you do invoke a function, only use the available functions, do not make up functions. Example: ----------- Available functions: ```python def add(a: int, b: int) -> int: \"\"\"Add two numbers together.\"\"\" ... def multiply(a: int, b: int) -> int: \"\"\"Multiply two numbers together.\"\"\" ... ``` Question: Sally has 3 apples and buys 2 more. Then magically, a wizard casts a spell that multiplies the number of apples by 3. How many apples does Sally have now? Abstract plan of reasoning: After buying the apples, Sally has [FUNC add(3, 2) = y1] apples. Then, the wizard casts a spell to multiply the number of apples by 3, resulting in [FUNC multiply("y1", 3) = y2] apples. Your Turn: ----------- Available functions: ```python {functions} ``` Question: {question} Abstract plan of reasoning: """ REFINE_REASONING_PROMPT_TEMPALTE = """Generate a response to a question by using a previous abstract plan of reasoning. Use the previous reasoning as context to write a response to the question. Example: ----------- Question: Sally has 3 apples and buys 2 more. Then magically, a wizard casts a spell that multiplies the number of apples by 3. How many apples does Sally have now? Previous reasoning: After buying the apples, Sally has [FUNC add(3, 2) = 5] apples. Then, the wizard casts a spell to multiply the number of apples by 3, resulting in [FUNC multiply(5, 3) = 15] apples. Response: After the wizard casts the spell, Sally has 15 apples. Your Turn: ----------- Question: {question} Previous reasoning: {prev_reasoning} Response: """
""" Prompts for implementing Chain of Abstraction. While official prompts are not given (and the paper finetunes models for the task), we can take inspiration and use few-shot prompting to generate a prompt for implementing chain of abstraction in an LLM agent. """ REASONING_PROMPT_TEMPALTE = """Generate an abstract plan of reasoning using placeholders for the specific values and function calls needed. The placeholders should be labeled y1, y2, etc. Function calls should be represented as inline strings like [FUNC {{function_name}}({{input1}}, {{input2}}, ...) = {{output_placeholder}}]. Assume someone will read the plan after the functions have been executed in order to make a final response. Not every question will require function calls to answer. If you do invoke a function, only use the available functions, do not make up functions. Example: ----------- Available functions: ```python def add(a: int, b: int) -> int: \"\"\"Add two numbers together.\"\"\" ... def multiply(a: int, b: int) -> int: \"\"\"Multiply two numbers together.\"\"\" ... ``` Question: Sally has 3 apples and buys 2 more. Then magically, a wizard casts a spell that multiplies the number of apples by 3. How many apples does Sally have now? Abstract plan of reasoning: After buying the apples, Sally has [FUNC add(3, 2) = y1] apples. Then, the wizard casts a spell to multiply the number of apples by 3, resulting in [FUNC multiply(y1, 3) = y2] apples. Your Turn: ----------- Available functions: ```python {functions} ``` Question: {question} Abstract plan of reasoning: """ REFINE_REASONING_PROMPT_TEMPALTE = """Generate a response to a question by using a previous abstract plan of reasoning. Use the previous reasoning as context to write a response to the question. Example: ----------- Question: Sally has 3 apples and buys 2 more. Then magically, a wizard casts a spell that multiplies the number of apples by 3. How many apples does Sally have now? Previous reasoning: After buying the apples, Sally has [FUNC add(3, 2) = 5] apples. Then, the wizard casts a spell to multiply the number of apples by 3, resulting in [FUNC multiply(5, 3) = 15] apples. Response: After the wizard casts the spell, Sally has 15 apples. Your Turn: ----------- Question: {question} Previous reasoning: {prev_reasoning} Response: """
from __future__ import annotations try: from typing import Self except ImportError: from typing_extensions import Self import torch import transformers from PIL import Image from sentence_transformers.models.Asym import InputModule class CLIPModel(InputModule): save_in_root: bool = True def __init__(self, model_name: str = "openai/clip-vit-base-patch32", processor_name=None) -> None: super().__init__() if processor_name is None: processor_name = model_name self.model = transformers.CLIPModel.from_pretrained(model_name) self.processor = transformers.CLIPProcessor.from_pretrained(processor_name) def __repr__(self) -> str: return "CLIPModel()" @property def max_seq_length(self) -> int: return self.processor.tokenizer.model_max_length @max_seq_length.setter def max_seq_length(self, value: int) -> None: self.processor.tokenizer.model_max_length = value def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: image_embeds = [] text_embeds = [] if "pixel_values" in features: vision_outputs = self.model.vision_model(pixel_values=features["pixel_values"]) image_embeds = self.model.visual_projection(vision_outputs[1]) if "input_ids" in features: text_outputs = self.model.text_model( input_ids=features.get("input_ids"), attention_mask=features.get("attention_mask", None), position_ids=features.get("position_ids", None), output_attentions=features.get("output_attentions", None), output_hidden_states=features.get("output_hidden_states", None), ) text_embeds = self.model.text_projection(text_outputs[1]) sentence_embedding = [] image_features = iter(image_embeds) text_features = iter(text_embeds) for idx, input_type in enumerate(features["image_text_info"]): if input_type == 0: sentence_embedding.append(next(image_features)) else: sentence_embedding.append(next(text_features)) features["sentence_embedding"] = torch.stack(sentence_embedding).float() return features def tokenize(self, texts, padding: str | bool = True) -> dict[str, torch.Tensor]: images = [] texts_values = [] image_text_info = [] for idx, data in enumerate(texts): if isinstance(data, Image.Image): # An Image images.append(data) image_text_info.append(0) else: # A text texts_values.append(data) image_text_info.append(1) encoding = {} if len(texts_values): encoding = self.processor.tokenizer(texts_values, padding=padding, truncation=True, return_tensors="pt") if len(images): image_features = self.processor.image_processor(images, return_tensors="pt") encoding["pixel_values"] = image_features.pixel_values encoding["image_text_info"] = image_text_info return dict(encoding) @property def tokenizer(self) -> transformers.CLIPProcessor: return self.processor def save(self, output_path: str, *args, safe_serialization: bool = True, **kwargs) -> None: self.model.save_pretrained(output_path, safe_serialization=safe_serialization) self.processor.save_pretrained(output_path) @classmethod def load( cls, model_name_or_path: str, subfolder: str = "", token: bool | str | None = None, cache_folder: str | None = None, revision: str | None = None, local_files_only: bool = False, **kwargs, ) -> Self: local_path = cls.load_dir_path( model_name_or_path=model_name_or_path, subfolder=subfolder, token=token, cache_folder=cache_folder, revision=revision, local_files_only=local_files_only, ) return cls(local_path)
from __future__ import annotations import torch import transformers from PIL import Image from torch import nn class CLIPModel(nn.Module): save_in_root: bool = True def __init__(self, model_name: str = "openai/clip-vit-base-patch32", processor_name=None) -> None: super().__init__() if processor_name is None: processor_name = model_name self.model = transformers.CLIPModel.from_pretrained(model_name) self.processor = transformers.CLIPProcessor.from_pretrained(processor_name) def __repr__(self) -> str: return "CLIPModel()" @property def max_seq_length(self) -> int: return self.processor.tokenizer.model_max_length @max_seq_length.setter def max_seq_length(self, value: int) -> None: self.processor.tokenizer.model_max_length = value def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: image_embeds = [] text_embeds = [] if "pixel_values" in features: vision_outputs = self.model.vision_model(pixel_values=features["pixel_values"]) image_embeds = self.model.visual_projection(vision_outputs[1]) if "input_ids" in features: text_outputs = self.model.text_model( input_ids=features.get("input_ids"), attention_mask=features.get("attention_mask", None), position_ids=features.get("position_ids", None), output_attentions=features.get("output_attentions", None), output_hidden_states=features.get("output_hidden_states", None), ) text_embeds = self.model.text_projection(text_outputs[1]) sentence_embedding = [] image_features = iter(image_embeds) text_features = iter(text_embeds) for idx, input_type in enumerate(features["image_text_info"]): if input_type == 0: sentence_embedding.append(next(image_features)) else: sentence_embedding.append(next(text_features)) features["sentence_embedding"] = torch.stack(sentence_embedding).float() return features def tokenize(self, texts, padding: str | bool = True) -> dict[str, torch.Tensor]: images = [] texts_values = [] image_text_info = [] for idx, data in enumerate(texts): if isinstance(data, Image.Image): # An Image images.append(data) image_text_info.append(0) else: # A text texts_values.append(data) image_text_info.append(1) encoding = {} if len(texts_values): encoding = self.processor.tokenizer(texts_values, padding=padding, truncation=True, return_tensors="pt") if len(images): image_features = self.processor.image_processor(images, return_tensors="pt") encoding["pixel_values"] = image_features.pixel_values encoding["image_text_info"] = image_text_info return dict(encoding) @property def tokenizer(self) -> transformers.CLIPProcessor: return self.processor def save(self, output_path: str) -> None: self.model.save_pretrained(output_path) self.processor.save_pretrained(output_path) @staticmethod def load(input_path: str) -> CLIPModel: return CLIPModel(model_name=input_path)
# Copyright (c) OpenMMLab. All rights reserved. import argparse import subprocess import torch def parse_args(): parser = argparse.ArgumentParser( description='Process a checkpoint to be published') parser.add_argument('in_file', help='input checkpoint filename') parser.add_argument('out_file', help='output checkpoint filename') args = parser.parse_args() return args def process_checkpoint(in_file, out_file): checkpoint = torch.load(in_file, map_location='cpu') # remove optimizer for smaller file size if 'optimizer' in checkpoint: del checkpoint['optimizer'] # if it is necessary to remove some sensitive data in checkpoint['meta'], # add the code here. if torch.__version__ >= '1.6': torch.save(checkpoint, out_file, _use_new_zipfile_serialization=False) else: torch.save(checkpoint, out_file) sha = subprocess.check_output(['sha256sum', out_file]).decode() if out_file.endswith('.pth'): out_file_name = out_file[:-4] else: out_file_name = out_file final_file = out_file_name + f'-{sha[:8]}.pth' subprocess.Popen(['mv', out_file, final_file]) def main(): args = parse_args() process_checkpoint(args.in_file, args.out_file) if __name__ == '__main__': main()
import argparse import subprocess import torch def parse_args(): parser = argparse.ArgumentParser( description='Process a checkpoint to be published') parser.add_argument('in_file', help='input checkpoint filename') parser.add_argument('out_file', help='output checkpoint filename') args = parser.parse_args() return args def process_checkpoint(in_file, out_file): checkpoint = torch.load(in_file, map_location='cpu') # remove optimizer for smaller file size if 'optimizer' in checkpoint: del checkpoint['optimizer'] # if it is necessary to remove some sensitive data in checkpoint['meta'], # add the code here. if torch.__version__ >= '1.6': torch.save(checkpoint, out_file, _use_new_zipfile_serialization=False) else: torch.save(checkpoint, out_file) sha = subprocess.check_output(['sha256sum', out_file]).decode() if out_file.endswith('.pth'): out_file_name = out_file[:-4] else: out_file_name = out_file final_file = out_file_name + f'-{sha[:8]}.pth' subprocess.Popen(['mv', out_file, final_file]) def main(): args = parse_args() process_checkpoint(args.in_file, args.out_file) if __name__ == '__main__': main()
from keras.src import activations from keras.src import backend from keras.src.api_export import keras_export from keras.src.layers.layer import Layer def _large_negative_number(dtype): """Return a Large negative number based on dtype.""" if backend.standardize_dtype(dtype) == "float16": return -3e4 return -1e9 @keras_export("keras.layers.Softmax") class Softmax(Layer): """Softmax activation layer. Formula: ``` python exp_x = exp(x - max(x)) f(x) = exp_x / sum(exp_x) ``` Example: >>>softmax_layer = keras.layers.activations.Softmax() >>>input = np.array([1.0, 2.0, 1.0]) >>>result = softmax_layer(input) [0.21194157, 0.5761169, 0.21194157] Args: axis: Integer, or list of Integers, axis along which the softmax normalization is applied. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. Call arguments: inputs: The inputs (logits) to the softmax layer. mask: A boolean mask of the same shape as `inputs`. The mask specifies 1 to keep and 0 to mask. Defaults to `None`. Returns: Softmaxed output with the same shape as `inputs`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) self.supports_masking = True self.axis = axis def call(self, inputs, mask=None): if mask is not None: adder = ( 1.0 - backend.cast(mask, inputs.dtype) ) * _large_negative_number(inputs.dtype) inputs += adder if isinstance(self.axis, (tuple, list)): if len(self.axis) > 1: return backend.numpy.exp( inputs - backend.math.logsumexp( inputs, axis=self.axis, keepdims=True ) ) else: return activations.softmax(inputs, axis=self.axis[0]) return activations.softmax(inputs, axis=self.axis) def get_config(self): config = super().get_config() config.update({"axis": self.axis}) return config def compute_output_shape(self, input_shape): return input_shape
from keras.src import activations from keras.src import backend from keras.src.api_export import keras_export from keras.src.layers.layer import Layer def _large_negative_number(dtype): """Return a Large negative number based on dtype.""" if backend.standardize_dtype(dtype) == "float16": return -3e4 return -1e9 @keras_export("keras.layers.Softmax") class Softmax(Layer): """Softmax activation layer. Formula: ``` python exp_x = exp(x - max(x)) f(x) = exp_x / sum(exp_x) ``` Example: >>>softmax_layer = keras.layers.activations.Softmax() >>>input = np.array([1.0, 2.0, 1.0]) >>>result = softmax_layer(input) [0.21194157, 0.5761169, 0.21194157] Args: axis: Integer, or list of Integers, axis along which the softmax normalization is applied. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. Call arguments: inputs: The inputs (logits) to the softmax layer. mask: A boolean mask of the same shape as `inputs`. The mask specifies 1 to keep and 0 to mask. Defaults to `None`. Returns: Softmaxed output with the same shape as `inputs`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) self.supports_masking = True self.axis = axis self.built = True def call(self, inputs, mask=None): if mask is not None: adder = ( 1.0 - backend.cast(mask, inputs.dtype) ) * _large_negative_number(inputs.dtype) inputs += adder if isinstance(self.axis, (tuple, list)): if len(self.axis) > 1: return backend.numpy.exp( inputs - backend.math.logsumexp( inputs, axis=self.axis, keepdims=True ) ) else: return activations.softmax(inputs, axis=self.axis[0]) return activations.softmax(inputs, axis=self.axis) def get_config(self): config = super().get_config() config.update({"axis": self.axis}) return config def compute_output_shape(self, input_shape): return input_shape
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.14.7.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.14.6.dev0" from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import HEADS from .standard_roi_head import StandardRoIHead @HEADS.register_module() class DoubleHeadRoIHead(StandardRoIHead): """RoI head for Double Head RCNN. https://arxiv.org/abs/1904.06493 """ def __init__(self, reg_roi_scale_factor, **kwargs): super(DoubleHeadRoIHead, self).__init__(**kwargs) self.reg_roi_scale_factor = reg_roi_scale_factor def _bbox_forward(self, x, rois): """Box head forward function used in both training and testing time.""" bbox_cls_feats = self.bbox_roi_extractor( x[:self.bbox_roi_extractor.num_inputs], rois) bbox_reg_feats = self.bbox_roi_extractor( x[:self.bbox_roi_extractor.num_inputs], rois, roi_scale_factor=self.reg_roi_scale_factor) if self.with_shared_head: bbox_cls_feats = self.shared_head(bbox_cls_feats) bbox_reg_feats = self.shared_head(bbox_reg_feats) cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats) bbox_results = dict( cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_cls_feats) return bbox_results
from ..builder import HEADS from .standard_roi_head import StandardRoIHead @HEADS.register_module() class DoubleHeadRoIHead(StandardRoIHead): """RoI head for Double Head RCNN. https://arxiv.org/abs/1904.06493 """ def __init__(self, reg_roi_scale_factor, **kwargs): super(DoubleHeadRoIHead, self).__init__(**kwargs) self.reg_roi_scale_factor = reg_roi_scale_factor def _bbox_forward(self, x, rois): """Box head forward function used in both training and testing time.""" bbox_cls_feats = self.bbox_roi_extractor( x[:self.bbox_roi_extractor.num_inputs], rois) bbox_reg_feats = self.bbox_roi_extractor( x[:self.bbox_roi_extractor.num_inputs], rois, roi_scale_factor=self.reg_roi_scale_factor) if self.with_shared_head: bbox_cls_feats = self.shared_head(bbox_cls_feats) bbox_reg_feats = self.shared_head(bbox_reg_feats) cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats) bbox_results = dict( cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_cls_feats) return bbox_results
from collections.abc import Sequence from langchain_core.tools import BaseTool def validate_tools_single_input(class_name: str, tools: Sequence[BaseTool]) -> None: """Validate tools for single input. Args: class_name: Name of the class. tools: List of tools to validate. Raises: ValueError: If a multi-input tool is found in tools. """ for tool in tools: if not tool.is_single_input: raise ValueError( f"{class_name} does not support multi-input tool {tool.name}." )
from typing import Sequence from langchain_core.tools import BaseTool def validate_tools_single_input(class_name: str, tools: Sequence[BaseTool]) -> None: """Validate tools for single input. Args: class_name: Name of the class. tools: List of tools to validate. Raises: ValueError: If a multi-input tool is found in tools. """ for tool in tools: if not tool.is_single_input: raise ValueError( f"{class_name} does not support multi-input tool {tool.name}." )
# Copyright (c) OpenMMLab. All rights reserved. from .backends import (BaseStorageBackend, HTTPBackend, LmdbBackend, LocalBackend, MemcachedBackend, PetrelBackend, register_backend) from .file_client import FileClient, HardDiskBackend from .handlers import (BaseFileHandler, JsonHandler, PickleHandler, YamlHandler, register_handler) from .io import (copy_if_symlink_fails, copyfile, copyfile_from_local, copyfile_to_local, copytree, copytree_from_local, copytree_to_local, dump, exists, generate_presigned_url, get, get_file_backend, get_local_path, get_text, isdir, isfile, join_path, list_dir_or_file, load, put, put_text, remove, rmtree) from .parse import dict_from_file, list_from_file __all__ = [ 'BaseStorageBackend', 'FileClient', 'PetrelBackend', 'MemcachedBackend', 'LmdbBackend', 'HardDiskBackend', 'LocalBackend', 'HTTPBackend', 'copy_if_symlink_fails', 'copyfile', 'copyfile_from_local', 'copyfile_to_local', 'copytree', 'copytree_from_local', 'copytree_to_local', 'exists', 'generate_presigned_url', 'get', 'get_file_backend', 'get_local_path', 'get_text', 'isdir', 'isfile', 'join_path', 'list_dir_or_file', 'put', 'put_text', 'remove', 'rmtree', 'load', 'dump', 'register_handler', 'BaseFileHandler', 'JsonHandler', 'PickleHandler', 'YamlHandler', 'list_from_file', 'dict_from_file', 'register_backend' ]
# Copyright (c) OpenMMLab. All rights reserved. from .file_client import (BaseStorageBackend, FileClient, HardDiskBackend, HTTPBackend, LmdbBackend, MemcachedBackend, PetrelBackend) from .handlers import BaseFileHandler, JsonHandler, PickleHandler, YamlHandler from .io import dump, load, register_handler from .parse import dict_from_file, list_from_file __all__ = [ 'BaseStorageBackend', 'FileClient', 'PetrelBackend', 'MemcachedBackend', 'LmdbBackend', 'HardDiskBackend', 'HTTPBackend', 'load', 'dump', 'register_handler', 'BaseFileHandler', 'JsonHandler', 'PickleHandler', 'YamlHandler', 'list_from_file', 'dict_from_file' ]
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import string import random import pytest import time import os cur_dir = os.path.dirname(os.path.abspath(__file__)) milvus_yml = os.path.abspath(os.path.join(cur_dir, 'docker-compose.yml')) @pytest.fixture(scope='session', autouse=True) def start_storage(): os.system(f"docker compose -f {milvus_yml} up -d --remove-orphans") time.sleep(2) yield os.system(f"docker compose -f {milvus_yml} down --remove-orphans") @pytest.fixture(scope='function') def tmp_index_name(): letters = string.ascii_lowercase random_string = ''.join(random.choice(letters) for _ in range(15)) return random_string
import string import random import pytest import time import os cur_dir = os.path.dirname(os.path.abspath(__file__)) milvus_yml = os.path.abspath(os.path.join(cur_dir, 'docker-compose.yml')) @pytest.fixture(scope='session', autouse=True) def start_storage(): os.system(f"docker compose -f {milvus_yml} up -d --remove-orphans") time.sleep(2) yield os.system(f"docker compose -f {milvus_yml} down --remove-orphans") @pytest.fixture(scope='function') def tmp_index_name(): letters = string.ascii_lowercase random_string = ''.join(random.choice(letters) for _ in range(15)) return random_string
"""This module contains all classes used for composing graphs over indices.""" from llama_index.core.indices.composability.graph import ComposableGraph __all__ = ["ComposableGraph"]
"""This module contains all classes used for composing graphs over indices.""" from llama_index.core.indices.composability.graph import ComposableGraph __all__ = ["ComposableGraph"]
"""Tests for tf.distribute related functionality under tf implementation.""" import numpy as np import pytest import tensorflow as tf from tensorflow.python.eager import context from keras.src import backend from keras.src import layers from keras.src import models from keras.src import testing from keras.src.backend.tensorflow import trainer as tf_trainer @pytest.mark.skipif( backend.backend() != "tensorflow", reason="The distribute test can only run with TF backend.", ) class DistributeTest(testing.TestCase): def setUp(self): super().setUp() # Need at least 2 devices for distribution related tests. cpus = tf.config.list_physical_devices("CPU") context._reset_context() tf.config.set_logical_device_configuration( cpus[0], [ tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration(), ], ) def test_variable_creation(self): strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) with strategy.scope(): dense = layers.Dense(2) dense.build([4, 2]) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance( dense.kernel.value, tf.distribute.DistributedValues ) self.assertIn("MirroredVariable", dense.kernel.value.__class__.__name__) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance(dense.bias.value, tf.distribute.DistributedValues) self.assertIn("MirroredVariable", dense.bias.value.__class__.__name__) def test_strategy_run(self): strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) with strategy.scope(): inputs = layers.Input(shape=[4]) dense = layers.Dense(2) output = dense(inputs) model = models.Functional(inputs, output) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance( dense.kernel.value, tf.distribute.DistributedValues ) def input_fn(ctx): if ctx.replica_id_in_sync_group == 1: return tf.ones([8, 4]) else: return tf.zeros([8, 4]) distributed_inputs = ( strategy.experimental_distribute_values_from_function(input_fn) ) @tf.function def run_fn(data): return model(data) result = strategy.run(run_fn, args=(distributed_inputs,)) self.assertIsInstance( result, tf.types.experimental.distributed.PerReplica ) self.assertLen(result.values, 2) self.assertEqual(result.values[0].shape, [8, 2]) self.assertEqual(result.values[1].shape, [8, 2]) self.assertNotAllClose(result.values[0], result.values[1]) self.assertAllClose(result.values[0], tf.zeros([8, 2])) def test_epoch_iterator(self): x = np.random.random((100, 16)) y = np.random.random((100, 4)) sample_weight = np.random.random((100,)) batch_size = 16 shuffle = True strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) epoch_iterator = tf_trainer.TFEpochIterator( x=x, y=y, sample_weight=sample_weight, batch_size=batch_size, shuffle=shuffle, distribute_strategy=strategy, ) steps_seen = [] for step, data_iterator in epoch_iterator: steps_seen.append(step) batch = next(data_iterator) self.assertEqual(len(batch), 3) x, y, sample_weight = batch self.assertTrue( isinstance(x, tf.types.experimental.distributed.PerReplica) ) # Make sure the local batch size is 8 if step < 6: self.assertEqual(x.values[0].shape, [8, 16]) self.assertEqual(y.values[0].shape, [8, 4]) self.assertEqual(sample_weight.values[0].shape, [8]) else: # Last partial batch self.assertEqual(x.values[0].shape, [2, 16]) self.assertEqual(y.values[0].shape, [2, 4]) self.assertEqual(sample_weight.values[0].shape, [2]) self.assertEqual(steps_seen, [0, 1, 2, 3, 4, 5, 6])
"""Tests for tf.distribute related functionality under tf implementation.""" import numpy as np import pytest import tensorflow as tf from tensorflow.python.eager import context from keras.src import backend from keras.src import layers from keras.src import models from keras.src import testing from keras.src.backend.tensorflow import trainer as tf_trainer @pytest.mark.skipif( backend.backend() != "tensorflow", reason="The distribute test can only run with TF backend.", ) class DistributeTest(testing.TestCase): def setUp(self): super().setUp() # Need at least 2 devices for distribution related tests. cpus = tf.config.list_physical_devices("CPU") context._reset_context() tf.config.set_logical_device_configuration( cpus[0], [ tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration(), ], ) def test_variable_creation(self): strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) with strategy.scope(): dense = layers.Dense(2) dense.build([4, 2]) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance( dense.kernel.value, tf.distribute.DistributedValues ) self.assertIn("MirroredVariable", dense.kernel.value.__class__.__name__) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance(dense.bias.value, tf.distribute.DistributedValues) self.assertIn("MirroredVariable", dense.bias.value.__class__.__name__) def test_strategy_run(self): strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) with strategy.scope(): inputs = layers.Input(shape=[4]) dense = layers.Dense(2) output = dense(inputs) model = models.Functional(inputs, output) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance( dense.kernel.value, tf.distribute.DistributedValues ) def input_fn(ctx): if ctx.replica_id_in_sync_group == 1: return tf.ones([8, 4]) else: return tf.zeros([8, 4]) distributed_inputs = ( strategy.experimental_distribute_values_from_function(input_fn) ) @tf.function def run_fn(data): return model(data) result = strategy.run(run_fn, args=(distributed_inputs,)) self.assertIsInstance( result, tf.types.experimental.distributed.PerReplica ) self.assertLen(result.values, 2) self.assertEqual(result.values[0].shape, [8, 2]) self.assertEqual(result.values[1].shape, [8, 2]) self.assertNotAllClose(result.values[0], result.values[1]) self.assertAllClose(result.values[0], tf.zeros([8, 2])) def test_epoch_iterator(self): x = np.random.random((100, 16)) y = np.random.random((100, 4)) sample_weight = np.random.random((100,)) batch_size = 16 shuffle = True strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) epoch_iterator = tf_trainer.TFEpochIterator( x=x, y=y, sample_weight=sample_weight, batch_size=batch_size, shuffle=shuffle, distribute_strategy=strategy, ) steps_seen = [] for step, data_iterator in epoch_iterator.enumerate_epoch(): steps_seen.append(step) batch = next(data_iterator) self.assertEqual(len(batch), 3) x, y, sample_weight = batch self.assertTrue( isinstance(x, tf.types.experimental.distributed.PerReplica) ) # Make sure the local batch size is 8 if step < 6: self.assertEqual(x.values[0].shape, [8, 16]) self.assertEqual(y.values[0].shape, [8, 4]) self.assertEqual(sample_weight.values[0].shape, [8]) else: # Last partial batch self.assertEqual(x.values[0].shape, [2, 16]) self.assertEqual(y.values[0].shape, [2, 4]) self.assertEqual(sample_weight.values[0].shape, [2]) self.assertEqual(steps_seen, [0, 1, 2, 3, 4, 5, 6])
from llama_index.core.memory.chat_memory_buffer import ChatMemoryBuffer from llama_index.core.memory.chat_summary_memory_buffer import ChatSummaryMemoryBuffer from llama_index.core.memory.types import BaseMemory from llama_index.core.memory.vector_memory import VectorMemory from llama_index.core.memory.simple_composable_memory import SimpleComposableMemory from llama_index.core.memory.memory import Memory from llama_index.core.memory.memory_blocks import ( StaticMemoryBlock, VectorMemoryBlock, FactExtractionMemoryBlock, ) __all__ = [ "BaseMemory", "Memory", "StaticMemoryBlock", "VectorMemoryBlock", "FactExtractionMemoryBlock", # Deprecated "ChatMemoryBuffer", "ChatSummaryMemoryBuffer", "SimpleComposableMemory", "VectorMemory", ]
from llama_index.core.memory.chat_memory_buffer import ChatMemoryBuffer from llama_index.core.memory.chat_summary_memory_buffer import ChatSummaryMemoryBuffer from llama_index.core.memory.types import BaseMemory from llama_index.core.memory.vector_memory import VectorMemory from llama_index.core.memory.simple_composable_memory import SimpleComposableMemory __all__ = [ "BaseMemory", "ChatMemoryBuffer", "ChatSummaryMemoryBuffer", "SimpleComposableMemory", "VectorMemory", ]
__version__ = '0.14.3' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
__version__ = '0.14.2' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox') test_evaluator = val_evaluator # training schedule for 3x with `RepeatDataset` train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate # Experiments show that using milestones=[9, 11] has higher performance param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[9, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox') test_evaluator = val_evaluator # training schedule for 3x with `RepeatDataset` train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate # Experiments show that using milestones=[9, 11] has higher performance param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[9, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16)
import os import sys from typing import Iterator, TYPE_CHECKING import numpy as np if TYPE_CHECKING: from docarray import Document file_dir = os.path.dirname(__file__) sys.path.append(os.path.dirname(file_dir)) def random_docs( num_docs, chunks_per_doc=5, embed_dim=10, jitter=1, start_id=0, embedding=True, sparse_embedding=False, text='hello world', ) -> Iterator['Document']: from docarray import Document next_chunk_doc_id = start_id + num_docs for j in range(num_docs): doc_id = str(start_id + j) d = Document(id=doc_id) d.text = text d.tags['id'] = doc_id if embedding: if sparse_embedding: from scipy.sparse import coo_matrix d.embedding = coo_matrix( (np.array([1, 1, 1]), (np.array([0, 1, 2]), np.array([1, 2, 1]))) ) else: d.embedding = np.random.random( [embed_dim + np.random.randint(0, jitter)] ) for _ in range(chunks_per_doc): chunk_doc_id = str(next_chunk_doc_id) c = Document(id=chunk_doc_id) c.text = 'i\'m chunk %s from doc %s' % (chunk_doc_id, doc_id) if embedding: c.embedding = np.random.random( [embed_dim + np.random.randint(0, jitter)] ) c.tags['parent_id'] = doc_id c.tags['id'] = chunk_doc_id d.chunks.append(c) next_chunk_doc_id += 1 yield d def validate_callback(mock, validate_func): for args, kwargs in mock.call_args_list: validate_func(*args, **kwargs) mock.assert_called()
import os import sys from typing import Iterator, TYPE_CHECKING import numpy as np if TYPE_CHECKING: from jina import Document file_dir = os.path.dirname(__file__) sys.path.append(os.path.dirname(file_dir)) def random_docs( num_docs, chunks_per_doc=5, embed_dim=10, jitter=1, start_id=0, embedding=True, sparse_embedding=False, text='hello world', ) -> Iterator['Document']: from docarray import Document next_chunk_doc_id = start_id + num_docs for j in range(num_docs): doc_id = str(start_id + j) d = Document(id=doc_id) d.text = text d.tags['id'] = doc_id if embedding: if sparse_embedding: from scipy.sparse import coo_matrix d.embedding = coo_matrix( (np.array([1, 1, 1]), (np.array([0, 1, 2]), np.array([1, 2, 1]))) ) else: d.embedding = np.random.random( [embed_dim + np.random.randint(0, jitter)] ) for _ in range(chunks_per_doc): chunk_doc_id = str(next_chunk_doc_id) c = Document(id=chunk_doc_id) c.text = 'i\'m chunk %s from doc %s' % (chunk_doc_id, doc_id) if embedding: c.embedding = np.random.random( [embed_dim + np.random.randint(0, jitter)] ) c.tags['parent_id'] = doc_id c.tags['id'] = chunk_doc_id d.chunks.append(c) next_chunk_doc_id += 1 yield d def validate_callback(mock, validate_func): for args, kwargs in mock.call_args_list: validate_func(*args, **kwargs) mock.assert_called()
import pytest from docarray import Document, DocumentArray from jina import Executor, requests from jina.clients.request import request_generator from jina.logging.logger import JinaLogger from jina.parsers import set_pod_parser from jina.serve.runtimes.request_handlers.data_request_handler import DataRequestHandler class NewDocsExecutor(Executor): @requests def foo(self, docs, **kwargs): return DocumentArray([Document(text='new document')]) class AsyncNewDocsExecutor(Executor): @requests async def foo(self, docs, **kwargs): return DocumentArray([Document(text='new document')]) class ChangeDocsExecutor(Executor): @requests def foo(self, docs, **kwargs): for doc in docs: doc.text = 'changed document' class MergeChangeDocsExecutor(Executor): @requests def foo(self, docs, **kwargs): for doc in docs: doc.text = 'changed document' return docs class ClearDocsExecutor(Executor): @requests def foo(self, docs, **kwargs): docs.clear() @pytest.fixture() def logger(): return JinaLogger('data request handler') @pytest.mark.asyncio async def test_data_request_handler_new_docs(logger): args = set_pod_parser().parse_args(['--uses', 'NewDocsExecutor']) handler = DataRequestHandler(args, logger) req = list( request_generator( '/', DocumentArray([Document(text='input document') for _ in range(10)]) ) )[0] assert len(req.docs) == 10 response = await handler.handle(requests=[req]) assert len(response.docs) == 1 assert response.docs[0].text == 'new document' @pytest.mark.asyncio async def test_aync_data_request_handler_new_docs(logger): args = set_pod_parser().parse_args(['--uses', 'AsyncNewDocsExecutor']) handler = DataRequestHandler(args, logger) req = list( request_generator( '/', DocumentArray([Document(text='input document') for _ in range(10)]) ) )[0] assert len(req.docs) == 10 response = await handler.handle(requests=[req]) assert len(response.docs) == 1 assert response.docs[0].text == 'new document' @pytest.mark.asyncio async def test_data_request_handler_change_docs(logger): args = set_pod_parser().parse_args(['--uses', 'ChangeDocsExecutor']) handler = DataRequestHandler(args, logger) req = list( request_generator( '/', DocumentArray([Document(text='input document') for _ in range(10)]) ) )[0] assert len(req.docs) == 10 response = await handler.handle(requests=[req]) assert len(response.docs) == 10 for doc in response.docs: assert doc.text == 'changed document' @pytest.mark.asyncio async def test_data_request_handler_change_docs_from_partial_requests(logger): NUM_PARTIAL_REQUESTS = 5 args = set_pod_parser().parse_args(['--uses', 'MergeChangeDocsExecutor']) handler = DataRequestHandler(args, logger) partial_reqs = [ list( request_generator( '/', DocumentArray([Document(text='input document') for _ in range(10)]) ) )[0] ] * NUM_PARTIAL_REQUESTS assert len(partial_reqs) == 5 assert len(partial_reqs[0].docs) == 10 response = await handler.handle(requests=partial_reqs) assert len(response.docs) == 10 * NUM_PARTIAL_REQUESTS for doc in response.docs: assert doc.text == 'changed document' @pytest.mark.asyncio async def test_data_request_handler_clear_docs(logger): args = set_pod_parser().parse_args(['--uses', 'ClearDocsExecutor']) handler = DataRequestHandler(args, logger) req = list( request_generator( '/', DocumentArray([Document(text='input document') for _ in range(10)]) ) )[0] assert len(req.docs) == 10 response = await handler.handle(requests=[req]) assert len(response.docs) == 0
import pytest from docarray import Document, DocumentArray from jina import Executor, requests from jina.logging.logger import JinaLogger from jina.parsers import set_pod_parser from jina.serve.runtimes.request_handlers.data_request_handler import ( DataRequestHandler, ) from jina.clients.request import request_generator class NewDocsExecutor(Executor): @requests def foo(self, docs, **kwargs): return DocumentArray([Document(text='new document')]) class AsyncNewDocsExecutor(Executor): @requests async def foo(self, docs, **kwargs): return DocumentArray([Document(text='new document')]) class ChangeDocsExecutor(Executor): @requests def foo(self, docs, **kwargs): for doc in docs: doc.text = 'changed document' class MergeChangeDocsExecutor(Executor): @requests def foo(self, docs, **kwargs): for doc in docs: doc.text = 'changed document' return docs class ClearDocsExecutor(Executor): @requests def foo(self, docs, **kwargs): docs.clear() @pytest.fixture() def logger(): return JinaLogger('data request handler') @pytest.mark.asyncio async def test_data_request_handler_new_docs(logger): args = set_pod_parser().parse_args(['--uses', 'NewDocsExecutor']) handler = DataRequestHandler(args, logger) req = list( request_generator( '/', DocumentArray([Document(text='input document') for _ in range(10)]) ) )[0] assert len(req.docs) == 10 response = await handler.handle(requests=[req]) assert len(response.docs) == 1 assert response.docs[0].text == 'new document' @pytest.mark.asyncio async def test_aync_data_request_handler_new_docs(logger): args = set_pod_parser().parse_args(['--uses', 'AsyncNewDocsExecutor']) handler = DataRequestHandler(args, logger) req = list( request_generator( '/', DocumentArray([Document(text='input document') for _ in range(10)]) ) )[0] assert len(req.docs) == 10 response = await handler.handle(requests=[req]) assert len(response.docs) == 1 assert response.docs[0].text == 'new document' @pytest.mark.asyncio async def test_data_request_handler_change_docs(logger): args = set_pod_parser().parse_args(['--uses', 'ChangeDocsExecutor']) handler = DataRequestHandler(args, logger) req = list( request_generator( '/', DocumentArray([Document(text='input document') for _ in range(10)]) ) )[0] assert len(req.docs) == 10 response = await handler.handle(requests=[req]) assert len(response.docs) == 10 for doc in response.docs: assert doc.text == 'changed document' @pytest.mark.asyncio async def test_data_request_handler_change_docs_from_partial_requests(logger): NUM_PARTIAL_REQUESTS = 5 args = set_pod_parser().parse_args(['--uses', 'MergeChangeDocsExecutor']) handler = DataRequestHandler(args, logger) partial_reqs = [ list( request_generator( '/', DocumentArray([Document(text='input document') for _ in range(10)]) ) )[0] ] * NUM_PARTIAL_REQUESTS assert len(partial_reqs) == 5 assert len(partial_reqs[0].docs) == 10 response = await handler.handle(requests=partial_reqs) assert len(response.docs) == 10 * NUM_PARTIAL_REQUESTS for doc in response.docs: assert doc.text == 'changed document' @pytest.mark.asyncio async def test_data_request_handler_clear_docs(logger): args = set_pod_parser().parse_args(['--uses', 'ClearDocsExecutor']) handler = DataRequestHandler(args, logger) req = list( request_generator( '/', DocumentArray([Document(text='input document') for _ in range(10)]) ) )[0] assert len(req.docs) == 10 response = await handler.handle(requests=[req]) assert len(response.docs) == 0
from keras.src import ops from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.UnitNormalization") class UnitNormalization(Layer): """Unit normalization layer. Normalize a batch of inputs so that each input in the batch has a L2 norm equal to 1 (across the axes specified in `axis`). Example: >>> data = np.arange(6).reshape(2, 3) >>> normalized_data = keras.layers.UnitNormalization()(data) >>> np.sum(normalized_data[0, :] ** 2) 1.0 Args: axis: Integer or list/tuple. The axis or axes to normalize across. Typically, this is the features axis or axes. The left-out axes are typically the batch axis or axes. `-1` is the last dimension in the input. Defaults to `-1`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) if isinstance(axis, (list, tuple)): self.axis = list(axis) elif isinstance(axis, int): self.axis = axis else: raise TypeError( "Invalid value for `axis` argument: " "expected an int or a list/tuple of ints. " f"Received: axis={axis}" ) self.supports_masking = True self.built = True def call(self, inputs): x = ops.cast(inputs, self.compute_dtype) square_sum = ops.sum(ops.square(x), axis=self.axis, keepdims=True) x_inv_norm = ops.rsqrt(ops.maximum(square_sum, 1e-12)) return ops.multiply(x, x_inv_norm) def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = super().get_config() config.update({"axis": self.axis}) return config
from keras.src import ops from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.UnitNormalization") class UnitNormalization(Layer): """Unit normalization layer. Normalize a batch of inputs so that each input in the batch has a L2 norm equal to 1 (across the axes specified in `axis`). Example: >>> data = np.arange(6).reshape(2, 3) >>> normalized_data = keras.layers.UnitNormalization()(data) >>> np.sum(normalized_data[0, :] ** 2) 1.0 Args: axis: Integer or list/tuple. The axis or axes to normalize across. Typically, this is the features axis or axes. The left-out axes are typically the batch axis or axes. `-1` is the last dimension in the input. Defaults to `-1`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) if isinstance(axis, (list, tuple)): self.axis = list(axis) elif isinstance(axis, int): self.axis = axis else: raise TypeError( "Invalid value for `axis` argument: " "expected an int or a list/tuple of ints. " f"Received: axis={axis}" ) self.supports_masking = True def build(self, input_shape): self.built = True def call(self, inputs): x = ops.cast(inputs, self.compute_dtype) square_sum = ops.sum(ops.square(x), axis=self.axis, keepdims=True) x_inv_norm = ops.rsqrt(ops.maximum(square_sum, 1e-12)) return ops.multiply(x, x_inv_norm) def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = super().get_config() config.update({"axis": self.axis}) return config
import posixpath from pathlib import Path import fsspec import pytest from fsspec.implementations.local import AbstractFileSystem, LocalFileSystem, stringify_path class MockFileSystem(AbstractFileSystem): protocol = "mock" def __init__(self, *args, local_root_dir, **kwargs): super().__init__() self._fs = LocalFileSystem(*args, **kwargs) self.local_root_dir = Path(local_root_dir).resolve().as_posix() + "/" def mkdir(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.mkdir(path, *args, **kwargs) def makedirs(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.makedirs(path, *args, **kwargs) def rmdir(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rmdir(path) def ls(self, path, detail=True, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) out = self._fs.ls(path, detail=detail, *args, **kwargs) if detail: return [{**info, "name": info["name"][len(self.local_root_dir) :]} for info in out] else: return [name[len(self.local_root_dir) :] for name in out] def info(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) out = dict(self._fs.info(path, *args, **kwargs)) out["name"] = out["name"][len(self.local_root_dir) :] return out def cp_file(self, path1, path2, *args, **kwargs): path1 = posixpath.join(self.local_root_dir, self._strip_protocol(path1)) path2 = posixpath.join(self.local_root_dir, self._strip_protocol(path2)) return self._fs.cp_file(path1, path2, *args, **kwargs) def rm_file(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rm_file(path, *args, **kwargs) def rm(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rm(path, *args, **kwargs) def _open(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs._open(path, *args, **kwargs) def created(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.created(path) def modified(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.modified(path) @classmethod def _strip_protocol(cls, path): path = stringify_path(path) if path.startswith("mock://"): path = path[7:] return path @pytest.fixture def mock_fsspec(): original_registry = fsspec.registry.copy() fsspec.register_implementation("mock", MockFileSystem) yield fsspec.registry = original_registry @pytest.fixture def mockfs(tmp_path_factory, mock_fsspec): local_fs_dir = tmp_path_factory.mktemp("mockfs") return MockFileSystem(local_root_dir=local_fs_dir, auto_mkdir=True)
import posixpath from pathlib import Path import fsspec import pytest from fsspec.implementations.local import AbstractFileSystem, LocalFileSystem, stringify_path class MockFileSystem(AbstractFileSystem): protocol = "mock" def __init__(self, *args, local_root_dir, **kwargs): super().__init__() self._fs = LocalFileSystem(*args, **kwargs) self.local_root_dir = Path(local_root_dir).resolve().as_posix() + "/" def mkdir(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.mkdir(path, *args, **kwargs) def makedirs(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.makedirs(path, *args, **kwargs) def rmdir(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rmdir(path) def ls(self, path, detail=True, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) out = self._fs.ls(path, detail=detail, *args, **kwargs) if detail: return [{**info, "name": info["name"][len(self.local_root_dir) :]} for info in out] else: return [name[len(self.local_root_dir) :] for name in out] def info(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) out = dict(self._fs.info(path, *args, **kwargs)) out["name"] = out["name"][len(self.local_root_dir) :] return out def cp_file(self, path1, path2, *args, **kwargs): path1 = posixpath.join(self.local_root_dir, self._strip_protocol(path1)) path2 = posixpath.join(self.local_root_dir, self._strip_protocol(path2)) return self._fs.cp_file(path1, path2, *args, **kwargs) def rm_file(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rm_file(path, *args, **kwargs) def rm(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rm(path, *args, **kwargs) def _open(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs._open(path, *args, **kwargs) def created(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.created(path) def modified(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.modified(path) @classmethod def _strip_protocol(cls, path): path = stringify_path(path) if path.startswith("mock://"): path = path[7:] return path @pytest.fixture def mock_fsspec(monkeypatch): monkeypatch.setitem(fsspec.registry.target, "mock", MockFileSystem) @pytest.fixture def mockfs(tmp_path_factory, mock_fsspec): local_fs_dir = tmp_path_factory.mktemp("mockfs") return MockFileSystem(local_root_dir=local_fs_dir, auto_mkdir=True)
import json from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union import PIL.Image from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class Food101(VisionDataset): """`The Food-101 Data Set <https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/>`_. The Food-101 is a challenging data set of 101 food categories with 101,000 images. For each class, 250 manually reviewed test images are provided as well as 750 training images. On purpose, the training images were not cleaned, and thus still contain some amount of noise. This comes mostly in the form of intense colors and sometimes wrong labels. All images were rescaled to have a maximum side length of 512 pixels. Args: root (str or ``pathlib.Path``): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default) and ``"test"``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Default is False. """ _URL = "http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz" _MD5 = "85eeb15f3717b99a5da872d97d918f87" def __init__( self, root: Union[str, Path], split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "test")) self._base_folder = Path(self.root) / "food-101" self._meta_folder = self._base_folder / "meta" self._images_folder = self._base_folder / "images" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") self._labels = [] self._image_files = [] with open(self._meta_folder / f"{split}.json") as f: metadata = json.loads(f.read()) self.classes = sorted(metadata.keys()) self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) for class_label, im_rel_paths in metadata.items(): self._labels += [self.class_to_idx[class_label]] * len(im_rel_paths) self._image_files += [ self._images_folder.joinpath(*f"{im_rel_path}.jpg".split("/")) for im_rel_path in im_rel_paths ] def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def extra_repr(self) -> str: return f"split={self._split}" def _check_exists(self) -> bool: return all(folder.exists() and folder.is_dir() for folder in (self._meta_folder, self._images_folder)) def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)
import json from pathlib import Path from typing import Any, Callable, Optional, Tuple import PIL.Image from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class Food101(VisionDataset): """`The Food-101 Data Set <https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/>`_. The Food-101 is a challenging data set of 101 food categories with 101,000 images. For each class, 250 manually reviewed test images are provided as well as 750 training images. On purpose, the training images were not cleaned, and thus still contain some amount of noise. This comes mostly in the form of intense colors and sometimes wrong labels. All images were rescaled to have a maximum side length of 512 pixels. Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default) and ``"test"``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Default is False. """ _URL = "http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz" _MD5 = "85eeb15f3717b99a5da872d97d918f87" def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "test")) self._base_folder = Path(self.root) / "food-101" self._meta_folder = self._base_folder / "meta" self._images_folder = self._base_folder / "images" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") self._labels = [] self._image_files = [] with open(self._meta_folder / f"{split}.json") as f: metadata = json.loads(f.read()) self.classes = sorted(metadata.keys()) self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) for class_label, im_rel_paths in metadata.items(): self._labels += [self.class_to_idx[class_label]] * len(im_rel_paths) self._image_files += [ self._images_folder.joinpath(*f"{im_rel_path}.jpg".split("/")) for im_rel_path in im_rel_paths ] def __len__(self) -> int: return len(self._image_files) def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label def extra_repr(self) -> str: return f"split={self._split}" def _check_exists(self) -> bool: return all(folder.exists() and folder.is_dir() for folder in (self._meta_folder, self._images_folder)) def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)
from abc import abstractmethod from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, TypeVar, Union from docarray import Document, DocumentArray from docarray.math import ndarray from docarray.score import NamedScore from qdrant_client.http import models from qdrant_client.http.models.models import Distance if TYPE_CHECKING: # pragma: no cover import numpy as np import tensorflow import torch from qdrant_client import QdrantClient QdrantArrayType = TypeVar( 'QdrantArrayType', np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float], ) class FindMixin: @property @abstractmethod def client(self) -> 'QdrantClient': raise NotImplementedError() @property @abstractmethod def collection_name(self) -> str: raise NotImplementedError() @property @abstractmethod def serialize_config(self) -> dict: raise NotImplementedError() @property @abstractmethod def distance(self) -> 'Distance': raise NotImplementedError() def _find_similar_vectors( self, q: 'QdrantArrayType', limit: int = 10, filter: Optional[Dict] = None, search_params: Optional[Dict] = None, **kwargs, ): query_vector = self._map_embedding(q) search_result = self.client.search( self.collection_name, query_vector=query_vector, query_filter=filter, search_params=None if not search_params else models.SearchParams(**search_params), limit=limit, append_payload=['_serialized'], ) docs = [] for hit in search_result: doc = Document.from_base64( hit.payload['_serialized'], **self.serialize_config ) doc.scores[f'{self.distance.lower()}_similarity'] = NamedScore( value=hit.score ) docs.append(doc) return DocumentArray(docs) def _find( self, query: 'QdrantArrayType', limit: int = 10, filter: Optional[Dict] = None, search_params: Optional[Dict] = None, **kwargs, ) -> List['DocumentArray']: """Returns approximate nearest neighbors given a batch of input queries. :param query: input supported to be used in Qdrant. :param limit: number of retrieved items :param filter: filter query used for pre-filtering :param search_params: additional parameters of the search :return: a list of DocumentArrays containing the closest Document objects for each of the queries in `query`. """ num_rows, _ = ndarray.get_array_rows(query) if num_rows == 1: return [ self._find_similar_vectors( query, limit=limit, filter=filter, search_params=search_params ) ] else: closest_docs = [] for q in query: da = self._find_similar_vectors( q, limit=limit, filter=filter, search_params=search_params ) closest_docs.append(da) return closest_docs def _find_with_filter( self, filter: Optional[Dict], limit: Optional[Union[int, float]] = 10 ): list_of_points, _offset = self.client.scroll( collection_name=self.collection_name, scroll_filter=models.Filter(**filter), with_payload=True, limit=limit, ) da = DocumentArray() for result in list_of_points[:limit]: doc = Document.from_base64( result.payload['_serialized'], **self.serialize_config ) da.append(doc) return da def _filter( self, filter: Optional[Dict], limit: Optional[Union[int, float]] = 10 ) -> 'DocumentArray': """Returns a subset of documents by filtering by the given filter (`Qdrant` filter).. :param limit: number of retrieved items :param filter: filter query used for filtering. For more information: https://docarray.jina.ai/advanced/document-store/qdrant/#qdrant :return: a `DocumentArray` containing the `Document` objects that verify the filter. """ return self._find_with_filter(filter, limit=limit)
from abc import abstractmethod from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, TypeVar, Union from docarray import Document, DocumentArray from docarray.math import ndarray from docarray.score import NamedScore from qdrant_client.http import models as rest from qdrant_client.http.models.models import Distance if TYPE_CHECKING: # pragma: no cover import numpy as np import tensorflow import torch from qdrant_client import QdrantClient QdrantArrayType = TypeVar( 'QdrantArrayType', np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float], ) class FindMixin: @property @abstractmethod def client(self) -> 'QdrantClient': raise NotImplementedError() @property @abstractmethod def collection_name(self) -> str: raise NotImplementedError() @property @abstractmethod def serialize_config(self) -> dict: raise NotImplementedError() @property @abstractmethod def distance(self) -> 'Distance': raise NotImplementedError() def _find_similar_vectors( self, q: 'QdrantArrayType', limit: int = 10, filter: Optional[Dict] = None, search_params: Optional[Dict] = None, **kwargs, ): query_vector = self._map_embedding(q) search_result = self.client.search( self.collection_name, query_vector=query_vector, query_filter=filter, search_params=None if not search_params else rest.SearchParams(**search_params), limit=limit, append_payload=['_serialized'], ) docs = [] for hit in search_result: doc = Document.from_base64( hit.payload['_serialized'], **self.serialize_config ) doc.scores[f'{self.distance.lower()}_similarity'] = NamedScore( value=hit.score ) docs.append(doc) return DocumentArray(docs) def _find( self, query: 'QdrantArrayType', limit: int = 10, filter: Optional[Dict] = None, search_params: Optional[Dict] = None, **kwargs, ) -> List['DocumentArray']: """Returns approximate nearest neighbors given a batch of input queries. :param query: input supported to be used in Qdrant. :param limit: number of retrieved items :param filter: filter query used for pre-filtering :param search_params: additional parameters of the search :return: a list of DocumentArrays containing the closest Document objects for each of the queries in `query`. """ num_rows, _ = ndarray.get_array_rows(query) if num_rows == 1: return [ self._find_similar_vectors( query, limit=limit, filter=filter, search_params=search_params ) ] else: closest_docs = [] for q in query: da = self._find_similar_vectors( q, limit=limit, filter=filter, search_params=search_params ) closest_docs.append(da) return closest_docs def _find_with_filter( self, filter: Optional[Dict], limit: Optional[Union[int, float]] = 10 ): list_of_points, _offset = self.client.scroll( collection_name=self.collection_name, scroll_filter=rest.Filter(**filter), with_payload=True, limit=limit, ) da = DocumentArray() for result in list_of_points[:limit]: doc = Document.from_base64( result.payload['_serialized'], **self.serialize_config ) da.append(doc) return da def _filter( self, filter: Optional[Dict], limit: Optional[Union[int, float]] = 10 ) -> 'DocumentArray': """Returns a subset of documents by filtering by the given filter (`Qdrant` filter).. :param limit: number of retrieved items :param filter: filter query used for filtering. For more information: https://docarray.jina.ai/advanced/document-store/qdrant/#qdrant :return: a `DocumentArray` containing the `Document` objects that verify the filter. """ return self._find_with_filter(filter, limit=limit)
#!/usr/bin/env python import functools as func import glob import os.path as osp import re import numpy as np url_prefix = 'https://github.com/open-mmlab/mmdetection/blob/3.x/configs' files = sorted(glob.glob('../../configs/*/README.md')) stats = [] titles = [] num_ckpts = 0 for f in files: url = osp.dirname(f.replace('../../configs', url_prefix)) with open(f, 'r') as content_file: content = content_file.read() title = content.split('\n')[0].replace('# ', '').strip() ckpts = set(x.lower().strip() for x in re.findall(r'\[model\]\((https?.*)\)', content)) if len(ckpts) == 0: continue _papertype = [x for x in re.findall(r'\[([A-Z]+)\]', content)] assert len(_papertype) > 0 papertype = _papertype[0] paper = set([(papertype, title)]) titles.append(title) num_ckpts += len(ckpts) statsmsg = f""" \t* [{papertype}] [{title}]({url}) ({len(ckpts)} ckpts) """ stats.append((paper, ckpts, statsmsg)) allpapers = func.reduce(lambda a, b: a.union(b), [p for p, _, _ in stats]) msglist = '\n'.join(x for _, _, x in stats) papertypes, papercounts = np.unique([t for t, _ in allpapers], return_counts=True) countstr = '\n'.join( [f' - {t}: {c}' for t, c in zip(papertypes, papercounts)]) modelzoo = f""" # Model Zoo Statistics * Number of papers: {len(set(titles))} {countstr} * Number of checkpoints: {num_ckpts} {msglist} """ with open('modelzoo_statistics.md', 'w') as f: f.write(modelzoo)
#!/usr/bin/env python import functools as func import glob import os.path as osp import re import numpy as np url_prefix = 'https://github.com/open-mmlab/mmdetection/blob/master/configs' files = sorted(glob.glob('../../configs/*/README.md')) stats = [] titles = [] num_ckpts = 0 for f in files: url = osp.dirname(f.replace('../../configs', url_prefix)) with open(f, 'r') as content_file: content = content_file.read() title = content.split('\n')[0].replace('# ', '').strip() ckpts = set(x.lower().strip() for x in re.findall(r'\[model\]\((https?.*)\)', content)) if len(ckpts) == 0: continue _papertype = [x for x in re.findall(r'\[([A-Z]+)\]', content)] assert len(_papertype) > 0 papertype = _papertype[0] paper = set([(papertype, title)]) titles.append(title) num_ckpts += len(ckpts) statsmsg = f""" \t* [{papertype}] [{title}]({url}) ({len(ckpts)} ckpts) """ stats.append((paper, ckpts, statsmsg)) allpapers = func.reduce(lambda a, b: a.union(b), [p for p, _, _ in stats]) msglist = '\n'.join(x for _, _, x in stats) papertypes, papercounts = np.unique([t for t, _ in allpapers], return_counts=True) countstr = '\n'.join( [f' - {t}: {c}' for t, c in zip(papertypes, papercounts)]) modelzoo = f""" # Model Zoo Statistics * Number of papers: {len(set(titles))} {countstr} * Number of checkpoints: {num_ckpts} {msglist} """ with open('modelzoo_statistics.md', 'w') as f: f.write(modelzoo)
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py' # model settings preprocess_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True, pad_size_divisor=32) model = dict( preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNeXt', depth=101, groups=64, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d'))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scale=[(1333, 640), (1333, 800)], resize_cfg=dict(type='Resize', keep_ratio=True)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 2x train_cfg = dict(by_epoch=True, max_epochs=24) # learning rate param_scheduler = [ dict(type='ConstantLR', factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py' model = dict( backbone=dict( type='ResNeXt', depth=101, groups=64, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d'))) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 640), (1333, 800)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict( lr=0.01, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.)) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict(step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24)
"""Retrieval evaluators.""" from typing import List, Optional, Tuple from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.bridge.pydantic import Field, SerializeAsAny from llama_index.core.evaluation.retrieval.base import ( BaseRetrievalEvaluator, RetrievalEvalMode, ) from llama_index.core.indices.base_retriever import BaseRetriever from llama_index.core.postprocessor.types import BaseNodePostprocessor from llama_index.core.schema import ImageNode, TextNode class RetrieverEvaluator(BaseRetrievalEvaluator): """Retriever evaluator. This module will evaluate a retriever using a set of metrics. Args: metrics (List[BaseRetrievalMetric]): Sequence of metrics to evaluate retriever: Retriever to evaluate. node_postprocessors (Optional[List[BaseNodePostprocessor]]): Post-processor to apply after retrieval. """ retriever: BaseRetriever = Field(..., description="Retriever to evaluate") node_postprocessors: Optional[List[SerializeAsAny[BaseNodePostprocessor]]] = Field( default=None, description="Optional post-processor" ) async def _aget_retrieved_ids_and_texts( self, query: str, mode: RetrievalEvalMode = RetrievalEvalMode.TEXT ) -> Tuple[List[str], List[str]]: """Get retrieved ids and texts, potentially applying a post-processor.""" retrieved_nodes = await self.retriever.aretrieve(query) if self.node_postprocessors: for node_postprocessor in self.node_postprocessors: retrieved_nodes = node_postprocessor.postprocess_nodes( retrieved_nodes, query_str=query ) return ( [node.node.node_id for node in retrieved_nodes], [node.text for node in retrieved_nodes], ) class MultiModalRetrieverEvaluator(BaseRetrievalEvaluator): """Retriever evaluator. This module will evaluate a retriever using a set of metrics. Args: metrics (List[BaseRetrievalMetric]): Sequence of metrics to evaluate retriever: Retriever to evaluate. node_postprocessors (Optional[List[BaseNodePostprocessor]]): Post-processor to apply after retrieval. """ retriever: BaseRetriever = Field(..., description="Retriever to evaluate") node_postprocessors: Optional[List[SerializeAsAny[BaseNodePostprocessor]]] = Field( default=None, description="Optional post-processor" ) async def _aget_retrieved_ids_and_texts( self, query: str, mode: RetrievalEvalMode = RetrievalEvalMode.TEXT ) -> Tuple[List[str], List[str]]: """Get retrieved ids.""" retrieved_nodes = await self.retriever.aretrieve(query) image_nodes: List[ImageNode] = [] text_nodes: List[TextNode] = [] if self.node_postprocessors: for node_postprocessor in self.node_postprocessors: retrieved_nodes = node_postprocessor.postprocess_nodes( retrieved_nodes, query_str=query ) for scored_node in retrieved_nodes: node = scored_node.node if isinstance(node, ImageNode): image_nodes.append(node) if isinstance(node, TextNode): text_nodes.append(node) if mode == "text": return ( [node.node_id for node in text_nodes], [node.text for node in text_nodes], ) elif mode == "image": return ( [node.node_id for node in image_nodes], [node.text for node in image_nodes], ) else: raise ValueError("Unsupported mode.")
"""Retrieval evaluators.""" from typing import List, Optional, Tuple from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.bridge.pydantic import Field, SerializeAsAny from llama_index.core.evaluation.retrieval.base import ( BaseRetrievalEvaluator, RetrievalEvalMode, ) from llama_index.core.indices.base_retriever import BaseRetriever from llama_index.core.postprocessor.types import BaseNodePostprocessor from llama_index.core.schema import ImageNode, TextNode class RetrieverEvaluator(BaseRetrievalEvaluator): """Retriever evaluator. This module will evaluate a retriever using a set of metrics. Args: metrics (List[BaseRetrievalMetric]): Sequence of metrics to evaluate retriever: Retriever to evaluate. node_postprocessors (Optional[List[BaseNodePostprocessor]]): Post-processor to apply after retrieval. """ retriever: BaseRetriever = Field(..., description="Retriever to evaluate") node_postprocessors: Optional[List[SerializeAsAny[BaseNodePostprocessor]]] = Field( default=None, description="Optional post-processor" ) async def _aget_retrieved_ids_and_texts( self, query: str, mode: RetrievalEvalMode = RetrievalEvalMode.TEXT ) -> Tuple[List[str], List[str]]: """Get retrieved ids and texts, potentially applying a post-processor.""" retrieved_nodes = await self.retriever.aretrieve(query) if self.node_postprocessors: for node_postprocessor in self.node_postprocessors: retrieved_nodes = node_postprocessor.postprocess_nodes( retrieved_nodes, query_str=query ) return ( [node.node.node_id for node in retrieved_nodes], [node.node.text for node in retrieved_nodes], ) class MultiModalRetrieverEvaluator(BaseRetrievalEvaluator): """Retriever evaluator. This module will evaluate a retriever using a set of metrics. Args: metrics (List[BaseRetrievalMetric]): Sequence of metrics to evaluate retriever: Retriever to evaluate. node_postprocessors (Optional[List[BaseNodePostprocessor]]): Post-processor to apply after retrieval. """ retriever: BaseRetriever = Field(..., description="Retriever to evaluate") node_postprocessors: Optional[List[SerializeAsAny[BaseNodePostprocessor]]] = Field( default=None, description="Optional post-processor" ) async def _aget_retrieved_ids_and_texts( self, query: str, mode: RetrievalEvalMode = RetrievalEvalMode.TEXT ) -> Tuple[List[str], List[str]]: """Get retrieved ids.""" retrieved_nodes = await self.retriever.aretrieve(query) image_nodes: List[ImageNode] = [] text_nodes: List[TextNode] = [] if self.node_postprocessors: for node_postprocessor in self.node_postprocessors: retrieved_nodes = node_postprocessor.postprocess_nodes( retrieved_nodes, query_str=query ) for scored_node in retrieved_nodes: node = scored_node.node if isinstance(node, ImageNode): image_nodes.append(node) if node.text: text_nodes.append(node) if mode == "text": return ( [node.node_id for node in text_nodes], [node.text for node in text_nodes], ) elif mode == "image": return ( [node.node_id for node in image_nodes], [node.text for node in image_nodes], ) else: raise ValueError("Unsupported mode.")
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, TypeVar, Union import numpy as np from docarray import Document, DocumentArray from docarray.array.mixins.find import FindMixin as BaseFindMixin from docarray.math import ndarray from docarray.math.ndarray import to_numpy_array from docarray.score import NamedScore from redis.commands.search.query import Query from redis.commands.search.querystring import ( DistjunctUnion, IntersectNode, equal, ge, gt, intersect, le, lt, union, ) if TYPE_CHECKING: import tensorflow import torch RedisArrayType = TypeVar( 'RedisArrayType', np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float], Dict, ) class FindMixin(BaseFindMixin): def _find_similar_vectors( self, query: 'RedisArrayType', filter: Optional[Dict] = None, limit: int = 20, **kwargs, ): if filter: nodes = _build_query_nodes(filter) query_str = intersect(*nodes).to_string() else: query_str = '*' q = ( Query(f'({query_str})=>[KNN {limit} @embedding $vec AS vector_score]') .sort_by('vector_score') .paging(0, limit) .dialect(2) ) query_params = {'vec': to_numpy_array(query).astype(np.float32).tobytes()} results = ( self._client.ft(index_name=self._config.index_name) .search(q, query_params) .docs ) da = DocumentArray() for res in results: doc = Document.from_base64(res.blob.encode()) doc.scores['score'] = NamedScore(value=res.vector_score) da.append(doc) return da def _find( self, query: 'RedisArrayType', limit: int = 20, filter: Optional[Dict] = None, **kwargs, ) -> List['DocumentArray']: query = np.array(query) num_rows, n_dim = ndarray.get_array_rows(query) if n_dim != 2: query = query.reshape((num_rows, -1)) return [ self._find_similar_vectors(q, filter=filter, limit=limit, **kwargs) for q in query ] def _find_with_filter(self, filter: Dict, limit: int = 20): nodes = _build_query_nodes(filter) query_str = intersect(*nodes).to_string() q = Query(query_str) q.paging(0, limit) results = self._client.ft(index_name=self._config.index_name).search(q).docs da = DocumentArray() for res in results: doc = Document.from_base64(res.blob.encode()) da.append(doc) return da def _filter(self, filter: Dict, limit: int = 20) -> 'DocumentArray': return self._find_with_filter(filter, limit=limit) def _build_query_node(key, condition): operator = list(condition.keys())[0] value = condition[operator] query_dict = {} if operator in ['$ne', '$eq']: if isinstance(value, bool): query_dict[key] = equal(int(value)) elif isinstance(value, (int, float)): query_dict[key] = equal(value) else: query_dict[key] = value elif operator == '$gt': query_dict[key] = gt(value) elif operator == '$gte': query_dict[key] = ge(value) elif operator == '$lt': query_dict[key] = lt(value) elif operator == '$lte': query_dict[key] = le(value) else: raise ValueError( f'Expecting filter operator one of $gt, $gte, $lt, $lte, $eq, $ne, $and OR $or, got {operator} instead' ) if operator == '$ne': return DistjunctUnion(**query_dict) return IntersectNode(**query_dict) def _build_query_nodes(filter): nodes = [] for k, v in filter.items(): if k == '$and': children = _build_query_nodes(v) node = intersect(*children) nodes.append(node) elif k == '$or': children = _build_query_nodes(v) node = union(*children) nodes.append(node) else: child = _build_query_node(k, v) nodes.append(child) return nodes
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, TypeVar, Union import numpy as np from docarray import Document, DocumentArray from docarray.array.mixins.find import FindMixin as BaseFindMixin from docarray.math import ndarray from docarray.math.ndarray import to_numpy_array from docarray.score import NamedScore from redis.commands.search.query import NumericFilter, Query if TYPE_CHECKING: import tensorflow import torch RedisArrayType = TypeVar( 'RedisArrayType', np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float], Dict, ) class FindMixin(BaseFindMixin): def _find_similar_vectors( self, query: 'RedisArrayType', filter: Optional[Dict] = None, limit: Optional[Union[int, float]] = 20, **kwargs, ): query_str = self._build_query_str(filter) if filter else "*" q = ( Query(f'{query_str}=>[KNN {limit} @embedding $vec AS vector_score]') .sort_by('vector_score') .paging(0, limit) .dialect(2) ) query_params = {'vec': to_numpy_array(query).astype(np.float32).tobytes()} results = ( self._client.ft(index_name=self._config.index_name) .search(q, query_params) .docs ) da = DocumentArray() for res in results: doc = Document.from_base64(res.blob.encode()) doc.scores['score'] = NamedScore(value=res.vector_score) da.append(doc) return da def _find( self, query: 'RedisArrayType', limit: Optional[Union[int, float]] = 20, filter: Optional[Dict] = None, **kwargs, ) -> List['DocumentArray']: query = np.array(query) num_rows, n_dim = ndarray.get_array_rows(query) if n_dim != 2: query = query.reshape((num_rows, -1)) return [ self._find_similar_vectors(q, filter=filter, limit=limit, **kwargs) for q in query ] def _find_with_filter(self, filter: Dict, limit: Optional[Union[int, float]] = 20): s = self._build_query_str(filter) q = Query(s) q.paging(0, limit) results = self._client.ft(index_name=self._config.index_name).search(q).docs da = DocumentArray() for res in results: doc = Document.from_base64(res.blob.encode()) da.append(doc) return da def _filter( self, filter: Dict, limit: Optional[Union[int, float]] = 20 ) -> 'DocumentArray': return self._find_with_filter(filter, limit=limit) def _build_query_str(self, filter: Dict) -> str: INF = "+inf" NEG_INF = "-inf" s = "(" for key in filter: operator = list(filter[key].keys())[0] value = filter[key][operator] if operator == '$gt': s += f"@{key}:[({value} {INF}] " elif operator == '$gte': s += f"@{key}:[{value} {INF}] " elif operator == '$lt': s += f"@{key}:[{NEG_INF} ({value}] " elif operator == '$lte': s += f"@{key}:[{NEG_INF} {value}] " elif operator == '$eq': if type(value) is int: s += f"@{key}:[{value} {value}] " elif type(value) is bool: s += f"@{key}:[{int(value)} {int(value)}] " else: s += f"@{key}:{value} " elif operator == '$ne': if type(value) is int: s += f"-@{key}:[{value} {value}] " elif type(value) is bool: s += f"-@{key}:[{int(value)} {int(value)}] " else: s += f"-@{key}:{value} " s += ")" return s
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from typing import List, Optional, Tuple import torch import torch.nn as nn from mmcv import ops from mmengine.model import BaseModule from torch import Tensor from mmdet.utils import ConfigType, OptMultiConfig class BaseRoIExtractor(BaseModule, metaclass=ABCMeta): """Base class for RoI extractor. Args: roi_layer (:obj:`ConfigDict` or dict): Specify RoI layer type and arguments. out_channels (int): Output channels of RoI layers. featmap_strides (list[int]): Strides of input feature maps. init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \ dict], optional): Initialization config dict. Defaults to None. """ def __init__(self, roi_layer: ConfigType, out_channels: int, featmap_strides: List[int], init_cfg: OptMultiConfig = None) -> None: super().__init__(init_cfg=init_cfg) self.roi_layers = self.build_roi_layers(roi_layer, featmap_strides) self.out_channels = out_channels self.featmap_strides = featmap_strides @property def num_inputs(self) -> int: """int: Number of input feature maps.""" return len(self.featmap_strides) def build_roi_layers(self, layer_cfg: ConfigType, featmap_strides: List[int]) -> nn.ModuleList: """Build RoI operator to extract feature from each level feature map. Args: layer_cfg (:obj:`ConfigDict` or dict): Dictionary to construct and config RoI layer operation. Options are modules under ``mmcv/ops`` such as ``RoIAlign``. featmap_strides (list[int]): The stride of input feature map w.r.t to the original image size, which would be used to scale RoI coordinate (original image coordinate system) to feature coordinate system. Returns: :obj:`nn.ModuleList`: The RoI extractor modules for each level feature map. """ cfg = layer_cfg.copy() layer_type = cfg.pop('type') assert hasattr(ops, layer_type) layer_cls = getattr(ops, layer_type) roi_layers = nn.ModuleList( [layer_cls(spatial_scale=1 / s, **cfg) for s in featmap_strides]) return roi_layers def roi_rescale(self, rois: Tensor, scale_factor: float) -> Tensor: """Scale RoI coordinates by scale factor. Args: rois (Tensor): RoI (Region of Interest), shape (n, 5) scale_factor (float): Scale factor that RoI will be multiplied by. Returns: Tensor: Scaled RoI. """ cx = (rois[:, 1] + rois[:, 3]) * 0.5 cy = (rois[:, 2] + rois[:, 4]) * 0.5 w = rois[:, 3] - rois[:, 1] h = rois[:, 4] - rois[:, 2] new_w = w * scale_factor new_h = h * scale_factor x1 = cx - new_w * 0.5 x2 = cx + new_w * 0.5 y1 = cy - new_h * 0.5 y2 = cy + new_h * 0.5 new_rois = torch.stack((rois[:, 0], x1, y1, x2, y2), dim=-1) return new_rois @abstractmethod def forward(self, feats: Tuple[Tensor], rois: Tensor, roi_scale_factor: Optional[float] = None) -> Tensor: """Extractor ROI feats. Args: feats (Tuple[Tensor]): Multi-scale features. rois (Tensor): RoIs with the shape (n, 5) where the first column indicates batch id of each RoI. roi_scale_factor (Optional[float]): RoI scale factor. Defaults to None. Returns: Tensor: RoI feature. """ pass
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from typing import List, Optional, Tuple import torch import torch.nn as nn from mmcv import ops from mmengine.model import BaseModule from torch import Tensor from mmdet.utils import ConfigType, OptMultiConfig class BaseRoIExtractor(BaseModule, metaclass=ABCMeta): """Base class for RoI extractor. Args: roi_layer (:obj:`ConfigDict` or dict): Specify RoI layer type and arguments. out_channels (int): Output channels of RoI layers. featmap_strides (list[int]): Strides of input feature maps. init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \ dict], optional): Initialization config dict. Defaults to None. """ def __init__(self, roi_layer: ConfigType, out_channels: int, featmap_strides: List[int], init_cfg: OptMultiConfig = None) -> None: super().__init__(init_cfg=init_cfg) self.roi_layers = self.build_roi_layers(roi_layer, featmap_strides) self.out_channels = out_channels self.featmap_strides = featmap_strides self.fp16_enabled = False @property def num_inputs(self) -> int: """int: Number of input feature maps.""" return len(self.featmap_strides) def build_roi_layers(self, layer_cfg: ConfigType, featmap_strides: List[int]) -> nn.ModuleList: """Build RoI operator to extract feature from each level feature map. Args: layer_cfg (:obj:`ConfigDict` or dict): Dictionary to construct and config RoI layer operation. Options are modules under ``mmcv/ops`` such as ``RoIAlign``. featmap_strides (list[int]): The stride of input feature map w.r.t to the original image size, which would be used to scale RoI coordinate (original image coordinate system) to feature coordinate system. Returns: :obj:`nn.ModuleList`: The RoI extractor modules for each level feature map. """ cfg = layer_cfg.copy() layer_type = cfg.pop('type') assert hasattr(ops, layer_type) layer_cls = getattr(ops, layer_type) roi_layers = nn.ModuleList( [layer_cls(spatial_scale=1 / s, **cfg) for s in featmap_strides]) return roi_layers def roi_rescale(self, rois: Tensor, scale_factor: float) -> Tensor: """Scale RoI coordinates by scale factor. Args: rois (Tensor): RoI (Region of Interest), shape (n, 5) scale_factor (float): Scale factor that RoI will be multiplied by. Returns: Tensor: Scaled RoI. """ cx = (rois[:, 1] + rois[:, 3]) * 0.5 cy = (rois[:, 2] + rois[:, 4]) * 0.5 w = rois[:, 3] - rois[:, 1] h = rois[:, 4] - rois[:, 2] new_w = w * scale_factor new_h = h * scale_factor x1 = cx - new_w * 0.5 x2 = cx + new_w * 0.5 y1 = cy - new_h * 0.5 y2 = cy + new_h * 0.5 new_rois = torch.stack((rois[:, 0], x1, y1, x2, y2), dim=-1) return new_rois @abstractmethod def forward(self, feats: Tuple[Tensor], rois: Tensor, roi_scale_factor: Optional[float] = None) -> Tensor: """Extractor ROI feats. Args: feats (Tuple[Tensor]): Multi-scale features. rois (Tensor): RoIs with the shape (n, 5) where the first column indicates batch id of each RoI. roi_scale_factor (Optional[float]): RoI scale factor. Defaults to None. Returns: Tensor: RoI feature. """ pass
import os import librosa from jina import Executor, Document, DocumentArray from tensorflow.python.framework import ops from ...vggish import vggish_input from ...vggish_audio_encoder import VggishAudioEncoder cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_load(): encoder = Executor.load_config(os.path.join(cur_dir, '../../config.yml')) assert str(encoder.vgg_model_path).endswith('vggish_model.ckpt') assert str(encoder.pca_model_path).endswith('vggish_pca_params.ckpt') def test_embedding_dimension(): x_audio, sample_rate = librosa.load(os.path.join(cur_dir, '../test_data/sample.wav')) log_mel_examples = vggish_input.waveform_to_examples(x_audio, sample_rate) doc = DocumentArray([Document(blob=log_mel_examples)]) ops.reset_default_graph() model = VggishAudioEncoder() model.encode(doc, parameters={}) assert doc[0].embedding.shape == (128,)
import os import librosa from jina import Executor, Document, DocumentArray from tensorflow.python.framework import ops from ...vggish import vggish_input from ...vggish_audio_encoder import VggishAudioEncoder cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_load(): encoder = Executor.load_config(os.path.join(cur_dir, '../../config.yml')) assert encoder.model_path.endswith('vggish_model.ckpt') def test_embedding_dimension(): x_audio, sample_rate = librosa.load(os.path.join(cur_dir, '../test_data/sample.wav')) log_mel_examples = vggish_input.waveform_to_examples(x_audio, sample_rate) doc = DocumentArray([Document(blob=log_mel_examples)]) ops.reset_default_graph() model = VggishAudioEncoder() model.encode(doc, parameters={}) assert doc[0].embedding.shape[-1] == 128
_base_ = [ '../_base_/models/cascade-rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ]
_base_ = [ '../_base_/models/cascade_rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ]
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy from keras.src.ops.nn import sparse_plus from keras.src.ops.nn import squareplus from keras.src.ops.nn import tanh_shrink
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.nn import average_pool from keras.src.ops.nn import batch_normalization from keras.src.ops.nn import binary_crossentropy from keras.src.ops.nn import categorical_crossentropy from keras.src.ops.nn import celu from keras.src.ops.nn import conv from keras.src.ops.nn import conv_transpose from keras.src.ops.nn import ctc_decode from keras.src.ops.nn import ctc_loss from keras.src.ops.nn import depthwise_conv from keras.src.ops.nn import dot_product_attention from keras.src.ops.nn import elu from keras.src.ops.nn import gelu from keras.src.ops.nn import glu from keras.src.ops.nn import hard_shrink from keras.src.ops.nn import hard_sigmoid from keras.src.ops.nn import hard_silu from keras.src.ops.nn import hard_silu as hard_swish from keras.src.ops.nn import hard_tanh from keras.src.ops.nn import leaky_relu from keras.src.ops.nn import log_sigmoid from keras.src.ops.nn import log_softmax from keras.src.ops.nn import max_pool from keras.src.ops.nn import moments from keras.src.ops.nn import multi_hot from keras.src.ops.nn import normalize from keras.src.ops.nn import one_hot from keras.src.ops.nn import psnr from keras.src.ops.nn import relu from keras.src.ops.nn import relu6 from keras.src.ops.nn import selu from keras.src.ops.nn import separable_conv from keras.src.ops.nn import sigmoid from keras.src.ops.nn import silu from keras.src.ops.nn import silu as swish from keras.src.ops.nn import soft_shrink from keras.src.ops.nn import softmax from keras.src.ops.nn import softplus from keras.src.ops.nn import softsign from keras.src.ops.nn import sparse_categorical_crossentropy from keras.src.ops.nn import squareplus from keras.src.ops.nn import tanh_shrink
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import fire from llama import Llama def main( ckpt_dir: str, tokenizer_path: str, temperature: float = 0.6, top_p: float = 0.9, max_seq_len: int = 128, max_gen_len: int = 64, max_batch_size: int = 4, ): """ Entry point of the program for generating text using a pretrained model. Args: ckpt_dir (str): The directory containing checkpoint files for the pretrained model. tokenizer_path (str): The path to the tokenizer model used for text encoding/decoding. temperature (float, optional): The temperature value for controlling randomness in generation. Defaults to 0.6. top_p (float, optional): The top-p sampling parameter for controlling diversity in generation. Defaults to 0.9. max_seq_len (int, optional): The maximum sequence length for input prompts. Defaults to 128. max_gen_len (int, optional): The maximum length of generated sequences. Defaults to 64. max_batch_size (int, optional): The maximum batch size for generating sequences. Defaults to 4. """ generator = Llama.build( ckpt_dir=ckpt_dir, tokenizer_path=tokenizer_path, max_seq_len=max_seq_len, max_batch_size=max_batch_size, ) prompts = [ # For these prompts, the expected answer is the natural continuation of the prompt "I believe the meaning of life is", "Simply put, the theory of relativity states that ", """A brief message congratulating the team on the launch: Hi everyone, I just """, # Few shot prompt (providing a few examples before asking model to complete more); """Translate English to French: sea otter => loutre de mer peppermint => menthe poivrée plush girafe => girafe peluche cheese =>""", ] results = generator.text_completion( prompts, max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, ) for prompt, result in zip(prompts, results): print(prompt) print(f"> {result['generation']}") print("\n==================================\n") if __name__ == "__main__": fire.Fire(main)
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import fire from llama import Llama def main( ckpt_dir: str, tokenizer_path: str, temperature: float = 0.6, top_p: float = 0.9, max_seq_len: int = 128, max_gen_len: int = 64, max_batch_size: int = 4, ): generator = Llama.build( ckpt_dir=ckpt_dir, tokenizer_path=tokenizer_path, max_seq_len=max_seq_len, max_batch_size=max_batch_size, ) prompts = [ # For these prompts, the expected answer is the natural continuation of the prompt "I believe the meaning of life is", "Simply put, the theory of relativity states that ", """A brief message congratulating the team on the launch: Hi everyone, I just """, # Few shot prompt (providing a few examples before asking model to complete more); """Translate English to French: sea otter => loutre de mer peppermint => menthe poivrée plush girafe => girafe peluche cheese =>""", ] results = generator.text_completion( prompts, max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, ) for prompt, result in zip(prompts, results): print(prompt) print(f"> {result['generation']}") print("\n==================================\n") if __name__ == "__main__": fire.Fire(main)
_base_ = ['./mask2former_r50_lsj_8x2_50e_coco-panoptic.py'] num_things_classes = 80 num_stuff_classes = 0 num_classes = num_things_classes + num_stuff_classes image_size = (1024, 1024) batch_augments = [ dict( type='BatchFixedSizePad', size=image_size, img_pad_value=0, pad_mask=True, mask_pad_value=0, pad_seg=False) ] data_preprocessor = dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32, pad_mask=True, mask_pad_value=0, pad_seg=False, batch_augments=batch_augments) model = dict( data_preprocessor=data_preprocessor, panoptic_head=dict( num_things_classes=num_things_classes, num_stuff_classes=num_stuff_classes, loss_cls=dict(class_weight=[1.0] * num_classes + [0.1])), panoptic_fusion_head=dict( num_things_classes=num_things_classes, num_stuff_classes=num_stuff_classes), test_cfg=dict(panoptic_on=False)) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', prob=0.5), # large scale jittering dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), resize_type='Resize', keep_ratio=True), dict( type='RandomCrop', crop_size=image_size, crop_type='absolute', recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-5, 1e-5), by_mask=True), dict(type='PackDetInputs') ] dataset_type = 'CocoDataset' data_root = 'data/coco/' train_dataloader = dict( dataset=dict( type=dataset_type, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), pipeline=train_pipeline)) val_dataloader = dict( dataset=dict( type=dataset_type, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'))) test_dataloader = val_dataloader val_evaluator = dict( _delete_=True, type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric=['bbox', 'segm'], format_only=False) test_evaluator = val_evaluator
_base_ = ['./mask2former_r50_lsj_8x2_50e_coco-panoptic.py'] num_things_classes = 80 num_stuff_classes = 0 num_classes = num_things_classes + num_stuff_classes model = dict( panoptic_head=dict( num_things_classes=num_things_classes, num_stuff_classes=num_stuff_classes, loss_cls=dict(class_weight=[1.0] * num_classes + [0.1])), panoptic_fusion_head=dict( num_things_classes=num_things_classes, num_stuff_classes=num_stuff_classes), test_cfg=dict(panoptic_on=False)) # dataset settings image_size = (1024, 1024) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) pad_cfg = dict(img=(128, 128, 128), masks=0, seg=255) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', flip_ratio=0.5), # large scale jittering dict( type='Resize', img_scale=image_size, ratio_range=(0.1, 2.0), multiscale_mode='range', keep_ratio=True), dict( type='RandomCrop', crop_size=image_size, crop_type='absolute', recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-5, 1e-5), by_mask=True), dict(type='Pad', size=image_size, pad_val=pad_cfg), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle', img_to_float=True), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Pad', size_divisor=32, pad_val=pad_cfg), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] dataset_type = 'CocoDataset' data_root = 'data/coco/' data = dict( _delete_=True, samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) evaluation = dict(metric=['bbox', 'segm'])
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch import torch.nn as nn import torch.nn.functional as F from ..builder import LOSSES @mmcv.jit(derivate=True, coderize=True) def ae_loss_per_image(tl_preds, br_preds, match): """Associative Embedding Loss in one image. Associative Embedding Loss including two parts: pull loss and push loss. Pull loss makes embedding vectors from same object closer to each other. Push loss distinguish embedding vector from different objects, and makes the gap between them is large enough. During computing, usually there are 3 cases: - no object in image: both pull loss and push loss will be 0. - one object in image: push loss will be 0 and pull loss is computed by the two corner of the only object. - more than one objects in image: pull loss is computed by corner pairs from each object, push loss is computed by each object with all other objects. We use confusion matrix with 0 in diagonal to compute the push loss. Args: tl_preds (tensor): Embedding feature map of left-top corner. br_preds (tensor): Embedding feature map of bottim-right corner. match (list): Downsampled coordinates pair of each ground truth box. """ tl_list, br_list, me_list = [], [], [] if len(match) == 0: # no object in image pull_loss = tl_preds.sum() * 0. push_loss = tl_preds.sum() * 0. else: for m in match: [tl_y, tl_x], [br_y, br_x] = m tl_e = tl_preds[:, tl_y, tl_x].view(-1, 1) br_e = br_preds[:, br_y, br_x].view(-1, 1) tl_list.append(tl_e) br_list.append(br_e) me_list.append((tl_e + br_e) / 2.0) tl_list = torch.cat(tl_list) br_list = torch.cat(br_list) me_list = torch.cat(me_list) assert tl_list.size() == br_list.size() # N is object number in image, M is dimension of embedding vector N, M = tl_list.size() pull_loss = (tl_list - me_list).pow(2) + (br_list - me_list).pow(2) pull_loss = pull_loss.sum() / N margin = 1 # exp setting of CornerNet, details in section 3.3 of paper # confusion matrix of push loss conf_mat = me_list.expand((N, N, M)).permute(1, 0, 2) - me_list conf_weight = 1 - torch.eye(N).type_as(me_list) conf_mat = conf_weight * (margin - conf_mat.sum(-1).abs()) if N > 1: # more than one object in current image push_loss = F.relu(conf_mat).sum() / (N * (N - 1)) else: push_loss = tl_preds.sum() * 0. return pull_loss, push_loss @LOSSES.register_module() class AssociativeEmbeddingLoss(nn.Module): """Associative Embedding Loss. More details can be found in `Associative Embedding <https://arxiv.org/abs/1611.05424>`_ and `CornerNet <https://arxiv.org/abs/1808.01244>`_ . Code is modified from `kp_utils.py <https://github.com/princeton-vl/CornerNet/blob/master/models/py_utils/kp_utils.py#L180>`_ # noqa: E501 Args: pull_weight (float): Loss weight for corners from same object. push_weight (float): Loss weight for corners from different object. """ def __init__(self, pull_weight=0.25, push_weight=0.25): super(AssociativeEmbeddingLoss, self).__init__() self.pull_weight = pull_weight self.push_weight = push_weight def forward(self, pred, target, match): """Forward function.""" batch = pred.size(0) pull_all, push_all = 0.0, 0.0 for i in range(batch): pull, push = ae_loss_per_image(pred[i], target[i], match[i]) pull_all += self.pull_weight * pull push_all += self.push_weight * push return pull_all, push_all
import mmcv import torch import torch.nn as nn import torch.nn.functional as F from ..builder import LOSSES @mmcv.jit(derivate=True, coderize=True) def ae_loss_per_image(tl_preds, br_preds, match): """Associative Embedding Loss in one image. Associative Embedding Loss including two parts: pull loss and push loss. Pull loss makes embedding vectors from same object closer to each other. Push loss distinguish embedding vector from different objects, and makes the gap between them is large enough. During computing, usually there are 3 cases: - no object in image: both pull loss and push loss will be 0. - one object in image: push loss will be 0 and pull loss is computed by the two corner of the only object. - more than one objects in image: pull loss is computed by corner pairs from each object, push loss is computed by each object with all other objects. We use confusion matrix with 0 in diagonal to compute the push loss. Args: tl_preds (tensor): Embedding feature map of left-top corner. br_preds (tensor): Embedding feature map of bottim-right corner. match (list): Downsampled coordinates pair of each ground truth box. """ tl_list, br_list, me_list = [], [], [] if len(match) == 0: # no object in image pull_loss = tl_preds.sum() * 0. push_loss = tl_preds.sum() * 0. else: for m in match: [tl_y, tl_x], [br_y, br_x] = m tl_e = tl_preds[:, tl_y, tl_x].view(-1, 1) br_e = br_preds[:, br_y, br_x].view(-1, 1) tl_list.append(tl_e) br_list.append(br_e) me_list.append((tl_e + br_e) / 2.0) tl_list = torch.cat(tl_list) br_list = torch.cat(br_list) me_list = torch.cat(me_list) assert tl_list.size() == br_list.size() # N is object number in image, M is dimension of embedding vector N, M = tl_list.size() pull_loss = (tl_list - me_list).pow(2) + (br_list - me_list).pow(2) pull_loss = pull_loss.sum() / N margin = 1 # exp setting of CornerNet, details in section 3.3 of paper # confusion matrix of push loss conf_mat = me_list.expand((N, N, M)).permute(1, 0, 2) - me_list conf_weight = 1 - torch.eye(N).type_as(me_list) conf_mat = conf_weight * (margin - conf_mat.sum(-1).abs()) if N > 1: # more than one object in current image push_loss = F.relu(conf_mat).sum() / (N * (N - 1)) else: push_loss = tl_preds.sum() * 0. return pull_loss, push_loss @LOSSES.register_module() class AssociativeEmbeddingLoss(nn.Module): """Associative Embedding Loss. More details can be found in `Associative Embedding <https://arxiv.org/abs/1611.05424>`_ and `CornerNet <https://arxiv.org/abs/1808.01244>`_ . Code is modified from `kp_utils.py <https://github.com/princeton-vl/CornerNet/blob/master/models/py_utils/kp_utils.py#L180>`_ # noqa: E501 Args: pull_weight (float): Loss weight for corners from same object. push_weight (float): Loss weight for corners from different object. """ def __init__(self, pull_weight=0.25, push_weight=0.25): super(AssociativeEmbeddingLoss, self).__init__() self.pull_weight = pull_weight self.push_weight = push_weight def forward(self, pred, target, match): """Forward function.""" batch = pred.size(0) pull_all, push_all = 0.0, 0.0 for i in range(batch): pull, push = ae_loss_per_image(pred[i], target[i], match[i]) pull_all += self.pull_weight * pull push_all += self.push_weight * push return pull_all, push_all
from typing import Dict, Tuple, Optional, List import numpy as np from jina import Executor, DocumentArray, requests, Document from jina.types.arrays.memmap import DocumentArrayMemmap class SimpleIndexer(Executor): """ A simple indexer that stores all the Document data together, in a DocumentArrayMemmap object To be used as a unified indexer, combining both indexing and searching """ def __init__( self, index_file_name: str, default_traversal_paths: Optional[List[str]] = None, default_top_k: int = 5, distance_metric: str = 'cosine', **kwargs, ): """ Initializer function for the simple indexer :param index_file_name: The file name for the index file :param default_traversal_paths: The default traversal path that is used if no traversal path is given in the parameters of the request. This defaults to ['r']. :param default_top_k: default value for the top_k parameter :param distance_metric: The distance metric to be used for finding the most similar embeddings. Either 'euclidean' or 'cosine'. """ super().__init__(**kwargs) self._docs = DocumentArrayMemmap(self.workspace + f'/{index_file_name}') self.default_traversal_paths = default_traversal_paths or ['r'] self.default_top_k = default_top_k if distance_metric == 'cosine': self.distance = _cosine elif distance_metric == 'euclidean': self.distance = _euclidean else: raise ValueError('This distance metric is not available!') self._flush = True self._docs_embeddings = None @property def index_embeddings(self): if self._flush: self._docs_embeddings = np.stack(self._docs.get_attributes('embedding')) self._flush = False return self._docs_embeddings @requests(on='/index') def index(self, docs: 'DocumentArray', parameters: Dict, **kwargs): """All Documents to the DocumentArray :param docs: the docs to add :param parameters: the parameters dictionary """ if not docs: return traversal_path = parameters.get('traversal_paths', self.default_traversal_paths) flat_docs = docs.traverse_flat(traversal_path) self._docs.extend(flat_docs) self._flush = True @requests(on='/search') def search(self, docs: 'DocumentArray', parameters: Dict, **kwargs): """Perform a vector similarity search and retrieve the full Document match :param docs: the Documents to search with :param parameters: the parameters for the search""" if not docs: return traversal_path = parameters.get('traversal_paths', self.default_traversal_paths) top_k = parameters.get('top_k', self.default_top_k) flat_docs = docs.traverse_flat(traversal_path) a = np.stack(flat_docs.get_attributes('embedding')) b = self.index_embeddings q_emb = _ext_A(_norm(a)) d_emb = _ext_B(_norm(b)) dists = self.distance(q_emb, d_emb) idx, dist = self._get_sorted_top_k(dists, int(top_k)) for _q, _ids, _dists in zip(flat_docs, idx, dist): for _id, _dist in zip(_ids, _dists): d = Document(self._docs[int(_id)], copy=True) d.scores['cosine'] = 1 - _dist _q.matches.append(d) @staticmethod def _get_sorted_top_k( dist: 'np.array', top_k: int ) -> Tuple['np.ndarray', 'np.ndarray']: if top_k >= dist.shape[1]: idx = dist.argsort(axis=1)[:, :top_k] dist = np.take_along_axis(dist, idx, axis=1) else: idx_ps = dist.argpartition(kth=top_k, axis=1)[:, :top_k] dist = np.take_along_axis(dist, idx_ps, axis=1) idx_fs = dist.argsort(axis=1) idx = np.take_along_axis(idx_ps, idx_fs, axis=1) dist = np.take_along_axis(dist, idx_fs, axis=1) return idx, dist @requests(on='/fill_embedding') def fill_embedding(self, docs: DocumentArray, **kwargs): """retrieve embedding of Documents by id :param docs: DocumentArray to search with """ if not docs: return for doc in docs: doc.embedding = self._docs[doc.id].embedding def _ext_A(A): nA, dim = A.shape A_ext = np.ones((nA, dim * 3)) A_ext[:, dim : 2 * dim] = A A_ext[:, 2 * dim :] = A ** 2 return A_ext def _ext_B(B): nB, dim = B.shape B_ext = np.ones((dim * 3, nB)) B_ext[:dim] = (B ** 2).T B_ext[dim : 2 * dim] = -2.0 * B.T del B return B_ext def _euclidean(A_ext, B_ext): sqdist = A_ext.dot(B_ext).clip(min=0) return np.sqrt(sqdist) def _norm(A): return A / np.linalg.norm(A, ord=2, axis=1, keepdims=True) def _cosine(A_norm_ext, B_norm_ext): return A_norm_ext.dot(B_norm_ext).clip(min=0) / 2
from typing import Dict, Tuple, Optional, List import numpy as np from jina import Executor, DocumentArray, requests, Document from jina.types.arrays.memmap import DocumentArrayMemmap class SimpleIndexer(Executor): """ A simple indexer that stores all the Document data together, in a DocumentArrayMemmap object To be used as a unified indexer, combining both indexing and searching """ def __init__( self, index_file_name: str, default_traversal_paths: Optional[List[str]] = None, default_top_k: int = 5, distance_metric: str = 'cosine', **kwargs, ): """ Initializer function for the simple indexer :param index_file_name: The file name for the index file :param default_traversal_paths: The default traversal path that is used if no traversal path is given in the parameters of the request. This defaults to ['r']. :param default_top_k: default value for the top_k parameter :param distance_metric: The distance metric to be used for finding the most similar embeddings. Either 'euclidean' or 'cosine'. """ super().__init__(**kwargs) self._docs = DocumentArrayMemmap(self.workspace + f'/{index_file_name}') self.default_traversal_paths = default_traversal_paths or ['r'] self.default_top_k = default_top_k if distance_metric == 'cosine': self.distance = _cosine elif distance_metric == 'euclidean': self.distance = _euclidean else: raise ValueError('This distance metric is not available!') self._flush = True self._docs_embeddings = None @property def index_embeddings(self): if self._flush: self._docs_embeddings = np.stack(self._docs.get_attributes('embedding')) self._flush = False return self._docs_embeddings @requests(on='/index') def index(self, docs: 'DocumentArray', parameters: Dict, **kwargs): """All Documents to the DocumentArray :param docs: the docs to add :param parameters: the parameters dictionary """ traversal_path = parameters.get('traversal_paths', self.default_traversal_paths) flat_docs = docs.traverse_flat(traversal_path) self._docs.extend(flat_docs) self._flush = True @requests(on='/search') def search(self, docs: 'DocumentArray', parameters: Dict, **kwargs): """Perform a vector similarity search and retrieve the full Document match :param docs: the Documents to search with :param parameters: the parameters for the search""" traversal_path = parameters.get('traversal_paths', self.default_traversal_paths) top_k = parameters.get('top_k', self.default_top_k) flat_docs = docs.traverse_flat(traversal_path) a = np.stack(flat_docs.get_attributes('embedding')) b = self.index_embeddings q_emb = _ext_A(_norm(a)) d_emb = _ext_B(_norm(b)) dists = self.distance(q_emb, d_emb) idx, dist = self._get_sorted_top_k(dists, int(top_k)) for _q, _ids, _dists in zip(flat_docs, idx, dist): for _id, _dist in zip(_ids, _dists): d = Document(self._docs[int(_id)], copy=True) d.scores['cosine'] = 1 - _dist _q.matches.append(d) @staticmethod def _get_sorted_top_k( dist: 'np.array', top_k: int ) -> Tuple['np.ndarray', 'np.ndarray']: if top_k >= dist.shape[1]: idx = dist.argsort(axis=1)[:, :top_k] dist = np.take_along_axis(dist, idx, axis=1) else: idx_ps = dist.argpartition(kth=top_k, axis=1)[:, :top_k] dist = np.take_along_axis(dist, idx_ps, axis=1) idx_fs = dist.argsort(axis=1) idx = np.take_along_axis(idx_ps, idx_fs, axis=1) dist = np.take_along_axis(dist, idx_fs, axis=1) return idx, dist @requests(on='/fill_embedding') def fill_embedding(self, docs: DocumentArray, **kwargs): """retrieve embedding of Documents by id :param docs: DocumentArray to search with """ for doc in docs: doc.embedding = self._docs[doc.id].embedding def _ext_A(A): nA, dim = A.shape A_ext = np.ones((nA, dim * 3)) A_ext[:, dim : 2 * dim] = A A_ext[:, 2 * dim :] = A ** 2 return A_ext def _ext_B(B): nB, dim = B.shape B_ext = np.ones((dim * 3, nB)) B_ext[:dim] = (B ** 2).T B_ext[dim : 2 * dim] = -2.0 * B.T del B return B_ext def _euclidean(A_ext, B_ext): sqdist = A_ext.dot(B_ext).clip(min=0) return np.sqrt(sqdist) def _norm(A): return A / np.linalg.norm(A, ord=2, axis=1, keepdims=True) def _cosine(A_norm_ext, B_norm_ext): return A_norm_ext.dot(B_norm_ext).clip(min=0) / 2
from typing import Any, ForwardRef, Optional, Union from typing_extensions import get_origin from typing_inspect import get_args, is_typevar, is_union_type from docarray.typing.id import ID from docarray.typing.tensor.abstract_tensor import AbstractTensor def is_type_tensor(type_: Any) -> bool: """Return True if type is a type Tensor or an Optional Tensor type.""" return isinstance(type_, type) and issubclass(type_, AbstractTensor) def is_tensor_union(type_: Any) -> bool: """Return True if type is a Union of type Tensors.""" is_union = is_union_type(type_) if is_union is None: return False else: return is_union and all( (is_type_tensor(t) or issubclass(t, type(None))) for t in get_args(type_) ) def change_cls_name(cls: type, new_name: str, scope: Optional[dict] = None) -> None: """Change the name of a class. :param cls: the class to change the name of :param new_name: the new name :param scope: the scope in which the class is defined """ if scope: scope[new_name] = cls cls.__qualname__ = cls.__qualname__[: -len(cls.__name__)] + new_name cls.__name__ = new_name def safe_issubclass(x: type, a_tuple: type) -> bool: """ This is a modified version of the built-in 'issubclass' function to support non-class input. Traditional 'issubclass' calls can result in a crash if the input is non-class type (e.g. list/tuple). :param x: A class 'x' :param a_tuple: A class, or a tuple of classes. :return: A boolean value - 'True' if 'x' is a subclass of 'A_tuple', 'False' otherwise. Note that if the origin of 'x' is a list or tuple, the function immediately returns 'False'. """ if ( (get_origin(x) in (list, tuple, dict, set, Union)) or is_typevar(x) or (type(x) == ForwardRef) or is_typevar(x) or x == ID ): return False return issubclass(x, a_tuple)
from typing import Any, ForwardRef, Optional from typing_extensions import get_origin from typing_inspect import get_args, is_typevar, is_union_type from docarray.typing.id import ID from docarray.typing.tensor.abstract_tensor import AbstractTensor def is_type_tensor(type_: Any) -> bool: """Return True if type is a type Tensor or an Optional Tensor type.""" return isinstance(type_, type) and issubclass(type_, AbstractTensor) def is_tensor_union(type_: Any) -> bool: """Return True if type is a Union of type Tensors.""" is_union = is_union_type(type_) if is_union is None: return False else: return is_union and all( (is_type_tensor(t) or issubclass(t, type(None))) for t in get_args(type_) ) def change_cls_name(cls: type, new_name: str, scope: Optional[dict] = None) -> None: """Change the name of a class. :param cls: the class to change the name of :param new_name: the new name :param scope: the scope in which the class is defined """ if scope: scope[new_name] = cls cls.__qualname__ = cls.__qualname__[: -len(cls.__name__)] + new_name cls.__name__ = new_name def safe_issubclass(x: type, a_tuple: type) -> bool: """ This is a modified version of the built-in 'issubclass' function to support non-class input. Traditional 'issubclass' calls can result in a crash if the input is non-class type (e.g. list/tuple). :param x: A class 'x' :param a_tuple: A class, or a tuple of classes. :return: A boolean value - 'True' if 'x' is a subclass of 'A_tuple', 'False' otherwise. Note that if the origin of 'x' is a list or tuple, the function immediately returns 'False'. """ if ( (get_origin(x) in (list, tuple, dict, set)) or is_typevar(x) or (type(x) == ForwardRef) or is_typevar(x) or x == ID ): return False return issubclass(x, a_tuple)
_base_ = './mask_rcnn_hrnetv2p_w40_1x_coco.py' # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[16, 22], gamma=0.1) ]
_base_ = './mask_rcnn_hrnetv2p_w40_1x_coco.py' # learning policy lr_config = dict(step=[16, 22]) runner = dict(type='EpochBasedRunner', max_epochs=24)
""" This script contains an example how to perform semantic search with Qdrant. You need Qdrant up and running locally: https://qdrant.tech/documentation/quickstart/ Further, you need the Python Qdrant Client installed: https://python-client.qdrant.tech/, e.g.: ``` pip install qdrant-client ``` This script was created for `qdrant-client` v1.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_qdrant # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model sparse_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # 4. Encode the corpus corpus_embeddings = sparse_model.encode_document( corpus, convert_to_sparse_tensor=True, batch_size=16, show_progress_bar=True ) # Initially, we don't have a qdrant index yet corpus_index = None while True: # 5. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode_query(queries, convert_to_sparse_tensor=True) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using qdrant results, search_time, corpus_index = semantic_search_qdrant( query_embeddings, corpus_index=corpus_index, corpus_embeddings=corpus_embeddings if corpus_index is None else None, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
""" This script contains an example how to perform semantic search with Qdrant. You need Qdrant up and running locally: https://qdrant.tech/documentation/quickstart/ Further, you need the Python Qdrant Client installed: https://python-client.qdrant.tech/, e.g.: ``` pip install qdrant-client ``` This script was created for `qdrant-client` v1.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_qdrant # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model sparse_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # 4. Encode the corpus corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=16, show_progress_bar=True) # Initially, we don't have a qdrant index yet corpus_index = None while True: # 5. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using qdrant results, search_time, corpus_index = semantic_search_qdrant( query_embeddings, corpus_index=corpus_index, corpus_embeddings=corpus_embeddings if corpus_index is None else None, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
"""Kept for backwards compatibility.""" from langchain_text_splitters import ( Language, RecursiveCharacterTextSplitter, TextSplitter, Tokenizer, TokenTextSplitter, ) from langchain_text_splitters.base import split_text_on_tokens from langchain_text_splitters.character import CharacterTextSplitter from langchain_text_splitters.html import ElementType, HTMLHeaderTextSplitter from langchain_text_splitters.json import RecursiveJsonSplitter from langchain_text_splitters.konlpy import KonlpyTextSplitter from langchain_text_splitters.latex import LatexTextSplitter from langchain_text_splitters.markdown import ( HeaderType, LineType, MarkdownHeaderTextSplitter, MarkdownTextSplitter, ) from langchain_text_splitters.nltk import NLTKTextSplitter from langchain_text_splitters.python import PythonCodeTextSplitter from langchain_text_splitters.sentence_transformers import ( SentenceTransformersTokenTextSplitter, ) from langchain_text_splitters.spacy import SpacyTextSplitter __all__ = [ "CharacterTextSplitter", "ElementType", "HTMLHeaderTextSplitter", "HeaderType", "KonlpyTextSplitter", "Language", "LatexTextSplitter", "LineType", "MarkdownHeaderTextSplitter", "MarkdownTextSplitter", "NLTKTextSplitter", "PythonCodeTextSplitter", "RecursiveCharacterTextSplitter", "RecursiveJsonSplitter", "SentenceTransformersTokenTextSplitter", "SpacyTextSplitter", "TextSplitter", "TokenTextSplitter", "Tokenizer", "split_text_on_tokens", ]
"""Kept for backwards compatibility.""" from langchain_text_splitters import ( Language, RecursiveCharacterTextSplitter, TextSplitter, Tokenizer, TokenTextSplitter, ) from langchain_text_splitters.base import split_text_on_tokens from langchain_text_splitters.character import CharacterTextSplitter from langchain_text_splitters.html import ElementType, HTMLHeaderTextSplitter from langchain_text_splitters.json import RecursiveJsonSplitter from langchain_text_splitters.konlpy import KonlpyTextSplitter from langchain_text_splitters.latex import LatexTextSplitter from langchain_text_splitters.markdown import ( HeaderType, LineType, MarkdownHeaderTextSplitter, MarkdownTextSplitter, ) from langchain_text_splitters.nltk import NLTKTextSplitter from langchain_text_splitters.python import PythonCodeTextSplitter from langchain_text_splitters.sentence_transformers import ( SentenceTransformersTokenTextSplitter, ) from langchain_text_splitters.spacy import SpacyTextSplitter __all__ = [ "TokenTextSplitter", "TextSplitter", "Tokenizer", "Language", "RecursiveCharacterTextSplitter", "RecursiveJsonSplitter", "LatexTextSplitter", "PythonCodeTextSplitter", "KonlpyTextSplitter", "SpacyTextSplitter", "NLTKTextSplitter", "split_text_on_tokens", "SentenceTransformersTokenTextSplitter", "ElementType", "HeaderType", "LineType", "HTMLHeaderTextSplitter", "MarkdownHeaderTextSplitter", "MarkdownTextSplitter", "CharacterTextSplitter", ]
# Copyright (c) OpenMMLab. All rights reserved. from .registry import Registry, build_from_cfg from .root import (DATA_SAMPLERS, DATASETS, HOOKS, MODELS, OPTIMIZER_CONSTRUCTORS, OPTIMIZERS, PARAM_SCHEDULERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS, TRANSFORMS, WEIGHT_INITIALIZERS) __all__ = [ 'Registry', 'build_from_cfg', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIMIZER_CONSTRUCTORS', 'TASK_UTILS', 'PARAM_SCHEDULERS' ]
# Copyright (c) OpenMMLab. All rights reserved. from .registry import Registry, build_from_cfg from .root import (DATA_SAMPLERS, DATASETS, HOOKS, MODELS, OPTIMIZER_CONSTRUCTORS, OPTIMIZERS, RUNNER_CONSTRUCTORS, RUNNERS, TASK_UTILS, TRANSFORMS, WEIGHT_INITIALIZERS) __all__ = [ 'Registry', 'build_from_cfg', 'RUNNERS', 'RUNNER_CONSTRUCTORS', 'HOOKS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', 'WEIGHT_INITIALIZERS', 'OPTIMIZERS', 'OPTIMIZER_CONSTRUCTORS', 'TASK_UTILS' ]
# Copyright (c) OpenMMLab. All rights reserved. import math from typing import Optional import torch import torch.nn as nn from mmengine.model import ExponentialMovingAverage from torch import Tensor from mmdet.registry import MODELS @MODELS.register_module() class ExpMomentumEMA(ExponentialMovingAverage): """Exponential moving average (EMA) with exponential momentum strategy, which is used in YOLOX. Args: model (nn.Module): The model to be averaged. momentum (float): The momentum used for updating ema parameter. Ema's parameter are updated with the formula: `averaged_param = (1-momentum) * averaged_param + momentum * source_param`. Defaults to 0.0002. gamma (int): Use a larger momentum early in training and gradually annealing to a smaller value to update the ema model smoothly. The momentum is calculated as `(1 - momentum) * exp(-(1 + steps) / gamma) + momentum`. Defaults to 2000. interval (int): Interval between two updates. Defaults to 1. device (torch.device, optional): If provided, the averaged model will be stored on the :attr:`device`. Defaults to None. update_buffers (bool): if True, it will compute running averages for both the parameters and the buffers of the model. Defaults to False. """ def __init__(self, model: nn.Module, momentum: float = 0.0002, gamma: int = 2000, interval=1, device: Optional[torch.device] = None, update_buffers: bool = False) -> None: super().__init__( model=model, momentum=momentum, interval=interval, device=device, update_buffers=update_buffers) assert gamma > 0, f'gamma must be greater than 0, but got {gamma}' self.gamma = gamma def avg_func(self, averaged_param: Tensor, source_param: Tensor, steps: int) -> None: """Compute the moving average of the parameters using the exponential momentum strategy. Args: averaged_param (Tensor): The averaged parameters. source_param (Tensor): The source parameters. steps (int): The number of times the parameters have been updated. """ momentum = (1 - self.momentum) * math.exp( -float(1 + steps) / self.gamma) + self.momentum averaged_param.lerp_(source_param, momentum)
# Copyright (c) OpenMMLab. All rights reserved. import math from typing import Optional import torch import torch.nn as nn from mmengine.model import ExponentialMovingAverage from torch import Tensor from mmdet.registry import MODELS @MODELS.register_module() class ExpMomentumEMA(ExponentialMovingAverage): """Exponential moving average (EMA) with exponential momentum strategy, which is used in YOLOX. Args: model (nn.Module): The model to be averaged. momentum (float): The momentum used for updating ema parameter. Ema's parameter are updated with the formula: `averaged_param = (1-momentum) * averaged_param + momentum * source_param`. Defaults to 0.0002. gamma (int): Use a larger momentum early in training and gradually annealing to a smaller value to update the ema model smoothly. The momentum is calculated as `(1 - momentum) * exp(-(1 + steps) / gamma) + momentum`. Defaults to 2000. interval (int): Interval between two updates. Defaults to 1. device (torch.device, optional): If provided, the averaged model will be stored on the :attr:`device`. Defaults to None. update_buffers (bool): if True, it will compute running averages for both the parameters and the buffers of the model. Defaults to False. """ def __init__(self, model: nn.Module, momentum: float = 0.0002, gamma: int = 2000, interval=1, device: Optional[torch.device] = None, update_buffers: bool = False) -> None: super().__init__( model=model, momentum=momentum, interval=interval, device=device, update_buffers=update_buffers) assert gamma > 0, f'gamma must be greater than 0, but got {gamma}' self.gamma = gamma def avg_func(self, averaged_param: Tensor, source_param: Tensor, steps: int) -> None: """Compute the moving average of the parameters using the exponential momentum strategy. Args: averaged_param (Tensor): The averaged parameters. source_param (Tensor): The source parameters. steps (int): The number of times the parameters have been updated. """ momentum = (1 - self.momentum) * math.exp( -float(1 + steps) / self.gamma) + self.momentum averaged_param.mul_(1 - momentum).add_(source_param, alpha=momentum)
"""JSON node parser.""" import json from typing import Any, Dict, Generator, List, Optional, Sequence from llama_index.core.callbacks.base import CallbackManager from llama_index.core.node_parser.interface import NodeParser from llama_index.core.node_parser.node_utils import build_nodes_from_splits from llama_index.core.schema import BaseNode, MetadataMode, TextNode from llama_index.core.utils import get_tqdm_iterable class JSONNodeParser(NodeParser): """ JSON node parser. Splits a document into Nodes using custom JSON splitting logic. Args: include_metadata (bool): whether to include metadata in nodes include_prev_next_rel (bool): whether to include prev/next relationships """ @classmethod def from_defaults( cls, include_metadata: bool = True, include_prev_next_rel: bool = True, callback_manager: Optional[CallbackManager] = None, ) -> "JSONNodeParser": callback_manager = callback_manager or CallbackManager([]) return cls( include_metadata=include_metadata, include_prev_next_rel=include_prev_next_rel, callback_manager=callback_manager, ) @classmethod def class_name(cls) -> str: """Get class name.""" return "JSONNodeParser" def _parse_nodes( self, nodes: Sequence[BaseNode], show_progress: bool = False, **kwargs: Any ) -> List[BaseNode]: all_nodes: List[BaseNode] = [] nodes_with_progress = get_tqdm_iterable(nodes, show_progress, "Parsing nodes") for node in nodes_with_progress: nodes = self.get_nodes_from_node(node) all_nodes.extend(nodes) return all_nodes def get_nodes_from_node(self, node: BaseNode) -> List[TextNode]: """Get nodes from document.""" text = node.get_content(metadata_mode=MetadataMode.NONE) try: data = json.loads(text) except json.JSONDecodeError: # Handle invalid JSON input here return [] json_nodes = [] if isinstance(data, dict): lines = [*self._depth_first_yield(data, 0, [])] json_nodes.extend( build_nodes_from_splits(["\n".join(lines)], node, id_func=self.id_func) ) elif isinstance(data, list): for json_object in data: lines = [*self._depth_first_yield(json_object, 0, [])] json_nodes.extend( build_nodes_from_splits( ["\n".join(lines)], node, id_func=self.id_func ) ) else: raise ValueError("JSON is invalid") return json_nodes def _depth_first_yield( self, json_data: Dict, levels_back: int, path: List[str] ) -> Generator[str, None, None]: """ Do depth first yield of all of the leaf nodes of a JSON. Combines keys in the JSON tree using spaces. If levels_back is set to 0, prints all levels. """ if isinstance(json_data, dict): for key, value in json_data.items(): new_path = path[:] new_path.append(key) yield from self._depth_first_yield(value, levels_back, new_path) elif isinstance(json_data, list): for _, value in enumerate(json_data): yield from self._depth_first_yield(value, levels_back, path) else: new_path = path[-levels_back:] new_path.append(str(json_data)) yield " ".join(new_path)
"""JSON node parser.""" import json from typing import Any, Dict, Generator, List, Optional, Sequence from llama_index.core.callbacks.base import CallbackManager from llama_index.core.node_parser.interface import NodeParser from llama_index.core.node_parser.node_utils import build_nodes_from_splits from llama_index.core.schema import BaseNode, MetadataMode, TextNode from llama_index.core.utils import get_tqdm_iterable class JSONNodeParser(NodeParser): """JSON node parser. Splits a document into Nodes using custom JSON splitting logic. Args: include_metadata (bool): whether to include metadata in nodes include_prev_next_rel (bool): whether to include prev/next relationships """ @classmethod def from_defaults( cls, include_metadata: bool = True, include_prev_next_rel: bool = True, callback_manager: Optional[CallbackManager] = None, ) -> "JSONNodeParser": callback_manager = callback_manager or CallbackManager([]) return cls( include_metadata=include_metadata, include_prev_next_rel=include_prev_next_rel, callback_manager=callback_manager, ) @classmethod def class_name(cls) -> str: """Get class name.""" return "JSONNodeParser" def _parse_nodes( self, nodes: Sequence[BaseNode], show_progress: bool = False, **kwargs: Any ) -> List[BaseNode]: all_nodes: List[BaseNode] = [] nodes_with_progress = get_tqdm_iterable(nodes, show_progress, "Parsing nodes") for node in nodes_with_progress: nodes = self.get_nodes_from_node(node) all_nodes.extend(nodes) return all_nodes def get_nodes_from_node(self, node: BaseNode) -> List[TextNode]: """Get nodes from document.""" text = node.get_content(metadata_mode=MetadataMode.NONE) try: data = json.loads(text) except json.JSONDecodeError: # Handle invalid JSON input here return [] json_nodes = [] if isinstance(data, dict): lines = [*self._depth_first_yield(data, 0, [])] json_nodes.extend( build_nodes_from_splits(["\n".join(lines)], node, id_func=self.id_func) ) elif isinstance(data, list): for json_object in data: lines = [*self._depth_first_yield(json_object, 0, [])] json_nodes.extend( build_nodes_from_splits( ["\n".join(lines)], node, id_func=self.id_func ) ) else: raise ValueError("JSON is invalid") return json_nodes def _depth_first_yield( self, json_data: Dict, levels_back: int, path: List[str] ) -> Generator[str, None, None]: """Do depth first yield of all of the leaf nodes of a JSON. Combines keys in the JSON tree using spaces. If levels_back is set to 0, prints all levels. """ if isinstance(json_data, dict): for key, value in json_data.items(): new_path = path[:] new_path.append(key) yield from self._depth_first_yield(value, levels_back, new_path) elif isinstance(json_data, list): for _, value in enumerate(json_data): yield from self._depth_first_yield(value, levels_back, path) else: new_path = path[-levels_back:] new_path.append(str(json_data)) yield " ".join(new_path)