input
stringlengths
33
5k
output
stringlengths
32
5k
# Copyright (c) OpenMMLab. All rights reserved. import argparse import cv2 import mmcv from mmcv.transforms import Compose from mmdet.apis import inference_detector, init_detector from mmdet.registry import VISUALIZERS from mmdet.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='MMDetection video demo') parser.add_argument('video', help='Video file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='Bbox score threshold') parser.add_argument('--out', type=str, help='Output video file') parser.add_argument('--show', action='store_true', help='Show video') parser.add_argument( '--wait-time', type=float, default=1, help='The interval of show (s), 0 is block') args = parser.parse_args() return args def main(): args = parse_args() assert args.out or args.show, \ ('Please specify at least one operation (save/show the ' 'video) with the argument "--out" or "--show"') # register all modules in mmdet into the registries register_all_modules() # build the model from a config file and a checkpoint file model = init_detector(args.config, args.checkpoint, device=args.device) # build test pipeline model.cfg.test_dataloader.dataset.pipeline[0].type = 'LoadImageFromNDArray' test_pipeline = Compose(model.cfg.test_dataloader.dataset.pipeline) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) # the dataset_meta is loaded from the checkpoint and # then pass to the model in init_detector visualizer.dataset_meta = model.dataset_meta video_reader = mmcv.VideoReader(args.video) video_writer = None if args.out: fourcc = cv2.VideoWriter_fourcc(*'mp4v') video_writer = cv2.VideoWriter( args.out, fourcc, video_reader.fps, (video_reader.width, video_reader.height)) for frame in mmcv.track_iter_progress(video_reader): result = inference_detector(model, frame, test_pipeline=test_pipeline) visualizer.add_datasample( name='video', image=frame, pred_sample=result, show=False, pred_score_thr=args.score_thr) frame = visualizer.get_image() if args.show: cv2.namedWindow('video', 0) mmcv.imshow(frame, 'video', args.wait_time) if args.out: video_writer.write(frame) if video_writer: video_writer.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import cv2 import mmcv from mmdet.apis import inference_detector, init_detector def parse_args(): parser = argparse.ArgumentParser(description='MMDetection video demo') parser.add_argument('video', help='Video file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='Bbox score threshold') parser.add_argument('--out', type=str, help='Output video file') parser.add_argument('--show', action='store_true', help='Show video') parser.add_argument( '--wait-time', type=float, default=1, help='The interval of show (s), 0 is block') args = parser.parse_args() return args def main(): args = parse_args() assert args.out or args.show, \ ('Please specify at least one operation (save/show the ' 'video) with the argument "--out" or "--show"') model = init_detector(args.config, args.checkpoint, device=args.device) video_reader = mmcv.VideoReader(args.video) video_writer = None if args.out: fourcc = cv2.VideoWriter_fourcc(*'mp4v') video_writer = cv2.VideoWriter( args.out, fourcc, video_reader.fps, (video_reader.width, video_reader.height)) for frame in mmcv.track_iter_progress(video_reader): result = inference_detector(model, frame) frame = model.show_result(frame, result, score_thr=args.score_thr) if args.show: cv2.namedWindow('video', 0) mmcv.imshow(frame, 'video', args.wait_time) if args.out: video_writer.write(frame) if video_writer: video_writer.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
from __future__ import annotations __version__ = "3.5.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" import importlib import os from sentence_transformers.backend import ( export_dynamic_quantized_onnx_model, export_optimized_onnx_model, export_static_quantized_openvino_model, ) from sentence_transformers.cross_encoder import ( CrossEncoder, CrossEncoderModelCardData, CrossEncoderTrainer, CrossEncoderTrainingArguments, ) from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset from sentence_transformers.LoggingHandler import LoggingHandler from sentence_transformers.model_card import SentenceTransformerModelCardData from sentence_transformers.quantization import quantize_embeddings from sentence_transformers.readers import InputExample from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # If codecarbon is installed and the log level is not defined, # automatically overwrite the default to "error" if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ: os.environ["CODECARBON_LOG_LEVEL"] = "error" __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "SimilarityFunction", "InputExample", "CrossEncoder", "CrossEncoderTrainer", "CrossEncoderTrainingArguments", "CrossEncoderModelCardData", "SentenceTransformerTrainer", "SentenceTransformerTrainingArguments", "SentenceTransformerModelCardData", "quantize_embeddings", "export_optimized_onnx_model", "export_dynamic_quantized_onnx_model", "export_static_quantized_openvino_model", ]
from __future__ import annotations __version__ = "3.5.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" import importlib import os from sentence_transformers.backend import ( export_dynamic_quantized_onnx_model, export_optimized_onnx_model, export_static_quantized_openvino_model, ) from sentence_transformers.cross_encoder.CrossEncoder import CrossEncoder from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset from sentence_transformers.LoggingHandler import LoggingHandler from sentence_transformers.model_card import SentenceTransformerModelCardData from sentence_transformers.quantization import quantize_embeddings from sentence_transformers.readers import InputExample from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # If codecarbon is installed and the log level is not defined, # automatically overwrite the default to "error" if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ: os.environ["CODECARBON_LOG_LEVEL"] = "error" __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "SimilarityFunction", "InputExample", "CrossEncoder", "SentenceTransformerTrainer", "SentenceTransformerTrainingArguments", "SentenceTransformerModelCardData", "quantize_embeddings", "export_optimized_onnx_model", "export_dynamic_quantized_onnx_model", "export_static_quantized_openvino_model", ]
import inspect import re from typing import Dict, List, Tuple from huggingface_hub.utils import insecure_hashlib from .arrow import arrow from .audiofolder import audiofolder from .cache import cache from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql from .text import text from .videofolder import videofolder from .webdataset import webdataset from .xml import xml def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return insecure_hashlib.sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), "videofolder": (videofolder.__name__, _hash_python_lines(inspect.getsource(videofolder).splitlines())), "webdataset": (webdataset.__name__, _hash_python_lines(inspect.getsource(webdataset).splitlines())), "xml": (xml.__name__, _hash_python_lines(inspect.getsource(xml).splitlines())), } # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES_2_15_HASHES = { "csv": "eea64c71ca8b46dd3f537ed218fc9bf495d5707789152eb2764f5c78fa66d59d", "json": "8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96", "pandas": "3ac4ffc4563c796122ef66899b9485a3f1a977553e2d2a8a318c72b8cc6f2202", "parquet": "ca31c69184d9832faed373922c2acccec0b13a0bb5bbbe19371385c3ff26f1d1", "arrow": "74f69db2c14c2860059d39860b1f400a03d11bf7fb5a8258ca38c501c878c137", "text": "c4a140d10f020282918b5dd1b8a49f0104729c6177f60a6b49ec2a365ec69f34", "imagefolder": "7b7ce5247a942be131d49ad4f3de5866083399a0f250901bd8dc202f8c5f7ce5", "audiofolder": "d3c1655c66c8f72e4efb5c79e952975fa6e2ce538473a6890241ddbddee9071c", } # Used to infer the module to use based on the data files extensions _EXTENSION_TO_MODULE: Dict[str, Tuple[str, dict]] = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), # ndjson is no longer maintained (see: https://github.com/ndjson/ndjson-spec/issues/35#issuecomment-1285673417) ".ndjson": ("json", {}), ".parquet": ("parquet", {}), ".geoparquet": ("parquet", {}), ".gpq": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), ".tar": ("webdataset", {}), ".xml": ("xml", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("videofolder", {}) for ext in videofolder.VideoFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("videofolder", {}) for ext in videofolder.VideoFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder", "videofolder"} # Used to filter data files based on extensions given a module name _MODULE_TO_EXTENSIONS: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) for _module in _MODULE_TO_EXTENSIONS: _MODULE_TO_EXTENSIONS[_module].append(".zip")
import inspect import re from typing import Dict, List, Tuple from huggingface_hub.utils import insecure_hashlib from .arrow import arrow from .audiofolder import audiofolder from .cache import cache from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql from .text import text from .webdataset import webdataset from .xml import xml def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return insecure_hashlib.sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), "webdataset": (webdataset.__name__, _hash_python_lines(inspect.getsource(webdataset).splitlines())), "xml": (xml.__name__, _hash_python_lines(inspect.getsource(xml).splitlines())), } # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES_2_15_HASHES = { "csv": "eea64c71ca8b46dd3f537ed218fc9bf495d5707789152eb2764f5c78fa66d59d", "json": "8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96", "pandas": "3ac4ffc4563c796122ef66899b9485a3f1a977553e2d2a8a318c72b8cc6f2202", "parquet": "ca31c69184d9832faed373922c2acccec0b13a0bb5bbbe19371385c3ff26f1d1", "arrow": "74f69db2c14c2860059d39860b1f400a03d11bf7fb5a8258ca38c501c878c137", "text": "c4a140d10f020282918b5dd1b8a49f0104729c6177f60a6b49ec2a365ec69f34", "imagefolder": "7b7ce5247a942be131d49ad4f3de5866083399a0f250901bd8dc202f8c5f7ce5", "audiofolder": "d3c1655c66c8f72e4efb5c79e952975fa6e2ce538473a6890241ddbddee9071c", } # Used to infer the module to use based on the data files extensions _EXTENSION_TO_MODULE: Dict[str, Tuple[str, dict]] = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), # ndjson is no longer maintained (see: https://github.com/ndjson/ndjson-spec/issues/35#issuecomment-1285673417) ".ndjson": ("json", {}), ".parquet": ("parquet", {}), ".geoparquet": ("parquet", {}), ".gpq": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), ".tar": ("webdataset", {}), ".xml": ("xml", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name _MODULE_TO_EXTENSIONS: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) for _module in _MODULE_TO_EXTENSIONS: _MODULE_TO_EXTENSIONS[_module].append(".zip")
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.docstore.base import AddableMixin, Docstore # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "Docstore": "langchain_community.docstore.base", "AddableMixin": "langchain_community.docstore.base", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AddableMixin", "Docstore", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.docstore.base import AddableMixin, Docstore # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "Docstore": "langchain_community.docstore.base", "AddableMixin": "langchain_community.docstore.base", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "Docstore", "AddableMixin", ]
from typing import Dict, List, Optional from docarray import DocArray def reduce( left: DocArray, right: DocArray, left_id_map: Optional[Dict] = None ) -> 'DocArray': """ Reduces left and right DocArray into one DocArray in-place. Changes are applied to the left DocArray. Reducing 2 DocArrays consists in adding Documents in the second DocArray to the first DocArray if they do not exist. If a Document exists in both DocArrays (identified by ID), the data properties are merged with priority to the left Document. Nested DocArrays are also reduced in the same way. :param left: First DocArray to be reduced. Changes will be applied to it in-place :param right: Second DocArray to be reduced :param left_id_map: Optional parameter to be passed in repeated calls for optimizations, keeping a map of the Document ID to its offset in the DocArray :return: Reduced DocArray """ left_id_map = left_id_map or {doc.id: i for i, doc in enumerate(left)} for doc in right: if doc.id in left_id_map: left[left_id_map[doc.id]].update(doc) else: left.append(doc) return left def reduce_all(docarrays: List[DocArray]) -> DocArray: """ Reduces a list of DocArrays into one DocArray. Changes are applied to the first DocArray in-place. The resulting DocArray contains Documents of all DocArrays. If a Document exists (identified by their ID) in many DocArrays, data properties are merged with priority to the left-most DocArrays (that is, if a data attribute is set in a Document belonging to many DocArrays, the attribute value of the left-most DocArray is kept). Nested DocArrays belonging to many DocArrays are also reduced in the same way. .. note:: - Nested DocArrays order does not follow any specific rule. You might want to re-sort them in a later step. - The final result depends on the order of DocArrays when applying reduction. :param docarrays: List of DocArrays to be reduced :return: the resulting DocArray """ if len(docarrays) <= 1: raise Exception( 'In order to reduce DocArrays' ' we should have more than one DocArray' ) left = docarrays[0] others = docarrays[1:] left_id_map = {doc.id: i for i, doc in enumerate(left)} for da in others: reduce(left, da, left_id_map) return left
from docarray import DocumentArray from typing import List, Optional, Dict def reduce( left: DocumentArray, right: DocumentArray, left_id_map: Optional[Dict] = None ) -> 'DocumentArray': """ Reduces left and right DocumentArray into one DocumentArray in-place. Changes are applied to the left DocumentArray. Reducing 2 DocumentArrays consists in adding Documents in the second DocumentArray to the first DocumentArray if they do not exist. If a Document exists in both DocumentArrays (identified by ID), the data properties are merged with priority to the left Document. Nested DocumentArrays are also reduced in the same way. :param left: First DocumentArray to be reduced. Changes will be applied to it in-place :param right: Second DocumentArray to be reduced :param left_id_map: Optional parameter to be passed in repeated calls for optimizations, keeping a map of the Document ID to its offset in the DocumentArray :return: Reduced DocumentArray """ left_id_map = left_id_map or {doc.id: i for i, doc in enumerate(left)} for doc in right: if doc.id in left_id_map: left[left_id_map[doc.id]].update(doc) else: left.append(doc) return left def reduce_all(docarrays: List[DocumentArray]) -> DocumentArray: """ Reduces a list of DocumentArrays into one DocumentArray. Changes are applied to the first DocumentArray in-place. The resulting DocumentArray contains Documents of all DocumentArrays. If a Document exists (identified by their ID) in many DocumentArrays, data properties are merged with priority to the left-most DocumentArrays (that is, if a data attribute is set in a Document belonging to many DocumentArrays, the attribute value of the left-most DocumentArray is kept). Nested DocumentArrays belonging to many DocumentArrays are also reduced in the same way. .. note:: - Nested DocumentArrays order does not follow any specific rule. You might want to re-sort them in a later step. - The final result depends on the order of DocumentArrays when applying reduction. :param docarrays: List of DocumentArrays to be reduced :return: the resulting DocumentArray """ if len(docarrays) <= 1: raise Exception( 'In order to reduce DocumentArrays' ' we should have more than one DocumentArray' ) left = docarrays[0] others = docarrays[1:] left_id_map = {doc.id: i for i, doc in enumerate(left)} for da in others: reduce(left, da, left_id_map) return left
""" Experimental Object Oriented Distributed API - torch.distributed._dist2 ======================================================================= This is an experimental new API for PyTorch Distributed. This is actively in development and subject to change or deletion entirely. This is intended as a proving ground for more flexible and object oriented distributed APIs. """ from collections.abc import Generator from contextlib import contextmanager from datetime import timedelta from typing import Protocol, Union import torch from torch._C._distributed_c10d import ( _current_process_group, _set_process_group, Backend, ProcessGroup, Store, ) from torch.distributed.rendezvous import rendezvous _BACKENDS: dict[str, "ProcessGroupFactory"] = {} class ProcessGroupFactory(Protocol): """Protocol for process group factories.""" def __call__( self, store: Store, rank: int, world_size: int, timeout: timedelta, device: torch.device, pg_options: Backend.Options, ) -> ProcessGroup: ... def register_backend(name: str, func: ProcessGroupFactory) -> None: """ Register a new process group backend. Args: name: The name of the backend. func: The function to create the process group. """ if name in _BACKENDS: raise ValueError(f"Backend {name} already registered") _BACKENDS[name] = func def _gloo_factory( store: Store, rank: int, world_size: int, timeout: timedelta, device: torch.device, pg_options: Backend.Options, ) -> ProcessGroup: from torch.distributed import ProcessGroupGloo assert pg_options is None, "Gloo backend does not support options" backend_class = ProcessGroupGloo(store, rank, world_size, timeout) backend_class._set_sequence_number_for_group() pg = ProcessGroup(store, rank, world_size) pg._set_default_backend(ProcessGroup.BackendType.GLOO) # register devices pg._register_backend(device, ProcessGroup.BackendType.GLOO, backend_class) pg._register_backend( torch.device("cpu"), ProcessGroup.BackendType.GLOO, backend_class ) if torch.cuda.is_available(): pg._register_backend( torch.device("cuda"), ProcessGroup.BackendType.GLOO, backend_class ) return pg def _nccl_factory( store: Store, rank: int, world_size: int, timeout: timedelta, device: torch.device, pg_options: Backend.Options, ) -> ProcessGroup: from torch.distributed import ProcessGroupNCCL assert isinstance(pg_options, ProcessGroupNCCL.Options) pg_options._timeout = timeout backend_class = ProcessGroupNCCL(store, rank, world_size, pg_options) backend_class._set_sequence_number_for_group() backend_class.eager_connect_single_device(device) pg = ProcessGroup(store, rank, world_size) pg._set_default_backend(ProcessGroup.BackendType.NCCL) pg._register_backend(device, ProcessGroup.BackendType.NCCL, backend_class) return pg register_backend("gloo", _gloo_factory) register_backend("nccl", _nccl_factory) def new_group( backend: str, timeout: timedelta, device: Union[str, torch.device], pg_options: Backend.Options, ) -> ProcessGroup: """ Create a new process group with the given backend and options. This group is independent and will not be globally registered and thus not usable via the standard torch.distributed.* APIs. Args: backend: The backend to use for the process group. timeout: The timeout for collective operations. device: The device to use for the process group. pg_options: The options to use for the process group. Returns: A new process group. """ if backend not in _BACKENDS: raise ValueError(f"Backend {backend} not registered") device = torch.device(device) store, rank, world_size = next(iter(rendezvous("env://"))) store.set_timeout(timeout) return _BACKENDS[backend](store, rank, world_size, timeout, device, pg_options) def current_process_group() -> ProcessGroup: """ Get the current process group. Thread local method. Returns: The current process group. """ return _current_process_group() @contextmanager def process_group(pg: ProcessGroup) -> Generator[None, None, None]: """ Context manager for process groups. Thread local method. Args: pg: The process group to use. """ prev_pg = current_process_group() _set_process_group(pg) try: yield finally: _set_process_group(prev_pg)
""" Experimental Object Oriented Distributed API - torch.distributed._dist2 ======================================================================= This is an experimental new API for PyTorch Distributed. This is actively in development and subject to change or deletion entirely. This is intended as a proving ground for more flexible and object oriented distributed APIs. """ from datetime import timedelta from typing import Protocol, Union import torch from torch._C._distributed_c10d import Backend, ProcessGroup, Store from torch.distributed.rendezvous import rendezvous _BACKENDS: dict[str, "ProcessGroupFactory"] = {} class ProcessGroupFactory(Protocol): """Protocol for process group factories.""" def __call__( self, store: Store, rank: int, world_size: int, timeout: timedelta, device: torch.device, pg_options: Backend.Options, ) -> ProcessGroup: ... def register_backend(name: str, func: ProcessGroupFactory) -> None: """ Register a new process group backend. Args: name: The name of the backend. func: The function to create the process group. """ if name in _BACKENDS: raise ValueError(f"Backend {name} already registered") _BACKENDS[name] = func def _gloo_factory( store: Store, rank: int, world_size: int, timeout: timedelta, device: torch.device, pg_options: Backend.Options, ) -> ProcessGroup: from torch.distributed import ProcessGroupGloo assert pg_options is None, "Gloo backend does not support options" backend_class = ProcessGroupGloo(store, rank, world_size, timeout) backend_class._set_sequence_number_for_group() pg = ProcessGroup(store, rank, world_size) pg._set_default_backend(ProcessGroup.BackendType.GLOO) # register devices pg._register_backend(device, ProcessGroup.BackendType.GLOO, backend_class) pg._register_backend( torch.device("cpu"), ProcessGroup.BackendType.GLOO, backend_class ) if torch.cuda.is_available(): pg._register_backend( torch.device("cuda"), ProcessGroup.BackendType.GLOO, backend_class ) return pg def _nccl_factory( store: Store, rank: int, world_size: int, timeout: timedelta, device: torch.device, pg_options: Backend.Options, ) -> ProcessGroup: from torch.distributed import ProcessGroupNCCL assert isinstance(pg_options, ProcessGroupNCCL.Options) pg_options._timeout = timeout backend_class = ProcessGroupNCCL(store, rank, world_size, pg_options) backend_class._set_sequence_number_for_group() backend_class.eager_connect_single_device(device) pg = ProcessGroup(store, rank, world_size) pg._set_default_backend(ProcessGroup.BackendType.NCCL) pg._register_backend(device, ProcessGroup.BackendType.NCCL, backend_class) return pg register_backend("gloo", _gloo_factory) register_backend("nccl", _nccl_factory) def new_group( backend: str, timeout: timedelta, device: Union[str, torch.device], pg_options: Backend.Options, ) -> ProcessGroup: """ Create a new process group with the given backend and options. This group is independent and will not be globally registered and thus not usable via the standard torch.distributed.* APIs. Args: backend: The backend to use for the process group. timeout: The timeout for collective operations. device: The device to use for the process group. pg_options: The options to use for the process group. Returns: A new process group. """ if backend not in _BACKENDS: raise ValueError(f"Backend {backend} not registered") device = torch.device(device) store, rank, world_size = next(iter(rendezvous("env://"))) store.set_timeout(timeout) return _BACKENDS[backend](store, rank, world_size, timeout, device, pg_options)
# Copyright (c) OpenMMLab. All rights reserved. from .hub import load_url from .manager import ManagerMeta, ManagerMixin from .misc import (check_prerequisites, concat_list, deprecated_api_warning, find_latest_checkpoint, has_batch_norm, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, mmcv_full_available, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .parrots_wrapper import TORCH_VERSION from .path import (check_file_exist, fopen, is_filepath, mkdir_or_exist, scandir, symlink) from .setup_env import set_multi_processing from .version_utils import digit_version, get_git_hash # TODO: creates intractable circular import issues # from .time_counter import TimeCounter __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_method_overridden', 'has_method', 'mmcv_full_available', 'digit_version', 'get_git_hash', 'TORCH_VERSION', 'load_url', 'find_latest_checkpoint', 'ManagerMeta', 'ManagerMixin', 'set_multi_processing', 'has_batch_norm' ]
# Copyright (c) OpenMMLab. All rights reserved. from .hub import load_url from .manager import ManagerMeta, ManagerMixin from .misc import (check_prerequisites, concat_list, deprecated_api_warning, find_latest_checkpoint, has_method, import_modules_from_strings, is_list_of, is_method_overridden, is_seq_of, is_str, is_tuple_of, iter_cast, list_cast, mmcv_full_available, requires_executable, requires_package, slice_list, to_1tuple, to_2tuple, to_3tuple, to_4tuple, to_ntuple, tuple_cast) from .parrots_wrapper import TORCH_VERSION from .path import (check_file_exist, fopen, is_filepath, mkdir_or_exist, scandir, symlink) from .setup_env import set_multi_processing from .version_utils import digit_version, get_git_hash # TODO: creates intractable circular import issues # from .time_counter import TimeCounter __all__ = [ 'is_str', 'iter_cast', 'list_cast', 'tuple_cast', 'is_seq_of', 'is_list_of', 'is_tuple_of', 'slice_list', 'concat_list', 'check_prerequisites', 'requires_package', 'requires_executable', 'is_filepath', 'fopen', 'check_file_exist', 'mkdir_or_exist', 'symlink', 'scandir', 'deprecated_api_warning', 'import_modules_from_strings', 'to_1tuple', 'to_2tuple', 'to_3tuple', 'to_4tuple', 'to_ntuple', 'is_method_overridden', 'has_method', 'mmcv_full_available', 'digit_version', 'get_git_hash', 'TORCH_VERSION', 'load_url', 'find_latest_checkpoint', 'ManagerMeta', 'ManagerMixin', 'set_multi_processing' ]
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod import torch.nn.functional as F from mmcv.runner import BaseModule, force_fp32 from mmengine.model import stack_batch from ..builder import build_loss from ..utils import interpolate_as class BaseSemanticHead(BaseModule, metaclass=ABCMeta): """Base module of Semantic Head. Args: num_classes (int): the number of classes. init_cfg (dict): the initialization config. loss_seg (dict): the loss of the semantic head. """ def __init__(self, num_classes, init_cfg=None, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=1.0)): super(BaseSemanticHead, self).__init__(init_cfg) self.loss_seg = build_loss(loss_seg) self.num_classes = num_classes @force_fp32(apply_to=('seg_preds', )) def loss(self, seg_preds, gt_semantic_seg): """Get the loss of semantic head. Args: seg_preds (Tensor): The input logits with the shape (N, C, H, W). gt_semantic_seg: The ground truth of semantic segmentation with the shape (N, H, W). label_bias: The starting number of the semantic label. Default: 1. Returns: dict: the loss of semantic head. """ if seg_preds.shape[-2:] != gt_semantic_seg.shape[-2:]: seg_preds = interpolate_as(seg_preds, gt_semantic_seg) seg_preds = seg_preds.permute((0, 2, 3, 1)) loss_seg = self.loss_seg( seg_preds.reshape(-1, self.num_classes), # => [NxHxW, C] gt_semantic_seg.reshape(-1).long()) return dict(loss_seg=loss_seg) @abstractmethod def forward(self, x): """Placeholder of forward function. Returns: dict[str, Tensor]: A dictionary, including features and predicted scores. Required keys: 'seg_preds' and 'feats'. """ pass def forward_train(self, x, data_samples): output = self.forward(x) seg_preds = output['seg_preds'] gt_semantic_segs = [ data_sample.gt_sem_seg for data_sample in data_samples ] gt_semantic_segs = stack_batch(gt_semantic_segs, pad_value=255) return self.loss(seg_preds, gt_semantic_segs) def simple_test(self, x, img_metas, rescale=False): output = self.forward(x) seg_preds = output['seg_preds'] seg_preds = F.interpolate( seg_preds, size=img_metas[0]['pad_shape'][:2], mode='bilinear', align_corners=False) if rescale: h, w, _ = img_metas[0]['img_shape'] seg_preds = seg_preds[:, :, :h, :w] h, w, _ = img_metas[0]['ori_shape'] seg_preds = F.interpolate( seg_preds, size=(h, w), mode='bilinear', align_corners=False) return seg_preds
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod import torch.nn.functional as F from mmcv.runner import BaseModule, force_fp32 from ...core.utils import stack_batch from ..builder import build_loss from ..utils import interpolate_as class BaseSemanticHead(BaseModule, metaclass=ABCMeta): """Base module of Semantic Head. Args: num_classes (int): the number of classes. init_cfg (dict): the initialization config. loss_seg (dict): the loss of the semantic head. """ def __init__(self, num_classes, init_cfg=None, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=1.0)): super(BaseSemanticHead, self).__init__(init_cfg) self.loss_seg = build_loss(loss_seg) self.num_classes = num_classes @force_fp32(apply_to=('seg_preds', )) def loss(self, seg_preds, gt_semantic_seg): """Get the loss of semantic head. Args: seg_preds (Tensor): The input logits with the shape (N, C, H, W). gt_semantic_seg: The ground truth of semantic segmentation with the shape (N, H, W). label_bias: The starting number of the semantic label. Default: 1. Returns: dict: the loss of semantic head. """ if seg_preds.shape[-2:] != gt_semantic_seg.shape[-2:]: seg_preds = interpolate_as(seg_preds, gt_semantic_seg) seg_preds = seg_preds.permute((0, 2, 3, 1)) loss_seg = self.loss_seg( seg_preds.reshape(-1, self.num_classes), # => [NxHxW, C] gt_semantic_seg.reshape(-1).long()) return dict(loss_seg=loss_seg) @abstractmethod def forward(self, x): """Placeholder of forward function. Returns: dict[str, Tensor]: A dictionary, including features and predicted scores. Required keys: 'seg_preds' and 'feats'. """ pass def forward_train(self, x, data_samples): output = self.forward(x) seg_preds = output['seg_preds'] gt_semantic_segs = [ data_sample.gt_sem_seg for data_sample in data_samples ] gt_semantic_segs = stack_batch(gt_semantic_segs, pad_value=255) return self.loss(seg_preds, gt_semantic_segs) def simple_test(self, x, img_metas, rescale=False): output = self.forward(x) seg_preds = output['seg_preds'] seg_preds = F.interpolate( seg_preds, size=img_metas[0]['pad_shape'][:2], mode='bilinear', align_corners=False) if rescale: h, w, _ = img_metas[0]['img_shape'] seg_preds = seg_preds[:, :, :h, :w] h, w, _ = img_metas[0]['ori_shape'] seg_preds = F.interpolate( seg_preds, size=(h, w), mode='bilinear', align_corners=False) return seg_preds
from typing import Any, Optional, Union, cast from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import HumanMessage, SystemMessage from langchain_core.output_parsers import BaseLLMOutputParser from langchain_core.output_parsers.openai_functions import ( OutputFunctionsParser, PydanticOutputFunctionsParser, ) from langchain_core.prompts import PromptTemplate from langchain_core.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate from langchain_core.utils.pydantic import is_basemodel_subclass from pydantic import BaseModel, Field from langchain.chains.llm import LLMChain from langchain.chains.openai_functions.utils import get_llm_kwargs class AnswerWithSources(BaseModel): """An answer to the question, with sources.""" answer: str = Field(..., description="Answer to the question that was asked") sources: list[str] = Field( ..., description="List of sources used to answer the question" ) @deprecated( since="0.2.13", removal="1.0", message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with structured responses: " "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" ), ) def create_qa_with_structure_chain( llm: BaseLanguageModel, schema: Union[dict, type[BaseModel]], output_parser: str = "base", prompt: Optional[Union[PromptTemplate, ChatPromptTemplate]] = None, verbose: bool = False, # noqa: FBT001,FBT002 ) -> LLMChain: """Create a question answering chain that returns an answer with sources based on schema. Args: llm: Language model to use for the chain. schema: Pydantic schema to use for the output. output_parser: Output parser to use. Should be one of `pydantic` or `base`. Default to `base`. prompt: Optional prompt to use for the chain. Returns: """ if output_parser == "pydantic": if not (isinstance(schema, type) and is_basemodel_subclass(schema)): msg = ( "Must provide a pydantic class for schema when output_parser is " "'pydantic'." ) raise ValueError(msg) _output_parser: BaseLLMOutputParser = PydanticOutputFunctionsParser( pydantic_schema=schema ) elif output_parser == "base": _output_parser = OutputFunctionsParser() else: msg = ( f"Got unexpected output_parser: {output_parser}. " f"Should be one of `pydantic` or `base`." ) raise ValueError(msg) if isinstance(schema, type) and is_basemodel_subclass(schema): if hasattr(schema, "model_json_schema"): schema_dict = cast(dict, schema.model_json_schema()) else: schema_dict = cast(dict, schema.schema()) else: schema_dict = cast(dict, schema) function = { "name": schema_dict["title"], "description": schema_dict["description"], "parameters": schema_dict, } llm_kwargs = get_llm_kwargs(function) messages = [ SystemMessage( content=( "You are a world class algorithm to answer " "questions in a specific format." ) ), HumanMessage(content="Answer question using the following context"), HumanMessagePromptTemplate.from_template("{context}"), HumanMessagePromptTemplate.from_template("Question: {question}"), HumanMessage(content="Tips: Make sure to answer in the correct format"), ] prompt = prompt or ChatPromptTemplate(messages=messages) # type: ignore[arg-type] return LLMChain( llm=llm, prompt=prompt, llm_kwargs=llm_kwargs, output_parser=_output_parser, verbose=verbose, ) @deprecated( since="0.2.13", removal="1.0", message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with sources: " "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" ), ) def create_qa_with_sources_chain( llm: BaseLanguageModel, verbose: bool = False, # noqa: FBT001,FBT002 **kwargs: Any, ) -> LLMChain: """Create a question answering chain that returns an answer with sources. Args: llm: Language model to use for the chain. verbose: Whether to print the details of the chain **kwargs: Keyword arguments to pass to `create_qa_with_structure_chain`. Returns: Chain (LLMChain) that can be used to answer questions with citations. """ return create_qa_with_structure_chain( llm, AnswerWithSources, verbose=verbose, **kwargs )
from typing import Any, Optional, Union, cast from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import HumanMessage, SystemMessage from langchain_core.output_parsers import BaseLLMOutputParser from langchain_core.output_parsers.openai_functions import ( OutputFunctionsParser, PydanticOutputFunctionsParser, ) from langchain_core.prompts import PromptTemplate from langchain_core.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate from langchain_core.utils.pydantic import is_basemodel_subclass from pydantic import BaseModel, Field from langchain.chains.llm import LLMChain from langchain.chains.openai_functions.utils import get_llm_kwargs class AnswerWithSources(BaseModel): """An answer to the question, with sources.""" answer: str = Field(..., description="Answer to the question that was asked") sources: list[str] = Field( ..., description="List of sources used to answer the question" ) @deprecated( since="0.2.13", removal="1.0", message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with structured responses: " "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" # noqa: E501 ), ) def create_qa_with_structure_chain( llm: BaseLanguageModel, schema: Union[dict, type[BaseModel]], output_parser: str = "base", prompt: Optional[Union[PromptTemplate, ChatPromptTemplate]] = None, verbose: bool = False, # noqa: FBT001,FBT002 ) -> LLMChain: """Create a question answering chain that returns an answer with sources based on schema. Args: llm: Language model to use for the chain. schema: Pydantic schema to use for the output. output_parser: Output parser to use. Should be one of `pydantic` or `base`. Default to `base`. prompt: Optional prompt to use for the chain. Returns: """ if output_parser == "pydantic": if not (isinstance(schema, type) and is_basemodel_subclass(schema)): msg = ( "Must provide a pydantic class for schema when output_parser is " "'pydantic'." ) raise ValueError(msg) _output_parser: BaseLLMOutputParser = PydanticOutputFunctionsParser( pydantic_schema=schema ) elif output_parser == "base": _output_parser = OutputFunctionsParser() else: msg = ( f"Got unexpected output_parser: {output_parser}. " f"Should be one of `pydantic` or `base`." ) raise ValueError(msg) if isinstance(schema, type) and is_basemodel_subclass(schema): if hasattr(schema, "model_json_schema"): schema_dict = cast(dict, schema.model_json_schema()) else: schema_dict = cast(dict, schema.schema()) else: schema_dict = cast(dict, schema) function = { "name": schema_dict["title"], "description": schema_dict["description"], "parameters": schema_dict, } llm_kwargs = get_llm_kwargs(function) messages = [ SystemMessage( content=( "You are a world class algorithm to answer " "questions in a specific format." ) ), HumanMessage(content="Answer question using the following context"), HumanMessagePromptTemplate.from_template("{context}"), HumanMessagePromptTemplate.from_template("Question: {question}"), HumanMessage(content="Tips: Make sure to answer in the correct format"), ] prompt = prompt or ChatPromptTemplate(messages=messages) # type: ignore[arg-type] return LLMChain( llm=llm, prompt=prompt, llm_kwargs=llm_kwargs, output_parser=_output_parser, verbose=verbose, ) @deprecated( since="0.2.13", removal="1.0", message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with sources: " "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" # noqa: E501 ), ) def create_qa_with_sources_chain( llm: BaseLanguageModel, verbose: bool = False, # noqa: FBT001,FBT002 **kwargs: Any, ) -> LLMChain: """Create a question answering chain that returns an answer with sources. Args: llm: Language model to use for the chain. verbose: Whether to print the details of the chain **kwargs: Keyword arguments to pass to `create_qa_with_structure_chain`. Returns: Chain (LLMChain) that can be used to answer questions with citations. """ return create_qa_with_structure_chain( llm, AnswerWithSources, verbose=verbose, **kwargs )
"""Data embedding techniques.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._isomap import Isomap from ._locally_linear import LocallyLinearEmbedding, locally_linear_embedding from ._mds import MDS, smacof from ._spectral_embedding import SpectralEmbedding, spectral_embedding from ._t_sne import TSNE, trustworthiness __all__ = [ "MDS", "TSNE", "Isomap", "LocallyLinearEmbedding", "SpectralEmbedding", "locally_linear_embedding", "smacof", "spectral_embedding", "trustworthiness", ]
"""Data embedding techniques.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._isomap import Isomap from ._locally_linear import LocallyLinearEmbedding, locally_linear_embedding from ._mds import MDS, smacof from ._spectral_embedding import SpectralEmbedding, spectral_embedding from ._t_sne import TSNE, trustworthiness __all__ = [ "locally_linear_embedding", "LocallyLinearEmbedding", "Isomap", "MDS", "smacof", "SpectralEmbedding", "spectral_embedding", "TSNE", "trustworthiness", ]
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.dist import all_reduce_params, is_distributed from mmengine.registry import HOOKS from .hook import Hook @HOOKS.register_module() class SyncBuffersHook(Hook): """Synchronize model buffers such as running_mean and running_var in BN at the end of each epoch.""" priority = 'NORMAL' def __init__(self) -> None: self.distributed = is_distributed() def after_train_epoch(self, runner) -> None: """All-reduce model buffers at the end of each epoch. Args: runner (Runner): The runner of the training process. """ if self.distributed: all_reduce_params(runner.model.buffers(), op='mean')
# Copyright (c) OpenMMLab. All rights reserved. from mmengine import dist from mmengine.registry import HOOKS from .hook import Hook @HOOKS.register_module() class SyncBuffersHook(Hook): """Synchronize model buffers such as running_mean and running_var in BN at the end of each epoch.""" priority = 'NORMAL' def __init__(self) -> None: self.distributed = dist.is_distributed() def after_train_epoch(self, runner) -> None: """All-reduce model buffers at the end of each epoch. Args: runner (Runner): The runner of the training process. """ if self.distributed: dist.all_reduce_params(runner.model.buffers(), op='mean')
# Copyright (c) OpenMMLab. All rights reserved. import torch from ..builder import BBOX_SAMPLERS from ..transforms import bbox2roi from .base_sampler import BaseSampler @BBOX_SAMPLERS.register_module() class OHEMSampler(BaseSampler): r"""Online Hard Example Mining Sampler described in `Training Region-based Object Detectors with Online Hard Example Mining <https://arxiv.org/abs/1604.03540>`_. """ def __init__(self, num, pos_fraction, context, neg_pos_ub=-1, add_gt_as_proposals=True, **kwargs): super(OHEMSampler, self).__init__(num, pos_fraction, neg_pos_ub, add_gt_as_proposals) self.context = context if not hasattr(self.context, 'num_stages'): self.bbox_head = self.context.bbox_head else: self.bbox_head = self.context.bbox_head[self.context.current_stage] def hard_mining(self, inds, num_expected, bboxes, labels, feats): with torch.no_grad(): rois = bbox2roi([bboxes]) if not hasattr(self.context, 'num_stages'): bbox_results = self.context._bbox_forward(feats, rois) else: bbox_results = self.context._bbox_forward( self.context.current_stage, feats, rois) cls_score = bbox_results['cls_score'] loss = self.bbox_head.loss( cls_score=cls_score, bbox_pred=None, rois=rois, labels=labels, label_weights=cls_score.new_ones(cls_score.size(0)), bbox_targets=None, bbox_weights=None, reduction_override='none')['loss_cls'] _, topk_loss_inds = loss.topk(num_expected) return inds[topk_loss_inds] def _sample_pos(self, assign_result, num_expected, bboxes=None, feats=None, **kwargs): """Sample positive boxes. Args: assign_result (:obj:`AssignResult`): Assigned results num_expected (int): Number of expected positive samples bboxes (torch.Tensor, optional): Boxes. Defaults to None. feats (list[torch.Tensor], optional): Multi-level features. Defaults to None. Returns: torch.Tensor: Indices of positive samples """ # Sample some hard positive samples pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False) if pos_inds.numel() != 0: pos_inds = pos_inds.squeeze(1) if pos_inds.numel() <= num_expected: return pos_inds else: return self.hard_mining(pos_inds, num_expected, bboxes[pos_inds], assign_result.labels[pos_inds], feats) def _sample_neg(self, assign_result, num_expected, bboxes=None, feats=None, **kwargs): """Sample negative boxes. Args: assign_result (:obj:`AssignResult`): Assigned results num_expected (int): Number of expected negative samples bboxes (torch.Tensor, optional): Boxes. Defaults to None. feats (list[torch.Tensor], optional): Multi-level features. Defaults to None. Returns: torch.Tensor: Indices of negative samples """ # Sample some hard negative samples neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False) if neg_inds.numel() != 0: neg_inds = neg_inds.squeeze(1) if len(neg_inds) <= num_expected: return neg_inds else: neg_labels = assign_result.labels.new_empty( neg_inds.size(0)).fill_(self.bbox_head.num_classes) return self.hard_mining(neg_inds, num_expected, bboxes[neg_inds], neg_labels, feats)
import torch from ..builder import BBOX_SAMPLERS from ..transforms import bbox2roi from .base_sampler import BaseSampler @BBOX_SAMPLERS.register_module() class OHEMSampler(BaseSampler): r"""Online Hard Example Mining Sampler described in `Training Region-based Object Detectors with Online Hard Example Mining <https://arxiv.org/abs/1604.03540>`_. """ def __init__(self, num, pos_fraction, context, neg_pos_ub=-1, add_gt_as_proposals=True, **kwargs): super(OHEMSampler, self).__init__(num, pos_fraction, neg_pos_ub, add_gt_as_proposals) self.context = context if not hasattr(self.context, 'num_stages'): self.bbox_head = self.context.bbox_head else: self.bbox_head = self.context.bbox_head[self.context.current_stage] def hard_mining(self, inds, num_expected, bboxes, labels, feats): with torch.no_grad(): rois = bbox2roi([bboxes]) if not hasattr(self.context, 'num_stages'): bbox_results = self.context._bbox_forward(feats, rois) else: bbox_results = self.context._bbox_forward( self.context.current_stage, feats, rois) cls_score = bbox_results['cls_score'] loss = self.bbox_head.loss( cls_score=cls_score, bbox_pred=None, rois=rois, labels=labels, label_weights=cls_score.new_ones(cls_score.size(0)), bbox_targets=None, bbox_weights=None, reduction_override='none')['loss_cls'] _, topk_loss_inds = loss.topk(num_expected) return inds[topk_loss_inds] def _sample_pos(self, assign_result, num_expected, bboxes=None, feats=None, **kwargs): """Sample positive boxes. Args: assign_result (:obj:`AssignResult`): Assigned results num_expected (int): Number of expected positive samples bboxes (torch.Tensor, optional): Boxes. Defaults to None. feats (list[torch.Tensor], optional): Multi-level features. Defaults to None. Returns: torch.Tensor: Indices of positive samples """ # Sample some hard positive samples pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False) if pos_inds.numel() != 0: pos_inds = pos_inds.squeeze(1) if pos_inds.numel() <= num_expected: return pos_inds else: return self.hard_mining(pos_inds, num_expected, bboxes[pos_inds], assign_result.labels[pos_inds], feats) def _sample_neg(self, assign_result, num_expected, bboxes=None, feats=None, **kwargs): """Sample negative boxes. Args: assign_result (:obj:`AssignResult`): Assigned results num_expected (int): Number of expected negative samples bboxes (torch.Tensor, optional): Boxes. Defaults to None. feats (list[torch.Tensor], optional): Multi-level features. Defaults to None. Returns: torch.Tensor: Indices of negative samples """ # Sample some hard negative samples neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False) if neg_inds.numel() != 0: neg_inds = neg_inds.squeeze(1) if len(neg_inds) <= num_expected: return neg_inds else: neg_labels = assign_result.labels.new_empty( neg_inds.size(0)).fill_(self.bbox_head.num_classes) return self.hard_mining(neg_inds, num_expected, bboxes[neg_inds], neg_labels, feats)
# Copyright (c) OpenMMLab. All rights reserved. import datetime import os.path as osp from tempfile import TemporaryDirectory from unittest import TestCase, skipIf from mmengine.logging import MMLogger from mmengine.registry import (DefaultScope, Registry, count_registered_modules, init_default_scope, root, traverse_registry_tree) from mmengine.utils import is_installed class TestUtils(TestCase): def test_traverse_registry_tree(self): # Hierarchical Registry # DOGS # _______|_______ # | | # HOUNDS (hound) SAMOYEDS (samoyed) # _______|_______ | # | | | # LITTLE_HOUNDS MID_HOUNDS LITTLE_SAMOYEDS # (little_hound) (mid_hound) (little_samoyed) DOGS = Registry('dogs') HOUNDS = Registry('dogs', parent=DOGS, scope='hound') LITTLE_HOUNDS = Registry( # noqa 'dogs', parent=HOUNDS, scope='little_hound') MID_HOUNDS = Registry('dogs', parent=HOUNDS, scope='mid_hound') SAMOYEDS = Registry('dogs', parent=DOGS, scope='samoyed') LITTLE_SAMOYEDS = Registry( # noqa 'dogs', parent=SAMOYEDS, scope='little_samoyed') @DOGS.register_module() class GoldenRetriever: pass # traversing the tree from the root result = traverse_registry_tree(DOGS) self.assertEqual(result[0]['num_modules'], 1) self.assertEqual(len(result), 6) # traversing the tree from leaf node result_leaf = traverse_registry_tree(MID_HOUNDS) # result from any node should be the same self.assertEqual(result, result_leaf) @skipIf(not is_installed('torch'), 'tests requires torch') def test_count_all_registered_modules(self): temp_dir = TemporaryDirectory() results = count_registered_modules(temp_dir.name, verbose=True) self.assertTrue( osp.exists( osp.join(temp_dir.name, 'modules_statistic_results.json'))) registries_info = results['registries'] for registry in registries_info: self.assertTrue(hasattr(root, registry)) self.assertEqual(registries_info[registry][0]['num_modules'], len(getattr(root, registry).module_dict)) temp_dir.cleanup() # test not saving results count_registered_modules(save_path=None, verbose=False) self.assertFalse( osp.exists( osp.join(temp_dir.name, 'modules_statistic_results.json'))) @skipIf(not is_installed('torch'), 'tests requires torch') def test_init_default_scope(self): # init default scope init_default_scope('mmdet') self.assertEqual(DefaultScope.get_current_instance().scope_name, 'mmdet') # init default scope when another scope is init name = f'test-{datetime.datetime.now()}' DefaultScope.get_instance(name, scope_name='test') # Warning should be raised since the current # default scope is not 'mmdet' with self.assertLogs(MMLogger.get_current_instance(), level='WARNING'): init_default_scope('mmdet')
# Copyright (c) OpenMMLab. All rights reserved. import datetime import os.path as osp from tempfile import TemporaryDirectory from unittest import TestCase, skipIf from mmengine.registry import (DefaultScope, Registry, count_registered_modules, init_default_scope, root, traverse_registry_tree) from mmengine.utils import is_installed class TestUtils(TestCase): def test_traverse_registry_tree(self): # Hierarchical Registry # DOGS # _______|_______ # | | # HOUNDS (hound) SAMOYEDS (samoyed) # _______|_______ | # | | | # LITTLE_HOUNDS MID_HOUNDS LITTLE_SAMOYEDS # (little_hound) (mid_hound) (little_samoyed) DOGS = Registry('dogs') HOUNDS = Registry('dogs', parent=DOGS, scope='hound') LITTLE_HOUNDS = Registry( # noqa 'dogs', parent=HOUNDS, scope='little_hound') MID_HOUNDS = Registry('dogs', parent=HOUNDS, scope='mid_hound') SAMOYEDS = Registry('dogs', parent=DOGS, scope='samoyed') LITTLE_SAMOYEDS = Registry( # noqa 'dogs', parent=SAMOYEDS, scope='little_samoyed') @DOGS.register_module() class GoldenRetriever: pass # traversing the tree from the root result = traverse_registry_tree(DOGS) self.assertEqual(result[0]['num_modules'], 1) self.assertEqual(len(result), 6) # traversing the tree from leaf node result_leaf = traverse_registry_tree(MID_HOUNDS) # result from any node should be the same self.assertEqual(result, result_leaf) @skipIf(not is_installed('torch'), 'tests requires torch') def test_count_all_registered_modules(self): temp_dir = TemporaryDirectory() results = count_registered_modules(temp_dir.name, verbose=True) self.assertTrue( osp.exists( osp.join(temp_dir.name, 'modules_statistic_results.json'))) registries_info = results['registries'] for registry in registries_info: self.assertTrue(hasattr(root, registry)) self.assertEqual(registries_info[registry][0]['num_modules'], len(getattr(root, registry).module_dict)) temp_dir.cleanup() # test not saving results count_registered_modules(save_path=None, verbose=False) self.assertFalse( osp.exists( osp.join(temp_dir.name, 'modules_statistic_results.json'))) @skipIf(not is_installed('torch'), 'tests requires torch') def test_init_default_scope(self): # init default scope init_default_scope('mmdet') self.assertEqual(DefaultScope.get_current_instance().scope_name, 'mmdet') # init default scope when another scope is init name = f'test-{datetime.datetime.now()}' DefaultScope.get_instance(name, scope_name='test') with self.assertWarnsRegex( Warning, 'The current default scope "test" is not "mmdet"'): init_default_scope('mmdet')
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig from .single_stage import SingleStageDetector @MODELS.register_module() class YOLOF(SingleStageDetector): r"""Implementation of `You Only Look One-level Feature <https://arxiv.org/abs/2103.09460>`_ Args: backbone (:obj:`ConfigDict` or dict): The backbone module. neck (:obj:`ConfigDict` or dict): The neck module. bbox_head (:obj:`ConfigDict` or dict): The bbox head module. train_cfg (:obj:`ConfigDict` or dict, optional): The training config of YOLOF. Defaults to None. test_cfg (:obj:`ConfigDict` or dict, optional): The testing config of YOLOF. Defaults to None. data_preprocessor (:obj:`ConfigDict` or dict, optional): Model preprocessing config for processing the input data. it usually includes ``to_rgb``, ``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``. Defaults to None. init_cfg (:obj:`ConfigDict` or dict, optional): the config to control the initialization. Defaults to None. """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core.utils.typing import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class YOLOF(SingleStageDetector): r"""Implementation of `You Only Look One-level Feature <https://arxiv.org/abs/2103.09460>`_ Args: backbone (:obj:`ConfigDict` or dict): The backbone module. neck (:obj:`ConfigDict` or dict): The neck module. bbox_head (:obj:`ConfigDict` or dict): The bbox head module. train_cfg (:obj:`ConfigDict` or dict, optional): The training config of YOLOF. Defaults to None. test_cfg (:obj:`ConfigDict` or dict, optional): The testing config of YOLOF. Defaults to None. data_preprocessor (:obj:`ConfigDict` or dict, optional): Model preprocessing config for processing the input data. it usually includes ``to_rgb``, ``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``. Defaults to None. init_cfg (:obj:`ConfigDict` or dict, optional): the config to control the initialization. Defaults to None. """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
_base_ = ['./cascade_mask_rcnn_r50_fpn_1x_coco.py'] model = dict( data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32), backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
_base_ = ['./cascade_mask_rcnn_r50_fpn_1x_coco.py'] preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) model = dict( preprocess_cfg=preprocess_cfg, backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
import numpy as np import torch from docarray.document import BaseDocument from docarray.typing import AnyUrl, NdArray, TorchTensor def test_to_json(): class Mmdoc(BaseDocument): img: NdArray url: AnyUrl txt: str torch_tensor: TorchTensor doc = Mmdoc( img=np.zeros((3, 224, 224)), url='http://doccaray.io', txt='hello', torch_tensor=torch.zeros(3, 224, 224), ) doc.json() def test_from_json(): class Mmdoc(BaseDocument): img: NdArray url: AnyUrl txt: str torch_tensor: TorchTensor doc = Mmdoc( img=np.zeros((2, 2)), url='http://doccaray.io', txt='hello', torch_tensor=torch.zeros(3, 224, 224), ) new_doc = Mmdoc.parse_raw(doc.json()) for (field, field2) in zip(doc.dict().keys(), new_doc.dict().keys()): if field in ['torch_tensor', 'img']: assert (getattr(doc, field) == getattr(doc, field2)).all() else: assert getattr(doc, field) == getattr(doc, field2)
import numpy as np import torch from docarray.document import BaseDocument from docarray.typing import AnyUrl, Tensor, TorchTensor def test_to_json(): class Mmdoc(BaseDocument): img: Tensor url: AnyUrl txt: str torch_tensor: TorchTensor doc = Mmdoc( img=np.zeros((3, 224, 224)), url='http://doccaray.io', txt='hello', torch_tensor=torch.zeros(3, 224, 224), ) doc.json() def test_from_json(): class Mmdoc(BaseDocument): img: Tensor url: AnyUrl txt: str torch_tensor: TorchTensor doc = Mmdoc( img=np.zeros((2, 2)), url='http://doccaray.io', txt='hello', torch_tensor=torch.zeros(3, 224, 224), ) new_doc = Mmdoc.parse_raw(doc.json()) for (field, field2) in zip(doc.dict().keys(), new_doc.dict().keys()): if field in ['torch_tensor', 'img']: assert (getattr(doc, field) == getattr(doc, field2)).all() else: assert getattr(doc, field) == getattr(doc, field2)
""" This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It uses AdaptiveLayerLoss with the powerful CoSENTLoss to train models that perform well even when removing some layers. It generates sentence embeddings that can be compared using cosine-similarity to measure the similarity. Usage: python adaptive_layer_sts.py OR python adaptive_layer_sts.py pretrained_transformer_model_name """ import traceback from datasets import load_dataset from sentence_transformers import losses from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, SentenceTransformerTrainingArguments from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator, SimilarityFunction import logging from datetime import datetime import sys # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) model_name = sys.argv[1] if len(sys.argv) > 1 else "distilbert-base-uncased" batch_size = 16 num_train_epochs = 4 # Save path of the model output_dir = f"output/adaptive_layer_sts_{model_name.replace('/', '-')}-{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}" # 1. Here we define our SentenceTransformer model. If not already a Sentence Transformer model, it will automatically # create one with "mean" pooling. model = SentenceTransformer(model_name) # If we want, we can limit the maximum sequence length for the model # model.max_seq_length = 75 logging.info(model) # 2. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 3. Define our training loss # CoSENTLoss (https://sbert.net/docs/package_reference/losses.html#cosentloss) needs two text columns and one # similarity score column (between 0 and 1) inner_train_loss = losses.CoSENTLoss(model=model) train_loss = losses.AdaptiveLayerLoss(model, inner_train_loss) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_train_epochs, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="adaptive-layer-sts", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-sts-adaptive-layer") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-sts-adaptive-layer')`." )
""" This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It uses AdaptiveLayerLoss with the powerful CoSENTLoss to train models that perform well at output dimensions [768, 512, 256, 128, 64]. It generates sentence embeddings that can be compared using cosine-similarity to measure the similarity. Usage: python adaptive_layer_sts.py OR python adaptive_layer_sts.py pretrained_transformer_model_name """ from torch.utils.data import DataLoader import math from sentence_transformers import SentenceTransformer, LoggingHandler, losses, models, util from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import InputExample import logging from datetime import datetime import sys import os import gzip import csv #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = sys.argv[1] if len(sys.argv) > 1 else "distilbert-base-uncased" # Read the dataset train_batch_size = 16 num_epochs = 4 model_save_path = ( "output/adaptive_layer_sts_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False, ) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row["sentence1"], row["sentence2"]], label=score) if row["split"] == "dev": dev_samples.append(inp_example) elif row["split"] == "test": test_samples.append(inp_example) else: train_samples.append(inp_example) train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) train_loss = losses.CoSENTLoss(model=model) train_loss = losses.AdaptiveLayerLoss(model, train_loss) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training. We skip evaluation in this example warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit( train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=model_save_path, ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test") test_evaluator(model, output_path=model_save_path) # Optionally, save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-sts-adaptive-layer") except Exception: logging.error( "Error uploading model to the Hugging Face Hub. To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({model_save_path!r})` " f"and saving it using `model.push_to_hub('{model_name}-sts-adaptive-layer')`." )
import contextlib import logging import typing import fastapi import fastapi.responses import starlette.middleware.cors import uvicorn from autogpt_libs.feature_flag.client import ( initialize_launchdarkly, shutdown_launchdarkly, ) import backend.data.block import backend.data.db import backend.data.graph import backend.data.user import backend.server.routers.v1 import backend.server.v2.library.routes import backend.server.v2.store.routes import backend.util.service import backend.util.settings settings = backend.util.settings.Settings() logger = logging.getLogger(__name__) logging.getLogger("autogpt_libs").setLevel(logging.INFO) @contextlib.contextmanager def launch_darkly_context(): if settings.config.app_env != backend.util.settings.AppEnvironment.LOCAL: initialize_launchdarkly() try: yield finally: shutdown_launchdarkly() else: yield @contextlib.asynccontextmanager async def lifespan_context(app: fastapi.FastAPI): await backend.data.db.connect() await backend.data.block.initialize_blocks() await backend.data.user.migrate_and_encrypt_user_integrations() await backend.data.graph.fix_llm_provider_credentials() with launch_darkly_context(): yield await backend.data.db.disconnect() docs_url = ( "/docs" if settings.config.app_env == backend.util.settings.AppEnvironment.LOCAL else None ) app = fastapi.FastAPI( title="AutoGPT Agent Server", description=( "This server is used to execute agents that are created by the " "AutoGPT system." ), summary="AutoGPT Agent Server", version="0.1", lifespan=lifespan_context, docs_url=docs_url, ) def handle_internal_http_error(status_code: int = 500, log_error: bool = True): def handler(request: fastapi.Request, exc: Exception): if log_error: logger.exception(f"{request.method} {request.url.path} failed: {exc}") return fastapi.responses.JSONResponse( content={ "message": f"{request.method} {request.url.path} failed", "detail": str(exc), }, status_code=status_code, ) return handler app.add_exception_handler(ValueError, handle_internal_http_error(400)) app.add_exception_handler(Exception, handle_internal_http_error(500)) app.include_router(backend.server.routers.v1.v1_router, tags=["v1"], prefix="/api") app.include_router( backend.server.v2.store.routes.router, tags=["v2"], prefix="/api/store" ) app.include_router( backend.server.v2.library.routes.router, tags=["v2"], prefix="/api/library" ) @app.get(path="/health", tags=["health"], dependencies=[]) async def health(): return {"status": "healthy"} class AgentServer(backend.util.service.AppProcess): def run(self): server_app = starlette.middleware.cors.CORSMiddleware( app=app, allow_origins=settings.config.backend_cors_allow_origins, allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) uvicorn.run( server_app, host=backend.util.settings.Config().agent_api_host, port=backend.util.settings.Config().agent_api_port, ) @staticmethod async def test_execute_graph( graph_id: str, node_input: dict[typing.Any, typing.Any], user_id: str ): return backend.server.routers.v1.execute_graph(graph_id, node_input, user_id) @staticmethod async def test_create_graph( create_graph: backend.server.routers.v1.CreateGraph, user_id: str, ): return await backend.server.routers.v1.create_new_graph(create_graph, user_id) @staticmethod async def test_get_graph_run_status(graph_exec_id: str, user_id: str): execution = await backend.data.graph.get_execution( user_id=user_id, execution_id=graph_exec_id ) if not execution: raise ValueError(f"Execution {graph_exec_id} not found") return execution.status @staticmethod async def test_get_graph_run_node_execution_results( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_node_execution_results( graph_id, graph_exec_id, user_id ) @staticmethod async def test_delete_graph(graph_id: str, user_id: str): return await backend.server.routers.v1.delete_graph(graph_id, user_id) def set_test_dependency_overrides(self, overrides: dict): app.dependency_overrides.update(overrides)
import contextlib import logging import typing import fastapi import fastapi.responses import starlette.middleware.cors import uvicorn from autogpt_libs.feature_flag.client import ( initialize_launchdarkly, shutdown_launchdarkly, ) import backend.data.block import backend.data.db import backend.data.graph import backend.data.user import backend.server.routers.v1 import backend.server.v2.store.routes import backend.util.service import backend.util.settings settings = backend.util.settings.Settings() logger = logging.getLogger(__name__) logging.getLogger("autogpt_libs").setLevel(logging.INFO) @contextlib.contextmanager def launch_darkly_context(): if settings.config.app_env != backend.util.settings.AppEnvironment.LOCAL: initialize_launchdarkly() try: yield finally: shutdown_launchdarkly() else: yield @contextlib.asynccontextmanager async def lifespan_context(app: fastapi.FastAPI): await backend.data.db.connect() await backend.data.block.initialize_blocks() await backend.data.user.migrate_and_encrypt_user_integrations() await backend.data.graph.fix_llm_provider_credentials() with launch_darkly_context(): yield await backend.data.db.disconnect() docs_url = ( "/docs" if settings.config.app_env == backend.util.settings.AppEnvironment.LOCAL else None ) app = fastapi.FastAPI( title="AutoGPT Agent Server", description=( "This server is used to execute agents that are created by the " "AutoGPT system." ), summary="AutoGPT Agent Server", version="0.1", lifespan=lifespan_context, docs_url=docs_url, ) def handle_internal_http_error(status_code: int = 500, log_error: bool = True): def handler(request: fastapi.Request, exc: Exception): if log_error: logger.exception(f"{request.method} {request.url.path} failed: {exc}") return fastapi.responses.JSONResponse( content={ "message": f"{request.method} {request.url.path} failed", "detail": str(exc), }, status_code=status_code, ) return handler app.add_exception_handler(ValueError, handle_internal_http_error(400)) app.add_exception_handler(Exception, handle_internal_http_error(500)) app.include_router(backend.server.routers.v1.v1_router, tags=["v1"], prefix="/api") app.include_router( backend.server.v2.store.routes.router, tags=["v2"], prefix="/api/store" ) @app.get(path="/health", tags=["health"], dependencies=[]) async def health(): return {"status": "healthy"} class AgentServer(backend.util.service.AppProcess): def run(self): server_app = starlette.middleware.cors.CORSMiddleware( app=app, allow_origins=settings.config.backend_cors_allow_origins, allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) uvicorn.run( server_app, host=backend.util.settings.Config().agent_api_host, port=backend.util.settings.Config().agent_api_port, ) @staticmethod async def test_execute_graph( graph_id: str, node_input: dict[typing.Any, typing.Any], user_id: str ): return backend.server.routers.v1.execute_graph(graph_id, node_input, user_id) @staticmethod async def test_create_graph( create_graph: backend.server.routers.v1.CreateGraph, user_id: str, ): return await backend.server.routers.v1.create_new_graph(create_graph, user_id) @staticmethod async def test_get_graph_run_status(graph_exec_id: str, user_id: str): execution = await backend.data.graph.get_execution( user_id=user_id, execution_id=graph_exec_id ) if not execution: raise ValueError(f"Execution {graph_exec_id} not found") return execution.status @staticmethod async def test_get_graph_run_node_execution_results( graph_id: str, graph_exec_id: str, user_id: str ): return await backend.server.routers.v1.get_graph_run_node_execution_results( graph_id, graph_exec_id, user_id ) @staticmethod async def test_delete_graph(graph_id: str, user_id: str): return await backend.server.routers.v1.delete_graph(graph_id, user_id) def set_test_dependency_overrides(self, overrides: dict): app.dependency_overrides.update(overrides)
_base_ = 'retinanet_pvt-t_fpn_1x_coco.py' model = dict( backbone=dict( num_layers=[3, 8, 27, 3], init_cfg=dict(checkpoint='https://github.com/whai362/PVT/' 'releases/download/v2/pvt_large.pth'))) # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict(type='AmpOptimWrapper')
_base_ = 'retinanet_pvt-t_fpn_1x_coco.py' model = dict( backbone=dict( num_layers=[3, 8, 27, 3], init_cfg=dict(checkpoint='https://github.com/whai362/PVT/' 'releases/download/v2/pvt_large.pth'))) fp16 = dict(loss_scale=dict(init_scale=512))
import os from typing import BinaryIO, Optional, Tuple, Union import torch from .backend import Backend from .common import AudioMetaData class SoXBackend(Backend): @staticmethod def info(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str], buffer_size: int = 4096) -> AudioMetaData: if hasattr(uri, "read"): raise ValueError( "SoX backend does not support reading from file-like objects. ", "Please use an alternative backend that does support reading from file-like objects, e.g. FFmpeg.", ) else: sinfo = torch.ops.torchaudio.sox_io_get_info(uri, format) if sinfo: return AudioMetaData(*sinfo) else: raise RuntimeError(f"Failed to fetch metadata for {uri}.") @staticmethod def load( uri: Union[BinaryIO, str, os.PathLike], frame_offset: int = 0, num_frames: int = -1, normalize: bool = True, channels_first: bool = True, format: Optional[str] = None, buffer_size: int = 4096, ) -> Tuple[torch.Tensor, int]: if hasattr(uri, "read"): raise ValueError( "SoX backend does not support loading from file-like objects. ", "Please use an alternative backend that does support loading from file-like objects, e.g. FFmpeg.", ) else: ret = torch.ops.torchaudio.sox_io_load_audio_file( uri, frame_offset, num_frames, normalize, channels_first, format ) if not ret: raise RuntimeError(f"Failed to load audio from {uri}.") return ret @staticmethod def save( uri: Union[BinaryIO, str, os.PathLike], src: torch.Tensor, sample_rate: int, channels_first: bool = True, format: Optional[str] = None, encoding: Optional[str] = None, bits_per_sample: Optional[int] = None, buffer_size: int = 4096, ) -> None: if hasattr(uri, "write"): raise ValueError( "SoX backend does not support writing to file-like objects. ", "Please use an alternative backend that does support writing to file-like objects, e.g. FFmpeg.", ) else: torch.ops.torchaudio.sox_io_save_audio_file( uri, src, sample_rate, channels_first, None, format, encoding, bits_per_sample, ) @staticmethod def can_decode(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str]) -> bool: # i.e. not a file-like object. return not hasattr(uri, "read") @staticmethod def can_encode(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str]) -> bool: # i.e. not a file-like object. return not hasattr(uri, "write")
import os from typing import BinaryIO, Optional, Tuple, Union import torch from torchaudio.backend.common import AudioMetaData from .backend import Backend class SoXBackend(Backend): @staticmethod def info(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str], buffer_size: int = 4096) -> AudioMetaData: if hasattr(uri, "read"): raise ValueError( "SoX backend does not support reading from file-like objects. ", "Please use an alternative backend that does support reading from file-like objects, e.g. FFmpeg.", ) else: sinfo = torch.ops.torchaudio.sox_io_get_info(uri, format) if sinfo: return AudioMetaData(*sinfo) else: raise RuntimeError(f"Failed to fetch metadata for {uri}.") @staticmethod def load( uri: Union[BinaryIO, str, os.PathLike], frame_offset: int = 0, num_frames: int = -1, normalize: bool = True, channels_first: bool = True, format: Optional[str] = None, buffer_size: int = 4096, ) -> Tuple[torch.Tensor, int]: if hasattr(uri, "read"): raise ValueError( "SoX backend does not support loading from file-like objects. ", "Please use an alternative backend that does support loading from file-like objects, e.g. FFmpeg.", ) else: ret = torch.ops.torchaudio.sox_io_load_audio_file( uri, frame_offset, num_frames, normalize, channels_first, format ) if not ret: raise RuntimeError(f"Failed to load audio from {uri}.") return ret @staticmethod def save( uri: Union[BinaryIO, str, os.PathLike], src: torch.Tensor, sample_rate: int, channels_first: bool = True, format: Optional[str] = None, encoding: Optional[str] = None, bits_per_sample: Optional[int] = None, buffer_size: int = 4096, ) -> None: if hasattr(uri, "write"): raise ValueError( "SoX backend does not support writing to file-like objects. ", "Please use an alternative backend that does support writing to file-like objects, e.g. FFmpeg.", ) else: torch.ops.torchaudio.sox_io_save_audio_file( uri, src, sample_rate, channels_first, None, format, encoding, bits_per_sample, ) @staticmethod def can_decode(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str]) -> bool: # i.e. not a file-like object. return not hasattr(uri, "read") @staticmethod def can_encode(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str]) -> bool: # i.e. not a file-like object. return not hasattr(uri, "write")
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.7.1.dev0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 6: raise ImportWarning( "To use `datasets`, the module `pyarrow>=6.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.7.0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 6: raise ImportWarning( "To use `datasets`, the module `pyarrow>=6.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
import sys from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from jina.serve.runtimes.head.request_handling import HeaderRequestHandler from jina.parsers import set_pod_parser def run(*args, **kwargs): runtime_args = set_pod_parser().parse_args(args) runtime_args.host = runtime_args.host[0] runtime_args.port = runtime_args.port with AsyncNewLoopRuntime(args=runtime_args, req_handler_cls=HeaderRequestHandler) as runtime: runtime.run_forever() if __name__ == '__main__': run(*sys.argv[1:])
import sys from jina.serve.runtimes.head import HeadRuntime from jina.parsers import set_pod_parser def run(*args, **kwargs): runtime_args = set_pod_parser().parse_args(args) runtime_args.host = runtime_args.host[0] runtime_args.port = runtime_args.port[0] with HeadRuntime(runtime_args) as runtime: runtime.run_forever() if __name__ == '__main__': run(*sys.argv[1:])
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Autograph specific overrides for tf.data.ops.""" import functools import numpy as np from tensorflow.python.autograph.operators import control_flow from tensorflow.python.autograph.operators import py_builtins from tensorflow.python.data.ops import iterator_ops from tensorflow.python.framework import tensor_conversion from tensorflow.python.framework import tensor_spec from tensorflow.python.ops import cond from tensorflow.python.util import nest # TODO(mdan): These checks should be easier. Fix the nest API. def _verify_spec_compatible(input_name, spec_name, input_, spec): """Verifies that a symbol has a type compatible vith a given spec. Here, compatibility is viewed in the general TensorFlow sense: that the dtypes are the same after implicit conversion, if both are tensors. This verifier ensures consistent treatment of types across AutoGraph. Args: input_name: A name to use for `input_` in error messages. spec_name: A name to use for `spec` in error messages. input_: Any, value to verify. spec: TypeSpec that `input_` must be compatible with. Raises: ValueError if the two types have been determined not to be compatible. """ assert isinstance(spec, tensor_spec.TensorSpec) if input is None: # TODO(mdan): raise from None when switching to Py3. raise ValueError("{} cannot be None".format(input_name)) # TODO(mdan): Use TensorCompatible when ready. if isinstance(input_, (bool, int, float, str, np.ndarray)): input_ = tensor_conversion.convert_to_tensor_v2(input_) input_dtype = getattr(input_, "dtype", None) if input_dtype != spec.dtype: input_dtype_str = "no dtype" if input_dtype is None else str(input_dtype) raise TypeError( "{} must have the same dtype as {}. Expected {}, got {}".format( input_name, spec_name, spec.dtype, input_dtype_str ) ) def _verify_structure_compatible(input_name, spec_name, input_, spec): """Verifies that possibly-structured symbol has types compatible vith another. See _verify_spec_compatible for a more concrete meaning of "compatible". Unspec _verify_spec_compatible, which handles singular Tensor-spec objects, verify_structures_compatible can process structures recognized by tf.nest. Args: input_name: A name to use for `input_` in error messages. spec_name: A name to use for `spec` in error messages. input_: Any, value to verify. May, but doesn't need to, be a structure. spec: Any, value that `input_` must be compatible with. May, but doesn't need to, be a structure. Raises: ValueError if the two types have been determined not to be compatible. """ try: nest.assert_same_structure(input_, spec, expand_composites=True) except (ValueError, TypeError) as e: raise TypeError( "{} must have the same element structure as {}.\n\n{}".format( input_name, spec_name, str(e) ) ) from e nest.map_structure( functools.partial(_verify_spec_compatible, input_name, spec_name), input_, spec) def _next_tf_iterator(iterator, default=py_builtins.UNSPECIFIED): if default is py_builtins.UNSPECIFIED: # Without a default, fall back to the "normal" behavior which raises # a runtime exception. return next(iterator) opt_iterate = iterator.get_next_as_optional() _verify_structure_compatible( "the default argument", "the iterate", default, iterator.element_spec ) return cond.cond( opt_iterate.has_value(), opt_iterate.get_value, lambda: default ) def register_overrides(): py_builtins.next_registry.register( iterator_ops.OwnedIterator, _next_tf_iterator ) control_flow.for_loop_registry.register( iterator_ops.OwnedIterator, control_flow._tf_iterator_for_stmt # pylint: disable=protected-access )
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Autograph specifc overrides for tf.data.ops.""" import functools import numpy as np from tensorflow.python.autograph.operators import control_flow from tensorflow.python.autograph.operators import py_builtins from tensorflow.python.data.ops import iterator_ops from tensorflow.python.framework import tensor_conversion from tensorflow.python.framework import tensor_spec from tensorflow.python.ops import cond from tensorflow.python.util import nest # TODO(mdan): These checks should be easier. Fix the nest API. def _verify_spec_compatible(input_name, spec_name, input_, spec): """Verifies that a symbol has a type compatible vith a given spec. Here, compatibility is viewed in the general TensorFlow sense: that the dtypes are the same after implicit conversion, if both are tensors. This verifier ensures consistent treatment of types across AutoGraph. Args: input_name: A name to use for `input_` in error messages. spec_name: A name to use for `spec` in error messages. input_: Any, value to verify. spec: TypeSpec that `input_` must be compatible with. Raises: ValueError if the two types have been determined not to be compatible. """ assert isinstance(spec, tensor_spec.TensorSpec) if input is None: # TODO(mdan): raise from None when switching to Py3. raise ValueError("{} cannot be None".format(input_name)) # TODO(mdan): Use TensorCompatible when ready. if isinstance(input_, (bool, int, float, str, np.ndarray)): input_ = tensor_conversion.convert_to_tensor_v2(input_) input_dtype = getattr(input_, "dtype", None) if input_dtype != spec.dtype: input_dtype_str = "no dtype" if input_dtype is None else str(input_dtype) raise TypeError( "{} must have the same dtype as {}. Expected {}, got {}".format( input_name, spec_name, spec.dtype, input_dtype_str ) ) def _verify_structure_compatible(input_name, spec_name, input_, spec): """Verifies that possibly-structured symbol has types compatible vith another. See _verify_spec_compatible for a more concrete meaning of "compatible". Unspec _verify_spec_compatible, which handles singular Tensor-spec objects, verify_structures_compatible can process structures recognized by tf.nest. Args: input_name: A name to use for `input_` in error messages. spec_name: A name to use for `spec` in error messages. input_: Any, value to verify. May, but doesn't need to, be a structure. spec: Any, value that `input_` must be compatible with. May, but doesn't need to, be a structure. Raises: ValueError if the two types have been determined not to be compatible. """ try: nest.assert_same_structure(input_, spec, expand_composites=True) except (ValueError, TypeError) as e: raise TypeError( "{} must have the same element structure as {}.\n\n{}".format( input_name, spec_name, str(e) ) ) from e nest.map_structure( functools.partial(_verify_spec_compatible, input_name, spec_name), input_, spec) def _next_tf_iterator(iterator, default=py_builtins.UNSPECIFIED): if default is py_builtins.UNSPECIFIED: # Without a default, fall back to the "normal" behavior which raises # a runtime exception. return next(iterator) opt_iterate = iterator.get_next_as_optional() _verify_structure_compatible( "the default argument", "the iterate", default, iterator.element_spec ) return cond.cond( opt_iterate.has_value(), opt_iterate.get_value, lambda: default ) def register_overrides(): py_builtins.next_registry.register( iterator_ops.OwnedIterator, _next_tf_iterator ) control_flow.for_loop_registry.register( iterator_ops.OwnedIterator, control_flow._tf_iterator_for_stmt # pylint: disable=protected-access )
from typing import Dict, Set, Type from docarray.typing.tensor.embedding import Embedding, NdArrayEmbedding from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import Tensor __all__ = [ 'NdArray', 'Tensor', 'Embedding', 'NdArrayEmbedding', 'framework_types', 'type_to_framework', ] framework_types: Dict[str, Set] = {'numpy': {NdArray, NdArrayEmbedding}, 'torch': set()} try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor.embedding import TorchEmbedding # noqa: F401 from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 __all__.extend(['TorchEmbedding', 'TorchTensor']) framework_types['torch'] = {TorchTensor, TorchEmbedding} type_to_framework: Dict[Type, str] = { type_: framework for framework, type_set in framework_types.items() for type_ in type_set }
from docarray.typing.tensor.embedding import Embedding, NdArrayEmbedding from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import Tensor __all__ = [ 'NdArray', 'Tensor', 'Embedding', 'NdArrayEmbedding', ] try: import torch # noqa: F401 except ImportError: pass else: from docarray.typing.tensor.embedding import TorchEmbedding # noqa: F401 from docarray.typing.tensor.torch_tensor import TorchTensor # noqa: F401 __all__.extend(['TorchEmbedding', 'TorchTensor'])
"""MutliOn Client API tools.""" from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.multion.close_session import MultionCloseSession from langchain_community.tools.multion.create_session import MultionCreateSession from langchain_community.tools.multion.update_session import MultionUpdateSession # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "MultionCreateSession": "langchain_community.tools.multion.create_session", "MultionUpdateSession": "langchain_community.tools.multion.update_session", "MultionCloseSession": "langchain_community.tools.multion.close_session", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "MultionCloseSession", "MultionCreateSession", "MultionUpdateSession", ]
"""MutliOn Client API tools.""" from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.multion.close_session import MultionCloseSession from langchain_community.tools.multion.create_session import MultionCreateSession from langchain_community.tools.multion.update_session import MultionUpdateSession # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "MultionCreateSession": "langchain_community.tools.multion.create_session", "MultionUpdateSession": "langchain_community.tools.multion.update_session", "MultionCloseSession": "langchain_community.tools.multion.close_session", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "MultionCreateSession", "MultionUpdateSession", "MultionCloseSession", ]
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.cnn import ConvModule, Linear from mmengine.model import ModuleList from torch import Tensor from mmdet.registry import MODELS from mmdet.utils import MultiConfig from .fcn_mask_head import FCNMaskHead @MODELS.register_module() class CoarseMaskHead(FCNMaskHead): """Coarse mask head used in PointRend. Compared with standard ``FCNMaskHead``, ``CoarseMaskHead`` will downsample the input feature map instead of upsample it. Args: num_convs (int): Number of conv layers in the head. Defaults to 0. num_fcs (int): Number of fc layers in the head. Defaults to 2. fc_out_channels (int): Number of output channels of fc layer. Defaults to 1024. downsample_factor (int): The factor that feature map is downsampled by. Defaults to 2. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_convs: int = 0, num_fcs: int = 2, fc_out_channels: int = 1024, downsample_factor: int = 2, init_cfg: MultiConfig = dict( type='Xavier', override=[ dict(name='fcs'), dict(type='Constant', val=0.001, name='fc_logits') ]), *arg, **kwarg) -> None: super().__init__( *arg, num_convs=num_convs, upsample_cfg=dict(type=None), init_cfg=None, **kwarg) self.init_cfg = init_cfg self.num_fcs = num_fcs assert self.num_fcs > 0 self.fc_out_channels = fc_out_channels self.downsample_factor = downsample_factor assert self.downsample_factor >= 1 # remove conv_logit delattr(self, 'conv_logits') if downsample_factor > 1: downsample_in_channels = ( self.conv_out_channels if self.num_convs > 0 else self.in_channels) self.downsample_conv = ConvModule( downsample_in_channels, self.conv_out_channels, kernel_size=downsample_factor, stride=downsample_factor, padding=0, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) else: self.downsample_conv = None self.output_size = (self.roi_feat_size[0] // downsample_factor, self.roi_feat_size[1] // downsample_factor) self.output_area = self.output_size[0] * self.output_size[1] last_layer_dim = self.conv_out_channels * self.output_area self.fcs = ModuleList() for i in range(num_fcs): fc_in_channels = ( last_layer_dim if i == 0 else self.fc_out_channels) self.fcs.append(Linear(fc_in_channels, self.fc_out_channels)) last_layer_dim = self.fc_out_channels output_channels = self.num_classes * self.output_area self.fc_logits = Linear(last_layer_dim, output_channels) def init_weights(self) -> None: """Initialize weights.""" super(FCNMaskHead, self).init_weights() def forward(self, x: Tensor) -> Tensor: """Forward features from the upstream network. Args: x (Tensor): Extract mask RoI features. Returns: Tensor: Predicted foreground masks. """ for conv in self.convs: x = conv(x) if self.downsample_conv is not None: x = self.downsample_conv(x) x = x.flatten(1) for fc in self.fcs: x = self.relu(fc(x)) mask_pred = self.fc_logits(x).view( x.size(0), self.num_classes, *self.output_size) return mask_pred
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.cnn import ConvModule, Linear from mmengine.model import ModuleList from torch import Tensor from mmdet.core.utils import MultiConfig from mmdet.registry import MODELS from .fcn_mask_head import FCNMaskHead @MODELS.register_module() class CoarseMaskHead(FCNMaskHead): """Coarse mask head used in PointRend. Compared with standard ``FCNMaskHead``, ``CoarseMaskHead`` will downsample the input feature map instead of upsample it. Args: num_convs (int): Number of conv layers in the head. Defaults to 0. num_fcs (int): Number of fc layers in the head. Defaults to 2. fc_out_channels (int): Number of output channels of fc layer. Defaults to 1024. downsample_factor (int): The factor that feature map is downsampled by. Defaults to 2. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, num_convs: int = 0, num_fcs: int = 2, fc_out_channels: int = 1024, downsample_factor: int = 2, init_cfg: MultiConfig = dict( type='Xavier', override=[ dict(name='fcs'), dict(type='Constant', val=0.001, name='fc_logits') ]), *arg, **kwarg) -> None: super().__init__( *arg, num_convs=num_convs, upsample_cfg=dict(type=None), init_cfg=None, **kwarg) self.init_cfg = init_cfg self.num_fcs = num_fcs assert self.num_fcs > 0 self.fc_out_channels = fc_out_channels self.downsample_factor = downsample_factor assert self.downsample_factor >= 1 # remove conv_logit delattr(self, 'conv_logits') if downsample_factor > 1: downsample_in_channels = ( self.conv_out_channels if self.num_convs > 0 else self.in_channels) self.downsample_conv = ConvModule( downsample_in_channels, self.conv_out_channels, kernel_size=downsample_factor, stride=downsample_factor, padding=0, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) else: self.downsample_conv = None self.output_size = (self.roi_feat_size[0] // downsample_factor, self.roi_feat_size[1] // downsample_factor) self.output_area = self.output_size[0] * self.output_size[1] last_layer_dim = self.conv_out_channels * self.output_area self.fcs = ModuleList() for i in range(num_fcs): fc_in_channels = ( last_layer_dim if i == 0 else self.fc_out_channels) self.fcs.append(Linear(fc_in_channels, self.fc_out_channels)) last_layer_dim = self.fc_out_channels output_channels = self.num_classes * self.output_area self.fc_logits = Linear(last_layer_dim, output_channels) def init_weights(self) -> None: """Initialize weights.""" super(FCNMaskHead, self).init_weights() def forward(self, x: Tensor) -> Tensor: """Forward features from the upstream network. Args: x (Tensor): Extract mask RoI features. Returns: Tensor: Predicted foreground masks. """ for conv in self.convs: x = conv(x) if self.downsample_conv is not None: x = self.downsample_conv(x) x = x.flatten(1) for fc in self.fcs: x = self.relu(fc(x)) mask_pred = self.fc_logits(x).view( x.size(0), self.num_classes, *self.output_size) return mask_pred
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import subprocess import librosa import pytest from jina import Document, DocumentArray, Flow from ...vggish import vggish_input cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_flow_from_yml(): doc = DocumentArray([Document()]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: resp = f.post(on='test', inputs=doc, return_results=True) assert resp is not None def test_embedding_exists(): x_audio, sample_rate = librosa.load( os.path.join(cur_dir, '../test_data/sample.wav') ) log_mel_examples = vggish_input.waveform_to_examples(x_audio, sample_rate) doc = DocumentArray([Document(blob=log_mel_examples)]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: responses = f.post(on='index', inputs=doc, return_results=True) assert responses[0].docs[0].embedding is not None @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( ['jina', 'executor', f'--uses=docker://{build_docker_image}'], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'pea', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:"/GPU:0"', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import librosa from jina import Flow, Document, DocumentArray from ...vggish import vggish_input from ...vggish_audio_encoder import VggishAudioEncoder cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_flow_from_yml(): doc = DocumentArray([Document()]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: resp = f.post(on='test', inputs=doc, return_results=True) assert resp is not None def test_embedding_exists(): x_audio, sample_rate = librosa.load(os.path.join(cur_dir, '../test_data/sample.wav')) log_mel_examples = vggish_input.waveform_to_examples(x_audio, sample_rate) doc = DocumentArray([Document(blob=log_mel_examples)]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: responses = f.post(on='index', inputs=doc, return_results=True) assert responses[0].docs[0].embedding is not None
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.vectorstores import SKLearnVectorStore from langchain_community.vectorstores.sklearn import ( BaseSerializer, BsonSerializer, JsonSerializer, ParquetSerializer, SKLearnVectorStoreException, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "BaseSerializer": "langchain_community.vectorstores.sklearn", "JsonSerializer": "langchain_community.vectorstores.sklearn", "BsonSerializer": "langchain_community.vectorstores.sklearn", "ParquetSerializer": "langchain_community.vectorstores.sklearn", "SKLearnVectorStoreException": "langchain_community.vectorstores.sklearn", "SKLearnVectorStore": "langchain_community.vectorstores", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "BaseSerializer", "BsonSerializer", "JsonSerializer", "ParquetSerializer", "SKLearnVectorStore", "SKLearnVectorStoreException", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.vectorstores import SKLearnVectorStore from langchain_community.vectorstores.sklearn import ( BaseSerializer, BsonSerializer, JsonSerializer, ParquetSerializer, SKLearnVectorStoreException, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "BaseSerializer": "langchain_community.vectorstores.sklearn", "JsonSerializer": "langchain_community.vectorstores.sklearn", "BsonSerializer": "langchain_community.vectorstores.sklearn", "ParquetSerializer": "langchain_community.vectorstores.sklearn", "SKLearnVectorStoreException": "langchain_community.vectorstores.sklearn", "SKLearnVectorStore": "langchain_community.vectorstores", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "BaseSerializer", "JsonSerializer", "BsonSerializer", "ParquetSerializer", "SKLearnVectorStoreException", "SKLearnVectorStore", ]
from langchain_core.embeddings import Embeddings from langchain_core.utils import secret_from_env from openai import OpenAI from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator from typing_extensions import Self # type: ignore class FireworksEmbeddings(BaseModel, Embeddings): """Fireworks embedding model integration. Setup: Install ``langchain_fireworks`` and set environment variable ``FIREWORKS_API_KEY``. .. code-block:: bash pip install -U langchain_fireworks export FIREWORKS_API_KEY="your-api-key" Key init args — completion params: model: str Name of Fireworks model to use. Key init args — client params: fireworks_api_key: SecretStr Fireworks API key. See full list of supported init args and their descriptions in the params section. Instantiate: .. code-block:: python from langchain_fireworks import FireworksEmbeddings model = FireworksEmbeddings( model='nomic-ai/nomic-embed-text-v1.5' # Use FIREWORKS_API_KEY env var or pass it in directly # fireworks_api_key="..." ) Embed multiple texts: .. code-block:: python vectors = embeddings.embed_documents(['hello', 'goodbye']) # Showing only the first 3 coordinates print(len(vectors)) print(vectors[0][:3]) .. code-block:: python 2 [-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915] Embed single text: .. code-block:: python input_text = "The meaning of life is 42" vector = embeddings.embed_query('hello') print(vector[:3]) .. code-block:: python [-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915] """ client: OpenAI = Field(default=None, exclude=True) # type: ignore[assignment] # :meta private: fireworks_api_key: SecretStr = Field( alias="api_key", default_factory=secret_from_env( "FIREWORKS_API_KEY", default="", ), ) """Fireworks API key. Automatically read from env variable ``FIREWORKS_API_KEY`` if not provided. """ model: str = "nomic-ai/nomic-embed-text-v1.5" model_config = ConfigDict( populate_by_name=True, arbitrary_types_allowed=True, ) @model_validator(mode="after") def validate_environment(self) -> Self: """Validate environment variables.""" self.client = OpenAI( api_key=self.fireworks_api_key.get_secret_value(), base_url="https://api.fireworks.ai/inference/v1", ) return self def embed_documents(self, texts: list[str]) -> list[list[float]]: """Embed search docs.""" return [ i.embedding for i in self.client.embeddings.create(input=texts, model=self.model).data ] def embed_query(self, text: str) -> list[float]: """Embed query text.""" return self.embed_documents([text])[0]
from langchain_core.embeddings import Embeddings from langchain_core.utils import secret_from_env from openai import OpenAI from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator from typing_extensions import Self # type: ignore class FireworksEmbeddings(BaseModel, Embeddings): """Fireworks embedding model integration. Setup: Install ``langchain_fireworks`` and set environment variable ``FIREWORKS_API_KEY``. .. code-block:: bash pip install -U langchain_fireworks export FIREWORKS_API_KEY="your-api-key" Key init args — completion params: model: str Name of Fireworks model to use. Key init args — client params: fireworks_api_key: SecretStr Fireworks API key. See full list of supported init args and their descriptions in the params section. Instantiate: .. code-block:: python from langchain_fireworks import FireworksEmbeddings model = FireworksEmbeddings( model='nomic-ai/nomic-embed-text-v1.5' # Use FIREWORKS_API_KEY env var or pass it in directly # fireworks_api_key="..." ) Embed multiple texts: .. code-block:: python vectors = embeddings.embed_documents(['hello', 'goodbye']) # Showing only the first 3 coordinates print(len(vectors)) print(vectors[0][:3]) .. code-block:: python 2 [-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915] Embed single text: .. code-block:: python input_text = "The meaning of life is 42" vector = embeddings.embed_query('hello') print(vector[:3]) .. code-block:: python [-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915] """ client: OpenAI = Field(default=None, exclude=True) # type: ignore[assignment] # :meta private: fireworks_api_key: SecretStr = Field( alias="api_key", default_factory=secret_from_env( "FIREWORKS_API_KEY", default="", ), ) """Fireworks API key. Automatically read from env variable `FIREWORKS_API_KEY` if not provided. """ model: str = "nomic-ai/nomic-embed-text-v1.5" model_config = ConfigDict( populate_by_name=True, arbitrary_types_allowed=True, ) @model_validator(mode="after") def validate_environment(self) -> Self: """Validate environment variables.""" self.client = OpenAI( api_key=self.fireworks_api_key.get_secret_value(), base_url="https://api.fireworks.ai/inference/v1", ) return self def embed_documents(self, texts: list[str]) -> list[list[float]]: """Embed search docs.""" return [ i.embedding for i in self.client.embeddings.create(input=texts, model=self.model).data ] def embed_query(self, text: str) -> list[float]: """Embed query text.""" return self.embed_documents([text])[0]
from abc import ABC, abstractmethod from typing import Dict, Iterator, List, Optional, Type from typing_extensions import TYPE_CHECKING if TYPE_CHECKING: from docarray import BaseDoc, DocList class AbstractDocStore(ABC): @staticmethod @abstractmethod def list(namespace: str, show_table: bool) -> List[str]: """List all DocArrays in the specified backend at the namespace. :param namespace: The namespace to list :param show_table: If true, a table is printed to the console :return: A list of DocList names """ ... @staticmethod @abstractmethod def delete(name: str, missing_ok: bool) -> bool: """Delete the DocList object at the specified name :param name: The name of the DocList to delete :param missing_ok: If true, no error will be raised if the DocList does not exist. :return: True if the DocList was deleted, False if it did not exist. """ ... @staticmethod @abstractmethod def push( docs: 'DocList', name: str, public: bool, show_progress: bool, branding: Optional[Dict], ) -> Dict: """Push this DocList to the specified name. :param docs: The DocList to push :param name: The name to push to :param public: Whether the DocList should be publicly accessible :param show_progress: If true, a progress bar will be displayed. :param branding: Branding information to be stored with the DocList """ ... @staticmethod @abstractmethod def push_stream( docs: Iterator['BaseDoc'], url: str, public: bool = True, show_progress: bool = False, branding: Optional[Dict] = None, ) -> Dict: """Push a stream of documents to the specified name. :param docs: a stream of documents :param url: The name to push to :param public: Whether the DocList should be publicly accessible :param show_progress: If true, a progress bar will be displayed. :param branding: Branding information to be stored with the DocList """ ... @staticmethod @abstractmethod def pull( docs_cls: Type['DocList'], name: str, show_progress: bool, local_cache: bool, ) -> 'DocList': """Pull a DocList from the specified name. :param docs_cls: The DocList class to instantiate :param name: The name to pull from :param show_progress: If true, a progress bar will be displayed. :param local_cache: If true, the DocList will be cached locally :return: A DocList """ ... @staticmethod @abstractmethod def pull_stream( docs_cls: Type['DocList'], name: str, show_progress: bool, local_cache: bool, ) -> Iterator['BaseDoc']: """Pull a stream of documents from the specified name. :param docs_cls: The DocList class to instantiate :param name: The name to pull from :param show_progress: If true, a progress bar will be displayed. :param local_cache: If true, the DocList will be cached locally :return: An iterator of documents""" ...
from abc import ABC, abstractmethod from typing import Dict, Iterator, List, Optional, Type from typing_extensions import TYPE_CHECKING if TYPE_CHECKING: from docarray import BaseDoc, DocArray class AbstractDocStore(ABC): @staticmethod @abstractmethod def list(namespace: str, show_table: bool) -> List[str]: """List all DocArrays in the specified backend at the namespace. :param namespace: The namespace to list :param show_table: If true, a table is printed to the console :return: A list of DocArray names """ ... @staticmethod @abstractmethod def delete(name: str, missing_ok: bool) -> bool: """Delete the DocArray object at the specified name :param name: The name of the DocArray to delete :param missing_ok: If true, no error will be raised if the DocArray does not exist. :return: True if the DocArray was deleted, False if it did not exist. """ ... @staticmethod @abstractmethod def push( da: 'DocArray', name: str, public: bool, show_progress: bool, branding: Optional[Dict], ) -> Dict: """Push this DocArray to the specified name. :param da: The DocArray to push :param name: The name to push to :param public: Whether the DocArray should be publicly accessible :param show_progress: If true, a progress bar will be displayed. :param branding: Branding information to be stored with the DocArray """ ... @staticmethod @abstractmethod def push_stream( docs: Iterator['BaseDoc'], url: str, public: bool = True, show_progress: bool = False, branding: Optional[Dict] = None, ) -> Dict: """Push a stream of documents to the specified name. :param docs: a stream of documents :param url: The name to push to :param public: Whether the DocArray should be publicly accessible :param show_progress: If true, a progress bar will be displayed. :param branding: Branding information to be stored with the DocArray """ ... @staticmethod @abstractmethod def pull( da_cls: Type['DocArray'], name: str, show_progress: bool, local_cache: bool, ) -> 'DocArray': """Pull a DocArray from the specified name. :param da_cls: The DocArray class to instantiate :param name: The name to pull from :param show_progress: If true, a progress bar will be displayed. :param local_cache: If true, the DocArray will be cached locally :return: A DocArray """ ... @staticmethod @abstractmethod def pull_stream( da_cls: Type['DocArray'], name: str, show_progress: bool, local_cache: bool, ) -> Iterator['BaseDoc']: """Pull a stream of documents from the specified name. :param da_cls: The DocArray class to instantiate :param name: The name to pull from :param show_progress: If true, a progress bar will be displayed. :param local_cache: If true, the DocArray will be cached locally :return: An iterator of documents""" ...
"""Macrometa GDN Reader.""" import json from typing import List import requests from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class MacrometaGDNReader(BaseReader): """ Macrometa GDN Reader. Reads vectors from Macrometa GDN """ def __init__(self, url: str, apikey: str): self.url = url self.apikey = apikey def load_data(self, collection_list: List[str]) -> List[Document]: """ Loads data from the input directory. Args: api: Macrometa GDN API key collection_name: Name of the collection to read from """ if collection_list is None: raise ValueError("Must specify collection name(s)") results = [] for collection_name in collection_list: collection = self._load_collection(collection_name) results.append( Document( text=collection, extra_info={"collection_name": collection_name} ) ) return results def _load_collection(self, collection_name: str) -> str: all_documents = [] """Loads a collection from the database. Args: collection_name: Name of the collection to read from """ url = self.url + "/_fabric/_system/_api/cursor" headers = { "accept": "application/json", "content-type": "application/json", "Authorization": "apikey " + self.apikey, } data = { "batchSize": 1000, "ttl": 60, "query": "FOR doc IN " + collection_name + " RETURN doc", } response = requests.post(url, headers=headers, data=json.dumps(data)) response_json = response.json() if response.status_code == 201: all_documents.extend(response_json.get("result", [])) while response_json.get("hasMore"): cursor_id = response_json.get("id") next_url = self.url + "/_fabric/_system/_api/cursor/" + cursor_id response = requests.put(next_url, headers=headers) if response.status_code == 200: response_json = response.json() all_documents.extend(response_json.get("result", [])) else: print(f"Request failed with status code {response.status_code}") break else: print(f"Initial request failed with status code {response.status_code}") return str(all_documents) if __name__ == "__main__": reader = MacrometaGDNReader("https://api-anurag.eng.macrometa.io", "test") print(reader.load_data(collection_list=["test"]))
"""Macrometa GDN Reader.""" import json from typing import List import requests from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class MacrometaGDNReader(BaseReader): """Macrometa GDN Reader. Reads vectors from Macrometa GDN """ def __init__(self, url: str, apikey: str): self.url = url self.apikey = apikey def load_data(self, collection_list: List[str]) -> List[Document]: """Loads data from the input directory. Args: api: Macrometa GDN API key collection_name: Name of the collection to read from """ if collection_list is None: raise ValueError("Must specify collection name(s)") results = [] for collection_name in collection_list: collection = self._load_collection(collection_name) results.append( Document( text=collection, extra_info={"collection_name": collection_name} ) ) return results def _load_collection(self, collection_name: str) -> str: all_documents = [] """Loads a collection from the database. Args: collection_name: Name of the collection to read from """ url = self.url + "/_fabric/_system/_api/cursor" headers = { "accept": "application/json", "content-type": "application/json", "Authorization": "apikey " + self.apikey, } data = { "batchSize": 1000, "ttl": 60, "query": "FOR doc IN " + collection_name + " RETURN doc", } response = requests.post(url, headers=headers, data=json.dumps(data)) response_json = response.json() if response.status_code == 201: all_documents.extend(response_json.get("result", [])) while response_json.get("hasMore"): cursor_id = response_json.get("id") next_url = self.url + "/_fabric/_system/_api/cursor/" + cursor_id response = requests.put(next_url, headers=headers) if response.status_code == 200: response_json = response.json() all_documents.extend(response_json.get("result", [])) else: print(f"Request failed with status code {response.status_code}") break else: print(f"Initial request failed with status code {response.status_code}") return str(all_documents) if __name__ == "__main__": reader = MacrometaGDNReader("https://api-anurag.eng.macrometa.io", "test") print(reader.load_data(collection_list=["test"]))
"""CIFAR10 small images classification dataset.""" import os import numpy as np from keras.src import backend from keras.src.api_export import keras_export from keras.src.datasets.cifar import load_batch from keras.src.utils.file_utils import get_file @keras_export("keras.datasets.cifar10.load_data") def load_data(): """Loads the CIFAR10 dataset. This is a dataset of 50,000 32x32 color training images and 10,000 test images, labeled over 10 categories. See more info at the [CIFAR homepage](https://www.cs.toronto.edu/~kriz/cifar.html). The classes are: | Label | Description | |:-----:|-------------| | 0 | airplane | | 1 | automobile | | 2 | bird | | 3 | cat | | 4 | deer | | 5 | dog | | 6 | frog | | 7 | horse | | 8 | ship | | 9 | truck | Returns: Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`. **`x_train`**: `uint8` NumPy array of grayscale image data with shapes `(50000, 32, 32, 3)`, containing the training data. Pixel values range from 0 to 255. **`y_train`**: `uint8` NumPy array of labels (integers in range 0-9) with shape `(50000, 1)` for the training data. **`x_test`**: `uint8` NumPy array of grayscale image data with shapes `(10000, 32, 32, 3)`, containing the test data. Pixel values range from 0 to 255. **`y_test`**: `uint8` NumPy array of labels (integers in range 0-9) with shape `(10000, 1)` for the test data. Example: ```python (x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data() assert x_train.shape == (50000, 32, 32, 3) assert x_test.shape == (10000, 32, 32, 3) assert y_train.shape == (50000, 1) assert y_test.shape == (10000, 1) ``` """ dirname = "cifar-10-batches-py-target" origin = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" path = get_file( fname=dirname, origin=origin, extract=True, file_hash=( # noqa: E501 "6d958be074577803d12ecdefd02955f39262c83c16fe9348329d7fe0b5c001ce" ), ) num_train_samples = 50000 x_train = np.empty((num_train_samples, 3, 32, 32), dtype="uint8") y_train = np.empty((num_train_samples,), dtype="uint8") # batches are within an inner folder path = os.path.join(path, "cifar-10-batches-py") for i in range(1, 6): fpath = os.path.join(path, "data_batch_" + str(i)) ( x_train[(i - 1) * 10000 : i * 10000, :, :, :], y_train[(i - 1) * 10000 : i * 10000], ) = load_batch(fpath) fpath = os.path.join(path, "test_batch") x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if backend.image_data_format() == "channels_last": x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) x_test = x_test.astype(x_train.dtype) y_test = y_test.astype(y_train.dtype) return (x_train, y_train), (x_test, y_test)
"""CIFAR10 small images classification dataset.""" import os import numpy as np from keras.src import backend from keras.src.api_export import keras_export from keras.src.datasets.cifar import load_batch from keras.src.utils.file_utils import get_file @keras_export("keras.datasets.cifar10.load_data") def load_data(): """Loads the CIFAR10 dataset. This is a dataset of 50,000 32x32 color training images and 10,000 test images, labeled over 10 categories. See more info at the [CIFAR homepage](https://www.cs.toronto.edu/~kriz/cifar.html). The classes are: | Label | Description | |:-----:|-------------| | 0 | airplane | | 1 | automobile | | 2 | bird | | 3 | cat | | 4 | deer | | 5 | dog | | 6 | frog | | 7 | horse | | 8 | ship | | 9 | truck | Returns: Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`. **`x_train`**: `uint8` NumPy array of grayscale image data with shapes `(50000, 32, 32, 3)`, containing the training data. Pixel values range from 0 to 255. **`y_train`**: `uint8` NumPy array of labels (integers in range 0-9) with shape `(50000, 1)` for the training data. **`x_test`**: `uint8` NumPy array of grayscale image data with shapes `(10000, 32, 32, 3)`, containing the test data. Pixel values range from 0 to 255. **`y_test`**: `uint8` NumPy array of labels (integers in range 0-9) with shape `(10000, 1)` for the test data. Example: ```python (x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data() assert x_train.shape == (50000, 32, 32, 3) assert x_test.shape == (10000, 32, 32, 3) assert y_train.shape == (50000, 1) assert y_test.shape == (10000, 1) ``` """ dirname = "cifar-10-batches-py" origin = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" path = get_file( fname=dirname, origin=origin, untar=True, file_hash=( # noqa: E501 "6d958be074577803d12ecdefd02955f39262c83c16fe9348329d7fe0b5c001ce" ), ) num_train_samples = 50000 x_train = np.empty((num_train_samples, 3, 32, 32), dtype="uint8") y_train = np.empty((num_train_samples,), dtype="uint8") for i in range(1, 6): fpath = os.path.join(path, "data_batch_" + str(i)) ( x_train[(i - 1) * 10000 : i * 10000, :, :, :], y_train[(i - 1) * 10000 : i * 10000], ) = load_batch(fpath) fpath = os.path.join(path, "test_batch") x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if backend.image_data_format() == "channels_last": x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) x_test = x_test.astype(x_train.dtype) y_test = y_test.astype(y_train.dtype) return (x_train, y_train), (x_test, y_test)
import csv import logging import os from typing import List from scipy.stats import pearsonr, spearmanr from sentence_transformers import InputExample logger = logging.getLogger(__name__) class CECorrelationEvaluator: """ This evaluator can be used with the CrossEncoder class. Given sentence pairs and continuous scores, it compute the pearson & spearman correlation between the predicted score for the sentence pair and the gold score. """ def __init__(self, sentence_pairs: List[List[str]], scores: List[float], name: str = "", write_csv: bool = True): self.sentence_pairs = sentence_pairs self.scores = scores self.name = name self.csv_file = "CECorrelationEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = ["epoch", "steps", "Pearson_Correlation", "Spearman_Correlation"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: List[InputExample], **kwargs): sentence_pairs = [] scores = [] for example in examples: sentence_pairs.append(example.texts) scores.append(example.label) return cls(sentence_pairs, scores, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CECorrelationEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) eval_pearson, _ = pearsonr(self.scores, pred_scores) eval_spearman, _ = spearmanr(self.scores, pred_scores) logger.info("Correlation:\tPearson: {:.4f}\tSpearman: {:.4f}".format(eval_pearson, eval_spearman)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, eval_pearson, eval_spearman]) return eval_spearman
import logging from scipy.stats import pearsonr, spearmanr from typing import List import os import csv from ... import InputExample logger = logging.getLogger(__name__) class CECorrelationEvaluator: """ This evaluator can be used with the CrossEncoder class. Given sentence pairs and continuous scores, it compute the pearson & spearman correlation between the predicted score for the sentence pair and the gold score. """ def __init__(self, sentence_pairs: List[List[str]], scores: List[float], name: str = "", write_csv: bool = True): self.sentence_pairs = sentence_pairs self.scores = scores self.name = name self.csv_file = "CECorrelationEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = ["epoch", "steps", "Pearson_Correlation", "Spearman_Correlation"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: List[InputExample], **kwargs): sentence_pairs = [] scores = [] for example in examples: sentence_pairs.append(example.texts) scores.append(example.label) return cls(sentence_pairs, scores, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CECorrelationEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) eval_pearson, _ = pearsonr(self.scores, pred_scores) eval_spearman, _ = spearmanr(self.scores, pred_scores) logger.info("Correlation:\tPearson: {:.4f}\tSpearman: {:.4f}".format(eval_pearson, eval_spearman)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, eval_pearson, eval_spearman]) return eval_spearman
from typing import Any, Sequence from llama_index.core.base.llms.generic_utils import ( completion_response_to_chat_response, stream_completion_response_to_chat_response, ) from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, ChatResponseAsyncGen, ChatResponseGen, CompletionResponse, CompletionResponseAsyncGen, ) from llama_index.core.llms.callbacks import ( llm_chat_callback, llm_completion_callback, ) from llama_index.core.llms.llm import LLM class CustomLLM(LLM): """ Simple abstract base class for custom LLMs. Subclasses must implement the `__init__`, `_complete`, `_stream_complete`, and `metadata` methods. """ def __init__(self, *args: Any, **kwargs: Any): super().__init__(*args, **kwargs) @llm_chat_callback() def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse: assert self.messages_to_prompt is not None prompt = self.messages_to_prompt(messages) completion_response = self.complete(prompt, formatted=True, **kwargs) return completion_response_to_chat_response(completion_response) @llm_chat_callback() def stream_chat( self, messages: Sequence[ChatMessage], **kwargs: Any ) -> ChatResponseGen: assert self.messages_to_prompt is not None prompt = self.messages_to_prompt(messages) completion_response_gen = self.stream_complete(prompt, formatted=True, **kwargs) return stream_completion_response_to_chat_response(completion_response_gen) @llm_chat_callback() async def achat( self, messages: Sequence[ChatMessage], **kwargs: Any, ) -> ChatResponse: return self.chat(messages, **kwargs) @llm_chat_callback() async def astream_chat( self, messages: Sequence[ChatMessage], **kwargs: Any, ) -> ChatResponseAsyncGen: async def gen() -> ChatResponseAsyncGen: for message in self.stream_chat(messages, **kwargs): yield message # NOTE: convert generator to async generator return gen() @llm_completion_callback() async def acomplete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponse: return self.complete(prompt, formatted=formatted, **kwargs) @llm_completion_callback() async def astream_complete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponseAsyncGen: async def gen() -> CompletionResponseAsyncGen: for message in self.stream_complete(prompt, formatted=formatted, **kwargs): yield message # NOTE: convert generator to async generator return gen() @classmethod def class_name(cls) -> str: return "custom_llm"
from typing import Any, Sequence from llama_index.core.base.llms.generic_utils import ( completion_response_to_chat_response, stream_completion_response_to_chat_response, ) from llama_index.core.base.llms.types import ( ChatMessage, ChatResponse, ChatResponseAsyncGen, ChatResponseGen, CompletionResponse, CompletionResponseAsyncGen, ) from llama_index.core.llms.callbacks import ( llm_chat_callback, llm_completion_callback, ) from llama_index.core.llms.llm import LLM class CustomLLM(LLM): """Simple abstract base class for custom LLMs. Subclasses must implement the `__init__`, `_complete`, `_stream_complete`, and `metadata` methods. """ def __init__(self, *args: Any, **kwargs: Any): super().__init__(*args, **kwargs) @llm_chat_callback() def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse: assert self.messages_to_prompt is not None prompt = self.messages_to_prompt(messages) completion_response = self.complete(prompt, formatted=True, **kwargs) return completion_response_to_chat_response(completion_response) @llm_chat_callback() def stream_chat( self, messages: Sequence[ChatMessage], **kwargs: Any ) -> ChatResponseGen: assert self.messages_to_prompt is not None prompt = self.messages_to_prompt(messages) completion_response_gen = self.stream_complete(prompt, formatted=True, **kwargs) return stream_completion_response_to_chat_response(completion_response_gen) @llm_chat_callback() async def achat( self, messages: Sequence[ChatMessage], **kwargs: Any, ) -> ChatResponse: return self.chat(messages, **kwargs) @llm_chat_callback() async def astream_chat( self, messages: Sequence[ChatMessage], **kwargs: Any, ) -> ChatResponseAsyncGen: async def gen() -> ChatResponseAsyncGen: for message in self.stream_chat(messages, **kwargs): yield message # NOTE: convert generator to async generator return gen() @llm_completion_callback() async def acomplete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponse: return self.complete(prompt, formatted=formatted, **kwargs) @llm_completion_callback() async def astream_complete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponseAsyncGen: async def gen() -> CompletionResponseAsyncGen: for message in self.stream_complete(prompt, formatted=formatted, **kwargs): yield message # NOTE: convert generator to async generator return gen() @classmethod def class_name(cls) -> str: return "custom_llm"
from __future__ import annotations import json import os import torch from safetensors.torch import load_model as load_safetensors_model from safetensors.torch import save_model as save_safetensors_model from torch import Tensor, nn from sentence_transformers.util import fullname, import_from_string class Dense(nn.Module): """ Feed-forward function with activation function. This layer takes a fixed-sized sentence embedding and passes it through a feed-forward layer. Can be used to generate deep averaging networks (DAN). Args: in_features: Size of the input dimension out_features: Output size bias: Add a bias vector activation_function: Pytorch activation function applied on output init_weight: Initial value for the matrix of the linear layer init_bias: Initial value for the bias of the linear layer """ def __init__( self, in_features: int, out_features: int, bias: bool = True, activation_function=nn.Tanh(), init_weight: Tensor = None, init_bias: Tensor = None, ): super().__init__() self.in_features = in_features self.out_features = out_features self.bias = bias self.activation_function = activation_function self.linear = nn.Linear(in_features, out_features, bias=bias) if init_weight is not None: self.linear.weight = nn.Parameter(init_weight) if init_bias is not None: self.linear.bias = nn.Parameter(init_bias) def forward(self, features: dict[str, Tensor]): features.update({"sentence_embedding": self.activation_function(self.linear(features["sentence_embedding"]))}) return features def get_sentence_embedding_dimension(self) -> int: return self.out_features def get_config_dict(self): return { "in_features": self.in_features, "out_features": self.out_features, "bias": self.bias, "activation_function": fullname(self.activation_function), } def save(self, output_path, safe_serialization: bool = True) -> None: with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut) if safe_serialization: save_safetensors_model(self, os.path.join(output_path, "model.safetensors")) else: torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def __repr__(self): return f"Dense({self.get_config_dict()})" @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) config["activation_function"] = import_from_string(config["activation_function"])() model = Dense(**config) if os.path.exists(os.path.join(input_path, "model.safetensors")): load_safetensors_model(model, os.path.join(input_path, "model.safetensors")) else: model.load_state_dict( torch.load( os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu"), weights_only=True ) ) return model
from __future__ import annotations import json import os import torch from safetensors.torch import load_model as load_safetensors_model from safetensors.torch import save_model as save_safetensors_model from torch import Tensor, nn from sentence_transformers.util import fullname, import_from_string class Dense(nn.Module): """ Feed-forward function with activation function. This layer takes a fixed-sized sentence embedding and passes it through a feed-forward layer. Can be used to generate deep averaging networks (DAN). Args: in_features: Size of the input dimension out_features: Output size bias: Add a bias vector activation_function: Pytorch activation function applied on output init_weight: Initial value for the matrix of the linear layer init_bias: Initial value for the bias of the linear layer """ def __init__( self, in_features: int, out_features: int, bias: bool = True, activation_function=nn.Tanh(), init_weight: Tensor = None, init_bias: Tensor = None, ): super().__init__() self.in_features = in_features self.out_features = out_features self.bias = bias self.activation_function = activation_function self.linear = nn.Linear(in_features, out_features, bias=bias) if init_weight is not None: self.linear.weight = nn.Parameter(init_weight) if init_bias is not None: self.linear.bias = nn.Parameter(init_bias) def forward(self, features: dict[str, Tensor]): features.update({"sentence_embedding": self.activation_function(self.linear(features["sentence_embedding"]))}) return features def get_sentence_embedding_dimension(self) -> int: return self.out_features def get_config_dict(self): return { "in_features": self.in_features, "out_features": self.out_features, "bias": self.bias, "activation_function": fullname(self.activation_function), } def save(self, output_path, safe_serialization: bool = True) -> None: with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut) if safe_serialization: save_safetensors_model(self, os.path.join(output_path, "model.safetensors")) else: torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) def __repr__(self): return f"Dense({self.get_config_dict()})" @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) config["activation_function"] = import_from_string(config["activation_function"])() model = Dense(**config) if os.path.exists(os.path.join(input_path, "model.safetensors")): load_safetensors_model(model, os.path.join(input_path, "model.safetensors")) else: model.load_state_dict( torch.load(os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu")) ) return model
# coding=utf-8 # Copyright 2025 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import torch from diffusers import DiffusionPipeline from diffusers.utils.testing_utils import backend_empty_cache, require_torch_gpu, slow, torch_device @require_torch_gpu @slow class QuantCompileTests(unittest.TestCase): @property def quantization_config(self): raise NotImplementedError( "This property should be implemented in the subclass to return the appropriate quantization config." ) def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) torch.compiler.reset() def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) torch.compiler.reset() def _init_pipeline(self, quantization_config, torch_dtype): pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-3-medium-diffusers", quantization_config=quantization_config, torch_dtype=torch_dtype, ) return pipe def _test_torch_compile(self, quantization_config, torch_dtype=torch.bfloat16): pipe = self._init_pipeline(quantization_config, torch_dtype).to("cuda") # import to ensure fullgraph True pipe.transformer.compile(fullgraph=True) for _ in range(2): # small resolutions to ensure speedy execution. pipe("a dog", num_inference_steps=3, max_sequence_length=16, height=256, width=256) def _test_torch_compile_with_cpu_offload(self, quantization_config, torch_dtype=torch.bfloat16): pipe = self._init_pipeline(quantization_config, torch_dtype) pipe.enable_model_cpu_offload() pipe.transformer.compile() for _ in range(2): # small resolutions to ensure speedy execution. pipe("a dog", num_inference_steps=3, max_sequence_length=16, height=256, width=256) def _test_torch_compile_with_group_offload_leaf( self, quantization_config, torch_dtype=torch.bfloat16, *, use_stream: bool = False ): torch._dynamo.config.cache_size_limit = 10000 pipe = self._init_pipeline(quantization_config, torch_dtype) group_offload_kwargs = { "onload_device": torch.device("cuda"), "offload_device": torch.device("cpu"), "offload_type": "leaf_level", "use_stream": use_stream, } pipe.transformer.enable_group_offload(**group_offload_kwargs) pipe.transformer.compile() for name, component in pipe.components.items(): if name != "transformer" and isinstance(component, torch.nn.Module): if torch.device(component.device).type == "cpu": component.to("cuda") for _ in range(2): # small resolutions to ensure speedy execution. pipe("a dog", num_inference_steps=3, max_sequence_length=16, height=256, width=256)
# coding=utf-8 # Copyright 2025 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import torch from diffusers import DiffusionPipeline from diffusers.utils.testing_utils import backend_empty_cache, require_torch_gpu, slow, torch_device @require_torch_gpu @slow class QuantCompileTests(unittest.TestCase): quantization_config = None def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) torch.compiler.reset() def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) torch.compiler.reset() def _init_pipeline(self, quantization_config, torch_dtype): pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-3-medium-diffusers", quantization_config=quantization_config, torch_dtype=torch_dtype, ) return pipe def _test_torch_compile(self, quantization_config, torch_dtype=torch.bfloat16): pipe = self._init_pipeline(quantization_config, torch_dtype).to("cuda") # import to ensure fullgraph True pipe.transformer.compile(fullgraph=True) for _ in range(2): # small resolutions to ensure speedy execution. pipe("a dog", num_inference_steps=3, max_sequence_length=16, height=256, width=256) def _test_torch_compile_with_cpu_offload(self, quantization_config, torch_dtype=torch.bfloat16): pipe = self._init_pipeline(quantization_config, torch_dtype) pipe.enable_model_cpu_offload() pipe.transformer.compile() for _ in range(2): # small resolutions to ensure speedy execution. pipe("a dog", num_inference_steps=3, max_sequence_length=16, height=256, width=256) def _test_torch_compile_with_group_offload(self, quantization_config, torch_dtype=torch.bfloat16): torch._dynamo.config.cache_size_limit = 10000 pipe = self._init_pipeline(quantization_config, torch_dtype) group_offload_kwargs = { "onload_device": torch.device("cuda"), "offload_device": torch.device("cpu"), "offload_type": "leaf_level", "use_stream": True, "non_blocking": True, } pipe.transformer.enable_group_offload(**group_offload_kwargs) pipe.transformer.compile() for name, component in pipe.components.items(): if name != "transformer" and isinstance(component, torch.nn.Module): if torch.device(component.device).type == "cpu": component.to("cuda") for _ in range(2): # small resolutions to ensure speedy execution. pipe("a dog", num_inference_steps=3, max_sequence_length=16, height=256, width=256)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders import PlaywrightURLLoader from langchain_community.document_loaders.url_playwright import ( PlaywrightEvaluator, UnstructuredHtmlEvaluator, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "PlaywrightEvaluator": "langchain_community.document_loaders.url_playwright", "UnstructuredHtmlEvaluator": "langchain_community.document_loaders.url_playwright", "PlaywrightURLLoader": "langchain_community.document_loaders", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "PlaywrightEvaluator", "PlaywrightURLLoader", "UnstructuredHtmlEvaluator", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.document_loaders import PlaywrightURLLoader from langchain_community.document_loaders.url_playwright import ( PlaywrightEvaluator, UnstructuredHtmlEvaluator, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "PlaywrightEvaluator": "langchain_community.document_loaders.url_playwright", "UnstructuredHtmlEvaluator": "langchain_community.document_loaders.url_playwright", "PlaywrightURLLoader": "langchain_community.document_loaders", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "PlaywrightEvaluator", "UnstructuredHtmlEvaluator", "PlaywrightURLLoader", ]
from typing import List import numpy as np def _number_of_shards_in_gen_kwargs(gen_kwargs: dict) -> int: """Return the number of possible shards according to the input gen_kwargs""" # Having lists of different sizes makes sharding ambigious, raise an error in this case # until we decide how to define sharding without ambiguity for users lists_lengths = {key: len(value) for key, value in gen_kwargs.items() if isinstance(value, list)} if len(set(lists_lengths.values())) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(f"\t- key {key} has length {length}" for key, length in lists_lengths.items()) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) max_length = max(lists_lengths.values(), default=0) return max(1, max_length) def _distribute_shards(num_shards: int, max_num_jobs: int) -> List[range]: """ Get the range of shard indices per job. If num_shards<max_num_jobs, then num_shards jobs are given a range of one shard. The shards indices order is preserved: e.g. all the first shards are given the first job. Moreover all the jobs are given approximately the same number of shards. Example: ```python >>> _distribute_shards(2, max_num_jobs=4) [range(0, 1), range(1, 2)] >>> _distribute_shards(10, max_num_jobs=3) [range(0, 4), range(4, 7), range(7, 10)] ``` """ shards_indices_per_group = [] for group_idx in range(max_num_jobs): num_shards_to_add = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break start = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 shard_indices = range(start, start + num_shards_to_add) shards_indices_per_group.append(shard_indices) return shards_indices_per_group def _split_gen_kwargs(gen_kwargs: dict, max_num_jobs: int) -> List[dict]: """Split the gen_kwargs into `max_num_job` gen_kwargs""" # Having lists of different sizes makes sharding ambigious, raise an error in this case num_shards = _number_of_shards_in_gen_kwargs(gen_kwargs) if num_shards == 1: return [dict(gen_kwargs)] else: shard_indices_per_group = _distribute_shards(num_shards=num_shards, max_num_jobs=max_num_jobs) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(value, list) else value for key, value in gen_kwargs.items() } for group_idx in range(len(shard_indices_per_group)) ] def _merge_gen_kwargs(gen_kwargs_list: List[dict]) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key], list) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _shuffle_gen_kwargs(rng: np.random.Generator, gen_kwargs: dict) -> dict: """Return a shuffled copy of the input gen_kwargs""" # We must shuffle all the lists, and lists of the same size must have the same shuffling. # This way entangled lists of (shard, shard_metadata) are still in the right order. # First, let's generate the shuffled indices per list size list_sizes = {len(value) for value in gen_kwargs.values() if isinstance(value, list)} indices_per_size = {} for size in list_sizes: indices_per_size[size] = list(range(size)) rng.shuffle(indices_per_size[size]) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes shuffled_kwargs = dict(gen_kwargs) for key, value in shuffled_kwargs.items(): if isinstance(value, list): shuffled_kwargs[key] = [value[i] for i in indices_per_size[len(value)]] return shuffled_kwargs
from typing import List import numpy as np def _number_of_shards_in_gen_kwargs(gen_kwargs: dict) -> int: """Return the number of possible shards according to the input gen_kwargs""" # Having lists of different sizes makes sharding ambigious, raise an error in this case # until we decide how to define sharding without ambiguity for users lists_lengths = {key: len(value) for key, value in gen_kwargs.items() if isinstance(value, list)} if len(set(lists_lengths.values())) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(f"\t- key {key} has length {length}" for key, length in lists_lengths.items()) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) max_length = max(lists_lengths.values(), default=0) return max(1, max_length) def _distribute_shards(num_shards: int, max_num_jobs: int) -> List[range]: """ Get the range of shard indices per job. If num_shards<max_num_jobs, then num_shards jobs are given a range of one shard. The shards indices order is preserved: e.g. all the first shards are given the first job. Moreover all the jobs are given approximately the same number of shards. Example: ```python >>> _distribute_shards(2, max_num_jobs=4) [range(0, 1), range(1, 2)] >>> _distribute_shards(10, max_num_jobs=3) [range(0, 4), range(4, 7), range(7, 10)] ``` """ shards_indices_per_group = [] for group_idx in range(max_num_jobs): num_shards_to_add = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break start = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 shard_indices = range(start, start + num_shards_to_add) shards_indices_per_group.append(shard_indices) return shards_indices_per_group def _split_gen_kwargs(gen_kwargs: dict, max_num_jobs: int) -> List[dict]: """Split the gen_kwargs into `max_num_job` gen_kwargs""" # Having lists of different sizes makes sharding ambigious, raise an error in this case num_shards = _number_of_shards_in_gen_kwargs(gen_kwargs) if num_shards == 1: return [dict(gen_kwargs)] else: shard_indices_per_group = _distribute_shards(num_shards=num_shards, max_num_jobs=max_num_jobs) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(value, list) else value for key, value in gen_kwargs.items() } for group_idx in range(len(shard_indices_per_group)) ] def _merge_gen_kwargs(gen_kwargs_list: List[dict]) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key], list) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _shuffle_gen_kwargs(rng: np.random.Generator, gen_kwargs: dict) -> dict: """Return a shuffled copy of the input gen_kwargs""" # We must shuffle all the lists, and lists of the same size must have the same shuffling. # This way entangled lists of (shard, shard_metadata) are still in the right order. # First, let's generate the shuffled indices per list size list_sizes = set(len(value) for value in gen_kwargs.values() if isinstance(value, list)) indices_per_size = {} for size in list_sizes: indices_per_size[size] = list(range(size)) rng.shuffle(indices_per_size[size]) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes shuffled_kwargs = dict(gen_kwargs) for key, value in shuffled_kwargs.items(): if isinstance(value, list): shuffled_kwargs[key] = [value[i] for i in indices_per_size[len(value)]] return shuffled_kwargs
from typing import Iterable, Dict from docarray.array.storage.base.getsetdel import BaseGetSetDelMixin from docarray.array.storage.base.helper import Offset2ID from docarray import Document class GetSetDelMixin(BaseGetSetDelMixin): """Provide concrete implementation for ``__getitem__``, ``__setitem__``, and ``__delitem__`` for ``DocumentArrayWeaviate``""" def _getitem(self, wid: str) -> 'Document': """Helper method for getting item with weaviate as storage :param wid: weaviate id :raises KeyError: raise error when weaviate id does not exist in storage :return: Document """ try: resp = self._client.data_object.get_by_id(wid, with_vector=True) return Document.from_base64( resp['properties']['_serialized'], **self._serialize_config ) except Exception as ex: raise KeyError(wid) from ex def _get_doc_by_id(self, _id: str) -> 'Document': """Concrete implementation of base class' ``_get_doc_by_id`` :param _id: the id of the document :return: the retrieved document from weaviate """ return self._getitem(self._map_id(_id)) def _set_doc_by_id(self, _id: str, value: 'Document', flush: bool = True): """Concrete implementation of base class' ``_set_doc_by_id`` :param _id: the id of doc to update :param value: the document to update to """ if _id != value.id: self._del_doc_by_id(_id) payload = self._doc2weaviate_create_payload(value) self._client.batch.add_data_object(**payload) if flush: self._client.batch.flush() def _set_docs_by_ids(self, ids, docs: Iterable['Document'], mismatch_ids: Dict): """Overridden implementation of _set_docs_by_ids in order to add docs in batches and flush at the end :param ids: the ids used for indexing """ for _id, doc in zip(ids, docs): self._set_doc_by_id(_id, doc, flush=False) self._client.batch.flush() def _del_doc_by_id(self, _id: str): """Concrete implementation of base class' ``_del_doc_by_id`` :param _id: the id of the document to delete """ wid = self._map_id(_id) if self._client.data_object.exists(wid): self._client.data_object.delete(wid) def _clear_storage(self): """Concrete implementation of base class' ``_clear_storage``""" if self._class_name: self._client.schema.delete_class(self._class_name) self._client.schema.delete_class(self._meta_name) self._load_or_create_weaviate_schema() def _load_offset2ids(self): ids, self._offset2ids_wid = self._get_offset2ids_meta() self._offset2ids = Offset2ID(ids) def _save_offset2ids(self): self._update_offset2ids_meta()
from typing import Iterable, Dict from ..base.getsetdel import BaseGetSetDelMixin from ..base.helper import Offset2ID from .... import Document class GetSetDelMixin(BaseGetSetDelMixin): """Provide concrete implementation for ``__getitem__``, ``__setitem__``, and ``__delitem__`` for ``DocumentArrayWeaviate``""" def _getitem(self, wid: str) -> 'Document': """Helper method for getting item with weaviate as storage :param wid: weaviate id :raises KeyError: raise error when weaviate id does not exist in storage :return: Document """ try: resp = self._client.data_object.get_by_id(wid, with_vector=True) return Document.from_base64( resp['properties']['_serialized'], **self._serialize_config ) except Exception as ex: raise KeyError(wid) from ex def _get_doc_by_id(self, _id: str) -> 'Document': """Concrete implementation of base class' ``_get_doc_by_id`` :param _id: the id of the document :return: the retrieved document from weaviate """ return self._getitem(self._map_id(_id)) def _set_doc_by_id(self, _id: str, value: 'Document', flush: bool = True): """Concrete implementation of base class' ``_set_doc_by_id`` :param _id: the id of doc to update :param value: the document to update to """ if _id != value.id: self._del_doc_by_id(_id) payload = self._doc2weaviate_create_payload(value) self._client.batch.add_data_object(**payload) if flush: self._client.batch.flush() def _set_docs_by_ids(self, ids, docs: Iterable['Document'], mismatch_ids: Dict): """Overridden implementation of _set_docs_by_ids in order to add docs in batches and flush at the end :param ids: the ids used for indexing """ for _id, doc in zip(ids, docs): self._set_doc_by_id(_id, doc, flush=False) self._client.batch.flush() def _del_doc_by_id(self, _id: str): """Concrete implementation of base class' ``_del_doc_by_id`` :param _id: the id of the document to delete """ wid = self._map_id(_id) if self._client.data_object.exists(wid): self._client.data_object.delete(wid) def _clear_storage(self): """Concrete implementation of base class' ``_clear_storage``""" if self._class_name: self._client.schema.delete_class(self._class_name) self._client.schema.delete_class(self._meta_name) self._load_or_create_weaviate_schema() def _load_offset2ids(self): ids, self._offset2ids_wid = self._get_offset2ids_meta() self._offset2ids = Offset2ID(ids) def _save_offset2ids(self): self._update_offset2ids_meta()
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.activations import deserialize from keras.src.activations import get from keras.src.activations import serialize from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_silu as hard_swish from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import silu as swish from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import tanh
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.activations import deserialize from keras.src.activations import get from keras.src.activations import serialize from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_silu as hard_swish from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import silu as swish from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import tanh
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Gemma3 model.""" import unittest from io import BytesIO import requests from PIL import Image from transformers import is_torch_available from transformers.testing_utils import ( cleanup, require_torch_accelerator, slow, torch_device, ) if is_torch_available(): import torch from transformers import ShieldGemma2ForImageClassification, ShieldGemma2Processor @slow @require_torch_accelerator # @require_read_token class ShieldGemma2IntegrationTest(unittest.TestCase): def tearDown(self): cleanup(torch_device, gc_collect=True) def test_model(self): model_id = "google/shieldgemma-2-4b-it" processor = ShieldGemma2Processor.from_pretrained(model_id, padding_side="left") url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png" response = requests.get(url) image = Image.open(BytesIO(response.content)) model = ShieldGemma2ForImageClassification.from_pretrained( model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 ).to(torch_device) inputs = processor(images=[image]).to(torch_device) output = model(**inputs) self.assertEqual(len(output.probabilities), 3) for element in output.probabilities: self.assertEqual(len(element), 2)
# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Gemma3 model.""" import unittest from io import BytesIO import requests from PIL import Image from transformers import is_torch_available from transformers.testing_utils import ( cleanup, require_torch_gpu, slow, torch_device, ) if is_torch_available(): import torch from transformers import ShieldGemma2ForImageClassification, ShieldGemma2Processor @slow @require_torch_gpu # @require_read_token class ShieldGemma2IntegrationTest(unittest.TestCase): def tearDown(self): cleanup(torch_device, gc_collect=True) def test_model(self): model_id = "google/shieldgemma-2-4b-it" processor = ShieldGemma2Processor.from_pretrained(model_id, padding_side="left") url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png" response = requests.get(url) image = Image.open(BytesIO(response.content)) model = ShieldGemma2ForImageClassification.from_pretrained( model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 ).to(torch_device) inputs = processor(images=[image]).to(torch_device) output = model(**inputs) self.assertEqual(len(output.probabilities), 3) for element in output.probabilities: self.assertEqual(len(element), 2)
import socket from dataclasses import asdict import numpy as np import pytest import xgboost as xgb from xgboost import RabitTracker, build_info, federated from xgboost import testing as tm from xgboost.collective import Config def run_rabit_worker(rabit_env: dict, world_size: int) -> int: with xgb.collective.CommunicatorContext(**rabit_env): assert xgb.collective.get_world_size() == world_size assert xgb.collective.is_distributed() assert xgb.collective.get_processor_name() == socket.gethostname() ret = xgb.collective.broadcast("test1234", 0) assert str(ret) == "test1234" reduced = xgb.collective.allreduce(np.asarray([1, 2, 3]), xgb.collective.Op.SUM) assert np.array_equal(reduced, np.asarray([2, 4, 6])) return 0 @pytest.mark.skipif(**tm.no_loky()) def test_rabit_communicator() -> None: from loky import get_reusable_executor world_size = 2 tracker = RabitTracker(host_ip="127.0.0.1", n_workers=world_size) tracker.start() workers = [] with get_reusable_executor(max_workers=world_size) as pool: for _ in range(world_size): worker = pool.submit( run_rabit_worker, rabit_env=tracker.worker_args(), world_size=world_size ) workers.append(worker) for worker in workers: assert worker.result() == 0 def run_federated_worker(port: int, world_size: int, rank: int) -> int: with xgb.collective.CommunicatorContext( dmlc_communicator="federated", federated_server_address=f"localhost:{port}", federated_world_size=world_size, federated_rank=rank, ): assert xgb.collective.get_world_size() == world_size assert xgb.collective.is_distributed() assert xgb.collective.get_processor_name() == f"rank:{rank}" bret = xgb.collective.broadcast("test1234", 0) assert str(bret) == "test1234" aret = xgb.collective.allreduce(np.asarray([1, 2, 3]), xgb.collective.Op.SUM) assert np.array_equal(aret, np.asarray([2, 4, 6])) return 0 @pytest.mark.skipif(**tm.skip_win()) @pytest.mark.skipif(**tm.no_loky()) def test_federated_communicator() -> None: from loky import get_reusable_executor if not build_info()["USE_FEDERATED"]: pytest.skip("XGBoost not built with federated learning enabled") port = 9091 world_size = 2 with get_reusable_executor(max_workers=world_size + 1) as pool: kwargs = {"port": port, "n_workers": world_size, "blocking": False} tracker = pool.submit(federated.run_federated_server, **kwargs) if not tracker.running(): raise RuntimeError("Error starting Federated Learning server") workers = [] for rank in range(world_size): worker = pool.submit( run_federated_worker, port=port, world_size=world_size, rank=rank ) workers.append(worker) for worker in workers: assert worker.result() == 0 def test_config_serialization() -> None: cfg = Config(retry=1, timeout=2, tracker_host_ip="127.0.0.1", tracker_port=None) cfg1 = Config(**asdict(cfg)) assert cfg == cfg1
import socket from dataclasses import asdict import numpy as np import pytest from loky import get_reusable_executor import xgboost as xgb from xgboost import RabitTracker, build_info, federated from xgboost import testing as tm from xgboost.collective import Config def run_rabit_worker(rabit_env: dict, world_size: int) -> int: with xgb.collective.CommunicatorContext(**rabit_env): assert xgb.collective.get_world_size() == world_size assert xgb.collective.is_distributed() assert xgb.collective.get_processor_name() == socket.gethostname() ret = xgb.collective.broadcast("test1234", 0) assert str(ret) == "test1234" reduced = xgb.collective.allreduce(np.asarray([1, 2, 3]), xgb.collective.Op.SUM) assert np.array_equal(reduced, np.asarray([2, 4, 6])) return 0 @pytest.mark.skipif(**tm.no_loky()) def test_rabit_communicator() -> None: world_size = 2 tracker = RabitTracker(host_ip="127.0.0.1", n_workers=world_size) tracker.start() workers = [] with get_reusable_executor(max_workers=world_size) as pool: for _ in range(world_size): worker = pool.submit( run_rabit_worker, rabit_env=tracker.worker_args(), world_size=world_size ) workers.append(worker) for worker in workers: assert worker.result() == 0 def run_federated_worker(port: int, world_size: int, rank: int) -> int: with xgb.collective.CommunicatorContext( dmlc_communicator="federated", federated_server_address=f"localhost:{port}", federated_world_size=world_size, federated_rank=rank, ): assert xgb.collective.get_world_size() == world_size assert xgb.collective.is_distributed() assert xgb.collective.get_processor_name() == f"rank:{rank}" bret = xgb.collective.broadcast("test1234", 0) assert str(bret) == "test1234" aret = xgb.collective.allreduce(np.asarray([1, 2, 3]), xgb.collective.Op.SUM) assert np.array_equal(aret, np.asarray([2, 4, 6])) return 0 @pytest.mark.skipif(**tm.skip_win()) @pytest.mark.skipif(**tm.no_loky()) def test_federated_communicator() -> None: if not build_info()["USE_FEDERATED"]: pytest.skip("XGBoost not built with federated learning enabled") port = 9091 world_size = 2 with get_reusable_executor(max_workers=world_size + 1) as pool: kwargs = {"port": port, "n_workers": world_size, "blocking": False} tracker = pool.submit(federated.run_federated_server, **kwargs) if not tracker.running(): raise RuntimeError("Error starting Federated Learning server") workers = [] for rank in range(world_size): worker = pool.submit( run_federated_worker, port=port, world_size=world_size, rank=rank ) workers.append(worker) for worker in workers: assert worker.result() == 0 def test_config_serialization() -> None: cfg = Config(retry=1, timeout=2, tracker_host_ip="127.0.0.1", tracker_port=None) cfg1 = Config(**asdict(cfg)) assert cfg == cfg1
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch from mmdet.models.dense_heads import TOODHead def test_tood_head_loss(): """Tests paa head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = mmcv.Config( dict( initial_epoch=4, initial_assigner=dict(type='ATSSAssigner', topk=9), assigner=dict(type='TaskAlignedAssigner', topk=13), alpha=1, beta=6, allowed_border=-1, pos_weight=-1, debug=False)) test_cfg = mmcv.Config( dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # since Focal Loss is not supported on CPU self = TOODHead( num_classes=80, in_channels=1, stacked_convs=6, feat_channels=256, anchor_type='anchor_free', anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), initial_loss_cls=dict( type='FocalLoss', use_sigmoid=True, activated=True, # use probability instead of logit as input gamma=2.0, alpha=0.25, loss_weight=1.0), loss_cls=dict( type='QualityFocalLoss', use_sigmoid=True, activated=True, # use probability instead of logit as input beta=2.0, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), train_cfg=train_cfg, test_cfg=test_cfg) self.init_weights() feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [8, 16, 32, 64, 128] ] cls_scores, bbox_preds = self(feat) # test initial assigner and losses self.epoch = 0 # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero but there should # be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'] empty_box_loss = empty_gt_losses['loss_bbox'] assert sum(empty_cls_loss).item() > 0, 'cls loss should be non-zero' assert sum(empty_box_loss).item() == 0, ( 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero for # random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) onegt_cls_loss = one_gt_losses['loss_cls'] onegt_box_loss = one_gt_losses['loss_bbox'] assert sum(onegt_cls_loss).item() > 0, 'cls loss should be non-zero' assert sum(onegt_box_loss).item() > 0, 'box loss should be non-zero' # test task alignment assigner and losses self.epoch = 10 # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero but there should # be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'] empty_box_loss = empty_gt_losses['loss_bbox'] assert sum(empty_cls_loss).item() > 0, 'cls loss should be non-zero' assert sum(empty_box_loss).item() == 0, ( 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero for # random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) onegt_cls_loss = one_gt_losses['loss_cls'] onegt_box_loss = one_gt_losses['loss_bbox'] assert sum(onegt_cls_loss).item() > 0, 'cls loss should be non-zero' assert sum(onegt_box_loss).item() > 0, 'box loss should be non-zero'
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch from mmdet.models.dense_heads import TOODHead def test_paa_head_loss(): """Tests paa head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = mmcv.Config( dict( initial_epoch=4, initial_assigner=dict(type='ATSSAssigner', topk=9), assigner=dict(type='TaskAlignedAssigner', topk=13), alpha=1, beta=6, allowed_border=-1, pos_weight=-1, debug=False)) test_cfg = mmcv.Config( dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # since Focal Loss is not supported on CPU self = TOODHead( num_classes=80, in_channels=1, stacked_convs=6, feat_channels=256, anchor_type='anchor_free', anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), initial_loss_cls=dict( type='FocalLoss', use_sigmoid=True, activated=True, # use probability instead of logit as input gamma=2.0, alpha=0.25, loss_weight=1.0), loss_cls=dict( type='QualityFocalLoss', use_sigmoid=True, activated=True, # use probability instead of logit as input beta=2.0, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), train_cfg=train_cfg, test_cfg=test_cfg) self.init_weights() feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [8, 16, 32, 64, 128] ] cls_scores, bbox_preds = self(feat) # test initial assigner and losses self.epoch = 0 # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero but there should # be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'] empty_box_loss = empty_gt_losses['loss_bbox'] assert sum(empty_cls_loss).item() > 0, 'cls loss should be non-zero' assert sum(empty_box_loss).item() == 0, ( 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero for # random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) onegt_cls_loss = one_gt_losses['loss_cls'] onegt_box_loss = one_gt_losses['loss_bbox'] assert sum(onegt_cls_loss).item() > 0, 'cls loss should be non-zero' assert sum(onegt_box_loss).item() > 0, 'box loss should be non-zero' # test task alignment assigner and losses self.epoch = 10 # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero but there should # be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'] empty_box_loss = empty_gt_losses['loss_bbox'] assert sum(empty_cls_loss).item() > 0, 'cls loss should be non-zero' assert sum(empty_box_loss).item() == 0, ( 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero for # random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) onegt_cls_loss = one_gt_losses['loss_cls'] onegt_box_loss = one_gt_losses['loss_bbox'] assert sum(onegt_cls_loss).item() > 0, 'cls loss should be non-zero' assert sum(onegt_box_loss).item() > 0, 'box loss should be non-zero'
import torch from torchaudio_unittest.common_utils import PytorchTestCase, skipIfNoCuda from torchaudio_unittest.prototype.rnnt_test_impl import ConformerRNNTTestImpl @skipIfNoCuda class ConformerRNNTFloat32GPUTest(ConformerRNNTTestImpl, PytorchTestCase): dtype = torch.float32 device = torch.device("cuda") @skipIfNoCuda class ConformerRNNTFloat64GPUTest(ConformerRNNTTestImpl, PytorchTestCase): dtype = torch.float64 device = torch.device("cuda")
import torch from torchaudio_unittest.common_utils import skipIfNoCuda, PytorchTestCase from torchaudio_unittest.prototype.rnnt_test_impl import ConformerRNNTTestImpl @skipIfNoCuda class ConformerRNNTFloat32GPUTest(ConformerRNNTTestImpl, PytorchTestCase): dtype = torch.float32 device = torch.device("cuda") @skipIfNoCuda class ConformerRNNTFloat64GPUTest(ConformerRNNTTestImpl, PytorchTestCase): dtype = torch.float64 device = torch.device("cuda")
_base_ = [ '../_base_/models/faster-rcnn_r50_fpn.py', '../_base_/datasets/mot_challenge.py', '../_base_/default_runtime.py' ] default_hooks = dict( logger=dict(type='LoggerHook', interval=1), visualization=dict(type='TrackVisualizationHook', draw=False)) vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='TrackLocalVisualizer', vis_backends=vis_backends, name='visualizer') # custom hooks custom_hooks = [ # Synchronize model buffers such as running_mean and running_var in BN # at the end of each epoch dict(type='SyncBuffersHook') ] detector = _base_.model detector.pop('data_preprocessor') detector.rpn_head.bbox_coder.update(dict(clip_border=False)) detector.roi_head.bbox_head.update(dict(num_classes=1)) detector.roi_head.bbox_head.bbox_coder.update(dict(clip_border=False)) detector['init_cfg'] = dict( type='Pretrained', checkpoint= # noqa: E251 'https://download.openmmlab.com/mmtracking/mot/faster_rcnn/' 'faster-rcnn_r50_fpn_4e_mot17-half-64ee2ed4.pth') del _base_.model model = dict( type='DeepSORT', data_preprocessor=dict( type='TrackDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), detector=detector, reid=dict( type='BaseReID', data_preprocessor=None, backbone=dict( type='mmcls.ResNet', depth=50, num_stages=4, out_indices=(3, ), style='pytorch'), neck=dict(type='GlobalAveragePooling', kernel_size=(8, 4), stride=1), head=dict( type='LinearReIDHead', num_fcs=1, in_channels=2048, fc_channels=1024, out_channels=128, num_classes=380, loss_cls=dict(type='mmcls.CrossEntropyLoss', loss_weight=1.0), loss_triplet=dict(type='TripletLoss', margin=0.3, loss_weight=1.0), norm_cfg=dict(type='BN1d'), act_cfg=dict(type='ReLU')), init_cfg=dict( type='Pretrained', checkpoint= # noqa: E251 'https://download.openmmlab.com/mmtracking/mot/reid/tracktor_reid_r50_iter25245-a452f51f.pth' # noqa: E501 )), tracker=dict( type='SORTTracker', motion=dict(type='KalmanFilter', center_only=False), obj_score_thr=0.5, reid=dict( num_samples=10, img_scale=(256, 128), img_norm_cfg=None, match_score_thr=2.0), match_iou_thr=0.5, momentums=None, num_tentatives=2, num_frames_retain=100)) train_dataloader = None train_cfg = None val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop')
_base_ = [ '../_base_/models/faster-rcnn_r50_fpn.py', '../_base_/datasets/mot_challenge.py', '../_base_/default_runtime.py' ] default_hooks = dict( logger=dict(type='LoggerHook', interval=1), visualization=dict(type='TrackVisualizationHook', draw=False)) vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='TrackLocalVisualizer', vis_backends=vis_backends, name='visualizer') # custom hooks custom_hooks = [ # Synchronize model buffers such as running_mean and running_var in BN # at the end of each epoch dict(type='SyncBuffersHook') ] detector = _base_.model detector.pop('data_preprocessor') detector.rpn_head.bbox_coder.update(dict(clip_border=False)) detector.roi_head.bbox_head.update(dict(num_classes=1)) detector.roi_head.bbox_head.bbox_coder.update(dict(clip_border=False)) detector['init_cfg'] = dict( type='Pretrained', checkpoint= # noqa: E251 'https://download.openmmlab.com/mmtracking/mot/faster_rcnn/' 'faster-rcnn_r50_fpn_4e_mot17-half-64ee2ed4.pth') del _base_.model model = dict( type='DeepSORT', data_preprocessor=dict( type='TrackDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, rgb_to_bgr=False, pad_size_divisor=32), detector=detector, reid=dict( type='BaseReID', data_preprocessor=None, backbone=dict( type='mmcls.ResNet', depth=50, num_stages=4, out_indices=(3, ), style='pytorch'), neck=dict(type='GlobalAveragePooling', kernel_size=(8, 4), stride=1), head=dict( type='LinearReIDHead', num_fcs=1, in_channels=2048, fc_channels=1024, out_channels=128, num_classes=380, loss_cls=dict(type='mmcls.CrossEntropyLoss', loss_weight=1.0), loss_triplet=dict(type='TripletLoss', margin=0.3, loss_weight=1.0), norm_cfg=dict(type='BN1d'), act_cfg=dict(type='ReLU')), init_cfg=dict( type='Pretrained', checkpoint= # noqa: E251 'https://download.openmmlab.com/mmtracking/mot/reid/tracktor_reid_r50_iter25245-a452f51f.pth' # noqa: E501 )), tracker=dict( type='SORTTracker', motion=dict(type='KalmanFilter', center_only=False), obj_score_thr=0.5, reid=dict( num_samples=10, img_scale=(256, 128), img_norm_cfg=None, match_score_thr=2.0), match_iou_thr=0.5, momentums=None, num_tentatives=2, num_frames_retain=100)) train_dataloader = None train_cfg = None val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop')
import os import time import numpy as np import pytest from pydantic import Field from docarray import BaseDoc from docarray.documents import ImageDoc from docarray.typing import NdArray pytestmark = [pytest.mark.slow, pytest.mark.index] cur_dir = os.path.dirname(os.path.abspath(__file__)) compose_yml_v7 = os.path.abspath(os.path.join(cur_dir, 'v7/docker-compose.yml')) compose_yml_v8 = os.path.abspath(os.path.join(cur_dir, 'v8/docker-compose.yml')) @pytest.fixture(scope='module', autouse=True) def start_storage_v7(): os.system(f"docker-compose -f {compose_yml_v7} up -d --remove-orphans") _wait_for_es() yield os.system(f"docker-compose -f {compose_yml_v7} down --remove-orphans") @pytest.fixture(scope='module', autouse=True) def start_storage_v8(): os.system(f"docker-compose -f {compose_yml_v8} up -d --remove-orphans") _wait_for_es() yield os.system(f"docker-compose -f {compose_yml_v8} down --remove-orphans") def _wait_for_es(): from elasticsearch import Elasticsearch es = Elasticsearch(hosts='http://localhost:9200/') while not es.ping(): time.sleep(0.5) class SimpleDoc(BaseDoc): tens: NdArray[10] = Field(dims=1000) class FlatDoc(BaseDoc): tens_one: NdArray = Field(dims=10) tens_two: NdArray = Field(dims=50) class NestedDoc(BaseDoc): d: SimpleDoc class DeepNestedDoc(BaseDoc): d: NestedDoc class MyImageDoc(ImageDoc): embedding: NdArray = Field(dims=128) @pytest.fixture(scope='function') def ten_simple_docs(): return [SimpleDoc(tens=np.random.randn(10)) for _ in range(10)] @pytest.fixture(scope='function') def ten_flat_docs(): return [ FlatDoc(tens_one=np.random.randn(10), tens_two=np.random.randn(50)) for _ in range(10) ] @pytest.fixture(scope='function') def ten_nested_docs(): return [NestedDoc(d=SimpleDoc(tens=np.random.randn(10))) for _ in range(10)] @pytest.fixture(scope='function') def ten_deep_nested_docs(): return [ DeepNestedDoc(d=NestedDoc(d=SimpleDoc(tens=np.random.randn(10)))) for _ in range(10) ]
import os import time import numpy as np import pytest from pydantic import Field from docarray import BaseDoc from docarray.typing import NdArray pytestmark = [pytest.mark.slow, pytest.mark.index] cur_dir = os.path.dirname(os.path.abspath(__file__)) compose_yml_v7 = os.path.abspath(os.path.join(cur_dir, 'v7/docker-compose.yml')) compose_yml_v8 = os.path.abspath(os.path.join(cur_dir, 'v8/docker-compose.yml')) @pytest.fixture(scope='module', autouse=True) def start_storage_v7(): os.system(f"docker-compose -f {compose_yml_v7} up -d --remove-orphans") _wait_for_es() yield os.system(f"docker-compose -f {compose_yml_v7} down --remove-orphans") @pytest.fixture(scope='module', autouse=True) def start_storage_v8(): os.system(f"docker-compose -f {compose_yml_v8} up -d --remove-orphans") _wait_for_es() yield os.system(f"docker-compose -f {compose_yml_v8} down --remove-orphans") def _wait_for_es(): from elasticsearch import Elasticsearch es = Elasticsearch(hosts='http://localhost:9200/') while not es.ping(): time.sleep(0.5) class SimpleDoc(BaseDoc): tens: NdArray[10] = Field(dims=1000) class FlatDoc(BaseDoc): tens_one: NdArray = Field(dims=10) tens_two: NdArray = Field(dims=50) class NestedDoc(BaseDoc): d: SimpleDoc class DeepNestedDoc(BaseDoc): d: NestedDoc @pytest.fixture(scope='function') def ten_simple_docs(): return [SimpleDoc(tens=np.random.randn(10)) for _ in range(10)] @pytest.fixture(scope='function') def ten_flat_docs(): return [ FlatDoc(tens_one=np.random.randn(10), tens_two=np.random.randn(50)) for _ in range(10) ] @pytest.fixture(scope='function') def ten_nested_docs(): return [NestedDoc(d=SimpleDoc(tens=np.random.randn(10))) for _ in range(10)] @pytest.fixture(scope='function') def ten_deep_nested_docs(): return [ DeepNestedDoc(d=NestedDoc(d=SimpleDoc(tens=np.random.randn(10)))) for _ in range(10) ]
import numpy as np import pytest from keras.src import backend from keras.src import layers from keras.src import testing class GaussianDropoutTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_gaussian_dropout_basics(self): self.run_layer_test( layers.GaussianDropout, init_kwargs={ "rate": 0.2, }, input_shape=(2, 3), call_kwargs={"training": True}, expected_output_shape=(2, 3), expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_seed_generators=1, expected_num_losses=0, supports_masking=True, assert_built_after_instantiation=True, ) def test_gaussian_dropout_correctness(self): inputs = np.ones((20, 500)) layer = layers.GaussianDropout(0.3, seed=1337) outputs = layer(inputs, training=True) self.assertAllClose( np.std(backend.convert_to_numpy(outputs)), np.sqrt(0.3 / (1 - 0.3)), atol=0.02, )
import numpy as np import pytest from keras.src import backend from keras.src import layers from keras.src import testing class GaussianDropoutTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_gaussian_dropout_basics(self): self.run_layer_test( layers.GaussianDropout, init_kwargs={ "rate": 0.2, }, input_shape=(2, 3), call_kwargs={"training": True}, expected_output_shape=(2, 3), expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_seed_generators=1, expected_num_losses=0, supports_masking=True, ) def test_gaussian_dropout_correctness(self): inputs = np.ones((20, 500)) layer = layers.GaussianDropout(0.3, seed=1337) outputs = layer(inputs, training=True) self.assertAllClose( np.std(backend.convert_to_numpy(outputs)), np.sqrt(0.3 / (1 - 0.3)), atol=0.02, )
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from docarray.documents import TextDoc def test_text_document_init(): text = TextDoc('hello world') assert text.text == 'hello world' assert text == 'hello world' text = TextDoc(text='hello world') assert text.text == 'hello world' assert text == 'hello world' text = TextDoc() assert text is not None assert text.text is None
from docarray.documents import TextDoc def test_text_document_init(): text = TextDoc('hello world') assert text.text == 'hello world' assert text == 'hello world' text = TextDoc(text='hello world') assert text.text == 'hello world' assert text == 'hello world' text = TextDoc() assert text is not None assert text.text is None
import io import json import logging import os import tempfile from typing import IO import torch from torch._inductor import config from torch._inductor.cpp_builder import BuildOptionsBase, CppBuilder from torch.export.pt2_archive._package import ( AOTI_FILES, AOTICompiledModel, load_pt2, package_pt2, ) from torch.types import FileLike log = logging.getLogger(__name__) def compile_so(aoti_dir: str, aoti_files: list[str], so_path: str) -> str: def get_aoti_file_with_suffix(suffix: str) -> str: for file in aoti_files: if file.endswith(suffix): return file raise RuntimeError(f"Unable to find file with suffix {suffix}") # Compile all the files into a .so cpp_file = os.path.join(aoti_dir, get_aoti_file_with_suffix(".cpp")) consts_o = os.path.join(aoti_dir, get_aoti_file_with_suffix(".o")) file_name = os.path.splitext(cpp_file)[0] # Parse compile flags and build the .o file with open(file_name + "_compile_flags.json") as f: compile_flags = json.load(f) compile_options = BuildOptionsBase( **compile_flags, use_relative_path=config.is_fbcode() ) object_builder = CppBuilder( name=file_name, sources=cpp_file, BuildOption=compile_options, ) output_o = object_builder.get_target_file_path() object_builder.build() # Parse linker flags and build the .so file with open(file_name + "_linker_flags.json") as f: linker_flags = json.load(f) linker_options = BuildOptionsBase( **linker_flags, use_relative_path=config.is_fbcode() ) so_builder = CppBuilder( name=os.path.split(so_path)[-1], sources=[output_o, consts_o], BuildOption=linker_options, output_dir=so_path, ) output_so = so_builder.get_target_file_path() so_builder.build() # mmapped weights serialized_weights_filename = file_name + "_serialized_weights.bin" if serialized_weights_filename in aoti_files: with open(serialized_weights_filename, "rb") as f_weights: serialized_weights = f_weights.read() with open(output_so, "a+b") as f_so: so_size = f_so.tell() # Page align the weights f_so.write(b" " * (16384 - so_size % 16384)) f_so.write(serialized_weights) return output_so def package_aoti( archive_file: FileLike, aoti_files: AOTI_FILES, ) -> FileLike: """ Saves the AOTInductor generated files to the PT2Archive format. Args: archive_file: The file name to save the package to. aoti_files: This can either be a singular path to a directory containing the AOTInductor files, or a dictionary mapping the model name to the path to its AOTInductor generated files. """ return package_pt2( archive_file, aoti_files=aoti_files, ) def load_package( path: FileLike, model_name: str = "model", run_single_threaded: bool = False, num_runners: int = 1, device_index: int = -1, ) -> AOTICompiledModel: # type: ignore[type-arg] try: pt2_contents = load_pt2( path, run_single_threaded=run_single_threaded, num_runners=num_runners, device_index=device_index, ) if model_name not in pt2_contents.aoti_runners: raise RuntimeError(f"Model {model_name} not found in package") return pt2_contents.aoti_runners[model_name] except RuntimeError: log.warning("Loading outdated pt2 file. Please regenerate your package.") if isinstance(path, (io.IOBase, IO)): with tempfile.NamedTemporaryFile(suffix=".pt2") as f: # TODO(angelayi): We shouldn't need to do this -- miniz should # handle reading the buffer. This is just a temporary workaround path.seek(0) f.write(path.read()) log.debug("Writing buffer to tmp file located at %s.", f.name) loader = torch._C._aoti.AOTIModelPackageLoader( f.name, model_name, run_single_threaded, num_runners, device_index ) return AOTICompiledModel(loader) path = os.fspath(path) # AOTIModelPackageLoader expects (str, str) loader = torch._C._aoti.AOTIModelPackageLoader( path, model_name, run_single_threaded, num_runners, device_index ) return AOTICompiledModel(loader)
import io import json import logging import os import tempfile from typing import IO, Union import torch from torch._inductor import config from torch._inductor.cpp_builder import BuildOptionsBase, CppBuilder from torch.export.pt2_archive._package import AOTICompiledModel, load_pt2, package_pt2 from torch.types import FileLike log = logging.getLogger(__name__) def compile_so(aoti_dir: str, aoti_files: list[str], so_path: str) -> str: def get_aoti_file_with_suffix(suffix: str) -> str: for file in aoti_files: if file.endswith(suffix): return file raise RuntimeError(f"Unable to find file with suffix {suffix}") # Compile all the files into a .so cpp_file = os.path.join(aoti_dir, get_aoti_file_with_suffix(".cpp")) consts_o = os.path.join(aoti_dir, get_aoti_file_with_suffix(".o")) file_name = os.path.splitext(cpp_file)[0] # Parse compile flags and build the .o file with open(file_name + "_compile_flags.json") as f: compile_flags = json.load(f) compile_options = BuildOptionsBase( **compile_flags, use_relative_path=config.is_fbcode() ) object_builder = CppBuilder( name=file_name, sources=cpp_file, BuildOption=compile_options, ) output_o = object_builder.get_target_file_path() object_builder.build() # Parse linker flags and build the .so file with open(file_name + "_linker_flags.json") as f: linker_flags = json.load(f) linker_options = BuildOptionsBase( **linker_flags, use_relative_path=config.is_fbcode() ) so_builder = CppBuilder( name=os.path.split(so_path)[-1], sources=[output_o, consts_o], BuildOption=linker_options, output_dir=so_path, ) output_so = so_builder.get_target_file_path() so_builder.build() # mmapped weights serialized_weights_filename = file_name + "_serialized_weights.bin" if serialized_weights_filename in aoti_files: with open(serialized_weights_filename, "rb") as f_weights: serialized_weights = f_weights.read() with open(output_so, "a+b") as f_so: so_size = f_so.tell() # Page align the weights f_so.write(b" " * (16384 - so_size % 16384)) f_so.write(serialized_weights) return output_so def package_aoti( archive_file: FileLike, aoti_files: Union[list[str], dict[str, list[str]]], ) -> FileLike: """ Saves the AOTInductor generated files to the PT2Archive format. Args: archive_file: The file name to save the package to. aoti_files: This can either be a singular path to a directory containing the AOTInductor files, or a dictionary mapping the model name to the path to its AOTInductor generated files. """ return package_pt2(archive_file, aoti_files=aoti_files) def load_package( path: FileLike, model_name: str = "model", run_single_threaded: bool = False, num_runners: int = 1, device_index: int = -1, ) -> AOTICompiledModel: # type: ignore[type-arg] try: pt2_contents = load_pt2( path, run_single_threaded=run_single_threaded, num_runners=num_runners, device_index=device_index, ) if model_name not in pt2_contents.aoti_runners: raise RuntimeError(f"Model {model_name} not found in package") return pt2_contents.aoti_runners[model_name] except RuntimeError: log.warning("Loading outdated pt2 file. Please regenerate your package.") if isinstance(path, (io.IOBase, IO)): with tempfile.NamedTemporaryFile(suffix=".pt2") as f: # TODO(angelayi): We shouldn't need to do this -- miniz should # handle reading the buffer. This is just a temporary workaround path.seek(0) f.write(path.read()) log.debug("Writing buffer to tmp file located at %s.", f.name) loader = torch._C._aoti.AOTIModelPackageLoader( f.name, model_name, run_single_threaded, num_runners, device_index ) return AOTICompiledModel(loader) path = os.fspath(path) # AOTIModelPackageLoader expects (str, str) loader = torch._C._aoti.AOTIModelPackageLoader( path, model_name, run_single_threaded, num_runners, device_index ) return AOTICompiledModel(loader)
# Copyright (c) OpenMMLab. All rights reserved. import copy import os.path as osp import unittest import numpy as np from mmengine.data import InstanceData, PixelData from mmdet.datasets.transforms import PackDetInputs from mmdet.structures import DetDataSample from mmdet.structures.mask import BitmapMasks class TestPackDetInputs(unittest.TestCase): def setUp(self): """Setup the model and optimizer which are used in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ data_prefix = osp.join(osp.dirname(__file__), '../../data') img_path = osp.join(data_prefix, 'color.jpg') rng = np.random.RandomState(0) self.results1 = { 'img_id': 1, 'img_path': img_path, 'ori_shape': (300, 400), 'img_shape': (600, 800), 'scale_factor': 2.0, 'flip': False, 'img': rng.rand(300, 400), 'gt_seg_map': rng.rand(300, 400), 'gt_masks': BitmapMasks(rng.rand(3, 300, 400), height=300, width=400), 'gt_bboxes_labels': rng.rand(3, ), 'gt_ignore_flags': np.array([0, 0, 1], dtype=np.bool), 'proposals': rng.rand(2, 4) } self.results2 = { 'img_id': 1, 'img_path': img_path, 'ori_shape': (300, 400), 'img_shape': (600, 800), 'scale_factor': 2.0, 'flip': False, 'img': rng.rand(300, 400), 'gt_seg_map': rng.rand(300, 400), 'gt_masks': BitmapMasks(rng.rand(3, 300, 400), height=300, width=400), 'gt_bboxes_labels': rng.rand(3, ), 'proposals': rng.rand(2, 4) } self.meta_keys = ('img_id', 'img_path', 'ori_shape', 'scale_factor', 'flip') def test_transform(self): transform = PackDetInputs(meta_keys=self.meta_keys) results = transform(copy.deepcopy(self.results1)) self.assertIn('data_sample', results) self.assertIsInstance(results['data_sample'], DetDataSample) self.assertIsInstance(results['data_sample'].gt_instances, InstanceData) self.assertIsInstance(results['data_sample'].ignored_instances, InstanceData) self.assertEqual(len(results['data_sample'].gt_instances), 2) self.assertEqual(len(results['data_sample'].ignored_instances), 1) self.assertIsInstance(results['data_sample'].gt_sem_seg, PixelData) self.assertIsInstance(results['data_sample'].proposals, InstanceData) self.assertEqual(len(results['data_sample'].proposals), 2) self.assertIsInstance(results['data_sample'].proposals.bboxes, np.ndarray) def test_transform_without_ignore(self): transform = PackDetInputs(meta_keys=self.meta_keys) results = transform(copy.deepcopy(self.results2)) self.assertIn('data_sample', results) self.assertIsInstance(results['data_sample'], DetDataSample) self.assertIsInstance(results['data_sample'].gt_instances, InstanceData) self.assertIsInstance(results['data_sample'].ignored_instances, InstanceData) self.assertEqual(len(results['data_sample'].gt_instances), 3) self.assertEqual(len(results['data_sample'].ignored_instances), 0) self.assertIsInstance(results['data_sample'].gt_sem_seg, PixelData) self.assertIsInstance(results['data_sample'].proposals, InstanceData) self.assertEqual(len(results['data_sample'].proposals), 2) self.assertIsInstance(results['data_sample'].proposals.bboxes, np.ndarray) def test_repr(self): transform = PackDetInputs(meta_keys=self.meta_keys) self.assertEqual( repr(transform), f'PackDetInputs(meta_keys={self.meta_keys})')
# Copyright (c) OpenMMLab. All rights reserved. import copy import os.path as osp import unittest import numpy as np from mmengine.data import BaseDataElement as PixelData from mmengine.data import InstanceData from mmdet.datasets.transforms import PackDetInputs from mmdet.structures import DetDataSample from mmdet.structures.mask import BitmapMasks class TestPackDetInputs(unittest.TestCase): def setUp(self): """Setup the model and optimizer which are used in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ data_prefix = osp.join(osp.dirname(__file__), '../../data') img_path = osp.join(data_prefix, 'color.jpg') rng = np.random.RandomState(0) self.results1 = { 'img_id': 1, 'img_path': img_path, 'ori_shape': (300, 400), 'img_shape': (600, 800), 'scale_factor': 2.0, 'flip': False, 'img': rng.rand(300, 400), 'gt_seg_map': rng.rand(300, 400), 'gt_masks': BitmapMasks(rng.rand(3, 300, 400), height=300, width=400), 'gt_bboxes_labels': rng.rand(3, ), 'gt_ignore_flags': np.array([0, 0, 1], dtype=np.bool), 'proposals': rng.rand(2, 4) } self.results2 = { 'img_id': 1, 'img_path': img_path, 'ori_shape': (300, 400), 'img_shape': (600, 800), 'scale_factor': 2.0, 'flip': False, 'img': rng.rand(300, 400), 'gt_seg_map': rng.rand(300, 400), 'gt_masks': BitmapMasks(rng.rand(3, 300, 400), height=300, width=400), 'gt_bboxes_labels': rng.rand(3, ), 'proposals': rng.rand(2, 4) } self.meta_keys = ('img_id', 'img_path', 'ori_shape', 'scale_factor', 'flip') def test_transform(self): transform = PackDetInputs(meta_keys=self.meta_keys) results = transform(copy.deepcopy(self.results1)) self.assertIn('data_sample', results) self.assertIsInstance(results['data_sample'], DetDataSample) self.assertIsInstance(results['data_sample'].gt_instances, InstanceData) self.assertIsInstance(results['data_sample'].ignored_instances, InstanceData) self.assertEqual(len(results['data_sample'].gt_instances), 2) self.assertEqual(len(results['data_sample'].ignored_instances), 1) self.assertIsInstance(results['data_sample'].gt_sem_seg, PixelData) self.assertIsInstance(results['data_sample'].proposals, InstanceData) self.assertEqual(len(results['data_sample'].proposals), 2) self.assertIsInstance(results['data_sample'].proposals.bboxes, np.ndarray) def test_transform_without_ignore(self): transform = PackDetInputs(meta_keys=self.meta_keys) results = transform(copy.deepcopy(self.results2)) self.assertIn('data_sample', results) self.assertIsInstance(results['data_sample'], DetDataSample) self.assertIsInstance(results['data_sample'].gt_instances, InstanceData) self.assertIsInstance(results['data_sample'].ignored_instances, InstanceData) self.assertEqual(len(results['data_sample'].gt_instances), 3) self.assertEqual(len(results['data_sample'].ignored_instances), 0) self.assertIsInstance(results['data_sample'].gt_sem_seg, PixelData) self.assertIsInstance(results['data_sample'].proposals, InstanceData) self.assertEqual(len(results['data_sample'].proposals), 2) self.assertIsInstance(results['data_sample'].proposals.bboxes, np.ndarray) def test_repr(self): transform = PackDetInputs(meta_keys=self.meta_keys) self.assertEqual( repr(transform), f'PackDetInputs(meta_keys={self.meta_keys})')
from docarray import Document, DocumentArray import pytest def test_add_ignore_existing_doc_id(start_storage): elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'columns': [('price', 'int')], 'distance': 'l2_norm', 'index_name': 'test_add_ignore_existing_doc_id', }, ) with elastic_doc: elastic_doc.extend( [ Document(id='r0', embedding=[0, 0, 0]), Document(id='r1', embedding=[1, 1, 1]), Document(id='r2', embedding=[2, 2, 2]), Document(id='r3', embedding=[3, 3, 3]), Document(id='r4', embedding=[4, 4, 4]), ] ) with elastic_doc: elastic_doc.extend( [ Document(id='r0', embedding=[0, 0, 0]), Document(id='r2', embedding=[2, 2, 2]), Document(id='r4', embedding=[4, 4, 4]), Document(id='r5', embedding=[2, 2, 2]), Document(id='r6', embedding=[4, 4, 4]), ] ) indexed_offset_count = elastic_doc._client.count( index=elastic_doc._index_name_offset2id )['count'] assert len(elastic_doc) == len(elastic_doc[:, 'embedding']) assert len(elastic_doc) == indexed_offset_count assert len(elastic_doc[:, 'embedding']) == 7 def test_add_skip_wrong_data_type_and_fix_offset(start_storage): elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'columns': [('price', 'int')], 'index_name': 'test_add_skip_wrong_data_type_and_fix_offset', }, ) with elastic_doc: elastic_doc.extend( [ Document(id='0', price=1000), Document(id='1', price=20000), Document(id='2', price=103000), ] ) with pytest.raises(IndexError): with elastic_doc: elastic_doc.extend( [ Document(id='0', price=10000), Document(id='1', price=20000), Document(id='3', price=30000), Document(id='4', price=100000000000), # overflow int32 Document(id='5', price=2000), Document(id='6', price=100000000000), # overflow int32 Document(id='7', price=30000), ] ) expected_ids = ['0', '1', '2', '3', '5', '7'] assert len(elastic_doc) == 6 assert len(elastic_doc[:, 'id']) == 6 assert elastic_doc[:, 'id'] == expected_ids assert elastic_doc._offset2ids.ids == expected_ids
from docarray import Document, DocumentArray def test_add_ignore_existing_doc_id(start_storage): elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'columns': [('price', 'int')], 'distance': 'l2_norm', 'index_name': 'test_add_ignore_existing_doc_id', }, ) with elastic_doc: elastic_doc.extend( [ Document(id='r0', embedding=[0, 0, 0]), Document(id='r1', embedding=[1, 1, 1]), Document(id='r2', embedding=[2, 2, 2]), Document(id='r3', embedding=[3, 3, 3]), Document(id='r4', embedding=[4, 4, 4]), ] ) with elastic_doc: elastic_doc.extend( [ Document(id='r0', embedding=[0, 0, 0]), Document(id='r2', embedding=[2, 2, 2]), Document(id='r4', embedding=[4, 4, 4]), Document(id='r5', embedding=[2, 2, 2]), Document(id='r6', embedding=[4, 4, 4]), ] ) indexed_offset_count = elastic_doc._client.count( index=elastic_doc._index_name_offset2id )['count'] assert len(elastic_doc) == len(elastic_doc[:, 'embedding']) assert len(elastic_doc) == indexed_offset_count assert len(elastic_doc[:, 'embedding']) == 7
import pytest from llama_index.multi_modal_llms.nvidia import NVIDIAMultiModal @pytest.mark.integration def test_available_models() -> None: models = NVIDIAMultiModal().available_models assert models assert isinstance(models, list) assert all(isinstance(model.id, str) for model in models)
import pytest from llama_index.multi_modal_llms.nvidia import NVIDIAMultiModal @pytest.mark.integration() def test_available_models() -> None: models = NVIDIAMultiModal().available_models assert models assert isinstance(models, list) assert all(isinstance(model.id, str) for model in models)
import csv import os from . import InputExample class TripletReader(object): """Reads in the a Triplet Dataset: Each line contains (at least) 3 columns, one anchor column (s1), one positive example (s2) and one negative example (s3) """ def __init__( self, dataset_folder, s1_col_idx=0, s2_col_idx=1, s3_col_idx=2, has_header=False, delimiter="\t", quoting=csv.QUOTE_NONE, ): self.dataset_folder = dataset_folder self.s1_col_idx = s1_col_idx self.s2_col_idx = s2_col_idx self.s3_col_idx = s3_col_idx self.has_header = has_header self.delimiter = delimiter self.quoting = quoting def get_examples(self, filename, max_examples=0): data = csv.reader( open(os.path.join(self.dataset_folder, filename), encoding="utf-8"), delimiter=self.delimiter, quoting=self.quoting, ) examples = [] if self.has_header: next(data) for id, row in enumerate(data): s1 = row[self.s1_col_idx] s2 = row[self.s2_col_idx] s3 = row[self.s3_col_idx] examples.append(InputExample(texts=[s1, s2, s3])) if max_examples > 0 and len(examples) >= max_examples: break return examples
from . import InputExample import csv import gzip import os class TripletReader(object): """ Reads in the a Triplet Dataset: Each line contains (at least) 3 columns, one anchor column (s1), one positive example (s2) and one negative example (s3) """ def __init__(self, dataset_folder, s1_col_idx=0, s2_col_idx=1, s3_col_idx=2, has_header=False, delimiter="\t", quoting=csv.QUOTE_NONE): self.dataset_folder = dataset_folder self.s1_col_idx = s1_col_idx self.s2_col_idx = s2_col_idx self.s3_col_idx = s3_col_idx self.has_header = has_header self.delimiter = delimiter self.quoting = quoting def get_examples(self, filename, max_examples=0): """ """ data = csv.reader(open(os.path.join(self.dataset_folder, filename), encoding="utf-8"), delimiter=self.delimiter, quoting=self.quoting) examples = [] if self.has_header: next(data) for id, row in enumerate(data): s1 = row[self.s1_col_idx] s2 = row[self.s2_col_idx] s3 = row[self.s3_col_idx] examples.append(InputExample(texts=[s1, s2, s3])) if max_examples > 0 and len(examples) >= max_examples: break return examples
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.export.saved_model import ExportArchive
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.export.export_lib import ExportArchive
import numpy as np from docarray.proto import DocumentProto, NdArrayProto, NodeProto from docarray.typing import NdArray def test_nested_item_proto(): NodeProto(text='hello') NodeProto(nested=DocumentProto()) def test_nested_optional_item_proto(): NodeProto() def test_ndarray(): nd_proto = NdArrayProto() original_ndarray = np.zeros((3, 224, 224)) NdArray._flush_tensor_to_proto(nd_proto, value=original_ndarray) nested_item = NodeProto(ndarray=nd_proto) tensor = NdArray.from_protobuf(nested_item.ndarray) assert (tensor == original_ndarray).all() def test_document_proto_set(): data = {} nested_item1 = NodeProto(text='hello') nd_proto = NdArrayProto() original_ndarray = np.zeros((3, 224, 224)) NdArray._flush_tensor_to_proto(nd_proto, value=original_ndarray) nested_item2 = NodeProto(ndarray=nd_proto) data['a'] = nested_item1 data['b'] = nested_item2 DocumentProto(data=data)
import numpy as np from docarray.proto import DocumentProto, NdArrayProto, NodeProto from docarray.typing import Tensor def test_nested_item_proto(): NodeProto(text='hello') NodeProto(nested=DocumentProto()) def test_nested_optional_item_proto(): NodeProto() def test_ndarray(): nd_proto = NdArrayProto() original_tensor = np.zeros((3, 224, 224)) Tensor._flush_tensor_to_proto(nd_proto, value=original_tensor) nested_item = NodeProto(tensor=nd_proto) tensor = Tensor.from_protobuf(nested_item.tensor) assert (tensor == original_tensor).all() def test_document_proto_set(): data = {} nested_item1 = NodeProto(text='hello') nd_proto = NdArrayProto() original_tensor = np.zeros((3, 224, 224)) Tensor._flush_tensor_to_proto(nd_proto, value=original_tensor) nested_item2 = NodeProto(tensor=nd_proto) data['a'] = nested_item1 data['b'] = nested_item2 DocumentProto(data=data)
from pathlib import Path from llama_index.core.bridge.pydantic import AnyUrl from llama_index.core.schema import MediaResource def test_defaults(): m = MediaResource() assert m.data is None assert m.embeddings is None assert m.mimetype is None assert m.path is None assert m.url is None def test_mimetype(): png_1px = "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mP8z8BQDwAEhQGAhKmMIQAAAABJRU5ErkJggg==" m = MediaResource(data=png_1px.encode("utf-8"), mimetype=None) assert m.mimetype == "image/png" def test_mimetype_from_path(): m = MediaResource(path="my-image.jpg", mimetype=None) assert m.mimetype == "image/jpeg" def test_mimetype_prioritizes_data(): png_1px = "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mP8z8BQDwAEhQGAhKmMIQAAAABJRU5ErkJggg==" m = MediaResource(data=png_1px.encode("utf-8"), mimetype=None, path="my_image.jpg") assert m.mimetype == "image/png" def test_hash(): assert ( MediaResource( data=b"test bytes", path=Path("foo/bar/baz"), url=AnyUrl("http://example.com"), text="some text", ).hash == "04414a5f03ad7fa055229b4d3690d47427cb0b65bc7eb8f770d1ecbd54ab4909" ) assert MediaResource().hash == ""
from pathlib import Path from llama_index.core.bridge.pydantic import AnyUrl from llama_index.core.schema import MediaResource def test_defaults(): m = MediaResource() assert m.data is None assert m.embeddings is None assert m.mimetype is None assert m.path is None assert m.url is None def test_mimetype(): png_1px = "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mP8z8BQDwAEhQGAhKmMIQAAAABJRU5ErkJggg==" m = MediaResource(data=png_1px.encode("utf-8"), mimetype=None) assert m.mimetype == "image/png" def test_hash(): assert ( MediaResource( data=b"test bytes", path=Path("foo/bar/baz"), url=AnyUrl("http://example.com"), text="some text", ).hash == "04414a5f03ad7fa055229b4d3690d47427cb0b65bc7eb8f770d1ecbd54ab4909" ) assert MediaResource().hash == ""
_base_ = ['./mask2former_swin-t-p4-w7-224_lsj_8x2_50e_coco-panoptic.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth' # noqa depths = [2, 2, 18, 2] model = dict( backbone=dict( pretrain_img_size=384, embed_dims=128, depths=depths, num_heads=[4, 8, 16, 32], window_size=12, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), panoptic_head=dict(in_channels=[128, 256, 512, 1024])) # set all layers in backbone to lr_mult=0.1 # set all norm layers, position_embeding, # query_embeding, level_embeding to decay_multi=0.0 backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0) backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0) embed_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'backbone': dict(lr_mult=0.1, decay_mult=1.0), 'backbone.patch_embed.norm': backbone_norm_multi, 'backbone.norm': backbone_norm_multi, 'absolute_pos_embed': backbone_embed_multi, 'relative_position_bias_table': backbone_embed_multi, 'query_embed': embed_multi, 'query_feat': embed_multi, 'level_embed': embed_multi } custom_keys.update({ f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi for stage_id, num_blocks in enumerate(depths) for block_id in range(num_blocks) }) custom_keys.update({ f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi for stage_id in range(len(depths) - 1) }) # optimizer optim_wrapper = dict( paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))
_base_ = ['./mask2former_swin-t-p4-w7-224_lsj_8x2_50e_coco-panoptic.py'] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth' # noqa depths = [2, 2, 18, 2] model = dict( backbone=dict( pretrain_img_size=384, embed_dims=128, depths=depths, num_heads=[4, 8, 16, 32], window_size=12, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), panoptic_head=dict(in_channels=[128, 256, 512, 1024])) # set all layers in backbone to lr_mult=0.1 # set all norm layers, position_embeding, # query_embeding, level_embeding to decay_multi=0.0 backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0) backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0) embed_multi = dict(lr_mult=1.0, decay_mult=0.0) custom_keys = { 'backbone': dict(lr_mult=0.1, decay_mult=1.0), 'backbone.patch_embed.norm': backbone_norm_multi, 'backbone.norm': backbone_norm_multi, 'absolute_pos_embed': backbone_embed_multi, 'relative_position_bias_table': backbone_embed_multi, 'query_embed': embed_multi, 'query_feat': embed_multi, 'level_embed': embed_multi } custom_keys.update({ f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi for stage_id, num_blocks in enumerate(depths) for block_id in range(num_blocks) }) custom_keys.update({ f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi for stage_id in range(len(depths) - 1) }) # optimizer optimizer = dict( paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os from jina import Flow from PIL import Image from ...pdf_segmenter import PDFSegmenter def test_flow(test_dir, doc_generator_img_text, expected_text): flow = Flow().add(uses=PDFSegmenter) doc_array = doc_generator_img_text for doc in doc_array: with flow: results = flow.post(on='/test', inputs=doc, return_results=True) assert len(results[0].docs) == 1 chunks = results[0].docs[0].chunks assert len(chunks) == 3 for idx, c in enumerate(chunks[:2]): with Image.open( os.path.join(test_dir, f'data/test_img_{idx}.jpg') ) as img: blob = chunks[idx].blob assert chunks[idx].mime_type == 'image/*' assert blob.shape[1], blob.shape[0] == img.size if idx == 0: assert blob.shape == (660, 1024, 3) if idx == 1: assert blob.shape == (626, 1191, 3) # Check text assert chunks[2].text == expected_text assert chunks[2].mime_type == 'text/plain'
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os from PIL import Image from jina import Flow from ...pdf_segmenter import PDFSegmenter def test_flow(test_dir, doc_generator_img_text, expected_text): flow = Flow().add(uses=PDFSegmenter) doc_array = doc_generator_img_text for doc in doc_array: with flow: results = flow.post( on='/test', inputs=doc, return_results=True ) assert len(results[0].docs) == 1 chunks = results[0].docs[0].chunks assert len(chunks) == 3 for idx, c in enumerate(chunks[:2]): with Image.open(os.path.join(test_dir, f'data/test_img_{idx}.jpg')) as img: blob = chunks[idx].blob assert chunks[idx].mime_type == 'image/*' assert blob.shape[1], blob.shape[0] == img.size if idx == 0: assert blob.shape == (660, 1024, 3) if idx == 1: assert blob.shape == (626, 1191, 3) # Check text assert chunks[2].text == expected_text assert chunks[2].mime_type == 'text/plain'
"""Top-level imports for LlamaIndex.""" __version__ = "0.12.48" import logging from logging import NullHandler from typing import Callable, Optional try: # Force pants to install eval_type_backport on 3.9 import eval_type_backport # noqa # type: ignore except ImportError: pass # response from llama_index.core.base.response.schema import Response # import global eval handler from llama_index.core.callbacks.global_handlers import set_global_handler from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.embeddings.mock_embed_model import MockEmbedding # indices # loading from llama_index.core.indices import ( ComposableGraph, DocumentSummaryIndex, GPTDocumentSummaryIndex, GPTKeywordTableIndex, GPTListIndex, GPTRAKEKeywordTableIndex, GPTSimpleKeywordTableIndex, GPTTreeIndex, GPTVectorStoreIndex, KeywordTableIndex, KnowledgeGraphIndex, ListIndex, PropertyGraphIndex, RAKEKeywordTableIndex, SimpleKeywordTableIndex, SummaryIndex, TreeIndex, VectorStoreIndex, load_graph_from_storage, load_index_from_storage, load_indices_from_storage, ) # structured from llama_index.core.indices.common.struct_store.base import ( SQLDocumentContextBuilder, ) # prompt helper from llama_index.core.indices.prompt_helper import PromptHelper # prompts from llama_index.core.prompts import ( BasePromptTemplate, ChatPromptTemplate, # backwards compatibility Prompt, PromptTemplate, SelectorPromptTemplate, ) from llama_index.core.readers import SimpleDirectoryReader, download_loader # Response Synthesizer from llama_index.core.response_synthesizers.factory import get_response_synthesizer from llama_index.core.schema import Document, QueryBundle from llama_index.core.service_context import ( ServiceContext, set_global_service_context, ) # global settings from llama_index.core.settings import Settings # storage from llama_index.core.storage.storage_context import StorageContext # sql wrapper from llama_index.core.utilities.sql_wrapper import SQLDatabase # global tokenizer from llama_index.core.utils import get_tokenizer, set_global_tokenizer # best practices for library logging: # https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library logging.getLogger(__name__).addHandler(NullHandler()) __all__ = [ "StorageContext", "ServiceContext", "ComposableGraph", # indices "SummaryIndex", "VectorStoreIndex", "SimpleKeywordTableIndex", "KeywordTableIndex", "RAKEKeywordTableIndex", "TreeIndex", "DocumentSummaryIndex", "KnowledgeGraphIndex", "PropertyGraphIndex", # indices - legacy names "GPTKeywordTableIndex", "GPTKnowledgeGraphIndex", "GPTSimpleKeywordTableIndex", "GPTRAKEKeywordTableIndex", "GPTListIndex", "ListIndex", "GPTTreeIndex", "GPTVectorStoreIndex", "GPTDocumentSummaryIndex", "Prompt", "PromptTemplate", "BasePromptTemplate", "ChatPromptTemplate", "SelectorPromptTemplate", "SummaryPrompt", "TreeInsertPrompt", "TreeSelectPrompt", "TreeSelectMultiplePrompt", "RefinePrompt", "QuestionAnswerPrompt", "KeywordExtractPrompt", "QueryKeywordExtractPrompt", "Response", "Document", "SimpleDirectoryReader", "MockEmbedding", "SQLDatabase", "SQLDocumentContextBuilder", "SQLContextBuilder", "PromptHelper", "IndexStructType", "download_loader", "load_graph_from_storage", "load_index_from_storage", "load_indices_from_storage", "QueryBundle", "get_response_synthesizer", "set_global_service_context", "set_global_handler", "set_global_tokenizer", "get_tokenizer", "Settings", ] # eval global toggle from llama_index.core.callbacks.base_handler import BaseCallbackHandler global_handler: Optional[BaseCallbackHandler] = None # NOTE: keep for backwards compatibility SQLContextBuilder = SQLDocumentContextBuilder # global tokenizer global_tokenizer: Optional[Callable[[str], list]] = None
"""Top-level imports for LlamaIndex.""" __version__ = "0.12.47" import logging from logging import NullHandler from typing import Callable, Optional try: # Force pants to install eval_type_backport on 3.9 import eval_type_backport # noqa # type: ignore except ImportError: pass # response from llama_index.core.base.response.schema import Response # import global eval handler from llama_index.core.callbacks.global_handlers import set_global_handler from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.embeddings.mock_embed_model import MockEmbedding # indices # loading from llama_index.core.indices import ( ComposableGraph, DocumentSummaryIndex, GPTDocumentSummaryIndex, GPTKeywordTableIndex, GPTListIndex, GPTRAKEKeywordTableIndex, GPTSimpleKeywordTableIndex, GPTTreeIndex, GPTVectorStoreIndex, KeywordTableIndex, KnowledgeGraphIndex, ListIndex, PropertyGraphIndex, RAKEKeywordTableIndex, SimpleKeywordTableIndex, SummaryIndex, TreeIndex, VectorStoreIndex, load_graph_from_storage, load_index_from_storage, load_indices_from_storage, ) # structured from llama_index.core.indices.common.struct_store.base import ( SQLDocumentContextBuilder, ) # prompt helper from llama_index.core.indices.prompt_helper import PromptHelper # prompts from llama_index.core.prompts import ( BasePromptTemplate, ChatPromptTemplate, # backwards compatibility Prompt, PromptTemplate, SelectorPromptTemplate, ) from llama_index.core.readers import SimpleDirectoryReader, download_loader # Response Synthesizer from llama_index.core.response_synthesizers.factory import get_response_synthesizer from llama_index.core.schema import Document, QueryBundle from llama_index.core.service_context import ( ServiceContext, set_global_service_context, ) # global settings from llama_index.core.settings import Settings # storage from llama_index.core.storage.storage_context import StorageContext # sql wrapper from llama_index.core.utilities.sql_wrapper import SQLDatabase # global tokenizer from llama_index.core.utils import get_tokenizer, set_global_tokenizer # best practices for library logging: # https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library logging.getLogger(__name__).addHandler(NullHandler()) __all__ = [ "StorageContext", "ServiceContext", "ComposableGraph", # indices "SummaryIndex", "VectorStoreIndex", "SimpleKeywordTableIndex", "KeywordTableIndex", "RAKEKeywordTableIndex", "TreeIndex", "DocumentSummaryIndex", "KnowledgeGraphIndex", "PropertyGraphIndex", # indices - legacy names "GPTKeywordTableIndex", "GPTKnowledgeGraphIndex", "GPTSimpleKeywordTableIndex", "GPTRAKEKeywordTableIndex", "GPTListIndex", "ListIndex", "GPTTreeIndex", "GPTVectorStoreIndex", "GPTDocumentSummaryIndex", "Prompt", "PromptTemplate", "BasePromptTemplate", "ChatPromptTemplate", "SelectorPromptTemplate", "SummaryPrompt", "TreeInsertPrompt", "TreeSelectPrompt", "TreeSelectMultiplePrompt", "RefinePrompt", "QuestionAnswerPrompt", "KeywordExtractPrompt", "QueryKeywordExtractPrompt", "Response", "Document", "SimpleDirectoryReader", "MockEmbedding", "SQLDatabase", "SQLDocumentContextBuilder", "SQLContextBuilder", "PromptHelper", "IndexStructType", "download_loader", "load_graph_from_storage", "load_index_from_storage", "load_indices_from_storage", "QueryBundle", "get_response_synthesizer", "set_global_service_context", "set_global_handler", "set_global_tokenizer", "get_tokenizer", "Settings", ] # eval global toggle from llama_index.core.callbacks.base_handler import BaseCallbackHandler global_handler: Optional[BaseCallbackHandler] = None # NOTE: keep for backwards compatibility SQLContextBuilder = SQLDocumentContextBuilder # global tokenizer global_tokenizer: Optional[Callable[[str], list]] = None
# type: ignore """ Development Scripts for template packages """ from collections.abc import Sequence from fastapi import FastAPI from langserve import add_routes from langchain_cli.utils.packages import get_langserve_export, get_package_root def create_demo_server( *, config_keys: Sequence[str] = (), playground_type: str = "default", ): """ Creates a demo server for the current template. """ app = FastAPI() package_root = get_package_root() pyproject = package_root / "pyproject.toml" try: package = get_langserve_export(pyproject) mod = __import__(package["module"], fromlist=[package["attr"]]) chain = getattr(mod, package["attr"]) add_routes( app, chain, config_keys=config_keys, playground_type=playground_type, ) except KeyError as e: raise KeyError("Missing fields from pyproject.toml") from e except ImportError as e: raise ImportError("Could not import module defined in pyproject.toml") from e return app def create_demo_server_configurable(): return create_demo_server(config_keys=["configurable"]) def create_demo_server_chat(): return create_demo_server(playground_type="chat")
# type: ignore """ Development Scripts for template packages """ from typing import Sequence from fastapi import FastAPI from langserve import add_routes from langchain_cli.utils.packages import get_langserve_export, get_package_root def create_demo_server( *, config_keys: Sequence[str] = (), playground_type: str = "default", ): """ Creates a demo server for the current template. """ app = FastAPI() package_root = get_package_root() pyproject = package_root / "pyproject.toml" try: package = get_langserve_export(pyproject) mod = __import__(package["module"], fromlist=[package["attr"]]) chain = getattr(mod, package["attr"]) add_routes( app, chain, config_keys=config_keys, playground_type=playground_type, ) except KeyError as e: raise KeyError("Missing fields from pyproject.toml") from e except ImportError as e: raise ImportError("Could not import module defined in pyproject.toml") from e return app def create_demo_server_configurable(): return create_demo_server(config_keys=["configurable"]) def create_demo_server_chat(): return create_demo_server(playground_type="chat")
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp def parse_args(): parser = argparse.ArgumentParser( description='Convert benchmark model json to script') parser.add_argument( 'txt_path', type=str, help='txt path output by benchmark_filter') parser.add_argument( '--run', action='store_true', help='run script directly') parser.add_argument( '--out', type=str, help='path to save model benchmark script') args = parser.parse_args() return args def determine_gpus(cfg_name): gpus = 8 gpus_pre_node = 8 if cfg_name.find('16x') >= 0: gpus = 16 elif cfg_name.find('gn-head_4x4_1x_coco.py') >= 0 or \ cfg_name.find('gn-head_4x4_2x_coco.py') >= 0: gpus = 4 gpus_pre_node = 4 elif 'lad' in cfg_name: gpus = 2 gpus_pre_node = 2 return gpus, gpus_pre_node def main(): args = parse_args() if args.out: out_suffix = args.out.split('.')[-1] assert args.out.endswith('.sh'), \ f'Expected out file path suffix is .sh, but get .{out_suffix}' assert args.out or args.run, \ ('Please specify at least one operation (save/run/ the ' 'script) with the argument "--out" or "--run"') root_name = './tools' train_script_name = osp.join(root_name, 'slurm_train.sh') commands = [] partition_name = 'PARTITION=$1 ' commands.append(partition_name) commands.append('\n') work_dir = 'WORK_DIR=$2 ' commands.append(work_dir) commands.append('\n') cpus_pre_task = 'CPUS_PER_TASK=${3:-4} ' commands.append(cpus_pre_task) commands.append('\n') commands.append('\n') with open(args.txt_path, 'r') as f: model_cfgs = f.readlines() for i, cfg in enumerate(model_cfgs): cfg = cfg.strip() if len(cfg) == 0: continue # print cfg name echo_info = f'echo \'{cfg}\' &' commands.append(echo_info) commands.append('\n') fname, _ = osp.splitext(osp.basename(cfg)) out_fname = '$WORK_DIR/' + fname gpus, gpus_pre_node = determine_gpus(cfg) command_info = f'GPUS={gpus} GPUS_PER_NODE={gpus_pre_node} ' \ f'CPUS_PER_TASK=$CPUS_PRE_TASK {train_script_name} ' command_info += '$PARTITION ' command_info += f'{fname} ' command_info += f'{cfg} ' command_info += f'{out_fname} ' command_info += '--cfg-options default_hooks.checkpoint.' \ 'max_keep_ckpts=1 ' command_info += '&' commands.append(command_info) if i < len(model_cfgs): commands.append('\n') command_str = ''.join(commands) if args.out: with open(args.out, 'w') as f: f.write(command_str) if args.run: os.system(command_str) if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp def parse_args(): parser = argparse.ArgumentParser( description='Convert benchmark model json to script') parser.add_argument( 'txt_path', type=str, help='txt path output by benchmark_filter') parser.add_argument( '--partition', type=str, default='openmmlab', help='slurm partition name') parser.add_argument( '--max-keep-ckpts', type=int, default=1, help='The maximum checkpoints to keep') parser.add_argument( '--run', action='store_true', help='run script directly') parser.add_argument( '--out', type=str, help='path to save model benchmark script') args = parser.parse_args() return args def main(): args = parse_args() if args.out: out_suffix = args.out.split('.')[-1] assert args.out.endswith('.sh'), \ f'Expected out file path suffix is .sh, but get .{out_suffix}' assert args.out or args.run, \ ('Please specify at least one operation (save/run/ the ' 'script) with the argument "--out" or "--run"') partition = args.partition # cluster name root_name = './tools' train_script_name = osp.join(root_name, 'slurm_train.sh') # stdout is no output stdout_cfg = '>/dev/null' max_keep_ckpts = args.max_keep_ckpts commands = [] with open(args.txt_path, 'r') as f: model_cfgs = f.readlines() for i, cfg in enumerate(model_cfgs): cfg = cfg.strip() if len(cfg) == 0: continue # print cfg name echo_info = f'echo \'{cfg}\' &' commands.append(echo_info) commands.append('\n') fname, _ = osp.splitext(osp.basename(cfg)) out_fname = osp.join(root_name, 'work_dir', fname) # default setting if cfg.find('16x') >= 0: command_info = f'GPUS=16 GPUS_PER_NODE=8 ' \ f'CPUS_PER_TASK=2 {train_script_name} ' elif cfg.find('gn-head_4x4_1x_coco.py') >= 0 or \ cfg.find('gn-head_4x4_2x_coco.py') >= 0: command_info = f'GPUS=4 GPUS_PER_NODE=4 ' \ f'CPUS_PER_TASK=2 {train_script_name} ' else: command_info = f'GPUS=8 GPUS_PER_NODE=8 ' \ f'CPUS_PER_TASK=2 {train_script_name} ' command_info += f'{partition} ' command_info += f'{fname} ' command_info += f'{cfg} ' command_info += f'{out_fname} ' if max_keep_ckpts: command_info += f'--cfg-options ' \ f'checkpoint_config.max_keep_ckpts=' \ f'{max_keep_ckpts}' + ' ' command_info += f'{stdout_cfg} &' commands.append(command_info) if i < len(model_cfgs): commands.append('\n') command_str = ''.join(commands) if args.out: with open(args.out, 'w') as f: f.write(command_str) if args.run: os.system(command_str) if __name__ == '__main__': main()
import torch from torch import Tensor from torch import nn from typing import Dict import os import json class WeightedLayerPooling(nn.Module): """Token embeddings are weighted mean of their different hidden layer representations""" def __init__( self, word_embedding_dimension, num_hidden_layers: int = 12, layer_start: int = 4, layer_weights=None ): super(WeightedLayerPooling, self).__init__() self.config_keys = ["word_embedding_dimension", "layer_start", "num_hidden_layers"] self.word_embedding_dimension = word_embedding_dimension self.layer_start = layer_start self.num_hidden_layers = num_hidden_layers self.layer_weights = ( layer_weights if layer_weights is not None else nn.Parameter(torch.tensor([1] * (num_hidden_layers + 1 - layer_start), dtype=torch.float)) ) def forward(self, features: Dict[str, Tensor]): ft_all_layers = features["all_layer_embeddings"] all_layer_embedding = torch.stack(ft_all_layers) all_layer_embedding = all_layer_embedding[self.layer_start :, :, :, :] # Start from 4th layers output weight_factor = self.layer_weights.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(all_layer_embedding.size()) weighted_average = (weight_factor * all_layer_embedding).sum(dim=0) / self.layer_weights.sum() features.update({"token_embeddings": weighted_average}) return features def get_word_embedding_dimension(self): return self.word_embedding_dimension def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) model = WeightedLayerPooling(**config) model.load_state_dict( torch.load(os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu")) ) return model
import torch from torch import Tensor from torch import nn from typing import Dict import os import json class WeightedLayerPooling(nn.Module): """ Token embeddings are weighted mean of their different hidden layer representations """ def __init__( self, word_embedding_dimension, num_hidden_layers: int = 12, layer_start: int = 4, layer_weights=None ): super(WeightedLayerPooling, self).__init__() self.config_keys = ["word_embedding_dimension", "layer_start", "num_hidden_layers"] self.word_embedding_dimension = word_embedding_dimension self.layer_start = layer_start self.num_hidden_layers = num_hidden_layers self.layer_weights = ( layer_weights if layer_weights is not None else nn.Parameter(torch.tensor([1] * (num_hidden_layers + 1 - layer_start), dtype=torch.float)) ) def forward(self, features: Dict[str, Tensor]): ft_all_layers = features["all_layer_embeddings"] all_layer_embedding = torch.stack(ft_all_layers) all_layer_embedding = all_layer_embedding[self.layer_start :, :, :, :] # Start from 4th layers output weight_factor = self.layer_weights.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(all_layer_embedding.size()) weighted_average = (weight_factor * all_layer_embedding).sum(dim=0) / self.layer_weights.sum() features.update({"token_embeddings": weighted_average}) return features def get_word_embedding_dimension(self): return self.word_embedding_dimension def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) torch.save(self.state_dict(), os.path.join(output_path, "pytorch_model.bin")) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) model = WeightedLayerPooling(**config) model.load_state_dict( torch.load(os.path.join(input_path, "pytorch_model.bin"), map_location=torch.device("cpu")) ) return model
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .two_stage import TwoStageDetector @MODELS.register_module() class FastRCNN(TwoStageDetector): """Implementation of `Fast R-CNN <https://arxiv.org/abs/1504.08083>`_""" def __init__(self, backbone, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(FastRCNN, self).__init__( backbone=backbone, neck=neck, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg) def forward_test(self, imgs, img_metas, proposals, **kwargs): """ Args: imgs (List[Tensor]): the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains all images in the batch. img_metas (List[List[dict]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. proposals (List[List[Tensor]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. The Tensor should have a shape Px4, where P is the number of proposals. """ for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]: if not isinstance(var, list): raise TypeError(f'{name} must be a list, but got {type(var)}') num_augs = len(imgs) if num_augs != len(img_metas): raise ValueError(f'num of augmentations ({len(imgs)}) ' f'!= num of image meta ({len(img_metas)})') if num_augs == 1: return self.simple_test(imgs[0], img_metas[0], proposals[0], **kwargs) else: # TODO: support test-time augmentation assert NotImplementedError
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module() class FastRCNN(TwoStageDetector): """Implementation of `Fast R-CNN <https://arxiv.org/abs/1504.08083>`_""" def __init__(self, backbone, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(FastRCNN, self).__init__( backbone=backbone, neck=neck, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg) def forward_test(self, imgs, img_metas, proposals, **kwargs): """ Args: imgs (List[Tensor]): the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains all images in the batch. img_metas (List[List[dict]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. proposals (List[List[Tensor]]): the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. The Tensor should have a shape Px4, where P is the number of proposals. """ for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]: if not isinstance(var, list): raise TypeError(f'{name} must be a list, but got {type(var)}') num_augs = len(imgs) if num_augs != len(img_metas): raise ValueError(f'num of augmentations ({len(imgs)}) ' f'!= num of image meta ({len(img_metas)})') if num_augs == 1: return self.simple_test(imgs[0], img_metas[0], proposals[0], **kwargs) else: # TODO: support test-time augmentation assert NotImplementedError
from __future__ import annotations import asyncio from collections.abc import AsyncIterator from typing import Any, Literal, Union, cast from langchain_core.callbacks import AsyncCallbackHandler from langchain_core.outputs import LLMResult # TODO If used by two LLM runs in parallel this won't work as expected class AsyncIteratorCallbackHandler(AsyncCallbackHandler): """Callback handler that returns an async iterator.""" queue: asyncio.Queue[str] done: asyncio.Event @property def always_verbose(self) -> bool: return True def __init__(self) -> None: self.queue = asyncio.Queue() self.done = asyncio.Event() async def on_llm_start( self, serialized: dict[str, Any], prompts: list[str], **kwargs: Any ) -> None: # If two calls are made in a row, this resets the state self.done.clear() async def on_llm_new_token(self, token: str, **kwargs: Any) -> None: if token is not None and token != "": self.queue.put_nowait(token) async def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: self.done.set() async def on_llm_error(self, error: BaseException, **kwargs: Any) -> None: self.done.set() # TODO implement the other methods async def aiter(self) -> AsyncIterator[str]: while not self.queue.empty() or not self.done.is_set(): # Wait for the next token in the queue, # but stop waiting if the done event is set done, other = await asyncio.wait( [ # NOTE: If you add other tasks here, update the code below, # which assumes each set has exactly one task each asyncio.ensure_future(self.queue.get()), asyncio.ensure_future(self.done.wait()), ], return_when=asyncio.FIRST_COMPLETED, ) # Cancel the other task if other: other.pop().cancel() # Extract the value of the first completed task token_or_done = cast(Union[str, Literal[True]], done.pop().result()) # If the extracted value is the boolean True, the done event was set if token_or_done is True: break # Otherwise, the extracted value is a token, which we yield yield token_or_done
from __future__ import annotations import asyncio from typing import Any, AsyncIterator, Dict, List, Literal, Union, cast from langchain_core.callbacks import AsyncCallbackHandler from langchain_core.outputs import LLMResult # TODO If used by two LLM runs in parallel this won't work as expected class AsyncIteratorCallbackHandler(AsyncCallbackHandler): """Callback handler that returns an async iterator.""" queue: asyncio.Queue[str] done: asyncio.Event @property def always_verbose(self) -> bool: return True def __init__(self) -> None: self.queue = asyncio.Queue() self.done = asyncio.Event() async def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: # If two calls are made in a row, this resets the state self.done.clear() async def on_llm_new_token(self, token: str, **kwargs: Any) -> None: if token is not None and token != "": self.queue.put_nowait(token) async def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: self.done.set() async def on_llm_error(self, error: BaseException, **kwargs: Any) -> None: self.done.set() # TODO implement the other methods async def aiter(self) -> AsyncIterator[str]: while not self.queue.empty() or not self.done.is_set(): # Wait for the next token in the queue, # but stop waiting if the done event is set done, other = await asyncio.wait( [ # NOTE: If you add other tasks here, update the code below, # which assumes each set has exactly one task each asyncio.ensure_future(self.queue.get()), asyncio.ensure_future(self.done.wait()), ], return_when=asyncio.FIRST_COMPLETED, ) # Cancel the other task if other: other.pop().cancel() # Extract the value of the first completed task token_or_done = cast(Union[str, Literal[True]], done.pop().result()) # If the extracted value is the boolean True, the done event was set if token_or_done is True: break # Otherwise, the extracted value is a token, which we yield yield token_or_done
# Copyright (c) OpenMMLab. All rights reserved. import pytest from mmengine.utils import ManagerMeta, ManagerMixin class SubClassA(ManagerMixin): def __init__(self, name='', *args, **kwargs): super().__init__(name, *args, **kwargs) class SubClassB(ManagerMixin): def __init__(self, name='', *args, **kwargs): super().__init__(name, *args, **kwargs) class TestGlobalMeta: def test_init(self): # Subclass's constructor does not contain name arguments will raise an # error. with pytest.raises(AssertionError): class SubClassNoName1(metaclass=ManagerMeta): def __init__(self, a, *args, **kwargs): pass # Valid subclass. class GlobalAccessible1(metaclass=ManagerMeta): def __init__(self, name): self.name = name class TestManagerMixin: def test_init(self): # test create instance by name. base_cls = ManagerMixin('name') assert base_cls.instance_name == 'name' def test_get_instance(self): # SubClass should manage their own `_instance_dict`. with pytest.raises(RuntimeError): SubClassA.get_current_instance() SubClassA.get_instance('instance_a') SubClassB.get_instance('instance_b') assert SubClassB._instance_dict != SubClassA._instance_dict # Test `message_hub` can create by name. message_hub = SubClassA.get_instance('name1') assert message_hub.instance_name == 'name1' # No arguments will raise an assertion error. SubClassA.get_instance('name2') message_hub = SubClassA.get_current_instance() message_hub.mark = -1 assert message_hub.instance_name == 'name2' # Test get latest `message_hub` repeatedly. message_hub = SubClassA.get_instance('name3') assert message_hub.instance_name == 'name3' message_hub = SubClassA.get_current_instance() assert message_hub.instance_name == 'name3' # Test get name2 repeatedly. message_hub = SubClassA.get_instance('name2') assert message_hub.mark == -1 # Non-string instance name will raise `AssertionError`. with pytest.raises(AssertionError): SubClassA.get_instance(name=1) # `get_instance` should not accept other arguments if corresponding # instance has been created. with pytest.warns(UserWarning): SubClassA.get_instance('name2', a=1, b=2)
# Copyright (c) OpenMMLab. All rights reserved. import pytest from mmengine.utils import ManagerMeta, ManagerMixin class SubClassA(ManagerMixin): def __init__(self, name='', *args, **kwargs): super().__init__(name, *args, **kwargs) class SubClassB(ManagerMixin): def __init__(self, name='', *args, **kwargs): super().__init__(name, *args, **kwargs) class TestGlobalMeta: def test_init(self): # Subclass's constructor does not contain name arguments will raise an # error. with pytest.raises(AssertionError): class SubClassNoName1(metaclass=ManagerMeta): def __init__(self, a, *args, **kwargs): pass # Valid subclass. class GlobalAccessible1(metaclass=ManagerMeta): def __init__(self, name): self.name = name class TestManagerMixin: def test_init(self): # test create instance by name. base_cls = ManagerMixin('name') assert base_cls.instance_name == 'name' def test_get_instance(self): # SubClass should manage their own `_instance_dict`. with pytest.raises(RuntimeError): SubClassA.get_current_instance() SubClassA.get_instance('instance_a') SubClassB.get_instance('instance_b') assert SubClassB._instance_dict != SubClassA._instance_dict # Test `message_hub` can create by name. message_hub = SubClassA.get_instance('name1') assert message_hub.instance_name == 'name1' # No arguments will raise an assertion error. SubClassA.get_instance('name2') message_hub = SubClassA.get_current_instance() message_hub.mark = -1 assert message_hub.instance_name == 'name2' # Test get latest `message_hub` repeatedly. message_hub = SubClassA.get_instance('name3') assert message_hub.instance_name == 'name3' message_hub = SubClassA.get_current_instance() assert message_hub.instance_name == 'name3' # Test get name2 repeatedly. message_hub = SubClassA.get_instance('name2') assert message_hub.mark == -1 # Non-string instance name will raise `AssertionError`. with pytest.raises(AssertionError): SubClassA.get_instance(name=1) # `get_instance` should not accept other arguments if corresponding # instance has been created. with pytest.raises(AssertionError): SubClassA.get_instance('name2', a=1, b=2)
from __future__ import annotations import sys from .BoW import BoW from .CLIPModel import CLIPModel from .CNN import CNN from .Dense import Dense from .Dropout import Dropout from .InputModule import InputModule from .LayerNorm import LayerNorm from .LSTM import LSTM from .Module import Module from .Normalize import Normalize from .Pooling import Pooling from .Router import Asym, Router from .StaticEmbedding import StaticEmbedding from .Transformer import Transformer from .WeightedLayerPooling import WeightedLayerPooling from .WordEmbeddings import WordEmbeddings from .WordWeights import WordWeights sys.modules["sentence_transformers.models.Asym"] = sys.modules["sentence_transformers.models.Router"] __all__ = [ "Transformer", "StaticEmbedding", "Asym", "BoW", "CNN", "Dense", "Dropout", "LayerNorm", "LSTM", "Normalize", "Pooling", "WeightedLayerPooling", "WordEmbeddings", "WordWeights", "CLIPModel", "Module", "InputModule", "Router", ]
from __future__ import annotations from .Asym import Asym, Router from .BoW import BoW from .CLIPModel import CLIPModel from .CNN import CNN from .Dense import Dense from .Dropout import Dropout from .InputModule import InputModule from .LayerNorm import LayerNorm from .LSTM import LSTM from .Module import Module from .Normalize import Normalize from .Pooling import Pooling from .StaticEmbedding import StaticEmbedding from .Transformer import Transformer from .WeightedLayerPooling import WeightedLayerPooling from .WordEmbeddings import WordEmbeddings from .WordWeights import WordWeights __all__ = [ "Transformer", "StaticEmbedding", "Asym", "BoW", "CNN", "Dense", "Dropout", "LayerNorm", "LSTM", "Normalize", "Pooling", "WeightedLayerPooling", "WordEmbeddings", "WordWeights", "CLIPModel", "Module", "InputModule", "Router", ]
from __future__ import annotations from typing import Any, List, Optional, Tuple, Union import PIL.Image import torch from torchvision.transforms import InterpolationMode from ._datapoint import Datapoint, FillTypeJIT class Mask(Datapoint): @classmethod def _wrap(cls, tensor: torch.Tensor) -> Mask: return tensor.as_subclass(cls) def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> Mask: if isinstance(data, PIL.Image.Image): from torchvision.prototype.transforms import functional as F data = F.pil_to_tensor(data) tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor) @classmethod def wrap_like( cls, other: Mask, tensor: torch.Tensor, ) -> Mask: return cls._wrap(tensor) @property def spatial_size(self) -> Tuple[int, int]: return tuple(self.shape[-2:]) # type: ignore[return-value] def horizontal_flip(self) -> Mask: output = self._F.horizontal_flip_mask(self.as_subclass(torch.Tensor)) return Mask.wrap_like(self, output) def vertical_flip(self) -> Mask: output = self._F.vertical_flip_mask(self.as_subclass(torch.Tensor)) return Mask.wrap_like(self, output) def resize( # type: ignore[override] self, size: List[int], interpolation: InterpolationMode = InterpolationMode.NEAREST, max_size: Optional[int] = None, antialias: Optional[Union[str, bool]] = "warn", ) -> Mask: output = self._F.resize_mask(self.as_subclass(torch.Tensor), size, max_size=max_size) return Mask.wrap_like(self, output) def crop(self, top: int, left: int, height: int, width: int) -> Mask: output = self._F.crop_mask(self.as_subclass(torch.Tensor), top, left, height, width) return Mask.wrap_like(self, output) def center_crop(self, output_size: List[int]) -> Mask: output = self._F.center_crop_mask(self.as_subclass(torch.Tensor), output_size=output_size) return Mask.wrap_like(self, output) def resized_crop( self, top: int, left: int, height: int, width: int, size: List[int], interpolation: InterpolationMode = InterpolationMode.NEAREST, antialias: Optional[Union[str, bool]] = "warn", ) -> Mask: output = self._F.resized_crop_mask(self.as_subclass(torch.Tensor), top, left, height, width, size=size) return Mask.wrap_like(self, output) def pad( self, padding: Union[int, List[int]], fill: FillTypeJIT = None, padding_mode: str = "constant", ) -> Mask: output = self._F.pad_mask(self.as_subclass(torch.Tensor), padding, padding_mode=padding_mode, fill=fill) return Mask.wrap_like(self, output) def rotate( self, angle: float, interpolation: InterpolationMode = InterpolationMode.NEAREST, expand: bool = False, center: Optional[List[float]] = None, fill: FillTypeJIT = None, ) -> Mask: output = self._F.rotate_mask(self.as_subclass(torch.Tensor), angle, expand=expand, center=center, fill=fill) return Mask.wrap_like(self, output) def affine( self, angle: Union[int, float], translate: List[float], scale: float, shear: List[float], interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: FillTypeJIT = None, center: Optional[List[float]] = None, ) -> Mask: output = self._F.affine_mask( self.as_subclass(torch.Tensor), angle, translate=translate, scale=scale, shear=shear, fill=fill, center=center, ) return Mask.wrap_like(self, output) def perspective( self, startpoints: Optional[List[List[int]]], endpoints: Optional[List[List[int]]], interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: FillTypeJIT = None, coefficients: Optional[List[float]] = None, ) -> Mask: output = self._F.perspective_mask( self.as_subclass(torch.Tensor), startpoints, endpoints, fill=fill, coefficients=coefficients ) return Mask.wrap_like(self, output) def elastic( self, displacement: torch.Tensor, interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: FillTypeJIT = None, ) -> Mask: output = self._F.elastic_mask(self.as_subclass(torch.Tensor), displacement, fill=fill) return Mask.wrap_like(self, output)
from __future__ import annotations from typing import Any, List, Optional, Tuple, Union import PIL.Image import torch from torchvision.transforms import InterpolationMode from ._datapoint import Datapoint, FillTypeJIT class Mask(Datapoint): @classmethod def _wrap(cls, tensor: torch.Tensor) -> Mask: return tensor.as_subclass(cls) def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> Mask: if isinstance(data, PIL.Image.Image): from torchvision.prototype.transforms import functional as F data = F.pil_to_tensor(data) tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) return cls._wrap(tensor) @classmethod def wrap_like( cls, other: Mask, tensor: torch.Tensor, ) -> Mask: return cls._wrap(tensor) @property def spatial_size(self) -> Tuple[int, int]: return tuple(self.shape[-2:]) # type: ignore[return-value] def horizontal_flip(self) -> Mask: output = self._F.horizontal_flip_mask(self.as_subclass(torch.Tensor)) return Mask.wrap_like(self, output) def vertical_flip(self) -> Mask: output = self._F.vertical_flip_mask(self.as_subclass(torch.Tensor)) return Mask.wrap_like(self, output) def resize( # type: ignore[override] self, size: List[int], interpolation: InterpolationMode = InterpolationMode.NEAREST, max_size: Optional[int] = None, antialias: Optional[bool] = None, ) -> Mask: output = self._F.resize_mask(self.as_subclass(torch.Tensor), size, max_size=max_size) return Mask.wrap_like(self, output) def crop(self, top: int, left: int, height: int, width: int) -> Mask: output = self._F.crop_mask(self.as_subclass(torch.Tensor), top, left, height, width) return Mask.wrap_like(self, output) def center_crop(self, output_size: List[int]) -> Mask: output = self._F.center_crop_mask(self.as_subclass(torch.Tensor), output_size=output_size) return Mask.wrap_like(self, output) def resized_crop( self, top: int, left: int, height: int, width: int, size: List[int], interpolation: InterpolationMode = InterpolationMode.NEAREST, antialias: Optional[bool] = None, ) -> Mask: output = self._F.resized_crop_mask(self.as_subclass(torch.Tensor), top, left, height, width, size=size) return Mask.wrap_like(self, output) def pad( self, padding: Union[int, List[int]], fill: FillTypeJIT = None, padding_mode: str = "constant", ) -> Mask: output = self._F.pad_mask(self.as_subclass(torch.Tensor), padding, padding_mode=padding_mode, fill=fill) return Mask.wrap_like(self, output) def rotate( self, angle: float, interpolation: InterpolationMode = InterpolationMode.NEAREST, expand: bool = False, center: Optional[List[float]] = None, fill: FillTypeJIT = None, ) -> Mask: output = self._F.rotate_mask(self.as_subclass(torch.Tensor), angle, expand=expand, center=center, fill=fill) return Mask.wrap_like(self, output) def affine( self, angle: Union[int, float], translate: List[float], scale: float, shear: List[float], interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: FillTypeJIT = None, center: Optional[List[float]] = None, ) -> Mask: output = self._F.affine_mask( self.as_subclass(torch.Tensor), angle, translate=translate, scale=scale, shear=shear, fill=fill, center=center, ) return Mask.wrap_like(self, output) def perspective( self, startpoints: Optional[List[List[int]]], endpoints: Optional[List[List[int]]], interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: FillTypeJIT = None, coefficients: Optional[List[float]] = None, ) -> Mask: output = self._F.perspective_mask( self.as_subclass(torch.Tensor), startpoints, endpoints, fill=fill, coefficients=coefficients ) return Mask.wrap_like(self, output) def elastic( self, displacement: torch.Tensor, interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: FillTypeJIT = None, ) -> Mask: output = self._F.elastic_mask(self.as_subclass(torch.Tensor), displacement, fill=fill) return Mask.wrap_like(self, output)
from typing import Any, Optional def json_to_markdown(data: Any, level: int = 0, header: Optional[str] = None) -> str: """ Recursively converts a Python object (from JSON) into a Markdown string. Args: data: The Python object to convert. level: The current nesting level (used for indentation and heading levels). header: Section header. Returns: A string containing the Markdown representation of the data. """ markdown_parts = [] indent = " " * level if isinstance(data, dict): for key, value in data.items(): heading_level = min(level + 1, 6) markdown_parts.append(f"{indent}{'#' * heading_level} {key}\n") markdown_parts.append(json_to_markdown(value, level + 1)) markdown_parts.append("\n") elif isinstance(data, list): if not data: markdown_parts.append(f"{indent}- *Empty List*\n") else: if header: markdown_parts.append(f"# {header}\n") for index, item in enumerate(data): if isinstance(item, (dict, list)): markdown_parts.append(f"{indent}- Item {index + 1}:\n") markdown_parts.append(json_to_markdown(item, level + 1)) else: markdown_parts.append(f"{indent}- {item!s}\n") elif isinstance(data, str): if "\n" in data: # nl var to enable the usage of this symbol inside f-string expressions nl = "\n" markdown_parts.append(f"{indent}> {data.replace(nl, nl + indent + '> ')}\n") else: markdown_parts.append(f"{indent}{data}\n") elif isinstance(data, (int, float, bool)) or data is None: markdown_parts.append(f"{indent}{data!s}\n") else: markdown_parts.append(f"{indent}{data!s}\n") return "".join(markdown_parts).rstrip("\n") + "\n"
from typing import Any, Optional def json_to_markdown(data: Any, level: int = 0, header: Optional[str] = None) -> str: """ Recursively converts a Python object (from JSON) into a Markdown string. Args: data: The Python object to convert. level: The current nesting level (used for indentation and heading levels). header: Section header. Returns: A string containing the Markdown representation of the data. """ markdown_parts = [] indent = " " * level if isinstance(data, dict): for key, value in data.items(): heading_level = min(level + 1, 6) markdown_parts.append(f"{indent}{'#' * heading_level} {key}\n") markdown_parts.append(json_to_markdown(value, level + 1)) markdown_parts.append("\n") elif isinstance(data, list): if not data: markdown_parts.append(f"{indent}- *Empty List*\n") else: if header: markdown_parts.append(f"# {header}\n") for index, item in enumerate(data): if isinstance(item, (dict, list)): markdown_parts.append(f"{indent}- Item {index + 1}:\n") markdown_parts.append(json_to_markdown(item, level + 1)) else: markdown_parts.append(f"{indent}- {item!s}\n") elif isinstance(data, str): if "\n" in data: # nl var to enable the usage of this symbol inside f-string expressions nl = "\n" markdown_parts.append( f"{indent}> {data.replace(nl, nl + indent + '> ')}\n" ) else: markdown_parts.append(f"{indent}{data}\n") elif isinstance(data, (int, float, bool)) or data is None: markdown_parts.append(f"{indent}{data!s}\n") else: markdown_parts.append(f"{indent}{data!s}\n") return "".join(markdown_parts).rstrip("\n") + "\n"
# coding=utf-8 # Copyright 2020 The Trax Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for model Reformer.""" import os from shutil import copyfile from typing import Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_reformer import ReformerTokenizer else: ReformerTokenizer = None logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} class ReformerTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" Reformer tokenizer (backed by HuggingFace's *tokenizers* library). Based on [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = ReformerTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, eos_token="</s>", unk_token="<unk>", additional_special_tokens=[], **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, eos_token=eos_token, unk_token=unk_token, additional_special_tokens=additional_special_tokens, **kwargs, ) self.vocab_file = vocab_file def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,) __all__ = ["ReformerTokenizerFast"]
# coding=utf-8 # Copyright 2020 The Trax Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for model Reformer.""" import os from shutil import copyfile from typing import Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_reformer import ReformerTokenizer else: ReformerTokenizer = None logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} class ReformerTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" Reformer tokenizer (backed by HuggingFace's *tokenizers* library). Based on [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = ReformerTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, eos_token="</s>", unk_token="<unk>", additional_special_tokens=[], **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, eos_token=eos_token, unk_token=unk_token, additional_special_tokens=additional_special_tokens, **kwargs, ) self.vocab_file = vocab_file @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,) __all__ = ["ReformerTokenizerFast"]
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers import util from sentence_transformers.losses.CoSENTLoss import CoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseCoSENTLoss(CoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0, similarity_fct=util.cos_sim) -> None: """ This class implements CoSENT (Cosine Sentence). It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(i,j)-s(k,l))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Args: model: SparseEncoder similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Need to be used in SpladeLoss or CSRLoss as a loss function. - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseAnglELoss` is SparseCoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SpladeLoss(model=model, loss=losses.SparseCoSENTLoss(model), lambda_corpus=5e-5, all_docs=True) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ model.similarity_fn_name = "cosine" return super().__init__(model, scale=scale, similarity_fct=similarity_fct) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError("SparseCoSENTLoss should not be used alone. Use it with SpladeLoss or CSRLoss.")
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers import util from sentence_transformers.losses.CoSENTLoss import CoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseCoSENTLoss(CoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0, similarity_fct=util.cos_sim) -> None: """ This class implements CoSENT (Cosine Sentence). It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(i,j)-s(k,l))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. Anecdotal experiments show that this loss function produces a more powerful training signal than :class:`SparseCosineSimilarityLoss`, resulting in faster convergence and a final model with superior performance. Consequently, SparseCoSENTLoss may be used as a drop-in replacement for :class:`SparseCosineSimilarityLoss` in any training script. Args: model: SparseEncoder similarity_fct: Function to compute the PAIRWISE similarity between embeddings. Default is ``util.pairwise_cos_sim``. scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://kexue.fm/archives/8847 Requirements: - Need to be used in SpladeLoss or CSRLoss as a loss function. - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseAnglELoss` is SparseCoSENTLoss with ``pairwise_angle_sim`` as the metric, rather than ``pairwise_cos_sim``. - :class:`SparseCosineSimilarityLoss` seems to produce a weaker training signal than SparseCoSENTLoss. In our experiments, SparseCoSENTLoss is recommended. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SpladeLoss(model=model, loss=losses.SparseCoSENTLoss(model), lambda_corpus=5e-5, all_docs=True) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ model.similarity_fn_name = "cosine" return super().__init__(model, scale=scale, similarity_fct=similarity_fct) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError("SparseCoSENTLoss should not be used alone. Use it with SpladeLoss or CSRLoss.")
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_panoptic.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( type='PanopticFPN', semantic_head=dict( type='PanopticFPNHead', num_classes=54, in_channels=256, inner_channels=128, start_level=0, end_level=4, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), conv_cfg=None, loss_seg=dict( type='CrossEntropyLoss', ignore_index=-1, loss_weight=0.5)), panoptic_fusion_head=dict( type='HeuristicFusionHead', num_things_classes=80, num_stuff_classes=53), test_cfg=dict( panoptic=dict( score_thr=0.6, max_per_img=100, mask_thr_binary=0.5, mask_overlap=0.5, nms=dict(type='nms', iou_threshold=0.5, class_agnostic=True), stuff_area_limit=4096))) custom_hooks = []
_base_ = [ '../_base_/datasets/coco_panoptic.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( type='PanopticFPN', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=dict( type='FCNMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))), semantic_head=dict( type='PanopticFPNHead', num_classes=54, in_channels=256, inner_channels=128, start_level=0, end_level=4, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), conv_cfg=None, loss_seg=dict( type='CrossEntropyLoss', ignore_index=-1, loss_weight=0.5)), panoptic_fusion_head=dict( type='HeuristicFusionHead', num_things_classes=80, num_stuff_classes=53), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5), panoptic=dict( score_thr=0.6, max_per_img=100, mask_thr_binary=0.5, mask_overlap=0.5, nms=dict(type='nms', iou_threshold=0.5, class_agnostic=True), stuff_area_limit=4096))) custom_hooks = []
_base_ = ['./cascade-mask-rcnn_r50_fpn_1x_coco.py'] model = dict( data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False), backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
_base_ = ['./cascade_mask_rcnn_r50_fpn_1x_coco.py'] model = dict( data_preprocessor=dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False), backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
_base_ = './grid-rcnn_r50_fpn_gn-head_2x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = './grid_rcnn_r50_fpn_gn-head_2x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = 'mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_lsj-100e_coco.py' # Use RepeatDataset to speed up training # change repeat time from 4 (for 100 epochs) to 2 (for 50 epochs) train_dataloader = dict(dataset=dict(times=2))
_base_ = 'mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py' # Use RepeatDataset to speed up training # change repeat time from 4 (for 100 epochs) to 2 (for 50 epochs) train_dataloader = dict(dataset=dict(times=2))
"""ReAct output parser.""" import re from typing import Tuple from llama_index.core.agent.react.types import ( ActionReasoningStep, BaseReasoningStep, ResponseReasoningStep, ) from llama_index.core.output_parsers.utils import extract_json_str from llama_index.core.types import BaseOutputParser def extract_tool_use(input_text: str) -> Tuple[str, str, str]: pattern = r"(?:\s*Thought: (.*?)|(.+))\n+Action: ([^\n\(\) ]+).*?\n+Action Input: .*?(\{.*\})" match = re.search(pattern, input_text, re.DOTALL) if not match: raise ValueError(f"Could not extract tool use from input text: {input_text}") thought = (match.group(1) or match.group(2)).strip() action = match.group(3).strip() action_input = match.group(4).strip() return thought, action, action_input def action_input_parser(json_str: str) -> dict: processed_string = re.sub(r"(?<!\w)\'|\'(?!\w)", '"', json_str) pattern = r'"(\w+)":\s*"([^"]*)"' matches = re.findall(pattern, processed_string) return dict(matches) def extract_final_response(input_text: str) -> Tuple[str, str]: pattern = r"\s*Thought:(.*?)Answer:(.*?)(?:$)" match = re.search(pattern, input_text, re.DOTALL) if not match: raise ValueError( f"Could not extract final answer from input text: {input_text}" ) thought = match.group(1).strip() answer = match.group(2).strip() return thought, answer def parse_action_reasoning_step(output: str) -> ActionReasoningStep: """ Parse an action reasoning step from the LLM output. """ # Weaker LLMs may generate ReActAgent steps whose Action Input are horrible JSON strings. # `dirtyjson` is more lenient than `json` in parsing JSON strings. import dirtyjson as json thought, action, action_input = extract_tool_use(output) json_str = extract_json_str(action_input) # First we try json, if this fails we use ast try: action_input_dict = json.loads(json_str) except Exception: action_input_dict = action_input_parser(json_str) return ActionReasoningStep( thought=thought, action=action, action_input=action_input_dict ) class ReActOutputParser(BaseOutputParser): """ReAct Output parser.""" def parse(self, output: str, is_streaming: bool = False) -> BaseReasoningStep: """ Parse output from ReAct agent. We expect the output to be in one of the following formats: 1. If the agent need to use a tool to answer the question: ``` Thought: <thought> Action: <action> Action Input: <action_input> ``` 2. If the agent can answer the question without any tools: ``` Thought: <thought> Answer: <answer> ``` """ if "Thought:" not in output and "Action:" not in output: # NOTE: handle the case where the agent directly outputs the answer # instead of following the thought-answer format return ResponseReasoningStep( thought="(Implicit) I can answer without any more tools!", response=output, is_streaming=is_streaming, ) # An "Action" should take priority over an "Answer" if "Action:" in output: return parse_action_reasoning_step(output) if "Answer:" in output: thought, answer = extract_final_response(output) return ResponseReasoningStep( thought=thought, response=answer, is_streaming=is_streaming ) raise ValueError(f"Could not parse output: {output}") def format(self, output: str) -> str: """Format a query with structured output formatting instructions.""" raise NotImplementedError
"""ReAct output parser.""" import re from typing import Tuple from llama_index.core.agent.react.types import ( ActionReasoningStep, BaseReasoningStep, ResponseReasoningStep, ) from llama_index.core.output_parsers.utils import extract_json_str from llama_index.core.types import BaseOutputParser def extract_tool_use(input_text: str) -> Tuple[str, str, str]: pattern = ( r"\s*Thought: (.*?)\n+Action: ([^\n\(\) ]+).*?\n+Action Input: .*?(\{.*\})" ) match = re.search(pattern, input_text, re.DOTALL) if not match: raise ValueError(f"Could not extract tool use from input text: {input_text}") thought = match.group(1).strip() action = match.group(2).strip() action_input = match.group(3).strip() return thought, action, action_input def action_input_parser(json_str: str) -> dict: processed_string = re.sub(r"(?<!\w)\'|\'(?!\w)", '"', json_str) pattern = r'"(\w+)":\s*"([^"]*)"' matches = re.findall(pattern, processed_string) return dict(matches) def extract_final_response(input_text: str) -> Tuple[str, str]: pattern = r"\s*Thought:(.*?)Answer:(.*?)(?:$)" match = re.search(pattern, input_text, re.DOTALL) if not match: raise ValueError( f"Could not extract final answer from input text: {input_text}" ) thought = match.group(1).strip() answer = match.group(2).strip() return thought, answer def parse_action_reasoning_step(output: str) -> ActionReasoningStep: """ Parse an action reasoning step from the LLM output. """ # Weaker LLMs may generate ReActAgent steps whose Action Input are horrible JSON strings. # `dirtyjson` is more lenient than `json` in parsing JSON strings. import dirtyjson as json thought, action, action_input = extract_tool_use(output) json_str = extract_json_str(action_input) # First we try json, if this fails we use ast try: action_input_dict = json.loads(json_str) except Exception: action_input_dict = action_input_parser(json_str) return ActionReasoningStep( thought=thought, action=action, action_input=action_input_dict ) class ReActOutputParser(BaseOutputParser): """ReAct Output parser.""" def parse(self, output: str, is_streaming: bool = False) -> BaseReasoningStep: """ Parse output from ReAct agent. We expect the output to be in one of the following formats: 1. If the agent need to use a tool to answer the question: ``` Thought: <thought> Action: <action> Action Input: <action_input> ``` 2. If the agent can answer the question without any tools: ``` Thought: <thought> Answer: <answer> ``` """ if "Thought:" not in output: # NOTE: handle the case where the agent directly outputs the answer # instead of following the thought-answer format return ResponseReasoningStep( thought="(Implicit) I can answer without any more tools!", response=output, is_streaming=is_streaming, ) # An "Action" should take priority over an "Answer" if "Action:" in output: return parse_action_reasoning_step(output) if "Answer:" in output: thought, answer = extract_final_response(output) return ResponseReasoningStep( thought=thought, response=answer, is_streaming=is_streaming ) raise ValueError(f"Could not parse output: {output}") def format(self, output: str) -> str: """Format a query with structured output formatting instructions.""" raise NotImplementedError
# Copyright (c) OpenMMLab. All rights reserved. from .local_visualizer import DetLocalVisualizer from .palette import get_palette, palette_val __all__ = ['palette_val', 'get_palette', 'DetLocalVisualizer']
# Copyright (c) OpenMMLab. All rights reserved. from .image import (color_val_matplotlib, imshow_det_bboxes, imshow_gt_det_bboxes) from .palette import get_palette, palette_val __all__ = [ 'imshow_det_bboxes', 'imshow_gt_det_bboxes', 'color_val_matplotlib', 'palette_val', 'get_palette' ]
from typing import List, Optional, TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl from docarray.typing.url.mimetypes import TEXT_EXTRA_EXTENSIONS, TEXT_MIMETYPE T = TypeVar('T', bound='TextUrl') @_register_proto(proto_type_name='text_url') class TextUrl(AnyUrl): """ URL to a text file. Can be remote (web) URL, or a local file path. """ @classmethod def mime_type(cls) -> str: return TEXT_MIMETYPE @classmethod def extra_extensions(cls) -> List[str]: """ Returns a list of additional file extensions that are valid for this class but cannot be identified by the mimetypes library. """ return TEXT_EXTRA_EXTENSIONS def load(self, charset: str = 'utf-8', timeout: Optional[float] = None) -> str: """ Load the text file into a string. --- ```python from docarray import BaseDoc from docarray.typing import TextUrl class MyDoc(BaseDoc): remote_url: TextUrl doc = MyDoc( remote_url='https://de.wikipedia.org/wiki/Brixen', ) remote_txt = doc.remote_url.load() ``` --- :param timeout: timeout (sec) for urlopen network request. Only relevant if URL is not local :param charset: decoding charset; may be any character set registered with IANA :return: the text file content """ _bytes = self.load_bytes(timeout=timeout) return _bytes.decode(charset)
from typing import Optional, TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.url.any_url import AnyUrl T = TypeVar('T', bound='TextUrl') @_register_proto(proto_type_name='text_url') class TextUrl(AnyUrl): """ URL to a text file. Can be remote (web) URL, or a local file path. """ def load(self, charset: str = 'utf-8', timeout: Optional[float] = None) -> str: """ Load the text file into a string. --- ```python from docarray import BaseDoc from docarray.typing import TextUrl class MyDoc(BaseDoc): remote_url: TextUrl doc = MyDoc( remote_url='https://de.wikipedia.org/wiki/Brixen', ) remote_txt = doc.remote_url.load() ``` --- :param timeout: timeout (sec) for urlopen network request. Only relevant if URL is not local :param charset: decoding charset; may be any character set registered with IANA :return: the text file content """ _bytes = self.load_bytes(timeout=timeout) return _bytes.decode(charset)
"""Module for Jina Requests.""" from typing import ( TYPE_CHECKING, AsyncIterable, Dict, Iterable, Iterator, Optional, Tuple, Union, ) from jina.clients.request.helper import _new_data_request, _new_data_request_from_batch from jina.enums import DataInputType from jina.helper import batch_iterator from jina.logging.predefined import default_logger if TYPE_CHECKING: # pragma: no cover from docarray.document import DocumentSourceType from docarray.document.mixins.content import DocumentContentType from jina import Document from jina.types.request import Request SingletonDataType = Union[ DocumentContentType, DocumentSourceType, Document, Tuple[DocumentContentType, DocumentContentType], Tuple[DocumentSourceType, DocumentSourceType], ] GeneratorSourceType = Union[ Document, Iterable[SingletonDataType], AsyncIterable[SingletonDataType] ] def request_generator( exec_endpoint: str, data: 'GeneratorSourceType', request_size: int = 0, data_type: DataInputType = DataInputType.AUTO, target_executor: Optional[str] = None, parameters: Optional[Dict] = None, **kwargs, # do not remove this, add on purpose to suppress unknown kwargs ) -> Iterator['Request']: """Generate a request iterator. :param exec_endpoint: the endpoint string, by convention starts with `/` :param data: data to send, a list of dict/string/bytes that can be converted into a list of `Document` objects :param request_size: the number of the `Documents` in each request :param data_type: if ``data`` is an iterator over self-contained document, i.e. :class:`DocumentSourceType`; or an iterator over possible Document content (set to text, blob and buffer). :param parameters: a dictionary of parameters to be sent to the executor :param target_executor: a regex string. Only matching Executors will process the request. :param kwargs: additional arguments :yield: request """ _kwargs = dict(extra_kwargs=kwargs) try: if data is None: # this allows empty inputs, i.e. a data request with only parameters yield _new_data_request( endpoint=exec_endpoint, target=target_executor, parameters=parameters ) else: if not isinstance(data, Iterable): data = [data] for batch in batch_iterator(data, request_size): yield _new_data_request_from_batch( _kwargs=kwargs, batch=batch, data_type=data_type, endpoint=exec_endpoint, target=target_executor, parameters=parameters, ) except Exception as ex: # must be handled here, as grpc channel wont handle Python exception default_logger.critical(f'inputs is not valid! {ex!r}', exc_info=True) raise
"""Module for Jina Requests.""" from typing import ( Iterator, Union, Tuple, AsyncIterable, Iterable, Optional, Dict, TYPE_CHECKING, ) from jina.clients.request.helper import _new_data_request_from_batch, _new_data_request from jina.enums import DataInputType from jina.helper import batch_iterator from jina.logging.predefined import default_logger if TYPE_CHECKING: # pragma: no cover from jina import Document from docarray.document import DocumentSourceType from docarray.document.mixins.content import DocumentContentType from jina.types.request import Request SingletonDataType = Union[ DocumentContentType, DocumentSourceType, Document, Tuple[DocumentContentType, DocumentContentType], Tuple[DocumentSourceType, DocumentSourceType], ] GeneratorSourceType = Union[ Document, Iterable[SingletonDataType], AsyncIterable[SingletonDataType] ] def request_generator( exec_endpoint: str, data: 'GeneratorSourceType', request_size: int = 0, data_type: DataInputType = DataInputType.AUTO, target_executor: Optional[str] = None, parameters: Optional[Dict] = None, **kwargs, # do not remove this, add on purpose to suppress unknown kwargs ) -> Iterator['Request']: """Generate a request iterator. :param exec_endpoint: the endpoint string, by convention starts with `/` :param data: data to send, a list of dict/string/bytes that can be converted into a list of `Document` objects :param request_size: the number of the `Documents` in each request :param data_type: if ``data`` is an iterator over self-contained document, i.e. :class:`DocumentSourceType`; or an iterator over possible Document content (set to text, blob and buffer). :param parameters: a dictionary of parameters to be sent to the executor :param target_executor: a regex string. Only matching Executors will process the request. :param kwargs: additional arguments :yield: request """ _kwargs = dict(extra_kwargs=kwargs) try: if data is None: # this allows empty inputs, i.e. a data request with only parameters yield _new_data_request( endpoint=exec_endpoint, target=target_executor, parameters=parameters ) else: if not isinstance(data, Iterable): data = [data] for batch in batch_iterator(data, request_size): yield _new_data_request_from_batch( _kwargs=kwargs, batch=batch, data_type=data_type, endpoint=exec_endpoint, target=target_executor, parameters=parameters, ) except Exception as ex: # must be handled here, as grpc channel wont handle Python exception default_logger.critical(f'inputs is not valid! {ex!r}', exc_info=True) raise
"""Base argparser module for Pod and Deployment runtime""" import argparse import os from jina.enums import PollingType from jina.helper import random_identity from jina.parsers.helper import _SHOW_ALL_ARGS, add_arg_group def mixin_essential_parser(parser): """Mixing in arguments required by every module into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Essential') gp.add_argument( '--name', type=str, help=''' The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. ''', ) gp.add_argument( '--workspace', type=str, default=None, help='The working directory for any IO operations in this object. ' 'If not set, then derive from its parent `workspace`.', ) gp.add_argument( '--log-config', type=str, default='default', help='The YAML config of the logger used in this object.', ) gp.add_argument( '--quiet', action='store_true', default=False, help='If set, then no log will be emitted from this object.', ) gp.add_argument( '--quiet-error', action='store_true', default=False, help='If set, then exception stack information will not be added to the log', ) gp.add_argument( '--workspace-id', type=str, default=random_identity(), help='the UUID for identifying the workspace. When not given a random id will be assigned.' 'Multiple Pod/Deployment/Flow will work under the same workspace if they share the same ' '`workspace-id`.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) def mixin_base_ppr_parser(parser): """Mixing in arguments required by pod/deployment/runtime module into the given parser. :param parser: the parser instance to which we add arguments """ mixin_essential_parser(parser) gp = add_arg_group(parser, title='Base Deployment') gp.add_argument( '--extra-search-paths', type=str, default=[], nargs='*', help='Extra search paths to be used when loading modules and finding YAML config files.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--timeout-ctrl', type=int, default=int(os.getenv('JINA_DEFAULT_TIMEOUT_CTRL', '60')), help='The timeout in milliseconds of the control request, -1 for waiting forever', ) parser.add_argument( '--k8s-namespace', type=str, help='Name of the namespace where Kubernetes deployment should be deployed, to be filled by flow name' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--polling', type=str, default=PollingType.ANY.name, help=''' The polling strategy of the Deployment and its endpoints (when `shards>1`). Can be defined for all endpoints of a Deployment or by endpoint. Define per Deployment: - ANY: only one (whoever is idle) Pod polls the message - ALL: all Pods poll the message (like a broadcast) Define per Endpoint: JSON dict, {endpoint: PollingType} {'/custom': 'ALL', '/search': 'ANY', '*': 'ANY'} ''', )
"""Base argparser module for Pod and Deployment runtime""" import argparse import os from jina.enums import PollingType from jina.helper import random_identity from jina.parsers.helper import _SHOW_ALL_ARGS, add_arg_group def mixin_essential_parser(parser): """Mixing in arguments required by every module into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Essential') gp.add_argument( '--name', type=str, help=''' The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. ''', ) gp.add_argument( '--workspace', type=str, default=None, help='The working directory for any IO operations in this object. ' 'If not set, then derive from its parent `workspace`.', ) gp.add_argument( '--log-config', type=str, default='default', help='The YAML config of the logger used in this object.', ) gp.add_argument( '--quiet', action='store_true', default=False, help='If set, then no log will be emitted from this object.', ) gp.add_argument( '--quiet-error', action='store_true', default=False, help='If set, then exception stack information will not be added to the log', ) gp.add_argument( '--optout-telemetry', action='store_true', default=False, help='If set, disables telemetry during the Flow/Pod/Runtime start.', ) gp.add_argument( '--workspace-id', type=str, default=random_identity(), help='the UUID for identifying the workspace. When not given a random id will be assigned.' 'Multiple Pod/Deployment/Flow will work under the same workspace if they share the same ' '`workspace-id`.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) def mixin_base_ppr_parser(parser): """Mixing in arguments required by pod/deployment/runtime module into the given parser. :param parser: the parser instance to which we add arguments """ mixin_essential_parser(parser) gp = add_arg_group(parser, title='Base Deployment') gp.add_argument( '--extra-search-paths', type=str, default=[], nargs='*', help='Extra search paths to be used when loading modules and finding YAML config files.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--timeout-ctrl', type=int, default=int(os.getenv('JINA_DEFAULT_TIMEOUT_CTRL', '60')), help='The timeout in milliseconds of the control request, -1 for waiting forever', ) parser.add_argument( '--k8s-namespace', type=str, help='Name of the namespace where Kubernetes deployment should be deployed, to be filled by flow name' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--polling', type=str, default=PollingType.ANY.name, help=''' The polling strategy of the Deployment and its endpoints (when `shards>1`). Can be defined for all endpoints of a Deployment or by endpoint. Define per Deployment: - ANY: only one (whoever is idle) Pod polls the message - ALL: all Pods poll the message (like a broadcast) Define per Endpoint: JSON dict, {endpoint: PollingType} {'/custom': 'ALL', '/search': 'ANY', '*': 'ANY'} ''', )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api import _tf_keras from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import saving from keras.api import tree from keras.api import utils from keras.api import visualization from keras.api import wrappers from keras.src.backend import Variable from keras.src.backend import device from keras.src.backend import name_scope from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.backend.common.stateless_scope import StatelessScope from keras.src.backend.common.symbolic_scope import SymbolicScope from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.initializers.initializer import Initializer from keras.src.layers.core.input_layer import Input from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer from keras.src.losses.loss import Loss from keras.src.metrics.metric import Metric from keras.src.models.model import Model from keras.src.models.sequential import Sequential from keras.src.ops.function import Function from keras.src.ops.operation import Operation from keras.src.optimizers.optimizer import Optimizer from keras.src.quantizers.quantizers import Quantizer from keras.src.regularizers.regularizers import Regularizer from keras.src.version import __version__ from keras.src.version import version
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api import _tf_keras from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import saving from keras.api import tree from keras.api import utils from keras.api import visualization from keras.src.backend import Variable from keras.src.backend import device from keras.src.backend import name_scope from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.backend.common.stateless_scope import StatelessScope from keras.src.backend.common.symbolic_scope import SymbolicScope from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.initializers.initializer import Initializer from keras.src.layers.core.input_layer import Input from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer from keras.src.losses.loss import Loss from keras.src.metrics.metric import Metric from keras.src.models.model import Model from keras.src.models.sequential import Sequential from keras.src.ops.function import Function from keras.src.ops.operation import Operation from keras.src.optimizers.optimizer import Optimizer from keras.src.quantizers.quantizers import Quantizer from keras.src.regularizers.regularizers import Regularizer from keras.src.version import __version__ from keras.src.version import version
import os as _os import sys as _sys from pathlib import Path as _Path import datetime as _datetime __windows__ = _sys.platform == 'win32' __uptime__ = _datetime.datetime.now().isoformat() # update on MacOS 1. clean this tuple, 2. grep -rohEI --exclude-dir=jina/hub --exclude-dir=tests --include \*.py # "\'JINA_.*?\'" jina | sort -u | sed "s/$/,/g" 3. copy all lines EXCEPT the first (which is the grep command in the # last line) __jina_env__ = ( 'JINA_DEFAULT_HOST', 'JINA_DEFAULT_TIMEOUT_CTRL', 'JINA_DEPLOYMENT_NAME', 'JINA_DISABLE_UVLOOP', 'JINA_EARLY_STOP', 'JINA_FULL_CLI', 'JINA_GATEWAY_IMAGE', 'JINA_GRPC_RECV_BYTES', 'JINA_GRPC_SEND_BYTES', 'JINA_HUB_NO_IMAGE_REBUILD', 'JINA_LOG_CONFIG', 'JINA_LOG_LEVEL', 'JINA_LOG_NO_COLOR', 'JINA_MP_START_METHOD', 'JINA_OPTOUT_TELEMETRY', 'JINA_RANDOM_PORT_MAX', 'JINA_RANDOM_PORT_MIN', 'JINA_LOCKS_ROOT', 'JINA_OPTOUT_TELEMETRY', 'JINA_K8S_ACCESS_MODES', 'JINA_K8S_STORAGE_CLASS_NAME', 'JINA_K8S_STORAGE_CAPACITY', 'JINA_STREAMER_ARGS', ) __default_host__ = _os.environ.get( 'JINA_DEFAULT_HOST', '127.0.0.1' if __windows__ else '0.0.0.0' ) __docker_host__ = 'host.docker.internal' __default_executor__ = 'BaseExecutor' __default_gateway__ = 'BaseGateway' __default_http_gateway__ = 'HTTPGateway' __default_composite_gateway__ = 'CompositeGateway' __default_websocket_gateway__ = 'WebSocketGateway' __default_grpc_gateway__ = 'GRPCGateway' __default_endpoint__ = '/default' __dynamic_base_gateway_hubble__ = 'jinaai+docker://jina-ai/JinaGateway:latest' __ready_msg__ = 'ready and listening' __stop_msg__ = 'terminated' __unset_msg__ = '(unset)' __args_executor_func__ = { 'docs', 'parameters', 'docs_matrix', } __args_executor_init__ = {'metas', 'requests', 'runtime_args'} __resources_path__ = _os.path.join( _os.path.dirname(_sys.modules['jina'].__file__), 'resources' ) __cache_path__ = f'{_os.path.expanduser("~")}/.cache/{__package__}' if not _Path(__cache_path__).exists(): _Path(__cache_path__).mkdir(parents=True, exist_ok=True) _names_with_underscore = [ '__version__', '__proto_version__', '__default_host__', '__ready_msg__', '__stop_msg__', '__jina_env__', '__uptime__', '__default_endpoint__', '__default_executor__', '__unset_msg__', '__windows__', ] __all__ = [_s for _s in dir() if not _s.startswith('_')] __all__.extend(_names_with_underscore) RAFT_TO_EXECUTOR_PORT = 100
import os as _os import sys as _sys from pathlib import Path as _Path import datetime as _datetime __windows__ = _sys.platform == 'win32' __uptime__ = _datetime.datetime.now().isoformat() # update on MacOS 1. clean this tuple, 2. grep -rohEI --exclude-dir=jina/hub --exclude-dir=tests --include \*.py # "\'JINA_.*?\'" jina | sort -u | sed "s/$/,/g" 3. copy all lines EXCEPT the first (which is the grep command in the # last line) __jina_env__ = ( 'JINA_DEFAULT_HOST', 'JINA_DEFAULT_TIMEOUT_CTRL', 'JINA_DEPLOYMENT_NAME', 'JINA_DISABLE_UVLOOP', 'JINA_EARLY_STOP', 'JINA_FULL_CLI', 'JINA_GATEWAY_IMAGE', 'JINA_GRPC_RECV_BYTES', 'JINA_GRPC_SEND_BYTES', 'JINA_HUB_NO_IMAGE_REBUILD', 'JINA_LOG_CONFIG', 'JINA_LOG_LEVEL', 'JINA_LOG_NO_COLOR', 'JINA_MP_START_METHOD', 'JINA_OPTOUT_TELEMETRY', 'JINA_RANDOM_PORT_MAX', 'JINA_RANDOM_PORT_MIN', 'JINA_LOCKS_ROOT', 'JINA_OPTOUT_TELEMETRY', 'JINA_K8S_ACCESS_MODES', 'JINA_K8S_STORAGE_CLASS_NAME', 'JINA_K8S_STORAGE_CAPACITY', 'JINA_STREAMER_ARGS', ) __default_host__ = _os.environ.get( 'JINA_DEFAULT_HOST', '127.0.0.1' if __windows__ else '0.0.0.0' ) __docker_host__ = 'host.docker.internal' __default_executor__ = 'BaseExecutor' __default_gateway__ = 'BaseGateway' __default_http_gateway__ = 'HTTPGateway' __default_composite_gateway__ = 'CompositeGateway' __default_websocket_gateway__ = 'WebSocketGateway' __default_grpc_gateway__ = 'GRPCGateway' __default_endpoint__ = '/default' __ready_msg__ = 'ready and listening' __stop_msg__ = 'terminated' __unset_msg__ = '(unset)' __args_executor_func__ = { 'docs', 'parameters', 'docs_matrix', } __args_executor_init__ = {'metas', 'requests', 'runtime_args'} __resources_path__ = _os.path.join( _os.path.dirname(_sys.modules['jina'].__file__), 'resources' ) __cache_path__ = f'{_os.path.expanduser("~")}/.cache/{__package__}' if not _Path(__cache_path__).exists(): _Path(__cache_path__).mkdir(parents=True, exist_ok=True) _names_with_underscore = [ '__version__', '__proto_version__', '__default_host__', '__ready_msg__', '__stop_msg__', '__jina_env__', '__uptime__', '__default_endpoint__', '__default_executor__', '__unset_msg__', '__windows__', ] __all__ = [_s for _s in dir() if not _s.startswith('_')] __all__.extend(_names_with_underscore) RAFT_TO_EXECUTOR_PORT = 100
# Copyright (c) OpenMMLab. All rights reserved. import mmcv from .version import __version__, short_version def digit_version(version_str): digit_version = [] for x in version_str.split('.'): if x.isdigit(): digit_version.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') digit_version.append(int(patch_version[0]) - 1) digit_version.append(int(patch_version[1])) return digit_version mmcv_minimum_version = '2.0.0rc0' mmcv_maximum_version = '2.0.0' mmcv_version = digit_version(mmcv.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version <= digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.' __all__ = ['__version__', 'short_version']
# Copyright (c) OpenMMLab. All rights reserved. import mmcv from .version import __version__, short_version def digit_version(version_str): digit_version = [] for x in version_str.split('.'): if x.isdigit(): digit_version.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') digit_version.append(int(patch_version[0]) - 1) digit_version.append(int(patch_version[1])) return digit_version mmcv_minimum_version = '1.3.17' mmcv_maximum_version = '1.6.0' mmcv_version = digit_version(mmcv.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version <= digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.' __all__ = ['__version__', 'short_version']
import time import http.client import json from typing import List, Optional, Union from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.callbacks.base import CallbackManager from llama_index.core.schema import NodeWithScore, QueryBundle, TextNode class GalaxiaClient: def __init__( self, api_url: str, api_key: str, knowledge_base_id: str, n_retries: int, wait_time: int, ): self.api_url = api_url self.api_key = api_key self.knowledge_base_id = knowledge_base_id self.n_retries = n_retries self.wait_time = wait_time self.headers = {"X-Api-Key": api_key, "Content-Type": "application/json"} def initialize( self, conn: http.client.HTTPSConnection, question: str, ) -> dict: payload_0 = '{\n "algorithmVersion":"%s",\n' % self.knowledge_base_id payload_1 = ' "text":"%s" \n}' % question.replace('"', '\\"') payload = payload_0 + payload_1 conn.request("POST", "/analyze/initialize", payload, self.headers) res = conn.getresponse() data = res.read() return json.loads(data.decode("utf-8")) def check_status( self, conn: http.client.HTTPSConnection, init_res: dict, ) -> dict: payload = '{\n "operationId": "%s"\n}' % init_res["operationId"] conn.request("POST", "/analyze/status", payload, self.headers) res = conn.getresponse() data = res.read() return json.loads(data.decode("utf-8")) def get_result(self, conn: http.client.HTTPSConnection, init_res: dict) -> dict: payload = '{\n "operationId": "%s"\n}' % init_res["operationId"] conn.request("POST", "/analyze/result", payload, self.headers) res = conn.getresponse() data = res.read() return json.loads(data.decode("utf-8")) def retrieve( self, query: str, ) -> Union[dict, None]: conn = http.client.HTTPSConnection(self.api_url) flag_init = False for i in range(self.n_retries): init_res = self.initialize(conn, query) if "operationId" in init_res: flag_init = True break time.sleep(self.wait_time * i) if not flag_init: # failed to init return None flag_proc = False for i in range(1, self.n_retries + 1): time.sleep(self.wait_time * i) status = self.check_status(conn, init_res) if status["status"] == "processed": flag_proc = True break if flag_proc: res = self.get_result(conn, init_res) return res["result"]["resultItems"] else: # failed to process return None class GalaxiaRetriever(BaseRetriever): """Galaxia knowledge retriever. before using the API create your knowledge base here: beta.cloud.smabbler.com/ learn more here: https://smabbler.gitbook.io/smabbler/api-rag/smabblers-api-rag Args: api_url : url of galaxia API, e.g. "https://beta.api.smabbler.com" api_key : API key knowledge_base_id : ID of the knowledge base (galaxia model) Example: .. code-block:: python from llama_index.retrievers.galaxia import GalaxiaRetriever from llama_index.core.schema import QueryBundle retriever = GalaxiaRetriever( api_url="beta.api.smabbler.com", api_key="<key>", knowledge_base_id="<knowledge_base_id>", ) result = retriever._retrieve(QueryBundle( "<test question>" )) print(result) """ def __init__( self, api_url: str, api_key: str, knowledge_base_id: str, n_retries: int = 20, wait_time: int = 2, callback_manager: Optional[CallbackManager] = None, ): self._client = GalaxiaClient( api_url, api_key, knowledge_base_id, n_retries, wait_time ) super().__init__(callback_manager) def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: query = query_bundle.query_str response = self._client.retrieve(query) if response is None: return [] node_with_score = [] for res in response: node_with_score.append( NodeWithScore( node=TextNode( text=res["category"], metadata={ "model": res["model"], "file": res["group"], }, ), score=res["rank"], ) ) return node_with_score
import time import http.client import json from typing import List, Optional, Union from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.callbacks.base import CallbackManager from llama_index.core.schema import NodeWithScore, QueryBundle, TextNode class GalaxiaClient: def __init__( self, api_url: str, api_key: str, knowledge_base_id: str, n_retries: int, wait_time: int, ): self.api_url = api_url self.api_key = api_key self.knowledge_base_id = knowledge_base_id self.n_retries = n_retries self.wait_time = wait_time self.headers = {"X-Api-Key": api_key, "Content-Type": "application/json"} def initialize( self, conn: http.client.HTTPSConnection, question: str, ) -> dict: payload_0 = '{\n "algorithmVersion":"%s",\n' % self.knowledge_base_id payload_1 = ' "text":"%s" \n}' % question.replace('"', '\\"') payload = payload_0 + payload_1 conn.request("POST", "/analyze/initialize", payload, self.headers) res = conn.getresponse() data = res.read() return json.loads(data.decode("utf-8")) def check_status( self, conn: http.client.HTTPSConnection, init_res: dict, ) -> dict: payload = '{\n "operationId": "%s"\n}' % init_res["operationId"] conn.request("POST", "/analyze/status", payload, self.headers) res = conn.getresponse() data = res.read() return json.loads(data.decode("utf-8")) def get_result(self, conn: http.client.HTTPSConnection, init_res: dict) -> dict: payload = '{\n "operationId": "%s"\n}' % init_res["operationId"] conn.request("POST", "/analyze/result", payload, self.headers) res = conn.getresponse() data = res.read() return json.loads(data.decode("utf-8")) def retrieve( self, query: str, ) -> Union[dict, None]: conn = http.client.HTTPSConnection(self.api_url) flag_init = False for i in range(self.n_retries): init_res = self.initialize(conn, query) if "operationId" in init_res: flag_init = True break time.sleep(self.wait_time * i) if not flag_init: # failed to init return None flag_proc = False for i in range(1, self.n_retries + 1): time.sleep(self.wait_time * i) status = self.check_status(conn, init_res) if status["status"] == "processed": flag_proc = True break if flag_proc: res = self.get_result(conn, init_res) return res["result"]["resultItems"] else: # failed to process return None class GalaxiaRetriever(BaseRetriever): """Galaxia knowledge retriever. before using the API create your knowledge base here: beta.cloud.smabbler.com/ learn more here: https://smabbler.gitbook.io/smabbler/api-rag/smabblers-api-rag Args: api_url : url of galaxia API, e.g. "https://beta.api.smabbler.com" api_key : API key knowledge_base_id : ID of the knowledge base (galaxia model) Example: .. code-block:: python from llama_index.retrievers.galaxia import GalaxiaRetriever from llama_index.core.schema import QueryBundle retriever = GalaxiaRetriever( api_url="https://beta.api.smabbler.com", api_key="<key>", knowledge_base_id="<knowledge_base_id>", ) result = retriever._retrieve(QueryBundle( "<test question>" )) print(result) """ def __init__( self, api_url: str, api_key: str, knowledge_base_id: str, n_retries: int = 20, wait_time: int = 2, callback_manager: Optional[CallbackManager] = None, ): self._client = GalaxiaClient( api_url, api_key, knowledge_base_id, n_retries, wait_time ) super().__init__(callback_manager) def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: query = query_bundle.query_str response = self._client.retrieve(query) if response is None: return [] node_with_score = [] for res in response: node_with_score.append( NodeWithScore( node=TextNode( text=res["category"], metadata={ "model": res["model"], "file": res["group"], }, ), score=res["rank"], ) ) return node_with_score
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmcv.runner import force_fp32 from mmdet.models.builder import ROI_EXTRACTORS from .base_roi_extractor import BaseRoIExtractor @ROI_EXTRACTORS.register_module() class SingleRoIExtractor(BaseRoIExtractor): """Extract RoI features from a single level feature map. If there are multiple input feature levels, each RoI is mapped to a level according to its scale. The mapping rule is proposed in `FPN <https://arxiv.org/abs/1612.03144>`_. Args: roi_layer (dict): Specify RoI layer type and arguments. out_channels (int): Output channels of RoI layers. featmap_strides (List[int]): Strides of input feature maps. finest_scale (int): Scale threshold of mapping to level 0. Default: 56. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None """ def __init__(self, roi_layer, out_channels, featmap_strides, finest_scale=56, init_cfg=None): super(SingleRoIExtractor, self).__init__(roi_layer, out_channels, featmap_strides, init_cfg) self.finest_scale = finest_scale def map_roi_levels(self, rois, num_levels): """Map rois to corresponding feature levels by scales. - scale < finest_scale * 2: level 0 - finest_scale * 2 <= scale < finest_scale * 4: level 1 - finest_scale * 4 <= scale < finest_scale * 8: level 2 - scale >= finest_scale * 8: level 3 Args: rois (Tensor): Input RoIs, shape (k, 5). num_levels (int): Total level number. Returns: Tensor: Level index (0-based) of each RoI, shape (k, ) """ scale = torch.sqrt( (rois[:, 3] - rois[:, 1]) * (rois[:, 4] - rois[:, 2])) target_lvls = torch.floor(torch.log2(scale / self.finest_scale + 1e-6)) target_lvls = target_lvls.clamp(min=0, max=num_levels - 1).long() return target_lvls @force_fp32(apply_to=('feats', ), out_fp16=True) def forward(self, feats, rois, roi_scale_factor=None): """Forward function.""" out_size = self.roi_layers[0].output_size num_levels = len(feats) expand_dims = (-1, self.out_channels * out_size[0] * out_size[1]) if torch.onnx.is_in_onnx_export(): # Work around to export mask-rcnn to onnx roi_feats = rois[:, :1].clone().detach() roi_feats = roi_feats.expand(*expand_dims) roi_feats = roi_feats.reshape(-1, self.out_channels, *out_size) roi_feats = roi_feats * 0 else: roi_feats = feats[0].new_zeros( rois.size(0), self.out_channels, *out_size) # TODO: remove this when parrots supports if torch.__version__ == 'parrots': roi_feats.requires_grad = True if num_levels == 1: if len(rois) == 0: return roi_feats return self.roi_layers[0](feats[0], rois) target_lvls = self.map_roi_levels(rois, num_levels) if roi_scale_factor is not None: rois = self.roi_rescale(rois, roi_scale_factor) for i in range(num_levels): mask = target_lvls == i if torch.onnx.is_in_onnx_export(): # To keep all roi_align nodes exported to onnx # and skip nonzero op mask = mask.float().unsqueeze(-1) # select target level rois and reset the rest rois to zero. rois_i = rois.clone().detach() rois_i *= mask mask_exp = mask.expand(*expand_dims).reshape(roi_feats.shape) roi_feats_t = self.roi_layers[i](feats[i], rois_i) roi_feats_t *= mask_exp roi_feats += roi_feats_t continue inds = mask.nonzero(as_tuple=False).squeeze(1) if inds.numel() > 0: rois_ = rois[inds] roi_feats_t = self.roi_layers[i](feats[i], rois_) roi_feats[inds] = roi_feats_t else: # Sometimes some pyramid levels will not be used for RoI # feature extraction and this will cause an incomplete # computation graph in one GPU, which is different from those # in other GPUs and will cause a hanging error. # Therefore, we add it to ensure each feature pyramid is # included in the computation graph to avoid runtime bugs. roi_feats += sum( x.view(-1)[0] for x in self.parameters()) * 0. + feats[i].sum() * 0. return roi_feats
import torch from mmcv.runner import force_fp32 from mmdet.models.builder import ROI_EXTRACTORS from .base_roi_extractor import BaseRoIExtractor @ROI_EXTRACTORS.register_module() class SingleRoIExtractor(BaseRoIExtractor): """Extract RoI features from a single level feature map. If there are multiple input feature levels, each RoI is mapped to a level according to its scale. The mapping rule is proposed in `FPN <https://arxiv.org/abs/1612.03144>`_. Args: roi_layer (dict): Specify RoI layer type and arguments. out_channels (int): Output channels of RoI layers. featmap_strides (List[int]): Strides of input feature maps. finest_scale (int): Scale threshold of mapping to level 0. Default: 56. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None """ def __init__(self, roi_layer, out_channels, featmap_strides, finest_scale=56, init_cfg=None): super(SingleRoIExtractor, self).__init__(roi_layer, out_channels, featmap_strides, init_cfg) self.finest_scale = finest_scale def map_roi_levels(self, rois, num_levels): """Map rois to corresponding feature levels by scales. - scale < finest_scale * 2: level 0 - finest_scale * 2 <= scale < finest_scale * 4: level 1 - finest_scale * 4 <= scale < finest_scale * 8: level 2 - scale >= finest_scale * 8: level 3 Args: rois (Tensor): Input RoIs, shape (k, 5). num_levels (int): Total level number. Returns: Tensor: Level index (0-based) of each RoI, shape (k, ) """ scale = torch.sqrt( (rois[:, 3] - rois[:, 1]) * (rois[:, 4] - rois[:, 2])) target_lvls = torch.floor(torch.log2(scale / self.finest_scale + 1e-6)) target_lvls = target_lvls.clamp(min=0, max=num_levels - 1).long() return target_lvls @force_fp32(apply_to=('feats', ), out_fp16=True) def forward(self, feats, rois, roi_scale_factor=None): """Forward function.""" out_size = self.roi_layers[0].output_size num_levels = len(feats) expand_dims = (-1, self.out_channels * out_size[0] * out_size[1]) if torch.onnx.is_in_onnx_export(): # Work around to export mask-rcnn to onnx roi_feats = rois[:, :1].clone().detach() roi_feats = roi_feats.expand(*expand_dims) roi_feats = roi_feats.reshape(-1, self.out_channels, *out_size) roi_feats = roi_feats * 0 else: roi_feats = feats[0].new_zeros( rois.size(0), self.out_channels, *out_size) # TODO: remove this when parrots supports if torch.__version__ == 'parrots': roi_feats.requires_grad = True if num_levels == 1: if len(rois) == 0: return roi_feats return self.roi_layers[0](feats[0], rois) target_lvls = self.map_roi_levels(rois, num_levels) if roi_scale_factor is not None: rois = self.roi_rescale(rois, roi_scale_factor) for i in range(num_levels): mask = target_lvls == i if torch.onnx.is_in_onnx_export(): # To keep all roi_align nodes exported to onnx # and skip nonzero op mask = mask.float().unsqueeze(-1) # select target level rois and reset the rest rois to zero. rois_i = rois.clone().detach() rois_i *= mask mask_exp = mask.expand(*expand_dims).reshape(roi_feats.shape) roi_feats_t = self.roi_layers[i](feats[i], rois_i) roi_feats_t *= mask_exp roi_feats += roi_feats_t continue inds = mask.nonzero(as_tuple=False).squeeze(1) if inds.numel() > 0: rois_ = rois[inds] roi_feats_t = self.roi_layers[i](feats[i], rois_) roi_feats[inds] = roi_feats_t else: # Sometimes some pyramid levels will not be used for RoI # feature extraction and this will cause an incomplete # computation graph in one GPU, which is different from those # in other GPUs and will cause a hanging error. # Therefore, we add it to ensure each feature pyramid is # included in the computation graph to avoid runtime bugs. roi_feats += sum( x.view(-1)[0] for x in self.parameters()) * 0. + feats[i].sum() * 0. return roi_feats
"""Module for Jina Requests.""" from typing import ( TYPE_CHECKING, AsyncIterable, Dict, Iterable, Iterator, Optional, Tuple, Union, ) from jina._docarray import Document from jina.clients.request.helper import _new_data_request, _new_data_request_from_batch from jina.enums import DataInputType from jina.helper import batch_iterator from jina.logging.predefined import default_logger if TYPE_CHECKING: # pragma: no cover from jina._docarray import Document from jina._docarray.document import DocumentSourceType from jina._docarray.document.mixins.content import DocumentContentType from jina.types.request import Request SingletonDataType = Union[ DocumentContentType, DocumentSourceType, Document, Tuple[DocumentContentType, DocumentContentType], Tuple[DocumentSourceType, DocumentSourceType], ] GeneratorSourceType = Union[ Document, Iterable[SingletonDataType], AsyncIterable[SingletonDataType] ] def request_generator( exec_endpoint: str, data: Optional['GeneratorSourceType'] = None, request_size: int = 0, data_type: DataInputType = DataInputType.AUTO, target_executor: Optional[str] = None, parameters: Optional[Dict] = None, **kwargs, # do not remove this, add on purpose to suppress unknown kwargs ) -> Iterator['Request']: """Generate a request iterator. :param exec_endpoint: the endpoint string, by convention starts with `/` :param data: data to send, a list of dict/string/bytes that can be converted into a list of `Document` objects :param request_size: the number of the `Documents` in each request :param data_type: if ``data`` is an iterator over self-contained document, i.e. :class:`DocumentSourceType`; or an iterator over possible Document content (set to text, blob and buffer). :param parameters: a dictionary of parameters to be sent to the executor :param target_executor: a regex string. Only matching Executors will process the request. :param kwargs: additional arguments :yield: request """ try: if data is None: # this allows empty inputs, i.e. a data request with only parameters yield _new_data_request( endpoint=exec_endpoint, target=target_executor, parameters=parameters ) else: if not isinstance(data, Iterable) or isinstance(data, Document): data = [data] for batch in batch_iterator(data, request_size): yield _new_data_request_from_batch( batch=batch, data_type=data_type, endpoint=exec_endpoint, target=target_executor, parameters=parameters, ) except Exception as ex: # must be handled here, as grpc channel wont handle Python exception default_logger.critical(f'inputs is not valid! {ex!r}', exc_info=True) raise
"""Module for Jina Requests.""" from typing import ( TYPE_CHECKING, AsyncIterable, Dict, Iterable, Iterator, Optional, Tuple, Union, ) from jina.clients.request.helper import _new_data_request, _new_data_request_from_batch from jina.enums import DataInputType from jina.helper import batch_iterator from jina.logging.predefined import default_logger if TYPE_CHECKING: # pragma: no cover from docarray.document import DocumentSourceType from docarray.document.mixins.content import DocumentContentType from docarray import Document from jina.types.request import Request SingletonDataType = Union[ DocumentContentType, DocumentSourceType, Document, Tuple[DocumentContentType, DocumentContentType], Tuple[DocumentSourceType, DocumentSourceType], ] GeneratorSourceType = Union[ Document, Iterable[SingletonDataType], AsyncIterable[SingletonDataType] ] def request_generator( exec_endpoint: str, data: Optional['GeneratorSourceType'] = None, request_size: int = 0, data_type: DataInputType = DataInputType.AUTO, target_executor: Optional[str] = None, parameters: Optional[Dict] = None, **kwargs, # do not remove this, add on purpose to suppress unknown kwargs ) -> Iterator['Request']: """Generate a request iterator. :param exec_endpoint: the endpoint string, by convention starts with `/` :param data: data to send, a list of dict/string/bytes that can be converted into a list of `Document` objects :param request_size: the number of the `Documents` in each request :param data_type: if ``data`` is an iterator over self-contained document, i.e. :class:`DocumentSourceType`; or an iterator over possible Document content (set to text, blob and buffer). :param parameters: a dictionary of parameters to be sent to the executor :param target_executor: a regex string. Only matching Executors will process the request. :param kwargs: additional arguments :yield: request """ try: if data is None: # this allows empty inputs, i.e. a data request with only parameters yield _new_data_request( endpoint=exec_endpoint, target=target_executor, parameters=parameters ) else: if not isinstance(data, Iterable): data = [data] for batch in batch_iterator(data, request_size): yield _new_data_request_from_batch( batch=batch, data_type=data_type, endpoint=exec_endpoint, target=target_executor, parameters=parameters, ) except Exception as ex: # must be handled here, as grpc channel wont handle Python exception default_logger.critical(f'inputs is not valid! {ex!r}', exc_info=True) raise
from __future__ import annotations import re import pytest from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import NanoBEIREvaluator from sentence_transformers.util import is_datasets_available from tests.utils import is_ci if not is_datasets_available(): pytest.skip( reason="Datasets are not installed. Please install `datasets` with `pip install datasets`", allow_module_level=True, ) if is_ci(): pytest.skip( reason="Skip test in CI to try and avoid 429 Client Error", allow_module_level=True, ) def test_nanobeir_evaluator(stsb_bert_tiny_model: SentenceTransformer): """Tests that the NanoBERTEvaluator can be loaded and produces expected metrics""" datasets = ["QuoraRetrieval", "MSMARCO"] query_prompts = { "QuoraRetrieval": "Instruct: Given a question, retrieve questions that are semantically equivalent to the given question\\nQuery: ", "MSMARCO": "Instruct: Given a web search query, retrieve relevant passages that answer the query\\nQuery: ", } model = stsb_bert_tiny_model evaluator = NanoBEIREvaluator( dataset_names=datasets, query_prompts=query_prompts, ) results = evaluator(model) assert len(results) > 0 assert all(isinstance(results[metric], float) for metric in results) def test_nanobeir_evaluator_with_invalid_dataset(): """Test that NanoBEIREvaluator raises an error for invalid dataset names.""" invalid_datasets = ["invalidDataset"] with pytest.raises( ValueError, match=re.escape( r"Dataset(s) ['invalidDataset'] not found in the NanoBEIR collection. " r"Valid dataset names are: ['climatefever', 'dbpedia', 'fever', 'fiqa2018', 'hotpotqa', 'msmarco', 'nfcorpus', 'nq', 'quoraretrieval', 'scidocs', 'arguana', 'scifact', 'touche2020']" ), ): NanoBEIREvaluator(dataset_names=invalid_datasets) def test_nanobeir_evaluator_empty_inputs(): """Test that NanoBEIREvaluator behaves correctly with empty datasets.""" with pytest.raises(ValueError, match="dataset_names cannot be empty. Use None to evaluate on all datasets."): NanoBEIREvaluator(dataset_names=[])
from __future__ import annotations import re import pytest from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import NanoBEIREvaluator from sentence_transformers.util import is_datasets_available from tests.utils import is_ci if not is_datasets_available(): pytest.skip( reason="Datasets are not installed. Please install `datasets` with `pip install datasets`", allow_module_level=True, ) if is_ci(): pytest.skip( reason="Skip test in CI to try and avoid 429 Client Error", allow_module_level=True, ) def test_nanobeir_evaluator(stsb_bert_tiny_model_reused: SentenceTransformer): """Tests that the NanoBERTEvaluator can be loaded and produces expected metrics""" datasets = ["QuoraRetrieval", "MSMARCO"] query_prompts = { "QuoraRetrieval": "Instruct: Given a question, retrieve questions that are semantically equivalent to the given question\\nQuery: ", "MSMARCO": "Instruct: Given a web search query, retrieve relevant passages that answer the query\\nQuery: ", } model = stsb_bert_tiny_model_reused evaluator = NanoBEIREvaluator( dataset_names=datasets, query_prompts=query_prompts, ) results = evaluator(model) assert len(results) > 0 assert all(isinstance(results[metric], float) for metric in results) def test_nanobeir_evaluator_with_invalid_dataset(): """Test that NanoBEIREvaluator raises an error for invalid dataset names.""" invalid_datasets = ["invalidDataset"] with pytest.raises( ValueError, match=re.escape( r"Dataset(s) ['invalidDataset'] not found in the NanoBEIR collection. " r"Valid dataset names are: ['climatefever', 'dbpedia', 'fever', 'fiqa2018', 'hotpotqa', 'msmarco', 'nfcorpus', 'nq', 'quoraretrieval', 'scidocs', 'arguana', 'scifact', 'touche2020']" ), ): NanoBEIREvaluator(dataset_names=invalid_datasets) def test_nanobeir_evaluator_empty_inputs(): """Test that NanoBEIREvaluator behaves correctly with empty datasets.""" with pytest.raises(ValueError, match="dataset_names cannot be empty. Use None to evaluate on all datasets."): NanoBEIREvaluator(dataset_names=[])
_base_ = './rpn_r50_fpn_1x_coco.py' # use caffe img_norm preprocess_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False, pad_size_divisor=32) model = dict( preprocess_cfg=preprocess_cfg, backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
_base_ = './rpn_r50_fpn_1x_coco.py' model = dict( backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe'))) # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_label=False), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig from .single_stage import SingleStageDetector @MODELS.register_module() class RepPointsDetector(SingleStageDetector): """RepPoints: Point Set Representation for Object Detection. This detector is the implementation of: - RepPoints detector (https://arxiv.org/pdf/1904.11490) """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core.utils import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class RepPointsDetector(SingleStageDetector): """RepPoints: Point Set Representation for Object Detection. This detector is the implementation of: - RepPoints detector (https://arxiv.org/pdf/1904.11490) """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
from typing import Union, Iterable from docarray.array.storage.base.seqlike import BaseSequenceLikeMixin from docarray.array.storage.registry import _REGISTRY from docarray import Document class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods for DocumentArray with weaviate as storage""" def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self._client.get_meta() == other._client.get_meta() and self._config == other._config ) def __len__(self): """Return the length of :class:`DocumentArray` that uses weaviate as storage :return: the length of this :class:`DocumentArrayWeaviate` object """ cls_data = ( self._client.query.aggregate(self._class_name) .with_meta_count() .do() .get('data', {}) .get('Aggregate', {}) .get(self._class_name, []) ) if not cls_data: return 0 return cls_data[0]['meta']['count'] def __contains__(self, x: Union[str, 'Document']): """Check if ``x`` is contained in this :class:`DocumentArray` with weaviate storage :param x: the id of the document to check or the document object itself :return: True if ``x`` is contained in self """ if isinstance(x, str): return self._client.data_object.exists(self._map_id(x)) elif isinstance(x, Document): return self._client.data_object.exists(self._map_id(x.id)) else: return False def __del__(self): """Delete this :class:`DocumentArrayWeaviate` object""" super().__del__() if ( not self._persist and len(_REGISTRY[self.__class__.__name__][self._class_name]) == 1 ): self._client.schema.delete_class(self._class_name) self._client.schema.delete_class(self._meta_name) _REGISTRY[self.__class__.__name__][self._class_name].remove(self) def __repr__(self): """Return the string representation of :class:`DocumentArrayWeaviate` object :return: string representation of this object """ return f'<{self.__class__.__name__} (length={len(self)}) at {id(self)}>' def _extend(self, values: Iterable['Document'], **kwargs) -> None: """Extends the array with the given values :param values: Documents to be added """ with self._client.batch(batch_size=50) as _b: for d in values: _b.add_data_object(**self._doc2weaviate_create_payload(d)) self._offset2ids.append(d.id)
from typing import Union, Iterable from docarray.array.storage.base.seqlike import BaseSequenceLikeMixin from docarray.array.storage.registry import _REGISTRY from docarray import Document class SequenceLikeMixin(BaseSequenceLikeMixin): """Implement sequence-like methods for DocumentArray with weaviate as storage""" def __eq__(self, other): """Compare this object to the other, returns True if and only if other as the same type as self and other has the same meta information :param other: the other object to check for equality :return: ``True`` if other is equal to self """ # two DAW are considered as the same if they have the same client meta data return ( type(self) is type(other) and self._client.get_meta() == other._client.get_meta() and self._config == other._config ) def __len__(self): """Return the length of :class:`DocumentArray` that uses weaviate as storage :return: the length of this :class:`DocumentArrayWeaviate` object """ cls_data = ( self._client.query.aggregate(self._class_name) .with_meta_count() .do() .get('data', {}) .get('Aggregate', {}) .get(self._class_name, []) ) if not cls_data: return 0 return cls_data[0]['meta']['count'] def __contains__(self, x: Union[str, 'Document']): """Check if ``x`` is contained in this :class:`DocumentArray` with weaviate storage :param x: the id of the document to check or the document object itself :return: True if ``x`` is contained in self """ if isinstance(x, str): return self._client.data_object.exists(self._map_id(x)) elif isinstance(x, Document): return self._client.data_object.exists(self._map_id(x.id)) else: return False def __del__(self): """Delete this :class:`DocumentArrayWeaviate` object""" super().__del__() if ( not self._persist and len(_REGISTRY[self.__class__.__name__][self._class_name]) == 1 ): self._client.schema.delete_class(self._class_name) self._client.schema.delete_class(self._meta_name) _REGISTRY[self.__class__.__name__][self._class_name].remove(self) def __repr__(self): """Return the string representation of :class:`DocumentArrayWeaviate` object :return: string representation of this object """ return f'<{self.__class__.__name__} (length={len(self)}) at {id(self)}>' def extend(self, values: Iterable['Document']) -> None: """Extends the array with the given values :param values: Documents to be added """ with self._client.batch(batch_size=50) as _b: for d in values: _b.add_data_object(**self._doc2weaviate_create_payload(d)) self._offset2ids.append(d.id)
from typing import Any, Dict, Tuple, Union import numpy as np import PIL.Image import torch from torchvision.io.video import read_video from torchvision.prototype import features from torchvision.prototype.utils._internal import ReadOnlyTensorBuffer from torchvision.transforms import functional as _F @torch.jit.unused def decode_image_with_pil(encoded_image: torch.Tensor) -> features.Image: image = torch.as_tensor(np.array(PIL.Image.open(ReadOnlyTensorBuffer(encoded_image)), copy=True)) if image.ndim == 2: image = image.unsqueeze(2) return features.Image(image.permute(2, 0, 1)) @torch.jit.unused def decode_video_with_av(encoded_video: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]: import unittest.mock with unittest.mock.patch("torchvision.io.video.os.path.exists", return_value=True): return read_video(ReadOnlyTensorBuffer(encoded_video)) # type: ignore[arg-type] @torch.jit.unused def to_image_tensor(image: Union[torch.Tensor, PIL.Image.Image, np.ndarray]) -> features.Image: if isinstance(image, np.ndarray): output = torch.from_numpy(image).permute((2, 0, 1)).contiguous() elif isinstance(image, PIL.Image.Image): output = pil_to_tensor(image) else: # isinstance(inpt, torch.Tensor): output = image return features.Image(output) to_image_pil = _F.to_pil_image pil_to_tensor = _F.pil_to_tensor # We changed the names to align them with the new naming scheme. Still, `to_pil_image` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. to_pil_image = to_image_pil
import unittest.mock from typing import Any, Dict, Tuple, Union import numpy as np import PIL.Image import torch from torchvision.io.video import read_video from torchvision.prototype import features from torchvision.prototype.utils._internal import ReadOnlyTensorBuffer from torchvision.transforms import functional as _F @torch.jit.unused def decode_image_with_pil(encoded_image: torch.Tensor) -> features.Image: image = torch.as_tensor(np.array(PIL.Image.open(ReadOnlyTensorBuffer(encoded_image)), copy=True)) if image.ndim == 2: image = image.unsqueeze(2) return features.Image(image.permute(2, 0, 1)) @torch.jit.unused def decode_video_with_av(encoded_video: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]: with unittest.mock.patch("torchvision.io.video.os.path.exists", return_value=True): return read_video(ReadOnlyTensorBuffer(encoded_video)) # type: ignore[arg-type] @torch.jit.unused def to_image_tensor(image: Union[torch.Tensor, PIL.Image.Image, np.ndarray]) -> features.Image: if isinstance(image, np.ndarray): output = torch.from_numpy(image).permute((2, 0, 1)).contiguous() elif isinstance(image, PIL.Image.Image): output = pil_to_tensor(image) else: # isinstance(inpt, torch.Tensor): output = image return features.Image(output) to_image_pil = _F.to_pil_image pil_to_tensor = _F.pil_to_tensor # We changed the names to align them with the new naming scheme. Still, `to_pil_image` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. to_pil_image = to_image_pil
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.19.2' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning) # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn( f'multiprocessing start method is set to `fork`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `fork`: {e!r}' ) # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.19.2' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from unittest.mock import Mock import torch.nn as nn from torch.optim import SGD from mmengine.hooks import RuntimeInfoHook from mmengine.logging import MessageHub from mmengine.optim import OptimWrapper, OptimWrapperDict class TestRuntimeInfoHook(TestCase): def test_before_run(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_run') runner = Mock() runner.epoch = 3 runner.iter = 30 runner.max_epochs = 4 runner.max_iters = 40 runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_run(runner) self.assertEqual(message_hub.get_info('epoch'), 3) self.assertEqual(message_hub.get_info('iter'), 30) self.assertEqual(message_hub.get_info('max_epochs'), 4) self.assertEqual(message_hub.get_info('max_iters'), 40) def test_before_train(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_train') runner = Mock() runner.epoch = 7 runner.iter = 71 runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_train(runner) self.assertEqual(message_hub.get_info('epoch'), 7) self.assertEqual(message_hub.get_info('iter'), 71) def test_before_train_epoch(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_train_epoch') runner = Mock() runner.epoch = 9 runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_train_epoch(runner) self.assertEqual(message_hub.get_info('epoch'), 9) def test_before_train_iter(self): model = nn.Linear(1, 1) optim1 = SGD(model.parameters(), lr=0.01) optim2 = SGD(model.parameters(), lr=0.02) optim_wrapper1 = OptimWrapper(optim1) optim_wrapper2 = OptimWrapper(optim2) optim_wrapper_dict = OptimWrapperDict( key1=optim_wrapper1, key2=optim_wrapper2) # single optimizer message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_train_iter') runner = Mock() runner.iter = 9 runner.optim_wrapper = optim_wrapper1 runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_train_iter(runner, batch_idx=2, data_batch=None) self.assertEqual(message_hub.get_info('iter'), 9) self.assertEqual(message_hub.get_scalar('train/lr').current(), 0.01) with self.assertRaisesRegex(AssertionError, 'runner.optim_wrapper.get_lr()'): runner.optim_wrapper = Mock() runner.optim_wrapper.get_lr = Mock(return_value='error type') hook.before_train_iter(runner, batch_idx=2, data_batch=None) # multiple optimizers message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_train_iter') runner = Mock() runner.iter = 9 optimizer1 = Mock() optimizer1.param_groups = [{'lr': 0.01}] optimizer2 = Mock() optimizer2.param_groups = [{'lr': 0.02}] runner.message_hub = message_hub runner.optim_wrapper = optim_wrapper_dict hook = RuntimeInfoHook() hook.before_train_iter(runner, batch_idx=2, data_batch=None) self.assertEqual(message_hub.get_info('iter'), 9) self.assertEqual( message_hub.get_scalar('train/key1.lr').current(), 0.01) self.assertEqual( message_hub.get_scalar('train/key2.lr').current(), 0.02) def test_after_train_iter(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_after_train_iter') runner = Mock() runner.message_hub = message_hub hook = RuntimeInfoHook() hook.after_train_iter( runner, batch_idx=2, data_batch=None, outputs={'log_vars': { 'loss_cls': 1.111 }}) self.assertEqual( message_hub.get_scalar('train/loss_cls').current(), 1.111) def test_after_val_epoch(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_after_val_epoch') runner = Mock() runner.message_hub = message_hub hook = RuntimeInfoHook() hook.after_val_epoch(runner, metrics={'acc': 0.8}) self.assertEqual(message_hub.get_scalar('val/acc').current(), 0.8) def test_after_test_epoch(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_after_test_epoch') runner = Mock() runner.message_hub = message_hub hook = RuntimeInfoHook() hook.after_test_epoch(runner, metrics={'acc': 0.8}) self.assertEqual(message_hub.get_scalar('test/acc').current(), 0.8)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase from unittest.mock import Mock from mmengine.hooks import RuntimeInfoHook from mmengine.logging import MessageHub class TestRuntimeInfoHook(TestCase): def test_before_run(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_run') runner = Mock() runner.epoch = 3 runner.iter = 30 runner.max_epochs = 4 runner.max_iters = 40 runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_run(runner) self.assertEqual(message_hub.get_info('epoch'), 3) self.assertEqual(message_hub.get_info('iter'), 30) self.assertEqual(message_hub.get_info('max_epochs'), 4) self.assertEqual(message_hub.get_info('max_iters'), 40) def test_before_train(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_train') runner = Mock() runner.epoch = 7 runner.iter = 71 runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_train(runner) self.assertEqual(message_hub.get_info('epoch'), 7) self.assertEqual(message_hub.get_info('iter'), 71) def test_before_train_epoch(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_train_epoch') runner = Mock() runner.epoch = 9 runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_train_epoch(runner) self.assertEqual(message_hub.get_info('epoch'), 9) def test_before_train_iter(self): # single optimizer message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_train_iter') runner = Mock() runner.iter = 9 runner.optimizer.param_groups = [{'lr': 0.01}] runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_train_iter(runner, batch_idx=2, data_batch=None) self.assertEqual(message_hub.get_info('iter'), 9) self.assertEqual(message_hub.get_scalar('train/lr').current(), 0.01) # multiple optimizers message_hub = MessageHub.get_instance( 'runtime_info_hook_test_before_train_iter') runner = Mock() runner.iter = 9 optimizer1 = Mock() optimizer1.param_groups = [{'lr': 0.01}] optimizer2 = Mock() optimizer2.param_groups = [{'lr': 0.02}] runner.optimizer = dict(key1=optimizer1, key2=optimizer2) runner.message_hub = message_hub hook = RuntimeInfoHook() hook.before_train_iter(runner, batch_idx=2, data_batch=None) self.assertEqual(message_hub.get_info('iter'), 9) self.assertEqual( message_hub.get_scalar('train/key1.lr').current(), 0.01) self.assertEqual( message_hub.get_scalar('train/key2.lr').current(), 0.02) def test_after_train_iter(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_after_train_iter') runner = Mock() runner.message_hub = message_hub hook = RuntimeInfoHook() hook.after_train_iter( runner, batch_idx=2, data_batch=None, outputs={'log_vars': { 'loss_cls': 1.111 }}) self.assertEqual( message_hub.get_scalar('train/loss_cls').current(), 1.111) def test_after_val_epoch(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_after_val_epoch') runner = Mock() runner.message_hub = message_hub hook = RuntimeInfoHook() hook.after_val_epoch(runner, metrics={'acc': 0.8}) self.assertEqual(message_hub.get_scalar('val/acc').current(), 0.8) def test_after_test_epoch(self): message_hub = MessageHub.get_instance( 'runtime_info_hook_test_after_test_epoch') runner = Mock() runner.message_hub = message_hub hook = RuntimeInfoHook() hook.after_test_epoch(runner, metrics={'acc': 0.8}) self.assertEqual(message_hub.get_scalar('test/acc').current(), 0.8)
# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def jax_cosine_distance(emb_1, emb_2, eps=1e-12): norm_emb_1 = jnp.divide(emb_1.T, jnp.clip(jnp.linalg.norm(emb_1, axis=1), a_min=eps)).T norm_emb_2 = jnp.divide(emb_2.T, jnp.clip(jnp.linalg.norm(emb_2, axis=1), a_min=eps)).T return jnp.matmul(norm_emb_1, norm_emb_2.T) class FlaxStableDiffusionSafetyCheckerModule(nn.Module): config: CLIPConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.vision_model = FlaxCLIPVisionModule(self.config.vision_config) self.visual_projection = nn.Dense(self.config.projection_dim, use_bias=False, dtype=self.dtype) self.concept_embeds = self.param("concept_embeds", jax.nn.initializers.ones, (17, self.config.projection_dim)) self.special_care_embeds = self.param( "special_care_embeds", jax.nn.initializers.ones, (3, self.config.projection_dim) ) self.concept_embeds_weights = self.param("concept_embeds_weights", jax.nn.initializers.ones, (17,)) self.special_care_embeds_weights = self.param("special_care_embeds_weights", jax.nn.initializers.ones, (3,)) def __call__(self, clip_input): pooled_output = self.vision_model(clip_input)[1] image_embeds = self.visual_projection(pooled_output) special_cos_dist = jax_cosine_distance(image_embeds, self.special_care_embeds) cos_dist = jax_cosine_distance(image_embeds, self.concept_embeds) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs adjustment = 0.0 special_scores = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment special_scores = jnp.round(special_scores, 3) is_special_care = jnp.any(special_scores > 0, axis=1, keepdims=True) # Use a lower threshold if an image has any special care concept special_adjustment = is_special_care * 0.01 concept_scores = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment concept_scores = jnp.round(concept_scores, 3) has_nsfw_concepts = jnp.any(concept_scores > 0, axis=1) return has_nsfw_concepts class FlaxStableDiffusionSafetyChecker(FlaxPreTrainedModel): config_class = CLIPConfig main_input_name = "clip_input" module_class = FlaxStableDiffusionSafetyCheckerModule def __init__( self, config: CLIPConfig, input_shape: Optional[Tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): if input_shape is None: input_shape = (1, 224, 224, 3) module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.Array, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensor clip_input = jax.random.normal(rng, input_shape) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, clip_input)["params"] return random_params def __call__( self, clip_input, params: dict = None, ): clip_input = jnp.transpose(clip_input, (0, 2, 3, 1)) return self.module.apply( {"params": params or self.params}, jnp.array(clip_input, dtype=jnp.float32), rngs={}, )
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def jax_cosine_distance(emb_1, emb_2, eps=1e-12): norm_emb_1 = jnp.divide(emb_1.T, jnp.clip(jnp.linalg.norm(emb_1, axis=1), a_min=eps)).T norm_emb_2 = jnp.divide(emb_2.T, jnp.clip(jnp.linalg.norm(emb_2, axis=1), a_min=eps)).T return jnp.matmul(norm_emb_1, norm_emb_2.T) class FlaxStableDiffusionSafetyCheckerModule(nn.Module): config: CLIPConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.vision_model = FlaxCLIPVisionModule(self.config.vision_config) self.visual_projection = nn.Dense(self.config.projection_dim, use_bias=False, dtype=self.dtype) self.concept_embeds = self.param("concept_embeds", jax.nn.initializers.ones, (17, self.config.projection_dim)) self.special_care_embeds = self.param( "special_care_embeds", jax.nn.initializers.ones, (3, self.config.projection_dim) ) self.concept_embeds_weights = self.param("concept_embeds_weights", jax.nn.initializers.ones, (17,)) self.special_care_embeds_weights = self.param("special_care_embeds_weights", jax.nn.initializers.ones, (3,)) def __call__(self, clip_input): pooled_output = self.vision_model(clip_input)[1] image_embeds = self.visual_projection(pooled_output) special_cos_dist = jax_cosine_distance(image_embeds, self.special_care_embeds) cos_dist = jax_cosine_distance(image_embeds, self.concept_embeds) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs adjustment = 0.0 special_scores = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment special_scores = jnp.round(special_scores, 3) is_special_care = jnp.any(special_scores > 0, axis=1, keepdims=True) # Use a lower threshold if an image has any special care concept special_adjustment = is_special_care * 0.01 concept_scores = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment concept_scores = jnp.round(concept_scores, 3) has_nsfw_concepts = jnp.any(concept_scores > 0, axis=1) return has_nsfw_concepts class FlaxStableDiffusionSafetyChecker(FlaxPreTrainedModel): config_class = CLIPConfig main_input_name = "clip_input" module_class = FlaxStableDiffusionSafetyCheckerModule def __init__( self, config: CLIPConfig, input_shape: Optional[Tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): if input_shape is None: input_shape = (1, 224, 224, 3) module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.Array, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensor clip_input = jax.random.normal(rng, input_shape) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, clip_input)["params"] return random_params def __call__( self, clip_input, params: dict = None, ): clip_input = jnp.transpose(clip_input, (0, 2, 3, 1)) return self.module.apply( {"params": params or self.params}, jnp.array(clip_input, dtype=jnp.float32), rngs={}, )
"""Base argparser module for Pod and Deployment runtime""" import argparse import os from jina.enums import PollingType from jina.helper import random_identity from jina.parsers.helper import _SHOW_ALL_ARGS, add_arg_group def mixin_essential_parser(parser): """Mixing in arguments required by every module into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Essential') gp.add_argument( '--name', type=str, help=''' The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. ''', ) gp.add_argument( '--workspace', type=str, default=None, help='The working directory for any IO operations in this object. ' 'If not set, then derive from its parent `workspace`.', ) gp.add_argument( '--log-config', type=str, default='default', help='The YAML config of the logger used in this object.', ) gp.add_argument( '--quiet', action='store_true', default=False, help='If set, then no log will be emitted from this object.', ) gp.add_argument( '--quiet-error', action='store_true', default=False, help='If set, then exception stack information will not be added to the log', ) gp.add_argument( '--workspace-id', type=str, default=random_identity(), help='the UUID for identifying the workspace. When not given a random id will be assigned.' 'Multiple Pod/Deployment/Flow will work under the same workspace if they share the same ' '`workspace-id`.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) def mixin_base_ppr_parser(parser): """Mixing in arguments required by pod/deployment/runtime module into the given parser. :param parser: the parser instance to which we add arguments """ mixin_essential_parser(parser) gp = add_arg_group(parser, title='Base Deployment') gp.add_argument( '--extra-search-paths', type=str, default=[], nargs='*', help='Extra search paths to be used when loading modules and finding YAML config files.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--timeout-ctrl', type=int, default=int(os.getenv('JINA_DEFAULT_TIMEOUT_CTRL', '60')), help='The timeout in milliseconds of the control request, -1 for waiting forever', ) parser.add_argument( '--k8s-namespace', type=str, help='Name of the namespace where Kubernetes deployment should be deployed, to be filled by flow name' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--polling', type=str, default=PollingType.ANY.name, help=''' The polling strategy of the Deployment and its endpoints (when `shards>1`). Can be defined for all endpoints of a Deployment or by endpoint. Define per Deployment: - ANY: only one (whoever is idle) Pod polls the message - ALL: all Pods poll the message (like a broadcast) Define per Endpoint: JSON dict, {endpoint: PollingType} {'/custom': 'ALL', '/search': 'ANY', '*': 'ANY'} ''', ) gp.add_argument( '--exit-on-exceptions', type=str, default=[], nargs='*', help='List of exceptions that will cause the Executor to shut down.', )
"""Base argparser module for Pod and Deployment runtime""" import argparse import os from jina.enums import PollingType from jina.helper import random_identity from jina.parsers.helper import _SHOW_ALL_ARGS, add_arg_group def mixin_essential_parser(parser): """Mixing in arguments required by every module into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Essential') gp.add_argument( '--name', type=str, help=''' The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. ''', ) gp.add_argument( '--workspace', type=str, default=None, help='The working directory for any IO operations in this object. ' 'If not set, then derive from its parent `workspace`.', ) gp.add_argument( '--log-config', type=str, default='default', help='The YAML config of the logger used in this object.', ) gp.add_argument( '--quiet', action='store_true', default=False, help='If set, then no log will be emitted from this object.', ) gp.add_argument( '--quiet-error', action='store_true', default=False, help='If set, then exception stack information will not be added to the log', ) gp.add_argument( '--workspace-id', type=str, default=random_identity(), help='the UUID for identifying the workspace. When not given a random id will be assigned.' 'Multiple Pod/Deployment/Flow will work under the same workspace if they share the same ' '`workspace-id`.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) def mixin_base_ppr_parser(parser): """Mixing in arguments required by pod/deployment/runtime module into the given parser. :param parser: the parser instance to which we add arguments """ mixin_essential_parser(parser) gp = add_arg_group(parser, title='Base Deployment') gp.add_argument( '--extra-search-paths', type=str, default=[], nargs='*', help='Extra search paths to be used when loading modules and finding YAML config files.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--timeout-ctrl', type=int, default=int(os.getenv('JINA_DEFAULT_TIMEOUT_CTRL', '60')), help='The timeout in milliseconds of the control request, -1 for waiting forever', ) parser.add_argument( '--k8s-namespace', type=str, help='Name of the namespace where Kubernetes deployment should be deployed, to be filled by flow name' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--polling', type=str, default=PollingType.ANY.name, help=''' The polling strategy of the Deployment and its endpoints (when `shards>1`). Can be defined for all endpoints of a Deployment or by endpoint. Define per Deployment: - ANY: only one (whoever is idle) Pod polls the message - ALL: all Pods poll the message (like a broadcast) Define per Endpoint: JSON dict, {endpoint: PollingType} {'/custom': 'ALL', '/search': 'ANY', '*': 'ANY'} ''', )
from __future__ import annotations import torch import transformers from PIL import Image from torch import nn class CLIPModel(nn.Module): def __init__(self, model_name: str = "openai/clip-vit-base-patch32", processor_name=None) -> None: super().__init__() if processor_name is None: processor_name = model_name self.model = transformers.CLIPModel.from_pretrained(model_name) self.processor = transformers.CLIPProcessor.from_pretrained(processor_name) def __repr__(self) -> str: return "CLIPModel()" def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: image_embeds = [] text_embeds = [] if "pixel_values" in features: vision_outputs = self.model.vision_model(pixel_values=features["pixel_values"]) image_embeds = self.model.visual_projection(vision_outputs[1]) if "input_ids" in features: text_outputs = self.model.text_model( input_ids=features.get("input_ids"), attention_mask=features.get("attention_mask", None), position_ids=features.get("position_ids", None), output_attentions=features.get("output_attentions", None), output_hidden_states=features.get("output_hidden_states", None), ) text_embeds = self.model.text_projection(text_outputs[1]) sentence_embedding = [] image_features = iter(image_embeds) text_features = iter(text_embeds) for idx, input_type in enumerate(features["image_text_info"]): if input_type == 0: sentence_embedding.append(next(image_features)) else: sentence_embedding.append(next(text_features)) features["sentence_embedding"] = torch.stack(sentence_embedding).float() return features def tokenize(self, texts, padding: str | bool = True) -> dict[str, torch.Tensor]: images = [] texts_values = [] image_text_info = [] for idx, data in enumerate(texts): if isinstance(data, Image.Image): # An Image images.append(data) image_text_info.append(0) else: # A text texts_values.append(data) image_text_info.append(1) encoding = {} if len(texts_values): encoding = self.processor.tokenizer(texts_values, return_tensors="pt", padding=padding) if len(images): image_features = self.processor.image_processor(images, return_tensors="pt") encoding["pixel_values"] = image_features.pixel_values encoding["image_text_info"] = image_text_info return dict(encoding) @property def tokenizer(self) -> transformers.CLIPProcessor: return self.processor def save(self, output_path: str) -> None: self.model.save_pretrained(output_path) self.processor.save_pretrained(output_path) @staticmethod def load(input_path: str) -> CLIPModel: return CLIPModel(model_name=input_path)
from __future__ import annotations import torch import transformers from PIL import Image from torch import nn class CLIPModel(nn.Module): def __init__(self, model_name: str = "openai/clip-vit-base-patch32", processor_name=None) -> None: super(CLIPModel, self).__init__() if processor_name is None: processor_name = model_name self.model = transformers.CLIPModel.from_pretrained(model_name) self.processor = transformers.CLIPProcessor.from_pretrained(processor_name) def __repr__(self) -> str: return "CLIPModel()" def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: image_embeds = [] text_embeds = [] if "pixel_values" in features: vision_outputs = self.model.vision_model(pixel_values=features["pixel_values"]) image_embeds = self.model.visual_projection(vision_outputs[1]) if "input_ids" in features: text_outputs = self.model.text_model( input_ids=features.get("input_ids"), attention_mask=features.get("attention_mask", None), position_ids=features.get("position_ids", None), output_attentions=features.get("output_attentions", None), output_hidden_states=features.get("output_hidden_states", None), ) text_embeds = self.model.text_projection(text_outputs[1]) sentence_embedding = [] image_features = iter(image_embeds) text_features = iter(text_embeds) for idx, input_type in enumerate(features["image_text_info"]): if input_type == 0: sentence_embedding.append(next(image_features)) else: sentence_embedding.append(next(text_features)) features["sentence_embedding"] = torch.stack(sentence_embedding).float() return features def tokenize(self, texts, padding: str | bool = True) -> dict[str, torch.Tensor]: images = [] texts_values = [] image_text_info = [] for idx, data in enumerate(texts): if isinstance(data, Image.Image): # An Image images.append(data) image_text_info.append(0) else: # A text texts_values.append(data) image_text_info.append(1) encoding = {} if len(texts_values): encoding = self.processor.tokenizer(texts_values, return_tensors="pt", padding=padding) if len(images): image_features = self.processor.image_processor(images, return_tensors="pt") encoding["pixel_values"] = image_features.pixel_values encoding["image_text_info"] = image_text_info return dict(encoding) @property def tokenizer(self) -> transformers.CLIPProcessor: return self.processor def save(self, output_path: str) -> None: self.model.save_pretrained(output_path) self.processor.save_pretrained(output_path) @staticmethod def load(input_path: str) -> "CLIPModel": return CLIPModel(model_name=input_path)
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, ImageBytes, ImageUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.image.image_tensor import ImageTensor from docarray.utils.misc import is_tf_available, is_torch_available T = TypeVar('T', bound='ImageDoc') torch_available = is_torch_available() if torch_available: import torch tf_available = is_tf_available() if tf_available: import tensorflow as tf # type: ignore class ImageDoc(BaseDocument): """ Document for handling images. It can contain an ImageUrl (`Image.url`), an AnyTensor (`Image.tensor`), and an AnyEmbedding (`Image.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import ImageDoc # use it directly image = ImageDoc(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) You can extend this Document: .. code-block:: python from docarray.documents import ImageDoc from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(ImageDoc): second_embedding: Optional[AnyEmbedding] image = MyImage(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) image.second_embedding = model(image.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import ImageDoc, TextDoc # compose it class MultiModalDoc(BaseDocument): image: Image text: Text mmdoc = MultiModalDoc( image=Image(url="http://www.jina.ai/image.jpg"), text=Text(text="hello world, how are you doing?"), ) mmdoc.image.tensor = mmdoc.image.url.load() # or mmdoc.image.bytes_ = mmdoc.image.url.load_bytes() mmdoc.image.tensor = mmdoc.image.bytes.load() """ url: Optional[ImageUrl] tensor: Optional[ImageTensor] embedding: Optional[AnyEmbedding] bytes_: Optional[ImageBytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif ( isinstance(value, (AbstractTensor, np.ndarray)) or (torch_available and isinstance(value, torch.Tensor)) or (tf_available and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) elif isinstance(value, bytes): value = cls(byte=value) return super().validate(value)
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, ImageBytes, ImageUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.image.image_tensor import ImageTensor from docarray.utils.misc import is_tf_available, is_torch_available T = TypeVar('T', bound='ImageDoc') torch_available = is_torch_available() if torch_available: import torch tf_available = is_tf_available() if tf_available: import tensorflow as tf # type: ignore class ImageDoc(BaseDocument): """ Document for handling images. It can contain an ImageUrl (`Image.url`), an AnyTensor (`Image.tensor`), and an AnyEmbedding (`Image.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import ImageDoc # use it directly image = ImageDoc(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) You can extend this Document: .. code-block:: python from docarray.documents import ImageDoc from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(ImageDoc): second_embedding: Optional[AnyEmbedding] image = MyImage(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) image.second_embedding = model(image.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import ImageDoc, TextDoc # compose it class MultiModalDoc(BaseDocument): image: Image text: Text mmdoc = MultiModalDoc( image=Image(url="http://www.jina.ai/image.jpg"), text=Text(text="hello world, how are you doing?"), ) mmdoc.image.tensor = mmdoc.image.url.load() # or mmdoc.image.bytes = mmdoc.image.url.load_bytes() mmdoc.image.tensor = mmdoc.image.bytes.load() """ url: Optional[ImageUrl] tensor: Optional[ImageTensor] embedding: Optional[AnyEmbedding] bytes: Optional[ImageBytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif ( isinstance(value, (AbstractTensor, np.ndarray)) or (torch_available and isinstance(value, torch.Tensor)) or (tf_available and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) elif isinstance(value, bytes): value = cls(byte=value) return super().validate(value)
import csv import logging import os from typing import List from scipy.stats import pearsonr, spearmanr from sentence_transformers import InputExample logger = logging.getLogger(__name__) class CECorrelationEvaluator: """ This evaluator can be used with the CrossEncoder class. Given sentence pairs and continuous scores, it compute the pearson & spearman correlation between the predicted score for the sentence pair and the gold score. """ def __init__(self, sentence_pairs: List[List[str]], scores: List[float], name: str = "", write_csv: bool = True): self.sentence_pairs = sentence_pairs self.scores = scores self.name = name self.csv_file = "CECorrelationEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = ["epoch", "steps", "Pearson_Correlation", "Spearman_Correlation"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: List[InputExample], **kwargs): sentence_pairs = [] scores = [] for example in examples: sentence_pairs.append(example.texts) scores.append(example.label) return cls(sentence_pairs, scores, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CECorrelationEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) eval_pearson, _ = pearsonr(self.scores, pred_scores) eval_spearman, _ = spearmanr(self.scores, pred_scores) logger.info("Correlation:\tPearson: {:.4f}\tSpearman: {:.4f}".format(eval_pearson, eval_spearman)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, eval_pearson, eval_spearman]) return eval_spearman
import logging from scipy.stats import pearsonr, spearmanr from typing import List import os import csv from ... import InputExample logger = logging.getLogger(__name__) class CECorrelationEvaluator: """ This evaluator can be used with the CrossEncoder class. Given sentence pairs and continuous scores, it compute the pearson & spearman correlation between the predicted score for the sentence pair and the gold score. """ def __init__(self, sentence_pairs: List[List[str]], scores: List[float], name: str='', write_csv: bool = True): self.sentence_pairs = sentence_pairs self.scores = scores self.name = name self.csv_file = "CECorrelationEvaluator" + ("_" + name if name else '') + "_results.csv" self.csv_headers = ["epoch", "steps", "Pearson_Correlation", "Spearman_Correlation"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: List[InputExample], **kwargs): sentence_pairs = [] scores = [] for example in examples: sentence_pairs.append(example.texts) scores.append(example.label) return cls(sentence_pairs, scores, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CECorrelationEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=False) eval_pearson, _ = pearsonr(self.scores, pred_scores) eval_spearman, _ = spearmanr(self.scores, pred_scores) logger.info("Correlation:\tPearson: {:.4f}\tSpearman: {:.4f}".format(eval_pearson, eval_spearman)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else 'w', encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, eval_pearson, eval_spearman]) return eval_spearman
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from pydantic import Field from docarray.base_doc import BaseDoc from docarray.typing import AnyEmbedding, ImageBytes, ImageUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.image.image_tensor import ImageTensor from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: tf = import_library('tensorflow', raise_error=False) torch = import_library('torch', raise_error=False) T = TypeVar('T', bound='ImageDoc') class ImageDoc(BaseDoc): """ Document for handling images. It can contain: - an [`ImageUrl`][docarray.typing.url.ImageUrl] (`Image.url`) - an [`ImageTensor`](../../../api_references/typing/tensor/image) (`Image.tensor`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`Image.embedding`) - an [`ImageBytes`][docarray.typing.bytes.ImageBytes] object (`ImageDoc.bytes_`) You can use this Document directly: ```python from docarray.documents import ImageDoc # use it directly image = ImageDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ) image.tensor = image.url.load() # model = MyEmbeddingModel() # image.embedding = model(image.tensor) ``` You can extend this Document: ```python from docarray.documents import ImageDoc from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(ImageDoc): second_embedding: Optional[AnyEmbedding] image = MyImage( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ) image.tensor = image.url.load() # model = MyEmbeddingModel() # image.embedding = model(image.tensor) # image.second_embedding = model(image.tensor) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import ImageDoc, TextDoc # compose it class MultiModalDoc(BaseDoc): image: ImageDoc text: TextDoc mmdoc = MultiModalDoc( image=ImageDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.image.tensor = mmdoc.image.url.load() # or mmdoc.image.bytes_ = mmdoc.image.url.load_bytes() mmdoc.image.tensor = mmdoc.image.bytes_.load() ``` """ url: Optional[ImageUrl] = Field( description='URL to a (potentially remote) image file that needs to be loaded', example='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true', default=None, ) tensor: Optional[ImageTensor] = Field( description='Tensor object of the image which can be specifed to one of `ImageNdArray`, `ImageTorchTensor`, `ImageTensorflowTensor`.', default=None, ) embedding: Optional[AnyEmbedding] = Field( description='Store an embedding: a vector representation of the image.', example=[1, 0, 1], default=None, ) bytes_: Optional[ImageBytes] = Field( description='Bytes object of the image which is an instance of `ImageBytes`.', default=None, ) @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif ( isinstance(value, (AbstractTensor, np.ndarray)) or (torch is not None and isinstance(value, torch.Tensor)) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) elif isinstance(value, bytes): value = cls(byte=value) return super().validate(value)
from typing import TYPE_CHECKING, Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_doc import BaseDoc from docarray.typing import AnyEmbedding, ImageBytes, ImageUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.image.image_tensor import ImageTensor from docarray.utils._internal.misc import import_library if TYPE_CHECKING: import tensorflow as tf # type: ignore import torch else: tf = import_library('tensorflow', raise_error=False) torch = import_library('torch', raise_error=False) T = TypeVar('T', bound='ImageDoc') class ImageDoc(BaseDoc): """ Document for handling images. It can contain: - an [`ImageUrl`][docarray.typing.url.ImageUrl] (`Image.url`) - an [`ImageTensor`](../../../api_references/typing/tensor/image) (`Image.tensor`) - an [`AnyEmbedding`](../../../api_references/typing/tensor/embedding) (`Image.embedding`) - an [`ImageBytes`][docarray.typing.bytes.ImageBytes] object (`ImageDoc.bytes_`) You can use this Document directly: ```python from docarray.documents import ImageDoc # use it directly image = ImageDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ) image.tensor = image.url.load() # model = MyEmbeddingModel() # image.embedding = model(image.tensor) ``` You can extend this Document: ```python from docarray.documents import ImageDoc from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(ImageDoc): second_embedding: Optional[AnyEmbedding] image = MyImage( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ) image.tensor = image.url.load() # model = MyEmbeddingModel() # image.embedding = model(image.tensor) # image.second_embedding = model(image.tensor) ``` You can use this Document for composition: ```python from docarray import BaseDoc from docarray.documents import ImageDoc, TextDoc # compose it class MultiModalDoc(BaseDoc): image: ImageDoc text: TextDoc mmdoc = MultiModalDoc( image=ImageDoc( url='https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true' ), text=TextDoc(text='hello world, how are you doing?'), ) mmdoc.image.tensor = mmdoc.image.url.load() # or mmdoc.image.bytes_ = mmdoc.image.url.load_bytes() mmdoc.image.tensor = mmdoc.image.bytes_.load() ``` """ url: Optional[ImageUrl] = None tensor: Optional[ImageTensor] = None embedding: Optional[AnyEmbedding] = None bytes_: Optional[ImageBytes] = None @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif ( isinstance(value, (AbstractTensor, np.ndarray)) or (torch is not None and isinstance(value, torch.Tensor)) or (tf is not None and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) elif isinstance(value, bytes): value = cls(byte=value) return super().validate(value)
_base_ = './faster-rcnn_r50_fpn_1x_coco.py' model = dict( roi_head=dict( bbox_head=dict( reg_decoded_bbox=True, loss_bbox=dict(type='CIoULoss', loss_weight=12.0))))
_base_ = './faster_rcnn_r50_fpn_1x_coco.py' model = dict( roi_head=dict( bbox_head=dict( reg_decoded_bbox=True, loss_bbox=dict(type='CIoULoss', loss_weight=12.0))))
_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))