input
stringlengths
33
5k
output
stringlengths
32
5k
import torch from ._bounding_boxes import BoundingBoxes, BoundingBoxFormat from ._image import Image from ._mask import Mask from ._torch_function_helpers import set_return_type from ._tv_tensor import TVTensor from ._video import Video # TODO: Fix this. We skip this method as it leads to # RecursionError: maximum recursion depth exceeded while calling a Python object # Until `disable` is removed, there will be graph breaks after all calls to functional transforms @torch.compiler.disable def wrap(wrappee, *, like, **kwargs): """[BETA] Convert a :class:`torch.Tensor` (``wrappee``) into the same :class:`~torchvision.tv_tensors.TVTensor` subclass as ``like``. If ``like`` is a :class:`~torchvision.tv_tensors.BoundingBoxes`, the ``format`` and ``canvas_size`` of ``like`` are assigned to ``wrappee``, unless they are passed as ``kwargs``. Args: wrappee (Tensor): The tensor to convert. like (:class:`~torchvision.tv_tensors.TVTensor`): The reference. ``wrappee`` will be converted into the same subclass as ``like``. kwargs: Can contain "format" and "canvas_size" if ``like`` is a :class:`~torchvision.tv_tensor.BoundingBoxes`. Ignored otherwise. """ if isinstance(like, BoundingBoxes): return BoundingBoxes._wrap( wrappee, format=kwargs.get("format", like.format), canvas_size=kwargs.get("canvas_size", like.canvas_size), ) else: return wrappee.as_subclass(type(like))
import torch from ._bounding_boxes import BoundingBoxes, BoundingBoxFormat from ._image import Image from ._mask import Mask from ._torch_function_helpers import set_return_type from ._tv_tensor import TVTensor from ._video import Video def wrap(wrappee, *, like, **kwargs): """[BETA] Convert a :class:`torch.Tensor` (``wrappee``) into the same :class:`~torchvision.tv_tensors.TVTensor` subclass as ``like``. If ``like`` is a :class:`~torchvision.tv_tensors.BoundingBoxes`, the ``format`` and ``canvas_size`` of ``like`` are assigned to ``wrappee``, unless they are passed as ``kwargs``. Args: wrappee (Tensor): The tensor to convert. like (:class:`~torchvision.tv_tensors.TVTensor`): The reference. ``wrappee`` will be converted into the same subclass as ``like``. kwargs: Can contain "format" and "canvas_size" if ``like`` is a :class:`~torchvision.tv_tensor.BoundingBoxes`. Ignored otherwise. """ if isinstance(like, BoundingBoxes): return BoundingBoxes._wrap( wrappee, format=kwargs.get("format", like.format), canvas_size=kwargs.get("canvas_size", like.canvas_size), ) else: return wrappee.as_subclass(type(like))
import os from pathlib import Path import numpy as np import pytest import torch from mmdet.apis import inference_detector, init_detector from mmdet.structures import DetDataSample from mmdet.utils import register_all_modules # TODO: Waiting to fix multiple call error bug register_all_modules() @pytest.mark.parametrize('config,devices', [('configs/retinanet/retinanet_r18_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_init_detector(config, devices): assert all([device in ['cpu', 'cuda'] for device in devices]) project_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) project_dir = os.path.join(project_dir, '..') config_file = os.path.join(project_dir, config) # test init_detector with config_file: str and cfg_options cfg_options = dict( model=dict( backbone=dict( depth=18, init_cfg=dict( type='Pretrained', checkpoint='torchvision://resnet18')))) for device in devices: if device == 'cuda' and not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') model = init_detector( config_file, device=device, cfg_options=cfg_options) # test init_detector with :obj:`Path` config_path_object = Path(config_file) model = init_detector(config_path_object, device=device) # test init_detector with undesirable type with pytest.raises(TypeError): config_list = [config_file] model = init_detector(config_list) # noqa: F841 @pytest.mark.parametrize('config,devices', [('configs/retinanet/retinanet_r18_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_inference_detector(config, devices): assert all([device in ['cpu', 'cuda'] for device in devices]) project_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) project_dir = os.path.join(project_dir, '..') config_file = os.path.join(project_dir, config) # test init_detector with config_file: str and cfg_options rng = np.random.RandomState(0) img1 = rng.randint(0, 255, (100, 100, 3), dtype=np.uint8) img2 = rng.randint(0, 255, (100, 100, 3), dtype=np.uint8) for device in devices: if device == 'cuda' and not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') model = init_detector(config_file, device=device) result = inference_detector(model, img1) assert isinstance(result, DetDataSample) result = inference_detector(model, [img1, img2]) assert isinstance(result, list) and len(result) == 2
import os from pathlib import Path import numpy as np import pytest import torch from mmdet.apis import inference_detector, init_detector from mmdet.data_elements import DetDataSample from mmdet.utils import register_all_modules # TODO: Waiting to fix multiple call error bug register_all_modules() @pytest.mark.parametrize('config,devices', [('configs/retinanet/retinanet_r18_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_init_detector(config, devices): assert all([device in ['cpu', 'cuda'] for device in devices]) project_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) project_dir = os.path.join(project_dir, '..') config_file = os.path.join(project_dir, config) # test init_detector with config_file: str and cfg_options cfg_options = dict( model=dict( backbone=dict( depth=18, init_cfg=dict( type='Pretrained', checkpoint='torchvision://resnet18')))) for device in devices: if device == 'cuda' and not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') model = init_detector( config_file, device=device, cfg_options=cfg_options) # test init_detector with :obj:`Path` config_path_object = Path(config_file) model = init_detector(config_path_object, device=device) # test init_detector with undesirable type with pytest.raises(TypeError): config_list = [config_file] model = init_detector(config_list) # noqa: F841 @pytest.mark.parametrize('config,devices', [('configs/retinanet/retinanet_r18_fpn_1x_coco.py', ('cpu', 'cuda'))]) def test_inference_detector(config, devices): assert all([device in ['cpu', 'cuda'] for device in devices]) project_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) project_dir = os.path.join(project_dir, '..') config_file = os.path.join(project_dir, config) # test init_detector with config_file: str and cfg_options rng = np.random.RandomState(0) img1 = rng.randint(0, 255, (100, 100, 3), dtype=np.uint8) img2 = rng.randint(0, 255, (100, 100, 3), dtype=np.uint8) for device in devices: if device == 'cuda' and not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') model = init_detector(config_file, device=device) result = inference_detector(model, img1) assert isinstance(result, DetDataSample) result = inference_detector(model, [img1, img2]) assert isinstance(result, list) and len(result) == 2
__version__ = '0.13.1' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
__version__ = '0.13.1' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install() if 'NO_VERSION_CHECK' not in os.environ: from .helper import is_latest_version is_latest_version()
from collections import defaultdict import torch import transforms as reference_transforms def get_modules(use_v2): # We need a protected import to avoid the V2 warning in case just V1 is used if use_v2: import torchvision.datapoints import torchvision.transforms.v2 return torchvision.transforms.v2, torchvision.datapoints else: return reference_transforms, None class DetectionPresetTrain: # Note: this transform assumes that the input to forward() are always PIL # images, regardless of the backend parameter. def __init__( self, *, data_augmentation, hflip_prob=0.5, mean=(123.0, 117.0, 104.0), backend="pil", use_v2=False, ): T, datapoints = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "datapoint": transforms.append(T.ToImage()) elif backend == "tensor": transforms.append(T.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") if data_augmentation == "hflip": transforms += [T.RandomHorizontalFlip(p=hflip_prob)] elif data_augmentation == "lsj": transforms += [ T.ScaleJitter(target_size=(1024, 1024), antialias=True), # TODO: FixedSizeCrop below doesn't work on tensors! reference_transforms.FixedSizeCrop(size=(1024, 1024), fill=mean), T.RandomHorizontalFlip(p=hflip_prob), ] elif data_augmentation == "multiscale": transforms += [ T.RandomShortestSize(min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333), T.RandomHorizontalFlip(p=hflip_prob), ] elif data_augmentation == "ssd": fill = defaultdict(lambda: mean, {datapoints.Mask: 0}) if use_v2 else list(mean) transforms += [ T.RandomPhotometricDistort(), T.RandomZoomOut(fill=fill), T.RandomIoUCrop(), T.RandomHorizontalFlip(p=hflip_prob), ] elif data_augmentation == "ssdlite": transforms += [ T.RandomIoUCrop(), T.RandomHorizontalFlip(p=hflip_prob), ] else: raise ValueError(f'Unknown data augmentation policy "{data_augmentation}"') if backend == "pil": # Note: we could just convert to pure tensors even in v2. transforms += [T.ToImage() if use_v2 else T.PILToTensor()] transforms += [T.ConvertImageDtype(torch.float)] if use_v2: transforms += [ T.ConvertBoundingBoxFormat(datapoints.BoundingBoxFormat.XYXY), T.SanitizeBoundingBoxes(), ] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target) class DetectionPresetEval: def __init__(self, backend="pil", use_v2=False): T, _ = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "pil": # Note: we could just convert to pure tensors even in v2? transforms += [T.ToImage() if use_v2 else T.PILToTensor()] elif backend == "tensor": transforms += [T.PILToTensor()] elif backend == "datapoint": transforms += [T.ToImage()] else: raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") transforms += [T.ConvertImageDtype(torch.float)] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target)
from collections import defaultdict import torch import transforms as reference_transforms def get_modules(use_v2): # We need a protected import to avoid the V2 warning in case just V1 is used if use_v2: import torchvision.datapoints import torchvision.transforms.v2 return torchvision.transforms.v2, torchvision.datapoints else: return reference_transforms, None class DetectionPresetTrain: # Note: this transform assumes that the input to forward() are always PIL # images, regardless of the backend parameter. def __init__( self, *, data_augmentation, hflip_prob=0.5, mean=(123.0, 117.0, 104.0), backend="pil", use_v2=False, ): T, datapoints = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "datapoint": transforms.append(T.ToImageTensor()) elif backend == "tensor": transforms.append(T.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") if data_augmentation == "hflip": transforms += [T.RandomHorizontalFlip(p=hflip_prob)] elif data_augmentation == "lsj": transforms += [ T.ScaleJitter(target_size=(1024, 1024), antialias=True), # TODO: FixedSizeCrop below doesn't work on tensors! reference_transforms.FixedSizeCrop(size=(1024, 1024), fill=mean), T.RandomHorizontalFlip(p=hflip_prob), ] elif data_augmentation == "multiscale": transforms += [ T.RandomShortestSize(min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333), T.RandomHorizontalFlip(p=hflip_prob), ] elif data_augmentation == "ssd": fill = defaultdict(lambda: mean, {datapoints.Mask: 0}) if use_v2 else list(mean) transforms += [ T.RandomPhotometricDistort(), T.RandomZoomOut(fill=fill), T.RandomIoUCrop(), T.RandomHorizontalFlip(p=hflip_prob), ] elif data_augmentation == "ssdlite": transforms += [ T.RandomIoUCrop(), T.RandomHorizontalFlip(p=hflip_prob), ] else: raise ValueError(f'Unknown data augmentation policy "{data_augmentation}"') if backend == "pil": # Note: we could just convert to pure tensors even in v2. transforms += [T.ToImageTensor() if use_v2 else T.PILToTensor()] transforms += [T.ConvertImageDtype(torch.float)] if use_v2: transforms += [ T.ConvertBoundingBoxFormat(datapoints.BoundingBoxFormat.XYXY), T.SanitizeBoundingBoxes(), ] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target) class DetectionPresetEval: def __init__(self, backend="pil", use_v2=False): T, _ = get_modules(use_v2) transforms = [] backend = backend.lower() if backend == "pil": # Note: we could just convert to pure tensors even in v2? transforms += [T.ToImageTensor() if use_v2 else T.PILToTensor()] elif backend == "tensor": transforms += [T.PILToTensor()] elif backend == "datapoint": transforms += [T.ToImageTensor()] else: raise ValueError(f"backend can be 'datapoint', 'tensor' or 'pil', but got {backend}") transforms += [T.ConvertImageDtype(torch.float)] self.transforms = T.Compose(transforms) def __call__(self, img, target): return self.transforms(img, target)
from keras.src.api_export import keras_export from keras.src.layers.pooling.base_pooling import BasePooling @keras_export(["keras.layers.AveragePooling2D", "keras.layers.AvgPool2D"]) class AveragePooling2D(BasePooling): """Average pooling operation for 2D spatial data. Downsamples the input along its spatial dimensions (height and width) by taking the average value over an input window (of size defined by `pool_size`) for each channel of the input. The window is shifted by `strides` along each dimension. The resulting output when using the `"valid"` padding option has a spatial shape (number of rows or columns) of: `output_shape = math.floor((input_shape - pool_size) / strides) + 1` (when `input_shape >= pool_size`) The resulting output shape when using the `"same"` padding option is: `output_shape = math.floor((input_shape - 1) / strides) + 1` Args: pool_size: int or tuple of 2 integers, factors by which to downscale (dim1, dim2). If only one integer is specified, the same window length will be used for all dimensions. strides: int or tuple of 2 integers, or None. Strides values. If None, it will default to `pool_size`. If only one int is specified, the same stride size will be used for all dimensions. padding: string, either `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. data_format: string, either `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, height, width, channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be `"channels_last"`. Input shape: - If `data_format="channels_last"`: 4D tensor with shape `(batch_size, height, width, channels)`. - If `data_format="channels_first"`: 4D tensor with shape `(batch_size, channels, height, width)`. Output shape: - If `data_format="channels_last"`: 4D tensor with shape `(batch_size, pooled_height, pooled_width, channels)`. - If `data_format="channels_first"`: 4D tensor with shape `(batch_size, channels, pooled_height, pooled_width)`. Examples: `strides=(1, 1)` and `padding="valid"`: >>> x = np.array([[1., 2., 3.], ... [4., 5., 6.], ... [7., 8., 9.]]) >>> x = np.reshape(x, [1, 3, 3, 1]) >>> avg_pool_2d = keras.layers.AveragePooling2D(pool_size=(2, 2), ... strides=(1, 1), padding="valid") >>> avg_pool_2d(x) `strides=(2, 2)` and `padding="valid"`: >>> x = np.array([[1., 2., 3., 4.], ... [5., 6., 7., 8.], ... [9., 10., 11., 12.]]) >>> x = np.reshape(x, [1, 3, 4, 1]) >>> avg_pool_2d = keras.layers.AveragePooling2D(pool_size=(2, 2), ... strides=(2, 2), padding="valid") >>> avg_pool_2d(x) `stride=(1, 1)` and `padding="same"`: >>> x = np.array([[1., 2., 3.], ... [4., 5., 6.], ... [7., 8., 9.]]) >>> x = np.reshape(x, [1, 3, 3, 1]) >>> avg_pool_2d = keras.layers.AveragePooling2D(pool_size=(2, 2), ... strides=(1, 1), padding="same") >>> avg_pool_2d(x) """ def __init__( self, pool_size, strides=None, padding="valid", data_format=None, name=None, **kwargs ): super().__init__( pool_size, strides, pool_dimensions=2, pool_mode="average", padding=padding, data_format=data_format, name=name, **kwargs, )
from keras.src.api_export import keras_export from keras.src.layers.pooling.base_pooling import BasePooling @keras_export(["keras.layers.AveragePooling2D", "keras.layers.AvgPool2D"]) class AveragePooling2D(BasePooling): """Average pooling operation for 2D spatial data. Downsamples the input along its spatial dimensions (height and width) by taking the average value over an input window (of size defined by `pool_size`) for each channel of the input. The window is shifted by `strides` along each dimension. The resulting output when using the `"valid"` padding option has a spatial shape (number of rows or columns) of: `output_shape = math.floor((input_shape - pool_size) / strides) + 1` (when `input_shape >= pool_size`) The resulting output shape when using the `"same"` padding option is: `output_shape = math.floor((input_shape - 1) / strides) + 1` Args: pool_size: int or tuple of 2 integers, factors by which to downscale (dim1, dim2). If only one integer is specified, the same window length will be used for all dimensions. strides: int or tuple of 2 integers, or None. Strides values. If None, it will default to `pool_size`. If only one int is specified, the same stride size will be used for all dimensions. padding: string, either `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. data_format: string, either `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, height, width, channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be `"channels_last"`. Input shape: - If `data_format="channels_last"`: 4D tensor with shape `(batch_size, height, width, channels)`. - If `data_format="channels_first"`: 4D tensor with shape `(batch_size, channels, height, width)`. Output shape: - If `data_format="channels_last"`: 4D tensor with shape `(batch_size, pooled_height, pooled_width, channels)`. - If `data_format="channels_first"`: 4D tensor with shape `(batch_size, channels, pooled_height, pooled_width)`. Examples: `strides=(1, 1)` and `padding="valid"`: >>> x = np.array([[1., 2., 3.], ... [4., 5., 6.], ... [7., 8., 9.]]) >>> x = np.reshape(x, [1, 3, 3, 1]) >>> avg_pool_2d = keras.layers.AveragePooling2D(pool_size=(2, 2), ... strides=(1, 1), padding="valid") >>> avg_pool_2d(x) `strides=(2, 2)` and `padding="valid"`: >>> x = np.array([[1., 2., 3., 4.], ... [5., 6., 7., 8.], ... [9., 10., 11., 12.]]) >>> x = np.reshape(x, [1, 3, 4, 1]) >>> avg_pool_2d = keras.layers.AveragePooling2D(pool_size=(2, 2), ... strides=(2, 2), padding="valid") >>> avg_pool_2d(x) `stride=(1, 1)` and `padding="same"`: >>> x = np.array([[1., 2., 3.], ... [4., 5., 6.], ... [7., 8., 9.]]) >>> x = np.reshape(x, [1, 3, 3, 1]) >>> avg_pool_2d = keras.layers.AveragePooling2D(pool_size=(2, 2), ... strides=(1, 1), padding="same") >>> avg_pool_2d(x) """ def __init__( self, pool_size, strides=None, padding="valid", data_format=None, name=None, **kwargs ): super().__init__( pool_size, strides, pool_dimensions=2, pool_mode="average", padding=padding, data_format=data_format, name=name, **kwargs, )
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.callbacks.utils import ( BaseMetadataCallbackHandler, _flatten_dict, flatten_dict, hash_string, import_pandas, import_spacy, import_textstat, load_json, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "import_spacy": "langchain_community.callbacks.utils", "import_pandas": "langchain_community.callbacks.utils", "import_textstat": "langchain_community.callbacks.utils", "_flatten_dict": "langchain_community.callbacks.utils", "flatten_dict": "langchain_community.callbacks.utils", "hash_string": "langchain_community.callbacks.utils", "load_json": "langchain_community.callbacks.utils", "BaseMetadataCallbackHandler": "langchain_community.callbacks.utils", } _import_attribute = create_importer(__file__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "BaseMetadataCallbackHandler", "_flatten_dict", "flatten_dict", "hash_string", "import_pandas", "import_spacy", "import_textstat", "load_json", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.callbacks.utils import ( BaseMetadataCallbackHandler, _flatten_dict, flatten_dict, hash_string, import_pandas, import_spacy, import_textstat, load_json, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "import_spacy": "langchain_community.callbacks.utils", "import_pandas": "langchain_community.callbacks.utils", "import_textstat": "langchain_community.callbacks.utils", "_flatten_dict": "langchain_community.callbacks.utils", "flatten_dict": "langchain_community.callbacks.utils", "hash_string": "langchain_community.callbacks.utils", "load_json": "langchain_community.callbacks.utils", "BaseMetadataCallbackHandler": "langchain_community.callbacks.utils", } _import_attribute = create_importer(__file__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "import_spacy", "import_pandas", "import_textstat", "_flatten_dict", "flatten_dict", "hash_string", "load_json", "BaseMetadataCallbackHandler", ]
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa model = dict( type='MaskRCNN', backbone=dict( _delete_=True, type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), neck=dict(in_channels=[96, 192, 384, 768])) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[[ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', scales=[(400, 1333), (500, 1333), (600, 1333)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ]]), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) max_epochs = 36 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[27, 33], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', paramwise_cfg=dict( custom_keys={ 'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.) }), optimizer=dict( _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa model = dict( type='MaskRCNN', backbone=dict( _delete_=True, type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), neck=dict(in_channels=[96, 192, 384, 768])) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', prob=0.5), dict( type='RandomChoice', transforms=[[ dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ], [ dict( type='RandomChoiceResize', scales=[(400, 1333), (500, 1333), (600, 1333)], keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='RandomChoiceResize', scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], keep_ratio=True) ]]), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) max_epochs = 36 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[27, 33], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', paramwise_cfg=dict( custom_keys={ 'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.) }), optimizer=dict( _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05))
import logging import random from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseInformationRetrievalEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load the NFcorpus IR dataset (https://huggingface.co/datasets/BeIR/nfcorpus, https://huggingface.co/datasets/BeIR/nfcorpus-qrels) corpus = load_dataset("BeIR/nfcorpus", "corpus", split="corpus") queries = load_dataset("BeIR/nfcorpus", "queries", split="queries") relevant_docs_data = load_dataset("BeIR/nfcorpus-qrels", split="test") # For this dataset, we want to concatenate the title and texts for the corpus corpus = corpus.map(lambda x: {"text": x["title"] + " " + x["text"]}, remove_columns=["title"]) # Shrink the corpus size heavily to only the relevant documents + 1,000 random documents required_corpus_ids = set(map(str, relevant_docs_data["corpus-id"])) required_corpus_ids |= set(random.sample(corpus["_id"], k=1000)) corpus = corpus.filter(lambda x: x["_id"] in required_corpus_ids) # Convert the datasets to dictionaries corpus = dict(zip(corpus["_id"], corpus["text"])) # Our corpus (cid => document) queries = dict(zip(queries["_id"], queries["text"])) # Our queries (qid => question) relevant_docs = {} # Query ID to relevant documents (qid => set([relevant_cids]) for qid, corpus_ids in zip(relevant_docs_data["query-id"], relevant_docs_data["corpus-id"]): qid = str(qid) corpus_ids = str(corpus_ids) if qid not in relevant_docs: relevant_docs[qid] = set() relevant_docs[qid].add(corpus_ids) # Given queries, a corpus and a mapping with relevant documents, the SparseInformationRetrievalEvaluator computes different IR metrics. ir_evaluator = SparseInformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="BeIR-nfcorpus-subset-test", show_progress_bar=True, batch_size=16, ) # Run evaluation results = ir_evaluator(model) """ Queries: 323 Corpus: 3269 Score-Function: dot Accuracy@1: 50.46% Accuracy@3: 64.40% Accuracy@5: 67.49% Accuracy@10: 72.14% Precision@1: 50.46% Precision@3: 40.87% Precision@5: 34.12% Precision@10: 26.10% Recall@1: 6.11% Recall@3: 11.73% Recall@5: 13.64% Recall@10: 17.24% MRR@10: 0.5801 NDCG@10: 0.3626 MAP@100: 0.1832 Model Query Sparsity: Active Dimensions: 43.1, Sparsity Ratio: 0.9986 Model Corpus Sparsity: Active Dimensions: 207.0, Sparsity Ratio: 0.9932 """ # Print the results print(f"Primary metric: {ir_evaluator.primary_metric}") # => Primary metric: BeIR-nfcorpus-subset-test_dot_ndcg@10 print(f"Primary metric value: {results[ir_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.3626
import logging import random from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseInformationRetrievalEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load the NFcorpus IR dataset (https://huggingface.co/datasets/BeIR/nfcorpus, https://huggingface.co/datasets/BeIR/nfcorpus-qrels) corpus = load_dataset("BeIR/nfcorpus", "corpus", split="corpus") queries = load_dataset("BeIR/nfcorpus", "queries", split="queries") relevant_docs_data = load_dataset("BeIR/nfcorpus-qrels", split="test") # For this dataset, we want to concatenate the title and texts for the corpus corpus = corpus.map(lambda x: {"text": x["title"] + " " + x["text"]}, remove_columns=["title"]) # Shrink the corpus size heavily to only the relevant documents + 1,000 random documents required_corpus_ids = set(map(str, relevant_docs_data["corpus-id"])) required_corpus_ids |= set(random.sample(corpus["_id"], k=1000)) corpus = corpus.filter(lambda x: x["_id"] in required_corpus_ids) # Convert the datasets to dictionaries corpus = dict(zip(corpus["_id"], corpus["text"])) # Our corpus (cid => document) queries = dict(zip(queries["_id"], queries["text"])) # Our queries (qid => question) relevant_docs = {} # Query ID to relevant documents (qid => set([relevant_cids]) for qid, corpus_ids in zip(relevant_docs_data["query-id"], relevant_docs_data["corpus-id"]): qid = str(qid) corpus_ids = str(corpus_ids) if qid not in relevant_docs: relevant_docs[qid] = set() relevant_docs[qid].add(corpus_ids) # Given queries, a corpus and a mapping with relevant documents, the SparseInformationRetrievalEvaluator computes different IR metrics. ir_evaluator = SparseInformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="BeIR-nfcorpus-subset-test", show_progress_bar=True, batch_size=16, ) # Run evaluation results = ir_evaluator(model) """ Queries: 323 Corpus: 3269 Score-Function: dot Accuracy@1: 50.46% Accuracy@3: 64.40% Accuracy@5: 67.49% Accuracy@10: 72.14% Precision@1: 50.46% Precision@3: 40.87% Precision@5: 34.12% Precision@10: 26.10% Recall@1: 6.11% Recall@3: 11.73% Recall@5: 13.64% Recall@10: 17.24% MRR@10: 0.5801 NDCG@10: 0.3626 MAP@100: 0.1832 Model Sparsity Stats Query : Row Non-Zero Mean: 43.08049392700195, Row Sparsity Mean: 0.9985886216163635 Model Sparsity Stats Corpus : Row Non-Zero Mean: 206.8623504638672, Row Sparsity Mean: 0.9932224750518799 """ # Print the results print(f"Primary metric: {ir_evaluator.primary_metric}") # => Primary metric: BeIR-nfcorpus-subset-test_dot_ndcg@10 print(f"Primary metric value: {results[ir_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.3626
_base_ = './solov2-light_r50_fpn_ms-3x_coco.py' # model settings model = dict( backbone=dict( dcn=dict(type='DCNv2', deformable_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)), mask_head=dict( feat_channels=256, stacked_convs=3, scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)), mask_feature_head=dict(out_channels=128), dcn_cfg=dict(type='DCNv2'), dcn_apply_to_all_conv=False)) # light solov2 head
_base_ = 'solov2_light_r50_fpn_mstrain_3x_coco.py' # model settings model = dict( backbone=dict( dcn=dict(type='DCNv2', deformable_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)), mask_head=dict( feat_channels=256, stacked_convs=3, scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)), mask_feature_head=dict(out_channels=128), dcn_cfg=dict(type='DCNv2'), dcn_apply_to_all_conv=False)) # light solov2 head
# Copyright (c) OpenMMLab. All rights reserved. import sys from unittest import TestCase import mmengine from mmengine.utils.dl_utils import collect_env class TestCollectEnv(TestCase): def test_collect_env(self): env_info = collect_env() expected_keys = [ 'sys.platform', 'Python', 'CUDA available', 'PyTorch', 'PyTorch compiling details', 'OpenCV', 'MMEngine', 'GCC' ] for key in expected_keys: assert key in env_info if env_info['CUDA available']: for key in ['CUDA_HOME', 'NVCC']: assert key in env_info assert env_info['sys.platform'] == sys.platform assert env_info['Python'] == sys.version.replace('\n', '') assert env_info['MMEngine'] == mmengine.__version__
# Copyright (c) OpenMMLab. All rights reserved. import sys from unittest import TestCase import torch.cuda import mmengine from mmengine.utils.dl_utils import collect_env from mmengine.utils.dl_utils.parrots_wrapper import _get_cuda_home class TestCollectEnv(TestCase): def test_get_cuda_home(self): CUDA_HOME = _get_cuda_home() if torch.version.cuda is not None: self.assertIsNotNone(CUDA_HOME) else: self.assertIsNone(CUDA_HOME) def test_collect_env(self): env_info = collect_env() expected_keys = [ 'sys.platform', 'Python', 'CUDA available', 'PyTorch', 'PyTorch compiling details', 'OpenCV', 'MMEngine', 'GCC' ] for key in expected_keys: assert key in env_info if env_info['CUDA available']: for key in ['CUDA_HOME', 'NVCC']: assert key in env_info if sys.platform == 'win32': assert 'MSVC' in env_info assert env_info['sys.platform'] == sys.platform assert env_info['Python'] == sys.version.replace('\n', '') assert env_info['MMEngine'] == mmengine.__version__
"""Utils for LLM Compiler.""" import ast import re from typing import Any, Dict, List, Sequence, Tuple, Union from llama_index.core.tools.function_tool import FunctionTool from llama_index.core.tools.types import BaseTool, adapt_to_async_tool from .schema import ( LLMCompilerParseResult, LLMCompilerTask, ) # $1 or ${1} -> 1 ID_PATTERN = r"\$\{?(\d+)\}?" def default_dependency_rule(idx: int, args: str) -> bool: """Default dependency rule.""" matches = re.findall(ID_PATTERN, args) numbers = [int(match) for match in matches] return idx in numbers def parse_llm_compiler_action_args(args: str) -> Union[List, Tuple]: """Parse arguments from a string.""" # This will convert the string into a python object # e.g. '"Ronaldo number of kids"' -> ("Ronaldo number of kids", ) # '"I can answer the question now.", [3]' -> ("I can answer the question now.", [3]) if args == "": return () try: eval_args: Union[List, Tuple, str] = ast.literal_eval(args) except Exception: eval_args = args if not isinstance(eval_args, list) and not isinstance(eval_args, tuple): new_args: Union[List, Tuple] = (eval_args,) else: new_args = eval_args return new_args def _find_tool(tool_name: str, tools: Sequence[BaseTool]) -> BaseTool: """ Find a tool by name. Args: tool_name: Name of the tool to find. Returns: Tool or StructuredTool. """ for tool in tools: if tool.metadata.name == tool_name: return tool raise ValueError(f"Tool {tool_name} not found.") def _get_dependencies_from_graph(idx: int, tool_name: str, args: str) -> List[int]: """Get dependencies from a graph.""" if tool_name == "join": # depends on the previous step dependencies = list(range(1, idx)) else: # define dependencies based on the dependency rule in tool_definitions.py dependencies = [i for i in range(1, idx) if default_dependency_rule(i, args)] return dependencies def instantiate_new_step( tools: Sequence[BaseTool], idx: int, tool_name: str, args: str, thought: str, ) -> LLMCompilerTask: """Instantiate a new step.""" dependencies = _get_dependencies_from_graph(idx, tool_name, args) args_list = parse_llm_compiler_action_args(args) if tool_name == "join": # tool: Optional[BaseTool] = None # assume that the only tool that returns None is join tool: BaseTool = FunctionTool.from_defaults(fn=lambda x: None) else: tool = _find_tool(tool_name, tools) return LLMCompilerTask( idx=idx, name=tool_name, tool=adapt_to_async_tool(tool), args=args_list, dependencies=dependencies, # TODO: look into adding a stringify rule # stringify_rule=stringify_rule, thought=thought, is_join=tool_name == "join", ) def get_graph_dict( parse_results: List[LLMCompilerParseResult], tools: Sequence[BaseTool], ) -> Dict[int, Any]: """Get graph dict.""" graph_dict = {} for parse_result in parse_results: # idx = 1, function = "search", args = "Ronaldo number of kids" # thought will be the preceding thought, if any, otherwise an empty string # thought, idx, tool_name, args, _ = match idx = int(parse_result.idx) task = instantiate_new_step( tools=tools, idx=idx, tool_name=parse_result.tool_name, args=parse_result.args, thought=parse_result.thought, ) graph_dict[idx] = task if task.is_join: break return graph_dict def generate_context_for_replanner( tasks: Dict[int, LLMCompilerTask], joiner_thought: str ) -> str: """ Generate context for replanning. Formatted like this. ``` 1. action 1 Observation: xxx 2. action 2 Observation: yyy ... Thought: joinner_thought ``` """ previous_plan_and_observations = "\n".join( [ task.get_thought_action_observation( include_action=True, include_action_idx=True ) for task in tasks.values() if not task.is_join ] ) joiner_thought = f"Thought: {joiner_thought}" # use f-string instead return f"{previous_plan_and_observations}\n\n{joiner_thought}" def format_contexts(contexts: Sequence[str]) -> str: """ Format contexts. Taken from https://github.com/SqueezeAILab/LLMCompiler/blob/main/src/llm_compiler/llm_compiler.py Contexts is a list of context. Each context is formatted as the description of generate_context_for_replanner """ formatted_contexts = "" for context in contexts: formatted_contexts += f"Previous Plan:\n\n{context}\n\n" formatted_contexts += "Current Plan:\n\n" return formatted_contexts
"""Utils for LLM Compiler.""" import ast import re from typing import Any, Dict, List, Sequence, Tuple, Union from llama_index.core.tools.function_tool import FunctionTool from llama_index.core.tools.types import BaseTool, adapt_to_async_tool from .schema import ( LLMCompilerParseResult, LLMCompilerTask, ) # $1 or ${1} -> 1 ID_PATTERN = r"\$\{?(\d+)\}?" def default_dependency_rule(idx: int, args: str) -> bool: """Default dependency rule.""" matches = re.findall(ID_PATTERN, args) numbers = [int(match) for match in matches] return idx in numbers def parse_llm_compiler_action_args(args: str) -> Union[List, Tuple]: """Parse arguments from a string.""" # This will convert the string into a python object # e.g. '"Ronaldo number of kids"' -> ("Ronaldo number of kids", ) # '"I can answer the question now.", [3]' -> ("I can answer the question now.", [3]) if args == "": return () try: eval_args: Union[List, Tuple, str] = ast.literal_eval(args) except Exception: eval_args = args if not isinstance(eval_args, list) and not isinstance(eval_args, tuple): new_args: Union[List, Tuple] = (eval_args,) else: new_args = eval_args return new_args def _find_tool(tool_name: str, tools: Sequence[BaseTool]) -> BaseTool: """Find a tool by name. Args: tool_name: Name of the tool to find. Returns: Tool or StructuredTool. """ for tool in tools: if tool.metadata.name == tool_name: return tool raise ValueError(f"Tool {tool_name} not found.") def _get_dependencies_from_graph(idx: int, tool_name: str, args: str) -> List[int]: """Get dependencies from a graph.""" if tool_name == "join": # depends on the previous step dependencies = list(range(1, idx)) else: # define dependencies based on the dependency rule in tool_definitions.py dependencies = [i for i in range(1, idx) if default_dependency_rule(i, args)] return dependencies def instantiate_new_step( tools: Sequence[BaseTool], idx: int, tool_name: str, args: str, thought: str, ) -> LLMCompilerTask: """Instantiate a new step.""" dependencies = _get_dependencies_from_graph(idx, tool_name, args) args_list = parse_llm_compiler_action_args(args) if tool_name == "join": # tool: Optional[BaseTool] = None # assume that the only tool that returns None is join tool: BaseTool = FunctionTool.from_defaults(fn=lambda x: None) else: tool = _find_tool(tool_name, tools) return LLMCompilerTask( idx=idx, name=tool_name, tool=adapt_to_async_tool(tool), args=args_list, dependencies=dependencies, # TODO: look into adding a stringify rule # stringify_rule=stringify_rule, thought=thought, is_join=tool_name == "join", ) def get_graph_dict( parse_results: List[LLMCompilerParseResult], tools: Sequence[BaseTool], ) -> Dict[int, Any]: """Get graph dict.""" graph_dict = {} for parse_result in parse_results: # idx = 1, function = "search", args = "Ronaldo number of kids" # thought will be the preceding thought, if any, otherwise an empty string # thought, idx, tool_name, args, _ = match idx = int(parse_result.idx) task = instantiate_new_step( tools=tools, idx=idx, tool_name=parse_result.tool_name, args=parse_result.args, thought=parse_result.thought, ) graph_dict[idx] = task if task.is_join: break return graph_dict def generate_context_for_replanner( tasks: Dict[int, LLMCompilerTask], joiner_thought: str ) -> str: """Generate context for replanning. Formatted like this. ``` 1. action 1 Observation: xxx 2. action 2 Observation: yyy ... Thought: joinner_thought ``` """ previous_plan_and_observations = "\n".join( [ task.get_thought_action_observation( include_action=True, include_action_idx=True ) for task in tasks.values() if not task.is_join ] ) joiner_thought = f"Thought: {joiner_thought}" # use f-string instead return f"{previous_plan_and_observations}\n\n{joiner_thought}" def format_contexts(contexts: Sequence[str]) -> str: """Format contexts. Taken from https://github.com/SqueezeAILab/LLMCompiler/blob/main/src/llm_compiler/llm_compiler.py Contexts is a list of context. Each context is formatted as the description of generate_context_for_replanner """ formatted_contexts = "" for context in contexts: formatted_contexts += f"Previous Plan:\n\n{context}\n\n" formatted_contexts += "Current Plan:\n\n" return formatted_contexts
"""Base class for Office 365 tools.""" from __future__ import annotations from typing import TYPE_CHECKING from langchain_core.tools import BaseTool from pydantic import Field from langchain_community.tools.office365.utils import authenticate if TYPE_CHECKING: from O365 import Account class O365BaseTool(BaseTool): """Base class for the Office 365 tools.""" account: Account = Field(default_factory=authenticate) """The account object for the Office 365 account."""
"""Base class for Office 365 tools.""" from __future__ import annotations from typing import TYPE_CHECKING from langchain_core.tools import BaseTool from pydantic import Field from langchain_community.tools.office365.utils import authenticate if TYPE_CHECKING: from O365 import Account class O365BaseTool(BaseTool): # type: ignore[override] """Base class for the Office 365 tools.""" account: Account = Field(default_factory=authenticate) """The account object for the Office 365 account."""
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update` deps = { "Pillow": "Pillow", "accelerate": "accelerate>=0.31.0", "compel": "compel==0.1.8", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.27.0", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark>=0.2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.4.1", "jaxlib": "jaxlib>=0.4.1", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion==0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "parameterized": "parameterized", "peft": "peft>=0.15.0", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ruff": "ruff==0.9.10", "safetensors": "safetensors>=0.3.1", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "GitPython": "GitPython<3.1.19", "scipy": "scipy", "onnx": "onnx", "optimum_quanto": "optimum_quanto>=0.2.6", "gguf": "gguf>=0.10.0", "torchao": "torchao>=0.7.0", "bitsandbytes": "bitsandbytes>=0.43.3", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "tiktoken": "tiktoken>=0.7.0", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.41.2", "urllib3": "urllib3<=2.0.0", "black": "black", "phonemizer": "phonemizer", "opencv-python": "opencv-python", }
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update` deps = { "Pillow": "Pillow", "accelerate": "accelerate>=0.31.0", "compel": "compel==0.1.8", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.27.0", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark>=0.2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.4.1", "jaxlib": "jaxlib>=0.4.1", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "parameterized": "parameterized", "peft": "peft>=0.15.0", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ruff": "ruff==0.9.10", "safetensors": "safetensors>=0.3.1", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "GitPython": "GitPython<3.1.19", "scipy": "scipy", "onnx": "onnx", "optimum_quanto": "optimum_quanto>=0.2.6", "gguf": "gguf>=0.10.0", "torchao": "torchao>=0.7.0", "bitsandbytes": "bitsandbytes>=0.43.3", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "tiktoken": "tiktoken>=0.7.0", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.41.2", "urllib3": "urllib3<=2.0.0", "black": "black", "phonemizer": "phonemizer", "opencv-python": "opencv-python", }
from typing import Any, Dict, List, Optional, Sequence, Type, Union import PIL.Image import torch from torchvision import datapoints from torchvision.prototype.datapoints import Label, OneHotLabel from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import _FillType, _get_fill, _setup_fill_arg, _setup_size from torchvision.transforms.v2.utils import get_bounding_boxes, has_any, is_simple_tensor, query_size class FixedSizeCrop(Transform): def __init__( self, size: Union[int, Sequence[int]], fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0, padding_mode: str = "constant", ) -> None: super().__init__() size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")) self.crop_height = size[0] self.crop_width = size[1] self.fill = fill self._fill = _setup_fill_arg(fill) self.padding_mode = padding_mode def _check_inputs(self, flat_inputs: List[Any]) -> None: if not has_any( flat_inputs, PIL.Image.Image, datapoints.Image, is_simple_tensor, datapoints.Video, ): raise TypeError( f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video." ) if has_any(flat_inputs, datapoints.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel): raise TypeError( f"If a BoundingBoxes is contained in the input sample, " f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel." ) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: height, width = query_size(flat_inputs) new_height = min(height, self.crop_height) new_width = min(width, self.crop_width) needs_crop = new_height != height or new_width != width offset_height = max(height - self.crop_height, 0) offset_width = max(width - self.crop_width, 0) r = torch.rand(1) top = int(offset_height * r) left = int(offset_width * r) bounding_boxes: Optional[torch.Tensor] try: bounding_boxes = get_bounding_boxes(flat_inputs) except ValueError: bounding_boxes = None if needs_crop and bounding_boxes is not None: format = bounding_boxes.format bounding_boxes, canvas_size = F.crop_bounding_boxes( bounding_boxes.as_subclass(torch.Tensor), format=format, top=top, left=left, height=new_height, width=new_width, ) bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size) height_and_width = F.convert_format_bounding_boxes( bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYWH )[..., 2:] is_valid = torch.all(height_and_width > 0, dim=-1) else: is_valid = None pad_bottom = max(self.crop_height - new_height, 0) pad_right = max(self.crop_width - new_width, 0) needs_pad = pad_bottom != 0 or pad_right != 0 return dict( needs_crop=needs_crop, top=top, left=left, height=new_height, width=new_width, is_valid=is_valid, padding=[0, 0, pad_right, pad_bottom], needs_pad=needs_pad, ) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: if params["needs_crop"]: inpt = F.crop( inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"], ) if params["is_valid"] is not None: if isinstance(inpt, (Label, OneHotLabel, datapoints.Mask)): inpt = inpt.wrap_like(inpt, inpt[params["is_valid"]]) # type: ignore[arg-type] elif isinstance(inpt, datapoints.BoundingBoxes): inpt = datapoints.BoundingBoxes.wrap_like( inpt, F.clamp_bounding_boxes(inpt[params["is_valid"]], format=inpt.format, canvas_size=inpt.canvas_size), ) if params["needs_pad"]: fill = _get_fill(self._fill, type(inpt)) inpt = F.pad(inpt, params["padding"], fill=fill, padding_mode=self.padding_mode) return inpt
from typing import Any, Dict, List, Optional, Sequence, Type, Union import PIL.Image import torch from torchvision import datapoints from torchvision.prototype.datapoints import Label, OneHotLabel from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import _get_fill, _setup_fill_arg, _setup_size from torchvision.transforms.v2.utils import get_bounding_boxes, has_any, is_simple_tensor, query_size class FixedSizeCrop(Transform): def __init__( self, size: Union[int, Sequence[int]], fill: Union[datapoints._FillType, Dict[Union[Type, str], datapoints._FillType]] = 0, padding_mode: str = "constant", ) -> None: super().__init__() size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")) self.crop_height = size[0] self.crop_width = size[1] self.fill = fill self._fill = _setup_fill_arg(fill) self.padding_mode = padding_mode def _check_inputs(self, flat_inputs: List[Any]) -> None: if not has_any( flat_inputs, PIL.Image.Image, datapoints.Image, is_simple_tensor, datapoints.Video, ): raise TypeError( f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video." ) if has_any(flat_inputs, datapoints.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel): raise TypeError( f"If a BoundingBoxes is contained in the input sample, " f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel." ) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: height, width = query_size(flat_inputs) new_height = min(height, self.crop_height) new_width = min(width, self.crop_width) needs_crop = new_height != height or new_width != width offset_height = max(height - self.crop_height, 0) offset_width = max(width - self.crop_width, 0) r = torch.rand(1) top = int(offset_height * r) left = int(offset_width * r) bounding_boxes: Optional[torch.Tensor] try: bounding_boxes = get_bounding_boxes(flat_inputs) except ValueError: bounding_boxes = None if needs_crop and bounding_boxes is not None: format = bounding_boxes.format bounding_boxes, canvas_size = F.crop_bounding_boxes( bounding_boxes.as_subclass(torch.Tensor), format=format, top=top, left=left, height=new_height, width=new_width, ) bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size) height_and_width = F.convert_format_bounding_boxes( bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYWH )[..., 2:] is_valid = torch.all(height_and_width > 0, dim=-1) else: is_valid = None pad_bottom = max(self.crop_height - new_height, 0) pad_right = max(self.crop_width - new_width, 0) needs_pad = pad_bottom != 0 or pad_right != 0 return dict( needs_crop=needs_crop, top=top, left=left, height=new_height, width=new_width, is_valid=is_valid, padding=[0, 0, pad_right, pad_bottom], needs_pad=needs_pad, ) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: if params["needs_crop"]: inpt = F.crop( inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"], ) if params["is_valid"] is not None: if isinstance(inpt, (Label, OneHotLabel, datapoints.Mask)): inpt = inpt.wrap_like(inpt, inpt[params["is_valid"]]) # type: ignore[arg-type] elif isinstance(inpt, datapoints.BoundingBoxes): inpt = datapoints.BoundingBoxes.wrap_like( inpt, F.clamp_bounding_boxes(inpt[params["is_valid"]], format=inpt.format, canvas_size=inpt.canvas_size), ) if params["needs_pad"]: fill = _get_fill(self._fill, type(inpt)) inpt = F.pad(inpt, params["padding"], fill=fill, padding_mode=self.padding_mode) return inpt
# Copyright (c) OpenMMLab. All rights reserved. """Image Demo. This script adopts a new infenence class, currently supports image path, np.array and folder input formats, and will support video and webcam in the future. Example: Save visualizations and predictions results:: python demo/image_demo.py demo/demo.jpg rtmdet-s python demo/image_demo.py demo/demo.jpg \ configs/rtmdet/rtmdet_s_8xb32-300e_coco.py \ --weights rtmdet_s_8xb32-300e_coco_20220905_161602-387a891e.pth python demo/image_demo.py demo/demo.jpg \ glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365 --texts bench python demo/image_demo.py demo/demo.jpg \ glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365 --texts 'bench . car .' python demo/image_demo.py demo/demo.jpg \ glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365 --texts 'bench . car .' -c python demo/image_demo.py demo/demo.jpg \ glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365 \ --texts 'There are a lot of cars here.' Visualize prediction results:: python demo/image_demo.py demo/demo.jpg rtmdet-ins-s --show python demo/image_demo.py demo/demo.jpg rtmdet-ins_s_8xb32-300e_coco \ --show """ from argparse import ArgumentParser from mmengine.logging import print_log from mmdet.apis import DetInferencer def parse_args(): parser = ArgumentParser() parser.add_argument( 'inputs', type=str, help='Input image file or folder path.') parser.add_argument( 'model', type=str, help='Config or checkpoint .pth file or the model name ' 'and alias defined in metafile. The model configuration ' 'file will try to read from .pth if the parameter is ' 'a .pth weights file.') parser.add_argument('--weights', default=None, help='Checkpoint file') parser.add_argument( '--out-dir', type=str, default='outputs', help='Output directory of images or prediction results.') parser.add_argument('--texts', help='text prompt') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--pred-score-thr', type=float, default=0.3, help='bbox score threshold') parser.add_argument( '--batch-size', type=int, default=1, help='Inference batch size.') parser.add_argument( '--show', action='store_true', help='Display the image in a popup window.') parser.add_argument( '--no-save-vis', action='store_true', help='Do not save detection vis results') parser.add_argument( '--no-save-pred', action='store_true', help='Do not save detection json results') parser.add_argument( '--print-result', action='store_true', help='Whether to print the results.') parser.add_argument( '--palette', default='none', choices=['coco', 'voc', 'citys', 'random', 'none'], help='Color palette used for visualization') # only for GLIP parser.add_argument( '--custom-entities', '-c', action='store_true', help='Whether to customize entity names? ' 'If so, the input text should be ' '"cls_name1 . cls_name2 . cls_name3 ." format') call_args = vars(parser.parse_args()) if call_args['no_save_vis'] and call_args['no_save_pred']: call_args['out_dir'] = '' if call_args['model'].endswith('.pth'): print_log('The model is a weight file, automatically ' 'assign the model to --weights') call_args['weights'] = call_args['model'] call_args['model'] = None init_kws = ['model', 'weights', 'device', 'palette'] init_args = {} for init_kw in init_kws: init_args[init_kw] = call_args.pop(init_kw) return init_args, call_args def main(): init_args, call_args = parse_args() # TODO: Video and Webcam are currently not supported and # may consume too much memory if your input folder has a lot of images. # We will be optimized later. inferencer = DetInferencer(**init_args) inferencer(**call_args) if call_args['out_dir'] != '' and not (call_args['no_save_vis'] and call_args['no_save_pred']): print_log(f'results have been saved at {call_args["out_dir"]}') if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. """Image Demo. This script adopts a new infenence class, currently supports image path, np.array and folder input formats, and will support video and webcam in the future. Example: Save visualizations and predictions results:: python demo/image_demo.py demo/demo.jpg rtmdet-s python demo/image_demo.py demo/demo.jpg \ configs/rtmdet/rtmdet_s_8xb32-300e_coco.py \ --weights rtmdet_s_8xb32-300e_coco_20220905_161602-387a891e.pth Visualize prediction results:: python demo/image_demo.py demo/demo.jpg rtmdet-ins-s --show python demo/image_demo.py demo/demo.jpg rtmdet-ins_s_8xb32-300e_coco \ --show """ from argparse import ArgumentParser from mmengine.logging import print_log from mmdet.apis import DetInferencer def parse_args(): parser = ArgumentParser() parser.add_argument( 'inputs', type=str, help='Input image file or folder path.') parser.add_argument( 'model', type=str, help='Config or checkpoint .pth file or the model name ' 'and alias defined in metafile. The model configuration ' 'file will try to read from .pth if the parameter is ' 'a .pth weights file.') parser.add_argument('--weights', default=None, help='Checkpoint file') parser.add_argument( '--out-dir', type=str, default='outputs', help='Output directory of images or prediction results.') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--pred-score-thr', type=float, default=0.3, help='bbox score threshold') parser.add_argument( '--batch-size', type=int, default=1, help='Inference batch size.') parser.add_argument( '--show', action='store_true', help='Display the image in a popup window.') parser.add_argument( '--no-save-vis', action='store_true', help='Do not save detection vis results') parser.add_argument( '--no-save-pred', action='store_true', help='Do not save detection json results') parser.add_argument( '--print-result', action='store_true', help='Whether to print the results.') parser.add_argument( '--palette', default='none', choices=['coco', 'voc', 'citys', 'random', 'none'], help='Color palette used for visualization') call_args = vars(parser.parse_args()) if call_args['no_save_vis'] and call_args['no_save_pred']: call_args['out_dir'] = '' if call_args['model'].endswith('.pth'): print_log('The model is a weight file, automatically ' 'assign the model to --weights') call_args['weights'] = call_args['model'] call_args['model'] = None init_kws = ['model', 'weights', 'device', 'palette'] init_args = {} for init_kw in init_kws: init_args[init_kw] = call_args.pop(init_kw) return init_args, call_args def main(): init_args, call_args = parse_args() # TODO: Video and Webcam are currently not supported and # may consume too much memory if your input folder has a lot of images. # We will be optimized later. inferencer = DetInferencer(**init_args) inferencer(**call_args) if call_args['out_dir'] != '' and not (call_args['no_save_vis'] and call_args['no_save_pred']): print_log(f'results have been saved at {call_args["out_dir"]}') if __name__ == '__main__': main()
_base_ = [ '../common/mstrain-poly_3x_coco_instance.py', '../_base_/models/mask_rcnn_r50_fpn.py' ] model = dict( # use caffe img_norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False), backbone=dict( depth=101, norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet101_caffe')))
_base_ = [ '../common/mstrain-poly_3x_coco_instance.py', '../_base_/models/mask_rcnn_r50_fpn.py' ] preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) model = dict( # use caffe img_norm preprocess_cfg=preprocess_cfg, backbone=dict( depth=101, norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet101_caffe')))
import logging import tempfile import typing import autogpt_libs.auth.depends import fastapi import fastapi.responses import prisma.enums import backend.server.v2.store.db import backend.server.v2.store.exceptions import backend.server.v2.store.model import backend.util.json logger = logging.getLogger(__name__) router = fastapi.APIRouter(prefix="/admin", tags=["store", "admin"]) @router.get( "/listings", response_model=backend.server.v2.store.model.StoreListingsWithVersionsResponse, dependencies=[fastapi.Depends(autogpt_libs.auth.depends.requires_admin_user)], ) async def get_admin_listings_with_versions( status: typing.Optional[prisma.enums.SubmissionStatus] = None, search: typing.Optional[str] = None, page: int = 1, page_size: int = 20, ): """ Get store listings with their version history for admins. This provides a consolidated view of listings with their versions, allowing for an expandable UI in the admin dashboard. Args: status: Filter by submission status (PENDING, APPROVED, REJECTED) search: Search by name, description, or user email page: Page number for pagination page_size: Number of items per page Returns: StoreListingsWithVersionsResponse with listings and their versions """ try: listings = await backend.server.v2.store.db.get_admin_listings_with_versions( status=status, search_query=search, page=page, page_size=page_size, ) return listings except Exception as e: logger.exception("Error getting admin listings with versions: %s", e) return fastapi.responses.JSONResponse( status_code=500, content={ "detail": "An error occurred while retrieving listings with versions" }, ) @router.post( "/submissions/{store_listing_version_id}/review", response_model=backend.server.v2.store.model.StoreSubmission, dependencies=[fastapi.Depends(autogpt_libs.auth.depends.requires_admin_user)], ) async def review_submission( store_listing_version_id: str, request: backend.server.v2.store.model.ReviewSubmissionRequest, user: typing.Annotated[ autogpt_libs.auth.models.User, fastapi.Depends(autogpt_libs.auth.depends.requires_admin_user), ], ): """ Review a store listing submission. Args: store_listing_version_id: ID of the submission to review request: Review details including approval status and comments user: Authenticated admin user performing the review Returns: StoreSubmission with updated review information """ try: submission = await backend.server.v2.store.db.review_store_submission( store_listing_version_id=store_listing_version_id, is_approved=request.is_approved, external_comments=request.comments, internal_comments=request.internal_comments or "", reviewer_id=user.user_id, ) return submission except Exception as e: logger.exception("Error reviewing submission: %s", e) return fastapi.responses.JSONResponse( status_code=500, content={"detail": "An error occurred while reviewing the submission"}, ) @router.get( "/submissions/download/{store_listing_version_id}", tags=["store", "admin"], dependencies=[fastapi.Depends(autogpt_libs.auth.depends.requires_admin_user)], ) async def admin_download_agent_file( user: typing.Annotated[ autogpt_libs.auth.models.User, fastapi.Depends(autogpt_libs.auth.depends.requires_admin_user), ], store_listing_version_id: str = fastapi.Path( ..., description="The ID of the agent to download" ), ) -> fastapi.responses.FileResponse: """ Download the agent file by streaming its content. Args: store_listing_version_id (str): The ID of the agent to download Returns: StreamingResponse: A streaming response containing the agent's graph data. Raises: HTTPException: If the agent is not found or an unexpected error occurs. """ graph_data = await backend.server.v2.store.db.get_agent( user_id=user.user_id, store_listing_version_id=store_listing_version_id, ) file_name = f"agent_{graph_data.id}_v{graph_data.version or 'latest'}.json" # Sending graph as a stream (similar to marketplace v1) with tempfile.NamedTemporaryFile( mode="w", suffix=".json", delete=False ) as tmp_file: tmp_file.write(backend.util.json.dumps(graph_data)) tmp_file.flush() return fastapi.responses.FileResponse( tmp_file.name, filename=file_name, media_type="application/json" )
import logging import typing import autogpt_libs.auth.depends import fastapi import fastapi.responses import prisma.enums import backend.server.v2.store.db import backend.server.v2.store.exceptions import backend.server.v2.store.model logger = logging.getLogger(__name__) router = fastapi.APIRouter(prefix="/admin", tags=["store", "admin"]) @router.get( "/listings", response_model=backend.server.v2.store.model.StoreListingsWithVersionsResponse, dependencies=[fastapi.Depends(autogpt_libs.auth.depends.requires_admin_user)], ) async def get_admin_listings_with_versions( status: typing.Optional[prisma.enums.SubmissionStatus] = None, search: typing.Optional[str] = None, page: int = 1, page_size: int = 20, ): """ Get store listings with their version history for admins. This provides a consolidated view of listings with their versions, allowing for an expandable UI in the admin dashboard. Args: status: Filter by submission status (PENDING, APPROVED, REJECTED) search: Search by name, description, or user email page: Page number for pagination page_size: Number of items per page Returns: StoreListingsWithVersionsResponse with listings and their versions """ try: listings = await backend.server.v2.store.db.get_admin_listings_with_versions( status=status, search_query=search, page=page, page_size=page_size, ) return listings except Exception as e: logger.exception("Error getting admin listings with versions: %s", e) return fastapi.responses.JSONResponse( status_code=500, content={ "detail": "An error occurred while retrieving listings with versions" }, ) @router.post( "/submissions/{store_listing_version_id}/review", response_model=backend.server.v2.store.model.StoreSubmission, dependencies=[fastapi.Depends(autogpt_libs.auth.depends.requires_admin_user)], ) async def review_submission( store_listing_version_id: str, request: backend.server.v2.store.model.ReviewSubmissionRequest, user: typing.Annotated[ autogpt_libs.auth.models.User, fastapi.Depends(autogpt_libs.auth.depends.requires_admin_user), ], ): """ Review a store listing submission. Args: store_listing_version_id: ID of the submission to review request: Review details including approval status and comments user: Authenticated admin user performing the review Returns: StoreSubmission with updated review information """ try: submission = await backend.server.v2.store.db.review_store_submission( store_listing_version_id=store_listing_version_id, is_approved=request.is_approved, external_comments=request.comments, internal_comments=request.internal_comments or "", reviewer_id=user.user_id, ) return submission except Exception as e: logger.exception("Error reviewing submission: %s", e) return fastapi.responses.JSONResponse( status_code=500, content={"detail": "An error occurred while reviewing the submission"}, )
from ._transforms import ( AddNoise, BarkScale, BarkSpectrogram, Convolve, FFTConvolve, InverseBarkScale, Speed, SpeedPerturbation, ) __all__ = [ "AddNoise", "BarkScale", "BarkSpectrogram", "Convolve", "FFTConvolve", "InverseBarkScale", "SpeedPerturbation", "Speed", ]
from ._transforms import BarkScale, BarkSpectrogram, Convolve, FFTConvolve, InverseBarkScale, Speed, SpeedPerturbation __all__ = [ "BarkScale", "BarkSpectrogram", "Convolve", "FFTConvolve", "InverseBarkScale", "SpeedPerturbation", "Speed", ]
import pytest from hypothesis import assume, given, note, settings, strategies import xgboost as xgb from xgboost import testing as tm pytestmark = tm.timeout(10) parameter_strategy = strategies.fixed_dictionaries( { "booster": strategies.just("gblinear"), "eta": strategies.floats(0.01, 0.25), "tolerance": strategies.floats(1e-5, 1e-2), "nthread": strategies.integers(1, 4), "feature_selector": strategies.sampled_from( ["cyclic", "shuffle", "greedy", "thrifty"] ), "top_k": strategies.integers(1, 10), } ) def train_result(param, dmat, num_rounds): result = {} booster = xgb.train( param, dmat, num_rounds, [(dmat, "train")], verbose_eval=False, evals_result=result, ) assert booster.num_boosted_rounds() == num_rounds return result class TestGPULinear: @given(parameter_strategy, strategies.integers(10, 50), tm.make_dataset_strategy()) @settings(deadline=None, max_examples=20, print_blob=True) def test_gpu_coordinate(self, param, num_rounds, dataset): assume(len(dataset.y) > 0) param["updater"] = "gpu_coord_descent" param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)["train"][ dataset.metric ] note(result) assert tm.non_increasing(result) # Loss is not guaranteed to always decrease because of regularisation parameters # We test a weaker condition that the loss has not increased between the first and last # iteration @given( parameter_strategy, strategies.integers(10, 50), tm.make_dataset_strategy(), strategies.floats(1e-5, 0.8), strategies.floats(1e-5, 0.8), ) @settings(deadline=None, max_examples=20, print_blob=True) def test_gpu_coordinate_regularised(self, param, num_rounds, dataset, alpha, lambd): assume(len(dataset.y) > 0) param["updater"] = "gpu_coord_descent" param["alpha"] = alpha param["lambda"] = lambd param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)["train"][ dataset.metric ] note(result) assert tm.non_increasing([result[0], result[-1]]) @pytest.mark.skipif(**tm.no_cupy()) def test_gpu_coordinate_from_cupy(self): # Training linear model is quite expensive, so we don't include it in # test_from_cupy.py import cupy params = { "booster": "gblinear", "updater": "gpu_coord_descent", "n_estimators": 100, } X, y = tm.get_california_housing() cpu_model = xgb.XGBRegressor(**params) cpu_model.fit(X, y) cpu_predt = cpu_model.predict(X) X = cupy.array(X) y = cupy.array(y) gpu_model = xgb.XGBRegressor(**params) gpu_model.fit(X, y) gpu_predt = gpu_model.predict(X) cupy.testing.assert_allclose(cpu_predt, gpu_predt)
import pytest from hypothesis import assume, given, note, settings, strategies import xgboost as xgb from xgboost import testing as tm pytestmark = tm.timeout(10) parameter_strategy = strategies.fixed_dictionaries({ 'booster': strategies.just('gblinear'), 'eta': strategies.floats(0.01, 0.25), 'tolerance': strategies.floats(1e-5, 1e-2), 'nthread': strategies.integers(1, 4), 'feature_selector': strategies.sampled_from(['cyclic', 'shuffle', 'greedy', 'thrifty']), 'top_k': strategies.integers(1, 10), }) def train_result(param, dmat, num_rounds): result = {} booster = xgb.train( param, dmat, num_rounds, [(dmat, 'train')], verbose_eval=False, evals_result=result ) assert booster.num_boosted_rounds() == num_rounds return result class TestGPULinear: @given(parameter_strategy, strategies.integers(10, 50), tm.make_dataset_strategy()) @settings(deadline=None, max_examples=20, print_blob=True) def test_gpu_coordinate(self, param, num_rounds, dataset): assume(len(dataset.y) > 0) param['updater'] = 'gpu_coord_descent' param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] note(result) assert tm.non_increasing(result) # Loss is not guaranteed to always decrease because of regularisation parameters # We test a weaker condition that the loss has not increased between the first and last # iteration @given( parameter_strategy, strategies.integers(10, 50), tm.make_dataset_strategy(), strategies.floats(1e-5, 0.8), strategies.floats(1e-5, 0.8) ) @settings(deadline=None, max_examples=20, print_blob=True) def test_gpu_coordinate_regularised(self, param, num_rounds, dataset, alpha, lambd): assume(len(dataset.y) > 0) param['updater'] = 'gpu_coord_descent' param['alpha'] = alpha param['lambda'] = lambd param = dataset.set_params(param) result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] note(result) assert tm.non_increasing([result[0], result[-1]]) @pytest.mark.skipif(**tm.no_cupy()) def test_gpu_coordinate_from_cupy(self): # Training linear model is quite expensive, so we don't include it in # test_from_cupy.py import cupy params = {'booster': 'gblinear', 'updater': 'gpu_coord_descent', 'n_estimators': 100} X, y = tm.get_california_housing() cpu_model = xgb.XGBRegressor(**params) cpu_model.fit(X, y) cpu_predt = cpu_model.predict(X) X = cupy.array(X) y = cupy.array(y) gpu_model = xgb.XGBRegressor(**params) gpu_model.fit(X, y) gpu_predt = gpu_model.predict(X) cupy.testing.assert_allclose(cpu_predt, gpu_predt)
import multiprocessing from concurrent.futures import ThreadPoolExecutor import pytest import xgboost as xgb @pytest.mark.parametrize("verbosity_level", [0, 1, 2, 3]) def test_global_config_verbosity(verbosity_level): def get_current_verbosity(): return xgb.get_config()["verbosity"] old_verbosity = get_current_verbosity() assert old_verbosity == 1 with xgb.config_context(verbosity=verbosity_level): new_verbosity = get_current_verbosity() assert new_verbosity == verbosity_level assert old_verbosity == get_current_verbosity() @pytest.mark.parametrize("use_rmm", [False, True]) def test_global_config_use_rmm(use_rmm): def get_current_use_rmm_flag(): return xgb.get_config()["use_rmm"] old_use_rmm_flag = get_current_use_rmm_flag() with xgb.config_context(use_rmm=use_rmm): new_use_rmm_flag = get_current_use_rmm_flag() assert new_use_rmm_flag == use_rmm assert old_use_rmm_flag == get_current_use_rmm_flag() def test_nested_config() -> None: verbosity = xgb.get_config()["verbosity"] assert verbosity == 1 with xgb.config_context(verbosity=3): assert xgb.get_config()["verbosity"] == 3 with xgb.config_context(verbosity=2): assert xgb.get_config()["verbosity"] == 2 with xgb.config_context(verbosity=1): assert xgb.get_config()["verbosity"] == 1 assert xgb.get_config()["verbosity"] == 2 assert xgb.get_config()["verbosity"] == 3 with xgb.config_context(verbosity=3): assert xgb.get_config()["verbosity"] == 3 with xgb.config_context(verbosity=None): assert xgb.get_config()["verbosity"] == 3 # None has no effect xgb.set_config(verbosity=2) assert xgb.get_config()["verbosity"] == 2 with xgb.config_context(verbosity=3): assert xgb.get_config()["verbosity"] == 3 xgb.set_config(verbosity=verbosity) # reset verbosity = xgb.get_config()["verbosity"] assert verbosity == 1 def test_thread_safty(): n_threads = multiprocessing.cpu_count() futures = [] with ThreadPoolExecutor(max_workers=n_threads) as executor: for i in range(256): f = executor.submit(test_nested_config) futures.append(f) for f in futures: f.result()
import multiprocessing from concurrent.futures import ThreadPoolExecutor import pytest import xgboost as xgb @pytest.mark.parametrize("verbosity_level", [0, 1, 2, 3]) def test_global_config_verbosity(verbosity_level): def get_current_verbosity(): return xgb.get_config()["verbosity"] old_verbosity = get_current_verbosity() with xgb.config_context(verbosity=verbosity_level): new_verbosity = get_current_verbosity() assert new_verbosity == verbosity_level assert old_verbosity == get_current_verbosity() @pytest.mark.parametrize("use_rmm", [False, True]) def test_global_config_use_rmm(use_rmm): def get_current_use_rmm_flag(): return xgb.get_config()["use_rmm"] old_use_rmm_flag = get_current_use_rmm_flag() with xgb.config_context(use_rmm=use_rmm): new_use_rmm_flag = get_current_use_rmm_flag() assert new_use_rmm_flag == use_rmm assert old_use_rmm_flag == get_current_use_rmm_flag() def test_nested_config(): with xgb.config_context(verbosity=3): assert xgb.get_config()["verbosity"] == 3 with xgb.config_context(verbosity=2): assert xgb.get_config()["verbosity"] == 2 with xgb.config_context(verbosity=1): assert xgb.get_config()["verbosity"] == 1 assert xgb.get_config()["verbosity"] == 2 assert xgb.get_config()["verbosity"] == 3 with xgb.config_context(verbosity=3): assert xgb.get_config()["verbosity"] == 3 with xgb.config_context(verbosity=None): assert xgb.get_config()["verbosity"] == 3 # None has no effect verbosity = xgb.get_config()["verbosity"] xgb.set_config(verbosity=2) assert xgb.get_config()["verbosity"] == 2 with xgb.config_context(verbosity=3): assert xgb.get_config()["verbosity"] == 3 xgb.set_config(verbosity=verbosity) # reset def test_thread_safty(): n_threads = multiprocessing.cpu_count() futures = [] with ThreadPoolExecutor(max_workers=n_threads) as executor: for i in range(256): f = executor.submit(test_nested_config) futures.append(f) for f in futures: f.result()
from typing import Type from docarray.proto import DocumentArrayProto, NodeProto from ..abstract_array import AbstractDocumentArray class ProtoArrayMixin(AbstractDocumentArray): @classmethod def from_protobuf( cls: Type[AbstractDocumentArray], pb_msg: 'DocumentArrayProto' ) -> AbstractDocumentArray: """create a Document from a protobuf message""" return cls(cls.document_type.from_protobuf(od) for od in pb_msg.docs) def to_protobuf(self) -> 'DocumentArrayProto': """Convert DocumentArray into a Protobuf message. :param ndarray_type: can be ``list`` or ``numpy``, if set it will force all ndarray-like object from all Documents to ``List`` or ``numpy.ndarray``. :return: the protobuf message """ dap = DocumentArrayProto() for doc in self: dap.docs.append(doc.to_protobuf()) return dap def _to_nested_item_protobuf(self) -> 'NodeProto': """Convert a DocumentArray into a nested item protobuf message. This function should be called when a DocumentArray is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(chunks=self.to_protobuf())
from typing import Type from docarray.proto import DocumentArrayProto, NodeProto from ..abstract_array import AbstractDocumentArray class ProtoArrayMixin(AbstractDocumentArray): @classmethod def from_protobuf( cls: Type[AbstractDocumentArray], pb_msg: 'DocumentArrayProto' ) -> AbstractDocumentArray: """create a Document from a protobuf message""" return cls(cls.document_type.from_protobuf(od) for od in pb_msg.docs) def to_protobuf(self) -> 'DocumentArrayProto': """Convert DocumentArray into a Protobuf message. :param ndarray_type: can be ``list`` or ``numpy``, if set it will force all ndarray-like object from all Documents to ``List`` or ``numpy.ndarray``. :return: the protobuf message """ dap = DocumentArrayProto() for doc in self: dap.docs.append(doc.to_protobuf()) return dap def _to_nested_item_protobuf(self) -> 'NodeProto': """Convert a DocumentArray into a nested item protobuf message. This function should be called when a DocumentArray is nested into another Document that need to be converted into a protobuf :return: the nested item protobuf message """ return NodeProto(chunks=self.to_protobuf())
import logging import random from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseInformationRetrievalEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load the NFcorpus IR dataset (https://huggingface.co/datasets/BeIR/nfcorpus, https://huggingface.co/datasets/BeIR/nfcorpus-qrels) corpus = load_dataset("BeIR/nfcorpus", "corpus", split="corpus") queries = load_dataset("BeIR/nfcorpus", "queries", split="queries") relevant_docs_data = load_dataset("BeIR/nfcorpus-qrels", split="test") # For this dataset, we want to concatenate the title and texts for the corpus corpus = corpus.map(lambda x: {"text": x["title"] + " " + x["text"]}, remove_columns=["title"]) # Shrink the corpus size heavily to only the relevant documents + 1,000 random documents required_corpus_ids = set(map(str, relevant_docs_data["corpus-id"])) required_corpus_ids |= set(random.sample(corpus["_id"], k=1000)) corpus = corpus.filter(lambda x: x["_id"] in required_corpus_ids) # Convert the datasets to dictionaries corpus = dict(zip(corpus["_id"], corpus["text"])) # Our corpus (cid => document) queries = dict(zip(queries["_id"], queries["text"])) # Our queries (qid => question) relevant_docs = {} # Query ID to relevant documents (qid => set([relevant_cids]) for qid, corpus_ids in zip(relevant_docs_data["query-id"], relevant_docs_data["corpus-id"]): qid = str(qid) corpus_ids = str(corpus_ids) if qid not in relevant_docs: relevant_docs[qid] = set() relevant_docs[qid].add(corpus_ids) # Given queries, a corpus and a mapping with relevant documents, the SparseInformationRetrievalEvaluator computes different IR metrics. ir_evaluator = SparseInformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="BeIR-nfcorpus-subset-test", show_progress_bar=True, batch_size=16, ) # Run evaluation results = ir_evaluator(model) """ Queries: 323 Corpus: 3269 Score-Function: dot Accuracy@1: 50.46% Accuracy@3: 64.40% Accuracy@5: 67.49% Accuracy@10: 72.14% Precision@1: 50.46% Precision@3: 40.87% Precision@5: 34.12% Precision@10: 26.10% Recall@1: 6.11% Recall@3: 11.73% Recall@5: 13.64% Recall@10: 17.24% MRR@10: 0.5801 NDCG@10: 0.3626 MAP@100: 0.1832 Model Query Sparsity: Active Dimensions: 43.1, Sparsity Ratio: 0.9986 Model Corpus Sparsity: Active Dimensions: 207.0, Sparsity Ratio: 0.9932 """ # Print the results print(f"Primary metric: {ir_evaluator.primary_metric}") # => Primary metric: BeIR-nfcorpus-subset-test_dot_ndcg@10 print(f"Primary metric value: {results[ir_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.3626
import logging import random from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseInformationRetrievalEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load the NFcorpus IR dataset (https://huggingface.co/datasets/BeIR/nfcorpus, https://huggingface.co/datasets/BeIR/nfcorpus-qrels) corpus = load_dataset("BeIR/nfcorpus", "corpus", split="corpus") queries = load_dataset("BeIR/nfcorpus", "queries", split="queries") relevant_docs_data = load_dataset("BeIR/nfcorpus-qrels", split="test") # For this dataset, we want to concatenate the title and texts for the corpus corpus = corpus.map(lambda x: {"text": x["title"] + " " + x["text"]}, remove_columns=["title"]) # Shrink the corpus size heavily to only the relevant documents + 1,000 random documents required_corpus_ids = set(map(str, relevant_docs_data["corpus-id"])) required_corpus_ids |= set(random.sample(corpus["_id"], k=1000)) corpus = corpus.filter(lambda x: x["_id"] in required_corpus_ids) # Convert the datasets to dictionaries corpus = dict(zip(corpus["_id"], corpus["text"])) # Our corpus (cid => document) queries = dict(zip(queries["_id"], queries["text"])) # Our queries (qid => question) relevant_docs = {} # Query ID to relevant documents (qid => set([relevant_cids]) for qid, corpus_ids in zip(relevant_docs_data["query-id"], relevant_docs_data["corpus-id"]): qid = str(qid) corpus_ids = str(corpus_ids) if qid not in relevant_docs: relevant_docs[qid] = set() relevant_docs[qid].add(corpus_ids) # Given queries, a corpus and a mapping with relevant documents, the SparseInformationRetrievalEvaluator computes different IR metrics. ir_evaluator = SparseInformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="BeIR-nfcorpus-subset-test", show_progress_bar=True, batch_size=16, ) # Run evaluation results = ir_evaluator(model) """ Queries: 323 Corpus: 3269 Score-Function: dot Accuracy@1: 50.46% Accuracy@3: 64.40% Accuracy@5: 67.49% Accuracy@10: 72.14% Precision@1: 50.46% Precision@3: 40.87% Precision@5: 34.12% Precision@10: 26.10% Recall@1: 6.11% Recall@3: 11.73% Recall@5: 13.64% Recall@10: 17.24% MRR@10: 0.5801 NDCG@10: 0.3626 MAP@100: 0.1832 Model Sparsity Stats Query : Row Non-Zero Mean: 43.08049392700195, Row Sparsity Mean: 0.9985886216163635 Model Sparsity Stats Corpus : Row Non-Zero Mean: 206.8623504638672, Row Sparsity Mean: 0.9932224750518799 """ # Print the results print(f"Primary metric: {ir_evaluator.primary_metric}") # => Primary metric: BeIR-nfcorpus-subset-test_dot_ndcg@10 print(f"Primary metric value: {results[ir_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.3626
from langchain_core.agents import AgentAction, AgentFinish from langchain.agents.output_parsers.xml import XMLAgentOutputParser def test_tool_usage() -> None: parser = XMLAgentOutputParser() # Test when final closing </tool_input> is included _input = """<tool>search</tool><tool_input>foo</tool_input>""" output = parser.invoke(_input) expected_output = AgentAction(tool="search", tool_input="foo", log=_input) assert output == expected_output # Test when final closing </tool_input> is NOT included # This happens when it's used as a stop token _input = """<tool>search</tool><tool_input>foo</tool_input>""" output = parser.invoke(_input) expected_output = AgentAction(tool="search", tool_input="foo", log=_input) assert output == expected_output def test_finish() -> None: parser = XMLAgentOutputParser() # Test when final closing <final_answer> is included _input = """<final_answer>bar</final_answer>""" output = parser.invoke(_input) expected_output = AgentFinish(return_values={"output": "bar"}, log=_input) assert output == expected_output # Test when final closing <final_answer> is NOT included # This happens when it's used as a stop token _input = """<final_answer>bar</final_answer>""" output = parser.invoke(_input) expected_output = AgentFinish(return_values={"output": "bar"}, log=_input) assert output == expected_output def test_malformed_xml_with_nested_tags() -> None: """Test handling of tool names with XML tags via format_xml minimal escaping.""" from langchain.agents.format_scratchpad.xml import format_xml # Create an AgentAction with XML tags in the tool name action = AgentAction(tool="search<tool>nested</tool>", tool_input="query", log="") # The format_xml function should escape the XML tags using custom delimiters formatted_xml = format_xml([(action, "observation")]) # Extract just the tool part for parsing tool_part = formatted_xml.split("<observation>")[0] # Remove observation part # Now test that the parser can handle the escaped XML parser = XMLAgentOutputParser(escape_format="minimal") output = parser.invoke(tool_part) # The parser should unescape and extract the original tool name expected_output = AgentAction( tool="search<tool>nested</tool>", tool_input="query", log=tool_part ) assert output == expected_output def test_no_escaping() -> None: """Test parser with escaping disabled.""" parser = XMLAgentOutputParser(escape_format=None) # Test with regular tool name (no XML tags) _input = """<tool>search</tool><tool_input>foo</tool_input>""" output = parser.invoke(_input) expected_output = AgentAction(tool="search", tool_input="foo", log=_input) assert output == expected_output
from langchain_core.agents import AgentAction, AgentFinish from langchain.agents.output_parsers.xml import XMLAgentOutputParser def test_tool_usage() -> None: parser = XMLAgentOutputParser() # Test when final closing </tool_input> is included _input = """<tool>search</tool><tool_input>foo</tool_input>""" output = parser.invoke(_input) expected_output = AgentAction(tool="search", tool_input="foo", log=_input) assert output == expected_output # Test when final closing </tool_input> is NOT included # This happens when it's used as a stop token _input = """<tool>search</tool><tool_input>foo</tool_input>""" output = parser.invoke(_input) expected_output = AgentAction(tool="search", tool_input="foo", log=_input) assert output == expected_output def test_finish() -> None: parser = XMLAgentOutputParser() # Test when final closing <final_answer> is included _input = """<final_answer>bar</final_answer>""" output = parser.invoke(_input) expected_output = AgentFinish(return_values={"output": "bar"}, log=_input) assert output == expected_output # Test when final closing <final_answer> is NOT included # This happens when it's used as a stop token _input = """<final_answer>bar</final_answer>""" output = parser.invoke(_input) expected_output = AgentFinish(return_values={"output": "bar"}, log=_input) assert output == expected_output
import asyncio from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever class MergerRetriever(BaseRetriever): """Retriever that merges the results of multiple retrievers.""" retrievers: list[BaseRetriever] """A list of retrievers to merge.""" def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, ) -> list[Document]: """ Get the relevant documents for a given query. Args: query: The query to search for. Returns: A list of relevant documents. """ # Merge the results of the retrievers. return self.merge_documents(query, run_manager) async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, ) -> list[Document]: """ Asynchronously get the relevant documents for a given query. Args: query: The query to search for. Returns: A list of relevant documents. """ # Merge the results of the retrievers. return await self.amerge_documents(query, run_manager) def merge_documents( self, query: str, run_manager: CallbackManagerForRetrieverRun ) -> list[Document]: """ Merge the results of the retrievers. Args: query: The query to search for. Returns: A list of merged documents. """ # Get the results of all retrievers. retriever_docs = [ retriever.invoke( query, config={"callbacks": run_manager.get_child(f"retriever_{i + 1}")}, ) for i, retriever in enumerate(self.retrievers) ] # Merge the results of the retrievers. merged_documents = [] max_docs = max(map(len, retriever_docs), default=0) for i in range(max_docs): for retriever, doc in zip(self.retrievers, retriever_docs): if i < len(doc): merged_documents.append(doc[i]) return merged_documents async def amerge_documents( self, query: str, run_manager: AsyncCallbackManagerForRetrieverRun ) -> list[Document]: """ Asynchronously merge the results of the retrievers. Args: query: The query to search for. Returns: A list of merged documents. """ # Get the results of all retrievers. retriever_docs = await asyncio.gather( *( retriever.ainvoke( query, config={"callbacks": run_manager.get_child(f"retriever_{i + 1}")}, ) for i, retriever in enumerate(self.retrievers) ) ) # Merge the results of the retrievers. merged_documents = [] max_docs = max(map(len, retriever_docs), default=0) for i in range(max_docs): for retriever, doc in zip(self.retrievers, retriever_docs): if i < len(doc): merged_documents.append(doc[i]) return merged_documents
import asyncio from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever class MergerRetriever(BaseRetriever): """Retriever that merges the results of multiple retrievers.""" retrievers: list[BaseRetriever] """A list of retrievers to merge.""" def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, ) -> list[Document]: """ Get the relevant documents for a given query. Args: query: The query to search for. Returns: A list of relevant documents. """ # Merge the results of the retrievers. merged_documents = self.merge_documents(query, run_manager) return merged_documents async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, ) -> list[Document]: """ Asynchronously get the relevant documents for a given query. Args: query: The query to search for. Returns: A list of relevant documents. """ # Merge the results of the retrievers. merged_documents = await self.amerge_documents(query, run_manager) return merged_documents def merge_documents( self, query: str, run_manager: CallbackManagerForRetrieverRun ) -> list[Document]: """ Merge the results of the retrievers. Args: query: The query to search for. Returns: A list of merged documents. """ # Get the results of all retrievers. retriever_docs = [ retriever.invoke( query, config={"callbacks": run_manager.get_child(f"retriever_{i + 1}")}, ) for i, retriever in enumerate(self.retrievers) ] # Merge the results of the retrievers. merged_documents = [] max_docs = max(map(len, retriever_docs), default=0) for i in range(max_docs): for retriever, doc in zip(self.retrievers, retriever_docs): if i < len(doc): merged_documents.append(doc[i]) return merged_documents async def amerge_documents( self, query: str, run_manager: AsyncCallbackManagerForRetrieverRun ) -> list[Document]: """ Asynchronously merge the results of the retrievers. Args: query: The query to search for. Returns: A list of merged documents. """ # Get the results of all retrievers. retriever_docs = await asyncio.gather( *( retriever.ainvoke( query, config={"callbacks": run_manager.get_child(f"retriever_{i + 1}")}, ) for i, retriever in enumerate(self.retrievers) ) ) # Merge the results of the retrievers. merged_documents = [] max_docs = max(map(len, retriever_docs), default=0) for i in range(max_docs): for retriever, doc in zip(self.retrievers, retriever_docs): if i < len(doc): merged_documents.append(doc[i]) return merged_documents
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( data_preprocessor=dict( # The mean and std are used in PyCls when training RegNets mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], bgr_to_rgb=False), backbone=dict( _delete_=True, type='RegNet', arch='regnetx_3.2gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_3.2gf')), neck=dict( type='FPN', in_channels=[96, 192, 432, 1008], out_channels=256, num_outs=5)) optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005), clip_grad=dict(max_norm=35, norm_type=2))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( _delete_=True, type='RegNet', arch='regnetx_3.2gf', out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://regnetx_3.2gf')), neck=dict( type='FPN', in_channels=[96, 192, 432, 1008], out_channels=256, num_outs=5)) img_norm_cfg = dict( # The mean and std are used in PyCls when training RegNets mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
from textwrap import dedent from types import SimpleNamespace from unittest.mock import patch from urllib.parse import quote import pytest from huggingface_hub import CommitOperationAdd, CommitOperationDelete import datasets from datasets.config import METADATA_CONFIGS_FIELD from datasets.hub import delete_from_hub from datasets.utils.hub import hf_dataset_url @pytest.mark.parametrize("repo_id", ["canonical_dataset_name", "org-name/dataset-name"]) @pytest.mark.parametrize("filename", ["filename.csv", "filename with blanks.csv"]) @pytest.mark.parametrize("revision", [None, "v2"]) def test_dataset_url(repo_id, filename, revision): url = hf_dataset_url(repo_id=repo_id, filename=filename, revision=revision) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(filename)}" def test_delete_from_hub(temporary_repo, hf_api, hf_token, csv_path, ci_hub_config, ci_hfh_hf_hub_url) -> None: with temporary_repo() as repo_id: hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset") hf_api.upload_file( path_or_fileobj=str(csv_path), path_in_repo="cats/train/0000.csv", repo_id=repo_id, repo_type="dataset", token=hf_token, ) hf_api.upload_file( path_or_fileobj=str(csv_path), path_in_repo="dogs/train/0000.csv", repo_id=repo_id, repo_type="dataset", token=hf_token, ) hf_api.upload_file( token=hf_token, path_or_fileobj=dedent(f"""\ --- {METADATA_CONFIGS_FIELD}: - config_name: cats data_files: - split: train path: cats/train/* - config_name: dogs data_files: - split: train path: dogs/train/* --- """).encode(), path_in_repo="README.md", repo_id=repo_id, repo_type="dataset", ) commit_info = SimpleNamespace( pr_url="https:///hub-ci.huggingface.co/datasets/__DUMMY_USER__/__DUMMY_DATASET__/refs%2Fpr%2F1" ) with patch.object(datasets.hub.HfApi, "create_commit", return_value=commit_info) as mock_method: delete_from_hub(repo_id, "dogs") assert mock_method.called assert mock_method.call_args.kwargs.get("commit_message") == "Delete 'dogs' config" assert mock_method.call_args.kwargs.get("create_pr") expected_operations = [ CommitOperationDelete(path_in_repo="dogs/train/0000.csv", is_folder=False), CommitOperationAdd( path_in_repo="README.md", path_or_fileobj=dedent(f"""\ --- {METADATA_CONFIGS_FIELD}: - config_name: cats data_files: - split: train path: cats/train/* --- """).encode(), ), ] assert mock_method.call_args.kwargs.get("operations") == expected_operations
from textwrap import dedent from types import SimpleNamespace from unittest.mock import patch from urllib.parse import quote import pytest from huggingface_hub import CommitOperationAdd, CommitOperationDelete import datasets from datasets.config import METADATA_CONFIGS_FIELD from datasets.hub import delete_from_hub from datasets.utils.hub import hf_dataset_url @pytest.mark.parametrize("repo_id", ["canonical_dataset_name", "org-name/dataset-name"]) @pytest.mark.parametrize("filename", ["filename.csv", "filename with blanks.csv"]) @pytest.mark.parametrize("revision", [None, "v2"]) def test_dataset_url(repo_id, filename, revision): url = hf_dataset_url(repo_id=repo_id, filename=filename, revision=revision) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(filename)}" def test_delete_from_hub( temporary_repo, hf_api, hf_token, csv_path, tmp_path, ci_hub_config, ci_hfh_hf_hub_url ) -> None: with temporary_repo() as repo_id: hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset") hf_api.upload_file( path_or_fileobj=str(csv_path), path_in_repo="cats/train/0000.csv", repo_id=repo_id, repo_type="dataset", token=hf_token, ) hf_api.upload_file( path_or_fileobj=str(csv_path), path_in_repo="dogs/train/0000.csv", repo_id=repo_id, repo_type="dataset", token=hf_token, ) readme_path = tmp_path / "README.md" readme_path.write_text( dedent(f"""\ --- {METADATA_CONFIGS_FIELD}: - config_name: cats data_files: - split: train path: cats/train/* - config_name: dogs data_files: - split: train path: dogs/train/* --- """) ) hf_api.upload_file( token=hf_token, path_or_fileobj=str(readme_path), path_in_repo="README.md", repo_id=repo_id, repo_type="dataset", ) commit_info = SimpleNamespace( pr_url="https:///hub-ci.huggingface.co/datasets/__DUMMY_USER__/__DUMMY_DATASET__/refs%2Fpr%2F1" ) with patch.object(datasets.hub.HfApi, "create_commit", return_value=commit_info) as mock_method: delete_from_hub(repo_id, "dogs") assert mock_method.called assert mock_method.call_args.kwargs.get("commit_message") == "Delete 'dogs' config" assert mock_method.call_args.kwargs.get("create_pr") expected_operations = [ CommitOperationDelete(path_in_repo="dogs/train/0000.csv", is_folder=False), CommitOperationAdd( path_in_repo="README.md", path_or_fileobj=b"---\nconfigs:\n- config_name: cats\n data_files:\n - split: train\n path: cats/train/*\n---\n", ), ] assert mock_method.call_args.kwargs.get("operations") == expected_operations
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp from mmcv.utils import build_from_cfg from mmdet.datasets.builder import PIPELINES def test_default_format_bundle(): results = dict( img_prefix=osp.join(osp.dirname(__file__), '../../data'), img_info=dict(filename='color.jpg')) load = dict(type='LoadImageFromFile') load = build_from_cfg(load, PIPELINES) bundle = dict(type='DefaultFormatBundle') bundle = build_from_cfg(bundle, PIPELINES) results = load(results) assert 'pad_shape' not in results assert 'scale_factor' not in results assert 'img_norm_cfg' not in results results = bundle(results) assert 'pad_shape' in results assert 'scale_factor' in results assert 'img_norm_cfg' in results
import os.path as osp from mmcv.utils import build_from_cfg from mmdet.datasets.builder import PIPELINES def test_default_format_bundle(): results = dict( img_prefix=osp.join(osp.dirname(__file__), '../../data'), img_info=dict(filename='color.jpg')) load = dict(type='LoadImageFromFile') load = build_from_cfg(load, PIPELINES) bundle = dict(type='DefaultFormatBundle') bundle = build_from_cfg(bundle, PIPELINES) results = load(results) assert 'pad_shape' not in results assert 'scale_factor' not in results assert 'img_norm_cfg' not in results results = bundle(results) assert 'pad_shape' in results assert 'scale_factor' in results assert 'img_norm_cfg' in results
import os import sys import pytest from llama_index.core.evaluation.eval_utils import upload_eval_dataset base_url = os.environ.get("LLAMA_CLOUD_BASE_URL", None) api_key = os.environ.get("LLAMA_CLOUD_API_KEY", None) python_version = sys.version @pytest.mark.skipif( not base_url or not api_key, reason="No platform base url or api keyset" ) @pytest.mark.integration def test_upload_eval_dataset() -> None: from llama_cloud.client import LlamaCloud eval_dataset_id = upload_eval_dataset( "test_dataset" + python_version, # avoid CI test clashes project_name="test_project" + python_version, questions=["foo", "bar"], overwrite=True, ) client = LlamaCloud(base_url=base_url, token=api_key) eval_dataset = client.evals.get_dataset(dataset_id=eval_dataset_id) assert eval_dataset.name == "test_dataset" + python_version eval_questions = client.evals.get_questions(dataset_id=eval_dataset_id) assert len(eval_questions) == 2
import os import sys import pytest from llama_index.core.evaluation.eval_utils import upload_eval_dataset base_url = os.environ.get("LLAMA_CLOUD_BASE_URL", None) api_key = os.environ.get("LLAMA_CLOUD_API_KEY", None) python_version = sys.version @pytest.mark.skipif( not base_url or not api_key, reason="No platform base url or api keyset" ) @pytest.mark.integration() def test_upload_eval_dataset() -> None: from llama_cloud.client import LlamaCloud eval_dataset_id = upload_eval_dataset( "test_dataset" + python_version, # avoid CI test clashes project_name="test_project" + python_version, questions=["foo", "bar"], overwrite=True, ) client = LlamaCloud(base_url=base_url, token=api_key) eval_dataset = client.evals.get_dataset(dataset_id=eval_dataset_id) assert eval_dataset.name == "test_dataset" + python_version eval_questions = client.evals.get_questions(dataset_id=eval_dataset_id) assert len(eval_questions) == 2
import abc from platform import architecture, python_version from typing import Any, Optional from importlib.metadata import version from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document from llama_index.readers.oxylabs.utils import json_to_markdown from oxylabs import RealtimeClient, AsyncClient from oxylabs.sources.response import Response class OxylabsBaseReader(BasePydanticReader, abc.ABC): """ Oxylabs Scraper base class. https://developers.oxylabs.io/scraper-apis/web-scraper-api """ top_level_header: Optional[str] = None timeout_s: int = 100 oxylabs_scraper_url: str = "https://realtime.oxyserps-dev.fun/v1/queries" oxylabs_api: RealtimeClient async_oxylabs_api: AsyncClient def __init__(self, username: str, password: str, **data) -> None: bits, _ = architecture() sdk_type = ( f"oxylabs-llama-index-oxy-sdk-python/" f"{version('llama-index-readers-oxylabs')} " f"({python_version()}; {bits})" ) data["oxylabs_api"] = RealtimeClient(username, password, sdk_type=sdk_type) data["async_oxylabs_api"] = AsyncClient(username, password, sdk_type=sdk_type) super().__init__(**data) def _get_document_from_response( self, response: list[dict] | list[list[dict]] ) -> Document: processed_content = json_to_markdown(response, 0, self.top_level_header) return Document(text=processed_content) def load_data(self, payload: dict[str, Any]) -> list[Document]: response = self.get_response(payload) validated_responses = self._validate_response(response) return [self._get_document_from_response(validated_responses)] async def aload_data(self, payload: dict[str, Any]) -> list[Document]: response = await self.aget_response(payload) validated_responses = self._validate_response(response) return [self._get_document_from_response(validated_responses)] def get_response(self, payload: dict[str, Any]) -> Response: raise NotImplementedError async def aget_response(self, payload: dict[str, Any]) -> Response: raise NotImplementedError @staticmethod def _validate_response( response: Any, ) -> list[dict[Any, Any]] | list[list[dict[Any, Any]]]: """ Validate Oxylabs response format and unpack data. """ validated_results = [] try: result_pages = response.raw["results"] if not isinstance(result_pages, list) or not result_pages: raise ValueError("No results returned!") for result_page in result_pages: result_page = dict(result_page) content = result_page["content"] if isinstance(content, list): validated_results.append(content) continue if not isinstance(content, dict): raise ValueError( "Result `content` format error," " try setting parameter `parse` to True" ) if "results" in content: result = content["results"] if isinstance(result, list): validated_results.append(result) elif isinstance(result, dict): validated_results.append(result) else: raise ValueError("Response format Error!") else: validated_results.append(content) return validated_results except (KeyError, IndexError, TypeError, ValueError) as exc: raise RuntimeError(f"Response Validation Error: {exc!s}") from exc
import abc from platform import architecture, python_version from typing import Any from importlib.metadata import version from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document from llama_index.readers.oxylabs.utils import json_to_markdown from oxylabs import RealtimeClient, AsyncClient from oxylabs.sources.response import Response class OxylabsBaseReader(BasePydanticReader, abc.ABC): """ Oxylabs Scraper base class. https://developers.oxylabs.io/scraper-apis/web-scraper-api """ top_level_header: str | None = None timeout_s: int = 100 oxylabs_scraper_url: str = "https://realtime.oxyserps-dev.fun/v1/queries" oxylabs_api: RealtimeClient async_oxylabs_api: AsyncClient def __init__(self, username: str, password: str, **data) -> None: bits, _ = architecture() sdk_type = ( f"oxylabs-llama-index-oxy-sdk-python/" f"{version('llama-index-readers-oxylabs')} " f"({python_version()}; {bits})" ) data["oxylabs_api"] = RealtimeClient(username, password, sdk_type=sdk_type) data["async_oxylabs_api"] = AsyncClient(username, password, sdk_type=sdk_type) super().__init__(**data) def _get_document_from_response( self, response: list[dict] | list[list[dict]] ) -> Document: processed_content = json_to_markdown(response, 0, self.top_level_header) return Document(text=processed_content) def load_data(self, payload: dict[str, Any]) -> list[Document]: response = self.get_response(payload) validated_responses = self._validate_response(response) return [self._get_document_from_response(validated_responses)] async def aload_data(self, payload: dict[str, Any]) -> list[Document]: response = await self.aget_response(payload) validated_responses = self._validate_response(response) return [self._get_document_from_response(validated_responses)] def get_response(self, payload: dict[str, Any]) -> Response: raise NotImplementedError async def aget_response(self, payload: dict[str, Any]) -> Response: raise NotImplementedError @staticmethod def _validate_response( response: Any, ) -> list[dict[Any, Any]] | list[list[dict[Any, Any]]]: """ Validate Oxylabs response format and unpack data. """ validated_results = [] try: result_pages = response.raw["results"] if not isinstance(result_pages, list) or not result_pages: raise ValueError("No results returned!") for result_page in result_pages: result_page = dict(result_page) content = result_page["content"] if isinstance(content, list): validated_results.append(content) continue if not isinstance(content, dict): raise ValueError( "Result `content` format error," " try setting parameter `parse` to True" ) if "results" in content: result = content["results"] if isinstance(result, list): validated_results.append(result) elif isinstance(result, dict): validated_results.append(result) else: raise ValueError("Response format Error!") else: validated_results.append(content) return validated_results except (KeyError, IndexError, TypeError, ValueError) as exc: raise RuntimeError(f"Response Validation Error: {exc!s}") from exc
# Copyright (c) OpenMMLab. All rights reserved. from .gaussian_target import (gather_feat, gaussian_radius, gen_gaussian_target, get_local_maximum, get_topk_from_heatmap, transpose_and_gather_feat) from .make_divisible import make_divisible from .misc import (aligned_bilinear, center_of_mass, empty_instances, filter_gt_instances, filter_scores_and_topk, flip_tensor, generate_coordinate, images_to_levels, interpolate_as, levels_to_images, mask2ndarray, multi_apply, relative_coordinate_maps, rename_loss_dict, reweight_loss_dict, samplelist_boxtype2tensor, select_single_mlvl, sigmoid_geometric_mean, unfold_wo_center, unmap, unpack_gt_instances) from .panoptic_gt_processing import preprocess_panoptic_gt from .point_sample import (get_uncertain_point_coords_with_randomness, get_uncertainty) __all__ = [ 'gaussian_radius', 'gen_gaussian_target', 'make_divisible', 'get_local_maximum', 'get_topk_from_heatmap', 'transpose_and_gather_feat', 'interpolate_as', 'sigmoid_geometric_mean', 'gather_feat', 'preprocess_panoptic_gt', 'get_uncertain_point_coords_with_randomness', 'get_uncertainty', 'unpack_gt_instances', 'empty_instances', 'center_of_mass', 'filter_scores_and_topk', 'flip_tensor', 'generate_coordinate', 'levels_to_images', 'mask2ndarray', 'multi_apply', 'select_single_mlvl', 'unmap', 'images_to_levels', 'samplelist_boxtype2tensor', 'filter_gt_instances', 'rename_loss_dict', 'reweight_loss_dict', 'relative_coordinate_maps', 'aligned_bilinear', 'unfold_wo_center' ]
# Copyright (c) OpenMMLab. All rights reserved. from .gaussian_target import (gather_feat, gaussian_radius, gen_gaussian_target, get_local_maximum, get_topk_from_heatmap, transpose_and_gather_feat) from .make_divisible import make_divisible from .misc import (aligned_bilinear, center_of_mass, empty_instances, filter_gt_instances, filter_scores_and_topk, flip_tensor, generate_coordinate, images_to_levels, interpolate_as, levels_to_images, mask2ndarray, multi_apply, relative_coordinate_maps, rename_loss_dict, reweight_loss_dict, samplelist_boxtype2tensor, select_single_mlvl, sigmoid_geometric_mean, unmap, unpack_gt_instances) from .panoptic_gt_processing import preprocess_panoptic_gt from .point_sample import (get_uncertain_point_coords_with_randomness, get_uncertainty) __all__ = [ 'gaussian_radius', 'gen_gaussian_target', 'make_divisible', 'get_local_maximum', 'get_topk_from_heatmap', 'transpose_and_gather_feat', 'interpolate_as', 'sigmoid_geometric_mean', 'gather_feat', 'preprocess_panoptic_gt', 'get_uncertain_point_coords_with_randomness', 'get_uncertainty', 'unpack_gt_instances', 'empty_instances', 'center_of_mass', 'filter_scores_and_topk', 'flip_tensor', 'generate_coordinate', 'levels_to_images', 'mask2ndarray', 'multi_apply', 'select_single_mlvl', 'unmap', 'images_to_levels', 'samplelist_boxtype2tensor', 'filter_gt_instances', 'rename_loss_dict', 'reweight_loss_dict', 'relative_coordinate_maps', 'aligned_bilinear' ]
from __future__ import annotations from typing import Any, Optional, Sequence, Type, TypeVar, Union import torch from torch.utils._pytree import tree_map from torchvision.datapoints._datapoint import Datapoint L = TypeVar("L", bound="_LabelBase") class _LabelBase(Datapoint): categories: Optional[Sequence[str]] @classmethod def _wrap(cls: Type[L], tensor: torch.Tensor, *, categories: Optional[Sequence[str]]) -> L: label_base = tensor.as_subclass(cls) label_base.categories = categories return label_base def __new__( cls: Type[L], data: Any, *, categories: Optional[Sequence[str]] = None, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> L: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor, categories=categories) @classmethod def from_category( cls: Type[L], category: str, *, categories: Sequence[str], **kwargs: Any, ) -> L: return cls(categories.index(category), categories=categories, **kwargs) class Label(_LabelBase): def to_categories(self) -> Any: if self.categories is None: raise RuntimeError("Label does not have categories") return tree_map(lambda idx: self.categories[idx], self.tolist()) class OneHotLabel(_LabelBase): def __new__( cls, data: Any, *, categories: Optional[Sequence[str]] = None, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: bool = False, ) -> OneHotLabel: one_hot_label = super().__new__( cls, data, categories=categories, dtype=dtype, device=device, requires_grad=requires_grad ) if categories is not None and len(categories) != one_hot_label.shape[-1]: raise ValueError() return one_hot_label
from __future__ import annotations from typing import Any, Optional, Sequence, Type, TypeVar, Union import torch from torch.utils._pytree import tree_map from torchvision.datapoints._datapoint import Datapoint L = TypeVar("L", bound="_LabelBase") class _LabelBase(Datapoint): categories: Optional[Sequence[str]] @classmethod def _wrap(cls: Type[L], tensor: torch.Tensor, *, categories: Optional[Sequence[str]]) -> L: label_base = tensor.as_subclass(cls) label_base.categories = categories return label_base def __new__( cls: Type[L], data: Any, *, categories: Optional[Sequence[str]] = None, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> L: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor, categories=categories) @classmethod def wrap_like(cls: Type[L], other: L, tensor: torch.Tensor, *, categories: Optional[Sequence[str]] = None) -> L: return cls._wrap( tensor, categories=categories if categories is not None else other.categories, ) @classmethod def from_category( cls: Type[L], category: str, *, categories: Sequence[str], **kwargs: Any, ) -> L: return cls(categories.index(category), categories=categories, **kwargs) class Label(_LabelBase): def to_categories(self) -> Any: if self.categories is None: raise RuntimeError("Label does not have categories") return tree_map(lambda idx: self.categories[idx], self.tolist()) class OneHotLabel(_LabelBase): def __new__( cls, data: Any, *, categories: Optional[Sequence[str]] = None, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: bool = False, ) -> OneHotLabel: one_hot_label = super().__new__( cls, data, categories=categories, dtype=dtype, device=device, requires_grad=requires_grad ) if categories is not None and len(categories) != one_hot_label.shape[-1]: raise ValueError() return one_hot_label
import numpy as np import pytest from tensorflow import data as tf_data from keras.src import backend from keras.src import layers from keras.src import testing from keras.src.ops import convert_to_tensor class StringLookupTest(testing.TestCase): # TODO: increase coverage. Most features aren't being tested. def test_config(self): layer = layers.StringLookup( output_mode="int", vocabulary=["a", "b", "c"], oov_token="[OOV]", mask_token="[MASK]", ) self.run_class_serialization_test(layer) def test_adapt_flow(self): layer = layers.StringLookup( output_mode="int", ) layer.adapt(["a", "a", "a", "b", "b", "c"]) input_data = ["b", "c", "d"] output = layer(input_data) self.assertTrue(backend.is_tensor(output)) self.assertAllClose(output, np.array([2, 3, 0])) def test_fixed_vocabulary(self): layer = layers.StringLookup( output_mode="int", vocabulary=["a", "b", "c"], ) input_data = ["b", "c", "d"] output = layer(input_data) self.assertTrue(backend.is_tensor(output)) self.assertAllClose(output, np.array([2, 3, 0])) @pytest.mark.skipif( not backend.backend() == "tensorflow", reason="Requires tf.SparseTensor" ) def test_sparse_inputs(self): import tensorflow as tf layer = layers.StringLookup( output_mode="int", vocabulary=["a", "b", "c"], ) input_data = tf.SparseTensor( indices=[[0, 0], [1, 1], [2, 2]], values=["b", "c", "d"], dense_shape=(3, 3), ) output = layer(input_data) self.assertIsInstance(output, tf.SparseTensor) self.assertAllClose(output, np.array([[2, 0, 0], [0, 3, 0], [0, 0, 0]])) self.assertAllClose(output.values, np.array([2, 3, 0])) def test_set_vocabulary(self): layer = layers.StringLookup( output_mode="int", ) layer.set_vocabulary(["a", "b", "c"]) input_data = ["b", "c", "d"] output = layer(input_data) self.assertTrue(backend.is_tensor(output)) self.assertAllClose(output, np.array([2, 3, 0])) def test_tf_data_compatibility(self): layer = layers.StringLookup( output_mode="int", vocabulary=["a", "b", "c"], ) input_data = ["b", "c", "d"] ds = tf_data.Dataset.from_tensor_slices(input_data).batch(3).map(layer) output = next(iter(ds)).numpy() self.assertAllClose(output, np.array([2, 3, 0])) @pytest.mark.skipif(not backend.backend() == "tensorflow", reason="tf only") def test_tensor_as_vocab(self): vocab = convert_to_tensor(["a", "b", "c", "d"]) data = [["a", "c", "d"], ["d", "z", "b"]] layer = layers.StringLookup( vocabulary=vocab, ) output = layer(data) self.assertAllClose(output, np.array([[1, 3, 4], [4, 0, 2]]))
import numpy as np import pytest from tensorflow import data as tf_data from keras.src import backend from keras.src import layers from keras.src import testing from keras.src.ops import convert_to_tensor class StringLookupTest(testing.TestCase): # TODO: increase coverage. Most features aren't being tested. def test_config(self): layer = layers.StringLookup( output_mode="int", vocabulary=["a", "b", "c"], oov_token="[OOV]", mask_token="[MASK]", ) self.run_class_serialization_test(layer) def test_adapt_flow(self): layer = layers.StringLookup( output_mode="int", ) layer.adapt(["a", "a", "a", "b", "b", "c"]) input_data = ["b", "c", "d"] output = layer(input_data) self.assertTrue(backend.is_tensor(output)) self.assertAllClose(output, np.array([2, 3, 0])) def test_fixed_vocabulary(self): layer = layers.StringLookup( output_mode="int", vocabulary=["a", "b", "c"], ) input_data = ["b", "c", "d"] output = layer(input_data) self.assertTrue(backend.is_tensor(output)) self.assertAllClose(output, np.array([2, 3, 0])) @pytest.mark.skipif( not backend.backend() == "tensorflow", reason="Requires tf.SparseTensor" ) def test_sparse_inputs(self): import tensorflow as tf layer = layers.StringLookup( output_mode="int", vocabulary=["a", "b", "c"], ) input_data = tf.SparseTensor( indices=[[0, 0], [1, 1], [2, 2]], values=["b", "c", "d"], dense_shape=(3, 3), ) output = layer(input_data) self.assertIsInstance(output, tf.SparseTensor) self.assertAllClose(output, np.array([[2, 0, 0], [0, 3, 0], [0, 0, 0]])) self.assertAllClose(output.values, np.array([2, 3, 0])) def test_set_vocabulary(self): layer = layers.StringLookup( output_mode="int", ) layer.set_vocabulary(["a", "b", "c"]) input_data = ["b", "c", "d"] output = layer(input_data) self.assertTrue(backend.is_tensor(output)) self.assertAllClose(output, np.array([2, 3, 0])) def test_tf_data_compatibility(self): layer = layers.StringLookup( output_mode="int", vocabulary=["a", "b", "c"], ) input_data = ["b", "c", "d"] ds = tf_data.Dataset.from_tensor_slices(input_data).batch(3).map(layer) for output in ds.take(1): output = output.numpy() self.assertAllClose(output, np.array([2, 3, 0])) @pytest.mark.skipif(not backend.backend() == "tensorflow", reason="tf only") def test_tensor_as_vocab(self): vocab = convert_to_tensor(["a", "b", "c", "d"]) data = [["a", "c", "d"], ["d", "z", "b"]] layer = layers.StringLookup( vocabulary=vocab, ) output = layer(data) self.assertAllClose(output, np.array([[1, 3, 4], [4, 0, 2]]))
_base_ = './faster-rcnn_r50_fpn_1x_coco.py' # MMEngine support the following two ways, users can choose # according to convenience # optim_wrapper = dict(type='AmpOptimWrapper') _base_.optim_wrapper.type = 'AmpOptimWrapper'
_base_ = './faster-rcnn_r50_fpn_1x_coco.py' # fp16 settings fp16 = dict(loss_scale=512.)
import os import time import pytest from docarray import Document from jina import Flow, __cache_path__ cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture(scope='module') def filewriter_exec_docker_image_built(): import docker client = docker.from_env() client.images.build( path=os.path.join(cur_dir, 'filewriter-exec/'), tag='filewriter-exec' ) client.close() yield time.sleep(2) client = docker.from_env() client.containers.prune() @pytest.mark.parametrize( 'source,destination,workspace', [('test/dir', '/custom/app', '/custom/app')], ) def test_volumes_in_flow( tmpdir, source, destination, workspace, filewriter_exec_docker_image_built ): if source: # test manually set volume and workspace source = os.path.join(tmpdir, source) volumes = [str(source) + ':' + destination] else: # test auto volume and workspace source = __cache_path__ f = Flow().add( uses='docker://filewriter-exec', volumes=volumes, workspace=workspace ) with f: f.post(inputs=[Document()], on='/foo') assert os.path.exists(source) found_output_file = False # workspace has random element, so we search for it for cur_path, dirs, files in os.walk(source): if 'out.txt' in files: with open(os.path.join(cur_path, 'out.txt'), 'r') as f: if f.read() == 'Filewriter was here': found_output_file = True assert found_output_file
import os import time from unittest import mock import pytest from docarray import Document, DocumentArray from jina import Executor, Flow, requests cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture(scope='module') def filewriter_exec_docker_image_built(): import docker client = docker.from_env() client.images.build( path=os.path.join(cur_dir, 'filewriter-exec/'), tag='filewriter-exec' ) client.close() yield time.sleep(2) client = docker.from_env() client.containers.prune() @pytest.mark.parametrize( 'source,destination,workspace', [('test/dir', '/custom/app', '/custom/app'), (None, None, '/app')], ) def test_volumes_in_flow( tmpdir, source, destination, workspace, filewriter_exec_docker_image_built ): with mock.patch.dict( os.environ, {'JINA_DEFAULT_WORKSPACE_BASE': str(os.path.join(tmpdir, 'default'))}, ): if source: # test manually set volume and workspace source = os.path.join(tmpdir, source) volumes = [str(source) + ':' + destination] else: # test auto volume and workspace volumes = None source = os.path.join(tmpdir, 'default') f = Flow().add( uses='docker://filewriter-exec', volumes=volumes, workspace=workspace ) with f: f.post(inputs=[Document()], on='/foo') assert os.path.exists(source) found_output_file = False # workspace has random element, so we search for it for cur_path, dirs, files in os.walk(source): if 'out.txt' in files: with open(os.path.join(cur_path, 'out.txt'), 'r') as f: if f.read() == 'Filewriter was here': found_output_file = True assert found_output_file
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class YOLOF(SingleStageDetector): r"""Implementation of `You Only Look One-level Feature <https://arxiv.org/abs/2103.09460>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None): super(YOLOF, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class YOLOF(SingleStageDetector): r"""Implementation of `You Only Look One-level Feature <https://arxiv.org/abs/2103.09460>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None): super(YOLOF, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained)
_base_ = [ '../common/ms-poly_3x_coco-instance.py', '../_base_/models/mask-rcnn_r50_fpn.py' ] model = dict( # use caffe img_norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False), backbone=dict( depth=101, norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet101_caffe')))
_base_ = [ '../common/mstrain-poly_3x_coco_instance.py', '../_base_/models/mask_rcnn_r50_fpn.py' ] model = dict( # use caffe img_norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False), backbone=dict( depth=101, norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet101_caffe')))
_base_ = [ '../common/mstrain_3x_coco_instance.py', '../_base_/models/cascade_mask_rcnn_r50_fpn.py' ] model = dict( # use caffe img_norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False), backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
_base_ = [ '../common/mstrain_3x_coco_instance.py', '../_base_/models/cascade_mask_rcnn_r50_fpn.py' ] model = dict( # use caffe img_norm data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32), backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
# Copyright (c) OpenMMLab. All rights reserved. from .accuracy import Accuracy, accuracy from .ae_loss import AssociativeEmbeddingLoss from .balanced_l1_loss import BalancedL1Loss, balanced_l1_loss from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy) from .dice_loss import DiceLoss from .eqlv2_loss import EQLV2Loss from .focal_loss import FocalLoss, sigmoid_focal_loss from .gaussian_focal_loss import GaussianFocalLoss from .gfocal_loss import DistributionFocalLoss, QualityFocalLoss from .ghm_loss import GHMC, GHMR from .iou_loss import (BoundedIoULoss, CIoULoss, DIoULoss, EIoULoss, GIoULoss, IoULoss, bounded_iou_loss, iou_loss) from .kd_loss import KnowledgeDistillationKLDivLoss from .l2_loss import L2Loss from .margin_loss import MarginL2Loss from .mse_loss import MSELoss, mse_loss from .multipos_cross_entropy_loss import MultiPosCrossEntropyLoss from .pisa_loss import carl_loss, isr_p from .seesaw_loss import SeesawLoss from .smooth_l1_loss import L1Loss, SmoothL1Loss, l1_loss, smooth_l1_loss from .triplet_loss import TripletLoss from .utils import reduce_loss, weight_reduce_loss, weighted_loss from .varifocal_loss import VarifocalLoss __all__ = [ 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', 'mask_cross_entropy', 'CrossEntropyLoss', 'sigmoid_focal_loss', 'FocalLoss', 'smooth_l1_loss', 'SmoothL1Loss', 'balanced_l1_loss', 'BalancedL1Loss', 'mse_loss', 'MSELoss', 'iou_loss', 'bounded_iou_loss', 'IoULoss', 'BoundedIoULoss', 'GIoULoss', 'DIoULoss', 'CIoULoss', 'EIoULoss', 'GHMC', 'GHMR', 'reduce_loss', 'weight_reduce_loss', 'weighted_loss', 'L1Loss', 'l1_loss', 'isr_p', 'carl_loss', 'AssociativeEmbeddingLoss', 'GaussianFocalLoss', 'QualityFocalLoss', 'DistributionFocalLoss', 'VarifocalLoss', 'KnowledgeDistillationKLDivLoss', 'SeesawLoss', 'DiceLoss', 'EQLV2Loss', 'MarginL2Loss', 'MultiPosCrossEntropyLoss', 'L2Loss', 'TripletLoss' ]
# Copyright (c) OpenMMLab. All rights reserved. from .accuracy import Accuracy, accuracy from .ae_loss import AssociativeEmbeddingLoss from .balanced_l1_loss import BalancedL1Loss, balanced_l1_loss from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy, cross_entropy, mask_cross_entropy) from .dice_loss import DiceLoss from .eqlv2_loss import EQLV2Loss from .focal_loss import FocalLoss, sigmoid_focal_loss from .gaussian_focal_loss import GaussianFocalLoss from .gfocal_loss import DistributionFocalLoss, QualityFocalLoss from .ghm_loss import GHMC, GHMR from .iou_loss import (BoundedIoULoss, CIoULoss, DIoULoss, EIoULoss, GIoULoss, IoULoss, bounded_iou_loss, iou_loss) from .kd_loss import KnowledgeDistillationKLDivLoss from .l2_loss import L2Loss from .margin_loss import MarginL2Loss from .mse_loss import MSELoss, mse_loss from .multipos_cross_entropy_loss import MultiPosCrossEntropyLoss from .pisa_loss import carl_loss, isr_p from .seesaw_loss import SeesawLoss from .smooth_l1_loss import L1Loss, SmoothL1Loss, l1_loss, smooth_l1_loss from .triplet_loss import TripletLoss from .utils import reduce_loss, weight_reduce_loss, weighted_loss from .varifocal_loss import VarifocalLoss __all__ = [ 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', 'mask_cross_entropy', 'CrossEntropyLoss', 'sigmoid_focal_loss', 'FocalLoss', 'smooth_l1_loss', 'SmoothL1Loss', 'balanced_l1_loss', 'BalancedL1Loss', 'mse_loss', 'MSELoss', 'iou_loss', 'bounded_iou_loss', 'IoULoss', 'BoundedIoULoss', 'GIoULoss', 'DIoULoss', 'CIoULoss', 'EIoULoss', 'GHMC', 'GHMR', 'reduce_loss', 'weight_reduce_loss', 'weighted_loss', 'L1Loss', 'l1_loss', 'isr_p', 'carl_loss', 'AssociativeEmbeddingLoss', 'GaussianFocalLoss', 'QualityFocalLoss', 'DistributionFocalLoss', 'VarifocalLoss', 'KnowledgeDistillationKLDivLoss', 'SeesawLoss', 'DiceLoss', 'EQLV2Loss', 'MarginL2Loss', 'MultiPosCrossEntropyLoss', 'L2Loss', 'TripletLoss' ]
"""Tests related to the `DataIter` interface.""" from typing import Callable, Optional import numpy as np from xgboost import testing as tm from ..core import DataIter, ExtMemQuantileDMatrix, QuantileDMatrix def run_mixed_sparsity(device: str) -> None: """Check QDM with mixed batches.""" X_0, y_0, _ = tm.make_regression(128, 16, False) if device.startswith("cuda"): X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, True) else: X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, False) X_2, y_2 = tm.make_sparse_regression(512, 16, 0.9, True) X = [X_0, X_1, X_2] y = [y_0, y_1, y_2] if device.startswith("cuda"): import cupy as cp # pylint: disable=import-error X = [cp.array(batch) for batch in X] it = tm.IteratorForTest(X, y, None, cache=None, on_host=False) Xy_0 = QuantileDMatrix(it) X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, True) X = [X_0, X_1, X_2] y = [y_0, y_1, y_2] X_arr = np.concatenate(X, axis=0) y_arr = np.concatenate(y, axis=0) Xy_1 = QuantileDMatrix(X_arr, y_arr) assert tm.predictor_equal(Xy_0, Xy_1) def check_invalid_cat_batches(device: str) -> None: """Check error message for inconsistent feature types.""" class _InvalidCatIter(DataIter): def __init__(self) -> None: super().__init__(cache_prefix=None) self._it = 0 def next(self, input_data: Callable) -> bool: if self._it == 2: return False X, y = tm.make_categorical( 64, 12, 4, onehot=False, sparsity=0.5, cat_ratio=1.0 if self._it == 0 else 0.5, ) if device == "cuda": import cudf # pylint: disable=import-error import cupy # pylint: disable=import-error X = cudf.DataFrame(X) y = cupy.array(y) input_data(data=X, label=y) self._it += 1 return True def reset(self) -> None: self._it = 0 it = _InvalidCatIter() import pytest with pytest.raises(ValueError, match="Inconsistent feature types between batches"): ExtMemQuantileDMatrix(it, enable_categorical=True) class CatIter(DataIter): # pylint: disable=too-many-instance-attributes """An iterator for testing categorical features.""" def __init__( # pylint: disable=too-many-arguments,too-many-locals self, n_samples_per_batch: int, n_features: int, *, n_batches: int, n_cats: int, sparsity: float, cat_ratio: float, onehot: bool, device: str, cache: Optional[str], ) -> None: super().__init__(cache_prefix=cache) self.n_batches = n_batches self.device = device n_samples = n_samples_per_batch * n_batches cat, y = tm.make_categorical( n_samples, n_features, n_categories=n_cats, onehot=onehot, cat_ratio=cat_ratio, sparsity=sparsity, ) xs, ys = [], [] prev = 0 for _ in range(n_batches): n = min(n_samples_per_batch, n_samples - prev) X = cat.iloc[prev : prev + n, :] xs.append(X) ys.append(y[prev : prev + n]) prev += n_samples_per_batch self.xs = xs self.ys = ys self.x = cat self.y = y self._it = 0 def xy(self) -> tuple: """Return the concatenated data.""" return self.x, self.y def next(self, input_data: Callable) -> bool: if self._it == self.n_batches: return False X, y = self.xs[self._it], self.ys[self._it] if self.device == "cuda": import cudf # pylint: disable=import-error import cupy # pylint: disable=import-error X = cudf.DataFrame(X) y = cupy.array(y) input_data(data=X, label=y) self._it += 1 return True def reset(self) -> None: self._it = 0
"""Tests related to the `DataIter` interface.""" import numpy as np import xgboost from xgboost import testing as tm def run_mixed_sparsity(device: str) -> None: """Check QDM with mixed batches.""" X_0, y_0, _ = tm.make_regression(128, 16, False) if device.startswith("cuda"): X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, True) else: X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, False) X_2, y_2 = tm.make_sparse_regression(512, 16, 0.9, True) X = [X_0, X_1, X_2] y = [y_0, y_1, y_2] if device.startswith("cuda"): import cupy as cp # pylint: disable=import-error X = [cp.array(batch) for batch in X] it = tm.IteratorForTest(X, y, None, cache=None, on_host=False) Xy_0 = xgboost.QuantileDMatrix(it) X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, True) X = [X_0, X_1, X_2] y = [y_0, y_1, y_2] X_arr = np.concatenate(X, axis=0) y_arr = np.concatenate(y, axis=0) Xy_1 = xgboost.QuantileDMatrix(X_arr, y_arr) assert tm.predictor_equal(Xy_0, Xy_1)
from __future__ import annotations import random import pytest import torch from torch.utils.data import ConcatDataset from sentence_transformers.sampler import NoDuplicatesBatchSampler, ProportionalBatchSampler from sentence_transformers.util import is_datasets_available if is_datasets_available(): from datasets import Dataset else: pytest.skip( reason='Sentence Transformers was not installed with the `["train"]` extra.', allow_module_level=True, ) @pytest.fixture def dummy_dataset() -> Dataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": [0, 47, 3, 30, 3, ... 2], "label": [0, 1, 0, 1, ..., 0, 1], } """ # Create a list of two 0's, two 1's, two 2's, ... two 49's. Then shuffle. values = [j for i in range(50) for j in (i, i)] random.shuffle(values) data = {"data": values, "label": [i % 2 for i in range(100)]} return Dataset.from_dict(data) @pytest.fixture def dummy_duplicates_dataset() -> Dataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "anchor": ["anchor_1", "anchor_1", "anchor_1", ... "anchor_2", "anchor_2"], "positive": ["positive_1", "positive_1", "positive_1", ... "positive_2", "positive_2"], } """ values = [{"anchor": "anchor_1", "positive": "positive_1"}] * 10 + [ {"anchor": "anchor_2", "positive": "positive_2"} ] * 8 return Dataset.from_list(values) def test_group_by_label_batch_sampler_label_a(dummy_dataset: Dataset) -> None: batch_size = 10 sampler = NoDuplicatesBatchSampler( dataset=dummy_dataset, batch_size=batch_size, drop_last=True, valid_label_columns=["label"] ) batches = list(iter(sampler)) # Assert all batch sizes are correct assert all(len(batch) == batch_size for batch in batches) # Assert batches contain no duplicate values for batch in batches: batch_values = [dummy_dataset[i]["data"] for i in batch] assert len(batch_values) == len(set(batch_values)), f"Batch {batch} contains duplicate values: {batch_values}" @pytest.mark.parametrize("drop_last", [True, False]) def test_proportional_no_duplicates(dummy_duplicates_dataset: Dataset, drop_last: bool) -> None: batch_size = 2 sampler_1 = NoDuplicatesBatchSampler( dataset=dummy_duplicates_dataset, batch_size=batch_size, drop_last=drop_last, valid_label_columns=["anchor"] ) sampler_2 = NoDuplicatesBatchSampler( dataset=dummy_duplicates_dataset, batch_size=batch_size, drop_last=drop_last, valid_label_columns=["positive"] ) concat_dataset = ConcatDataset([dummy_duplicates_dataset, dummy_duplicates_dataset]) batch_sampler = ProportionalBatchSampler( concat_dataset, [sampler_1, sampler_2], generator=torch.Generator(), seed=12 ) batches = list(iter(batch_sampler)) if drop_last: # If we drop the last batch (i.e. incomplete batches), we should have 16 batches out of the 18 possible, # because of the duplicates being skipped by the NoDuplicatesBatchSampler. # Notably, we should not crash like reported in #2816. assert len(batches) == 16 # All batches are the same size: 2 assert all(len(batch) == batch_size for batch in batches) assert len(sum(batches, [])) == 32 else: # If we don't drop incomplete batches, we should be able to do 18 batches, and get more data. # Note: we don't get all data, because the NoDuplicatesBatchSampler will estimate the number of batches # and it would require more (non-complete) batches to get all data. assert len(batches) == 18 assert len(sum(batches, [])) == 34
from __future__ import annotations import random import pytest import torch from datasets import Dataset from torch.utils.data import ConcatDataset from sentence_transformers.sampler import NoDuplicatesBatchSampler, ProportionalBatchSampler @pytest.fixture def dummy_dataset() -> Dataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "data": [0, 47, 3, 30, 3, ... 2], "label": [0, 1, 0, 1, ..., 0, 1], } """ # Create a list of two 0's, two 1's, two 2's, ... two 49's. Then shuffle. values = [j for i in range(50) for j in (i, i)] random.shuffle(values) data = {"data": values, "label": [i % 2 for i in range(100)]} return Dataset.from_dict(data) @pytest.fixture def dummy_duplicates_dataset() -> Dataset: """ Dummy dataset for testing purposes. The dataset looks as follows: { "anchor": ["anchor_1", "anchor_1", "anchor_1", ... "anchor_2", "anchor_2"], "positive": ["positive_1", "positive_1", "positive_1", ... "positive_2", "positive_2"], } """ values = [{"anchor": "anchor_1", "positive": "positive_1"}] * 10 + [ {"anchor": "anchor_2", "positive": "positive_2"} ] * 8 return Dataset.from_list(values) def test_group_by_label_batch_sampler_label_a(dummy_dataset: Dataset) -> None: batch_size = 10 sampler = NoDuplicatesBatchSampler( dataset=dummy_dataset, batch_size=batch_size, drop_last=True, valid_label_columns=["label"] ) batches = list(iter(sampler)) # Assert all batch sizes are correct assert all(len(batch) == batch_size for batch in batches) # Assert batches contain no duplicate values for batch in batches: batch_values = [dummy_dataset[i]["data"] for i in batch] assert len(batch_values) == len(set(batch_values)), f"Batch {batch} contains duplicate values: {batch_values}" @pytest.mark.parametrize("drop_last", [True, False]) def test_proportional_no_duplicates(dummy_duplicates_dataset: Dataset, drop_last: bool) -> None: batch_size = 2 sampler_1 = NoDuplicatesBatchSampler( dataset=dummy_duplicates_dataset, batch_size=batch_size, drop_last=drop_last, valid_label_columns=["anchor"] ) sampler_2 = NoDuplicatesBatchSampler( dataset=dummy_duplicates_dataset, batch_size=batch_size, drop_last=drop_last, valid_label_columns=["positive"] ) concat_dataset = ConcatDataset([dummy_duplicates_dataset, dummy_duplicates_dataset]) batch_sampler = ProportionalBatchSampler( concat_dataset, [sampler_1, sampler_2], generator=torch.Generator(), seed=12 ) batches = list(iter(batch_sampler)) if drop_last: # If we drop the last batch (i.e. incomplete batches), we should have 16 batches out of the 18 possible, # because of the duplicates being skipped by the NoDuplicatesBatchSampler. # Notably, we should not crash like reported in #2816. assert len(batches) == 16 # All batches are the same size: 2 assert all(len(batch) == batch_size for batch in batches) assert len(sum(batches, [])) == 32 else: # If we don't drop incomplete batches, we should be able to do 18 batches, and get more data. # Note: we don't get all data, because the NoDuplicatesBatchSampler will estimate the number of batches # and it would require more (non-complete) batches to get all data. assert len(batches) == 18 assert len(sum(batches, [])) == 34
from typing import Any, Optional, Union import numpy as np import PIL.Image import torch from torchvision import tv_tensors from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import is_pure_tensor class PILToTensor(Transform): """Convert a PIL Image to a tensor of the same type - this does not scale values. This transform does not support torchscript. Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W). """ _transformed_types = (PIL.Image.Image,) def transform(self, inpt: PIL.Image.Image, params: dict[str, Any]) -> torch.Tensor: return F.pil_to_tensor(inpt) class ToImage(Transform): """Convert a tensor, ndarray, or PIL Image to :class:`~torchvision.tv_tensors.Image` ; this does not scale values. This transform does not support torchscript. """ _transformed_types = (is_pure_tensor, PIL.Image.Image, np.ndarray) def transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: dict[str, Any] ) -> tv_tensors.Image: return F.to_image(inpt) class ToPILImage(Transform): """Convert a tensor or an ndarray to PIL Image This transform does not support torchscript. Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape H x W x C to a PIL Image while adjusting the value range depending on the ``mode``. Args: mode (`PIL.Image mode`_): color space and pixel depth of input data (optional). If ``mode`` is ``None`` (default) there are some assumptions made about the input data: - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``. - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``. - If the input has 2 channels, the ``mode`` is assumed to be ``LA``. - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``, ``short``). .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes """ _transformed_types = (is_pure_tensor, tv_tensors.Image, np.ndarray) def __init__(self, mode: Optional[str] = None) -> None: super().__init__() self.mode = mode def transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: dict[str, Any] ) -> PIL.Image.Image: return F.to_pil_image(inpt, mode=self.mode) class ToPureTensor(Transform): """Convert all TVTensors to pure tensors, removing associated metadata (if any). This doesn't scale or change the values, only the type. """ _transformed_types = (tv_tensors.TVTensor,) def transform(self, inpt: Any, params: dict[str, Any]) -> torch.Tensor: return inpt.as_subclass(torch.Tensor)
from typing import Any, Dict, Optional, Union import numpy as np import PIL.Image import torch from torchvision import tv_tensors from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import is_pure_tensor class PILToTensor(Transform): """Convert a PIL Image to a tensor of the same type - this does not scale values. This transform does not support torchscript. Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W). """ _transformed_types = (PIL.Image.Image,) def transform(self, inpt: PIL.Image.Image, params: Dict[str, Any]) -> torch.Tensor: return F.pil_to_tensor(inpt) class ToImage(Transform): """Convert a tensor, ndarray, or PIL Image to :class:`~torchvision.tv_tensors.Image` ; this does not scale values. This transform does not support torchscript. """ _transformed_types = (is_pure_tensor, PIL.Image.Image, np.ndarray) def transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> tv_tensors.Image: return F.to_image(inpt) class ToPILImage(Transform): """Convert a tensor or an ndarray to PIL Image This transform does not support torchscript. Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape H x W x C to a PIL Image while adjusting the value range depending on the ``mode``. Args: mode (`PIL.Image mode`_): color space and pixel depth of input data (optional). If ``mode`` is ``None`` (default) there are some assumptions made about the input data: - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``. - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``. - If the input has 2 channels, the ``mode`` is assumed to be ``LA``. - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``, ``short``). .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes """ _transformed_types = (is_pure_tensor, tv_tensors.Image, np.ndarray) def __init__(self, mode: Optional[str] = None) -> None: super().__init__() self.mode = mode def transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> PIL.Image.Image: return F.to_pil_image(inpt, mode=self.mode) class ToPureTensor(Transform): """Convert all TVTensors to pure tensors, removing associated metadata (if any). This doesn't scale or change the values, only the type. """ _transformed_types = (tv_tensors.TVTensor,) def transform(self, inpt: Any, params: Dict[str, Any]) -> torch.Tensor: return inpt.as_subclass(torch.Tensor)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.utilities.reddit_search import RedditSearchAPIWrapper # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "RedditSearchAPIWrapper": "langchain_community.utilities.reddit_search", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "RedditSearchAPIWrapper", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.utilities.reddit_search import RedditSearchAPIWrapper # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "RedditSearchAPIWrapper": "langchain_community.utilities.reddit_search" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "RedditSearchAPIWrapper", ]
import logging from typing import Dict, Sequence from octoai.text_gen import ChatMessage as OctoAIChatMessage from llama_index.core.base.llms.types import ChatMessage TEXT_MODELS: Dict[str, int] = { "codellama-13b-instruct": 16384, "codellama-34b-instruct": 16384, "codellama-7b-instruct": 4096, "meta-llama-3-8b-instruct": 8192, "meta-llama-3-70b-instruct": 8192, "llama-2-13b-chat": 4096, "llama-2-70b-chat": 4096, "mistral-7b-instruct": 32768, "mixtral-8x7b-instruct": 32768, "mixtral-8x22b-instruct": 65536, "mixtral-8x22b-finetuned": 65536, "nous-hermes-2-mixtral-8x7b-dpo": 32768, "hermes-2-pro-mistral-7b": 32768, "llamaguard-7b": 4096, "qwen1.5-32b-chat": 32768, } ALL_AVAILABLE_MODELS = {**TEXT_MODELS} MISSING_TOKEN_ERROR_MESSAGE = """No token found for OctoAI. Please set the OCTOAI_TOKEN environment \ variable prior to initialization. API keys can be found or created at \ https://octoai.cloud/settings """ logger = logging.getLogger(__name__) def octoai_modelname_to_contextsize(modelname: str) -> int: """ Calculate the maximum number of tokens possible to generate for a model. Args: modelname: The modelname we want to know the context size for. Returns: The maximum context size Examples: .. code-block:: python max_tokens = octoai.modelname_to_contextsize(TextModel.CODELLAMA_13B_INSTRUCT) max_tokens = octoai.modelname_to_contextsize("llama-2-13b-chat") """ if modelname not in ALL_AVAILABLE_MODELS: print( "WARNING: Model not found in octoai.utils.py, returning a generous default value." ) return 8192 return ALL_AVAILABLE_MODELS[modelname] def to_octoai_messages(messages: Sequence[ChatMessage]) -> Sequence[OctoAIChatMessage]: return [ OctoAIChatMessage(content=message.content, role=message.role.value) for message in messages ]
import logging from typing import Dict, Sequence from octoai.text_gen import ChatMessage as OctoAIChatMessage from llama_index.core.base.llms.types import ChatMessage TEXT_MODELS: Dict[str, int] = { "codellama-13b-instruct": 16384, "codellama-34b-instruct": 16384, "codellama-7b-instruct": 4096, "meta-llama-3-8b-instruct": 8192, "meta-llama-3-70b-instruct": 8192, "llama-2-13b-chat": 4096, "llama-2-70b-chat": 4096, "mistral-7b-instruct": 32768, "mixtral-8x7b-instruct": 32768, "mixtral-8x22b-instruct": 65536, "mixtral-8x22b-finetuned": 65536, "nous-hermes-2-mixtral-8x7b-dpo": 32768, "hermes-2-pro-mistral-7b": 32768, "llamaguard-7b": 4096, "qwen1.5-32b-chat": 32768, } ALL_AVAILABLE_MODELS = {**TEXT_MODELS} MISSING_TOKEN_ERROR_MESSAGE = """No token found for OctoAI. Please set the OCTOAI_TOKEN environment \ variable prior to initialization. API keys can be found or created at \ https://octoai.cloud/settings """ logger = logging.getLogger(__name__) def octoai_modelname_to_contextsize(modelname: str) -> int: """Calculate the maximum number of tokens possible to generate for a model. Args: modelname: The modelname we want to know the context size for. Returns: The maximum context size Examples: .. code-block:: python max_tokens = octoai.modelname_to_contextsize(TextModel.CODELLAMA_13B_INSTRUCT) max_tokens = octoai.modelname_to_contextsize("llama-2-13b-chat") """ if modelname not in ALL_AVAILABLE_MODELS: print( "WARNING: Model not found in octoai.utils.py, returning a generous default value." ) return 8192 return ALL_AVAILABLE_MODELS[modelname] def to_octoai_messages(messages: Sequence[ChatMessage]) -> Sequence[OctoAIChatMessage]: return [ OctoAIChatMessage(content=message.content, role=message.role.value) for message in messages ]
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.registry import HOOKS from .hook import Hook @HOOKS.register_module() class DistSamplerSeedHook(Hook): """Data-loading sampler for distributed training. When distributed training, it is only useful in conjunction with :obj:`EpochBasedRunner`, while :obj:`IterBasedRunner` achieves the same purpose with :obj:`IterLoader`. """ priority = 'NORMAL' def before_train_epoch(self, runner) -> None: """Set the seed for sampler and batch_sampler. Args: runner (Runner): The runner of the training process. """ if hasattr(runner.train_loop.dataloader, 'sampler') and hasattr( runner.train_loop.dataloader.sampler, 'set_epoch'): # In case the` _SingleProcessDataLoaderIter` has no sampler, # or data loader uses `SequentialSampler` in Pytorch. runner.train_loop.dataloader.sampler.set_epoch(runner.epoch) elif hasattr(runner.train_loop.dataloader, 'batch_sampler') and hasattr( runner.train_loop.dataloader.batch_sampler.sampler, 'set_epoch'): # In case the` _SingleProcessDataLoaderIter` has no batch sampler. # batch sampler in pytorch warps the sampler as its attributes. runner.train_loop.dataloader.batch_sampler.sampler.set_epoch( runner.epoch)
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.registry import HOOKS from .hook import Hook @HOOKS.register_module() class DistSamplerSeedHook(Hook): """Data-loading sampler for distributed training. When distributed training, it is only useful in conjunction with :obj:`EpochBasedRunner`, while :obj:`IterBasedRunner` achieves the same purpose with :obj:`IterLoader`. """ priority = 'NORMAL' def before_train_epoch(self, runner, mode: str = 'train') -> None: """Set the seed for sampler and batch_sampler. Args: runner (Runner): The runner of the training process. """ if hasattr(runner.train_loop.dataloader, 'sampler') and hasattr( runner.train_loop.dataloader.sampler, 'set_epoch'): # In case the` _SingleProcessDataLoaderIter` has no sampler, # or data loader uses `SequentialSampler` in Pytorch. runner.train_loop.dataloader.sampler.set_epoch(runner.epoch) elif hasattr(runner.train_loop.dataloader, 'batch_sampler') and hasattr( runner.train_loop.dataloader.batch_sampler.sampler, 'set_epoch'): # In case the` _SingleProcessDataLoaderIter` has no batch sampler. # batch sampler in pytorch warps the sampler as its attributes. runner.train_loop.dataloader.batch_sampler.sampler.set_epoch( runner.epoch)
import warnings from abc import abstractmethod from typing import Iterable, Iterator, MutableSequence from docarray import Document, DocumentArray class BaseSequenceLikeMixin(MutableSequence[Document]): """Implement sequence-like methods""" def _update_subindices_append_extend(self, value): if getattr(self, '_subindices', None): for selector, da in self._subindices.items(): value = DocumentArray(value) if getattr(da, '_config', None) and da._config.root_id: for v in value: for doc in DocumentArray(v)[selector]: doc.tags['_root_id_'] = v.id docs_selector = value[selector] if len(docs_selector) > 0: da.extend(docs_selector) def insert(self, index: int, value: 'Document', **kwargs): """Insert `doc` at `index`. :param index: Position of the insertion. :param value: The doc needs to be inserted. :param kwargs: Additional Arguments that are passed to the Document Store. This has no effect for in-memory DocumentArray. """ self._set_doc_by_id(value.id, value, **kwargs) self._offset2ids.insert(index, value.id) def append(self, value: 'Document', **kwargs): """Append `doc` to the end of the array. :param value: The doc needs to be appended. """ self._append(value, **kwargs) self._update_subindices_append_extend(value) def _append(self, value, **kwargs): self._set_doc_by_id(value.id, value) self._offset2ids.append(value.id) @abstractmethod def __eq__(self, other): ... def __len__(self): ... def __iter__(self) -> Iterator['Document']: for _id in self._offset2ids: yield self._get_doc_by_id(_id) @abstractmethod def __contains__(self, other): ... def clear(self): """Clear the data of :class:`DocumentArray`""" self._del_all_docs() def __bool__(self): """To simulate ```l = []; if l: ...``` :return: returns true if the length of the array is larger than 0 """ return len(self) > 0 def extend(self, values: Iterable['Document'], **kwargs) -> None: from docarray.helper import check_root_id if getattr(self, '_is_subindex', None): check_root_id(self, values) self._extend(values, **kwargs) self._update_subindices_append_extend(values) def _extend(self, values, **kwargs): for value in values: self._append(value, **kwargs)
import warnings from abc import abstractmethod from typing import Iterable, Iterator, MutableSequence from docarray import Document, DocumentArray class BaseSequenceLikeMixin(MutableSequence[Document]): """Implement sequence-like methods""" def _update_subindices_append_extend(self, value): if getattr(self, '_subindices', None): for selector, da in self._subindices.items(): value = DocumentArray(value) if getattr(da, '_config', None) and da._config.root_id: for v in value: for doc in DocumentArray(v)[selector]: doc.tags['_root_id_'] = v.id docs_selector = value[selector] if len(docs_selector) > 0: da.extend(docs_selector) def insert(self, index: int, value: 'Document', **kwargs): """Insert `doc` at `index`. :param index: Position of the insertion. :param value: The doc needs to be inserted. :param kwargs: Additional Arguments that are passed to the Document Store. This has no effect for in-memory DocumentArray. """ self._set_doc_by_id(value.id, value, **kwargs) self._offset2ids.insert(index, value.id) def append(self, value: 'Document', **kwargs): """Append `doc` to the end of the array. :param value: The doc needs to be appended. """ self._append(value, **kwargs) self._update_subindices_append_extend(value) def _append(self, value, **kwargs): self._set_doc_by_id(value.id, value) self._offset2ids.append(value.id) @abstractmethod def __eq__(self, other): ... def __len__(self): ... def __iter__(self) -> Iterator['Document']: for _id in self._offset2ids: yield self._get_doc_by_id(_id) @abstractmethod def __contains__(self, other): ... def clear(self): """Clear the data of :class:`DocumentArray`""" self._del_all_docs() def __bool__(self): """To simulate ```l = []; if l: ...``` :return: returns true if the length of the array is larger than 0 """ return len(self) > 0 def extend(self, values: Iterable['Document'], **kwargs) -> None: from docarray.helper import check_root_id if self._is_subindex: check_root_id(self, values) self._extend(values, **kwargs) self._update_subindices_append_extend(values) def _extend(self, values, **kwargs): for value in values: self._append(value, **kwargs)
from llama_index.core.extractors.interface import BaseExtractor from llama_index.core.extractors.metadata_extractors import ( KeywordExtractor, PydanticProgramExtractor, QuestionsAnsweredExtractor, SummaryExtractor, TitleExtractor, ) from llama_index.core.extractors.document_context import DocumentContextExtractor __all__ = [ "SummaryExtractor", "QuestionsAnsweredExtractor", "TitleExtractor", "KeywordExtractor", "BaseExtractor", "PydanticProgramExtractor", "DocumentContextExtractor", ]
from llama_index.core.extractors.interface import BaseExtractor from llama_index.core.extractors.metadata_extractors import ( KeywordExtractor, PydanticProgramExtractor, QuestionsAnsweredExtractor, SummaryExtractor, TitleExtractor, ) __all__ = [ "SummaryExtractor", "QuestionsAnsweredExtractor", "TitleExtractor", "KeywordExtractor", "BaseExtractor", "PydanticProgramExtractor", ]
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .autoassign_head import AutoAssignHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centripetal_head import CentripetalHead from .corner_head import CornerHead from .ddod_head import DDODHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .mask2former_head import Mask2FormerHead from .maskformer_head import MaskFormerHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .solov2_head import SOLOV2Head from .ssd_head import SSDHead from .tood_head import TOODHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet, YOLACTSegmHead from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTSegmHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'CascadeRPNHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'SOLOHead', 'DecoupledSOLOHead', 'CenterNetHead', 'YOLOXHead', 'DecoupledSOLOLightHead', 'LADHead', 'TOODHead', 'MaskFormerHead', 'Mask2FormerHead', 'SOLOV2Head', 'DDODHead' ]
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .autoassign_head import AutoAssignHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centripetal_head import CentripetalHead from .corner_head import CornerHead from .ddod_head import DDODHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .mask2former_head import Mask2FormerHead from .maskformer_head import MaskFormerHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .ssd_head import SSDHead from .tood_head import TOODHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet, YOLACTSegmHead from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTSegmHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'CascadeRPNHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'SOLOHead', 'DecoupledSOLOHead', 'CenterNetHead', 'YOLOXHead', 'DecoupledSOLOLightHead', 'LADHead', 'TOODHead', 'MaskFormerHead', 'DDODHead', 'Mask2FormerHead' ]
from keras.src import ops from keras.src.api_export import keras_export from keras.src.optimizers import optimizer @keras_export(["keras.optimizers.Lion"]) class Lion(optimizer.Optimizer): """Optimizer that implements the Lion algorithm. The Lion optimizer is a stochastic-gradient-descent method that uses the sign operator to control the magnitude of the update, unlike other adaptive optimizers such as Adam that rely on second-order moments. This makes Lion more memory-efficient as it only keeps track of the momentum. According to the authors (see reference), its performance gain over Adam grows with the batch size. Because the update of Lion is produced through the sign operation, resulting in a larger norm, a suitable learning rate for Lion is typically 3-10x smaller than that for AdamW. The weight decay for Lion should in turn be 3-10x larger than that for AdamW to maintain a similar strength (lr * wd). Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.001`. beta_1: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The rate to combine the current gradient and the 1st moment estimate. Defaults to `0.9`. beta_2: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 1st moment estimate. Defaults to `0.99`. {{base_optimizer_keyword_args}} References: - [Chen et al., 2023](http://arxiv.org/abs/2302.06675) - [Authors' implementation]( http://github.com/google/automl/tree/master/lion) """ def __init__( self, learning_rate=0.001, beta_1=0.9, beta_2=0.99, weight_decay=None, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, loss_scale_factor=None, gradient_accumulation_steps=None, name="lion", **kwargs, ): super().__init__( learning_rate=learning_rate, name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, loss_scale_factor=loss_scale_factor, gradient_accumulation_steps=gradient_accumulation_steps, **kwargs, ) self.beta_1 = beta_1 self.beta_2 = beta_2 if beta_1 <= 0 or beta_1 > 1: raise ValueError( "Argument `beta_1` must be in the [0, 1] range. Otherwise, the " f"optimizer degenerates to SignSGD. Received: beta_1={beta_1}." ) def build(self, var_list): """Initialize optimizer variables. Lion optimizer has one variable `momentums`. Args: var_list: list of model variables to build Lion variables on. """ if self.built: return super().build(var_list) self._momentums = self.add_optimizer_variables(var_list, "momentum") def update_step(self, gradient, variable, learning_rate): """Update step given gradient and the associated model variable.""" lr = ops.cast(learning_rate, variable.dtype) gradient = ops.cast(gradient, variable.dtype) beta_1 = ops.cast(self.beta_1, variable.dtype) beta_2 = ops.cast(self.beta_2, variable.dtype) m = self._momentums[self._get_variable_index(variable)] self.assign_sub( variable, ops.multiply( lr, ops.sign( ops.add( ops.multiply(m, beta_1), ops.multiply(gradient, (1.0 - beta_1)), ) ), ), ) self.assign( m, ops.add( ops.multiply(m, beta_2), ops.multiply(gradient, (1.0 - beta_2)) ), ) def get_config(self): config = super().get_config() config.update( { "beta_1": self.beta_1, "beta_2": self.beta_2, } ) return config Lion.__doc__ = Lion.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
from keras.src import ops from keras.src.api_export import keras_export from keras.src.optimizers import optimizer @keras_export(["keras.optimizers.Lion"]) class Lion(optimizer.Optimizer): """Optimizer that implements the Lion algorithm. The Lion optimizer is a stochastic-gradient-descent method that uses the sign operator to control the magnitude of the update, unlike other adaptive optimizers such as Adam that rely on second-order moments. This makes Lion more memory-efficient as it only keeps track of the momentum. According to the authors (see reference), its performance gain over Adam grows with the batch size. Because the update of Lion is produced through the sign operation, resulting in a larger norm, a suitable learning rate for Lion is typically 3-10x smaller than that for AdamW. The weight decay for Lion should in turn be 3-10x larger than that for AdamW to maintain a similar strength (lr * wd). Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.001`. beta_1: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The rate to combine the current gradient and the 1st moment estimate. Defaults to `0.9`. beta_2: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 1st moment estimate. Defaults to `0.99`. {{base_optimizer_keyword_args}} References: - [Chen et al., 2023](http://arxiv.org/abs/2302.06675) - [Authors' implementation]( http://github.com/google/automl/tree/master/lion) """ def __init__( self, learning_rate=0.001, beta_1=0.9, beta_2=0.99, weight_decay=None, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, loss_scale_factor=None, gradient_accumulation_steps=None, name="lion", **kwargs, ): super().__init__( learning_rate=learning_rate, name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, loss_scale_factor=loss_scale_factor, gradient_accumulation_steps=gradient_accumulation_steps, **kwargs, ) self.beta_1 = beta_1 self.beta_2 = beta_2 if beta_1 <= 0 or beta_1 > 1: raise ValueError( "Argument `beta_1` must be in the [0, 1] range. Otherwise, the " f"optimizer degenerates to SignSGD. Received: beta_1={beta_1}." ) def build(self, var_list): """Initialize optimizer variables. Lion optimizer has one variable `momentums`. Args: var_list: list of model variables to build Lion variables on. """ if self.built: return super().build(var_list) self._momentums = [] for var in var_list: self._momentums.append( self.add_variable_from_reference( reference_variable=var, name="momentum" ) ) def update_step(self, gradient, variable, learning_rate): """Update step given gradient and the associated model variable.""" lr = ops.cast(learning_rate, variable.dtype) gradient = ops.cast(gradient, variable.dtype) beta_1 = ops.cast(self.beta_1, variable.dtype) beta_2 = ops.cast(self.beta_2, variable.dtype) m = self._momentums[self._get_variable_index(variable)] self.assign_sub( variable, ops.multiply( lr, ops.sign( ops.add( ops.multiply(m, beta_1), ops.multiply(gradient, (1.0 - beta_1)), ) ), ), ) self.assign( m, ops.add( ops.multiply(m, beta_2), ops.multiply(gradient, (1.0 - beta_2)) ), ) def get_config(self): config = super().get_config() config.update( { "beta_1": self.beta_1, "beta_2": self.beta_2, } ) return config Lion.__doc__ = Lion.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.structures import InstanceData from mmdet.models.dense_heads import FoveaHead class TestFOVEAHead(TestCase): def test_fovea_head_loss(self): """Tests anchor head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1, }] fovea_head = FoveaHead(num_classes=4, in_channels=1) # Anchor head expects a multiple levels of features per image feats = ( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))) for i in range(len(fovea_head.prior_generator.strides))) cls_scores, bbox_preds = fovea_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = fovea_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but # there should be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'] empty_box_loss = empty_gt_losses['loss_bbox'] self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = fovea_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = one_gt_losses['loss_cls'] onegt_box_loss = one_gt_losses['loss_bbox'] self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero')
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.data import InstanceData from mmdet.models.dense_heads import FoveaHead class TestFOVEAHead(TestCase): def test_fovea_head_loss(self): """Tests anchor head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1, }] fovea_head = FoveaHead(num_classes=4, in_channels=1) # Anchor head expects a multiple levels of features per image feats = ( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))) for i in range(len(fovea_head.prior_generator.strides))) cls_scores, bbox_preds = fovea_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = fovea_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but # there should be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'] empty_box_loss = empty_gt_losses['loss_bbox'] self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = fovea_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = one_gt_losses['loss_cls'] onegt_box_loss = one_gt_losses['loss_bbox'] self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero')
from __future__ import annotations from typing import TYPE_CHECKING, Optional from langchain_core.callbacks.base import BaseCallbackHandler if TYPE_CHECKING: from langchain_community.callbacks import LLMThoughtLabeler from streamlit.delta_generator import DeltaGenerator def StreamlitCallbackHandler( parent_container: DeltaGenerator, *, max_thought_containers: int = 4, expand_new_thoughts: bool = True, collapse_completed_thoughts: bool = True, thought_labeler: Optional[LLMThoughtLabeler] = None, ) -> BaseCallbackHandler: """Callback Handler that writes to a Streamlit app. This CallbackHandler is geared towards use with a LangChain Agent; it displays the Agent's LLM and tool-usage "thoughts" inside a series of Streamlit expanders. Parameters ---------- parent_container The `st.container` that will contain all the Streamlit elements that the Handler creates. max_thought_containers The max number of completed LLM thought containers to show at once. When this threshold is reached, a new thought will cause the oldest thoughts to be collapsed into a "History" expander. Defaults to 4. expand_new_thoughts Each LLM "thought" gets its own `st.expander`. This param controls whether that expander is expanded by default. Defaults to True. collapse_completed_thoughts If True, LLM thought expanders will be collapsed when completed. Defaults to True. thought_labeler An optional custom LLMThoughtLabeler instance. If unspecified, the handler will use the default thought labeling logic. Defaults to None. Returns ------- A new StreamlitCallbackHandler instance. Note that this is an "auto-updating" API: if the installed version of Streamlit has a more recent StreamlitCallbackHandler implementation, an instance of that class will be used. """ # If we're using a version of Streamlit that implements StreamlitCallbackHandler, # delegate to it instead of using our built-in handler. The official handler is # guaranteed to support the same set of kwargs. try: from streamlit.external.langchain import StreamlitCallbackHandler # This is the official handler, so we can just return it. return StreamlitCallbackHandler( parent_container, max_thought_containers=max_thought_containers, expand_new_thoughts=expand_new_thoughts, collapse_completed_thoughts=collapse_completed_thoughts, thought_labeler=thought_labeler, ) except ImportError: try: from langchain_community.callbacks.streamlit.streamlit_callback_handler import ( # noqa: E501 StreamlitCallbackHandler as _InternalStreamlitCallbackHandler, ) except ImportError: msg = ( "To use the StreamlitCallbackHandler, please install " "langchain-community with `pip install langchain-community`." ) raise ImportError(msg) return _InternalStreamlitCallbackHandler( parent_container, max_thought_containers=max_thought_containers, expand_new_thoughts=expand_new_thoughts, collapse_completed_thoughts=collapse_completed_thoughts, thought_labeler=thought_labeler, )
from __future__ import annotations from typing import TYPE_CHECKING, Optional from langchain_core.callbacks.base import BaseCallbackHandler if TYPE_CHECKING: from langchain_community.callbacks import LLMThoughtLabeler from streamlit.delta_generator import DeltaGenerator def StreamlitCallbackHandler( parent_container: DeltaGenerator, *, max_thought_containers: int = 4, expand_new_thoughts: bool = True, collapse_completed_thoughts: bool = True, thought_labeler: Optional[LLMThoughtLabeler] = None, ) -> BaseCallbackHandler: """Callback Handler that writes to a Streamlit app. This CallbackHandler is geared towards use with a LangChain Agent; it displays the Agent's LLM and tool-usage "thoughts" inside a series of Streamlit expanders. Parameters ---------- parent_container The `st.container` that will contain all the Streamlit elements that the Handler creates. max_thought_containers The max number of completed LLM thought containers to show at once. When this threshold is reached, a new thought will cause the oldest thoughts to be collapsed into a "History" expander. Defaults to 4. expand_new_thoughts Each LLM "thought" gets its own `st.expander`. This param controls whether that expander is expanded by default. Defaults to True. collapse_completed_thoughts If True, LLM thought expanders will be collapsed when completed. Defaults to True. thought_labeler An optional custom LLMThoughtLabeler instance. If unspecified, the handler will use the default thought labeling logic. Defaults to None. Returns ------- A new StreamlitCallbackHandler instance. Note that this is an "auto-updating" API: if the installed version of Streamlit has a more recent StreamlitCallbackHandler implementation, an instance of that class will be used. """ # If we're using a version of Streamlit that implements StreamlitCallbackHandler, # delegate to it instead of using our built-in handler. The official handler is # guaranteed to support the same set of kwargs. try: from streamlit.external.langchain import StreamlitCallbackHandler # This is the official handler, so we can just return it. return StreamlitCallbackHandler( parent_container, max_thought_containers=max_thought_containers, expand_new_thoughts=expand_new_thoughts, collapse_completed_thoughts=collapse_completed_thoughts, thought_labeler=thought_labeler, ) except ImportError: try: from langchain_community.callbacks.streamlit.streamlit_callback_handler import ( # noqa: E501 StreamlitCallbackHandler as _InternalStreamlitCallbackHandler, ) except ImportError: raise ImportError( "To use the StreamlitCallbackHandler, please install " "langchain-community with `pip install langchain-community`." ) return _InternalStreamlitCallbackHandler( parent_container, max_thought_containers=max_thought_containers, expand_new_thoughts=expand_new_thoughts, collapse_completed_thoughts=collapse_completed_thoughts, thought_labeler=thought_labeler, )
from keras.src.backend.common.name_scope import name_scope from keras.src.backend.numpy import core from keras.src.backend.numpy import image from keras.src.backend.numpy import linalg from keras.src.backend.numpy import math from keras.src.backend.numpy import nn from keras.src.backend.numpy import numpy from keras.src.backend.numpy import random from keras.src.backend.numpy.core import SUPPORTS_SPARSE_TENSORS from keras.src.backend.numpy.core import Variable from keras.src.backend.numpy.core import cast from keras.src.backend.numpy.core import compute_output_spec from keras.src.backend.numpy.core import cond from keras.src.backend.numpy.core import convert_to_numpy from keras.src.backend.numpy.core import convert_to_tensor from keras.src.backend.numpy.core import device_scope from keras.src.backend.numpy.core import is_tensor from keras.src.backend.numpy.core import random_seed_dtype from keras.src.backend.numpy.core import shape from keras.src.backend.numpy.core import vectorized_map from keras.src.backend.numpy.rnn import cudnn_ok from keras.src.backend.numpy.rnn import gru from keras.src.backend.numpy.rnn import lstm from keras.src.backend.numpy.rnn import rnn
from keras.src.backend.numpy import core from keras.src.backend.numpy import image from keras.src.backend.numpy import linalg from keras.src.backend.numpy import math from keras.src.backend.numpy import nn from keras.src.backend.numpy import numpy from keras.src.backend.numpy import random from keras.src.backend.numpy.core import SUPPORTS_SPARSE_TENSORS from keras.src.backend.numpy.core import Variable from keras.src.backend.numpy.core import cast from keras.src.backend.numpy.core import compute_output_spec from keras.src.backend.numpy.core import cond from keras.src.backend.numpy.core import convert_to_numpy from keras.src.backend.numpy.core import convert_to_tensor from keras.src.backend.numpy.core import is_tensor from keras.src.backend.numpy.core import random_seed_dtype from keras.src.backend.numpy.core import shape from keras.src.backend.numpy.core import vectorized_map from keras.src.backend.numpy.rnn import cudnn_ok from keras.src.backend.numpy.rnn import gru from keras.src.backend.numpy.rnn import lstm from keras.src.backend.numpy.rnn import rnn
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Callable from sentence_transformers.evaluation import InformationRetrievalEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseInformationRetrievalEvaluator(InformationRetrievalEvaluator): def __init__( self, queries: dict[str, str], # qid => query corpus: dict[str, str], # cid => doc relevant_docs: dict[str, set[str]], # qid => Set[cid] corpus_chunk_size: int = 50000, mrr_at_k: list[int] = [10], ndcg_at_k: list[int] = [10], accuracy_at_k: list[int] = [1, 3, 5, 10], precision_recall_at_k: list[int] = [1, 3, 5, 10], map_at_k: list[int] = [100], show_progress_bar: bool = False, batch_size: int = 32, name: str = "", write_csv: bool = True, truncate_dim: int | None = None, score_functions: dict[str, Callable[[Tensor, Tensor], Tensor]] | None = None, main_score_function: str | SimilarityFunction | None = None, query_prompt: str | None = None, query_prompt_name: str | None = None, corpus_prompt: str | None = None, corpus_prompt_name: str | None = None, ) -> None: return super().__init__( queries=queries, corpus=corpus, relevant_docs=relevant_docs, corpus_chunk_size=corpus_chunk_size, mrr_at_k=mrr_at_k, ndcg_at_k=ndcg_at_k, accuracy_at_k=accuracy_at_k, precision_recall_at_k=precision_recall_at_k, map_at_k=map_at_k, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, write_csv=write_csv, truncate_dim=truncate_dim, score_functions=score_functions, main_score_function=main_score_function, query_prompt=query_prompt, query_prompt_name=query_prompt_name, corpus_prompt=corpus_prompt, corpus_prompt_name=corpus_prompt_name, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1, *args, **kwargs ) -> dict[str, float]: return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps, *args, **kwargs) def compute_metrices( self, model: SparseEncoder, corpus_model=None, corpus_embeddings: Tensor | None = None ) -> dict[str, float]: return super().compute_metrices(model=model, corpus_model=corpus_model, corpus_embeddings=corpus_embeddings) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, prompt_name: str | None = None, prompt: str | None = None, **kwargs, ) -> Tensor: kwargs["truncate_dim"] = self.truncate_dim embeddings = model.encode( sentences, prompt_name=prompt_name, prompt=prompt, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, save_on_cpu=True, **kwargs, ) sparsity_infos = model.get_sparsity_stats(embeddings) if sparsity_infos["num_rows"] == self.queries_info["lenght_of_queries"]: self.queries_info["sparsity_infos"] = model.get_sparsity_stats(embeddings) else: self.corpus_info["sparsity_infos"] = model.get_sparsity_stats(embeddings) return embeddings def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Callable from sentence_transformers.evaluation import InformationRetrievalEvaluator if TYPE_CHECKING: import numpy as np from torch import Tensor from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder logger = logging.getLogger(__name__) class SparseInformationRetrievalEvaluator(InformationRetrievalEvaluator): def __init__( self, queries: dict[str, str], # qid => query corpus: dict[str, str], # cid => doc relevant_docs: dict[str, set[str]], # qid => Set[cid] corpus_chunk_size: int = 50000, mrr_at_k: list[int] = [10], ndcg_at_k: list[int] = [10], accuracy_at_k: list[int] = [1, 3, 5, 10], precision_recall_at_k: list[int] = [1, 3, 5, 10], map_at_k: list[int] = [100], show_progress_bar: bool = False, batch_size: int = 32, name: str = "", write_csv: bool = True, truncate_dim: int | None = None, score_functions: dict[str, Callable[[Tensor, Tensor], Tensor]] | None = None, main_score_function: str | SimilarityFunction | None = None, query_prompt: str | None = None, query_prompt_name: str | None = None, corpus_prompt: str | None = None, corpus_prompt_name: str | None = None, ) -> None: return super().__init__( queries=queries, corpus=corpus, relevant_docs=relevant_docs, corpus_chunk_size=corpus_chunk_size, mrr_at_k=mrr_at_k, ndcg_at_k=ndcg_at_k, accuracy_at_k=accuracy_at_k, precision_recall_at_k=precision_recall_at_k, map_at_k=map_at_k, show_progress_bar=show_progress_bar, batch_size=batch_size, name=name, write_csv=write_csv, truncate_dim=truncate_dim, score_functions=score_functions, main_score_function=main_score_function, query_prompt=query_prompt, query_prompt_name=query_prompt_name, corpus_prompt=corpus_prompt, corpus_prompt_name=corpus_prompt_name, ) def __call__( self, model: SparseEncoder, output_path: str = None, epoch: int = -1, steps: int = -1, *args, **kwargs ) -> dict[str, float]: return super().__call__(model=model, output_path=output_path, epoch=epoch, steps=steps, *args, **kwargs) def compute_metrices( self, model: SparseEncoder, corpus_model=None, corpus_embeddings: Tensor | None = None ) -> dict[str, float]: return super().compute_metrices(model=model, corpus_model=corpus_model, corpus_embeddings=corpus_embeddings) def embed_inputs( self, model: SparseEncoder, sentences: str | list[str] | np.ndarray, prompt_name: str | None = None, prompt: str | None = None, **kwargs, ) -> Tensor: kwargs["truncate_dim"] = self.truncate_dim embeddings = model.encode( sentences, prompt_name=prompt_name, prompt=prompt, batch_size=self.batch_size, show_progress_bar=self.show_progress_bar, convert_to_sparse_tensor=True, save_on_cpu=True, **kwargs, ) logger.info(model.get_sparsity_stats(embeddings)) return embeddings def store_metrics_in_model_card_data( self, model: SparseEncoder, metrics: dict[str, Any], epoch: int = 0, step: int = 0 ) -> None: model.model_card_data.set_evaluation_metrics(self, metrics, epoch=epoch, step=step)
from llama_index.observability.otel import LlamaIndexOpenTelemetry from llama_index.observability.otel.base import ( Resource, SERVICE_NAME, ConsoleSpanExporter, ) def test_initialization() -> None: instrumentor = LlamaIndexOpenTelemetry() assert instrumentor.service_name_or_resource == Resource( attributes={SERVICE_NAME: "llamaindex.opentelemetry"} ) assert isinstance(instrumentor.span_exporter, ConsoleSpanExporter) assert instrumentor.span_processor == "batch" assert instrumentor._tracer is None assert not instrumentor.debug def test_diff_initialization() -> None: instrumentor = LlamaIndexOpenTelemetry( service_name_or_resource="this.is.a.test", span_processor="simple", debug=True, ) assert instrumentor.service_name_or_resource == "this.is.a.test" assert isinstance(instrumentor.span_exporter, ConsoleSpanExporter) assert instrumentor.span_processor == "simple" assert instrumentor._tracer is None assert instrumentor.debug
from llama_index.observability.otel import LlamaIndexOpenTelemetry from llama_index.observability.otel.base import Resource, SERVICE_NAME, ConsoleSpanExporter def test_initialization() -> None: instrumentor = LlamaIndexOpenTelemetry() assert instrumentor.service_name_or_resource == Resource(attributes={SERVICE_NAME: "llamaindex.opentelemetry"}) assert isinstance(instrumentor.span_exporter, ConsoleSpanExporter) assert instrumentor.span_processor == "batch" assert instrumentor._tracer is None assert not instrumentor.debug def test_diff_initialization() -> None: instrumentor = LlamaIndexOpenTelemetry( service_name_or_resource="this.is.a.test", span_processor="simple", debug = True, ) assert instrumentor.service_name_or_resource == "this.is.a.test" assert isinstance(instrumentor.span_exporter, ConsoleSpanExporter) assert instrumentor.span_processor == "simple" assert instrumentor._tracer is None assert instrumentor.debug
"""Interface with the LangChain Hub.""" from __future__ import annotations import json from collections.abc import Sequence from typing import Any, Optional from langchain_core.load.dump import dumps from langchain_core.load.load import loads from langchain_core.prompts import BasePromptTemplate def _get_client( api_key: Optional[str] = None, api_url: Optional[str] = None, ) -> Any: try: from langsmith import Client as LangSmithClient ls_client = LangSmithClient(api_url, api_key=api_key) if hasattr(ls_client, "push_prompt") and hasattr(ls_client, "pull_prompt"): return ls_client else: from langchainhub import Client as LangChainHubClient return LangChainHubClient(api_url, api_key=api_key) except ImportError: try: from langchainhub import Client as LangChainHubClient return LangChainHubClient(api_url, api_key=api_key) except ImportError as e: msg = ( "Could not import langsmith or langchainhub (deprecated)," "please install with `pip install langsmith`." ) raise ImportError(msg) from e def push( repo_full_name: str, object: Any, *, api_url: Optional[str] = None, api_key: Optional[str] = None, parent_commit_hash: Optional[str] = None, new_repo_is_public: bool = False, new_repo_description: Optional[str] = None, readme: Optional[str] = None, tags: Optional[Sequence[str]] = None, ) -> str: """ Push an object to the hub and returns the URL it can be viewed at in a browser. :param repo_full_name: The full name of the prompt to push to in the format of `owner/prompt_name` or `prompt_name`. :param object: The LangChain to serialize and push to the hub. :param api_url: The URL of the LangChain Hub API. Defaults to the hosted API service if you have an api key set, or a localhost instance if not. :param api_key: The API key to use to authenticate with the LangChain Hub API. :param parent_commit_hash: The commit hash of the parent commit to push to. Defaults to the latest commit automatically. :param new_repo_is_public: Whether the prompt should be public. Defaults to False (Private by default). :param new_repo_description: The description of the prompt. Defaults to an empty string. """ client = _get_client(api_key=api_key, api_url=api_url) # Then it's langsmith if hasattr(client, "push_prompt"): return client.push_prompt( repo_full_name, object=object, parent_commit_hash=parent_commit_hash, is_public=new_repo_is_public, description=new_repo_description, readme=readme, tags=tags, ) # Then it's langchainhub manifest_json = dumps(object) message = client.push( repo_full_name, manifest_json, parent_commit_hash=parent_commit_hash, new_repo_is_public=new_repo_is_public, new_repo_description=new_repo_description, ) return message def pull( owner_repo_commit: str, *, include_model: Optional[bool] = None, api_url: Optional[str] = None, api_key: Optional[str] = None, ) -> Any: """ Pull an object from the hub and returns it as a LangChain object. :param owner_repo_commit: The full name of the prompt to pull from in the format of `owner/prompt_name:commit_hash` or `owner/prompt_name` or just `prompt_name` if it's your own prompt. :param api_url: The URL of the LangChain Hub API. Defaults to the hosted API service if you have an api key set, or a localhost instance if not. :param api_key: The API key to use to authenticate with the LangChain Hub API. """ client = _get_client(api_key=api_key, api_url=api_url) # Then it's langsmith if hasattr(client, "pull_prompt"): response = client.pull_prompt(owner_repo_commit, include_model=include_model) return response # Then it's langchainhub if hasattr(client, "pull_repo"): # >= 0.1.15 res_dict = client.pull_repo(owner_repo_commit) obj = loads(json.dumps(res_dict["manifest"])) if isinstance(obj, BasePromptTemplate): if obj.metadata is None: obj.metadata = {} obj.metadata["lc_hub_owner"] = res_dict["owner"] obj.metadata["lc_hub_repo"] = res_dict["repo"] obj.metadata["lc_hub_commit_hash"] = res_dict["commit_hash"] return obj # Then it's < 0.1.15 langchainhub resp: str = client.pull(owner_repo_commit) return loads(resp)
"""Interface with the LangChain Hub.""" from __future__ import annotations import json from collections.abc import Sequence from typing import Any, Optional from langchain_core.load.dump import dumps from langchain_core.load.load import loads from langchain_core.prompts import BasePromptTemplate def _get_client( api_key: Optional[str] = None, api_url: Optional[str] = None, ) -> Any: try: from langsmith import Client as LangSmithClient ls_client = LangSmithClient(api_url, api_key=api_key) if hasattr(ls_client, "push_prompt") and hasattr(ls_client, "pull_prompt"): return ls_client else: from langchainhub import Client as LangChainHubClient return LangChainHubClient(api_url, api_key=api_key) except ImportError: try: from langchainhub import Client as LangChainHubClient return LangChainHubClient(api_url, api_key=api_key) except ImportError as e: raise ImportError( "Could not import langsmith or langchainhub (deprecated)," "please install with `pip install langsmith`." ) from e def push( repo_full_name: str, object: Any, *, api_url: Optional[str] = None, api_key: Optional[str] = None, parent_commit_hash: Optional[str] = None, new_repo_is_public: bool = False, new_repo_description: Optional[str] = None, readme: Optional[str] = None, tags: Optional[Sequence[str]] = None, ) -> str: """ Push an object to the hub and returns the URL it can be viewed at in a browser. :param repo_full_name: The full name of the prompt to push to in the format of `owner/prompt_name` or `prompt_name`. :param object: The LangChain to serialize and push to the hub. :param api_url: The URL of the LangChain Hub API. Defaults to the hosted API service if you have an api key set, or a localhost instance if not. :param api_key: The API key to use to authenticate with the LangChain Hub API. :param parent_commit_hash: The commit hash of the parent commit to push to. Defaults to the latest commit automatically. :param new_repo_is_public: Whether the prompt should be public. Defaults to False (Private by default). :param new_repo_description: The description of the prompt. Defaults to an empty string. """ client = _get_client(api_key=api_key, api_url=api_url) # Then it's langsmith if hasattr(client, "push_prompt"): return client.push_prompt( repo_full_name, object=object, parent_commit_hash=parent_commit_hash, is_public=new_repo_is_public, description=new_repo_description, readme=readme, tags=tags, ) # Then it's langchainhub manifest_json = dumps(object) message = client.push( repo_full_name, manifest_json, parent_commit_hash=parent_commit_hash, new_repo_is_public=new_repo_is_public, new_repo_description=new_repo_description, ) return message def pull( owner_repo_commit: str, *, include_model: Optional[bool] = None, api_url: Optional[str] = None, api_key: Optional[str] = None, ) -> Any: """ Pull an object from the hub and returns it as a LangChain object. :param owner_repo_commit: The full name of the prompt to pull from in the format of `owner/prompt_name:commit_hash` or `owner/prompt_name` or just `prompt_name` if it's your own prompt. :param api_url: The URL of the LangChain Hub API. Defaults to the hosted API service if you have an api key set, or a localhost instance if not. :param api_key: The API key to use to authenticate with the LangChain Hub API. """ client = _get_client(api_key=api_key, api_url=api_url) # Then it's langsmith if hasattr(client, "pull_prompt"): response = client.pull_prompt(owner_repo_commit, include_model=include_model) return response # Then it's langchainhub if hasattr(client, "pull_repo"): # >= 0.1.15 res_dict = client.pull_repo(owner_repo_commit) obj = loads(json.dumps(res_dict["manifest"])) if isinstance(obj, BasePromptTemplate): if obj.metadata is None: obj.metadata = {} obj.metadata["lc_hub_owner"] = res_dict["owner"] obj.metadata["lc_hub_repo"] = res_dict["repo"] obj.metadata["lc_hub_commit_hash"] = res_dict["commit_hash"] return obj # Then it's < 0.1.15 langchainhub resp: str = client.pull(owner_repo_commit) return loads(resp)
from __future__ import annotations try: from typing import Self except ImportError: from typing_extensions import Self import torch from torch import Tensor, nn from sentence_transformers.models.Module import Module class WeightedLayerPooling(Module): """Token embeddings are weighted mean of their different hidden layer representations""" config_keys: list[str] = ["word_embedding_dimension", "layer_start", "num_hidden_layers"] def __init__( self, word_embedding_dimension, num_hidden_layers: int = 12, layer_start: int = 4, layer_weights=None ): super().__init__() self.word_embedding_dimension = word_embedding_dimension self.layer_start = layer_start self.num_hidden_layers = num_hidden_layers self.layer_weights = ( layer_weights if layer_weights is not None else nn.Parameter(torch.tensor([1] * (num_hidden_layers + 1 - layer_start), dtype=torch.float)) ) def forward(self, features: dict[str, Tensor]): ft_all_layers = features["all_layer_embeddings"] all_layer_embedding = torch.stack(ft_all_layers) all_layer_embedding = all_layer_embedding[self.layer_start :, :, :, :] # Start from 4th layers output weight_factor = self.layer_weights.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(all_layer_embedding.size()) weighted_average = (weight_factor * all_layer_embedding).sum(dim=0) / self.layer_weights.sum() features.update({"token_embeddings": weighted_average}) return features def get_word_embedding_dimension(self): return self.word_embedding_dimension def save(self, output_path: str, *args, safe_serialization: bool = True, **kwargs) -> None: self.save_config(output_path) self.save_torch_weights(output_path, safe_serialization=safe_serialization) @classmethod def load( cls, model_name_or_path: str, subfolder: str = "", token: bool | str | None = None, cache_folder: str | None = None, revision: str | None = None, local_files_only: bool = False, **kwargs, ) -> Self: hub_kwargs = { "subfolder": subfolder, "token": token, "cache_folder": cache_folder, "revision": revision, "local_files_only": local_files_only, } config = cls.load_config(model_name_or_path=model_name_or_path, **hub_kwargs) model = cls(**config) model = cls.load_torch_weights(model_name_or_path=model_name_or_path, model=model, **hub_kwargs) return model
from __future__ import annotations import json import os import torch from safetensors.torch import load_model as load_safetensors_model from safetensors.torch import save_model as save_safetensors_model from torch import Tensor, nn class WeightedLayerPooling(nn.Module): """Token embeddings are weighted mean of their different hidden layer representations""" def __init__( self, word_embedding_dimension, num_hidden_layers: int = 12, layer_start: int = 4, layer_weights=None ): super().__init__() self.config_keys = ["word_embedding_dimension", "layer_start", "num_hidden_layers"] self.word_embedding_dimension = word_embedding_dimension self.layer_start = layer_start self.num_hidden_layers = num_hidden_layers self.layer_weights = ( layer_weights if layer_weights is not None else nn.Parameter(torch.tensor([1] * (num_hidden_layers + 1 - layer_start), dtype=torch.float)) ) def forward(self, features: dict[str, Tensor]): ft_all_layers = features["all_layer_embeddings"] all_layer_embedding = torch.stack(ft_all_layers) all_layer_embedding = all_layer_embedding[self.layer_start :, :, :, :] # Start from 4th layers output weight_factor = self.layer_weights.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(all_layer_embedding.size()) weighted_average = (weight_factor * all_layer_embedding).sum(dim=0) / self.layer_weights.sum() features.update({"token_embeddings": weighted_average}) return features def get_word_embedding_dimension(self): return self.word_embedding_dimension def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path: str, safe_serialization: bool = True): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) if safe_serialization: save_safetensors_model(self, os.path.join(output_path, "model.safetensors")) else: torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) model = WeightedLayerPooling(**config) if os.path.exists(os.path.join(input_path, "model.safetensors")): load_safetensors_model(model, os.path.join(input_path, "model.safetensors")) else: model.load_state_dict( torch.load( os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu"), weights_only=True ) ) return model
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( affine_transform as affine_transform, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( clip_to_image_size as clip_to_image_size, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( convert_format as convert_format, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( crop as crop, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( decode_deltas_to_boxes as decode_deltas_to_boxes, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( encode_box_to_deltas as encode_box_to_deltas, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( pad as pad, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.iou import ( compute_ciou as compute_ciou, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.iou import ( compute_iou as compute_iou, )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( affine_transform, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( clip_to_image_size, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( convert_format, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( crop, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( decode_deltas_to_boxes, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( encode_box_to_deltas, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.converters import ( pad, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.iou import ( compute_ciou, ) from keras.src.layers.preprocessing.image_preprocessing.bounding_boxes.iou import ( compute_iou, )
import logging import os from typing import Optional from jina.importer import ImportExtensions from jina.serve.runtimes.servers import BaseServer from jina._docarray import docarray_v2 class WebSocketServer(BaseServer): """WebSocket Server implementation""" def __init__( self, ssl_keyfile: Optional[str] = None, ssl_certfile: Optional[str] = None, uvicorn_kwargs: Optional[dict] = None, proxy: Optional[bool] = None, **kwargs ): """Initialize the gateway :param ssl_keyfile: the path to the key file :param ssl_certfile: the path to the certificate file :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server :param proxy: If set, respect the http_proxy and https_proxy environment variables, otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param kwargs: keyword args """ super().__init__(**kwargs) self.ssl_keyfile = ssl_keyfile self.ssl_certfile = ssl_certfile self.uvicorn_kwargs = uvicorn_kwargs if not proxy and os.name != 'nt': os.unsetenv('http_proxy') os.unsetenv('https_proxy') async def setup_server(self): """ Setup WebSocket Server """ self.logger.debug(f'Setting up Websocket server') if docarray_v2: from jina.serve.runtimes.gateway.request_handling import GatewayRequestHandler if isinstance(self._request_handler, GatewayRequestHandler): await self._request_handler.streamer._get_endpoints_input_output_models(is_cancel=self.is_cancel) self._request_handler.streamer._validate_flow_docarray_compatibility() self.app = self._request_handler._websocket_fastapi_default_app(tracing=self.tracing, tracer_provider=self.tracer_provider) with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'CICD_JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) uvicorn_kwargs = self.uvicorn_kwargs or {} if self.ssl_keyfile and 'ssl_keyfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_keyfile'] = self.ssl_keyfile if self.ssl_certfile and 'ssl_certfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_certfile'] = self.ssl_certfile self.server = UviServer( config=Config( app=self.app, host=self.host, port=self.port, ws_max_size=1024 * 1024 * 1024, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **uvicorn_kwargs, ) ) self.logger.debug(f'UviServer server setup') await self.server.setup() self.logger.debug(f'Websocket server setup successful') @property def _should_exit(self): """Property describing if server is ready to exit :return: boolean indicating if Server ready to exit """ return self.server.should_exit @property def should_exit(self): """Property describing if server is ready to exit :return: boolean indicating if Server ready to exit """ return self._should_exit async def shutdown(self): """Free other resources allocated with the server, e.g, gateway object, ...""" self.logger.debug(f'Shutting down server') await super().shutdown() self.server.should_exit = True await self.server.shutdown() self.logger.debug(f'Server shutdown finished') async def run_server(self): """Run WebSocket server forever""" await self.server.serve()
import logging import os from typing import Optional from jina.importer import ImportExtensions from jina.serve.runtimes.servers import BaseServer from jina._docarray import docarray_v2 class WebSocketServer(BaseServer): """WebSocket Server implementation""" def __init__( self, ssl_keyfile: Optional[str] = None, ssl_certfile: Optional[str] = None, uvicorn_kwargs: Optional[dict] = None, proxy: Optional[bool] = None, **kwargs ): """Initialize the gateway :param ssl_keyfile: the path to the key file :param ssl_certfile: the path to the certificate file :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server :param proxy: If set, respect the http_proxy and https_proxy environment variables, otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param kwargs: keyword args """ super().__init__(**kwargs) self.ssl_keyfile = ssl_keyfile self.ssl_certfile = ssl_certfile self.uvicorn_kwargs = uvicorn_kwargs if not proxy and os.name != 'nt': os.unsetenv('http_proxy') os.unsetenv('https_proxy') async def setup_server(self): """ Setup WebSocket Server """ if docarray_v2: from jina.serve.runtimes.gateway.request_handling import GatewayRequestHandler if isinstance(self._request_handler, GatewayRequestHandler): await self._request_handler.streamer._get_endpoints_input_output_models() self._request_handler.streamer._validate_flow_docarray_compatibility() self.app = self._request_handler._websocket_fastapi_default_app(tracing=self.tracing, tracer_provider=self.tracer_provider) with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'CICD_JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) uvicorn_kwargs = self.uvicorn_kwargs or {} if self.ssl_keyfile and 'ssl_keyfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_keyfile'] = self.ssl_keyfile if self.ssl_certfile and 'ssl_certfile' not in uvicorn_kwargs.keys(): uvicorn_kwargs['ssl_certfile'] = self.ssl_certfile self.server = UviServer( config=Config( app=self.app, host=self.host, port=self.port, ws_max_size=1024 * 1024 * 1024, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **uvicorn_kwargs, ) ) await self.server.setup() @property def _should_exit(self): """Property describing if server is ready to exit :return: boolean indicating if Server ready to exit """ return self.server.should_exit @property def should_exit(self): """Property describing if server is ready to exit :return: boolean indicating if Server ready to exit """ return self._should_exit async def shutdown(self): """Free other resources allocated with the server, e.g, gateway object, ...""" await super().shutdown() self.server.should_exit = True await self.server.shutdown() async def run_server(self): """Run WebSocket server forever""" await self.server.serve()
import torch from keras.src.backend import config from keras.src.backend import standardize_dtype from keras.src.backend.common import dtypes from keras.src.backend.torch.core import cast from keras.src.backend.torch.core import convert_to_tensor def cholesky(x): return torch.linalg.cholesky(x) def det(x): return torch.det(x) def eig(x): return torch.linalg.eig(x) def eigh(x): return torch.linalg.eigh(x) def inv(x): return torch.linalg.inv(x) def lu_factor(x): LU, pivots = torch.linalg.lu_factor(x) # torch retuns pivots with 1-based indexing return LU, pivots - 1 def norm(x, ord=None, axis=None, keepdims=False): x = convert_to_tensor(x) if standardize_dtype(x.dtype) == "int64": dtype = config.floatx() else: dtype = dtypes.result_type(x.dtype, float) x = cast(x, dtype) return torch.linalg.norm(x, ord=ord, dim=axis, keepdim=keepdims) def qr(x, mode="reduced"): if mode not in {"reduced", "complete"}: raise ValueError( "`mode` argument value not supported. " "Expected one of {'reduced', 'complete'}. " f"Received: mode={mode}" ) return torch.linalg.qr(x, mode=mode) def solve(a, b): return torch.linalg.solve(a, b) def solve_triangular(a, b, lower=False): if b.ndim == a.ndim - 1: b = torch.unsqueeze(b, axis=-1) return torch.linalg.solve_triangular(a, b, upper=not lower).squeeze( axis=-1 ) return torch.linalg.solve_triangular(a, b, upper=not lower) def svd(x, full_matrices=True, compute_uv=True): if not compute_uv: raise NotImplementedError( "`compute_uv=False` is not supported for torch backend." ) return torch.linalg.svd(x, full_matrices=full_matrices) def lstsq(a, b, rcond=None): a = convert_to_tensor(a) b = convert_to_tensor(b) return torch.linalg.lstsq(a, b, rcond=rcond)[0]
import torch from keras.src.backend import config from keras.src.backend import standardize_dtype from keras.src.backend.common import dtypes from keras.src.backend.torch.core import cast from keras.src.backend.torch.core import convert_to_tensor def cholesky(x): return torch.linalg.cholesky(x) def det(x): return torch.det(x) def eig(x): return torch.linalg.eig(x) def eigh(x): return torch.linalg.eigh(x) def inv(x): return torch.linalg.inv(x) def lu_factor(x): LU, pivots = torch.linalg.lu_factor(x) # torch retuns pivots with 1-based indexing return LU, pivots - 1 def norm(x, ord=None, axis=None, keepdims=False): x = convert_to_tensor(x) if standardize_dtype(x.dtype) == "int64": dtype = config.floatx() else: dtype = dtypes.result_type(x.dtype, float) x = cast(x, dtype) return torch.linalg.norm(x, ord=ord, dim=axis, keepdim=keepdims) def qr(x, mode="reduced"): if mode not in {"reduced", "complete"}: raise ValueError( "`mode` argument value not supported. " "Expected one of {'reduced', 'complete'}. " f"Received: mode={mode}" ) return torch.linalg.qr(x, mode=mode) def solve(a, b): return torch.linalg.solve(a, b) def solve_triangular(a, b, lower=False): if b.ndim == a.ndim - 1: b = torch.unsqueeze(b, axis=-1) return torch.linalg.solve_triangular(a, b, upper=not lower).squeeze( axis=-1 ) return torch.linalg.solve_triangular(a, b, upper=not lower) def svd(x, full_matrices=True, compute_uv=True): if not compute_uv: raise NotImplementedError( "`compute_uv=False` is not supported for torch backend." ) return torch.linalg.svd(x, full_matrices=full_matrices)
from typing import Union import numpy as np import pytest import torch from docarray import Document, DocumentArray from docarray.typing import NdArray, TorchTensor @pytest.fixture() def batch(): class Image(Document): tensor: TorchTensor[3, 224, 224] batch = DocumentArray[Image]( [Image(tensor=torch.zeros(3, 224, 224)) for _ in range(10)] ) return batch.stack() def test_len(batch): assert len(batch) == 10 def test_getitem(batch): for i in range(len(batch)): print(i) assert (batch[i].tensor == torch.zeros(3, 224, 224)).all() def test_iterator(batch): for doc in batch: assert (doc.tensor == torch.zeros(3, 224, 224)).all() def test_stack_setter(batch): batch.tensor = torch.ones(10, 3, 224, 224) assert (batch.tensor == torch.ones(10, 3, 224, 224)).all() def test_stack_optional(batch): assert (batch._columns['tensor'] == torch.zeros(10, 3, 224, 224)).all() assert (batch.tensor == torch.zeros(10, 3, 224, 224)).all() def test_stack_numpy(): class Image(Document): tensor: NdArray[3, 224, 224] batch = DocumentArray[Image]( [Image(tensor=np.zeros((3, 224, 224))) for _ in range(10)] ) batch = batch.stack() assert (batch._columns['tensor'] == np.zeros((10, 3, 224, 224))).all() assert (batch.tensor == np.zeros((10, 3, 224, 224))).all() assert batch.tensor.ctypes.data == batch._columns['tensor'].ctypes.data batch.unstack() def test_stack(batch): assert (batch._columns['tensor'] == torch.zeros(10, 3, 224, 224)).all() assert (batch.tensor == torch.zeros(10, 3, 224, 224)).all() assert batch._columns['tensor'].data_ptr() == batch.tensor.data_ptr() for doc, tensor in zip(batch, batch.tensor): assert doc.tensor.data_ptr() == tensor.data_ptr() for i in range(len(batch)): assert batch[i].tensor.data_ptr() == batch.tensor[i].data_ptr() def test_stack_mod_nested_document(): class Image(Document): tensor: TorchTensor[3, 224, 224] class MMdoc(Document): img: Image batch = DocumentArray[MMdoc]( [MMdoc(img=Image(tensor=torch.zeros(3, 224, 224))) for _ in range(10)] ) batch = batch.stack() assert ( batch._columns['img']._columns['tensor'] == torch.zeros(10, 3, 224, 224) ).all() assert (batch.img.tensor == torch.zeros(10, 3, 224, 224)).all() assert ( batch._columns['img']._columns['tensor'].data_ptr() == batch.img.tensor.data_ptr() ) def test_convert_to_da(batch): class Image(Document): tensor: TorchTensor[3, 224, 224] batch = DocumentArray[Image]( [Image(tensor=torch.zeros(3, 224, 224)) for _ in range(10)] ) batch = batch.stack() da = batch.unstack() for doc in da: assert (doc.tensor == torch.zeros(3, 224, 224)).all() def test_unstack_nested_document(): class Image(Document): tensor: TorchTensor[3, 224, 224] class MMdoc(Document): img: Image batch = DocumentArray[MMdoc]( [MMdoc(img=Image(tensor=torch.zeros(3, 224, 224))) for _ in range(10)] ) batch = batch.stack() da = batch.unstack() for doc in da: assert (doc.img.tensor == torch.zeros(3, 224, 224)).all() def test_proto_stacked_mode_torch(batch): batch.from_protobuf(batch.to_protobuf()) def test_proto_stacked_mode_numpy(): class MyDoc(Document): tensor: NdArray[3, 224, 224] da = DocumentArray[MyDoc]( [MyDoc(tensor=np.zeros((3, 224, 224))) for _ in range(10)] ) da = da.stack() da.from_protobuf(da.to_protobuf()) def test_stack_call(): class Image(Document): tensor: TorchTensor[3, 224, 224] da = DocumentArray[Image]( [Image(tensor=torch.zeros(3, 224, 224)) for _ in range(10)] ) da = da.stack() assert len(da) == 10 assert da.tensor.shape == (10, 3, 224, 224) def test_context_manager(): class Image(Document): tensor: TorchTensor[3, 224, 224] da = DocumentArray[Image]( [Image(tensor=torch.zeros(3, 224, 224)) for _ in range(10)] ) with da.stacked_mode() as da: assert len(da) == 10 assert da.tensor.shape == (10, 3, 224, 224) da.tensor = torch.ones(10, 3, 224, 224) tensor = da.tensor assert isinstance(tensor, list) for doc in da: assert (doc.tensor == torch.ones(3, 224, 224)).all() def test_stack_union(): class Image(Document): tensor: Union[TorchTensor[3, 224, 224], NdArray[3, 224, 224]] batch = DocumentArray[Image]( [Image(tensor=np.zeros((3, 224, 224))) for _ in range(10)] ) batch[3].tensor = np.zeros((3, 224, 224)) # union fields aren't actually stacked # just checking that there is no error batch.stack()
import numpy as np import pytest import torch from docarray import Document, DocumentArray from docarray.typing import NdArray, TorchTensor @pytest.fixture() def batch(): class Image(Document): tensor: TorchTensor[3, 224, 224] batch = DocumentArray[Image]( [Image(tensor=torch.zeros(3, 224, 224)) for _ in range(10)] ) return batch.stack() def test_len(batch): assert len(batch) == 10 def test_getitem(batch): for i in range(len(batch)): print(i) assert (batch[i].tensor == torch.zeros(3, 224, 224)).all() def test_iterator(batch): for doc in batch: assert (doc.tensor == torch.zeros(3, 224, 224)).all() def test_stack_setter(batch): batch.tensor = torch.ones(10, 3, 224, 224) assert (batch.tensor == torch.ones(10, 3, 224, 224)).all() def test_stack_optional(batch): assert (batch._columns['tensor'] == torch.zeros(10, 3, 224, 224)).all() assert (batch.tensor == torch.zeros(10, 3, 224, 224)).all() def test_stack_numpy(): class Image(Document): tensor: NdArray[3, 224, 224] batch = DocumentArray[Image]( [Image(tensor=np.zeros((3, 224, 224))) for _ in range(10)] ) batch = batch.stack() assert (batch._columns['tensor'] == np.zeros((10, 3, 224, 224))).all() assert (batch.tensor == np.zeros((10, 3, 224, 224))).all() assert batch.tensor.ctypes.data == batch._columns['tensor'].ctypes.data batch.unstack() def test_stack(batch): assert (batch._columns['tensor'] == torch.zeros(10, 3, 224, 224)).all() assert (batch.tensor == torch.zeros(10, 3, 224, 224)).all() assert batch._columns['tensor'].data_ptr() == batch.tensor.data_ptr() for doc, tensor in zip(batch, batch.tensor): assert doc.tensor.data_ptr() == tensor.data_ptr() for i in range(len(batch)): assert batch[i].tensor.data_ptr() == batch.tensor[i].data_ptr() def test_stack_mod_nested_document(): class Image(Document): tensor: TorchTensor[3, 224, 224] class MMdoc(Document): img: Image batch = DocumentArray[MMdoc]( [MMdoc(img=Image(tensor=torch.zeros(3, 224, 224))) for _ in range(10)] ) batch = batch.stack() assert ( batch._columns['img']._columns['tensor'] == torch.zeros(10, 3, 224, 224) ).all() assert (batch.img.tensor == torch.zeros(10, 3, 224, 224)).all() assert ( batch._columns['img']._columns['tensor'].data_ptr() == batch.img.tensor.data_ptr() ) def test_convert_to_da(batch): class Image(Document): tensor: TorchTensor[3, 224, 224] batch = DocumentArray[Image]( [Image(tensor=torch.zeros(3, 224, 224)) for _ in range(10)] ) batch = batch.stack() da = batch.unstack() for doc in da: assert (doc.tensor == torch.zeros(3, 224, 224)).all() def test_unstack_nested_document(): class Image(Document): tensor: TorchTensor[3, 224, 224] class MMdoc(Document): img: Image batch = DocumentArray[MMdoc]( [MMdoc(img=Image(tensor=torch.zeros(3, 224, 224))) for _ in range(10)] ) batch = batch.stack() da = batch.unstack() for doc in da: assert (doc.img.tensor == torch.zeros(3, 224, 224)).all() def test_proto_stacked_mode_torch(batch): batch.from_protobuf(batch.to_protobuf()) def test_proto_stacked_mode_numpy(): class MyDoc(Document): tensor: NdArray[3, 224, 224] da = DocumentArray[MyDoc]( [MyDoc(tensor=np.zeros((3, 224, 224))) for _ in range(10)] ) da = da.stack() da.from_protobuf(da.to_protobuf()) def test_stack_call(): class Image(Document): tensor: TorchTensor[3, 224, 224] da = DocumentArray[Image]( [Image(tensor=torch.zeros(3, 224, 224)) for _ in range(10)] ) da = da.stack() assert len(da) == 10 assert da.tensor.shape == (10, 3, 224, 224) def test_context_manager(): class Image(Document): tensor: TorchTensor[3, 224, 224] da = DocumentArray[Image]( [Image(tensor=torch.zeros(3, 224, 224)) for _ in range(10)] ) with da.stacked_mode() as da: assert len(da) == 10 assert da.tensor.shape == (10, 3, 224, 224) da.tensor = torch.ones(10, 3, 224, 224) tensor = da.tensor assert isinstance(tensor, list) for doc in da: assert (doc.tensor == torch.ones(3, 224, 224)).all()
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] dataset_type = 'CocoDataset' data_root = 'data/coco/' # model settings model = dict( type='CenterNet', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='ResNet', depth=18, norm_eval=False, norm_cfg=dict(type='BN'), init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict( type='CTResNetNeck', in_channels=512, num_deconv_filters=(256, 128, 64), num_deconv_kernels=(4, 4, 4), use_dcn=True), bbox_head=dict( type='CenterNetHead', num_classes=80, in_channels=64, feat_channels=64, loss_center_heatmap=dict(type='GaussianFocalLoss', loss_weight=1.0), loss_wh=dict(type='L1Loss', loss_weight=0.1), loss_offset=dict(type='L1Loss', loss_weight=1.0)), train_cfg=None, test_cfg=dict(topk=100, local_maximum_kernel=3, max_per_img=100)) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='RandomCenterCropPad', # The cropped images are padded into squares during training, # but may be less than crop_size. crop_size=(512, 512), ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3), mean=[0, 0, 0], std=[1, 1, 1], to_rgb=True, test_pad_mode=None), # Make sure the output is always crop_size. dict(type='Resize', scale=(512, 512), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', to_float32=True, file_client_args={{_base_.file_client_args}}), # don't need Resize dict( type='RandomCenterCropPad', ratios=None, border=None, mean=[0, 0, 0], std=[1, 1, 1], to_rgb=True, test_mode=True, test_pad_mode=['logical_or', 31], test_pad_add_pix=1), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'border')) ] # Use RepeatDataset to speed up training train_dataloader = dict( batch_size=16, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( _delete_=True, type='RepeatDataset', times=5, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer # Based on the default settings of modern detectors, the SGD effect is better # than the Adam in the source code, so we use SGD default settings and # if you use adam+lr5e-4, the map is 29.1. optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2)) max_epochs = 28 # learning policy # Based on the default settings of modern detectors, we added warmup settings. param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[18, 24], # the real step is [18*5, 24*5] gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # the real epoch is 28*5=140 # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (16 samples per GPU) auto_scale_lr = dict(base_batch_size=128)
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') # model settings preprocess_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) model = dict( type='CenterNet', preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNet', depth=18, norm_eval=False, norm_cfg=dict(type='BN'), init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict( type='CTResNetNeck', in_channels=512, num_deconv_filters=(256, 128, 64), num_deconv_kernels=(4, 4, 4), use_dcn=True), bbox_head=dict( type='CenterNetHead', num_classes=80, in_channels=64, feat_channels=64, loss_center_heatmap=dict(type='GaussianFocalLoss', loss_weight=1.0), loss_wh=dict(type='L1Loss', loss_weight=0.1), loss_offset=dict(type='L1Loss', loss_weight=1.0)), train_cfg=None, test_cfg=dict(topk=100, local_maximum_kernel=3, max_per_img=100)) train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='RandomCenterCropPad', # The cropped images are padded into squares during training, # but may be less than crop_size. crop_size=(512, 512), ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3), mean=[0, 0, 0], std=[1, 1, 1], to_rgb=True, test_pad_mode=None), # Make sure the output is always crop_size. dict(type='Resize', scale=(512, 512), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', to_float32=True, file_client_args=file_client_args), # don't need Resize dict( type='RandomCenterCropPad', ratios=None, border=None, mean=[0, 0, 0], std=[1, 1, 1], to_rgb=True, test_mode=True, test_pad_mode=['logical_or', 31], test_pad_add_pix=1), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'border')) ] # Use RepeatDataset to speed up training train_dataloader = dict( batch_size=16, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( _delete_=True, type='RepeatDataset', times=5, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer # Based on the default settings of modern detectors, the SGD effect is better # than the Adam in the source code, so we use SGD default settings and # if you use adam+lr5e-4, the map is 29.1. default_hooks = dict( optimizer=dict( _delete_=True, type='OptimizerHook', grad_clip=dict(max_norm=35, norm_type=2))) max_epochs = 28 # learning policy # Based on the default settings of modern detectors, we added warmup settings. param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[18, 24], # the real step is [18*5, 24*5] gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # the real epoch is 28*5=140 # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (16 samples per GPU) auto_scale_lr = dict(base_batch_size=128)
"""Argparser module for Pod runtimes""" import argparse from dataclasses import dataclass from typing import Dict from jina import helper from jina.enums import PodRoleType from jina.parsers.helper import _SHOW_ALL_ARGS, KVAppendAction, add_arg_group @dataclass class PodTypeParams: """Data Class representing possible parameters for each pod type""" runtime_cls: str role_type: PodRoleType POD_PARAMS_MAPPING: Dict[str, PodTypeParams] = { 'worker': PodTypeParams(runtime_cls='WorkerRuntime', role_type=PodRoleType.WORKER), 'head': PodTypeParams(runtime_cls='HeadRuntime', role_type=PodRoleType.HEAD), 'gateway': PodTypeParams( runtime_cls='GatewayRuntime', role_type=PodRoleType.GATEWAY ), } def mixin_pod_parser(parser, pod_type: str = 'worker'): """Mixing in arguments required by :class:`Pod` into the given parser. :param parser: the parser instance to which we add arguments :param pod_type: the pod_type configured by the parser. Can be either 'worker' for WorkerRuntime or 'gateway' for GatewayRuntime """ gp = add_arg_group(parser, title='Pod') gp.add_argument( '--runtime-cls', type=str, default=POD_PARAMS_MAPPING[pod_type].runtime_cls, help='The runtime class to run inside the Pod', ) gp.add_argument( '--timeout-ready', type=int, default=600000, help='The timeout in milliseconds of a Pod waits for the runtime to be ready, -1 for waiting ' 'forever', ) gp.add_argument( '--env', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The map of environment variables that are available inside runtime', ) # hidden CLI used for internal only gp.add_argument( '--shard-id', type=int, default=0, help='defines the shard identifier for the executor. It is used as suffix for the workspace path of the executor`' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--pod-role', type=PodRoleType.from_string, choices=list(PodRoleType), default=POD_PARAMS_MAPPING[pod_type].role_type, help='The role of this Pod in a Deployment' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--noblock-on-start', action='store_true', default=False, help='If set, starting a Pod/Deployment does not block the thread/process. It then relies on ' '`wait_start_success` at outer function for the postpone check.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--shards', type=int, default=1, help='The number of shards in the deployment running at the same time. For more details check ' 'https://docs.jina.ai/fundamentals/flow/create-flow/#complex-flow-topologies', ) gp.add_argument( '--replicas', type=int, default=1, help='The number of replicas in the deployment', ) gp.add_argument( '--port', type=str, default=str(helper.random_port()), help='The port for input data to bind to, default is a random port between [49152, 65535].' ' In the case of an external Executor (`--external` or `external=True`) this can be a list of ports, separated by commas.' ' Then, every resulting address will be considered as one replica of the Executor.', ) gp.add_argument( '--monitoring', action='store_true', default=False, help='If set, spawn an http server with a prometheus endpoint to expose metrics', ) gp.add_argument( '--port-monitoring', type=str, default=str(helper.random_port()), dest='port_monitoring', help=f'The port on which the prometheus server is exposed, default is a random port between [49152, 65535]', ) gp.add_argument( '--retries', type=int, default=-1, dest='retries', help=f'Number of retries per gRPC call. If <0 it defaults to max(3, num_replicas)', ) gp.add_argument( '--floating', action='store_true', default=False, help='If set, the current Pod/Deployment can not be further chained, ' 'and the next `.add()` will chain after the last Pod/Deployment not this current one.', )
"""Argparser module for Pod runtimes""" import argparse from dataclasses import dataclass from typing import Dict from jina import helper from jina.enums import PodRoleType from jina.parsers.helper import _SHOW_ALL_ARGS, KVAppendAction, add_arg_group @dataclass class PodTypeParams: """Data Class representing possible parameters for each pod type""" runtime_cls: str role_type: PodRoleType POD_PARAMS_MAPPING: Dict[str, PodTypeParams] = { 'worker': PodTypeParams(runtime_cls='WorkerRuntime', role_type=PodRoleType.WORKER), 'head': PodTypeParams(runtime_cls='HeadRuntime', role_type=PodRoleType.HEAD), 'gateway': PodTypeParams( runtime_cls='GatewayRuntime', role_type=PodRoleType.GATEWAY ), } def mixin_pod_parser(parser, pod_type: str = 'worker'): """Mixing in arguments required by :class:`Pod` into the given parser. :param parser: the parser instance to which we add arguments :param pod_type: the pod_type configured by the parser. Can be either 'worker' for WorkerRuntime or 'gateway' for GatewayRuntime """ gp = add_arg_group(parser, title='Pod') gp.add_argument( '--runtime-cls', type=str, default=POD_PARAMS_MAPPING[pod_type].runtime_cls, help='The runtime class to run inside the Pod', ) gp.add_argument( '--timeout-ready', type=int, default=600000, help='The timeout in milliseconds of a Pod waits for the runtime to be ready, -1 for waiting ' 'forever', ) gp.add_argument( '--env', action=KVAppendAction, metavar='KEY: VALUE', nargs='*', help='The map of environment variables that are available inside runtime', ) # hidden CLI used for internal only gp.add_argument( '--shard-id', type=int, default=0, help='defines the shard identifier for the executor. It is used as suffix for the workspace path of the executor`' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--pod-role', type=PodRoleType.from_string, choices=list(PodRoleType), default=POD_PARAMS_MAPPING[pod_type].role_type, help='The role of this Pod in a Deployment' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--noblock-on-start', action='store_true', default=False, help='If set, starting a Pod/Deployment does not block the thread/process. It then relies on ' '`wait_start_success` at outer function for the postpone check.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--shards', type=int, default=1, help='The number of shards in the deployment running at the same time. For more details check ' 'https://docs.jina.ai/fundamentals/flow/create-flow/#complex-flow-topologies', ) gp.add_argument( '--replicas', type=int, default=1, help='The number of replicas in the deployment', ) gp.add_argument( '--port', type=int, default=helper.random_port(), help='The port for input data to bind to, default is a random port between [49152, 65535]', ) gp.add_argument( '--monitoring', action='store_true', default=False, help='If set, spawn an http server with a prometheus endpoint to expose metrics', ) gp.add_argument( '--port-monitoring', type=str, default=str(helper.random_port()), dest='port_monitoring', help=f'The port on which the prometheus server is exposed, default is a random port between [49152, 65535]', ) gp.add_argument( '--retries', type=int, default=-1, dest='retries', help=f'Number of retries per gRPC call. If <0 it defaults to max(3, num_replicas)', ) gp.add_argument( '--floating', action='store_true', default=False, help='If set, the current Pod/Deployment can not be further chained, ' 'and the next `.add()` will chain after the last Pod/Deployment not this current one.', )
import numpy as np def psd_numpy(specgram, mask=None, normalize=True, eps=1e-10): specgram_transposed = np.swapaxes(specgram, 0, 1) psd = np.einsum("...ct,...et->...tce", specgram_transposed, specgram_transposed.conj()) if mask is not None: if normalize: mask_normmalized = mask / (mask.sum(axis=-1, keepdims=True) + eps) else: mask_normmalized = mask psd = psd * mask_normmalized[..., None, None] psd = psd.sum(axis=-3) return psd def mvdr_weights_souden_numpy(psd_s, psd_n, reference_channel, diag_eps=1e-7, eps=1e-8): channel = psd_s.shape[-1] eye = np.eye(channel) trace = np.matrix.trace(psd_n, axis1=1, axis2=2) epsilon = trace.real[..., None, None] * diag_eps + eps diag = epsilon * eye[..., :, :] psd_n = psd_n + diag numerator = np.linalg.solve(psd_n, psd_s) # psd_n.inv() @ psd_s numerator_trace = np.matrix.trace(numerator, axis1=1, axis2=2) ws = numerator / (numerator_trace[..., None, None] + eps) if isinstance(reference_channel, int): beamform_weights = ws[..., :, reference_channel] else: beamform_weights = np.einsum("...c,...c->...", ws, reference_channel[..., None, None, :]) return beamform_weights def mvdr_weights_rtf_numpy(rtf, psd_n, reference_channel, diag_eps=1e-7, eps=1e-8): channel = rtf.shape[-1] eye = np.eye(channel) trace = np.matrix.trace(psd_n, axis1=1, axis2=2) epsilon = trace.real[..., None, None] * diag_eps + eps diag = epsilon * eye[..., :, :] psd_n = psd_n + diag numerator = np.linalg.solve(psd_n, np.expand_dims(rtf, -1)).squeeze(-1) denominator = np.einsum("...d,...d->...", rtf.conj(), numerator) beamform_weights = numerator / (np.expand_dims(denominator.real, -1) + eps) if isinstance(reference_channel, int): scale = rtf[..., reference_channel].conj() else: scale = np.einsum("...c,...c->...", rtf.conj(), reference_channel[..., None, :]) beamform_weights = beamform_weights * scale[..., None] return beamform_weights def rtf_evd_numpy(psd): _, v = np.linalg.eigh(psd) rtf = v[..., -1] return rtf def rtf_power_numpy(psd_s, psd_n, reference_channel, n_iter, diagonal_loading=True, diag_eps=1e-7, eps=1e-8): if diagonal_loading: channel = psd_s.shape[-1] eye = np.eye(channel) trace = np.matrix.trace(psd_n, axis1=1, axis2=2) epsilon = trace.real[..., None, None] * diag_eps + eps diag = epsilon * eye[..., :, :] psd_n = psd_n + diag phi = np.linalg.solve(psd_n, psd_s) if isinstance(reference_channel, int): rtf = phi[..., reference_channel] else: rtf = phi @ reference_channel rtf = np.expand_dims(rtf, -1) if n_iter >= 2: for _ in range(n_iter - 2): rtf = phi @ rtf rtf = psd_s @ rtf else: rtf = psd_n @ rtf rtf = rtf.squeeze(-1) return rtf def apply_beamforming_numpy(beamform_weights, specgram): specgram_enhanced = np.einsum("...fc,...cft->...ft", beamform_weights.conj(), specgram) return specgram_enhanced
import numpy as np def psd_numpy(specgram, mask=None, normalize=True, eps=1e-10): specgram_transposed = np.swapaxes(specgram, 0, 1) psd = np.einsum("...ct,...et->...tce", specgram_transposed, specgram_transposed.conj()) if mask is not None: if normalize: mask_normmalized = mask / (mask.sum(axis=-1, keepdims=True) + eps) else: mask_normmalized = mask psd = psd * mask_normmalized[..., None, None] psd = psd.sum(axis=-3) return psd def mvdr_weights_souden_numpy(psd_s, psd_n, reference_channel, diag_eps=1e-7, eps=1e-8): channel = psd_s.shape[-1] eye = np.eye(channel) trace = np.matrix.trace(psd_n, axis1=1, axis2=2) epsilon = trace.real[..., None, None] * diag_eps + eps diag = epsilon * eye[..., :, :] psd_n = psd_n + diag numerator = np.linalg.solve(psd_n, psd_s) # psd_n.inv() @ psd_s numerator_trace = np.matrix.trace(numerator, axis1=1, axis2=2) ws = numerator / (numerator_trace[..., None, None] + eps) if isinstance(reference_channel, int): beamform_weights = ws[..., :, reference_channel] else: beamform_weights = np.einsum("...c,...c->...", ws, reference_channel[..., None, None, :]) return beamform_weights def mvdr_weights_rtf_numpy(rtf, psd_n, reference_channel, diag_eps=1e-7, eps=1e-8): channel = rtf.shape[-1] eye = np.eye(channel) trace = np.matrix.trace(psd_n, axis1=1, axis2=2) epsilon = trace.real[..., None, None] * diag_eps + eps diag = epsilon * eye[..., :, :] psd_n = psd_n + diag numerator = np.linalg.solve(psd_n, np.expand_dims(rtf, -1)).squeeze(-1) denominator = np.einsum("...d,...d->...", rtf.conj(), numerator) beamform_weights = numerator / (np.expand_dims(denominator.real, -1) + eps) if isinstance(reference_channel, int): scale = rtf[..., reference_channel].conj() else: scale = np.einsum("...c,...c->...", rtf.conj(), reference_channel[..., None, :]) beamform_weights = beamform_weights * scale[..., None] return beamform_weights def rtf_evd_numpy(psd): _, v = np.linalg.eigh(psd) rtf = v[..., -1] return rtf def rtf_power_numpy(psd_s, psd_n, reference_channel, n_iter): phi = np.linalg.solve(psd_n, psd_s) if isinstance(reference_channel, int): rtf = phi[..., reference_channel] else: rtf = phi @ reference_channel rtf = np.expand_dims(rtf, -1) if n_iter >= 2: for _ in range(n_iter - 2): rtf = phi @ rtf rtf = psd_s @ rtf else: rtf = psd_n @ rtf rtf = rtf.squeeze(-1) return rtf def apply_beamforming_numpy(beamform_weights, specgram): specgram_enhanced = np.einsum("...fc,...cft->...ft", beamform_weights.conj(), specgram) return specgram_enhanced
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_layoutlmv3 import * from .feature_extraction_layoutlmv3 import * from .image_processing_layoutlmv3 import * from .image_processing_layoutlmv3_fast import * from .modeling_layoutlmv3 import * from .modeling_tf_layoutlmv3 import * from .processing_layoutlmv3 import * from .tokenization_layoutlmv3 import * from .tokenization_layoutlmv3_fast import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_layoutlmv3 import * from .feature_extraction_layoutlmv3 import * from .image_processing_layoutlmv3 import * from .modeling_layoutlmv3 import * from .modeling_tf_layoutlmv3 import * from .processing_layoutlmv3 import * from .tokenization_layoutlmv3 import * from .tokenization_layoutlmv3_fast import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
from typing import Optional, Tuple import torch from ..utils import logging logger = logging.get_logger(__name__) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def sdpa_attention_forward( module: torch.nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], dropout: float = 0.0, scaling: Optional[float] = None, is_causal: Optional[bool] = None, **kwargs, ) -> Tuple[torch.Tensor, None]: if kwargs.get("output_attentions", False) or kwargs.get("head_mask", None) is not None: logger.warning_once( "`sdpa` attention does not support `output_attentions=True` or `head_mask`." " Please set your attention to `eager` if you want any of these features." ) if hasattr(module, "num_key_value_groups"): key = repeat_kv(key, module.num_key_value_groups) value = repeat_kv(value, module.num_key_value_groups) if attention_mask is not None and attention_mask.ndim == 4: attention_mask = attention_mask[:, :, :, : key.shape[-2]] # SDPA with memory-efficient backend is bugged with non-contiguous inputs and custom attn_mask for some torch versions # Reference: https://github.com/pytorch/pytorch/issues/112577. query = query.contiguous() key = key.contiguous() value = value.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # Note that it is important to check first for the shape, otherwise compile will fail with `argument 'is_causal' must be bool, not SymBool` if is_causal is None: # The last condition is for encoder (decoder) models which specify this by passing their own `is_causal` flag # This is mainly due to those models having mixed implementations for encoder, decoder, and encoder-decoder attns is_causal = query.shape[2] > 1 and attention_mask is None and getattr(module, "is_causal", True) # Shapes (e.g. query.shape[2]) are tensors during jit tracing, resulting in `is_causal` being a tensor. # We convert it to a bool for the SDPA kernel that only accepts bools. if torch.jit.is_tracing() and isinstance(is_causal, torch.Tensor): is_causal = is_causal.item() attn_output = torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=dropout, scale=scaling, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, None
from typing import Optional, Tuple import torch def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def sdpa_attention_forward( module: torch.nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], dropout: float = 0.0, scaling: Optional[float] = None, is_causal: Optional[bool] = None, **kwargs, ) -> Tuple[torch.Tensor, None]: if hasattr(module, "num_key_value_groups"): key = repeat_kv(key, module.num_key_value_groups) value = repeat_kv(value, module.num_key_value_groups) causal_mask = attention_mask if attention_mask is not None and causal_mask.ndim == 4: causal_mask = causal_mask[:, :, :, : key.shape[-2]] # SDPA with memory-efficient backend is bugged with non-contiguous inputs and custom attn_mask for some torch versions # Reference: https://github.com/pytorch/pytorch/issues/112577. query = query.contiguous() key = key.contiguous() value = value.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # Note that it is important to check first for the shape, otherwise compile will fail with `argument 'is_causal' must be bool, not SymBool` if is_causal is None: is_causal = query.shape[2] > 1 and causal_mask is None # Shapes (e.g. query.shape[2]) are tensors during jit tracing, resulting in `is_causal` being a tensor. # We convert it to a bool for the SDPA kernel that only accepts bools. if torch.jit.is_tracing() and isinstance(is_causal, torch.Tensor): is_causal = is_causal.item() attn_output = torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask=causal_mask, dropout_p=dropout, scale=scaling, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, None
from typing import List from torch.utils.data import Dataset from sentence_transformers import SentenceTransformer from sentence_transformers.readers.InputExample import InputExample class SentencesDataset(Dataset): """ DEPRECATED: This class is no longer used. Instead of wrapping your List of InputExamples in a SentencesDataset and then passing it to the DataLoader, you can pass the list of InputExamples directly to the dataset loader. """ def __init__(self, examples: List[InputExample], model: SentenceTransformer): self.examples = examples def __getitem__(self, item): return self.examples[item] def __len__(self): return len(self.examples)
from torch.utils.data import Dataset from typing import List from .. import SentenceTransformer from ..readers.InputExample import InputExample class SentencesDataset(Dataset): """ DEPRECATED: This class is no longer used. Instead of wrapping your List of InputExamples in a SentencesDataset and then passing it to the DataLoader, you can pass the list of InputExamples directly to the dataset loader. """ def __init__(self, examples: List[InputExample], model: SentenceTransformer): self.examples = examples def __getitem__(self, item): return self.examples[item] def __len__(self): return len(self.examples)
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../common/lsj-100e_coco-instance.py' ] image_size = (1024, 1024) batch_augments = [ dict(type='BatchFixedSizePad', size=image_size, pad_mask=True) ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # use caffe norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, # pad_size_divisor=32 is unnecessary in training but necessary # in testing. pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None, style='caffe'), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg))) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # Use RepeatDataset to speed up training train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline)))
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../common/lsj-100e_coco-instance.py' ] image_size = (1024, 1024) batch_augments = [ dict(type='BatchFixedSizePad', size=image_size, pad_mask=True) ] norm_cfg = dict(type='SyncBN', requires_grad=True) # Use MMSyncBN that handles empty tensor in head. It can be changed to # SyncBN after https://github.com/pytorch/pytorch/issues/36530 is fixed head_norm_cfg = dict(type='MMSyncBN', requires_grad=True) model = dict( # use caffe norm data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, # pad_size_divisor=32 is unnecessary in training but necessary # in testing. pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( frozen_stages=-1, norm_eval=False, norm_cfg=norm_cfg, init_cfg=None, style='caffe'), neck=dict(norm_cfg=norm_cfg), rpn_head=dict(num_convs=2), roi_head=dict( bbox_head=dict( type='Shared4Conv1FCBBoxHead', conv_out_channels=256, norm_cfg=head_norm_cfg), mask_head=dict(norm_cfg=head_norm_cfg))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # Use RepeatDataset to speed up training train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline)))
import logging import os import tarfile import zipfile from typing import Any, List, Optional import torchaudio _LG = logging.getLogger(__name__) def _extract_tar(from_path: str, to_path: Optional[str] = None, overwrite: bool = False) -> List[str]: if to_path is None: to_path = os.path.dirname(from_path) with tarfile.open(from_path, "r") as tar: files = [] for file_ in tar: # type: Any file_path = os.path.join(to_path, file_.name) if file_.isfile(): files.append(file_path) if os.path.exists(file_path): _LG.info("%s already extracted.", file_path) if not overwrite: continue tar.extract(file_, to_path) return files def _extract_zip(from_path: str, to_path: Optional[str] = None, overwrite: bool = False) -> List[str]: if to_path is None: to_path = os.path.dirname(from_path) with zipfile.ZipFile(from_path, "r") as zfile: files = zfile.namelist() for file_ in files: file_path = os.path.join(to_path, file_) if os.path.exists(file_path): _LG.info("%s already extracted.", file_path) if not overwrite: continue zfile.extract(file_, to_path) return files def _load_waveform( root: str, filename: str, exp_sample_rate: int, ): path = os.path.join(root, filename) waveform, sample_rate = torchaudio.load(path) if exp_sample_rate != sample_rate: raise ValueError(f"sample rate should be {exp_sample_rate}, but got {sample_rate}") return waveform
import logging import os import tarfile import zipfile from typing import Any, List, Optional import torchaudio def _extract_tar(from_path: str, to_path: Optional[str] = None, overwrite: bool = False) -> List[str]: if to_path is None: to_path = os.path.dirname(from_path) with tarfile.open(from_path, "r") as tar: logging.info("Opened tar file {}.", from_path) files = [] for file_ in tar: # type: Any file_path = os.path.join(to_path, file_.name) if file_.isfile(): files.append(file_path) if os.path.exists(file_path): logging.info("{} already extracted.".format(file_path)) if not overwrite: continue tar.extract(file_, to_path) return files def _extract_zip(from_path: str, to_path: Optional[str] = None, overwrite: bool = False) -> List[str]: if to_path is None: to_path = os.path.dirname(from_path) with zipfile.ZipFile(from_path, "r") as zfile: logging.info("Opened zip file {}.", from_path) files = zfile.namelist() for file_ in files: file_path = os.path.join(to_path, file_) if os.path.exists(file_path): logging.info("{} already extracted.".format(file_path)) if not overwrite: continue zfile.extract(file_, to_path) return files def _load_waveform( root: str, filename: str, exp_sample_rate: int, ): path = os.path.join(root, filename) waveform, sample_rate = torchaudio.load(path) if exp_sample_rate != sample_rate: raise ValueError(f"sample rate should be {exp_sample_rate}, but got {sample_rate}") return waveform
from typing import Union from docarray.typing.tensor.ndarray import NdArray from docarray.utils.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor # noqa: F401 AnyTensor = Union[NdArray] if torch_available and tf_available: AnyTensor = Union[NdArray, TorchTensor, TensorFlowTensor] # type: ignore elif torch_available: AnyTensor = Union[NdArray, TorchTensor] # type: ignore elif tf_available: AnyTensor = Union[NdArray, TensorFlowTensor] # type: ignore
from typing import Union from docarray.typing.tensor.ndarray import NdArray from docarray.utils.misc import is_tf_available, is_torch_available torch_available = is_torch_available() if torch_available: from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 tf_available = is_tf_available() if tf_available: from docarray.typing.tensor.tensorflow_tensor import TensorFlowTensor # noqa: F401 if torch_available and tf_available: AnyTensor = Union[NdArray, TorchTensor, TensorFlowTensor] elif torch_available: AnyTensor = Union[NdArray, TorchTensor] # type: ignore elif tf_available: AnyTensor = Union[NdArray, TensorFlowTensor] # type: ignore else: AnyTensor = Union[NdArray] # type: ignore
# Copyright (c) OpenMMLab. All rights reserved. from unittest.mock import Mock from mmengine.hooks import EmptyCacheHook class TestEmptyCacheHook: def test_emtpy_cache_hook(self): Hook = EmptyCacheHook(True, True, True) Runner = Mock() Hook.after_iter(Runner) Hook.before_epoch(Runner) Hook.after_epoch(Runner)
# Copyright (c) OpenMMLab. All rights reserved. from mock import Mock from mmengine.hooks import EmptyCacheHook class TestEmptyCacheHook: def test_emtpy_cache_hook(self): Hook = EmptyCacheHook(True, True, True) Runner = Mock() Hook.after_iter(Runner) Hook.before_epoch(Runner) Hook.after_epoch(Runner)
"""Couchbase document loader.""" from typing import Any, Iterable, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class CouchbaseReader(BaseReader): """ Couchbase document loader. Loads data from a Couchbase cluster into Document used by LlamaIndex. Args: client(Optional[Any]): A Couchbase client to use. If not provided, the client will be created based on the connection_string and database credentials. connection_string (Optional[str]): The connection string to the Couchbase cluster. db_username (Optional[str]): The username to connect to the Couchbase cluster. db_password (Optional[str]): The password to connect to the Couchbase cluster. """ def __init__( self, client: Optional[Any] = None, connection_string: Optional[str] = None, db_username: Optional[str] = None, db_password: Optional[str] = None, ) -> None: """Initialize Couchbase document loader.""" import_err_msg = "`couchbase` package not found, please run `pip install --upgrade couchbase`" try: from couchbase.auth import PasswordAuthenticator from couchbase.cluster import Cluster from couchbase.options import ClusterOptions except ImportError: raise ImportError(import_err_msg) if not client: if not connection_string or not db_username or not db_password: raise ValueError( "You need to pass either a couchbase client or connection_string and credentials must be provided." ) else: auth = PasswordAuthenticator( db_username, db_password, ) self._client: Cluster = Cluster(connection_string, ClusterOptions(auth)) else: self._client = client def lazy_load_data( self, query: str, text_fields: Optional[List[str]] = None, metadata_fields: Optional[List[str]] = [], ) -> Iterable[Document]: """ Load data from the Couchbase cluster lazily. Args: query (str): The SQL++ query to execute. text_fields (Optional[List[str]]): The columns to write into the `text` field of the document. By default, all columns are written. metadata_fields (Optional[List[str]]): The columns to write into the `metadata` field of the document. By default, no columns are written. """ from datetime import timedelta if not query: raise ValueError("Query must be provided.") # Ensure connection to Couchbase cluster self._client.wait_until_ready(timedelta(seconds=5)) # Run SQL++ Query result = self._client.query(query) for row in result: if not text_fields: text_fields = list(row.keys()) metadata = {field: row[field] for field in metadata_fields} document = "\n".join( f"{k}: {v}" for k, v in row.items() if k in text_fields ) yield (Document(text=document, metadata=metadata)) def load_data( self, query: str, text_fields: Optional[List[str]] = None, metadata_fields: Optional[List[str]] = None, ) -> List[Document]: """ Load data from the Couchbase cluster. Args: query (str): The SQL++ query to execute. text_fields (Optional[List[str]]): The columns to write into the `text` field of the document. By default, all columns are written. metadata_fields (Optional[List[str]]): The columns to write into the `metadata` field of the document. By default, no columns are written. """ return list(self.lazy_load_data(query, text_fields, metadata_fields))
"""Couchbase document loader.""" from typing import Any, Iterable, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class CouchbaseReader(BaseReader): """Couchbase document loader. Loads data from a Couchbase cluster into Document used by LlamaIndex. Args: client(Optional[Any]): A Couchbase client to use. If not provided, the client will be created based on the connection_string and database credentials. connection_string (Optional[str]): The connection string to the Couchbase cluster. db_username (Optional[str]): The username to connect to the Couchbase cluster. db_password (Optional[str]): The password to connect to the Couchbase cluster. """ def __init__( self, client: Optional[Any] = None, connection_string: Optional[str] = None, db_username: Optional[str] = None, db_password: Optional[str] = None, ) -> None: """Initialize Couchbase document loader.""" import_err_msg = "`couchbase` package not found, please run `pip install --upgrade couchbase`" try: from couchbase.auth import PasswordAuthenticator from couchbase.cluster import Cluster from couchbase.options import ClusterOptions except ImportError: raise ImportError(import_err_msg) if not client: if not connection_string or not db_username or not db_password: raise ValueError( "You need to pass either a couchbase client or connection_string and credentials must be provided." ) else: auth = PasswordAuthenticator( db_username, db_password, ) self._client: Cluster = Cluster(connection_string, ClusterOptions(auth)) else: self._client = client def lazy_load_data( self, query: str, text_fields: Optional[List[str]] = None, metadata_fields: Optional[List[str]] = [], ) -> Iterable[Document]: """Load data from the Couchbase cluster lazily. Args: query (str): The SQL++ query to execute. text_fields (Optional[List[str]]): The columns to write into the `text` field of the document. By default, all columns are written. metadata_fields (Optional[List[str]]): The columns to write into the `metadata` field of the document. By default, no columns are written. """ from datetime import timedelta if not query: raise ValueError("Query must be provided.") # Ensure connection to Couchbase cluster self._client.wait_until_ready(timedelta(seconds=5)) # Run SQL++ Query result = self._client.query(query) for row in result: if not text_fields: text_fields = list(row.keys()) metadata = {field: row[field] for field in metadata_fields} document = "\n".join( f"{k}: {v}" for k, v in row.items() if k in text_fields ) yield (Document(text=document, metadata=metadata)) def load_data( self, query: str, text_fields: Optional[List[str]] = None, metadata_fields: Optional[List[str]] = None, ) -> List[Document]: """Load data from the Couchbase cluster. Args: query (str): The SQL++ query to execute. text_fields (Optional[List[str]]): The columns to write into the `text` field of the document. By default, all columns are written. metadata_fields (Optional[List[str]]): The columns to write into the `metadata` field of the document. By default, no columns are written. """ return list(self.lazy_load_data(query, text_fields, metadata_fields))
from ._alignment import forced_align, merge_tokens, TokenSpan from .filtering import ( allpass_biquad, band_biquad, bandpass_biquad, bandreject_biquad, bass_biquad, biquad, contrast, dcshift, deemph_biquad, dither, equalizer_biquad, filtfilt, flanger, gain, highpass_biquad, lfilter, lowpass_biquad, overdrive, phaser, riaa_biquad, treble_biquad, vad, ) from .functional import ( add_noise, amplitude_to_DB, apply_beamforming, apply_codec, compute_deltas, convolve, create_dct, DB_to_amplitude, deemphasis, detect_pitch_frequency, edit_distance, fftconvolve, frechet_distance, griffinlim, inverse_spectrogram, linear_fbanks, loudness, mask_along_axis, mask_along_axis_iid, melscale_fbanks, mu_law_decoding, mu_law_encoding, mvdr_weights_rtf, mvdr_weights_souden, phase_vocoder, pitch_shift, preemphasis, psd, resample, rnnt_loss, rtf_evd, rtf_power, sliding_window_cmn, spectral_centroid, spectrogram, speed, ) __all__ = [ "amplitude_to_DB", "compute_deltas", "create_dct", "melscale_fbanks", "linear_fbanks", "DB_to_amplitude", "loudness", "detect_pitch_frequency", "griffinlim", "mask_along_axis", "mask_along_axis_iid", "mu_law_encoding", "mu_law_decoding", "phase_vocoder", "sliding_window_cmn", "spectrogram", "inverse_spectrogram", "spectral_centroid", "allpass_biquad", "band_biquad", "bandpass_biquad", "bandreject_biquad", "bass_biquad", "biquad", "contrast", "dither", "dcshift", "deemph_biquad", "equalizer_biquad", "filtfilt", "flanger", "forced_align", "merge_tokens", "TokenSpan", "gain", "highpass_biquad", "lfilter", "lowpass_biquad", "overdrive", "phaser", "riaa_biquad", "treble_biquad", "vad", "apply_codec", "resample", "edit_distance", "pitch_shift", "rnnt_loss", "psd", "mvdr_weights_souden", "mvdr_weights_rtf", "rtf_evd", "rtf_power", "apply_beamforming", "fftconvolve", "convolve", "add_noise", "speed", "preemphasis", "deemphasis", "frechet_distance", ]
from ._alignment import forced_align, merge_tokens, TokenSpan from .filtering import ( allpass_biquad, band_biquad, bandpass_biquad, bandreject_biquad, bass_biquad, biquad, contrast, dcshift, deemph_biquad, dither, equalizer_biquad, filtfilt, flanger, gain, highpass_biquad, lfilter, lowpass_biquad, overdrive, phaser, riaa_biquad, treble_biquad, vad, ) from .functional import ( add_noise, amplitude_to_DB, apply_beamforming, apply_codec, compute_deltas, convolve, create_dct, DB_to_amplitude, deemphasis, detect_pitch_frequency, edit_distance, fftconvolve, griffinlim, inverse_spectrogram, linear_fbanks, loudness, mask_along_axis, mask_along_axis_iid, melscale_fbanks, mu_law_decoding, mu_law_encoding, mvdr_weights_rtf, mvdr_weights_souden, phase_vocoder, pitch_shift, preemphasis, psd, resample, rnnt_loss, rtf_evd, rtf_power, sliding_window_cmn, spectral_centroid, spectrogram, speed, ) __all__ = [ "amplitude_to_DB", "compute_deltas", "create_dct", "melscale_fbanks", "linear_fbanks", "DB_to_amplitude", "loudness", "detect_pitch_frequency", "griffinlim", "mask_along_axis", "mask_along_axis_iid", "mu_law_encoding", "mu_law_decoding", "phase_vocoder", "sliding_window_cmn", "spectrogram", "inverse_spectrogram", "spectral_centroid", "allpass_biquad", "band_biquad", "bandpass_biquad", "bandreject_biquad", "bass_biquad", "biquad", "contrast", "dither", "dcshift", "deemph_biquad", "equalizer_biquad", "filtfilt", "flanger", "forced_align", "merge_tokens", "TokenSpan", "gain", "highpass_biquad", "lfilter", "lowpass_biquad", "overdrive", "phaser", "riaa_biquad", "treble_biquad", "vad", "apply_codec", "resample", "edit_distance", "pitch_shift", "rnnt_loss", "psd", "mvdr_weights_souden", "mvdr_weights_rtf", "rtf_evd", "rtf_power", "apply_beamforming", "fftconvolve", "convolve", "add_noise", "speed", "preemphasis", "deemphasis", ]
import numpy as np from docarray import BaseDoc from docarray.array import DocVec from docarray.array.doc_vec.column_storage import ColumnStorageView from docarray.typing import AnyTensor def test_document_view(): class MyDoc(BaseDoc): tensor: AnyTensor name: str docs = [MyDoc(tensor=np.zeros((10, 10)), name='hello', id=str(i)) for i in range(4)] doc_vec = DocVec[MyDoc](docs) storage = doc_vec._storage result = str(doc_vec[0]) assert 'MyDoc' in result assert 'id' in result assert 'tensor' in result assert 'name' in result doc = MyDoc.from_view(ColumnStorageView(0, storage)) assert doc.is_view() assert doc.id == '0' assert (doc.tensor == np.zeros(10)).all() assert doc.name == 'hello' storage.columns['id'][0] = '12345' storage.columns['tensor'][0] = np.ones(10) storage.columns['name'][0] = 'byebye' assert doc.id == '12345' assert (doc.tensor == np.ones(10)).all() assert doc.name == 'byebye'
import numpy as np from docarray import BaseDoc from docarray.array import DocVec from docarray.array.doc_vec.column_storage import ColumnStorageView from docarray.typing import AnyTensor def test_document_view(): class MyDoc(BaseDoc): tensor: AnyTensor name: str docs = [MyDoc(tensor=np.zeros((10, 10)), name='hello', id=i) for i in range(4)] doc_vec = DocVec[MyDoc](docs) storage = doc_vec._storage result = str(doc_vec[0]) assert 'MyDoc' in result assert 'id' in result assert 'tensor' in result assert 'name' in result doc = MyDoc.from_view(ColumnStorageView(0, storage)) assert doc.is_view() assert doc.id == '0' assert (doc.tensor == np.zeros(10)).all() assert doc.name == 'hello' storage.columns['id'][0] = '12345' storage.columns['tensor'][0] = np.ones(10) storage.columns['name'][0] = 'byebye' assert doc.id == '12345' assert (doc.tensor == np.ones(10)).all() assert doc.name == 'byebye'
# model settings norm_cfg = dict(type='BN', requires_grad=False) model = dict( type='FasterRCNN', data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( type='ResNet', depth=50, num_stages=3, strides=(1, 2, 2), dilations=(1, 1, 1), out_indices=(2, ), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), rpn_head=dict( type='RPNHead', in_channels=1024, feat_channels=1024, anchor_generator=dict( type='AnchorGenerator', scales=[2, 4, 8, 16, 32], ratios=[0.5, 1.0, 2.0], strides=[16]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', shared_head=dict( type='ResLayer', depth=50, stage=3, stride=2, dilation=1, style='caffe', norm_cfg=norm_cfg, norm_eval=True, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=1024, featmap_strides=[16]), bbox_head=dict( type='BBoxHead', with_avg_pool=True, roi_feat_size=7, in_channels=2048, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=12000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=6000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)))
# model settings preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) norm_cfg = dict(type='BN', requires_grad=False) model = dict( type='FasterRCNN', preprocess_cfg=preprocess_cfg, backbone=dict( type='ResNet', depth=50, num_stages=3, strides=(1, 2, 2), dilations=(1, 1, 1), out_indices=(2, ), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), rpn_head=dict( type='RPNHead', in_channels=1024, feat_channels=1024, anchor_generator=dict( type='AnchorGenerator', scales=[2, 4, 8, 16, 32], ratios=[0.5, 1.0, 2.0], strides=[16]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', shared_head=dict( type='ResLayer', depth=50, stage=3, stride=2, dilation=1, style='caffe', norm_cfg=norm_cfg, norm_eval=True, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=1024, featmap_strides=[16]), bbox_head=dict( type='BBoxHead', with_avg_pool=True, roi_feat_size=7, in_channels=2048, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=12000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=6000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)))
import warnings from typing import Any, Dict, Union import numpy as np import PIL.Image import torch from torchvision.transforms import functional as _F from torchvision.transforms.v2 import Transform class ToTensor(Transform): """[BETA] Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. .. betastatus:: ToTensor transform .. warning:: :class:`v2.ToTensor` is deprecated and will be removed in a future release. Please use instead ``transforms.Compose([transforms.ToImageTensor(), transforms.ConvertImageDtype()])``. This transform does not support torchscript. Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8 In the other cases, tensors are returned without scaling. .. note:: Because the input image is scaled to [0.0, 1.0], this transformation should not be used when transforming target image masks. See the `references`_ for implementing the transforms for image masks. .. _references: https://github.com/pytorch/vision/tree/main/references/segmentation """ _transformed_types = (PIL.Image.Image, np.ndarray) def __init__(self) -> None: warnings.warn( "The transform `ToTensor()` is deprecated and will be removed in a future release. " "Instead, please use `transforms.Compose([transforms.ToImageTensor(), transforms.ConvertImageDtype()])`." ) super().__init__() def _transform(self, inpt: Union[PIL.Image.Image, np.ndarray], params: Dict[str, Any]) -> torch.Tensor: return _F.to_tensor(inpt)
import warnings from typing import Any, Dict, Union import numpy as np import PIL.Image import torch from torchvision.transforms import functional as _F from torchvision.transforms.v2 import Transform class ToTensor(Transform): _transformed_types = (PIL.Image.Image, np.ndarray) def __init__(self) -> None: warnings.warn( "The transform `ToTensor()` is deprecated and will be removed in a future release. " "Instead, please use `transforms.Compose([transforms.ToImageTensor(), transforms.ConvertImageDtype()])`." ) super().__init__() def _transform(self, inpt: Union[PIL.Image.Image, np.ndarray], params: Dict[str, Any]) -> torch.Tensor: return _F.to_tensor(inpt)
import os import pytest from jina.orchestrate.deployments import Deployment @pytest.fixture() def cuda_total_devices(request): old_cuda_total_devices = os.environ.get('CUDA_TOTAL_DEVICES', None) os.environ['CUDA_TOTAL_DEVICES'] = str(request.param) yield if old_cuda_total_devices is not None: os.environ['CUDA_TOTAL_DEVICES'] = old_cuda_total_devices else: os.unsetenv('CUDA_TOTAL_DEVICES') @pytest.mark.parametrize( 'device_str, replicas, expected, cuda_total_devices', [ ['1', 1, None, 3], # wont trigger device RB ['1', 2, None, 3], # wont trigger device RB ['1,2', 2, None, 3], # wont trigger device RB ['RR', 2, {0: 0, 1: 1}, 3], ['RR', 5, {0: 0, 1: 1, 2: 2, 3: 0, 4: 1}, 3], ['RR1:', 5, {0: 1, 1: 2, 2: 1, 3: 2, 4: 1}, 3], ['RR0:2', 5, {0: 0, 1: 1, 2: 0, 3: 1, 4: 0}, 3], ['RR1:2', 2, {0: 1, 1: 1}, 3], ['RR2', 2, {0: 2, 1: 2}, 3], ['RRUUID1', 2, {0: 'UUID1', 1: 'UUID1'}, 3], ['RR1:2', 1, {0: 1}, 3], ['RR0,2,3', 3, {0: 0, 1: 2, 2: 3}, 4], ['RR0,2,3', 5, {0: 0, 1: 2, 2: 3, 3: 0, 4: 2}, 4], [ 'RRUUID1,UUID2,UUID3', 5, {0: 'UUID1', 1: 'UUID2', 2: 'UUID3', 3: 'UUID1', 4: 'UUID2'}, 4, ], [ 'RRGPU-0aaaaaaa-74d2-7297-d557-12771b6a79d5,GPU-0bbbbbbb-74d2-7297-d557-12771b6a79d5,GPU-0ccccccc-74d2-7297-d557-12771b6a79d5,GPU-0ddddddd-74d2-7297-d557-12771b6a79d5', 5, { 0: 'GPU-0aaaaaaa-74d2-7297-d557-12771b6a79d5', 1: 'GPU-0bbbbbbb-74d2-7297-d557-12771b6a79d5', 2: 'GPU-0ccccccc-74d2-7297-d557-12771b6a79d5', 3: 'GPU-0ddddddd-74d2-7297-d557-12771b6a79d5', 4: 'GPU-0aaaaaaa-74d2-7297-d557-12771b6a79d5', }, 4, ], ], indirect=['cuda_total_devices'], ) def test_cuda_assignment(device_str, replicas, expected, cuda_total_devices): actual = Deployment._roundrobin_cuda_device(device_str, replicas) assert actual == expected
import os import pytest from jina.orchestrate.deployments import Deployment @pytest.fixture() def cuda_total_devices(request): old_cuda_total_devices = os.environ.get('CUDA_TOTAL_DEVICES', None) os.environ['CUDA_TOTAL_DEVICES'] = str(request.param) yield if old_cuda_total_devices is not None: os.environ['CUDA_TOTAL_DEVICES'] = old_cuda_total_devices else: os.unsetenv('CUDA_TOTAL_DEVICES') @pytest.mark.parametrize( 'device_str, replicas, expected, cuda_total_devices', [ ['1', 1, None, 3], # wont trigger device RB ['1', 2, None, 3], # wont trigger device RB ['1,2', 2, None, 3], # wont trigger device RB ['RR', 2, {0: 0, 1: 1}, 3], ['RR', 5, {0: 0, 1: 1, 2: 2, 3: 0, 4: 1}, 3], ['RR1:', 5, {0: 1, 1: 2, 2: 1, 3: 2, 4: 1}, 3], ['RR0:2', 5, {0: 0, 1: 1, 2: 0, 3: 1, 4: 0}, 3], ['RR1:2', 2, {0: 1, 1: 1}, 3], ['RR2', 2, {0: 2, 1: 2}, 3], ['RRUUID1', 2, {0: 'UUID1', 1: 'UUID1'}, 3], ['RR1:2', 1, {0: 1}, 3], ['RR0,2,3', 3, {0: 0, 1: 2, 2: 3}, 4], ['RR0,2,3', 5, {0: 0, 1: 2, 2: 3, 3: 0, 4: 2}, 4], ['RRUUID1,UUID2,UUID3', 5, {0: 'UUID1', 1: 'UUID2', 2: 'UUID3', 3: 'UUID1', 4: 'UUID2'}, 4], ['RRGPU-0aaaaaaa-74d2-7297-d557-12771b6a79d5,GPU-0bbbbbbb-74d2-7297-d557-12771b6a79d5,GPU-0ccccccc-74d2-7297-d557-12771b6a79d5,GPU-0ddddddd-74d2-7297-d557-12771b6a79d5', 5, {0: 'GPU-0aaaaaaa-74d2-7297-d557-12771b6a79d5', 1: 'GPU-0bbbbbbb-74d2-7297-d557-12771b6a79d5', 2: 'GPU-0ccccccc-74d2-7297-d557-12771b6a79d5', 3: 'GPU-0ddddddd-74d2-7297-d557-12771b6a79d5', 4: 'GPU-0aaaaaaa-74d2-7297-d557-12771b6a79d5'}, 4], ], indirect=['cuda_total_devices'] ) def test_cuda_assignment(device_str, replicas, expected, cuda_total_devices): actual = Deployment._roundrobin_cuda_device(device_str, replicas) assert actual == expected
import json from typing import Any, Type, TypeVar, overload from fastapi.encoders import jsonable_encoder from .type import type_match def to_dict(data) -> dict: return jsonable_encoder(data) def dumps(data) -> str: return json.dumps(jsonable_encoder(data)) T = TypeVar("T") @overload def loads(data: str, *args, target_type: Type[T], **kwargs) -> T: ... @overload def loads(data: str, *args, **kwargs) -> Any: ... def loads(data: str, *args, target_type: Type[T] | None = None, **kwargs) -> Any: parsed = json.loads(data, *args, **kwargs) if target_type: return type_match(parsed, target_type) return parsed
import json from fastapi.encoders import jsonable_encoder def to_dict(data) -> dict: return jsonable_encoder(data) def dumps(data) -> str: return json.dumps(jsonable_encoder(data)) loads = json.loads
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. TSDAE will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_tsdae_from_file.py path/to/sentences.txt """ from sentence_transformers import SentenceTransformer, LoggingHandler from sentence_transformers import models, datasets, losses import logging import gzip from torch.utils.data import DataLoader from datetime import datetime import sys import tqdm #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Train Parameters model_name = "bert-base-uncased" batch_size = 8 # Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print("Run this script with: python {} path/to/sentences.txt".format(sys.argv[0])) exit() filepath = sys.argv[1] # Save path to store our model output_name = "" if len(sys.argv) >= 3: output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = "output/train_tsdae{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) ################# Read the train corpus ################# train_sentences = [] with gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open( filepath, encoding="utf8" ) as fIn: for line in tqdm.tqdm(fIn, desc="Read file"): line = line.strip() if len(line) >= 10: train_sentences.append(line) logging.info("{} train sentences".format(len(train_sentences))) ################# Initialize an SBERT model ################# word_embedding_model = models.Transformer(model_name) # Apply **cls** pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), "cls") model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Train and evaluate the model (it needs about 1 hour for one epoch of AskUbuntu) ################# # We wrap our training sentences in the DenoisingAutoEncoderDataset to add deletion noise on the fly train_dataset = datasets.DenoisingAutoEncoderDataset(train_sentences) train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True) train_loss = losses.DenoisingAutoEncoderLoss(model, decoder_name_or_path=model_name, tie_encoder_decoder=True) logging.info("Start training") model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=1, weight_decay=0, scheduler="constantlr", optimizer_params={"lr": 3e-5}, show_progress_bar=True, checkpoint_path=model_output_path, use_amp=False, # Set to True, if your GPU supports FP16 cores )
""" This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. TSDAE will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. Usage: python train_tsdae_from_file.py path/to/sentences.txt """ from sentence_transformers import SentenceTransformer, LoggingHandler from sentence_transformers import models, datasets, losses import logging import gzip from torch.utils.data import DataLoader from datetime import datetime import sys import tqdm #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Train Parameters model_name = "bert-base-uncased" batch_size = 8 # Input file path (a text file, each line a sentence) if len(sys.argv) < 2: print("Run this script with: python {} path/to/sentences.txt".format(sys.argv[0])) exit() filepath = sys.argv[1] # Save path to store our model output_name = "" if len(sys.argv) >= 3: output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_") model_output_path = "output/train_tsdae{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) ################# Read the train corpus ################# train_sentences = [] with gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open( filepath, encoding="utf8" ) as fIn: for line in tqdm.tqdm(fIn, desc="Read file"): line = line.strip() if len(line) >= 10: train_sentences.append(line) logging.info("{} train sentences".format(len(train_sentences))) ################# Initialize an SBERT model ################# word_embedding_model = models.Transformer(model_name) # Apply **cls** pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), "cls") model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) ################# Train and evaluate the model (it needs about 1 hour for one epoch of AskUbuntu) ################# # We wrap our training sentences in the DenoisingAutoEncoderDataset to add deletion noise on the fly train_dataset = datasets.DenoisingAutoEncoderDataset(train_sentences) train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True) train_loss = losses.DenoisingAutoEncoderLoss(model, decoder_name_or_path=model_name, tie_encoder_decoder=True) logging.info("Start training") model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=1, weight_decay=0, scheduler="constantlr", optimizer_params={"lr": 3e-5}, show_progress_bar=True, checkpoint_path=model_output_path, use_amp=False, # Set to True, if your GPU supports FP16 cores )
import gc import asyncio from llama_index.core.memory import ChatMemoryBuffer from llama_index.core.base.llms.types import ( ChatMessage, CompletionResponse, CompletionResponseGen, ) from typing import Any from llama_index.core.llms.callbacks import llm_completion_callback from llama_index.core.llms.mock import MockLLM import pytest from llama_index.core.base.llms.types import ChatMessage, MessageRole from llama_index.core.chat_engine.simple import SimpleChatEngine def test_simple_chat_engine() -> None: engine = SimpleChatEngine.from_defaults() engine.reset() response = engine.chat("Test message 1") assert str(response) == "user: Test message 1\nassistant: " response = engine.chat("Test message 2") assert ( str(response) == "user: Test message 1\nassistant: user: Test message 1\nassistant: \n" "user: Test message 2\nassistant: " ) engine.reset() response = engine.chat("Test message 3") assert str(response) == "user: Test message 3\nassistant: " def test_simple_chat_engine_with_init_history() -> None: engine = SimpleChatEngine.from_defaults( chat_history=[ ChatMessage(role=MessageRole.USER, content="test human message"), ChatMessage(role=MessageRole.ASSISTANT, content="test ai message"), ], ) response = engine.chat("new human message") assert ( str(response) == "user: test human message\nassistant: test ai message\n" "user: new human message\nassistant: " ) @pytest.mark.asyncio async def test_simple_chat_engine_astream(): engine = SimpleChatEngine.from_defaults() response = await engine.astream_chat("Hello World!") num_iters = 0 async for response_part in response.async_response_gen(): num_iters += 1 assert num_iters > 10 assert "Hello World!" in response.unformatted_response assert len(engine.chat_history) == 2 response = await engine.astream_chat("What is the capital of the moon?") num_iters = 0 async for _ in response.async_response_gen(): num_iters += 1 assert num_iters > 10 assert "Hello World!" in response.unformatted_response assert "What is the capital of the moon?" in response.unformatted_response def test_simple_chat_engine_astream_exception_handling(): """ Test that an exception thrown while retrieving the streamed LLM response gets bubbled up to the user. Also tests that the non-retrieved exception does not remain in an task that was not awaited leading to a 'Task exception was never retrieved' message during garbage collection. """ class ExceptionThrownInTest(Exception): pass class ExceptionMockLLM(MockLLM): """Raises an exception while streaming back the mocked LLM response.""" @classmethod def class_name(cls) -> str: return "ExceptionMockLLM" @llm_completion_callback() def stream_complete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponseGen: def gen_prompt() -> CompletionResponseGen: for ch in prompt: yield CompletionResponse( text=prompt, delta=ch, ) raise ExceptionThrownInTest("Exception thrown for testing purposes") return gen_prompt() async def async_part(): engine = SimpleChatEngine.from_defaults( llm=ExceptionMockLLM(), memory=ChatMemoryBuffer.from_defaults() ) response = await engine.astream_chat("Hello World!") with pytest.raises(ExceptionThrownInTest): async for response_part in response.async_response_gen(): pass not_retrieved_exception = False def custom_exception_handler(loop, context): if context.get("message") == "Task exception was never retrieved": nonlocal not_retrieved_exception not_retrieved_exception = True loop = asyncio.new_event_loop() loop.set_exception_handler(custom_exception_handler) result = loop.run_until_complete(async_part()) loop.close() gc.collect() if not_retrieved_exception: pytest.fail( "Exception was not correctly handled - ended up in asyncio cleanup performed during garbage collection" )
import gc import asyncio from llama_index.core.memory import ChatMemoryBuffer from llama_index.core.base.llms.types import ( ChatMessage, CompletionResponse, CompletionResponseGen, ) from typing import Any from llama_index.core.llms.callbacks import llm_completion_callback from llama_index.core.llms.mock import MockLLM import pytest from llama_index.core.base.llms.types import ChatMessage, MessageRole from llama_index.core.chat_engine.simple import SimpleChatEngine def test_simple_chat_engine() -> None: engine = SimpleChatEngine.from_defaults() engine.reset() response = engine.chat("Test message 1") assert str(response) == "user: Test message 1\nassistant: " response = engine.chat("Test message 2") assert ( str(response) == "user: Test message 1\nassistant: user: Test message 1\nassistant: \n" "user: Test message 2\nassistant: " ) engine.reset() response = engine.chat("Test message 3") assert str(response) == "user: Test message 3\nassistant: " def test_simple_chat_engine_with_init_history() -> None: engine = SimpleChatEngine.from_defaults( chat_history=[ ChatMessage(role=MessageRole.USER, content="test human message"), ChatMessage(role=MessageRole.ASSISTANT, content="test ai message"), ], ) response = engine.chat("new human message") assert ( str(response) == "user: test human message\nassistant: test ai message\n" "user: new human message\nassistant: " ) @pytest.mark.asyncio() async def test_simple_chat_engine_astream(): engine = SimpleChatEngine.from_defaults() response = await engine.astream_chat("Hello World!") num_iters = 0 async for response_part in response.async_response_gen(): num_iters += 1 assert num_iters > 10 assert "Hello World!" in response.unformatted_response assert len(engine.chat_history) == 2 response = await engine.astream_chat("What is the capital of the moon?") num_iters = 0 async for _ in response.async_response_gen(): num_iters += 1 assert num_iters > 10 assert "Hello World!" in response.unformatted_response assert "What is the capital of the moon?" in response.unformatted_response def test_simple_chat_engine_astream_exception_handling(): """Test that an exception thrown while retrieving the streamed LLM response gets bubbled up to the user. Also tests that the non-retrieved exception does not remain in an task that was not awaited leading to a 'Task exception was never retrieved' message during garbage collection. """ class ExceptionThrownInTest(Exception): pass class ExceptionMockLLM(MockLLM): """Raises an exception while streaming back the mocked LLM response.""" @classmethod def class_name(cls) -> str: return "ExceptionMockLLM" @llm_completion_callback() def stream_complete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponseGen: def gen_prompt() -> CompletionResponseGen: for ch in prompt: yield CompletionResponse( text=prompt, delta=ch, ) raise ExceptionThrownInTest("Exception thrown for testing purposes") return gen_prompt() async def async_part(): engine = SimpleChatEngine.from_defaults( llm=ExceptionMockLLM(), memory=ChatMemoryBuffer.from_defaults() ) response = await engine.astream_chat("Hello World!") with pytest.raises(ExceptionThrownInTest): async for response_part in response.async_response_gen(): pass not_retrieved_exception = False def custom_exception_handler(loop, context): if context.get("message") == "Task exception was never retrieved": nonlocal not_retrieved_exception not_retrieved_exception = True loop = asyncio.new_event_loop() loop.set_exception_handler(custom_exception_handler) result = loop.run_until_complete(async_part()) loop.close() gc.collect() if not_retrieved_exception: pytest.fail( "Exception was not correctly handled - ended up in asyncio cleanup performed during garbage collection" )
# Copyright (c) OpenMMLab. All rights reserved. # yapf: disable from .lr_scheduler import (ConstantLR, CosineAnnealingLR, CosineRestartLR, ExponentialLR, LinearLR, MultiStepLR, OneCycleLR, PolyLR, ReduceOnPlateauLR, StepLR) from .momentum_scheduler import (ConstantMomentum, CosineAnnealingMomentum, CosineRestartMomentum, ExponentialMomentum, LinearMomentum, MultiStepMomentum, PolyMomentum, ReduceOnPlateauMomentum, StepMomentum) from .param_scheduler import (ConstantParamScheduler, CosineAnnealingParamScheduler, CosineRestartParamScheduler, ExponentialParamScheduler, LinearParamScheduler, MultiStepParamScheduler, OneCycleParamScheduler, PolyParamScheduler, ReduceOnPlateauParamScheduler, StepParamScheduler, _ParamScheduler) # yapf: enable __all__ = [ 'ConstantLR', 'CosineAnnealingLR', 'ExponentialLR', 'LinearLR', 'MultiStepLR', 'StepLR', 'ConstantMomentum', 'CosineAnnealingMomentum', 'ExponentialMomentum', 'LinearMomentum', 'MultiStepMomentum', 'StepMomentum', 'ConstantParamScheduler', 'CosineAnnealingParamScheduler', 'ExponentialParamScheduler', 'LinearParamScheduler', 'MultiStepParamScheduler', 'StepParamScheduler', '_ParamScheduler', 'PolyParamScheduler', 'PolyLR', 'PolyMomentum', 'OneCycleParamScheduler', 'OneCycleLR', 'CosineRestartParamScheduler', 'CosineRestartLR', 'CosineRestartMomentum', 'ReduceOnPlateauParamScheduler', 'ReduceOnPlateauLR', 'ReduceOnPlateauMomentum' ]
# Copyright (c) OpenMMLab. All rights reserved. # yapf: disable from .lr_scheduler import (ConstantLR, CosineAnnealingLR, CosineRestartLR, ExponentialLR, LinearLR, MultiStepLR, OneCycleLR, PolyLR, StepLR) from .momentum_scheduler import (ConstantMomentum, CosineAnnealingMomentum, CosineRestartMomentum, ExponentialMomentum, LinearMomentum, MultiStepMomentum, PolyMomentum, StepMomentum) from .param_scheduler import (ConstantParamScheduler, CosineAnnealingParamScheduler, CosineRestartParamScheduler, ExponentialParamScheduler, LinearParamScheduler, MultiStepParamScheduler, OneCycleParamScheduler, PolyParamScheduler, StepParamScheduler, _ParamScheduler) # yapf: enable __all__ = [ 'ConstantLR', 'CosineAnnealingLR', 'ExponentialLR', 'LinearLR', 'MultiStepLR', 'StepLR', 'ConstantMomentum', 'CosineAnnealingMomentum', 'ExponentialMomentum', 'LinearMomentum', 'MultiStepMomentum', 'StepMomentum', 'ConstantParamScheduler', 'CosineAnnealingParamScheduler', 'ExponentialParamScheduler', 'LinearParamScheduler', 'MultiStepParamScheduler', 'StepParamScheduler', '_ParamScheduler', 'PolyParamScheduler', 'PolyLR', 'PolyMomentum', 'OneCycleParamScheduler', 'OneCycleLR', 'CosineRestartParamScheduler', 'CosineRestartLR', 'CosineRestartMomentum' ]
import dataclasses from typing import Any, Dict, Optional, Type from jina.jaml.parsers.base import BaseLegacyParser from jina.serve.executors import BaseExecutor from jina.serve.executors.metas import get_default_metas class ExecutorLegacyParser(BaseLegacyParser): """Legacy parser for executor.""" def parse( self, cls: Type['BaseExecutor'], data: Dict, runtime_args: Optional[Dict[str, Any]] = None, ) -> 'BaseExecutor': """ :param cls: target class type to parse into, must be a :class:`JAMLCompatible` type :param data: flow yaml file loaded as python dict :param runtime_args: Optional runtime_args to be directly passed without being parsed into a yaml config :return: the Flow YAML parser given the syntax version number """ from jina.logging.predefined import default_logger _meta_config = get_default_metas() _meta_config.update(data.get('metas', {})) if _meta_config: data['metas'] = _meta_config cls._init_from_yaml = True # tmp_p = {kk: expand_env_var(vv) for kk, vv in data.get('with', {}).items()} if dataclasses.is_dataclass(cls): obj = cls( **data.get('with', {}), ) cls.__bases__[0].__init__( obj, **data.get('with', {}), metas=data.get('metas', {}), requests=data.get('requests', {}), dynamic_batching=data.get('dynamic_batching', {}), runtime_args=runtime_args, ) else: obj = cls( **data.get('with', {}), metas=data.get('metas', {}), requests=data.get('requests', {}), dynamic_batching=data.get('dynamic_batching', {}), runtime_args=runtime_args, ) cls._init_from_yaml = False # check if the yaml file used to instanciate 'cls' has arguments that are not in 'cls' arguments_from_cls = ExecutorLegacyParser._get_all_arguments(cls) arguments_from_yaml = set(data.get('with', {})) difference_set = arguments_from_yaml - arguments_from_cls # only log warnings about unknown args for main Pod if any(difference_set) and not ExecutorLegacyParser.is_tail_or_head(data): default_logger.warning( f'The given arguments {difference_set} are not defined in `{cls.__name__}.__init__`' ) if not _meta_config: default_logger.warning( '"metas" config is not found in this yaml file, ' 'this map is important as it provides an unique identifier when ' 'persisting the executor on disk.' ) # for compound executor if 'components' in data: obj.components = lambda: data['components'] obj.is_updated = False return obj @staticmethod def is_tail_or_head(data: Dict) -> bool: """Based on name, compute if this is a tail/head Pod or a main Pod :param data: the data for the parser :return: True if it is tail/head, False otherwise """ try: name = data.get('runtime_args', {}).get('name', '') return 'head' in name or 'tail' in name except Exception as _: pass # name can be None in tests since it's not passed def dump(self, data: 'BaseExecutor') -> Dict: """ :param data: versioned executor object :return: the dictionary given a versioned flow object """ # note: we only save non-default property for the sake of clarity _defaults = get_default_metas() p = ( { k: getattr(data.metas, k) for k, v in _defaults.items() if getattr(data.metas, k) != v } if hasattr(data, 'metas') else {} ) a = {k: v for k, v in data._init_kwargs_dict.items() if k not in _defaults} r = {} if a: r['with'] = a if p: r['metas'] = p if hasattr(data, 'requests'): r['requests'] = {k: v.__name__ for k, v in data.requests.items()} if hasattr(data, 'dynamic_batching'): r['dynamic_batching'] = data.dynamic_batching if hasattr(data, 'components'): r['components'] = data.components return r
import dataclasses from typing import Any, Dict, Optional, Type from jina.jaml.parsers.base import BaseLegacyParser from jina.serve.executors import BaseExecutor from jina.serve.executors.metas import get_default_metas class ExecutorLegacyParser(BaseLegacyParser): """Legacy parser for executor.""" def parse( self, cls: Type['BaseExecutor'], data: Dict, runtime_args: Optional[Dict[str, Any]] = None, ) -> 'BaseExecutor': """ :param cls: target class type to parse into, must be a :class:`JAMLCompatible` type :param data: flow yaml file loaded as python dict :param runtime_args: Optional runtime_args to be directly passed without being parsed into a yaml config :return: the Flow YAML parser given the syntax version number """ from jina.logging.predefined import default_logger _meta_config = get_default_metas() _meta_config.update(data.get('metas', {})) if _meta_config: data['metas'] = _meta_config cls._init_from_yaml = True # tmp_p = {kk: expand_env_var(vv) for kk, vv in data.get('with', {}).items()} if dataclasses.is_dataclass(cls): obj = cls( **data.get('with', {}), ) cls.__bases__[0].__init__( obj, **data.get('with', {}), metas=data.get('metas', {}), requests=data.get('requests', {}), runtime_args=runtime_args, ) else: obj = cls( **data.get('with', {}), metas=data.get('metas', {}), requests=data.get('requests', {}), runtime_args=runtime_args, ) cls._init_from_yaml = False # check if the yaml file used to instanciate 'cls' has arguments that are not in 'cls' arguments_from_cls = ExecutorLegacyParser._get_all_arguments(cls) arguments_from_yaml = set(data.get('with', {})) difference_set = arguments_from_yaml - arguments_from_cls # only log warnings about unknown args for main Pod if any(difference_set) and not ExecutorLegacyParser.is_tail_or_head(data): default_logger.warning( f'The given arguments {difference_set} are not defined in `{cls.__name__}.__init__`' ) if not _meta_config: default_logger.warning( '"metas" config is not found in this yaml file, ' 'this map is important as it provides an unique identifier when ' 'persisting the executor on disk.' ) # for compound executor if 'components' in data: obj.components = lambda: data['components'] obj.is_updated = False return obj @staticmethod def is_tail_or_head(data: Dict) -> bool: """Based on name, compute if this is a tail/head Pod or a main Pod :param data: the data for the parser :return: True if it is tail/head, False otherwise """ try: name = data.get('runtime_args', {}).get('name', '') return 'head' in name or 'tail' in name except Exception as _: pass # name can be None in tests since it's not passed def dump(self, data: 'BaseExecutor') -> Dict: """ :param data: versioned executor object :return: the dictionary given a versioned flow object """ # note: we only save non-default property for the sake of clarity _defaults = get_default_metas() p = ( { k: getattr(data.metas, k) for k, v in _defaults.items() if getattr(data.metas, k) != v } if hasattr(data, 'metas') else {} ) a = {k: v for k, v in data._init_kwargs_dict.items() if k not in _defaults} r = {} if a: r['with'] = a if p: r['metas'] = p if hasattr(data, 'requests'): r['requests'] = {k: v.__name__ for k, v in data.requests.items()} if hasattr(data, 'components'): r['components'] = data.components return r
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder logger = datasets.utils.logging.get_logger(__name__) class AudioFolderConfig(folder_based_builder.FolderBasedBuilderConfig): """Builder Config for AudioFolder.""" drop_labels: bool = None drop_metadata: bool = None class AudioFolder(folder_based_builder.FolderBasedBuilder): BASE_FEATURE = datasets.Audio BASE_COLUMN_NAME = "audio" BUILDER_CONFIG_CLASS = AudioFolderConfig EXTENSIONS: List[str] # definition at the bottom of the script CLASSIFICATION_TASK = AudioClassification(audio_column="audio", label_column="label") # Obtained with: # ``` # import soundfile as sf # # AUDIO_EXTENSIONS = [f".{format.lower()}" for format in sf.available_formats().keys()] # # # .mp3 is currently decoded via `torchaudio`, .opus decoding is supported if version of `libsndfile` >= 1.0.30: # AUDIO_EXTENSIONS.extend([".mp3", ".opus"]) # ``` # We intentionally do not run this code on launch because: # (1) Soundfile is an optional dependency, so importing it in global namespace is not allowed # (2) To ensure the list of supported extensions is deterministic AUDIO_EXTENSIONS = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] AudioFolder.EXTENSIONS = AUDIO_EXTENSIONS
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder logger = datasets.utils.logging.get_logger(__name__) class AudioFolderConfig(folder_based_builder.FolderBasedBuilderConfig): """Builder Config for AudioFolder.""" drop_labels: bool = None drop_metadata: bool = None class AudioFolder(folder_based_builder.FolderBasedBuilder): BASE_FEATURE = datasets.Audio() BASE_COLUMN_NAME = "audio" BUILDER_CONFIG_CLASS = AudioFolderConfig EXTENSIONS: List[str] # definition at the bottom of the script CLASSIFICATION_TASK = AudioClassification(audio_column="audio", label_column="label") # Obtained with: # ``` # import soundfile as sf # # AUDIO_EXTENSIONS = [f".{format.lower()}" for format in sf.available_formats().keys()] # # # .mp3 is currently decoded via `torchaudio`, .opus decoding is supported if version of `libsndfile` >= 1.0.30: # AUDIO_EXTENSIONS.extend([".mp3", ".opus"]) # ``` # We intentionally do not run this code on launch because: # (1) Soundfile is an optional dependency, so importing it in global namespace is not allowed # (2) To ensure the list of supported extensions is deterministic AUDIO_EXTENSIONS = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] AudioFolder.EXTENSIONS = AUDIO_EXTENSIONS
"""Feishu docs reader.""" import json import os import time from typing import List import requests from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document # Copyright (2023) Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class FeishuDocsReader(BaseReader): """ Feishu Docs reader. Reads a page from Google Docs """ host = "https://open.feishu.cn" documents_raw_content_url_path = "/open-apis/docx/v1/documents/{}/raw_content" tenant_access_token_internal_url_path = ( "/open-apis/auth/v3/tenant_access_token/internal" ) def __init__(self, app_id, app_secret) -> None: """ Args: app_id: The unique identifier of the application is obtained after the application is created. app_secret: Application key, obtained after creating the application. """ super().__init__() self.app_id = app_id self.app_secret = app_secret self.tenant_access_token = "" self.expire = 0 def load_data(self, document_ids: List[str]) -> List[Document]: """ Load data from the input directory. Args: document_ids (List[str]): a list of document ids. """ if document_ids is None: raise ValueError('Must specify a "document_ids" in `load_kwargs`.') results = [] for document_id in document_ids: doc = self._load_doc(document_id) results.append(Document(text=doc, extra_info={"document_id": document_id})) return results def _load_doc(self, document_id) -> str: """ Load a document from Feishu Docs. Args: document_id: the document id. Returns: The document text. """ url = self.host + self.documents_raw_content_url_path.format(document_id) if self.tenant_access_token == "" or self.expire < time.time(): self._update_tenant_access_token() headers = { "Authorization": f"Bearer {self.tenant_access_token}", "Content-Type": "application/json; charset=utf-8", } response = requests.get(url, headers=headers) return response.json()["data"]["content"] def _update_tenant_access_token(self): """For update tenant_access_token.""" url = self.host + self.tenant_access_token_internal_url_path headers = {"Content-Type": "application/json; charset=utf-8"} data = {"app_id": self.app_id, "app_secret": self.app_secret} response = requests.post(url, data=json.dumps(data), headers=headers) self.tenant_access_token = response.json()["tenant_access_token"] self.expire = time.time() + response.json()["expire"] def set_lark_domain(self): """The default API endpoints are for Feishu, in order to switch to Lark, we should use set_lark_domain.""" self.host = "https://open.larksuite.com" if __name__ == "__main__": app_id = os.environ.get("FEISHU_APP_ID") app_secret = os.environ.get("FEISHU_APP_SECRET") reader = FeishuDocsReader(app_id, app_secret) print(reader.load_data(document_ids=[os.environ.get("FEISHU_DOC_ID")]))
"""Feishu docs reader.""" import json import os import time from typing import List import requests from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document # Copyright (2023) Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class FeishuDocsReader(BaseReader): """Feishu Docs reader. Reads a page from Google Docs """ host = "https://open.feishu.cn" documents_raw_content_url_path = "/open-apis/docx/v1/documents/{}/raw_content" tenant_access_token_internal_url_path = ( "/open-apis/auth/v3/tenant_access_token/internal" ) def __init__(self, app_id, app_secret) -> None: """ Args: app_id: The unique identifier of the application is obtained after the application is created. app_secret: Application key, obtained after creating the application. """ super().__init__() self.app_id = app_id self.app_secret = app_secret self.tenant_access_token = "" self.expire = 0 def load_data(self, document_ids: List[str]) -> List[Document]: """Load data from the input directory. Args: document_ids (List[str]): a list of document ids. """ if document_ids is None: raise ValueError('Must specify a "document_ids" in `load_kwargs`.') results = [] for document_id in document_ids: doc = self._load_doc(document_id) results.append(Document(text=doc, extra_info={"document_id": document_id})) return results def _load_doc(self, document_id) -> str: """Load a document from Feishu Docs. Args: document_id: the document id. Returns: The document text. """ url = self.host + self.documents_raw_content_url_path.format(document_id) if self.tenant_access_token == "" or self.expire < time.time(): self._update_tenant_access_token() headers = { "Authorization": f"Bearer {self.tenant_access_token}", "Content-Type": "application/json; charset=utf-8", } response = requests.get(url, headers=headers) return response.json()["data"]["content"] def _update_tenant_access_token(self): """For update tenant_access_token.""" url = self.host + self.tenant_access_token_internal_url_path headers = {"Content-Type": "application/json; charset=utf-8"} data = {"app_id": self.app_id, "app_secret": self.app_secret} response = requests.post(url, data=json.dumps(data), headers=headers) self.tenant_access_token = response.json()["tenant_access_token"] self.expire = time.time() + response.json()["expire"] def set_lark_domain(self): """The default API endpoints are for Feishu, in order to switch to Lark, we should use set_lark_domain.""" self.host = "https://open.larksuite.com" if __name__ == "__main__": app_id = os.environ.get("FEISHU_APP_ID") app_secret = os.environ.get("FEISHU_APP_SECRET") reader = FeishuDocsReader(app_id, app_secret) print(reader.load_data(document_ids=[os.environ.get("FEISHU_DOC_ID")]))
import functools import numbers from collections import defaultdict from typing import Any, Dict, Literal, Sequence, Type, TypeVar, Union from torchvision.prototype import datapoints from torchvision.prototype.datapoints._datapoint import FillType, FillTypeJIT from torchvision.transforms.transforms import _check_sequence_input, _setup_angle, _setup_size # noqa: F401 def _setup_float_or_seq(arg: Union[float, Sequence[float]], name: str, req_size: int = 2) -> Sequence[float]: if not isinstance(arg, (float, Sequence)): raise TypeError(f"{name} should be float or a sequence of floats. Got {type(arg)}") if isinstance(arg, Sequence) and len(arg) != req_size: raise ValueError(f"If {name} is a sequence its length should be one of {req_size}. Got {len(arg)}") if isinstance(arg, Sequence): for element in arg: if not isinstance(element, float): raise ValueError(f"{name} should be a sequence of floats. Got {type(element)}") if isinstance(arg, float): arg = [float(arg), float(arg)] if isinstance(arg, (list, tuple)) and len(arg) == 1: arg = [arg[0], arg[0]] return arg def _check_fill_arg(fill: Union[FillType, Dict[Type, FillType]]) -> None: if isinstance(fill, dict): for key, value in fill.items(): # Check key for type _check_fill_arg(value) if isinstance(fill, defaultdict) and callable(fill.default_factory): default_value = fill.default_factory() _check_fill_arg(default_value) else: if fill is not None and not isinstance(fill, (numbers.Number, tuple, list)): raise TypeError("Got inappropriate fill arg, only Numbers, tuples, lists and dicts are allowed.") T = TypeVar("T") def _default_arg(value: T) -> T: return value def _get_defaultdict(default: T) -> Dict[Any, T]: # This weird looking construct only exists, since `lambda`'s cannot be serialized by pickle. # If it were possible, we could replace this with `defaultdict(lambda: default)` return defaultdict(functools.partial(_default_arg, default)) def _convert_fill_arg(fill: datapoints.FillType) -> datapoints.FillTypeJIT: # Fill = 0 is not equivalent to None, https://github.com/pytorch/vision/issues/6517 # So, we can't reassign fill to 0 # if fill is None: # fill = 0 if fill is None: return fill # This cast does Sequence -> List[float] to please mypy and torch.jit.script if not isinstance(fill, (int, float)): fill = [float(v) for v in list(fill)] return fill def _setup_fill_arg(fill: Union[FillType, Dict[Type, FillType]]) -> Dict[Type, FillTypeJIT]: _check_fill_arg(fill) if isinstance(fill, dict): for k, v in fill.items(): fill[k] = _convert_fill_arg(v) if isinstance(fill, defaultdict) and callable(fill.default_factory): default_value = fill.default_factory() sanitized_default = _convert_fill_arg(default_value) fill.default_factory = functools.partial(_default_arg, sanitized_default) return fill # type: ignore[return-value] return _get_defaultdict(_convert_fill_arg(fill)) def _check_padding_arg(padding: Union[int, Sequence[int]]) -> None: if not isinstance(padding, (numbers.Number, tuple, list)): raise TypeError("Got inappropriate padding arg") if isinstance(padding, (tuple, list)) and len(padding) not in [1, 2, 4]: raise ValueError(f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple") # TODO: let's use torchvision._utils.StrEnum to have the best of both worlds (strings and enums) # https://github.com/pytorch/vision/issues/6250 def _check_padding_mode_arg(padding_mode: Literal["constant", "edge", "reflect", "symmetric"]) -> None: if padding_mode not in ["constant", "edge", "reflect", "symmetric"]: raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")
import functools import numbers from collections import defaultdict from typing import Any, Dict, Sequence, Type, TypeVar, Union from torchvision.prototype import datapoints from torchvision.prototype.datapoints._datapoint import FillType, FillTypeJIT from torchvision.transforms.transforms import _check_sequence_input, _setup_angle, _setup_size # noqa: F401 from typing_extensions import Literal def _setup_float_or_seq(arg: Union[float, Sequence[float]], name: str, req_size: int = 2) -> Sequence[float]: if not isinstance(arg, (float, Sequence)): raise TypeError(f"{name} should be float or a sequence of floats. Got {type(arg)}") if isinstance(arg, Sequence) and len(arg) != req_size: raise ValueError(f"If {name} is a sequence its length should be one of {req_size}. Got {len(arg)}") if isinstance(arg, Sequence): for element in arg: if not isinstance(element, float): raise ValueError(f"{name} should be a sequence of floats. Got {type(element)}") if isinstance(arg, float): arg = [float(arg), float(arg)] if isinstance(arg, (list, tuple)) and len(arg) == 1: arg = [arg[0], arg[0]] return arg def _check_fill_arg(fill: Union[FillType, Dict[Type, FillType]]) -> None: if isinstance(fill, dict): for key, value in fill.items(): # Check key for type _check_fill_arg(value) if isinstance(fill, defaultdict) and callable(fill.default_factory): default_value = fill.default_factory() _check_fill_arg(default_value) else: if fill is not None and not isinstance(fill, (numbers.Number, tuple, list)): raise TypeError("Got inappropriate fill arg, only Numbers, tuples, lists and dicts are allowed.") T = TypeVar("T") def _default_arg(value: T) -> T: return value def _get_defaultdict(default: T) -> Dict[Any, T]: # This weird looking construct only exists, since `lambda`'s cannot be serialized by pickle. # If it were possible, we could replace this with `defaultdict(lambda: default)` return defaultdict(functools.partial(_default_arg, default)) def _convert_fill_arg(fill: datapoints.FillType) -> datapoints.FillTypeJIT: # Fill = 0 is not equivalent to None, https://github.com/pytorch/vision/issues/6517 # So, we can't reassign fill to 0 # if fill is None: # fill = 0 if fill is None: return fill # This cast does Sequence -> List[float] to please mypy and torch.jit.script if not isinstance(fill, (int, float)): fill = [float(v) for v in list(fill)] return fill def _setup_fill_arg(fill: Union[FillType, Dict[Type, FillType]]) -> Dict[Type, FillTypeJIT]: _check_fill_arg(fill) if isinstance(fill, dict): for k, v in fill.items(): fill[k] = _convert_fill_arg(v) if isinstance(fill, defaultdict) and callable(fill.default_factory): default_value = fill.default_factory() sanitized_default = _convert_fill_arg(default_value) fill.default_factory = functools.partial(_default_arg, sanitized_default) return fill # type: ignore[return-value] return _get_defaultdict(_convert_fill_arg(fill)) def _check_padding_arg(padding: Union[int, Sequence[int]]) -> None: if not isinstance(padding, (numbers.Number, tuple, list)): raise TypeError("Got inappropriate padding arg") if isinstance(padding, (tuple, list)) and len(padding) not in [1, 2, 4]: raise ValueError(f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple") # TODO: let's use torchvision._utils.StrEnum to have the best of both worlds (strings and enums) # https://github.com/pytorch/vision/issues/6250 def _check_padding_mode_arg(padding_mode: Literal["constant", "edge", "reflect", "symmetric"]) -> None: if padding_mode not in ["constant", "edge", "reflect", "symmetric"]: raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")
import numpy as np import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_doc.io.json import orjson_dumps from docarray.typing import AnyEmbedding @pytest.mark.proto def test_proto_embedding(): embedding = parse_obj_as(AnyEmbedding, np.zeros((3, 224, 224))) embedding._to_node_protobuf() def test_json_schema(): schema_json_of(AnyEmbedding) def test_dump_json(): tensor = parse_obj_as(AnyEmbedding, np.zeros((3, 224, 224))) orjson_dumps(tensor)
import numpy as np import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_doc.io.json import orjson_dumps from docarray.typing import AnyEmbedding @pytest.mark.proto def test_proto_embedding(): embedding = parse_obj_as(AnyEmbedding, np.zeros((3, 224, 224))) embedding._to_node_protobuf() def test_json_schema(): schema_json_of(AnyEmbedding) def test_dump_json(): tensor = parse_obj_as(AnyEmbedding, np.zeros((3, 224, 224))) orjson_dumps(tensor)
# Copyright (c) OpenMMLab. All rights reserved. import functools import torch import torch.nn.functional as F def reduce_loss(loss, reduction): """Reduce loss as specified. Args: loss (Tensor): Elementwise loss tensor. reduction (str): Options are "none", "mean" and "sum". Return: Tensor: Reduced loss tensor. """ reduction_enum = F._Reduction.get_enum(reduction) # none: 0, elementwise_mean:1, sum: 2 if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): """Apply element-wise weight and reduce loss. Args: loss (Tensor): Element-wise loss. weight (Tensor): Element-wise weights. reduction (str): Same as built-in losses of PyTorch. avg_factor (float): Average factor when computing the mean of losses. Returns: Tensor: Processed loss values. """ # if weight is specified, apply element-wise weight if weight is not None: loss = loss * weight # if avg_factor is not specified, just reduce the loss if avg_factor is None: loss = reduce_loss(loss, reduction) else: # if reduction is mean, then average the loss by avg_factor if reduction == 'mean': # Avoid causing ZeroDivisionError when avg_factor is 0.0, # i.e., all labels of an image belong to ignore index. eps = torch.finfo(torch.float32).eps loss = loss.sum() / (avg_factor + eps) # if reduction is 'none', then do nothing, otherwise raise an error elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss def weighted_loss(loss_func): """Create a weighted version of a given loss function. To use this decorator, the loss function must have the signature like `loss_func(pred, target, **kwargs)`. The function only needs to compute element-wise loss without any reduction. This decorator will add weight and reduction arguments to the function. The decorated function will have the signature like `loss_func(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs)`. :Example: >>> import torch >>> @weighted_loss >>> def l1_loss(pred, target): >>> return (pred - target).abs() >>> pred = torch.Tensor([0, 2, 3]) >>> target = torch.Tensor([1, 1, 1]) >>> weight = torch.Tensor([1, 0, 1]) >>> l1_loss(pred, target) tensor(1.3333) >>> l1_loss(pred, target, weight) tensor(1.) >>> l1_loss(pred, target, reduction='none') tensor([1., 1., 2.]) >>> l1_loss(pred, target, weight, avg_factor=2) tensor(1.5000) """ @functools.wraps(loss_func) def wrapper(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs): # get element-wise loss loss = loss_func(pred, target, **kwargs) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss return wrapper
# Copyright (c) OpenMMLab. All rights reserved. import functools import mmcv import torch import torch.nn.functional as F def reduce_loss(loss, reduction): """Reduce loss as specified. Args: loss (Tensor): Elementwise loss tensor. reduction (str): Options are "none", "mean" and "sum". Return: Tensor: Reduced loss tensor. """ reduction_enum = F._Reduction.get_enum(reduction) # none: 0, elementwise_mean:1, sum: 2 if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() @mmcv.jit(derivate=True, coderize=True) def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): """Apply element-wise weight and reduce loss. Args: loss (Tensor): Element-wise loss. weight (Tensor): Element-wise weights. reduction (str): Same as built-in losses of PyTorch. avg_factor (float): Average factor when computing the mean of losses. Returns: Tensor: Processed loss values. """ # if weight is specified, apply element-wise weight if weight is not None: loss = loss * weight # if avg_factor is not specified, just reduce the loss if avg_factor is None: loss = reduce_loss(loss, reduction) else: # if reduction is mean, then average the loss by avg_factor if reduction == 'mean': # Avoid causing ZeroDivisionError when avg_factor is 0.0, # i.e., all labels of an image belong to ignore index. eps = torch.finfo(torch.float32).eps loss = loss.sum() / (avg_factor + eps) # if reduction is 'none', then do nothing, otherwise raise an error elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss def weighted_loss(loss_func): """Create a weighted version of a given loss function. To use this decorator, the loss function must have the signature like `loss_func(pred, target, **kwargs)`. The function only needs to compute element-wise loss without any reduction. This decorator will add weight and reduction arguments to the function. The decorated function will have the signature like `loss_func(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs)`. :Example: >>> import torch >>> @weighted_loss >>> def l1_loss(pred, target): >>> return (pred - target).abs() >>> pred = torch.Tensor([0, 2, 3]) >>> target = torch.Tensor([1, 1, 1]) >>> weight = torch.Tensor([1, 0, 1]) >>> l1_loss(pred, target) tensor(1.3333) >>> l1_loss(pred, target, weight) tensor(1.) >>> l1_loss(pred, target, reduction='none') tensor([1., 1., 2.]) >>> l1_loss(pred, target, weight, avg_factor=2) tensor(1.5000) """ @functools.wraps(loss_func) def wrapper(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs): # get element-wise loss loss = loss_func(pred, target, **kwargs) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss return wrapper
"""Documents module. **Document** module is a collection of classes that handle documents and their transformations. """ from langchain_core.documents.base import Document from langchain_core.documents.compressor import BaseDocumentCompressor from langchain_core.documents.transformers import BaseDocumentTransformer __all__ = ["Document", "BaseDocumentTransformer", "BaseDocumentCompressor"]
"""**Document** module is a collection of classes that handle documents and their transformations. """ from langchain_core.documents.base import Document from langchain_core.documents.compressor import BaseDocumentCompressor from langchain_core.documents.transformers import BaseDocumentTransformer __all__ = ["Document", "BaseDocumentTransformer", "BaseDocumentCompressor"]
import pytest from pydantic import Field from docarray import BaseDoc from docarray.index import ElasticDocIndex from tests.index.elastic.fixture import start_storage_v8 # noqa: F401 pytestmark = [pytest.mark.slow, pytest.mark.index, pytest.mark.elasticv8] def test_column_config(): class MyDoc(BaseDoc): text: str color: str = Field(col_type='keyword') index = ElasticDocIndex[MyDoc]() index_docs = [ MyDoc(id='0', text='hello world', color='red'), MyDoc(id='1', text='never gonna give you up', color='blue'), MyDoc(id='2', text='we are the world', color='green'), ] index.index(index_docs) query = 'world' docs, _ = index.text_search(query, search_field='text') assert [doc.id for doc in docs] == ['0', '2'] filter_query = {'terms': {'color': ['red', 'blue']}} docs = index.filter(filter_query) assert [doc.id for doc in docs] == ['0', '1'] def test_field_object(): class MyDoc(BaseDoc): manager: dict = Field( properties={ 'age': {'type': 'integer'}, 'name': { 'properties': { 'first': {'type': 'keyword'}, 'last': {'type': 'keyword'}, } }, } ) index = ElasticDocIndex[MyDoc]() doc = [ MyDoc(manager={'age': 25, 'name': {'first': 'Rachel', 'last': 'Green'}}), MyDoc(manager={'age': 30, 'name': {'first': 'Monica', 'last': 'Geller'}}), MyDoc(manager={'age': 35, 'name': {'first': 'Phoebe', 'last': 'Buffay'}}), ] index.index(doc) id_ = doc[0].id assert index[id_].id == id_ assert index[id_].manager == doc[0].manager filter_query = {'range': {'manager.age': {'gte': 30}}} docs = index.filter(filter_query) assert [doc.id for doc in docs] == [doc[1].id, doc[2].id] def test_field_geo_point(): class MyDoc(BaseDoc): location: dict = Field(col_type='geo_point') index = ElasticDocIndex[MyDoc]() doc = [ MyDoc(location={'lat': 40.12, 'lon': -72.34}), MyDoc(location={'lat': 41.12, 'lon': -73.34}), MyDoc(location={'lat': 42.12, 'lon': -74.34}), ] index.index(doc) query = { 'query': { 'geo_bounding_box': { 'location': { 'top_left': {'lat': 42, 'lon': -74}, 'bottom_right': {'lat': 40, 'lon': -72}, } } }, } docs, _ = index.execute_query(query) assert [doc['id'] for doc in docs] == [doc[0].id, doc[1].id] def test_field_range(): class MyDoc(BaseDoc): expected_attendees: dict = Field(col_type='integer_range') time_frame: dict = Field(col_type='date_range', format='yyyy-MM-dd') index = ElasticDocIndex[MyDoc]() doc = [ MyDoc( expected_attendees={'gte': 10, 'lt': 20}, time_frame={'gte': '2023-01-01', 'lt': '2023-02-01'}, ), MyDoc( expected_attendees={'gte': 20, 'lt': 30}, time_frame={'gte': '2023-02-01', 'lt': '2023-03-01'}, ), MyDoc( expected_attendees={'gte': 30, 'lt': 40}, time_frame={'gte': '2023-03-01', 'lt': '2023-04-01'}, ), ] index.index(doc) query = { 'query': { 'bool': { 'should': [ {'term': {'expected_attendees': {'value': 15}}}, { 'range': { 'time_frame': { 'gte': '2023-02-05', 'lt': '2023-02-10', 'relation': 'contains', } } }, ] } }, } docs, _ = index.execute_query(query) assert [doc['id'] for doc in docs] == [doc[0].id, doc[1].id]
import pytest from pydantic import Field from docarray import BaseDoc from docarray.index import ElasticDocIndex from tests.index.elastic.fixture import start_storage_v8 # noqa: F401 pytestmark = [pytest.mark.slow, pytest.mark.index, pytest.mark.elasticv8] def test_column_config(): class MyDoc(BaseDoc): text: str color: str = Field(col_type='keyword') store = ElasticDocIndex[MyDoc]() index_docs = [ MyDoc(id='0', text='hello world', color='red'), MyDoc(id='1', text='never gonna give you up', color='blue'), MyDoc(id='2', text='we are the world', color='green'), ] store.index(index_docs) query = 'world' docs, _ = store.text_search(query, search_field='text') assert [doc.id for doc in docs] == ['0', '2'] filter_query = {'terms': {'color': ['red', 'blue']}} docs = store.filter(filter_query) assert [doc.id for doc in docs] == ['0', '1'] def test_field_object(): class MyDoc(BaseDoc): manager: dict = Field( properties={ 'age': {'type': 'integer'}, 'name': { 'properties': { 'first': {'type': 'keyword'}, 'last': {'type': 'keyword'}, } }, } ) store = ElasticDocIndex[MyDoc]() doc = [ MyDoc(manager={'age': 25, 'name': {'first': 'Rachel', 'last': 'Green'}}), MyDoc(manager={'age': 30, 'name': {'first': 'Monica', 'last': 'Geller'}}), MyDoc(manager={'age': 35, 'name': {'first': 'Phoebe', 'last': 'Buffay'}}), ] store.index(doc) id_ = doc[0].id assert store[id_].id == id_ assert store[id_].manager == doc[0].manager filter_query = {'range': {'manager.age': {'gte': 30}}} docs = store.filter(filter_query) assert [doc.id for doc in docs] == [doc[1].id, doc[2].id] def test_field_geo_point(): class MyDoc(BaseDoc): location: dict = Field(col_type='geo_point') store = ElasticDocIndex[MyDoc]() doc = [ MyDoc(location={'lat': 40.12, 'lon': -72.34}), MyDoc(location={'lat': 41.12, 'lon': -73.34}), MyDoc(location={'lat': 42.12, 'lon': -74.34}), ] store.index(doc) query = { 'query': { 'geo_bounding_box': { 'location': { 'top_left': {'lat': 42, 'lon': -74}, 'bottom_right': {'lat': 40, 'lon': -72}, } } }, } docs, _ = store.execute_query(query) assert [doc['id'] for doc in docs] == [doc[0].id, doc[1].id] def test_field_range(): class MyDoc(BaseDoc): expected_attendees: dict = Field(col_type='integer_range') time_frame: dict = Field(col_type='date_range', format='yyyy-MM-dd') store = ElasticDocIndex[MyDoc]() doc = [ MyDoc( expected_attendees={'gte': 10, 'lt': 20}, time_frame={'gte': '2023-01-01', 'lt': '2023-02-01'}, ), MyDoc( expected_attendees={'gte': 20, 'lt': 30}, time_frame={'gte': '2023-02-01', 'lt': '2023-03-01'}, ), MyDoc( expected_attendees={'gte': 30, 'lt': 40}, time_frame={'gte': '2023-03-01', 'lt': '2023-04-01'}, ), ] store.index(doc) query = { 'query': { 'bool': { 'should': [ {'term': {'expected_attendees': {'value': 15}}}, { 'range': { 'time_frame': { 'gte': '2023-02-05', 'lt': '2023-02-10', 'relation': 'contains', } } }, ] } }, } docs, _ = store.execute_query(query) assert [doc['id'] for doc in docs] == [doc[0].id, doc[1].id]
from typing import Any, Dict, Optional, Union import numpy as np import PIL.Image import torch from torch.nn.functional import one_hot from torchvision.prototype import features from torchvision.prototype.transforms import functional as F, Transform class DecodeImage(Transform): _transformed_types = (features.EncodedImage,) def _transform(self, inpt: torch.Tensor, params: Dict[str, Any]) -> features.Image: return F.decode_image_with_pil(inpt) # type: ignore[no-any-return] class LabelToOneHot(Transform): _transformed_types = (features.Label,) def __init__(self, num_categories: int = -1): super().__init__() self.num_categories = num_categories def _transform(self, inpt: features.Label, params: Dict[str, Any]) -> features.OneHotLabel: num_categories = self.num_categories if num_categories == -1 and inpt.categories is not None: num_categories = len(inpt.categories) output = one_hot(inpt.as_subclass(torch.Tensor), num_classes=num_categories) return features.OneHotLabel(output, categories=inpt.categories) def extra_repr(self) -> str: if self.num_categories == -1: return "" return f"num_categories={self.num_categories}" class PILToTensor(Transform): _transformed_types = (PIL.Image.Image,) def _transform(self, inpt: Union[PIL.Image.Image], params: Dict[str, Any]) -> torch.Tensor: return F.pil_to_tensor(inpt) class ToImageTensor(Transform): _transformed_types = (features.is_simple_tensor, PIL.Image.Image, np.ndarray) def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> features.Image: return F.to_image_tensor(inpt) # type: ignore[no-any-return] class ToImagePIL(Transform): _transformed_types = (features.is_simple_tensor, features.Image, np.ndarray) def __init__(self, mode: Optional[str] = None) -> None: super().__init__() self.mode = mode def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> PIL.Image.Image: return F.to_image_pil(inpt, mode=self.mode) # We changed the name to align them with the new naming scheme. Still, `ToPILImage` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ToPILImage = ToImagePIL
from typing import Any, cast, Dict, Optional, Union import numpy as np import PIL.Image import torch from torch.nn.functional import one_hot from torchvision.prototype import features from torchvision.prototype.transforms import functional as F, Transform class DecodeImage(Transform): _transformed_types = (features.EncodedImage,) def _transform(self, inpt: torch.Tensor, params: Dict[str, Any]) -> features.Image: return cast(features.Image, F.decode_image_with_pil(inpt)) class LabelToOneHot(Transform): _transformed_types = (features.Label,) def __init__(self, num_categories: int = -1): super().__init__() self.num_categories = num_categories def _transform(self, inpt: features.Label, params: Dict[str, Any]) -> features.OneHotLabel: num_categories = self.num_categories if num_categories == -1 and inpt.categories is not None: num_categories = len(inpt.categories) output = one_hot(inpt, num_classes=num_categories) return features.OneHotLabel(output, categories=inpt.categories) def extra_repr(self) -> str: if self.num_categories == -1: return "" return f"num_categories={self.num_categories}" class PILToTensor(Transform): _transformed_types = (PIL.Image.Image,) def _transform(self, inpt: Union[PIL.Image.Image], params: Dict[str, Any]) -> torch.Tensor: return F.pil_to_tensor(inpt) class ToImageTensor(Transform): _transformed_types = (features.is_simple_tensor, PIL.Image.Image, np.ndarray) def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> features.Image: return cast(features.Image, F.to_image_tensor(inpt)) class ToImagePIL(Transform): _transformed_types = (features.is_simple_tensor, features.Image, np.ndarray) def __init__(self, mode: Optional[str] = None) -> None: super().__init__() self.mode = mode def _transform( self, inpt: Union[torch.Tensor, PIL.Image.Image, np.ndarray], params: Dict[str, Any] ) -> PIL.Image.Image: return F.to_image_pil(inpt, mode=self.mode) # We changed the name to align them with the new naming scheme. Still, `ToPILImage` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ToPILImage = ToImagePIL
#!/usr/bin/env python3 # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. """ Run inference for pre-processed data with a trained model. """ import datetime as dt import logging from fairseq import options from interactive_asr.utils import ( add_asr_eval_argument, get_microphone_transcription, setup_asr, transcribe_file, ) def main(args): logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) task, generator, models, sp, tgt_dict = setup_asr(args, logger) print("READY!") if args.input_file: transcription_time, transcription = transcribe_file(args, task, generator, models, sp, tgt_dict) print("transcription:", transcription) print("transcription_time:", transcription_time) else: for transcription in get_microphone_transcription(args, task, generator, models, sp, tgt_dict): print("{}: {}".format(dt.datetime.now().strftime("%H:%M:%S"), transcription[0][0])) def cli_main(): parser = options.get_generation_parser() parser = add_asr_eval_argument(parser) args = options.parse_args_and_arch(parser) main(args) if __name__ == "__main__": cli_main()
#!/usr/bin/env python3 # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. """ Run inference for pre-processed data with a trained model. """ import datetime as dt import logging from fairseq import options from interactive_asr.utils import add_asr_eval_argument, setup_asr, get_microphone_transcription, transcribe_file def main(args): logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) task, generator, models, sp, tgt_dict = setup_asr(args, logger) print("READY!") if args.input_file: transcription_time, transcription = transcribe_file(args, task, generator, models, sp, tgt_dict) print("transcription:", transcription) print("transcription_time:", transcription_time) else: for transcription in get_microphone_transcription(args, task, generator, models, sp, tgt_dict): print("{}: {}".format(dt.datetime.now().strftime("%H:%M:%S"), transcription[0][0])) def cli_main(): parser = options.get_generation_parser() parser = add_asr_eval_argument(parser) args = options.parse_args_and_arch(parser) main(args) if __name__ == "__main__": cli_main()
import datetime import json import typing import prisma.models import pydantic import backend.data.block import backend.data.graph import backend.server.model class LibraryAgent(pydantic.BaseModel): id: str # Changed from agent_id to match GraphMeta agent_id: str agent_version: int # Changed from agent_version to match GraphMeta preset_id: str | None updated_at: datetime.datetime name: str description: str # Made input_schema and output_schema match GraphMeta's type input_schema: dict[str, typing.Any] # Should be BlockIOObjectSubSchema in frontend output_schema: dict[str, typing.Any] # Should be BlockIOObjectSubSchema in frontend is_favorite: bool is_created_by_user: bool is_latest_version: bool @staticmethod def from_db(agent: prisma.models.LibraryAgent): if not agent.Agent: raise ValueError("AgentGraph is required") graph = backend.data.graph.GraphModel.from_db(agent.Agent) agent_updated_at = agent.Agent.updatedAt lib_agent_updated_at = agent.updatedAt # Take the latest updated_at timestamp either when the graph was updated or the library agent was updated updated_at = ( max(agent_updated_at, lib_agent_updated_at) if agent_updated_at else lib_agent_updated_at ) return LibraryAgent( id=agent.id, agent_id=agent.agentId, agent_version=agent.agentVersion, updated_at=updated_at, name=graph.name, description=graph.description, input_schema=graph.input_schema, output_schema=graph.output_schema, is_favorite=agent.isFavorite, is_created_by_user=agent.isCreatedByUser, is_latest_version=graph.is_active, preset_id=agent.AgentPreset.id if agent.AgentPreset else None, ) class LibraryAgentPreset(pydantic.BaseModel): id: str updated_at: datetime.datetime agent_id: str agent_version: int name: str description: str is_active: bool inputs: dict[str, typing.Union[backend.data.block.BlockInput, typing.Any]] @staticmethod def from_db(preset: prisma.models.AgentPreset): input_data = {} for data in preset.InputPresets or []: input_data[data.name] = json.loads(data.data) return LibraryAgentPreset( id=preset.id, updated_at=preset.updatedAt, agent_id=preset.agentId, agent_version=preset.agentVersion, name=preset.name, description=preset.description, is_active=preset.isActive, inputs=input_data, ) class LibraryAgentPresetResponse(pydantic.BaseModel): presets: list[LibraryAgentPreset] pagination: backend.server.model.Pagination class CreateLibraryAgentPresetRequest(pydantic.BaseModel): name: str description: str inputs: dict[str, typing.Union[backend.data.block.BlockInput, typing.Any]] agent_id: str agent_version: int is_active: bool
import datetime import json import typing import prisma.models import pydantic import backend.data.block import backend.data.graph import backend.server.model class LibraryAgent(pydantic.BaseModel): id: str # Changed from agent_id to match GraphMeta agent_id: str agent_version: int # Changed from agent_version to match GraphMeta preset_id: str | None updated_at: datetime.datetime name: str description: str # Made input_schema and output_schema match GraphMeta's type input_schema: dict[str, typing.Any] # Should be BlockIOObjectSubSchema in frontend output_schema: dict[str, typing.Any] # Should be BlockIOObjectSubSchema in frontend is_favorite: bool is_created_by_user: bool is_latest_version: bool @staticmethod def from_db(agent: prisma.models.LibraryAgent): if not agent.Agent: raise ValueError("AgentGraph is required") graph = backend.data.graph.GraphModel.from_db(agent.Agent) agent_updated_at = agent.Agent.updatedAt lib_agent_updated_at = agent.updatedAt # Take the latest updated_at timestamp either when the graph was updated or the library agent was updated updated_at = ( max(agent_updated_at, lib_agent_updated_at) if agent_updated_at else lib_agent_updated_at ) return LibraryAgent( id=agent.id, agent_id=agent.agentId, agent_version=agent.agentVersion, updated_at=updated_at, name=graph.name, description=graph.description, input_schema=graph.input_schema, output_schema=graph.output_schema, is_favorite=agent.isFavorite, is_created_by_user=agent.isCreatedByUser, is_latest_version=graph.is_active, preset_id=agent.AgentPreset.id if agent.AgentPreset else None, ) class LibraryAgentPreset(pydantic.BaseModel): id: str updated_at: datetime.datetime agent_id: str agent_version: int name: str description: str is_active: bool inputs: dict[str, typing.Union[backend.data.block.BlockInput, typing.Any]] @staticmethod def from_db(preset: prisma.models.AgentPreset): input_data = {} for data in preset.InputPresets or []: input_data[data.name] = json.loads(data.data) return LibraryAgentPreset( id=preset.id, updated_at=preset.updatedAt, agent_id=preset.agentId, agent_version=preset.agentVersion, name=preset.name, description=preset.description, is_active=preset.isActive, inputs=input_data, ) class LibraryAgentPresetResponse(pydantic.BaseModel): presets: list[LibraryAgentPreset] pagination: backend.server.model.Pagination class CreateLibraryAgentPresetRequest(pydantic.BaseModel): name: str description: str inputs: dict[str, typing.Union[backend.data.block.BlockInput, typing.Any]] agent_id: str agent_version: int is_active: bool
import io import pathlib from collections import namedtuple from collections.abc import Iterator from typing import Any, Optional, Union from torchdata.datapipes.iter import IterDataPipe, Mapper, Zipper from torchvision.prototype.datasets.utils import Dataset, GDriveResource, OnlineResource from torchvision.prototype.datasets.utils._internal import hint_sharding, hint_shuffling from torchvision.prototype.tv_tensors import Label from torchvision.tv_tensors import Image from .._api import register_dataset, register_info NAME = "pcam" class PCAMH5Reader(IterDataPipe[tuple[str, io.IOBase]]): def __init__( self, datapipe: IterDataPipe[tuple[str, io.IOBase]], key: Optional[str] = None, # Note: this key thing might be very specific to the PCAM dataset ) -> None: self.datapipe = datapipe self.key = key def __iter__(self) -> Iterator[tuple[str, io.IOBase]]: import h5py for _, handle in self.datapipe: try: with h5py.File(handle) as data: if self.key is not None: data = data[self.key] yield from data finally: handle.close() _Resource = namedtuple("_Resource", ("file_name", "gdrive_id", "sha256")) @register_info(NAME) def _info() -> dict[str, Any]: return dict(categories=["0", "1"]) @register_dataset(NAME) class PCAM(Dataset): # TODO write proper docstring """PCAM Dataset homepage="https://github.com/basveeling/pcam" """ def __init__( self, root: Union[str, pathlib.Path], split: str = "train", *, skip_integrity_check: bool = False ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "val", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check, dependencies=("h5py",)) _RESOURCES = { "train": ( _Resource( # Images file_name="camelyonpatch_level_2_split_train_x.h5.gz", gdrive_id="1Ka0XfEMiwgCYPdTI-vv6eUElOBnKFKQ2", sha256="d619e741468a7ab35c7e4a75e6821b7e7e6c9411705d45708f2a0efc8960656c", ), _Resource( # Targets file_name="camelyonpatch_level_2_split_train_y.h5.gz", gdrive_id="1269yhu3pZDP8UYFQs-NYs3FPwuK-nGSG", sha256="b74126d2c01b20d3661f9b46765d29cf4e4fba6faba29c8e0d09d406331ab75a", ), ), "test": ( _Resource( # Images file_name="camelyonpatch_level_2_split_test_x.h5.gz", gdrive_id="1qV65ZqZvWzuIVthK8eVDhIwrbnsJdbg_", sha256="79174c2201ad521602a5888be8f36ee10875f37403dd3f2086caf2182ef87245", ), _Resource( # Targets file_name="camelyonpatch_level_2_split_test_y.h5.gz", gdrive_id="17BHrSrwWKjYsOgTMmoqrIjDy6Fa2o_gP", sha256="0a522005fccc8bbd04c5a117bfaf81d8da2676f03a29d7499f71d0a0bd6068ef", ), ), "val": ( _Resource( # Images file_name="camelyonpatch_level_2_split_valid_x.h5.gz", gdrive_id="1hgshYGWK8V-eGRy8LToWJJgDU_rXWVJ3", sha256="f82ee1670d027b4ec388048d9eabc2186b77c009655dae76d624c0ecb053ccb2", ), _Resource( # Targets file_name="camelyonpatch_level_2_split_valid_y.h5.gz", gdrive_id="1bH8ZRbhSVAhScTS0p9-ZzGnX91cHT3uO", sha256="ce1ae30f08feb468447971cfd0472e7becd0ad96d877c64120c72571439ae48c", ), ), } def _resources(self) -> list[OnlineResource]: return [ # = [images resource, targets resource] GDriveResource(file_name=file_name, id=gdrive_id, sha256=sha256, preprocess="decompress") for file_name, gdrive_id, sha256 in self._RESOURCES[self._split] ] def _prepare_sample(self, data: tuple[Any, Any]) -> dict[str, Any]: image, target = data # They're both numpy arrays at this point return { "image": Image(image.transpose(2, 0, 1)), "label": Label(target.item(), categories=self._categories), } def _datapipe(self, resource_dps: list[IterDataPipe]) -> IterDataPipe[dict[str, Any]]: images_dp, targets_dp = resource_dps images_dp = PCAMH5Reader(images_dp, key="x") targets_dp = PCAMH5Reader(targets_dp, key="y") dp = Zipper(images_dp, targets_dp) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 262_144 if self._split == "train" else 32_768
import io import pathlib from collections import namedtuple from typing import Any, Dict, Iterator, List, Optional, Tuple, Union from torchdata.datapipes.iter import IterDataPipe, Mapper, Zipper from torchvision.prototype.datasets.utils import Dataset, GDriveResource, OnlineResource from torchvision.prototype.datasets.utils._internal import hint_sharding, hint_shuffling from torchvision.prototype.tv_tensors import Label from torchvision.tv_tensors import Image from .._api import register_dataset, register_info NAME = "pcam" class PCAMH5Reader(IterDataPipe[Tuple[str, io.IOBase]]): def __init__( self, datapipe: IterDataPipe[Tuple[str, io.IOBase]], key: Optional[str] = None, # Note: this key thing might be very specific to the PCAM dataset ) -> None: self.datapipe = datapipe self.key = key def __iter__(self) -> Iterator[Tuple[str, io.IOBase]]: import h5py for _, handle in self.datapipe: try: with h5py.File(handle) as data: if self.key is not None: data = data[self.key] yield from data finally: handle.close() _Resource = namedtuple("_Resource", ("file_name", "gdrive_id", "sha256")) @register_info(NAME) def _info() -> Dict[str, Any]: return dict(categories=["0", "1"]) @register_dataset(NAME) class PCAM(Dataset): # TODO write proper docstring """PCAM Dataset homepage="https://github.com/basveeling/pcam" """ def __init__( self, root: Union[str, pathlib.Path], split: str = "train", *, skip_integrity_check: bool = False ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "val", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check, dependencies=("h5py",)) _RESOURCES = { "train": ( _Resource( # Images file_name="camelyonpatch_level_2_split_train_x.h5.gz", gdrive_id="1Ka0XfEMiwgCYPdTI-vv6eUElOBnKFKQ2", sha256="d619e741468a7ab35c7e4a75e6821b7e7e6c9411705d45708f2a0efc8960656c", ), _Resource( # Targets file_name="camelyonpatch_level_2_split_train_y.h5.gz", gdrive_id="1269yhu3pZDP8UYFQs-NYs3FPwuK-nGSG", sha256="b74126d2c01b20d3661f9b46765d29cf4e4fba6faba29c8e0d09d406331ab75a", ), ), "test": ( _Resource( # Images file_name="camelyonpatch_level_2_split_test_x.h5.gz", gdrive_id="1qV65ZqZvWzuIVthK8eVDhIwrbnsJdbg_", sha256="79174c2201ad521602a5888be8f36ee10875f37403dd3f2086caf2182ef87245", ), _Resource( # Targets file_name="camelyonpatch_level_2_split_test_y.h5.gz", gdrive_id="17BHrSrwWKjYsOgTMmoqrIjDy6Fa2o_gP", sha256="0a522005fccc8bbd04c5a117bfaf81d8da2676f03a29d7499f71d0a0bd6068ef", ), ), "val": ( _Resource( # Images file_name="camelyonpatch_level_2_split_valid_x.h5.gz", gdrive_id="1hgshYGWK8V-eGRy8LToWJJgDU_rXWVJ3", sha256="f82ee1670d027b4ec388048d9eabc2186b77c009655dae76d624c0ecb053ccb2", ), _Resource( # Targets file_name="camelyonpatch_level_2_split_valid_y.h5.gz", gdrive_id="1bH8ZRbhSVAhScTS0p9-ZzGnX91cHT3uO", sha256="ce1ae30f08feb468447971cfd0472e7becd0ad96d877c64120c72571439ae48c", ), ), } def _resources(self) -> List[OnlineResource]: return [ # = [images resource, targets resource] GDriveResource(file_name=file_name, id=gdrive_id, sha256=sha256, preprocess="decompress") for file_name, gdrive_id, sha256 in self._RESOURCES[self._split] ] def _prepare_sample(self, data: Tuple[Any, Any]) -> Dict[str, Any]: image, target = data # They're both numpy arrays at this point return { "image": Image(image.transpose(2, 0, 1)), "label": Label(target.item(), categories=self._categories), } def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: images_dp, targets_dp = resource_dps images_dp = PCAMH5Reader(images_dp, key="x") targets_dp = PCAMH5Reader(targets_dp, key="y") dp = Zipper(images_dp, targets_dp) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 262_144 if self._split == "train" else 32_768
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
# Copyright (c) OpenMMLab. All rights reserved. from .atss import ATSS from .autoassign import AutoAssign from .base import BaseDetector from .cascade_rcnn import CascadeRCNN from .centernet import CenterNet from .cornernet import CornerNet from .deformable_detr import DeformableDETR from .detr import DETR from .fast_rcnn import FastRCNN from .faster_rcnn import FasterRCNN from .fcos import FCOS from .fovea import FOVEA from .fsaf import FSAF from .gfl import GFL from .grid_rcnn import GridRCNN from .htc import HybridTaskCascade from .kd_one_stage import KnowledgeDistillationSingleStageDetector from .lad import LAD from .mask_rcnn import MaskRCNN from .mask_scoring_rcnn import MaskScoringRCNN from .maskformer import MaskFormer from .nasfcos import NASFCOS from .paa import PAA from .panoptic_fpn import PanopticFPN from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor from .point_rend import PointRend from .queryinst import QueryInst from .reppoints_detector import RepPointsDetector from .retinanet import RetinaNet from .rpn import RPN from .scnet import SCNet from .single_stage import SingleStageDetector from .solo import SOLO from .sparse_rcnn import SparseRCNN from .tood import TOOD from .trident_faster_rcnn import TridentFasterRCNN from .two_stage import TwoStageDetector from .vfnet import VFNet from .yolact import YOLACT from .yolo import YOLOV3 from .yolof import YOLOF from .yolox import YOLOX __all__ = [ 'ATSS', 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN', 'KnowledgeDistillationSingleStageDetector', 'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN', 'RepPointsDetector', 'FOVEA', 'FSAF', 'NASFCOS', 'PointRend', 'GFL', 'CornerNet', 'PAA', 'YOLOV3', 'YOLACT', 'VFNet', 'DETR', 'TridentFasterRCNN', 'SparseRCNN', 'SCNet', 'SOLO', 'DeformableDETR', 'AutoAssign', 'YOLOF', 'CenterNet', 'YOLOX', 'TwoStagePanopticSegmentor', 'PanopticFPN', 'QueryInst', 'LAD', 'TOOD', 'MaskFormer' ]
# Copyright (c) OpenMMLab. All rights reserved. from .atss import ATSS from .autoassign import AutoAssign from .base import BaseDetector from .cascade_rcnn import CascadeRCNN from .centernet import CenterNet from .cornernet import CornerNet from .deformable_detr import DeformableDETR from .detr import DETR from .fast_rcnn import FastRCNN from .faster_rcnn import FasterRCNN from .fcos import FCOS from .fovea import FOVEA from .fsaf import FSAF from .gfl import GFL from .grid_rcnn import GridRCNN from .htc import HybridTaskCascade from .kd_one_stage import KnowledgeDistillationSingleStageDetector from .lad import LAD from .mask_rcnn import MaskRCNN from .mask_scoring_rcnn import MaskScoringRCNN from .nasfcos import NASFCOS from .paa import PAA from .panoptic_fpn import PanopticFPN from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor from .point_rend import PointRend from .queryinst import QueryInst from .reppoints_detector import RepPointsDetector from .retinanet import RetinaNet from .rpn import RPN from .scnet import SCNet from .single_stage import SingleStageDetector from .solo import SOLO from .sparse_rcnn import SparseRCNN from .tood import TOOD from .trident_faster_rcnn import TridentFasterRCNN from .two_stage import TwoStageDetector from .vfnet import VFNet from .yolact import YOLACT from .yolo import YOLOV3 from .yolof import YOLOF from .yolox import YOLOX __all__ = [ 'ATSS', 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN', 'KnowledgeDistillationSingleStageDetector', 'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN', 'RepPointsDetector', 'FOVEA', 'FSAF', 'NASFCOS', 'PointRend', 'GFL', 'CornerNet', 'PAA', 'YOLOV3', 'YOLACT', 'VFNet', 'DETR', 'TridentFasterRCNN', 'SparseRCNN', 'SCNet', 'SOLO', 'DeformableDETR', 'AutoAssign', 'YOLOF', 'CenterNet', 'YOLOX', 'TwoStagePanopticSegmentor', 'PanopticFPN', 'QueryInst', 'LAD', 'TOOD' ]
"""Tests related to the `DataIter` interface.""" import numpy as np import xgboost from xgboost import testing as tm def run_mixed_sparsity(device: str) -> None: """Check QDM with mixed batches.""" X_0, y_0, _ = tm.make_regression(128, 16, False) if device.startswith("cuda"): X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, True) else: X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, False) X_2, y_2 = tm.make_sparse_regression(512, 16, 0.9, True) X = [X_0, X_1, X_2] y = [y_0, y_1, y_2] if device.startswith("cuda"): import cupy as cp # pylint: disable=import-error X = [cp.array(batch) for batch in X] it = tm.IteratorForTest(X, y, None, None) Xy_0 = xgboost.QuantileDMatrix(it) X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, True) X = [X_0, X_1, X_2] y = [y_0, y_1, y_2] X_arr = np.concatenate(X, axis=0) y_arr = np.concatenate(y, axis=0) Xy_1 = xgboost.QuantileDMatrix(X_arr, y_arr) assert tm.predictor_equal(Xy_0, Xy_1)
"""Tests related to the `DataIter` interface.""" import numpy as np import xgboost from xgboost import testing as tm def run_mixed_sparsity(device: str) -> None: """Check QDM with mixed batches.""" X_0, y_0, _ = tm.make_regression(128, 16, False) if device.startswith("cuda"): X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, True) else: X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, False) X_2, y_2 = tm.make_sparse_regression(512, 16, 0.9, True) X = [X_0, X_1, X_2] y = [y_0, y_1, y_2] if device.startswith("cuda"): import cupy as cp # pylint: disable=import-error X = [cp.array(batch) for batch in X] it = tm.IteratorForTest(X, y, None, None) Xy_0 = xgboost.QuantileDMatrix(it) X_1, y_1 = tm.make_sparse_regression(256, 16, 0.1, True) X = [X_0, X_1, X_2] y = [y_0, y_1, y_2] X_arr = np.concatenate(X, axis=0) y_arr = np.concatenate(y, axis=0) Xy_1 = xgboost.QuantileDMatrix(X_arr, y_arr) assert tm.predictor_equal(Xy_0, Xy_1)
""" This application demonstrates how to find duplicate questions (paraphrases) in a long list of sentences. """ from sentence_transformers import SentenceTransformer, util # Questions can be a long list of sentences up to 100k sentences or more. # For demonstration purposes, we limit it to a few questions which all have on duplicate questions = [ "How did you catch your spouse cheating?", "How can I find out if my husband is cheating?", "Is my wife cheating?", "How do I know if my partner is cheating?", "Why is Starbucks in India overrated?", "Is Starbucks overrated in india?", "How can I lose weight fast without exercise?", "Can I lose weight without exercise?", "Which city is the best in India? Why?", "Which is the best city in India?", "How can I stay focused in class?", "How can I stay focused on my school work?", "How can I Remotely hack a mobile phone?", "How can I hack my phone?", "Where should I stay in Goa?", "Which are the best hotels in Goa?", "Why does hair turn white?", "What causes older peoples hair to turn grey?", "What is the easiest way to get followers on Quora?", "How do I get more followers for my Quora?", ] model = SentenceTransformer("all-MiniLM-L6-v2") # Given a model and a List of strings (texts), evaluation.ParaphraseMiningEvaluator.paraphrase_mining performs a # mining task by computing cosine similarity between all possible combinations and returning the ones with the highest scores. # It returns a list of tuples (score, i, j) with i, j representing the index in the questions list. pairs = util.paraphrase_mining(model, questions) # Output Top-20 pairs: for score, qid1, qid2 in pairs[0:20]: print("{:.3f}\t{}\t\t\t{}".format(score, questions[qid1], questions[qid2]))
""" This application demonstrates how to find duplicate questions (paraphrases) in a long list of sentences. """ from sentence_transformers import SentenceTransformer, util # Questions can be a long list of sentences up to 100k sentences or more. # For demonstration purposes, we limit it to a few questions which all have on duplicate questions = [ 'How did you catch your spouse cheating?', 'How can I find out if my husband is cheating?', 'Is my wife cheating?', 'How do I know if my partner is cheating?', 'Why is Starbucks in India overrated?', 'Is Starbucks overrated in india?', 'How can I lose weight fast without exercise?', 'Can I lose weight without exercise?', 'Which city is the best in India? Why?', 'Which is the best city in India?', 'How can I stay focused in class?', 'How can I stay focused on my school work?', 'How can I Remotely hack a mobile phone?', 'How can I hack my phone?', 'Where should I stay in Goa?', 'Which are the best hotels in Goa?', 'Why does hair turn white?', 'What causes older peoples hair to turn grey?', 'What is the easiest way to get followers on Quora?', 'How do I get more followers for my Quora?' ] model = SentenceTransformer('all-MiniLM-L6-v2') # Given a model and a List of strings (texts), evaluation.ParaphraseMiningEvaluator.paraphrase_mining performs a # mining task by computing cosine similarity between all possible combinations and returning the ones with the highest scores. # It returns a list of tuples (score, i, j) with i, j representing the index in the questions list. pairs = util.paraphrase_mining(model, questions) #Output Top-20 pairs: for score, qid1, qid2 in pairs[0:20]: print("{:.3f}\t{}\t\t\t{}".format(score, questions[qid1], questions[qid2]))
from typing import Union import google.ai.generativelanguage as glm import google.generativeai as genai from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, CompletionResponse, ImageBlock, TextBlock, ) from llama_index.core.multi_modal_llms.base import ChatMessage from llama_index.core.utilities.gemini_utils import ROLES_FROM_GEMINI, ROLES_TO_GEMINI def _error_if_finished_early(candidate: "glm.Candidate") -> None: # type: ignore[name-defined] # only until release if (finish_reason := candidate.finish_reason) > 1: # 1=STOP (normally) reason = finish_reason.name # Safety reasons have more detail, so include that if we can. if finish_reason == 3: # 3=Safety relevant_safety = list( filter( lambda sr: sr.probability > 1, # 1=Negligible candidate.safety_ratings, ) ) reason += f" {relevant_safety}" raise RuntimeError(f"Response was terminated early: {reason}") def completion_from_gemini_response( response: Union[ "genai.types.GenerateContentResponse", "genai.types.AsyncGenerateContentResponse", ], ) -> CompletionResponse: top_candidate = response.candidates[0] _error_if_finished_early(top_candidate) raw = { **(type(top_candidate).to_dict(top_candidate)), # type: ignore **(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore } if response.usage_metadata: raw["usage_metadata"] = type(response.usage_metadata).to_dict( response.usage_metadata ) return CompletionResponse(text=response.text, raw=raw) def chat_from_gemini_response( response: Union[ "genai.types.GenerateContentResponse", "genai.types.AsyncGenerateContentResponse", ], ) -> ChatResponse: top_candidate = response.candidates[0] _error_if_finished_early(top_candidate) raw = { **(type(top_candidate).to_dict(top_candidate)), # type: ignore **(type(response.prompt_feedback).to_dict(response.prompt_feedback)), # type: ignore } if response.usage_metadata: raw["usage_metadata"] = type(response.usage_metadata).to_dict( response.usage_metadata ) role = ROLES_FROM_GEMINI[top_candidate.content.role] return ChatResponse(message=ChatMessage(role=role, content=response.text), raw=raw) def chat_message_to_gemini(message: ChatMessage) -> "genai.types.ContentDict": """Convert ChatMessages to Gemini-specific history, including ImageDocuments.""" parts = [] content_txt = "" for block in message.blocks: if isinstance(block, TextBlock): parts.append(block.text) elif isinstance(block, ImageBlock): base64_bytes = block.resolve_image(as_base64=False).read() parts.append( { "mime_type": block.image_mimetype, "data": base64_bytes, } ) else: msg = f"Unsupported content block type: {type(block).__name__}" raise ValueError(msg) return { "role": ROLES_TO_GEMINI[message.role], "parts": parts, }
from typing import Union import google.ai.generativelanguage as glm import google.generativeai as genai import PIL from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, CompletionResponse, ) from llama_index.core.utilities.gemini_utils import ROLES_FROM_GEMINI, ROLES_TO_GEMINI def _error_if_finished_early(candidate: "glm.Candidate") -> None: # type: ignore[name-defined] # only until release if (finish_reason := candidate.finish_reason) > 1: # 1=STOP (normally) reason = finish_reason.name # Safety reasons have more detail, so include that if we can. if finish_reason == 3: # 3=Safety relevant_safety = list( filter( lambda sr: sr.probability > 1, # 1=Negligible candidate.safety_ratings, ) ) reason += f" {relevant_safety}" raise RuntimeError(f"Response was terminated early: {reason}") def completion_from_gemini_response( response: Union[ "genai.types.GenerateContentResponse", "genai.types.AsyncGenerateContentResponse", ], ) -> CompletionResponse: top_candidate = response.candidates[0] _error_if_finished_early(top_candidate) raw = { **(type(top_candidate).to_dict(top_candidate)), **(type(response.prompt_feedback).to_dict(response.prompt_feedback)), } if response.usage_metadata: raw["usage_metadata"] = type(response.usage_metadata).to_dict( response.usage_metadata ) return CompletionResponse(text=response.text, raw=raw) def chat_from_gemini_response( response: Union[ "genai.types.GenerateContentResponse", "genai.types.AsyncGenerateContentResponse", ], ) -> ChatResponse: top_candidate = response.candidates[0] _error_if_finished_early(top_candidate) raw = { **(type(top_candidate).to_dict(top_candidate)), **(type(response.prompt_feedback).to_dict(response.prompt_feedback)), } if response.usage_metadata: raw["usage_metadata"] = type(response.usage_metadata).to_dict( response.usage_metadata ) role = ROLES_FROM_GEMINI[top_candidate.content.role] return ChatResponse(message=ChatMessage(role=role, content=response.text), raw=raw) def chat_message_to_gemini(message: ChatMessage) -> "genai.types.ContentDict": """Convert ChatMessages to Gemini-specific history, including ImageDocuments.""" parts = [message.content] if images := message.additional_kwargs.get("images"): parts += [PIL.Image.open(doc.resolve_image()) for doc in images] return { "role": ROLES_TO_GEMINI[message.role], "parts": parts, }
import numpy as np from docarray import BaseDoc from docarray.typing import NdArray def test_tensor_ops(): class A(BaseDoc): tensor: NdArray[3, 224, 224] class B(BaseDoc): tensor: NdArray[3, 112, 224] tensor = A(tensor=np.ones((3, 224, 224))).tensor tensord = A(tensor=np.ones((3, 224, 224))).tensor tensorn = np.zeros((3, 224, 224)) tensorhalf = B(tensor=np.ones((3, 112, 224))).tensor tensorfull = np.concatenate([tensorhalf, tensorhalf], axis=1) assert type(tensor) == NdArray assert type(tensor + tensord) == NdArray assert type(tensor + tensorn) == NdArray assert type(tensor + tensorfull) == NdArray
import numpy as np from docarray import BaseDocument from docarray.typing import NdArray def test_tensor_ops(): class A(BaseDocument): tensor: NdArray[3, 224, 224] class B(BaseDocument): tensor: NdArray[3, 112, 224] tensor = A(tensor=np.ones((3, 224, 224))).tensor tensord = A(tensor=np.ones((3, 224, 224))).tensor tensorn = np.zeros((3, 224, 224)) tensorhalf = B(tensor=np.ones((3, 112, 224))).tensor tensorfull = np.concatenate([tensorhalf, tensorhalf], axis=1) assert type(tensor) == NdArray assert type(tensor + tensord) == NdArray assert type(tensor + tensorn) == NdArray assert type(tensor + tensorfull) == NdArray
_base_ = './faster-rcnn_r50_fpn_gn-ws-all_1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://jhu/resnet101_gn_ws')))
_base_ = './faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://jhu/resnet101_gn_ws')))
from typing import List import numpy as np import pytest from fastapi import FastAPI from httpx import AsyncClient from docarray import BaseDoc, DocList from docarray.base_doc import DocArrayResponse from docarray.documents import ImageDoc, TextDoc from docarray.typing import NdArray @pytest.mark.asyncio async def test_fast_api(): class Mmdoc(BaseDoc): img: ImageDoc text: TextDoc title: str input_doc = Mmdoc( img=ImageDoc(tensor=np.zeros((3, 224, 224))), text=TextDoc(), title='hello' ) app = FastAPI() @app.post("/doc/", response_model=Mmdoc, response_class=DocArrayResponse) async def create_item(doc: Mmdoc) -> Mmdoc: return doc async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 @pytest.mark.asyncio async def test_image(): class InputDoc(BaseDoc): img: ImageDoc class OutputDoc(BaseDoc): embedding_clip: NdArray embedding_bert: NdArray input_doc = InputDoc(img=ImageDoc(tensor=np.zeros((3, 224, 224)))) app = FastAPI() @app.post("/doc/", response_model=OutputDoc, response_class=DocArrayResponse) async def create_item(doc: InputDoc) -> OutputDoc: ## call my fancy model to generate the embeddings doc = OutputDoc( embedding_clip=np.zeros((100, 1)), embedding_bert=np.zeros((100, 1)) ) return doc async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 doc = OutputDoc.parse_raw(response.content.decode()) assert isinstance(doc, OutputDoc) assert doc.embedding_clip.shape == (100, 1) assert doc.embedding_bert.shape == (100, 1) @pytest.mark.asyncio async def test_sentence_to_embeddings(): class InputDoc(BaseDoc): text: str class OutputDoc(BaseDoc): embedding_clip: NdArray embedding_bert: NdArray input_doc = InputDoc(text='hello') app = FastAPI() @app.post("/doc/", response_model=OutputDoc, response_class=DocArrayResponse) async def create_item(doc: InputDoc) -> OutputDoc: ## call my fancy model to generate the embeddings return OutputDoc( embedding_clip=np.zeros((100, 1)), embedding_bert=np.zeros((100, 1)) ) async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 doc = OutputDoc.parse_raw(response.content.decode()) assert isinstance(doc, OutputDoc) assert doc.embedding_clip.shape == (100, 1) assert doc.embedding_bert.shape == (100, 1) @pytest.mark.asyncio async def test_docarray(): doc = ImageDoc(tensor=np.zeros((3, 224, 224))) docs = DocList[ImageDoc]([doc, doc]) app = FastAPI() @app.post("/doc/", response_class=DocArrayResponse) async def func(fastapi_docs: List[ImageDoc]) -> List[ImageDoc]: docarray_docs = DocList[ImageDoc].construct(fastapi_docs) return list(docarray_docs) async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=docs.to_json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 docs = DocList[ImageDoc].from_json(response.content.decode()) assert len(docs) == 2 assert docs[0].tensor.shape == (3, 224, 224)
from typing import List import numpy as np import pytest from fastapi import FastAPI from httpx import AsyncClient from docarray import BaseDoc, DocArray from docarray.base_doc import DocArrayResponse from docarray.documents import ImageDoc, TextDoc from docarray.typing import NdArray @pytest.mark.asyncio async def test_fast_api(): class Mmdoc(BaseDoc): img: ImageDoc text: TextDoc title: str input_doc = Mmdoc( img=ImageDoc(tensor=np.zeros((3, 224, 224))), text=TextDoc(), title='hello' ) app = FastAPI() @app.post("/doc/", response_model=Mmdoc, response_class=DocArrayResponse) async def create_item(doc: Mmdoc) -> Mmdoc: return doc async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 @pytest.mark.asyncio async def test_image(): class InputDoc(BaseDoc): img: ImageDoc class OutputDoc(BaseDoc): embedding_clip: NdArray embedding_bert: NdArray input_doc = InputDoc(img=ImageDoc(tensor=np.zeros((3, 224, 224)))) app = FastAPI() @app.post("/doc/", response_model=OutputDoc, response_class=DocArrayResponse) async def create_item(doc: InputDoc) -> OutputDoc: ## call my fancy model to generate the embeddings doc = OutputDoc( embedding_clip=np.zeros((100, 1)), embedding_bert=np.zeros((100, 1)) ) return doc async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 doc = OutputDoc.parse_raw(response.content.decode()) assert isinstance(doc, OutputDoc) assert doc.embedding_clip.shape == (100, 1) assert doc.embedding_bert.shape == (100, 1) @pytest.mark.asyncio async def test_sentence_to_embeddings(): class InputDoc(BaseDoc): text: str class OutputDoc(BaseDoc): embedding_clip: NdArray embedding_bert: NdArray input_doc = InputDoc(text='hello') app = FastAPI() @app.post("/doc/", response_model=OutputDoc, response_class=DocArrayResponse) async def create_item(doc: InputDoc) -> OutputDoc: ## call my fancy model to generate the embeddings return OutputDoc( embedding_clip=np.zeros((100, 1)), embedding_bert=np.zeros((100, 1)) ) async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 doc = OutputDoc.parse_raw(response.content.decode()) assert isinstance(doc, OutputDoc) assert doc.embedding_clip.shape == (100, 1) assert doc.embedding_bert.shape == (100, 1) @pytest.mark.asyncio async def test_docarray(): doc = ImageDoc(tensor=np.zeros((3, 224, 224))) docs = DocArray[ImageDoc]([doc, doc]) app = FastAPI() @app.post("/doc/", response_class=DocArrayResponse) async def func(fastapi_docs: List[ImageDoc]) -> List[ImageDoc]: docarray_docs = DocArray[ImageDoc].construct(fastapi_docs) return list(docarray_docs) async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=docs.to_json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 docs = DocArray[ImageDoc].from_json(response.content.decode()) assert len(docs) == 2 assert docs[0].tensor.shape == (3, 224, 224)
from pathlib import Path from typing import List import pytest from jina import Document, DocumentArray, Executor from sentence_encoder import TransformerSentenceEncoder _EMBEDDING_DIM = 384 @pytest.fixture(scope='session') def basic_encoder() -> TransformerSentenceEncoder: return TransformerSentenceEncoder() def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.__class__.__name__ == 'TransformerSentenceEncoder' def test_encoding_cpu(): enc = TransformerSentenceEncoder(device='cpu') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.gpu def test_encoding_gpu(): enc = TransformerSentenceEncoder(device='cuda') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'model_name, emb_dim', [ ('sentence-transformers/multi-qa-MiniLM-L6-cos-v1', 384), ('sentence-transformers/msmarco-distilbert-base-tas-b', 768), ('distilbert-base-uncased', 768), ], ) def test_models(model_name: str, emb_dim: int): encoder = TransformerSentenceEncoder(model_name) input_data = DocumentArray([Document(text='hello world')]) encoder.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (emb_dim,) @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: TransformerSentenceEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: TransformerSentenceEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) def test_quality_embeddings(basic_encoder: TransformerSentenceEncoder): docs = DocumentArray( [ Document(id='A', text='a furry animal that with a long tail'), Document(id='B', text='a domesticated mammal with four legs'), Document(id='C', text='a type of aircraft that uses rotating wings'), Document(id='D', text='flying vehicle that has fixed wings and engines'), ] ) basic_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ['B', 'A', 'D', 'C'] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i]
from pathlib import Path from typing import List import pytest from jina import Document, DocumentArray, Executor from ...sentence_encoder import TransformerSentenceEncoder _EMBEDDING_DIM = 384 @pytest.fixture(scope='session') def basic_encoder() -> TransformerSentenceEncoder: return TransformerSentenceEncoder() def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.__class__.__name__ == 'TransformerSentenceEncoder' def test_encoding_cpu(): enc = TransformerSentenceEncoder(device='cpu') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.gpu def test_encoding_gpu(): enc = TransformerSentenceEncoder(device='cuda') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'model_name, emb_dim', [ ('sentence-transformers/multi-qa-MiniLM-L6-cos-v1', 384), ('sentence-transformers/msmarco-distilbert-base-tas-b', 768), ('distilbert-base-uncased', 768), ], ) def test_models(model_name: str, emb_dim: int): encoder = TransformerSentenceEncoder(model_name) input_data = DocumentArray([Document(text='hello world')]) encoder.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (emb_dim,) @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: TransformerSentenceEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: TransformerSentenceEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) def test_quality_embeddings(basic_encoder: TransformerSentenceEncoder): docs = DocumentArray( [ Document(id='A', text='a furry animal that with a long tail'), Document(id='B', text='a domesticated mammal with four legs'), Document(id='C', text='a type of aircraft that uses rotating wings'), Document(id='D', text='flying vehicle that has fixed wings and engines'), ] ) basic_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ['B', 'A', 'D', 'C'] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i]